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SYMBOLS

o  permeability of free-space

o permittivity or capacitivity of free-space

= o

o

intrinsic impedance of free-space

c =
1

o o

speed of light

= oe
2c

2h
fine structure constant

  h  Planck constant bar
e2 electron charge squared

  
ao =

4 0h
2

e2
e

Bohr radius

Φ0 =
h

2e
  magnetic flux quantum

  
N =

eh
2mP

nuclear magneton

  
B =

eh
2me

Bohr magneton

  D c Compton wavelength bar

  
D c = ao =

h
mec

electron Compton wavelength bar

G gravitational constant
me mass of the electron
m rest mass of the muon
m rest mass of the tau

e reduced electron mass
mN rest mass of the neutron
mP rest mass of the proton



© 2000 by BlackLight Power, Inc.  All rights reserved.
x

And God said, "Let there be light"; and there was
light.  And God saw that the light was good; and God

separated the light from the darkness.

Genesis 1:3

Apparently there is color, apparently sweetness,
apparently bitterness; actually there are only atoms

and the void.

Democritus 420 BC

I cannot believe that God would choose to play dice
with the universe.

Albert Einstein

All truth goes through three steps.  First, it is
ridiculed.  Second, it is violently opposed, and finally it

is accepted as self-evident.

Arthur Schopenhauer
German Philosopher



© 2000 by BlackLight Power, Inc.  All rights reserved.
xi

FOREWORD

BLACKLIGHT POWER, inc. (BLP) of Malvern, Pennsylvania,  is
developing a revolutionary energy technology--catalytic hydrogen
collapse.  More explicitly, thermal energy is catalytically released as the
electrons of atomic hydrogen atoms are induced to undergo transitions
to lower energy levels corresponding to fractional quantum numbers.
The Company uses a hot refractory metal (e.g.. a hot tungsten filament)
to break hydrogen molecules into individual, normal hydrogen atoms.  A
vaporized inorganic catalyst causes the normal hydrogen atoms to
collapse to smaller-than-normal hydrogen atoms.  The hydrogen collapse
is accompanied by a release of energy that is intermediate between
chemical and nuclear energies.  BLP's new technology can operate under
the conditions of many existing electric power plants.  It should be
possible to retrofit these power plants to accommodate the new
technology.  The advantages are that the hydrogen fuel can be obtained
by diverting a fraction of the output energy of the process to split water
into its elemental constituents, and pollution which is inherent with
fossil and nuclear fuels is eliminated.

BLP is not developing so-called "Cold Fusion", which refers to the
failed attempt of producing substantial nuclear energy at room
temperature.  In contrast, BLP has obtained compelling theoretical and
experimental support for fractional quantum energy states of hydrogen,
which is the basis of a new hydrogen energy source.  Some revisions to
standard quantum theory are implied.  Quantum mechanics becomes a
real physical description as opposed to a purely mathematical model
where the old and the revised versions are interchangeable by a Fourier
Transform operation [1].  These revisions transform Schrödinger's and
Heisenberg's quantum theory into what may be termed a classical
quantum theory.  Physical descriptions flow readily from the theory.
For example, in the old quantum theory the spin angular momentum of
the electron is called the "intrinsic angular momentum".  This term
arises because it is difficult to provide a physical interpretation for the
electron's spin angular momentum.  Quantum Electrodynamics provides
somewhat of a physical interpretation by proposing that the "vacuum"
contains fluctuating electric and magnetic fields.  In contrast, in Mills'
theory proposed herein, spin angular momentum results from the
motion of negatively charged mass moving systematically, and the
equation for angular momentum, r × p , can be applied directly to the
wave function (a current density function) that describes the electron.

The quantum number n = 1 is routinely used to describe the
"ground" electronic state of the hydrogen atom.  I will show that the n = 1



© 2000 by BlackLight Power, Inc.  All rights reserved.
xii

state is the "ground" state for "pure" photon transitions (the n = 1 state
can absorb a photon and go to an excited electronic state, but it cannot
release a photon and go to a lower-energy electronic state).  However,
an electron transition from the ground state to a lower-energy state is
possible by a "resonant collision" mechanism.  These lower-energy states

have fractional quantum numbers, n =
1

integer
.  Processes that occur

without photons and that require collisions are common.  For example,
the exothermic chemical reaction of H + H  to form H2  does not occur
with the emission of a photon.  Rather, the reaction requires a collision
with a third body, M , to remove the bond energy- H + H + M → H2 + M *.
The third body distributes the energy from the exothermic reaction, and
the end result is the H2  molecule and an increase in the temperature of

the system.  Similarly, the n = 1 state of hydrogen and the n =
1

integer
 states

of hydrogen are nonradiative, but a transition between two nonradiative
states is possible via a resonant collision, say n = 1 to n = 1/ 2 .  In these
cases, during the collision the electron couples to another electron
transition or electron transfer reaction which can absorb the exact
amount of energy that must be removed from the hydrogen atom, a
resonant energy sink.  The end result is a lower-energy state for the
hydrogen and an increase in the temperature of the system.

NEW QUANTUM THEORY
J. J. Balmer showed in 1885 that the frequencies for some of the

lines observed in the emission spectrum of atomic hydrogen could be
expressed with a completely empirical relationship.  This approach was
later extended by J. R. Rydberg, who showed that all of the spectral lines
of atomic hydrogen were given by the equation:

= R
1

n f
2 −

1

ni
2

 

 
  

 
 (1)

where R = 109,677 cm−1, n f =1,2,3,..., ni = 2,3,4,...,  and ni > n f .
Niels Bohr, in 1913, developed a theory for atomic hydrogen that

gave energy levels in agreement with Rydberg's equation.  An identical
equation, based on a totally different theory for the hydrogen atom, was
developed by E. Schrödinger, and independently by W. Heisenberg, in
1926.

En = −
e2

n28 o aH

= −
13.598 eV

n2 (2a)

n = 1,2,3,... (2b)
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where aH  is the Bohr radius for the hydrogen atom (52.947 pm ), e  is the
magnitude of the charge of the electron, and o  is the vacuum
permittivity.

Recently, I have built on this work by deriving a new atomic theory
based on first principles.  The novel theory hereafter referred to as
Mills' theory unifies Maxwell's Equations, Newton's Laws, and General
and Special Relativity.  The central feature of this theory is that all
particles (atomic-size and macroscopic particles) obey the same
physical laws.  Whereas Schrödinger postulated a boundary condition:
Ψ → 0  as r → ∞ , the boundary condition in Mills' theory was derived from
Maxwell's equations [2]:

For non-radiative states, the current-density function must not
possess space-time Fourier components that are synchronous
with waves traveling at the speed of light.

Application of this boundary condition leads to a physical model of
particles, atoms, molecules, and, in the final analysis, cosmology.  The
closed-form mathematical solutions contain fundamental constants only,
and the calculated values for physical quantities agree with experimental
observations.  In addition, the theory predicts that Eq. (2b), should be
replaced by Eq. (2c).

n = 1,2,3,..., and , n =
1

2
,
1

3
,
1

4
,... (2c)

FRACTIONAL QUANTUM ENERGY LEVELS OF HYDROGEN
A number of experimental observations lead to the conclusion that

atomic hydrogen can exist in fractional quantum states that are at lower
energies than the traditional "ground" (n = 1) state.  For example, the
existence of fractional quantum states of hydrogen atoms explains the
spectral observations of the extreme ultraviolet background emission
from interstellar space [3], which may characterize dark matter as
demonstrated in Table 1.  (In these cases, a hydrogen atom in a

fractional quantum state, H ni( ), collides, for example, with a n =
1

2

hydrogen atom, H
1

2
 
 

 
 , and the result is an even lower-energy hydrogen

atom, H n f( ), and H
1

2
 
 

 
  is ionized.

H ni( ) + H
1

2
 
 

 
 → H n f( ) + H + + e− + photon (3)
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The energy released, as a photon, is the difference between the energies
of the initial and final states given by Eqs. (2a-2c) minus the ionization

energy of H
1

2
 
 

 
 , 54.4 eV .)
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Table 2.  Representative analytical tests performed on BlackLight's novel hydride compounds with the
corresponding laboratory.

___________________________________________________________________________________________
Laboratory Analytical Test

Lehigh University X-ray Photoelectron Spectroscopy (XPS)

Virginia Tech Raman Spectroscopy

Charles Evans & Associates East TOFSIMS, XPS, EDS, Scanning Electron Spectroscopy

University of Massachusetts Proton NMR

Charles Evans & Associates West ToF-SIMS

Xerox ToF-SIMS, XPS

Physical Electronics, Inc. ToF-SIMS

Spectral Data Services Proton & K NMR

Surface Science Associates FTIR

IC Laboratories XRD

Ricerca, Inc. LC/MS

PerSeptive Biosystems ESIToFMS

INP EUV Spectroscopy

Galbraith Laboratories Elemental Analysis

Franklin & Marshall College XRD

Pennsylvania State University Calvet calorimetry, XRD

TA Instruments TGA/DTA

Northeastern  University Mossbauer Spectroscopy

M-Scan Inc. FABMSMS, ESIMS,
Solids Probe Magnetic Sector Mass Spectroscopy

Micromass ESITOFMS

Southwest Research Institute Solids Probe,
Direct Exposure Probe Magnetic Sector Mass Spectroscopy

BlackLight Power, Inc. Calvet and Heat Loss Calorimetry, Cryogenic Gas Chromatography,
ToF-SIMS, XPS, LC/MS, UV and EUV Spectroscopy,

Thermal Decomposition/Gas Chromatography, MS of Gasses
Solids Probe Quadrapole Mass Spectroscopy, ESIToFMS
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Other aspects of Mills' theory include the relationship of the mechanism
that determines the masses of the fundamental particles to cosmology:

• Fundamental particle production occurs when the energy of the
particle given by the Planck equation, Maxwell's Equations, and
Special Relativity is equal to mc2 , and the proper time is equal to
the coordinate time according to General Relativity.  The
gravitational equations with the equivalence of the particle
production energies permit the equivalence of mass/energy and
the spacetime metric from which the gravitational constant and
the masses of the leptons, the quarks, and nucleons are derived.

• The gravitational equations with the equivalence of the particle
production energies permit the equivalence of mass/energy

( E = mc2 ) and spacetime (
c3

4 G
= 3.22 X 1034

 
kg

sec
).  Spacetime expands

as mass is released as energy which provides the basis of the
atomic, thermodynamic, and cosmological arrows of time.
Entropy and the expansion of the universe are large scale
consequences.

• The universe is closed independently of the total mass of the
universe, and different regions of space are isothermal even
though they are separated by greater distances than that over
which light could travel during the time of the expansion of the
universe.  The calculated microwave background temperature is
2.7 °K.

• The universe is oscillatory in matter/energy and spacetime with a
finite minimum radius, the gravitational radius
(3.12 X 1011

 light years); thus, the gravitational force causes celestial
structures to evolve on a time scale that is greater than the
period of oscillation (9.83 X 1011

 light years ).

• The value of the Hubble constant (Mills) is H0 = 78.6 
km

sec⋅ Mpc
.

Presently, stars exist which are older than the elapsed time of the
present expansion as stellar evolution occurred during the
contraction phase.  The maximum energy release of the universe
which occurs at the beginning of the expansion phase is
2.89 X 1051

 W .
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INTRODUCTION

GENERAL CONSIDERATIONS

Toward the end of the 19th century, many physicists believed that
all of the principles of physics had been discovered.  The accepted
principles, now called classical physics, included laws relating to
Newton’s mechanics, Gibbs' thermodynamics, LaGrange’s and Hamilton’s
elasticity and hydrodynamics, Maxwell-Boltzmann molecular statistics,
and Maxwell’s Equations.  However, the discovery that the intensity of
blackbody radiation goes to zero, rather than infinity as predicted by the
prevailing laws, provided an opportunity for new principles to be
discovered.  In 1900, Planck made the revolutionary assumption that
energy levels were quantized, and that atoms of the blackbody could
emit light energy only in amounts given by h , where  is the radiation’s
frequency and h  is a proportionality constant (now called Planck’s
constant).  This assumption also led to our understanding of the
photoelectric effect and ultimately to the concept of light as a particle
called a photon.  A similar course arose in the development of the model
of the electron.  In 1923, de Broglie suggested that the motion of an
electron has a wave aspect where the wavelength, , is inversely

proportional to the electron's momentum, p , as — =
h

p
.  This concept

seemed unlikely according to the familiar properties of electrons such as
charge, mass and adherence to the laws of particle mechanics.  But, the
wave nature of the electron was confirmed by Davisson and Germer in
1927 by observing diffraction effects when electrons were reflected
from metals.

Experiments by the early part of the 20th century had revealed that
both light and electrons behave as waves in certain instances and as
particles in others.  This was unanticipated from preconceptions about
the nature of light and the electron.  Early 20th century theoreticians
proclaimed that light and atomic particles have a "wave-particle duality"
that was unlike anything in our common-day experience.  The wave-
particle duality is the central mystery of the presently accepted atomic
model, quantum mechanics, the one to which all other mysteries could
ultimately be reduced.

Three atomic theories have been developed to explain the
seemingly mysterious physics of the atomic scale.  The earlier theories
of Bohr and Schrödinger assume that the laws of physics that are valid in
the macroworld do not hold true in the microworld of the atom.  In
contrast, the Mills theory is based on the foundation that laws of physics
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valid in the macroworld do hold true in the microworld of the atom.  In
the present case, the predictions which arise from the equations of light
and atomic particles are completely consistent with observation,
including the wave-particle duality of light and atomic particles.

Three Atomic Theories
The theories of Bohr, Schrödinger, and presently Mills all give the

identical equation, Eq. (I.1), for the principal energy levels of the
hydrogen atom.

E = −
Z 2e2

8 on
2 aH

= −
Z2

n2  X 2.1786 X 10−18  J = −
Z 2

n2  X 13.598 eV (I.1)

However, only Mills theory is derived from first principles.  The theories
of Bohr and Schrödinger depend on specific postulates to yield Eq. (I.1).
A relationship exists between the theories of Bohr and Schrödinger with
respect to that of Mills which involves these postulates.

Mills Theory-a classical quantum theory
One-electron atoms include the hydrogen atom, He II, Li III, Be IV,

and so on.  The mass-energy and angular momentum of the electron are
constant; this requires that the equation of motion of the electron be
temporally and spatially harmonic.  Thus, the classical wave equation
applies and

∇2
−

1

v2

2

t2

 
  

 
  (r, , ,t) = 0 (I.2)

where (r, , ,t) is the charge density function of the electron in time and
space.  In general, the wave equation has an infinite number of solutions.
To arrive at the solution which represents the electron, a suitable
boundary condition must be imposed.  It is well known from
experiments that each single atomic electron of a given isotope radiates
to the same stable state.  Thus, Mills chose the physical boundary
condition of nonradiation of the bound electron to be imposed on the
solution of the wave equation for the charge density function of the
electron.  The condition for radiation by a moving charge is derived
from Maxwell's equations.  To radiate, the spacetime Fourier transform
of the current-density function must possess components synchronous
with waves traveling at the speed of light [1].  Alternatively,

For non-radiative states, the current-density function must not
possess spacetime Fourier components that are synchronous
with waves traveling at the speed of light.

Proof that the condition for nonradiation by a moving point charge
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is that its spacetime Fourier transform does not possess components
that are synchronous with waves traveling at the speed of light is given
by Haus [1].  The Haus derivation applies to a moving charge-density
function as well because charge obeys superposition.  The Haus
derivation is summarized below.

The Fourier components of the current produced by the moving
charge are derived.  The electric field is found from the vector equation
in Fourier space (k, ω-space).  The inverse Fourier transform is carried
over the magnitude of k .  The resulting expression demonstrates that

the radiation field is proportional to J⊥ (
c

n, ) , where J⊥ (k, )  is the

spacetime Fourier transform of the current perpendicular to k  and

n ≡
k
|k|

.  Specifically,

E⊥ r,( ) d

2
=

c

2
,Ω( )∫ d dΩ 0

0

n X n X J⊥ c
n,

 
 

 
 e

i
c

 

 
 

 

 
 n•r 

 
  

 
 (I.3)

The field E⊥ r,( ) d

2
  is proportional to J⊥ c

n,
 
 

 
  , namely, the Fourier

component for which k =
c

.  Factors of  that multiply the Fourier

component of the current are due to the density of modes per unit
volume and unit solid angle.  An unaccelerated charge does not radiate
in free space, not because it experiences no acceleration, but because it

has no Fourier component J⊥ c
n,

 
 

 
 .

The time, radial, and angular solutions of the wave equation are
separable.  The motion is time harmonic with frequency n .  To be a
harmonic solution of the wave equation in spherical coordinates, the
angular functions must be spherical harmonic functions.  A zero of the
spacetime Fourier transform of the product function of two spherical
harmonic angular functions, a time harmonic function, and an unknown
radial function is sought.  The solution for the radial function which
satisfies the boundary condition is a delta function

f (r) =
1

r2 (r − rn ) (I.4)

where rn  is an allowed radius.  Thus, bound electrons are described by a
charge-density (mass-density) function which is the product of a radial

delta function ( f (r) =
1

r2 (r − rn ) ), two angular functions (spherical

harmonic functions), and a time harmonic function.  Thus, an electron is
a spinning, two-dimensional spherical surface, called an electron
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orbitsphere, that can exist in a bound state at only specified distances
from the nucleus.  More explicitly, the orbitsphere comprises a two-
dimensional spherical shell of moving charge.  The corresponding
current pattern of the orbitsphere comprises an infinite series of
correlated orthogonal great circle current loops.  The current pattern
(shown in Figure 1.4) is generated over the surface by two orthogonal
sets of an infinite series of nested rotations of two orthogonal great
circle current loops where the coordinate axes rotate with the two
orthogonal great circles.  Each infinitesimal rotation of the infinite series
is about the new x-axis and new y-axis which results from the preceding
such rotation.  For each of the two sets of nested rotations, the angular
sum of the rotations about each rotating x-axis and y-axis totals 2
radians.  The current pattern gives rise to the phenomenon
corresponding to the spin quantum number.

Mills has built on this result by deriving a complete atomic theory
based on first principles.  The novel theory unifies Maxwell's Equations,
Newton's Laws, and General and Special Relativity.  The central feature of
this theory is that all particles (atomic-size particles and macroscopic
particles) obey the same physical laws.

The Mills theory solves the wave equation for the charge density
function of the electron.  The radial function for the electron indicates
that the electron is two-dimensional.  Therefore, the angular mass-
density function of the electron, A( , ,t), must be a solution of the wave
equation in two dimensions (plus time),

∇2− 1

v2

2

t2

 
  

 
  A( , ,t) = 0 (I.5)

where (r, , ,t) = f (r)A( , ,t) =
1

r 2 (r − rn )A( , ,t)  and A( , ,t) = Y ( , )k(t)

1

r 2 sin
sin

 
 

 
 

r,

+
1

r 2 sin2

2

2

 
 
  

 
r,

−
1

v2

2

t2

 

 
 

 

 
 A , ,t( ) = 0 (I.6)

where v  is the linear velocity of the electron.  The charge-density
functions including the time-function factor are

 = 0

  
(r, , ,t) =

e

8 r2 [ (r − rn )] Yl
m ,( ) + Y0

0 ,( )[ ] (I.7)

 ≠ 0

  
(r, , ,t) =

e

4 r2 [ (r − rn )] Y0
0 ,( ) + Re Yl

m ,( ) 1 + e i nt[ ]{ }[ ] (I.8)

where
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Re Yl

m ,( ) 1+ e i nt[ ]{ } = Re Yl
m ,( ) + Yl

m ,( )e i nt[ ] = Pl
m cos( )cosm + Pl

m cos( )cos m + nt( )
and n = 0 for m = 0.  And, the Fourier transform of the charge density
function which is derived in the Spacetime Fourier Transform of the
Electron Function Section is a solution of the four-dimensional wave
equation in frequency space (k, ω-space).

M(s,Θ,Φ , ) = 4
sin(2snrn )

2snrn

⊗ 2
=1

∞

∑ (−1) −1 sinΘ( )2( −1)

( −1)!( −1)!

Γ
1

2
 
 

 
 Γ +

1

2
 
 

 
 

cosΘ( )2 +12 +1
2 !

( −1)!
s−2

⊗2
=1

∞

∑ (−1) −1 sinΦ( )2( −1)

( −1)!( −1)!

Γ
1

2
 
 

 
 Γ +

1

2
 
 

 
 

cosΦ( )2 +12 +1
2 !

( −1)!
s −2 1

4
[ ( − n ) + ( + n )]

(I.9)

The motion on the orbitsphere is angular; however, a radial component
exists due to Special Relativistic effects.  Consider the radial wave vector
of the sinc function.  When the radial projection of the velocity is c

sn • vn = s n • c = n (I.10)
the relativistically corrected wavelength is

rn = n  (I.11)
(i.e. the lab frame motion in the angular direction goes to zero as the
velocity approaches the speed of light).  Substitution of Eq. (I.11) into
the sinc function results in the vanishing of the entire Fourier transform

of the current-density function.  Thus, spacetime harmonics of n

c
= k  or

n

c o

= k  for which the Fourier transform of the current-density

function is nonzero do not exist.  Radiation due to charge motion does
not occur in any medium when this boundary condition is met.

Relationship Between the Theories of Bohr and Schrödinger
with Respect to that of Mills

J. J. Balmer showed, in 1885, that the frequencies for some of the
lines observed in the emission spectrum of atomic hydrogen could be
expressed with a completely empirical relationship.  This approach was
later extended by J. R. Rydberg, who showed that all of the spectral lines
of atomic hydrogen were given by the equation:

= R
1

n f
2 −

1

ni
2

 

 
  

 
 (I.12)

where R = 109,677 cm−1 , n f = 1,2,3,... , ni = 2,3,4,... , and ni > n f .  In 1911,
Rutherford proposed a planetary model for the atom where the
electrons revolved about the nucleus (which contained the protons) in
various orbits.  There was, however, a fundamental conflict with this
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model and the prevailing classical physics.  According to classical
electromagnetic theory, an accelerated particle radiates energy (as
electromagnetic waves).  Thus, an electron in a Rutherford orbit,
circulating at constant speed but with a continually changing direction
of its velocity vector is being accelerated; thus, the electron should
constantly lose energy by radiating and spiral into the nucleus.

An explanation was provided by Bohr in 1913, when he assumed
that the energy levels were quantized and the electron was constrained
to move in only one of a number of allowed states.  Niels Bohr's theory
for atomic hydrogen was based on an unprecedented postulate of stable
circular orbits that do not radiate.  Although no explanation was offered
for the existence of stability for these orbits, the results gave energy
levels in agreement with Rydberg's equation.  Bohr's theory was a
straightforward application of Newton's laws of motion and Coulomb's
law of electric force.  According to Bohr's model, the point particle
electron was held to a circular orbit about the relatively massive point
particle nucleus by the balance between the coulombic force of
attraction between the proton and the electron and centrifugal force of
the electron.

e2

4 0r
2 =

mev
2

r
(I.13)

Bohr postulated the existence of stable orbits in defiance of classical
physics (Maxwell's Equations), but he applied classical physics according
to Eq. (I.13).  Then Bohr realized that the energy formula Eq. (I.1) was
given by postulating nonradiative states with angular momentum

  Lz = mevr = nh n = 1,2,3... (I.14)
and by solving the energy equation classically.  The Bohr radius is given
by substituting the solution of Eq. (I.14) for v  into Eq. (I.13).

  
r =

4 0h
2n2

mee
2 = n2a0 n =1, 2,3... (I.15)

The total energy is the sum of the potential energy and the kinetic
energy.  In the present case of an inverse squared central field, the total
energy (which is the negative of the binding energy) is one half the
potential energy [2].  The potential energy, r( ) , is given by Poisson's
Equation

r( ) = −
r '( )dv'

4 0 r − r'

V'
∫ (I.16)

For a point charge at a distance r  from the nucleus the potential is

r( ) =−
e2

4 0r
(I.17)

Thus, the total energy is given by
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E = −
Z 2e2

8 or
(I.18)

Substitution of Eq. (I.15) into Eq.(I.18) with the replacement of the
electron mass by the reduced electron mass gives Eq. (I.1).

Bohr’s model was in agreement with the observed hydrogen
spectrum, but it failed with the helium spectrum, and it could not
account for chemical bonds in molecules.  The prevailing wisdom was
that the Bohr model failed because it was based on the application of
Newtonian mechanics for discrete particles.  And, its limited
applicability was attributed to the unwarranted assumption that the
energy levels are quantized.

In 1923, de Broglie suggested that the motion of an electron has a

wave aspect— =
h

p
.  This was confirmed by Davisson and Germer in

1927 by observing diffraction effects when electrons were reflected
from metals.  Schrödinger reasoned that if electrons have wave
properties, there must be a wave equation that governs their motion.
And, in 1926, he proposed the Schrödinger equation

HΨ = EΨ (I.19)
where Ψ  is the wave function, H  is the wave operator, and E  is the
energy of the wave.  The Schrödinger equation solutions are three
dimensional in space and four dimensional in spacetime

∇2− 1

v2

2

t2

 
  

 
  Ψ(r, , ,t ) = 0 (I.20)

where Ψ(r, , ,t) according to quantum theory is the probability density
function of the electron as described below.  When the time harmonic
function is eliminated [3],

  
−

h2

2

1

r 2 r
r 2 Ψ

r

 
 

 
 +

1

r 2 sin
sin

Ψ 
 

 
 

r,

+
1

r 2 sin2

2Ψ
2

 
 
  

 
r,

 

 
 

 

 
 + U r( )Ψ r, ,( ) = EΨ r, ,( )

(I.21)
In general, the Schrödinger equation has an infinite number of solutions.
To arrive at the solution which represents the electron, a suitable
boundary condition must be imposed.  Schrödinger postulated a
boundary condition: Ψ → 0  as r → ∞ , which leads to a purely
mathematical model of the electron.  The general form of the solutions
for r, ,( ) are

r, ,( ) = f lm r( )
l,m
∑ Ylm ,( ) (I.22)

where the solutions for the angular part of Eq. (I.21), Ylm ,( ), are the
spherical harmonics
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Ylm ,( ) =
2l +1( ) l − m( )!
4 l + m( )! Pl

m cos( )e im (I.23)

The angular part of Eq. (I.21) is the generalized Legendre equation which
is derived from the Laplace equation by Jackson (Eq. (3.9) of Jackson
[4]).  For the case that the potential energy is a constant times the
wavenumber of the electron, k  (a constant times the inverse of the de

Broglie wavelength of the electron--k =
2

;  =
h

p
), the radial part of Eq.

(I.21) is just the Bessel equation, Eq. (3.75) of Jackson [4] with = l +
1

2
.

(In the present case of an inverse squared central field, the magnitude of
each of the binding energy and the kinetic energy is one half the
potential energy [2], and the de Broglie wavelength requires that the

kinetic energy, 
p2

2me

, is a constant times the wavenumber squared.)

Thus, the solutions for f lm r( ) are

f lm r( ) =
Alm

r1/2 J l +1/2 kr( ) +
Blm

r1/2 Nl +1/2 kr( ) (I.24)

It is customary to define the spherical Bessel and Hankel functions,
denoted by jl x( ), nl x( ), hl

1,2( ) x( ),  as follows:

jl x( ) =
2x

 
 

 
 

1/2

Jl +1/2 x( )

nl x( ) =
2x

 
 

 
 

1/2

Nl +1/2 x( )

hl
1,2( ) x( ) =

2x
 
 

 
 

1/2

J l +1/2 x( ) ± iNl +1/2 x( )[ ]

(I.25)

For l = 0 , the explicit forms are:

j0 x( ) = sin x

x

n0 x( ) = −
cos x

x

h0
1( ) x( ) = e ix

ix

(I.26)

Eq. (I.21) has the general form
H = E (I.27)

The energy is given by

H
−∞

∞

∫ dv = E 2

−∞

∞

∫ dv ; (I.28)

Typically, the solutions are normalized.
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2

−∞

∞

∫ dv = 1 (I.29)

Thus,

H
−∞

∞

∫ dv = E (I.30)

A physical interpretation of Eq. (I.30) is sought.  Schrödinger interpreted
eΨ *( x)Ψ(x) as the charge-density or the amount of charge between x  and
x + dx  (Ψ * is the complex conjugate of Ψ ).  Presumably, then, he pictured
the electron to be spread over large regions of space.  Three years after
Schrödinger’s interpretation, Max Born, who was working with scattering
theory, found that this interpretation led to logical difficulties, and he
replaced the Schrödinger interpretation with the probability of finding
the electron between x  and x + dx  as

Ψ(x)Ψ*( x)dx∫ (I.31)

Born’s interpretation is generally accepted.  Nonetheless, interpretation
of the wave function is a never-ending source of confusion and conflict.
Many scientists have solved this problem by conveniently adopting the
Schrödinger interpretation for some problems and the Born
interpretation for others.  This duality allows the electron to be
everywhere at one time—yet have no volume.  Alternatively, the electron
can be viewed as a discrete particle that moves here and there (from
r = 0  to r = ∞), and ΨΨ *  gives the time average of this motion.
According to the Copenhagen interpretation, every observable exists in a
state of superposition of possible states and observation or the potential
for knowledge causes the wavefunction corresponding to the
possibilities to collapse into a definite state.  The postulate of quantum
measurement asserts that the process of measuring an observable forces
the state vector of the system into an eigenvector of that observable,
and the value measured will be the eigenvalue of that eigenvector.  Thus,
Eq.(I.30) corresponds to collapsing the wave function, and E  is the
eigenvalue of the eigenvector.

However, an alternative interpretation of Eq. (I.30) and the
corresponding solutions for  exist.  In the case that  is a function
given by Eqs. (I.24-I.26), Eq. (I.30) is equivalent to an inverse Fourier
transform.  The spacetime inverse Fourier transform in three dimensions
in spherical coordinates is given [5,6] as follows:

M(s,Θ,Φ ) = (r, , )exp( −i2 sr[cosΘcos + sinΘsin cos( −Φ)])r 2 sin drd d
0

2

∫
0
∫

0

∞

∫ (I.32)

With circular symmetry [5]
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M(s,Θ) = 2 (r, )Jo

0
∫

0

∞

∫ 2 sr sinΘsin( )exp −i2 sr cosΘcos( )r2 sin drd (I.33)

With spherical symmetry [5],

M(s) = 4 (r )
0

∞

∫ sinc 2sr( )r 2dr = 4 (r)
0

∞

∫
sinsr

sr
r2dr (I.34)

The Schrödinger equation (Eq. (I.21)) can be transformed into a sum
comprising a part that depends only on the radius and a part that is a
function of angle only.  By separation of variables, and substitution of
the eigenvalues corresponding to the angular part [7], the Schrödinger
equation becomes the radial equation, R r( ), given by

  
−

h2

2 r2

d

dr
r2 dR

dr
 
 

 
 +

h2l l +1( )
2 r 2 +U r( ) 

  
 
  R r( ) = ER r( ) (I.35)

Consider the case that  = 0, that the potential energy is a constant
times the wavenumber, and that the radial function is a spherical Bessel
function as given by Eqs. (I.24-I.26).  In this case, Eq. (I.35) is given by

  
4

sin sr

sr
−

h2

2 r2

d

dr
r 2 d

dr
 
 

 
 + U r( ) 

  
 
  

sin sr

sr
r2 dr

0

∞

∫ = E4
sinsr

sr

sin sr

sr
r2dr

0

∞

∫ (I.36)

Eq. (I.34) is the Fourier transform integral in spherical coordinates with
spherical symmetry.  The left hand side (LHS) of Eq. (I.36) is equivalent
to the LHS of Eq. (I.30) wherein  is given by Eq. (I.26).  Then the LHS of
Eq. (I.36) is the Fourier transform integral of H  wherein the kernel is

r 2 sin sr

sr
.  The integral of Eq. (I.30) gives E  which is a constant.  The

energy E  of Eq. (I.27) is a constant such as b .  Thus, H  according to Eq.
(I.27) is a constant times .

H = b (I.37)
where b  is a constant.  Since is b  is an arbitrary constant, consider the
following case wherein b  is the Rydberg formula:

b = −
Z2e2

8 0n
2aH

(I.38)

Then the energy of Eq. (I.30) is that given by Eq. (I.1).  But, the
Schrödinger equation can be solved to give the energy corresponding to
the radial function given by Eq. (I.4) of the Mills theory.  The radial
function used to calculate the energy is a delta function which
corresponds to an inverse Fourier transform of the solution for .

Ψ s( ) = (s − sn ) (I.39)
With a change of variable, Eq. (I.39) becomes Eq.(I.4).

Eq. (I.36) can be expressed as follows

  
4

sin sr

sr
−

h2

2 r2

d

dr
r 2 d

dr
 
 

 
 + U r( ) 

  
 
  

sin snr

snr
r2dr

0

∞

∫ = E4
sinsr

sr

sin snr

snr
r2dr

0

∞

∫ (I.40)
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It follows from Eq. (I.34) that the right side integral is the Fourier
transform of a radial Dirac delta function.

4 E
sinsnr

snr0

∞

∫
sin sr

sr
r2dr = E

s − sn( )
4 sn

2 (I.41)

Substitution of Eq. (I.37) into Eq. (I.40) gives

4 b
sin snr

snr0

∞

∫
sinsr

sr
r 2dr = b

s − sn( )
4 sn

2 (I.42)

Substitution of Eq. (I.41) and Eq. (I.42) into Eq. (I.40) gives
b s − sn( ) = E s − sn( ) (I.43)

Consider the case where b  is given by

  

b = −
h2

2men
a0

Z2
s

= −

1

n
Z 2e2

8 0s
(I.44)

and sn  is given by
sn = naH (I.45)

where rn = naH .  According to the duality and change of scale properties
of Fourier transforms [8], the energy equation of the Mills theory and
that of quantum mechanics are identical, the energy of a radial Dirac
delta function of radius equal to an integer multiple of the radius of the
hydrogen atom.  The total energy of the electron is given by Poisson's
Equation (Eq. (I.17)) and the relationship that the total energy is one half
the potential energy in the case of an inverse squared central force [2].

E = E (r − rn )
−∞

∞

∫ dr =− (r − rn )

1

n
Z 2e2

8 0r−∞

∞

∫ dr = −

1

n
Z 2e2

8 0rn

= −
Z 2e2

8 on
2aH

(I.46)

As was the case with the Bohr theory, quantum mechanics which is
based on the Schrödinger equation and modifications of the Schrödinger
equation has encountered several obstacles that have proved
insurmountable.  For examples:

1.) The Schrödinger equation failed to predict the electron spin,
and it provides no rational basis for the phenomenon of spin, the
Pauli exclusion principle, or Hund’s rules.  Instantaneous exchange of
information between particles is required, which violates Special
Relativity. According to this model, the electron must spin in one
dimension and give rise to a Bohr magneton; yet, classically the

energy of a magnetic moment is 
2

r3  which in the present case is

infinity (by substitution of r = 0  for the model that the electron is a
point particle), not the required mc2 .  This interpretation is in
violation of Special Relativity [9].  A modification of the Schrödinger
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equation was developed by Dirac to explain spin which relies on the
unfounded notions of negative energy states of the vacuum, virtual
particles, and gamma factors.

2.) Quantum mechanics assumes that atomic-size particles obey
different physical laws than macroscopic objects.  For example,
according to Maxwell's equations the electron described by a
Schrödinger one-electron wave function would radiate.  Quantum
Electrodynamics (QED) based on vacuum energy fluctuations (zero
point fluctuation (ZPF) energy) was invented to address some of
these issues, but rigorous solutions of QED result in no solutions
other than infinities.  (Radiated photons make an infinite
contribution to the perturbation series).

The failure of quantum mechanics is attributed to the unwarranted
assumption that first principles such as Maxwell's Equations do not apply
to the electron and the incorrect notion that the electron is described by
a probability distribution function of a point particle.  The success of the
Schrödinger equation can be understood in terms of the nature of the
solutions to the wave equation.  In general, the solutions are separable,
provide three quantum numbers, and yield eigenvalues.  By adjusting the
arbitrary constants of the separable solutions, the desired eigenvalues
can be obtained.

The fourth quantum number arises naturally in the Mills theory as
derived in The Electron g Factor Section.  The Stern-Gerlach experiment
implies a magnetic moment of one Bohr magneton and an associated
angular momentum quantum number of 1/2.  Historically, this quantum

number is called the spin quantum number, s (s =
1

2
; ms =±

1

2
).

Conservation of angular momentum of the orbitsphere permits a
discrete change of its "kinetic angular momentum" (r × mv)  by the field of

  
h
2

, and concomitantly the "potential angular momentum" (r × eA)  must

change by 
  
−

h
2

.  The flux change, , of the orbitsphere for r < rn   is

determined as follows:

  
∆L =

h
2

− r × eA (I.47)

  
=

h
2

−
e2 rA

2
(I.48)

  
=

h
2

−
e

2
(I.49)

In order that the change of angular momentum, ∆L, equals zero,  must

be Φ0 =
h

2e
, the magnetic flux quantum.  Thus, to conserve angular
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momentum in the presence of an applied magnetic field, the orbitsphere
magnetic moment can be parallel or antiparallel to an applied field as
observed with the Stern-Gerlach experiment, and the flip between

orientations ( a rotation of 
2

) is accompanied by the "capture" of the

magnetic flux quantum by the orbitsphere.  And, the total energy of the
flip transition is the sum of Eq. (1.148), the energy of a fluxon treading
the orbitsphere and Eq. (1.136), the energy of reorientation of the
magnetic moment.

∆Emag
spin = 2 BB +

2 BB
 
 

 
 (I.50)

∆Emag
spin = 2(1+

2
) BB (I.51)

∆Emag
spin = 2g BB (I.52)

The spin-flip transition can be considered as involving a magnetic
moment of g times that of a Bohr magneton.  The factor g is
redesignated the fluxon g factor as opposed to the anomalous g factor
and its value is 1.00116.  The experimental value is 1.00116.

The orbitsphere is a resonator cavity which traps photons of
discrete frequencies.  The radius of an orbitsphere increases with the
absorption of electromagnetic energy.  The solutions to Maxwell's
equations for modes that can be excited in the orbitsphere resonator
cavity give rise to four quantum numbers, and the energies of the modes
are the experimentally known hydrogen spectrum.

The subscript n is used in Eq. (I.46); the quantization condition
appears in the Excited States of the One Electron Atom (Quantization)
Section.  Quantization arises as "allowed" solutions of the wave
equation corresponding to a resonance between the electron and a
photon.

More explicitly, it is well known that resonator cavities can trap
electromagnetic radiation of discrete resonant frequencies.  The
orbitsphere is a resonator cavity which traps photons of discrete
frequencies.  Thus, photon absorption occurs as an excitation of a
resonator mode.  The "trapped photon" is a "standing electromagnetic
wave" which actually is a circulating wave that propagates along each
great circle current loop of the orbitsphere.  The time-function factor,
k(t ), for the "standing wave" is identical to the time-function factor of
the orbitsphere in order to satisfy the boundary (phase) condition at the
orbitsphere surface.  Thus, the angular frequency of the "trapped
photon" has to be identical to the angular frequency of the electron
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orbitsphere, n .  Furthermore, the phase condition requires that the
angular functions of the "trapped photon" have to be identical to the
spherical harmonic angular functions of the electron orbitsphere.
Combining k(t ) with the -function factor of the spherical harmonic

gives e i m − n t( )  for both the electron and the "trapped photon" function.
The photon is "glued" to the inner orbitsphere surface and the outer
nuclear surface as photon source charge-density with a radial electric
field.

From the application of the nonradiative boundary condition, the
instability of excited states as well as the stability of the "ground" state
arise naturally in the Mills theory as derived in Stability of Atoms and
Hydrinos Section.  In addition to the above known states of hydrogen
(Eq. (I.1), the theory predicts the existence of a previously unknown
form of matter: hydrogen atoms and molecules having electrons of
lower energy than the conventional "ground" state, called hydrinos  and
dihydrinos, respectively, where each energy level corresponds to a
fractional quantum number.

The central field of the proton corresponds to integer one charge.
Excited states comprise an electron with a trapped photon.  In all energy
states of hydrogen, the photon has an electric field which superposes
with the field of the proton.  In the n = 1 state, the sum is one, and the
sum is zero in the ionized state.  In an excited state, the sum is a fraction
of one (i.e. between zero and one).  Derivations from first principles
given by Mills demonstrate that each "allowed" fraction corresponding

to an excited state is 
1

integer
.  The relationship between the electric field

equation and the "trapped photon" source charge-density function is
given by Maxwell’s equation in two dimensions.

n • E1 − E2( ) =
0

(I.53)

where n  is the radial normal unit vector, E1 = 0  (E1  is the electric field
outside of the orbitsphere), E2  is given by the total electric field at
rn = naH , and σ is the surface charge-density.  The electric field of an
excited state is fractional; therefore, the source charge function is
fractional.  It is well known that fractional charge is not "allowed".  The
reason is that fractional charge typically corresponds to a radiative
current density function.  The excited states of the hydrogen atom are
examples.  They are radiative; consequently, they are not stable.  Thus,
an excited electron decays to the first nonradiative state corresponding
to an integer field, n = 1.  Equally valid from first principles are electronic
states where the sum of the photon field and the central field are an
integer.  These states are nonradiative.  A catalyst can effect a transition
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between these states.

Instability of Excited States
For the excited (integer quantum) energy states of the hydrogen

atom, photon , the two dimensional surface charge due to the "trapped
photons" at the orbitsphere, is given by Eqs. (2.6) and (2.11).

  
photon =

e

4 (rn)
2 Y0

0 ,( ) −
1

n
Y0

0 ,( ) + Re Yl
m ,( ) 1+ e i nt[ ]{ }[ ] 

 
 
 

(r − rn )  n = 2,3,4,..., (I.54)

Whereas, electron , the two dimensional surface charge of the electron
orbitsphere is

  
electron =

−e

4 (rn )2 Y0
0 ,( ) + Re Yl

m ,( ) 1 + e i nt[ ]{ }[ ] (r − rn ) (I.55)

The superposition of photon  (Eq. (I.54)) and electron (Eq. (I.55)), where the
spherical harmonic functions satisfy the conditions given in the Angular
Function Section, is equivalent to the sum of a radial electric dipole
represented by a doublet function and a radial electric monopole
represented by a delta function.

  
photon + electron =

e

4 (rn )2 Y0
0 ,( )

•
(r − rn ) −

1

n
Y0

0 ,( ) (r − rn ) − 1 +
1

n
 
 

 
 Re Yl

m ,( ) 1 + ei nt[ ]{ }[ ] (r − rn )
 
  

 
  

n = 2,3,4,..., (I.56)
where

+ (r − rn ) − (r − rn)[ ] =
•
(r − rn ) (I.57)

The spacetime Fourier transform of Eq. (I.56), the superposition of
photon  (Eq. (I.54)) and electron  (Eq. (I.55)) is

M(s,Θ,Φ , ) = 4 sn

cos(2snrn )

2snrn

⊗ 2
=1

∞

∑ (−1) −1 sin Θ( )2( −1)

( −1)!( − 1)!

Γ
1

2
 
 

 
 Γ +

1

2
 
 

 
 

cosΘ( )2 +1 2 +1
2 !

( −1)!
s −2

⊗2
=1

∞

∑ (−1) −1 sinΦ( )2( −1)

( −1)!( −1)!

Γ
1

2
 
 

 
 Γ +

1

2
 
 

 
 

cosΦ( )2 +12 +1
2 !

( −1)!
s −2 1

4
[ ( − n ) + ( + n )]

(I.58)
Consider the radial wave vector of the cosine function of Eq. (I.58).

When the radial projection of the velocity is c
sn • vn = s n • c = n (I.59)

the relativistically corrected wavelength is
rn = n  (I.60)

Substitution of Eq. (I.60) into the cosine function does not result in the
vanishing of the Fourier Transform of the current-density function.

Thus, spacetime harmonics of n

c
= k  or n

c o

= k  do exist for which the
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Fourier Transform of the current-density function is nonzero.  An
excited state is metastable because it is the sum of nonradiative (stable)
and radiative (unstable) components and de-excites with a transition
probability given by the ratio of the power to the energy of the
transition [10].

Stability of "Ground" and Hydrino States
For the below "ground" (fractional quantum) energy states of the

hydrogen atom, photon , the two dimensional surface charge due to the
"trapped photon" at the electron orbitsphere, is given by Eqs. (5.13) and
(2.11).

  
photon =

e

4 (rn)
2 Y0

0 ,( ) −
1

n
Y0

0 ,( ) + Re Yl
m ,( ) 1+ e i nt[ ]{ }[ ] 

 
 
 

(r − rn )  n = 1,
1

2
,
1

3
,
1

4
,...,

(I.61)
And, electron , the two dimensional surface charge of the electron
orbitsphere is

  
electron =

−e

4 (rn )2 Y0
0 ,( ) + Re Yl

m ,( ) 1 + e i nt[ ]{ }[ ] (r − rn ) (I.62)

The superposition of photon  (Eq. (I.61)) and electron , (Eq. (I.62)) where the
spherical harmonic functions satisfy the conditions given in the Angular
Function Section is a radial electric monopole represented by a delta
function.

  
photon + electron =

−e

4 (rn )2

1

n
Y0

0 ,( ) + 1 +
1

n
 
 

 
 Re Yl

m ,( ) 1+ e i nt[ ] 
  

 
  (r − rn )  n = 1,

1

2
,
1

3
,
1

4
,..., (I.63)

As given in the Spacetime Fourier Transform of the Electron Function
Section, the radial delta function does not possess spacetime Fourier
components synchronous with waves traveling at the speed of light (Eqs.
(I.9-I.11)).  Thus, the below "ground" (fractional quantum) energy states
of the hydrogen atom are stable.  The "ground" (n = 1 quantum) energy
state is just the first of the nonradiative states of the hydrogen atom;
thus, it is the state to which excited states decay.

Catalytic Lower-Energy Hydrogen Electronic Transitions
Comparing transitions between below "ground" (fractional

quantum) energy states as opposed to transitions between excited
(integer quantum) energy states, it can be appreciated that the former
are not effected by photons; whereas, the latter are.  Transitions are
symmetric with respect to time.  Current density functions which give
rise to photons according to the boundary condition are created by
photons in the reverse process.  Excited (integer quantum) energy states
correspond to this case.  And, current density functions which do not
give rise to photons according to the nonradiative boundary condition
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are not created by photons in the reverse process.  Below "ground"
(fractional quantum) energy states correspond to this case.  But, atomic
collisions and nonradiative energy transfer can cause a stable state to
undergo a transition to the next stable state.  The transition between two
stable nonradiative states effected by a collision with an resonant energy
sink is analogous to the reaction of two atoms to form a diatomic
molecule which requires a third-body collision to remove the bond
energy [11].

Energy Hole Concept
The nonradiative boundary condition and the relationship between

the electron and the photon give the "allowed" hydrogen energy states
which are quantized as a function of the parameter n .  Each value of n
corresponds to an allowed transition effected by a resonant photon
which excites the electronic transition.  In addition to the traditional
integer values (1, 2, 3,...,) of n , values of fractions are allowed which
correspond to transitions with an increase in the central field (charge)
and decrease in the size of the hydrogen atom.  This occurs, for
example, when the electron couples to another electronic transition or
electron transfer reaction which can absorb energy, an energy sink.  This
transition reaction of the electron of hydrogen to a lower energy state
occurs by the absorption of an energy hole by the hydrogen atom.
The absorption of an energy hole destroys the balance between the
centrifugal force and the resulting increased central electric force.
Consequently, the electron undergoes a transition to a lower energy
nonradiative state.  Thus, the corresponding reaction from an initial
energy state to a lower energy state effected by an energy hole is called a
transition reaction.

From energy conservation, the energy hole of a hydrogen atom

which excites resonator modes of radial dimensions 
aH

m +1
 is

m X 27.2 eV (I.64)
where m = 1,2,3,4,...

After resonant absorption of the energy hole, the radius of the

orbitsphere, aH , decreases to 
aH

m +1
 and after p  cycles of transition

reaction, the radius is 
aH

mp +1
.  In other words, the radial ground state

field can be considered as the superposition of Fourier components.  The
removal of negative Fourier components of energy m X 27.2 eV , where m
is an integer increases the positive electric field inside the spherical shell
by m  times the charge of a proton.  The resultant electric field is a time-
harmonic solution of Laplace's Equations in spherical coordinates.  In
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this case, the radius at which force balance and nonradiation are

achieved is 
aH

m +1
 where m  is an integer.  In decaying to this radius from

the "ground" state, a total energy of [(m +1)2 −12 ]X13.6 eV  is released.  The
transition reaction is hereafter referred to as the BlackLight Process.
The source of energy holes may not be consumed in the transition
reaction; therefore it is a hydrogen catalyst.

An efficient catalytic system that hinges on the coupling of three
resonator cavities involves potassium.  For example, the second
ionization energy of potassium is 31.63 eV .  This energy hole is obviously
too high for resonant absorption.  However, K+  releases 4.34 eV  when it
is reduced to K .  The combination of  K+  to K2+  and K+  to K , then, has a
net energy change of 27.28 eV .

27.28 eV + K+ + K + + H
aH

p

 
  

 
  → K + K2 + + H

aH

( p +1)

 
  

 
  + [(p +1)2 − p2 ]X13.6 eV (I.65)

K + K2+ → K+ + K + + 27.28 eV (I.66)

And, the overall reaction is

H
aH

p

 
  

 
  → H

aH

(p +1)

 
  

 
  + [(p +1)2 − p2 ]X13.6 eV (I.67)

Note that the energy given off as the atom undergoes a transition to a
lower energy level is much greater than the energy lost to the energy
hole.  Also, the energy released is large compared to conventional
chemical reactions.

Disproportionation of Energy States
Lower-energy hydrogen atoms, hydrinos, can act as a source of

energy holes that can cause transition reactions because the excitation
and/or ionization energies are m X 27.2 eV  (Eq. (I.64)).  The general
equation for the absorption of an energy hole of 27.21 eV , m = 1 in Eq.
(I.64), during the transition cascade for the pth cycle of the hydrogen-

type atom, H
aH

p

 
  

 
  , with the hydrogen-type atom, H

aH

m'
 
 

 
 
, that is ionized as

the source of energy holes that causes the transition reaction is
represented by

27.21 eV + H
aH

m'
 
 

 
 

+ H
aH

p

 
  

 
  → H + + e− + H

aH

p + 1( )
 

  
 

  + [ p + 1( )2 − p2 ]X13.6 eV − m' 2 −2( )X13.6 eV 
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(I.68)

H + + e− → H
aH

1
 
 

 
 

+13.6 eV (I.69)

And, the overall reaction is

H
aH

m'
 
 

 
 

+ H
aH

p

 
  

 
  → H

aH

1
 
 

 
 

+ H
aH

p +1( )
 

  
 

  + [2 p +1− m'2 ]X13.6 eV +13.6 eV (I.70)

For example, the equation for the absorption of an energy hole of
27.21 eV , m = 1 in Eq. (I.64), during the transition cascade for the third

cycle of the hydrogen-type atom, H
aH

3
 
 

 
 
, with the hydrogen-type atom,

H
aH

2
 
 

 
 
, that is ionized as the source of energy holes that causes the

transition reaction is represented by

27.21 eV + H
aH

2
 
 

 
 

+ H
aH

3
 
 

 
 

→ H + + e− + H
aH

4
 
 

 
 

+ [42 − 32 ]X13.6 eV − 27.21 eV (I.71)

H + + e− → H
aH

1
 
 

 
 

+13.6 eV (I.72)

And, the overall reaction is

H
aH

2
 
 

 
 

+ H
aH

3
 
 

 
 

→ H
aH

1
 
 

 
 

+ H
aH

4
 
 

 
 

+ [42 −32 − 4]X13.6 eV +13.6eV (I.73)

Disproportionation may be the predominant mechanism of
hydrogen electronic transitions to lower energy levels of interstellar and
solar hydrogen and hydrinos.  Hydrogen transitions to electronic energy
levels below the "ground" state corresponding to fractional quantum
numbers match the spectral lines of the extreme ultraviolet background
of interstellar space and from the sun.  This assignment given in the
Spectral Data of Hydrinos from the Dark Interstellar Medium and
Spectral Data of Hydrinos, Dihydrinos, and Hydrino Hydride Ions from
the Sun Section resolves the paradox of the identity of dark matter,
accounts for many celestial observations such as: diffuse Hα emission is
ubiquitous throughout the Galaxy whereby widespread sources of flux
shortward of 912 Å  are required [12], and resolves many solar problems.
The energy of the emission line for the transition given by Eqs. (I.71-
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I.73) whereby H
aH

2
 
 

 
 
 is ionized as the source of the energy hole of

 27.2 eV , m = 1 in Eq. (I.64), that causes transition reaction is 40.8 eV  (See
Table 1 of the Foreword Section).

H
aH

3
 
 

 
 

H
aH

2

 
  

 
  

 →    H
aH

4
 
 

 
 

(I.74)

In summary, the mathematics of the theories of Bohr, Schrödinger,
and presently Mills converge to Eq. (I.1) as the principal energy levels of
the hydrogen atom.

  En = −
e2

n2 8 oaH

=−
13.598 eV

n2 (I.75a)

n = 1,2,3,... (I.75b)

where aH  is the Bohr radius for the hydrogen atom (52.947 pm), e  is the
magnitude of the charge of the electron, and o  is the vacuum
permittivity.  However, the physics is quite different.  Only the Mills
theory is derived from first principles and holds over a scale of
spacetime of 45 orders of magnitude-it correctly predicts the nature of
the universe from the scale of the quarks to that of the cosmos.  And,
only the Mills theory predicts fractions as "allowed" states.  Explicitly,
Mills theory gives Eq. (I.75a) as the energy-level equation for atomic
hydrogen, but the restriction on "n ", Eq. (I.75b), should be replaced by
Eq. (I.75c).

n = 1,2,3,..., and , n =
1

2
,
1

3
,
1

4
,... (I.75c)

A number of experimental observations lead to the conclusion that
atomic hydrogen can exist in fractional quantum states that are at lower
energies than the traditional "ground" (n = 1) state.  The corresponding
process, the catalytic release of thermal energy as electrons are induced
undergo transitions to lower energy levels corresponding to fractional
quantum numbers, represents a virtually limitless source of clean,
inexpensive energy.
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A NEW ATOMIC THEORY DERIVED FROM FIRST PRINCIPLES

To overcome the limitations of quantum mechanics, physical laws
which are exact on all scales are sought.  Rather than engendering the
electron with a wave nature as suggested by the Davisson-Germer
experiment and fabricating a set of associated postulates and
mathematical rules for wave operators, a new theory is derived from
first principles.

The novel theory unifies Maxwell's Equations, Newton's Laws, and
General and Special Relativity.  Theoretical predictions conform with
experimental observations.  The closed form calculations of a broad
spectrum of fundamental phenomena contain fundamental constants
only.  Equations of the one electron atom are derived which give four
quantum numbers, the spin/nuclear hyperfine structure, the Rydberg
constant, the stability of atoms, the ionization energies, the equation of
the photon, the equation of the electron in free space, the results of the
Stern-Gerlach experiment, the electron g factor, the spin angular
momentum energies, the excited states, the results of the Davisson-
Germer experiment, the parameters of pair production, and the
hyperfine structure interval of positronium.  Ionization energies of two
and three electron atoms are given as well as the bond energies,
vibrational energies, rotational energies, and bond distances of
hydrogen-type molecules and molecular ions.

From the closed form solution of the helium atom, the predicted
electron scattering intensity is derived.  The closed form scattering
equation matches the experimental data; whereas, calculations based on
the Born model of the atom utterly fail at small scattering angles.  The
implications for the invalidity of the Schrödinger and Born model of the
atom and the dependent Heisenberg Uncertainty Principle are discussed.
The theory of collective phenomena including statistical mechanics,
superconductivity, Quantum Hall effects, and the Aharonov-Bohm effect
is given.  Atomic equations of gravitation are derived which provide the
basis of the atomic, thermodynamic, and cosmological arrows of time,
and the equation of the expansion of the universe.  The gravitational
equations with the equivalence of the particle production energies
permit the equivalence of mass/energy and the spacetime metric from
which the gravitational constant and the masses of the leptons, the
quarks, and nucleons are derived.  The basis of the antigravitational
force is presented with supporting experimental evidence.  The magnetic
moments of the nucleons are derived.  The beta decay energy of the
neutron, and the binding energy of deuterium are calculated.  The
theory of alpha decay is derived.

In addition to the above known phenomena and characteristics of
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fundamental particles and forces, the theory predicts the existence of a
previously unknown form of matter: hydrogen atoms and molecules
having electrons of lower energy than the conventional "ground" state
called hydrinos  and dihydrinos, respectively, where each energy level
corresponds to a fractional quantum number.  The existence of hydrinos
explains the spectral observations of the extreme ultraviolet background
emission from interstellar space, which characterizes dark matter, and it
provides an explanation of the solar neutrino paradox.  The
experimental confirmation of the existence of fractional quantum energy
levels of hydrogen atoms and molecules is presented.  The data shows
the process of hydrino production to be an exothermic reaction that
represents a limitless clean energy source.
The principles are as follows:

Foundations:
• Conservation of mass-energy;

• Conservation of linear and angular momentum;

• Maxwell’s Equations;

• Newton's Laws;

• Special Relativity.

Next, the condition that a bound electron cannot radiate energy is
imposed.  The mathematical formulation for zero radiation is that the
function that describes the motion of the electron must not possess
spacetime Fourier components that are synchronous with waves
traveling at the speed of light.  The permissible solutions of the electron
function are derived as a boundary value problem with the application
of the nonradiative boundary condition.

Solution to the Electron Functions
From these laws and the non-radiative condition the following are

a summary of some of the salient features of the theory derived in
subsequent sections:

• Bound electrons are described by a charge-density (mass-density)
function which is the product of a radial delta function
( f (r) = (r − rn )), two angular functions (spherical harmonic
functions), and a time harmonic function.  Thus, an electron is a
spinning, two-dimensional spherical surface, called an electron
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orbitsphere, that can exist in a bound state at only specified
distances from the nucleus.  More explicitly, the orbitsphere
comprises a two dimensional spherical shell of moving charge.
The corresponding current pattern of the orbitsphere comprises
an infinite series of correlated orthogonal great circle current
loops.  The current pattern (shown in Figure 1.4) is generated
over the surface by two orthogonal sets of an infinite series of
nested rotations of two orthogonal great circle current loops
where the coordinate axes rotate with the two orthogonal great
circles.  Each infinitesimal rotation of the infinite series is about
the new x-axis and new y-axis which results from the preceding
such rotation.  For each of the two sets of nested rotations, the
angular sum of the rotations about each rotating x-axis and y-axis
totals 2  radians.  The current pattern gives rise to the
phenomenon corresponding to the spin quantum number.

• The total function that describes the spinning motion of each
electron orbitsphere is composed of two functions.  One
function, the spin function, is spatially uniform over the
orbitsphere, spins with a quantized angular velocity, and gives
rise to spin angular momentum.  The other function, the
modulation function, can be spatially uniform—in which case
there is no orbital angular momentum and the magnetic moment
of the electron orbitsphere is one Bohr magneton—or not
spatially uniform—in which case there is orbital angular
momentum.  The modulation function also rotates with a
quantized angular velocity.  Numerical values for the angular
velocity, radii of allowed orbitspheres, energies, and associated
quantities are calculated.

• Orbitsphere radii are calculated by setting the centripetal force
equal to the electric and magnetic forces.

• The orbitsphere is a resonator cavity which traps photons of
discrete frequencies.  The radius of an orbitsphere increases with
the absorption of electromagnetic energy.  The solutions to
Maxwell's equations for modes that can be excited in the
orbitsphere resonator cavity give rise to four quantum numbers,
and the energies of the modes are the experimentally known
hydrogen spectrum.  The spectrum of helium is the solution of
Maxwell's equations for the energies of modes of this resonator
cavity with a contribution from electron-electron spin and orbital
interactions.
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• Excited states are unstable because the charge-density function of
the electron plus photon have a radial doublet function
component which corresponds to an electric dipole.  The doublet
possesses spacetime Fourier components synchronous with waves
traveling at the speed of light; thus it is radiative.  The charge-
density function of the electron plus photon for the n = 1
principal quantum state of the hydrogen atom as well as for each

of the n =
1

integer
 states mathematically is purely a radial delta

function.  The delta function does not possess spacetime Fourier
components synchronous with waves traveling at the speed of
light; thus, each is nonradiative.

• The spectroscopic linewidth arises from the classical rise-time
band-width relationship, and the Lamb Shift is due to
conservation of energy and linear momentum and arises from the
radiation reaction force between the electron and the photon.

• The photon is an orbitsphere with electric and magnetic field
lines along orthogonal great circles.

• Upon ionization, the orbitsphere radius goes to infinity and the
electron becomes a plane wave (consistent with double-slit
experiments) with the de Broglie wave length, = h / p .

• The energy of atoms is stored in their electric and magnetic
fields.  Chemical bonding occurs when the total energy of the
participant atoms can be lowered with the formation of two
dimensional equipotential energy surfaces (molecular orbitals)
where the motion is along geodesics, and a general form of the
nonradiative boundary condition is met.  Zero order vibration
occurs because it gives rise to a nonradiative lower energy state.

• Certain atoms and ions serve as catalysts to release energy from
hydrogen to produce an increased binding energy hydrogen atom

having a binding energy of 
13.6 eV

1
p

 
 
  

 

2  where p  is an integer greater

than 1, designated as H
aH

p

 
  

 
   where aH  is the radius of the

hydrogen atom.  Increased binding energy hydrogen atoms called
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hydrinos are predicted to form by reacting an ordinary hydrogen
atom with a catalyst having a net enthalpy of reaction of about
the potential energy of hydrogen in its first nonradiative state,
m ⋅ 27.2 eV , where m  is an integer.  This catalysis releases energy
from the hydrogen atom with a commensurate decrease in size of
the hydrogen atom, rn = naH .  For example, the catalysis of H(n = 1)

to H(n = 1/ 2)  releases 40.8 eV , and the hydrogen radius decreases

from aH  to 
1

2
aH .  For example, potassium ions can provide a net

enthalpy of a multiple of that of the potential energy of the
hydrogen atom.  The second ionization energy of potassium is
31.63 eV ; and K+  releases 4.34 eV  when it is reduced to K .  The
combination of reactions K+  to K2+  and K+  to K , then, has a net
enthalpy of reaction of 27.28 eV .  The process is hereafter referred
to as the Atomic BlackLight Process.

• The existence of fractional quantum energy levels of hydrogen
atoms, molecules, and hydride ions as the product of the
BlackLight Process-a new energy source has been confirmed
experimentally.

• The Schwarzschild metric gives the relationship whereby matter
causes relativistic corrections to spacetime that determines the
curvature of spacetime and is the origin of gravity.  The
correction is based on the boundary conditions that no signal can
travel faster that the speed of light including the gravitational
field that propagates following particle production from a photon
wherein the particle has a finite gravitational velocity given by
Newton's Law of Gravitation.

• It is possible to give the electron a spatial velocity function
having negative curvature and, therefore, cause antigravity.  An
engineered spacecraft may be feasible.

• Fundamental particle production occurs when the energy of the
particle given by the Planck equation, Maxwell's Equations, and
Special Relativity is equal to mc2 , and the proper time is equal to
the coordinate time according to General Relativity.  The
gravitational equations with the equivalence of the particle
production energies permit the equivalence of mass/energy and
the spacetime metric from which the gravitational constant and
the masses of the leptons, the quarks, and nucleons are derived.
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• The gravitational equations with the equivalence of the particle
production energies permit the equivalence of mass/energy

( E = mc2 ) and spacetime (
c3

4 G
= 3.22 X 1034

 
kg

sec
).  Spacetime expands

as mass is released as energy which provides the basis of the
atomic, thermodynamic, and cosmological arrows of time.
Entropy and the expansion of the universe are large scale
consequences.  The universe is closed independently of the total
mass of the universe, and different regions of space are
isothermal even though they are separated by greater distances
than that over which light could travel during the time of the
expansion of the universe.  The universe is oscillatory in
matter/energy and spacetime with a finite minimum radius, the
gravitational radius; thus, the gravitational force causes celestial
structures to evolve on a time scale that is greater than the
period of oscillation.  The equation of the radius of the universe,

ℵ, is ℵ=
2GmU

c2 +
cmU

c3

4 G

 

 

 
 

 

 

 
 

−
cmU

c3

4 G

 cos
2 t

2 GmU

c3
 sec

 

 

 
 

 

 

 
 
 m .  The calculated

Hubble constant is H0 = 78.6 
km

sec⋅ Mpc
.  Presently, stars exist which

are older than the elapsed time of the present expansion as
stellar evolution occurred during the contraction phase.  The
maximum energy release of the universe which occurs at the
beginning of the expansion phase is

  

PU =

mec
2

2GM

c2Dc

2GM

c2Dc

=
c5

4 G
= 2.89 X 1051

 W .

• Superconductivity arises when the lattice is a band-pass for the
magnetic field of an array of magnetic dipoles; so, no energy is
dissipated with current flow.

• The Quantum Hall Effect arises when the forces of crossed
electric and magnetic fields balance and the lattice is a band-pass
for the magnetic field of an array of magnetic dipoles.

• The vector potential component of the electron's angular
momentum gives rise to the Aharonov-Bohm Effect.
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• Alpha decay occurs as a transmission of a plane wave through a
potential barrier.

• The proton and neutron functions each comprise a linear
combination of a constant function and three orthogonal
spherical harmonic functions resulting in three quark/gluon
functions per nucleon.  The nucleons are locally two dimensional.
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THE ONE ELECTRON ATOM

One-electron atoms include the hydrogen atom, He(II), Li(III),
Be(IV), and so on.  The mass-energy and angular momentum of the
electron are constant; this requires that the equation of motion of the
electron be temporally and spatially harmonic.  Thus, the classical wave
equation (4-dimensional Laplace equation) applies and

∇2− 1

v2

2

t2

 
  

 
  (r, , ,t) = 0 (1.1)

where (r, , ,t) is the function of the electron in time and space.  In each
case, the nucleus contains Z  protons and the atom has a net positive
charge of (Z −1)e .  All forces are central and Special Relativity applies.
Thus, the coordinates must be three dimensional spherically harmonic
coordinates plus time.  The time, radial, and angular solutions of
Laplace's Equation are separable.  The motion is time harmonic with
frequency n .  To be a harmonic solution of Laplace's equation in
spherical coordinates, the angular functions must be spherical harmonic
functions.

THE BOUNDARY CONDITION OF NONRADIATION AND THE
RADIAL FUNCTION - THE CONCEPT OF THE "ORBITSPHERE"

A zero of the spacetime Fourier transform of the product function
of two spherical harmonic angular functions, a time harmonic function,
and an unknown radial function is sought.

The Boundary Condition
The condition for radiation by a moving charge is derived from

Maxwell's equations.  To radiate, the spacetime Fourier transform of the
current-density function must possess components synchronous with
waves traveling at the speed of light [1].  Alternatively,

For non-radiative states, the current-density function must not
possess spacetime Fourier components that are synchronous
with waves traveling at the speed of light.

Derivation of the Condition for Nonradiation
Proof that the condition for nonradiation by a moving point charge

is that its spacetime Fourier transform does not possess components
that are synchronous with waves traveling at the speed of light is given
by Haus [1].  The Haus derivation applies to a moving charge-density
function as well because charge obeys superposition.  The Haus
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derivation is summarized below.

The Fourier components of the current produced by the moving charge
are derived.  The electric field is found from the vector equation in
Fourier space (k, ω-space).  The inverse Fourier transform is carried
over the magnitude of k .  The resulting expression demonstrates that

the radiation field is proportional to J⊥ (
c

n, ) , where J⊥ (k, )  is the

spacetime Fourier transform of the current perpendicular to k  and

n ≡
k
|k|

.  Specifically,

E⊥ r,( ) d

2
=

c

2
,Ω( )∫ d dΩ 0

0

n X n X J⊥ c
n,

 
 

 
 e

i
c

 

 
 

 

 
 n•r 

 
  

 
 (1.2)

The field E⊥ r,( ) d

2
  is proportional to J⊥ c

n,
 
 

 
 , namely, the Fourier

component for which k =
c

.  Factors of  that multiply the Fourier

component of the current are due to the density of modes per unit
volume and unit solid angle.  An unaccelerated charge does not radiate
in free space, not because it experiences no acceleration, but because it

has no Fourier component J⊥ c
n,

 
 

 
 .

Derivation of the Boundary Condition
In general, radial solutions of the Helmholtz wave equation are

spherical Bessel functions, Neumann functions, Hankel functions,
associated Laguerre functions, and the radial Dirac delta function.  The
Dirac delta function eliminates the radial dependence and reduces the
number of dimensions of the Helmholtz wave equation from four to
three.  The solution for the radial function which satisfies the boundary
condition is three dimensional delta function in spherical coordinates--a
spherical shell [2]

f (r) =
1

r2 (r − rn ) (1.3)

where rn  is an allowed radius.  The Fourier Transform of the radial Dirac
delta function is a sinc function.  For time harmonic motion, with
angular velocity, , the relationship between the radius and the
wavelength is

2 r = (1.4)
Consider the radial wave vector of the sinc function, when the radial
projection of the velocity is c , the relativistically corrected wavelength is

r = (1.5)
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Substitution of Eq. (1.5) into the sinc function results in the vanishing of
the entire Fourier Transform of the current-density function.

SPACETIME FOURIER TRANSFORM OF THE ELECTRON FUNCTION
The electron charge-density (mass-density) function is the product

of a radial delta function ( f (r) =
1

r2 (r − rn )) , two angular functions

(spherical harmonic functions), and a time harmonic function.  The
spacetime Fourier transform in three dimensions in spherical
coordinates plus time is given [3,4] as follows:

M(s,Θ,Φ , ) = (r, , ,t )exp( −i2 sr[cosΘ cos + sin Θsin cos( −Φ)])
0

2

∫
0
∫

0

∞

∫
0

∞

∫
                                              exp(−i t)r 2 sin drd d dt

(1.6)

With circular symmetry [3]

M(s,Θ, ) = 2 (r, ,t)Jo (
0
∫

0

∞

∫
0

∞

∫ 2 sr sinΘsin )exp −i2 sr cosΘcos( )r2 sin exp −i t( )drd dt

(1.7)
With spherical symmetry [3],

M(s, ) = 4 (r,t)sinc(2sr)r2 exp(−i t)drdt
0

∞

∫
0

∞

∫ (1.8)

The solutions of the classical wave equation are separable.
(r, , ,t) = f (r)g( )h( )k( t) (1.9)

The orbitsphere function is separable into a product of functions of
independent variables, r, , ,  and t .  The radial function which satisfies
the boundary condition is a delta function.  The time functions are of
the form e i t , the angular functions are spherical harmonics, sin or
cosine trigonometric functions or sums of these functions, each raised
to various powers.  The spacetime Fourier transform is derived of the
separable variables for the angular space function of sin  and sin . It
follows from the spacetime Fourier transform given below that other
possible spherical harmonics angular functions give the same form of
result as the transform of sin  and sin .  Using Eq. (1.8), F(s), the space
Fourier transform of ( f (r) = (r − rn )) is given as follows:

F(s) = 4
1

r2 (r − rn )sinc(2sr)r 2dr
0

∞

∫ (1.10)

F(s) = 4 sinc(2srn ) (1.11)
The subscript n is used hereafter; however, the quantization
condition appears in the Excited States of the One Electron
Atom (Quantization) Section.  Quantization arises as
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"allowed" solutions of the wave equation corresponding to a
resonance between the electron and  a photon.

Using Eq. (1.7), G(s,Θ) ,, the space Fourier transform of g( ) = sin  is
given
as follows where there is no dependence on :

G(s,Θ) = 2 sin Jo 2 sr sinΘsin( )exp −i2 sr cosΘcos( )sin r 2d dr
0
∫

0

∞

∫ (1.12)

G(s,Θ) = 2 r 2 sin2 Jo 2 sr sin Θsin( )cos 2 sr cosΘcos( )d dr
0
∫

0

∞

∫ (1.13)

From Luke [5] and [6]:

J z( ) =
1

2
z

 
 

 
 

v −1( )n z

2
 
 

 
 

2n

n!Γ v + n +1( )n= 0

∞

∑ =
1

2
z

 
 

 
 

v −1( )n z

2
 
 

 
 

2n

n! v + n( )!n =0

∞

∑ (1.14)

Let
Z = 2 sr sinΘsin (1.15)

With substitution of Eqs. (1.15) and (1.14) into Eq. (1.13),

G(s,Θ) = 2 r 2 sin2 (−1)n sr sinΘsin( )2n

n!n!n= 0

∞

∑ 

  
 

  cos(2 sr cosΘ cos )d dr
0
∫

0

∞

∫ (1.16)

G s,Θ( ) = 2 r 2

0

∞

∫
−1( )n sr sinΘ( )2n

n!n!n= 0

∞

∑
0
∫ sin2 n+1( ) cos 2 sr cosΘcos( )d dr (1.17)

G s,Θ( ) = 2 r2 (−1)n−1 sr sinΘ( )2( n −1)

(n −1)!(n −1)!
sin2n cos(2 sr cosΘ cos )d dr

n =1

∞

∑
0
∫

0

∞

∫ (1.18)

From Luke [7], with Re(υ) > −
1

2
:

J z( ) =

1

2
z

 
 

 
 

Γ 1
2

 
 

 
 Γ + 1

2
 
 

 
 

cos zcos( )
0
∫ sin2 d (1.19)

Let
z = 2 sr cos , and n = (1.20)

Applying the relationship, the integral of a sum is equal to the sum of
the integral to Eq. (1.18), and transforming Eq. (1.18) into the form of
Eq. (1.19) by multiplication by
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1 =
Γ

1

2
 
 

 
 Γ +

1

2
 
 

 
 sr cosΘ( )

sr cosΘ( ) Γ 1
2

 
 

 
 Γ + 1

2
 
 

 
 

(1.21)

and by moving the constant outside of the integral gives:

G(s,Θ) = 2 r2 (−1) −1 rsin Θ( )2( −1)

( −1)!( −1)!
 

0
∫

=1

∞

∑
0

∞

∫

 
Γ

1

2
 
 

 
 Γ +

1

2
 
 

 
 sr cosΘ( )

sr cosΘ( ) Γ 1
2

 
 

 
 Γ + 1

2
 
 

 
 

sin2 cos(2 sr cosΘcos )d dr (1.22)

G s,Θ( ) = 2 r2 (−1) −1 rsinΘ( )2( −1)

( −1)!( −1)!=1

∞

∑
0

∞

∫

Γ
1

2
 
 

 
 Γ +

1

2
 
 

 
 sr cosΘ( )

sr cosΘ( ) Γ 1
2

 
 

 
 Γ + 1

2
 
 

 
 

sin2 cos(2 sr cosΘcos )d dr
0
∫ (1.23)

Applying Eq. (1.19),

G s,Θ( ) = 2 r2 (−1) −1 rsinΘ( )2( −1)

( −1)!( −1)!

Γ
1

2
 
 

 
 Γ +

1

2
 
 

 
 

sr cosΘ( ) J 2 sr cosΘ( )
=1

∞

∑
0

∞

∫ dr (1.24)

Using the Hankel transform formula from Bateman [8]:
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1

2

 

 
 

 

 
 

0

∞

∫ rs( )
1
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 J rs( )dr = s

1

2

 

 
 

 

 
 

(1.25)

and the Hankel transform relationship from Bateman [9], the general Eq.
(1.31) is derived as follows:

f (x) <=======> g(y; ) = f (x) xy( )
1

2

 

 
 

 

 
 
J xy( )

0

∞

∫ dx (1.26)

xm f (x),m = 0,1,2...<=======> y
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∞
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∞
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∞
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J (rs)dr =

2 !

−1( )! s−

0

∞

∫ (1.31)

Collecting the r  raised to a power terms, Eq. (1.24) becomes,

G(s,Θ) = 2
(−1) −1 sin Θ( )2( −1)

( −1)!( −1)!

Γ
1

2
 
 

 
 Γ +

1

2
 
 

 
 

scosΘ( ) r J (2 sr cosΘ)dr
0

∞

∫
=1

∞

∑ (1.32)

Let r =
r'

2 cosΘ
;  dr =

dr'

2 cosΘ
,

G(s,Θ) = 2
(−1) −1 sinΘ( )2( −1)

( −1)!( −1)!

Γ
1

2
 
 

 
 Γ +

1

2
 
 

 
 

scosΘ( )
r

2 cosΘ( ) +1 J (sr' )dr'
0

∞

∫
=1

∞

∑ (1.33)

By applying Eq. (1.31), Eq. (1.33) becomes,

G(s,Θ) = 2
(−1) −1 sinΘ( )2( −1)

( −1)!( −1)!

Γ
1

2
 
 

 
 Γ +

1

2
 
 

 
 

scosΘ( ) 2 cosΘ( ) +1
2 !

( − 1)!
s−

=1

∞

∑ (1.34)

By collecting power terms of s , Eq. (1.34) becomes,

G(s,Θ) = 2
(−1) −1 sinΘ( )2( −1)

( −1)!( −1)!

Γ
1

2
 
 

 
 Γ +

1

2
 
 

 
 

cosΘ( )2 +1
2 +1

2 !

( −1)!
s−2

=1

∞

∑ (1.35)

H(s,Φ), the space Fourier transform of h( ) = sin  is given as follows
where there is no dependence on :

The spectrum of sin  and sin  are equivalent.  Applying a change of
variable to the Fourier transform of g( ) = sin .

======>    implies     Θ =======>Φ
Therefore, Φ  replaces Θ  in Eq. (1.35),

H(s,Φ) = 2
(−1) −1 sinΦ( )2( −1)

( −1)!( −1)!

Γ
1

2
 
 

 
 Γ +

1

2
 
 

 
 

cosΦ( )2 +1 2 +1
2 !

( −1)!
s −2

=1

∞

∑ (1.36)

The time Fourier transform of K(t) = Re{exp(i nt)} where n  is the
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angular frequency is given [4] as follows:

cos nt exp(−i t)dt =
1

2

1

2
[ ( − n ) + ( + n )]

0

∞

∫ (1.37)

A very important theorem of Fourier analysis states that the
Fourier transform of a product is the convolution of the individual
Fourier transforms [10].  By applying this theorem, the spacetime
Fourier transform of an orbitsphere, M(s,Θ,Φ , ) is of the following form:

M(s,Θ,Φ , ) = F(s) ⊗ G(s,Θ)⊗ H (s,Φ)K( ) (1.38)
Therefore, the spacetime Fourier transform, M(s,Θ,Φ , ), is the
convolution of Eqs. (1.11), (1.35), (1.36), and (1.37).

M(s,Θ,Φ , ) = 4 sinc(2srn ) ⊗ 2
=1

∞

∑ (−1) −1 sin Θ( )2( −1)

( −1)!( −1)!

Γ
1

2
 
 

 
 Γ +

1

2
 
 

 
 

cosΘ( )2 +1 2 +1
2 !

( −1)!
s −2

⊗2
=1

∞

∑ (−1) −1 sinΦ( )2( −1)

( −1)!( −1)!

Γ
1

2
 
 

 
 Γ +

1

2
 
 

 
 

cosΦ( )2 +1
2 +1

2 !

( −1)!
s −2 1

4
[ ( − n ) + ( + n )]

(1.39)
The condition for nonradiation of a moving charge-density function is
that the spacetime Fourier transform of the current-density function
must not have waves synchronous with waves traveling at the speed of

light, that is synchronous with n

c
  or synchronous with n

c o

 where ε

is the dielectric constant of the medium. The Fourier transform of the
charge-density function of the orbitsphere (bubble of radius r ) is given
by Eq. (1.39).  In the case of time harmonic motion, the current-density
function is given by the time derivative of the charge-density function.
Thus, the current-density function is given by the product of the
constant angular velocity and the charge-density function.  The Fourier
transform of current-density function of the orbitsphere is given by the
product of the constant angular velocity and Eq. (1.39).  Consider the
radial and time parts of, J⊥ , the Fourier transform of the current-density
function where the angular transforms are not zero:

J⊥ ∝ nsinc2srn

1

4
[ ( − n ) + ( + n )] = n

sin2 srn

2 srn

1

4
[ ( − n ) + ( + n )]

(1.40)
For the case that the current-density function is constant, the delta
function of Eq. (1.40) is replaced by a constant.  For time harmonic
motion, with angular velocity, n , Eq. (1.40) is nonzero only for = n ;
thus, −∞< s < ∞  becomes finite only for the corresponding wavenumber,
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sn .  The relationship between the radius and the wavelength is
vn = n f n (1.41)
vn = 2 rn f n = n f n (1.42)
2 rn = n (1.43)

The motion on the orbitsphere is angular; however, a radial component
exists due to Special Relativistic effects.  Consider the radial wave vector
of the sinc function.  When the radial projection of the velocity is c

sn • vn = s n • c = n (1.44)
the relativistically corrected wavelength is1

rn = n  (1.45)
(i.e. the lab frame motion in the angular direction goes to zero as the
velocity approaches the speed of light as given by Eq. (24.15)).
Substitution of Eq. (1.45) into the sinc function results in the vanishing
of the entire Fourier Transform of the current-density function.  Thus,

spacetime harmonics of n

c
= k  or n

c o

= k  do not exist for which the

Fourier Transform of the current-density function is nonzero.  Radiation
due to charge motion does not occur in any medium when this boundary
condition is met.  [Note that the boundary condition for the solution of
the radial function of the hydrogen atom with the Schrödinger equation
is that Ψ → 0  as r → ∞ .  Here, however, the boundary condition is
derived from Maxwell's equations:  For non-radiative states, the current-
density function must not possess spacetime Fourier components that
are synchronous with waves traveling at the speed of light.  An
alternative derivation which provides acceleration without radiation is
given by Abbott [11]]  Bound electrons are described by a charge-density
(mass-density) function which is the product of a radial delta function,
Eq. (1.3), two angular functions (spherical harmonic functions), and a
time harmonic function.  This is a   solution of Laplace's Equation.  Thus,

1 The special relativistic length contraction relationship observed for a
laboratory frame relative to an inertial frame moving at constant
velocity v  in the direction of velocity v  is

l = lo 1 −
v2

c2

Consider the distance on a great circle given by

rd = r
0

2

∫
0

2

= 2 r

The distance undergoes length contraction only in the  direction as v → c .
Thus, as v → c  the distance on a great circle approaches its radius which is the
relativistically contracted electron wavelength.
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this radial function implies that allowed states are two-dimensional
spherical shells (zero thickness) of charge-density (and mass density) at
specific radii rn .  These shells are referred to as electron orbitspheres.
See Figure 1.1 for a pictorial representation of an orbitsphere.

Figure 1.1.  The orbitsphere is a two dimensional spherical shell with the
Bohr radius of the hydrogen atom.

Given time harmonic motion and a radial delta function, the
relationship between an allowed radius and the electron wavelength is
given by Eq. (1.43).  Using the de Broglie relationship for the electron
mass where the coordinates are spherical,

n =
h

pn

=
h

mevn

(1.46)

and the magnitude of the velocity for every point on the orbitsphere is

  
vn =

h
mern

(1.47)

THE ANGULAR FUNCTION
The radial function for the electron indicates that the electron is

two-dimensional.  Therefore, the angular mass-density function of the
electron , A( , ,t), must be a solution of the Laplace equation in two
dimensions (plus time),
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∇2− 1

v2

2

t2

 
  

 
  A( , ,t) = 0 (1.48)

where (r, , ,t) = f (r)A( , ,t) =
1

r 2 (r − rn )A( , ,t) and A( , ,t) = Y( , )k(t)

1

r 2 sin
sin

 
 

 
 

r,

+
1

r 2 sin2

2

2

 
 
  

 
r,

−
1

v2

2

t2

 

 
 

 

 
 A , ,t( ) = 0 (1.49)

where v  is the linear velocity of the electron.  Conservation of
momentum and energy allows the angular functions and time functions
to be separated.

A( , ,t) = Y ( , )k(t) (1.50)
Charge is conserved as well, and the charge of an electron is
superimposable with its mass.  That is, the angular mass-density
function, A( , ,t), is also the angular charge-density function.

The electron orbitsphere experiences a constant potential energy
because it is fixed at r = rn .  In general, the kinetic energy for an inverse
squared electric force is half the potential energy.  It is the rotation of
the orbitsphere that causes spin angular momentum.  The rotational
energy of a rotating body, Erot , is

Erot =
1

2
I 2 (1.51)

where I  is the moment of inertia and  is the angular velocity.  The
angular velocity must be constant (at a given n ) because r  is constant
and the energy and angular momentum are constant.  The allowed
angular velocities are related to the allowed frequencies by

n = 2 n (1.52)
The allowed frequencies are related to allowed velocities by

vn = n n  (1.53)
The allowed velocities and angular frequencies are related to rn  by

vn = rn n (1.54)

  
n =

h
mern

2
(1.55)

  
vn =

h
mern

(1.56)

The sum of the L i, the magnitude of the angular momentum of each
infinitesimal point of the orbitsphere of mass mi , must be constant.  The
constant is   h .

  
|L i |∑ = r × miv∑ = mern

h
mern

= h (1.57)

where the velocity is given by Eq. (1.47).  The vector projections of the
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orbitsphere spin angular momentum relative to the Cartesian
coordinates are given in the Spin Angular Momentum of the Orbitsphere
with  = 0 Section.

In the case of an excited state, the charge density function of the
electron orbitsphere can be modulated by the corresponding "trapped"
photon to give rise to orbital angular momentum about the z-axis.  The
"trapped photon" is a "standing electromagnetic wave" which actually is
a circulating wave that propagates around the z-axis.  Its source current
superimposes with each great circle current loop of the orbitsphere.  In
order to satisfy the boundary (phase) condition at the orbitsphere
surface, the angular and time functions of the photon must match those
of its source current which modulates the orbitsphere charge density
function as given in the Equation of the Electric Field Inside the
Orbitsphere Section.  The time-function factor, k(t ), for the photon
"standing wave" is identical to the time-function factor of the
orbitsphere.  Thus, the angular frequency of the "trapped photon" has to
be identical to the angular frequency of the electron orbitsphere, n

given by Eq. (1.55).  However, the linear velocity of the modulation
component is not given by Eq. (1.54)--the orbital angular frequency is
with respect to the z-axis; thus, the distance from the z-axis must be
substituted for the orbitsphere radius of Eq. (1.54).  The vector
projections of the orbital angular momentum and the spin angular
momentum of the orbitsphere are given in the Rotational Parameters of
the Electron (Angular Momentum, Rotational Energy, and Moment of
Inertia) Section.  Eq. (1.49) becomes

  
−

h2

2I

1

sin
sin

 
 

 
 

r,

+
1

sin2

2

2

 
 
  

 
r,

 

 
 

 

 
 A , ,t( ) = Erot A , ,t( ) (1.58)

The spacetime angular function, A( , ,t), is separated into an angular
and a time function, Y ( , )k(t).  The solution of the time harmonic
function is k(t ) = e i nt .  When the time harmonic function is eliminated,

  
−

h2

2I

1

sin
sin

 
 

 
 

r,

+
1

sin2

2

2

 
 
  

 
r,

 

 
 

 

 
 Y ,( ) = ErotY ,( ) (1.59)

Eq. (1.59) is the equation for the rigid rotor.  The angular function can
be separated into a function of  and a function of  and the solutions
are well known [11].  The energies are given by

  
Erot =

h2l(l +1)

2I
    l = 0,1,2,3,..., (1.60)

where the moment of inertia, I , is derived in the Rotational Parameters
of the Electron (Angular Momentum, Rotational Energy, and Moment of
Inertia) Section.  The angular functions are the spherical harmonics,
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  Yl
m( , ) = Pl

m(cos )e im .  The spherical harmonic Y0
0 ( , ) = 1 is also a solution.

The real part of the spherical harmonics vary between −1 and 1.  But the
mass of the electron cannot be negative; and the charge cannot be
positive.  Thus, to insure that the function is positive definite, the form
of the angular solution must be a superposition:

  Y0
0 ( , ) + Yl

m( , ) (1.61)
(Note that   Yl

m( , ) = Pl
m(cos )e im  are not normalized here as given by Eq.

(3.53) of Jackson [12]; however, it is implicit that magnitude is made to
satisfy the boundary condition that the function is positive definite and
Eq. (1.63) is satisfied.)  Y0

0 ( , ) is called the angular spin function

corresponding to the quantum numbers s =
1

2
; m s = ±

1

2
 as given in the Spin

Angular Momentum of the Orbitsphere with  = 0 Section and the Stern-
Gerlach Experiment Section.    Yl

m( , ) is called the angular orbital
function corresponding to the quantum numbers

  l = 0, 1, 2, 3,  4,...; m l =  - l,  - l + 1,  ...,  0,  ...,  + l .    Yl
m( , ) can be thought of as

a modulation function.  The charge-density of the entire orbitsphere is

the total charge divided by the total area, 
−e

4 rn
2 .  The fraction of the

charge of an electron in any area element is given by

  N Y0
0 ( , ) + Yl

m( , )[ ]rn
2 sin d d , (1.62)

where N  is the normalization constant.  Therefore, the normalization
constant is given by

  
−e = Nrn

2 Y0
0 ( , ) + Yl

m( , )[ ]sin d d
0

2

∫
0
∫ (1.63)

For  = 0, N =
−e

8 rn
2 .  For  ≠ 0, N =

−e

4 rn
2 .  The charge-density functions

including the time-function factor are

 = 0

  
(r, , ,t) =

e

8 r2 [ (r − rn )] Yl
m ,( ) + Y0

0 ,( )[ ] (1.64)

  0

  
(r, , ,t) =

e

4 r2 [ (r − rn )] Y0
0 ,( ) + Re Yl

m ,( ) 1 + e i nt[ ]{ }[ ] (1.65)

where

  
Re Yl

m ,( ) 1+ e i nt[ ]{ } = Re Yl
m ,( ) + Yl

m ,( )e i nt[ ] = Pl
m cos( )cosm + Pl

m cos( )cos m + nt( )
and n = 0 for m = 0.  The photon equations which correspond to the
orbitsphere states, Eqs. (1.64) and (1.65) are given in the Excited States
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of the One Electron Atom (Quantization) Section.  For n = 1, and  = 0,
m = 0, and s = 1/ 2, the charge (and mass) distribution is spherically
symmetric and M1,0,0,1/2 = −14.41 Cm−2  everywhere on the orbitsphere.

Similarly, for n = 2 ,  = 0, m = 0, and s = 1/ 2, the charge distribution
everywhere on the sphere is M2,0,0,1/2 = −3.602 Cm−2 .  For n = 2 ,  = 1, m = 0,
and s = 1/ 2, the charge distribution varies with .  Y1

0 ( , ) is a maximum
at = 0°  and the charge-density is also a maximum at this point,
M2,1,0,1/2 ( = 0° ) =−7.203 Cm−2 .  The charge-density decreases as  increases;
a minimum in the charge-density is reached at

= 180°,  M2,1,0,1/2 ( = 180° ) = 0 Cm−2 .

For  = 1 and m = ±1, the spherical harmonics are complex, and the
angular functions comprise linear combinations of

Y1,x = sin cos (1.66)
Y1,y = sin sin (1.67)

Each of Y1,x  and Y1,y  is the component factor part of a phasor.  They are
not components of a vector; however, the x  and y  designation
corresponds, respectively, to the historical px  and py  probability density
functions of quantum mechanics.  Y1,x  is a maximum at = 90°  and = 0° ;
M2,1,x,1/2 (90° ,0° ) =−3.602 Cm−2 .  Figure 1.2 gives pictorial representation of
how the modulation function changes the electron density on the
orbitsphere for several  values. (When the electron charge appears
throughout this text in a function involving a linear combination of the
spin and orbital functions, it is implicit that the charge is normalized.)
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Figure 1.2  The orbital function modulates the constant (spin) function.
                  (shown for t = 0; cross-sectional view)
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THE ORBITSPHERE EQUATION OF MOTION FOR  = 0
The orbitsphere equation of motion for  = 0 is solved as a

boundary value problem.  The boundary conditions are: 1.) each
infinitesimal point of the orbitsphere must move along a great circle; 2.)
every such infinitesimal point must have the same angular and linear
velocity given by Eqs. (1.55) and (1.56), respectively; 3.) the current of
the orbitsphere must give rise a magnetic moment of a Bohr magneton
and the corresponding magnetic field; 4.) the magnetic moment must
align completely parallel or antiparallel with an applied magnetic field in
agreement with the Stern-Gerlach experiment; 5.) the energy of the
transition of the alignment of the magnetic moment with an applied
magnetic field must be given by Eq. (1.151); 6.) the projection of the

angular momentum of the orbitsphere onto the z-axis must be 
  
±

h
2

, and

7.) the projection of the angular momentum of the orbitsphere onto an

axis which precesses about the z-axis must be 
  
±

3

4
h .

In the derivation of Eqs. (1.58) and (1.59), the moment of inertia,
typically caused by a point particle or a reduced mass, is mr 2 .  Here,
however,  the mass is in the form of a two-dimensional, spherical shell.
Assume that  = 0 and that the electron mass and charge is uniformly
distributed over the orbitsphere.  Each point on the sphere with mass mi

has the same angular velocity ( n ), the same magnitude of linear
velocity (vn ), and the same moment of inertia (mirn

2 ).  The motion of each
point of the orbitsphere is along a great circle, and the motion of each
great circle is correlated with the motion on all other great circles.  The

orbitsphere is not analogous to a globe, where I =
2

3
mr2 , spinning about

some axis.  The velocity of a point mass on a spinning globe is a function
of .  On the orbitsphere, however, each point mass has the same
velocity (magnitude); the velocity is not a function of .  Each point
must travel on a great circle such that all points have the same velocity
(magnitude) and angular frequency.  The uniform charge-density
function of the orbitsphere is constant in time due to the motion of the
current along great circles.  The current flowing into any given point of
the orbitsphere equals the current flowing out, but the current pattern
of the orbitsphere is not uniform.  The equation of motion for each
point mass which gives the current pattern of the orbitsphere is
generated as follows:

(Here a procedure is used to generate the current pattern of the
orbitsphere from which the physical properties are derived in the Spin
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Angular Momentum of the Orbitsphere with  = 0 Section and are
shown to match the boundary conditions.)

Consider the electron to be evenly distributed within two orthogonal
great circle current loops.  Then consider two infinitesimal point masses
(charges), one and two, of two orthogonal great circle current loops.
The Cartesian coordinate system wherein the first current loop lies in
the
yz-plane, and the second current loop lies in the xz-plane is designated
the orbitsphere reference frame.

Figure 1.3  Two infinitesimal point masses (charges) of two orthogonal
great circle current loops in the orbitsphere frame.

The current pattern of the orbitsphere comprises an infinite series of
correlated orthogonal great circle current loops.  It is generated by an
infinite series of nested rotations of two orthogonal great circle current
loops each about the new x-axis and new y-axis which results from the
preceding such rotation.  Each such two orthogonal great circle current
loops wherein the first current loop lies in the yz-plane, and the second
current loop lies in the xz-plane of the orbitsphere reference frame is an
element of the infinite series.  The first such orthogonal great circle
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current loops is shown in Figure 1.3.  The second element of the series is
generated by rotation of the first element by an infinitesimal angle ∆
about the first x-axis followed by a rotation by the same infinitesimal
angle ∆  about the new (second) y-axis to form a second x-axis.  The
third element of the series is generated by the rotation of the second
element by the infinitesimal angle ∆  about the second x-axis followed
by the rotation by the same infinitesimal angle ∆  about the new (third)
y-axis.  In general, the (n +1)th element of the series is generated by the
rotation of the nth orbitsphere coordinate system by the infinitesimal
angle ∆  about the nth x-axis followed by the rotation of the nth
orbitsphere coordinate system by the infinitesimal angle ∆  about the
(n +1)th new y-axis. The orbitsphere is given by reiterations of the
successive rotations where the summation of the rotation about each of

the x-axis and the y-axis is ∆ = 2
n=1

2

∆

∑  which rotates the final z-axis to

the first negative z-axis, the final x-axis to the first -y-axis, and the final
y-axis to the first -x-axis.  (The total angle, 2 , is the hypotenuse of the
triangle having the sides of  radians corresponding to x-axis rotations
and  radians corresponding to y-axis rotations.)  Then the reiterations
of the successive rotations is continued about the nth x-axis followed by
the rotation of the nth orbitsphere coordinate system by the
infinitesimal angle ∆ ' =−∆  about the (n +1)th new y-axis where the
magnitude of the summation of the rotation about each of the x-axis and

the y-axis is ∆ ' = 2
n=1

2

∆ '

∑ .  The final step rotates the final z-axis to the

first z-axis, the final x-axis to the first x-axis, and the final y-axis to the
first y-axis.  Thus, the orbitsphere is generated from two orthogonal
great circle current loops which are rotated about the nth x-axis then
about the (n +1)th y-axis in two steps.  The first step comprises all
rotations by ∆ , and the second step comprises all rotations by ∆ ' .  In
the case of the nth element of the first step, the intersection of the two
orthogonal great circle current loops occurs at the nth z-axis which is

along a great circle in a plane rotated 
4

 with respect to the 1st xz-plane

and 1st yz-plane of Figure 1.3.  In the case of the nth element of the
second step, the intersection of the two orthogonal great circle current
loops occurs at the nth z-axis which is along a great circle in a plane

rotated 
4

 with respect to the 1st yz-plane and the 1st negative xz-plane

(the plane containing the negative x-axis and the positive z-axis) of
Figure 1.3.
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Consider two point masses, one and two, in the reference frame of
the orbitsphere at time zero.  Point one is at x' = 0 , y' = 0 , and z' = rn  and
point two is at x' = rn , y' = 0 , and z' = 0 .  Let point one move on a great
circle toward the negative y’-axis, as shown in Figure 1.3, and let point
two move on a great circle toward the positive z’-axis, as shown in Figure
1.3.  The equations of motion, in the reference frame of the orbitsphere
are given by

point one:

x1
' = 0 y1

' = −rnsin( nt) z1
' = rn cos( nt) (1.68)

point two:

x2
' = rn cos( nt) y2

' = 0 z2
' = rn sin( nt) (1.69)

The great circles are rotated by an infinitesimal angle ∆  (a rotation
around the x-axis) and then by ∆  (a rotation around the new y-axis).
The coordinates of each point on the rotated great circle is expressed in
terms of the first (x,y,z) coordinates by the following transforms:

point one:

x1

y1

z1

 

 

 
 
 

 

 

 
 
 

=
cos(∆ )    − sin2(∆ )    − sin(∆ )cos(∆ )
      0            cos(∆ )            − sin(∆ )

sin(∆ )   cos(∆ )sin(∆ )     cos2(∆ )

 

 

 
 
 

 

 

 
 
 

  

x1
'

y1
'

z1
'

 

 

 
 
 

 

 

 
 
 

(1.70)

and ∆ ' =−∆  replaces ∆  for ∆ = 2
n=1

2

∆

∑ ; ∆ ' = 2
n=1

2

∆ '

∑
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point two:

x2

y2

z2

 

 

 
 
 

 

 

 
 
 

=
cos(∆ )    − sin2(∆ )    − sin(∆ )cos(∆ )
      0            cos(∆ )            − sin(∆ )

sin(∆ )   cos(∆ )sin(∆ )     cos2(∆ )

 

 

 
 
 

 

 

 
 
 

  

x2
'

y2
'

z2
'

 

 

 
 
 

 

 

 
 
 

(1.71)

and ∆ ' =−∆  replaces ∆  for ∆ = 2
n=1

2

∆

∑ ; ∆ ' = 2
n=1

2

∆ '

∑

The total orbitsphere is given by reiterations of Eqs. (1.70) and (1.71).
The output given by the non primed coordinates is the input of the next
iteration corresponding to each successive nested rotation by the
infinitesimal angle where the summation of the rotation about each of

the x-axis and the y-axis is ∆ = 2
n=1

2

∆

∑  and ∆ ' = 2
n=1

2

∆ '

∑ .

The current pattern corresponding to point one and point two
shown with 8.49 degree increments of the infinitesimal angular variable
∆ (∆ ' ) of Eqs. (1.70) and (1.71) is shown from three perspectives in
Figures 1.4 A, 1.4 B, and 1.4 C.  The complete orbitsphere current
pattern corresponds to all such correlated points, point one and point
two, of the orthogonal great circles shown in Figure 1.3 which are
rotated according to Eqs. (1.70) and (1.71) where ∆ (∆ ' ) approaches
zero and the summation of the infinitesimal angular rotations of ∆ (∆ ' )

about the successive x-axes and y-axes is 2 .
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Figure 1.4 A.  The current pattern of the orbitsphere shown with 8.49
degree increments of the infinitesimal angular variable ∆ (∆ ' ) from the
perspective of looking along the z-axis.
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Figure 1.4 B.  The current pattern of the orbitsphere shown with 8.49
degree increments of the infinitesimal angular variable ∆ (∆ ' ) from the
perspective of looking along the x-axis.
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Figure 1.4 C.  The current pattern of the orbitsphere shown with 8.49
degree increments of the infinitesimal angular variable ∆ (∆ ' ) from the
perspective of looking along the y-axis.

SPIN ANGULAR MOMENTUM OF THE ORBITSPHERE WITH  = 0
As demonstrated in Figures 1.3 and 1.4, the orbitsphere is

generated from two orthogonal great circle current loops which are
rotated about the nth x-axis then about the (n +1)th y-axis in two steps.
The first step comprises all rotations by ∆ , and the second step
comprises all rotations by ∆ ' .  In the case of the nth element of the first
step, the intersection of the two orthogonal great circle current loops

occurs at the nth z-axis which is along a great circle in a plane rotated 
4

with respect to the 1st xz-plane and the 1st yz-plane of Figure 1.3.  In
the case of the nth element of the second step, the intersection of the
two orthogonal great circle current loops occurs at the nth z-axis which

is along a great circle in a plane rotated 
4

 with respect to the 1st yz-

plane and the 1st negative xz-plane (the plane containing the negative x-
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axis and the positive z-axis) of Figure 1.3.  The mass density, 
me

4 r1
2 , of the

orbitsphere of radius r1  is uniform.  However, the projections of the
angular momentum of the great circle current loops of the orbitsphere
onto the z-axis and onto the xy-plane can be derived by considering two

orthogonal great circle current loops of Figure 1.5 each of mass 
me

2
which generate the current pattern of the orbitsphere in two steps.
(Here the physical properties of the orbitsphere are derived following
the procedure used to generate the current pattern of the orbitsphere
given in the Orbitsphere Equation of Motion for  = 0 Section and are
shown to match the boundary conditions.)

Figure 1.5 A.  The angular momentum of the orthogonal great circle

current loops in the xy-plane is 
  

h
2

.

For step one, the resultant angular momentum vector of the

orthogonal great circle current loops of magnitude 
  

h
2

 moves along a
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great circle oriented at an angle of 
4

 to the 1st xz-plane and the 1st yz-

plane.  For the vector current directions shown in Figure 1.5 A, as the
Y0

0 ( , ) orbitsphere function is partially generated in step one, the
resultant angular momentum vector moves along the great circle from
the 1st xy-plane to the 1st negative z-axis and back to the xy-plane.  The
trajectory of the resultant angular momentum vector is shown in Figure
1.5 B.

Figure 1.5 B.  The trajectory of the resultant angular momentum vector

of the orthogonal great circle current loops of magnitude 
  

h
2

 during

step one.

The total sum of the magnitude of the angular momentum of each
infinetesimal point of the orbitsphere is   h  (Eq. (1.57)).  Thus, the

angular momentum of each great circle is 
  
h
2

.  The planes of the great

circles are oriented at an angle of 
2

 with respect to each other, and the

resultant angular momentum is 
  

h
2

 in the xy-plane.  Now, allow the
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summation of the rotations by ∆  to go from zero to 2 .  For step one,
the vector projection of the angular momentum onto the xy-plane goes

as the magnitude of 
  

h
2

cos  (
  

h
2

cos ) for 0 ≤ ≤
2

 where  is defined as

the angle of the resultant angular momentum vector of the orthogonal
great circle current loops that moves along a great circle oriented at an

angle of 
4

 to the 1st xz-plane and the 1st yz-plane as shown in Figure

1.5 B.  The trajectory of the resultant angular momentum vector is from

= 0  to =
2

, and then from =
2

 to = 0 .  The vector projection of the

angular momentum onto the negative z-axis goes as 
  

h
2

sin  as shown in

Figure 1.5 B.  In each case, the projection of the angular momentum is
periodic over the range of  corresponding to Σ∆  which generates the
angular momentum distribution.  The projection in the xy-plane varies in

magnitude from a maximum of 
  

h
2

 to zero to 
  

h
2

 again.  The projection

onto the negative z-axis varies in magnitude from zero to a maximum of

  

h
2

 to zero again.  The total of each projection, Lxy ∑∆
 and L z ∑∆ , is the

integral of the magnitude of the vector as a function of .  The result is
the root mean square value (rms) of the maximum magnitude which is
multiplied by one half corresponding to two steps (i.e. the electron
angular momentum is distributed over 1/2 of the surface of a sphere in
the first step, and the mirror image of the angular momentum
distribution is generated in the second step given infra).

 
  
Lxy ∑∆

=
1

2

h
2

 
1

2
=

h
4

(1.72)

  
L z ∑∆ =

1

2

h
2

 
1

2
=

h
4

(1.73)

For step two, the resultant angular momentum vector of the

orthogonal great circle current loops of magnitude 
  

h
2

 moves along a

great circle oriented at an angle of 
4

 to the 1st yz-plane and the 1st

negative xz-plane (the plane containing the negative x-axis and the
positive z-axis).  For the vector current directions shown in Figure 1.5 A,
as the Y0

0 ( , ) orbitsphere equation of motion is completely generated in
step two, the resultant angular momentum vector moves along the great
circle from the xy-plane to the negative z-axis and back to the xy-plane
such that the vector projections on to the z-axis all add positively and
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the vector projections into the xy-plane sum to zero.  The trajectory of
the resultant angular momentum vector is shown in Figure 1.5 C.

Figure 1.5 C.  The trajectory of the resultant angular momentum vector

of the orthogonal great circle current loops of magnitude 
  

h
2

 during

step two.

For step two, the trajectory of the resultant angular momentum
vector is from = 0  to = .  The vector projection of the angular

momentum onto the xy-plane goes as 
  

h
2

cos  for 0 ≤ ≤
2

 and 
  
−

h
2

cos

for 
2

≤ ≤  as shown in Figure 1.5 C.  The projection of the angular

momentum is a periodic function of  corresponding to Σ∆ '  which
generates the angular momentum distribution.  The projection in the xy-

plane varies in magnitude from a maximum of 
  

h
2

 to zero to 
  
−

h
2

.  For

step two, the vector projection into the xy-plane, Lxy ∑∆ '
 is zero, but the

scalar sum of the angular momentum in the xy-plane is the absolute
value of the integral of the magnitude of the vector as a function of .
The result is the root mean square value (rms) of the maximum
magnitude which is multiplied by one half corresponding to two steps
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(i.e. the electron angular momentum is distributed over 1/2 of the
surface of a sphere in the first step, and the mirror image of the angular
momentum distribution is generated in the second step).  The scalar
sum is given by the magnitude of Eq. (1.72).

The vector projection of the angular momentum onto the negative

z-axis goes as 
  

h
2

sin  for 0 ≤ ≤  as shown in Figure 1.5 C.  The vector

projection onto the z-axis is periodic over the range of  corresponding
to Σ∆  which generates the angular momentum distribution and varies in

magnitude from zero to a maximum of 
  

h
2

 to zero again.  The total of

each projection, L z ∑∆ '
, is the integral of the magnitude of the vector as

a function of .  The result is the root mean square value (rms) of the
maximum magnitude which is multiplied by one half corresponding to
two steps (i.e. the electron angular momentum is distributed over 1/2 of
the surface of a sphere in the first step, and the mirror image of the
angular momentum distribution is generated in the second step).  The
vector sum is given by Eq. (1.73).

The total angular momentum of the orbitsphere is   h  (Eq. (1.57)).
The vector projection of the angular momentum into the xy-plane is
given by Eq. (1.72), and the scalar sum of the projection of the angular

momentum into the xy-plane is 
  
h
2

.  Consider steps one and two.  As

demonstrated by Figures 1.3, 1.4, and 1.5, each contribution to vector
sum of the z component of the orbitsphere angular momentum is

positive.  Thus, the z-projection of the angular momentum is 
  
h
2

.

Consider the case of a magnetic field applied to the orbitsphere.  The
magnetic moment corresponding to the angular momentum along the z-
axis results in the alignment of the z-axis of the orbitsphere with the
magnetic field.  The angular momentum in the xy-plane precesses about
the applied field; thus, the time average angular momentum in the xy-
plane is zero.  The angular momentum of the precessing orbitsphere can
be given as an equivalent vector which precesses about the z-axis which
possesses a scalar projection of the angular momentum into the xy-plane

of 
  
h
2

 and a vector projection of the angular momentum onto the z-axis

of 
  
h
2

.  S  the projection of the orbitsphere angular momentum that

precesses about the z-axis called the spin axis at an angle of =
3

 and an

angle of =  with respect to Lxy ∑∆
 given by Eq. (1.72) is
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S = ±

3

4
h (1.74)

S  rotates about the z-axis at the Larmor frequency; thus, Sz , the time
averaged projection of the orbitsphere angular momentum onto the axis

of the applied magnetic field is 
  
±

h
2

.  To verify the validity of Eq. (1.74),

consider the components of the angular momentum along the z-axis and
in the xy-plane from the perspective of a frame that rotates with S  and
from the presepective of the stationary or laboratory frame.  In the
rotating frame = 0  is defined in the direction of the resultant angular
momentum vector shown in Figure 1.5A.  From Eq. (1.72), the angular

momentum in this direction is 
  
h
4

.  The angular momentum in the

direction =  with respect to this direction is 
  

3

4
hsin

3
=

3

4
h .  Thus, in

the rotating frame, the resultant scalar angular momentum in the xy

plane is 
  
h
2

.  S  forms a cone in the nonrotating laboratory frame with a

total angular momentum of   h .  The projection of this angular

momentum onto the z-axis is 
  
±hcos

3
= ±

h
2

.  (The same result is obtained

from the approach given by Eq. (3.35).)  The plus or minus sign
corresponds to the two possible vector orientations which are observed
with the Stern-Gerlach experiment described below.

ROTATIONAL PARAMETERS OF THE ELECTRON (ANGULAR
MOMENTUM, ROTATIONAL ENERGY, AND MOMENT OF INERTIA)

One result of the correlated motion along great circles is that some
of the kinetic energy is not counted in the rotational energy.  That is, for
any spin axis there will be an infinite number of great circles with planes
passing through that axis with  angles other than 90° .  All points on any
one of these great circles will be moving, but not all of that motion will
be part of the rotational energy; only that motion perpendicular to the
spin axis will be part of the rotational energy.  Thus, the rotational
kinetic energy will always be less than the total kinetic energy.
Furthermore, the following relationships must hold.

Erotational =
1

2
I 2 ≤

1

2
mev

2 (1.75)

  I ≤ h (1.76)
I ≤ mer

2 (1.77)
Furthermore, it is known from the Stern-Gerlach experiment that a beam
of silver atom splits into two components when passed through an
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inhomogeneous magnetic field.  This experiment implies a magnetic
moment of one Bohr magneton and an associated angular momentum
quantum number of 1/2.  Historically, this quantum number is called
the spin quantum number, and that designation will be retained.  The
angular momentum can be thought of arising from a spin component or
equivalently an orbital component of the spin.  The z-axis projection of
the spin angular momentum was derived in the Spin Angular Momentum
of the Orbitsphere with  = 0 Section.

  
Lz = I iz = ±

h
2

(1.78)

where  is given by Eq. (1.55); so,
 = 0

  
Lz = I

h
mer

2 =
h
2

(1.79)

Thus,

Iz = Ispin =
mern

2

2
(1.80)

From Eq. (1.51),

Erotational   spin =
1

2
Ispin

2[ ] (1.81)

From Eqs. (1.55) and (1.80),

  
Erotational = Erotational   spin =

1

2
Ispin

h
mern

2

 

 

 
 
 
 

 

 

 
 
 
 

2 

 
 

 

 
 =

1

2

mern
2

2

h
mern

2

 

 

 
 
 
 

 

 

 
 
 
 

2 

 
 

 

 
 =

1

4

h2

2Ispin

 

  
 

  (1.82)

When  ≠ 0, the spherical harmonic is not a constant and the charge-
density function is not uniform over the orbitsphere.  Thus, the angular
momentum can be thought of arising from a spin component and an
orbital component.

Derivation of the Rotational Parameters of the Electron
In the derivation of Eq. (1.59) and its solution for Erotational  (Eq.

(1.60)), the moment of inertia, I , was assumed by McQuarrie [11] to be
the moment of inertia of a point particle, mrn

2 .  However, the correct
equation of the electron is a two dimensional shell with constant or a
constant plus a spherical harmonic angular dependence.  In that case,
the relationships given by Eqs. (1.75) to (1.77) must hold.

The substitution of NI  for I  in the rigid rotor problem [11] where
N  is a constant does not change the form of the previous solution given
by Eq. (1.60).  However, the result that

  
N =

l(l +1)

l2 + 2l + 1
 
 

 
 

1

2
<1 (1.83)

derived below gives
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Erotational =

h2l l +1( )
2I l2 + 2l +1( ) (1.84)

and gives the moment of inertia of the orbitsphere, Iorbital, where  ≠ 0 as

  
NI = Iorbital = mern

2 l l +1( )
l2 + 2l +1( )

 

 
 

 

 
 

1

2

(1.85)

The solution of Eq. (1.59) for | L|  , the magnitude of the orbital angular
momentum is [11]

  | L| = h l(l +1) (1.86)
where I  of Eq. (1.59) is the moment of inertia of a point charge.  It is
demonstrated by Eq. (1.57) that the total sum of the magnitudes of the
angular momenta of the infinitesimal points of the electron orbitsphere
is   h  ; therefore, the magnitude of the angular momentum of an electron
orbitsphere must be less than   h , and the moment of inertia must be less
than that given by mern

2 .  For example, the moment of inertia of the
uniform spherical shell, IRS , is [13]

IRS =
2

3
mrn

2 (1.87)

Thus, Eq. (1.86) must be multiplied by a fraction, 
1

K
, to give the correct

angular momentum.  Given that generally L  is
L = I iz (1.88)

then

  
Iorbital iz = h

1

K
l(l +1) , (1.89)

where  is given by Eq. (1.55).  The orbital moment of inertia, Iorbital, is

  
Iorbital = mern

2 1

K
l(l +1) (1.90)

The total kinetic energy, T , of the orbitsphere is

T =
1

2
mevn

2 (1.91)

Substitution of Eq. (1.56) gives

  
T =

h2

2mern
2 (1.92)

Erotational   of the rigid shell is given by Eq. (1.51) with I  given by Eq. (1.87).
Erotational  orbital  of the orbitsphere is given by Eq. (1.60) multiplied by the

fraction 
1

K2  so that Eqs. (1.75) to (1.77) hold with I = mern
2 .

  
Erotational  orbital =

h2

2I

l l +1( )
K2

 
  

 
  (1.93)

Eq. (1.59) can be expressed in terms of the variable x  which is
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substituted for cos .  The resulting function P(x) is called Legendre's
equation and is a well-known equation in classical physics.  It occurs in a
variety of problems that are formulated in spherical coordinates.  When
the power series method of solution is applied to P(x), the series must be
truncated in order that the solutions be finite at x =±1.  The solution to
Legendre's equation given by Eq. (1.60) is the maximum term of a series
of solutions corresponding to the m  and  values [11,14].  The
rotational energy must be normalized by the total number of states-each
corresponding to a set of quantum numbers of the power series
solution.  As demonstrated in the Excited States of the One Electron
Atom (Quantization) Section, the quantum numbers of the excited states
are

n = 2,3,4,...

= 1,2,..., n − 1

m = - ,  – +1,...,0,..., +
In the case of an orbitsphere excited state, each rotational state solution
of Eq. (1.59) (Legendre's equation) corresponds to a multipole moment
of the charge-density function (Eq. (1.65)).  Erotational  orbital  is normalized by
N , the total number of multipole moments. N , the total number of
multipole moments where each corresponds to an  and m  quantum

number of an energy level corresponding to a principal quantum
number of n  is

  
N =

l=0

n−1

∑
ml =−l

+l

∑ =
l= 0

n−1

∑ 2l +1 = n2 = l2 + 2l +1 (1.94)

Thus, K2  is equal to N  given by Eq. (1.94).  Substitution of Eq. (1.94)
into Eq. (1.93) gives

  
Erotational  orbital =

h2

2I

l l +1( )
l2 + 2l +1

 
  

 
  (1.95)

Substitution of Eq. (1.94) into Eq. (1.90) gives the orbital moment of
inertia.

  
Iorbital = mern

2 l(l +1)

l2 + 2l +1
 
 

 
 

1

2
(1.96)

In the case of the excited states, the orbitsphere charge-density function
for   l ≠ 0 , Eq. (1.65), is the sum of two functions of equal magnitude. L z ,
total is given by the sum of the spin and orbital angular momenta.  The
principal energy levels of the excited states are split when a magnetic
field is applied.  The energy shift due to spin and orbital angular
momenta are given in the Spin and Orbital Splitting Section.

  0
Lz total = Lz spin + Lz orbital (1.97)
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Similarly, the orbital rotational energy arises from a spin function (spin
angular momentum) modulated by a spherical harmonic angular
function (orbital angular momentum).  The time-averaged orbital
rotational energy is zero; the magnitude is given by Eq. (1.95); the
rotational energy due to spin is given by Eq. (1.82); the total kinetic
energy is given by Eq. (1.92).

Erotational  orbital = 0 (1.98)
The demonstration that the modulated orbitsphere solutions are
solutions of the wave equation appears in Box 1.1.

_________________________________________________________
________
BOX 1.1.  DERIVATION OF THE ROTATIONAL PARAMETERS OF THE
ELECTRON FROM A SPECIAL CASE OF THE WAVE EQUATION--THE
RIGID ROTOR EQUATION

For a time harmonic charge density function, Eq. (1.49)
becomes

1

r 2 sin
sin

 
 

 
 

r,

+
1

r 2 sin2

2

2

 
 
  

 
r,

+
2

v2

 

 
 

 

 
 A ,( ) = 0 (1)

Substitution of the velocity about a Cartesian coordinate axis, v = ,
into Eq. (1) gives

1

r 2 sin
sin

 
 

 
 

r,

+
1

r 2 sin2

2

2

 
 
  

 
r,

+
2

( )2

 

 
 

 

 
 A ,( ) = 0 (2)

Substitution of Eq. (1.55) into Eq. (1.2) gives

  

1

r 2 sin
sin

 
 

 
 

r,

+
1

r 2 sin2

2

2

 
 
  

 
r,

+ n
2

h
mern

2

 
 
  

 
 

2

 

 

 
 
 

 

 

 
 
 
A ,( ) = 0 (4)

Multiplication by the denominator of the second term in Eq. (3) gives

  

h
mern

2

 
 
  

 
 

2
1

r2 sin
sin

 
 

 
 

r,

+
1

r2 sin2

2

2

 
 
  

 
r,

 

 
 

 

 
 + n

2
 

 
 

 

 
 A ,( ) = 0 (4)

Substitution of Eq. (1.51) gives

  

h
mern

2

 
 
  

 
 

2
1

r2 sin
sin

 
 

 
 

r,

+
1

r2 sin2

2

2

 
 
  

 
r,

 

 
 

 

 
 +

2Erot

I

 

 
 

 

 
 A ,( ) = 0 (5)

The total rotational energy is given by the superposition of  quantum
states corresponding to a multipole expansion of total rotational energy
of the orbitsphere.  The total number, N , of multipole moments where
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each corresponds to an  and m  quantum number of an energy level

corresponding to a principal quantum number of n  is

  
N =

l=0

n−1

∑
ml =−l

+l

∑ =
l= 0

n−1

∑ 2l +1 = l2 + 2l +1 = n2 (6)

Summing over all quantum states gives

  l=0

n−1

∑
ml =−l

+l

∑ h
mern

2

 
 
  

 
 

2
1

r2 sin
sin

 
 

 
 

r,

+
1

r2 sin2

2

2
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 +

l= 0

n−1

∑
ml =−l

+l

∑ 2Erot

I

 

 
 

 

 
 A ,( ) = 0

(7)
Each of the orbital energy, orbital moment of inertia, and orbital angular
momentum is a modulation of the orbitsphere function.  Thus, the sum
of 2  over all   l  quantum numbers is rn .  Substitution of

z = rn cos ; x = rn sin cos ; y = rn sin sin  into Eq. (7) gives

  
rn

h
mern

2

 
 
  

 
 

2
1

rn
2 sin

sin
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+
1

rn
2 sin2

2
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 + l2 + 2l +1( ) 2Erot

I

 

 
 

 

 
 A ,( ) = 0

(8)

where 
2Erot

I
 is the constant, n  given by Eq. (1.55), and r = rn .  Eq. (8) can

be expressed in terms of the rotational energy of any given mode by
dividing the denominator of the first term by, K2 , the factor
corresponding to the vector projection of the rotational energy onto the
z-axis.

  

Ih2

2me
2rn

4 l2 + 2l +1( )
1
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 A ,( ) = 0

(9)
In the case that Erot  is the total rotational energy which is equal to the
kinetic energy of the orbitsphere given by Eq. (1.92) and that the
moment of inertia is given by

I = mern
2 (10)

Eq. (9) becomes equivalent to Eq. (1.59).

  

1

N

h2

2I

1

sin
sin
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+
1

sin2

2

2
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 + Erot  total

 

 
 

 

 
 A ,( ) = 0

(11)
where N  is one.  Eq. (11) applies to all of the multipole modes of the
rotational energy with the appropriate moment of inertia, I , and factor
N ; thus, the rotational energy of each mode is given by Eq. (1.58) with
these conditions.  Eq. (9) can be expressed in terms of the rotational
energy of any given mode by dividing the first term by, K2 , the factor
corresponding to the vector projection of the rotational energy and the
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moment of inertia onto the z-axis.

  

Ih2

2me
2rn

4K2 l2 + 2l +1( )
1

sin
sin
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+
1

sin2

2
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+ Erot

 

 
 

 

 
 A ,( ) = 0 (12)

where in the case of the spherical harmonics,   N = l2 + 2l +1.  From Eq.
(1.51) and Eq. (1.88), Eq. (12) can be expressed as

  

h2

me
2rn

4 K2 l2 + 2l +1( )
1

sin
sin

 
 

 
 

r ,

+
1

sin2

2
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L2
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 A ,( ) = 0 (13)

In the case of the spherical harmonic functions with Eq. (1.88) and Eq.
(1.55), Eq. (12) gives

  

h2 l l +1( )( )
me

2rn
4 K2 l2 + 2l +1( ) =

L

I
=

h
mern

2 (14)

Thus,

  

l l +1( )( )
l2 + 2l + 1( ) = K (15)

Eq. (12) becomes Eq. (11) where the rotational energy is given by Eq.
(1.95).

  
Erotational  orbital =

h2

2I

l l +1( )
l2 + 2l +1

 
  

 
  (16)

and the orbital moment of inertia is given by Eq. (1.96).

  
Iorbital = mern

2 l(l +1)

l2 + 2l +1
 
 

 
 

1

2
(17)

The Substitution of Eqs. (1.65), (6), and (16) into Eq. (11) gives

  
−

h2

2I

l l +1( )
l2 + 2l + 1

 
  

 
  +

h2

2mern
2

l l +1( )
l2 + 2l +1

= 0 (18)

Substitution of Eq. (17) into Eq. (18) gives

  

−
h2

2mern
2 l l + 1( )

l2 + 2l +1

l l +1( )
l2 + 2l + 1

 
  

 
  +

h2

2mern
2

l l +1( )
l2 + 2l +1

= 0 (19)

0 = 0 (20)
Thus, the modulated orbitsphere solutions are shown to be

solutions of the wave equation by their substitution into the wave
equation (Eqs. (18-20).  The present derivation of the rigid rotor
equation given by the substitution of

  

Erot = 1

2
I n

2

n =
h

mern
2

v = n

(21)
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is consistent with the wave equation relationship:

v =
2 (22)

Whereas, Schrodinger's derivation from the Helmholtz equation [1] with
the substitution of

=
h

mev (23)
gives the rigid rotor equation with the paradox that

v2 =
h

me 2 (24)
which is not the wave relationship,

v =
2 (25)
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MAGNETIC PARAMETERS OF THE ELECTRON (BOHR MAGNETON)

The Magnetic Field of an Orbitsphere from Spin
The orbitsphere is a shell of negative charge current comprising

correlated charge motion along great circles.  For  = 0, the orbitsphere
gives rise to a magnetic moment of 1 Bohr magneton [16] as shown in
the Derivation of the Magnetic Field Section,

  
B =

eh
2me

= 9.274 X 10−24
 JT −1, (1.99)

and a magnetic field derived below.

  
H =

eh
mern

3 ( ir cos − i sin )      for r < rn (1.100)

  
H =

eh
2mer

3 (ir 2cos − i sin )     for r > rn (1.101)

It follows from Eq. (1.99), the relationship for the Bohr magneton, and
relationship between the magnetic dipole field and the magnetic moment
m  [17] that Eqs. (1.100) and (1.101) are the equations for the magnetic
field due to a magnetic moment of a Bohr magneton, m = Biz  where
iz = ir cos − i sin .  Note that the magnetic field is a constant for r < rn .
See Figure 1.6.  It is shown in the Magnetic Parameters of the Electron
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(Bohr Magneton) Section that the energy stored in the magnetic field of
the electron orbitsphere is

  
Emag,total = oe

2h2

me
2r1

3 (1.102)

Figure 1.6.  The magnetic field of an electron orbitsphere.

Derivation of the Magnetic Field
Consider Figure 1.6. The magnetic field must satisfy the following

relationships:
∇⋅ H = 0 in free space (1.103)

n X (Ha − Hb ) = K (1.104)

n ⋅(Ha − Hb ) = 0 (1.105)

H =−∇ (1.106)

The z component of the current, i , for a current loop of total charge, e ,
oriented at an angle  with respect to the z-axis is given as the product
of the charge, the angular velocity (The orbitsphere angular velocity is
given by Eq. (1.55).), and sin .

  
i =

eh
mern

2 sin (1.107)

Consider the orbitsphere depicted in Figures 1.3, 1.4, and 1.5.  The
surface current-density function, Ki , is perpendicular to the angular
momentum.  As shown in the Spin Angular Momentum Section, the



© 2000 by BlackLight Power, Inc.  All rights reserved.
69

vector projection of the orbitsphere angular momentum onto the xy-
plane goes as cos∆  as shown in Figure 1.5 B.  It is periodic over the

range of Σ∆  and Σ∆ '  and varies in magnitude from a maximum of 
  

h
2

to zero to 
  

h
2

 again.  The projection of the charge-density of the

orbitsphere onto the xy-plane (perpendicular to the z-axis) which
carries the incremental current, ii , is a function of sin .  The angular
function of the current-density of the orbitsphere is normalized to that
of one electron.

N =
1

sin2 sin d
0
∫

=
3

4
(1.108)

Due to the precession of the S-axis about the z axis, the time averaged
projection of the angular momentum of the electron orbitsphere onto
the xy-plane is zero.  Therefore, the current corresponding to the total
charge of the electron is about the z-axis, and the angular velocity of the
spinning orbitsphere is twice that of a stationary orbitsphere.  As shown
in Figure 1.5 B, the projection of the angular momentum is only onto the
negative z-axis of length rn .  Thus, the incremental current-density dKi

along the z-axis is given by dividing ii  by the length, rn .  The current-
density of the orbitsphere in the incremental length dz is

  
K( , ,z) = i 2N

eh
mern

3 = i
3

2

eh
mern

3 (1.109)

Because
 z = rcos (1.110)

a differential length
 dz = − sin rnd (1.111)

and so the current-density in the differential length rnd  as measured
along the periphery of the orbitsphere is a function of sin .  Thus, the
surface current-density function is given by

  
K(r, , ) = i

3

2

eh
mern

3 sin (1.112)

Substitution of Eq. (1.112) into Eq. (1.104) gives

  
H a − H b =

3

2

eh
mern

3 sin (1.113)

To obtain H , the derivative of Ψ with respect to  must be taken, and
this suggests that the  dependence of Ψ be taken as cos .  The field is
finite at the origin and is zero at infinity; so, solutions of Laplace’s
equation in spherical coordinates are selected because they are
consistent with these conditions [18].
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Ψ = C
r

rn

 

  
 

  cos  ;                   r < rn (1.114)

Ψ = A
rn

r
 
 

 
 

2

cos  ;                   r > rn (1.115)

The negative gradient of these potentials is

H =
−C

rn

(ir cos − i sin )    for r < rn (1.116)

H =
A

rn

rn

r
 
 

 
 

3

(ir 2cos + i sin )    for r > rn (1.117)

The continuity conditions of Eqs. (1.104), (1.105), (1.112), and (1.113)
and are applied to obtain the following relationships among the variables

−C

rn

=
2A

rn

(1.118)

  

A

rn

−
C

rn

=
3

2

eh
mern

3 (1.119)

Solving the variables algebraically gives the magnetic fields of an
electron:

  
H =

eh
mern

3 ( ir cos − i sin )      for r < rn (1.120)

  
H =

eh
2mer

3 (ir 2cos − i sin )     for r > rn (1.121)

Derivation of the Energy
The energy stored in the magnetic field of the electron is

Emag =
1

2 o H 2r 2 sin drd dΦ
0

∞

∫
0
∫

0

2

∫ (1.122)

Emag total = Emag external + Emag  internal (1.123)

  
Emag internal =

1

2 o

eh
mer1

3

 

  
 

  

2

cos2 + sin2 
 
 

 
 
 

0

r1

∫ r 2 sin drd dΦ
0
∫

0

2

∫ (1.124)

  
=

2 oe
2h2

3me
2r1

3 (1.125)
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Emag external =

1

2 o

eh
2mer1

3

 

  
 

  

2

4cos 2 + sin2 
 
 

 
 
 

r1

∞

∫ r2 sin drd dΦ
0
∫

0

2

∫ (1.126)

  
= oe

2h2

3me
2r1

3 (1.127)

  
Emag total =

2 oe
2h2

3me
2r1

3 + oe
2h2

3me
2r1

3 (1.128)

  
Emag total = oe

2 h2

me
2r1

3 (1.129)

STERN-GERLACH EXPERIMENT
The sum of the L i, the magnitude of the angular momentum of

each infinitesimal point of the orbitsphere of mass mi , must be constant.
The constant is   h .

  
|L i |∑ = r × miv∑ = mern

h
mern

= h (1.130)

where the velocity is given by Eq. (1.47).  Furthermore, it is known from
the Stern-Gerlach experiment that a beam of silver atoms is split into
two components when passed through an inhomogeneous magnetic
field.  The measured angular momentum in the direction of the applied

field (spin axis) is 
  
±

h
2

, and the magnitude of the angular momentum

vector which precesses about the spin axis is 
  

3
4
h   As demonstrated in

the Orbitsphere Equation of Motion Section, the projection of the total

orbitsphere angular momentum onto the spin axis is 
  
±

h
2

 , and the

projection onto S, the axis which precesses about the spin axis, is 
  

3
4
h .

The Stern-Gerlach experiment implies a magnetic moment of one Bohr
magneton and an associated angular momentum quantum number of
1/2.  Historically, this quantum number is called the spin quantum

number, s ( s =
1

2
; ms =±

1

2
), and that designation is maintained.

ELECTRON g FACTOR
As demonstrated by Purcell [19], when a magnetic field is applied

to an electron in a central field which comprises a current loop, the
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orbital radius does not change, but the velocity changes as follows:

∆v =
erB
2me

(1.131)

The angular momentum of the electron orbitsphere is   h  as given by Eq.

(1.57), and as demonstrated in Figure 1.5, 
  
h
2

 of the orbitsphere angular

momentum is in the plane perpendicular to any applied magnetic field.
The angular momentum in the presence of an applied magnetic field is

L = r × (mev + eA) (1.132)
where A  is the vector potential of the external field evaluated at the
location of the orbitsphere.  Conservation of angular momentum of the
orbitsphere permits a discrete change of its "kinetic angular

momentum" (r × mv)  by the field of 
  
h
2

, and concomitantly the "potential

angular momentum" (r × eA)  must change by - 
  
h
2

.  The flux change, , of

the orbitsphere for r < rn  is determined as follows:

  
∆L =

h
2

− r × eA (1.133)

  
=

h
2

−
e2 rA

2
(1.134)

  
=

h
2

−
e

2
(1.135)

In order that the change of angular momentum, ∆L, equals zero,  must

be Φ0 =
h

2e
, the magnetic flux quantum.  Thus, to conserve angular

momentum in the presence of an applied magnetic field, the orbitsphere
magnetic moment can be parallel or antiparallel to an applied field as
observed with the Stern-Gerlach experiment, and the flip between

orientations ( a rotation of 
2

) is accompanied by the "capture" of the

magnetic flux quantum by the orbitsphere "coils" comprising
infinitesimal loops of charge moving along geodesics (great circles).

The energy to flip the orientation of the orbitsphere due to its
magnetic moment of a Bohr magneton, B , is

∆Emag
spin = 2 BB (1.136)

where

  
B =

eh
2me

(1.137)

The energy change corresponding to the "capture" of the magnetic flux
quantum is derived below.  From Eq. (1.129) for one electron,



© 2000 by BlackLight Power, Inc.  All rights reserved.
73

  
Emag = 0e

2h2

(me )2 rn
3 (1.138)

is the energy stored in the magnetic field of the electron.  The
orbitsphere is equivalent to a Josephson junction which can trap integer

numbers of fluxons where the quantum of magnetic flux is Φ0 =
h

2e
.

Consider Eq. (1.138).  During the flip transition a fluxon treads the
orbitsphere at the speed of light; therefore, the radius of the orbitsphere
in the lab frame is 2  times the relativistic radius in the fluxon frame.
Thus, the energy of the transition corresponding to the "capture" of a
fluxon by the orbitsphere, ∆Emag

fluxon, is

  
∆Emag

fluxon = oe
2h2

(me )2 2 rn( )3 (1.139)

  
= oe

2

4 2mern

eh
2me

 
 
  

 
 h

2e rn
2

 
 
  

 
 (1.140)

= oe
2

4 2mern
B

Φ0

A
 
 

 
 (1.141)

where A is the area and Φ0  is the magnetic flux quantum.

∆Emag
fluxon = 2

e2
o

2mern

 

  
 

  
1

4 2 BB (1.142)

where the nth fluxon treading through the area of the orbitsphere is
equivalent to the applied magnetic flux.  Furthermore, the term in
brackets can be expressed in terms of the fine structure constant,  ,as
follows:

e2
o

2mern

=
e2

ocv

2mevrnc
(1.143)

Substitution of Eq. (1.47) gives

  
e2

ocv

2hc
(1.144)

Substitution of

c =
1

o o

(1.145)

and

= oe
2c

2h
(1.146)

gives

  
e2

ocv

2hc
= 2

v

c
(1.147)

The fluxon treads the orbitsphere at v = c .  Thus,
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∆Emag
fluxon = 2

2 BB (1.148)

The principal energy of the transition of reorientation of the orbitsphere
is given by Eq. (1.136).  And, the total energy of the flip transition is the
sum of Eq. (1.148), the energy of a fluxon treading the orbitsphere and
Eq. (1.136), the energy of reorientation of the magnetic moment.

∆Emag
spin = 2 BB +

2 BB
 
 

 
 (1.149)

∆Emag
spin = 2(1+

2
) BB (1.150)

∆Emag
spin = 2g BB (1.151)

The magnetic moment of Eq. (1.136) is twice that from the gyromagnetic
ratio as given by Eq. (2.36) of the Orbital and Spin Splitting Section.  The
magnetic moment of the electron is the sum of the component

corresponding to the kinetic angular momentum, 
  
h
2

, and the component

corresponding to the vector potential angular momentum, 
  
h
2

, (Eq.

(1.132).  The spin-flip transition can be considered as involving a
magnetic moment of g  times that of a Bohr magneton.  The factor g  is
redesignated the fluxon g  factor as opposed to the anomalous g factor
and its value is 1.00116.  The experimental value is 1.00116.  Additional
small corrective terms to the g  factor arise as a result of the radiative
reaction force [20].

DETERMINATION OF ORBITSPHERE RADII, rn
The one-electron  orbitsphere is a spherical shell of negative

charge (total charge = −e ) of zero thickness at a distance rn  from the
nucleus (charge = + Ze ).  It is well known that the field of a spherical
shell of charge is zero inside the shell and that of a point charge at the
origin outside the shell [21].  See Figure 1.7.



© 2000 by BlackLight Power, Inc.  All rights reserved.
75

Figure 1.7  The electric fields of a proton, an electron, and a hydrogen
atom.

Thus, for a nucleus of charge Z , the force balance equation for the
electron orbitsphere is obtained by equating the forces on the mass and
charge densities.  For the ground state, n = 1, the centrifugal force of the
electron is given by

Fcentrifugal =
me

4 r1
2

v1
2

r1

(1.152)

where 
me

4 r1
2  is the mass density of the orbitsphere.  The centripetal force
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is the electric force, Fele , between the electron and the nucleus.

Fele =
e

4 r1
2

Ze

4 or1
2 (1.153)

where o  is the permittivity of free-space.
The second centripetal force is an electrodynamic force, a force

dependent on the second derivative of charge position which respect to
time, which arises between the electron and the nucleus.  The motion of
each point in the magnetic field of the nucleus will cause a relativistic
central force, Fmag , which acts on each point mass.  The magnetic central
force is derived as follows from the Lorentzian force which is
relativistically corrected.  Each infinitesimal point of the orbitsphere
moves on a great circle, and each point charge has the charge-density

e

4 rn
2 .  As given in the Proton and Neutron Section, the proton is

comprised of a linear combination of three constant functions and three
orthogonal spherical harmonic quark/gluon functions.  From the photon
inertial reference frame at the radius of each infinitesimal point of the
electron orbitsphere, the proton charge distribution is given as the
product of the quark and gluon functions which gives rise to a uniform
distribution.  The magnetic flux of the proton in the v = c  inertial frame
at the electron radius follows from McQuarrie [16]:

  
B = oeh

2mprn
3 (1.154)

And, the magnetic flux due to a nucleus of charge Z  and mass m  is

  
B = o Z

1
eh

2mrn
3 (1.155)

The motion of each point will cause a relativistic central force, F i mag,
which acts on each point mass.  The magnetic central force is derived as
follows from the Lorentzian force which is relativistically corrected. The
Lorentzian force density on each point moving at velocity v  given by Eq.
(1.47) is

Fmag =
e

4 rn
2 v × B (1.156)

Substitution of Eq. (1.47) for v  and Eq. (1.155) for B gives

  
Fmag =

1

4 r1
2

Z1e
2

o

2mern

 

  
 

  
h2

mrn
3 (1.157)

The term in brackets can be expressed in terms .  From Eqs. (1.143-
1.147)

Z1e
2

o

2mern

= 2 Z1

v

c
(1.158)

It can be shown that the relativistic correction to Eq. (1.157) is the
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reciprocal of Eq. (1.158).  Consider an inertial frame following a great
circle of radius rn  with v = c .  The motion is tangential to the radius; thus,
rn  is Lorentzian invariant.  But, the tangential distance along a great
circle is 2 rn  in the laboratory frame and rn  in the v = c  frame.  The
charge is relativistically invariant, whereas, the mass is not.  The
relativistic correction to the laboratory frame mass relative to the v = c
frame is 2 .  The correction follows from the Lorentz transformation of
the electron's invariant angular momentum of   h .  It is shown by Purcell
[22] that the force on a moving charge due to a moving line of charge is
a relativistic electric force due to Lorentzian contraction of the line

charge density.  The force is proportional to 
v

c
 where v  is the electron's

velocity.  Thus, it follows that the electron mass in the laboratory frame

relative to the v = c  inertial frame is which is also proportional to 
v

c
.

Following the derivation of Purcell with the substitution of the relativistic
mass density for the charge density gives the electron mass correction to
the electrodynamic force as

me = 2
v

c
meRest (1.159)

Furthermore, due to invariance of charge under Gauss's Integral Law, the
radius term in the brackets of Eq. (1.157) is relativistically corrected.
The radius of the electron relative to the v = c  frame, r* , is relativistically
corrected as follows.  From Eq. (1.43) the relationship between the
radius and the electron wavelength is

2 r =  (1.160)
Using the de Broglie Eq. (1.46) with v = c

=
h

mv
=

h

mc
(1.161)

With substitution of Eq. (1.160) into Eq. (1.161)

  
r* =

h
mc

= Dc = ao (1.162)

where   D C  is the Compton wavelength bar, and where ao  is the Bohr
radius.  The radius of the electron orbitsphere in the v = c  frame is   D C ,
and the relativistic correction due to length contraction can be
determined as a boundary value problem.  Eq. (1.162) can be expressed
in terms of a relativistic correction, n , which multiplies, r1 , the radius of
the electron orbitsphere in the lab frame.  The lab frame electron radius

is taken as 
ao

Z2

  which is consistent with Eq. (1.169); thus, it is the

solution of our boundary value problem as shown as follows.
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r* =

h
mc

= Dc = ao =
nao

Z2

= nr1 (1.163)

It follows from Eq. (1.163) that the radius, rn , of Eq. (1.157) must be
corrected by the factor Z2 .  By correcting the radius and the mass, the

relativistic correction is 
1

2 Z2

v
c

.  In this case, Z1 = Z2 ; thus, 1 is

substituted for the term in brackets in Eq. (1.157); therefore,

  
Fmag = −

1

4 r1
2

h2

mrn
3 (1.164)

The force balance equation is given by equating the centrifugal and
centripetal force densities:

  

me

4 r1
2

v1
2

r1

=
e

4 r1
2

Ze

4 or1
2 −

1

4 r1
2

h2

mrn
3 (1.165)

Using Eq. (1.47),

  
r1 =

4 oh
2

Ze2
e

(1.166)

where the reduced electron mass, e , is

e =
mem

me + m
(1.167)

The Bohr radius is

  
ao =

4 oh
2

e2me

(1.168)

And, the radius given by force balance between the centifugal force and
central electrostatic force alone is

  
r1 =

4 oh
2

Ze2me

=
a0

Z
(1.169)

And, for hydrogen, m  of Eq. (1.167) is
m = mp (1.170)

Substitution of the reduced electron mass for the electron mass gives,
aH , the Bohr radius of the hydrogen atom.

  
aH =

4 oh
2

e2
e

(1.171)

Thus, Eq. (1.166) becomes

r1 =
aH

Z
(1.172)

ENERGY CALCULATIONS
The potential energy V  between the electron and the nucleus

separated by the radial distance radius r1  is,



© 2000 by BlackLight Power, Inc.  All rights reserved.
79

V =
−Ze2

4 or1

=
−Z 2e2

4 oaH

= −Z2
 X 4.3675 X 10−18

 J = −Z 2
 X 27.2 eV (1.173)

Because this is a central force problem, the kinetic energy, T , is −
1

2
V .

T =
Z 2e2

8 oaH

= Z 2
 X 13.59 eV (1.174)

The same result can be obtained from T =
1

2
mev1

2  and Eq. (1.47).

Alternatively, the kinetic energy, which is equal to the stored electric
energy, Eele , can be calculated from

T = Eele = −
1

2 o E2dv
∞

r1

∫ (1.175)

where E = −
Ze

4 or
2 .  Thus, as the orbitsphere shrinks from ∞ to  r1 ,

Eele = −
Z 2e2

8 oaH

= −Z 2
 X 2.1786 X 10−18  J = −Z 2

 X 13.598 eV (1.176)

The calculated Rydberg constant is 109,677.58 cm−1 ; the experimental
Rydberg constant is 109,677.58 cm−1 .  Furthermore, a host of parameters
can be calculated for the hydrogen atom, as shown in Table 1.1.
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Table 1.1. Some calculated parameters for the hydrogen atom (n = 1).
                                                                                                                   
radius r1 = aH 5.2918 X 10−11

 m

potential energy V =
−e2

4 oaH

−27.196 eV

kinetic energy T =
e2

8 oaH

13.598 eV

angular velocity (spin)
  

1 =
h

mer1
2 4.13 X 1016

 rads−1

linear velocity v1 = r1 1 2.19 X 106
 ms−1

wavelength 1 = 2 r1 3.325 X 10−10
 m

spin quantum number s =
1

2

1

2

moment of Inertia I = mer1
2 s(s +1) 2.209 X 10−51

 kgm2

angular kinetic energy Eangular =
1

2
I 1

2 11.78 eV

magnitude of the   h 1.0545 X 10−34
 Js

angular momentum

projection of the   S = h s s +1( ) 9.133 X 10−35
 Js

angular momentum
onto the S-axis

projection of the
  
Sz =

h
2

5.273 X 10−35
 Js

angular momentum
onto the z-axis

mass density
me

4 r1
2 2.589 X 10−11

 kgm−2

charge-density
e

4 r1
2 14.41 Cm−2

                                                                                                                   
Table 1.2 gives the radii and energies for some one-electron atoms.
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In addition to the energies, the wavelength, angular frequency, and the
linear velocity can be calculated for any one-electron atom from Eqs.
(1.46), (1.55), and (1.56).  Values are given in Table 1.3.

Table 1.2. Calculated energies (non-relativistic) and calculated ionization
energies for some one-electron atoms.

______________________________________________________________________________
Calculated Calculated Calculated Calculated Experimental

Atom r1
a Kinetic Potential Ionization Ionization

(a0 ) Energyb Energyc Energyd Energye

(eV) (eV) (eV) (eV)

H 1.000 13.59 –27.18 13.59 13.59

He+ 0.500 54.35 –108.70 54.35 54.58

Li2 + 0.333 122.28 –244.56 122.28 122.45

Be3+ 0.250 217.40 –438.80 217.40 217.71

B4 + 0.200 339.68 –679.36 339.68 340.22

C5+ 0.167 489.14 –978.28 489.14 489.98

N6+ 0.143 665.77 –1331.54 665.77 667.03

O7+ 0.125 869.58 –1739.16 869.58 871.39

a from Equation (1.169)
b from Equation (1.174)
c from Equation (1.173)
d from Equation (1.176)
e experimental
______________________________________________________________________________

It is noteworthy that the potential energy is a constant (at a given n )
because the electron is at a fixed distance, rn , from the nucleus.  And,
the kinetic energy and velocity squared are constant because the atom
does not radiate at rn  and the potential energy is constant.
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Table 1.2. Calculated radii, angular frequencies, linear velocities, and
wavelengths for the n = 1 state of some one-electron atoms
(non-relativistic).

____________________________________________________________________________
Atom r1

a angularb linearc wavelengthd

(a0 ) velocity velocity (10−10
 m )

(1017rad s−1 ) (106
 ms−1 )

H 1.000 0.413 2.19 3.325

He+ 0.500 1.65 4.38 1.663

Li2 + 0.333 3.72 6.56 1.108

Be3+ 0.250 6.61 8.75 0.831

B4 + 0.200 10.3 10.9 0.665

C5+ 0.167 14.9 13.1 0.554

N6+ 0.143 20.3 15.3 0.475

O7+ 0.125 26.5 17.5 0.416

a from Equation (1.169)
b from Equation (1.55)
c from Equation (1.56)
d from Equation (1.46)
____________________________________________________________________________

It should be noted that the linear velocity is an appreciable percent of
the velocity of light for some of the atoms in Table 1.2—5.9% for O7+ for
example. Relativistic corrections must be applied before a comparison
between the total energy and ionization energy (Table 1.2) is made.
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EXCITED STATES OF THE ONE ELECTRON ATOM (QUANTIZATION)

EQUATION OF THE ELECTRIC FIELD INSIDE THE ORBITSPHERE
It is well known that resonator cavities can trap electromagnetic

radiation of discrete resonant frequencies.  The orbitsphere is a
resonator cavity which traps photons of discrete frequencies.  Thus,
photon absorption occurs as an excitation of a resonator mode.  The
"trapped photon" is a "standing electromagnetic wave" which actually is
a circulating wave that propagates around the z-axis, and its source
current superimposes with each great circle current loop of the
orbitsphere.  The time-function factor, k(t ), for the "standing wave" is
identical to the time-function factor of the orbitsphere in order to
satisfy the boundary (phase) condition at the orbitsphere surface.  Thus,
the angular frequency of the "trapped photon" has to be identical to the
angular frequency of the electron orbitsphere, n  given by Eq. (1,55).
Furthermore, the phase condition requires that the angular functions of
the "trapped photon" have to be identical to the spherical harmonic
angular functions of the electron orbitsphere.  Combining k(t ) with the

-function factor of the spherical harmonic gives e
i m − n t( )  for both the

electron and the "trapped photon" function.  The photon is "glued" to
the inner orbitsphere surface and the outer nuclear surface as photon
source charge-density with a radial electric field.  Thus, the "trapped
photon" is analogous to a gluon described in the Proton and Neutron
Section and is different from a photon in free space as described in the
Equation of the Photon Section.

For a spherical resonator cavity, the relationship between an
allowed radius and the "photon standing wave" wavelength is

2 r = n  (2.1)
where n  is an integer.  Now, the question arises: given that this is a
resonator cavity, which nonradiative states are possible where the
transition is effected by a "trapped photon"?  For the electron
orbitsphere, a spherical resonator cavity, the relationship between an
allowed radius and the electron wavelength is

2 (nr1) = 2 rn = n 1 = n (2.2)
where

n = 1,2,3,4,...

n =
1

2
,
1

3
,
1

4
,...

1  is the allowed wavelength for n = 1
r1  is the allowed radius for n = 1

An electron in the ground state, n = 1, is in force balance including the
electrodynamic force which is included by using the reduced electron
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mass as given by Eqs. (1.166), (1.171), and (1.172).
mev1

2

r1

=
Ze2

4 or1
2 (2.3)

When an electron in the ground state absorbs a photon of sufficient
energy to take it to a new non-radiative state, n = 2,3,4,...,  force balance
must be maintained.  This is possible only if the central field is

equivalent to that of a central charge of 
Ze

n
, and the excited state force

balance equation is
mevn

2

rn

=
1

n

Ze2

4 orn
2 (2.4)

where r1  is the "ground" state radius of the electron, and rn  is the nth
excited state radius of the electron.  The radius of the nth excited state
follows from Eq. (1.172) and Eq. (2.4).

rn = naH (2.5)

The reduction of the charge from Ze to 
Ze

n
 is caused by trapping a

photon in the orbitsphere, a spherical resonator cavity.   The photon's
electric field creates a "standing wave" in the cavity with an effective

charge of  −1 +
1

n
 
 

 
 
Ze (at rn ).  The total charge experienced by the electron

is the sum of the proton and "trapped photon" charge components.  The
equation for these "trapped photons" can be solved as a boundary value
problem of Laplace’s equation.  For the hydrogen atom, the boundary
conditions are that the electric field is in phase with the orbitsphere and
that the radial function for the electric field of the "trapped photon" at
rn  is

E rphoton = −1 +
1

n
 
 

 
 

e

4 o rn( )2     n = 2,3,4,..., (2.6)

The general form of the solution to Laplace’s equation in spherical
coordinates is

  
Φ r, ,( ) = Al, mr l + Bl,mr− l+1( )[ ]

m =−l

l

∑
l= 0

∞

∑ Y0
0 ,( ) + Yl

m ,( )[ ] (2.7)

All   Al,m  are zero because the electric field given by the potential must be
inversely proportional to the radius to obtain force balance.  The
electric field is the gradient of the potential

E = −∇Φ (2.8)
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E r = −
Φ
r

ˆ i r

E = −
1

r

Φ ˆ i 

E = − 1

rsin

Φ ˆ i 

(2.9)

Thus,

  
E r = Bl, m l +1( )

m =− l

l

∑
l=0

∞

∑ r − l+2( ) Y0
0 ,( ) + Yl

m ,( )[ ] (2.10)

Given that E( proton) =
+e

4 orn
2 , and that the electric fields of the proton and

"trapped photon" must superimpose to yield a field equivalent to a

central point charge of 
+Ze

n
, the "trapped photon" electric field for each

mode is determined as follows.  The time-function factor and the
angular-function factor of the charge-density function of the orbitsphere
(Eqs. (1.64) and (1.65)) at force balance must be in phase with the
electric field of the "trapped photon".  The relationship between the
electric field equation and the "trapped photon" source charge-density
function is given by Maxwell’s equation in two dimensions.

n • E1 − E2( ) =
0

(2.11)

where n  is the radial normal unit vector, E1 = 0  (E1  is the electric field
outside of the orbitsphere), E2  is given by the total electric field at
rn = naH , and  is the surface charge-density.  Thus,

  
E r photon  n,l, m| rn = na

H

=
e

4 o naH( )2 −1 +
1

n
Y0

0 ,( ) + Re Yl
m ,( ) 1 + ei nt[ ]{ }[ ] 

 
 
 

n = 0 for m = 0 (2.12)

  
= −Bl,m l +1( )

m=− l

l

∑
l= 0

∞

∑ naH( )− l+ 2( )
Y0

0 ,( ) + Re Yl
m ,( ) 1+ e i nt[ ]{ }[ ]

n = 0 for m = 0 (2.13)
Therefore,

  
−Bl,m =

e naH( )l

4 o l +1( ) −1+
1

n
 
 

 
 m =− l

l

∑
l= 0

∞

∑ , and (2.14)

  
E r photon  n,l, m

=
e naH( )l

4 o

1

r l+2( ) −Y0
0 ,( ) +

1

n
Y0

0 ,( ) + Re Yl
m ,( ) 1 + e i nt[ ]{ }[ ] 

 
 
 

n = 0 for m = 0 (2.15)
n = 1,2,3,4,...

= 1,2,..., n − 1
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m = − , – +1,...,0,..., +

E rtotal  is the sum of the "trapped photon" and proton electric fields,

  
E rtotal

=
e

4 or
2 +

e naH( )l

4 o

1

r l+2( ) −Y0
0 ,( ) +

1

n
Y0

0 ,( ) + Re Yl
m ,( ) 1 + e i nt[ ]{ }[ ] 

 
 
 

n = 0 for m = 0 (2.16)
For r = naH  and m = 0, the total radial electric field is

E rtotal =
1

n

e

4 o naH( )2 (2.17)

All boundary conditions are met for the electric fields and the
wavelengths of the "trapped photon" and the electron.  Thus, Eq. (2.16)
is the solution for the excited modes of the orbitsphere, a spherical
resonator cavity.  And, the quantum numbers of the electron are n , , m
(m ), and ms (Described in the Stern-Gerlach Experiment Section).

PHOTON ABSORPTION
The energy of the photon which excites a mode in a stationary

spherical resonator cavity from radius aH  to radius naH  is

  
Ephoton =

e2

4 o aH

1−
1

n2
 
 

 
 

= h = h (2.18)

After multiplying Eq. (2.18) by 
  

aH

aH

=
4 0 h

2

e2
eaH

, where aH  is given by Eq.

(1.171), photon  is

  
photon =

h
meaH

2 1−
1

n2
 
 

 
 

(2.19)

In the case of an electron orbitsphere, the resonator possesses kinetic
energy before and after the excitation.  The kinetic energy is always one-
half of the potential energy because the centripetal force is an inverse
squared central force.  As a result, the energy and angular frequency to
excite an electron orbitsphere is only one-half of the values above, Eqs.
(2.18) and (2.19).  From Eq. (1.55), the angular velocity of an electron
orbitsphere of radius naH  is

  
n =

h
me naH( )2 (2.20)

The change in angular velocity of the orbitsphere for an excitation from
n = 1 to n = n  is

  
∆ =

h
me aH( )2 −

h
me naH( )2 =

h
me aH( )2 1−

1

n2
 
 

 
 

(2.21)
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The kinetic energy change of the transition is

  

1

2
me (∆v)2 =

1

2

e2

4 0aH

1 −
1

n2
 
 

 
 

=
1

2
h (2.22)

The change in angular velocity of the electron orbitsphere, Eq. (2.21), is
identical to the angular velocity of the photon necessary for the
excitation, photon  (Eq. (2.21)).  The energy of the photon necessary to
excite the equivalent transition in an electron orbitsphere is one-half of
the excitation energy of the stationary cavity because the change in
kinetic energy of the electron orbitsphere supplies one-half of the
necessary energy.  The change in the angular frequency of the
orbitsphere during a transition and the angular frequency of the photon
corresponding to the superposition of the free space photon and the
photon corresponding to the kinetic energy change of the orbitsphere
during a transition are equivalent.  The correspondence principle holds.
It can be demonstrated that the resonance condition between these
frequencies is to be satisfied in order to have a net change of the energy
field [1].

The excited states of hydrogen are given in Table 2.1.
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Table 2.1. Calculated energies (non-relativistic; no spin-orbit interaction;
no electronic spin/nuclear spin interaction) and ionization
energies for the hydrogen atom in the ground state and some
excited states.

______________________________________________________________________________
Calculated Calculated Calculated Calculated Experimental

n Z rn
a Kinetic Potential Ionization Ionization

 ( aH ) Energyb Energyc Energyd Energye

(eV) (eV) (eV) (eV)

1 1 1.000 13.589 –27.21 13.598 13.595

2
1

2
2.000 3.397 –6.803 3.400 3.393

3
1

3
3.000 1.510 –3.023 1.511 1.511

5
1

5
5.000 0.544 –1.088 0.544 0.544

10
1

10
10.000 0.136 –0.272 0.136 0.136

a from Equation (2.5)

b from T = −
1

2
V

c from Equation (1.173)
d from Equation (2.22)
e experimental
_____________________________________________________________________________

SELECTION RULES
The multipole fields of a radiating source can be used to calculate

the energy and angular momentum carried off by the radiation [2].  For
definiteness we consider a linear superposition of electric (l, m)
multipoles with different m values, but all having the same l, and
following Eq. (16.46) of Jackson [2], write the fields as

Bl = aE l,m( )
m
∑ Xlmhl

1( ) kr( )ei t

E
l
= i

k
∇× B

l

(2.23)

For harmonically varying fields, the time-averaged energy density is
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u =
1

16
E • E* + B •B*( ) (2.24)

In the radiation zone, the two terms are equal.  Consequently, the energy
in a spherical shell between r  and (r + dr ) ( for kr >> 1) is

dU =
dr

8 k2 aE
* l, m'( )aE

m,m '
∑ l,m( ) Xlm '

*∫ •XlmdΩ (2.25)

where the asymptotic form (Eq. (16.13) of Jackson [2]) of the spherical
Hankel function has been used.  With the orthogonality integral (Eq.
(16.44) of Jackson [2]) this becomes

dU

dr
=

1

8 k2 aE l,m( ) 2

m
∑ (2.26)

independent of the radius.  For a general superposition of electric and
magnetic multipoles, the sum over m becomes a sum over l and m and
aE

2
 becomes aE

2
+ aM

2
.  The total energy is a spherical shell in the

radiation zone is thus an incoherent sum  over all multipoles.
The time-averaged angular-momentum density is

m =
1

8 c
Re r × E × B *( )[ ] (2.27)

The triple cross product can be expanded, and the electric field
substituted to yield, for a superposition of electric multipoles,

m =
1

8
Re B* L • B( )[ ] (2.28)

Then the angular momentum in a spherical shell between r  and (r + dr )
in the radiation zone is

dM =
dr

8 k2 Re aE
* l,m'( )aE

m ,m'
∑ l, m( ) L • Xlm'( )∫

*

XlmdΩ (2.29)

With the explicit form (Eq. (16.43) of Jackson [2]) for Xlm , Eq. (2.29) can
be written

dM
dr

=
1

8 k2 Re aE
* l,m'( )aE

m ,m'
∑ l, m( ) Ylm'

* LYlm∫ dΩ (2.30)

From the properties of LYlm  listed in Eq. (16.28) of Jackson [2] and the
orthogonality of the spherical harmonics, we obtain the following

expressions for the Cartesian components of 
dM

dr
dM x

dr
=

1

16 k2 Re l − m( ) l + m +1( )aE
* l,m + 1( ) + l + m( ) l − m +1( )aE

* l, m −1( )[ ]aE
m
∑ l, m( ) (2.31)

dM y

dr
=

1

16 k2 Im l − m( ) l + m +1( )aE
* l,m +1( ) − l + m( ) l − m +1( )aE

* l,m −1( )[ ]aE
m
∑ l, m( ) (2.32)

dM z

dr
=

1

8 k2 maE l, m( )2

m
∑ (2.33)

These equations show that for a general lth order electric multipole that
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consists of a superposition of different m values, only the z component
of the angular momentum is relatively simple.

For a multipole with a single m value, Mx  and My  vanish, while a
comparison of Eq. (2.33) and Eq. (2.25) shows that

dM z

dr
=

m dU

dr
(2.34)

independent of r .  Experimentally, the photon can carry ±    h . units of
angular momentum.  Thus, during excitation the spin, orbital, or total
angular momentum of the orbitsphere can change by zero or ±    h   The
electron transition rules arise from conservation of angular momentum.
The selection rules for multipole transitions between quantum states
arise from conservation of total angular momentum and component
angular momentum where the photon carries   h  of angular momentum.
The radiation of a multipole of order (l, m) carries   mh  units of the z
component of angular momentum per photon of energy   h .

ORBITAL AND SPIN SPLITTING
The ratio of the square of the angular momentum, M2 , to the

square of the energy, U2 , for a pure (l,m) multipole follows from Eq.
(2.25) and Eqs. (2.31-2.33)

M2

U 2 =
m 2

2 (2.35)

The magnetic moment is defined [3] as

 =
charge x angular momentum

2 x mass
(2.36)

The radiation of a multipole of order (l, m) carries m  h  units of the z
component of angular momentum per photon of energy   h .  Thus, the z
component of the angular momentum of the corresponding excited state
electron orbitsphere is

  Lz = mh (2.37)
Therefore,

  
z =

emh
2me

= m B (2.38)

where B  is the Bohr magneton.  The presence of a magnetic field causes
the principal excited state energy levels of the hydrogen atom (Eq.
(2.22)) to split by the energy Emag

orb  corresponding to the interaction of
the magnetic flux with the magnetic moment given by Eq. (2.38).  This
energy is called orbital splitting.

Emag
orb = m BB (2.39)

As is the case with spin splitting given by one half the energy of Eq.
(1.151) which corresponds to the transition between spin states, the
energy of the electron is increased in the case that the magnetic flux is
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antiparallel to the magnetic moment, or the energy of the electron is
decreased in the case that the magnetic flux is parallel to the magnetic
moment.  The spin and orbital splitting energies superimpose; thus, the
principal excited state energy levels of the hydrogen atom (Eq. (2.22))
are split by the energy Emag

spin/ orb

  
Emag

spin/ orb = m
eh

2me

B + msg
eh
me

B (2.40)

where it follows from Eq.(2.15) that

  

n = 2,3,4,...

l = 1,2,..., n − 1

m = −l,−l +1,...,0,..., +l

ms = ±
1

2
For the electric dipole transition, the selection rules are

∆m = 0,±1

∆ms = 0
(2.41)

Splitting of the energy levels in addition to that given by Eq. (2.40)
occurs due to a relativistic effect described in the Spin-Orbital Coupling
Section.  Also, a very small shift which is observable by radio-frequency
spectroscopy is due to conservation of energy and linear momentum and
arises from the radiation reaction force between the electron and the
photon.  This so-called Lamb Shift is described in the Resonant Line
Shape and Lamb Shift Section.

Decaying spherical harmonic currents on the surface of the
orbitsphere give rise to spherical harmonic radiation fields during
emission; conversely, absorbed spherical harmonic radiation fields
produce spherical harmonic currents on the surface of the orbitsphere
to effect a transition.  Transition intensities, I , are given by the integral
of the product of the multipole of the photon, pXl ,m ,( ), and the initial,
iXl, m ,( ), and final, fXl ,m ,( ), states as is the case with classical
electrodynamics calculations involving antennas.

I ∝ I0
iXl, m ,( )pX l,m ,( ) fX l,m ,( )

0

2

∫ sin d d
0
∫

2

(2.42)

The distribution of multipole radiation and the multipole moments of
the orbitsphere for absorption and emission are derived in Jackson [4].
Some of the simpler angular distributions are listed in Table 2.2.

Table 2.2.  Some of the simpler angular distributions of multipole radiation
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and the multipole moments of the orbitsphere for absorption and emission.

m

0 ±1 ±2

1

Dipole

3

8
sin2 3

16
1 + cos2( )

2

Quadrapole

15

8
sin2 cos2 5

16
1 − 3cos2 + 4cos 4( ) 5

16
1 − cos4( )

RESONANT LINE SHAPE AND LAMB SHIFT
The spectroscopic linewidth arises from the classical rise-time

band-width relationship, and the Lamb Shift is due to conservation of
energy and linear momentum and arises from the radiation reaction
force between the electron and the photon.  It follows from the Poynting
Power Theorem (Eq. (7.27)) with spherical radiation that the transition
probabilities are given by the ratio of power and the energy of the
transition [5].  The transition probability in the case of the electric
multipole moment given by Jackson [5] as

Qlm =
3

l + 3
e na

0
( )l

(2.43)

is [5]

  

1 = power
energy

1 =

2 c

2l +1( )!![ ]2

l + 1

l
 
 

 
 k

2l +1 Qlm + Qlm
' 2

 

 
 

 

 
 

h[ ]
= 2

e2

h

 
 
  

 
0

0

2

2l +1( )!![ ]2

l + 1
l

 
 

 
 

3
l +3

 
 

 
 

2

kna
0( )2l

(2.44)

This rise-time gives rise to, Γ , the spectroscopic line-width.  The
relationship between the rise-time and the band-width is given by Siebert
[6].
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2 = 4

t2

−∞

∞

∫ h2 t( )dt

h2 t( )dt
−∞

∞

∫
−

t
−∞

∞

∫ h2 t( )dt

h2 t( )dt
−∞

∞

∫

 

 

 
 
 

 

 

 
 
 

2 

 

 
 
 

 

 

 
 
 

(2.45)

Γ2 = 4

f 2 H f( )2
df

−∞

∞

∫

H f( ) 2
df

−∞

∞

∫
(2.46)

By application of the Schwartz inequality, the relationship between the
rise-time and the band-width is

Γ ≥
1

(2.47)

From Eq. (2.44), the line-width is proportional to the ratio of the

Quantum Hall resistance, 
h

e2 , and, , the radiation resistance of free

space.

= 0

0

(2.48)

And, the Quantum Hall resistance given in the Quantum Hall Effect
Section was derived using the Poynting Power Theorem.  Also, from Eq.
(2.44), the line-width is proportional to the fine structure constant, ,

  
=

1

4
o

o

e2

h
(2.49)

During a transition, the total energy of the system decays exponentially.
Applying Eqs. (2.45) and (2.46) to the case of exponential decay,

h( t) = e
− 1

T
t

u t( ) (2.50)

H f( ) =
1

1

T
 
 

 
 

2

+ 2 f( )2

(2.51)

where the rise-time, , is the time required for h( t) of Eq. (2.50) to decay
to 1/ e  of its initial value and where the band-width, Γ , is the half-power
bandwidth, the distance between points at which

H f( ) =
H 0( )

2
(2.52)

From Eq. (2.45),
= T (2.53)

From Eq. (2.46),

Γ =
1

T
(2.54)
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From Eq. (2.53) and Eq. (2.54), the relationship between the rise-time
and the band-width for exponential decay is

Γ =
1

(2.55)

Photons obey Maxwell-Boltzmann statistics as given in the
Statistical Mechanics Section.  The emitted radiation, the summation of
an assemble of emitted photons each of an exact frequency and energy
given by Eq. (4.8), appears as a wave train with effective length c / Γ .
Such a finite pulse of radiation is not exactly monochromatic but has a
frequency spectrum covering an interval of the order Γ .  The exact
shape of the frequency spectrum is given by the square of the Fourier
Transform of the electric field.  Thus, the amplitude spectrum is
proportional to

E( ) ∝ e− t

0

∞

∫ e−i tdt =
1

− i
(2.56)

The coefficient  corresponds to the spectroscopic linewidth and also to
a shift in frequency that arises from the radiation reaction force
between the electron and the photon.  The energy radiated per unit
frequency interval is therefore

dI( )
d

= I
0

Γ
2

1

−
0
− ∆( )2

+ Γ / 2( )2
(2.57)

where I
0
 is the total energy radiated.  The spectral distribution is called a

resonant line shape.  The width of the distribution at half-maximum
intensity is called the half-width or line-breadth and is equal to Γ .
Shown in Figure 2.1 is such a spectral line.  Because of the reactive
effects of radiation the line is shifted in frequency.  The small radiative
shift of the energy levels of atoms was first observed by Lamb in 1947
[7] and is called the Lamb Shift in his honor.
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Figure 2.1.  Broadening of the spectral line due to the rise-time and
shifting of the spectral line due to the radiative reaction.  The resonant
line shape has width Γ .  The level shift is ∆ .

ω

Γ

∆ω

ωο

dI

dω
(ω)

The Lamb Shift of the 2P1/2  state of the hydrogen atom having the
quantum number   l = 1 is calculated by applying conservation of energy
and linear momentum to the emitted photon, electron, and atom.  The
photon emitted by an excited state atom carries away energy, linear
momentum, and angular momentum.  The initial and final values of the
energies and momenta must be conserved between the atom, the
electron, and the photon.  (Conservation of angular momentum is used
to derive the photon's equation in the Equation of the Photon Section).
Consider an isolated atom of mass M  having an electron of mass me  in an
excited state level at an energy E  and moving with velocity V  along the
direction in which the photon is to be emitted (the components of
motion perpendicular to this direction remain unaffected by the
emission and may be ignored).  The energy above the "ground" state at
rest is

E +
1

2
MV2 

 
 
 (2.58)

When a photon of energy Eh  is emitted, the atom and/or electron
recoils and has a new velocity

V + v (2.59)
(which is a vector sum in that V  and v  may be opposed), and a total
energy of
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1

2
M V + v( )2 (2.60)

By conservation of energy,

E +
1

2
MV2 = Eh +

1

2
M V + v( )2 (2.61)

so, that the actual energy of the photon emitted is given by

Eh = E − 1

2
Mv2 − MvV

Eh = E − ER − ED

(2.62)

The photon is thus deficient in energy by a recoil kinetic energy

ER =
1

2
Mv2 (2.63)

which is independent of the initial velocity V , and by a thermal or
Doppler energy

ED = MvV (2.64)
which depends on V ; therefore, it can be positive or negative.

Momentum must also be conserved in the emission process.  The
energy, E , of the photon is given by Eq. (4.8)

  
E = h = h

2
= h = hf = h

c
(2.65)

From Special Relativity,
  E = h = mc2 (2.66)

Thus, p , the momentum of the photon is

p = mc =
Eh

c
(2.67)

where c  is the velocity of light, so that

MV = M V + v( ) +
Eh

c
(2.68)

And, the recoil momentum is

Mv = −
Eh

c
(2.69)

Thus, the recoil energy is given by

ER =
Eh

2

2Mc2 (2.70)

and depends on the mass of the electron and/or atom and the energy of
the photon.  The Doppler energy, ED , is dependent on the thermal
motion of the atom, and will have a distribution of values which is
temperature dependent.  A mean value, ED , can be defined which is
related to the mean kinetic energy per translational degree of freedom

ED

_

≅
1

2
kT (2.71)

by
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ED

_

≅ 2 EkER = Eh

2 Ek

_

Mc2 (2.72)

where k  is Boltzmann's constant and T  is the absolute temperature.  As
a result, the statistical distribution in energy of the emitted photons is
displaced from the true excited-state energy by −ER  and broadened by

ED  into a Gaussian distribution of width 2ED

_

.  The distribution for
absorption has the same shape but is displaced by +ER.

For the transition of the hydrogen atom with n = 2  and   l = 0  in the
initial and final states, the emitted angular radiation power pattern is
uniform.  The linear momentum of the photon is balanced by the recoil
momentum of the entire atom of mass mH .  The recoil frequency of the
hydrogen atom, ∆f, is given by the combining Eqs. (2.65) and (2.70).

∆f =
∆
2

=
Eh

h
=

Eh( )2

2mHc2 = 13 MHz (2.73)

where Eh  is

Eh =13.6 1−
1

n2

 
 

 
 − h∆f     ; h∆f <<<1     Eh = 13.6 1−

1

n2

 
 

 
    (2.74)

However, during the emission of a photon by an excited state atom, with
  l ≠ 0 , the angular radiation power pattern is not uniform, and the
electron receives the recoil momentum as the charge-density of the
electron changes from uniform to uniform plus a spherical harmonic
function (angular modulation) as given in the One Electron Atom
Section.  In the case of   l = 1;   ml = 0, the angular charge-density function is

  
(r, , ,t) =

e

4 rn
2 [ (r − rn )] Y0

0 ,( ) + Yl
m ,( )Re 1+ e i nt[ ][ ] (2.75)

where

  Yl
m ,( )Re 1+ e i nt[ ] = Re Yl

m ,( ) + Yl
m ,( )e i nt[ ] = Pl

m cos( )cosm + Pl
m cos( )cos m + nt( )

and n = 0 for m = 0.
Y1,z = cos (2.76)

Figure 1.2 gives pictorial representation of how the modulation function
changes the electron density on the orbitsphere for several  values.

The angular function , Xlm
2 , of the radiation power pattern of the

electron in the 2P1/2  (  l = 1;   ml = 0) state is equivalent to that of a Hertzian
dipole.

Xlm
2 = sin2 (2.77)

The integral of Eq. (2.77) over the surface of a spherical shell is

  
Xlm l=1

2 =
8

3
(2.78)

Thus, the inverse of Eq. (2.78) is the weighting factor of momentum
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transfer due to the radiation power pattern.  Photons obey Maxwell-
Boltzmann statistics as given in the Statistical Mechanics Section.  The
distribution of the linear momentum transferred from the emitted
photons to the electrons is given by the projection of the photon
momentum distribution onto the x, y, or z-axis which corresponds to 3
degrees of freedom.  The Lamb Shift of the 2P1/2  state of the hydrogen
atom is given by the combining Eqs. (2.65), (2.78), and (2.70)

∆f =
∆
2

=
Eh

h
= 3

Eh( )2

h2mec
2 =1052 MHz (2.79)

where Eh  is

  

Eh =13.6 1− 1
n2

 
 

 
 

1

Xlm l=1

2
− h∆f  

Eh =13.6 1− 1
n2

 
 

 
 

3
8

− h∆f ;  

h∆f <<<1

∴ Eh = 13.6 1−
1

n2

 
 

 
 

3

8
  

(2.80)

Furthermore, it follows from Eq. (2.75), that the recoil energy of the
photon corresponding to momentum transfer to the atom for the case of

  l = 1 is one half that of the case where = 0  (Eq. (2.73)).

∆f =
∆
2

=
Eh

h
=

1

2

Eh( )2

2mHc2 = 6.5 MHz (2.81)

The recoiling electron transfers momentum to the nucleus which binds
the electron, and some linear momentum is transferred to the atom as
angular momentum.  Linear momentum of the electron, atom, and
photon are conserved where the propagation vector of the photon does
not go through the nucleus; thus, it possesses an equal and opposite
component of angular momentum with respect to the atom.  The total
recoil energy is the sum of the electron component (Eq. (2.79)) and the
atom component (Eq. (2.81)).  Thus, the calculated Lamb Shift due to
both components of linear momentum transfer is

∆f = 1052 MHz + 6.5 MHz = 1058.5 MHz
∆f = 1052 MHz + 6.5MHz = 1058.5MHz (2.82)
The experimental Lamb Shift is 1058 MHz .

The present calculations used the electron rest mass; however, the
relativistic mass is required in order to be exact.  It is given by Eq.
(7.31).  In addition to the Lamb Shift, the spectral lines of hydrogen are
Zeeman split by spin-orbital coupling and electron-nuclear magnetic
interactions.

(As a further example, conservation of linear momentum of the
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photon is central to the Mössbauer phenomenon.  See Mills patent [8]).

SPIN-ORBITAL COUPLING
The spin-orbital coupling split is given by the Dirac equation [9]

which applies Special Relativity to a spherically symmetric charge
distribution in a central field as is the case with the orbitsphere.  And,
Dirac's spin-orbital interaction operator follows from Eq. (1.164) and
Eq. (1.173).

E = mec
2 1 +

n − j +
1

2
 
 

 
 + j +

1

2
 
 

 
 

2

− 2

 

 

 
 
 

 

 

 
 
 

2 

 

 
 
 

 

 

 
 
 

−1
2

;   n = 1,2,3,...∞

    j +
1

2
≤ n

(2.83)

The predicted energy difference between the 2P1/2 and 2P3/2, 2S1/2  levels
of the hydrogen atom, Es/o, given by Eq. (2.83) is

Es/ o ≅
4mec

2

32
(2.84)

which corresponds to a frequency of about 11,000 MHz  or a wavelength of
about 2.7 cm .  The experimental value is 10,950 MHz .

KNIGHT SHIFT
The unpaired electron of the hydrogen atom gives rise to a

uniform magnetic field at the nucleus which is given by Eq. (1.120).

  
H =

eh
mern

3 ( ir cos − i sin ) r < rn (2.85)

Multiplication of Eq. (2.85) by the permeability of free space, µ0, and
substitution of the Bohr radius of the hydrogen atom, aH , given by Eq.
(1.171) for rn  of Eq. (2.85) gives the magnetic flux, Bs , at the nucleus
due to electron spin.

  
Bs = 0eh

meaH
3 iz = 157.29 T (2.86)

The proton possesses a magnetic moment which is derived in the Proton
and Neutron Section and is given by

  

P =

2

3
 
 

 
 

2

eh

2
mp

2

(2.87)

∆Emag
proton spin, the energy to flip the orientation of the proton's magnetic

moment, P , from parallel to antiparallel to the direction of the
magnetic flux Bs  is
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∆Emag
proton spin = −2 PBs  (2.88)

As given in the Spin Angular Momentum of the Orbitsphere with   l = 0
Section, the z directed magnetic field of the nucleus corresponding to
the proton magnetic moment given by Eq. (2.87) gives rise to a
projection of the angular momentum of the electron onto an axis which

precesses about the z-axis of 
  

3

4
h .  The projection of the magnetic

energy between the electron orbitsphere and the proton is equivalent to
that of the angular momentum onto the axis which precesses about the

z-axis, 
3

4
 times that of a Bohr magneton.  In the case of the hydrogen

atom, the energy to flip the orientation of the proton's magnetic
moment, P , from parallel to antiparallel to the direction of the
magnetic flux Bs  of the electron is given by the substitution of the

magnetic flux Bs  of Eq. (2.86) multiplied by 
3

4
 into Eq. (2.88).

  
∆Emag

proton spin = −2 P
0eh

meaH
3

3

4
= −3.837 X 10−24

 J = −2.395 X 10−5
 eV (2.89)

The frequency, f , can be determined from the energy using the Planck
relationship, Eq. (2.18).

f =
3.837 X 10−24

 J

h
= 5.790 GHz  (2.90)

The shift of the NMR frequency of a nucleus by an unpaired electron is
called the Knight Shift.  The Knight Shift of the hydrogen atom is given
by Eq. (2.90) which corresponds to the magnetic flux given by Eq.
(2.86).  The experimental value is unknown; however, magnetic
hyperfine structure shifts of Mossbauer spectra corresponding to
magnetic fluxes of 100 T  or more due unpaired electrons are common.

SPIN-NUCLEAR COUPLING
The radius of the hydrogen atom is increased or decreased very

slightly due to the force between the magnetic moment of the electron
and the magnetic field of the nucleus.  The magnetic moment of the
electron is a Bohr magneton, B , given by Eq. (1.99).  The magnetic
moment m  of the proton is given by Eq. (2.87), and the magnetic field of
the proton follows from the relationship between the magnetic dipole
field and the magnetic moment m  as given by Jackson [10] where
m = Piz .

H = P

r3 (ir 2cos − i sin ) (2.91)

Multiplication of Eq. (2.91) by the permeability of free space, µ0, gives
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the magnetic flux, BP , due to the nucleus.

BP = 0 P

r 3 (ir 2cos − i sin )  (2.92)

The force between the magnetic moment of the electron and the
magnetic flux of the proton, FS/N , is

FS/N =
1

4 r1
2 Biz •∇BP (2.93)

Substitution of Eq. (2.92) into Eq. (2.93) gives

FS/N =±
1

4 r1
2 B 3 0

r 4  P (ir cos − i sin ) • (ir 2cos − i cos )d
0
∫ (2.94)

FS/N =±
1

4 r1
2 B 3 0

r 4  Pir (2.95)

where the plus corresponds to parallel alignment of the magnetic
moments of the electron and proton, and the minus corresponds to
antiparallel alignment of the magnetic moments of the electron and
proton.  The force must be corrected for the vector projection of the
angular momentum onto the z-axis.  As given in the Spin Angular
Momentum of the Orbitsphere with   l = 0  Section, the z directed
magnetic field of the nucleus corresponding to the proton magnetic
moment given by Eq. (1.120) gives rise to a projection of the angular
momentum of the electron onto an axis which precesses about the z-axis

of 
  

3

4
h .  The projection of the magnetic force between the electron

orbitsphere and the proton is equivalent to that of the angular

momentum onto the axis which precesses about the z-axis, 
3

4
 times

that of a Bohr magneton.  The force balance equation of the hydrogen
atom including the spin/nuclear force is given by substituting Eq. (2.95)

multiplied by 
3

4
 into Eq. (1.165).

  

me

4 r1
2

v1
2

r1

=
e

4 r1
2

e

4 or1
2 −

1

4 r1
2

h2

mrn
3 ±

1

4 r1
2 B 3 0

r4  P

3

4
(2.96)

Using Eq. (1.47),

  
r1± =

aH + aH
2 ±

6 oe Pao

3

4
h

2
(2.97)

where r1+  corresponds to parallel alignment of the magnetic moments of
the electron and proton, r1−  corresponds to antiparallel alignment of the
magnetic moments of the electron and proton, aH  is the Bohr radius of
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the hydrogen atom given by Eq. (1.171), and ao  is the Bohr radius given
by Eq. (1.168).

Energy Calculations
The change in the electric energy of the electron due to the slight

shift of the radius of the electron is given by the difference between the
electric energies associated with the two possible orientations of the
magnetic moment of the electron with respect to the magnetic moment
of the proton, parallel versus antiparallel.  Each electric energy is given
by the substitution of the corresponding radius given by Eq. (2.97) into
Eq. (1.176).  The change in electric energy for the flip from parallel to
antiparallel alignment, ∆Eele

S/ N , is

∆Eele
S/ N =

e2

8 o

1

r1−

−
1

r1+

 

  
 

  = 2.878 X 10−24  J (2.98)

The magnetic energy to flip the orientation of the proton's
magnetic moment, P , from parallel to antiparallel to the direction of
the magnetic flux Bs  of the electron is given by Eq. (2.89).

  
∆Emag

proton spin = −2 P
0eh

meaH
3

3

4
= −3.837 X 10−24

 J (2.99)

The total energy of the transition from parallel to antiparallel
alignment, ∆Etotal

S/ N , is given as the sum of Eqs. (2.98) and (2.99).

  
∆Etotal

S/ N =
e2

8 o

1

r1−

−
1

r1+

 

  
 

  − 2 P
0eh

meaH
3

3

4
(2.100)

∆Etotal
S/ N = 2.878 X 10−24  J − 3.837 X 10−24  J =−9.592 X 10−25  J (2.101)

The energy is expressed in terms of wavelength using the Planck
relationship, Eq. (2.65).

=
hc

∆Etotal
S/ N = 21 cm (2.102)

The experimental value from astrophysical studies and from electron
spin resonance measurements is 21 cm .

SPIN-NUCLEAR AND ORBITAL-NUCLEAR COUPLING OF HYDRINOS
The theory of a previously unknown form of matter: hydrogen

atoms having electrons of lower energy than the conventional "ground"
state called hydrinos, where each energy level corresponds to a
fractional quantum number is given in the Atomic Coulomb Field
Collapse--Hydrino Theory--BlackLight Process Section.  The radius of the

hydrino atom corresponding to the fractional quantum number 
1

n
 where

n  is an integer is the Bohr radius of the hydrogen atom divided by n , 
aH

n
,
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and the central field is n  times that of the proton.  The quantum
numbers of the electron for below "ground" states are n , , m (m ),

and ms as described in the Atomic Coulomb Field Collapse--Hydrino
Theory--BlackLight Process Section.  The relationship between the
quantum numbers is given by
Eq. (5.13).
 n = 2,3,4,...

 = 1,2,..., n − 1 (2.103)
m = − , –  +1,...,0,..., +

Photons obey Maxwell’s Equations.  At the two dimensional surface
of the orbitsphere containing a "trapped photon", the relationship
between the photon’s electric field and its two dimensional charge-
density at the orbitsphere is

n • E1 − E2( ) =
0

(2.104)

Thus, the photon’s electric field acts as surface charge.  According to Eq.
(2.104), the "photon standing wave" in the electron orbitsphere
resonator cavity gives rise to a two dimensional surface charge at the
orbitsphere two dimensional surface.  The surface charge is given by Eq.
(2.104) for a central field strength equal in magnitude to ne .  This
surface charge possesses the same angular velocity as the orbitsphere;
thus, it is a current with a corresponding magnetic field.  As
demonstrated in the Orbital and Spin Splitting Section, the z component
of the angular momentum of an excited state electron orbitsphere
corresponding to a "trapped photon" multipole of order (  l , m) is

  Lz = mh (2.105)
Eq. (2.105) also applies in the case of hydrinos, hydrogen atoms with
below "ground" state electronic energy levels.

The "trapped photon" is a "standing electromagnetic wave" which
actually is a circulating wave that propagates along each great circle
current loop of the orbitsphere.  The time-function factor, k(t ), for the
"standing wave" is identical to the time-function factor of the
orbitsphere in order to satisfy the boundary (phase) condition at the
orbitsphere surface.  Thus, the angular frequency of the "trapped
photon" has to be identical to the angular frequency of the electron
orbitsphere, n .  Furthermore, the phase condition requires that the
angular functions of the "trapped photon" have to be identical to the
spherical harmonic angular functions of the electron orbitsphere.  The
rotational parameters of the surface current of the "photon standing
wave" are given in the Derivation of the Rotational Parameters of the
Electron Section.  The solution to Legendre's equation given by Eq. (1.60)
is the maximum term of a series of solutions corresponding to the m and
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 values [11,12].  From Eq. (1.86), Lo
photon , the magnitude of the orbital

angular momentum along the axis which precesses about the z-axis is

  Lo
photon = h l(l +1) (2.106)

Therefore, from Eq. (2.36),

  
=

eh
2me

l(l +1) = B l(l +1) (2.107)

where B  is the Bohr magneton.  The magnetic moment gives rise to a
magnetic field at the nucleus.  The magnetic field follows from the
relationship between the magnetic dipole field and the magnetic moment
m  as given by Jackson [10] where   m = B l(l +1)  where the z-axis is
redesignated as the precessing axis.

  
H =

2 B

rn
3 l(l +1)(ir cos − i sin ) r < rn (2.108)

Multiplication of Eq. (2.108) by the permeability of free space, 0 , and
substitution of the Bohr radius of the hydrogen atom, aH , given by Eq.
(1.171) for rn  of Eq. (2.108) gives the magnetic flux, Bo , at the nucleus
due to the orbital angular momentum of the electron.

  
Bo = 0eh

meaH
3 l(l + 1)iz (2.109)

The orbital-nuclear coupling energy,∆Emag
proton orb , the energy to flip the

orientation of the proton's magnetic moment, P , from parallel to
antiparallel to the direction of the magnetic flux Bo  due to the orbital
angular momentum of the electron given by Eq. (2.109), is

∆Emag
proton orb =−2 PBo  (2.110)

The spin-nuclear and orbital-nuclear coupling energies superimpose.
Thus, Emag

proton spin orb , the energy to flip the orientation of the proton's
magnetic moment, P , from parallel to antiparallel to the direction of the
magnetic flux Bs  due to electron spin and the magnetic flux Bo  due to
the orbital angular momentum of the electron is the sum of Eqs. (2.89)
and (2.110).

Emag
proton spin orb= −2 PBo − 2 PBs

3

4
(2.111)

The spin and orbital moments of inertia, spin and orbital angular
momenta, and spin and orbital kinetic energies of an excited state
electron orbitsphere are given in the Derivation of the Rotational
Parameters of the Electron Section.  Substitution of Eq. (1.55) and Eq.
(1.96) into Eq. (1.88) gives the magnitude of the orbital component of
the angular momentum of an excited state electron orbitsphere
corresponding to a multipole of order (  l , m).  Lo

electron , the magnitude of
the orbital angular momentum along the axis which precesses about the
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z-axis is

  
Lo

electron = h
l(l +1)

l2 + l +1
 
 

 
 

1

2
(2.112)

Eq. (2.112) also applies in the case of hydrinos, hydrogen atoms with
below "ground" state electronic energy levels.  Therefore, from Eq.
(2.36),

  
=

eh
2me

l(l +1)

l2 + 2l +1
 
 

 
 

1

2
= B

l(l +1)

l2 + 2l +1
 
 

 
 

1

2
(2.113)

where B  is the Bohr magneton.  The force between the magnetic
moment of the electron due to orbital angular momentum and the
magnetic flux of the proton, FO/N , is

  
FO/N =

1

4 r1
2 B

l(l +1)

l2 + 2l +1
 
 

 
 

1

2
iz •∇BP (2.114)

where the z-axis is redesignated as the precessing axis.  Substitution of
Eq. (2.92) into Eq. (2.114) gives

  
FO/N = ±

1

4 r1
2 B

l(l +1)

l2 + 2l + 1
 
 

 
 

1

2
3 0

r 4  P (ir cos − i sin ) • ( ir 2cos − i cos )d
0
∫ (2.115)

  
FO/N = ±

1

4 r1
2 B

l(l +1)

l2 + 2l + 1
 
 

 
 

1

2
3 0

r 4  Pir (2.116)

where the plus corresponds to parallel alignment of the magnetic
moments of the electron and proton, and the minus corresponds to
antiparallel alignment of the magnetic moments of the electron and
proton.  The force balance equation of the hydrino atom including the
spin-nuclear force and the orbital-nuclear force is given by Eq. (5.14),
Eq. (2.116), Eq. (1.94), and Eq. (2.96) where the magnitude of the
central field is an integer, n .

  

me

4 r1
2

v1
2

r1

=
e

4 r1
2

ne

4 or1
2 −

1

4 r1
2

h2

mern
3 ±

1

4 r1
2

1

n
l l +1( ) +

3

4

 
 
  

 
 

B3 0

r4  P (2.117)

Using Eq. (1.47),

  
r1± =

aH + aH
2 ±

6 oe l l +1( ) +
3

4

 
 
  

 
 

Pao

h
2n

(2.118)

where r1+  corresponds to parallel alignment of the magnetic moments of
the electron and proton, r1−  corresponds to antiparallel alignment of the
magnetic moments of the electron and proton, aH  is the Bohr radius of
the hydrogen atom given by Eq. (1.171), and ao  is the Bohr radius given
by Eq. (1.168).
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Energy Calculations
The change in the electric energy of the electron due to the slight

shift of the radius of the electron is given by the difference between the
electric energies associated with the two possible orientations of the
magnetic moment of the electron with respect to the magnetic moment
of the proton, parallel versus antiparallel.  Each electric energy is given
by the substitution of the corresponding radius given by Eq. (2.118) into
Eq. (1.176) where the magnitude of the central field of the hydrino atom
is n  times that of a proton.  The change in electric energy for the flip
from parallel to antiparallel alignment, ∆Eele

S/N  O/N , is

∆Eele
S/N  O/N =

ne2

8 o

1

r1−

−
1

r1+

 

  
 

  (2.119)

The magnetic energy to flip the orientation of the proton's
magnetic moment, P , from parallel to antiparallel to the direction of
the magnetic flux Bs  due to electron spin and the magnetic flux Bo  due
to the orbital angular momentum of the electron follows from Eqs.

(2.109) and (2.111) where the radius of the hydrino atom is 
aH

n
.

  
Emag

proton spin orb= −2 P

n3
0eh

meaH
3 l l +1( ) − 2 P

n3
0eh

meaH
3

3

4
= − l l +1( ) +

3

4

 
 
  

 
 2 P

n3
0eh

meaH
3 (2.120)

The total energy of the transition from parallel to antiparallel
alignment, ∆Etotal

S/N O/N , is given as the sum of Eqs. (2.119) and (2.120).

  
∆Etotal

S/N O/N =
ne2

8 o

1

r1−

−
1

r1+

 

  
 

  − l l +1( ) +
3

4

 
 
  

 
 2 P

n3
0eh

meaH
3 (2.121)

For the case that   l = 0 ,
∆Etotal

S/N O/N = n2 2.878 X 10−24  J − n3 3.837 X 10−24  J (2.122)
The frequency, f , can be determined from the energy using the Planck
relationship, Eq. (2.65).

f =
∆Etotal

S/N O/N

h
(2.123)

From Eq. (2.122), Eq. (2.102), and the Planck relationship, Eq. (2.123),
the energy, the wavelength, and the frequency corresponding to the
spin-nuclear coupling energy of the hydrino atom with the lower energy

state quantum numbers n  and   l  and with the radius 
aH

n
 are given in

Table 2.3.
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Table 2.3.  The spin-nuclear coupling energy of the hydrino atom with the

lower energy state quantum numbers n  and   l  and with the radius 
aH

n
.

n   l Energy
( J X 1023)

Lambda
(cm )

Wave Number
(cm−1)

Frequency
(GHz )

1 0 0.09592 20.71 0.04829 1.447

2 0 1.918 1.0355 0.9657 28.95

2 1 5.051 0.3933 2.543 76.23

3 0 7.769 0.2557 3.911 117.2

3 1 20.46 0.09710 10.30 308.7

3 2 29.74 0.06678 14.97 448.9

4 0 19.95 0.09957 10.04 301.1

4 1 52.53 0.03781 26.44 792.8

4 2 76.38 0.02601 38.45 1153

4 3 99.76 0.01991 50.22 1505

5 0 40.77 0.04873 20.52 615.2

5 1 107.3 0.01851 54.03 1620

5 2 156.1 0.01273 78.57 2355

5 3 203.8 0.009746 102.6 3076

5 4 251.3 0.007905 126.5 3792

EINSTEIN A COEFFICIENT
An estimate of the transition probability for magnetic multipoles is

given by Eq. (16.105) of Jackson [13].  For a magnetic dipole   l = 1, and
Eq. (16.105) of Jackson is

  

1

M

≅
g

mc
 
 

 
 

2 he2

c

 
 
  

 16
k2 (2.124)

Substitution of

k =
c

(2.125)

into Eq. (2.124) gives

  

1

M

≅
g

mc
 
 

 
 

2 he2

c

 
 
  

 16

3

c2 (2.126)
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From Eq. (2.126), the transition probability is proportional to the
frequency cubed.  The experimental Einstein A coefficient for hydrogen
H n = 1( )  [14] is

A = 2.87 X 10−15
 sec−1 (2.127)

The frequencies for the spin/nuclear hyperfine transition of hydrogen
H n = 1( )  and hydrino H n = 1/ 2( )  are given in Table 2.3.  The Einstein A
coefficient for hydrino H n = 1/ 2( )  is given by Eq. (2.126) and Eq. (2.127)
and the frequencies of Table 2.3.

AH n=1/2( ) = AH n=1( )
H n =1/2( )

H n=1( )

 

 
 

 

 
 

3

= 2.87 X 10−15  
28.95

1.447
 
 

 
 

3

sec−1 = 2.30 X 10−11  sec −1 (2.128)

INTENSITY OF SPIN-NUCLEAR AND ORBITAL-NUCLEAR COUPLING
TRANSITIONS OF HYDRINOS

The intensity, I , of spin-nuclear and orbital-nuclear coupling
transitions of hydrinos can be calculated from the column density of
hydrogen or hydrino atoms, N(H) , and the Einstein A coefficient, Aul .
The column density is given by the product of the number of hydrogen
or hydrino atoms per unit volume, nH , and the path length,   l , which is
calculated in steradians from its integral.

  
I =

1

4
Aul N(H ) =

1

4
AulnHl (2.129)

The number of hydrogen or hydrino atoms per unit volume, nH ,
can be determined from the experimental results of Labov and Bowyer
[15].  The number of electronic transitions per atom per second, k1  (Eq.
(5.69) of the Interstellar Disproportionation Rate Section), is equivalent
to the number of photons per atom per second, Aul  (Eq. (2.129).
Equating intensities of photon flux (Eq. (2.129) and the rate of the
disproportionation reaction, rm ,m', p  Eq. (5.70), gives

I =
1

4
Aul N(H ) =

1

2
nH

aH

p

 
 
  

 

2
3kT

mH

N(H ) (2.130)

where   N(H) = nHl is the column density.  The intensity reported by Labov
and Bowyer for the 304 Å line which is herein assigned as the 1/ 3 → 1/ 4 H
transition is I = 2080+740

−720  photons cm−2s −1sr−1  [15].  In the case that m = 1, m' = 2 ,

and p = 3 in Eqs. (5.50-5.52); T = 50 K , and gm , p = 1 (the result of F o
••

rster's
theory for the efficiencies of dipole-dipole resonant energy transfers),

the column density of hydrino atoms, H
aH

3
 
 

 
 , is calculated along the

sight-line at b=48 deg to be
N(H) = 2 X 1018  cm−2 (2.131)
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The calculated density of hydrino atoms, H
aH

3
 
 

 
 , is

nH = 4 X 103  atom / m3 (2.132)
Substitution of Eq. (2.132) and Eq. (2.128) into Eq. (2.129) gives the
intensity as a function of the path length,   l , which is calculated in
steradians from its integral.

  
I =

1

4
Aul N(H ) =

1

4
2.30 X 10−11  sec −1( ) 4 X 103  atom

m 3

 
 
  

 
1 photon

atom
 
 

 
 l (2.133)
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ELECTRON IN FREE SPACE

CHARGE DENSITY FUNCTION
The radius of an electron orbitsphere increases with the

absorption of electromagnetic energy [1].  With the absorption of a
photon of energy exactly equal to the ionization energy, the electron is
at rest; the de Broglie wavelength, = h / p , is infinite, and the electron is
infinitely large.  Upon ionization, the radius of the spherical shell,
orbitsphere, goes to infinity as is the case with a spherical wavefront of
light emitted from a symmetrical source; the free electron propagates
with linear velocity, and the de Broglie wavelength is finite.  The ionized
electron is a plane wave that propagates as a wavefront with the de
Broglie wavelength where the size of the electron is the de Broglie
wavelength as shown below.  Analogously, as the radius of a spherical
wavefront of light goes to infinity its propagation is given by the plane
wave equation:

E = Eoe
− ikz z (3.1)

Light and electrons display identical propagation and diffraction
behavior.  (This is expected because an electron is created from a
photon as derived in the Pair Production Section).  Electrons behave as
two dimensional wavefronts with the de Broglie wave length, = h / p, in
double-slit experiments (Davisson-Germer experiment) [2].  The plane
wave nature of free electrons is demonstrated in the Electron Scattering
by Helium Section.  (The proton and neutron also demonstrate
interference patterns during diffraction because they are locally two
dimensional having the de Broglie wavelength.)

As r  goes to infinity the electron becomes ionized and is a plane
wave with the de Broglie wavelength.  The ionized electron traveling at
constant velocity is nonradiative and is a two dimensional surface having
a total charge of e  and a total mass of me .  The solution of the spacetime
charge-density function of the ionized electron is solved as a boundary
value problem as described previously for the bound electron in the One
Electron Atom Section.  The de Broglie wavelength relationship given by
Eq. (1.46) must hold independent of the radius of the electron.  The
relationship between the electron orbitsphere radius and its wavelength,
is given by Eq. (1.43).  The scalar sum of the magnitude of the angular
momentum is   h  (Eq. (1.57)) independent of the electron radius; thus,
for both the bound electron and the free electron, the scalar sum of the
magnitude of the angular momentum is   h .  The spacetime charge-density
function of the free electron is a solution of the Classical Wave Equation
(Eq. (1.1))  The current-density function possesses no spacetime Fourier
components synchronous with waves traveling at the speed of light; thus



© 2000 by BlackLight Power, Inc.  All rights reserved.
112

it is nonradiative.  As shown below, the solution of the boundary value
problem of the free electron is given by the projection of the
orbitsphere into a plane that linearly propagates along an axis
perpendicular to the plane where the velocity of the plane and the
orbitsphere is given by Eq. (1.47) where the radius of the orbitsphere in
spherical coordinates is equal to the radius of the free electron in
cylindrical coordinates.

Consider an electron orbitsphere of radius r0 .  The boundary
condition that the de Broglie wavelength holds for any electron radius
requires that the ionized electron is the projection of the orbitsphere
into (z) , the Cartesian xy-plane that propagates linearly along the z-
axis with the same linear velocity as the electron orbitsphere.  The mass
density function, m , , z( ), of the electron with linear velocity along the
z-axis of vz  in the inertial frame of the proton given by Eq. (1.47)

  
v z =

h
mern

=
h

mer0

=
h

me o

(3.2)

is given by the projection into the xy-plane of the convolution, ⊗ , of the
xy-plane, (z) , with an orbitsphere of radius ro .  The convolution is

(z) ⊗ (r − ro ) = ro
2 − z2 (r − ro

2 − z2 ) (3.3)
where the orbitsphere function is given in spherical coordinates.  The
equation of the free electron is given as the projection of Eq. (3.3) into
the xy-plane which is

m , , z( ) = N
2 o

 
 
  

 
 

0
2 − 2 (z) (3.4)

where m , ,z( )  is given in cylindrical coordinates, N  is the normalization

factor, and the function, 
2 o

 

  
 

   represents a two dimensional disk of

radius o .  The total mass is me .  Thus, Eq. (3.4) must be normalized.

me = N 0
2 − 2 d d

−∞

∞

∫
0

2

∫ (3.5)

N =
me

2
3 0

3
(3.6)

The mass density function of a free electron is a two dimensional disk
having the mass density distribution in the xy( )-plane

m , , z( ) =
me

2
3 0

3 2 o

 
 
  

 
 

0
2 − 2 (z) (3.7)

and charge-density distribution, e , ,z( ), in the xy-plane
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e , ,z( ) =
e

2
3 0

3 2 o

 
 
  

 
 

0
2 − 2 (z) (3.8)

where e , ,z( ) is given in cylindrical coordinates.  The magnitude of
each distribution is shown in Figure 3.1.  The charge density
distribution of the free electron given by Eq. (3.8) and shown in
Figure 3.1 has recently been confirmed experimentally [3-4].
Researchers working at the Japanese National Laboratory for High Energy
Physics (KEK) demonstrated that the charge of the free electron
increases toward the particle's core and is symmetrical as a function of

.
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Figure. 3.1.  The front view of the magnitude of the mass (charge)
density function in the xy-plane of a free electron; side view of a
free electron along the axis of propagation--z-axis.
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CURRENT DENSITY FUNCTION
This surface has an electric field equivalent to a point charge at the

origin along the z-axis as shown in the Electric Field of the Electron in
Free Space Section.  The free electron possesses time harmonic charge
motion in the xy-plane.  In general, the current-density function is the
product of the charge-density function times the angular velocity
function.  During ionization of the electron, the scalar sum of the
magnitude of the angular momentum,   h , must be conserved.  The
current-density function of a free electron propagating with velocity vz

along the z-axis in the inertial frame of the proton is given by the
vector projections of the current into xy-plane for r = ro  to r = ∞  which
corresponds to the ionization of the electron initially bound as an
orbitsphere of radius r = rn = ro .  The magnitude of the angular velocity of
the orbitsphere is given by Eq. (1.55) is

  
=

h
mer

2
(3.9)

The current-density function of the free electron, K( , ,z,t) , is the
projection into the xy-plane of the integral of the product of the
projections of the charge of the orbitsphere (Eq. (3.3)) times the angular
velocity as a function of the radius r  of the ionizing orbitsphere (Eq.
(3.9)) for r = ro  to r = ∞ .  The integral is

  

(z) ⊗ (r − ro )dr =
e

2
3

r0
3

h
mer

2 r0
2 − z2 (r − r0

2 − z 2 )dr
ro

∞

∫
r o

∞

∫ (3.10)

The projection of Eq. (3.10) into the xy-plane is

 

  

J( , ,z,t) =
2 o

 
 
  

 
 e

4
3 0

3

h
me 0

2 − 2
 i

 

 

 
 

 

 

 
 

(3.11)

where o = ro .  The factor of 
1

2
 in Eq. (3.11) arises from the vector

projection of the angular momentum of the orbitsphere into the xy-
plane as follows from Eqs. (1.68 - 1.71) and Figures 1.3, 1.4, and 1.5.
The angular momentum, L , is given by

Liz = mer
2 (3.12)

Substitution of me  for e  in Eq. (3.11) followed by substitution into Eq.
(3.12) gives the angular momentum density function, L

  

Liz =
2 o

 
 
  

 
 me

4
3 0

3

h
me 0

2 − 2

2 (3.13)

The total angular momentum of the free electron is given by integration
over the two dimensional disk having the angular momentum density
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given by Eq. (3.13).

  

Liz =  
2 o

 
 
  

 
 me

4
3 0

3

h
me 0

2 − 2

2 d d
0

0

∫
0

2

∫ (3.14)

  Liz = h (3.15)
Eq. (3.15) is in agreement with Eq. (1.130); thus, the scalar sum of the
magnitude of the angular momentum is conserved.  The four
dimensional spacetime current-density function of the free electron that
propagates along the z-axis with velocity given by Eq. (3.2)
corresponding to r = ro  is given by substitution of Eq. (3.2) into Eq.
(3.11) and is shown in Figure 3.2.

 

  

J( , ,z,t) =
2 o

 
 
  

 
 e

4
3 0

3

h
me 0

2 − 2
 i

 

 

 
 

 

 

 
 

+
eh

me 0

(z −
h

me 0

t)iz (3.16)

Figure 3.2.  The magnitude of the current-density function, |J| , of the
free electron in the xy-plane cutaway through the top and side.

The spacetime Fourier Transform of Eq. (3.16) is [5-6]

  

e
4
3 0

3

h
me

sinc(2 s o ) + 2 e
h

me 0

( − kz • vz ) (3.17)

The condition for nonradiation of a moving charge-density function is
that the spacetime Fourier transform of the current-density function
must not possess waves synchronous with waves traveling at the speed
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of light, that is synchronous with n

c
 or synchronous with n

c o

 where

 is the dielectric constant of the medium.  The Fourier transform of the
current-density function of the free electron is given by Eq. (3.17).
Consider the radial part of, J⊥ , the Fourier transform of the current-
density function where the z spatial dimensional transform is not zero:

J⊥ ∝ sinc(s o ) =
sin2 s o

2 s o

(3.18)

For time harmonic motion corresponding to the electron parameters 0

and so , Eq. (1.43),
2 o = o (3.19)

The charge motion of the free electron is angular; however, a radial
component exists due to Special Relativistic effects.  Consider the radial
wave vector of the sinc function, when the radial projection of the
velocity is c

s • v = s • c = 0 (3.20)
The relativistically corrected wavelength is

o = o (3.21)
(i.e. the lab frame motion in the angular direction goes to zero as the
velocity approaches the speed of light).  Substitution of Eq. (3.21) into
the sinc function results in the vanishing of the entire Fourier Transform
of the current-density function.  Thus, spacetime harmonics of

n

c
= k or n

c o

= k  do not exist.  Radiation due to charge motion does not

occur in any medium when this boundary condition is met.
Furthermore, consider the z spatial dimensional transform of, J⊥ , the
Fourier transform of the current-density function:

  
J⊥ ∝ 2 e

h
me 0

( − k z •v z ) (3.22)

The only nonzero Fourier components are for

kz =
vz cos

>
c

(3.23)

where  is the angle between k z  and v z .  Thus, no Fourier components
that are synchronous with light velocity with the propagation constant

kz =
c

 exist.  Radiation due to charge motion does not occur when this

boundary condition is met.  It follows from Eq. (3.2) and Eq. (3.19) that
the wavelength of the free electron is

o =
h

mevz

= 2 o (3.24)

which is the de Broglie wavelength.
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The free electron is a two dimensional disk with a charge
distribution given by Eq. (3.8) having a radius o  given by Eq. (3.24).
This distribution is a minimal energy surface.  An attractive magnetic
force exists between current circles in the xy-plane.  The force balance
equation is given by equating the centrifugal and centripetal magnetic
electrodynamic force as given in the Two Electron Atom Section.  The
magnetic field, B, of each current loop of current, i , is

B = oi
2 r

(3.25)

The force balance between the Lorentzian Force and the centrifugal
force is

mvw =
1

2
ev × B =

1

2
evB (3.26)

Substitution of Eq. (3.25) and

i = e
2

(3.27)

into Eq. (3.26) gives

=
e2

o

2mer

 

  
 

  (2 )2 (3.28)

According to invariance of charge under Gauss's Integral Law, the
relativistic correction for current, i , and the charge, e , is 2 , and it
follows from that Eq. (7.6) and Eq. (7.15) of the Two Electron Atom
Section that the term in brackets is factored out as the relativistic
correction for the electrodynamic force between current loops.  Thus,
from Eq. (3.28),

= (3.29)
And, the electron is in force balance.

Furthermore, the free electron possesses a total charge e , a total
mass me , and a scalar sum of the magnitude of the angular momentum of

  h .  The magnetic moment is given by Eq. (2.36); thus,

  
B =

eh
2me

= 9.274 X 10−24
 JT −1 (3.30)

which is the Bohr magneton.  Conservation of angular momentum with
the linking of the magnetic flux quantum gives rise to the spin quantum
number, ms, and the fluxon g factor which is the same as given
previously in the Electron g Factor Section.

The free electron possesses current in the xy-plane given by Eq.
(3.16), the current along the z-axis follows from Eqs. (1.54), (3.2), and
(3.27)

  
i = e

2
=

eh
2 me o

2
(3.31)
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STERN-GERLACH EXPERIMENT
The free electron arises during pair production and ionization.  In

both cases the production photon or the ionizing photon carries   h  of
angular momentum.  The derivations of the parameters of the free
electron were made with the conservation of the photon angular
momentum implicit.  The vector and scalar parameters of the bound
electron in a magnetic field are conserved in the case of a free electron
in a magnetic field.  Consider the case where a magnetic field is applied
to the free electron.  The energy of interaction of the magnetic moment
of a Bohr magneton of the free electron with the applied magnetic field
is minimized.  The z'-axis (the former z-axis before the application of
the magnetic field) of the free electron precesses about the direction of
the applied field, the z-axis called the spin axis.  The precessing free
electron comprising a two dimensional disk rotates time harmonically
about the x'-axis and by the same angle, , at any time point, about the
y'-axis (the primed axis refers to the coordinate system of the free
electron where the two dimensional disk lies in each new x'y'( )-plane
corresponding to each new set of axes established by rotations about the

x' and y' axes) over the continuous angular range, −
2

≤ ≤
2

.  The scalar

sum of the magnitude of the angular momentum of the free electron is   h
(Eq. (3.15)).  Now, allow the rotations about the x'-axis and y'-axis by 

to go from −
2

 to 
2

.  (During the precession of the free electron

function, this motion results in a sphere being swept out in space
relative to the coordinate system that travels at vz  with the free
electron).  The vector projection of the angular momentum onto the xy-
plane, L xy , due to the rotation about each axis goes as sin .  The vector
projection of the angular momentum onto the z-axis, L z , due to the
rotation about each axis goes as cos .  Because rotation occurs about
two orthogonal axes, each of the total angular projections, L xy  and L z , is
the root mean square value (rms) squared of the total angular
momentum,   h .

 
  
L xy = L z = h

1

2
 

1

2
=

h
2

(3.32)

The z'-axis precesses about the spin axis; thus, the time average
projection of the angular momentum onto the xy-plane, Lxy  is zero,

and L z , the time average projection of the angular momentum onto the
z-axis, is

  
L z =

h
2

(3.33)

Given that the time average angular momentum in the xy-plane is zero,
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S , the projection of the free electron angular momentum that precesses
about the z-axis called the spin axis follows from Eq. (3.15), and the
relationship between the components:

  
Lxy

∑∆

2
+ S2 = h2 (3.34)

It follows from Eq. (3.32) and Eq. (3.34) that S  is

  
S = 1 −

1

4
 
 

 
 h

2 = ±
3

4
h (3.35)

S  rotates about the z-axis; thus, Sz , the time averaged projection of the
orbitsphere angular momentum onto the axis of the applied magnetic

field is 
  
±

h
2

.  The plus or minus sign corresponds to the two possible

vector orientations which are observed with the Stern-Gerlach described
below.

The precessing free electron sweeps out a sphere in space relative
to the free electron's inertial frame, and the spatial distribution of
angular momentum is equivalent to that given is Figure 1.5 and in the
Orbitsphere Equation of Motion for  = 0 Section.  The total angular
momentum of the free electron of magnitude   h  is conserved.  The

projection of the total angular momentum onto the S  axis is 
  
±

3
4
h , and

the angular momentum in the direction of the applied field is  
  
±

h
2

.

Magnetic flux is linked by the electron in units of the magnetic flux
quantum with conservation of angular momentum as in the case of the
orbitsphere as the projection of the angular momentum along the

magnetic field axis of 
  
h
2

  reverses direction.  The energy, ∆Emag
spin, of the

spin flip transition corresponding to the ms = 
1

2
 quantum number is

given by Eq. (1.151).
∆Emag

spin = 2g BB (3.36)
The Stern-Gerlach experiment implies a magnetic moment of one Bohr
magneton and an associated angular momentum quantum number of
1/2.  Historically, this quantum number is called the spin quantum
number, ms, and that designation is maintained.

ELECTRIC FIELD OF A FREE ELECTRON
The electric potential of a free electron is given by Poisson's

Equation for a charge-density function, (x', y', z')
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Φ(x, y, z) =
x', y', z'( )dv'

4 o x − x'( )2 + y − y'( )2 + z − z'( )2∫∫∫ (3.37)

and the charge-density function of the electron, Eq. (3.8)

Φ(x, y, z) =−
e

2
3 0

3

1

4 o

    o
2 − x' 2 −y'2 z'( )dx' dy' dz'

(x − x' )2 + (y − y')2 + z2

− 0
2 − y

2

+ 0
2 − y 2

∫
− o

o

∫
−∞

∞

∫ (3.38)

Forx = y = 0; r = z ,

Φ(r) = −
e

4 or
(3.39)

For r = x2 + y2 + z 2 >> o

Φ(r) = −
e

4 or
(3.40)

Eqs. (3.39) and (3.40) are equivalent to the potential of a point charge
at the origin.  The electric field, E , is the gradient of the electric
potential given by Eqs. (3.38-3.40)

E = −∇Φ  (3.41)
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EQUATION OF THE PHOTON

RIGHT AND LEFT HAND CIRCULAR AND ELLIPTICALLY POLARIZED
PHOTONS

The equation of the photon in free space is derived as a boundary
value problem involving the transition from the ground state to an
excited state of the hydrogen atom.  The "ground" state function of the
hydrogen atom is an orbitsphere given in the Orbitsphere Equation of
Motion Section, and the excited state function comprising the
orbitsphere and a resonant trapped photon is given in the Excited States
of the One Electron Atom (Quantization) Section.  During the transition
from an excited state having a "trapped photon" given by Eq. (2.15) and
with the orbitsphere equation given by Eq. (2.11) to the ground state
orbitsphere having the equation given by Eqs. (1.68 - 1.71) and Figures
1.3, 1.4, and 1.5, the orbitsphere angular momentum,   h  (Eq. (1.57), and
photon angular momentum,   h , are conserved.  The time-averaged
angular-momentum density, m , of the emitted photon is given by Eq.
(16.61) of Jackson [1]

m =
1

8
Re r × (E × B*)[ ] (4.1)

Thus, the photon equation is given by the superposition of two
orbitspheres at the same radius- one with electric field lines which
follow great circles and one with magnetic field lines which follow great

circles.  The magnetic orbitsphere is rotated 
2

 relative to the electric

orbitsphere; thus, the magnetic field lines are orthogonal to the electric
field lines.

∇XE = oH
t

(4.2)

∇XH = oE
t

(4.3)

A right-handed circularly polarized photon orbitsphere is
generated as follows: Consider two orthogonal great circle field lines.
The Cartesian coordinate system wherein the first great circle magnetic
field line lies in the yz-plane, and the second great circle electric field
line lies in the xz-plane is designated the photon orbitsphere reference
frame.
The electric and magnetic field lines of the right-handed circularly
polarized photon are given in Figure 4.1.

Figure 4.1.  The Cartesian coordinate system wherein the first great
circle magnetic field line lies in the yz-plane, and the second great circle
electric field line lies in the xz-plane is designated the photon
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orbitsphere reference frame of a right-handed circularly polarized
photon orbitsphere.

The photon orbitsphere comprises an infinite series of correlated
orthogonal great circle field lines.  It is generated by an infinite series of
nested rotations of two orthogonal great circle field lines each about the
new x-axis and new y-axis which results from the preceding such
rotation.  Each such two orthogonal great circle field lines wherein the
first great circle magnetic field line lies in the yz-plane, and the second
great circle magnetic field line lies in the xz-plane of the photon
orbitsphere reference frame is an element of the infinite series.  The
first such orthogonal great circle field lines is shown in Figure 4.1.  The
second element of the series is generated by rotation of the first element
by an infinitesimal angle ∆  about the first x-axis followed by a rotation
by the same infinitesimal angle ∆  about the new (second) y-axis to
form a second x-axis.  The third element of the series is generated by the
rotation of the second element by the infinitesimal angle ∆  about the
second x-axis followed by the rotation by the same infinitesimal angle
∆  about the new (third) y-axis.  In general, the (n +1)th element of the
series is generated by the rotation of the nth photon orbitsphere
coordinate system by the infinitesimal angle ∆  about the nth x-axis
followed by the rotation of the nth photon orbitsphere coordinate
system by the infinitesimal angle ∆  about the (n +1)th new y-axis. The
total photon orbitsphere is given by reiterations of the successive
rotations where the summation of the rotation about each of the x-axis
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and the y-axis is ∆ = 2
n=1

2

∆

∑ .

Consider a point of each of the two orthogonal great circle field
lines, one and two, in the reference frame of the orbitsphere at time
zero.  Point one is at x' = 0 , y' = 0 , and z' = rn  and point two is at x' = rn ,
y' = 0 , and z' = 0 .  Let point one move on a great circle toward the negative
y’-axis, as shown in Figure 4.1, and let point two move on a great circle
toward the positive z’-axis, as shown in Figure 4.1.  The equations of
motion, in the reference frame of the photon orbitsphere are given by

point one:

x1
' = 0 y1

' = −rnsin( nt) z1
' = rn cos( nt) (4.4)

point two:

x2
' = rn cos( nt) y2

' = 0 z2
' = rn sin( nt) (4.5)

The great circles are rotated by an infinitesimal angle ∆  (a rotation
around the x-axis) and then by ∆  (a rotation around the new y-axis).
The coordinates of each point on the rotated great circle is expressed in
terms of the first (x,y,z) coordinates by the following transforms:

point one:

x1

y1

z1

 

 

 
 
 

 

 

 
 
 

=
cos(∆ )    − sin2(∆ )    − sin(∆ )cos(∆ )
      0            cos(∆ )            − sin(∆ )

sin(∆ )   cos(∆ )sin(∆ )     cos2(∆ )

 

 

 
 
 

 

 

 
 
 

  

x1
'

y1
'

z1
'

 

 

 
 
 

 

 

 
 
 

(4.6)

point two:

x2

y2

z2

 

 

 
 
 

 

 

 
 
 

=
cos(∆ )    − sin2(∆ )    − sin(∆ )cos(∆ )
      0            cos(∆ )            − sin(∆ )

sin(∆ )   cos(∆ )sin(∆ )     cos2(∆ )

 

 

 
 
 

 

 

 
 
 

  

x2
'

y2
'

z2
'

 

 

 
 
 

 

 

 
 
 

(4.7)

The total photon orbitsphere is given by reiterations of Eqs. (4.6) and



© 2000 by BlackLight Power, Inc.  All rights reserved.
125

(4.7).  The output given by the non primed coordinates is the input of
the next iteration corresponding to each successive nested rotation by
the infinitesimal angle where the summation of the rotation about each

of the x-axis and the y-axis is ∆ = 2
n=1

2

∆

∑ .

The field line pattern corresponding to the first great circle
magnetic field line and the second great circle electric field line shown
with 8.49 degree increments of the infinitesimal angular variable ∆  of
Eqs. (4.6) and (4.7) is shown from two perspectives in Figures 4.2 A and
4.2 B.  The complete photon orbitsphere distribution of field lines
corresponds to all such correlated orthogonal great circles shown in
Figure 4.1 which are rotated according to Eqs. (4.6) and (4.7) where ∆
approaches zero and the summation of the infinitesimal angular
rotations about the successive x-axes and y-axes is 2 .



© 2000 by BlackLight Power, Inc.  All rights reserved.
126

Figure 4.2 A.  The field line pattern from the perspective of looking
along the z-axis of a right-handed circularly polarized photon
orbitsphere corresponding to the first great circle magnetic field line,
and the second great circle electric field line shown with 8.49 degree
increments of the infinitesimal angular variable ∆ .  (Electric field lines-
solid; Magnetic field lines-dashed).
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Figure 4.2 B.  The field line pattern from the perspective of looking along
the x-axis of a right-handed circularly polarized photon orbitsphere
corresponding to the first great circle magnetic field line, and the
second great circle electric field line shown with 8.49 degree increments
of the infinitesimal angular variable ∆ .  (Electric field lines-solid;
Magnetic field lines-dashed).

The angular velocity of the photon orbitsphere is equal to the
change in angular velocity of the electron orbitsphere for a de-excitation
from the energy level with principal quantum number n = ni to n = n f ,
where ni > n f , given by Eq. (2.21) for n f = 1.  From Eq. (2.22), the photon
is an electromagnetic wave that carries energy, E , given by

  E = h (4.8)
Given the relationships, Eqs. (4.2) and (4.3) for the electric and

magnetic fields, the solution of the classical wave Eq. (1.1) requires that
the linear velocity of each point along a great circle of the photon
orbitsphere is c ,

c =
1

o o

(4.9)

and, that the velocity of the orbitsphere in the lab frame is c .  Therefore,
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the velocity in all frames of reference is c ; thus, it follows from Eq.
(24.14) that the photon has zero rest mass.  The field lines in the lab
frame follow from the relativistic invariance of charge as given by
Purcell [2].  The relationship between the relativitic velocity and the
electric field of a moving charge are shown schematically in Figure 4.3 A
and 4.3 B.

Figure 4.3 A.  The electric field of a moving point charge (v =
1

3
c ).
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Figure 4.3 B.  The electric field of a moving point charge (v =
4

5
c ).

The photon equation in the lab frame (shown in Figures 4.4 and 4.5) of a
right-handed circularly polarized photon orbitsphere is

 

E = E0 x + iy[ ]e− jkzz e− j t

H =
E0

 
 
  

 
y − ix[ ]e− jkz ze− j t = E0 y − ix[ ]e− jkzze− j t

(4.10)

with a wavelength of

 = 2
c (4.11)

The relationship between the photon orbitsphere radius and wavelength
is

2 r
0
=

0
(4.12)

Figure 4.4. The electric field lines of a right-handed circularly polarized
photon orbitsphere as seen along the axis of propagation in the lab
inertial reference frame.



© 2000 by BlackLight Power, Inc.  All rights reserved.
130

Figure 4.5.  The electric field rotation of a right-handed circularly
polarized photon orbitsphere as seen transverse to the axis of
propagation in the lab inertial reference frame.

The cross section, , transverse to the the propagation direction of the
photon is

=
2

 
 

 
 

2

(4.13)

The photon orbitsphere may comprise magnetic and electric field
lines that are constant in magnitude as a function of angle over the
surface, or the magnitude may vary as a function of angular position
( , ) on the orbitsphere.  The general photon equation for the electric
field is

  
E , =

e

4 orn
2 −1 +

1

n
Y0

0 ,( ) + Re Yl
m ,( ) 1 + ei nt[ ]{ }[ ] 

 
 
 r −

2

 
 

 
 ; n = 0 for m = 0 (4.14)

where rn  is the radius of the photon orbitsphere which is equal to ∆naH ,
the change in electron orbitsphere radius given by Eq. (2.21),  is the
photon wavelength which is equal to ∆ , the change in orbitsphere de

Broglie wavelength given by Eqs. (2.21), (1.54), and (1.46), and =
2 c

is the photon angular velocity which is equal to ∆ , the change in
orbitsphere angular velocity given by Eqs. (2.21).  The magnetic field
photon orbitsphere is given by Eqs. (4.14) and (4.2).  In the case of

  Yl
m ,( ) = 0 in Eq. (4.14), a right-handed and a left-handed circularly

polarized photon orbitsphere are superimposed to comprise a linearly
polarized photon orbitsphere.  A right-handed or left-handed circularly
polarized photon is obtained by attenuating the oppositely polarized
component.  For Eq. (4.14), the power density per unit area, S , is

S = E × B* (4.15)
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LINEAR POLARIZED PHOTONS
As in the case of the circularly polarized photon orbitsphere, the

linearly polarized photon orbitsphere is given by reiterations of the
successive rotations where the summation of the rotation about each of

the x-axis and the y-axis is ∆ = 2
n=1

2

∆

∑  which rotates the final z-axis to

the first negative z-axis, the final x axis to the first -y axis, and the final
y-axis to the first -x-axis.  Then the reiterations of the successive
rotations is continued about the nth x-axis followed by the rotation of
the nth orbitsphere coordinate system by the infinitesimal angle
∆ ' =−∆  about the (n +1)th new y-axis where the magnitude of the
summation of the rotation about each of the x-axis and the y-axis is

∆ ' = 2
n=1

2

∆ '

∑ .  In Eqs. (4.6) and (4.7), ∆ ' =−∆  replaces ∆  for

∆ = 2
n=1

2

∆

∑ ; ∆ ' = 2
n=1

2

∆ '

∑ .  The final step rotates the final z-axis to the

first z-axis, the final x-axis to the first x-axis, and the final y-axis to the
first y-axis.  Thus, the orbitsphere is generated from two orthogonal
great circle field lines which are rotated about the nth x-axis then about
the (n +1)th y-axis in two steps.  The first step comprises all rotations by
∆ , and the second step comprises all rotations by ∆ ' .  In the case of
the nth element of the first step, the intersection of the two orthogonal
great circle field lines occurs at the nth z-axis which is along a great

circle in a plane rotated 
4

 with respect to the 1st xz-plane and 1st yz-

plane of Figure 4.1.  In the case of the nth element of the second step,
the intersection of the two orthogonal great circle field lines occurs at

the nth z-axis which is along a great circle in a plane rotated 
4

 with

respect to the 1st yz-plane and the 1st negative xz-plane of Figure 4.1.
The first step generates the right-handed circularly polarized photon
orbitsphere shown with the view along the z-axis in Figure 4.2 A.  The
second step generates the left-handed circularly polarized photon
orbitsphere shown with the view along the z-axis in Figure 4.6.

Figure 4.6.  The field line pattern from the perspective of looking along
the z-axis of a left-handed circularly polarized photon orbitsphere
corresponding to the first great circle magnetic field line, and the
second great circle electric field line shown with 8.49 degree increments
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of the infinitesimal angular variable ∆ ' .  (Electric field lines-solid;
Magnetic field lines-dashed).

The left-handed circularly polarized photon orbitsphere is the mirror
image of the right-handed circularly polarized photon orbitsphere, and
the superposition of the two is the linearly polarized photon
orbitsphere.  The electric and magnetic field lines of a linearly polarized
photon orbitsphere are shown from three different perspectives in
Figures 4.7 A, 4.7 B, and 4.7 C.  The field lines pattern of a linearly
polarized photon orbitsphere shown in Figures 4.7 A, 4.7 B, and 4.7 C is
equivalent to the current density pattern of the electron orbitsphere
shown in Figures 1.4 A, 1.4 B, and 1.4 C.  The conditions whereby a
photon becomes an electron and a positron are given in the Pair
Production and the Leptons Sections.
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Figure 4.7 A.  The field lines pattern of a linearly polarized photon
orbitsphere shown with 8.49 degree increments of the infinitesimal
angular variable ∆ (∆ ' ) from the perspective of looking along the z-
axis.  (Electric field lines-solid; Magnetic field lines-dashed).



© 2000 by BlackLight Power, Inc.  All rights reserved.
134

Figure 4.7 B.  The field lines pattern of a linearly polarized photon
orbitsphere shown with 8.49 degree increments of the infinitesimal
angular variable ∆ (∆ ' ) from the perspective of looking along the x-
axis.  (Electric field lines-solid; Magnetic field lines-dashed).
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Figure 4.7 C.  The field lines pattern of a linearly polarized photon
orbitsphere shown with 8.49 degree increments of the infinitesimal
angular variable ∆ (∆ ' ) from the perspective of looking along the y-
axis.  (Electric field lines-solid; Magnetic field lines-dashed).

The linearly polarized photon orbitsphere equation in the lab
frame is

E = E0e
− jkz ze− j t (4.16)

In the case of   Yl
m( , ) ≠ 0  in Eq. (4.14), a right-handed and a left-handed

elliptically polarized photon orbitsphere are superimposed to comprise
a linearly polarized photon orbitsphere with the plane of polarization
rotated relative to the case of   Yl

m( , ) = 0 .  A right-handed or left-handed
elliptically polarized photon is obtained by attenuating the oppositely
polarized component.

SPHERICAL WAVE
Photons superimpose and the amplitude due to N  photons is

 E total =
e− ikr r− r'

4 |r − r' |
f ( , )

n =1

N

∑ (4.17)

When the observation point is very far from the source as shown in
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Figure 4.8, the distance in Eq. (4.17) becomes
r − r' ≈ r − ˆ r •r' (4.18)

where ˆ r  is the radial unit vector.  Substitution of Eq. (4.18) into Eq.
(4.17) gives

E total =
e− ikr

r
e− ik ⋅r' f ( , )

n=1

N

∑ (4.19)

where we neglect ˆ r •r'  in the denominator, and
k = ˆ r k (4.20)

For an assembly of incoherent emitters

e ik⋅r' f ( , ) =1
n=1

N

∑ (4.21)

Thus, in the far field, the emitted wave is a spherical wave

E total = Eo

e−ikr

r
(4.22)

The Green Function, (Eq. (6.62) of Jackson [1]) is given as the solution
of the wave equation (Eq. (6.58) of Jackson [1]).  Thus, the
superposition of photons gives the classical result.

Figure 4.8.  Far field approximation.

r  –  r ≈ r  –  r • r^

  r • r ^

r

r

x

y

z

The photon spin angular momentum corresponding to the first
term of Eq. (4.14) and the orbital angular momentum corresponding to
the second term of Eq. (4.14) are conserved during electronic excitation
as described in the Excited States of the One Electron Atom
(Quantization) Section.  And, the spin and orbital angular momentum of
photons superimpose to give the classical result.  For example, second
harmonic generation has been obtained by Dholakia et al. [3] by use of
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Laguerre-Gaussian beams in a variety of mode orders.  Each mode
becomes doubled in frequency and transformed to a higher order which
is shown to be a consequence of the phase-matching conditions.  The
experiment is consistent with the interpretation that the orbital angular
momentum of the Laguerre-Gaussian mode is directly proportional to
the azimuthal mode index   l  where each photon posses orbital angular
momentum of   lh  in addition to any spin angular momentum due to its
state of polarization.

PHOTON TORPEDOES
Recent evidence suggests that energy packets like photon

torpedoes are creeping toward reality [4].  The possibility of solutions of
the scalar wave equation and Maxwell's equations that describe
localized, slowly decaying transmission of energy in space-time has been
suggested by several groups in recent years.  These include exact pulse
solutions (focus wave modes [5,6], electromagnetic directed energy
pulse trains [7], splash modes [8], transient beams [9],), continuous-
wave modes (Bessel beams [10]), and asymptotic fields (electromagnetic
missiles [11], electromagnetic bullets [12], Gaussian wave packets[13]).

A macroscopic surface current having a distribution given as an
orbitsphere transition comprises a means to emit electromagnetic
energy having electric and magnetic field lines which comprise a photon
orbitsphere.  In this case, energy is not diminished in intensity as the
electromagnetic wave propagates through space.  Thus, "photon
torpedoes" can be realized.  High power densities can be achieved by
increasing the magnitude of the electric and magnetic fields of the
photon where the energy is given by Eq. (1.175) and Eq. (1.122).  Also,
neutrino-type photons described in the Weak Nuclear Force: Beta Decay
of the Neutron Section represent a means to transfer energy without
scattering or attenuation between matched emitters and receivers.
Applications in both cases include power transfer, communications,
weapons, and artificial intelligence.
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ATOMIC COULOMB FIELD COLLAPSE - HYDRINO THEORY
BLACKLIGHT PROCESS

BLACKLIGHT PROCESS
Certain atoms or ions serve as catalysts to release energy from

hydrogen to produce an increased binding energy hydrogen atom called a
hydrino atom having a binding energy of

Binding Energy =
13.6 eV

n2 (5.1)

where

 n =
1

2
,
1

3
,
1

4
,...,

1

p
(5.2)

and p  is an integer greater than 1, designated as H
aH

p

 
  

 
   where aH  is the

radius of the hydrogen atom.  Hydrinos are predicted to form by reacting
an ordinary hydrogen atom with a catalyst having a net enthalpy of reaction
of about

m ⋅ 27.2 eV (5.3)
where m  is an integer.  This catalysis releases energy from the hydrogen
atom with a commensurate decrease in size of the hydrogen atom,
rn = naH .  For example, the catalysis of H(n = 1) to H(n = 1/2)  releases

40.8 eV , and the hydrogen radius decreases from aH  to 
1

2
aH .

The excited energy states of atomic hydrogen are also given by Eq.
(5.1) except that

n = 1,2,3,... (5.4)
The n = 1 state is the "ground" state for "pure" photon transitions (the
n = 1 state can absorb a photon and go to an excited electronic state, but
it cannot release a photon and go to a lower-energy electronic state).
However, an electron transition from the ground state to a lower-energy
state is possible by a nonradiative energy transfer such as multipole
coupling or a resonant collision mechanism.  These lower-energy states

have fractional quantum numbers, n =
1

integer
.  Processes that occur

without photons and that require collisions are common.  For example,
the exothermic chemical reaction of H + H  to form H2  does not occur
with the emission of a photon.  Rather, the reaction requires a collision
with a third body, M , to remove the bond energy- H + H + M → H2 + M * [1].
The third body distributes the energy from the exothermic reaction, and
the end result is the H2  molecule and an increase in the temperature of
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the system.  Some commercial phosphors are based on nonradiative
energy transfer involving multipole coupling.  For example, the strong
absorption strength of Sb3+ ions along with the efficient nonradiative
transfer of excitation from Sb3+ to Mn2+ , are responsible for the strong
manganese luminescence from phosphors containing these ions.

Similarly, the n = 1 state of hydrogen and the n =
1

integer
 states of hydrogen

are nonradiative, but a transition between two nonradiative states is
possible via a nonradiative energy transfer, say n = 1 to n = 1/ 2 .  In these
cases, during the transition the electron couples to another electron
transition, electron transfer reaction, or inelastic scattering reaction
which can absorb the exact amount of energy that must be removed
from the hydrogen atom, a resonant energy sink called an energy hole.
Thus, a catalyst is a source of an energy hole infra. because it provides
a net positive enthalpy of reaction of m ⋅ 27.2 eV  (i.e. it absorbs or
provides an energy sink of m ⋅ 27.2 eV ).  The reaction of hydrogen-type
atoms to lower-energy states is referred to as a transition reaction.
Certain atoms or ions serve as transition catalysts which resonantly
accept energy from hydrogen atoms and release the energy to the
surroundings to effect electronic transitions to fractional quantum
energy levels.

An example of nonradiative energy transfer is the basis of
commercial fluorescent lamps.  Consider Mn2+  which when excited
sometimes emits yellow luminescence.  The absorption transitions of
Mn2+  are spin-forbidden.  Thus, the absorption bands are weak, and the
Mn2+  ions cannot be efficiently raised to excited states by direct optical
pumping.  Nevertheless, Mn2+  is one of the most important luminescence
centers in commercial phosphors.  For example, the double-doped
phosphor Ca5 PO4( )

3
F : Sb3+ , Mn2+  is used in commercial fluorescent lamps

where it converts mainly ultraviolet light from a mercury discharge into
visible radiation.  When 2536 Å mercury radiation falls on this material,
the radiation is absorbed by the Sb3+ ions rather than the Mn2+  ions.
Some excited Sb3+ ions emit their characteristic blue luminescence, while
other excited Sb3+ ions transfer their energy to Mn2+  ions.  These excited
Mn2+  ions emit their characteristic yellow luminescence.  The efficiency
of transfer of ultraviolet photons through the Sb3+ ions to the Mn2+  ions
can be as high as 80%.  The strong absorption strength of Sb3+ ions along
with the efficient transfer of excitation from Sb3+ to Mn2+ , are responsible
for the strong manganese luminescence from this material.

This type of nonradiative energy transfer is common.  The ion
which emits the light and which is the active element in the material is
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called the activator; and the ion which helps to excite the activator and
makes the material more sensitive to pumping light is called the
sensitizer.  Thus, the sensitizer ion absorbs the radiation and becomes
excited.  Because of a coupling between sensitizer and activator ions, the
sensitizer transmits its excitation to the activator, which becomes
excited, and the activator may release the energy as its own
characteristic radiation.  The sensitizer to activator transfer is not a
radiative emission and absorption process, rather a nonradiative
transfer.  The nonradiative transfer may be by electric or magnetic
multipole interactions.  In the transfer of energy between dissimilar ions,
the levels will, in general, not be in resonance, and some of the energy is
released as a phonon or phonons.  In the case of similar ions the levels
should be in resonance, and phonons are not needed to conserve energy.

Sometimes the host material itself may absorb (usually in the
ultraviolet) and the energy can be transferred nonradiatively to dopant
ions.  For example, in YVO4 : Eu3+ , the vanadate group of the host material
absorbs ultraviolet light, then transfers its energy to the Eu3+  ions which
emit characteristic Eu3+  luminescence.

The catalysis of hydrogen involves the nonradiative transfer of
energy from atomic hydrogen to a catalyst which may then release the
transferred energy by radiative and nonradiative mechanisms.  As a
consequence of the nonradiative energy transfer, the hydrogen atom
becomes unstable and emits further energy until it achieves a lower-
energy nonradiative state having a principal energy level given by Eq.
(5.1).

ENERGY HOLE CONCEPT
For a spherical resonator cavity, the nonradiative boundary

condition and the relationship between the electron and the photon give
the "allowed" hydrogen energy states which are quantized as a function
of the parameter n .  That is the nonradiative boundary condition and the
relationship between an allowed radius and the photon standing wave
wavelength Eq. (2.1) gives rise to Eq. (2.2), the boundary condition for
allowed radii and allowed electron wavelengths as a function of the
parameter n .  Each value of n  corresponds to an allowed transition
effected by a resonant photon which excites the transition in the
orbitsphere resonator cavity.  In addition to the traditional integer
values (1, 2, 3,...,) of n , values of fractions are allowed by Eq. (2.2)
which correspond to transitions with an increase in the central field
(charge) and decrease in the radius of the orbitsphere.  This occurs, for
example, when the orbitsphere couples to another resonator cavity
which can absorb energy.  This is the absorption of an energy hole by
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the hydrogen-type atom.  The absorption of an energy hole destroys
the balance between the centrifugal force and the increased central
electric force.  Consequently, the electron undergoes a transition to a
lower energy nonradiative state.  Thus, the corresponding reaction from
an initial energy state to a lower energy state requiring an energy hole is
called a transition reaction.

From energy conservation, the energy hole of a hydrogen atom

which excites resonator modes of radial dimensions 
aH

m +1
 is

m X 27.2 eV , (5.5)
where m = 1,2,3,4,....

After resonant absorption of the energy hole, the radius of the

orbitsphere, aH , shrinks to 
aH

m +1
 and after t  cycles of transition, the

radius is 
aH

mt + 1
.  In other words, the radial ground state field can be

considered as the superposition of Fourier components.  The removal of
negative Fourier components of energy m X 27.2 eV , where m  is an integer
increases the positive electric field inside the spherical shell by m  times
the charge of a proton.  The resultant electric field is a time harmonic
solution of Laplace's Equations in spherical coordinates.  In this case, the

radius at which force balance and nonradiation are achieved is 
aH

m +1
where m  is an integer.  In decaying to this radius from the "ground"
state, a total energy of [(m +1)2 −12 ]X13.6 eV  is released.  The process is
hereafter referred to as the Atomic BlackLight Process.  (See Mills
International Patent Application [2]).  An appropriate technical term is
"Coulomb Field Collapse".

For the hydrogen atom, the radius of the ground state orbitsphere
is aH .  This orbitsphere contains no photonic waves and the centripetal
force and the electric force balance including the electrodynamic force
which is included by using the reduced electron mass as given by Eqs.
(1.166), (1.171), and (1.172) is

mev1
2

aH

=
e2

4 oaH
2 (5.6)

where v1  is the velocity in the "ground" state.  It was shown in the Excited
States of the One Electron Atom (Quantization) Section that the electron
orbitsphere is a resonator cavity which can trap electromagnetic
radiation of discrete frequencies.  The photon electric field functions are
solutions of Laplace’s equation.  The "trapped photons" decrease the
nuclear charge to 1/ n  and increase the radius of the orbitsphere to naH .
The new configuration is also in force balance.
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h2

mern
3 =

Zeffe
2

4 orn
2 (5.12)

A transition occurs because the effective nuclear charge increases by an
integer, m , when Eqs. (5.10-5.12) are satisfied by the introduction of an
energy hole.  The source of energy holes may not be consumed in the
transition reaction; therefore it is a transition catalyst.  The catalyst
provides energy holes and affects the transition from the initial radius
aH

p
 and an effective nuclear charge of p  to the second radius 

aH

p + m

 
  

 
   and

an effective nuclear charge of p + m .  Energy conservation and the
boundary condition that "trapped photons" must be a solution to
Laplace’s equation determine that the energy hole to cause a transition is
given by Eq. (5.5).  As a result of coupling, the hydrogen atom
nonradiatively transfers m X 27.21 eV  to the catalyst.  Stated another way,
the hydrogen atom absorbs an energy hole of m X 27.21 eV .  The energy
hole absorption causes a standing electromagnetic wave ("photon") to
be trapped in the hydrogen atom electron orbitsphere.  Recall from the
Excited States of the One Electron Atom (Quantization) Section that
electromagnetic radiation of discrete energy can be trapped in a
resonator cavity.  As shown previously, the photonic equation must be a
solution of Laplace’s equation in spherical coordinates.  The "trapped
photon" field comprises an electric field which provides force balance
and a nonradiative orbitsphere.  The solution to this boundary value
problem of the radial photon electric field is given by

  
E r photon n,l ,m

=
e

aH

n
 
 

 
 

l

4 o

1

r l+2( ) −Y0
0 ,( ) + n Y0

0 ,( ) + Re Yl
m ,( ) 1+ e i nt[ ]{ }[ ][ ]

n = 0 for m = 0 (5.13)
n = 2,3,4,...

 = 1,2,..., n − 1

m = - , –  +1,...,0,..., +
And, the quantum numbers of the electron are n , , m (m ), and ms as

described previously.  It is apparent from this equation that given an

initial radius of 
aH

p
 and a final radius of 

aH

p + m

 
  

 
   that the central field is

increased by m  with the absorption of an energy hole of m X 27.2 eV .  The
potential energy decreases by this energy; thus, energy is conserved.
However, the force balance equation is not initially satisfied as the
effective nuclear charge increases by m .  Further energy is emitted as
force balance is achieved at the final radius.  By replacing the initial
radius with the final radius, and by increasing the charge by m  in Eq.
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(5.12).

  
[ p + m]3 h2

meaH
3 = p + m[ ]2 p + m( )e( )e

4 oaH
2 (5.14)

force balance is achieved and the orbitsphere is non-radiative.  The
energy balance for m = 1 is as follows.  An initial energy of 27.21 eV  is
transferred as the energy hole absorption event.  This increases the
effective nuclear charge by one and decreases the potential by 27.21 eV .
More energy is emitted until the total energy released is
[( p +1)2 − p2 ]X13.6 eV .  The potential energy diagram of the electron is
given in Figure 5.1.
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Figure 5.1.  Potential Energy well of a Hydrogen Atom.

The energy hole (m X 27.21 eV ) required to cause a hydrogen atom to

undergo a transition reaction to form a given hydrino atom (H
aH

m + 1
 
 

 
 ) as

well as the corresponding radius (
aH

(m +1)
), effective nuclear charge (m +1)

and energy parameters of several states of atomic hydrogen are given in
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Table 5.1.

Table 5.1.  Principal quantum number, radius, potential energy, kinetic
energy, effective nuclear charge, energy hole required to form
the hydrino from atomic hydrogen (n=1), and hydrino binding
energy, respectively, for several states of hydrogen.

______________________________________________________________________________
H n( ) R V (eV) T (eV) Zeff Energy Binding Energy

Hole (eV)
(eV)

1 aH -27.2 13.6 1 0 13.6

1

2

aH

2
-108.8 54.4 2 27.2 54.4

1

3

aH

3
-244.9 122.4 3 54.4 122.4

1

4

aH

4
-435.4 217.7 4 81.6 217.7

1

5

aH

5
-680.2 340.1 5 108.8 340.1

1

6

aH

6
-979.6 489.6 6 136.1 489.6

1

7

aH

7
-1333.3 666.4 7 163.3 666.4

1

8

aH

8
-1741.4 870.4 8 190.5 870.4

1

9

aH

9
-2204.0 1101.6 9 217.7 1101.6

1

10

aH

10
-2721.0 1360.5 10 244.9 1360.5

______________________________________________________________________________
The size of the electron orbitsphere as a function of potential

energy is given in Figure 5.2.
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Figure 5.2.  Quantized sizes of hydrogen atoms.
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CATALYSTS
A catalytic system is provided by the ionization of t  electrons from

an atom each to a continuum energy level such that the sum of the
ionization energies of the t  electrons is approximately m X 27.2 eV  where
m  is an integer.  One such catalytic system involves cesium.  The first
and second ionization energies of cesium are 3.89390 eV  and 23.15745 eV ,
respectively [3].  The double ionization ( t = 2 ) reaction of Cs  to Cs2 + ,
then, has a net enthalpy of reaction of 27.05135 eV , which is equivalent to
m = 1 in Eq. (5.5).

27.05135 eV + Cs m( ) + H
aH

p

 
  

 
  → Cs2+ + 2e− + H

aH

(p + 1)

 
  

 
  + [(p + 1)2 − p2 ]X13.6 eV

(5.15)

Cs2 + + 2e− → Cs m( ) + 27.05135 eV (5.16)

And, the overall reaction is

H
aH

p

 
  

 
  → H

aH

( p +1)

 
  

 
  + [( p + m)2 − p2 ]X13.6 eV (5.17)

where m = 1 in Eq. (5.17).  The energy given off during catalysis is much
greater than the energy lost to the catalyst.  The energy released is large
as compared to conventional chemical reactions.  For example, when
hydrogen and oxygen gases undergo combustion to form water

H2  (g) +
1

2
O2  (g) → H2O (l) (5.18)

the known enthalpy of formation of water is ∆H f = −286 kJ / mole or 1.48 eV
per hydrogen atom.  By contrast, each (n = 1) ordinary hydrogen atom
undergoing catalysis releases a net of 40.8 eV .  Moreover, further

catalytic transitions may occur: n =
1

2
→

1

3
,  

1

3
→

1

4
,  

1

4
→

1

5
,  and so on.  Once

catalysis begins, hydrinos autocatalyze further in a process called
disproportionation discussed in the Disproportionation of Energy States
Section.  This mechanism is similar to that of an inorganic ion catalysis.
But, hydrino catalysis should have a higher reaction rate than that of the
inorganic ion catalyst due to the better match of the enthalpy to
m ⋅ 27.2 eV .
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Hydrogen catalysts capable of providing a net enthalpy of reaction
of approximately m X 27.2 eV  where m  is an integer to produce hydrino
whereby t  electrons are ionized from an atom or ion are given in Table
5.2.  The atoms or ions given in the first column are ionized to provide
the net enthalpy of reaction of m X 27.2 eV  given in the tenth column
where m  is given in the eleventh column.  The electrons which are
ionized are given with the ionization potential (also called ionization
energy or binding energy).  The ionization potential of the n th electron
of the atom or ion is designated by IPn  and is given by the CRC [3].  That

is for example, Cs + 3.89390 eV → Cs+ + e− and Cs+ + 23.15745 eV → Cs2 + + e− .  The
first ionization potential, IP1 = 3.89390 eV , and the second ionization
potential, IP2 = 23.15745 eV , are given in the second and third columns,

respectively.  The net enthalpy of reaction for the double ionization of
Cs  is 27.05135 eV  as given in the tenth column, and m = 1 in Eq. (5.5) as
given in the eleventh column.
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Table 5.2.  Hydrogen Catalysts.
Catalyst IP1 IP2 IP3 IP4 IP5 IP6 IP7 IP8 Enthalpy m

Li 5.39172 75.6402 81.032 3
Be 9.32263 18.2112 27.534 1
K 4.34066 31.63 45.806 81.777 3
Ca 6.11316 11.8717 50.9131 67.27 136.17 5
Ti 6.8282 13.5755 27.4917 43.267 99.3 190.46 7
V 6.7463 14.66 29.311 46.709 65.2817 162.71 6
Cr 6.76664 16.4857 30.96 54.212 2
Mn 7.43402 15.64 33.668 51.2 107.94 4
Fe 7.9024 16.1878 30.652 54.742 2
Fe 7.9024 16.1878 30.652 54.8 109.54 4
Co 7.881 17.083 33.5 51.3 109.76 4
Co 7.881 17.083 33.5 51.3 79.5 189.26 7
Ni 7.6398 18.1688 35.19 54.9 76.06 191.96 7
Ni 7.6398 18.1688 35.19 54.9 76.06 108 299.96 11
Cu 7.72638 20.2924 28.019 1
Zn 9.39405 17.9644 27.358 1
Zn 9.39405 17.9644 39.723 59.4 82.6 108 134 174 625.08 23
As 9.8152 18.633 28.351 50.13 62.63 127.6 297.16 11
Se 9.75238 21.19 30.8204 42.945 68.3 81.7 155.4 410.11 15
Kr 13.9996 24.3599 36.95 52.5 64.7 78.5 271.01 10
Kr 13.9996 24.3599 36.95 52.5 64.7 78.5 111 382.01 14
Rb 4.17713 27.285 40 52.6 71 84.4 99.2 378.66 14
Rb 4.17713 27.285 40 52.6 71 84.4 99.2 136 514.66 19
Sr 5.69484 11.0301 42.89 57 71.6 188.21 7
Nb 6.75885 14.32 25.04 38.3 50.55 134.97 5
Mo 7.09243 16.16 27.13 46.4 54.49 68.8276 151.27 8
Mo 7.09243 16.16 27.13 46.4 54.49 68.8276 125.664 143.6 489.36 18
Pd 8.3369 19.43 27.767 1
Sn 7.34381 14.6323 30.5026 40.735 72.28 165.49 6
Te 9.0096 18.6 27.61 1
Te 9.0096 18.6 27.96 55.57 2
Cs 3.8939 23.1575 27.051 1
Ce 5.5387 10.85 20.198 36.758 65.55 138.89 5
Ce 5.5387 10.85 20.198 36.758 65.55 77.6 216.49 8
Pr 5.464 10.55 21.624 38.98 57.53 134.15 5
Sm 5.6437 11.07 23.4 41.4 81.514 3
Gd 6.15 12.09 20.63 44 82.87 3
Dy 5.9389 11.67 22.8 41.47 81.879 3
Pb 7.41666 15.0322 31.9373 54.386 2
Pt 8.9587 18.563 27.522 1
He+ 54.4178 54.418 2
Na+ 47.2864 71.6200 98.91 217.816 8
Rb+ 27.285 27.285 1
Fe3+ 54.8 54.8 2
Mo2+ 27.13 27.13 1
Mo4+ 54.49 54.49 2
In3+ 54 54 2
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An additional catalytic system involving potassium metal is
provided by the ionization of t  electrons from a potassium atom each to
a continuum energy level such that the sum of the ionization energies of
the t  electrons is approximately m X 27.2 eV  where m  is an integer.  The
first, second, and third ionization energies of potassium are 4.34066 eV ,
31.63 eV , 45.806 eV , respectively [3].  The triple ionization ( t = 3) reaction
of K  to K3+ , then, has a net enthalpy of reaction of 81.7426 eV , which is
equivalent to m = 3 in Eq. (5.5).

81.7426 eV + K m( ) + H
aH

p

 
  

 
  → K3+ + 3e− + H

aH

( p + 3)

 
  

 
  + [(p + 3)2 − p2 ]X13.6 eV (5.19)

K3+ + 3e− → K m( ) + 81.7426 eV (5.20)

And, the overall reaction is

H
aH

p

 
  

 
  → H

aH

( p + 3)

 
  

 
  + [( p + 3)2 − p2 ]X13.6 eV (5.21)

Potassium ions can also provide a net enthalpy of a multiple of that
of the potential energy of the hydrogen atom.  The second ionization
energy of potassium is 31.63 eV ; and K+  releases 4.34 eV  when it is
reduced to K .  The combination of reactions K+  to K2+  and K+  to K ,
then, has a net enthalpy of reaction of 27.28 eV , which is equivalent to
m = 1 in Eq. (5.5).

27.28 eV + K+ + K + + H
aH

p

 
  

 
  → K + K2 + + H

aH

( p +1)

 
  

 
  + [(p +1)2 − p2 ] X 13.6 eV (5.22)

K + K2+ → K+ + K + + 27.28 eV (5.23)

The overall reaction is

H
aH

p

 
  

 
  → H

aH

(p +1)

 
  

 
  + [(p +1)2 − p2 ] X 13.6 eV (5.24)

Rubidium ions can also provide a net enthalpy of a multiple of that
of the potential energy of the hydrogen atom.  The second ionization
energy of rubidium is 27.28 eV .  The reaction Rb+  to Rb2+  has a net
enthalpy of reaction of 27.28 eV , which is equivalent to m = 1 in Eq. (5.5).
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27.28 eV + Rb+ + H
aH

p

 
  

 
  → Rb2 + + e− + H

aH

(p +1)

 
  

 
  + [( p +1)2 − p2 ]X13.6 eV (5.25)

Rb2+ + e− → Rb+ + 27.28 eV  (5.26)

The overall reaction is

H
aH

p

 
  

 
  → H

aH

(p +1)

 
  

 
  + [(p +1)2 − p2 ] X 13.6 eV (5.27)

In another example, a catalytic system transfers two electrons
from one ion to another such that the sum of the total ionization
energy of the electron donating species minus the total ionization
energy of the electron accepting species equals approximately
m X 27.2 eV  where m  is an integer.  One such catalytic system involves
lanthanum.  The only stable oxidation state of lanthanum is La3+ .  The
fourth and fifth ionization energies of lanthanum are 49.95 eV  and
61.6 eV , respectively.  The third and second ionization energies of
lanthanum are 19.1773 eV  and 11.060 eV , respectively [3].  The
combination of reactions La3+  to La5+  and La3+  to La+ , then, has a net
enthalpy of reaction of 81.3127 eV , which is equivalent to m = 3 in Eq.
(5.5).

81.3127 eV + La3+ + La3+ + H
aH

p

 
  

 
  → La5+ + La+ + H

aH

( p + 3)

 
  

 
  + [(p + 3)2 − p2 ] X 13.6 eV

(5.28)

La5+ + La + → La3+ + La3+ + 81.3127 eV (5.29)

The overall reaction is

H
aH

p

 
  

 
  → H

aH

( p + 3)

 
  

 
  + [( p + 3)2 − p2 ] X 13.6 eV (5.30)

For sodium, no electrocatalytic reaction of approximately 27.21 eV
is possible by the transfer of an electron between two Na+ ions as is the
case with K+ .  For example, 42.15 eV  of energy is absorbed by the reverse
of the reaction given in Eq. (5.23) where Na+ replaces K+ :

 Na+ + Na+ + 42.15 eV → Na + Na2+ (5.31)
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However a catalytic system is provided by the ionization of 3 electrons
from Na+ to a continuum energy level such that the sum of the
ionization energies of the 3 electrons is approximately m X 27.2 eV  where
m  is an integer.  The second, third, and fourth  ionization energies of
sodium are 47.2864 eV , 71.6200 eV , and 98.91 eV , respectively [3].  The
triple ionization reaction of Na+ to Na4+ , then, has a net enthalpy of
reaction of 217.8164 eV , which is equivalent to m = 8  in Eq. (5.5).

217.8164 eV + Na+ + H
aH

p

 
  

 
  → Na4+ + 3e− + H

aH

(p + 8)

 
  

 
  + [( p + 8)2 − p2 ]X13.6 eV

(5.32)

Na4+ + 3e− → Na+ + 217.8164 eV (5.33)

And, the overall reaction is

H
aH

p

 
  

 
  → H

aH

( p + 8)

 
  

 
  + [( p + 8)2 − p2 ]X13.6 eV (5.34)

For lithium, no electrocatalytic reaction of approximately 27.21 eV
is possible by the transfer of an electron between two Li+ ions as is the
case with K+ ..  For example, 70.246 eV  of energy is absorbed by the
reverse of the reaction given in Eq. (5.23) where Li+ replaces K+ :

 Li+ + Li+ + 70.246 eV → Li + Li2+ (5.35)

However, lithium metal is a catalyst as shown in Table 5.2.

DISPROPORTIONATION OF ENERGY STATES
Lower-energy hydrogen atoms, hydrinos, can act as catalysts

because each of the metastable excitation, resonance excitation, and
ionization energy of a hydrino atom is m X 27.2 eV  (Eq. (5.5)).  The
transition reaction mechanism of a first hydrino atom affected by a
second hydrino atom involves the resonant coupling between the atoms
of m  degenerate multipoles each having 27.21 eV  of potential energy.
(See the Energy Hole as a Multipole Expansion Section).  The energy
transfer of m X 27.2 eV  from the first hydrino atom to the second hydrino
atom causes the central field of the first to increase by m  and the

electron of the first to drop m  levels lower from a radius of 
aH

p
 to a
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radius of 
aH

p + m
.  The second lower-energy hydrogen is excited to a

metastable state, excited to a resonance state, or ionized by the resonant
energy transfer.  The resonant transfer may occur in multiple stages.
For example, a nonradiative transfer by multipole coupling may occur
wherein the central field of the first increases by m , then the electron of

the first drops m  levels lower from a radius of 
aH

p
 to a radius of 

aH

p + m
with further resonant energy transfer.  The energy transferred by
multipole coupling may occur by a mechanism that is analogous to
photon absorption involving an excitation to a virtual level.  Or, the
energy transferred by multipole coupling and during the electron
transition of the first hydrino atom may occur by a mechanism that is
analogous to two photon absorption involving a first excitation to a
virtual level and a second excitation to a resonant or continuum level [4-
6].  The transition energy greater than the energy transferred to the
second hydrino atom may appear as a photon in a vacuum medium.

For example, H
aH

4
 
 

 
 
 may serve as a catalyst to form H

aH

5
 
 

 
 
.  The

transition of H
aH

4
 
 

 
 
 to H

aH

5
 
 

 
 

 induced by a resonance transfer of 27.21 eV ,

m = 1 in Eq. (5.5) with a metastable state excited in H
aH

4
 
 

 
 
 is represented

by

27.2 eV + H
aH

4
 
 

 
 

+ H
aH

4
 
 

 
 

→ H *
aH

4
 
 

 
 

+ H
aH

5
 
 

 
 

+ 27.2 eV + 95.2 eV (5.36)

H *
aH

4
 
 

 
 

→ H
aH

4
 
 

 
 

+ 27.2 eV (5.37)

H
aH

4
 
 

 
 

→ H
aH

5
 
 

 
 

+ 95.2 eV + 27.2eV (5.38)

H
aH

4
 
 

 
 
 may serve as both a catalyst and a reactant to form H

aH

3
 
 

 
 

and H
aH

6
 
 

 
 
.  The transition of H

aH

4
 
 

 
 
 to H

aH

6
 
 

 
 

 induced by a multipole

resonance transfer of 54.4 eV , m = 2 in Eq. (5.5) and a transfer of 40.8 eV

with a resonance state of H
aH

3
 
 

 
 
 excited in H

aH

4
 
 

 
 
 is represented by
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H
aH

4
 
 

 
 

+ H
aH

4
 
 

 
 

→ H
aH

6
 
 

 
 

+ H
aH

3
 
 

 
 

+176.8 eV (5.39)

In general, the transition of H
aH

p

 
  

 
   to H

aH

p + m

 
  

 
   induced by a

resonance transfer of m ⋅ 27.21 eV  (Eq. (5.5)) with a metastable state

excited in H
aH

p'

 
  

 
   is represented by

m ⋅ 27.2 eV + H
aH

p'

 
  

 
  + H

aH

p

 
  

 
  → H *

aH

p'

 
  

 
  + H

aH

p + m

 
  

 
   + [(p + m)2 − p2 ] X 13.6 eV 

(5.40)

H *
aH

p'

 
  

 
  → H

aH

p'

 
  

 
  + m ⋅ 27.2 eV (5.41)

And, the overall reaction is

H
aH

p

 
  

 
  → H

aH

p + m

 
  

 
   + [(p + m)2 − p2 ] X 13.6 eV (5.42)

where p , p' , and m  are integers and the asterisk represents an excited
metastable state.

The transition of H
aH

p

 
  

 
   to H

aH

p + m

 
  

 
   induced by a multipole

resonance transfer of m ⋅ 27.21 eV  (Eq. (5.5)) and a transfer of

[( p' )2 − p' −m'( )2
] X 13.6 eV − m ⋅ 27.2 eV  with a resonance state of H

aH

p' −m'

 
  

 
  

excited in H
aH

p'

 
  

 
   is represented by

H
aH

p'

 
  

 
  + H

aH

p

 
  

 
  → H

aH

p' −m'

 
  

 
  + H

aH

p + m

 
  

 
  + [ (p + m)2 − p2( ) − p' 2 − p' −m'( )2( )] X 13.6 eV

(5.43)
where p , p' , m , and m'  are integers.

The second lower-energy hydrogen may be ionized by the resonant
energy transfer.  For an example, the equation for the absorption of an
energy hole of 27.21 eV , m = 1 in Eq. (5.5), during the transition cascade

for the third cycle of the hydrogen-type atom, H
aH

3
 
 

 
 
, with the hydrogen-

type atom, H
aH

2
 
 

 
 
, that is ionized as the source of energy holes that

causes the transition is represented by
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27.21 eV + H
aH

2
 
 

 
 

+ H
aH

3
 
 

 
 

→ H + + e− + H
aH

4
 
 

 
 

+ [42 − 32 ]X13.6 eV − 27.21 eV (5.44)

H + + e− → H
aH

1
 
 

 
 

+13.6 eV (5.45)

And, the overall reaction is

H
aH

2
 
 

 
 

+ H
aH

3
 
 

 
 

→ H
aH

1
 
 

 
 

+ H
aH

4
 
 

 
 

+ [42 −32 − 4]X13.6 eV +13.6 eV (5.46)

The general equation for the absorption of an energy hole of 27.21 eV ,
m = 1 in Eq. (5.5), during the transition cascade for the pth cycle of the

hydrogen-type atom, H
aH

p

 
  

 
  , with the hydrogen-type atom, H

aH

m'
 
 

 
 
, that is

ionized as the source of energy holes that causes the transition is
represented by

27.21 eV + H
aH

m'
 
 

 
 

+ H
aH

p

 
  

 
  → H + + e− + H

aH

p + 1( )
 

  
 

  + [ p + 1( )2 − p2 ]X13.6 eV − m' 2 −2( )X13.6 eV 

(5.47)

H + + e− → H
aH

1
 
 

 
 

+13.6 eV (5.48)

And, the overall reaction is

H
aH

m'
 
 

 
 

+ H
aH

p

 
  

 
  → H

aH

1
 
 

 
 

+ H
aH

p +1( )
 

  
 

  + [2 p +1− m'2 ]X13.6 eV +13.6 eV (5.49)

Transitions to nonconsecutive energy levels involving the
absorption of an energy hole of an integer multiple of 27.21 eV  are
possible.  Lower-energy hydrogen atoms, hydrinos, can act as a source
of energy holes that can cause transition reactions with the absorption
of energy holes each of m X 27.2 eV  (Eq. (5.5)).  Thus, the transition

cascade for the pth cycle of the hydrogen-type atom, H
aH

p

 
  

 
  , with the

hydrogen-type atom, H
aH

m'
 
 

 
 
, that is ionized as the source of energy holes

that causes the transition is represented by
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m X 27.21 eV + H
aH

m'
 
 

 
 

+ H
aH

p

 
  

 
  → H + + e− + H

aH

( p + m)

 
  

 
  + [( p + m)2 − p2 − m' 2 −2m( )]X13.6 eV

(5.50)

H + + e− → H
aH

1
 
 

 
 

+13.6 eV (5.51)

And, the overall reaction is

H
aH

m'
 
 

 
 

+ H
aH

p

 
  

 
  → H

aH

1
 
 

 
 

+ H
aH

( p + m)

 
  

 
  + 2pm + m2 − m'2[ ]X13.6 eV +13.6 eV (5.52)

Disproportionation may be the predominant mechanism of
hydrogen electronic transitions to lower energy levels of interstellar
hydrogen and hydrinos.  Hydrogen transitions to electronic energy levels
below the "ground" state corresponding to fractional quantum numbers
exactly match the spectral lines of the extreme ultraviolet background of
interstellar space.  This assignment given in the Spectral Data of
Hydrinos from the Dark Interstellar Medium and Spectral Data of
Hydrinos, Dihydrinos, and Hydrino Hydride Ions from the Sun Section
resolves the paradox of the identity of dark matter and accounts for
many celestial observations such as: diffuse Hα emission is ubiquitous
throughout the Galaxy, and widespread sources of flux shortward of
912 Å  are required [7].  The energy of the emission line for the transition
given by Eqs. (5.44-5.46) involving the absorption of an energy hole of
27.21 eV , m = 1 in Eq. (5.5), is 40.8 eV .

H
aH

3
 
 

 
 

H
aH

2

 
  

 
  

 →    H
aH

4
 
 

 
 

(5.53)

The energy of the emission line for the transition given by Eqs. (5.50-
5.52) where m = 2, m' = 2 , and p = 1 involving the absorption of an energy
hole of 2 X 27.21 eV , m = 2 in Eq. (5.5), is 54.4 eV .

H
aH

1
 
 

 
 

H
aH

2

 
  

 
  

 →    H
aH

3
 
 

 
 

(5.54)

Stars are sources of lower-energy hydrogen for reactants for
interstellar disproportionation reactions given by Eqs. (5.47-5.49).  The
source of energy holes in stellar production are hydrogen and singly
ionized helium, He+ .  The ionization energy of hydrogen is 13.6 eV .
Disproportionation can occur between three hydrogen atoms whereby
two atoms provide an energy hole of 27.21 eV  for the third hydrogen
atom.  Thus, the transition cascade for the pth cycle of the hydrogen-
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type atom, H
aH

p

 
  

 
  , with two hydrogen atoms, H

aH

1
 
 

 
 
, as the source of

energy holes that causes the transition is represented by

27.21 eV + 2H
aH

1
 
 

 
 

+ H
aH

p

 
  

 
  → 2H + + 2e− + H

aH

(p +1)

 
  

 
  + [(p +1)2 − p2 ]X13.6 eV (5.55)

2H + + 2e− → 2H
aH

1
 
 

 
 

+ 27.21 eV (5.56)

And, the overall reaction is

H
aH

p

 
  

 
  → H

aH

(p +1)

 
  

 
  + [(p +1)2 − p]X13.6 eV (5.57)

Helium II is one of the catalysts that can cause a transition reaction
because the second ionization energy is 54.4 eV , m = 2 in Eq. (5.5).  Thus,
the transition cascade for the pth cycle is represented by

54.4 eV + He+ + H
aH

p

 
  

 
  → He2 + + e− + H

aH

(p + 2)

 
  

 
  + [( p + 2)2 − p2]X13.6 eV (5.58)

He2+ + e− → He+ + 54.4 eV (5.59)

And, the overall reaction is

H
aH

p

 
  

 
  → H

aH

(p + 2)

 
  

 
  + [(p + 2)2 − p]X13.6 eV (5.60)

Also, Helium II is a catalyst that can cause a transition reaction
with the absorption of an energy hole of 27.21 eV , m = 1 in Eq. (5.5).  Thus,
the transition cascade for the pth cycle is represented by

27.21 eV + He+ + H
aH

p

 
  

 
  → He2+ + e− + H

aH

( p + 1)

 
  

 
  + [(p +1)2 − p2 ]X13.6 eV − 27.21 eV

(5.61)

He2+ + e− → He+ + 54.4 eV (5.62)

And, the overall reaction is
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H
aH

p

 
  

 
  → H

aH

(p +1)

 
  

 
  + [(p +1)2 − p]X13.6 eV (5.63)

The majority of the solar power can be attributed to disproportionation
reactions as given in the Spectral Data of Hydrinos from the Dark
Interstellar Medium and Spectral Data of Hydrinos, Dihydrinos, and
Hydrino Hydride Ions from the Sun Section.  This assignment resolves
the solar neutrino problem and the mystery of the cause of sunspots and
other solar activity and why the Sun emits X-rays.  It also provides the
reason for the abrupt change in the speed of sound and transition from
"radiation zone" to "convection zone" at a radius of 0.7 the solar radius,
0.7 RS .

INTERSTELLAR DISPROPORTIONATION RATE
Disproportionation may be the predominant mechanism of

hydrogen electronic transitions to lower energy levels of interstellar
hydrogen and hydrinos.  The reaction rate is dependent on the collision
rate between the reactants and the coupling factor for resonant energy
transfer.  The collision rate can be calculated by determining the
collision frequency.  The collision frequency, f , and the mean free path,
  l , for a gas containing nu  spherical particles per unit volume, each with
radius r  and velocity v  is given by Bueche [8].

f = 4 2nur
2v (5.64)

  
l =

1

4 2nur
2 (5.65)

The average velocity, vavg, can be calculated from the temperature, T ,
[8].

1

2
mHvavg

2 =
3

2
kT (5.66)

where k  is Boltzmann's constant.  Substitution of Eq. (5.66) into Eq.
(5.64) gives the collision rate, f

H
aH

p

 
 
 

 
 
 
, in terms of the temperature, T , the

number of hydrogen or hydrino atoms per unit volume, nH , and the

radius of each hydrogen atom or hydrino, 
aH

p
.

f
H

aH

p

 
 
 

 
 
 
= 4 2nH

aH

p

 
 
  

 

2
3kT

mH

(5.67)

The rate constant of the disproportionation reaction, km,m ', p , to the
transition reaction, Eqs. (5.44-5.52), is given by the product of the
collision rate per atom, Eq. (5.67), and the coupling factor for resonant
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energy transfer, gm ,m', p .

km,m ', p = gm ,p 4 2nH

aH

p

 
 
  

 

2
3kT

mH

(5.68)

The coupling factor for resonant energy transfer, gm ,m', p , can be
determined from the experimental results of Labov and Bowyer [7].
Consider the case that m = 1, m' = 2 , and p = 3 in Eqs. (5.50-5.52); T = 50 K ,
and the column density of hydrogen and hydrino atoms is estimated
from typical values of the column density of H  in diffuse hydrogen
regions along the sight-line at b=48 deg.  The intensity is calculated as
the rate constant times the column density and equated to the
experimental intensity of the 304 Å line which is assigned in the Spectral
Data of Hydrinos from the Dark Interstellar Medium and Spectral Data
of Hydrinos, Dihydrinos, and Hydrino Hydride Ions from the Sun Section
as the 1/ 3 → 1/ 4 H  transition.  This yields a value of gm ,m', p  in the range of
1 which is consistent with the efficiencies of dipole-dipole resonant
energy transfers [9-12].  Thus, an estimate of the rate constant of the
disproportionation reaction, km,m ', p , to cause the transition reaction, Eqs.
(5.44-5.52), is given by substitution of gm ,m', p = 1 into Eq. (5.68).

km,m ', p = 4 2nH

aH

p

 
 
  

 

2
3kT

mH

 sec −1 (5.69)

The rate of the disproportionation reaction, rm ,m', p , to cause the transition
reaction, Eqs. (5.44-5.52), is given by the product of the rate constant,
km,m ', p  given by Eq. (5.69), and the total number of hydrogen or hydrino
atoms, NH .

rm ,m', p = NH 4
1

2
2nH

aH

p

 
 
  

 

2
3kT

mH

 
transitions

sec
(5.70)

The factor of one half in Eq. (5.70) corrects for double counting of
collisions [13].  The power, Pm,m ', p , is given by the product of the rate of
the transition, Eq. (5.70), and the energy of the transition, Eq. (5.49)

Pm,m ', p =
NH

2

V

4

2

aH

p

 
 
  

 

2
3kT

mH

2mp + m2 − m' 2 +1[ ]X2.2 X10−18  W (5.71)

where V  is the volume.

COULOMBIC ANNIHILATION FUSION (CAF)
The electric field of a hydrogen atom is zero for r > rn , where rn  is

the radius of the orbitsphere of the electron (See Figure 1.7).  Thus, as
the orbitsphere shrinks with transitions to lower-energy states,
approaching nuclei experience a smaller electric barrier and the
internuclear distance (between two deuterium or tritium atoms, for
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example) shrinks as well.  As the internuclear separation decreases,
fusion is more probable.  In muon catalyzed fusion, for example, the
internuclear separation is reduced by about 200 (the muon to electron
mass ratio) and the fusion rate increases by about 80 orders of
magnitude.  In a catalytic system that produces energy holes of 27.21 eV ,
deuterium atoms can be repeatedly shrunk and the internuclear
separation can be much smaller than the muon reduction.  These smaller
internuclear distances yield much higher fusion rates.  The cold fusion
process is hereafter referred to as Coulombic Annihilation Fusion (CAF).

It is important to note that the products of CAF are tritium, 3H , and
protons, 1H .  In hot fusion, deuterium nuclei collide randomly and
produce about 50% 3H  plus 1H  and about 50% 3He  plus a neutron.  In
CAF, however, the nuclei are moving slowly and will collide in the most
favored Coulombic arrangement—with the two protons as far from each
other as possible.  Thus, for CAF significantly more 3H  will be produced
than 3He .

NEW "GROUND" STATE
Hydrogen atoms can undergo transitions to energy states below

the ground state until the total potential energy of the proton is
converted to relativistically corrected kinetic energy and total energy
(the negative of the binding energy).  The potential energy V  of the
electron and the proton separated by the radial distance radius r1  is,

V =
−e2

4 or1

(5.72)

where the radius r1  is the proton radius given by Eq. (28.1)
r p = 1.3 X 10−15

 m (5.73)
Substitution of Eq.(5.73) into Eq.(5.72) gives the total potential energy V
of the electron and the proton

V =
−e2

4 orp

=1.1 X 106  eV (5.74)

With electron capture, the electron orbitsphere superimposes that of the
proton, and a neutral particle is formed that is energy deficient with
respect to the neutron.  To conserve spin, electron capture requires the
concurrent capture of an electron antineutrino with decay to a photon
and an electron neutrino as given in the Gravity Section.
Disproportionation reactions to the lowest-energy states of hydrogen
followed by electron capture with gamma ray emission may be a source
of nonthermal γ-ray bursts from interstellar regions [14].  Hydrino
present in neutron stars may effect Coulombic Annihilation Fusion.  This
may be the mechanism of principally gamma emission by neutron stars.
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With sufficient energy/mass release, a chain reaction of neutron decay
to release electron antineutrinos which react with hydrinos according to
Eq. (23.173) may be the cause of γ-ray bursts.
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STABILITY OF ATOMS AND HYDRINOS

The central field of the proton corresponds to integer one charge.
Excited states comprise an electron with a trapped photon.  In all energy
states of hydrogen, the photon has an electric field which superposes
with the field of the proton.  In the n = 1 state, the sum is one, and the
sum is zero in the ionized state.  In an excited state, the sum is a fraction
of one (i.e. between zero and one).  Derivations from first principles
given in the Excited States of the One Electron Atom Section demonstrate

that each "allowed" fraction corresponding to an excited state is 
1

integer
.

The relationship between the electric field equation and the "trapped
photon" source charge-density function is given by Maxwell’s equation
in two dimensions.

n • E1 − E2( ) =
0

(6.1)

where n  is the radial normal unit vector, E1 = 0  (E1  is the electric field
outside of the orbitsphere), E2  is given by the total electric field at
rn = naH , and  is the surface charge-density.  The electric field of an
excited state is fractional; therefore, the source charge function is
fractional.  It is well known that fractional charge is not "allowed".  The
reason given below in the Instability of Excited States Section is that
fractional charge typically corresponds to a radiative current density
function.  The excited states of the hydrogen atom are examples.  They
are radiative; consequently, they are  not stable.  Thus, an excited
electron decays to the first nonradiative state corresponding to an
integer field, n = 1.  Equally valid from first principles are electronic
states where the sum of the photon field and the central field are an
integer.  These states are nonradiative.  A catalyst can effect a transition
between these states as described in the Atomic Coulomb Field collapse--
Hydrino Theory--BlackLight Process Section.

The condition for radiation by a moving charge is derived from
Maxwell's equations.  To radiate, the spacetime Fourier transform of the
current-density function must possess components synchronous with
waves traveling at the speed of light [1].  Alternatively,

For non-radiative states, the current-density function must not
possess spacetime Fourier components that are synchronous with
waves traveling at the speed of light.

As given in the One Electron Atom Section, the relationship between the
radius and the wavelength of the electron is

vn = n f n (6.2)
vn = 2 rn f n = n f n (6.3)
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2 rn = n (6.4)
Consider the radial wave vector of the sinc function of Eq. (1.39), the
Fourier transform of the electron current density function.  When the
radial projection of the velocity is c

sn • vn = s n • c = n (6.5)
the relativistically corrected wavelength is

rn = n  (6.6)
Substitution of Eq. (6.6) into the sinc function results in the vanishing of
the entire Fourier Transform of the current-density function.  Thus,

spacetime harmonics of n

c
= k  or n

c o

= k  do not exist for which the

Fourier Transform of the current-density function is nonzero.
In the case of below "ground" (fractional quantum) energy states,

the sum of the source current corresponding to the photon and the
electron current results in a radial Dirac delta function as shown in the
Stability of Atoms and Hydrinos Section.  Whereas, in the case of above
"ground" or excited (integer quantum) energy states, the sum of the
source current corresponding to the photon and the electron current
results in a radial doublet function which has Fourier components of

n

c
= k .  Thus, excited states are radiative as shown below.

INSTABILITY OF EXCITED STATES
For the excited (integer quantum) energy states of the hydrogen

atom, photon , the two dimensional surface charge due to the "trapped
photons" at the orbitsphere, is given by Eqs. (2.6) and (2.11).

  
photon =

e

4 (rn)
2 Y0

0 ,( ) −
1

n
Y0

0 ,( ) + Re Yl
m ,( ) 1+ e i nt[ ]{ }[ ] 

 
 
 

(r − rn )  n = 2,3,4,..., (6.7)

Whereas, electron , the two dimensional surface charge of the electron
orbitsphere is

  
electron =

−e

4 (rn )2 Y0
0 ,( ) + Re Yl

m ,( ) 1 + e i nt[ ]{ }[ ] (r − rn ) (6.8)

The superposition of photon  (Eq. (6.7)) and electron (Eq. (6.8)) where the
spherical harmonic functions satisfy the conditions given in the Angular
Function Section is equivalent to the sum of a radial electric dipole
represented by a doublet function and an radial electric monopole
represented by a delta function.

  
photon + electron =

e

4 (rn )2 Y0
0 ,( )

•
(r − rn ) −

1

n
Y0

0 ,( ) (r − rn ) − 1 +
1

n
 
 

 
 Re Yl

m ,( ) 1 + ei nt[ ]{ }[ ] (r − rn )
 
  

 
  

n = 2,3,4,..., (6.9)
where
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+ (r − rn ) − (r − rn)[ ] =
•
(r − rn ) (6.10)

is the Dirac doublet function [2] which is defined by the property

x t( ) ⊗
•

t( ) = x
•

t( )

x( )
•

t −( )d = x
•

t( )
−∞

∞

∫
(6.11)

or equivalently by the property

x t( )
•

t( )dt = − x
•

0( )
−∞

∞

∫ (6.12)

The Dirac doublet is the impulse response of an ideal differentiator and

corresponds to the radial electrostatic dipole.  The symbol 
•

t( ) is
appropriate since operationally the doublet is the derivative of the
impulse.

The doublet does possess spacetime Fourier components
synchronous with waves traveling at the speed of light.  Whereas, the
radial delta function does not as demonstrated in the Spacetime Fourier
Transform of the Electron Function Section.  The Spacetime Fourier
Transform of the orbitsphere comprising a radial Dirac delta function is
given by Eq. (1.39).

M(s,Θ,Φ , ) = 4 sinc(2snrn ) ⊗ 2
=1

∞

∑ (−1) −1 sinΘ( )2( −1)

( −1)!( −1)!

Γ
1

2
 
 

 
 Γ +

1

2
 
 

 
 

cosΘ( )2 +1 2 +1
2 !

( −1)!
s −2

⊗2
=1

∞

∑ (−1) −1 sinΦ( )2( −1)

( −1)!( −1)!

Γ
1

2
 
 

 
 Γ +

1

2
 
 

 
 

cosΦ( )2 +1
2 +1

2 !

( −1)!
s −2 1

4
[ ( − n ) + ( + n )]

(6.13)
The radial doublet function is the derivative of the radial Dirac delta
function; thus, the Fourier transform of the doublet function can be
obtained from the Fourier transform of the Dirac delta function, Eq.
(6.13) and the differentiation property of Fourier transforms [3].

x t( ) = X f( )
−∞

∞

∫ e j 2 ftdf X t( ) = x t( )
−∞

∞

∫ e− j 2 ftdt

Differentiation
dx t( )
dt

⇔ j2 fX f( )

(6.14)

From Eq. (6.13) and Eq. (6.14), the spacetime Fourier transform of Eq.
(6.9), the superposition of photon  (Eq. (6.7)) and electron   (Eq. (6.8)) is
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M(s,Θ,Φ , ) = 4 sne
j

2
sin(2snrn )

2snrn

⊗ 2
=1

∞

∑ (−1) −1 sinΘ( )2( −1)

( −1)!( −1)!

Γ
1

2
 
 

 
 Γ +

1

2
 
 

 
 

cosΘ( )2 +12 +1
2 !

( −1)!
s−2

⊗2
=1

∞

∑ (−1) −1 sinΦ( )2( −1)

( −1)!( −1)!

Γ
1

2
 
 

 
 Γ +

1

2
 
 

 
 

cosΦ( )2 +12 +1
2 !

( −1)!
s −2 1

4
[ ( − n ) + ( + n )]

(6.15)

M(s,Θ,Φ , ) = 4 sn

cos(2snrn )

2snrn

⊗ 2
=1

∞

∑ (−1) −1 sin Θ( )2( −1)

( −1)!( − 1)!

Γ
1

2
 
 

 
 Γ +

1

2
 
 

 
 

cosΘ( )2 +1 2 +1
2 !

( −1)!
s −2

⊗2
=1

∞

∑ (−1) −1 sinΦ( )2( −1)

( −1)!( −1)!

Γ
1

2
 
 

 
 Γ +

1

2
 
 

 
 

cosΦ( )2 +12 +1
2 !

( −1)!
s −2 1

4
[ ( − n ) + ( + n )]

(6.16)

Consider the radial wave vector of the cosine function of Eq. (6.16).
When the radial projection of the velocity is c

sn • vn = s n • c = n (6.17)
the relativistically corrected wavelength is

rn = n  (6.18)
Substitution of Eq. (6.18) into the cosine function does not result in the
vanishing of the Fourier Transform of the current-density function.

Thus, spacetime harmonics of n

c
= k  or n

c o

= k  do exist for which the

Fourier Transform of the current-density function is nonzero.  An
excited state is metastable because it is the sum of nonradiative (stable)
and radiative (unstable) components and de-excites with a transition
probability given by the ratio of the power to the energy of the
transition [4].

STABILITY OF "GROUND" AND HYDRINO STATES
For the below "ground" (fractional quantum) energy states of the

hydrogen atom, photon , the two dimensional surface charge due to the
"trapped photon" at the electron orbitsphere, is given by Eqs. (5.13) and
(2.11).

  
photon =

e

4 (rn)
2 Y0

0 ,( ) −
1

n
Y0

0 ,( ) + Re Yl
m ,( ) 1+ e i nt[ ]{ }[ ] 

 
 
 

(r − rn )  n = 1,
1

2
,
1

3
,
1

4
,...,

(6.19)
And, electron , the two dimensional surface charge of the electron
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orbitsphere is

  
electron =

−e

4 (rn )2 Y0
0 ,( ) + Re Yl

m ,( ) 1 + e i nt[ ]{ }[ ] (r − rn ) (6.20)

The superposition of photon  (Eq. (6.19)) and electron , (Eq. (6.20)) where
the spherical harmonic functions satisfy the conditions given in the
Angular Function Section is a radial electric monopole represented by a
delta function.

  
photon + electron =

−e

4 (rn )2

1

n
Y0

0 ,( ) + 1 +
1

n
 
 

 
 Re Yl

m ,( ) 1+ e i nt[ ]{ } 
  

 
  (r − rn )   n = 1,

1

2
,
1

3
,
1

4
,..., (6.21)

In the case of lower-energy states, the superposition given by Eq. (6.21)
involves integer charge only.  Whereas, in the case of excited states, the
superposition given by Eq. (6.9) involves the sum of a delta function
with a fractional charge (radial monopole term) and of two delta
functions of charge plus one and minus one which is a doublet function
(radial dipole term).  As given in the Spacetime Fourier Transform of the
Electron Function Section, the radial delta function does not possess
spacetime Fourier components synchronous with waves traveling at the
speed of light.  Thus, the below "ground" (fractional quantum) energy
states of the hydrogen atom are stable.  The "ground" (n = 1 quantum)
energy state is just the first of the nonradiative states of the hydrogen
atom; thus, it is the state to which excited states decay.

DISPROPORTIONATION MECHANISM
Comparing transitions between below "ground" (fractional

quantum) energy states as opposed to transitions between excited
(integer quantum) energy states, it can be appreciated that the former
are not effected by photons; whereas, the latter are.  Transitions are
symmetric with respect to time (ignoring the minuscule effects of
spacetime expansion given in the Gravity Section).  Current density
functions which give rise to photons according to the boundary
condition are created by photons by the reverse process.  Excited
(integer quantum) energy states correspond to this case.  And, current
density functions which do not give rise to photons according to the
boundary condition are not created by photons by the reverse process.
Below "ground" (fractional quantum) energy states correspond to this
case.  But, atomic collisions can cause a stable state to undergo a
transition to the next stable state.  The transition between two stable
nonradiative states effected by a collision with an energy hole is
analogous to the energy-releasing reaction of two atoms to form a
diatomic molecule which requires a third-body collision to remove the
bond energy [5].  The process referred to as the Atomic BlackLight
Process is described in the Atomic Coulomb Field collapse--Hydrino
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Theory--BlackLight Process Section.  (Also see Mills International Patent
Application [6]).

Exemplary of an inelastic collision with resonant energy transfer to
form an excited state atom is the Franck-Hertz experiment [7].  And, the
n ≤ 1 ("ground" (n = 1) and below "ground" (fractional quantum)) energy
states are stable until an inelastic collision occurs with resonant energy
transfer.  Then the force balance is altered, and the electron radiates
energy in the form of a photon until the next nonradiative level is
achieved.  Chemical reactions are analogous.  The former type which
give rise to high energy photons are chemiluminescent.

In a system containing two fluorescent species such that the
emission spectrum of one (the "donor") overlaps the absorption
spectrum of the other (the "acceptor"), the excitation energy of the
donor atoms may be transferred by a resonance Coulombic
electromagnetic interaction mechanism over relatively large distances to
the acceptor species (energy hole) rather than the donors radiating into
free space.  The total Coulombic interaction may be taken as the sum of
terms including dipole-dipole, dipole-quadrapole, and terms involving

higher order multipoles.  The F o
••

rster theory [8-12] is general to dipole-
dipole energy transfer which is often predominant.  It applies to the case
of lower-energy hydrogen following a collision with a concomitant
electron current alteration.  The hydrogen-type electron orbitsphere is a
spherical shell of negative charge (total charge = −e ) of zero thickness at
a distance rn  from the nucleus (charge = +Ze ).  It is well known that the
field of a spherical shell of charge is zero inside the shell and that of a
point charge at the origin outside the shell [13].  The electric field of the
proton is that of a point charge at the origin.  And, the superposition, E ,
of the electric fields of the electron and the proton is that of a point
charge inside the shell and zero outside.

E =
e

4 0r
2 for r < rn (6.22)

E = 0 for r > rn (6.23)
The magnetic field of the electron, H , is derived in the Derivation of the
Magnetic Field Section:

  
H =

eh
mern

3 ( ir cos − i sin )      for r < rn (6.24)

  
H =

eh
2mer

3 (ir 2cos − i sin )     for r > rn (6.25)

Power flow is governed by the Poynting power theorem,
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∇• (E × H) = −
t

1

2 oH • H 
 

 
 

−
t

1

2 oE •E 
 

 
 

− J • E (6.26)

It follows from Eqs. (6.22-6.26) that ∇• (E × H) is zero until a collision
occurs between two hydrogen-type atoms.  As given in Jackson [14],
each current distribution can be written as a multipole expansion.  A
catalytic collision gives rise to radiative terms including a dipole term.
(There is at least current in the radial direction until force balance is

achieved again at the next nonradiative level).  F o
••

rster's theory [8],
leads to the following equation for n R( ), the transfer rate constant

n R( ) =
9000 ln10( ) 2ΦD

128 5n4 NA DR6 f D( )
0

∞

∫ A( ) d
4 (6.27)

where A( ) is the molar decadic extinction coefficient of the acceptor
(at wave-number ), f D( ) is the spectral distribution of the
fluorescence of the donor (measured in quanta and normalized to unity
on a wave-number scale), NA is Avogadro's number, D is the mean
lifetime of the excited state, ΦD  is the quantum yield of the fluorescence
of the donor, n  is the refractive index , R  is the distance between the
donor and acceptor, and  is an orientative factor which for a random

distribution equals 
2

3
 
 

 
 

1

2
.  The collision of two lower-energy hydrogen

atoms will result in an elastic collision, an inelastic collision with a
hydrogen-type molecular reaction, or an inelastic collision with a
disproportionation reaction as described in the Disproportionation of
Energy States Section.  An estimate of the transition probability for
electric multipoles is given by Eq. (16.104) of Jackson [15].  For an
electric dipole   l = 1, and Eq. (16.104) of Jackson is

  

1

E

≅
e2

hc

 
 
  

 16
ka( )2 (6.28)

where a  is the radius of the hydrogen-type atom, and k  is the wave-
number of the transition.  Substitution of

k =
c

(6.29)

into Eq. (6.28) gives

  

1

E

≅
e2

hc

 
 
  

 16

a

c
 
 

 
 

2
3 (6.30)

From Eq. (6.30), the transition probability is proportional to the
frequency cubed.  Thus, the disproportionation reaction of lower-energy
hydrogen is favored over the molecular reaction because it is the most
energetic transition for the donor lower-energy hydrogen atom.  In the
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case that nonradiative energy transfer occurs between two lower-energy
hydrogen atoms, the mean lifetime of the excited state of Eq. (6.27), D,
corresponds to the vibrational period of the corresponding lower-energy
hydrogen molecule which follows from Eq. (12.107) and Planck's
Equation (Eq. (2.65)), the distance between the donor and acceptor, R ,
is given by the internuclear distance which is twice c' of Eq. (12.95), and
the orientative factor, , equals one because of the spherical symmetry
of the lower-energy hydrogen atoms.  Electronic transitions of lower-
energy hydrogen atoms occur only by nonradiative energy transfer; thus,
the quantum yield of the fluorescence of the donor, ΦD ,  is equal to one.
In free space, the overlap integral between the emission spectrum of the
donor lower-energy hydrogen atom and the absorption spectrum of the
acceptor lower-energy hydrogen atom is one.  Consider the following
disproportionation reaction where the energy of the emission line for
the transition given by m = 1, m' = 2  and p = 2  in Eqs. (5.50-5.52) involving
the absorption of an energy hole of 27.21 eV , m = 1 in Eq. (5.5), is 13.6 eV .

H
aH

2
 
 

 
 

H
aH

2

 
  

 
  

 →    H
aH

3
 
 

 
 

(6.31)

The transfer rate constant, n R( ), for Eq. (6.31) using Eq. (6.27) is

n R( ) =
9000 ln10( ) 1( )21

128 5 1( )4 6.02 X 1023( ) 1.77 X 10−15( ) 3.73 X 10−11( )6
6.91 X 107( )

= 8 X 1021  sec −1

(6.32)

According to F o
••

rster's theory [9], the efficiency E  of such nonradiative
energy transfer given by the product of the transfer rate constant and
the mean lifetime of the excited state may be expressed by

E = 1

1 +
r

R0

 

  
 

  

6

R0
6 = 8.8 X 10−25( )J −4

D
0 2

(6.33)

where r  is the distance between the donor and the acceptor, J  is the
overlap integral between the emission spectrum of the donor and the
absorption spectrum of the acceptor,  is the dielectric constant, D

0  is
the fluorescence quantum yield of the donor in the absence of
acceptors, and 2  is a function of the mutual orientation of the donor
and acceptor transition moments.  In the case that the radius of Eq.
(6.32) is a fraction of the Bohr radius, the efficiency of energy transfer
is approximately one as given in the Interstellar Disproportionation Rate
Section.

(As an additional reference to the application of F o
••

rster theory
see Mills patent [16]).
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ENERGY HOLE AS A MULTIPOLE EXPANSION
The potential energy (Eq. (1.173)) of the below "ground" state

hydrogen atom of radius 
aH

n
 having a central field of magnitude n  is

n2
 X 27.2 eV , (6.34)

where n  is an integer.  The potential energy is given as the superposition
of   energy-degenerate quantum states corresponding to a multipole
expansion of the central electromagnetic field.  One multipole moment
of all those possible, need be excited to stimulate the below "ground"
state transition.  The total number, N , of multipole moments where each
corresponds to an  and m  quantum number of an energy level

corresponding to a principal quantum number of n  is

  
N =

l=0

n−1

∑
ml =−l

+l

∑ =
l= 0

n−1

∑ 2l +1 = n2 (6.35)

Thus, the energy hole to stimulate a transition of a hydrogen atom

from radius 
aH

n
 to radius 

aH

n +1
 with an increase in the central field from

n  to n +1 where n  is an integer is

(n +1)2 27.2
1

(n +1)2 = 27.2 eV (6.36)

Energy conservation occurs during the absorption of an energy hole.  For
a hydrogen atom with a principal quantum number of n  having a radius

of 
aH

n
, the absorption of an energy hole of n X 27.2 eV  instantaneously

decreases the potential energy by n X 27.2 eV .  The calculation of
instantaneous potential energy change due to the absorption of the
energy hole of equal but opposite energy is given by the summation over
all possible multipoles of the integral of the product of the photon
standing wave corresponding to the absorbed energy hole and the
multipoles of the electron charge-density function.  The multipole of the
photon standing wave and each multipole of the electron charge-density
function corresponds to an  and m  quantum number.

POWER DENSITY OF GAS ENERGY CELL
A pressurized hydrogen gas energy reactor for the release of

energy by a catalytic or disproportionation reaction, wherein the
electrons of hydrogen atoms undergo transitions to lower energy states,
comprises a vessel containing a source of hydrogen, a means to control
the pressure and flow of hydrogen into the vessel, a material to
dissociate the molecular hydrogen into atomic hydrogen, and a material
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which is a source of energy holes.  The reaction that produces lower-
energy hydrogen referred to as a transition reaction is a catalytic
reaction as given in the BlackLight Process Section.  The
disproportionation reaction given in the Disproportionation of Energy
States Section is also a transition reaction.  Each energy sink or means to
remove energy resonant with the hydrogen electronic energy released to
effect each transition is hereafter referred to as an energy hole.

The rate of the disproportionation reaction, rm ,m', p , to cause the
transition reaction, Eqs. (5.44-5.52), is dependent on the collision rate
between the reactants and the efficiency of resonant energy transfer.  It
is given by the product of the rate constant, km,m ', p ,(Eq. (5.69)), the total
number of hydrogen or hydrino atoms, NH , and the efficiency, E  (Eq.
(6.33)), of the transfer of the energy from the donor hydrino atom to
the energy hole provided by the acceptor hydrino atom,

E = 1

1 +
r

R0

 

  
 

  

6

R0
6 = 8.8 X 10−25( )J −4

D
0 2

(6.37)

where r  is the distance between the donor and the acceptor, J  is the
overlap integral between the energy distribution of the donor hydrino
atom and the distribution of the energy hole provided by the acceptor
hydrino atom,  is the dielectric constant, and 2  is a function of the
mutual orientation of the donor and acceptor transition moments.
Electronic transitions of lower-energy hydrogen atoms occur only by
nonradiative energy transfer; thus, the quantum yield of the
fluorescence of the donor, ΦD , of Eq. (6.37) is equal to one.  The rate of
the disproportionation reaction, rm ,m', p , to cause a transition reaction is

rm ,m', p = E NH 4
1

2
2nH

aH

p

 
 
  

 

2
3kT

mH

(6.38)

The factor of one half in Eq. (6.38) corrects for double counting of
collisions [17].  The power, Pm,m ', p , is given by the product of the rate of
the transition, Eq. (6.38), and the energy of the disproportionation
reaction (Eq. (5.49)).

Pm,m ', p = E 
NH

2

V
4

1

2

aH

p

 
 
  

 

2
3kT

mH

2 pm + m2 − m' 2 +1[ ]X 2.2 X10−18  W (6.39)

where V  is the volume.  For a disproportionation reaction in the gas
phase, the energy transfer efficiency is one.  The power given by
substitution of

E = 1, p = 2, m = 1, m' = 2,  V = 1 m 3, N = 3 X 1021 , T = 675 K  (6.40)
into Eq. (6.39) is
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Pm,m ', p = 1 GW (1 kW / cm3 ) (6.41)
In the case that the reaction of hydrogen to lower-energy states

occurs by the reaction of a catalytic source of energy holes with
hydrogen or hydrino atoms, the reaction rate is dependent on the
collision rate between the reactants and the efficiency of resonant
energy transfer.  The hydrogen-or-hydrino-atom/catalyst-atom collision
rate per unit volume, Z

H
aH

p

 

 
 
 

 

 
 
 

  Catalyst
, for a gas containing nH  hydrogen or

hydrino atoms per unit volume, each with radius 
aH

p
 and velocity vH  and

nC  catalyst atoms per unit volume, each with radius r
 Catalyst and velocity vC

is given by the general equation of Levine [17] for the collision rate per
unit volume between atoms of two dissimilar gases.

Z
H

aH
p

 

 
 
 

 

 
 
 

  Catalyst
=

aH

p
+ rCatalyst

 
 
  

 

2

vH

2
+ vC

2[ ]1/2

nHnC (6.42)

The average velocity, vavg, can be calculated from the temperature, T ,
[18].

1

2
mHvavg

2 =
3

2
kT (6.43)

where k  is Boltzmann's constant.  Substitution of Eq. (5.66) into Eq.
(5.64) gives the collision rate per unit volume, Z

H
aH

p

 

 
 
 

 

 
 
 

  Catalyst
, in terms of the

temperature, T .
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p
+ rCatalyst
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3kT
1
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1
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1/2

nHnC (6.44)

The rate of the catalytic reaction, rm , p , to cause a transition reaction is
given by the product of the collision rate per unit volume, Z

H
aH

p

 

 
 
 

 

 
 
 

  Catalyst
, the

volume, V , and the efficiency, E , of resonant energy transfer given by
Eq. (6.37).

rm , p = E  
aH

p
+ rCatalyst

 
 
  

 

2

3kT
1

mH

+
1

mC

 
 
  

 
 

 

  
 

  

1/2

NH NC

V
(6.45)

The power, Pm, p , is given by the product of the rate of the transition, Eq.
(6.45), and the energy of the transition, Eq. (5.17).

Pm, p = E  
aH

p
+ rCatalyst

 
 
  

 

2

3kT
1

mH

+
1

mC

 
 
  

 
 

 

  
 

  

1/2

NHNC

V
2mp + m2[ ]X2.2 X10−18  W (6.46)

In the case of a gas phase catalytic transition reaction of a single cationic
catalyst having an ionization energy of 27.21 eV  with hydrogen or hydrino
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atoms, the energy transfer efficiency is one.  Rubidium II is a catalyst
with a second ionization energy of 27.28 eV .  The power for the reaction
given by Eqs. (5.25-5.27) with the substitution of

E = 1, p = 1, m = 1, V = 1 m3, NH = 3 X 1021, NC = 3 X 1021,  

mC =1.4 X 10−25
 kg, rC = 2.16 X 10−10  m,  T = 675 K

(6.47)

into Eq. (6.46) is
Pm, p = 55 GW (55 kW / cm3 ) (6.48)

In the case that the catalytic reaction of hydrogen to lower-energy states
occurs on a surface, the energy transfer efficiency is less than one due
to differential surface interactions of the absorbed hydrogen or hydrino
atoms and the catalyst.  The power given by Eqs. (6.46) and (6.47) with

E = 0.001 (6.49)
is

Pm, p = 55 MW (55 W / cm3 ) (6.50)
Less efficient catalytic systems hinge on the coupling of three

resonator cavities.  For example, an electron transfer occurs between
two cations which comprises an energy hole for a hydrogen or hydrino
atom.  The reaction rate is dependent on the collision rate between
catalytic cations and hydrogen or hydrino atoms and the efficiency of
resonant energy transfer with a concomitant electron transfer with each
transition reaction.  The rate of the catalytic reaction, rm , p , to cause a
transition reaction is given by the product of the collision rate per unit
volume, Z

H
aH

p

 

 
 
 

 

 
 
 

  Catalyst
, the volume, V , and the efficiency, Ee , of resonant

energy transfer given by Eq. (6.37) where r  is given by the average
distance between cations in the reaction vessel.

rm , p = Ec  
aH

p
+ rCatalyst
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1/2
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V
(6.51)

The power, Pm, p , is given by the product of the rate of the transition, Eq.
(6.51), and the energy of the transition, Eq. (5.17).

Pm, p = Ec  
aH

p
+ rCatalyst

 
 
  

 

2

3kT
1

mH

+
1

mC

 
 
  

 
 

 

  
 

  

1/2

NH NC

V
2mp + m2[ ]X 2.2 X10−18  W (6.52)

A catalytic system that hinges on the coupling of three resonator cavities
involves potassium.  For example, the second ionization energy of
potassium is 31.63 eV .  This energy hole is obviously too high for resonant
absorption.  However, K+  releases 4.34 eV  when it is reduced to K .  The
combination of K+  to K2+  and K+  to K , then, has a net energy change of
27.28 eV .  Consider the case of a gas phase catalytic transition reaction of
hydrogen or hydrino atoms by potassium ions as the catalyst having an
energy hole of 27.28 eV .  The energy transfer efficiency is given by Eq.
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(6.37) where r  is given by the average distance between cations in the

reaction vessel.  When the K+  concentration is 3 X 1022  
K+

m3 , r  is

approximately 5 X 10−9  m .  For J = 1, ΦD = 1, 2 = 1, D =10−13  sec  (based on
the vibrational frequency of KH+ ), and m = 1 in Eq (5.8), the energy
transfer efficiency, Ec , is approximately 0.001 .  The power for the
reaction given by Eqs. (5.22-5.24) with the substitution of

E = 0.001, p = 1, m =1,  V = 1 m 3, NH = 3 X 1021 , NC = 3 X 1022 , 

mC = 6.5 X 10−26
 kg, rC = 1.38 X 10−10  m,  T = 675 K

(6.53)

into Eq. (6.52) is
Pm, p = 300 MW (300 W / cm3 ) (6.54)
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TWO ELECTRON ATOMS

Two electron atoms comprise two indistinguishable electrons
bound to a nucleus of +Z .  Each electron experiences a centrifugal force,
and the balancing centripetal force (on each electron) is produced by
the electric force between the electron and the nucleus and the magnetic
force between the two electrons causing the electrons to pair.

DETERMINATION OF ORBITSPHERE RADII, rn
According to the Mills theory of the electron derived from first

principles bound electrons are described by a charge-density (mass-
density) function which is the product of a radial delta function
( f (r) = (r − rn )), two angular functions (spherical harmonic functions),
and a time harmonic function.  Thus, an electron is a spinning, two-
dimensional spherical surface, called an electron orbitsphere, that can
exist in a bound state at only specified distances from the nucleus.  More
explicitly, the orbitsphere comprises a two dimensional spherical shell of
moving charge.  The corresponding current pattern of the orbitsphere
comprises an infinite series of correlated orthogonal great circle current
loops.  The current pattern (shown in Figure 1.4) is generated over the
surface by two orthogonal sets of an infinite series of nested rotations of
two orthogonal great circle current loops where the coordinate axes
rotate with the two orthogonal great circles.  Each infinitesimal rotation
of the infinite series is about the new x-axis and new y-axis which results
from the preceding such rotation.  For each of the two sets of nested
rotations, the angular sum of the rotations about each rotating x-axis
and y-axis totals 2  radians.  The current pattern gives rise to the
phenomenon corresponding to the spin quantum number.  Each one-
electron orbitsphere is a spherical shell of negative charge
( total charge =−e ) of zero thickness at a distance rn  from the nucleus
( charge = +Ze).  It is well known that the field of a spherical shell of charge
is zero inside the shell and that of a point charge at the origin outside
the shell [1] (See Figure 1.7).  Thus, for a nucleus of charge Z , the force
balance equation for the electron orbitsphere is obtained by equating
the forces on the mass and charge densities.  The centrifugal force of
each electron is given by

Fcentrifugal =
me

4 rn
2

vn
2

rn

(7.1)

where rn  is the radius of electron n  which has velocity vn .  In order to be
nonradiative, the velocity for every point on the orbitsphere is given by
Eq. (1.47).
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vn =

h
mern

(7.2)

Now, consider electron 1 initially at r = r1 =
a0

Z
 (the  radius of the one

electron atom of charge Z  given in the One Electron Atom Section where

  
a0 =

4 0h
2

e2 me

 and electron 2 initially at rn =∞ .  Each electron can be treated

as −e  charge at the nucleus with E =
−e

4 orn
2  for r > rn  and E = 0  for r < rn

where rn  is the radius of the electron orbitsphere.  The centripetal force
is the electric force, Fele , between the electron and the nucleus.  Thus,
the electric force between electron 2 and the nucleus is

Fele (electron 2) =
(Z −1)e2

4 orn
2 (7.3)

where o  is the permittivity of free-space.  The magnetic force, the
second centripetal force, on the electron 2 (at infinity) from electron 1
(at r1 ) is the relativistic corrected magnetic force, Fmag , between each
point of the electron two and electron one.  Each infinitesimal point of
each orbitsphere moves on a great circle, and each point charge has the

charge-density 
e

4 rn
2 .  From the photon inertial reference frame at the

radius of each infinitesimal point of electron 2, the magnetic field of
electron 1 in the point's inertial frame follows from McQuarrie [2]:

  
B = oeh

2mern
3 (7.4)

where µo is the permeability of free-space (4  X 10−7
 N / A2 ).  An

electrodynamic force, a force dependent on the second derivative of the
charge's position which respect to time, arises between the two
electrons.  The motion of each point will cause a relativistic central
force, F i mag, which acts on each point mass comprising the orbitsphere.
The magnetic central force is derived as follows from the Lorentzian
force which is relativistically corrected.  The Lorentzian force density on
each point moving at velocity v  given by Eq. (1.47) is

Fmag =
e

4 rn
2 v × B (7.5)

Substitution of Eq. (1.47) for v  and Eq. (7.4) for B gives

  
Fmag =

1

4 r1
2

e2
o

2mern

 

  
 

  
h2

mern
3 (7.6)

Furthermore, the term in brackets can be expressed in terms of the fine
structure constant,  .  From Eqs. (1.143-1.147) where Z1 = 1
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e2
o

2mern

= 2
v

c
(7.7)

It can be shown that the relativistic correction to Eq. (7.6) is 
1

Z2

 times

the reciprocal of Eq. (7.7).  Consider an inertial frame following a great
circle of radius rn  with v = c .  The motion is tangential to the radius; thus,
rn  is Lorentzian invariant.  But, the tangential distance along a great
circle is 2 rn  in the electron frame and rn  in the v = c  frame.  The charge
is relativistically invariant, whereas, the mass is not.  The relativistic
correction to the laboratory frame mass relative to the v = c  frame is 2 .
The correction follows from the Lorentz transformation of the electron's
invariant angular momentum of   h .  It is shown by Purcell [3] that the
force on a moving charge due to a moving line of charge is a relativistic
electric force due to Lorentzian contraction of the line charge density.

The force is proportional to 
v

c
 where v  is the electron's velocity.  Thus, it

follows that the electron mass in the laboratory frame relative to the

v = c  inertial frame is also proportional to 
v

c
.  Following the derivation of

Purcell with the substitution of the relativistic mass density for the
charge density gives the electron mass correction to the electrodynamic
force as

me =2
v

c
me Re st (7.8)

Furthermore, due to invariance of charge under Gauss's Integral Law, the
radius term in the brackets of Eq. (7.6) is relativistically corrected.  The
radius of the electron relative to the v = c  frame, r* , is relativistically
corrected as follows.  The wave equation relationship is

v =
2

(7.9)

It can be demonstrated that the velocity of the electron orbitsphere
satisfies the relationship for the velocity of a wave by substitution of Eqs.
(1.43) and (1.55) into Eq. (7.9), which gives Eq. (1.47).  The result of
the substitution into Eq. (7.9) of c  for vn , of n  given by  Eq. (2.2)

2 (kr1 )= 2 rn = n 1 = n (7.10)
with r1  given by Eq. (1.169)

r1 =
ao

Z2

(7.11)

for λ, and of n  given by Eq. (1.55)

  
n =

h
mern

2
(7.12)
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for  is

  

c = 2
nao

Z2

h

me

nao

Z2

 

 

 
 
 
 

 

 

 
 
 
 

2

2

(7.13)

  
n =

Z2mecao

h
=

Z2 me

h o o

4 0h
2

e2 me

= 4 Z2
o

o

h
e2

= Z2 (7.14)

It follows from Eq. (7.14) that the radius, rn , of Eq. (7.6) must be
corrected by the factor Z2 .  By correcting the radius and the mass, the

relativistic correction is 
1

2 Z2

v

c

.  In this case, Z1 = 1 and Z2  is the nuclear

charge, Z ; thus, 
1

Z
 is substituted for the term in brackets in Eq. (7.6).

The force must be corrected for the vector projection of the
velocity onto the z-axis.  As given in the Spin Angular Momentum of the
Orbitsphere with   l = 0  Section, the application of a z directed magnetic
field of electron two given by Eq. (1.120) to the inner orbitsphere gives
rise to a projection of the angular momentum of electron one onto an

axis which precesses about the z-axis of 
  

3

4
h .  The projection of the

force between electron two and electron one is equivalent to that of the
angular momentum onto the axis which precesses about the z-axis, and

is s s +1( ) =
3

4
 times that of a point mass.  Thus, Eq. (7.6) becomes

  
Fmag =

1

4 r1
2

1

Z

h2

mer
3 s(s +1) (7.15)

The outward centrifugal force on electron 2 is balanced by the electric
force and the magnetic force (on electron 2),

  

me

4 r2
2

v2
2

r2

=
e

4 r2
2

(Z −1)e

4 or2
2 +

1

4 r2
2

h2

Zmer2
3 s(s +1) (7.16)

From Eq. (1.47)

  
v2

2 =
h2

me
2r2

2 (7.17)

Then,

  

mev2
2

r2

=
h2

mer2
3 =

(Z −1)e2

4 or2
2 +

1

Z

h2

mer2
3 s(s +1) (7.18)

Solving for r2 ,

r2 = r1 = a0

1

Z −1
−

s s +1( )
Z Z − 1( )

 

 
  

 
 ; s =

1

2
(7.19)

That is, the final radius of electron 2, r2 , is given by Eq. (7.19); this is
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also the final radius of electron 1.  The energies and radii of several two-
electron atoms are given in Table 7.1.

ENERGY CALCULATIONS
The electric work to bring electron 2 to r2 = r1 is given by the

integral of the electric force from infinity to r1 ,

work(electric ,electron2) =
(Z −1)e2

8 or1

(7.20)

And the electric energy is the negative of the electric work,

E(electric ) =
−(Z −1)e2

8 or1

(7.21)

The potential energy of each electron at r = r1 , is given as

V =
−(Z −1)2 e2

4 or1

(7.22)

The kinetic energy is 
1

2
mev

2 , where v  is given by Eq. (1.47).

  
T =

1

2

h2

mer1
2

(7.23)

The magnetic work is the integral of the magnetic force from infinity to
r1 ,

  
work(magnetic,electron 2) = −

1

2

1

Z

h2

mer1
2 s(s +1) (7.24)

Conservation of Energy
Energy is conserved.  Thus, the potential energy (electron 2 at r1 )

with the nucleus plus the magnetic work (electron 2 going from infinity
to r1 ) must equal the sum of the negative of the electric work (electron 2
going from infinity to r1 ) and the kinetic energy (electron 2 at r1 ).  This
is shown below with Eq. (7.25) and Eq. (7.26).

  
−V (electron 2 at r1) =

(Z −1)e2

8 or1

+
1

2

1

Z

h2

mer1
2 s(s +1) −

1

2

h2

mer1
2

(7.25)

 and using r1  for Eq. (7.19),

V(electron 2 at r1) = −
(Z −1)e2

4 or1

(7.26)

This is also the potential energy of electron 1 where their potential
energies are indistinguishable when r1 = r2 .

Ionization Energies
During ionization, power must be conserved.  Power flow is

governed by the Poynting power theorem,
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∇• (E × H) = −
t

1

2 oH • H 
 

 
 

−
t

1

2 oE •E 
 

 
 

− J • E (7.27)

Energy is superposable; thus, the calculation of the ionization energy is
determined as a sum of contributions.  Energy must be supplied to
overcome the electric force of the nucleus, and this energy contribution
is the negative of the electric work given by Eq. (7.21).  By the selection
rules for absorption of electromagnetic radiation dictated by
conservation of angular momentum, absorption of a photon causes the
spin axes of the antiparallel spin-paired electrons to become parallel.
Thus, a repulsive magnetic force exists on the electron to be ionized due
to the parallel alignment of the spin axes; consequently, no magnetic
work is necessary for ionization.  However, initially the electrons were
paired producing no magnetic fields; whereas, following ionization, the
electrons possess magnetic fields.  For helium, the contribution to the
ionization energy is given as the energy stored in the magnetic fields of
the two electrons.  For helium, which has no electric field beyond r1  the
ionization energy is given by the general formula:

Ionization Energy(He) = −E(electric ) + E(magnetic) (7.28)
where,

E(electric ) =−
(Z −1)e2

8 or1

(7.29)

  
E(magnetic) =

2 0e
2h2

me
2r1

3 (7.30)

Eq. (7.30) is derived for each of the two electrons as Eq. (1.129) of the
Magnetic Parameters of the Electron (Bohr Magneton) Section,

me = m0 with =
1

1 −
v

c
 
 

 
 

2
(7.31)

and v  is given by Eq. (1.47) with the mass of the electron given by Eq.
(7.31) and the radius given by Eq. (7.19)1.

1Relativistic Corrections:

r1 = ao

1

Z −1
−

3
4

Z Z −1( )

 

 

 
 

 

 

 
 

(1)

  

v =
hc

4 0h
2

e2 c
1

Z −1
−

3
4

Z Z −1( )

 

 

 
 

 

 

 
 

 

 

 
  

 

 

 
 

2

+ h2

(2)
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For a nuclear charge Z  greater than two, an electric field exists
outside of the orbitsphere of the unionized atom.  During ionization, the
energy contribution of the expansion of the orbitsphere of the ionized
electron (electron two) from r1  to infinity in the presence of the electric
fields present inside and outside of the orbitsphere is calculated as the
J •E  term of the Poynting theorem.  This energy contribution can be
determined by designing an energy cycle and considering the individual
contributions of each electron (electron one and electron two) in going
from the initial unionized to the final ionized state.  Consider two paired
orbitspheres.  Expansion of an orbitsphere in the presence of an electric
field which is positive in the outward radial direction requires energy,
and contraction of an orbitsphere in this field releases energy.  Thus, the
contribution of the J •E  term to ionization is the difference in the
energy required to expand one orbitsphere (electron two) from r1  to
infinity and to contract one orbitsphere (electron one) from infinity to
r1 .  The energy contribution is calculated for the expanding orbitsphere
by considering the reverse of the process used to derive Eq. (7.15) of the
Determination of Orbitsphere Radii, rn  Section as follows:

The magnetic force on electron two due to electron one is

 
  
Fmag = −

1

Z

h2

mer2
3 s(s +1) (7.32)

The expansion of the orbitsphere of electron two produces a current.
The current over time ∆tJ  is

me = m0 with =
1

1 −
v

c
 
 

 
 

2
(3)

where v  is given by Eq. (2) and Eq. (3) is transformed into spherical
coordinates.  For helium, which has no electric field beyond r1  the
ionization energy is given by the general formula:

Ionization Energy(He) = −E(electric ) + E(magnetic) (4)
where,

E(electric ) =−
(Z −1)e2

8 or1

(5)

and

  
E(magnetic) =

2 0e
2h2

me
2r1

3 (6)

The ionization energies of positively charged two electron atoms are
given by

Ionization Energy = −Electric  Energy −
1

Z
Magnetic  Energy

(7)
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∆tJ = ∆t  E f (7.33)
where J  is the current-density, ∆t  is the time interval,  is the
conductivity, and E f  is the effective electric field defined as follows:

F = qE f (7.34)
where F  is the magnetic force given by Eq. (7.32), and q  is the charge-
density given as follows:

q =
e

4
(7.35)

The orbit expands in free space; thus, the relation for the conductivity is
∆t = o (7.36)

The electric field provided by the nucleus for the expanding orbitsphere
is

 E =
(Z − 2)e

4 or2
2 (7.37)

where o  is the permittivity of free space (8.854 X 10−12
 C2 / N ⋅ m2

).  Using
Eqs. (7.6), (7.7) and (7.15) and Eqs. (7.32-7.37), the J •E  energy density
over time for the expansion of electron two with the contraction of
electron one is

  
∆t(J • E) =

(Z − 2)e

4 or2
2

h2

Zmer2
3 2 s(s +1)

4 o

e
(7.38)

  
∆t(J • E) =

(Z − 2)e

4 or2
2

h2

Zmer2
3

0e
2

mer2

4 o

e
(7.39)

  
∆t(J • E) =

(Z − 2)

Z
0e

2h2

me
2 r2

6 (7.40)

The J •E  energy over time is the volume integral of the energy density
over time

  
[∆t(J •E)]energy external =

(Z − 2)

Z
0e

2h2

me
2r2

6 r2 sin drd dΦ
∞

r1

∫
0
∫

0

2

∫ (7.41)

  
[∆t(J •E)]energy external =

(Z − 2)

Z

2 0e
2 h2

3me
2r1

3 (7.42)

The J •E  energy over time involving the electric field external to the

orbitsphere of electron two is 
Z − 2( )

Z
 times the magnetic energy stored in

the space external to the orbitsphere as given by Eq. (1.127).  The left
and right sides of the Poynting theorem must balance.  Given the form of
the J •E  energy over time involving the electric field external to the
orbitsphere of electron two and given that the electric field inside of the
orbitsphere is Z −1 times the electric field of a point charge, the J •E
energy over time involving the electric field internal to the orbitsphere
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of electron two is 
Z −1( )

Z
 times the magnetic energy stored inside of the

orbitsphere as given by Eq. (1.125).  This energy is

  
[∆t(J •E)]energy internal =

(Z −1)

Z

4 0e
2h2

3me
2r1

3 (7.43)

Thus, the total J •E  energy over time of electron two is the sum of Eqs.
(7.42) and (7.43).  The J •E  energy over time of electron one during
contraction from infinity to r1  is negative, and the equations for the
external and internal contributions  are of the same form as Eqs. (7.42)
and (7.43) where the appropriate effective charge is substituted.  The
J •E  energy over time involving the electric field external to the
orbitsphere of electron one is

  
[∆t(J •E)]energy external =

(Z −1)

Z

2 0e
2h2

3me
2r1

3 (7.44)

And, the J •E  energy over time involving the electric field internal to the
orbitsphere of electron one is

  
[∆t(J •E)]energy internal =

Z

Z

4 0e
2h2

3me
3r1

3 (7.45)

The difference, ∆, between the J •E  energy over time for expanding
electron two from r1  to infinity and contracting electron one from

infinity to r1  is −
1

Z
 times the stored magnetic energy given by Eq. (7.30).

  
∆ = −

1

Z

2 0e
2h2

me
2r1

3 (7.46)

Thus, the ionization energies are given by

Ionization Energy = −Electric  Energy −
1

Z
Magnetic  Energy (7.47)

The energies of several two-electron atoms are given in Table 7.1.
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Table 7.1. The calculated electric (per electron), magnetic (per electron), and
ionization energies for some two-electron atoms.

____________________________________________________________________________
Atom r1 Electric Magnetic Calculated Experimentale

( ao ) a Energyb Energyc Ionization Ionization [4-5]

(eV) (eV) Energyd (eV) Energy (eV)
He 0.567 -23.96 0.63 24.59 24.59

Li+ 0.356 -76.41 2.54 75.56 75.64

Be2+ 0.261 -156.08 6.42 154.48 153.89

B3+ 0.207 -262.94 12.96 260.35 259.37

C4+ 0.171 -396.98 22.83 393.18 392.08

N5+ 0.146 -558.20 36.74 552.95 552.06

O6+ 0.127 -746.59 55.35 739.67 739.32

F7+ 0.113 -962.17 79.37 953.35 953.89

Ne8+ 0.101 -1204.9 109.5 1194 1195.90

Na9 + 0.0921 -1474.8 146.4 1462 1465.14

Mg10+ 0.8043 -1771.9 190.7 1756 1761.86

Al11+ 0.0778 -2096.2 243.2 2077 2086.05

Si12 + 0.0722 -2447.6 304.5 2426 2437.76

P13+ 0.0673 -2826.3 375.3 2801 2817.04

S14 + 0.0631 -3232.1 456.4 3204 3223.95

Cl15+ 0.0593 -3665.0 548.3 3633 3658.55

Ar16 + 0.0560 -4125.2 651.9 4089 4120.92

K17 + 0.0530 -4612.5 767.7 4572 4611.11
a from Equation (7.19)
b from Equation (7.29)
c from Equation (7.30)
 d from Equations (7.28) and (7.47)
 e from theoretical calculations for ions Ne8+

 to K17 +
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HYDRIDE ION
The hydride ion comprises two indistinguishable electrons bound

to a proton of Z = +1.  Each electron experiences a centrifugal force, and
the balancing centripetal force (on each electron) is produced by the
electric force between the electron and the nucleus.  In addition, a
magnetic force exists between the two electrons causing the electrons to
pair.

Determination of the Orbitsphere Radius, rn
Consider the binding of a second electron to a hydrogen atom to

form a hydride ion.  The second electron experiences no central electric
force because the electric field is zero outside of the radius of the first
electron.  However, the second electron experiences a magnetic force
due to electron 1 causing it to pair with electron 1.  Thus, electron 1
experiences the reaction force of electron 2 which acts as a centrifugal
force.  The force balance equation can be determined by equating the
total forces acting on the two bound electrons taken together.  The force
balance equation for the paired electron orbitsphere is obtained by
equating the forces on the mass and charge densities.  The centrifugal
force of both electrons is given by Eq. (7.1) and Eq. (7.2) where the mass
is 2me .  Electric field lines end on charge.  Since both electrons are paired
at the same radius, the number of field lines ending on the charge
density of electron 1 equals the number that end on the charge density
of electron 2.  The electric force is proportional to the number of field
lines; thus, the centripetal electric force, Fele , between the electrons and
the nucleus is

Fele (electron 1,2) =

1
2

e2

4 orn
2 (7.48)

where o  is the permittivity of free-space.  The outward magnetic force
on the two paired electrons is given by the negative of Eq. (7.15) where
the mass is 2me .  The outward centrifugal force and magnetic forces on
electrons 1 and 2 are balanced by the electric force

  

h2

2mer2
3 =

1
2

e2

4 or2
2 −

1

Z

h2

2mer2
3 s(s + 1) (7.49)

where Z = 1.  Solving for r2 ,

r2 = r1 = a0 1 + s s +1( )( ); s =
1

2
(7.50)

That is, the final radius of electron 2, r2 , is given by Eq. (7.50); this is
also the final radius of electron 1.
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Ionization Energy
During ionization, electron 2 is moved to infinity.  By the selection

rules for absorption of electromagnetic radiation dictated by
conservation of angular momentum, absorption of a photon causes the
spin axes of the antiparallel spin-paired electrons to become parallel.
The unpairing energy, Eunpairing(magnetic) , is given by Eq. (7.30) and Eq.
(7.50) multiplied by two because the magnetic energy is proportional to
the square of the magnetic field as derived in Eqs. (1.122-1.129).  A
repulsive magnetic force exists on the electron to be ionized due to the
parallel alignment of the spin axes.  The energy to move electron 2 to a
radius which is infinitesimally greater than that of electron 1 is zero.  In
this case, the only force acting on electron 2 is the magnetic force.  Due
to conservation of energy, the potential energy change to move electron
2 to infinity to ionize the hydride ion can be calculated from the
magnetic force of Eq. (7.49).  The magnetic work, Emagwork, is the negative
integral of the magnetic force (the second term on the right side of Eq.
(7.49)) from r2  to infinity,

  
Emagwork =

h2

2mer
3 s(s +1)

r2

∞

∫ dr  (7.51)

where r2  is given by Eq. (7.50).  The result of the integration is

  
Emagwork = −

h2 s(s +1)

4mea0
2 1 + s(s +1)[ ]2 (7.52)

where s =
1

2
.  By moving electron 2 to infinity, electron 1 moves to the

radius r1 = aH , and the corresponding magnetic energy, Eelectron 1 final(magnetic),
is given by Eq. (7.30).  In the present case of an inverse squared central
field, the binding energy is one half the negative of the potential energy
[5].  Thus, the ionization energy is given by subtracting the two magnetic
energy terms from one half the negative of the magnetic work wherein
me  is the electron reduced mass e  given by Eq. (1.167) due to the
electrodynamic magnetic force between electron 2 and the nucleus given
by one half that of Eq. (1.164).  The factor of one half follows from Eq.
(7.49).

  

Ionization Energy = −
1

2
Emagwork − Eelectron 1 final(magnetic) − Eunpairing(magnetic)

                             =
h2 s(s + 1)

8 ea0
2 1+ s(s +1)[ ]2 − 0e

2h2

me
2a0

3 1+
22

1 + s(s + 1)[ ]3

 

 
 

 

 
 

(7.53)

From Eq. (7.53), the calculated ionization energy of the hydride ion is
0.75402 eV .  The experimental value given by Dean [6] is 0.754209 eV  which



© 2000 by BlackLight Power, Inc.  All rights reserved.
189

corresponds to a wavelength of = 1644 nm .

HYDRINO HYDRIDE ION
The hydrino atom H 1/ 2( ) can form a stable hydride ion.  The

central field is twice that of the hydrogen atom, and it follows from Eq.
(7.49) that the radius of the hydrino hydride ion H − n = 1/ 2( ) is one half
that of atomic hydrogen hydride, H − n = 1( ), given by Eq. (7.50).

r2 = r1 =
a0

2
1 + s s +1( )( ); s =

1

2
(7.54)

The energy follows from Eq. (7.53) and Eq. (7.54).

  

Ionization Energy = −
1

2
Emagwork − Eelectron 1 final(magnetic) − Eunpairing(magnetic)

                             =
h2 s(s +1)

8 ea0
2 1 + s(s +1)

2

 

  
 

  

2 − 0e
2h2

me
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3 1+
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(7.55)

From Eq. (7.55), the calculated ionization energy of the hydrino hydride
ion H − n = 1/ 2( ) is 3.047 eV  which corresponds to a wavelength of

= 407 nm .  In general, the central field of hydrino atom
H n = 1/ p( ); p = integer  is p  times that of the hydrogen atom.  Thus, the
force balance equation is

  

h2

2mer2
3 =

p
2

e2

4 or2
2 −

1

Z

h2

2mer2
3 s(s + 1) (7.56)

where Z = 1 because the field is zero for r > r1 .  Solving for r2 ,

r2 = r1 =
a0

p
1 + s s +1( )( ); s =

1

2
(7.57)

From Eq. (7.57), the radius of the hydrino hydride ion

H − n = 1/ p( ); p = integer  is 
1

p
 that of atomic hydrogen hydride, H − n = 1( ),

given by Eq. (7.50).  The energy follows from Eq. (7.53) and Eq. (7.57).

  

Ionization Energy = −
1

2
Emagwork − Eelectron 1 final(magnetic) − Eunpairing(magnetic)

                             =
h2 s(s +1)

8 ea0
2 1 + s(s +1)
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(7.58)

From Eq. (7.58), the calculated ionization energy of the hydrino hydride
ion H − n = 1/ p( ) as a function of p  is given in Table 7.2.
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Table 7.2.  The ionization energy of the hydrino hydride ion H − n = 1/ p( )
as a function of p .

________________________________________________________________________
Hydride Ion r1 Calculated Calculated

( ao ) a Ionization Wavelength

Energyb (eV) (nm)

H − n =1( ) 1.8660 0.754 1645

H − n = 1/ 2( ) 0.9330 3.047 407

H − n = 1/ 3( ) 0.6220 6.610 188

H − n = 1/ 4( ) 0.4665 11.23 110

H − n = 1/ 5( ) 0.3732 16.70 74.2

H − n = 1/ 6( ) 0.3110 22.81 54.4

H − n = 1/ 7( ) 0.2666 29.34 42.3

H − n = 1/8( ) 0.2333 36.08 34.4

H − n = 1/ 9( ) 0.2073 42.83 28.9

H − n = 1/10( ) 0.1866 49.37 25.1

H − n =1/11( ) 0.1696 55.49 22.34

H − n =1/12( ) 0.1555 60.98 20.33

H − n =1/13( ) 0.1435 65.62 18.89

H − n =1/14( ) 0.1333 69.21 17.91

H − n =1/15( ) 0.1244 71.53 17.33

H − n =1/16( ) 0.1166 72.38 17.13

H − n =1/17( ) 0.1098 71.54 17.33

H − n =1/18( ) 0.1037 68.80 18.02

H − n =1/19( ) 0.0982 63.95 19.39

H − n =1/ 20( ) 0.0933 56.78 21.83

H − n =1/ 21( ) 0.0889 47.08 26.33

H − n =1/ 22( ) 0.0848 34.63 35.80

H − n =1/ 23( ) 0.0811 19.22 64.49

H − n =1/ 24( ) 0.0778 0.6535 1897

H − n =1/ 25( ) not stable

a from Equation (7.57)
b from Equation (7.58)
                                                                                                                                                         



© 2000 by BlackLight Power, Inc.  All rights reserved.
192

HYDRINO HYDRIDE ION NUCLEAR MAGNETIC RESONANCE SHIFT
The proton gyromagnetic ratio p / 2  is

p / 2 = 42.57602 MHz T −1 (7.59)
The NMR frequency f  is the product of the proton gyromagnetic ratio
given by Eq. (7.59) and the magnetic flux B.

f = p / 2 B = 42.57602 MHz T −1B (7.60)
A typical flux for a superconducting NMR magnet is 1.5 T .  According to
Eq. (7.60) this corresponds to a radio frequency (RF) of 63.86403 MHz .
With a constant magnetic field, the frequency is scanned to yield the
spectrum.  Or, in a common type of NMR spectrometer, the
radiofrequency is held constant at 60 MHz , the applied magnetic field H0

( H0 =
B

0

) is varied over a small range, and the frequency of energy

absorption is recorded at the various valves for H0 .  The spectrum is
typically scanned and displayed as a function of increasing H0 .  The
protons that absorb energy at a lower H0  give rise to a downfield
absorption peak; whereas, the protons that absorb energy at a higher H0

give rise to an upfield absorption peak.  The electrons of the compound
of a sample influence the field at the nucleus such that it deviates
slightly from the applied value.  For the case that the chemical
environment has no NMR effect, the value of H0  at resonance with the
radiofrequency held constant at 60 MHz  is

2 f

0 p

=
2( ) 60 MHz( )

0 42.57602 MHz T −1 = H0 (7.61)

In the case that the chemical environment has a NMR effect, a different
value of H0  is required for resonance.  This chemical shift is
proportional to the electronic magnetic flux change at the nucleus due
to the applied field which in the case of each hydrino hydride ion is a
function of its radius.  The change in the magnetic moment, ∆m, of each
electron of the hydride ion due to an applied magnetic flux B is [8]

∆m = −
e2r1

2B
4me

(7.62)

The change in magnetic flux ∆B at the nucleus due to the change in
magnetic moment, ∆m, of each electron follows from Eq. (1.100).

∆B = 0

∆m

rn
3 ( ir cos − i sin )      for r < rn (7.63)

where 0  is the permeability of vacuum.  It follows from Eqs. (7.62-7.63)
that the diamagnetic flux (flux opposite to the applied field) at the
nucleus is inversely proportional to the radius.  For resonance to occur,
∆H0 , the change in applied field from that given by Eq. (7.61), must



© 2000 by BlackLight Power, Inc.  All rights reserved.
193

compensate by an equal and opposite amount as the field due to the
electrons of the hydrino hydride ion.  According to Eq. (7.57), the ratio
of the radius of the hydrino hydride ion H − 1/ p( ) to that of the hydride
ion H − 1/1( )  is the reciprocal of an integer.  It follows from Eqs. (7.59-
7.63) that compared to a proton with a no chemical shift, the ratio of
∆H0  for resonance of the proton of the hydrino hydride ion H − 1/ p( ) to
that of the hydride ion H − 1/1( )  is a positive integer (i.e. the absorption
peak of the hydrino hydride ion occurs at a valve of ∆H0  that is a
multiple of p  times the value of ∆H0  that is resonant for the hydride ion
compared to that of a proton with no shift where p  is an integer).
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DERIVATION OF ELECTRON SCATTERING BY HELIUM

CLASSICAL SCATTERING OF ELECTROMAGNETIC RADIATION
Light is an electromagnetic disturbance which is propagated by

vector wave equations which are readily derived from Maxwell's
equations.  The Helmholtz wave equation results from Maxwell's
equations.  The Helmholtz equation is linear; thus, superposition of
solutions is allowed.  Huygens' principle is that a point source of light
will give rise to a spherical wave emanating equally in all directions.
Superposition of this particular solution of the Helmholtz equation
permits the construction of a general solution.  An arbitrary wave shape
may be considered as a collection of point sources whose strength is
given by the amplitude of the wave at that point.  The field, at any point
in space, is simply a sum of spherical waves.  Applying Huygens'
principle to a disturbance across a plane aperture gives the amplitude of
the far field as the Fourier Transform of the aperture distribution, i.e.,
apart from constant factors,

(x,y) = ∫∫ A( , )exp
−ik

f
( x + y)

 
  

 
  d d (8.1)

Here A( , ) describes the amplitude and phase distribution across the
aperture and (x,y) describes the far field [1] where f  is the focal
length.

Delta Function
In many diffraction and interference problems, it proves

convenient to make use of the Dirac delta function.  This function is
defined by the following property: let f ( )  be any function (satisfying
some very weak convergence conditions which need not concern us
here) and let ( − ' ) be a delta function centered at the point ' ; then

f ( ) ( − ')d = f ( ')
a

b

∫  (a < ' < b); 0 otherwise (8.2)

We note, therefore, that

( − ' )d = 1
−∞

∞

∫ (8.3)

the Fourier transform of the delta function is given by

(x) = ∫ ( − ')exp
−ikx

f

 
  

 
  d (8.4)

which by definition of the delta function becomes

(x) = exp
−ikx '

f

 
  

 
  (8.5)
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The amplitude is constant and the phase function 
−ikx '

f

 
 
  

 
 depends on

the origin.

The Array Theorem
A large number of interference problems involve the mixing of

similar diffraction patterns.  That is, they arise in the study of the
combined diffraction patterns of an array of similar diffracting
apertures.  This entire class of interference effects can be described by a
single equation, the array theorem.  This unifying theorem is easily
developed as follows: Let ( ) represent the amplitude and phase
distribution across one aperture centered in the diffraction plane, and
let the total diffracting aperture consist of a collection of these
elemental apertures at different locations n .  We require first a method
of representing such an array.  The appropriate representation is
obtained readily by means of the delta function.  Thus, if an elemental
aperture is positioned such that its center is at the point n , the
appropriate distribution function is ( − n ).  The combining property of
the delta function allows us to represent this distribution as follows:

( − n )= ∫ ( − ) ( − n )d (8.6)
The integral in Eq. (8.6) is termed a "convolution" integral and plays an
important role in Fourier analysis.  Thus, if we wish to represent a large
number N  of such apertures with different locations, we could write the
total aperture distribution Ψ( ) as a sum, i.e.,

Ψ( ) = ( − n )
n=1

N

∑ (8.7)

Or in terms of the delta function we could write, combining the features
of Eqs. (8.6) and (8.7),

Ψ( ) = ∫ ( − ) ( − n )d
n=1

N

∑ (8.8)

Eq. (8.8) may be put in a more compact form by introducing the
notation

A( ) = ( − n )
n =1

N

∑ (8.9)

thus, Eq. (8.8) becomes
Ψ( ) =∫ ( − )A( )d (8.10)

which is physically pleasing in the sense that A( )  characterizes the
array itself.  That is, A( )  describes the location of the apertures and

( ) describes the distribution across a single aperture.  We are in a
position to calculate the far field or Fraunhofer diffraction pattern
associated with the array.  We have the theorem that the Fraunhofer
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pattern is the Fourier transform of the aperture distribution.  Thus, the
Fraunhofer pattern ˜ Ψ (x)  of the distribution Ψ( ) is given by

˜ Ψ x( ) = ( )exp
−2 i ⋅ x

f

 
 

 
 ∫ d (8.11)

substituting from Eq. (8.10) gives

˜ Ψ x( ) = ( − )A( )d∫∫[ ]exp
−2 i ⋅ x

f

 
 

 
 d (8.12)

A very important theorem of Fourier analysis states that the Fourier
transform of a convolution is the product of the individual Fourier
transforms [1].  Thus, Eq. (8.12) may be written as

˜ Ψ (x) = ˜ (x) ˜ A (x) (8.13)
where ˜ (x)  and ˜ A (x)  are the Fourier transforms of ( ) and A( ) .  Eq.
(8.13) is the array theorem and states that the diffraction pattern of an
array of similar apertures is given by the product of the elemental
pattern ˜ (x)  and the pattern that would be obtained by a similar array of
point sources, ˜ A (x) .  Thus, the separation that first arose in Eq. (8.10) is
retained.  To analyze the complicated patterns that arise in interference
problems of this sort, one may analyze separately the effects of the
array and the effects of the individual apertures.

Applications of the Array Theorem

Two-Beam Interference
We use Eq. (8.13) to describe the simplest of interference

experiments, Young's double-slit experiment in one dimension.  The
individual aperture will be described by

Ψ( ) = (C  | |< a; 0  | |> a) = rec( | a) (8.14)
Here C is a constant representing the amplitude transmission of the
apertures.  This is essentially a one-dimensional problem and the
diffraction integral may be written as

˜ Ψ x( ) = ( )exp
−ik ⋅ x

f

 
 

 
 ∫ d = C exp

−ik ⋅ x
f

 
 

 
 

−a

a

∫ d (8.15)

The integral in Eq. (8.15) is readily evaluated to give

˜ Ψ (x) =
−Cf

ikx
exp

−ikax

f
 
 

 
 − exp

+ikax

f
 
 

 
 

 
  

 
  = 2aC

sin
kax

f
 
 

 
 

kax

f
 
 

 
 

(8.16)

The notation sinc =
sin

 is frequently used and in terms of this function

˜ Ψ (x)  may be written as
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˜ Ψ (x) = 2aC sinc
kax

f
 
 

 
 (8.17)

Thus the result that the elemental distribution in the Fraunhofer plane is
Eq. (8.17).  The array in this case is simply two delta functions; thus,

A( ) = ( − b) + ( + b) (8.18)
The array pattern is, therefore,

˜ A (x) = ( − b) + ( + b)[ ]∫ exp
−2 i ⋅ x

f

 
 

 
 d (8.19)

Eq. (8.19) is readily evaluated by using the combining property of the
delta function, thus,

˜ A (x) = exp
2 ibx

f
 
 

 
 + exp

−2 ibx

f
 
 

 
 = 2cos

2 bx

f
 
 

 
 (8.20)

Finally, the diffraction pattern of the array of two slits is
˜ Ψ (x) = 4aC sinc

2 ax

f
 
 

 
 cos

2 bx

f
 
 

 
 (8.21)

The intensity is

I(x) = 16a2C2sinc2 2 ax

f

 
 
  

 
cos2 2 bx

f

 
 
  

 
(8.22)

From Eq. (8.22), it is clear that the resulting pattern has the appearance
of cosine2 fringes of period f / b with an envelope sinc2 2 ax / f( ) .  The
distribution pattern observed with diffracting electrons is equivalent to
that for diffracting light.  Note that Eq. (8.15) represents a plane wave.
In the case of the Davison-Germer experiment, the intensity is given by
Eq. (8.13) as the product of the elemental pattern corresponding to a
plane wave of wavelength = h / p  and the array pattern of the nickel
crystal.

CLASSICAL WAVE THEORY OF ELECTRON SCATTERING
The following mathematical development of scattering is adapted

from Bonham [2] with the exception that the Mills model is a Fourier
optics derivation for an exact elemental pattern, a plane wave, and an
exact array pattern, an orbitsphere.  In contrast, Bonham derives similar
scattering equations for an incident plane wave via an averaged
probability density function description of the electron, the Born model.

In scattering experiments in which Fraunhofer diffraction is the
most important mode for scattering, measurements are made in
momentum or reciprocal space.  The data is then transformed in terms
of real space, where the structure of the scatterer is expressed in terms
of distances from its center of mass.  There are, fortunately, well known
mathematical techniques for making this transformation.  If we are given
a model of the scattering system, we can, in general, uniquely calculate
the results to be expected in reciprocal space for scattering from the
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model.  Unfortunately, the converse--deducing the nature of the
scatterer uniquely by transforming the experimental results obtained in
reciprocal space--is not always possible.  But, as we will see, certain
possibilities can be eliminated because they violate fundamental physical
laws such as Special Relativity.

In classical optics, a diffraction pattern results whenever light is
scattered by a slit system whose dimensions are small compared to the
wavelength of light.  In order to develop a mathematical model for
diffraction scattering, let us represent the amplitude of an incident plane
wave traveling from left to right as e i(k⋅r − t ), where the absolute magnitude

of the wave vector k  is k=
2

.  The quantity λ is the wavelength of the

incident radiation and   hk  is the momentum p .  The vector r  represents
the position in real space at which the amplitude is evaluated, and  and
t  are the frequency and time, respectively.  A plane wave traveling in the
opposite direction is e−i (k⋅r + t )  where the sign of k ⋅r  changes, but not the
sign of t .  That is, we may reflect a wave from a mirror and reverse its
direction, but we cannot change the sign of the time since that would
indicate a return to the past.  The intensity of a classical wave is the
square magnitude of the amplitude, and thus the intensity of a plane
wave is constant in space and time.  If a plane wave is reflected back on
itself by a perfectly reflecting mirror, then the resultant amplitude is
e i(k⋅r − t ) + e− i(k⋅r + t ) = e− i t2cos k ⋅ r , and the intensity is I = 4cos2 k ⋅ re i te− i t  which is
independent of time and given as 4cos2 k ⋅r  which clearly exhibits maxima
and minima dictated by the wavelength of the radiation and the position
in space at which intensity is measured.

In an experiment, we measure the intensity of scattered particles,
which is related to plane waves in a simple fashion.  To see this, consider
a collimated plane-wave source, whose width is small compared to the
scattering angle region where the scattering is to be investigated,
incident upon a diffraction grating.  If we integrate the incident intensity
over a time interval ∆t, we obtain a number proportional to the energy
content of the incident wave.  We may safely assume in most cases that
the scattering power of the diffraction image does not change with time,
so that a constant fraction of the incident radiation and hence constant
energy will be transferred into the scattered wave.  We further assume
that the effect of the diffraction grating on the incident radiation occurs
only in a region very close to the grating in comparison to its distance
from the detection point.  For elastic scattering (no energy transfer to
the grating), once the scattered portion of the wave has left the field of
influence of the scatterer, all parts of the scattered amplitude at the
same radial distance from the scatterer must travel at the velocity of the
incident wave.  For simplicity, we neglect resonance effects, which can
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introduce significant time delays in the scattering process even if the
waves are scattered elastically.  The effects of resonance states on the
scattering at high energies is usually negligible and hence will not be
discussed here.  In the case of inelastic scattering, in which waves are
scattered with various velocities, we can focus our attention successively
on parts of the outgoing scattered radiation which have velocities falling
within a certain narrow band, and the following argument will hold for
each such velocity segment.  The result of the integration of a constant-
velocity segment of the scattered intensity over the volume element,

r 2dr sin d dΦ
0

2

∫
0
∫

R

R+∆R

∫ , (8.23)

is proportional to the energy content in that portion of the scattered
wave, and the result must be independent of R.  This restriction, which is
a direct consequence of conservation of energy, then demands that the
outgoing scattered waves have in polar coordinates the form

Ψ sc(R, , ) =
eikR

R
f ,( ) (8.24)

where the term 1/R is a dilution effect to guarantee energy on an ever-
spreading wave.

Ψ sc  only describes the scattered amplitude after the scattered wave
has left the field of influence of the scatterer and is thus an asymptotic
form.  The function f ( , )  is called the scattered amplitude and depends
on the nature of the scatterer.  The classical theory tells us that the
scattered intensity is proportional to the square magnitude of the
scattered amplitude; so, the intensity will be directly proportional to
f ( , )2

R2 .

Let us next consider the expression for the scattering of a plane
wave by a number of disturbances in some fixed arrangement in space.
Consider the scatterers comprising a nucleus and electrons; this would
correspond to a plane wave scattered by an atom.

We shall choose the center of mass of the scatterer as our origin
and shall for the most part consider dilute-gas electron scattering in the
keV energy range, where the electron wavelength λ lies in the range
0.03 Å < < 0.1 Å .  The scattering experimental conditions are such that to
a high degree of approximation, at least 0.1% or better, we can consider
the scattering as a single electron scattered by a single atom.  Note also
that no laboratory to center-of-mass coordinate system transformation
is required because the ratio of the electron mass to the mass of the
target will be on the order of 10−3  or smaller.

Let us consider an ensemble of scattering centers as shown in



© 2000 by BlackLight Power, Inc.  All rights reserved.
199

Figure 8.1.

Figure 8.1.  An ensemble of scattering centers.

We may write the total scattered amplitude in the first approximation as
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a sum of amplitudes, each of which is produced by scattering from one
of the single scattering centers.  In this view, we generally neglect
multiple scattering, the rescattering of portions of the primary scattered
amplitudes whenever they come in contact with other centers, except in
the case of elastic scattering in the heavier atoms.  Clearly a whole
hierarchy of multiple-scattering processes may result.  The incident
wave  may experience a primary scattering from one center, a portion of
the scattered amplitude may rescatter from a second center, and part of
this amplitude may in turn be scattered by a third center (which can
even be the first center), and so on.

An incident plane wave will obviously travel a distance along the
incident direction before scattering from a particular center, depending
on the instantaneous location of that center.  To keep proper account of
the exact amplitude or phase of the incident wave at the instant it
scatters from a particular center, we select our origin, as mentioned
previously, to lie at the center of mass.  The phase of the scattered wave
depends on the total distance traveled from the center of mass to the
detector.  We can now write the scattered amplitude as

Ψtotal =
exp ik zl + R − r l( )[ ]

R − r l

 

 
 

 

 
 

l =1

N

∑ f l ,( ) (8.25)

where zl + R − r l  is the distance traveled from a plane perpendicular to
the incident direction and passing through the center of mass and f l ,( )
is the scattered amplitude characteristic of the l − th  scattering center.  It

should be clear at this point that the term 
exp ik R − r l[ ]

R − r l

 

 
 

 

 
 f l ,( )  is made up

of a plane wave in the scattered direction with the dilution factor 
1

R − r l

to account for energy conservation and with allowances made through
f l ,( ) for any special influence that the scatterer may have on the
scattering because of the detailed structure of the scatterer.  The
additional term e ikz1  enters whenever two or more scattering centers are
encountered and accounts for the fact that the instantaneous location of
our scattering centers may not coincide with planes of equal amplitude
of the incident plane wave.  That is, in a  two-center case, the first
particle may scatter a plane wave of amplitude +1 while at the same time
a second scatterer may encounter an amplitude of -1.  The amplitudes of
the incident plane wave which the various particles encounter depend on
their separation from each other along the z-axis and on the wavelength
of the incident radiation.  By adding to the phase, the projections of the
various r l  vectors onto the incident direction, referred to the same
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origin, this problem is automatically corrected.  As long as our
composite scatterer is on the order of atomic dimensions, the magnitude
of R will be enormously larger than either z l  or r l .  This allows us to
expand R − r l  in a binomial expansion through first-order terms as

R −
R
R

⋅ rl

 
 
  

 
 .  In the denominator, the first-order correction term R can be

neglected but not in the phase.

To see this, suppose that R  is  X 106  and 
R
R

⋅r l  is / 2 .  Clearly / 2

would seem negligible compared to  X 106 , but look what a difference
the value of a sin or cos function has if / 2  is retained or omitted from
the sum of the two terms.  The product kzl  may be rewritten as ki ⋅ r l ,
where the subscript i on k  denotes the fact that ki  is a vector parallel to

the incident direction with magnitude k =
2

.  Similarly, since 
R
R

 is a unit

vector whose sense is essentially in the direction of the scattered

electron, we may write k
R
R

⋅ rl  as ks ⋅ r l where ks  is a wave vector in the

scattering direction.  The phase of Eq. (8.25) now contains the term
(ki − ks ) ⋅ r l, where ki − ks  must be proportional to the momentum change
of the incident particle on scattering, since   hki  is the initial momentum
and   hks  is the final momentum of the scattered electron.  This vector
difference is labeled by the symbol s .  The asymptotic total amplitude is
now expressible as

Ψtotal =
e ikR

R
eis⋅r l

l =1

N

∑ f l ,( ) (8.26)

Classical Wave Theory Applied to Scattering from Atoms and
Molecules.

Let us first apply Eq. (8.26) to scattering from atoms.  We will
consider the theoretical side of high-energy electron scattering and x-ray
scattering from gaseous targets as well.  In the x-ray case, the intensity
for an x-ray scattered by an electron is found experimentally to be a
constant, usually denoted by Icl , which varies inversely as the square of
the mass of the scatterer where Icl  is the Thompson x-ray  scattering
constant.  This means that x-rays are virtually unscattered by the
nucleus, since the ratio of electron to nuclear scattering will be greater

than 
m p

me

 

  
 

  

2

≅
1 X 10−24

9X10−28

 
  

 
  

2

~10 6 , where m p  is the proton rest mass and me  is

the electron rest mass.  The total amplitude for x-ray scattering by an
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atom can then be written as

Ψ
total

xr = Icl  e
i cle ikR eis⋅r l

l =1

N

∑ (8.27)

where cl  is a phase factor introduced because of a possibility that the x-
ray scattered amplitude may be complex.  The intensity can be written as

Itotal
xr = Icl (N + e

is.r
l k

l ≠ k

N

∑
l ≠ k

N

∑ ) (8.28)

where r lk = r l − rk  is an interelectron distance.  Both expressions, Eqs.
(8.27) and (8.28), correspond to a fixed arrangement of electrons in
space.  For electrons, the intensity of scattering by another charged

particle proceeds according to the Rutherford experimental law I =
IeZ

2

s4 ,

where Z  is the charge of the scatterer and Ie  is a characteristic constant.

Note that both Icl  and Ie  include the 
1

R2  dilution factor and depend on

the incident x-ray or electron beam flux Io  and on the number No  of
target particles per cubic centimeter in the path of the incident beam as

the product Io No .  We may take f l ,( ) = Ie

Z

s2

 
 

 
 exp i Z( )[ ],where Z( )  is

again an unknown phase shift introduced because of the possibility that
the amplitude may be complex.  In the x-ray case for scattering by an
atom, the intensity is independent of the phase cl , and we need not
investigate it further.  In electron scattering, this term is different for
electrons and nuclei since they contain charges of opposite sign and
usually different magnitude.  The amplitude for this case is

Ψtotal
ed = Ie

e ikR

s 2

 
 
  

 
Ze

i Z( )+is⋅r n( ) + e
i −1( )+is⋅r i( )

i=1

N

∑ 
  

 
  (8.29)

which for an atom simplifies further, since the nuclear position vector rn

is zero because the nucleus lies at the center of mass.  The term Z( )  is
the nuclear phase and −1( )  is the phase for scattering by an individual
electron.  The notation −1 signifies a unit negative charge on each
electron as opposed to +Z  on the nucleus, where Z  is the atomic
number.  The intensity with rn = 0  becomes

Itotal
ed =

Ie

s 4

 
 

 
 {Z 2 + 2Z cos[ (Z ) − (−1) − s ⋅ r i]

i =1

N

∑ + N + e
is⋅r i j

i ≠ j

N

∑
i ≠ j

N

∑ } (8.30)

Note that the last two terms on the right in Eq. (8.30) are identical to
those in Eq. (8.28).

According to  Huygens' principle, the function e is⋅r i

i=1

N

∑  of Eq. (8.29)

represents the sum over each spherical wave source arising from the
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scattering of an incident plane wave from each point of the electron
function where the wavelength of the incident plane wave is given by the
de Broglie equation = h / p .  The sum is replaced by the integral over 
and  of the single point element aperture distribution function.  The
single point element aperture distribution function, a( , ,z) , for the
scattering of an incident plane wave by the an atom is given by the
convolution of a plane wave function with the electron orbitsphere
function.  The convolution is   a( , ,z) = (z) ⊗ [ (r − r )]Yl

m ,( ) where
a( , ,z)  is given in cylindrical coordinates, π(z), the xy-plane wave is
given in Cartesian coordinates with the propagation direction along the
z-axis, and the orbitsphere function,   [ (r − r )]Yl

m ,( ), is given in spherical
coordinates.  Using cylindrical coordinates,

e is.r i

i =1

N

∑ = a( , , z)e−i [s cos( −Φ )+ wz] 2 d d dz
−∞

∞

∫
0

2

∫
0

∞

∫ (8.31)

The general Fourier transform integral is given in reference [3].
For an aperture distribution with circular symmetry, the Fourier

transform of the aperture array distribution function, A(z), is [3]:

 e is.r i

i =1

N

∑ = 2 a( ,z)Jo(s )e−iwz d dz
−∞

∞

∫
0

∞

∫ (8.32)

 = A(z)e−iwzdz
0

∞

∫ (8.33)

= F(s) (8.34)

The same derivation applies for the two-point term e
is⋅r i j

N

∑  of Eq. (8.30).

The sum is replaced by the integral over  and  of the single point
element autocorrelation function, r( , , z), of the single point element
aperture distribution function.  For circular symmetry [3],
 r( , , z) = a( , ,z) ⊗ a( , ,z ) (8.35)
and

e
is⋅r i j

i≠ j

N

∑
i ≠ j

N

∑ = 2 a( ,z )Jo (s )e−iwz d dz
−∞

∞

∫
0

∞

∫ (8.36)

  = R(z)e−iwzdz
0

∞

∫ (8.37)

And
R(z) = A(z) ⊗ A(z) (8.38)

For closed shell atoms in single states such as rare gases, Y ( , ),
the spherical harmonic angular function of the electron function is a
constant, and only two expressions are possible from all orders of
averaging over all possible orientations in space.  For the x-ray case the
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scattered intensities are

I1
xr = Icl[ A(z)e−iwzdz

0

∞

∫ ]2 = IclF(s)2 (8.39)

and

I2
xr = Icl[N + R(z)e−iwzdz

0

∞

∫ ] (8.40)

while for electrons, the scattered intensities are

I1
ed =

Ie

s4
 
 

 
 
{Z 2+ 2Zcos[ (Z) − (−1)]F(s) + F(s)2} (8.41)

and

I2
ed =

Ie

s4
 
 

 
 
{Z 2 + 2Z cos[ (Z ) − (−1)]F(s) + N + R(z )e− iwzdz

0

∞

∫ } (8.42)

where the subscript 1 denotes an amplitude derivation and 2 an intensity
derivation.  The aperture function of the nucleus is a delta function of
magnitude Z , the nuclear charge.  The Fourier Transform is a constant
of magnitude Z  as appears in Eqs. (8.41) and (8.42).  Note that the
Fourier convolution theorem proves the equivalence of Eq. (8.39) and
Eq. (8.40) and the equivalence of Eq. (8.41) and Eq. (8.42).

The aperture array distribution function, A(z), Eq. (8.33),
corresponds to the electron radial distribution function of Bonham, and
the aperture array autocorrelation function R(z), Eq. (8.37),
corresponds to the electron pair correlation function of Bonham [2].

ELECTRON SCATTERING EQUATION FOR THE HELIUM ATOM
BASED ON THE ORBITSPHERE MODEL

The closed form solution of all two electron atoms is given in the
Two Electron Atom Section.  In the helium ground state, both electrons
orbitspheres are at a radius

r1 = 0.567ao

The helium atom comprises a central nucleus of charge two which is at
the center of an infinitely thin spherical shell comprising two bound
electrons of charge minus two.  Thus, the helium atom is neutrally
charged, and the electric field of the atom is zero for r > 0.567ao .  The
Rutherford scattering equation for isolated charged particles does not
apply.  The appropriate scattering equation for helium in the ground
state can be derived as a Fourier optics problem as given in the Classical
Scattering of Electromagnetic Radiation Section.

The aperture distribution function, a( , ,z) , for the scattering of an
incident plane wave by the He atom is given by the convolution of the
plane wave function with the two electron orbitsphere Dirac delta
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function of radius = 0.567a  and charge/mass density of 
2

4 (0.567a )2 .  For

radial units in terms of ao

a( , ,z) = (z) ⊗
2

4 (0.567a )2 [ (r − 0.567a )] (8.43)

where a( , ,z)  is given in cylindrical coordinates, (z), the xy-plane wave
is given in Cartesian coordinates with the propagation direction along
the z-axis, and the He atom orbitsphere function,

2

4 (0.567a )2 [ (r − 0.567a )], is given in spherical coordinates.

a( , ,z) =
2

4 (0.567a )2 (0.567a )2 − z2 (r − (0.567a )2 − z2 ) (8.44)

For circular symmetry [3],

F s( ) =
2

4 (0.567ao )2 2 (0.567ao )2 − z2 ( − (0.567ao )2 − z2 )Jo (s )e− iwz d dz
−∞

∞

∫
0

∞

∫ (8.45)

F(s) =
4

4 (0.567ao)
2 (z0

2 − z2 )Jo(s zo
2 − z 2 ))e−iwzdz

− zo

zo

∫   ;  z0 = 0.567a0 (8.46)

Substitute 
z

zo

= −cos

F(s) =
4 zo

2

4 zo
2 sin3 Jo(szo sin )eiz 0w cos d

0
∫ (8.47)

Substitution of the recurrence relationship,

Jo (x) =
2J1 x( )

x
− J2 x( )   ;  x = sz0 sin (8.48)

into Eq. (8.47),  and, using the general integral of Apelblat [4]

(sin ) +1 J (bsin )e ia cos d
0
∫ =

2

a2 + b2
 
 

 
 

1

2 b

a2 + b2

 

 

 
 
 

 

 

 
 
 

J +1/2 (a2 + b2 )
1

2
 

  
 

  (8.49)

with a = zow  and b = zos  gives:

 

F(s) =
2

(zo w)2 + (zos)2

 
  

 
  

1

2

2
zos

(zow)2 + (zos)2

 

  
 

  J3/2 ((zow)2 + (zos)2 )1/2[ ] −
zo s

(zow)2 + (zos)2

 

  
 

  

2

J5/2 ((zo w)2 + (zos)2 )1/2[ ]
 
 
 

 
 
 

(8.50)
The magnitude of the single point element autocorrelation function,
|r( , ,z)| , is given by the convolution of the magnitude of the single point
element aperture distribution function, a( , ,z) , with its self.
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|r( , ,z)| =| a( , ,z)|⊗|a( , ,z)| (8.51)
The Fourier convolution theorem permits Eq. (8.51) to be determined by
Fourier transformation.

|r( , ,z)| = e iw•z 0.567ao( )2
− z 2 e−iw •zdz

0

∞

∫
 

  
 

  
0

∞

∫
2

dw (8.52)

|r( , ,z)| =−e i sin w • z( ) J1 0.567ao w( )
w

 

  
 

  

2

dw
0

∞

∫
 
 
 

 
 
 

+ C (8.53)

where C  is an integration constant for which R( )  equals zero at
r = 1.134ao

r( , ,z) =
1

2
−

4zo

3
 
 

 
 1+

z2

4zo
2

 
 
  

 
 E

z

2z0

 
 
  

 
 + 1−

z2

4zo
2

 
 
  

 
 K

z

2zo

 
 
  

 
  

  
 

  
 

 
 

 

 
 + C

0 < z ≤ 2zo ; zo = 0.567ao (8.54)
Eq. (8.54) was derived from a similar transform by Bateman [5].  The
electron elastic scattering intensity is given by a constant times the
square of the amplitude given by Eq. (8.50).

I1
ed = Ie

2

(zow)2 + (zos)2

 
  

 
  

1

2

2
zos

(zo w)2 + (zos)2

 

  
 

  J3/2 ((zow)2 + (zos)2 )1/2[ ] −
zos

(zow)2 + (zos)2

 

  
 

  

2

J5/2 ((zow)2 + (zos)2 )1/2[ ]
 
 
 

 
 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

2

(8.55)

s =
4

sin
2

; w = 0 (units of Å−1) (8.56)

Results
The magnitude of the single point element aperture distribution

function, a( , ,z) , convolved with the function (z − 0.567ao )  is shown
graphically in Figure 8.2 in units of ao .  The function was normalized to
2.
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Figure. 8.2.  The magnitude of the single point element aperture
distribution function, a( , ,z) , convolved with the function

(z − 0.567ao )  in units of ao .

The magnitude of the single point element autocorrelation function,
r( , , z), convolved with the function (z − 1.134ao ) is shown graphically in
Figure 8.3 in units of ao .  The function was normalized to 2 and the
constant of 0.352183  was added to meet the boundary condition for the
convolution integral.

Figure. 8.3.  The magnitude of the single point element autocorrelation
function, r( , , z), convolved with the function (z − 1.134ao ) is
shown graphically in units of ao .

The experimental results of Bromberg [6], the extrapolated experimental
data of Hughes [6], the small angle data of Geiger [7] and the
semiexperimental results of Lassettre [6] for the elastic differential cross
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section for the elastic scattering of electrons by helium atoms is shown
graphically in Figure 8.4.  The elastic differential cross section as a
function of angle numerically calculated by Khare [6] using the first Born
approximation and first-order exchange approximation also appear in
Figure 8.4.

Figure. 8.4.  The experimental results of Bromberg [6], the extrapolated
experimental data of Hughes [6], the small angle data of Geiger [7]
and the semiexperimental results of Lassettre [6] for the elastic
differential cross section for the elastic scattering of electrons by
helium atoms and the elastic differential cross section as a
function of angle numerically calculated by Khare [6] using the
first Born approximation and first-order exchange approximation.
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These results which are based on a quantum mechanical model are
compared with experimentation [6,7].  The closed form function (Eqs.
(8.55) and (8.56)) for the elastic differential cross section for the elastic
scattering of electrons by helium atoms is shown graphically in Figure
8.5.  The scattering amplitude function, F(s) (Eq. (8.50), is shown as an
insert.

Figure. 8.5.  The closed form function (Eqs. (8.55) and (8.56)) for the
elastic differential cross section for the elastic scattering of
electrons by helium atoms.  The scattering amplitude function,
F(s) (Eq. (8.50), is shown as an insert.
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DISCUSSION
The magnitude of the single point element autocorrelation

function, r( , , z), convolved with the function (z − 0.567ao )  (Figure 8.3)
and the electron pair correlation function, P(r ), of Bonham [8] are
similar.  According to Bonham [8], the electron radial distribution
function, D(r), calculated from properly correlated CI wave functions for
He is similar in shape to the P(r ) function but its maximum occurs at a
value of r  almost exactly half of that for P(r ).  Thus, the function D(r) is
similar to the magnitude of the single point element aperture
distribution function, a(r, ,z) , (Figure 8.2).  D(r) and P(r ) lead to a most
probable structure for the He atom in which the electrons and the
nucleus are collinear with the nucleus lying between the two electrons
[2].  This is an average picture compared to the Mills model.  However, it
is apparent from Figure 8.4 that the quantum mechanical calculations
fail completely at predicting the experimental results at small scattering
angles; whereas, Eq. (8.55) predicts the correct scattering intensity as a
function of angle.

In the far field, the solution of the Schrödinger equation for the
amplitude of the scattered plane wave incident on a three dimensional
static potential field U(r ) is identical to Eq. (8.25) only if one assumes a
continuous distribution of scattering points and replaces the sum over l
in Eq. (8.25) with an integral over the scattering power f l  of point l
replaced by the instantaneous value of the potential at the same point.
This result is the basis of the failure of Schrödinger's interpretation that
Ψ(x)  is the amplitude of the electron in some sense which was
superseded by the Born interpretation that Ψ(x)  represents a probability
function of a point electron.  The Born interpretation can only be valid if
the speed of the electron is equal to infinity.  (The electron must be in
all positions weighted by the probability density function during the time
of the scattering event).  The correct aperture function for the Born
interpretation is a Dirac delta function, (r), having a Fourier transform
of a constant divided by s2  which is equivalent to the case of the point
nucleus (Rutherford Equation).  The Born interpretation must be
rejected because the electron velocity can not exceed c  without violating
Special Relativity.

Solutions to the Schrödinger equation involve the set of Laguerre
functions, spherical Bessel functions, and Newmann functions.  From the
infinite set of solutions to real problems, a linear combination of
functions and the amplitude and phases of these functions are sought
which gives results that are consistent with scattering experiments.  The
Schrödinger equation is a statistical model representing an
approximation to the actual nature of the bound electron.  Statistical
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models are good at predicting averages as exemplified by the reasonable
agreement between the calculated and experimental scattering results at
large angles.  However, in the limit of zero scattering angle, the results
calculated via the Schrödinger equation are not in agreement with
experimentation.  In the limit, the "blurred" representation can not be
averaged, and only the exact description of the electron will yield
scattering predictions which are consistent with the experimental
results.

Also, a contradiction arises in the quantum mechanical scattering
calculation.  For hydrogen electron orbitals, the n = ∞  orbital is
equivalent to an ionized electron.  According to the quantum mechanical
scattering model, the incident ionized electron is a plane wave.
However, substitution of n = ∞  into the solution of the Schrödinger
equation yields a radial function that has an infinite number of nodes
and exists over all space.  The hydrogen-like radial functions have   n − l −1
nodes between r = 0  and r = ∞ .  The results of the Davison-Germer
experiment confirm that the ionized electron is a plane wave.  In
contrast, for the present orbitsphere model, as n  goes to infinity the
electron is a plane wave with wavelength = h / p  as shown in the
Electron in Free Space Section.

Although there are parallels in the mathematical derivations
wherein the Schwartz inequality is invoked, the physics of the
Heisenberg Uncertainty Principle is quite distinct from the physics of the
rise-time/band-width relationship of classical mechanics [10] as given in
the Resonant Line Shape and Lamb Shift Section.  The Heisenberg
Uncertainty Principle is derived from the probability model of the
electron by applying the Schwartz inequality [9]; whereas, the rise-
time/band-width relationship of classical mechanics is an energy
conservation statement according to Parseval's Theorem.  The Born
model of the electron violates Special Relativity.  The failure of the Born
and Schrödinger model of the electron to provide a consistent
representation of the states of the electron from a bound state to an
ionized state to a scattered state also represents a failure of the
dependent Heisenberg Uncertainty Principle.

In contrast, the present exact orbitsphere model provides a
continuous representation of all states of the electron and is consistent
with the scattering experiments of helium.
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EXCITED STATES OF HELIUM

In the ground state of the helium atom, both electrons are at
r1 = 0.567ao  as given in the Two Electron Atom Section.  When a photon is
absorbed by the ground state helium atom, one electron can move to a
radius at r > r1 , the radius of electron one.  The photon will generate an
effective charge, ZP−eff , within the first orbitsphere to keep electron 1 at
the allowed radius 0.567ao .  We can determine ZP−eff  of the "trapped
photon" electric field by requiring that the force balance equation is
satisfied with the superposition of the electric fields of the nucleus and
the "trapped photon".  From Eqs. (1.56) and (1.153), the force balance
equation for electron one, at r1 = 0.567ao  is

  

mev
2

r1

=
h2

me 0.567ao

 
 
 

 
 
 

3 =
ZT − effe

2

4 0 0.567ao

 
 
 

 
 
 

2 (9.1)

ZT −eff = 1.7636 (9.2)
where ZT −eff  is the effective charge of the central field of the "trapped
photon" plus the nucleus.  The electric field of the nucleus for r < 0.567ao

is

Enucleus =
+2e

4 or
2 (9.3)

From Eq. (2.15), the equation of the electric field of the "trapped
photon" for r < 0.567ao , is

  
E r photon n,l ,m

= ZP− eff

e 0.567a0( )l

4 o

1

r1
l+2( ) Y0

0 ,( ) + Yl
m ,( )Re 1+ e i nt[ ][ ]

n = 0 for m = 0 (9.4)
The total central field for r < 0.567ao  is given by the sum of the electric
field of the nucleus and the electric field of the "trapped photon".

E total = Enucleus + Ephoton (9.5)
From Eqs. (9.2-9.5) and the force balance boundary condition at
r1 = 0.567ao , the electric field of the "trapped photon" for r < 0.567ao , is

  
E r photon n,l ,m

= −2 +1.7636[ ]e 0.567a0( )l

4 o

1

r1
l+2( ) Y0

0 ,( ) + Yl
m ,( ) Re 1+ e i nt[ ][ ]

n = 0 for m = 0 (9.6)
Substitution of Eqs. (9.3) and (9.6) into Eq. (9.5) gives for r < 0.567ao ,

  
E rtotal

=
2e

4 or1
2 − 0.2364

e 0.567a0( )l

4 o

1

r l+2( ) Y0
0 ,( ) + Yl

m ,( ) Re 1+ e i nt[ ][ ]
n = 0 for m = 0 (9.7)

Recall from Eq. (2.17) of the Excited States of the One Electron Atom
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(Quantization) Section that the solution of ZT −eff  of the boundary value
problem of "trapped photons" which excite modes in the orbitsphere

resonator cavity is 
Z'

n
.  In this case, Z' = Z −1 = 1 where Z  is the nuclear

charge.  Thus, for 0.567ao < r < r2  where r2  is the radius of electron 2,

  
E rtotal

=
e

4 or2
2

1

n
Y0

0 ,( ) + Yl
m ,( ) Re 1+ e i nt[ ][ ]

n = 0 for m = 0 (9.8)
The force balance equation for electron 2 is the same as the

equation derived to determine the ionization energies of two electron
atoms as given in the Two Electron Atom Section (Eq. (7.18)):

  

mev
2

r2

=
h2

mer2
3 =

1

n

e2

4 or2
2 +

1

2

1

n

h2

2mer2
3 s(s + 1) (9.9)

with the exception that the magnetic force is multiplied by one-half

because electron 1 is held at a fixed radius.  With s =
1

2
,

r2 = n −
s(s +1)

4

 
  

 
  ao              n = 2,3,4,... (9.10)

The energy stored in the electric field, Eele , is given by Eqs. (1.175)
and (1.176)

Eele = −
1

n

e2

8 or2

(9.11)

where r2  is given by Eq. (9.10).
The energy stored in the magnetic fields of two unpaired electrons

initially paired at radius r2 , Emag , is given by Eq. (7.30)

  
Emag =

2 oe
2h2

me
2r2

3 (9.12)

where r2  is given by Eq. (9.10).
Emagwork is the integral of the magnetic force (the second term on the

right side of Eq. (9.9) multiplied by two because with ionization, the
second term of Eq.(9.9) corresponds to the center of mass force balance
of electron two and electron one wherein the electron mass replaced by

the reduced mass 
1

2
me ):

  
Emagwork =

h2

2nmer
3 s(s +1)

∞

r2

∫ dr  (9.13)

where r2  is given by Eq. (9.10).
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Emagwork =
h2 s(s +1)

4nmea0
2 n −

s(s +1)

4

 

  
 

  

2 ;  s =
1

2
(9.14)

The magnetic transition energy, EHF , can be calculated from the
spin/spin coupling energy and the magnetic energy stored in the surface
currents produced by the "trapped resonant photon".  The spin/spin
coupling energy arises from the interaction of the magnetic moment
associated with the spin of one electron with the magnetic field
generated by the current produced by the spin motion of the other
electron.  The spin/spin coupling energy in the excited state between the
inner orbitsphere and the outer orbitsphere is given by Eq. (1.136)
where B , the magnetic moment of the outer orbitsphere is given by Eq.
(1.137).  The magnetic flux, B, of the inner orbitsphere at the position
of the outer is

  
B = oeh

2mer2
3 (9.15)

Substitution of Eq. (9.15) and (1.137) into Eq. (1.136) gives

  
E = 2g oe

2h2

4me
2r2

3 (9.16)

Photons obey Maxwell’s Equations.  At the two dimensional surface
of the orbitsphere containing a "trapped photon", the relationship
between the photon’s electric field and its two dimensional charge-
density at the orbitsphere is

n • E1 − E2( ) =
0

(9.17)

Thus, the photon’s electric field acts as surface charge.  According to Eq.
(9.17), the "photon standing wave" in the helium orbitsphere resonator
cavity gives rise to a two dimensional surface charge at the orbitsphere
two dimensional surface at r1

+ , infinitesimally greater than the radius of
the inner orbitsphere, and r2

− , infinitesimally less than the radius of the
outer orbitsphere.  For an electron in a central field, the magnitude of
the field strength of each excited state corresponding to a transition
from the state with n = 1 and radius r1 = 0.567ao  to the state with n = n  and

radius r2  is 
1

n
e  (Eq. (2.17)) as given in the Excited States of the One

Electron Atom (Quantization) Section.  The energy corresponding to the
surface charge which arises from the "trapped photon standing wave" is
given by the energy stored in the magnetic fields of the corresponding
currents.  The surface charge is given by Eq. (9.17) for a central field

strength equal in magnitude to 
1

n
e .  This surface charge possesses the
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same angular velocity as each orbitsphere; thus, it is a current with a
corresponding stored magnetic energy.  The energy corresponding to the
surface currents, Esc , is the sum of Emag , internal  and Emag ,external  for a charge of
1

n
e  substituted into Eqs. (1.125) and (1.127) for both electrons initially

at r1 .

  
Esc =

2

3
oe

2h2

n2 me
2r1

3 +
1

3
oe

2 h2

n2 me
2r1

3

 

  
 

  (9.18)

Esc , the magnetic surface current energy corresponding to absorbing a
photon such the second electron with principal quantum number n  is
ionized is given by multiplying Eq. (9.18) by the projection of the
electric fields-the ratio of the magnitude of the electric field for

0.567ao < r < r2 , 
1

n
, given by Eq. (9.8) to the magnitude of the electric field

change, 1 −
1

n
.

  

ESC =

1

n

1− 1
n

 
 

 
 

oe
2h2

n2me
2r1

3 =
1

n −1( )
oe

2h2

n2 me
2r1

3 (9.19)

The energy corresponding to the a singlet to triplet transition-the
hyperfine structure energy, EHF , is given by the sum of Eq. (9.16) and Eq.
(9.19)

  
EHF = 2g oe

2h2

4me
2r2

3 +
1

(n −1)
oe

2h2

n2me
2r1

3

 

  
 

  (9.20)

where r1 = 0.567ao  and r2  is given by Eq. (9.10).
The ionization energy of helium is given by Eq. (7.28).  The

ionization energy of triplet states with  = 0 is given as the sum of
Emagwork, (Eq. (9.14)), the energy to remove the second electron following
the absorption of an ionizing photon which flips the electrons such that
they are antiparallel, and the energies terms of Eq. (7.28) where Eele  is
given by Eq. (9.11) and Emag  is given by Eq. (9.12).  The ionization energy

of singlet states with  = 0 is given by the sum of Eele  (Eq. (9.11)) and
EHF  (Eq. (9.20)), the energy of the transition of the electrons from
antiparallel to parallel such that they repel each other; so, the second
electron is ionized.  The ionization energy of triplet states with   0 is
given by Eele  (Eq. (9.11)) minus the magnetic energy corresponding to
the spin and orbital angular energies which follow from Eq. (1.95): EHF

(Eq. (9.20)) is multiplied by the magnitude of the maximum spin
projection which follows from Eqs. (1.74) and (1.95) and the magnitude
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of the maximum orbital projection given by Eq. (1.95).  The ionization
energy of singlet states with   0 is given by Eele  (Eq. (9.11)) minus the
magnetic work energy corresponding to the orbital angular energy which
follows from Eq. (1.95): Emagwork (Eq. (9.14)) is multiplied by the
magnitude of the maximum orbital projection given by Eq. (1.95).  The
energy of the excited states of helium are given by the sum of the
component electric and magnetic energies and their interactions as
follows:

Excited States with   = Zero
1s2 =1s1 ns( )1 (9.21)

Triplet States
E = −Eele + Emagwork + Emag (9.22)

Singlet States
E = −Eele + EHF (9.23)

Excited States with   Zero
Triplet States

  
E = −Eele − s s +1( )+ l l +1( )

l2 + 2l +1

 

 

 
 
 

 

 

 
 
 
EHF ;  s =

1

2
(9.24)

Singlet States

  
E = −Eele −

l l +1( )
l2 + 2l +1

Emagwork (9.25)

Table 9.1 gives the orbital factor as a function of .
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Table 9.1.  Orbital factor
  

l l +1( )
l2 + 2l +1

 as a function of .

________________________________________________________________________

orbitsphere
  

l l +1( )
l2 + 2l +1

designation

0 s 0

1 p
1

2

2 d
2

3

3 f
3

4
________________________________________________________________________

Table 9.2 gives the radius of electron 2 and the energy terms as a
function of n .
Table 9.2.  The radius of electron 2 and the energy terms as a function of
n .

n = 1 n = 2 n = 3 n = 4
________________________________________________________________________

rn  (ao ) 0.567 1.7835 2.7835 3.7835

Eele –23.98 –3.813 –1.6286 –0.8986

Emag work 0 0.9257 0.2533 0.1028

Emag 0.63 0.02024 0.005 0.002

EHF 0 0.159 0.0354 0.0133
________________________________________________________________________

The magnetic splitting energies due to spin angular momentum and
orbital angular momentum are given by Eq. (2.40).  In the case that m >1

( > 1), the magnetic splitting is nonzero, and a spin/orbital coupling
energy arises from the surface currents corresponding to the "trapped
resonant photon" which gives rise to the net orbital angular momentum.
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The spin/orbital coupling energy arises from the interaction of the
magnetic moment associated with the orbital angular momentum of one
electron with the magnetic field generated by the current produced by
the orbital motion of the other electron.  From Eq. (2.40) and Eq. (9.18),
Es/ o , the spin/orbital coupling energy is

  
Es/ o =

l −1( )
n −1( )

2 oe
2 h2

n2 me
2r1

3 (9.26)

Spin/orbital coupling increases the ionization energy of singlet states
(mms < 0 ) and decreases the energy of triplet states (mms > 0 ) [1].  Table

9.3 gives the spin/orbital coupling energy terms as a function of n  and 
(Eq. (9.26)).

Table 9.3. The spin/orbital coupling energy terms as a function of n  and
.

n rn (ao ) Es/ o

________________________________________________________________________
Term
Designation
3D 3 2 2.7835 0.0354

4D 4 2 3.7835 0.0133

4F 4 3 3.7835 0.0266
________________________________________________________________________

An electrodynamic spin/orbital coupling energy arises from the
interaction of the magnetic moment associated with the spin of each
electron with the magnetic field generated by the current produced by
the electron's own orbital motion (Eq. (2.84)).

The energies of the various states of helium with spin-orbital
coupling corrections appear in Table 9.4.
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Table 9.4.  Calculated and experimental energies of excited states of
helium with spin-orbital coupling corrections.
________________________________________________________________________

Configuration Term Energy Energy
Designation (Calculated) (Experimental)

1s2 1S 24.59 24.59

1s12s1 3S 4.76 4.76
1s12s1 1S 3.97 3.97

1s12p1 3P 3.62 3.62
1s12p1 1P 3.35 3.36

1s13s1 3S 1.88 1.87
1s13s1 1S 1.66 1.66

1s13p1 3P 1.58 1.58
1s13p1 1P 1.51 1.51

1s13d1 3D 1.53 1.51
1s13d1 1D 1.50 1.51

1s14s1 3S 1.00 0.99
1s14s1 1S 0.91 0.91

1s14p1 3P 0.88 0.88
1s14p1 1P 0.85 0.85

1s14d1 3D 0.86 0.85
1s14d1 1D 0.85 0.85

1s14f1 3F 0.85 0.85
1s14f1 1F 0.85 0.85

________________________________________________________________________
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THE THREE ELECTRON ATOM

THE LITHIUM ATOM
For Li+ , there are two spin-paired electrons in an orbitsphere with

r1 = r2 = ao

1

2
−

3
4
6

 

 

 
 
 

 

 

 
 
 

(10.1)

as given by Eq. (7.19) where rn  is the radius of electron n  which has
velocity vn .  The next electron is added to a new orbitsphere because of
the repulsive diamagnetic force between the two spin-paired electrons
and the spin-unpaired electron.  This repulsive magnetic force arises
from the phenomenon of diamagnetism involving the magnetic field of
the outer spin-unpaired electron and the two spin-paired electrons of
the inner shell.  The diamagnetic force on the outer electron is
determined below.  The central force on each electron of the inner shell
due to the magnetic flux B of the outer electron follows from Purcell [1]

F =
2mevn∆v

r
(10.2)

where
∆v
r

=
eB

2me

(10.3)

The velocity vn  is given by the boundary condition for no radiation as
follows:

  
v1 =

h
mer1

(10.4)

where r1  is the radius of the first orbitsphere; therefore, the force on
each of the inner electrons is given as follows:

  
F =

heB
mer1

(10.5)

The change in magnetic moment, ∆m, of each electron of the inner shell
due to the magnetic flux B of the outer electron is [1]

∆m = −
e2r1

2B
4me

(10.6)

The diamagnetic force on the outer electron due to the two inner shell
electrons is in the opposite direction of the force given by Eq. (10.5),
and this diamagnetic force on the outer electron is proportional to the
sum of the changes in magnetic moments of the two inner electrons due
to the magnetic flux B of the outer electron. Because changes in the
magnetic moments are involved, the determination of the diamagnetic
force on the outer electron is simplified by considering the two inner
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electrons as a single entity of twice the mass.  The total change in
magnetic moments of the inner shell electrons due to the field of the
outer electron is then given by Eq. (10.6) where me  is replaced by 2me .  It
is then apparent that the force given by Eq. (10.5) is proportional to the
flux B of the outer electron; whereas, the total of the change in magnetic
moments of the inner shell electrons given by Eq. (10.6) applied to the
combination of the inner electrons is proportional to one eighth of the
flux, B.  Thus, the force on the outer electron due to the reaction of the
inner shell to the flux of the outer electron is given as follows:

  
Fdiamagnetic = −

h
8r1

eB
me

(10.7)

where r1  is the radial distance of the first orbitsphere from the nucleus.
The magnetic flux, B, is supplied by the constant field inside the
orbitsphere of the outer electron at radius r3  and is given by the product
of o  times Eq. (1.120).

  
B = oeh

mer3
3 (10.8)

The result of substitution of Eq. (10.8) into Eq. (10.7) is

  
Fdiamagnetic = −

e2
o

2mer3

 

  
 

  
h2

4mer1r3
2 (10.9)

The term in brackets can be expressed in terms of the fine structure
constant, .  From Eqs. (1.143-1.147)

e2
o

2mer3

= 2
v

c
(10.10)

It is demonstrated in the Two Electron Atom Section that the relativistic

correction to Eq. (10.9) is 
1

Z2

 times the reciprocal of Eq. (10.10).  Z2  for

electron three is one; thus, one is substituted for the term in brackets in
Eq. (10.9).

The force must be corrected for the vector projection of the
velocity onto the z-axis.  As given in the Spin Angular Momentum of the
Orbitsphere with   l = 0  Section, the application of a z directed magnetic
field of electron three given by Eq. (1.120) to the two inner orbitspheres
gives rise to a diamagnetic field and a projection of the angular
momentum of electron three onto an axis which precesses about the z-

axis of 
  

3

4
h .  The projection of the force between electron three and

electron one and two is equivalent to that of the angular momentum

onto the axis which precesses about the z-axis, and is s s +1( ) =
3

4
 times

that of a point mass.  Thus, Eq. (10.9) becomes
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Fdiamagnetic = −

h2

4mer3
2r1

s(s +1) (10.11)

THE RADIUS OF THE OUTER ELECTRON OF THE LITHIUM ATOM
The radius for the outer electron is calculated by equating the

outward centrifugal force to the sum of the electric and diamagnetic
forces as follows:

  

mev3
2

r3

=
e2

4 or3
2 −

h2

4mer3
2r1

s(s +1) (10.12)

With 
  
v3 =

h
mer3

 (Eq. (1.56), r1 = ao
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−

3
4

6

 

 

 
 
 

 

 

 
 
 

 (Eq. (7.19)), and s =
1

2
, we solve

for r3 .

r3 =
ao

1 − 3/ 4

4
1

2
− 3/ 4

6

 
 
  

 
 

 

 

 
 
 

 

 

 
 
 

(10.13)

r3 = 2.5559 ao

THE IONIZATION ENERGY OF LITHIUM
From Eq. (1.176), the energy stored in the electric field is

e2

8 or3

= 5.318 eV (10.14)

The magnetic field of the outer electron changes the angular velocities
of the inner electrons.  However, the magnetic field of the outer electron
provides a central Lorentzian force which exactly balances the change in
centripetal force because of the change in angular velocity [1].  Thus,
the electric energy of the inner orbitsphere is unchanged upon
ionization.  The magnetic field of the outer electron, however, also
changes the magnetic moment, m , of each of the inner orbitsphere
electrons.  From Eq. (10.6), the change in magnetic moment, ∆m , (per
electron) is

∆m = −
e2r1

2

4me

B (10.15)

where B is the magnetic flux of the outer electron given by the product
of o  times Eq. (1.120).
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B = oeh

mer3
3 (10.16)

Substitution of Eq. (10.16) and 2me  for me  (because there are two
electrons) into Eq. (10.15) gives

 
  
∆m = −

e2
o

2mer3

 

  
 

  
ehr1

2

4mer3
2 (10.17)

Furthermore, we know from Eqs. (10.9) and (10.11) that the term in
brackets is replaced by s(s +1) .

  
∆m = −

ehr1
2

4mer3
2 s(s +1) (10.18)

Substitution of Eq. (10.1) for r1 , Eq. (10.13) for r3 , and given that the
magnetic moment of an electron is one Bohr magneton according to Eq.
(1.99),

  
B =

eh
2me

, (10.19)

the fractional change in magnetic moment of an inner shell electron,
∆m f , is given as follows:

  

∆m f =

ehr1
2 s(s +1)

4mer3
2

eh
2me

(10.20)

=
1

2

r1
2

r3
2 s(s +1) (10.21)

With r1  given by Eq. (10.1), r3  given by Eq. (10.13), and s =
1

2
,
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∆m f =

1
2

ao
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2

(10.22)

∆m f = 0.01677

We add one (corresponding to m f ) to ∆m f  which is the fractional change
in the magnetic moment.  The energy stored in the magnetic field is
proportional to the magnetic field strength squared as given by Eq.
(1.122); thus, the sum is squared

(1.0168)2 = 1.03382 (10.23)
Thus, the change in magnetic energy of the inner orbitsphere is 3.382 % ,
or

0.3382 X 2.543 eV = 0.0860 eV (10.24)
where the magnetic energy for Helium from Eq. (7.30) which is given in
Table 7.1 is 2.543 eV .  And, the ionization energy is

E( ionization; Li) = 0.0860 eV + 5.3178 eV = 5.4038 eV (10.25)
The experimental ionization energy of lithium is 5.392 eV .

THREE ELECTRON ATOMS WITH THE NUCLEAR CHARGE Z>3
Three electron atoms having Z > 3 possess an electric field of

E =
(Z − 3)e

4 or3
2  (10.26)

for r > r3 .  For three electron atoms having Z > 3, the diamagnetic force
given by Eq. (10.11) is unchanged.  However, for three electron atoms
having Z > 3, an electric field exists for r > r3 .  This electric field gives rise
to an additional diamagnetic force term which adds to Eq. (10.11).  The
additional diamagnetic force is derived as follows.  The diamagnetic
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force repels the third (outer) electron, and the electric force attracts the
third electron.  Consider the reverse of ionization where the third
electron is at infinity and the two spin paired electrons are at r1 = r2  given
by Eq. (7.19).

Power must be conserved as the net force of the diamagnetic and
electric forces cause the third electron to move from infinity to its final
radius.  Power flow is given by the Poynting Power Theorem:

∇• (E × H) = −
t

1

2 oH • H 
 

 
 

−
t

1

2 oE •E 
 

 
 

− J • E (10.27)

During binding, the radius of electron three decreases.  The electric
force

Fele =
(Z − 2)e2

4 or3
2 (10.28)

increases the stored electric energy which corresponds to the power

term, −
t

1

2 oE •E 
 

 
 
, of Eq. (10.27).  The diamagnetic force given by Eq.

(10.7) changes the stored magnetic energy which corresponds to the

power term, −
t

1

2 oH • H 
 

 
 
, of Eq. (10.27).  An additional diamagnetic

force arises when Z −3 > 0 .  This diamagnetic force corresponds to that
given by Purcell [1] for a charge moving in a central field having an
imposed magnetic field perpendicular to the plane of motion.  The
second diamagnetic force Fdiamagnetic 2  is given by

Fdiamagnetic 2 = −2
me∆v2

r1

(10.29)

where ∆v is derived from Eq. (10.3).  The result of substitution of ∆v
into Eq. (10.29) is

Fdiamagnetic 2 = −
2me

r1

er1B
2me

 

  
 

  

2

(10.30)

The magnetic flux, B, at electron three for r < r3  is given by the product
of o  times Eq. (1.120).  The result of the substitution of the flux into Eq.
(10.30) is

  
Fdiamagnetic 2 = −2

e2
o

2mer3

 

  
 

  

2
r1h

2

mer3
4 (10.31)

The term in brackets can be expressed in terms of the fine structure
constant,  .  From Eqs. (1.143-1.147)

Z1e
2

o

2mer3

= 2 Z1

v

c
(10.32)

It is demonstrated in the One Electron Atom Section that the relativistic
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correction to Eq. (10.31) is 
1

Z2

 times the reciprocal of Eq. (10.32).  The

relativistic correction to Eq. (10.31) can be considered the product of
two corrections-a correction of electron three relative to electron one
and two and electron one and two relative to electron three.  In the
former case, Z1  and Z2 = 1 which corresponds to electron three.  In the
latter case, Z1 = Z − 3, and Z2 = Z − 2  which corresponds to r3

+ ,
infinitesimally greater than the radius of the outer orbitsphere and r3

− ,
infinitesimally less than the radius of the outer orbitsphere, respectively,

where Z  is the nuclear charge.  Thus, 
Z − 3

Z − 2
 is substituted for the term in

brackets in Eq. (10.31).  The force must be corrected for the vector
projection of the velocity onto the z-axis.  As given in the Spin Angular
Momentum of the Orbitsphere with   l = 0  Section, the application of a z
directed magnetic field of electron three given by Eq. (1.120) to the two
inner orbitspheres gives rise to a diamagnetic field and a projection of
the angular momentum of electron three onto an axis which precesses

about the z-axis of 
  

3

4
h .  The projection of the force between electron

three and electron one and two is equivalent to that of the angular
momentum onto the axis which precesses about the z-axis, and is

s s +1( ) =
3

4
 times that of a point mass.  Thus, Eq. (10.31) becomes

  
Fdiamagnetic 2 = −2

(Z − 3)r1h
2

(Z − 2)mer3
4 s(s +1) (10.33)

As given previously in the Two Electron Section, this force corresponds
to the dissipation term of Eq. (10.27), J •E .  The current J  is
proportional to the sum of one for the outer electron and two times
two-the number of spin paired electrons.  For the inner electrons, the
factor of two arises because they possess mutual inductance which
doubles their contribution to J .  (Recall the general relationship that the
current is equal to the flux divided by the inductance.)  Thus, the second
diamagnetic force is

  
Fdiamagnetic 2 = −2

Z −3

Z − 2
 
 

 
 
(1+ 4)r1h

2

mer3
4 s(s +1);   s =

1

2
(10.34)

  
Fdiamagnetic 2 = −

Z − 3

Z − 2
 
 

 
 

r1h
2

mer3
4 10 3/ 4 (10.35)

THE RADIUS OF THE OUTER ELECTRON OF THREE ELECTRON
ATOMS WITH THE NUCLEAR CHARGE Z>3
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The radius of the outer electron is calculated by equating the
outward centrifugal force to the sum of the electric and diamagnetic
forces as follows:

  

mev3
2

r3

=
(Z − 2)e2

4 or3
2 −

h2

4mer3
2r1

s(s +1) −
Z − 3

Z − 2
 
 

 
 

r1h
2

r3
4me

10 s(s +1)

(10.36)

With 
  
v3 =

h
mer3

 (Eq. (1.56), r1 = a0

1

Z −1
−

s s +1( )
Z Z −1( )

 

 
  

 
  (Eq. (7.19), and s =

1

2
, we

solve for r3  using the quadratic formulae or reiteratively.

r3 =
ao 1 +

Z − 3

Z − 2
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 ,  r1 in units of ao (10.37)

THE IONIZATION ENERGIES OF THREE ELECTRON ATOMS WITH
THE NUCLEAR CHARGE Z>3

The energy stored in the electric field, E  (electric), is

E(electric ) =
(Z − 2)e2

8 or3

 (10.38)

where r3  is given by Eq. (10.37).  The magnetic field of the outer
electron charges the angular velocities of the inner electrons.  However,
the magnetic field of the outer electron provides a central Lorentzian
field which balances the change in centripetal force because of the
change in angular velocity.  Thus, the electric energy of the inner
orbitsphere is unchanged upon ionization.  The change in the angular
velocities of the inner electrons upon ionization gives rise to a change in
kinetic energies of the inner electrons.  The change in velocity, ∆v, is
given by Eq. (10.3)

∆v =
er1B
2me

 (10.39)

Substitution of the flux, B, given by the product of o  and Eq. (1.120),
into Eq. (10.39) is

  
∆v =

e2
o

2mer1

 

  
 

  
r1

2h2

mer3
3 (10.40)

It is demonstrated in the One Electron Section and the Two Electron

Atom Section that the relativistic correction to Eq. (10.40) is 
1

Z2

 times

the reciprocal of the term in brackets.  In this case, Z2  corresponding to
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electron three is one; thus, one is substituted for the term in brackets in
Eq. (10.40).  Thus, Eq. (10.40) becomes,

  
∆v =

r1
2h2

r3
3me

(10.41)

where is r1  given by Eq. (7.19), and r3  is given by Eq. (10.37).  The change
in kinetic energy, ∆ET , of the two inner shell electrons is given by

∆ET = 2
1

2
m∆v2 (10.42)

The ionization energy is the sum of the electric energy, Eq. (10.38), and
the change in the kinetic energy, Eq. (10.42), of the inner electrons.

E(Ionization) = E(Electric ) + ET (10.43)
The ionization energies for several three electron atoms are given in
Table 10.1.
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____________________________________________________________________________

Table 10.1.  The calculated radii of the inner paired electrons and the
outer unpaired electron, electric energy of the outer electron,
change in kinetic energy of the two inner electrons, and
ionization energies for some three-electron atoms.

____________________________________________________________________________

Atom Z r1
a r3

b Electric ∆v d ∆ET
e Calculated Experimental

(ao ) (ao ) Energyc 104 (eV) Ionization Ionization

(eV) (m/sec) Energyf Energy [2]
(eV) (eV)

Li 3 0.567 2.556 5.318 - - 5.40 5.392

Be+ 4 0.261 1.498 18.16 4.44 0.0112 18.17 18.211

B2 + 5 0.207 1.078 37.86 7.51 0.032 37.9 37.93

C3+ 6 0.171 0.8459 64.33 10.58 0.064 64.4 64.492

N4+ 7 0.146 0.697 97.6 13.80 0.108 97.71 97.888

O5+ 8 0.127 0.593 137.6 16.95 0.163 137.76 138.116

F6+ 9 0.113 .516 184.56 20.37 0.236 184.8 185.182

Ne7+ 10 0.101 0.456 238.68 23.48 0.313 239.0 239.09

a from Equation (7.19)
b from Equation (10.37)
c from Equation (10.38)
d from Equation (10.41)
e from Equation (10.42)
f from Equation (10.43)
____________________________________________________________________________
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THE ELECTRON CONFIGURATION OF ATOMS

The electrons of multielectron atoms all exist as orbitspheres of
discrete radii which are given by rn  of the radical Dirac delta function,

(r − rn ) .  These electron orbitspheres may be paired or unpaired
depending on the force balance which applies to each electron.
Ultimately, the electron configuration must be a minimum of energy.
Minimum energy configurations are given by solutions to Laplace’s
Equation.  The general form of the solution is

  
Φ r, ,( ) = Bl, mr − l+1( )

m =−l

l

∑
l= 0

∞

∑ Yl
m ,( ) (11.1)

As demonstrated previously, this general solution gives the functions of
the resonant photons.  This general solution is also the minimum energy
configuration for any atom.  The configuration is given by the product of
this general solution and the sum of the Dirac delta functions
comprising the discrete radii of the electron orbitspheres.  In general,
the electron configuration of an atom approximately parallels that of the
excited modes of the helium atom:  1s < 2s < 2p < 3s < 3p < 3d < 4s < 4p
< 4d < 4f. (See Excited States of Helium Section.)

In general, electrons of an atom with the same principal and 
quantum numbers align parallel until each of the m   levels are

occupied, and then pairing occurs until each of the m  levels contain

paired electrons.  Exceptions occur due to the relative importance of
spin and orbital interactions and paramagnetic, diamagnetic, and
electric forces for a given atom or ion.
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THE NATURE OF THE CHEMICAL BOND OF HYDROGEN-TYPE MOLECULES
AND MOLECULAR IONS

Two hydrogen atoms react to form a diatomic molecule, the
hydrogen molecule.
 2H aH[ ] → H2 2c' = 2ao[ ] (12.1)

where 2c' is the internuclear distance.  Also, two hydrino atoms react to
form a diatomic molecule, a dihydrino molecule.

2H
aH

p

 
  

 
  → H2

* 2c' =
2ao

p

 
  

 
  (12.2)

where p is an integer.
Hydrogen molecules form hydrogen molecular ions when they are

singly ionized.
 H2 2c' = 2ao[ ] → H2 2c' = 2ao[ ]+

+ e − (12.3)

Also, dihydrino molecules form dihydrino molecular ions when
they are singly ionized.

H2
* 2c' =

2ao

p

 
  

 
  → H2

* 2c' =
2ao

p

 
  

 
  

+

+ e − (12.4)

HYDROGEN-TYPE MOLECULAR IONS
Each hydrogen-type molecular ion comprises two protons and an

electron where the equation of motion of the electron is determined by
the central field which is p  times that of a proton at each focus ( p  is one
for the hydrogen molecular ion, and p is an integer greater than one for
each dihydrino molecular ion).  The differential equations of motion in
the case of a central field are

m(˙ ̇ r − r ˙ 2 ) = f (r) (12.5)
m(2 ˙ r ̇  + r ˙ ̇ ) = 0 (12.6)

The second or transverse equation, Eq. (12.6), gives the result that the
angular momentum is constant.

r 2 ˙ = constant = L / m (12.7)
where L is the angular momentum (   h  in the case of the electron).  The
central force equations can be transformed into an orbital equation by

the substitution, u =
1

r
.  The differential equation of the orbit of a particle

moving under a central force is
2u

2 + u =
−1

mL2u2

m2

f (u−1) (12.8)

Because the angular momentum is constant, motion in only one plane
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need be considered; thus, the orbital equation is given in polar
coordinates.  The solution of Eq. (12.8) for an inverse square force

f (r) = −
k

r2 (12.9)

is

r = r0

1+ e

1+ e cos
(12.10)

e = A
m

L2

m2

k
(12.11)

r0 =
m

L2

m 2

k(1+ e)
(12.12)

where e  is the eccentricity of the ellipse and A  is a constant.  The
equation of motion due to a central force can also be expressed in terms
of the energies of the orbit.  The square of the speed in polar
coordinates is

 v2 = ( ˙ r 2 + r 2 ˙ 2 ) (12.13)
Since a central force is conservative, the total energy, E , is equal to the
sum of the kinetic, T , and the potential, V , and is constant.  The total
energy is

1

2
m(˙ r 2 + r2 ˙ 2 ) + V(r) = E =  constant (12.14)

Substitution of the variable u =
1

r
 and Eq. (12.7) into Eq. (12.14) gives the

orbital energy equation.
1

2
m

L2

m2
[(

2u
2
) + u2 ] + V(u-1) = E (12.15)

Because the potential energy function V(r) for an inverse square force
field is

V(r) =-
k

r
=- ku (12.16)

the energy equation of the orbit, Eq. (12.15),
1

2
m

L2

m2 [(
2u

2 ) + u2 ] − ku = E (12.17)

which has the solution

r =
m

L2

m2
k -1

1+[1+2 Em
L2

m2
k-2]1/2 cos

(12.18)

where the eccentricity, e , is

e = [1+ 2Em
L2

m2 k−2 ]1/2 (12.19)
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Eq. (12.19) permits the classification of the orbits according to the total
energy, E , as follows:

E < 0, e <1 closed orbits (ellipse or circle)

E = 0, e = 1 parabolic orbit

E > 0, e >1 hyperbolic orbit

Since E = T + V  and is constant, the closed orbits are those for which
T <|V| , and the open orbits are those for which T ≥|V| .  It can be shown
that the time average of the kinetic energy, < T > , for elliptic motion in
an inverse square field is 1/ 2  that of the time average of the potential
energy, < V > .  < T >= 1/ 2 < V > .

As demonstrated in the One Electron Atom Section, the electric
inverse square force is conservative; thus, the angular momentum of the
electron,   h , and the energy of atomic orbitspheres is constant.  In
addition, the orbitspheres are nonradiative when the boundary condition
is met.

The central force equation, Eq. (12.14), has orbital solutions which
are circular, elliptic, parabolic, or hyperbolic.  The former two types of
solutions are associated with atomic and molecular orbitals.  These
solutions are nonradiative.  The boundary condition for nonradiation
given in the One Electron Atom Section, is the absence of components of
the space-time Fourier transform of the charge-density function
synchronous with waves traveling at the speed of light.  The boundary
condition is met when the velocity for every point on the orbitsphere is

 
  
vn =

h
mern

(12.20)

The allowed velocities and angular frequencies are related to rn  by
vn = rn n (12.21)

  
n =

h
mern

2  (12.22)

As demonstrated in the One Electron Atom Section and by Eq. (12.22),
this condition is met for the product function of a radial Dirac delta
function and a time harmonic function where the angular frequency, ,
is constant and given by Eq. (12.22).

  
n =

h
mern

2 =

L

me

A
 (12.23)

where L  is the angular momentum and A  is the area of the closed
geodesic orbit.  Consider the solution of the central force equation
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comprising the product of a two dimensional ellipsoid and a time
harmonic function.  The spatial part of the product function is the
convolution of a radial Dirac delta function with the equation of an
ellipsoid.  The Fourier transform of the convolution of two functions is
the product of the individual Fourier transforms of the functions; thus,
the boundary condition is met for an ellipsoidal-time harmonic function
when

  
n =

h
meA

=
h

meab
  (12.24)

where the area of an ellipse is
A = ab (12.25)

where 2b is the length of the semiminor axis and 2a is the length of the
semimajor axis.  The geometry of molecular hydrogen is elliptic with the
internuclear axis as the principal axis; thus, the electron orbital is a two
dimensional ellipsoidal-time harmonic function.  The mass follows
geodesics time harmonically as determined by the central field of the
protons at the foci.  Rotational symmetry about the internuclear axis
further determines that the orbital is a prolate spheroid.  In general,
ellipsoidal orbits of molecular bonding, hereafter referred to as
ellipsoidal molecular orbitals (M. O. ‘s), have the general equation

x2

a2
+

y2

b2
+

z2

c2
=1 (12.26)

The semiprincipal axes of the ellipsoid are a,  b, c .
In ellipsoidal coordinates the Laplacian is

( - )R (R )+ ( - )R (R )+( - )R (R ) = 0 (12.27)

An ellipsoidal M. O. is equivalent to a charged conductor whose surface
is given by Eq. (12.26).  It carries a total charge q , and it's potential is a
solution of the Laplacian in ellipsoidal coordinates, Eq. (12.27).

Excited states of orbitspheres are discussed in the Excited States of
the One Electron Atom (Quantization) Section.  In the case of ellipsoidal
M. O. ‘s, excited electronic states are created when photons of discrete
frequencies are trapped in the ellipsoidal resonator cavity of the M. O.
The photon changes the effective charge at the M. O. surface where the
central field is ellipsoidal and arises from the protons and the effective
charge of the "trapped photon" at the foci of the M. O.  Force balance is
achieved at a series of ellipsoidal equipotential two dimensional surfaces
confocal with the ground state ellipsoid.  The "trapped photons" are
solutions of the Laplacian in ellipsoidal coordinates, Eq. (12.27).

As is the case with the orbitsphere, higher and lower energy states
are equally valid.  The photon standing wave in both cases is a solution
of the Laplacian in ellipsoidal coordinates.  For an ellipsoidal resonator
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cavity, the relationship between an allowed circumference, 4aE , and the
photon standing wavelength, , is

4aE = n (12.28)
where n  is an integer and where

k =
a2 − b2

a
(12.29)

is used in the elliptic integral E  of Eq. (12.28).  Applying Eqs. (12.28)
and (12.29), the relationship between an allowed angular frequency
given by Eq. (12.24) and the photon standing wave angular frequency,

, is:

  

h
meA

=
h

mena1nb1

=
h

meanbn

=
1

n2 1 = n (12.30)

where n = 1,2,3,4,...

n =
1

2
,
1

3
,
1

4
,...

1 is the allowed angular frequency for n = 1
a1 and b1  are the allowed semimajor and semiminor axes for n = 1

Let us compute the potential of an ellipsoidal M. O. which is
equivalent to a charged conductor whose surface is given by Eq. (12.26).
It carries a total charge q , and we assume initially that there is no
external field.  We wish to know the potential, , and the distribution of
charge, , over the conducting surface.  To solve this problem a
potential function must be found which satisfies Eq. (12.27), which is
regular at infinity, and which is constant over the given ellipsoid.  Now 
is the parameter of a family of ellipsoids all confocal with the standard
surface = 0  whose axes have the specified values a,  b, c .  The variables

 and  are the parameters of confocal hyperboloids and as such serve
to measure position on any ellipsoid = constant .  On the surface = 0 ;
therefore,  must be independent of  and .  If we can find a function
depending only on  which satisfies Eq. (12.27) and behaves properly at
infinity, it can be adjusted to represent the potential correctly at any
point outside the ellipsoid = 0 .

Let us assume, then, that = ( ) .  The Laplacian reduces to

 (R ) = 0 R = ( + a2 )( + b2)( + c2 ) (12.31)

which on integration leads to

( ) = C1 R

∞

∫  (12.32)

where C1  is an arbitrary constant.  The choice of the upper limit is such
as to ensure the proper behavior at infinity.  When  becomes very
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large, R  approaches 3/2  and

~
2C1

                                                              ( → ∞) (12.33)

On the other hand, the equation of an ellipsoid can be written in the
form

x2

1 + a2 +
y2

1 + b2 +
z2

1+ c2 = (12.34)

If r 2 = x2 + y2 + z 2  is the distance from the origin to any point on the
ellipsoid , it is apparent that as  becomes very large → r2  and hence
at great distances from the origin

~
2C1

r
 (12.35)

The solution Eq. (12.32) is, therefore, regular at infinity.  Moreover Eq.
(12.35) enables us to determine at once the value of C1 ; for it has been
shown that whatever the distribution, the dominant term of the
expansion at remote points is the potential of a point charge at the
origin equal to the total charge of the distribution - in this case q .

Hence C1 =
q

8 o

, and the potential at any point is

( ) =
q

8 o

∞

∫ R
 (12.36)

The equipotential surfaces are the ellipsoids = constant .  Eq. (12.36) is a
elliptic integral and its values have been tabulated [1].

To obtain the normal derivative we must remember that distance
along a curvilinear coordinate u1  is measured not by du1  but by h1du1.  In
ellipsoidal coordinates

h1 =
1

2

( − )( − )
R

(12.37)

n
=

1

h1

=
−q

4 o

1

( − )( − )
(12.38)

The density of charge, , over the surface = 0  is

= o (
n

) = 0 =
q

4
(12.39)

Defining x,  y,  z  in terms of ,  ,   we put = 0 , it may be easily verified
that

x2

a4 +
y2

b4 +
z2

c4 =
a2b2c2                                        ( = 0) (12.40)

Consequently, the charge-density in rectangular coordinates is
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=
q

4 abc

1

(
x2

a4
+

y2

b4
+

z 2

c4
)

 (12.41)

(The mass density function of an M. O. is equivalent to its charge-density
function where m  replaces q  of Eq. (12.41)).  The equation of the plane
tangent to the ellipsoid at the point x0 , y0,  z0  is

X
x0

a
2 + Y

y0

b
2 + Z

z0

c
2 = 1 (12.42)

where X, Y , Z  are running co-ordinates in the plane.  After dividing
through by the square root of the sum of the squares of the coefficients
of X, Y , and Z , the right member is the distance D  from the origin to the
tangent plane.  That is,

D =
1

(
x2

a4
+

y2

b4
+

z2

c4
)

(12.43)

so that

=
q

4 abc
D (12.44)

In other words, the surface density at any point on a charged ellipsoidal
conductor is proportional to the perpendicular distance from the center
of the ellipsoid to the plane tangent to the ellipsoid at the point.  The
charge is thus greater on the more sharply rounded ends farther away
from the origin.

In the case of hydrogen-type molecules and molecular ions,
rotational symmetry about the internuclear axis requires that two of the
axes be equal.  Thus, the M. O. is a spheroid, and Eq. (12.36) can be
integrated in terms of elementary functions.  If a > b = c , the spheroid is
prolate, and the potential is given by

=
1

8 o

q

a2 − b2
ln

+ a2 + a2 − b2

+ a2 − a2 − b2
(12.45)

Spheroidal Force Equations
Electric Force

The spheroidal M. O. is a two dimensional surface of constant
potential given by Eq. (12.45) for = 0 .  For an isolated electron M. O.
the electric field inside is zero as given by Gauss’ Law

S
∫ EdA =

V
∫

o

dV (12.46)

where the charge-density, , inside the M. O. is zero.  Gauss’ Law at a
two dimensional surface is
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n • E1 − E2( ) =
0

 (12.47)

E2  is the electric field inside which is zero.  The electric field of an
ellipsoidal M. O. is given by substituting  given by Eq. (12.38) and Eq.
(12.39) into Eq. (12.47).

E =
o

=
q

4 o

1

( − )( − )
(12.48)

The electric field in spheroid coordinates is

E =
q

8 o

1

+ a2

1

+ b2

1

c

2 −1
2 −

(12.49)

From Eq. (12.30), the magnitude of the elliptic field corresponding
to a below "ground state" hydrogen-type  molecular ion is an integer.
The integer is one in the case of the hydrogen molecular ion and an
integer greater than one in the case of each dihydrino molecular ion.
The central electric force from the two protons, Fe , is

Fe = ZeE =
p2e2

8 o

1

+ a2

1

+ b2

1

c

2 −1
2 −

(12.50)

where p  is one for the hydrogen molecular ion, and p  is an integer
greater than one for each dihydrino molecule and molecular ion.

Centripetal Force
Each infinitesimal point mass of the electron M. O. moves along a

geodesic orbit of a spheroidal M. O. in such a way that its eccentric
angle, , changes at a constant rate.  That is = t  at time t  where  is a
constant, and

 r( t) = ia cos t + jbsin t (12.51)
is the parametric equation of the ellipse of the geodesic.  If a( t) denotes
the acceleration vector, then

a( t) =− 2r(t) (12.52)
In other words, the acceleration is centripetal as in the case of circular
motion with constant angular speed .  The centripetal force, Fc , is

Fc = ma = −m 2r (t) (12.53)
Recall that nonradiation results when = constant  given by Eq. (12.30).
Substitution of  given by Eq. (12.30) into Eq. (12.53) gives

  
Fc =

−h2

mea
2b2 r (t) =

−h2

mea
2b2 D (12.54)

where D  is the distance from the origin to the tangent plane as given by
Eq. (12.43).  If X  is defined as follows

X =
1

+ a2

1

+ b2

1

c

2 −1
2 −  (12.55)
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Then, it follows from Eqs. (12.38), (12.44), (12.48), and (12.50) that
D = 2ab2 X (12.56)

FORCE BALANCE OF HYDROGEN-TYPE MOLECULAR IONS
Force balance between the electric and centripetal forces is

 
  

h2

mea
2b2 2ab2X =

pe2

4 o

X (12.57)

which has the parametric solution given by Eq. (12.51) when

a =
2a0

p
. (12.58)

ENERGIES OF HYDROGEN-TYPE MOLECULAR IONS
From Eq. (12.30), the magnitude of the elliptic field corresponding

to a below "ground state" hydrogen-type molecule is an integer, p .  The
potential energy, Ve , of the electron M. O. in the field of magnitude p

times that of the protons at the foci ( = 0 ) is

Ve =
−4pe2

8 o a2 − b2
ln

a + a2 − b2

a − a2 − b2
 (12.59)

where
a2 − b2 = ′ c (12.60)

2c'  is the distance between the foci which is the internuclear distance.
The kinetic energy, T , of the electron M. O. is given by the integral of
the left side of Eq. (12.57)

  
T =

2h2

mea a2 − b2
ln

a + a2 − b2

a − a2 − b2
 (12.61)

From the orbital equations in polar coordinates, Eqs. (12.10-12.12), the
following relationship can be derived:

a =
m

L2

m2

k(1− e2 )
(12.62)

For any ellipse,
b = a 1− e2 (12.63)

Thus,

b = a

L2

m2
m

ka
   (polar coordinates) (12.64)

Using Eqs. (12.54) and (12.61), and (12.16) and (12.61), respectively, it
can be appreciated that b of polar coordinates corresponds to
c' = a2 − b2  of elliptic coordinates, and k  of polar coordinates with one
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attracting focus is replaced by 2k  of elliptic coordinates with two
attracting foci.  In elliptic coordinates, k  is given by Eq. (12.48) and
(12.50)

k =
2 pe2

4 o

(12.65)

and L  for the electron equals   h ; thus, in elliptic coordinates

  
c' = a

h2 4 o

me2 2pa
=

aa0

2p
 (12.66)

Substitution of a  given by Eq. (12.58) into Eq. (12.66) is

′ c =
a0

p
(12.67)

The internuclear distance from Eq. (12.67) is 2c' =
2ao

p
.  One half the

length of the semiminor axis of the prolate spheroidal M. O., b = c , is
b = a2 − ′ c 2  (12.68)

Substitution of a =
2ao

p
 and c' =

ao

p
 into Eq. (12.68) is

b =
3

p
ao  (12.69)

The eccentricity, e , is

e =
c'

a
(12.70)

Substitution of a =
2ao

p
 and c' =

ao

p
 into Eq. (12.70) is

e =
1

2
(12.71)

The potential energy, Vp , due to proton-proton repulsion in the field of
magnitude p  times that of the protons at the foci ( = 0 ) is

Vp =
pe2

8 o a2 − b2
(12.72)

Substitution of a  and b  given by Eqs. (12.58) and (12.69), respectively,
into Eqs. (12.59), (12.61), and (12.72) is

Ve =
−4 p2e2

8 oao

ln3 (12.73)

Vp =
p2e2

8 oao

(12.74)

T =
2p2e2

8 oao

ln3 (12.75)

ET = Ve + Vp + T (12.76)
ET = 13.6 eV(−4 p2 ln3 + p2 + 2 p2 ln3) (12.77)
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The bond dissociation energy, ED , is the difference between the total
energy of the corresponding hydrogen atom or hydrino atom and ET .

ED = E(H
aH

p

 
  

 
  ) − ET (12.78)

VIBRATION OF HYDROGEN-TYPE MOLECULAR IONS
It can be shown that a perturbation of the orbit determined by an

inverse square force results in simple harmonic oscillatory motion of the
orbit.  For the case of a circular orbit of radius a, an approximation of
the angular frequency of this oscillation is

=

−3

a
f a( ) + f ' a( ) 

 
 
 

m
=

k

m
(12.79)

Oscillating charges radiate.  However, molecules and molecular ions
including the hydrogen molecule, the hydrogen molecular ion, dihydrino
molecules, and dihydrino molecular ions demonstrate nonradiative zero
order vibration which is time harmonic oscillation of the position of the
protons along the principal axis.  The protons are located at the foci,
and nonradiation is due to the geometry of the ellipse where the
electron M. O. is ellipsoidal.  A fundamental property of an ellipse is that
a light ray emitted from a focus in any direction is reflected off of the
ellipse to the other focus, and the sum of the lengths of the ray paths is
constant, 2a.  An oscillating charge r0 (t) = dsin 0t  has a Fourier spectrum

J(k, ) =
q 0d

2
Jm(k cos d){ [ − (m +1) 0 ] + [ − (m − 1) 0 ]} (12.80)

where Jm' s  are Bessel functions of order m .  These Fourier components
can, and do, acquire phase velocities that are equal to the velocity of
light.  Consider two oscillating charges at the foci of an ellipsoidal
resonator cavity, an ellipsoidal M. O.  A nonradiative standing
electromagnetic wave can be excited which has higher order harmonics
in addition to the fundamental frequency as given in Eq. (12.80).  This
nonradiative standing wave gives rise to zero order vibration of the
molecule.  The zero order mode is a standing wave with destructive
interference of all harmonics of the fundamental frequency, 0 .  A ray
undergoes a 180°  phase shift upon reflection, and the protons oscillate in
opposite relative directions.  Thus, mutual destructive interference
occurs when x , the distance from one focus to the other for a reflected
ray is equal to a wavelength, , where  is

=
h

mv
 (12.81)

It follows that
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v =
h

m
=

h

mx
(12.82)

For time harmonic motion,

v = vaverage =
vmaximum

2
(12.83)

The kinetic energy, T , is given by

T =
1

2
mv2 (12.84)

The vibrational energy of the protons, EPvib , is equal to the maximum
vibrational kinetic energy of the protons.  Substitution of Eqs. (12.82)
and (12.83) into Eq. (12.84) and multiplication by two corresponding to
the two protons is

T = Tmax = 2
1

2
m

h2

m 2x2 ( 2)2 = 2
h2

mx2 (12.85)

The vibrational energy is the sum of the vibrational energy of the
electron M. O. and that of the protons which are equal.

Evib =
4h2

mx2 (12.86)

where m  is the sum of the masses of the protons, each of mass m p .
m = mp (12.87)

And, X  is 2a.  Thus, the vibrational energy is

Evib =
h2

m pa
2 (12.88)

For a  in units of ao ,

Evib =
0.59

a2  eV (12.89)

The time average internuclear distance is increased by the zero order
vibration because the total energy versus internuclear distance function
is asymmetrical with a lower slope for internuclear distances greater
than the internuclear distance at which the total energy is a minimum.
Elongation occurs along the principal axis, and shifts the total energy
versus internuclear distance function to a new function which includes
the contribution due to vibration.  The perturbation of ET , the total
energy of the M. O. given by Eq. (12.76) with a fractional increase in the
semimajor axis, a , and the reciprocal decrease in the semiminor axis, b
is calculated by reiteration.  The angular frequency of the M.O. given by
Eq. (12.24) is unchanged when a  and b  are changed by reciprocal
fractions.  The corrected a  and b  are obtained when the change in ET  is
equal to the vibrational energy.  The vibrational energy is the sum of two
equal components, the vibrational energy of the protons and the
vibrational energy of the electron M. O.  Vibration causes a
redistribution of energy within the molecule.  The M.O. potential and
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kinetic energy terms given by Eqs. (12.59), (12.61), and (12.72) add 
radians out of phase with the potential and kinetic energies of vibration;
thus, the energy of the molecule will decrease by this amount which is
equal to one half the vibrational energy.  An x% increase in the
semimajor axis and the reciprocal decrease in the semiminor axis
decreases ET  by the vibrational energy and releases energy equal to one
half vibrational energy.

Substitution of a = (1+
x

100
)
2ao

p
 and b =

1

(1+ x
100

)

3

p
ao   into Eqs. (12.73),

(12.74), (12.75), and (12.76) and (12.78) with the reduction of the
total energy by one half the vibrational energy is

ED = E(H
aH

p

 
  

 
  ) − ETzeroorder

−
Evib

2
(12.90)

Eq. (12.90) is the bond dissociation energy where Evib  is given by Eq.

(12.91).  Substitution of a = (1+
x

100
)
2ao

p
 into Eq. (12.89) is

Evib =
0.59

(1+ x
100

)
2ao

p

 
  

 
  

2  eV (12.91)

HYDROGEN-TYPE MOLECULES

FORCE BALANCE OF HYDROGEN-TYPE MOLECULES
Hydrogen-type molecules comprise two indistinguishable electrons

bound by an elliptic field.  Each electron experiences a centrifugal force,
and the balancing centripetal force (on each electron) is produced by
the electric force between the electron and the elliptic electric field and
the magnetic force between the two electrons causing the electrons to
pair.  In the present case of hydrogen-type molecules, if the eccentricity

equals 
1

2
 , then the vectorial projection of the magnetic force between

the electrons, 
3

4
 of Eq. (7.15) of the Two Electron Atom Section, is one.

The molecules will be solved by self consistency.  Assume e =
1

2
, then

the force balance equation given by Eq. (7.18) of the Two Electron Atom
Section and Eq. (12.57) is

 
  

h2

mea
2b2 2ab2X =

pe2

4 o

X +
h2

2mea
2b2 2ab2 X (12.92)
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2ao

pa
−

ao

pa
= 1 (12.93)

a =
ao

p
(12.94)

Substitution of Eq. (12.94) into (12.66) is

′ c =
1

p 2
ao (12.95)

Substitution of Eqs. (12.94) and (12.95) into Eq. (12.68) is

b = ′ c =
1

p 2
ao (12.96)

Substitution of Eqs. (12.94) and (12.95) into Eq. (12.70) is

e =
1

2
(12.97)

The eccentricity is 
1

2
 ; thus, the present self consistent solution which

was obtained as a boundary value problem is correct.  The internuclear

distance given by multiplying Eq. (12.95) by two is 
ao 2

p
.

ENERGIES OF HYDROGEN-TYPE MOLECULES
The energy components defined previously for the molecular ion,

Eqs. (12.73-12.77), apply in the case of the corresponding molecule.
And, each molecular energy component is given by the integral of
corresponding force in Eq. (12.92) where each energy component is the
total for the two equivalent electrons.  The parameters a  and b  are given
by Eqs. (12.94) and (12.96), respectively.

Ve =
−2 pe2

8 o a2 − b2
ln

a + a2 − b2

a − a2 − b2
(12.98)

Vp =
p

8 o

e2

a2 − b2
 (12.99)

  
T =

h2

2mea a2 − b2
ln

a + a2 − b2

a − a2 − b2
(12.100)

The energy, Vm , corresponding to the magnetic force of Eq. (12.92) is

  
Vm =

−h2

4mea a2 − b2
ln

a + a2 − b2

a − a2 − b2
(12.101)

ET = Ve + T + Vm + Vp (12.102)

ET = −13.6 eV 2 p2 2 − p2 2 +
p2 2

2

 
 
  

 
 ln

2 +1

2 −1
− p2 2

 

  
 

  (12.103)
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E(2 H
aH

p

 
  

 
  ) = −2p213.6 eV (12.104)

The bond dissociation energy, ED , is the difference between the total
energy of the corresponding hydrogen atoms or hydrino atoms and ET .

ED = E(2H
aH

p

 
  

 
  ) − ET (12.105)

VIBRATION OF HYDROGEN-TYPE MOLECULES
As in the case of the hydrogen-type molecular ion, the time

averaged internuclear distance is increased by the zero order molecular
vibration.  A y% increase in the semimajor axis and the reciprocal
decrease in the semiminor axis releases energy which is equal to one half

the vibrational energy.  Substitution of a = (1+
y

100
)
ao

p
 and b =

1

(1+ y
100

)

1

p 2
ao

into Eqs. (12.98-12.105) with the reduction of the total energy by one
half the vibrational energy is

ED = E(2H
aH

p

 
  

 
  ) − ET zeroorder

−
Evib

2
(12.106)

Eq. (12.106) is the bond dissociation energy where Evib  is given by Eq.

(12.107).  Substitution of a = (1+
y

100
)
ao

p
 into Eq. (12.89) is

Evib =
0.59

(1+ y
100

)
ao

p

 
  

 
  

2  eV (12.107)

THE HYDROGEN MOLECULAR ION H2 2c' = 2ao[ ]+

FORCE BALANCE OF THE HYDROGEN MOLECULAR ION
Force balance between the electric and centripetal forces is given

by Eq. (12.57) where p = 1

  

h2

mea
2b2 2ab2X =

e2

4 o

X (12.108)

which has the parametric solution given by Eq. (12.51) when
a = 2ao (12.109)

The semimajor axis, a , is also given by Eq. (12.58) where p = 1.  The
internuclear distance, 2c' , which is the distance between the foci is given
by Eq. (12.67) where p = 1.

2c' = 2ao (12.110)
The experimental internuclear distance is 2ao .  The semiminor axis is



© 2000 by BlackLight Power, Inc.  All rights reserved.
250

given by Eq. (12.69) where p = 1.
b = 3ao (12.111)

The eccentricity, e , is given by Eq. (12.71).

e =
1

2
(12.112)

ENERGIES OF THE HYDROGEN MOLECULAR ION
The potential energy, Ve , of the electron M. O. in the field of the

protons at the foci ( = 0 ) is given by Eq. (12.59) where p = 1

Ve =
−4e2

8 o a2 − b2
ln

a + a2 − b2

a − a2 − b2
 (12.113)

The potential energy, Vp , due to proton-proton repulsion is given by Eq.
(12.72) where p = 1

Vp =
e2

8 o a2 − b2
 (12.114)

The kinetic energy, T , of the electron M. O. is given by Eq. (12.61) where
p = 1

  
T =

2h2

mea a2 − b2
ln

a + a2 − b2

a − a2 − b2
(12.115)

Substitution of a  and b  given by Eqs. (12.109) and (12.111),
respectively, into Eqs. (12.113), (12.114), and (12.115) is

Ve =
−4e2

8 o ao

ln3 =−59.763 eV (12.116)

Vp =
e2

8 oao

= 13.6 eV (12.117)

T =
2e2

8 oao

ln3 = 29.88 eV (12.118)

ET = Ve + Vp + T   (12.119)
ET = −16.282 eV (12.120)
E(H aH[ ]) = −13.6 eV

ET = Ve + Vp + T (12.121)
ET = 13.6 eV(−4ln3 +1+ 2ln3) (12.122)

The bond dissociation energy, ED , is the difference between the total
energy of the corresponding hydrogen atom and ET .

ED = E(H aH[ ]) − ET = 2.68eV (12.123)
Eqs. (12.116-12.123) are equivalent to Eqs. (12.73-12.78) where p = 1.

VIBRATION OF THE HYDROGEN MOLECULAR ION
It can be shown that a perturbation of the orbit determined by an
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inverse square force results in simple harmonic oscillatory motion of the
orbit.  Zero order vibration arises because the state is nonradiative and
is an energy minimum.  The time average internuclear distance is
increased by the zero order vibration.  A 0.1% increase in the semimajor
axis and the reciprocal decrease in the semiminor axis decreases ET  by
the vibration energy and releases energy equal to one half the
vibrational energy.  Substitution of a = 2.002 ao  and b = 1.7303 ao  into Eqs.
(12.113), (12.114), (12.115), and (12.121) and (12.123) with the
reduction of the total energy by one half the vibrational energy is

ED = E(H aH[ ]) − ETzeroorder
−

Evib

2
= 2.76 eV (12.124)

Eq. (12.124) is the bond dissociation energy where Evib  is given by Eq.
(12.125).  The experimental value is 2.78 eV .  Substitution of a = 2.002 ao

into Eq. (12.89) is
Evib = 0.147 eV (12.125)

THE HYDROGEN MOLECULE H2 2c' = 2ao[ ]
FORCE BALANCE OF THE HYDROGEN MOLECULE

The force balance equation for the hydrogen molecule is given by
Eq. (12.92) where p = 1

  

h2

mea
2b2 2ab2X =

e2

4 o

X +
h2

2mea
2b2 2ab2 X (12.126)

which has the parametric solution given by Eq. (12.51) when
a = a

o . (12.127)
The semimajor axis, a , is also given by Eq. (12.94) where p = 1.  The
internuclear distance, 2c' , which is the distance between the foci is given
by Eq. (12.95) where p = 1.

2c' = 2ao (12.128)
The experimental internuclear distance is 2ao .  The semiminor axis is
given by Eq. (12.96) where p = 1.

b =
1

2
ao (12.129)

The eccentricity, e , is given by Eq. (12.97).

e =
1

2
(12.130)

The finite dimensions of the hydrogen molecule are evident in the
plateau of the resistivity versus pressure curve of metallic hydrogen [2].

ENERGIES OF THE HYDROGEN MOLECULE
The energies of the hydrogen molecule are given by Eqs. (12.98-
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12.104) where p = 1

Ve =
−2e2

8 o a2 − b2
ln

a + a2 − b2

a − a2 − b2
= −67.813 eV (12.131)

Vp =
e2

8 o a2 − b2
=19.23 eV (12.132)

  
T =

h2

2mea a2 − b2
ln

a + a2 − b2

a − a2 − b2
= 33.906 eV (12.133)

The energy, Vm , of the magnetic force is

  
Vm =

−h2

4mea a2 − b2
ln

a + a2 − b2

a − a2 − b2
= −16.9533 eV (12.134)

ET = Ve + T + Vm + Vp (12.135)

ET = −13.6 eV 2 2 − 2 +
2

2

 
 
  

 
 ln

2 +1

2 −1
− 2

 

  
 

  = −31.63 eV (12.136)

E(2 H aH[ ]) = −27.21 eV (12.137)
The bond dissociation energy, ED , is the difference between the total
energy of the corresponding hydrogen atoms and ET .

ED = E(2H aH[ ]) − ET = 4.43 eV (12.138)

VIBRATION OF THE HYDROGEN MOLECULE
As in the case of the hydrogen molecular ion, the time averaged

internuclear distance is increased by the zero order molecular vibration.
A 0.7%  increase in the semimajor axis and the reciprocal decrease in the
semiminor axis releases energy which is equal to one half the vibrational
energy.  Substitution of a = 1.007 ao  and b = 0.702 ao  into Eqs. (12.131-
12.138) with the reduction of the total energy by one half the
vibrational energy is

ED = E(2H aH[ ]) − ET zeroorder
−

Evib

2
=−27.21 + 31.94 = 4.73 eV (12.139)

Eq. (12.139) is the bond dissociation energy where Evib  is given by Eq.
(12.140).  The experimental value is 4.75 eV .  Substitution of a = 1.007 ao

into Eq. (12.89) is
Evib = 0.582 eV (12.140)

The experimental value is 0.55 eV  which is calculated using the quantum
harmonic oscillator approximation with the experimental value of the
first vibrational transition.

THE DIHYDRINO MOLECULAR ION H2
* 2c' = ao[ ]+
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FORCE BALANCE OF THE DIHYDRINO MOLECULAR ION
Force balance between the electric and centripetal forces is given

by Eq. (12.57) where p = 2

 
  

h2

mea
2b2 2ab2X =

2e2

4 o

X (12.141)

which has the parametric solution given by Eq. (12.51) when
a = a

o . (12.142)
The semimajor axis, a , is also given by Eq. (12.58) where p = 2 .  The
internuclear distance, 2c' , which is the distance between the foci is given
by Eq. (12.67) where p = 2 .

2c' = ao (12.143)
The semiminor axis is given by Eq. (12.69) where p = 2 .

b =
3

2
ao  (12.144)

The eccentricity, e , is given by Eq. (12.71).

e =
1

2
(12.145)

ENERGIES OF THE DIHYDRINO MOLECULAR ION
The potential energy, Ve , of the electron M. O. in the field of

magnitude twice that of the protons at the foci ( = 0 ) is given by Eq.
(12.59) where p = 2

Ve =
−8e2

8 o a2 − b2
ln

a + a2 − b2

a − a2 − b2
 (12.146)

The potential energy, Vp , due to proton-proton repulsion in the field of
magnitude twice that of the protons at the foci ( = 0 ) is given by Eq.
(12.72) where p = 2

Vp =
2e2

8 o a2 − b2
 (12.147)

The kinetic energy, T , of the electron M. O. is given by Eq. (12.61) where
p = 2

 
  
T =

2h2

mea a2 − b2
ln

a + a2 − b2

a − a2 − b2
(12.148)

Substitution of a  and b  given by Eqs. (12.142) and (12.144),
respectively, into Eqs. (12.146), (12.147), and (12.148) is

Ve =
−16e2

8 o ao

ln3 = −239.058 eV (12.149)

Vp =
4e2

8 oao

= 54.42 eV (12.150)
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T =
8e2

8 oao

ln3 = 119.53 eV (12.151)

E(H
aH

2
 
 

 
 
) = −54.4 eV (12.152)

ET = Ve + Vp + T (12.153)
ET = 13.6 eV(−16ln3 + 4 + 8ln3) =−65.09 eV (12.154)

The bond dissociation energy, ED , is the difference between the total
energy of the corresponding hydrino atom and ET .

ED = E H
aH

2
 
 

 
 

 
 

 
 − ET =10.69 eV (12.155)

Eqs. (12.149-12.155) are equivalent to Eqs. (12.73-12.78) where p = 2 .

VIBRATION OF THE DIHYDRINO MOLECULAR ION
It can be shown that a perturbation of the orbit determined by an

inverse square force results in simple harmonic oscillatory motion of the
orbit.  Zero order vibration arises because the state is nonradiative and
is an energy minimum.  The time average internuclear distance is
increased by the zero order vibration.  A 0.15% increase in the semimajor
axis and the reciprocal decrease in the semiminor axis decreases ET  by
the vibrational energy and releases energy equal to one half the
vibrational energy.  Substitution of a = 1.0015 ao  and b = 0.8647 ao  into Eqs.
(12.146), (12.147), (12.148), and (12.153) and (12.155) with the
reduction of the total energy by one half the vibrational energy is

ED = E(H
aH

2
 
 

 
 
) − ETzeroorder

−
Evib

2
= −54.4 + 65.39 = 10.99 eV (12.156)

Eq. (12.156) is the bond dissociation energy where Evib  is given by Eq.
(12.157).  Substitution of a = 1.0015 ao  into Eq. (12.89) is

Evib = 0.588 eV (12.157)

THE DIHYDRINO MOLECULE H2
* 2c' =

ao

2
 
 

 
 

FORCE BALANCE OF THE DIHYDRINO MOLECULE

The force balance equation for the dihydrino molecule H2
* 2c' =

ao

2
 
 

 
 

is given by Eq. (12.92) where p = 2

  

h2

mea
2b2 2ab2X =

2e2

4 o

X +
h2

2mea
2b2 2ab2 X (12.158)

which has the parametric solution given by Eq. (12.51) when
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a =
ao

2
(12.159)

The semimajor axis, a , is also given by Eq. (12.94) where p = 2 .  The
internuclear distance, 2c' , which is the distance between the foci is given
by Eq. (12.95) where p = 2 .

2c' =
1

2
ao (12.160)

The semiminor axis is given by Eq. (12.96) where p = 2 .

b = c =
1

2 2
ao (12.161)

The eccentricity, e , is given by Eq. (12.97).

e =
1

2
(12.162)

ENERGIES OF THE DIHYDRINO MOLECULE

The energies of the dihydrino molecule H2
* 2c' =

ao

2
 
 

 
 
 are given by

Eqs. (12.98-12.104) where p = 2

Ve =
−4e2

8 o a2 − b2
ln

a + a2 − b2

a − a2 − b2
= −271.23 eV (12.163)

Vp =
2

8 o

e2

a2 − b2
= 76.93 eV (12.164)

  
T =

h2

2mea a2 − b2
ln

a + a2 − b2

a − a2 − b2
= 135.614 eV (12.165)

The energy, Vm , of the magnetic force is

  
Vm =

−h2

4mea a2 − b2
ln

a + a2 − b2

a − a2 − b2
= −67.8069 eV (12.166)

ET = Ve + T + Vm + Vp (12.167)

ET = −13.6 eV 8 2 − 4 2 +
4 2

2

 
 
  

 
 ln

2 +1

2 −1
− 4 2

 

  
 

  = −126.5 eV (12.168)

E(2 H
aH

2
 
 

 
 
) = −2(54.4) eV (12.169)

The bond dissociation energy, ED , is the difference between the total
energy of the corresponding hydrino atoms and ET .

ED = E(2H
aH

2
 
 

 
 
) − ET =17.688 eV (12.170)

VIBRATION OF THE DIHYDRINO MOLECULE
As in the case of the dihydrino molecular ion, the time averaged

internuclear distance is increased by the zero order molecular vibration.
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A 0.7%  increase in the semimajor axis and the reciprocal decrease in the
semiminor axis releases energy which is equal to one half the vibrational
energy.  Substitution of a = 0.5035ao  and b = 0.351ao  into Eqs. (12.163-
12.170) with the reduction of the total energy by one half the
vibrational energy is

ED = E(2H
aH

2
 
 

 
 
) − ET zeroorder

−
Evib

2
=−108.8 +127.66 =18.86 eV (12.171)

Eq. (12.171) is the bond dissociation energy where Evib  is given by Eq.
(12.172).  Substitution of a = 0.5035ao  into Eq. (12.89) is

  Evib = 2.33 eV (12.172)

GEOMETRY
The internuclear distance can also be determined geometrically.

The spheroidal M. O. of the hydrogen molecule is an equipotential
energy surface which is an energy minimum surface.  For the hydrogen
molecule, the electric field is zero for > 0. Consider two hydrogen
atoms A and B approaching each other.  Consider that the two electrons
form a spheroidal M. O. as the two atoms overlap, and the charge is
distributed such that an equipotential two dimensional surface is
formed. The electric fields of atoms A and B add vectorially as the atoms
overlap.  The energy at the point of intersection of the overlapping
orbitspheres decreases to a minimum as they superimpose and then
rises with further overlap.  When this energy is a minimum the
internuclear distance is determined.  It can be demonstrated [3] that
when two hydrogen orbitspheres superimpose such that the radial
electric field vector from nucleus A and B makes a 45°  angle with the
point of intersection of the two original orbitspheres, the electric energy
of interaction between orbitspheres given by

Einteraction = 2 X 
1

2 o ∆E2dv∫ (12.173)

is a minimum (Figure 7.1 of [3]).  The M. O. is a minimum potential
energy surface; therefore, a minimum of energy of one point on the
surface is a minimum for the entire surface- M. O.  Thus,

RH2
= 2ao = 0.748 Å (12.174)

The experimental internuclear bond distance is 0.746 Å.

IONIZATION ENERGIES
The first ionization energy, IP1 , of the dihydrino molecule

H2
* 2c' =

2ao

2

 
  

 
  → H2

* 2c' = ao[ ]+
+ e− (12.175)

is given by Eqs. (12.153) and (12.167) with zero order vibration, Eqs.
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(12.156) and (12.171), respectively.

IP1 = ET H2
* 2c' = ao[ ]+ 

 
  

 

 
  − ET H2

* 2 ′ c =
2a0

2

 
  

 
  

 

 
  

 
 (12.176)

IP1 = −65.39 eV +127.66 eV = 62.27 eV (12.177)
The second ionization energy, IP2 , is given by Eq. (12.153) with zero
order vibration, Eq. (12.156).

 IP2 = 65.39 eV (12.178)
A hydrino atom can react with a hydrogen, deuterium, or tritium

nucleus to form a dihydrino molecular ion that further reacts with an
electron to form a dihydrino molecule.

 H
aH

p

 
  

 
  + H+ + e−→ H2

* 2c' =
2ao

p

 
  

 
  (12.179)

The energy released is

E = E(H
aH

p

 
  

 
  ) − ET (12.180)

where ET  is given by Eq. (12.102) with zero order vibration, Eqs.
(12.106-12.107).

A hydrino atom can react with a hydrogen, deuterium, or tritium
atom to form a dihydrino molecule.

 H
aH

p

 
  

 
  + H aH[ ] → H2

* 2c' =
2ao

p

 
  

 
  (12.181)

The energy released is

E = E H
aH

p

 
  

 
  

 
 
  

 
 + E H aH[ ]( ) − ET (12.182)

where ET  is given by Eq. (12.102) with zero order vibration, Eqs.
(12.106-12.107).

SIZES OF REPRESENTATIVE ATOMS AND MOLECULES

Atoms

Helium Atom (He)
Helium comprises the nucleus at the origin and two electrons as a
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spherical shell at
r = 0.567a0

Hydrogen Atom (H aH[ ])
Hydrogen comprises the nucleus at the origin and the electron as a
spherical shell at
r = aH

Hydrino Atom (H
aH

2
 
 

 
 
)

Hydrino atom (1/2) comprises the nucleus at the origin and the electron
as a spherical shell at

r =
aH

2

Molecules

All the following molecules and molecular ions comprise prolate
spheroids where

• a  is the semiminor axis
• 2a is the total length of the molecule or molecular ion along the

principal axis
• b = c  is the semiminor axis
• 2b = 2c  is the total width of the molecule or molecular ion along the

minor axis
• c'  is the distance from the origin to a focus (nucleus)
• 2c'  is the internuclear distance

Hydrogen Molecular Ion ( H2 2c' = 2ao[ ]+
)

a = 2a0

b = c = 3a0

′ c = a0

2 ′ c = 2a0

Hydrogen Molecule ( H2 2c' = 2ao[ ])
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a = a0

b = c =
1

2
a0

′ c =
1

2
a0

2 ′ c = 2a0

Dihydrino Molecular Ion ( H2
* 2c' = ao[ ]+

)
a = a0

b = c =
3

2
a0

b = c =
1

2
a0

2 ′ c = a0

Dihydrino Molecule ( H2
* 2c' =

1
2

ao
 
 

 
 
)

a =
1

2
a0

b = c =
1

2 2
a0

′ c =
1

2 2
a0

2 ′ c =
1

2
a0

ORTHO-PARA TRANSITION OF HYDROGEN-TYPE MOLECULES
 Each proton of hydrogen-type molecules possesses a magnetic

moment which is derived in the Proton and Neutron Section and is given
by

  

P =

2

3
 
 

 
 

2

eh

2
mp

2

(12.183)

The magnetic moment m  of the proton is given by Eq. (12.183), and the
magnetic field of the proton follows from the relationship between the
magnetic dipole field and the magnetic moment m  as given by Jackson
[4] where m = Piz .

H = P

r3 (ir 2cos − i sin ) (12.184)

Multiplication of Eq. (12.184) by the permeability of free space, 0 , gives
the magnetic flux, B, due to proton one at proton two.
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B = 0 P

r 3 (ir 2cos − i sin ) (12.185)

∆Emag
ortho/para , the energy to flip the orientation of proton two's magnetic

moments, P , from ortho (parallel magnetic moments) to para
(antiparallel magnetic moments) with respect to the direction of the
magnetic moment of proton one with corresponding magnetic flux B is

∆Emag
ortho/para = −2 PB =

−2 0 P
2

r3  (12.186)

where r  is the internuclear distance 2c' where c' is given by Eq. (12.95).
Substitution of the internuclear distance into Eq. (12.186) for r  gives

∆Emag
ortho/para = −2 PB =

−2 0 P
2n3

2ao

 

 
  

 

 
  

3  (12.187)

The frequency, f , can be determined from the energy using the Planck
relationship, Eq. (2.18).

f =
∆Emag

ortho/para

h
=

−2 0 P
2n3

2ao

 

 
  

 

 
  

3

h
(12.188)

From Eq. (12.188) with n = 2 , the ortho-para transition energy of the
dihydrino molecule is 14.4 MHz .
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MOLECULAR COULOMB FIELD COLLAPSE--BLACKLIGHT PROCESS

BELOW "GROUND" STATE TRANSITIONS OF HYDROGEN-TYPE
MOLECULES AND MOLECULAR IONS

Excited states of orbitspheres are discussed in the Excited States of
the One Electron Atom (Quantization) Section.  In the case of ellipsoidal
M. O. ‘s, excited electronic states are created when photons of discrete
frequencies are trapped in the ellipsoidal resonator cavity of the M. O.
The photon changes the effective charge at the M. O. surface where the
central field is ellipsoidal and arises from the protons and the effective
charge of the "trapped photon" at the foci of the M. O.  Force balance is
achieved at a series of ellipsoidal equipotential two dimensional surfaces
confocal with the ground state ellipsoid.  The "trapped photons" are
solutions of the Laplacian in ellipsoidal coordinates, Eq. (12.27).

As is the case with the orbitsphere, higher and lower energy states
are equally valid.  The photon standing wave in both cases is a solution
of the Laplacian in ellipsoidal coordinates.  For an ellipsoidal resonator
cavity, the relationship between an allowed circumference, 4aE , and the
photon standing wavelength, , is

4aE = n (13.1)
where n  is an integer and where

k =
a2 − b2

a
(13.2)

is used in the elliptic integral E  of Eq. (13.1).  Applying Eqs. (13.1) and
(13.2), the relationship between an allowed angular frequency given by
Eq. (12.24) and the photon standing wave angular frequency, , is:

  

h
meA

=
h

mena1nb1

=
h

meanbn

=
1

n2 1 = n (13.3)

where n = 1,2,3,4,...

  n =
1

2
,
1

3
,
1

4
,...

1 is the allowed angular frequency for n = 1
a1 and b1  are the allowed semimajor and semiminor axes for n = 1

ENERGY HOLES
From Eq. (13.3), the magnitude of the elliptic field corresponding

to a below "ground state" transition of the hydrogen molecule is an
integer.  The potential energy equations of hydrogen-type molecules are

Ve =
−p2e2

8 o a2 − b2
ln

a + a2 − b2

a − a2 − b2
(13.4)

 Vp =
pe2

8 o a2 − b2
(13.5)
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where

a =
ao

p
(13.6)

b =
1

p 2
ao (13.7)

c' = a2 − b2 =
2ao

2 p
(13.8)

and where p  is an integer.  (These energies are approximate in that they
do not include the energy component corresponding to zero order
vibration.  The exact energies are given by Eqs. (13.4-13.5) where the
parameters a  and b  are those given by Eqs. (13.6-13.7) with the
correction for zero order vibration as given in the Vibration Section).
From energy conservation, the resonance energy hole of a hydrogen-type
molecule which causes the transition

H2
* 2c' =

2ao

p

 
  

 
  → H2

* 2c' =
2ao

p + m

 
  

 
  (13.9)

is
mp2

 X 48.6 eV (13.10)
where m  and p  are integers.  During the transition, the elliptic field is
increased from magnitude p  to magnitude p + m .  The corresponding
potential energy change equals the energy absorbed by the energy hole.

Energy hole = −Ve − Vp = mp2
 X 48.6 eV (13.11)

Further energy is released by the hydrogen-type molecule as the
internuclear distance "shrinks".  The total energy, ET , released during
the transition is

ET = −13.6 eV 2(m + p)2 2 − (m + p)2 2 +
(m + p)2 2

2

 
 
  

 
 ln

2 +1

2 −1
− (m + p)2 2

 

  
 

  

            + 13.6 eV 2 p2 2 − p2 2 + p2 2
2

 
 
  

 
 ln 2 +1

2 −1
− p2 2

 

  
 

  

(13.12)

(This energy is approximate in that it does not include the energy
component corresponding to zero order vibration.  The exact energy is
given by Eq. (13.12) with the correction for zero order vibration as
given in the Vibration Section).

A schematic drawing of the total energy well of hydrogen-type
molecules and molecular ions is given in Figure 13.1.  The exothermic
reaction involving transitions from one potential energy level to a lower
level is also hereafter referred to as the Molecular BlackLight Process.
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Figure 13.1.  The total energy well of hydrogen-type molecules and
molecular ions.
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A hydrogen-type molecule with its electrons in a lower than
"ground state" energy level corresponding to a fractional quantum
number is hereafter referred to as a dihydrino molecule.  The

designation for a dihydrino molecule of internuclear distance, 2c' =
2ao

p

where p  is an integer, is H2
* 2c' =

2ao

p

 
  

 
  .  A schematic drawing of the size

of hydrogen-type molecules as a function of total energy is given in
Figure 13.2.
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Figure 13.2.  The size of hydrogen-type molecules as a function of total
energy.
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The magnitude of the elliptic field corresponding to the first below
"ground state" transition of the hydrogen molecule is 2 .  From energy
conservation, the resonance energy hole of a hydrogen molecule which
excites the transition of the hydrogen molecule with internuclear
distance 2c' = 2ao  to the first below "ground state" with internuclear

distance 2c' =
1

2
ao  is given by Eqs. (13.4-13.8) where the elliptic field is

increased from magnitude one to magnitude two:

Ve =
−2e2

8 o a2 − b2
ln

a + a2 − b2

a − a2 − b2
=−67.813 eV (13.13)

Vp =
e2

8 o a2 − b2
= 19.23 eV  (13.14)

Energy hole = −Ve − Vp = 48.6 eV (13.15)
In other words, the elliptic "ground state" field of the hydrogen

molecule can be considered as the superposition of Fourier components.
The removal of negative Fourier components of energy

m X 48.6 eV (13.16)
where m  is an integer, increases the positive electric field inside the
ellipsoidal shell by m  times the charge of a proton at each focus.  The
resultant electric field is a time harmonic solution of the Laplacian in
ellipsoidal coordinates.  The corresponding potential energy change
equals the energy absorbed by the energy hole.

Energy hole = −Ve − Vp = m X 48.6 eV (13.17)
Further energy is released by the hydrogen molecule as the internuclear
distance "shrinks".  The hydrogen molecule with internuclear distance
2c' = 2ao  is caused to undergo a transition to the below "ground state"
level, and the internuclear distance for which force balance and

nonradiation are achieved is 2c' =
2ao

1 + m
.  In decaying to this internuclear

distance from the "ground state", a total energy of

−13.6 eV 2(1+ m)2 2 − (1+ m)2 2 +
(1+ m)2 2

2

 
 
  

 
 ln

2 +1

2 −1
− (1+ m)2 2

 

  
 

  

                     + 13.6 eV 2 2 − 2 + 2
2

 
 
  

 
 ln 2 +1

2 −1
− 2

 

  
 

  

(13.18)

is released.

CATALYTIC ENERGY HOLES FOR HYDROGEN-TYPE MOLECULES
An efficient catalytic system that hinges on the coupling of three

resonator cavities involves iron and lithium.  For example, the fourth
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ionization energy of iron is 54.8 eV .  This energy hole is obviously too
high for resonant absorption.  However, Li+ releases 5.392 eV  when it is
reduced to Li .  The combination of Fe3+ to Fe4+  and Li+ to Li , then, has a
net energy change of 49.4 eV .

49.4 eV + Fe3+ + Li+ + H2 2c' = 2ao[ ] → Fe4 + + Li + H2
* 2c' =

2ao

2

 
  

 
  + 95.7 eV (13.19)

Li + Fe4 + → Li+ + Fe3+ + 49.4 eV (13.20)
And, the overall reaction is

H2 2c' = 2ao[ ] → H2
* 2c' =

2ao

2

 
  

 
  + 95.7 eV (13.21)

Note that the energy given off as the molecule shrinks is much greater
than the energy lost to the energy hole.  And, the energy released is large
compared to conventional chemical reactions.

An efficient catalytic system that hinges on the coupling of three
resonator cavities involves scandium.  For example, the fourth ionization
energy of scandium is 73.47 eV .  This energy hole is obviously too high
for resonant absorption.  However, Sc3+  releases 24.76 eV  when it is
reduced to Sc2 + .  The combination of  Sc3+  to Sc4 + and Sc3+  to Sc2 + , then,
has a net energy change of 48.7 eV .

48.7 eV + Sc3+ + Sc3+ + H2 2c' = 2ao[ ] → Sc4+ + Sc2 + + H2
* 2c' =

2ao

2

 
  

 
  + 95.7 eV (13.22)

Sc2 + + Sc4 + → Sc3+ + Sc3+ + 48.7 eV (13.23)
And, the overall reaction is

H2 2c' = 2ao[ ] → H2
* 2c' =

2ao

2

 
  

 
  + 95.7 eV (13.24)

An efficient catalytic system that hinges on the coupling of three
resonator cavities involves yttrium.  For example, the fourth ionization
energy of gallium is 64.00 eV .  This energy hole is obviously too high for
resonant absorption.  However, Pb2+ releases 15.03 eV  when it is reduced
to Pb+ .  The combination of Ga3+  to Ga4 + and Pb2+ to Pb+ , then, has a net
energy change of 48.97 eV .

48.97 eV + Ga3+ + Pb2 + + H2 2c' = 2ao[ ] → Ga4+ + Pb+ + H2
* 2c' =

2ao

2

 
  

 
  + 95.7 eV (13.25)

Ga4 + + Pb+ → Ga3+ + Pb2 + + 48.97 eV (13.26)
And, the overall reaction is

 H2 2c' = 2ao[ ] → H2
* 2c' =

2ao

2

 
  

 
  + 95.7 eV (13.27)

The rates of electronic transitions of molecules is a function of the
change in internuclear distance during the transition.  Transitions
between electronic states that have equivalent internuclear distances at
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some point during their vibrational cycles have much greater rates than
transitions that require the energy level of the electrons to change as
well as the internuclear distance to change simultaneously.  As shown in
Figure 13.1, the transition from the n = 1 state to the n = 1/ 2  state of
molecular hydrogen is not favored for this reason.  A more likely
transition pathway is a vibrational excitation of molecular hydrogen
(n = 1) that breaks the bond, followed by a transition reaction of each of
the hydrogen atoms via a 27.2 eV  energy hole catalyst as given in the
Atomic Coulomb Field Collapse-Hydrino Theory-BlackLight Process
Section, followed by reaction of the two hydrino atoms (n = 1/ 2 ) to form
dihydrino molecule (n = 1/ 2 ).
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DIATOMIC MOLECULAR ENERGY STATES

EXCITED ELECTRONIC STATES OF ELLIPSOIDAL M.O.'S
Excited states of orbitspheres are discussed in the Excited States of

the One Electron Atom (Quantization) Section. In the case of ellipsoidal
M. O. ‘s, excited electronic states are created when photons of discrete
frequencies are trapped in the ellipsoidal resonator cavity of the M. O.
The photon changes the effective charge at the M. O. surface where the
central field is ellipsoidal and arises from the protons at the foci of the
M. O.  Force balance is achieved at a series of ellipsoidal equipotential
two dimensional surfaces confocal with the ground state ellipsoid. The
"trapped photons" are solutions of the Laplacian in ellipsoidal
coordinates and are given by Eq. (12.27).

MAGNETIC MOMENT OF AN ELLIPSOIDAL M.O.
The magnetic dipole moment, , of a current loop is

= iA (14.1)
The area of an ellipse is given by Eq. (12.25). For any elliptic orbital due
to a central field, the frequency, f , is

f =

L

m
2πab

 (14.2)

where L  is the angular momentum. The current, i , is

i = ef =

eL

me

2πab
(14.3)

where e  is the charge. Substitution of Eqs. (14.3) and (12.25) into Eq.
(14.1) where L  is the angular momentum of the electron,   h , gives

  
=

eh
2me

(14.4)

which is the Bohr magneton.

MAGNETIC FIELD OF AN ELLIPSOIDAL M.O.
The magnetic field can be solved as a magnetostatic boundary

value problem which is equivalent to that of a uniformly magnetized
ellipsoid.[1] The magnetic scalar potential inside the ellipsoidal M. O.,

− , is

  

− =
eh

2me

x
ds

(s + a2 )Rs0

∞

∫ (14.5)

The magnetic scalar potential outside of the M. O., + , is
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+ =
eh

2me

x
ds

(s + a2 )Rs

∞

∫ (14.6)

The magnetic field inside the ellipsoidal M. O., Hx
− , is

  
Hx

− = −
−

x
=

−eh
2me

ds

(s + a2 )Rs0

∞

∫  (14.7)

The magnetic field inside the ellipsoidal M. O. is uniform and parallel to
the minor axis.

DIATOMIC MOLECULAR VIBRATION
It can be shown that a perturbation of the orbit determined by an

inverse square force results in simple harmonic oscillatory motion of the
orbit.  For the case of a circular orbit of radius a , an approximation of
the angular frequency of this oscillation is

=

−3

a
f a( ) + f ' a( ) 

 
 
 

m
=

k

m
(14.8)

Oscillating charges radiate.  However, molecules and molecular ions
including the hydrogen molecule, the hydrogen molecular ion, dihydrino
molecules, and dihydrino molecular ions demonstrate nonradiative zero
order vibration which is time harmonic oscillation of the position of the
protons along the principal axis.  The protons are located at the foci,
and nonradiation is due to the geometry of the ellipse where the
electron M. O. is ellipsoidal.  A fundamental property of an ellipse is that
a light ray emitted from a focus in any direction is reflected off of the
ellipse to the other focus, and the sum of the lengths of the ray paths is
constant, 2a.
An oscillating charge ro t( ) = dsin ot  has a Fourier spectrum

J(k, ) =
q od

2
Jm(k cos d){ [ − (m +1) o ] + [ − (m −1) o ]} (14.9)

where Jm ' s  are Bessel functions of order m .  These Fourier components
can, and do, acquire phase velocities that are equal to the velocity of
light.  Consider two oscillating charges at the foci of an ellipsoidal
resonator cavity, an ellipsoidal M. O.  A nonradiative standing
electromagnetic wave can be excited which has higher order harmonics
in addition to the fundamental frequency as given in Eq. (14.9).  This
nonradiative standing wave gives rise to zero order vibration of the
molecule.  The zero order mode is a standing wave with destructive
interference of all harmonics of the fundamental frequency, 0 .  A ray
undergoes a 180°  phase shift upon reflection, and the protons oscillate in
opposite relative directions.  Thus, mutual destructive interference
occurs when x , the distance from one focus to the other for a reflected
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ray is equal to a wavelength, , where  is

=
h

mv
(14.10)

It follows that

v =
h

m
=

h

mx
(14.11)

For time harmonic motion,

v = vaverage =
vmax imum

2
(14.12)

The kinetic energy, T , is given by

T =
1

2
mv2 (14.13)

The vibrational energy of the protons, EPvib , is equal to the maximum
vibrational kinetic energy of the protons.  Substitution of Eqs. (14.11)
and (14.12) into Eq. (14.13) and multiplication by two corresponding to
the two protons is

T = Tmax = 2
1

2
m

h2

m 2x2 ( 2)2 = 2
h2

mx2 (14.14)

The vibrational energy is the sum of the vibrational energy of the
electron M. O. and that of the protons which are equal.

Evib =
4h2

mx2 (14.15)

where m  is the sum of the masses of the protons, each of mass m p .
m = mp (14.16)

And, X  is 2a.  Thus, the vibrational energy is

Evib =
h2

m pa
2 (14.17)

For a  in units of ao ,

Evib =
0.59

a2  eV (14.18)

The time average internuclear distance is increased by the zero order
vibration because the total energy versus internuclear distance function
is asymmetrical with a lower slope for internuclear distances greater
than the internuclear distance at which the total energy is a minimum.
Elongation occurs along the principal axis, and shifts the total energy
versus internuclear distance function to a new function which includes
the contribution due to vibration.  The perturbation of ET , the total
energy of the M. O. given by Eq. (12.72) with a fractional increase in the
semimajor axis, a , and the reciprocal decrease in the semiminor axis, b
is calculated by reiteration.  The angular frequency of the M.O. given by
Eq. (12.24) is unchanged when a  and b  are changed by reciprocal
fractions.  The corrected a  and b  are obtained when the change in ET  is
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equal to the vibrational energy.  The vibrational energy is the sum of two
equal components, the vibrational energy of the protons and the
vibrational energy of the electron M. O.  Vibration causes a
redistribution of energy within the molecule.  The M.O. potential and
kinetic energy terms given by Eqs. (12.59), (12.61), and (12.72) add 
radians out of phase with the potential and kinetic energies of vibration;
thus, the energy of the molecule will decrease by this amount which is
equal to one half the vibrational energy.  An x% increase in the
semimajor axis and the reciprocal decrease in the semiminor axis
decreases ET  by the vibrational energy and releases energy equal to one
half vibrational energy.  The vibrational energies and bond distances for
hydrogen-type molecules and molecular ions are given in the Nature of
the Chemical Bond Section.

Zero order vibration arises because the state is nonradiative and is
an energy minimum.  Furthermore, electromagnetic radiation of discrete
energies given by Eq. (14.18) can be trapped in the resonator cavity
where constructive interference occurs at the foci.  These standing
waves change the electric field at the ellipse surface as described in the
Excited Electronic States of Ellipsoidal M. O.'s Section; thus, the major
and minor axes increase and the total energy of the molecule given by
Eqs. (12.73), (12.74), (12.75), and (12.76) increases.  The photons of
these standing waves drive the vibration of the molecule at a higher
frequency than the zero order frequency, but are reradiated.  The
energy of a vibrational transition is given by the difference of the sum of
the energies of the modes excited before and after the transition.  The
modes are quantized, and from Eq. (14.18), the energy spacing of the
modes is closer together as the total vibrational energy increases.

DIATOMIC MOLECULAR ROTATION
A molecule with a permanent dipole moment can resonantly

absorb a photon which excites a rotational mode about the center of
mass of the molecule.  Nonradiative rotational states require that the
space-time Fourier Transform of the rotational current-density function
not possess Fourier components synchronous with waves traveling at the
speed of light.  As demonstrated previously in the Spacetime Fourier
Transform of the Electron Function Section, the product of a radial Dirac
delta function, two spherically harmonic angular functions, and a time
harmonic function is nonradiative and is a solution of the wave equation
(Eq. (1.11)).  Furthermore, momentum must be conserved with
excitation of a rotational mode.  The photon carries   h  of angular
momentum; thus, the rotational angular momentum of the molecule
changes by   h .  And, the rotational charge-density function is equivalent
to the rigid rotor problem considered in the Rotational Parameters of the
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Electron (Angular Momentum, Rotational Energy, Moment of Inertia)
Section with the exception that for a diatomic molecule having atoms of
masses m1  and m2 , the moment of inertia is

I = r 2 (14.19)
where  is the reduced mass

=
m1m2

m1 + m2

(14.20)

and where r  is the distance between the centers of the atoms, the
internuclear distance.  The rotational energy levels follow from Eq.
(1.95)

  
Erotational orbital =

h2

2I
J(J +1) (14.21)

where J  is an integer.  For Eq. (14.21), J = 0 corresponds to rotation
about the z-axis where the internuclear axis is along the y-axis, and J ≠ 0
corresponds to a linear combination of rotations about the z and x-axis.

As given in the Selection Rules Section, the radiation of a multipole
of order (l, m) carries   mh  units of the z component of angular
momentum per photon of energy   h .  Thus, the z component of the
angular momentum of the corresponding excited rotational state is

  Lz = mh (14.22)
Thus, the selection rule for rotational transitions is

∆J = ±1 (14.23)
In addition, the molecule must posses a permanent dipole moment.  In
the case of absorption of electromagnetic radiation, the molecule goes
from a state with a quantum number J  to one with a quantum number
of J +1.  Using Eq. (14.21), the energy difference is

  
∆E = EJ +1 − EJ =

h2

I
J +1[ ] (14.24)

DIATOMIC MOLECULAR ROTATION OF HYDROGEN-TYPE
MOLECULES

The reduced mass of hydrogen-type molecules, H 2
, having two

protons is given by Eq. (14.20) where m1 = m2 = mp , and m p  is the mass of
the proton.

H 2
=

m pmp

mp + mp

=
1

2
mp (14.25)

The moment of inertia of hydrogen-type molecules is given by
substitution of the reduced mass, Eq. (14.25), for  of Eq. (14.19) and
substitution of the internuclear distance, two times Eq. (12.95), for r  of
Eq. (14.19).
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I = mp

ao
2

n2 (14.26)

where n  is an integer which corresponds to , 
1

n
, the fractional quantum

number of the hydrogen-type molecule.  Using Eqs. (14.24) and (14.26),
the rotational energy absorbed by a hydrogen-type molecule with the
transition from the state with the rotational quantum number J  to one
with the rotational quantum number J +1 is

  
∆E = EJ +1 − EJ =

n2h2

mpao
2 J +1[ ] = n2 J +1[ ] 2.37 X 10−21  J (14.27)

The energy can be expressed in terms of wavelength in angstroms (Å)
using the Planck relationship, Eq. (2.65).

= 1010 hc

∆E
 Å =

8.38 X 105

n2 J +1[ ]  Å (14.28)

Vibration increases the internuclear distance, r  of Eq. (14.19), which
decreases the rotational energy.  The rotational wavelength including
vibration given in the Vibration of Hydrogen -Type Molecules Section is

=
8.43 X 105

n2 J + 1[ ]  Å (14.29)

The calculated wavelength for the J = 0 to J = 1 transition of the
hydrogen molecule H2 n = 1( )  including vibration is 8.43 X 105

 Å .  The
experimental value is 8.43X105

 Å.  The wavelength calculated from Eq.
(14.29) for the J = 0 to J = 1 transition of the hydrogen-type molecule

H2
* 2c' =

2ao

p

 
  

 
   including vibration is given in Table 14.1.

The rotational wavelength for p = 8 is given in Table 14.1 as
13,175 Å .  Recently, an interstellar band has been discovered for which no
satisfactory assignment exists [2].  The experimentally measured
wavelength which matches the predicted wavelength is 13,175 Å .
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Table 14.1.  The wavelength calculated from Eq. (14.29) for the J = 0 to

J = 1 transition of the hydrogen-type molecule H2
* 2c' =

2ao

p

 
  

 
   including

vibration.

p of H2

1

p

 

 

 
 
 
 

 

 

 
 
 
 

Lambda
(Å)

1 8.431 X 105

2 2.108 X 105

3 9.368 X 104

4 5.269 X 104

5 3.372 X 104

6 2.342 X 104

7 1.721 X 104

8 1.317 X 104

9 1.041 X 104

10 8.431 X 103

11 6.968 X 103

12 5.855 X 103

13 4.989 X 103

14 4.302 X 103

15 3.747 X 103

16 3.293 X 103

17 2.917 X 103

18 2.602 X 103
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DIATOMIC MOLECULAR ROTATION OF HYDROGEN-TYPE
MOLECULAR IONS

The moment of inertia of hydrogen-type molecular ions is given by
substitution of the reduced mass, Eq. (14.25), for  of Eq. (14.19) and
substitution of the internuclear distance, two times Eq. (12.67), for r  of
Eq. (14.19).

I = mp

2ao
2

n2 (14.30)

where n  is an integer which corresponds to , 
1

n
, the fractional quantum

number of the hydrogen-type molecular ion.  Using Eqs. (14.24) and
(14.26), the rotational energy absorbed by a hydrogen-type molecular
ion with the transition from the state with the rotational quantum
number J  to one with the rotational quantum number J +1 is

  
∆E = EJ +1 − EJ =

n2h2

mp 2ao
2 J +1[ ] = n2 J + 1[ ] 1.89 X 10−21  J (14.31)

The energy can be expressed in terms of wavelength in microns ( m )
using the Planck relationship, Eq. (2.65).

= 106 hc

∆E
 m =

168

n2 J +1[ ]  m (14.32)

Vibration increases the internuclear distance, r  of Eq. (14.19), which
decreases the rotational energy.  The rotational wavelength including
vibration given in the Vibration of Hydrogen -Type Molecular Ions
Section is

=
169

n2 J +1[ ]  m (14.33)

The calculated wavelength for the J = 0 to J = 1 transition of the
hydrogen molecular ion H2 2c' = 2ao[ ]+

 including vibration is 169 m .  The
experimental value is 169 m .  The wavelength calculated from Eq.
(14.33) for the J = 0 to J = 1 transition of the hydrogen-type molecular

ion H2
* 2c' =

2ao

p

 
  

 
  

+

 including vibration is given in Table 14.2.

The rotational wavelength for p = 6 given in Table 14.2 is 4.7 m .  A
broad 4.7 m  solar chromospheric absorption line is observed which was
previously assigned to cool carbon monoxide clouds; however, the
temperature of the chromosphere, > 6000 K , is higher than that at which
carbon monoxide completely decomposes into carbon and oxygen,
< 4000 K  [3].  The assignment of the 4.7 m  absorption line to the J = 0 to

J = 1 transition rotational transition of H2
* 2c' =

ao

3
 
 

 
 

+

 provides a resolution

of the problem of cool carbon monoxide clouds.
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Table 14.2.  The wavelength calculated from Eq. (14.33) for the J = 0 to

J = 1 transition of the hydrogen-type molecular ion H2
* 2c' =

2ao

p

 
  

 
  

+

 including

vibration.

p of H2
+ 1

p

 

 

 
 
 
 

 

 

 
 
 
 

Lambda
( m )

1 1.69 X 102

2 42.2

3 18.7

4 10.5

5 6.74

6 4.68

7 3.44

8 2.63

9 2.08

10 1.69

11 1.39

12 1.17

13 0.998

14 0.860

15 0.749

16 0.659

17 0.583

18 0.520
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STATISTICAL MECHANICS

The distribution functions of statistical mechanics according to the
Mills theory are as usual [1].  However, the nature of each distribution is
related to the present classical quantum mechanical model.  The
underlying physics is deterministic which can be modeled with chaos
theory.

Bose-Einstein- indistinguishable photons having   h  of angular
momentum excite quantized energy levels of electron resonator cavities
where superposition and conservation of angular momentum are
obeyed.

Fermi-Dirac- identical, indistinguishable electrons occupy the lowest
energy configuration as given in the Two Electron Atom Section.  The
Pauli Exclusion Principle arises as a minimum of energy for interacting
electrons each having a Bohr magneton of magnetic moment.

Maxwell-Boltzmann- identical, discrete particles such as molecules
which are separated such that the predominant interaction is scattering
possess a continuum of momenta.
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SUPERCONDUCTIVITY

In the case of a superconductor, an applied voltage gives rise to a
transient constant electric field in the z direction

E z = rcos iz (16.1)
E z = E0iz (16.2)

where iz  is the unit vector along the z-axis.
The applied field polarizes the material into a superconducting

current comprised of current dipoles-magnetic dipoles.  In Cartesian
coordinates, the magnetic field, H , at the point (x,y,z)  due to a magnetic
dipole having a magnetic dipole moment of a Bohr magneton, µB, at the
position (x0 , y0, z0 ) is

H = B
2 z − 0z( )2 − x − 0x( )2 − y − 0y( )2( )

[ x − 0x( )2 + y − 0y( )2 + z − 0z( )2 ]5/2
iz (16.3)

H =
2z 2 − x2 − y2( )

[x 2 + y2 + z2 ]5/2 ⊗
B

x − 0x , y − 0
y ,z − 0z( )iz (16.4)

The field is the convolution of the system function, h x, y,z( )  or h , ,z( ),
(the left-handed part of Eq. (16.4)) with the delta function (the right-
hand part of Eq. (16.4)) at the position (x0 , y0, z0 ).  A very important
theorem of Fourier analysis states that the Fourier Transform of a
convolution is the product of the individual Fourier Transforms [1].  The
Fourier Transform of the system function, h x, y,z( )  or h , ,z( ), is given in
Box 16.1.
_________________________________________________________
________
BOX 16.1.  FOURIER TRANSFORM OF THE SYSTEM FUNCTION

The system function, h , , z( ), in cylindrical coordinates is

h , , z( ) =
2z 2 − x2 − y2

[x2 + y2 + z 2]5/2 =
2z2 − 2

[ 2 + z2 ]5/2 (1)

The spacetime Fourier transform in three dimensions in cylindrical
coordinates, H(k ,Φ,kz ), is given [1] as follows:

H(k ,Φ,kz ) = h , ,z( )exp −i2 k cos Φ −( ) + kz z[ ]( ) d d dz
0

∞

∫
0

2

∫
−∞

∞

∫ (2)

With circular symmetry [1]

H(k ,kz ) = 2 h( ,z )Jo (k )e−iwz d dz
−∞

∞

∫
0

∞

∫ (3)

The Fourier transform of the system function is given by the substitution
of Eq. (1) into Eq. (3).
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H = 2π
2z2 − 2

[ 2 + z 2]5/2 J0 [k ] d e− jk z zdz
0

∞

∫−∞

∞

∫ (4)

Consider the integral of Eq. (4) with respect to d  only.  Factorization of
h , , z( ) gives

2π
2z2

[ 2 + z2 ]5/2 −
3

[ 2 + z2 ]5/2

 
  

 
  J0[k ]d

0

∞

∫ (5)

Consider the definite integral
tv +1Jv[at]dt

[t2 + z2 ]u+1 =
auz v− uK v− u[az ]

2u Γ[u +1]0

∞

∫ (6)

and the modified Bessel function of the third kind relationship,
K− [x] = K [x] (7)

The first factor of Eq. (5) is the same form as Eq. (6) with = 0; u =
3

2
,

thus,

2z2 (2π)
[ 2 + z 2 ]5/2 Jo[k ]d

0

∞

∫ =
2z2 (2π)k3/2 z−3/2

23/2 Γ[5/ 2]
K−3/2 [k z] =

[21/2 ]πz1/2k3/2

Γ[5 / 2]
K3/2[k z] (8)

where K−3/2[k z ] = K3/2[k z] (Eq. (7)).  The second factor of Eq. (5) can be
made into the same form as Eq. (6) using the Bessel function of the first
kind recurrence relationship

Jv −1[x] + Jv +1[x] =
2v

x
Jv[x] (9)

Consider the second factor of the integral of Eq. (5).

−2π
3

[ 2 + z2 ]
Jo[kp ]d

0

∞

∫ (10)

Eq. (9) with = 1 is

Jo x[ ]+ J2 x[ ] =
2

x
J1 x[ ] (11)

J0 x[ ] =
2

x
J1 x[ ]− J2 x[ ] (12)

Let
x = k (13)

Substitution of Eq. (13) into Eq. (12) is

Jo [k ] =
2

k
J1[k ] − J2[k ] (14)

Substitution of Eq. (10) into Eq. (14) is

−2π
3

[ 2 + z2 ]
Jo[k ]d

0

∞

∫ = −2π
3

[ 2 + z2 ]5/2

2
k

J1[k ] − J2 [k ]
 

  
 

  0

∞

∫ d

                                          = −2π
2 2

k [ 2 + z2 ]5/2
J1[k ]d

0

∞

∫ + 2π
3

[ 2 + z 2 ]5/2
J2[k ]d

0

∞

∫
(15)

The first factor of the right hand side of Eq. (15) is the same form as Eq.
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(6) with = 1; u =
3

2
, thus,

−2π
2 2

k [ 2 + z2 ]5/2 J1[k ]d =
−(4π)k3/2z −1/2

k 23/2 Γ 5 / 2[ ] K−1/2 [k z]
0

∞

∫ = −
21/2[ ]πz−1/2k1/2

Γ 5 / 2[ ] K1/2 [k z] (16)

where K−1/2[k z] = K1/2[k z] (Eq.(7)).  The second factor of the right hand

side of Eq. (15) is the same form as Eq. (6) with = 2; u =
3

2
, thus,

2π
3

[ 2 + z2 ]5/2 J2[k ]d
0

∞

∫ =
(2π)k3/2z1/2

23/2 Γ 5 / 2[ ] K1/2[k z] =
πz1/2k3/2

21/2[ ]Γ 5 / 2[ ] K1/2 k z[ ] (17)

Combining the parts of the integration with respect to d  of Eq. (4) by
adding Eq. (8), Eq. (16), and Eq. (17) gives

 
21/2[ ]πz1/2k1/2

Γ 5/ 2[ ] K3/2[k z] −
21/2[ ]πz1/2k1/2

Γ 5/ 2[ ] K1/2[k z] +
πz1/2k 3/2

21/2[ ]Γ 5/ 2[ ] K1/2 [k z]
 

  
 

   e
− jkz zdz

−∞

∞

∫ (18)

The modified Bessel function of the third kind formulae is

Kn+1/2[x] =
π
2x

 
 

 
 

1/2

e− x [2x]− m Γ n + m +1[ ]
m!Γ n +1 − m[ ]m = 0

n

∑ (19)

Substitution of Eq. (13) into Eq. (19) with = 1 is

K3/2[k z] =
π

2k z

 

  
 

  

1/2

e
− k z

1 +
1

2k z
Γ[3]

 

  
 

  (20)

Substitution of Eq. (13) into Eq. (19) with = 0 is

K1/2[k z] =
π

2k z

 

  
 

  

1/2

e
−k z (21)

Substitution of Eq. (20) and Eq. (21) into Eq. (18) is

 
(21/2 ) z1/2 k3/2

Γ[5/ 2]
1+

1

2k z
Γ[3]

 

  
 

  −
(21/2 ) z1/2k1/2

Γ[5/ 2]
+

z1/2k3/2

(21/2 )Γ[5/ 2]

 

 
 

 

 
 2k z

 

  
 

  

1/2

e
− k z

 
 
 

 
 
 
e− jkz z dz

−∞

∞

∫
(22)

3/2

Γ[5 / 2]
k e

−[ jkz + k ]z +
z −1 3/2Γ[3]

Γ[5 / 2]2
e

−[ jk z +k ]z −
z −1 3/2

Γ[5/ 2]
e

−[ jk z + k ]z +
3/2

Γ[5/ 2]2
k e

−[ jk z +k ]z 
 
 

 
 
 
dz

−∞

∞

∫
(23)

Collecting terms gives
3/2

Γ[5 / 2]
k [1+1/ 2] +

Γ[3]

2
−1 

 
 
 
z −1 

 
 

 
 
 
e

−[ jkz + k ]z

dz
−∞

∞

∫ (24)

With Γ[3] = 2  and Γ 5/ 2[ ] = 3 / 4 1/2 , Eq. (24) is
3/2

Γ[5 / 2]
k [3/ 2] + [1−1]z −1{ }e

− k z
e− jk z zdz

−∞

∞

∫ (25)

3/2

3/ 4 1/2−∞

∞

∫ 3/ 2k e
− k z

e− jkz z dz (26)
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2 k e
− k z

e− jk z zdz
−∞

∞

∫ (27)

4 k e
− k z

e− jk z zdz
0

∞

∫ (28)

4 k e
−[ jk z + k ]z

dz
0

∞

∫ (29)

Integration of Eq. (29) with respect to dz  gives

4 k
−1

jkz + k
e

−[ jk z +k ]z

0

∞ 
 
 

 
 
 

(30)

4 k
1

jkz + k

 

  
 

  (31)

Multiplication of Eq. (31) by

1 =
− jkz + k

− jkz + k

 

  
 

  (32)

gives

4 k
− jkz + k

kz
2 + k 2

 

  
 

  (33)

The system function (Eq. (1)) is an even function; thus, the spacetime
Fourier transform in three dimensions in cylindrical coordinates,
H(k ,kz ), is given by taking the real part of Eq. (33) [2].

H[k ,kz ] =
4 k 2

kz
2 + k 2 (34)

The spacetime Fourier transform in three dimensions in Cartesian
coordinates, H(k ,kz ), is

H[kx,ky,kz ] =
4 [kx

2 + ky
2 ]

[kx
2 + ky

2 + kz
2 ]

(35)

where the relationship between the wavenumbers and the spatial
Cartesian coordinates is as follows:

kx =
2

x

=
1

x
(36)

ky =
2

y

=
1

y
(37)

kz =
2

z

=
1

z
(38)
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_________________________________________________________
________
BAND-PASS FILTER

The z component of a magnetic dipole oriented in the z direction
has the system function, h x, y,z( ) , which has the Fourier Transform,
H[kx,ky,kz ], which is shown in Figure 16.1.

H[kx,ky,kz ] =
4 [kx

2 + ky
2 ]

[kx
2 + ky

2 + kz
2 ]

(16.5)

= H[k ,kz ] =
4 k 2

kz
2 + k 2 =

4

1 + kz
2

k 2

(16.6)

Figure 16.1.  The Fourier Transform H[kx,ky,kz ] of the system function
h x, y,z( )  corresponding to the z component of a magnetic dipole oriented
in the z direction.

As shown in the Electron Scattering by Helium Section, in the far
field, the amplitude of the scattered electromagnetic radiation or
scattered electron flux density is the Fourier Transform of the aperture
function.  In the case of a superconductor, the electric field is zero-no
voltage drop occurs; however, a magnetic field is present.  The
relationship between the amplitude of the scattered energy and the
Fourier Transform of the aperture function can be applied to the present
case of the scattering of magnetic energy by the lattice of the potential
superconductor.  The spatial aperture function is the convolution of the
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array pattern with the elemental pattern.  The elemental pattern is the
system function, h x, y,z( ) ,-the geometric transfer function for the z
component of a z oriented magnetic dipole.  And, the  array pattern is a
periodic array of delta functions each at the position of a magnetic
dipole corresponding to a current carrying electron.

2z 2 − x2 − y2( )
[x 2 + y2 + z2 ]5/2 ⊗

B
x − 0nx , y − n 0

y ,z − n 0z( )
n =−∞

∞

∑ (16.7)

The Fourier Transform of a periodic array of delta functions (the right-
hand side of Eq. (16.7)) is also a periodic array of delta functions in k-
space

1

0x y
0
z

0

B
kx −

n

x
0

, ky −
n

y
0

,kz −
n

z
0

 
 
  

 
 

n=−∞

∞

∑ (16.8)

By the Fourier Theorem, the Fourier Transform of the spatial aperture
function, Eq. (16.7), is the product of the Fourier Transform of the
elemental function, system function given by Eq. (16.6), and the Fourier
Transform of the array function given by Eq. (16.8).

4

1 + kz
2

k 2

1

0x y
0
z

0

B
kx −

n

x
0

, ky −
n

y
0

,kz −
n

z
0

 
 
  

 
 

n=−∞

∞

∑ (16.9)

The space-time aperture function corresponding to the current-density
function is given by multiplying the spatial aperture function (Eq.
(16.7)) by a time harmonic function

exp(−i t) (16.10)
Thus, the space-time aperture function is

2z 2 − x2 − y2( )
[x 2 + y2 + z2 ]5/2 ⊗

B
x − 0nx , y − n 0

y ,z − n 0z( )
n =−∞

∞

∑ exp(−i t) (16.11)

The Fourier Transform of the time harmonic function (Eq. (16.10)) is

 
[ ( − z ) + ( + z )]

2
(16.12)

A very important theorem of Fourier analysis states that the Fourier
Transform of a product is the convolution of the individual Fourier
Transforms.  Thus, the Fourier Transform of Eq. (16.11) is the
convolution of Eqs. (16.9) and (16.12)

4

1 + kz
2

k 2

1

x
0
y

0
z

0

B
kx −

n

x
0

,ky −
n

y
0

, kz −
n

z
0

 
 
  

 
 

n=−∞

∞

∑ ⊗
[ ( − z ) + ( + z )]

2
(16.13)

In the special case that
k = kz (16.14)

the Fourier Transform of the system function (the left-hand side of Eq.
(16.13)) is given by
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H = 4 (16.15)
Thus, the Fourier Transform of the system function band-passes the
Fourier Transform of the time dependent array function.  Both the
space-time aperture function, Eq. (16.11) and its Fourier Transform, Eq.
(16.13), are a periodic array of delta functions.  No frequencies of the
Fourier Transform of the space-time aperture function are attenuated;
thus, no energy is lost in this special case where Eq. (16.14) holds.  (This
result is also central to a powerful new medical imaging technology-
Resonant Magnetic Susceptibility Imaging (ReMSI) [2-3]).  No energy loss
corresponds to a superconducting state.  And the relationship between
k-space and real space is

kx = 2

x

= 1

x

ky =
2

y

=
1

y

kz = 2

z

= 1
z

(16.16)

From Eqs. (16.14) and (16.16), it follows that a cubic array ( x
0

= y
0
= z

0
)

of magnetic dipoles centered on the nuclei of the lattice is a
superconductor when the temperature is less than the critical
temperature such that the superconducting electrons can propagate.
Propagating electrons which carry the superconducting current and
comprise magnetic dipoles form standing waves centered on the nuclear
centers of the cubic lattice.  Fermi-Dirac statistic apply to electrons as
given in the Statistical Mechanics Section.  It follows from Eqs. (16.14)
and (16.16) that the Fermi energy is calculated for a cubical cavity L  on
a side.  The number standing waves in a cubical cavity L on a side is
given by Eq. (9.33) of Beiser [4]

g( j)dj = j 2dj (16.17)
where

j =
2L

(16.18)

The de Broglie wavelength of an electron is

=
h

p
(16.19)

Electrons in superconductors have non relativistic velocities; so,
p = 2me (16.20)

and

j =
2L

=
2Lp

h
=

2L 2me

h
(16.21)
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dj =
L

h

2me d (16.22)

Using these expressions for j  and dj  in Eq. (16.17) gives

g( )d =
8 2 L3me

3
2

h3 d (16.23)

Substitution of V  for L3 gives the number of electron states, g( )

g( )d =
8 2 Vme

3
2

h3 d (16.24)

The Fermi energy, EF , is calculated by equating the number of free
electrons, N , to the integral over the electron states of energy  from
zero to the highest energy, the Fermi energy, E = EF .

N = g( )d
0

FE

∫ =
8 2 Vme

3
2

h3

0

FE

∫ d (16.25)

=
16 2 Vme

3
2

3h3 EF
3/2 (16.26)

and the Fermi energy is

EF =
h2

2me

3N

8 V
 
 

 
 

2
3

=
h2

2me

3

8
 
 

 
 

2
3

n
2

3 (16.27)

The quantity N / V = n  is the density of free electrons.
In the case of superconducting electrons, comprising an array of

magnetic dipoles (each dipole in the xy-plane and oriented along the z-
axis), the dimensions of Eq. (9.33) of Beiser [4] is reduced to 2 from 3.

2
1

4
2 j = g( j) (16.28)

For g( j) = 1 with the substitution of Eq. (16.18),
2 L = (16.29)

As the temperature of a superconducting material rises from a
temperature below the critical temperature, Tc , the number density, ns ,
of superconducting electrons decreases.  At the transition temperature,
the superconducting electrons condense into a nondissipative electron
current ensemble which obeys the statistics of a Bose gas (each electron
is identical and indistinguishable as indicated in Eq. (16.8) with the
constraint of Eq. (16.14)), and Eqs. (16.28) and (16.29) apply

2 
 

 
 

3

=
1

L
 
 

 
 

3

= ns (16.30)

where
ns EF = nkBTc (16.31)

ns  is the number density of superconducting electrons within kBTc  of the
Fermi energy and n  is the number density of free electrons.  The current
carried by each superconducting electron corresponds to a translational
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or kinetic energy.  The relationship between the electron de Broglie
wavelength (Eqs. (16.19) and (16.20)) and the average electron energy,

, per degree of freedom, f , given by Beiser [5]
−

=
f

2
kBTc = ∆                  f = 3, 2, or 1 (16.32)

is

=
h

2me

1

2
fkBTc

 
 

 
 

 
 

 
 

1
2

=
h

me fkBTc( )1
2

(16.33)

where in the present case of an inverse squared central field, the binding
energy or energy gap, ∆ , of the superconducting state is one half the
negative of the potential energy and equal to the kinetic energy [6].
Consider the case wherein the Fermi energy is that of a three
dimensional system, but the motion of superconducting electrons is
restricted to 3,  2,  or 1 directions corresponding to f = 3,  2,  or 1,
respectively.  Combining Eqs. (16.30-16.33) gives the transition
temperature

Tc =
8

2( )6

8

3
 
 

 
 

2 EF

kB f 3 (16.34)

where the Fermi energy, EF , is given by Eq. (16.27).  An isotope effect
can be manifest indirectly by changing the rms. position of atoms which
effects the condition of Eq. (16.14) or the Fermi energy by changing the
bond and vibrational energies.

CRITICAL TEMPERATURE, Tc

Tc for Conventional Three Dimensional Metallic
Superconductors

In the case of conventional three dimensional metallic
superconductors, the number density of conduction electrons is
comparable to the number density of atoms-approximately 1029 / m3 .
Thus, the calculated transition temperature (Eq. (16.34)) is

Tc = 30.8 K

As a comparison, the material of this class with the highest known
transition of 23.2 K  is Nb3Ge [7].

Tc for One, Two, or Three Dimensional Ceramic Oxide
Superconductors

In the case of ceramic oxide superconductors, one, two, and three
dimensional conduction mechanisms are possible.  The number density
of conduction electrons is less than that of metallic superconductors-
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approximately 1028 / m3 .
For the three dimensional case, the calculated transition

temperature (Eq. (16.34)) is
Tc = 7 K

As a comparison, a possible material of this class, Li2TiO3  has a transition
temperature of 13.7 K  [8].

For the two dimensional case,
Tc = 22 K

As a comparison, a possible material of this class, the original Bednorz
and Muller Ba − La − Cu − O  material has a transition temperature of 35 K
[7].

For the one dimensional case,
Tc = 180 K

As a comparison, a possible material of this class, Tl − Ca − Ba − Cu − O  has
a transition temperature of 120 −125 K  [9].  The existence of
superconductivity confined to stripes has been observed experimentally
by neutron scattering [10].

Transition temperatures which are intermediate of each of these
limiting cases are possible where combinations of conduction
mechanism are present.

JOSEPHSON JUNCTION, WEAK LINK
As shown in the Electron g Factor Section, the electron links flux in

units of the magnetic flux quantum.  Thus, the magnetic flux that links a
superconducting loop with a weak link is the magnetic flux quantum, Φ0 .

Φ0 =
h

2e
(16.35)

The factor of 2e  in the denominator has been erroneously interpreted
[11] as evidence that Cooper pairs are the superconducting current
carriers which is central to the BCS theory of superconductors.  This
theory fails to explain so called High Temperature Superconductors.
These materials have a transition temperature which corresponds to an
internal electron energy that is well above the energy limits at which the
BCS theory permits conduction electron pairing.  According to the
present theory, Cooper pairs do not exist, and the present theory is
consistent with the existence of High Temperature Superconductors as
well as the experimental result that the magnetic flux that links a
superconducting loop with a weak link is the magnetic flux quantum, Φ0 .
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QUANTUM HALL EFFECT

GENERAL CONSIDERATIONS
When confined to two dimensions and subjected to a magnetic

field, electrons exhibit a range of extraordinary behavior, most notably
the Quantum Hall Effect (QHE).  Two distinct versions of this
phenomenon are observed, the Integral Quantum Hall Effect (IQHE) and
the Fractional Quantum Hall Effect (FQHE).  The former involves the
condition for re-establishment of a superconducting state of one well in
the presence of a magnetic field; whereas, the latter involves the
condition for re-establishment of a superconducting state of two
magnetically linked wells in the presence of a magnetic field.

Consider a conductor in a uniform magnetic field and assume that
it carries a current driven by an electric field perpendicular to the
magnetic field.  The current in this case is not parallel to the electric
field, but is deflected at an angle to it by the magnetic field.  This is the
Hall Effect, and it occurs in most conductors.

In the Quantum Hall Effect, the applied magnetic field quantizes
the Hall conductance.  The current is then precisely perpendicular to the
magnetic field, so that no dissipation (that is no ohmic loss) occurs.
This is seen in two-dimensional systems, at cryogenic temperatures, in
quite high magnetic fields.  Furthermore, the ratio of the total electric
potential drop to the total current, the Hall resistance, RH , is precisely
equal to

RH =
h

ne2 (17.1)

The factor n  is an integer in the case of the Integral Quantum Hall Effect,
and n  is a small rational fraction in the case of the Fractional Quantum
Hall Effect.  In an experimental plot [1] as the function of the magnetic
field, the Hall resistance exhibits flat steps precisely at these quantized
resistance values; whereas, the regular resistance vanishes (or is very
small) at these Hall steps.  Thus, the quantized Hall resistance steps
occur for a transverse superconducting state.

As shown in the Superconductivity Section, superconductivity
arises for an array of current carrying magnetic dipoles when

kp = kz (17.2)
Thus, the Fourier Transform of the system function band-passes the
Fourier Transform of the time dependent array function.  Both the
space-time aperture function and its Fourier Transform are a periodic
array of delta functions.  No frequencies of the Fourier Transform of the
space-time aperture function are attenuated; thus, no energy is lost in
this special case where Eq. (17.2) holds.  Consider the case that an
external magnetic field is applied along the x-axis to a two dimensional
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superconductor in the yz-plane which exhibits the Integral Quantum Hall
Effect.  (See Figure 17.1.)  The magnetic field is expelled from the bulk
of the superconductor by the supercurrent (Meissner Effect).  The
supercurrent-density function is a minimum energy surface; thus, the
magnetic flux decays exponentially at the surface as given by the London
Equation [2].  The Meissner current increases as a function of the
applied flux.  The energy of the superconducting electrons increases
with flux.  This energy increase is equivalent to lowering the critical
temperature in Eq. (16.31) of the Superconductivity Section which is
given by

ns EF = nkTc (17.3)
where ns  is the number density of superconducting electrons within kT c

of the Fermi energy and n  is the number density of free electrons.  At
the critical current, the material loses superconductivity and becomes
normal at a temperature below that of the critical temperature in the
absence of an applied field.  Conduction electrons align with the applied
field in the x direction as the field permeates the material.  The normal
current carrying electrons experience a Lorentzian force, F L , due to the
magnetic flux.  The y directed Lorentzian force on an electron having a
velocity v  in the z direction by an x directed applied flux, B, is

F L = ev × B (17.4)
The electron motion is a cycloid where the center of mass experiences
an E × B drift [3].  Consequently, the normal Hall Effect occurs.
Conduction electron energy states are altered by the applied field and by
the electric field corresponding to the Hall Effect.  The electric force, FH ,
due to the Hall electric field, E y , is

F L = eE y (17.5)
When these two forces are equal and opposite, conduction electrons
propagate in the z direction alone.  For this special case, it is
demonstrated in Jackson [3] that the ratio of the corresponding Hall
electric field and the applied magnetic flux is

E B = v (17.6)
where v  is the electron velocity.  At a temperature below Tc , given by Eq.
(17.3) where EF  is the Fermi energy, Eq. (17.6) is satisfied.  The further
conditions for superconductivity are

n = z (17.7)
nkp = kz (17.8)

And, it is demonstrated in the Integral Quantum Hall Effect Section that
the Hall resistance, RH , in the superconducting state is given by

RH =
h

ne2 (17.9)
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where n  of Eqs. (17.7), (17.8), and (17.9) is the same integer for the
case of a single superconducting well.  It is demonstrated in the
Fractional Quantum Hall Effect Section that electrons in different
superconducting wells can interact when the two wells are separated by
a distance comparable to the magnetic length,   l0 .

  
l0 =

hc

eB
 
 

 
 

1/2

(17.10)

In this case, it is further demonstrated that the Hall resistance, RH , in the
superconductivity state is given by Eq. (17.9) where n  is a fraction.

INTEGRAL QUANTUM HALL EFFECT
A superconducting current-density function is nonradiative and

does not dissipate energy as was the case for single electron current-
density functions described previously in the One Electron Atom Section,
the Two Electron Atom Section, the Three Electron Atom Section, the
Electron in Free Space Section, and the Nature of the Chemical Bond
Section.  Furthermore, a superconducting current-density function is the
superposition of single electron current-density functions-which are
spatially two dimensional in nature.  Thus, a superconducting current-
density function is an electric and magnetic equipotential energy
surface.

From Eq. (1.55), the angular frequency in spherical coordinates
which satisfies the boundary condition for nonradiation is

  
=

h
mer

2 =
(2π)2 h

me 2πr( )2 (17.11)

The relationship between the electron wavelength and the radius which
satisfies the nonradiative boundary condition in spherical coordinates is
given by Eq. (1.43)

2πr = (17.12)
Substitution of Eq. (17.12) into Eq. (17.11) gives

  
=

h
me

k 2 (17.13)

where

k =
2π

(17.14)

It follows from Eq. (1.47) that

  
v =

h
mer

=
h

me

k (17.15)

In a solid lattice, the coordinates are Cartesian rather than spherical.
The relationship between the wavelength of a standing wave of a
superconducting electron and the length, x , of a cubical unit cell follows
from Eqs. (16.28) and (16.29) of the Superconductivity Section
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= 2 x (17.16)
The  de Broglie wavelength, , is given by

=
h

mev
(17.17)

It follows from Eqs. (17.14), (17.16), and (17.17) that the angular
velocity, , and linear velocity, v , for an electron held in force balance
by a periodic array of nuclei comprising a cubical unit cell with
internuclear spacing x are given by Eqs. (17.13) and (17.15) where

k =
2

=
1

x
(17.18)

In general, the Cartesian coordinate wavenumber, k , given by Eq. (17.18)

replaces 
1

r
 of spherical coordinates.

In the case of an exact balance between the Lorentzian force (Eq.
(17.4)) and the electric force corresponding to the Hall voltage (Eq.
(17.5)), each superconducting electron propagates along the z-axis
where

E B = v (17.19)
where v  is given by Eq. (17.15).  Substitution of Eqs. (17.15) and (17.18)
into Eq. (17.19) gives

  
E B =

h
me

k =
h

mex
(17.20)

Eq. (17.20) is the condition for superconductivity in the presence of
crossed electric and magnetic fields.  The Hall resistance for this
superconducting state is derived as follows using the coordinate system
shown in Figure 17.1.
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Figure 17.1.  Coordinate system of crossed electric field, E y ,
corresponding to the Hall voltage, magnetic flux, B x , due to applied
field, and superconducting current iz .

y

x

i 

B  

E
z

The current is perpendicular to E y , thus there is no dissipation.
This occurs when

eE = ev × B (17.21)
or

E B = v (17.22)
The magnetic flux, B, is quantized in terms of the Bohr magneton
because an electron, and therefore a superconductor, links flux in units
of the magnetic flux quantum,

Φ0 =
h

2e
(17.23)

The electric field, E y , corresponding to the Hall voltage, VH , is quantized
in units of e  because this electric field arises from conduction electrons-
each of charge e .  The energy, EH , corresponding to the Hall voltage is
calculated using the Poynting Power Theorem.  The Hall energy of an
integer number of electrons, Z , each in the presence of a magnetic
dipole and an electric field of magnitude Ze due to the Z  electrons
follows for Eqs. (7.30) and (7.47) of the Two Electron Atom Section

  
EH = ZEmag =

Zπ 0e
2h2k 3

Zme
2 (17.24)

where k  is given by Eq. (17.13) and where the electric energy of Eq.
(7.47) is zero because each electron is a conduction electron.  In the
limit to a superconducting state, the trajectory of each electron is  a
cycloid where p  is the frequency in the xy-plane and z  is the
frequency along the z-axis.  In this case, the dipole array function given
in the Superconductivity Section is multiplied by a time harmonic
function with argument p
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2z 2 − x2 − y2( )
[x 2 + y2 + z2 ]5/2 ⊗

B
x − 0nx , y − n 0

y ,z − n 0z( )
n =−∞

∞

∑ exp(−i t) (17.25)

where
= + z (17.26)

The Fourier Transform of the convolved functions of Eq. (17.25) is given
in the Superconductivity Section as

4

1 + kz
2

k 2

1

0x y
0
z

0

B
kx −

n

x
0

, ky −
n

y
0

,kz −
n

z
0

 
 
  

 
 

n=−∞

∞

∑ (17.27)

The Fourier Transforn of the time harmonic function is

 
[ ( − p + z( )) + ( + p + z( ))]

2
(17.28)

A very important theorem of Fourier analysis states that the Fourier
Transform of a product is the convolution of the individual Fourier
Transforms.  Thus, the Fourier Transform of Eq. (17.25) is the
convolution of Eqs. (17.27) and (17.28)

4

1 + kz
2

k 2

1

0x y
0
z

0

B
kx −

n

x
0

, ky −
n

y
0

,kz −
n

z
0

 
 
  

 
 

n=−∞

∞

∑ ⊗
[ ( − p + z( )) + ( + p + z( ))]

2
(17.29)

Eq. (17.29) is a band-pass when
nkp = kz (17.30)

and when
z = n (17.31)

where n  is an integer.  The cyclotron frequency, p , is derived as
follows:
The force balance between the Lorentzian force and the centrifugal force
is

mev
2

r
= ev × B (17.32)

The magnetic flux, B, from a magnetic moment of a Bohr magneton is

  
B = 0eh

2me

k3 (17.33)

Cancelation of v  on both sides of Eq. (17.32) gives
me = e × B (17.34)

=
eB

me

(17.35)

Substitution of Eq. (17.33) into Eq. (17.35) gives
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= 0e

2h
2me

2 k3 (17.36)

Substitution of Eq. (17.31) into Eq. (17.36) gives

  
z =

n 0e
2h

2me
2 k3 (17.37)

The current, iz , along the z-axis is given as the product of the charge, e ,
and z , the frequency along the z-axis

  
iz = e z =

n 0e
3h

2me
2 k3 (17.38)

The Hall voltage is given as the energy per coulomb:

  
VH =

Emag

e
=

π 0eh2k3

me
2 (17.39)

Thus, the Hall resistance, RH , is given as the ratio of the Hall voltage (Eq.
(17.39)) and the current, iz , (Eq. (17.38))

RH =

  

VH

iz

=

π 0eh
2 k3

2me
2

n 0e
3hk3

2me
2

=
h

ne2 (17.40)

The velocity of each superconducting electron according to Eq. (17.22)
is E

B = v (17.41)

which is derived as follows:
The Hall electric field, E y , is given by the ratio of the Hall voltage

and the distance of the cyclotron orbit, 2 x , where the unit cell distance,
x , wavenumber, k , by Eq. (17.16)

E y = VH

k

2
where VH  is given by Eq. (17.39)

  
E y =

π 0eh2k 4

2 me
2 (17.42)

The magnetic field, B, is given by Eq. (17.33); thus the velocity v  is given
as

  

v =

π 0eh2k 4

2 me
2

0ehk3

2me

(17.43)

  
=

h
me

k (17.44)

Eq. (17.44) is equivalent to the velocity for nonradiation given by Eq.
(1.47), where
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2π
2πr

=
2π

= k (17.45)

This superconducting phenomenon whereby the Hall resistance occurs
as inverse integer multiples of

h

e2 (17.46)

is the Integral Quantum Hall Effect (IQHE)

FRACTIONAL QUANTUM HALL EFFECT
For two superconducting wells separated by the magnetic length,

o,

  
l0 =

hc

eB
 
 

 
 

1/2

=
c

π
Φ0

B
 
 

 
 

1/2

(17.47)

where Φ0  given by Eq. (17.23) is the magnetic flux quantum, the wells
are linked.  Electrons can propagate from one well to the other with
activation energy

  

∆Emag

Emag

∝
e2

l0

(17.48)

In the case that a magnetic field is applied to both well one and well two,
and that an exact balance between the Lorentzian force (Eq. (17.4)) and
the electric force corresponding to the Hall voltage (Eq. (17.5)) exists,
each superconducting electron propagates along the z-axis where

E1

B1

= v1 (17.49)

E2

B2

= v2 (17.50)

Because the two wells are linked
v1 = jv2 (17.51)

where j is an integer.  Eq. (17.51) provides that the electrons are in
phase with

2π

1

= k1 = j ⋅ k2 = j
2π

2

(17.52)

where the de Broglie wavelength is given by Eq. (17.19).  Otherwise,
Ez ≠ 0, and the state is not superconducting.  It follows from the
derivation of Eq. (17.40) of the Integral Quantum Hall Effect Section that

E1

n1 B01

= v1 (17.53)

And,
E2

n2 B01

= v2 (17.54)

where n1  and n2  are integers.  From Eqs. (17.52), (17.53), and (17.54)
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E1 = j
n1

n2

E2

B01

B01 (17.55)

The resistance of each well is proportional to the transverse velocity as
shown previously, and the resistance across both linked wells which are
in series is the sum of the individual resistances.  Thus, the total
resistance is proportional to the sum of the individual velocities.

R ∝
E1

n1B01

+
E2

n2 B01

 
 
  

 
 (17.56)

Substitution of Eq. (17.55) into Eq. (17.56) gives

R ∝
E2

B01

1

n2

j +1( ) (17.57)

It follows from the derivation of Eq. (17.40) of the Integral Quantum
Hall Effect Section that Hall resistance, RH , is

RH =

  

VH

iz

=
j +1( ) π 0eh

2k3

me
2

n2 0e
3hk3

2me
2

=
h

ne2 (17.58)

where n  is a fraction.  This superconducting phenomenon whereby the
Hall resistance occurs as inverse fractional multiples of

h

e2 (17.59)

is the Fractional Quantum Hall Effect (FQHE)
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AHARONOV-BOHM EFFECT

The resistance of a circuit corresponds to the decrease in the
energy of the current carrying electrons as they propagate through the
circuit.  Scattering of the electrons is a principal mechanism.  In the case
where a magnetic field is applied such that the field lines are
perpendicular to the plane of a current carrying ring, the current
carrying electrons lose energy through the effect of the field on the
current.

The application of the magnetic field to the current carrying ring
initially gives rise to a changing flux through the ring.  The changing flux
gives rise to an electric field which reduces the current in the ring; thus,
the magnetic field contributes a term called magnetoresistance to the
resistance of the ring.  This term can be derived from the change in
velocity (assuming no scattering) of a current carrying electron of
charge e  and mass me  by the application of a magnetic field of strength
B which is given as Eq. (29) of Purcell [1]

∆v
r

=
eB

2me

 (18.1)

where r  is the radius of the ring.  The changes in the force on the
electron due to the electric field is

∆F = e∆E (18.2)
The change in kinetic energy of the electron over length s  is

1

2
me∆v2 =∆ Fs = e∆Es = e∆V (18.3)

where ∆V  is the change in voltage over the distance s .  From Eq. (18.3),
the voltage change is

∆V =
me∆v2

2e
(18.4)

The change in current, ∆i , per electron due to the change in velocity, ∆v,
is given by Eq. (20) of Purcell [1].

∆i =
e∆v
2 r

 (18.5)

And, the total change in current, ∆i , is

∆i = NWt
e∆v
2 r

 (18.6)

where N  is the density of current carrying electrons in the current ring
cross section, W  is the width of the current ring, and t  is the thickness
of the ring.

The resistance change, ∆R , follows from Eqs. (18.4) and (18.6)

∆R =
∆V

∆i
=

2 rme∆v2

NWt2ee∆v
=

rme∆v

NWte2 (18.7)

Substitution of ∆v  given by Eq. (18.1) into Eq. (18.7) gives the change in
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resistance corresponding to the magnetoresistance.

∆R =
r2 B

NWt2e
(18.8)

An additional critically damped, over damped, or underdamped
oscillatory resistive term may arise due to both the magnetoresistance
and the vector potential of the electron.  The electron possesses an
angular momentum of   h .  As shown in the Electron g Factor Section, the
electron angular momentum comprises kinetic and vector potential
components.  Angular momentum is conserved in the presence of an
applied magnetic field when the electron links flux in units of the
magnetic flux quantum, Φ0 .

Φ0 =
h

2e
(18.9)

This occurs when the electron rotates by 
2

 radians about an axis

perpendicular to the axis parallel to the magnetic flux lines.  This

electron rotation corresponds to an 
  
h
2

  magnitude, 180°  , rotation of the

electron's angular momentum vector.  In the case that the electrons
carry current, this change in momentum of a given current carrying
electron increases or decreases the current depending on the vector
projection of the momentum change onto the direction of the current.
Recently, it has been demonstrated that 50-nm-diameter rings of InAs on
a GaAs  surface have can host a single circulating electron in a pure
quantum state, that is easily controlled by magnetic fields and voltages
on nearby plates.  The electrons were observed to link flux in the unit of
the magnetic flux quantum with a gain in a unit of angular momentum in
a specific direction with the linkage [2].

At low temperature, the de Broglie wavelength of an electron

=
h

mev
(18.10)

has macroscopic dimensions, and the electron scattering length for a
given electron in a current carrying ring may be comparable to the
dimensions of the ring.  A current carrying ring having a magnetic field
applied perpendicularly to the plane of the ring may be constructed and
operated at a temperature, current, and applied magnetic field strength
such that resonance occurs between the vector potential of a current
carrying electron and the flux of the applied magnetic field.  This
coupling can give rise to a contribution to the resistance which behaves
as an underdamped harmonic oscillator in response to the applied
magnetic flux.  The general form of the equation for this component of
the resistance is the product of an exponential dampening function and
a harmonic function as given by Fowles [3].  Each electron links flux only
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in units of the magnetic flux quantum, Φ0 , given by Eq. (18.9).  Thus, the
natural frequency in terms of the applied flux, Φ , is the magnetic flux
quantum, Φ0 .  According to Eq. (18.8), the magnetoresistance is
proportional to the applied flux Φ  where

Φ = r 2B (18.11)

Thus, the argument of the dampening function is proportional to 
Φ
Φ0

.

Furthermore, the magnetoresistance gives rise to a distribution of
electron velocity changes centered about the average velocity change
given by Eq. (18.1) where each electron's current contributing drift
velocity along the ring contributes a component to the kinetic term of
the electron's angular momentum.  The distribution of velocity changes,
dampens the coupling between each electron vector potential and the
applied magnetic flux at the natural frequency corresponding to the
average electron velocity.  And, each electron de Broglie wavelength
change corresponding to its velocity change alters the electron-lattice
scattering cross section which also contributes to the dampening of the
oscillatory resistance behavior.  The argument of the dampening

function is the product of 
Φ
Φ0

 and the corresponding dimensionless

damping factor, D, which incorporates both dampening effects.  The
underdamped oscillatory resistance change due to the applied magnetic
field is

∆R =
r2 B

NWt2e
e

− D
Φ

Φ0

 

 
 
 

 

 
 
 
cos2

Φ
Φ0

(18.12)

The total resistance change due to the applied field is the sum of
the magnetoresistance and the underdamped oscillatory resistance

∆R =
r2 B

NWt2e
1 + e

− D
Φ

Φ0

 

 
 
 

 

 
 
 
cos2

Φ
Φ0

 

  
 

  (18.13)

This type of contribution to the resistance that is an oscillatory

function of the applied flux with a period of Φ0 =
h

2e
 is known as the

Aharonov-Bohm Effect.  The resistance contribution given by Eq. (18.13)
is consistent with the  observed behavior [4] as shown in Figure 18.1.
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Figure 18.1.  The change in the resistance divided by the resistance as a
function of the applied flux which demonstrates the Aharonov-Bohm
effect.
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CREATION OF MATTER FROM ENERGY

[The general result of equations and relationships derived in the Pair
Production and Gravity Sections are given herein.]

Matter and energy are interconvertible and are in essence different
states  of the same entity.  The state, matter or energy, is determined by
the laws of nature and the properties of spacetime.  A photon
propagates according to Maxwell’s Equations at the speed of light in
spacetime having intrinsic impedance .  Matter as a fundamental
particle is created in spacetime from a photon.  Matter obeys the laws of
Special Relativity, the relationship of motion to spacetime, and
spacetime is curved by matter according to the laws of General
Relativity.  Relationships must exist between these laws and the implicit
fundamental constants.  The fundamental elements which determine the
evolution of the universe are the fundamental constants of spacetime, o

and o  with the property of charge; the capacity of spacetime to be
curved by mass/energy; and the photon's angular momentum of   h .  The
conversion of energy into matter requires a transition state for which
the identification of the entity as matter or energy is impossible.  From
the properties of the entity, as matter or energy, and from the physical
laws and the properties of spacetime, the transition state hereafter
called a transition state orbitsphere are derived.  Concomitantly, the
equations for the interconversion of matter and energy are determined,
and the fundamental constant relationships are determined exactly.  The
results are: matter and energy possess mass; matter possesses charge,
and energy is stored in the electric and magnetic fields of matter as a
consequence of its charge and the motion of its charge.  Matter can trap
photons as an absorption event.  The mass of the matter possessing a
"trapped photon" increases by the mass/energy of the photon, and the
photon acts as if it possesses charge.  (The electric fields of "trapped
photons" is given in the Excited States of the One Electron Atom
(Quantization) Section).  Photons obey Maxwell’s Equations.  At the two
dimensional surface of the orbitsphere containing a "trapped photon",
the relationship between the photon’s electric field and its charge at the
orbitsphere (See Eq. 2.10) is

n • E1 − E2( ) =
0

(19.1)

Thus, the photon’s electric field acts as surface charge.  This property of
a photon is essential because charge arises from electromagnetic
radiation in the creation of matter.  Furthermore, energy is proportional
to the mass of matter as given by
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E = mc2 (19.2)
And, energy is proportional to frequency as given by Planck’s equation,

  E = h (19.3)
It is shown in the Gravity Section (Eq. (23.29)) that the de Broglie
relationship can be derived from Planck’s equation.

=
h

mv
(19.4)

Matter and light obey the wave equation relationship

v =
2

(19.5)

and Eqs. (19.2) through (19.4).  Light and matter exist as orbitspheres,
as given in the Photon Equation Section and the One Electron Atom
Section, respectively.

The boundary condition for nonradiation by a transition state
orbitsphere  is

2 (rn
* ) = 2 (nr1

*) = n 1
* = n

* (19.6)
where r * and * are allowed radii and allowed wavelengths for the
transition state matter in question, and n  is a positive real number.  A
general relationship derived for the electron in the Pair Production
Section is that when r = ao , v  of Eq. (19.5) of a transition state
orbitsphere equals the velocity of light in the inertial reference frame of
the photon of angular frequency * and energy   h * = mec

2  which forms
the transition state orbitsphere of rest mass me .  Substitution of Eq.
(19.4) into Eq. (19.6) with v = c  and r* = ao  gives the result that the
radius of the transition state orbitsphere is the Compton wavelength bar,

  D c, which gives the general condition for particle production.

  
  
r * = ao = Dc =

h
m0c

(19.7)

With the substitution of Eq. (19.7) and the appropriate special
relativistic corrections into the orbitsphere energy equations , the
following energies, written in general form, are equal

  E = h * = m0c
2 = V (19.8)

where V  is the potential energy.  In the case of an electron orbitsphere,
the rest mass m0 = me , the radius r* = ao , and the electron and positron
each experience an effective charge of

−1e .

V =
−1e2

4 o ao

(19.9)

This energy and mass are that of the transition state orbitsphere which
can be considered to be created from the photon of frequency *.
Furthermore, the relativistic factor, ,
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=
1

1 −
v

c
 
 

 
 

2
(19.10)

for the lab frame relative to the photon frame of the transition state
orbitsphere of radius ao  is 2  where Eq. (19.10) is transformed from
Cartesian coordinates to spherical coordinates1.  (For example, the
relativistic mass of the electron transition state orbitsphere of radius ao

is 2 me .)  Using the relativistic mass, the Lorentzian invariance of charge,
and the radius of the transition state orbitsphere as ao , it is
demonstrated in the Pair Production Section that the electrical potential
energy is equal to the energy stored in the magnetic field which gives the
following equalities of energies written in general form

  E = V = Emag = h * = m0c
2 (19.11)

The energy stored in the electric and magnetic fields of any photon are
equal, and equivalence of these energies occurs for an LC circuit excited
at its resonance frequency

* =
1

LC
(19.12)

where L  is the inductance and C  is the capacitance of the circuit.
Spacetime is an LC circuit with resonance frequency

  
* =

1

LC
=

1

o o d2
=

1

o oD C
2

(19.13)

where d  is the circuit dimensions.  (This equation is derived in the Pair
Production Section.)  For d = ao , this frequency is equivalent to that of a
photon of energy mec

2 .  When the resonance frequency of an LC circuit is
excited, the impedance becomes infinite.  Thus, spacetime is excited at
its resonance frequency when a photon of angular frequency * forms a
transition state orbitsphere of mass/energy mec

2 .  At this event, the

1 For time harmonic motion, with angular velocity, , the relationship between
the radius and the wavelength given Eq. (1.43) by is

2 rn = n

The de Broglie wave length is given by Eq. (1.46)

n =
h

pn

=
h

mevn

In the relativistically corrected case given by Eq. (1.45),
rn = n

Then from Eq. (1.46),

rn = n =
h

pn

=
h

2 me( )vn

Thus, the relativistically corrected electron mass is 2 me .
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equivalence of all energies given previously provides that matter and
energy are indistinguishable.  (For the transition state orbitsphere, the
potential energy corresponds to the stored electrical energy of an LC
circuit which, in turn, corresponds to the energy stored in the electric
field of a photon.)  The impedance for the propagation of
electromagnetic radiation becomes infinite and a photon of energy mec

2

becomes a fundamental particle as the transition state orbitsphere
becomes real.  The energy of the photon is equal to the rest mass of the
particle at zero potential energy.  Therefore, in the case of charged

particle production, a particle and an antiparticle each of mass 
  
h *

c2  is

produced at infinity relative to the mutual central field of

E =
+e

4 or
2 (19.14)

And, momentum is conserved by a third body such as an atomic nucleus.
The boundary condition, Eq. (1.43) and Eq. (19.6), precludes the

existence of the Fourier components of the current-density function of
the orbitsphere that are synchronous with waves traveling at the speed
of light.  The nonradiative condition is Lorentzian invariant because the
velocity is perpendicular to the radius.  However, the constancy of the
speed of light must also hold which requires relativistic corrections to
spacetime.  The Schwarzschild metric gives the relationship whereby
matter causes relativistic corrections to spacetime that determines the
curvature of spacetime and is the origin of gravity.  Thus, the creation of
matter causes local spacetime to become curved.  The geometry of
spacetime is transformed from flat (Euclidean) to curved (Riemannian).
Time and distances are distorted.  At particle production, the proper
time of the particle must equal the coordinate time given by Special
Relativity for Riemannian geometry affected by the creation of matter of
mass m0  where the metric of spacetime is given by the Schwarzschild
metric.  This boundary condition determines the masses of the
fundamental particles. The gravitational radius, G  or rG, which
arises from the solution of the Schwarzschild metric is defined as

G =
Gm0

c2 = rG (19.15)

where G  is the gravitational constant.  The radius of the transition state
orbitsphere is

  
r* = Dc =

h
m0c

(19.16)

These radii are equal when the gravitational potential, Egrav , is

  
Egrav =

Gm0
2

r* =
Gm0

2

Dc

= h ∗= V = Emag (19.17)
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These relationships represent the unification of the fundamental laws of
the universe, Maxwell’s Equations, Newtonian Mechanics, Special and
General Relativity, and the Planck equation and the de Broglie
relationship where the latter two can be derived from Maxwell’s
Equations as demonstrated in the Gravity Section.
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PAIR PRODUCTION

Matter and energy are interconvertible and are in essence different
states of the same entity.  The state, matter or energy, is determined by
the laws of nature and the properties of spacetime.  A photon
propagates according to Maxwell’s Equations at the speed of light in
spacetime having intrinsic impedance .  Matter as a fundamental
particle is created in spacetime from a photon.  Matter obeys the laws of
Special Relativity, the relationship of motion to spacetime, and
spacetime is curved by matter according to the laws of General
Relativity.  Relationships must exist between these laws and the implicit
fundamental constants.  The conversion of energy into matter requires a
transition state for which the identification of the entity as matter or
energy is impossible.  From the properties of the entity, as matter or
energy, and from the physical laws and the properties of spacetime, the
transition state hereafter called a transition state orbitsphere is derived.
For example, a photon of energy 1.02 MeV  in the presence of a third
particle becomes a positron and an electron.  This phenomenon, called
pair production, involves the conservation of mass/energy, charge, and
angular and linear momentum.  Pair production occurs as an event in
spacetime where all boundary conditions are met according to the
physical laws: Maxwell’s Equations, Newton’s Laws, and Special and
General Relativity, where matter and energy are indistinguishable by any
physical property.  Matter and photons exist as orbitspheres; thus, the
conversion of energy to matter must involve the orbitsphere equations
derived in the previous sections.  It must also depend on the equations
of electromagnetic radiation and the properties of spacetime because
matter is created from electromagnetic radiation as an event in
spacetime.

Matter and light obey the wave equation relationship

v =
2

(20.1)

The boundary condition for nonradiation by a transition state
orbitsphere is

2 (rn
* ) = 2 (nr1

*) = n 1
* = n

* (20.2)
where r*  and *  are allowed radii and allowed wavelengths for the
transition state matter in question, and n  is a positive real number.

Consider the production of an electron and a positron providing a
mutual central field.  The relationship between the potential energy of
an electron orbitsphere and the angular velocity of the orbitsphere is

  
V = h ∗=

1

n

e2

4 onao

(20.3)
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It can be demonstrated that the velocity of the electron
orbitsphere satisfies the relationship for the velocity of a wave by
substitution of Eqs. (1.43) and (1.55) into Eq. (20.1), which gives Eq.
(1.56).  Similarly, the relationship between c , the velocity of light in free
space, and frequency  and wavelength  is

c =
2

(20.4)

And, the energy of a photon of frequency  is
  E = h (20.5)

Recall from the Excited States of the One Electron (Quantization) Section
that a photon of discrete frequency, , can be trapped in the
orbitsphere of an electron which serves as a resonator cavity of radius rn

where the resonance excitation energy of the cavity is given by Eq.
(20.3).

As demonstrated in the Excited States of the One Electron Atom
(Quantization) Section, with the inclusion of the contribution of the
electron kinetic energy change, the change in the orbitsphere angular
velocity is equal to the angular velocity of the resonant photon of the
corresponding electron transition.  The ratio of their linear velocities is
given by Eq. (20.4).

∆vn

cphoton

=
∆ n

∆ n

2

photon
photon

2

=
∆ n

photon

(20.6)

where the n  subscripts refer to orbitsphere quantities.
Consider a transition state electron orbitsphere which is defined as

the transition state between light and matter where light and matter are
indistinguishable, and where ∆vn = vn  and ∆ n = n .  For this case, the
velocity of the electron transition state orbitsphere is the speed of light
in the inertial reference frame of the photon which formed the
transition state orbitsphere.  The result of the substitution into Eq.
(20.1) of c  for v , of n  given by Eq. (2.2) where r1  is given by Eq. (1.169)
for , and of n  given by Eq. (1.55) for  is

  
c = 2 nao

h
me(na0 )2 2

(20.7)

Maxwell’s Equations provide that

c =
1

o o

(20.8)

The result of substitution of Eqs. (1.168) and (20.8) into Eq. (20.7) is

  
n−1 =

mecao

h
=

me

h o o

4 0h
2

e2me

= 4 o

o

h
e2 = −1 (20.9)
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In fact,  is the fine structure constant (a dimensionless constant for
pair production) [1].  The experimental value is 0.0072973506 .  Recently,
alterations to the most up-to-date, self consistent set of the
recommended values of the MKS basic constants and conversion factors
of physics and chemistry resulting from the 1986 least-squares
adjustment have been proposed [2].  Eq. (20.9), the equations of pair
production given below, and the equations in the Unification of
Spacetime, the Forces, Matter, and Energy Section and Gravity Section
permit the derivation of a more accurate self consistent set.

Continuing with the present MKS units, the radius of the transition
state electron orbitsphere is ao , and the potential energy, V , is given by
Eq. (20.3) where n  is  where  arises from Gauss's law surface integral
and the relativistic invariance of charge.

V =
− −2e2

4 oao

(20.10)

V = mec
2 (20.11)

Furthermore, the result of the multiplication of both sides of Eq. (1.55)
by   h , rn = na0 , and the substitution of n =  yields

  h
* = mec

2 (20.12)
The relativistic factor,

=
1

1 −
v

c
 
 

 
 

2
(20.13)

for an orbitsphere at radius r*  ( ao  in the case of the electron) is 2

where Eq. (20.13) is transformed from Cartesian coordinates to
spherical coordinates.  The energy stored in the magnetic field of the
electron orbitsphere is

  
Emag = oe

2h2

(me )2 rn
3 (20.14)

Eq. (20.15) is the result of the substitution of ao  for rn  , the relativistic
mass, 2 me , for me , and multiplication by the relativistic correction, −1 ,
which arises from Gauss's law surface integral and the relativistic
invariance of charge.

Emag = mec
2 (20.15)

Thus, the energy stored in the magnetic field of the transition state
electron orbitsphere equals the electrical potential energy of the
transition state orbitsphere.  The magnetic field is a relativistic effect of
the electrical field; thus, equivalence of the potential and magnetic
energies when v = c  is given by Special Relativity where these energies are
calculated using Maxwell’s Equations.  The energy stored in the electric
and magnetic fields of a photon are equivalent.  The corresponding
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equivalent energies of the transition state orbitsphere are the electrical
potential energy and the energy stored in the magnetic field of the
orbitsphere.

Spacetime is an electrical LC circuit with an intrinsic impedance of
exactly

= o

o

(20.16)

The lab frame circumference of the transition state electron orbitsphere
is 2 ao ; whereas, the circumference for the v = c  inertial frame is ao .
The relativistic factor for the radius of ao  is 2 ; thus, due to relativistic
length contraction, the total capacitance of free space of the transition
state orbitsphere of radius ao  is

C =
2 ao o

2
= o ao (20.17)

where o  is the capacitance of spacetime per unit length ( F / m).
Similarly, the inductance is

L =
2 ao o

2
= o ao (20.18)

where o  is the inductance per unit length ( H / m ).
Thus, the resonance frequency of a transition state electron

orbitsphere is

∗=
1

LC
=

1

o ao o ao

(20.19)

Thus,

  
∗=

mec
2

h
(20.20)

Thus, the LC resonance frequency of free space for a transition state
electron orbitsphere equals the angular frequency of the photon which
forms the transition state orbitsphere.

The impedance of any LC circuit goes to infinity when it is excited
at the resonance frequency.  Thus, the electron transition state
orbitsphere is an LC circuit excited at the corresponding resonance
frequency of free space.  The impedance of free space becomes infinite,
and electromagnetic radiation cannot propagate.  At this event, the
frequency, wavelength, velocity, and energy of the transition state
orbitsphere equals that of the photon.  The energy of the photon is equal
to the rest mass of the particle at zero potential energy, and charge is
conserved.  Therefore, a free electron and a free positron each of mass

  
h *

c2   is produced at infinity relative to the mutual central field of



© 2000 by BlackLight Power, Inc.  All rights reserved.
316

E =
+e

4 or
2 (20.21)

where all of the electron transition state orbitsphere equations
developed herein apply to this central field.  The equation of the free
electron is given in the Electron in Free Space Section.  The transition
state is equivalent to the equation of the photon given in the Photon
Equation Section.  Photons superimpose; thus, pair production occurs
with a single photon of energy equal to twice the rest mass of an
electron.  Linear momentum is conserved by a third body such as a
nucleus which recoils in the opposite direction as the particle pair; thus,
permitting pair production to occur.

For pair production, angular momentum is conserved.  All photons
carry   ±h of angular momentum, and the angular momentum of all
matter as orbitspheres is   ±h ; see Eq. (1.57).  The radius of particle
creation is r1

* .  This radius is equal to   D c , the Compton wavelength bar,

where 
  
D c =

h
mec

.  It arises naturally from the boundary condition of no

radiation, Eq. (1.43) and Eq. (20.2) where n = , the de Broglie
relationship, Eq. (1.46), and that the velocity of the transition state
orbitsphere equals c .

  
r* =

h
mec

= Dc (20.22)

The equations derived for the electron in the present section are
generally applicable to all fundamental particles, and it is shown in the
Gravity Section that the masses of the fundamental particles are
determined by these equations and the curvature of spacetime by
matter.  During the creation of matter, the constancy of the speed of
light must hold which requires relativistic corrections to spacetime.  The
Schwarzschild metric gives the relationship whereby matter causes
relativistic corrections to spacetime that determines the curvature of
spacetime and is the origin of gravity.  Thus, the creation of matter
causes local spacetime to become curved.  The geometry of spacetime is
transformed from flat (Euclidean) to curved (Riemannian).  Time and
distances are distorted.  At particle production, the proper time of the
particle must equal the coordinate time given by Special Relativity for
Riemannian geometry affected by the creation of matter of mass m0  (in
the case of pair production, m0 = me ) where the metric of spacetime is
given by the Schwarzschild metric.  This boundary condition determines
the masses of the fundamental particles.
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POSITRONIUM

Pair production, the creation of a positron/electron pair occurs
such that the radius of one orbitsphere has a radius infinitesimally
greater than the radius of the antiparticle orbitsphere.  The inner
orbitsphere is held in force balance by a photon such as the case of the
proton and neutron (See Proton and Neutron Section).  The forces are
central, and the radius of the outer orbitsphere (electron or positron) is
calculated as follows.  The centrifugal force is given by Eq. (1.152).  The
centripetal electric force of the inner orbitsphere on the outer
orbitsphere is given by Eq. (1.153).  A second centripetal force is the
relativistic corrected magnetic force, Fmag , between each point of the
particle and the inner antiparticle given by Eq. (1.164) with me

substituted for m .  The force balance equation is given by Eq. (1.165)
with me  substituted for m .  Thus,

  
r1 =

4 0h
2

e2 (21.1)

where r1 = r2  is the radius of the positron and the electron and where the
reduced mass , , is

=
me

2
(21.2)

The Bohr radius given by Eq. (21.3) and Eq. (21.2) is substituted into Eq.
(21.1),

  
ao =

4 0h
2

e2me

    , and (21.3)

r1 = 2ao (21.4)
Energy Calculations
The potential energy V  between the particle and the antiparticle having
the radius r1  is,

V =
−e2

4 or1

=
−Z 2e2

8 oao

= −2.18375 X 10−18
 J = 13.59 eV . (21.5)

The calculated ionization energy is 
1

2
V  which is

Eele = 6.795 eV . (21.6)
The experimental ionization energy is 6.795 eV .

Parapositronium, a singlet state hydrogen-like atom comprising an
electron and a positron, can absorb a photon which excites the atom to
the first triplet state, orthopositronium.  In parapositronium, the
electron and positron angular momentum vectors are parallel;  whereas,
the magnetic moment vectors are antiparallel.  The opposite
relationships exist for orthopositronium.  The principal energy levels for
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the singlet excited states are given by Eq. (2.22) with the electron
reduced mass substituted for the mass of the electron.

En =
e2

8 oaon
2 =

6.8

n2  eV ;  n  is an integer (21.7)

which are the experimental energy levels.  The energy of the transition
from parapositronium to orthopositronium is the hyperfine structure
interval.  Parapositronium possesses orbital angular momentum states
corresponding to the quantum number m  = 0 ;  whereas,

orthopositronium possesses orbital angular momentum states
corresponding to m  = 0,±1.  The orbital angular momentum states of

orthopositronium are degenerate in the absence of an applied magnetic
field.  The magnitude of the central field of the first excited triplet state

of positronium is 
1

2
e  as given in the Excited States of the One Electron

Atom (Quantization) Section and Fmag  of Eq. (1.164) with me  substituted
for m  is zero for the parallel spins having antiparallel angular
momentum vectors.  Thus, the radii of the two orbitspheres of the first
triplet excited state are given by the force balance equating the
centrifugal and centripetal forces:

me

4 r1
2

v1
2

r1

=
e

4 r1
2

1

2

Ze

4 or1
2 (21.8)

r1 = r2 = 2ao (21.9)
Thus, Eele , Eq. (21.6) is unchanged from the "ground" state energy.  The
hyperfine structure interval of positronium can be calculated from the
spin/spin coupling energy and the magnetic energy stored in the surface
currents produced by the "trapped resonant photon".  The spin/spin
coupling energy between the inner orbitsphere and the outer
orbitsphere is given by Eq. (1.136) where B , the magnetic moment of
the outer orbitsphere is given by Eq. (1.137).  The magnetic flux, B, of
the inner orbitsphere at the position of the outer is

  
B = oeh

2mer2
3 (21.10)

Substitution of Eq. (21.10) and (1.137) into Eq. (1.136) gives

  
E =

2 oe
2h2

4me
2r2

3 (21.11)

Photons obey Maxwell’s Equations.  At the two dimensional surface
of the orbitsphere containing a "trapped photon", the relationship
between the photon’s electric field and its charge at the orbitsphere is

n • E1 − E2( ) =
0

(21.12)

Thus, the photon’s electric field acts as surface charge.  According to Eq.
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(21.12), the photon standing wave in the positronium orbitsphere
resonator cavity gives rise to a two dimensional surface charge at the
orbitsphere two dimensional surface at r1

+ , infinitesimally greater than
the radius of the inner orbitsphere, and r2

− , infinitesimally less than the
radius of the outer orbitsphere.  For an electron in a central field, the
magnitude of the field strength of the first excited state corresponding
to a transition from the state with n = 1 and radius 2ao  to the state with

n = 2  is 
1

4
e  as given in the Excited States of the One Electron Atom

(Quantization) Section.  The energy corresponding to the surface charge
which arises from the "trapped photon standing wave" is given by the
energy stored in the magnetic fields of the corresponding currents.  The
surface charge is given by Eq. (21.12) for a central field strength equal

in magnitude to 
1

4
e .  This surface charge possesses the same angular

velocity as each orbitsphere; thus, it is a current with a corresponding
stored magnetic energy.  The energy corresponding to the surface
currents, Esc , is the difference of Emag  internal and Emag  external  for a single charge

of 
1

4
e  substituted into Eqs. (1.125) and (1.127).

  
Esc =

2

3
oe

2h2

42 me
2r1

3 −
1

3
oe

2h2

42 me
2r1

3 (21.13)

 The hyperfine structure interval of positronium, EHF , is given by the sum
of Eq. (21.11) and Eq. (21.13) where r1 = 2ao .

  
EHF = oe

2h2

4me
28a0

3 − oe
2h2

(42 )(3)me
28a0

3  (21.14)

Eq. (21.14) is the hyperfine structure interval calculated for an electron
or a positron magnetic moment of one Bohr magneton; however, the
exact magnetic moment in the case of an orbitsphere includes the
electron (fluxon) g factor which is given by Eq. (1.151).  Thus, Eq.
(21.14) becomes

  
EHF = 2g oe

2h2

32me
2a0

3 1−
12

 
 

 
 (21.15)

EHF ,calculated = 8.4111 X 10-4  eV

EHF ,experimental = 8.4111 X 10-4  eV
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RELATIVITY

Basis of a Theory of Relativity1

To describe any phenomenon such as the motion of a body or the
propagation of light, a definite frame of reference is required.  A frame
restricts the maximun sdonsisting of a defined origin and three axes
equipped with graduated rules and clocks.  Bodies in motion then have
definite positions and definite motions with respect to the base.  The
motion of planets is commonly described in the heliocentric system.
The origin is defined as the mass center, and the three axes are chosen
to point to three fixed stars to establish the fixed orientation of the axes.
In general, the mathematical form of the laws of nature will be different
in different frames.  For example, the motion of bodies relative to the
Earth may be described either in a frame with axes pointing to three
fixed stars or in one rigidly fixed to the Earth.  In the latter case, Coriolis
forces arise in the equations of motion.  There exist frames of reference
in which the equations of motion have a particular simple form; in a
certain sense these are the most "natural" frames of reference.  They are
the inertial frames in which the motion of a body is uniform and
rectilinear, provided no forces act on it.  In pre-relativistic physics the
notion of an inertial systems was related only to the laws of mechanics.
Newton's first law of motion is, in fact, nothing but a definition of an
inertial frame.

But it is impossible to define absolute velocity, and the speed of
light is the conversion factor from time to length.  The laws of light
propagation play a fundamental part in the definition of the basic
concepts relating to space and time.  Therefore it proves more correct
to relate the notion of an inertial frame not only to the laws of
mechanics but also to those of light propagation.

The usual form of Maxwell's equations refers to some inertial
frame.  It is obvious and has always been assumed, even before
relativity, that at least one reference frame exists that is inertial with
respect to mechanics and in which at the same time Maxwell's equations
are true.  The law of propagation of an electromagnetic wave front in the
form

1

c2 t

 
 

 
 

2

−
x

 
 

 
 

2

+
y

 
 
  

 

2

+
z

 
 

 
 

2 

 
 

 

 
 = 0 (22.1)

also refers to this inertial frame.  A frame for which Eq. (22.1) is valid
may be called inertial in the electromagnetic sense.  A frame that is

1 A good reference for the historical concepts of the theory of special relativity
which are partially included herein is Fock [1].



© 2000 by BlackLight Power, Inc.  All rights reserved. 321

inertial both in the mechanical and in the electromagnetic senses will be
simply called inertial.

Thus, by the definition we have adopted, an inertial frame which is
characterized by the following two properties:

1.  In an inertial frame, a body moves uniformly and in a straight
line, provided no forces act on it.  (The inertial property in the usual
mechanical sense.)

2.  In an inertial frame, the equation of propagation of an
electromagnetic wave front has the form Eq. (22.1).  (The inertial
property for the field.)

Eq. (22.1) applies not only to the propagation of an
electromagnetic wave.  The electromagnetic field has no preference over
other fields.  The maximum speed of propagation of all fields must be
the same such that Eq. (22.1) is of universal validity.

The fundamental postulate of the theory of relativity, also called
the principle of relativity, asserts that phenomena occurring in a closed
system are independent of any non-accelerated motion of the system as
a whole.  The principle of relativity asserts that the two sequences of
events will be exactly the same (at least insofar as they are determined
at all).  If a process in the original systems can be described in terms of
certain functions of the space and time coordinates of the first frame,
the same functions of the space and time coordinates of the second
frame will describe a process occurring in the copy.  The uniform
rectilinear motion of a material system as a whole has no influence on
the course of any process occurring within it.

The theory of relativity is based on two postulates, namely, the
principle of relativity and another principle that states that the velocity
of light is independent of the velocity of its source.  The latter principle
is a consequence of the first.  The latter principle is implicit in the law of
the propagation of an electromagnetic wave front given by Eq. (22.1).
The basis for defining inertial reference frames is Eq. (22.1) together
with the fact of the uniform rectilinear motion of a body not subject to
forces.  The principle of relativity holds in the case that the reference
frames are inertial.

It is appropriate to give here a generalized interpretation of the
law of wave front propagation and to formulate the following general
postulate:

There exists a maximum speed for the propagation of any kind of
action -- the speed of light in free space.
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This principle is very significant because the transmission of
signals with greatest possible speed plays a fundamental part in the
definition of concepts concerning space and time.  The very notion of a
definite frame of reference for describing events in space and time
depends on the existence of such signals.  The principle formulated
above, by asserting the existence of a general upper limit for all kinds of
action and signal, endows the speed of light with a universal significance,
independent of the particular properties of the agency of transmission
and reflecting a certain objective property of space-time.  This principle
has a logical connection with the principle of relativity.  For if there was
no single limiting velocity but instead different agents, e.g. light and
gravitation, propagated in vacuum with different speeds, then the
principle of relativity would necessarily be violated as regards at least
one of the agents.  The principle of the universal limiting velocity can be
made mathematically precise as follows:

For any kind of wave advancing with limiting velocity and capable
of transmitting signals, the equation of front propagation is the same as
the equation for the front of a light wave.

Thus, the equation
1

c2 t

 
 

 
 

2

− grad( )2 = 0 (22.2)

acquires a general character; it is more general than Maxwell's equations
from which Maxwell originally derived it.  As a consequence of the
principle of the existence of a universal limiting velocity one can assert
the following: the differential equations describing any field that is
capable of transmitting signals must be of such a kind that the equation
of their characteristics is the same as the equation for the
characteristics of light waves.  In addition to the governing the
propagation of any form of energy, the wave equation governs
fundamental particles created from energy and vice versa, the associated
effects of mass on spacetime, and the evolution the universe itself.  The
equation that describes the electron given by Eq. (1.48) is the wave
equation, the relativistic correction of spacetime due to particle
production travels according to the wave equation as given in the
Gravity Section, and the evolution of the universe is according to the
wave equation as given in the Gravity Section and the Unification of
Spacetime, the Forces, Matter, and Energy Section (Eq. (24.46)).

The presence of a gravitational field somewhat alters the
appearance of the equation of the characteristics from the form of Eq.
(22.2), but in this case one and the same equation still governs the
propagation of all kinds of wave fronts traveling with limiting velocity,
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including electromagnetic and gravitational ones.  The basis for defining
inertial reference frames is Eq. (22.2) asserting the universality of the
equation together with the fact of the uniform rectilinear motion of a
body not subject to forces.

Let one and the same phenomenon be described in two inertial
frames of reference.  The question arises of relating measurements in
one frame to this in another.  For example, consider transforming radar
data obtained by a satellite circling the Earth to that recorded on the
ground.  For such a transformation, the relationship between the space
and time coordinates x,  y, z  and t  in the first frame and the
corresponding x' ,  y',  z'  and t'  in the second.  Before relativity one
accepted as self-evident the existence of a universal time t  that was the
same for all frames.  In this case t' = t  or t' = t − t0 , if a change of time
origin was used.  Considering two events occurring at t'  and , the old
point of view required the time elapsed between them to be the same in
all reference frames so that

t − = t' − ' (22.3)
Furthermore, it was considered to be evident that the length of a rigid
rod, measured in the two frames, would have the same value.  (This
applies equally to the distance between the "simultaneous" positions of
two points which need not necessarily be rigidly connected.)  Denoting
the spatial coordinates of the two ends of the rod (or the two points) by
(x,  y, z)  and ( , , )  in the one frame and by (x' ,  y',  z')  and ( ' ,  ' ,  ')  in the
other, the old theory required

x −( )2
+ y −( )2 + z −( )2

= x' − '( )2
+ y' − '( )2 + z' − '( )2

(22.4)
Eqs. (22.3) and (22.4) determine uniquely the general form of the
transformation connecting x,  y, z  and t  with x' ,  y',  z'  and t' .  It consists of
a change in origin of spatial coordinates and of time, of a rotation of the
spherical axes, and of a transformation such as

x' = x − Vxt

y' = y − Vyt

z' = z − Vzt

t' = t

(22.5)

where Vx , Vx , and Vx  are the constants of velocity with which the primed
frame moves relative to the unprimed one; more exactly they are the
components of this velocity in the unprimed frame.  The transformation
(Eq. (22.5)) is known as a Galileo transformation.  Thus, pre-relativistic
physics asserted that, given an inertial frame (x,  y, z) , space and time
coordinates in any other frame moving uniformly and rectilinearly
relative to the former are connected by a Galileo transformation, apart
from a displacement of the origin.
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Galileo transformations satisfy the principle of relativity as far as
the laws of (Newtonian) mechanics are concerned, but not in relation to
the propagation of light.  Indeed the wave front equation changes its
appearance when subjected to a Galileo transformation.  If Galileo
transformations were valid and the Principle of Relativity in its
generalized form was not, then there would exist only one inertial
system as defined above.  The changed form of the wave front equation
in any other frame would allow one to detect even uniform rectilinear
motion relative to the single inertial system - the "immobile ether" - and
to determine the velocity of this motion.  Experiments devised to
discover such motion relative to the "ether" have unquestionably
eliminated the "ether" as a possibility and confirm that the form of the
law of wave front propagation is the same in all non-accelerated
frames2.  Therefore the principle of relativity is certainly also applicable
to electromagnetic phenomena.  It also follows that the Galileo
transformation is in general wrong and should be replaced by another.
The problem can be stated as follows.  Let a reference frame be given
which is inertial according to the definition given above (i.e. both
mechanically and electromagnetically).  The space time coordinates in
this frame are given by x,  y, z  and t .  Let the space time coordinates in
another inertial frame be given by (x', y' ,z', t' ).  The connection between
(x, y, z,t)  and (x', y' ,z', t' ) is to be found.  The problem of finding a
transformation between two inertial frames is purely mathematical; it
can be solved without any further physical assumptions other than the
definition of an inertial frame given above.  The transformations are
given by Lorentz.

2 The most famous of such experiments is the Michelson-Morley experiment.  In
1887 in collaboration with Edward Morley, Albert Michelson performed an
experiment to measure the motion of the Earth through the "ether", a hypothetical
medium pervading the universe in which light waves propagated.  The notion of
the ether was carried over from the days before light waves were recognized as
electromagnetic.  At that time, the physics community was unwilling to discard the
idea that light propagates relative to some universal frame of reference.  The
extremely sensitive Michelson-Morley experiment could find no motion through an
ether, which meant that there could be no ether and no principle of "absolute
motion" relative to it.  All motion is relative to a specific frame of reference, not a
universal one.  The experiment which in essence compared the speeds of light
parallel to and perpendicular to the Earth's motion around the Sun, also showed that
the speed of light is the same for all observers.  This is not true in the case of waves
that need a material medium in which to occur such as sound and water waves.  The
experimental results of the Michelson-Morley experiment comprised the basis of a
theory by Einstein that stated the impossibility of an absolute reference frame and
that the speed of light is a constant maximum for all observers.  Thus, the
Michelson-Morley experiment set the stage for Einstein's 1905 special theory of
relativity as Michelson was reluctant to accept this result.
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Lorentz Transformations
A Lorentz transformation is a set of equations for transforming the

space and time coordinates in one inertial frame into those of another
that moves uniformly and in a straight line relative to the first.  The
transformation can be characterized by the fact that the quantity

ds 2 = dx0
2 − dx1

2 + dx2
2 + dx3

2( ) (22.6)
or

ds 2 = c2dt2 − dx 2 + dy2 + dz 2( ) (22.7)
remains invariant in the strict sense (not only the numerical value, but
also the mathematical form of the expression remain unchanged.)
Newtonian mechanics is corrected by Lorentz transformations of the
time, length, mass, momentum, and energy of an object.  Newtonian
mechanics with Galileo transforms give mechanical forces for v << c :

F =
dp
dt

=
d(mv)

dt
= m

dv
dt

= ma (22.8)

T =
1

2
mv2 (22.9)

In the case that v  approaches c , Lorentz transforms apply.

Time Dilation

The relativity of time

The postulates of relativity may be used to derive the Lorentz
transformation that described how relative motion affects
measurements of time intervals.

A clock that moves with respect to an observer appears to tick less
rapidly than it does when at rest with respect to him.  That is, if
someone is a spacecraft finds that the time interval between two events
in the spacecraft is t0 , we on the ground would find that the same
interval has the longer duration t .  The quantity t0 , which is determined
by events that occur at the same place in a observer's frame of
reference, is called the proper time of the interval between the events.
When witnessed from the ground, the events that mark the beginning
and end of the time interval occur at different places, and as a
consequence the duration of the interval appears longer than the proper
time.  This effect is called time dilation (to dilate is to become larger).

To see how time dilation comes about, let us consider two clocks
of the particularly simple kind shown in Figure 22.1.
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Figure 22.1.  A simple clock.  Each "tick" corresponds to a round trip of
the light pulse from the lower mirror to the upper one and back.

Such a clock consists of a stick L0  long with a mirror at each end.  A
pulse of light is reflected up and down between the mirrors, and a device
attached to one of them produces a "tick" of some kind each time the
light pulse strikes it.  Such a device might be a photosensitive coating on
the mirror that gives an electric signal when the pulse arrives.

One clock is at rest in a laboratory on the ground and the other is
in a spacecraft that moves at the v  relative to the ground.  An observer
in the laboratory watches both clocks and finds that they tick at
different rates.

Figure 22.2 shows the laboratory clock in operation.  The time
interval between ticks is the proper time t0 .  The time needed for the

light pulse to travel between the mirrors at the speed of light c  is 
t0

2
;

hence 
t0

2
=

L0

c
 and

t0 =
2L0

c
(22.10)

Figure 22.3 shows the moving clock with its mirrors perpendicular
to the direction of motion relative to the ground.
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Figure 22.2.  A light-pulse clock at rest on the ground as seen by an
observer on the ground.  The dial represents a conventional clock on the
ground.

Figure 22.3.  A light-pulse clock in a spacecraft as seen by an observer
on the ground.  The mirrors are parallel to the direction of motion of
the spacecraft.  The dial represents a conventional clock on the ground.

The time interval between ticks is t .  Because the clock is moving,
the light pulse, as seen from the ground, follows a zigzag path.  On its

way from the lower mirror to the upper one in the time 
t

2
, the pulse

travels a horizontal distance of v
t

2
 and a total distance of c

t

2
.  Since L0  is

the vertical distance between the mirrors,
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c
t

2
 
 

 
 

2

= L0
2 + v

t

2
 
 

 
 

2

(22.11)

t2

4
c2 − v2( ) = L0

2 (22.12)

t2 =
4L0

2

c2 − v2 =
2L0( )2

c2 1 − v2

c2

 
 
  

 

(22.13)

t =

2L0

c

1−
v2

c2

(22.14)

But 
2L0

c
 is the time interval t0  between ticks on the clock on the ground,

as in Eq. (22.10), and so the time dilation relationship is

t =
t0

1−
v2

c2

(22.15)

wherein the parameters are:

t0  = time interval on clock at rest relative to an observer
t    = time interval on clock in motion relative to an observer
v   = speed of relative motion
c   = speed of light

Because the quantity 1 −
v2

c2  is always smaller than 1 for a moving

object, t  is always greater than t0 .  The moving clock in the spacecraft
appears to tick at a slower rate than the stationary one on the ground, as
seen by an observer on the ground.

Exactly the same analysis holds for measurements of the clock on
the ground by the pilot of the spacecraft.  To him, the light pulse of the
ground clock follows a zigzag path that requires a total time t  per round
trip.  His own clock, at rest in the spacecraft, ticks at intervals of t0 .  He
too finds that

t =
t0

1−
v2

c2

(22.16)

so the effect is reciprocal: (every observer finds that clocks in motion
relative to him tick more slowly than clocks at rest relative to him.
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The Lorentz transformation of time, length, mass, momentum, and
energy which are significant when v  approaches c  can be derived by a
similar procedure [2].  The Lorentz transformations are:

t =
t0

1−
v2

c2

(22.17)

l = lo 1 −
v2

c2 (22.18)

m =
m0

1 −
v2

c2

(22.19)

p =
m0v

1 −
v2

c2

(22.20)

E = mc2 =
m0c

2

1 −
v2

c2

(22.21)

E2 = m0
2c4 + p2c2 (22.22)

When speaking of the relativity of a frame of reference or simply
of relativity, one usually means that there exist identical physical
processes in different frames of reference.  According to the generalized
Galilean principle of relativity identical processes are possible in all
inertial frames of reference related by Lorentz transformations.  On the
other hand, Lorentz transformations characterize the uniformity of
Galilean space-time.

The Relativity Principle and the Covariance of Equations in
Galilean or Euclidean Spacetime and Riemann Spacetime

From the geometrical point of view the theory of space and time
naturally divides into the theory of uniform, Galilean, space and the
theory of non-uniform, Riemannian, space.

Galilean space is of maximal uniformity.  This means that in it:
(a) All points in space and instants in time are equivalent.
(b) All directions are equivalent, and
(c) All inertial systems, moving uniformly and in a straight 
line relative to one another, are equivalent (Galilean 
principle of relativity).

The uniformity of space and time manifests itself in the existence
of a group of transformations which leave invariant the four-
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dimensional distance or interval between two points.  The expression for
this interval plays an important part in the theory of space and time
because its form is directly related to the form taken by the basic laws
of physics, viz. the law of motion of a free mass-point and the law of
propagation in free space of the front of a light wave.

The indications (a), (b) and (c) of the uniformity of Galilean space
are related to the following transformations:

(a) To the equivalence of all points and instants corresponds the 
transformation of displacing the origins of the spatial 
coordinates and of time; the transformation involves four 
parameters, namely, the three space coordinates and the time 
coordinate of the origin.

(b) To the equivalence of all directions corresponds the 
transformation of rotating the spatial coordinate axes, this 
involves three parameters, the three angles of rotation.

(c) To the equivalence of inertial frames corresponds a change 
from one frame of reference to another moving uniformly in a 
straight line with respect to the first: this transformation 
involves three parameters, the three components of relative 
velocity.

The most general transformation involves ten parameters.  This is
the Lorentz transformation.  It is well known that in a space of n
dimensions the group of transformations which leave invariant the
expression for the squared distance between infinitely near points, can

contain at most 
1

2
n n +1( ) parameters.  If there is a group involving all

1

2
n n +1( ) parameters then the space is of maximal uniformity; it may be a

space of constant curvature, or, if the curvature vanishes, a Euclidean or
pseudo-Euclidean space.

In the case of space-time the number of dimensions is four and
therefore the greatest possible number of parameters is ten.  This is also
the number of parameters in the Lorentz transformation, so that
Galilean space, to which the transformation relates, is indeed of maximal
uniformity.  It is customary to call the theory based on the Lorentz
transformations the special theory of relativity.  More precisely, the
subject of that theory is the formulation of physical laws in accordance
with the properties of Galilean space.

A formulation of the principle of relativity given supra. which
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together with the postulate that the velocity of light has a limiting
character, may be made the basis of relativity theory.  We shall now
investigate in more detail the question of the connection of the physical
principle of relativity with the requirement that the equations be
covariant.

In the first place, we shall attempt to give a generally covariant
formulation of the principle of relativity, without as yet making this
concept more precise.  In its most general form, the principle of
relativity states the equivalence of the coordinate systems (or frames of
reference) that belong to a certain class and are related by
transformations of the form

x ' = f x0 , x1,x2, x3( ) (22.23)
which may be stated more briefly as

x = f x( ) (22.24)
It is essential to remember that, in addition to the group of

permissible transformations, the class of coordinate systems must be
characterized by certain supplementary conditions.  Thus, for instance,
if we consider Lorentz transformations, it is self-evident that these linear
transformations must connect not any arbitrary coordinates, but only
the Galilean coordinates in two inertial reference frames.  To consider
linear transformations between any other (non-Galilean) coordinates has
no sense, because the Galilean principle of relativity has no validity in
relation to such artificial linear transformations.  On the other hand, if
one introduces any other variables in place of the Galilean coordinates, a
Lorentz transformation can evidently be expressed in terms of these
variables, but then the transformation formulae will have a more
complicated form.

Let us now state more precisely what is meant in the formulation
of the principle of relativity by equivalence of reference frames.  Two
reference frames x( ) and x'( ) may be called physically equivalent if
phenomena proceed in the same way in them.  This means that if a
possible process is described in the coordinates x( ) by the functions

1 x( ),  2 x( ), ...,  n x( ) (22.25)
then there is another possible process which is describable by the same
functions

1 x'( ), 2 x'( ), ..., n x'( ) (22.26)
in the coordinates x'( ).  Conversely any process of the form Eq. (22.26)
in the second system corresponds to a possible process of the form Eq.
(22.25) in the first system.  Thus a relativity principle is a statement
concerning the existence of corresponding processes in a set of
reference frames of a certain class; the systems of this class are then
accepted as equivalent.  It is clear from this definition that both the
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principle of relativity itself and the equivalence of two reference frames
are physical concepts, and the statement that the one or the other is
valid involves a definite physical hypothesis and is not just conventional.
In addition, it follows that the very notion of a "principle of relativity"
becomes well defined only when a definite class of frames of reference
has been singled out.  In the usual theory of relativity this class is that of
inertial systems.

The functions Eq. (22.25) or Eq. (22.26) describing a physical
process will be called field functions or functions of state.  In a generally
covariant formulation of the equations describing physical processes the
components g  of the metric tensor must be included among the
functions of state such as the collection of field functions:

F x( ), j x( ) , g x( ) (22.27)
i.e. the electromagnetic field, the current vector, and the metric tensor,
respectively.  The requirement entering the formulation of a principle of
relativity that in two equivalent reference frames corresponding
phenomena should proceed in the same way applies equally to the
metric tensor.  Thus, if we compare two corresponding phenomena in to
physically equivalent reference frames, then for the first phenomenon,
described in the old coordinates, not only the components of
electromagnetic field and of current density, but also the components of
the metric tensor must have the same mathematical form as for the
second phenomenon described in the new coordinates.

What can be concluded further will depend on whether we assume
that the metric is fixed or whether we take into consideration
phenomena which themselves influence the metric.  In the usual theory
of relativity it is assumed that the metric is given once and for all and
does not depend on any physical processes.  The generally covariant
formulation of the theory of relativity does not change anything in this.
As long as the assumption remains in force that the character of space-
time is Galilean and the g  are introduced only to achieve general
covariance, these quantities will depend only on the choice of
coordinate system, not on the nature of the physical process discussed.
They are functions of state only in a formula sense.  In the theory of
gravitation on the other hand, a different assumption is made
concerning the nature of spacetime.  There the g  are functions of state,
not only in a formal sense, but in fact: they describe a certain physical
field, namely the field of gravitation.

To give a definite meaning to the principle of relativity in such
circumstances, it is essential to specify more closely not only the class of
coordinate systems, but also the nature of the physical processes for
which the principle is being formulated.  We shall first start from the
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assumption that the metric is fixed ("rigid"), or else that it may be
considered as fixed for a certain class of physical processes.  We return
to the above definition of corresponding phenomena in two physically
equivalent coordinate systems,  according to which all field functions,
including the components of the metric tensor, must have the same
mathematical form for the first process described in the old coordinates
as for the second process described in the new coordinates.  If the g

are independent of the nature of the physical phenomenon, then in
relation to those quantities we need not make a distinction between the
first and second process, and need consider only transformations of the
coordinates.  But then the quantities

g x( )     and    g' x '( ) (22.28)
will be connected by the tensor transformation rule; the requirement of
the relativity principle that they should have one and the same
mathematical form reduces (for infinitesimal coordinate
transformations) to the equations g = 0 .

We know that the most general class of transformations that
satisfies these equations contains 10 parameters and is possible only in
uniform space-time, where the relation

R , = K ⋅(g g − g g ) (22.29)
is valid.  (A space in which the curvature tensor R ,  has the form of Eq.
(22.29) is called a space of constant curvature; it is a four-dimensional
generalization of Friedmann-Lobachevsky space.  The constant K  is
called the constant of curvature.)  If in these relations K  is zero, the
space-time is Galilean and the transformations in questions are Lorentz
transformations, except when other (non-Galilean) coordinates are used.

Thus with the rigidity assumption for the metric, the principle of
relativity implies the uniformity of space-time, and if the additional
condition K = 0  holds, we obtain a Galilean metric in appropriate
coordinates.  The relativity principle in general form then reduces to the
Galilean relativity principle.  As for the condition K = 0 , it results in an
additional uniformity of space-time; if the scale of the Galilean
coordinates is changed, then the scale of the elementary interval
changes in the same proportion.  This property implies in turn that there
is no absolute scale for space-time, unlike the absolute scale that exists
for velocities in terms of the velocity of light; the absence of an absolute
scale for space-time leads conversely to the equation K = 0 .

If we now go over to discuss phenomena which may influence the
metric, we must reckon with the possibility that under certain
conditions the principle of relativity will be valid in non-uniform space
also.  For this to be so, it is necessary that the motion of the masses
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producing the non-uniformity be included in the description of the
phenomena.

It can be shown that under the assumption that space-time is
uniform at infinity (where it must be Galilean) one can single out a class
of coordinate systems that are analogous to inertial systems and defined
up to a Lorentz transformation.  In relation to this class of coordinate
systems a principle of relativity will hold in the same form as in the
usual theory of relativity, in spite of the fact that a finite distance from
the masses the space is non-uniform.  Here however one must bear in
mind the essential role played by the boundary conditions that require
uniformity at infinity.  Thus in the last analysis the relativity principle is
here also a result of uniformity.

Since the greatest possible uniformity is expressed by Lorentz
transformations there cannot be a more general principle of relativity
than that discussed in ordinary relativity theory.  Moreover, there
cannot be a general principle of relativity, as a physical principle, which
would hold with respect to arbitrary frames of reference.  In order to
make this fact clear, it is essential to distinguish sharply between a
physical principle that postulates the existence of corresponding
phenomena in different frames of reference and the simple requirement
that equations should be covariant in the passage from one frame of
reference to another.  It is clear that a principle of relativity implies a
covariance of equations, but the converse is not true:  covariance of
differential equations is possible also when no principle of relativity is
satisfied.  Covariance of equations in itself is in no way the expression of
any kind of physical law.  For instance, in the mechanics of systems of
mass-points, Lagrange's equations of the second kind are covariant with
respect to arbitrary transformations of the coordinates, although they
do not express any new physical law compared to, for instance,
Lagrange's equations of the first kind, which are stated in Cartesian
coordinates and are not covariant.  In the case of Lagrange's equations,
covariance is achieved by introducing as new auxiliary functions the
coefficients of the Lagrangian considered as an expression quadratic, but
not necessarily homogeneous in the velocities.  Quite apart from the fact
that not all laws of nature reduce to differential equations, even fields
described by differential equations require for their definitions not only
these equations, but also all kinds of initial, boundary and other
conditions.  These conditions are not covariant.  Therefore, the
preservation of their physical content requires a change in their
mathematical form and, conversely, preservation of their mathematical
form implies a change of their physical content.  But, the realization of a
process with a new physical content is an independent question which
cannot be solved a priori.  If within a given class of reference systems
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"corresponding" physical processes are possible, then a principle of
relativity holds.  In the opposite case it does not.  It is clear, however,
that such a model representation of physical processes, and in particular
such a model representation of the metric, is possible at most for a
narrow class of reference systems, and certainly cannot be unlimited.
This argument shows once again (without invoking the concept of
uniformity) that a general principle of relativity, as a physical principle,
holding in relation to arbitrary frames of reference, is impossible.

But as a motivation of the requirement of covariance of the
equations a general principle of relativity is also unnecessary.  The
covariance requirement can be justified independently.  It is a self-
evident, purely logical requirement that in all cases in which the
coordinate system is not fixed in advance, equations written down in
different coordinate systems should be mathematically equivalent.  The
class of transformations with respect to which the equations must be
covariant must correspond to the class of coordinate systems
considered.  Thus if one deals with inertial systems related by Lorentz
transformations and if Galilean coordinates are used, it is sufficient to
require covariance with respect to Lorentz transformations.  If ,
however, arbitrary coordinates are employed, it is necessary to demand
general covariance.

It should be noted that covariance of coordinate systems acquires
definite physical meaning if, and only if, a principle of relativity exists
for the class of reference frames used.  Such is the covariance with
respect to Lorentz transformations.  This concept was so useful in the
formulation of physical laws because it contains concrete temporal and
geometric elements (rectilinearity and uniformity of motion) and also
dynamic elements (the concept of inertia in the mechanical and the
electromagnetic sense).  Because of this, it is related to the physical
principle of relativity and itself becomes concrete and physical.

If, however, in place of the Lorentz transformations one discusses
arbitrary transformations, one ceases to single out that class of
coordinate systems relative to which the principle of relativity exists,
and by doing this one destroys the connection between physics and the
concept of covariance.  There remains a purely logical side to the
concept of covariance as a consistency requirement on equations
written in different coordinate systems.  Naturally this requirement is
necessary, and it can always be satisfied.

In dealing with classes of reference frames that are more general
than that relative to which a principle of relativity holds, the necessity
arises of replacing the explicit formulation of the principle by some
other statement.  The explicit formulation consists in indicating a class
of physically equivalent frames of reference; the new formulation must
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express those properties of space and time by virtue of which the
principle of relativity is possible.  With the assumption of a rigid metric
this is achieved by introducing an additional Eq. (22.29).  With the
additional assumption of the absence of a universal scale ( K = 0 ) these
equations lead to a generally covariant formulation of the theory of
relativity, without any alteration of its physical content.  The Galileo-
Lorentz principle of relativity is then maintained to its full extent.

The very possibility of formulating the ordinary theory of relativity
in a general covariant form shows particularly clearly the difference
between the principle of relativity as a physical principle and the
covariance of the equations as a logical requirement.  In addition, such a
formulation opens the way to generalizations based on a relaxation of
the assumption of a rigid metric.  This relaxation provides the possibility
of replacing the supplementary conditions Eq. (22.29) by others which
reflect better the properties of space and time.  This leads us to the
theory of gravitation.

Universal gravitation does not fit into the framework of uniform
Galilean space because not only the inertial mass, but also the
gravitational mass of a body depends on its energy.  In the latter case, it
is possible to ameliorate the effects of gravity by transforming to an
accelerating frame of reference.  A theory of universal gravitation is
derived below wherein Euclidean, or rather pseudo-Euclidean, geometry
is abandoned in favor of the geometry of Riemann.

In Riemannian geometry the new functions at our disposal are the
coefficients g  of the quadratic form for the squared infinitesimal
distance.  The law according to which these functions transform in
passing to a new coordinate system follows from their definition as
coefficients of a quadratic form, together with the condition that this
form is an invariant; in the following we shall always assume that a
transformation of the coordinates is accompanied by a transformation
of the metric g  according to this law.  The set of quantities metric g

is called the metric tensor.
Having introduced the metric tensor, one can form expressions

that are covariant with respect to any coordinate transformation.  If we
consider only those metric tensors which are obtainable from a
particular one (e.g. from the Galilean tensor) by coordinate
transformation, this will give us nothing new except the fact that our
equations are covariant.  But, if we extend the discussion to metric
tensors of a more general form, tensors which cannot be transformed
into one another by coordinate transformations, the generalization so
obtained is an essential one.  In this case, the metric tensor will express
not only properties of the coordinate system but also properties of
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space, and the latter can be related to the phenomenon of gravitation.  It
is shown below that the origin of gravity is the relativistic correction of
spacetime itself as opposed to the relativistic correction of mass, length,
and time of objects of inertial frames in constant relative motion.  The
production of a massive particle from a photon with zero rest mass
traveling at the speed of light requires time dilation and length
contraction of spacetime.  The present theory of gravity also maintains
the constant maximum speed of light for the propagation of any form of
energy.

Having clarified the concept of covariance as applied to
Riemannian geometry, let us now consider it together with the
previously discussed concept of the uniformity of space.  As was shown
above, the property of uniformity in Galilean space manifests itself in
the existence of transformations that leave unchanged the expression for
the four-dimensional distance between two points.  More precisely,
these transformations leave unchanged the coefficients of this
expression, i.e. the quantities g .  If the g  are functions of the
coordinates we mean by this that the mathematical form of these
functions is unchanged: the dependence of the new g  on the new
coordinates has the same mathematical form as that of the old g  on the
old coordinates.  In the general case of Riemannian geometry, there are
no transformations that leave the g  unchanged because Riemannian
space is not uniform.  One deals with transformations of coordinates
accompanied by transformations of the g , and neither such a combined
transformation nor covariance with respect to it, has any relation to the
uniformity or non-uniformity of space.

The geometrical properties of real physical space and time
correspond not to Euclidean but to Riemannian geometry.  Any deviation
of geometrical properties from their Euclidean, or to be precise, pseudo-
Euclidean form appears in Nature as a gravitational field.  The
geometrical properties are inseparably linked with the distribution and
motion of ponderable matter.  This relationship is mutual.  On the one
hand the deviations of geometrical properties from the Euclidean are
determined by the presence of gravitating masses, on the other, the
motion of masses in the gravitational field is determined by these
deviations.  In short, masses determine the geometrical properties of
space and time, and these properties determine the movement of the
masses.  The description of the gravitational field demands the
introduction of no functions other than the metric tensor itself which is
uniquely determined by the presence and motion of matter.  Differing
from other kinds of forces, gravity which influences the motion of the
matter by determining the properties of space-time, is itself described
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by the metric of space-time.  For this principle of relativity, the class of
coordinate systems relative to which the principle of relativity exists is
the spherical coordinate systems.  Spherical harmonic coordinates arise
naturally due to the spherical symmetry of the particle production
(energy/matter conversion) event and its effect on spacetime and
provide the connection between physics and the concept of covariance
as shown in the Gravity Section.

References
1. Fock, V., The Theory of Space, Time, and Gravitation,  The MacMillan

Company, (1964).
2. Beiser, A., Concepts of Modern Physics, Fourth Edition, McGraw-Hill Book

Company, New York, (1978), pp. 2-40.



340 © 2000 by BlackLight Power, Inc.  All rights reserved.

GRAVITY

QUANTUM GRAVITY OF FUNDAMENTAL PARTICLES
The attractive gravitational force has been the subject of

investigation for centuries.  Traditionally, gravitational attraction has
been investigated in the field of astrophysics applying a large scale
perspective of cosmological spacetime, as distinguished from currently
held theories of atomic and subatomic structure.  However, gravity
originates on the atomic scale.  In Newtonian gravitation, the mutual
attraction between two particles of masses m1  and m2  separated by a
distance r  is

F = G
m1m2

r2 (23.1)

where G  is the gravitational constant, its value being 6.67 X 10−11
 Nm 2kg−2 .

Although Newton’s theory gives a correct quantitative description of the
gravitational force, the most elementary feature of gravitation is still not
well defined.  What is the most important feature of gravitation in terms
of fundamental principles?  By comparing Newton’s second law,

F = ma (23.2)
with his law of gravitation, we can describe the motion of a freely falling
object by using the following equation:

mia = mg

GM⊕

r3 r (23.3)

where mi  and mg  represent respectively the object’s inertial mass
(inversely proportional to acceleration) and the gravitational mass
(directly proportional to gravitational force), M⊕  is the gravitational
mass of the Earth, and r  is the position vector of the object taken from
the center of the Earth.  The above equation can be rewritten as

a =
mg

mi

GM⊕

r 2

 
 

 
 (23.4)

Extensive experimentation dating from Galileo’s Pisa experiment to the
present has shown that irrespective of the object chosen, the
acceleration of an object produced by the gravitational force is the
same, which from Eq. (23.4) implies that the value of mg / mi  should be
the same for all objects.  In other words, we have

mg

mi

= universal constant (23.5)

the equivalence of the gravitational mass and the inertial mass- the
fractional deviation of Eq. (23.5) from a constant is experimentally
confirmed to less 1 X 10−11  [1].  In physics, the discovery of a universal
constant often leads to the development of an entirely new theory.  From
the universal constancy of the velocity of light c , the special theory of
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relativity was derived; and from Planck’s constant h , the quantum theory
was deduced.  Therefore, the universal constant mg / mi  should be the key
to the gravitational problem.  The theoretical difficulty with Newtonian
gravitation is to explain just why relation, Eq. (23.5), exists implicitly in
Newton’s theory as a separate law of nature besides Eqs. (23.1) and
(23.2).  Furthermore, discrepancies between certain astronomical
observations and predictions based on Newtonian celestial mechanics
exist, and they apparently could not be reconciled until the development
of Einstein’s theory of general relativity which can be transformed to
Newtonian gravitation on the scale in which Newton’s theory holds.

Einstein's general relativity is the geometric theory of gravitation
developed by Albert Einstein, whereby he intended to incorporate and
extend the special theory of relativity to accelerated frames of
reference.  Einstein's theory of general relativity is based on a flawed
dynamic formulation of Galileo’s law.  Einstein took as the basis to
postulate his gravitational field equations a certain kinematical
consequence of a law which he called the “Principle of Equivalence”
which states that it is impossible to distinguish a uniform gravitational
field from an accelerated frame.  However, the two are not equivalent
since they obviously depend on the direction of acceleration relative to
the gravitation body and the distance from the gravitating body since the
gravitational force is a central force.  (In the latter case, only a line of a
massive body may be exactly radial, not the entire mass.)  And, this
assumption leads to conflicts with special relativity.  The success of
Einstein's gravity equation can be traced to a successful solution which
arises from assumptions and approximations whereby the form of the
solution ultimately conflicts with the properties of the original equation,
no solution is consistent with the experimental data in the case of the
possible cosmological solutions of Einstein's general relativity.
Furthermore, Einstein's general relativity is a partial theory in that it
deals with matter on a cosmological scale, but not an atomic scale.  All
gravitating bodies are composed of matter and are collections of atoms
which are composed of fundamental particles such as electrons, which
are leptons, and quarks which make up protons and neutrons.  Gravity
originates from the fundamental particles.

The popular theory of Einstein has as its foundation that gravity is
a force unique from electromagnetism.  The magnetic force was unified
with the Coulomb force by Maxwell.  Lorentz derived the
transformations named after him which formalize the origin of the
magnetic force as a relativistic a relativistic correction of the Coulomb
force.  The unification of electricity and magnetism by Maxwell
permitted him to derive a wave equation which predicted the
propagation of electromagnetic waves at the speed of light.  Maxwell's
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wave equation defines a four dimensional spacetime and the speed of
light as a maximum permitted according to the permeability and
permittivity of spacetime.  Minkowski originated the concept of a four
dimensional spacetime formally expressed as the Minkowski tensor [2].
The Minkowski tensor corresponds to the electromagnetic wave
equation derived by Maxwell and can be derived from it [3].  Special
relativity is implicit in the wave equation of electromagnetic waves that
travel at the speed of light.  The generalization of this metric to mass as
well as charge requiring application of Lorentz transformations
comprises the theory of special relativity which is credited to Einstein3.
The Lorentz transformations quantify the increase in mass, length
contraction, and time dilation in the direction of constant relative
motion of separate inertial frames.  Einstein's goal was to generalize
relativity to accelerated frames of reference as well as inertial frames
moving at constant relative velocity.  But, gravity is not a force separable
from electromagnetism.  The true origin of gravity is the relativistic
correction of spacetime itself as opposed to the relativistic correction of
mass, length, and time of objects of inertial frames in constant relative
motion.  The production of a massive particle from a photon with zero
rest mass traveling at the speed of light requires time dilation and length
contraction of spacetime.  The present theory of gravity also maintains
the constant maximum speed of light for the propagation of any form of
energy.  And, the origin of the gravitational force is also a relativistic
correction.  In the metric which arises due to the presence of mass,
spacetime itself must be relativistically corrected as a consequence of
the presence of mass in order to that 1.) the speed of light is constant
and a maximum, 2.) the angular momentum of a photon,   h , is
conserved, and 3.) the energy of the photon is conserved as mass.
Spacetime must undergo time dilation and length contraction due to the
production event.  The event must be spacelike even though the photon
of the particle production event travels at the speed of light and the
particle must travel at a velocity less that the speed of light.  The
relativistically altered spacetime gives rise to a gravitational force
between separated masses.  Thus, the production of matter and its
motion alters spacetime and the altered spacetime effects the motion of
matter which must follow geodesics.

When speaking of the relativity of a frame of reference or simply

3 In 1900 Lorentz conjectured that gravitation could be attributed to actions which
propagate with the velocity of light.  Poincare', in a paper in July 1905 (submitted
days before Einstein's special relativity paper), suggested that all forces should
transform according to Lorentz transformations.  In this case, he notes that
Newton's Law of Gravitation is not valid and proposed gravitational waves which
propagated with the velocity of light.
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of relativity, one usually means that there exist identical physical
processes in different frames of reference.  According to the generalized
Galilean principle of relativity identical processes are possible in all
inertial frames of reference related by Lorentz transformations.  On the
other hand, Lorentz transformations characterize the uniformity of
Galilean space-time.  Using the four-dimensional coordinates x  for
describing the events and the world-line in spacetime the separation of
proper time between two events x  and x + dx  is

d 2 =− g dx dx (23.6)
where g  is the metric tensor which determines the geometric character

of spacetime.  For different coordinate systems, the dx  may not be the
same, but the separation d 2  remains unchanged.
The metric g  for Euclidean space called the Minkowski tensor  is

=

−1 0 0 0

0
1
c2

0 0

0 0
1

c2
0

0 0 0
1

c2

 

 

 
 
 
 

 

 

 
 
 
 

(23.7)

In this case, the separation of proper time between two events x  and
x + dx  is

d 2 =− dx dx (23.8)
A spherically symmetrical system of mass m0  applies to the

production of a particle which implies spherical coordinates with the
origin at 0.  Thus, a family of curved surfaces, each with constant r , is a
series of concentric spheres on which it is natural to adopt the
coordinate r  so that a sphere with constant r  has area 4 r2 , and the
metric on the surface of the sphere would then be

ds 2 = r2 d 2 + r2 sin2 d 2 (23.9)
Such a definition of r  is no longer the distance from the origin to the
surface, because of the spacetime contraction caused by the mass m0 .
The form of the out going gravitational field front traveling at the speed
of light is

f t −
r

c
 
 

 
 (23.10)

Therefore the spatial metric should be expressed as
ds 2 = f r( )−1

dr 2 + r 2d 2 + r2 sin2 d 2 (23.11)
In addition, the existence of mass m0  also causes time dilation of

spacetime such that the clock on each r-sphere is no longer observed
from each r-sphere to run at the same rate.  Therefore, the general form
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of the metric due to the relativistic effect on spacetime due to mass m0  is

d 2 = f r( )dt 2 −
1

c2 f r( )−1
dr 2 + r2 d 2 + r2 sin2 d 2[ ] (23.12)

In the case where m0 = 0 , space would be flat which corresponds to
f r( ) = f r( )−1 =1 (23.13)

Then the spacetime metric is the Minkowski tensor.  In the case that the
mass m0  is finite, the Minkowski tensor is corrected by the time dilation
and length contraction of spacetime.

The creation of a particle from light requires that the event to be
spacelike; yet, particle production arises from a photon traveling at the
speed of light.  At production, the particle must have a finite velocity
called the Newtonian gravitational velocity according to Newton's Law of
Gravitation that may not exceed the speed of light.  The Newtonian
gravitational velocity must have an associated gravitational energy.  The
photon initially traveling at the speed of light undergoes particle
production and must produce a gravitational field that travels at the
speed of light.  The gravitational energy associated with the field must
have an inverse radius dependence according to the spreading wave.
Since the gradient of the gravitational energy gives rise gravitational
field, the gravitational field must have an inverse radius squared
dependence.  In order that the velocity of light does not exceed c  in any
frame including that of the particle having a finite Newtonian
gravitational velocity, the laboratory frame of an incident photon, and
that of a gravitational field propagating outward at the speed of light
spacetime must undergo time dilation and length contraction due to the
production event.  During particle production the speed of light as a
constant maximum as well as phase matching and continuity conditions
require the following form of the squared displacements due to constant
motion along two orthogonal axes in polar coordinates:

c( )2 + vgt( )2
= ct( )2 (23.14)

c( )2 = ct( )2 − vgt( )2
(23.15)

2 = t2 1−
vg

c

 
 

 
 

2 

 
  

 
 (23.16)

Thus,

f r( ) = 1 −
vg

c

 
 

 
 

2 

 
  

 
 (23.17)

(The derivation and result of spacetime time dilation is analogous to the
derivation and result of special relativistic time dilation given by Eqs.
(22.11-22.15).)  Therefore, the general form of the metric due to the
relativistic effect on spacetime due to mass m0  is
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d 2 = 1 −
vg

c
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c2 1−
vg

c
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−1

dr2 + r2d 2 + r 2 sin2 d 2
 

 
 

 

 
 (23.18)

The gravitational energy of a particle during production given by
Newton's Law of Gravitation may be unified with the inertial and
electromagnetic energies given by Planck's equation and Maxwell's
equations, respectively.  The physical basis is the law of Galileo that in
the absence of a resistive medium all bodies fall equally fast, or, more
accurately, with equal acceleration.  The law of Galileo can be stated in
generalized form as the law of the equality of inertial and gravitational
mass.  The equivalence of the Planck equation, electric potential, and the
stored magnetic energies occurs for a transition state orbitsphere during
pair production as shown in the Pair Production Section.  During particle
production the transition state orbitsphere has a charge density function

 given by

=
e

4 r 2 (r − rn ) (23.19)

where e  is the fundamental charge.  The corresponding mass density
function is

=
m0

4 r 2 (r − rn) (23.20)

where mass m0  is the rest mass of the particle produced.  In both cases,
the radius, rn , is the Compton wavelength bar,   D C , given by

  
D C =

h
m0c

= r* (23.21)

Consider the definition of the gravitational radius, G  or rG, of an
orbitsphere of mass m0  defined as

G = rG =
Gm0

c2 (23.22)

where G  is the Newtonian gravitational constant.  Notice that as m0

increases the gravitational radius rG increases (i.e. the curvature of
spacetime increases), and the radius of the transition state orbitsphere,
r* , decreases.  Remarkably, when the   rG = r * = DC , the gravitational
potential energy equals m0c

2  where m0  is the rest mass of the
fundamental particle created as the transition state orbitsphere becomes
real.

  

Gm0

c2 = Dc =
h

m0c
 (23.23)

  
Gm0

2

* =
hc

* (23.24)
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Gm0
2

*

2

=
hc

* (23.25)

  

Gm0
2

DC

=
Gm0

2

r* = h * (23.26)

Thus, from Eq. (19.11) and Eq. (23.26), the following energies are
equivalent

  
E = m0c

2 = V = h * = Emag =
Gm0

2

D C
* (23.27)

where * is the frequency of the photon which forms the transition
state orbitsphere, and * is also the spacetime resonance frequency for
this particle.  Furthermore, given

  
E = m0c

2 = h * =
hc

* (23.28)

It follows that

=
h

mc
=

h

mv
=

h

p
(23.29)

This equation is the de Broglie relationship; it must hold for matter and
energy.  The mass/energy which causes the gravitational radius rG to
equal   D C  is hereafter called the Grand Unification Mass/Energy which is
equal to   h  times the angular frequency of the photon which becomes the
transition state orbitsphere.  This angular frequency is also the
spacetime resonance frequency of the Grand Unification Mass/Energy as
given by Eq. (19.13).  The Grand Unification Mass/Energy is further
equal to the corresponding electric potential, stored magnetic, and
gravitational potential energy.  The equality of radii unifies de Broglie’s
equation, Planck’s equation, Maxwell’s equations, Newton’s equations,
and Special and General Relativity which comprise the fundamental laws
of the universe.

The Grand Unification Mass/Energy, mu , can be expressed in terms
of Planck's constant.

  
m0c

2 =
Gm0

2

DC
* (23.30)

  
mu = m0 =

hc

G
(23.31)

The Grand Unification Mass/Energy, mu , given by Eq. (23.31) is the
Planck mass.  From Eq. (19.11), the relationship of the equivalent
particle production energies (mass energy = Planck equation energy =
electric potential energy = magnetic energy = gravitational potential
energy) is
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  m0c
2 = h * = V = Emag = Egrav

(23.32a)
where m0  is the rest mass of a fundamental particle of the Planck mass
mu  when the gravitational energy is the  gravitational potential energy
given by Eq. (23.30).  A corresponding general relationship of the
equivalent particle production energies (mass energy = Planck equation
energy = electric potential energy = magnetic energy = gravitational
energy) is

  
m0c

2 = h * =
h2

m0DC
2

 
 
  

 
 = −1 e2

4 0DC

= −1 0e
2h2

2 m0( )2
D C

3
= −1 0e

2c2

2h

Gm0

DC

hc

G
(23.32b)

where m0  is the rest mass of a fundamental particle.  For particle
production, the gravitational velocity, vG , is defined as

  
vG =

Gm0

r
=

Gm0

DC

(23.33)

Substitution of the gravitational velocity, vG , given by Eq. (23.33) and the
Grand Unification Mass/Energy, mU , given by Eq. (23.31) into Eq. (23.32)
followed by division by the speed of light squared gives the mass of a
fundamental particle in terms of the Grand Unification Mass/Energy.

  
m0 = −1 0e

2c

2h

Gm0

DC

c
mu = −1 0e

2c

2h

Gm0

c2DC

mu = −1 0e
2c

2h

vG

c
mu =

vG

c
mu (23.34)

The equivalence of the gravitational and inertial masses according
to experiments and Eq. (23.32) prove that Newton's Gravitational Law is
exact on a local scale.  The production of a particle requires that the
velocity of each of the point masses of the particle is equivalent to the
Newtonian gravitational escape velocity vg  of the superposition of the
point masses of the antiparticle.  According to Newton's Law of
Gravitation the eccentricity is one and the particle production trajectory
is a parabola relative to the center of mass of the antiparticle.  The
correction to Newton's Gravitational Law due to the relativistic effect of
the presence of mass on spacetime may be determined by substitution of
the gravitational escape velocity, vg , given by [4]

  
vg =

2Gm

r
=

2Gm0

DC

(23.35)

into Eq.(23.18) for vg .  The corresponding Newtonian gravitational
radius is given by

rg =
2Gm0

c2 (23.36)

In the case of the boundary conditions of Eq. (23.32), Eq. (23.35) and Eq
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(23.36), three families of leptons and quarks are predicted wherein each
particle corresponds to a unique orbitsphere radius equal to its
Compton wavelength bar.  At particle production, a photon having a
radius and a wavelength equal to the Compton wavelength bar of the
particle forms a transition state orbitsphere of the particle of the same
wavelength.  However, a pair of particles each of the Planck mass
corresponding to the conditions of Eq. (23.22), Eq. (23.32), and Eq.
(23.33) is not observed since the velocity of each of the point masses of
the transition state orbitsphere is the gravitational velocity vG  that in this
case is the speed of light; whereas, the Newtonian gravitational escape
velocity vg  of the superposition of the point masses of the antiparticle is
twice the speed of light (Eq. (23.35)).  In this case, an electromagnetic
wave of mass energy equivalent to the Planck mass travels in a circular
orbit about the center of mass of another electromagnetic wave of mass
energy equivalent to the Planck mass wherein the eccentricity is equal to
zero (Eq. (26.20)), and the escape velocity can never be reached.  The
Planck mass is a "measuring stick".  The extraordinarily high Planck mass

(
  

hc

G
= 2.18 X 10−8  kg ) is the unobtainable mass bound imposed by the

angular momentum and speed of the photon relative to the gravitational
constant.  It is analogous to the unattainable bound of the speed of light
for a particle possessing finite rest mass imposed by the Minkowski
tensor.  It has a physical significance for the fate of blackholes as given
in the Composition of the Universe Section.

Eq. (23.34) gives the relationship between the mass of each
fundamental particle and the ratio of the gravitational velocity vG  to the
speed of light times the Planck mass, the mass at which the gravitational
radius rG is the Compton wavelength bar and the production energy is
equal to the gravitational potential energy given by Eq. (23.30).  The
square of the ratio of the gravitational escape velocity vg  of each particle
relative to the speed of light gives the corresponding spacetime
contraction according to Eqs. (23.17-23.18).  During particle
production, a particle having the gravitational escape velocity vg  is
formed from a photon traveling at the speed of light.  The spacetime
contraction during particle production is analogous to Lorentzian length
contraction and time dilation of an object in one inertial frame relative
to another moving at constant relative velocity.  In the latter case, the
correction is the square of the ratio of the relative velocity of two
inertial frames to the speed of light according to Eqs. (22.17-22.18).
The theory of the masses of fundamental particles is given in the Particle
Production Section, the Leptons Section, and The Quarks Section.

The resulting metric is valid for the external region of particles and
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spherically symmetric bodies comprised of fundamental particles such
as the celestial bodies.  The metric g  for non-Euclidean space due to
the relativistic effect on spacetime due to mass m0  is

g =

− 1 − 2Gm0

c2r
 
 

 
 0 0 0

0
1
c2

1 − 2Gm0

c2r
 
 

 
 

−1

0 0

0 0
1
c2

r2 0

0 0 0
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c2
r2 sin2

 

 

 
 
 
 
  

 

 

 
 
 
 
  

(23.37)

In this case, the separation of proper time between two events x  and
x + dx  is

d 2 = 1 −
2Gm0

c2r
 
 

 
 dt2 −

1

c2 1 −
2Gm0

c2r
 
 

 
 

−1

dr2 + r2d 2 + r 2 sin2 d 2 

  
 

  (23.38)

The origin of gravity is fundamental particles, and the masses and fields
from particles superimpose.  So, m0 , the mass of a fundamental particle,
may be replaced by M , the sum of the masses of the particles which
make up a massive body.  In this case, Eq. (23.38) is equivalent to the a
modified version of the Schwarzschild metric [5 and footnote 7].

One interpretation of the relativistic correction of spacetime due
to conversion of energy into matter and matter into energy is that
spacetime contracts and expands, respectively, in the radial and time
dimensions.  Thus, matter-energy conversion can be considered to
conserve spacetime.  Also, since matter causes spacetime to deviate
from flat or Euclidean, matter-energy conversion can be considered to
curve spacetime.  The result is that spacetime is positively curved to
match the boundary condition of the positive curvature of particles
during production.  The two dimensional nature of fundamental
particles requires that the radial and time dimensions are distinct from
the angular dimensions.  The curvature of spacetime results from a
discontinuity of matter having curvature confined to two spatial
dimensions.  This is the property of all matter as an orbitsphere.  A
space in which the curvature tensor has the following form:

R , = K ⋅(g g − g g ) (23.39)
is called a space of constant curvature; it is a four-dimensional
generalization of Friedmann-Lobachevsky space.  The constant K  is
called the constant of curvature.  Consider an isolated orbitsphere and
radial distances, r , from its center.  For r  less than rn  there is no mass;
thus, spacetime is flat or Euclidean.  The curvature tensor applies to all
space of the inertial frame considered; thus, for r  less than rn , K = 0 .  At
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r = rn  there exists a discontinuity of mass of the orbitsphere.  This results
in a discontinuity of the metric tensor for radial distances greater than
or equal to rn  which defines the curvature tensor given by Eq. (23.39).

Gauss and Riemann [5-6] developed the theory of curved
spacetime and proposed that our universe may be curved rather than
flat.  A generation later, Einstein formalized the ideas of Gauss, Riemann,
and Clifford [5-6, 7] that matter curved spacetime to give rise to a
gravitational field4.  Einstein proposed the principle of equivalence as
the basis that gravity could be explained in terms of a spacetime metric
that is different from Euclidean [5-6].  According to Einstein’s Theory of
general relativity, his field equations give the relationship whereby
matter determines the curvature of spacetime5, which is the origin of
gravity.  The definitive form of the equations are as follows6:

4 It is easy to discuss two-dimensional surfaces since we live in three dimensional
space.  Gauss considered the problem of whether a being that lives in and measures
only in a two dimensional surface and can not travel in a three dimensional space
can determine whether the surface in which it exists is curved or flat.  The solution
is not obvious.  "One cannot be sure of the true sights of Lu mountain, since one is
on it."  Gauss found the solution that the two dimensional being could determine
whether the surface on which it exists is curved by measuring the angle sum of a
"geodesic triangle" on the surface.  Euclidean plane geometry asserts that in a
plane, the sum of the angles of a triangle add up to 180 °.  On the surface of a
sphere, however, the sum of the angles of a "geodesic triangle" exceed 180°.  Gauss
reasoned that the question of whether the three dimensional space in which we
live is curved or flat could be resolved analogously.  Gauss himself measured the
angle sum of a triangle formed by three mountains as vertices, but failed to detect
any departure from 180° within the limits of accuracy of his experiments.  A
generation later Einstein paraphrased this concept, "When a blind beetle crawls
over the surface of the globe, he doesn't realize that the track he has covered is
curved.  I was lucky enough to have spotted it."
5  It is important to realize the distinction between the rationalization that the
origin of gravity is by virtue of matter causing spacetime to be curved, and a
physical basis consistent with Maxwell's equations and special relativity that the
origin of gravity is time dilation and length contraction of spacetime based on the
speed of light which is a constant maximum for the propagation of any form of
energy at particle production.  The relativistic correction of spacetime may be
viewed as matter causing spacetime to be curved, but this is a consequence rather
than the cause of the origin of gravity.
6 Although historically Einstein is credited with Eq. (23.40), David Hilbert
discovered the same form of the field equations days before Einstein.  Einstein had
reached his final version of general relativity after a slow road with progress but
many errors along the way.  In December 1915, he said of himself, "That fellow
Einstein suits his convenience.  Each year he retracts what he wrote the year
before."  A reference describing the tremendous broad-based effort to develop the
theory of general relativity in the early 20 th century is the web site :www-
history.mcs.st-and.ac.uk/history//HistTopics/General_relativity.html#49.  Also see
D. Overbye, "Einstein, Confused in Love, and Sometimes, Physics", New York Times,
August 31, 1999, F4.
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R −
1

2
g R =

−8 G

c4 T (23.40)

where R = g R , R = g R , the left-half of Eq. (23.40) is Einstein’s
Tensor G , and T  is the stress-energy-momentum tensor.  Einstein
proposed Eq. (23.40) starting with the assumption of the local
equivalence of accelerated and gravitational inertial reference frames
called the Principal of Equivalence.  Einstein's infamous equation
postulates that a conservative Riemannian tensor is proportional to a
conservative stress energy momentum tensor wherein the
proportionality constant contains Newton's gravitational constant.  The
uniqueness of the radial and time dimension for particle production (Eq.
(23.32) and Eqs. (23.37-23.38)) and the corresponding effect on
spacetime reveals a fatal flaw in Einstein's gravity equations.  The tensors
can not be conservative.  All cosmological solutions of general relativity
predict a decelerating universe from a postulated initial condition of a
"Big Bang" expansion [8].  The astrophysical data reveals an accelerating
cosmos [9] which invalidates Einstein's equation as discussed in the
Cosmology Section.  It has been shown that the correct basis of
gravitation is not according to Einstein's equation (Eq. (23.40)); instead
the origin of gravity is the relativistic correction of spacetime itself
which is analogous to the special relativistic corrections of inertial
parameters-- increase in mass, dilation in time, and contraction in length
in the direction of constant relative motion of separate inertial frames.
On this basis, the observed acceleration of the cosmos is predict as given
in the Cosmology Section.

The popular terms for these effects, general relativity and special
relativity, respectively, are confusing at best.  The special relativistic
corrections of an object corresponding to Newton's law of mechanics
applied to inertial frames with constant relative motion are more
appropriately named Newtonian Inertial Corrections or Newtonian
Corrections of the First Kind.  The gravitational relativistic corrections of
spacetime which correspond to Newton's Laws of Gravitation applied to
massive bodies are more appropriately named Newtonian Gravitational
Corrections or Newtonian Corrections of the Second Kind.  The
nomenclature used herein will adhere to tradition, but it is implicit that
Special Relativity refers to spacetime defined by the Minkowski tensor,
and General Relativity refers not to Einstein's equations but to the
spacetime defined by the Schwarzschild metric wherein the physical
basis for the latter is the time dilation and length contraction of
spacetime due to particle production7.

7 The Schwarzschild metric was originally derived from Einstein's field equations
and is widely used in astrophysical calculations.  This metric is widely regarded as a
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triumph of Einstein's theory of gravitation.  Implicit in the Schwarzschild solution
is a privileged system of coordinates.  Yet, Einstein denied the existence of a
privileged system of coordinates in all cases based on his view of the local method
of discussing properties of space.  The equivalence principle used by Einstein as the
basis for Riemannian geometry of space is only valid locally.  Einstein
underestimated the importance of considering space as a whole.  Having obtained
his equation based on the Principal of Equivalence, Einstein realized that the mass
of the universe would cause it to collapse.  He would accept only a static universe.
Thus, he added a cosmological constant to his equation.  This type of antigravity of
spacetime was intended to exactly balance the tendency of matter to cause
spacetime to collapse.  But, according to his basic postulates, the absence of a
gravitational field signifies the absence of deviations of the geometry of spacetime
from Euclidean, and therefore, also vanishing of the curvature tensor R  and of its
invariant R .  Also, the gravitational field will be absent if the mass tensor T  is
zero everywhere.  Therefore, the equations T = 0  and R = 0  must certainly be

compatible, and this is only possible if the equations relating G = R −
1

2
g R to

T  do not contain the term g .  The cosmological constant must be zero.  This is
also the case in order to obtain consistency with Newton's Law of Gravitation in the
same limit.  After Hubble's redshift observations in 1929 demonstrated the
expansion of the universe, the original motivation for the introduction of Λ  was
lost.  Nevertheless, Λ  has been reintroduced on numerous occasions when
discrepancies have arisen between theory and observations, only to be abandoned
again when these discrepancies have been resolved.  Einstein abandoned the
constant calling it the greatest mistake of his life.  Einstein failed to notice two
other tremendously important features of the universe which further undermines
his view of a static universe.  A positively curved spacetime has a finite radius
based on the mass and energy.  And, the universe is converting about 1033

kilograms of matter into energy per second.  He also failed to develop an atomic
theory of gravity which is the means to determine the impact of matter to energy
conversion on the expansion of the universe.

In Einstein's equation in its original form, a conservative tensor (the
divergence of the tensor is zero) which expresses the curvature of spacetime is
equated with a conservative stress-energy-momentum tensor of matter.  This
approach conserves momentum, matter, and energy.  The Schwarzschild metric
given as Eq. (57.54) of Fock [10]

ds2 = c2
r −

GM

c2

r + GM
c2
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d 2 + sin2 d 2( ) (23.41)

is an exact solution of the Einstein's equation based on a preferred system of
coordinates.  According to a theorem by Birkoff [11] the Schwarzschild metric is the
only solution of Einstein's gravity equations for the corresponding boundary
conditions of a spherically symmetric time-independent or dynamic solution with
zero cosmological constant for the metric of a space which is empty apart from a
central spherical body.

The Schwarzschild metric is consistent with observations wherein the radius
applies to distances between gravitating bodies.  For example, it solves the
precession of the perihelion of Mercury and the deflection of light in a
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gravitational field.   However, Einstein's equation with general coordinates has an
infinite number of solutions, and  none of the possible solutions are consistent with
cosmological observations as shown in the Cosmology Section.  These solutions are
all conservative (the divergence of each metric tensor is zero).  The Schwarzschild
metric given by Eq. (23.41) is also conservative; whereas, the Schwarzschild metric
in the form given by Eq. (23.38) is not conservative.

The Schwarzschild metric (Eq. 23.38)) gives the relationship whereby
matter (energy) causes relativistic corrections to spacetime that determines
the curvature of spacetime and is the origin of gravity.  The Minkowski space
is obtained in the limit of no mass or at infinity.  Eq. (23.41) may be
transformed into Eq. (23.38) by the substitution of the radial coordinate r  with

the reduced radial coordinate, r −
GM

c2 .

The origin of gravity is fundamental particles, and the masses and fields
from particles superimpose.  The derivation of the correct form of the
Schwarzschild metric (Eq. (23.38)) is based on contraction of spacetime during
particle production that requires a privileged system of coordinates.  Einstein's
approach to his equation conserves momentum, matter, and energy.
Derivation of the Schwarzschild metric is based on the wave equation which
conserves momentum, matter, and energy and additionally requires a
maximum constant velocity for the propagation of any signal including a
graviational field at particle production.  As a consequence of particle
production the radius of the universe contracts by 2  times the gravitational
radius of each particle with the gravitational radius given by Eq. (23.36)
which applies to the observed leptons and quarks formed at the gravitational
velocity vg  which is the escape velocity given by Eq. (23.35)).  Thus, Q  the

mass/energy to expansion/contraction quotient of spacetime (Eq. (23.140)) is
given by the ratio of the mass of a particle at production divided by T  the
period of production given by Eq. (23.149) wherein the gravitational radius is
the Newtonian gravitational radius is given by Eq. (23.36).  By superposition,
obtaining the correct solution of the Schwarzschild metric (Eq. (23.38))
requires that the radius of the metric (Eq. (23.41)) be replaced by the radius
decreased by the gravitational radius of the central mass (Eq. (23.22) which
applies to a particle of the Planck mass).  The gravitational radius may be
considered the "effective thickness" of fundamental particles which are two
dimensional.

It is shown in the Cosmology Section that a 3-sphere spatial geometry
describes the universe which is finite but has no boundary.  The radius of the
universe oscillates harmonically between two finite radii.  It expands as matter is
transformed into energy, and it contracts as the radiation filled universe reverts
back to a matter filled universe.  Matter causes spacetime to become curved like a
dimple on a ball, but in three spatial dimensions plus time.  Consider such a dimple
caused by the Sun which is converting 5 billion  kg of matter into energy per second.
If the conversion persisted indefinitely, the Sun would vanish.  The local spacetime
dimple would vanish also.  Thus, spacetime must expand as matter is converted into
energy.  The same applies to the universe as a whole.  Due to matter converting to
energy the radius of the universe expands by 2  times the gravitational radius of
the converted matter (Eq. (23.140) with the gravitational radius given by Eq. (23.36)
wherein m0 , the mass of a fundamental particle, is replaced by M , the sum of the
masses of the particles which make up the massive body).  The Hubble constant is
consistent with the experimental mass to energy conversion rate of the universe
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PARTICLE PRODUCTION
The equations which unify de Broglie’s Equation, Planck’s Equation,

Maxwell’s Equations, Newton’s Equations, and Special and General
Relativity define the mass of fundamental particles in terms of the
spacetime metric.  Eq. (23.32) (Eq. (23.48) infra.) gives the equivalence
of particle production energies corresponding to mass, charge, current,
and gravity according to the proportionality constants which are given in
terms of a self consistent set of units.  This equivalence is a consequence
of equivalence of the gravitational mass and the inertial mass together
with special relativity.  Charge is relativistically invariant; whereas, mass
and spacetime are not.  The fine structure constant is dimensionless and
is the proportionality constant corresponding to the relativistic
invariance of charge.  Thus, it is absolute.  All the other constants are
not, and any property of mass/energy or spacetime is measurable only
in terms of the remaining properties where the metrics and definitions
of the properties are in terms of experiments which define a self
consistent circular system of units.  In addition to the equivalence of
particle production energies corresponding to mass, charge, current,
and gravity according to the proportionality constants which are given in
terms of a self consistent set of units, general relativity further provides
for the further proportional equivalence with the metric of spacetime of
the same self consistent system of units.  The metric of spacetime is
used to calculate the mass of the fundamental particles in terms of the
same consistent system of units.

Satisfaction of the nonradiative boundary condition precludes
emission of electromagnetic radiation.  Continuity of boundary
conditions requires that particle production gives rise to a gravitational

calculated from the number of galaxies (400 billion ) times the number of stars per
galaxy (400 billion ) times the average mass to energy conversion rate per star
(5 billion  kg / sec⋅ star).  The Schwarzschild metric (Eq. 23.38)) is shown to explain all
current cosmological observations as well as permit the derivation of an equation
which correctly predicts the masses of fundamental particles.  It is proposed that
the Schwarzschild metric (Eq. 23.38)) is an exact description of reality which has as
its basis the gravitational velocity vg  of a massive object according to Newton's Law

of Gravitation and the constant maximum speed of light.  It provides that any
discontinuities in the gravitational field caused by matter to energy conversion or
vice versa must propagate as a front like a light wave in empty space, this equation
does not conserve matter, energy, and momentum separately from spacetime.  In
this case, matter, energy, momentum, and spacetime are conserved as a totality.  The
wave equation conserves matter, energy, and momentum.  It further provides for
the conservation of these physical entities with spacetime and provides a unifying
physical principal that gives an oscillating universe as given in the Wave Equation
Section.
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field front which satisfies the same wave equation as electromagnetic
radiation and travels at the speed of light.  The charge and mass density
functions of an orbitsphere are interchangeable by interchanging the
fundamental charge and the particle mass; thus, satisfaction of the
boundary condition of no Fourier components of the current-density
function which are synchronous with waves traveling at the speed of
light also holds for the mass density function.  The transverse electric
field of the photon of zero rest mass is replaced by a central electric and
gravitational field and a particle and anti particle.  For Euclidean
spacetime, the radius of the boundary condition is invariant because the
velocity is perpendicular to the radius of the orbitsphere.  (The radius of
the boundary condition is not length contracted by special relativistic
effects.)  However, the nonradiative boundary condition and the
constancy of the speed of light must hold which requires relativistic
corrections to spacetime.

Mass and charge are concomitantly created with the transition of a
photon to a particle or antiparticle.  Thus, the energies which are equal
to the mass energies apply for the proper time of the particle
(antiparticle) given by the general relativity, Eq. (23.38).  The transition
state from two photons to a particle and antiparticle pair comprises two
concentric orbitspheres called transition state orbitspheres.  The
gravitational effect of a spherical shell on an object outside of the radius
of the shell is equivalent to that of a point of equal mass at the origin.
Thus, the proper time of the concentric orbitsphere with radius +rn

*  (the
radius is infinitesimally greater than that of the inner transition state
orbitsphere with radius rn ) is given by the Schwarzschild metric, Eq.
(23.38).  The proper time applies to each point on the orbitsphere.
Therefore, consider a general point in the xy-plane having   r = DC  ; dr = 0 ;
d = 0 ; sin2 =1.  Substitution of these parameters into Eq. (23.38) gives

d = dt 1 −
2Gm0

c2r * −
v2

c2

 
 
  

 
 

1

2

(23.42)

with v2 = c2 , Eq. (23.42) becomes

  
= ti

2GM

c2r* = ti
2GM

c2Dc

= ti
vg

c
(23.43)

The production of a real particle from a transition state orbitsphere is a
spacelike event in terms of special relativity wherein spacetime is
contracted by the gravitational radius of the particle during its
production.  Thus, the coordinate time is imaginary as given by Eq.
(23.43).  On a cosmological scale, imaginary time corresponds to
spacetime expansion and contraction as a consequence of the harmonic
interconversion of matter and energy as given by Eq. (24.40).  The left-
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hand side of Eq. (23.43) represents the proper time of the
particle/antiparticle as the photon orbitsphere becomes matter.  The
right-hand side of Eq. (23.43) represents the correction to the laboratory
coordinate metric for time corresponding to the relativistic correction of
spacetime by the particle production event.  Riemannian space is
conservative, and only changes in the metric of spacetime during particle
production must be considered.  The changes must be conservative.  For
example, pair production occurs in the presence of a heavy body.  A
nucleus which existed before the production event only serves to
conserve momentum but is not a factor in determining the change in the
properties of spacetime as a consequence of the pair production event.
The effect of this and other external gravitating bodies are equal on the
photon and resulting particle and antiparticle and do not effect the
boundary conditions for particle production.  For particle production to
occur, the particle must possess the escape velocity relative to the
antiparticle where Eqs. (23.34), (23.48), and (23.140) apply.

Eq. (23.43) is valid in the case that vg < c .  The velocity of each of
the point masses of the particle is equivalent to the gravitational escape
velocity vg  of the superposition of the point masses of the antiparticle
(Eq. (23.43)).  According to Newton's Law of Gravitation the eccentricity
is one and the particle production trajectory is a parabola relative to the
center of mass of the antiparticle.  The mass of each member of a lepton
pair corresponds to an energy of Eq. (23.32).  The electron and
antielectron correspond to the Planck equation energy.  The muon and
antimuon correspond to the electric energy.  And, the tau and antitau
correspond to the magnetic energy.  However, a pair of particles each of
the Planck mass corresponding to the conditions of Eq. (23.22), Eq.
(23.32), and Eq. (23.33) is not observed since the velocity of each of the
point masses of the transition state orbitsphere is the gravitational
velocity vG  that in this case is the speed of light; whereas, the Newtonian
gravitational escape velocity vg  of the superposition of the point masses
of the antiparticle is twice the speed of light (Eq. (23.35)).  In this case,
an electromagnetic wave of mass energy equivalent to the Planck mass
travels in a circular orbit about the center of mass of another
electromagnetic wave of mass energy equivalent to the Planck mass
wherein the eccentricity is equal to zero (Eq. (26.20)), and the escape
velocity can never be reached.  The relative velocity of Eq. (23.18) given
by the velocity addition formula of special relativity for two photons
corresponding to a particle and an antiparticle each of the Planck mass
is c .  In this case, the Compton wavelength bar is the gravitational radius
given by Eq. (23.22) where the mass m  is the Planck mass, and no matter
can escape.  Thus, for example, only three pairs of leptons are observed.
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And, a lepton having the Planck mass is not observed.  From Eq. (23.43),
the masses of fundamental particles are calculated in the Leptons and
Quarks Sections.

As stated in the Relativity Section, to describe any phenomenon
such as the motion of a body or the propagation of light, a definite
frame of reference is required.  A frame of reference is a certain base
consisting of a defined origin and three axes equipped with graduated
rules and clocks.  Given the unified relationships between the mass
energy, the Planck equation energy, electric potential, magnetic energy,
the gravitational potential energy, and the mass/spacetime metric
energy given by Eqs. (23.32-23.34) and Eq. (23.48) infra., it is possible
to reduce the graduated rules and clocks to a clock alone.  The units of
measure are interdependent.  Eqs. (23.32-23.34) and Eq. (23.48) infra.
which unify the energies also unify the relationships of the units of
measurement.  A measure of spacetime does exist a priori.  Thus, one
must be defined.  Based on the unification, only the metric of time need
be set in the equations such that the other calculable parameters of
matter and energy may be expressed relative to the time metric in terms
of an internally consistent system of units such as the MKS units.  The
permeability of free space 0  is defined in terms of the MKS unit NA−2  as

0 = 4  X 10−7  NA−2 (23.44)
The permeability of free space 0  and the permittivity of free space 0

are derived by converting the Coulombic force law and the magnetic
force law from CGS units to MKS units.  In CGS units, the unit of charge
is defined such that the Coulomb force equation is

F dynes( ) = k
e2 esu2( )
r 2 cm2( )  where k = 1 (23.45)

From the magnetic force per unit length law, 0 , is given by the
conversion of

F dynes / cm( ) =
2I2 esu / sec( )2

rc2 cm3 / sec2( )  where k = 1 (23.46)

to

F dynes / cm( ) = 0
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defined exactly as 0 = 4  X 10−7  NA−2 .  The experimental definition of
charge in MKS units is based on the speed of light.  The Coulomb force
law gives 0  in terms of the MKS charge; thus, 0  in terms of MKS units is
based on the experimentally measured speed of light.  The speed of light
is the conversion factor from time to length.  Time can also be
converted to inertial and gravitational mass and charge according to Eqs.
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(23.32-23.34) and Eq. (23.48) infra..  MKS units are selected.  In the
case of MKS units, the time metric is the second which is substituted for
the variable t  of Eq. (23.43).  [Eq. (23.43) gives the equivalence of time
in the proper and coordinate frames according to a dimensionless
correction factor.  But, Eq. (23.43) gives the mass in terms of a self
consistent system of units independent of the particular system because
of the circularity of the properties of mass, charge, momentum, and
spacetime and their measurement.  In the case of MKS units, it
represents a time normalization which reduces the number of units from
meters, kilograms and seconds (three unit system) to seconds (one unit
system).  Eq. (23.43) also applies to the cosmos wherefore time and
distance are interchangeable by the speed of light as given in the
Cosmology Section].

Conversely, the unification equation provides a superior means to
define a self consistent set of units based only on time.

  m0c
2 = h * = V = Emag = Egrav = Espacetime

(23.48a)
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(23.48b)
A superior measure of time is an atomic standard.  Using Eq. (23.48b) all
other standards are determined according to the metric of time, and the
speed of light is the conversion factor for time and distance.

ORBITAL MECHANICS
Newton's differential equations of motion in the case of the central

field are
m(˙ ̇ r − r ˙ 2 ) = f (r) (23.49)
m(2 ˙ r ̇  + r ˙ ̇ ) = 0 (23.50)

where f (r) is the central force.  The second or transverse equation, Eq.
(23.50), gives the result that the angular momentum is constant.

r 2 ˙ = constant = L / m (23.51)
where L  is the angular momentum.  The central force equations can be

transformed into an orbital equation by the substitution, u =
1

r
.  The

differential equation of the orbit of a particle moving under a central
force is

2u
2 + u =

−1
mL2u2

m2

f (u−1) (23.52)
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Because the angular momentum is constant, motion in only one plane
need be considered; thus, the orbital equation is given in polar
coordinates.  The solution of Eq. (23.52) for an inverse square force

f (r) = −
k

r2 (23.53)

is

r = r0

1+ e

1+ e cos
(23.54)

e = A
m

L2

m2

k
(23.55)

r0 =
m

L2

m 2

k(1+ e)
(23.56)

where e  is the eccentricity and A  is a constant.  The equation of motion
due to a central force can also be expressed in terms of the energies of
the orbit.  The square of the speed in polar coordinates is

v2 = ( ˙ r 2 + r 2 ˙ 2 ) (23.57)
Since a central force is conservative, the total energy, E , is equal to the
sum of the kinetic, T , and the potential, V , and is constant.  The total
energy is

1

2
m(˙ r 2 + r2 ˙ 2 ) + V(r) = E =  constant (23.58)

Substitution of the variable u =
1

r
 and Eq. (23.51) into Eq. (23.58) gives

the orbital energy equation.
1

2
m

L2

m2
[(

2u
2
) + u2 ] + V(u-1) = E (23.59)

Because the potential energy function V(r) for an inverse square force
field is

V(r) =-
k

r
=- ku (23.60)

the energy equation of the orbit, Eq. (23.59),
1

2
m

L2

m2 [(
2u

2 ) + u2 ] − ku = E (23.61)

which has the solution

r =
m

L2

m2
k -1

1+[1+2 Em
L2

m2
k-2]1/2 cos

(23.62)

where the eccentricity, e , is

e = [1+ 2Em
L2

m2 k−2 ]1/2 (23.63)
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Eq. (23.63) permits the classification of the orbits according to the total
energy, E , as follows:

E < 0, e <1 ellipse

E < 0, e = 0 circle (special case of ellipse)

E = 0, e = 1 parabolic orbit

E > 0, e >1 hyperbolic orbit
(23.64)

Since E = T + V  and is constant, the closed orbits are those for which
T <|V| , and the open orbits are those for which T ≥|V| .  It can be shown
that the time average of the kinetic energy, < T > , for elliptic motion in
an inverse square field is 1/ 2  that of the time average of the potential
energy, < V > .  < T >= 1/ 2 < V > .

In Newtonian gravitation, the central force between two particles
of masses m1  and m2  separated by a distance r  is

F = G
m1m2

r 2 (23.65)

where G  is the gravitational constant, its value being 6.67 X 10−11
 Nm 2kg−2 .

The theoretical difficulty with Newtonian gravitation is to explain just
why Eq. (23.5) exists implicitly in Newton's theory as a separate law of
nature besides Eq. (23.1) and Eq. (23.2).  Even so, Newtonian gravitation
and mechanics was the first truly successful dynamics, and its most well-
known application was in celestial mechanics.  The verification of the
prediction of the existence of Neptune marked the peak of the success
of celestial mechanics, but the first real difficulty was also met here.  It
was first pointed out in 1850, based on astronomical observations, that
there was a discrepancy between certain observations of the orbit of
Mercury and the predictions made by Newtonian mechanics.  According
to Newton's theory of gravitation, the Sun's gravitational force acting on
Mercury causes its orbit to be a closed ellipse.  In fact it is not a precise
ellipse: with every revolution, its major axis rotates slightly.  The
observed rate of Mercury's precession (rotation) of the perihelion
(major axis) is 1° 33'20" per century.  This value ought to be due to the
gravitational perturbations of all other planets and the effect of rotation
of our Earth-based coordinate system.  However, the value calculated
from Newtonian mechanics is 1° 32'37" per century.  The discrepancy
between them of

1° 33'20"−1° 32' 37 = 43" (23.66)
is extremely small, but it has been observed with a negligible amount of
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observational error, and it represents a tremendous outstanding
problem for Newtonian mechanics.

Relativistic Corrections of Newtonian Mechanics and
Newtonian Gravity

Newtonian mechanics (Eqs. (23.2)) is corrected by Lorentz
transformations of the time, length, mass, momentum, and energy of an
object (Eqs. (22.17-22.22)).  Similarly Newtonian gravitation is
corrected by relativistic corrections of the metric.  The Schwarzschild
metric is relativistically correct and may be solved to provide the orbital
equation.  The force is central; therefore, the angular momentum per
unit mass is constant.  The transverse differential equation of motion in
the case of the central field,

m(2 ˙ r ̇  + r ˙ ̇ ) = 0 (23.67)
gives the result that the angular momentum is constant

r 2 ˙ = constant = L / m (23.68)
where L  is the  component of the angular momentum of an orbiting
body of mass m .  Eq. (23.38) may be expressed as
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The relativistic correction for time is

2 = t2 1−
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It has the same form as the special relativistic correction for time with vg

in place of v .  This correction may be determined by considering an
object of mass m  orbiting an object of mass M .  The gravitational force
is central; thus the angular momentum is constant.  Consider that a
radial force is applied to increase the radius r  of the object's orbit with
a change of its energy E .  The angular momentum is conserved; thus,
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where 
d

dt
 
 

 
 

i

 is the initial angular velocity, 
d

dt
 
 

 
 

f

 is the final angular

velocity, ri  is the initial radius and rf  is the final radius.  At fixed radius,

dr 2  is zero, but dt 2  is finite.  Applying the time relativistic correction
given by Eq. (23.38) and Eqs. (23.14-23.17) gives the mass m f  at rf  with
respect to the mass mi  of the inertial frame of ri  as
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where r  is the increase in the radius.  The proper energy Ep  of the object
is given by

mic
2 1−

2GM

rc2

 
 

 
 = Ep (23.73)

The relativistic correction for energy is of the same form as the special
relativistic correction for mass (Eq. (22.19)) with vg  in place of v .
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2
= mc2 (23.74)

where m  in the coordinate mass of the orbiting body and E  is the energy
of the orbiting object.  In the case that the gravitational velocity is much
less that the speed of light (vg << c ), the gravitational energy Eg

converges to that given by Newton.
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E ≈ mc2 −
GMm

r
(23.76)

Eg =−
GMm

r
(23.77)

Precession of the Perihelion
Combining Eq. (23.73) and Eq. (23.38) in terms of the time

differentials gives

1−
2GM

rc2

 
 

 
 

dt

d
=

E

mc2 (23.78)

Eq. (23.78) is herein derived from first principals.  It is postulated in
pervious solutions [5, 6].  Having arrived at the basis for the orbital
equation using the correct physics, the derivation follows from Fang and
Ruffini [5].  Eqs. (23.69), (23.78) and (23.68) are the equations of
motion of the geodesic, which give
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The central force equations can be transformed into an orbital equation

by the substitution, u =
1

r
.  The relativistically corrected differential

equation of the orbit of a particle moving under a central force is

du

d
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+ u2 =

E

c
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− m 2c2

L2 +
m2c2

L2

2GM

c2

 
 

 
 u +

2GM

c2

 
 

 
 u

3 (23.80)

By differentiating with respect to , noting that u = u( ) gives
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d2u

d 2 + u =
GM

a2 +
3

2

2GM

c2

 
 

 
 u

2 (23.81)

where

a =
L

m
(23.82)

In the case of a weak field,
2GM

c2

 
 

 
 u << 1 (23.83)

and the second term on the right-hand of Eq. (23.81) can then be
neglected in the zero-order.  In such a case the solution is

u0 −
GM

a2 = Acos + 0( ) (23.84)

where A  and 0  denote the constants of integration.  The orbits of Eq.
(23.84) are conic sections and are specified in terms of eccentricity

e =
Aa2

GM
(23.85)

and perihelion distance

rmin =
a2

GM 1+ e( ) (23.86)

If e < 1, the orbits are bound and elliptical in shape.  In the case for which
the minor axis is parallel to = 0  (i.e. 0 = 0), the ellipse can be written as

u0 =
1

r
=

GM

a2 1 + e cos( ) (23.87)

We shall calculate the correction to the elliptical orbits caused by the

relativistic term 
3

2

2GM

c2

 
 

 
 u

2  in Eq. (23.81).  The value of this term is only

about 10−7  for Mercury and far less for other planets, so that it is only
necessary to calculate the lowest order corrections, called the post-
Newtonian corrections.  Substituting Eq. (23.87) into the second term
on the right-hand side of Eq. (23.81), we get

d2u

d 2 + u =
GM

a2 +
3GM

a2 2e cos + 1 + e2 cos2( )[ ] (23.88)

where =
GM

ca
 
 

 
 

2

<< 1.  Let u = u0 +u1.  Then the equation for the first-order

correction function u1  is
d2u1

d 2 + u1 =
3GM

a2 2e cos + 1+ e2 cos2( )[ ] (23.89)

This is an equation for forced oscillations.  In Eq. (23.89) , the only
important term on the right-hand side is the first one, which is resonant,
while the second non-resonant term will only cause a slight periodic
variation in the position of the perihelion.  Thus, after neglecting the
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non-resonant term, Eq. (23.87) becomes
d2u1

d 2 + u1 =
6GM

a2 ecos (23.90)

A solution can be obtained as

u1 =
3GMe

a2 sin (23.91)

It is obvious that the presence of a multiplicative factor  in the solution
causes a cumulative effect which can be observed clearly after a
sufficiently large number of revolutions.

Using the above solution, by considering the relativistic correction
up to the first order, the orbit is

u = u0 +u1 =
GM

a2 1 + e cos +3 sin( )[ ] (23.92)

or

r ≈

a2

GM
1+ e cos 1 − 3( )[ ]{ } (23.93)

as  is small.
We know that perihelia occur when the cosine is unity, and are

therefore determined by the following equation:
1− 3( ) = 2 n (23.94)

where n  is any integer.  This can be approximated as
= 2 n + 6 n (23.95)

Therefore, the azimuth angle  increases with increasing n , that is, the
major axis of the ellipse has a precession.  The angular precession ∆ 1

per revolution is

∆ 1 =
6 GM

c2rmin 1 + e( ) (23.96)

and the centennial precession ∆  is

∆ =
6 GMN

c2rmin 1+ e( ) (23.97)

where N  is the number of revolutions per century.
Only for the planets Mercury, Venus, and the Earth, and the

asteroid Icarus, is rmin small enough and M  large enough for ∆  to be
measured.  The results are as shown in Table 23.1.  The large uncertainty
in the measured precession of Venus arises from the near-circularity of
the orbit ( e  is only 0.0068), which makes it difficult to locate the
precession.  These results support the verification of general relativity
(Schwarzschild metric).
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Table 23.1.  Observed and theoretical angle of procession of the
perihelion of Mercury, Venus, Earth, and Icarus.

Planet
Observed
∆ 100 (seconds of arc)

Theoretical
∆ 100 (seconds of arc)

Mercury

Venus

Earth

Icarus

43.11 ±   0.45

  8.4   ±   4.8

  5.0   ±   1.2

  9.8   ±   0.8

43.03

  8.6

  3.8

10.3

To confirm that all of the remaining precession of a star arises
from general relativity, it is of course necessary to be able to rule out
other possibilities which may also cause some precession, the most
important of which is the non-spherical symmetry of the Sun.  If the Sun
is slightly oblate, its gravitational potential would be

V =
GM

r
1 − J2

RSun
2

r2

3cos2 −1

2

 
 
  

 
 

  
 

  (23.98)

where J2  is the oblateness of the Sun.  In this field, there is already a
certain rotation of the perihelion, the value of which per revolution of
the star would be

∆ =
6 GM

rmin 1 + e( ) J2

RSun
2

MG
2rmin 1 + e( ) (23.99)

The lack of data of J2  is the outstanding serious problem that prevents
us from isolating the relativistic contribution to the precession.
Inference of J2  from measurements of the visual oblateness of the Sun is
difficult; this method has been tried, but the results are in dispute.
Dicke and Goldenberg have claimed that this oblateness is as large as
J2 = 5 X 10−5  [5], which should account for about 20% of the remaining
precession.  However, recent observations indicate that the oblateness
of the Sun is far less than the above value with only J2 = 1.84 ±1.25( ) X 10−6 .
Inference of J2  by comparing results for Mercury and Mars is also
difficult.  The effect for Mars is very small, and the influences of the
asteroid belt on the orbit of Mars make the interpretation of a measured
precession difficult.

The best approach for measuring J2  would be to track a spacecraft
that passes close to the Sun.  In one possible version of such a method,



366 © 2000 by BlackLight Power, Inc.  All rights reserved.

the spacecraft would be sent from the Earth to pass by Jupiter to obtain
a "gravity assist".  Due to the Jupiter encounter, the spacecraft would be
made to travel perpendicular to the ecliptic.  After several years of
flight, the spacecraft would pass by the Sun in less than a day and J2

would be estimated from that brief encounter.

Deflection of Light
The principle of equivalence implies that light is deflected in a

gravitational field.  For instance, imagine a laboratory falling freely in
the gravitational field near the Earth's surface, and suppose a light ray is
emitted from the left end propagates horizontally towards the right.
According to the principle of equivalence, the laboratory is an inertial
frame in which gravity is eliminated.  Ignoring special relativistic
considerations, this is true to extent that the acceleration is exactly
radial.  In the frame accelerated by gravity, the light ray is observed to
travel along a straight line according to the demands of special relativity.
However, for an observer on the ground, the laboratory is accelerated
downwards, and the light ray which propagates horizontally to the right
for an observer in the laboratory, would in the ground frame be
accelerated downwards in a curved path.  Due to the weakness of the
gravitational field near the Earth's surface, deflection of the light is very
small (a light ray propagating horizontally has a deflection of only about
1 Å, due to a curved trajectory, for every kilometer traveled) and
difficult to observe.  Nevertheless, the deflection of light in the Sun's
gravitational field has a magnitude that can be observed.  To obtain a
correct calculation of the total deflection caused by the Sun's
gravitational field, it is necessary to consider many different local
inertial frames and their connections.  It is not sufficient to employ just
the single laboratory falling freely as mentioned above.

Newtonian mechanics predicts the bending of the trajectory of
light in a gravitational field.  The deflection predicted by Newtonian
gravitation is less than the experimental value, but closely matches the
experimental value when relativistically corrected.  As early as in 1801,
Soldner calculated the deflection of light in gravitational fields using
Newtonian mechanics.  Eq. (23.87) corresponds to unbound hyperbolic
orbits if the eccentricity e  exceeds unit.  The asymptotes, where r → ∞ ,
correspond to angles to the angles shown in Figure 23.1 having the
following relationship

± = ±
2

+
1

2
 
 

 
 (23.100)

where  is the total Newtonian deflection of the ray, given by

cos ± =−
1

e
(23.101)
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which is equivalent to

sin
1

2
=

1

e
(23.102)

Figure 23.1.  The coordinate parameters of the deflection of light in the
gravitational field of the Sun.

Using the speed of light c , Eq.(23.51) and a =
L

m
, the angular momentum

per unit mass of the photon, a , is approximately
a ≈ rminc (23.103)

The eccentricity follows from Eq. (23.85) and Eq. (23.86)

e =
a2

GMrmin

−1 ≈
c2rmin

GM
−1 ≈

c2rmin

GM
(23.104)

Since 
c2rmin

GM
>> 1, e  is very large and  is very small, so that we have

approximately,

sin
1

2
 
 

 
 ≈

1

2
=

1

e
(23.105)

that is

=
2GM

c2rmin

(23.106)

For light grazing the surface of the Sun, rmin = RSun and M = MSun, giving
= 0".875 (23.107)

The Newtonian deflection must be corrected relativistically to
calculate the true deflection .  The results obtained in the Precession of
the Perihelion Section can be applied to light propagation in gravitational
fields wherein the rest mass of light is zero.  Substitution of m = 0 in Eq.
(23.81) gives

d2u

d 2 + u =
3GM

c2 u2 (23.108)

If M = 0 , the path of the light would be a straight line with the orbit
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equation,

u0 =
1

rmin

cos + 0( ) (23.109)

where rmin and 0  are constants of integration.  By making 0 = 0, up to the
first order correction, Eq. (23.108) gives

d2u

d 2 + u =
3GM

c2rmin
2 cos2 (23.110)

which has a solution:

u =
1

rmin

cos +
GM

c2rmin
2 1 + sin2( ) (23.111)

The asymptote is determined by taking r → ∞ , namely,

0 = −
1

rmin

sin
2

+
GM

c2rmin
2 1 + cos2

2

 
 

 
 (23.112)

Since ≈ 0  and 
GM

c2rmin

<< 1, the deflection  is

≈
4GM

c2rmin

(23.113)

This is twice the unrelativistically corrected Newtonian value.  For light
grazing the Sun,

= 1".75 (23.114)
It is only possible to measure the deflection of light from a star

during a total eclipse of the Sun.  Measuring the relative positions of the
stars around the Sun during an eclipse and repeating the measurements
for the same celestial region six months later (i.e. in the absence of the
Sun's gravitational field in the region), a comparison between the two
results would give the required deflection.  In this way ∆  has been
measured for about 400 stars since 1919.  The experimental results all
lie within the limits 1".57-2".37, the mean value being 1".89.  These
results disagree with the prediction of unrelativistically corrected
Newtonian theory.  But, the predicted and experimentally observed
values agree quite well after general relativistic correction of
Newton's Law of Gravitation.

There are many problems that are difficult to overcome in the
observation of deflections.  First of all, the effect of the solar corona
limits us to measurements of the star with rmin > 2RSun.  Secondly, total
eclipses of the Sun are not usually observable at locations where large
telescopes are available.  The size of the diffraction disc of a telescope
of 10 cm in diameter is about 5 X 10−6  arc, which restricts the accuracy of
the measurement.  Moreover, exposures and developing which are made
at different times also bring in systematic errors.

Radiosources have been employed for detecting the deflection of
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light in the last few years.  The results of direction measurements using
very long baseline interferometry are better than those using the optical
method, since the precision of the former can be very high.  For
example, QSO 3C279 is occulted annually by the Sun.  By measuring the
angle between 3C279 and 3C273, before and after an occultation, the
required results on the deflection are obtained.  Some of these results
are listed in Table 23.2.

Table 23.2.  The angle of deflection of the propagation of a light ray ∆
by a gravitating body.
Name of
Observatory

Frequency
(MHz)

Length
of Baseline

(km)
∆

OWENSVALLEY 9602 1 1".7  ±   0".20

GOLDSTONE 2388 21.566 1".82 ±  0".24
            0".17

GOLDSTONE
HAYSTACK

7840 3899.22 1"80 ±   0".2

NRAO 2695
8085 2.7 1".57 ±  0".08

NRAO 2697
4993.8 1.41 1".87 ±  0".3

In addition, radiosources 0119+11, 0116+08, and 0111+02 are collinear
so that when the ecliptic of the Sun crosses 0116+08, 0119+11 and
0111+02 are each on one side of the ecliptic, making angles of 4° and 6°
with the ecliptic, respectively.  The Sun passes through the celestial
region near 0116+08 in the first ten days of the month every April.
Using two frequencies, 2695 and 8085 MHz, eliminates the effects of the
corona.  Fomaleont and Sramek have measured the change in the
relative positions of the three radiosources by using 35 km baseline
interferometry at NRAO when the Sun passed 0116+08.  Their result is
∆ =1".761± 0".010 .

COSMOLOGY
A space in which the curvature tensor R ,  having the form

R , = K ⋅(g g − g g ) (23.115)
is satisfied (with K = constant ) is called a space of constant curvature; it is
a four-dimensional generalization of Friedmann-Lobachevsky space.  The
constant K  is called the constant of curvature.  If in these relations K  is
zero, the space-time is Galilean and the transformations in questions are
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Lorentz transformations, except when other (non-Galilean) coordinates
are used.  It can be shown [12] that any two spaces of constant
curvature of the same dimension and metric signature which have equal
values of K  must be (locally) isometric.  Thus, our task of determining
the possible spatial geometries of a hypersurface Σ t  will be completed if
we enumerate spaces of constant curvature encompassing all values of
K .  This is easily done.  All positive values of K  are attained by the 3-
spheres, defined as the surfaces in four-dimensional flat Euclidean space
  R 4  whose Cartesian coordinates satisfy

x2 + y2 + z2 + w2 = R2 (23.116)
In spherical coordinates, the metric of the unit 3-sphere is

ds 2 = d 2 + sin2 d 2 + sin2 d 2( ) (23.117)
The value K = 0  is attained by ordinary three-dimensional flat space.  In
Cartesian coordinates, this metric is

ds 2 = dx2 + dy2 + dz2 (23.118)
Finally, all negative values of K  are attained by the three-dimensional
hyperboloids, defined as the surfaces in a four-dimensional flat Lorentz
signature spaces (i.e., Minkowski space-time) whose global inertial
coordinates satisfy

t2 − x2 − y2 − z2 = R2 (23.119)
In hyperbolic coordinates, the metric of the unit hyperboloid is

ds 2 = d 2 + sinh2 d 2 + sin2 d 2( ) (23.120)
The new possibilities for the global spatial structure of our universe
should be stressed.  In prerelativity physics, as well as in special
relativity, it was assumed that space had the flat structure given by the
possibility K = 0  above.  But even under the very restrictive assumptions
of homogeneity and isotropy, the framework of general relativity admits
two other distinct possibilities.  The possibility of a 3-sphere spatial
geometry is particularly interesting, as it is a compact manifold and thus
describes a universe which is finite but has no boundary.  Such a
universe is called "closed", while the universes with noncompact spatial
sections such as those given by flat and hyperboloid geometries are
called "open".  (One could construct closed universes with flat or
hyperboloid geometries by making topological identifications, but it
does not appear to be natural to do so.)  Thus, an intriguing question
raised by general relativity is whether our universe is closed or open.

Consider isotropic observers orthogonal to the homogeneous
hypersurfaces Σ t .  In this case, we may express the four-dimensional
space-time metric gab  as

gab = −uaub + hab t( ) (23.121)
where for each t , hab t( ) is the metric of either (a) a sphere, (b) flat



© 2000 by BlackLight Power, Inc.  All rights reserved. 371

Euclidean space, or (c) a hyperboloid, on Σ t .  We can choose,
respectively, either (a) spherical coordinates, (b) Cartesian coordinates,
or (c) hyperbolic coordinates on one of the homogeneous
hypersurfaces.  We then "carry" these coordinates to each of the other
homogeneous hypersurfaces by means of our isotropic observers; i.e.,
we assign a fixed spatial coordinate label to each observer.  Finally, we
label each hypersurface by the proper time, , of a clock carried by any
of the isotropic observers.  (By homogeneity, all the isotropic observes
must agree on the time difference between any two hypersurfaces.)
Thus,  and our spatial coordinates label each event in the universe.

Expressed in these coordinates, the space-time metric takes the
form

ds 2 = −d 2 + a2 ( )

d 2 + sin2 d 2 + sin2 d 2( )
dx 2 + dy2 + dz 2

d 2 + sinh2 d 2 + sin2 d 2( )

 

 
 

 
 

(23.122)

where the three possibilities in the bracket correspond to the three
possible spatial geometries.  The metric for the spatially flat case could
be made to look more similar to the other cases by writing it in spherical
coordinates as

d 2 + 2 d 2 + sin2 d 2( ) (23.123)
The general form of the metric, Eq. (23.122) is called a Robertson-
Walker cosmological model.  The assumptions of homogeneity and
isotropy alone determine the spacetime metric up to three discrete
possibilities of spatial geometry and arbitrary positive function a( ) .
Einstein's equation can be solved for the spatial geometry and a( ) .  The
result is that all possible solutions of Einstein's equation are inconsistent
with the observation of the acceleration of the expansion of the cosmos
shown infra.

Einstein Cosmological Predictions
Dynamical predictions for the evolution of the universe according

to Einstein's equation may be found by substituting the metric into Eq.
(23.40).  In the cases of spherical, flat, and hyperbolic geometries, the
general evolution equations for homogeneous, isotropic cosmology are

3
˙ a 2

a2 = 8 − 3
k

a2 (23.124)

3
˙ ̇ a 

a
= −4 + 3P( ) (23.125)

where k = +1 for the 3-sphere, k = 0  for flat space, and k = −1 for the

hyperboloid and  is the (average) mass density of matter, ˙ a =
da

d
, and P
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is the pressure.  The exact solutions of these equations for the cases of

dust ( P = 0) and radiation ( P =
3

) are given below in Table 23.3.

Table 23.3.  Dust and Radiation Filled Robertson-Walker Cosmologies.

________________________________________________________________________

TYPE OF MATTER
__________________________________________________________

"Dust" Radiation

SPATIAL GEOMETRY P = 0 P =
3

3-sphere, k = +1
a =

1

2
C 1− cos( )

=
1

2
C − sin( )

a = C ' 1 − 1−
C '

 
 

 
 

2 

  
 

  

1

2

Flat, k = 0
a =

9C

4
 
 

 
 

1

3
2

3 a = 4C '( )
1

4

1

2

Hyperboloid, k = −1
a =

1

2
C cosh − 1( )

=
1

2
C sinh −( )

a = C ' 1+
C '

 
 

 
 

2

−1
 

  
 

  

1

2

Consider some of the important qualitative properties of the solutions.
The first striking result is that the universe cannot be static, provided
only that > 0  and P ≥ 0 .  This conclusion follows immediately from Eq.
(23.125) which tells us that ˙ ̇ a < 0.  Thus, the universe must always
either be expanding ( ˙ a > 0) or contracting ( ˙ a < 0) (with the possible
exception of an instant of time when expansion changes over to
contraction).  Note the nature of this expansion or contraction:  The
distance scale between all isotropic observers (in particular, between
galaxies) changes with time, but there is no preferred center of
expansion or contraction.  Indeed, if the distance (measured in the
homogeneous surface) between two isotropic observers at time  is R ,
the rate of change of R  is

v ≡
dR

d
=

R

a

da

d
= HR (23.126)

where H( ) =
˙ a 

a
 is called Hubble's constant.  (Note, however, that the

value of H  changes with time.)  Eq. (23.126) is known as Hubble's law.
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Note that v  can be greater than the speed of light if H( ) =
˙ a 

a
 is

large enough.  This represents a contradiction of special relativity
that no signal may travel faster than c  the speed of light for any
observer.  (The maximum expansion rate for a 3-sphere is 4 c
which is given in Eq. (23.186).

The expansion of the universe in accordance with Eq. (23.126) has been
confirmed by the observation of the redshifts of distant galaxies.  The
confirmation of this striking prediction of Einstein's general relativity is
regarded as a dramatic success of the theory.  Unfortunately, the
historical development of events clouded this success and recent data
reveals a fatal flaw in the nature of the expansion.  Einstein was
sufficiently unhappy with the prediction of a dynamic universe that he
proposed a modification of his equation, the addition of a new term, as
follows:

Gab + Λgab = 8 Tab (23.127)
where Λ  is a new fundamental constant of nature, called the
cosmological constant.  (It can be shown [13] that a linear combination
of Gab  and gab  is the most general two-index symmetric tensor which is
divergence free and can be constructed locally from the metric and its
derivatives up to second order; so Eq. (23.127) gives the most general
modification which does not grossly alter the basic properties of
Einstein's equation.  If Λ ≠ 0, one does not obtain Newtonian theory in
the slow motion, weak field limit; but if Λ  is small enough, the
deviations from Newtonian theory would not be noticed.)  With this
additional one-parameter degree of freedom, static solutions exist,
though they require exact adjustment of the parameters and are
unstable, much like a pencil standing on its point.  Thus, Einstein was
able to modify the theory to yield static solutions.  After Hubble's
redshift observations in 1929 demonstrated the expansion of the
universe, the original motivation for the introduction of Λ  was lost.
Nevertheless, Λ  has been reintroduced on numerous occasions when
discrepancies have arisen between theory and observations, only to be
abandoned again when these discrepancies have been resolved.  In the
following, we shall assume that Λ = 0.

Given that the universe is expanding, ˙ a > 0, we know from Eq.
(23.125) that ˙ ̇ a < 0, so the universe must have been expanding at a faster
and faster rate as one goes backward in time.  Einstein's equation predict
that the universe must be decelerating for all time.

In fact, the opposite is observed experimentally [9].



374 © 2000 by BlackLight Power, Inc.  All rights reserved.

If the universe had always expanded at its present rate, then at the time

T =
a
˙ a 

= H −1  ago, we would have had a = 0 .  Since its expansion actually was

faster, the time at which a  was zero was even closer to the present.
Thus, under the assumption of homogeneity and isotropy, Einstein's
general relativity makes the prediction that at a time less than H −1  ago,
the universe was in a singular state:  The distance between all "points of
space" was zero; the density of matter and the curvature of space-time
was infinite.  This singular state of the universe is referred to as the big
bang.

Such a spacetime structure makes no physical sense.  Furthermore,
big bang theory requires the existence of a center of the universe
from which the universe originated.  No such point of origin is
observed.

For many years it was generally believed that the prediction of a
singular origin of the universe was due merely to the assumptions of
exact homogeneity and isotropy, that if these assumptions were relaxed
one would get a non-singular "bounce" at small a  rather than a
singularity.  However, the singularity theorems of general relativity [14]
show that singularities are generic features of cosmological solutions;
they have ruled out the possibility of "bounce" models close to the
homogeneous, isotropic modes.

In order to determine the qualitative predictions of Einstein's
general relativity for the future evolution of the universe, it is useful to
first obtain an equation for the evolution of the mass density.
Multiplying Eq. (23.124) by a2 , differentiating it with respect to , and
then eliminating ˙ ̇ a  via Eq. (23.125) gives an equation for the evolution of
the mass density.

˙ + 3 + P( ) ˙ a 

a
= 0 (23.128)

In the case of a dust filled universe ( P = 0), the equation for the
predicted evolution of the mass density of the universe is

a3 = constant (23.129)
which expresses conservation of rest mass, while in the case of a

radiation filled universe (P =
3

)

a4 = constant (23.130)
In this case, the explanation is that the energy density decreases more
rapidly as a  increases than by the volume factor a3 , since the radiation
in each volume element does work on its surroundings as the universe
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expands.  (Alternatively, in terms of photons, the photon number
density decreases as a−3 , but each photon loses energy as a−1  because of
redshift.  Comparison of Eq. (23.129) and Eq. (23.130) shows that
although the radiation content of the present universe may be negligible,
its contribution to the total mass density far enough into the past (a → 0)
should dominate over that of ordinary matter.

The qualitative features of the future evolution of the universe
predicted by Einstein's general relativity may now be determined.  If k = 0
or −1, Eq. (23.124) shows that ˙ a  never can become zero.  Thus, if the
universe is presently expanding, it must continue to expand forever.
Indeed, for any matter with P ≥ 0 ,  must decrease as a  increases at least
as rapidly as a−3 , the value for dust.  Thus, a2 → 0  as a → ∞ .  Hence, if
k = 0 , the "expansion velocity" ˙ a  asymptotically approaches zero as

→ ∞ , while if k = −1 we have ˙ a → 1 as → ∞ .
However, if k = +1, the universe cannot expand forever.  The first

term on the right hand of Eq. (23.124) decreases with a  more rapidly
than the second term, and thus, since the left-hand side must be
positive, there is a critical value, ac  such that a ≤ ac .  Furthermore, a

cannot asymptotically approach ac  as → ∞  because the magnitude of ˙ ̇ a 

is bounded from below on account of Eq. (23.125).  Thus, if k = +1, then
at a finite time after the big bang origin of the universe, the universe will
achieve a maximum size ac  and then will begin to recontract.  The same
argument as given above for the occurrence of a big bang of the
universe now shows that a finite time after recontraction begins, a "big
crunch" end of the universe will occur.  Thus, the dynamical equations
of Einstein's general relativity show that the spatially closed 3-sphere
universe will exist for only a finite span of time.

Let us now turn our attention to solving Eq. (23.124) and Eq.
(23.125) exactly for the cases of dust and radiation.  The most efficient
procedure for doing this is to eliminate  using Eq. (23.129) or,
respectively, Eq. (23.130), and substitute into Eq. (23.124).  The result
for dust is

˙ a 2 −
C

a
+ k = 0 (23.131)

where C =
8 a3

3
 is constant; and for radiation,

˙ a 2 −
C '

a2 + k = 0 (23.132)

where C ' =
8 a4

3
.  Given Eq. (23.129) (or Eq. (23.130)), Eq. (23.125) is

redundant; so, the only first order ordinary differential Eq. (23.131) (or,
respectively, Eq. (23.132)) need be solved.  The solutions for a( )  are
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readily obtained by elementary methods.  These solutions for the six
cases of interest are given in Table 23.3.  Graphs of a( )  versus  for
dust-filled Robertson-Walker universes are shown in Figure 23.2.  Similar
graphs are obtained for radiation-filled Robertson-Walker universes.
The solution for the dust-filled universe with 3-sphere geometry was
first given by Friedmann (1922) and is called the Friedmann cosmology,
although in some references all the solutions in Table 23.3 are referred
to as Friedmann solutions.

Figure. 23.2.  The dynamics of dust-filled Robertson-Walker universes.

Solutions to Einstein's general relativity yield multiple possible
outcomes of a( )  with regard to future evolution such as whether our
universe is "open" or "closed," i.e., whether it corresponds to the cases
k = 0 , k = −1, or the case k = +1.  If the universe is open, it will expand
forever, while if it is closed it will eventually recontract.  The basic
equations (Eq. (23.124) and Eq. (23.125)) governing the dynamics of the

universe may be expressed in terms of Hubble's constant, H =
˙ a 

a
, and the

deceleration parameter, q , defined by

q = − ˙ ̇ a 
a
˙ a ( )2 (23.133)

Assuming P ≈ 0 in the present universe, gives

H2 =
8 G

3
−

kc2

a2 (23.134)

q =
4 G

3H 2 (23.135)

Defining Ω  as

Ω =
8 G

3H 2 (23.136)
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gives the result

q =
Ω
2

(23.137)

and the universe is closed (k = +1) if and only if Ω > 1, i.e., > c ≡
3H 2

8 G
.

Dynamical predictions for the evolution of the universe according
to Einstein's equation are consistent with the expansion of the cosmos;
but are fatally flawed since they predict the possibility of an expansion
velocity that exceeds the speed of light, and all cosmological solutions of
Einstein's general relativity predict a decelerating universe from a
postulated initial condition of a "big bang" expansion [8]8.  The
astrophysical data reveals an accelerating cosmos [9] which invalidates
Einstein's equation.  Furthermore, multiple solutions with dramatically
different consequences are equally valid.  The solutions to Einstein's
equation can not account for the power spectrum of the cosmos or the
nature or uniformity of the cosmic microwave background radiation.
Einstein's universe is static with expanding dust, expanding radiation, or
a static expanding mixture.  In actuality, the universe comprises
predominantly matter which is under going conversion into radiation
with a concomitant expansion of spacetime.  The Einstein solutions
predict the opposite of the actual evolution of the cosmos wherein
radiation dominates in the early universe with matter dominant latter.
The equations are derived infra. that reconcile the short comings of
Einstein's general relativity. The correct basis of gravitation is not
according to Einstein's equation (Eq. (23.40)); instead the origin of
gravity is the relativistic correction of spacetime itself which is
analogous to the special relativistic corrections of inertial parameters--
increase in mass, dilation in time, and contraction in length in the
direction of constant relative motion of separate inertial frames.  As
matter converts into energy spacetime undergoes expansion.  On this
basis, the observed acceleration of the expansion of the cosmos is
predicted.

COSMOLOGY BASED ON THE RELATIVISTIC EFFECTS OF
MATTER/ENERGY CONVERSION ON SPACETIME

The Arrow of Time and Entropy
The first principle laws are time symmetrical.  They are equally

valid for reverse time as they are for forward time.  The principle of

8 Some of the failings of the "Big Bang" model as well as an even more far fetched
model is given by Linde [15].
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entropy was invented to provide an explanation for the direction of time
as it pertains to macroscopic processes.  And, it is not based on first
principles.  It does not provide an atomic arrow of time or provide
insight into its existence.  It is not clear whether entropy applies to the
entire universe, and the relationship of entropy to the observed large
scale expansion of the universe is not obvious.

The following retrospect of entropy is adapted from Levine [16].
Consider the spontaneous mixing of two different gases. In the mixing process, the
molecules move according to Newton's second law, Eq. (23.2).  This law is symmetric
with respect to time, meaning that if t  is replaced by -t  and v  by -v , the law is
unchanged.  Thus, a reversal of all particle motions gives a set of motions that is
also a valid solution of Newton's equation.  Hence it is possible for the molecules to
become spontaneously unmixed, and this unmixing does not violate the laws of
motion.  However, motions that correspond to a detectable degree of unmixing are
extremely improbable (even though not absolutely impossible).  Although Newton's
laws of motion (which govern the motion of individual molecules) do not single out
a direction of time, when the behavior of a very large number of molecules is
considered, the second law of thermodynamics (which is a statistical law) tells us
that states of an isolated system with lower entropy must precede in time states with
higher entropy.  The second law is not time-symmetric but singles out the direction

of increasing time; we have 
dS

dt
> 0  for an isolated system, so that the signs of dS  and

dt  are the same.  If someone showed us a film of two gases mixing spontaneously
and then ran the film backward, we would not see any violation of F = ma  in the
unmixing process, but the second law would tell us which showing of the film
corresponded to how things actually happened.  Likewise, if we saw a film of
someone being spontaneously propelled out of a swimming pool of water, with the
concurrent subsidence of waves in the pool, we would know that we were watching
a film run backward; although tiny pressure fluctuations in a fluid can propel
colloidal particles about, the Brownian motion of an object the size of a person is too
improbable to occur.

The second law of thermodynamics singles out the direction of increasing
time.  The astrophysicist Eddington put things nicely with his statement that

"entropy is time's arrow."  The fact that 
dS

dt
> 0  for an isolated system gives us the

thermodynamic arrow  of time.  Besides the thermodynamic arrow, there is a
cosmological arrow of time.  Spectral lines in light reaching us from other galaxies
show wavelengths that are longer than the corresponding wavelengths of light
from objects at rest (the famous red shift).  This red shift indicates that all galaxies
are moving away from us.  Thus the universe is expanding with increasing time,
and this expansion gives the cosmological arrow.  Many physicists believe that the
thermodynamic and the cosmological arrows are directly related, but this question
is still undecided [17].

Particle physicists feel that there is strong (but not conclusive) evidence
that the decay of one of the elementary particles (the neutral K meson) follows a
law that is not symmetric with respect to time reversal.  Thus, they speculate that
there may also be a microscopic arrow of time, in addition to the thermodynamic
and cosmological arrows [18-20].

The second law of thermodynamics shows that S  increases with time for an
isolated system.  Can this statement be applied to the entire physical universe?
Scientists use universe to mean the system plus those parts of the world which
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interact with the system.  In the present contexts, universe shall mean everything
that exists - the entire cosmos of galaxies, intergalactic matter, electromagnetic
radiation, etc.  Physicists in the late nineteenth century generally believed that the
second law is valid for the entire universe, but presently they are not so sure.
Scientists make the point that experimental thermodynamic observations are on
systems that are not of astronomic size, and hence they are cautious about
extrapolating thermodynamic results to encompass the entire universe.  They feel
that there is no guarantee that laws that hold on a terrestrial scale must also hold
on a cosmic scale.  Although there is no evidence for a cosmic violation of the
second law, their experience is insufficient to rule out such a violation.

The Arrow of Time
The present theory provides an alternative explanation for the

expanding universe which unifies the microscopic, thermodynamic, and
cosmological arrows of time.

Physical phenomena involve exchange of energy between matter
and spacetime.  The relationship between mass/energy and spacetime
provides the arrow of time.  The particle production equations which
unify de Broglie’s Equation, Planck’s Equation, Maxwell’s Equations,
Newton’s Equations, and Special and General Relativity, Eq. (23.48a) and
Eq. (23.48b), give the equivalence of particle production energies
corresponding to mass, charge, current, gravity, and spacetime
according to the proportionality constants which are given in terms of a
self consistent set of units.  As shown by Eq. (23.38), particle production
requires radial length contraction and time dilation that results in the
curvature of spacetime.  Thus, the creation of mass from energy causes
an infinitesimal contraction or collapse of spacetime much like a dimple
in a plastic ball but in three dimensions plus time; whereas, the release
of energy causes an expansion of spacetime.  Time goes forward in the
direction of lower energy states and greater entropy because these states
correspond to an expansion of spacetime relative to the higher energy
states of matter.  Expanded space corresponds to a smaller cross section
for reverse time as opposed to forward time.  Thus, the arrow of time
arising on the subatomic and atomic level gives rise to the Second Law of
thermodynamics;

In an isolated system, spontaneous processes occur in the
direction of increasing entropy.

Stated mathematically:
The entropy change, dS, which is equal to the change in heat, dq,
divided by the temperature, T, is greater than zero.

dS =
dq

T
> 0 (23.138)
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The Expanding Universe and the Microwave Background
The atomic arrow of time also applies to cosmology and provides

for the expansion of spacetime on a cosmological scale.  As fundamental
particles, atoms, molecules, and macroscopic configurations of
fundamental particles, atoms, and molecules release energy, spacetime
increases.  The superposition of expanding spacetime arising at the
atomic level over all scales of dimensions from the atomic to the
cosmological gives rise to the observed expanding universe which
continues to increase in entropy.  However, due to conservation of
mass/energy and spacetime as given by Eqs. (23.43), (23.48a), and
(23.48b), the change in entropy of the universe over all spacetime is
zero.

dS spacetime = 0 (23.139)

Thus, regions of the world line of the universe exist wherein entropy
decreases.  The implications that are developed supra. are that:

• The universe is closed  (it is finite but with no boundary)

• The total matter in the universe is sufficient to eventually stop the
expansion and is less than that which would result in permanent
collapse (a 3-sphere universe-Riemannian three dimensional
hyperspace plus time of constant positive curvature), and

• The universe is oscillatory in matter/energy and spacetime.

The amount of mass which is released as energy to cause
spacetime to expand by one second can be calculated using Eqs. (27.1)
and (27.3) of the Lepton Section.  Eq. (23.43) gives the relationship
between the equivalence of mass/energy conversion and the
contraction/expansion of spacetime.  The proper time of the electron
is given by Eq. (27.1), and the electron mass corresponding to this
amount of time is given by Eq. (27.3).  Thus, Q , the mass/energy to
expansion/contraction quotient of spacetime is given by the ratio of Eq.
(27.3) and Eq. (27.1) wherein Eq. (23.43) gives the general relativistic
factor which divides the electron mass and multiplies the electron
proper time to give the corresponding spacetime expansion.

  

Q =

me

2GM

c2Dc

2GM

c2Dc

=

h

1 sec c2

 
 

 
 

1
2 ch

2G
 
 

 
 

1
4

2
h

mec
2

2Gme

c2D c

=
c3

4 G
= 3.22 X 1034

 
kg

sec
(23.140a)

As a consequence of particle production the radius of the universe
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contracts by 2  times the gravitational radius of each particle with the
gravitational radius given by Eq. (23.36) which applies to the observed
leptons and quarks formed at the gravitational velocity vg  which is the
escape velocity given by Eq. (23.35)).  Thus, Q  the mass/energy to
expansion/contraction quotient of spacetime is also given by the ratio of
the mass of a particle at production divided by T  the period of
production given by Eq. (23.149) wherein the gravitational radius is the
Newtonian gravitational radius is given by Eq. (23.36).

Q =
m0

T
=

m0

2 rg

c

=
m0

2
2Gm0

c2

c

=
c3

4 G
= 3.22 X 1034

 
kg

sec
(23.140b)

As shown infra. the universe oscillates between the extremes of all
matter and all energy.  At the beginning of its expansion, the universe is
all matter with no electromagnetic radiation; thus, the universe is not
observable for earlier times.  The observer's light sphere determines
the limits of observation thereafter; thus, the observable conversion rate
is a percentage of the total.  The observable mass to energy conversion
rate of the universe calculated from the number of galaxies (400 billion )
times the number of stars per galaxy (400 billion ) times the average mass

to energy conversion rate per star (5 billion  kg / sec⋅ star) is 8 X 1032
 
kg

sec
 

which is 2.5% of Q  given by Eq. (23.140).  The time of the present
expansion calculated from the observed Hubble constant and the
maximum redshift is approximately 10 billion years [21].  Assuming the
presently observed mass to energy conversion rate was approximately
constant over this time, the amount of mass to energy released during
this time is

3.2 X 1034
 
kg

sec
 X 3.2 X 1017  sec =  1 X 1052  kg (23.141)

The mass of the universe is approximately 2 X 1054
 kg [Eq. (23.147) with

ref. 22-24]; thus, 0.5 % of the maximum mass of the universe has been
converted to energy.  Thus, the present universe is predominantly
comprised of matter, and according to Eq. (23.141) the mass of the
matter of the universe is essentially a maximum.  Given time harmonic
behavior, the observable universe is approximately at its minimum size.
The wavefront of energy and spacetime from matter to energy
conversion travel at the speed of light.  Consider Eq. (23.43).  At the
present time in the cycle of the universe, the world line of the expanding
spacetime and the released energy are approximately coincident.  In
terms of Eq. (23.38), the proper time and the coordinate time are
approximately equal.  The ratio of the gravitational radius, rg  given by
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Eq. (23.36), and the radius of the universe equal to one and the
gravitational escape velocity given by Eq. (23.35) is the speed of light.
And, Q , (Eq. (23.140)) is equal to the matter to energy conversion rate
of the time harmonic expansion/contraction cycle of the entire universe
(versus the observable universe) which permits light energy (photons)
to propagate (escape the gravitational hole of the universe).

When the gravitational radius rg  is the radius of the universe, the
proper time is equal to the coordinate time (Eq. (23.43)), and the
gravitational escape velocity vg  of the universe is the speed of light.

The cosmic microwave background radiation dominates the total
radiation density of the universe.  The microwave background spectrum
obtained by COBE is well fitted by a blackbody with a temperature of
2.735 ± 0.06 K , and the deviation from a blackbody is less than 1% of the
peak intensity over the range 1 − 20 cm−1  [25].  From the isothermal
temperature of the ubiquitous microwave background radiation and the
Stefan-Boltzmann law, the minimum size of the universe is calculated.
Presently, the mass to energy conversion rate of the universe is
approximately equal to, Q , the mass/energy to expansion/contraction
quotient of spacetime given by Eq. (23.140).  At the present time in the
cycle of the universe, the world line of the expanding spacetime and the
released energy are approximately coincident.  In terms of Eq. (23.38),
the proper time and the coordinate time are approximately equal.
Therefore, the mass to energy conversion rate of the entire universe is
equated with Q .  Thus, PU , the maximum power radiated by the
universe is given by Eqs. (23.27) and (23.140).

  

PU =

mec
2

2GM

c2Dc

2GM

c2Dc

=
c5

4 G
= 2.89 X 1051

 W (23.142)

The observable mass to energy conversion rate of the universe
calculated from the number of galaxies (400 billion ) times the number of
stars per galaxy (400 billion ) times the average mass to energy conversion
rate per star (5 billion  kg / sec⋅ star) is 7.2 X 1049  W  which is 2.5% of PU  given
by Eq. (23.142).

The Stefan-Boltzmann law [26] equates the power radiated by an
object per unit area, R , to the emissivity, e , times the Stefan-Boltzmann
constant, , times the fourth power of the temperature, T 4 .

R = e T 4 (23.143)
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The area, A , of the universe of radius ℵ is
A = 4 ℵ2 (23.144)

The power radiated by the universe per unit area, RU , is given by the
ratio of Eq. (23.142) and Eq. (23.144).

RU =

c5

4 G
4 ℵ2 =

2.89 X 1051
 W

4 ℵ2 (23.145)

The minimum radius of the universe, ℵmin , is calculated in terms of the
temperature of the cosmic microwave background radiation by the
substitution of Eq. (23.145) into Eq. (23.143).

ℵmin =
c5

4( )2 Ge T 4
= 8.52 X 1027

 m

ℵmin =
8.52 X 1027

 m

c
= 9.01 X 1011

 light years

(23.146)

where T = 2.735 °K , e = 1 for a blackbody, and = 5.67 X 10−8
 Wm−2K −4 .  Given

that the present expansion age is 10 billion years [21] and that the
power used to calculate Eq. (23.146) is an upper bound, the minimum
radius of the universe, ℵmin , given by Eq. (23.146) is equal to the
gravitational radius of the universe, rg , given by Eq. (23.36) and Eq.

(23.38) where the experimental mass of the universe is 2 X 1054
 kg [Eq.

(23.147) with ref. 22-24].

rg =
2GmU

c2 = 2.96 X 1027
 m = 3.12 X 1011

 light years (23.147)

Eq. (23.147) is consistent with the mass of the universe being that which
gives the ratio of the gravitational radius, rg , and the radius of the
universe equal to one and the gravitational escape velocity given by Eq.
(23.35) equal to the speed of light.

The gravitational equation (Eq. (23.38)) with the equivalence of
the particle production energies (Eqs. (23.48a) and (23.48b)) permit the
equivalence of mass/energy ( E = mc2 ) and spacetime

(
c3

4 G
= 3.22 X 1034

 
kg

sec
).  Spacetime expands as mass is released as energy

which provides the basis of the atomic, thermodynamic, and
cosmological arrows of time.  Entropy and the expansion of the universe
are large scale consequences.  The universe is closed independently of
the total mass of the universe.  Because Eq. (23.140) gives a constant
as the ratio of energy to spacetime expansion, the energy density is
constant throughout the inhomogeneous universe for a given r-sphere;
thus, different regions of space are isothermal even though they are
separated by greater distances than that over which light could
travel during the time of the expansion of the universe.  The
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spacetime expansion and the energy released travel spherically outward
at the speed of light.  The sum of the spacetime expansion over all points
in the universe and the sum of the energy release over all points in the
universe are each equivalent to that of a point source at the observer's
position of magnitude equal to the corresponding sum.  Recent evidence
reveals a fatal flaw in inflation theory and supports structure at a much
larger scale.  The cosmic microwave background radiation was an
average temperature of 2.7 ° kelvins, with deviations of 30 or so
microkelvins in different parts of the sky representing slight variations
in the density of matter.  The temperature fluctuations of the cosmic
microwave background radiation are not Gaussian [27] which is an
absolute requirement for inflation theory.

Mass/energy must be conserved during the harmonic cycle of
expansion and contraction.  The gravitational potential energy Egrav  of
the universe follows that given by Eq. (23.26)

Egrav =
GmU

2

r
(23.148)

In the case that the radius of the universe r  is the gravitational radius rG

given by Eq. (23.22), the gravitational potential energy is equal to mUc2

which follows that given by Eq. (23.27).  The gravitational velocity vG  is
given by Eq. (23.33) wherein an electromagnetic wave of mass/energy
equivalent to the mass of the universe travels in a circular orbit wherein
the eccentricity is equal to zero (Eq. (26.20)), and the escape velocity
from the universe can never be reached.  The wavelength of the
oscillation of the universe and the wavelength corresponding to the
gravitational radius rG must be equal.  Both spacetime expansion and
contraction travel at the speed of light and obey the wave relationship
given by Eq. (20.4).  The wavelength is given in terms of the radius by Eq.
(2.2).  Thus, the harmonic oscillation period, T , is

T =
2 rG

c
=

2 GmU

c3 =
2 G 2 X 1054  kg( )

c3 =  3.10 X 1019  sec = 9.83 X 1011  years

(23.149)
where the mass of the universe, mU , is approximately 2 X 1054

 kg [Eq.
(23.147) with ref. 22-24].  Thus, the observed universe will expand as
mass is released as photons for 4.92 X 1011

 years.  At this point in its world
line, the universe will obtain its maximum size and begin to contract.

The universe is oscillatory in matter/energy and spacetime with a
finite minimum radius, the gravitational radius rg .  The minimum radius
of the universe, 300 billion light years [24], is larger than that provided
by the current expansion, approximately 10 billion light years [21]; even
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though, presently the spacetime expansion and the released energy
world lines are coincident as a consequence of the equality of Eq.
(23.140) and the rate of matter to energy conversion.  In terms of Eq.
(23.38), the proper time and the coordinate time are approximately
equal.  Consequently, the radius of the universe does not go negative
during the contraction phase of the oscillatory cycle.

The maximum radius of the universe, the amplitude, ro , of the
time harmonic variation in the radius of the universe, is given by the
quotient of the total mass of the universe and Q , the mass/energy to
expansion/contraction quotient, given by Eq. (23.140).

r0 =
2 X 1054  kg

c3

4 G

= 6.20 X 1019  sec = 1.97 X 1012
  light years

r0 =
2 X 1054  kg

c3

4 G

c = 1.86 X 1028  m

(23.150)

where the conversion factor of space to time is the speed of light
according to Minkowski's tensor [5].  The equation for ℵ, the radius of
the universe is

ℵ= rU −1.97 X 1012 cos
2 t

3.10 X 1019  sec
 
 

 
   light years

ℵ= rU −1.86 X 1028 cos
2 t

3.10 X 1019  sec
 
 

 
  m

(23.151)

where rU  is the average size of the universe.
The universe has a finite minimum size equal to its gravitational

radius rg  (Eq. (23.36)), and a maximum radius given by Eq. (23.150).
Therefore, the universe has an average size which represents an offset of
an oscillatory cycle of expansion and contraction.  The average size of
the universe, rU , is determined by substitution of Eq. (23.147) into Eq.
(23.151).

3.12 X 1011
  light years = rU −1.97 X 1012

 cos
2 t

3.10 X 1019  sec
 
 

 
   light years

rU = 2.28 X 1012
  light years

2.96 X 1027  m = rU −1.86 X 1028
 cos

2 t

3.10 X 1019  sec
 
 

 
  m

rU = 2.16 X 1028
  m

(23.152)

Substitution of Eq. (23.152) into Eq. (23.151) gives the radius of the
universe as a function of time.
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(23.153)

The expansion/contraction rate, ℵ
•
, is given by taking the derivative with

respect to time of Eq. (23.153).
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The expansion/contraction acceleration, 
••
ℵ, is given by taking the

derivative with respect to time of Eq. (23.154).

ℵ
••

= Ho = 78.7  cos
2 t

3.01 X 105  Mpc

 
 
  

 
  

km

sec⋅ Mpc
(23.155)

Eq. (23.155) and Figure 23.4 are consistent with the experimental
observation that the rate of the expansion of the universe is
increasing [28-30].

The time harmonic radius of the universe is shown graphically in
Figure 23.3.  The time harmonic expansion/contraction rate of the
radius of the universe is shown graphically in Figure 22.4.
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Figure 23.3.  The radius of the universe as a function of time.

Figure 23.4.  The expansion/contraction rate of the universe as a
function of time.
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The Hubble constant defined by Eq. (23.126) is given by the ratio of the

expansion rate given in units of 
km

sec
 divided by the radius of the

expansion in Mpc (1 Megaparsec (Mpc) is 3.258 X 106 ) light years).  The
radius of expansion is equivalent to the radius of the light sphere with an
origin at the time point when the universe stopped contracting and
started to expand.  Thus, the radius of Eq. (23.126) is the time of
expansion t Mpc .  From Eq. (23.154), the Hubble constant is

H =
ℵ
•

t
=

3.77 X 106
 sin

2 t

3.01 X 105  Mpc

 
 
  

 
 

km

sec

t Mpc
(23.156)

For t = 1010  light years = 3.069 X 103 Mpc ,

H =

3.77 X 106
 sin

2 3.069 X 103 Mpc( )
3.01 X 105  Mpc

 

 
 

 

 
  km

sec

3.069 X 103  Mpc
= 78.6

km

sec⋅ Mpc
(23.157)

Thus, from Eqs. (23.156-23.157), the Hubble, H0 , constant is

H0 = 78.6 
km

sec⋅ Mpc
.  The experimental value is H0 = 80 ±17 

km

sec⋅ Mpc
 [21].  The

Hubble constant as a function of time is shown graphically in Figure
23.5.
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Figure 23.5.  The Hubble constant of the universe as a function of time.

The mass of the universe as a function of time, mU t( ), follows from
the initial mass of 2 X 1054

 kg (based on internal consistency with the size,
age, Hubble constant, temperature, density of matter, and power
spectrum of the universe given herein) and Eq. (23.153)

mU t( ) = 2 X 1054 cos
2 t

9.83 X 1011  yrs

 
 
  

 
 kg (23.158)

The volume of the universe as a function of time V t( )  follows from Eq.
(23.153)

V t( ) =
4

3
ℵ t( )3 =

4

3
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The density of the universe as a function of time U t( ) is given by the
ratio of the mass as a function of time given by Eq. (23.158) and the
volume as a function of time given by Eq. (23.159)
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mU t( )
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For t = 1010  light years = 3.069 X 103 Mpc , U =1.7 X 10−35  g / cm3 .  The density of
luminous matter of stars and gas of galaxies is about U = 2 X 10−31  g / cm3

[31-32].  The time harmonic density of the universe, U t( ), is shown
graphically in Figure 23.6.

Figure 23.6.  The density of the universe as a function of time.

The power of the universe as a function of time, PU t( ), follows from
Eq. (23.142) and Eq. (23.151).

PU t( ) = c5

4 G
cos

2 t
9.83 X 1011  yrs

 
 
  

 
 W

PU t( ) = 2.89 X 1051 cos
2 t

9.83 X 1011  yrs

 
 
  

 
 W

(23.161)

The time harmonic power of the universe, PU t( ), is shown graphically
in Figure 23.7.
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Figure 23.7.  The power of the universe as a function of time.

The temperature of the universe as a function of time can be
derived from the Stefan-Boltzmann law.  The Stefan-Boltzmann law
(Eq.(23.143)) equates the power radiated by an object per unit area, R ,
to the emissivity, e , times the Stefan-Boltzmann constant, , times the
fourth power of the temperature, T 4 .  The area of the universe as a
function of time, A t( ) , is approximately given by substitution of Eq.
(23.153) into Eq. (23.144).  (The universe is a four dimensional
hyperspace of constant positive curvature.  In the case that the radius of
the universe is equal to the gravitational radius rg , the area is given by
Eq. (23.144); otherwise, the area of the sphere corresponding to the
radius of the universe is less than that given by Eq. (23.144).  The proper
area is given by solving Eq. (23.38) for the coordinate radius as a
function of the proper radius followed by the substitution of the
coordinate radius into Eq. (23.144).)

A t( ) = 4 2.16 X 1028 −1.86 X 1028
 cos

2 t

3.10 X 1019  sec
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2

(23.162)

The power radiated by the universe per unit area as a function of time,
RU t( ), is given by the ratio of Eq. (23.161) and Eq. (23.162).
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RU t( ) =
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The temperature of the universe as a function of time, TU t( ),
follows from the Stefan-Boltzmann law (Eq.(23.143)) and Eq. (23.163)

TU t( ) = RU t( )
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where the emissivity, e , for a blackbody is one, and = 5.67 X 10−8
 Wm−2K −4 .

The universe is a four dimensional hyperspace of constant positive
curvature.  The coordinates are spherical, and the space can be
described as a series of spheres each of constant radius r  whose centers
coincide at the origin.  The existence of the mass mU  causes the area of
the spheres to be less than 4 r2  and causes the clock of each r-sphere to
run so that it is no longer observed from other r-spheres to be at the
same rate.  The Schwarzschild metric given by Eq. (23.38) is the general
form of the metric which allows for these effects.  Fang and Ruffini [5]
show that the time effect is equivalent to a gravitational redshift of a
photon.  The shifted wavelength due to the gravitational field of a mass
mU  is

∞( ) = r( ) 1 +
GmU

c2ℵ
 
 

 
 (23.165)

Wien's displacement law gives the relationship between temperature and
wavelength [26].

maxT = 2.898 X 10−3  m ⋅ K (23.166)
Thus, the temperature of the universe as a function of time, TU t( ), is
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The temperature of the universe as a function of time, TU t( ), during the
expansion phase is shown graphically in Figure 23.8.
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Figure 23.8.  The temperature of the universe as a function of time
during the expansion phase.

Furthermore, hydrogen transitions to electronic energy levels
below the "ground" state corresponding to fractional quantum numbers
exactly match the spectral lines of the extreme ultraviolet background of
interstellar space.  This assignment, given in the Spectral Data of
Hydrinos from the Dark Interstellar Medium and Spectral Data of
Hydrinos, Dihydrinos, and Hydrino Hydride Ions from the Sun Section,
resolves the paradox of the identity of dark matter and accounts for
many celestial observations such as: the observation that diffuse Hα
emission is ubiquitous throughout the Galaxy, and that widespread
sources of flux short of 912 Å  are required [33].  Also, the spin/nuclear
hyperfine structure transition energies of lower-energy hydrogen match
closely certain spectral lines obtained by COBE [34-35] for which no
other satisfactory assignment exists.  The far-infrared absolute
spectrometer (FIRAS) on the Cosmic Background Explorer has carried
out an all-sky survey in the far infrared region (1 to 90 cm−1 ).  Averaged
over many positions in the Galaxy, spectral features are observed which
correspond closely with the predicted hydrino hyperfine transition
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energies.  The lines obtained by COBE that match the hyperfine structure
transitions of lower-energy hydrogen as calculated in the Spin-Nuclear
and Orbital-Nuclear Coupling of Hydrinos Section are given in the
Spectral Data of Hydrinos from the Dark Interstellar Medium and
Spectral Data of Hydrinos, Dihydrinos, and Hydrino Hydride Ions from
the Sun Section.

Composition of the Universe
In the case that lower-energy hydrogen comprises the dark

matter, all matter is ordinary (baryonic) matter, and the mass of the
universe is sufficient for it to be closed [22-23].  Whereas, the standard
theory of big bang nucleosynthesis explains the observed abundance of
light elements (H, He, and Li) only if the present density of ordinary
(baryonic) matter is less than 10 % of the critical value [36-37].
According to Mills' theory, the abundance of the lighter elements, H,
He, and Li is consistent with neutron, proton, and electron production
during the collapsing phase and solar nucleosynthesis during the
expansion phase of the expansion/contraction cycle.  The abundance
of light elements for any r-sphere may be calculated using the power of
the universe as a function of time (Eq. (23.161)) and the solar
nucleosynthesis rates.  During the collapsing phase of the oscillatory
cycle, the electron neutrino causes neutron production from a photon.
Planck’s equation and Special and General Relativity define the mass of
the neutron in terms of the spacetime metric as given in the Quarks
Section.  The Planck equation energy, which is equal to the mass energy,
applies for the proper time of the neutron given by general relativity (Eq.
(23.38)) that is created with the transition of a photon to a neutron.  As
discussed previously in the Quantum Gravity of Fundamental Particles
Section, a photon gives rise to a particle and an antiparticle.  The event
must be spacelike or annihilation would occur.  The event must also
conserve energy, momentum, charge, and satisfy the condition that the
speed of light is a constant maximum.  Eqs. (23.14-23.17) give the
relationship whereby matter causes relativistic corrections to spacetime
that determines the curvature of spacetime and is the origin of gravity.
To satisfy the boundary conditions, particle production from a single
photon requires the production of an antimatter particle as well as a
particle.  The transition state from a photon to a particle and
antiparticle comprises two concentric orbitspheres called transition
state orbitspheres.  The gravitational effect of a spherical shell on an
object outside of the radius of the shell is equivalent to that of a point of
equal mass at the origin.  Thus, the proper time of the concentric
orbitsphere with radius +rn

*  (the radius is infinitesimally greater than that



396 © 2000 by BlackLight Power, Inc.  All rights reserved.

of the inner transition state orbitsphere with radius rn ) is given by the
Schwarzschild metric, Eq. (23.38).  The proper time applies to each
point on the orbitsphere.  Therefore, consider a general point in the xy-
plane having   r = DC  ; dr = 0 ; d = 0 ; sin2 =1.  Substitution of these
parameters into Eq. (23.38) gives

d = dt 1 −
2Gm0

c2r * −
v2

c2

 
 
  

 
 

1

2

(23.169)

with v2 = c2 , Eq. (23.169) becomes

  
= ti

2GM

c2r* = ti
2GM

c2Dc

(23.170)

The coordinate time is imaginary because particle/antiparticle
production is spacelike.  The left-hand side of Eq. (23.170) represents
the proper time of the particle/antiparticle as the photon orbitsphere
becomes matter.  The right-hand side of Eq. (23.170) represents the
correction to the laboratory coordinate metric for time corresponding
to the curvature of spacetime by the particle production event.

During the contraction phase, the electron neutrino causes
neutron production from a photon.  The event must be spacelike or
annihilation would occur.  The event must also conserve energy,
momentum, charge, and satisfy the condition that the speed of light is a
constant maximum.  Eqs. (23.14-23.17) give the relationship whereby
matter causes relativistic corrections to spacetime that determines the
curvature of spacetime and is the origin of gravity.  The electron
neutrino is a special type of photon as given in the Neutrino Section.
The photon and the neutrino have zero rest mass and travel at the speed
of light.  To satisfy the boundary conditions, particle production from an
electron neutrino and a photon requires the production of a single
neutral particle.  In this case, the transition state only comprises a single
transition state orbitsphere.  The left-hand side of Eq. (23.170)
represents the proper time of the neutron as the photon orbitsphere
becomes matter.  The right-hand side of Eq. (23.170) represents the
correction to the laboratory coordinate metric for time corresponding
to the relativistic correction of spacetime by the particle production.
Thus, during the collapsing phase of the oscillatory cycle, the
electron neutrino causes neutron production from a photon, and the
production of protons and electrons occurs by neutron beta decay.
Typically, antimatter and matter are created in the laboratory in equal
amounts; yet, celestial antimatter is not observed.  The reason is that
no electron antineutrinos exist at the initiation of spacetime collapse,
thus, antineutron production does not occur as a separate symmetrical
reaction, and particle production from a neutrino and a photon
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prohibits production of the antimatter twin.  From Eq. (30.6), the
neutron mass is

mddu  calculated = (3)(2 )
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1 −
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4
= 1.674 X 10−27

 kg (23.171)

The neutron production reaction and the nuclear reaction for the Beta
decay of a neutron are

+ e →1n
1n→1H + + e + 0.7835 MeV

(23.172)

where e  is the electron neutrino and e  is the electron antineutrino.  Eq.
(23.172) predicts an electron neutrino background which could account
for the atmospheric neutrino anomaly [38].  From Eq. (23.172), the
number of electrons exactly balances the number of protons.  Thus,
the universe is electrically neutral.

During the expansion phase, protons and electrons of lower-energy
hydrogen which comprises the dark matter annihilate to photons and
electron neutrinos as given in the New "Ground" State Section.  To
conserve spin (angular momentum) the reaction is

e+
1H

aH

n
 
 

 
 

→ + e (23.173)

where e  is the electron neutrino.  (A similar reaction to that of Eq.
(23.173) is the reaction of a muon neutrino rather than an electron
antineutrino with a hydrino to give a gamma photon and a muon
antineutrino.)  Disproportionation reactions to the lowest-energy states
of hydrogen followed by electron capture with gamma ray emission may
be a source of nonthermal -ray bursts from interstellar regions [39].

Alternately, the source may be due to conversion of matter to
photons of the Planck mass/energy which may also give rise to cosmic
rays.  When the gravitational potential energy density of a massive body
such as a blackhole equals that of a particle having the Planck mass as
given by Eqs. (23.22-23.32), the matter may transition to photons of the
Planck mass given by Eq. (23.31).  In the case of the Plank mass, the
gravitational potential energy (Eq, (23.30)) is equal to the Planck
equation, electric, and magnetic energies which equal mc2  (Eq. (23.32)),
and the coordinate time is equal to the proper time (Eqs. (23.33-23.34
and Eq. (23.43)).  However, the particle corresponding to the Planck
mass may not form since its gravitational velocity (Eq. (23.33)) is the
speed of light.  (The limiting speed of light eliminates the singularity
problem of Einstein's equation that arises as the radius of a blackhole
equals the Schwarzschild radius.  General relativity with the singularity
eliminated resolves the paradox of the infinite propagation velocity
required for the gravitational force in order to explain why the angular
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momentum of objects orbiting a gravitating body does not increase due
to the finite propagation delay of the gravitational force according to
special relativity [40]).  Thus, it remains a photon.  Even light from a
blackhole will escape when the decay rate of the trapped matter with the
concomitant spacetime expansion is greater than the effects of gravity
which oppose this expansion.  The annihilation of a blackhole may be
the source of -ray bursts.  Gamma-ray bursts are the most energetic
phenomenon known that can release an explosion of gamma rays
packing 100 times more energy than a supernova explosion [41].
Cosmic rays are the most energetic particles known, and their origin is
also a mystery [42].  In 1966, Cornell University's Kenneth Greisen
predicted that interaction with the ubiquitous photons of the cosmic
microwave background would result in a smooth power-law cosmic-ray
energy spectrum being sharply cutoff close to 5 X 1019  eV .  However, in
1998, Schwarzschild reported [43] that the Akeno Giant Air Shower
Array (AGASA) in Japan has collected data that show the cosmic-ray
energy spectrum is extending beyond the Greisen-Zatsepin-Kuzmin (GZK)
cutoff.  According to the GZK cutoff, the cosmic spectrum cannot extend
beyond 5 X 1019  eV , but AGASA, the world's largest air shower array, has
shown that the spectrum is extending beyond 1020  eV  without any clear
sign of cutoff.  Photons each of the Planck mass may be the source of
these inexplicably energetic cosmic rays.

Thus, the universe is oscillatory in matter, energy, and
spacetime without the existence of antimatter due to conservation
of spin of the electron neutrino and the relationship of particle
production to spacetime contraction.  During the expansion phase, the
arrow of time runs forward to lower mass and higher entropy states;
whereas, during collapse, the arrow of time runs backwards relative to
the case of the universe in a state of expansion.  Recent particle physics
experiments demonstrate that the decay of kaons and antikaons follows
a law that is not symmetric with respect to time reversal [30].  The data
reveals that there is a microscopic arrow of time, in addition to the
thermodynamic and cosmological arrows.

The universe evolves to higher mass and lower entropy states.
Thus, biological organisms such as humans which rely on the
spontaneity of chemical reactions with respect to the forward arrow of
time cannot exist in the contracting phase of the universe.  And,
compared to the period of the universe, the origins of life occurred at a
time very close to the beginning of the expansion of the universe when
the direction of the spontaneity of reactions changed to the direction of
increasing entropy and the rate of the increase in entropy of the
universe was a maximum.
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Expansion of the universe depends on the rate of energy release
which varies throughout the universe; thus, clusters of galaxies, huge
voids, and other large features which are observed [44-47] are caused
by the interaction between the rate of energy release with concomitant
spacetime expansion and gravitational attraction.  Hydrogen-type atoms
and molecules comprises most of the matter of the universe.  The
distinction between hydrogen and lower-energy hydrogen with respect
to the interaction with electromagnetic radiation and release of energy
via disproportionation reactions (Eqs. (5.36-5.63)) also has an influence
on the formation of large voids and walls of matter.  Lower-energy
atomic hydrogen atoms, hydrinos, each have the same mass and a
similar interaction as the neutron.  According to Paul Steinhardt and
David Spergel of Princeton University [48], these are the properties of
dark matter that are necessary in order for the theory of the structure
of galaxies to work out on all scales.  The observation that Galaxy
clusters arrange themselves as predicted for cold dark matter except
that the cores are less dense than expected is explained.  Hydrinos
further account for the observation that small halos of dark matter are
evaporated when they approach larger ones and that dark matter is
easily influenced by black holes, explaining how they grew so large.

Furthermore, the universe is oscillatory with a finite minimum
radius; thus, the gravitational force causes celestial structures to evolve
on a time scale that is greater than the period of oscillation.  Presently,
stars exist which are older than the elapsed time of the present
expansion as stellar evolution occurred during the contraction phase
[49-50].  The maximum energy release of the universe given by Eq.
(23.142) occurred at the beginning of the expansion phase, and the
power spectrum is a function of the r-sphere of the observer.

Power Spectrum of the Cosmos
The power spectrum of the cosmos, as measured by the Las

Campanas survey, generally follows the prediction of cold dark matter
on the scales of 200 million to 600 million light-years.  However, the
power increases dramatically on scales of 600 million to 900 million
light-years [51].  This discrepancy means that the universe is much more
structured on those scales than current theories can explain.
Furthermore, recent evidence reveals a fatal flaw in inflation theory and
supports structure at a much larger scale.  The cosmic microwave
background radiation was an average temperature of 2.7 ° kelvins, with
deviations of 30 or so microkelvins in different parts of the sky
representing slight variations in the density of matter.  The temperature
fluctuations of the cosmic microwave background radiation are not
Gaussian [27] which is an absolute requirement for inflation theory.  The
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universe is oscillatory in matter/energy and spacetime with a finite
minimum radius.  The minimum radius of the universe, 300 billion light
years [24], is larger than that provided by the current expansion,
approximately 10 billion light years [21].  The universe is a four
dimensional hyperspace of constant positive curvature.  The coordinates
are spherical, and the space can be described as a series of spheres each
of constant radius r  whose centers coincide at the origin.  The existence
of the mass mU  causes the area of the spheres to be less than 4 r2  and
causes the clock of each r-sphere to run so that it is no longer observed
from other r-spheres to be at the same rate.  The Schwarzschild metric
given by Eq. (23.38) is the general form of the metric which allows for
these effects.  Consider the present observable universe that has
undergone expansion for 10 billion years.  The radius of the universe as
a function of time from the coordinate r-sphere is of the same form as
Eq. (23.153).  The average size of the universe, rU , is given as the sum of
the gravitational radius, rg , and the observed radius, 10 billion light
years.

rU = rg +1010
  light years

rU = 3.12 X 1011
  light years +1010

  light years

rU = 3.22 X 1011
  light years

(23.174)

The frequency of Eq. (23.153) is one half the amplitude of spacetime
expansion from the conversion of the mass of universe into energy
according to Eq. (23.140).  Thus, keeping the same relationships, the
frequency of the current expansion function is the reciprocal of one half
the current age.  Substitution of the average size of the universe, the
frequency of expansion, and the amplitude of expansion, 10 billion light
years, into Eq. (23.153) gives the radius of the universe as a function
of time for the coordinate r-sphere.

ℵ= 3.22 X 1011 −1 X 1010
 cos

2 t
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  light years (23.175)

The Schwarzschild metric gives the relationship between the proper time
and the coordinate time (Eq. 23.38)).  The infinitesimal temporal
displacement, d 2 , is
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In the case that dr 2 = d 2 = d 2 = 0 , the relationship between the proper
time and the coordinate time is

d 2 = 1 −
2GmU

c2r
 
 

 
 dt2 (23.177)
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= t 1−
2GmU

c2r
(23.178)

= t 1−
rg

r
(23.179)

The maximum power radiated by the universe is given by Eqs. (23.142)
which occurs when the proper radius, the coordinate radius, and the
gravitational radius rg  are equal.  For the present universe, the
coordinate radius is given by Eq. (23.174).  The gravitational radius is
given by Eq. (23.147).  The maximum of the power spectrum of a
trigonometric function occurs at its frequency [52].  Thus, the
coordinate maximum power according to Eq. (23.175) occurs at
5 X 109  light years.  The maximum power corresponding to the proper time
is given by the substitution of the coordinate radius, the gravitational
radius rg , and the coordinate power maximum into Eq. (23.179).  The
power maximum in the proper frame occurs at

= 5 X 109  light years 1− 3.12 X 1011
  light years

3.22 X 1011
  light years

= 880 X 106  light years

(23.180)

The power maximum of the current observable universe is predicted to
occur on the scale of 880 X 106  light years .  There is excellent agreement
between the predicted value and the experimental value of between 600
million to 900 million light years [51].

The Differential Equation of the Radius of the Universe
The differential equation of the radius of the universe, ℵ, can

be derived as a conservative simple harmonic oscillator having a
restoring force, F , which is proportional to the radius.  The
proportionality constant, k , is given in terms of the potential energy, E ,
gained as the radius decreases from the maximum expansion to the
minimum contraction.

E

ℵ2 = k (23.181)

The universe oscillates between a minimum and maximum radius as
matter is created into energy and then energy is converted to matter.  At
the minimum radius, the gravitational velocity, vG , is given by Eq.
(23.33) and the gravitational radius rG, is given by Eq. (23.22) wherein
an electromagnetic wave of mass energy equivalent to the mass of the
universe travels in a circular orbit wherein the eccentricity is equal to
zero (Eq. (26.20)), and the escape velocity from the universe can never
be reached.  At this point in time, all of the energy of the universe is in
the form of matter, and the gravitational energy (Eq. (23.148)) is equal
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to mUc2 .  Thus, the proportionality constant of the restoring force with
respect to the radius is

F = −kℵ= −
mUc2

rG
2 ℵ= −

mUc2

GmU

c2

 
 

 
 

2 ℵ (23.182)

The differential equation of the radius of the universe, ℵ, follows from
Eq. (23.182) as given by Fowles [53].
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The solution of Eq. (23.183) which gives the radius of the universe as a
function of time follows from Fowles [53].
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The gravitation force causes the radius of Eq. (23.184) to be offset [53].
The force equations of general relativity which follow from Eq. (23.38)
give the offset radius, rU .  The minimum radius corresponds to the
gravitational radius rg  whereby the proper time is equal to the
coordinate time.  The offset radius, rU , is

rU = rg +
cmU

c3

4 G

(23.185)

The expansion/contraction rate, ℵ
•
, is given by taking the derivative with

respect to time of Eq. (23.184).
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According to special relativity no signal may travel faster than c , the
speed of light for any observer.  The maximum expansion rate for a 3-
sphere is 4 c  which is given in Eq. (23.186).  The expansion/contraction

acceleration, 
••
ℵ, is given by taking the derivative with respect to time of



© 2000 by BlackLight Power, Inc.  All rights reserved. 403

Eq. (23.186).
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The universe oscillates between the extremes of all matter and all
energy.  At the beginning of its expansion, the universe is all matter with
no electromagnetic radiation; thus, the universe is not observable for
earlier times.  The observer's light sphere determines the limits of
observation thereafter.  Furthermore, ancient stars and the large scale
structure of the cosmos comprising galactic superclusters and voids that
could not have formed within the elapsed time of expansion are visible
[44-47; 49-51].  Recently, a uniform cosmic infrared background has
been discovered which is consistent with the heating of dust with
reradiation over a much longer period then the elapsed time of
expansion [54].  The size of the universe may be detected by observing
the early curvature, the power spectrum, and the microwave
background temperature.  In the latter case, the power released as a
function of time over the entire universe is given by Eq. (23.161).  The
size of the universe as a function of time is given by Eq. (23.153).  The
microwave background temperature corresponds to the power density
over the entire universe which is uniform on the scale of the entire
universe.  Thus, the microwave background temperature as a function of
time for each observer within his light sphere is give by Eq. (23.168).

The Hubble constant given by the ratio of the expansion rate (Eq.

(23.186)) given in units of 
km

sec
 and the lapsed time of expansion in units

of Mpc (1 Megaparsec (Mpc) is 3.258 X 106 ) light years) is

H =
ℵ

•

t Mpc
=

4 c  X 10−3 sin
2 t

2 GmU

c3
 sec

 

 

 
 

 

 

 
 

 
km
sec

t Mpc
 (23.188)

The differential in the radius of the universe ∆ℵ due to its
acceleration is given by

∆ℵ= 1/2˙ ̇ ℵ t2 (23.189)
The expansion of the light sphere due to the acceleration of the
expansion of the cosmos given by Eq. (23.155) and Eq. (23.187) is
shown graphically in Figure 23.9.  The observed brightness of
supernovae as standard candles is inversely proportional to their
distance squared.  As shown in Figure 23.9, ∆ℵ increases by a factor of
about three as the time of expansion increases from the midpoint to a
time comparable to the elapsed time of expansion,
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t = 1010  light years = 3.069 X 103 Mpc .  As an approximation, this differential in
expanded radius corresponds to a decease in brightness of a supernovae
standard candle of about an order of magnitude of that expected where
the distance is taken as ∆ℵ.  This result is consistent with the
experimental observation [28-30].  Recently, the BOOMERANG telescope
[55] imaged the microwave background radiation covering about 2.5%
of the sky with an angular resolution of 35 times that of COBE [25].  The
image revealed hundreds of complex structures that were visible as tiny
fluctuations--typically only 100 millionths of a degree (0.0001 °C)--in
temperature of the Cosmic Microwave Background.  Structures of about
1° in size were observed that are consistent with a universe of nearly flat
geometry since the commencement of its expansion.  The data is
consistent with a large offset radius of the universe as given by Eq.
(23.147) with a fractional increase in size (Eq. (23.153)) since the
commencement of expansion about 10 billion years ago.

Figure 23.9.  The differential expansion of the light sphere due to the
acceleration of the expansion of the cosmos as a function of time.

The definitive form of the field equations of general relativity
follow from the Schwarzschild metric (Eq.(23.38)) and can be expressed
in terms of the contraction of spacetime by the special relativistic
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mass of a fundamental particle (Eq. (23.140)).  The masses and
charges of the fundamental particles are determined by the equations of
the transition state orbitsphere herein derived where the nonradiative
boundary condition and the constancy of the speed of light must hold
which requires relativistic corrections to spacetime.  Fundamental
particles can decay or interact to form an energy minimum.  Thus, each
stable particle arises from a photon directly or from a decaying particle
which arose from a photon.  The photon, and the corresponding
fundamental particle, possess   h  of angular momentum.  Nuclei form as
binding energy is released as the orbitspheres of participating nucleons
overlap.  Atoms form as the potential energy of the fields of electrons
and nuclei is released as the fields are partially annihilated.  Molecules
form as the energy stored in the fields of atoms is minimized.  Planets
and celestial bodies form as the gravitational potential energy is
minimized.  All of these energies correspond to forces, and the
equations of the forces are given in the Unification of Spacetime, the
Forces, Matter, and Energy Section.
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UNIFICATION OF SPACETIME, THE FORCES, MATTER, AND ENERGY

RELATIONSHIP OF SPACETIME AND THE FORCES
Spacetime has an intrinsic impedance of .  It provides a limiting

speed of c  for the propagation of any wave, including gravitational and
electromagnetic waves.  It further provides fields which match boundary
conditions.  Matter/energy acts on spacetime and spacetime acts on
matter/energy.  Thus, a spatial two-dimensional manifold of matter
results in a gravitational field in spacetime; a three-dimensional
spacetime manifold of current gives rise to a magnetic field in
spacetime; a spatial two-dimensional manifold of charge gives rise to an
electric field in spacetime.  Thus, General Relativity and Maxwell’s
Equations are valid on any scale.  Furthermore, the existence of matter
with a determined mass as a three-dimensional spacetime manifold that
is charged maximizes the volume of spacetime to the surface area of
matter.  This gives an energy minimum of the resulting gravitational,
electric, and magnetic fields.

Matter/energy are interchangeable and are, in essence, the same
entity with different boundary values imposed by spacetime where the
matter/energy has a reaction effect on spacetime.  The intricacy of the
action/reaction is evident in that all matter/energy obeys the four-
dimensional wave equation, and the magnetic, electric, photonic, and
gravitational fields can be derived as a boundary value problem of the
wave equation of spacetime where space provides the respective force
fields for the matter/energy.  That spacetime is four-dimensional is
evident because the fundamental forces of gravity and electric attraction
which are time dependent have a one-over-distance-squared
relationship.  This relationship is equivalent to the distance dependence
of the area of a spherically symmetric wavefront which carries the
forces.  The force at the wavefront is nonradial and has an inverse r-
dependence, traveling at the limiting speed of light provided by
spacetime in accordance with Special Relativity.

The action/reaction relationships of the third fundamental force,
the mechanical force, is given by Newton’s Laws.  They provide the
motion of matter including charged matter, which can give rise to
gravitational, magnetic, and photonic fields.  The action/reaction
provided by forces in one inertial frame is given in a different inertial
frame by the Lorentz Transformations of Special Relativity, which are
valid for Euclidean spacetime and are a consequence of the limiting
speed of light.  For example, the magnetic field in one inertial frame is
given as electric field in another inertial frame as consequence of their
relative motion.  The presence of matter causes the geometry of
spacetime to deviate from Euclidean which is manifest as a gravitational
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field.  The gravitational equation is derived for all scales from the
present orbitsphere model where spacetime is Riemannian.

The provision of the equivalence of inertial and gravitational mass
by the Mills theory of fundamental particles permits the correct
derivation of the General Theory.  And, the former provision of the two-
dimensional nature of matter permits the unification of atomic,
subatomic, and cosmological gravitation.  The unified theory of
gravitation is derived by first establishing a metric.

A space in which the curvature tensor has the following form:
R , = K ⋅(g g − g g ) (24.1)

is called a space of constant curvature; it is a four-dimensional
generalization of Friedmann-Lobachevsky space.  The constant K  is
called the constant of curvature.  The curvature of spacetime will be
shown to result from a discontinuity of matter having curvature
confined to two spatial dimensions.  This is the property of all matter as
an orbitsphere.  Consider an isolated orbitsphere and radial distances, r ,
from its center.  For r  less than rn  there is no mass; thus, spacetime is
flat or Euclidean.  The curvature tensor applies to all space of the inertial
frame considered; thus, for r  less than rn , K = 0 .  At r = rn  there exists a
discontinuity of mass of the orbitsphere.  This results in a discontinuity
of the curvature tensor for radial distances greater than or equal to rn .
The discontinuity requires relativistic corrections to spacetime itself.  It
requires radial length contraction and time dilation that results in the
curvature of spacetime.  The gravitational radius rg  of the orbitsphere
and infinitesimal temporal displacement in spacetime which is curved by
the presence of the orbitsphere are derived in the Gravity Section.

The Schwarzschild metric gives the relationship whereby matter
causes relativistic corrections to spacetime that determines the
curvature of spacetime and is the origin of gravity.  The separation of
proper time between two events x  and x + dx  given by the
Schwarzschild metric is

d 2 = 1 −
2Gm0

c2r
 
 

 
 dt2 −

1

c2 1 −
2Gm0

c2r
 
 

 
 

−1

dr2 + r2d 2 + r 2 sin2 d 2 

  
 

  (24.2)

Eq. (24.2) can be reduced to Newton's Law of Gravitation for 
rg

r* << 1,

where   r
* = Dc

F =
Gm1m2

r2 (24.3)

where G  is the Newtonian gravitational constant.  Eq. (24.2)
relativistically corrects Newton's gravitational theory.  In an analogous
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manner, Lorentz transformations correct Newton's Laws of Mechanics.

Maxwell’s Equations give the electromagnetic forces:

∇× E = oH
t

(24.4)

∇× H = J + oE
t

(24.5)

∇• oE = (24.6)
∇• oH = 0 (24.7)

Maxwell's Integral Laws in Free Space are:
Ampere's Law

H • ds
C
∫ = J • da

S
∫ +

d

dt 0E •da
S
∫ (24.8)

Faraday's Law

E • ds
C
∫ = −

d

dt 0H • da
S
∫ (24.9)

Power flow is governed by the Poynting power theorem:

∇• (E × H) = −
t

1

2 oH • H 
 

 
 

−
t

1

2 oE •E 
 

 
 

− J • E (24.10)

Newtonian mechanics gives mechanical forces for v << c :

F =
dp
dt

=
d(mv)

dt
= m

dv
dt

= ma (24.11)

T =
1

2
mv2 (24.12)

Special Relativity applies when v  approaches c :
E = mc2 (24.13)

m =
m0

1 −
v2

c2

(24.14)

l = lo 1 −
v2

c2 (24.15)

t =
t0

1−
v2

c2

(24.16)

where the subscript denotes the value in the moving frame.
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The following equations are boundary conditions:
2 (nr1) = 2 rn = n 1 = n (24.17)

where
1  is the allowed wavelength for n = 1

r1  is the allowed radius for n = 1
For pair production:

 n =
For hydrogen:

n = 1,2,3,4,...

n =
1

2
,
1

3
,
1

4
,...

  
vn =

h
mern

(24.18)

The weak and strong nuclear forces are discussed in the Weak
Nuclear Force: Beta Decay of the Neutron Section and the Strong Nuclear
Force Section.  These forces are electromagnetic in nature.  They arise as
a minimization of the stored field energies.  This also applies for the
case of the force of the chemical bond as described in the Nature of the
Chemical Bond Section.

RELATIONSHIP OF SPACETIME, MATTER, AND CHARGE
In addition to the force laws, the nature of the universe is

determined by the following experimentally observed parameters:
• Four dimensional spacetime;
• The fundamental constants which comprise the fine structure

constant;
• The Newtonian gravitational constant, G;
• The mass of the universe, and
• The spin of the electron neutrino.

General Relativity gives the relationship between the proper time
and the coordinate time of particle production.

  
= ti

2GM

c2r* = ti
2GM

c2Dc

(24.19)

The following boundary condition applies at the creation of matter from
energy:

2 rn = n n = (24.20)
The particle production energies given in the Gravity Section are the
mass energy, the Planck equation energy, electric potential energy,
magnetic energy, the gravitational potential energy, and the
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mass/spacetime metric energy9.

  

moc
2 = h * = V = Emag = Egrav = Espacetime

m0c
2 = h * = h2

m0D C
2

= −1 e2

4 0D C

= −1 0e
2h2

2 m0( )2 DC
3

= −1 0e
2c2

2h
Gm0

D C

hc
G

= h
1 sec

D Cc2

2Gm

(24.21)
When mo  is the Grand Unification Mass, mU ,

  

mUc2 = h * = V = Emag = GmU
2

D C
*

mU = m0 =
hc

G

(24.22)

The gravitational velocity, vG , is defined as

  
vG =

Gm0

DC

(24.23)

Substitution of the gravitational velocity, vG , given by Eq. (24.23) and the
Grand Unification Mass/Energy, mU , given by Eq. (24.22) into Eq. (24.21)
followed by division by the speed of light squared gives the particle mass
in terms of the Grand Unification Mass/Energy.

  
m0 = −1 0e

2c

2h

Gm0

DC

c
mu = −1 0e

2c

2h

Gm0

c2DC

mu = −1 0e
2c

2h

vG

c
mu =

vG

c
mu (24.24)

The relationships between the fundamental constants are given by
the equivalence of the particle production energies.  The magnitude of
the quantized angular momentum of the photon and fundamental
particles is Planck's constant bar,   h .  The wave equation gives the
relationship between the velocity, wavelength, and frequency of the
wave.

v =
2

(24.25)

When v = c  the radius at particle production is given by Eq. (20.22).

  
r =

h
moc

= D C (24.26)

Substitution of Eq. (24.25) and (24.26) into Eq. (24.21) with v = c  gives
the relationship between   h  and the fundamental charge squared.

9 Eq. (24.21) is the relationship between matter and energy with an implicit
physical basis for particle production.  The relationship derived by Einstein [2]
related the kinetic energy of an object to the increase in its mass times the speed of
light squared.  Thus, Eq. (24.21) is the complete form of the popular equation,
E = m0c

2 .
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h * = h
c = −1 e2

4 0DC

h
c

DC

= −1 e2

4 0DC

hc = −1 e2

4 0

(24.27)

Thus, charge is quantized as a consequence of the quantization of the
angular momentum of the photon.  The relationship between the speed
of light, c , and the permittivity of free space, 0 , and the permeability of
free space, 0 , is

c =
1

0 0

(24.28)

The fine structure constant given by Eqs. (1.146) and (20.9) is the
dimensionless factor that corresponds to the relativistic invariance of
charge.

  

=
1

4
0

0

e2

h
=

1

2

0

0

h
e2

= 0e
2c

2h
(24.29)

It is equivalent to one half the ratio of the radiation resistance of free

space, 0

0

, and the hall resistance, 
h

e2 .  The radiation resistance of free

space is equal to the ratio of the electric field and the magnetic field of
the photon (Eq. (4.10)).  The Hall resistance is given by Eq. (17.46).
Substitution of Eq. (24.28) into Eq. (24.27) gives the relationship for the
radiation resistance of free space, .

  
= 0

0

= 4
h
e2 (24.30)

It provides a limiting speed of c  for the propagation of any wave,
including gravitational and electromagnetic waves and expanding
spacetime.

PERIOD EQUIVALENCE
The universe undergoes time harmonic expansion and contraction

corresponding to matter/energy conversion.  The equation of the radius
of the universe, ℵ, which is derived in the Gravity Section is

ℵ=
2GmU

c2 +
cmU

c3

4 G

 

 

 
 

 

 

 
 

−
cmU

c3

4 G

 cos
2 t

2 GmU

c3
 sec

 

 

 
 

 

 

 
 
 m (24.31)
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The gravitational equation (Eq. (23.38)) with the equivalence of
the particle production energies (Eqs. (23.48a-23.48b)) permit the
equivalence of mass/energy ( E = mc2 ) and spacetime

(
c3

4 G
= 3.22 X 1034

 
kg

sec
).  Spacetime expands as mass is released as energy

which provides the basis of the atomic, thermodynamic, and
cosmological arrows of time.  Q , the mass/energy to
expansion/contraction quotient of spacetime is given by the ratio of Eq.
(27.3) and Eq. (27.1) wherein Eq. (23.43) gives the General Relativistic
factor which divides the electron mass and multiplies the electron
proper time to give the corresponding spacetime expansion.

  

Q =

me

2GM

c2Dc

2GM

c2Dc

=

h

1 sec c2

 
 

 
 

1
2 ch

2G
 
 

 
 

1
4

2
h

mec
2

2Gme

c2D c
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c3

4 G
= 3.22 X 1034

 
kg

sec
(24.32)

From Eq. (24.31), the period of the expansion/contraction cycle of the
radius of the universe, T , is

T =
2 GmU

c3  sec (24.33)

It is herein derived that the periods of spacetime
expansion/contraction and particle decay/production for the
universe are equal.  It follows from the Poynting Power Theorem (Eq.
(7.27)) with spherical radiation that the transition lifetimes are given by
the ratio of energy and the power of the transition [1].  Magnetic energy
is a Special Relativistic consequence of electric energy and kinetic
energy.  Thus, only transitions involving electric energy need be
considered.  The transition lifetime, , in the case of the electric
multipole moment given by Jackson [1] as

  
Qlm =

3

l + 3
e rn( )l

(24.34)

is [1]

  

= energy

power

=
h[ ]

2 c
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' 2

 

  
 

  

=
1

2

h

e2

 
 

 
 

0

0
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l + 3

3
 
 

 
 

2 1

krn( )2l

(24.35)

where in the exemplary case of an excited state of atomic hydrogen rn  is
the radius of the electron orbitsphere which is na0  (Eq. (27.17)).  From
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Eq. (24.35), the transition lifetime is proportional to the ratio of , the
radiation resistance of free space.

= 0

0

(24.36)

and, the Quantum Hall resistance, 
h

e2 .  The Quantum Hall resistance

given in the Quantum Hall Effect Section was derived using the Poynting
Power Theorem.  Also, from Eq. (24.35), the transition lifetime is
proportional to the fine structure constant, ,

  
=

1

4
o

o

e2

h
(24.37)

From Eq. (24.17) and Eq. (24.35), the lifetime an excited state of a
hydrogen atom is inversely proportional to the frequency of the
transition.  This is also the case for the universe which is a 3-sphere
universe.  (More explicitly, the universe is a Riemannian three
dimensional hyperspace plus time with a constant positive curvature).
During an electromagnetic transition, the total energy of the system
decays exponentially.  Applying Eqs. (2.45) and (2.46) to the case of
exponential decay,

h( t) = e
− 1

T
t

u t( ) (24.38)
However, Eq. (24.19) determines that the coordinate time is imaginary
because energy transitions are spacelike due to General Relativistic
effects.  For example, Eq. (27.2) gives the mass of the electron (a
fundamental particle) in accordance with Eq. (24.19).

  

2 DC

2Gme

D C

=
2 DC

vg

= i −1 sec (24.39)

where Newtonian gravitational velocity vg  is given by Eq. (23.35).
Replacement of the coordinate time, t , of Eq. (24.38) by the spacelike
time, it , gives.

h( t) = e
−i

1

T
t

= cos
2

T
t (24.40)

where the period is T .  The periods of spacetime expansion/contraction
and particle decay/production for the universe are equal due to the Eq.
(24.19) which determines the masses of fundamental particles, the
equivalence of inertial and gravitational mass, the phase matching
condition of mass to the speed of light and charge to the speed of light,
and that the coordinate time is imaginary because energy transitions are
spacelike due to general relativistic effects.  From Eq. (24.19)
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proper time
coordinate time

= gravitational wave condition
electromagnetic wave condition

= gravitational mass phase matching
charge/inertial mass phase matching

proper time

coordinate time
= i

2Gm
c2DC = i

vg

c
(24.41)

where Newtonian gravitational velocity vg  is given by Eq. (23.35).  Eq.
(24.24) gives the ratio of Eq. (24.41) in terms of the coordinate particle
mass and the Grand Unification Mass/Energy.

  

proper time

coordinate time
=

m0

mu

= −1 0e
2c

2h

Gm0

DC

c
= −1 0e

2c

2h

Gm0

c2DC

= −1 0e
2c

2h

vG

c
=

vG

c
(24.42)

As fundamental particles, atoms, molecules, and macroscopic
configurations of fundamental particles, atoms, and molecules release
energy, spacetime increases.  The superposition of expanding spacetime
arising at the atomic level over all scales of dimensions from the atomic
to the cosmological gives rise to the observed expanding universe.  The
wavefront of energy and spacetime from matter to energy conversion
travel at the speed of light.  Consider Eq. (23.43).  As given in the Gravity
Section, at the present time in the cycle of the universe, the world line of
the expanding spacetime and the released energy are approximately
coincident.  In terms of Eq. (23.38), the proper time and the coordinate
time are approximately equal.  The ratio of the gravitational radius, rg

given by Eq. (23.36), and the radius of the universe equal to one and the
gravitational escape velocity given by Eq. (23.35) is the speed of light.
And, Q , (Eq. (23.140)) is equal to the matter to energy conversion rate
of the time harmonic expansion/contraction cycle of the universe which
permits light energy (photons) to propagate (escape the gravitational
hole of the universe).

When the gravitational radius rg  is the radius of the universe, the
proper time is equal to the coordinate time (Eq. (23.43)), and the
gravitational escape velocity vg  of the universe is the speed of light.

Mass/energy must be conserved during the harmonic cycle of



© 2000 by BlackLight Power, Inc.  All rights reserved. 417

expansion and contraction.  The gravitational potential energy Egrav  of
the universe follows that given by Eq. (23.26)

Egrav =
GmU

2

r
(24.43)

In the case that the radius of the universe r  is the gravitational radius rG

given by Eq. (23.22), the gravitational potential energy is equal to mUc2

which follows that given by Eq. (23.27).  The gravitational velocity vG  is
given by Eq. (23.33) wherein an electromagnetic wave of mass/energy
equivalent to the mass of the universe travels in a circular orbit wherein
the eccentricity is equal to zero (Eq. (26.20)), and the escape velocity
from the universe can never be reached.  The wavelength of the
oscillation of the universe and the wavelength corresponding to the
gravitational radius rG must be equal.  Electromagnetic energy and
gravitational mass obey superposition, and both spacetime
expansion/contraction and electromagnetic energy corresponding to
particle decay/production travel at the speed of light and obey the wave
relationship given by Eq. (20.4).  The wavelength is given in terms of the
radius by Eq. (2.2).  Thus, the harmonic oscillation period, T , is

T =
2 rG

c
=

2 GmU

c3 =
2 G 2 X 1054  kg( )

c3 =  3.10 X 1019  sec = 9.83 X 1011  years

(24.44)
where the mass of the universe, mU .

WAVE EQUATION
The equation

1

c2 t

 
 

 
 

2

− grad( )2 = 0
(24.45)

acquires a general character; it is more general than Maxwell's equations
from which Maxwell originally derived it.  As a consequence of the
principle of the existence of a universal limiting velocity one can assert
the following: the differential equations describing any field that is
capable of transmitting signals must be of such a kind that the equation
of their characteristics is the same as the equation for the
characteristics of light waves.  In addition to the governing the
propagation of any form of energy, the wave equation governs
fundamental particles created from energy and vice versa, the associated
effects of mass on spacetime, and the evolution the universe itself.  The
equation that describes the electron given by Eq. (1.48) is the wave
equation, the relativistic correction of spacetime due to particle
production travels according to the wave equation as given in the
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Gravity Section, and the evolution of the universe is according to the
wave equation.  The speed of light is the conversion factor from time to
distance.  Thus, the equation of the radius of the universe, ℵ, (Eq.
(24.31)) may be written as

ℵ=
2GmU

c2 +
cmU

c3

4 G

 

 

 
 

 

 

 
 

−
cmU

c3

4 G

 cos
2

2 GmU

c3
 sec

t −
ℵ'

c
 
 

 
 

 

 

 
 

 

 

 
 
 m (24.46)

which is a solution to the wave equation.
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INERTIA

Charge, Mass, and Momentum
The photon possesses electric and magnetic fields, energy, and

momentum.  Charge arises from the fields, mass arises from the energy,
and momentum is conserved as the particle is created from a photon as
given in the Unification of Spacetime, the Forces, Matter, and Energy
Section.

Inertia
Inertia arises from the nature of matter being comprised of

fundamental particles which exist in nonradiative states  having a
balance between the electromagnetic forces and centrifugal forces and
the nature of space-time which provides for the relativistic invariance of
charge and a limiting velocity for the propagation of any field according
to special relativity.

All matter is comprised of charged fundamental particles such as
quarks and leptons.  Charge is relativistically invariant.  Consider a
particle which acquires a finite constant velocity.  As the magnitude of
the velocity increases, the electric field lines of the particle increase in
density relative to the stationary observer in a direction perpendicular
to the direction of motion of the particle.  The field lines of a stationary
proton, electron, and hydrogen atom are shown in Figure 1.7.  The field
lines of a moving point charge are shown in Figures 4.3A and 4.3B A.
The particle resists a change in motion (i.e. energy has to be transferred
to the particle in order for it to change its velocity).  The energy in an
electric field Eele  is given by the integral of the electric field E  squared
over all space (Eq. (1.175)).

Eele = −
1

2 o E2dv
∞

r1

∫ (25.1)

where the space is relativistically contracted (Eq. (24.15)) in the
direction of constant velocity relative to the stationary observer.
Newton's first law can be understood in terms of the relative invariance
of charge which is manifest as the inertia of a particle.  The mass density
and charge density functions of fundamental particles are
interchangeable by interchanging the fundamental charge and the
relativistic mass of the particle.  The mass/charge density functions are
in force balance with the central field which binds particles in atoms and
molecules.  Since field lines end on charge, charge and mass redistribute
in the moving frame relative to the stationary frame; thus, an inertial
force is required to cause a velocity with a concomitant redistribution of
the field lines and mass/charge density functions of the particles
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comprising matter which is made to acquire a finite velocity.  The force
is given by the time derivative of the momentum.  Consider the case of
an electron.  The velocity for every point on the orbitsphere is given by
Eq. (1.47).

  
vn =

h
mern

(25.2)

The momentum is the mass times Eq. (25.2).  Newton's second law gives
the force as the time derivative of the momentum.  The time derivative
of the momentum is

  

d

dt
mvn =

dp

dt
=

d

dt
me

h
mern

=
h
r

n

2

dr

dt
=

k

r
n

2
(25.3)

where p  is the momentum and k  is a constant since the final velocity is
a constant.  The inertial force on a fundamental particle to give it a
constant velocity is of the same form as the inverse squared central
force of a charge.  Thus, Newton's second law can be understood in
terms of the relative invariance of charge which requires an inertial
force to move of a particle.  The nature of spacetime which is described
by special relativity provides a limiting velocity for the propagation of
any field including light.  Consequently, spacetime provides that the
limiting velocity for the propagation of any matter is the speed of light
since its is comprised of charged matter wherein charge is relativistically
invariant.  The corresponding relationship of relative mass to the
velocity of a particle is given by Eq. (24.14).  The inertial mass is
increased as a function of relative velocity according to special
relativity.  As demonstrated in the Gravity Section the gravitational mass
and the inertial mass of fundamental particles are equivalent.  Thus,
Newton's second law and Newton's Law of Gravitation may be
understood in terms of the nature of spacetime in relationship to charge
and the limiting speed for the propagation of fields where the increase
of mass energy of a moving particle is equivalent to that given by Eq.
(25.1).
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POSSIBILITY OF A NEGATIVE ELECTRON GRAVITATIONAL MASS

GENERAL CONSIDERATIONS

The provision of the equivalence of inertial and gravitational mass
by the Mills theory of fundamental particles wherein spacetime is
Riemannian due to its relativistic correction with particle production
permits the correct derivation of the General Theory.  In the case of
ordinary matter (an example of an extraordinary state of matter called a
hyperbolic electron is given infra), the nature of chemical bonding is
electric and magnetic, and the angular momentum of each bound
electron is always   h  independent of material such as wood or metal.  The
angular momentum with a central field is given by Eq. (1.57).  In this
case, each infinitesimal point of the orbitsphere of mass mi  is the inertial
mass according to the inertial angular momentum.  It also is the
gravitational mass according to the gravitational angular momentum.
The inertial and gravitational mass of electrons and nucleons in ordinary
matter are equivalent.

The provision of the two-dimensional nature of matter permits the
unification of atomic, subatomic, and cosmological gravitation.  The
unified theory of gravitation is derived by first establishing a metric.  A
space in which the curvature tensor has the following form:

R , = K ⋅(g g − g g ) (26.1)
is called a space of constant curvature; it is a four-dimensional
generalization of Friedmann-Lobachevsky space.  The constant K  is
called the constant of curvature.  The curvature of spacetime results
from a discontinuity of matter having curvature confined to two spatial
dimensions.  This is the property of all matter as an orbitsphere.
Consider an isolated orbitsphere and radial distances, r , from its center.
For r  less than rn  there is no mass; thus, spacetime is flat or Euclidean.
The curvature tensor applies to all space of the inertial frame
considered; thus, for r  less than rn , K = 0 .  At r = rn  there exists a
discontinuity of mass of the orbitsphere.  This results in a discontinuity
of the curvature tensor for radial distances greater than or equal to rn .
The discontinuity requires relativistic corrections to spacetime itself.  It
requires radial length contraction and time dilation that results in the
curvature of spacetime.  The gravitational radius of the orbitsphere and
infinitesimal temporal displacement in spacetime which is curved by the
presence of the orbitsphere are derived in the Gravity Section.

The Schwarzschild metric gives the relationship whereby matter
causes relativistic corrections to spacetime that determines the
curvature of spacetime and is the origin of gravity.  The correction is
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based on the boundary conditions that no signal can travel faster that
the speed of light including the gravitational field that propagates
following particle production from a photon wherein the particle has a
finite gravitational velocity given by Newton's Law of Gravitation.  The
separation of proper time between two events x  and x + dx  given by
Eq. (23.38), the Schwarzschild metric [1-2], is

d 2 = 1 −
2Gm0

c2r
 
 

 
 dt2 −

1

c2 1 −
2Gm0

c2r
 
 

 
 

−1

dr2 + r2d 2 + r 2 sin2 d 2 

  
 

  (26.2)

Eq. (26.2) can be reduced to Newton's Law of Gravitation for rg , the

gravitational radius of the particle, much less than r* , the radius of the

particle at production (
rg

r* << 1), where the radius of the particle is its

Compton wavelength bar (  r
* = Dc ).

F =
Gm1m2

r2 (26.3)

where G  is the Newtonian gravitational constant.  Eq. (26.2)
relativistically corrects Newton's gravitational theory.  In an analogous
manner, Lorentz transformations correct Newton's laws of mechanics.

The effects of gravity preclude the existence of inertial frames in a
large region, and only local inertial frames, between which relationships
are determined by gravity are possible.  In short, the effects of gravity
are only in the determination of the local inertial frames.  The frames
depend on gravity, and the frames describe the spacetime background
of the motion of matter.  Therefore, differing from other kinds of
forces, gravity which influences the motion of matter by determining the
properties of spacetime is itself described by the metric of spacetime.  It
was demonstrated in the Gravity Section that gravity arises from the two
spatial dimensional mass density functions of the fundamental particles.

It is demonstrated in the One Electron Atom Section that a bound
electron is a two-dimensional spherical shell— an orbitsphere.  On the

atomic scale, the curvature, K , is given by 
1

rn
2 , where rn  is the radius of

the radial delta function of the orbitsphere.  The velocity of the electron
is a constant on this two dimensional sphere.  It is this local, positive
curvature of the electron that causes gravity.  It is worth noting that all
ordinary matter, comprised of leptons and quarks, has positive
curvature.  Euclidean plane geometry asserts that (in a plane) the sum of
the angles of a triangle equals 180° .  In fact, this is the definition of a flat
surface.  For a triangle on an orbitsphere the sum of the angles is greater
than 180°, and the orbitsphere has positive curvature.  For some
surfaces the sum of the angles of a triangle is less than 180° ; these are
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said to have negative curvature.

sum of angles
of a triangle type of surface

__________________________________________________________________

> 180° positive curvature

= 180° flat

< 180° negative curvature

The measure of Gaussian curvature, K , at a point on a two
dimensional surface is

K =
1

r1r2

(26.4)

the inverse product of the radius of the maximum and minimum circles,
r1  and r2 , which fit the surface at the point, and the radii are normal to
the surface at the point.  By a theorem of Euler, these two circles lie in
orthogonal planes.  For a sphere, the radii of the two circles of curvature
are the same at every point and equivalent to the radius of a great circle
of the sphere.  Thus, the sphere is a surface of constant curvature;

K =
1

r 2 (26.5)

at every point.  In case of positive curvature of which the sphere is an
example, the circles fall on the same side of the surface, but when the
circles are on opposite sides, the curve has negative curvature.  A
saddle, a cantenoid, and a pseudosphere are negatively curved.  The
general equation of a saddle is

z =
x2

a2 −
y2

b2 (26.6)

where a  and b  are constants.  The curvature of the surface of Eq. (26.6)
is

K =
−1

4a2b2

x2

a4 +
y2

b4 +
1

4

 
  

 
  

−2

(26.7)

A saddle is shown schematically in Figure 26.1.
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Figure 26.1.  A saddle.

A pseudosphere is constructed by revolving the tractrix about its
asymptote.  For the tractrix, the length of any tangent measured from
the point of tangency to the x-axis is equal to the height R  of the curve
from its asymptote-in this case the x-axis.  The pseudosphere is a
surface of constant negative curvature.  The curvature, K

K =
−1

r1r2

=
−1

R2 (26.8)

given by the product of the two principal curvatures on opposite sides
of the surface is equal to the inverse of R  squared at every point where
R  is the equitangent.  R  is also known as the radius of the
pseudosphere.  A pseudosphere is shown schematically in Figure 26.2.
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Figure 26.2.  A pseudosphere.

In the case of a sphere, surfaces of constant potential are
concentric spherical shells.  The general law of potential for surfaces of
constant curvature is

V =
1

4 o

1

r1r2

=
1

4 o R
(26.9)

In the case of a pseudosphere the radii r1  and r2 , the two principal
curvatures, represent the distances measured along the normal from the
negative potential surface to the two sheets of its evolute, envelop of
normals (cantenoid and x-axis).  The force is given as the gradient of the

potential which is proportional to 
1

r 2  in the case of a sphere.

All matter is comprised of fundamental particles, and all
fundamental particles exists as mass confined to two spatial dimensions.
The particle's velocity surface is positively curved in the case of an
orbitsphere, or the velocity surface is negatively curved in the case of an
electron as a hyperboloid (hereafter called a hyperbolic electron given
in the Hyperbolic Electrons Section).  The effect of this "local" curvature
on the non-local spacetime is to cause it to be Riemannian, in the case of
an orbitsphere, or hyperbolic, in the case of a hyperbolic electron, as
opposed to Euclidean which is manifest as a gravitational field or an
antigravitational field, respectively.  Thus, the spacetime is curved with
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constant spherical curvature in the case of an orbitsphere, or spacetime
is curved with hyperbolic curvature in the case of a hyperbolic electron.

The relativistic correction for spacetime dilation and contraction
due to the production of a particle with positive curvature is given by Eq.
(23.17)

f r( ) = 1 −
vg

c

 
 

 
 

2 

 
  

 
 (26.10)

The derivation of the relativistic correction factor of spacetime was
based on the constant maximum velocity of light and a finite positive
Newtonian gravitational velocity vg  of the particle given by

  
vg =

2Gm0

r
=

2Gm0

DC

(26.11)

Consider a Newtonian gravitational radius, rg , of each orbitsphere of the
particle production event, each of mass m

rg =
2Gm

c2 (26.12)

where G  is the Newtonian gravitational constant.  Substitution of Eq.
(26.11) or Eq. (26.12) into the Schwarzschild metric Eq. (26.2), gives
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vg
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and

d 2 = 1 −
rg
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 dt 2 −
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c2 1 −
rg
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dr2 + r 2d 2 + r 2 sin2 d 2
 

  
 

  (26.14)

respectively.  The solutions for the Schwarzschild metric exist wherein
the relativistic correction to the gravitational velocity vg  and the
gravitational radius rg  are of the opposite sign (i.e. negative).  In these
cases the Schwarzschild metric Eq. (26.2), is

d 2 = 1 +
vg
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and

d 2 = 1 +
rg
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 dt 2 −
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c2 1 +
rg
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dr2 + r2d 2 + r 2 sin2 d 2
 

  
 

  (26.16)

The metric given by Eqs. (26.13-26.14) corresponds to positive
curvature.  The metric given by Eqs. (26.15-26.16) corresponds to
negative curvature.  The negative solution arises naturally as a match to
the boundary condition of matter with a velocity function having
negative curvature.  Consider the case of pair production given in the
Gravity Section.  The photon equation given in the Equation of the
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Photon Section is equivalent to the electron and positron functions given
by in the One Electron Atom Section.  The velocity of any point on the
positively curved electron orbitsphere is constant which correspond to
the trigonometric function given in Eqs. (1.68-1.69).  At particle
production, the relativistic corrections to spacetime due to the constant
gravitational velocity vg  are given by Eqs. (26.13-26.14).  In the case of
negative curvature, the electron velocity as a function of position is not
constant.  It may be described by a harmonic variation which
corresponds to an imaginary velocity.  The trigonometric function of the
positively curved electron orbitsphere given in Eqs. (1.68-1.69) becomes
a hyperbolic function (e.g. cosh ) in the case of a negatively curved
electron.  Substitution of an imaginary velocity with respect to a
gravitating body into Eq. (26.13) givens Eq. (26.15).  Substitution a
negative radius of curvature with respect to a gravitating body into Eq.
(26.14) gives Eq. (26.16).  Thus, antigravity can be created by forcing
matter into negative curvature of the velocity surface.  A fundamental
particle with negative curvature of the velocity surface would experience
a central but repulsive force with a gravitating body comprised of
matter of positive curvature of the velocity surface.

POSITIVE, ZERO, AND NEGATIVE GRAVITATIONAL MASS
In the case of Einstein's gravity equation (Eq. (23.40)), the

Einstein’s Tensor G , is equal to the stress-energy-momentum tensor T .
The only possibility is for the gravitational mass to be equivalent to the
inertial mass.  A particle of zero or negative gravitational mass is not
possible.  However, it is shown in the Gravity Section that the correct
basis of gravitation is not according to Einstein's equation (Eq. (23.40));
instead the origin of gravity is the relativistic correction of spacetime
itself which is analogous to the special relativistic corrections of inertial
parameters-- increase in mass, dilation in time, and contraction in length
in the direction of constant relative motion of separate inertial frames.
On this basis, the observed acceleration of the cosmos is predict as given
in the Cosmology Section.

The Schwarzschild metric gives the relationship whereby matter
causes relativistic corrections to spacetime that determines the
curvature of spacetime and is the origin of gravity.  Matter arises during
particle production from a photon.  According to Newton's Law of
Gravitation, the production of a particle of finite mass gives rise to a
gravitational velocity of the particle.  The gravitational velocity
determines the energy and the corresponding eccentricity and trajectory
of the gravitational orbit of the particle.  The eccentricity e  given by
Newton's differential equations of motion in the case of the central field
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(Eq. (23.49-23.50)) permits the classification of the orbits according to
the total energy E  as follows [3]:

E < 0, e <1 ellipse

E < 0, e = 0 circle (special case of ellipse)

E = 0, e = 1 parabolic orbit

E > 0, e >1 hyperbolic orbit
(26.17)

Since E = T + V  and is constant, the closed orbits are those for which
T <|V| , and the open orbits are those for which T ≥|V| .  It can be shown
that the time average of the kinetic energy, < T > , for elliptic motion in
an inverse square field is 1/ 2  that of the time average of the potential
energy, < V > .  < T >= 1/ 2 < V > .

In the case that a particle of inertial mass m  is observed to have a
speed v0 , a distance from a massive object r0 , and a direction of motion
makes that an angle  with the radius vector from the object (including
a particle) of mass M , the total energy is given by

E =
1

2
mv2 −

GMm

r
=

1

2
mv0

2 −
GMm

r0

= constant (26.18)

The orbit will be elliptic, parabolic, or hyperbolic, according to whether
E  is negative, zero, or positive.  Accordingly, if v

0

2  is less than, equal to,

or greater than 
2GM

r0

, the orbit will be an ellipse, a parabola, or a

hyperbola, respectively.  Since h , the angular momentum per unit mass,
is

h = L / m = r × v = r0v0 sin (26.19)
The eccentricity e , from Eq. (23.63) may be written as

e = [1+ v0
2 −

2GM

r0

 
 
  

 
 r0

2v0
2 sin2

G2 M2 ]1 / 2 (26.20)

As shown in the Gravity Section (Eq. (23.35)), the production of a
particle requires that the velocity of each of the point masses of the
particle is equivalent to the Newtonian gravitational escape velocity vg  of
the superposition of the point masses of the antiparticle.

  
vg =

2Gm

r
=

2Gm0

DC

(26.21)

From Eq. (26.20) and Eq. (26.17), the eccentricity is one and the particle
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production trajectory is a parabola relative to the center of mass of the
antiparticle.  The right-hand side of Eq. (23.43) represents the
correction to the laboratory coordinate metric for time corresponding
to the relativistic correction of spacetime by the particle production
event.  Riemannian space is conservative.  Only changes in the metric of
spacetime during particle production must be considered.  The changes
must be conservative.  For example, pair production occurs in the
presence of a heavy body.  A nucleus which existed before the
production event only serves to conserve momentum but is not a factor
in determining the change in the properties of spacetime as a
consequence of the pair production event.  The effect of this and other
external gravitating bodies are equal on the photon and resulting
particle and antiparticle and do not effect the boundary conditions for
particle production.  For particle production to occur, the particle must
possess the escape velocity relative to the antiparticle where Eqs.
(23.34), (23.48), and (23.140) apply.  In other cases not involving
particle production such as a special electron scattering event wherein
hyperbolic electron production occurs as given infra, the presence of an
external gravitating body must be considered.  The curvature of
spacetime due to the presence of a gravitating body and the constant
maximum velocity of the speed of light comprise boundary conditions
for hyperbolic electron production from a free electron.

With particle production, the form of the outgoing gravitational
field front traveling at the speed of light (Eq. (23.10)) is

f t −
r

c
 
 

 
 (26.22)

At production, the particle must have a finite velocity called the
gravitational velocity according to Newton's Law of Gravitation.  In order
that the velocity does not exceed c  in any frame including that of the
particle having a finite gravitational velocity, the laboratory frame of an
incident photon that gives rise to the particle, and that of a gravitational
field propagating outward at the speed of light, spacetime must undergo
time dilation and length contraction due to the production event.
During particle production the speed of light as a constant maximum as
well as phase matching and continuity conditions require the following
form of the squared displacements due to constant motion along two
orthogonal axes in polar coordinates:

c( )2 + vgt( )2
= ct( )2 (26.23)

c( )2 = ct( )2 − vgt( )2
(26.24)
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Thus,

f r( ) = 1 −
vg

c
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 (26.26)

(The derivation and result of spacetime time dilation is analogous to the
derivation and result of special relativistic time dilation given by Eqs.
(22.11-22.15).)  Consider a gravitational radius, rg , of each orbitsphere
of the particle production event, each of mass m

rg =
2Gm

c2 (26.27)

where G  is the Newtonian gravitational constant.  Substitution of Eq.
(26.11) or Eq. (26.12) into the Schwarzschild metric Eq. (26.2), gives
the general form of the metric due to the relativistic effect on spacetime
due to mass m0 .
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and
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respectively.  Masses and their effects on spacetime superimpose; thus,
the metric corresponding to the Earth is given by substitution of the
mass of the Earth M  for m  in Eqs. (26.13-26.14).  The corresponding
Schwarzschild metric Eq. (26.2) is
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Gravitational and electromagnetic forces are both inverse squared
central forces.  The inertial mass corresponds to the inertial angular
momentum and the gravitational mass corresponds to the gravitational
angular momentum.  In the case that an electron is bound in by
electromagnetic forces in a nonradiative orbit, the following condition
from the particle production relationships given by Eq. (24.41) hold

  

proper time
coordinate time

= gravitational wave condition
electromagnetic wave condition

= gravitational mass phase matching
charge/inertial mass phase matching

proper time

coordinate time
= i

2Gm
c2DC = i

vg

c
(26.31)

The gravitational and inertial angular momentum correspond to the
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same mass; thus, the inertial and gravitational masses are identically
equal for all matter in a stable bound state.

Consider the case that the radius in Eq. (26.30) goes to infinity.
From Eq. (26.20) and Eq. (26.17) in the case that r0  goes to infinity, the
eccentricity is always greater than or equal to one and approaches
infinity, and the trajectory is a parabola or a hyperbola.  The
gravitational velocity (Eq. (26.21)) where m = M  goes to zero.  This
condition must hold from all r0 ; thus, the free electron is not effected by
the gravitational field of a massive object, but has inertial mass
determined by the conservation of the angular momentum of   h  as shown
by Eqs. (3.14-3.15).  From the Electron in Free Space Section, the free
electron has a velocity distribution given by
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The velocity function is a paraboloid in a two dimensional plane.  The
corresponding gravity field front corresponds to a radius at infinity in
Eq. (26.22).  As a consequence, an ionized or free electron has a
gravitational mass that is zero; whereas, the inertial mass is constant
(e.g. equivalent to its mass energy given by Eq. (24.13)).  Minkowski
space applies to the free electron.

In the Electron in Free Space Section, a free electron is shown to be
a two-dimensional plane wave—a flat surface.  Because the gravitational
mass depends on the positive curvature of a particle, a free electron has
inertial mass but not gravitational mass.  The experimental mass of the
free electron measured by Witteborn [4] using a free fall technique is
less than 0.09 me , where me  is the inertial mass of the free electron
9.109534 X 10−31  kg( ).  Thus, a free electron is not gravitationally

attracted to ordinary matter, and the gravitational and inertial
masses are not equivalent.  Furthermore, it is possible to give the
electron velocity function negative curvature and, therefore, cause
antigravity.

As is the case of special relativity, the velocity of a particle in the
presence of a gravitating body is relative.  In the case that the relative
gravitational velocity is imaginary, the eccentricity is always greater than
one, and the trajectory is a hyperbola.  This case corresponds to a
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hyperbolic electron wherein gravitational mass is effectively negative
and the inertial mass is constant (e.g. equivalent to its mass energy given
by Eq. (24.13)).  The formation of a hyperbolic electron occurs over the
time that the plane wave free electron scatters from the neutral atom.
Huygens' principle, Newton's law of Gravitation, and the constant speed
of light in all inertial frames provide the boundary conditions to
determine the metric corresponding to the hyperbolic electron.  From
Eq. (26.71), the velocity v( , ,z,t) on a two dimensional sphere in
spherical coordinates is

  
v(r, , ,t) =

h
mer0 sin

r − r0( ) i 

  
 

  (26.33)

With hyperbolic electron production, the form of the outgoing
gravitational field front traveling at the speed of light (Eq. (23.10)) is

f t −
r

c
 
 

 
 (26.34)

During hyperbolic electron production the speed of light as a constant
maximum as well as phase matching and continuity conditions require
the following form of the squared displacements due to constant motion
along two orthogonal axes in polar coordinates:

c( )2 + vgt( )2
= ct( )2 (26.35)

According to Eq. (3.11), the velocity of the electron on the two
dimension sphere approaches the speed of light at the angular extremes
( = 0  and = ), and the velocity is harmonic as a function of theta.  The
speed of any signal can not exceed the speed of light.  Therefore, the
outgoing two dimensional spherical gravitational field front traveling at
the speed of light and the velocity of the electron at the angular
extremes require that the relative gravitational velocity must be radially

outward.  The relative gravitational velocity squared of the term vgt( )2
 of

Eq. (26.35) must be negative.  In this case, the relative gravitational
velocity may be considered imaginary which is consistent with the
velocity as a harmonic function of theta.  The energy of the orbit of the
hyperbolic electron must always be greater than zero which corresponds
to a hyperbolic trajectory and an eccentricity greater than one (Eq.
(26.17) and Eq. (26.20)).  From Eq. (26.20) and Eq. (26.21) with the
requirements that the relative gravitational velocity must be imaginary
and the energy of the orbit must always be positive, the relative
gravitational velocity for a hyperbolic electron produced in the presence
of the gravitational field of the Earth is

vg = i
2GM

r
(26.36)

where M  is the mass of the Earth.  Substitution of Eq. (26.36) into Eq.
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(26.35) gives

c( )2 = ct( )2 + vgt( )2
(26.37)
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 (26.38)

Thus,

f r( ) = 1 +
vg

c

 
 

 
 

2 

 
  

 
 (26.39)

Consider a gravitational radius, rg , of a massive object of mass M

relative to a hyperbolic electron at the production event that is negative
to match the boundary condition of a negatively curved velocity surface

rg = −
2GM

c2 (26.40)

where G  is the Newtonian gravitational constant.  Substitution of Eq.
(26.36) or Eq. (26.40) into the Schwarzschild metric Eq. (26.2), gives
the general form of the metric due to the relativistic effect on spacetime
due to a massive object of mass M  relative to the hyperbolic electron.
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and

d 2 = 1 +
rg

r
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c2 1 +
rg

r

 
 

 
 

−1

dr2 + r2d 2 + r 2 sin2 d 2
 

  
 

  (26.42)

respectively.

ANTIGRAVITY DEVICE
It is possible to give the velocity function of electrons negative

curvature by elastically scattering electrons of an electron beam from
atoms such that electrons with negatively curved velocity surfaces
(hyperbolic electrons) emerge.  The emerging beam of electrons with
negatively curved velocity surfaces experience an antigravitational force
(on the Earth), and the beam will tend to move upward (away from the
Earth).  To use this invention for propulsion or levitation, the
antigravitational force of the electron beam must be transferred to a
negatively charged plate.  The Coulombic repulsion between the beam of
electrons and the negatively charged plate will cause the plate (and
anything connected to the plate) to lift.  Figure 26.3 gives a schematic of
an antigravity levitation device.



© 2000 by BlackLight Power, Inc.  All rights reserved. 433

Figure 26.3.  An antigravity device.

(a)  a beam of electrons is generated and directed to the neutral atomic beam

(b)  scattering of the electrons of the electron beam by the neutral atom beam
gives the electrons negative curvature of their velocity surfaces, and the
electrons experience an antigravitational force upward (away from the
earth)

(c)  the electrons, which would normally bend down toward the positive
plate but do not because of the antigravitational force, repel the
negative plate and attract the positive plate, and transfer the antigravity
force to the object to be lifted or propelled

(d)  the electrons are collected or recirculated back to the electron beam

HYPERBOLIC ELECTRONS
A method and means to produce an antigravitational force for

propulsion and/or levitation comprises a source of fundamental
particles including electrons and a source of neutral atoms.  The source
of electrons produces a free electron beam, and the source of neutral
atoms produces a free atom beam.  The two beams intersect such that
the neutral atoms cause elastic incompressible scattering of the
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electrons of the electron beam to form hyperbolic electrons.  In a
preferred embodiment, the de Broglie wavelength of each electron is
given by

=
h

mevz

= 2 (26.43)

where o  is the radius of the free electron in the xy-plane, the plane
perpendicular to its direction of propagation.  The velocity of each
electron follows from Eq. (26.43)

  
vz =

h

me

=
h

me2
=

h
me

(26.44)

The elastic electron scattering in the far field is given by the Fourier
Transform of the aperture function as described in Electron Scattering
by Helium Section.  The convolution of a uniform plane wave with on
orbitsphere of radius zo  is given by Eq. (8.43) and Eq. (8.44).

The aperture distribution function, a( , ,z) , for the scattering of an
incident plane wave by the He atom is given by the convolution of the
plane wave function with the two electron orbitsphere Dirac delta

function of radius = 0.567a  and charge/mass density of 
2

4 (0.567a )2 .  For

radial units in terms of ao

a( , ,z) = (z) ⊗
2

4 (0.567a )2 [ (r − 0.567a )] (26.45)

where a( , ,z)  is given in cylindrical coordinates, π(z), the xy-plane
wave is given in Cartesian coordinates with the propagation direction
along the z-axis, and the He atom orbitsphere function,

2

4 (0.567a )2 [ (r − 0.567a )], is given in spherical coordinates.

a( , ,z) =
2

4 (0.567a )2 (0.567a )2 − z2 (r − (0.567a )2 − z2 ) (26.46)

The convolution of the charge-density equation of a free electron
given by Eq. (3.7) with an orbitsphere of radius zo  follows from Eq. (3.7)
and Eq. (26.46)

m , , z( ) = 0
2 − 2 z0

2 − z 2 − z0
2 − z 2( ) (26.47)

Substitution of Eq. (26.47) into Eq. (8.45)  gives

F(s) =
1

z 2
2 − (z 2 − z 2 )(z 2 − z 2 )Jo s z 2 − z 2

 

 
 
 

 

 
 
 

− z

z

∫ e iwzdz (26.48)

Substitution 
z

z
= −cos  into Eq. (26.48) gives
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F(s) = 2 − z 2 sin2 sin3 Jo sz sin( )
0
∫ e iz0w cos d (26.49)

when = z , Eq. (26.49) becomes

F(s) = z cos sin3 Jo(sz sin )e iz0w cos d
0
∫ (26.50)

The function of the scattered electron in the far field is given by the
Fourier Transform integral, Eq. (26.50).  Eq. (26.50) is equivalent to the
Fourier Transform integral of cos  times the Fourier Transform integral
given by of Eq. (8.47) with the latter result given by Eq. (8.50).

F(s) =
2

(zo w)2 + (zos)2
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2

2
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(zow)2 + (zos)2
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(26.51)
where

s =
4

sin
2

; w = 0 (units of Å−1) (26.52)

A very important theorem of Fourier analysis states that the Fourier
Transform of a product is the convolution of the individual Fourier
Transforms.  The Fourier Transform of cos  is

[ (Θ −Θ o ) + (Θ + Θ o)]

2
(26.53)

The Fourier Transform integral, Eq. (26.50), is the convolution of Eqs.
(26.51-26.52) and Eq. (26.53).  The convolution gives the result that Eq.
(26.52) is given by

s =
4

sin
−Θ o

2
 
 

 
 ; w = 0 (units of Å−1 ) (26.54)

Given that z = zo cos , the mass density function of each electron having a
de Broglie wavelength  given by Eq. (26.43) corresponding to  in Eq.
(26.54) which is elastically scattered by an atom having a radius of
zo = o is given by Eqs. (26.51) and (26.54).  The replacement of π(z),
the xy-plane wave corresponding to the superposition of many electrons
scattered from an atomic beam with the function of a single electron
propagating in the z-direction (Eq. (3.7)) gives rise to the electron
density function on a two dimensional sphere of

m , , z( ) = Nme 0
2 − z2 − 0

2 − z2( ) (26.55)

centered at a scattering angle of Θo .  With the condition zo = o , the
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elastic electron scattering angle in the far field Θo  is determined by the
boundary conditions of the curvature of spacetime due to the presence
of a gravitating body and the constant maximum velocity of the speed of
light.  The far field condition must be satisfied with respect to electron
scattering and the gravitational orbital equation.  The former condition
is met by Eq. (26.51) and Eq. (26.54).  The latter is derived in the
Preferred Embodiment of an Antigravity Device Section and is met by Eq.
(26.103) where the far field angle of the hyperbolic gravitational
trajectory  is equivalent to Θo .

The electron mass/charge density function, m , ,z( ) , is given in
cylindrical coordinates, and N  is the normalization factor.  The charge
density, mass density, velocity, current density, and angular momentum
functions are derived in the same manner as for the free electron given
in the Electron in Free Space Section except that the scattered electron is
symmetric about the z-axis.  The total mass is me .  Thus, Eq. (26.55)
must be normalized.

me = N 0
2 − z2 − 0

2 − z2( ) d d dz
−∞

∞

∫
0

2

∫
− 0

0

∫ (26.56)

N =
m e

8
3 0

3
(26.57)

The mass density function, m , , z( ), of the scattered electron is

m , , z( ) = me

8

3 0
3

0
2 − z 2 − 0

2 − z 2( )
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8
3 0

3
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(26.58)

and charge-density distribution, e , ,z( ), is

e , ,z( ) = e
8

3 0
3

0
2 − z2 − 0

2 − z2( )

e , ,z( ) = e
8
3 0

3
0 1 − z

0
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− 0 1 − z

0
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(26.59)

The magnitude of the angular velocity of the helium orbitsphere is given
by Eq. (1.55) is

  
=

h
mer

2 (26.60)

where r = r0 = 0 = z0 = 0.567a0  and a0  is the Bohr radius.  The current-
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density function of the scattered electron, K( , ,z,t) , is the projection
along the z-axis of the integral of the product of the projections of the
charge of the orbitsphere (Eq. (3.3)) times the angular velocity as a
function of the radius r  of an ionizing orbitsphere (Eq. (3.9)) for r = ro  to
r = ∞ .  The integral is

  

(z) ⊗ (r − ro )dr =
e

8
3

r0
3

h
mer

2 r0
2 − z2 (r − r0

2 − z2 )dr
ro

∞

∫
ro

∞

∫ (26.61)

The projection of Eq. (26.61) along the z-axis is
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(26.62)

The velocity v( , ,z,t) along the z-axis is
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(26.63)

where o = ro .  The angular momentum, L , is given by

Li z = m er
2 = L = mr2w = mr × v (26.64)

Substitution of me  for e  in Eq. (26.62) followed by substitution into Eq.
(26.64) gives the angular momentum density function, L

  

Li z =
me

8
3 0

3

h
me 0

2 − z2

2 − 0
2 − z2( ) (26.65)

The total angular momentum of the scattered electron is given by
integration over the two dimensional negatively curved surface having
the angular momentum density given by Eq. (26.65).

  

Li z =  
0

2

∫
me

8
3 0

3

h
me 0

2 − z2
− 0

2 − z2( ) 2 d d dz
−∞

∞

∫
− 0

0

∫ (26.66)

  Liz = h (26.67)
Eq. (26.67) is in agreement with Eq. (1.130); thus, the scalar sum of the
magnitude of the angular momentum is conserved.

The mass, charge, and current of the scattered electron exist on a
two dimension sphere which may be given in spherical coordinates
where theta is with respect to the z-axis of the original cylindrical
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coordinate system.  The mass density function, m r, ,( ), of the scattered
electron in spherical coordinates is

m r , ,( ) =
me

8
3

r0
3

r0 sin2 r − r0( ) (26.68)

The charge-density distribution, e r, ,( ) , in spherical coordinates is

e r , ,( ) =
e

8
3

r0
3

r0 sin2 r − r0( ) (26.69)

The current density function J(r, , ,t), in spherical coordinates is

  

J(r, , ,t) =
e

8
3

r0
2

h
mer0

2 sin r − r0( )  i

 

 

 
 

 

 

 
 

(26.70)

The velocity v( , ,z,t) in spherical coordinates is

  
v(r, , ,t) =

h
mer0 sin

r − r0( ) i 

  
 

  (26.71)

The total angular momentum of the scattered electron is given by
integration over the two dimensional negatively curved surface having
the angular momentum density in spherical coordinates given by

  

Li z =  
0
∫

me

8
3

r0
3

h
mer0

r2 sin2 r − r0( )r2 sin drd d
0

∞

∫
0

2

∫ (26.72)

  Liz = h (26.73)
where o = ro .

The electron orbitsphere of an atom has a constant velocity as a
function of angle.  Whereas, the electron orbitsphere formed when
the radius of the incoming electron is equal to the radius of the
scattering atom (i.e. zo = o) has a velocity function whose magnitude
is harmonic in theta (Eq. (26.71)).  The velocity function (Eq. (26.63)
or Eq. (26.71)) is a hyperboloid.  It exists on a two dimension sphere;
thus, it is spatially bounded.  The mass and charge functions given by
Eq. (26.68) and Eq. (26.69), respectively, are finite on a two
dimensional sphere; thus, they are bounded.  The scattered electron
having a negatively curved two dimensional velocity surface is
called a hyperbolic electron.  The magnetic field of the current-density
function of the hyperbolic electron provides the force balance of the
centrifugal force of the mass density function as was the case for the
free electron given in the Electron in Free Space Section.  The current
density function is also nonradiative as given in that section.  Hyperbolic
electrons can be focused into a beam by electric and/or magnetic fields
to form a hyperbolic electron beam.  The velocity distribution along the
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z-axis of a hyperbolic electron is shown schematically in Figure 26.4A.  A
cutaway of the velocity distribution of a hyperbolic electron is shown
schematically in Figure 26.4B.

Figure 26.4A.  The magnitude of the velocity distribution ( v ) on a two

dimension sphere along the z-axis (vertical axis) of a hyperbolic
electron.

Figure 26.4B.  A cutaway of the magnitude of the velocity distribution
( v ) on a two dimension sphere along the z-axis (vertical axis) of a

hyperbolic electron.
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The velocity is harmonic or imaginary as a function of theta.
Therefore, the gravitational velocity of the Earth relative to that of the
hyperbolic electron is imaginary.  This case corresponds to an
eccentricity greater than one and a hyperbolic orbit of Newton's Law of
Gravitation.  The metric for the imaginary gravitational velocity is
derived based on the center of mass of the scattering event.  The Earth,
helium, and the hyperbolic electron are spherically symmetrical; thus,
the Schwarzschild metric (Eqs. (26-41-26.42)) applies.  The velocity
distribution defines a surface of negative curvature relative to the
positive curvature of the Earth.  This case corresponds to a negative
radius of Eq. (26.40) or an imaginary gravitational velocity of Eq.
(26.36).  The lift due to the resulting antigravitational force is given in
the Preferred Embodiment of an Antigravitational Device Section.
According to Eq. (23.48) and Eq. (23.140), matter, energy, and
spacetime are conserved with respect to creation of a particle which is
repelled from a gravitating body.  The gravitationally ejected particle
gains energy as it is repelled.  The ejection of a particle having a
negatively curved velocity surface such as a hyperbolic electron from a
gravitating body such as the Earth must result in an infinitesimal
decrease in its radius of the gravitating body (e.g. r  of the Schwarzschild
metric given by Eq. (26.2) where m0 = M  is the mass of the Earth).  The
amount that the gravitational potential energy of the gravitating body is
lowered is equivalent to the energy gained by the repelled particle.  The
physics is time reversible.  The process may be run backwards to achieve
the original state before the repelled particle such as a hyperbolic
electron was created.

In a preferred embodiment, the neutral atoms of the neutral atom
beam comprise helium, and the velocity of the free electrons of the
electron beam is

  
vz =

h
me o

= 3.858361 X 106
 m / s (26.74)

where o = 0.567ao = 3.000434 X 10−11
 m .

In another preferred embodiment, each atom of the neutral atomic

beam comprises hydrino atom H 1/ p( ), o =
aH

p
; p  is an integer).  The

velocity of each electron of the free electron beam is

  
vz =

h
me o

= 2.187691 X 106
 m / s (26.75)

where o =
aH

n
=

5.29177 X 10−11

n
 m

For a nonrelativistic electron of velocity vz , the kinetic energy, T , is
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T =
1

2
mevz

2 (26.76)

In the case of helium with the substitution of Eq. (26.74) into Eq.
(26.76),

T = 42.3 eV  (26.77)
In the case of hydrogen with the substitution of Eq. (26.75) into Eq.
(26.76),

T = p213.6 eV  (26.78)

PREFERRED EMBODIMENT OF AN ANTIGRAVITY DEVICE
As shown schematically in Figure 26.5, the device 10 of Mills [5] to

provide an antigravitational force for levitation or propulsion comprises
a  source 1 of a gas jet of atoms 101 such as helium atoms such as
described by Bonham [6] and an energy tunable electron beam source 2
which supplies an electron beam 102 having electrons of a precise
energy such that the radius of each electron is equal to the radius of
each atom of the gas jet 101.  Such a source is described by Bonham [6].
The gas jet 101 and electron beam 102 intersect such that the velocity
function of each electron is elastically scattered and warped into a
hyperboloid of negative curvature (hyperbolic electron).  The
hyperbolic electron beam 103 passes into an electric field provided by a
capacitor means 3.  In a preferred embodiment, the capacitor means 3 is
along to the electron beam 102, and the intersection of the gas jet 101
and the electron beam 102 occurs inside of the capacitor means 3.  The
hyperbolic electrons experience an antigravitational force due to their
velocity surfaces of negative curvature and are accelerated away from
the center of the gravitating body such as the Earth.  This upward force
is transferred to the capacitor means 3 via a repulsive electric force
between the hyperbolic electrons and the electric field of the capacitor
means 3.  The capacitor means 3 is rigidly attached to the body to be
levitated or propelled by structural attachment 4.  The present
antigravity means further includes a means to trap unscattered and
hyperbolic electrons and recirculate them through the beam 102.  Such
a trap means 5 includes a Faraday cage as described by Bonham [6].  The
present antigravity means 10 further includes a means 6 to trap and
recirculate the atoms of the gas jet 101.  Such a gas trap means 6
includes a pump such as a diffusion pump as described by Bonham [6].
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Figure 26.5.  Antigravity device driven by hyperbolic electrons.

In the case of a hyperbolic electron which is much smaller then the
size of a capacitor, the electric force of the hyperbolic electron on the
capacitor is equivalent to that of a point charge.  This force provides lift
to the capacitor due to the gravitational repulsion of the hyperbolic
electron from the Earth as it undergoes a trajectory through the
capacitor.  A close approximation of the trajectory of hyperbolic
electrons generated by the antigravity levitation and propulsion means
can be found by solving the Newtonian inverse-square gravitational force
equations for the case of a repulsive force.  The trajectory follows from
the Newtonian gravitational force and the solution of motion in an
inverse-square repulsive field given by Fowles [7].  The trajectory can be
calculated rigorously by solving the orbital equation from the
Schwarzschild metric (Eqs. (26.15-26.16)) for a two-dimensional spatial
velocity density function of negative curvature which is produced by the
apparatus and repelled by the Earth.  The rigorous solution is equivalent



© 2000 by BlackLight Power, Inc.  All rights reserved. 443

to that given for the case of a positive gravitational velocity given in the
Orbital Mechanics Section except that the gravitational velocity is
imaginary, or the gravitational radius is negative.

In the case of a velocity function having negative curvature, Eq.
(23.78) becomes

1+
2GM

rc2

 
 

 
 

dt

d
=

E

mc2 (26.79)

where M  is the mass of the Earth and m  is the mass of the hyperbolic
electron.  Eq. (23.79) is based on the equations of motion of the
geodesic, which in the case of an imaginary gravitation velocity or a
negative gravitational radius becomes
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The repulsive central force equations can be transformed into an orbital

equation by the substitution, u =
1

r
.  The relativistically corrected

differential equation of the orbit of a particle moving under a repulsive
central force is

du

d
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c
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3 (26.81)

By differentiating with respect to , noting that u = u( ) gives
d2u

d 2 + u = −
GM

a2 −
3

2

2GM

c2

 
 

 
 u

2 (26.82)

where

a =
L

m
(26.83)

In the case of a weak field,
2GM

c2

 
 

 
 u << 1 (26.84)

and the second term on the right-hand of (26.37) can then be neglected
in the zero-order.  The equation of the orbit is

u0 =
1

r
= Acos + 0( ) −

GM

a2 (26.85)

r =
1

Acos + 0( ) − GM
a2

(26.86)

where A  and 0  denote the constants of integration.  Consider Et , the
sum of the kinetic and gravitational potential energy:

Et =
1

2
mv2 +

GMm

r
(26.87)

where m  is the mass of the hyperbolic electron.  The orbit equation may
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also be expressed in terms of Et  as given by Fowles [8]

r =

a2

GM

−1+ 1 + 2Ema2

GMm( )2

 
 
  

 
 

1

2

cos − 0( )
(26.88)

In a repulsive field, the energy is always greater than zero.  Thus, the
eccentricity e , the coefficient of cos − 0( ), must be greater than unity
( e > 1) which requires that the orbit must be hyperbolic.  Consider the
trajectory of a hyperbolic electron shown in Figure 26.6.

Figure 26.6.  Hyperbolic path of a hyperbolic electron of mass m  in an
inverse-square repulsive field of a gravitating body comprised of
positively curved matter of total mass M .

It approaches along one asymptote and recedes along the other.  The
direction of the polar axis is selected such that the initial position of the
hyperbolic electron is = 0 , r = ∞ .  According to either of the equations
of the orbit (Eq. (26.86) or Eq. (26.88)) r  assumes its minimum value
when cos − 0( ) =1, that is, when = 0 .  Since r = ∞  when = 0 , then r  is
also infinite when = 2 0 .  Therefore, the angle between the two
asymptotes of the hyperbolic path is 2 0 , and the angle  through which
the incident hyperbolic electron is deflected is given by

= − 2 0 (26.89)
Furthermore, the denominator of Eq. (26.88) vanishes when = 0  and

= 2 0 .  Thus,
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−1 + 1 +
2Ema2

GMm( )2

 
 
  

 
 

1

2

cos 0( ) = 0 (26.90)

Using Eq. (26.89) and Eq. (26.90), the scattering angle  is given in
terms of  as

tan 0 =
2Em( )

1

2 a

GMm
= cot

2
(26.91)

For convenience, the constant a =
L

m
 may be expressed in terms of

another parameter p  called the impact parameter.  The impact
parameter is the perpendicular distance from the origin (deflection or
scattering center) to the initial line of motion of the hyperbolic electron
as shown in Figure 26.6.  The relationship between a  the angular
momentum per unit mass and v0  the initial velocity of the hyperbolic
electron is

a = r × v = pv0 (26.92)
A massive gravitational body such as the Earth will not be moved by the
encounter with a hyperbolic electron.  Thus, the energy Et  of the
deflected hyperbolic electron is constant and is equal to T  the initial
kinetic energy because the initial potential energy is zero (r = ∞).

T =
1

2
mv0

2 (26.93)

Using the impact parameter, the deflection or scattering equation is
given by

cot
2

=
pv0

2

GM
=

2pE

GMm
(26.94)

= 2arctan
pv0

2

GM

 
 
  

 

−1

= 2arctan
2 pE

GMm
 
 

 
 

−1

(26.95)

The gravitational velocity of the Earth vgE
 is approximately

vgE
≈

2GM

p
(26.96)

Thus, Eq. (26.95) is given by

= 2arctan
1

2

vgE

v0

 
 
  

 
 

2 

 
 

 

 
 (26.97)

Consider the postulate that the hyperbolic electron must follow the
trajectory for an inverse squared force in the far field.  In the limit, the
far field trajectory is the asymptote.  As a method to obtain a first
approximation of the asymptote, consider the case that the hyperbolic
electron is generated at the surface of the Earth with an initial trajectory
as shown in Figure 26.6.  The initial radial position is rmin which is the
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radius of the Earth.  Also, the impact parameter p  is essentially equal to
the radius of the Earth.  Substitution of Eq. (26.87) and Eq. (26.92) into
Eq. (26.91) gives

v0
2 +

2GM

p

 
 
  

 

1

2

pv0

GM
= cot

2
(26.98)

Substitution of Eq. (26.96) into Eq. (26.98) gives

2 v0
2 + vgE

2( )
1

2
v0

vgE

2 = cot
2

(26.99)

= 2arctan
1

2

vgE

2

v0
2 + vgE

2( )
1

2 v0

 

 

 
 

 

 

 
 

(26.100)

The gravitational velocity of the Earth vgE
 is

vgE
=

2GM

R
= 1.1 X 108  m /sec (26.101)

where R  is the radius of the Earth.  Consider the case of the generation
of hyperbolic electrons via elastic scattering from helium atoms.
Substitution of the hyperbolic electron velocity of 2.187691 X 106

 m / s  given
by Eq. (26.75) and the gravitational velocity of the Earth given by Eq.
(26.101) into Eq. (26.100) gives

= 2arctan
1

2

1.1 X 108  m /sec( )2

1.1 X 108  m /sec( )2
+ 2.2 X 106 m /sec( )2( )

1

2 2.2 X 106  m /sec( )

 

 

 
  

 

 

 
  
(26.102)

The angle of the asymptote is

=175° ≈ (26.103)

Thus, the asymptote of the trajectory of a hyperbolic electron is
essentially radial from the Earth.  Since the trajectory in a conservative
inverse field is reversible going from +∞  to −∞  or vice versa, the entire
trajectory of a hyperbolic electron with  v0 = 2.187691 X 106

 m / s  at rmin equal
to the radius of the Earth is essentially radial with respect to the Earth.
From this result, it can be concluded that the far field trajectory of a
hyperbolic electron formed from a free electron with an initial kinetic
energy of 42.3 eV  and an initial electron velocity of 2.187691 X 106

 m / s  in an
arbitrary initial direction relative to the Earth is essentially radial from
the Earth since 1.) v0  is much less than vgE

, 2.)  the impact parameter is
essentially rmin which is the radius of the Earth since the radius of the
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Earth is so large, and 3.) the free electron has zero gravitational mass.
The trajectory forms the gravitational boundary condition to be matched
with the additional scattering boundary condition.

The scattering distribution of hyperbolic electrons given by Eq.
(26.51) is centered at a scattering angle of Θo  given by Eq. (26.54).  With
the condition zo = o , the elastic electron scattering angle in the far field
Θo  is determined by the boundary conditions of the curvature of
spacetime due to the presence of a gravitating body and the constant
maximum velocity of the speed of light.  The far field condition must be
satisfied with respect to electron scattering and the gravitational orbital
equation.  The former condition is met by Eq. (26.51) and Eq. (26.54).
The latter is met by Eq. (26.103) where the far field angle of the
hyperbolic gravitational trajectory  is equivalent to Θo .

The elastic scattering condition is possible due to the large mass of
the helium atom and the Earth relative to the electron wherein the recoil
energy transferred during a collision is inversely proportional to the
mass as given by Eq. (2.70).  Satisfaction of the far field conditions of
the elastic electron scattering to produce hyperbolic electrons and the
hyperbolic gravitational trajectory requires that the hyperbolic electrons
elastically scatter in a direction radially from the Earth with a kinetic
energy in the radial direction that is essentially equal to the initial
kinetic energy corresponding to the condition zo = o .

According to Eq. (23.48) and Eq. (23.140), matter, energy, and
spacetime are conserved with respect to creation of the hyperbolic
electron which is repelled from a gravitating body, the Earth.  The
gravitationally ejected hyperbolic electron gains energy as it is repelled
(> 104  eV ).  The ejection of a hyperbolic electron having a negatively
curved velocity surface from the Earth must result in an infinitesimal
decrease in its radius of the Earth (e.g. r  of the Schwarzschild metric
given by Eq. (26.2) where m0 = M  is the mass of the Earth).  The amount
that the gravitational potential energy of the Earth is lowered is
equivalent to the energy gained by the repelled hyperbolic electron.

Momentum is also conserved for the electron, Earth, and helium
atom wherein the gravitating body that repels the hyperbolic electron,
the Earth, receives an equal and opposite change of momentum with
respect to that of the electron.

Causing a satellite to follow a hyperbolic trajectory about a
gravitating body is a common technique to achieve a gravity assist to
further propel the satellite.  In this case, the energy and momentum
gained by the satellite is also equal and opposite that lost by the
gravitating body.

The kinetic energy of the hyperbolic electron corresponding to a
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velocity of 2.187691 X 106
 m / s  is T = 42.3 eV .  Thus, 42.3 eV  may be imparted

to the antigravity device per hyperbolic electron.  With a beam current
of 105  amperes achieved in one embodiment by multiple beams such as
100 beams each providing 103  amperes, the power transferred to the
device PAG  is

PAG =
105  coulomb

sec
 X 

1 electron

1.6 X 10−19  coulombs
X 

42.3 eV

electron
 X 

1.6 X 10−19J

eV
= 4.2 MW

(26.104)
The power dissipated against gravity PG  is given by

PG = mcgvc (26.105)
where mc  is the mass of the craft, g  is the acceleration of gravity, vc  is
the velocity of the craft.  In the case of a 104  kg  craft, the 4.2 MW of
power provided by Eq. (26.104) sustains a steady lifting velocity of
43 m/sec .  Thus, significant lift is possible using hyperbolic electrons.

In the case of a 104  kg  craft, Fg , the gravitational force is

Fg = mcg = 104  kg( ) 9.8 
m

sec2

 
 

 
 = 9.8  X 104  N (26.106)

where mc  is the mass of the craft and g  is the standard gravitational
acceleration.  The lifting force may be determined from the gradient of
the energy which is approximately the energy dissipated divided by the
vertical (relative to the Earth) distance over which it is dissipated.  The
antigravitational force provided by the hyperbolic electrons may be
controlled by adjusting the electric field of the capacitor.  For example,
the electric field of the capacitor may be increased such that the
levitating force overcomes the gravitational force.  In an embodiment of
the capacitor, the electric field, Ecap , is constant and is given by the
capacitor voltage, Vcap , divided by the distance between the capacitor
plates, d , of a parallel plate capacitor.

Ecap =
Vcap

d
(26.107)

In the case that Vcap  is 106  V  and d  is 1 m , the electric field is

Ecap =
106  V

m
(26.108)

The force of the electric field of the capacitor on a hyperbolic electron,
Fele , is the electric field, Ecap , times the fundamental charge

Fele = eEcap = 1.6  X 10−19  C( ) 106  
V

m
 
 

 
 = 1.6  X 10−13  N (26.109)

The distance traveled away from the Earth, ∆rz , by a hyperbolic electron
having an energy of E = 42.3 eV = 6.77 X 10−18  J  is given by the energy divided
by the electric field Fele
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∆rz =
E

Fele

=
6.77 X 10−18 J

1.6  X 10−13  N
= 4.23 X 10−5  m = 0.0423 mm (26.110)

The number of electrons Ne  is given by

Ne =
I

everi

(26.111)

where I  is the current, e  is the fundamental electron charge, ve  is the
hyperbolic electron velocity, ri  is the length of the current.  Substitution
of I = 105  A, ve = v0 = 2.187691 X 106

 m / s , and ri = 0.2 m , the number of
electrons is

Ne = 1.5 X 1018  electrons (26.112)
The antigravitational force, FAG , is given by multiplying the number of
electrons (Eq. (26.112)) by the force per electron (Eq. (26.109)).

FAG = NeFe = 1.5 X 1018  electrons( ) 1.6 X 10−13  N( ) = 2.4 X 105  N (26.113)

Thus, the present example of an antigravity device may provide a
levitating force that is capable of overcoming the gravitational force on
the craft to achieve a maximum vertical velocity of 43 m/sec  as given by
Eq. (26.105).  In an embodiment of the antigravity device, the
hyperbolic electron current and the electric field of the capacitor are
adjusted to control the vertical acceleration and velocity.

Levitation by an antigravitational force is orders of magnitude
more energy efficient than conventional rocketry.  In the former case,
the energy dissipation is converted directly to gravitational potential
energy as the craft is lifted out of the gravitation field.  Whereas, in the
case of rocketry, matter is expelled at a higher velocity than the craft to
provide thrust or lift.  The basis of rocketry's tremendous inefficiency of
energy dissipation to gravitational potential energy conversion may be
determined from the thrust equation.  In a case wherein external forces
including gravity are taken as zero for simplicity, the thrust equation is
[9]

v = v0 + V ln
m0

m
(26.114)

where v  is the velocity of the rocket at any time, v0  is the initial velocity
of the rocket, m0  is the initial mass of the rocket plus unburned fuel, m

is the mass at any time, and V  is the speed of the ejected fuel relative to
the rocket.  Owing to the nature of the logarithmic function, it is
necessary to have a large fuel to payload ratio in order to attain the
large speeds needed for satellite launching, for example.

The antigravitational force of hyperbolic electrons can be
increased by using atoms of the neutral atom beam of relativistic kinetic
energy.  The electrons of the electron beam and the relativistic atoms of
the neutral atomic beam intersect at an angle such that the
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relativistically contracted radius of each atom, zo , is equal to o , the
radius of each free electron of the electron beam.  Elastic scattering
produces hyperbolic electrons at relativistic energies.  The relativistic
radius of helium is calculated by substitution of the relativistic mass (Eq.
(24.14)) of helium

m =
m0

1 −
v2

c2

(26.115)

into Eq. (7.19) with ao  given by Eq. (1.168) where Eq. (26.115) is
transformed from Cartesian coordinates to spherical coordinates.  In a
preferred embodiment, the relativistic atomic beam which intersects the
electron beam directed along the negative x-axis is oriented at an angle

of 
4

 to both the xz and yz-planes with the relativistic radius of each

neutral atom equal to the radius of each free electron.
In another embodiment, high energy hyperbolic electrons are

created by scattering according to Eq. (26.75) and Eq. (26.78) from
hydrino atoms of small radii.  Since hydrino atoms form hydrino hydride
ions for p ≤ 24, hydrino atoms of p > 24 are preferably used.

In another embodiment shown in Figure 26.5, hyperbolic electrons
are accelerated to relativistic energies by an acceleration means 7
before entering or within the capacitor means 3 to provide relativistic
hyperbolic electrons with increased energy to be converted to
gravitational potential energy as the body to be levitated is levitated.

In the case of relativistic hyperbolic electrons, the distance
traveled in order to transfer a substantial amount of the kinetic energy
of the hyperbolic electron to an axis parallel to that of the radius of the
Earth is much greater than the case of low hyperbolic electron velocities.
With a relativistic hyperbolic electron initially propagating in the
direction perpendicular to the radius of the Earth, a path length of many
meters may be required for the hyperbolic electron to act on the
capacitor.  In one embodiment of the antigravity device, a capacitor may
further comprise a synchrotron for forcing the hyperbolic electron in a
orbit with a component of the velocity in the xy-plane such as that
shown in Figure 26.7 which is perpendicular to the radius of the Earth.
The hyperbolic electron held in a synchrotron orbit in the xy-plane is
repelled by the Earth and transfers a force to the capacitor in the z
direction as shown in Figure 26.7.



© 2000 by BlackLight Power, Inc.  All rights reserved. 451

Figure 26.7.  Helical motion of a hyperbolic electron in a synchrotron
orbit in the xy-plane with an antigravitational acceleration along the +z
axis which is transferred to the capacitor.

MECHANICS
In addition to levitation, acceleration in a direction tangential to

the gravitating body’s surface can be effected via conservation of
angular momentum.  Thus, a radially accelerated structure such as an
aerospace vehicle to be tangentially accelerated possesses a cylindrically
or spherically symmetrically movable mass having a moment of inertia,
such as a flywheel device.  The flywheel is rotated by a driving device
which provides angular momentum to the flywheel.  Such a device is the
electron beams which are the source of hyperbolic electrons.  The
electrons move rectilinearly until being elastically scattered from an
atomic beam to form hyperbolic electrons which are deflected in a
radial direction from the center of the gravitating body.  A component
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to the initial momentum of the electron beam is transferred to the
gravitating body as the hyperbolic electrons are deflected upward by the
gravitating body.  The opposite momentum is transferred to the source
of the electron beam.  This momentum may be used to translate the
craft in a direction tangential to the gravitating body’s surface or to
cause it to spin.  Thus, the electron beam serves the additional function
of a source of transverse or angular acceleration.  Thus, it may be
considered an ion rocket.

The vehicle is levitated using antigravity means to overcome the
gravitational force of the gravitating body where the levitation is such
that the angular momentum vector of the flywheel is parallel to the
radial or central vector of the gravitational force of the gravitating body.
The angular momentum vector of the flywheel is forced to make a finite
angle with the radial vector of gravitational force by tuning the
symmetry of the levitating (antigravitational) forces provided by an
antigravity apparatus comprising multiple elements at different spatial
locations of the vehicle.  A torque is produced on the flywheel as the
angular momentum vector is reoriented with respect to the radial vector
due to the interaction of the central force of gravity of the gravitating
body, the force of antigravity of the antigravity means, and the angular
momentum of the flywheel device.  The resulting acceleration which
conserves angular momentum is perpendicular to the plane formed by
the radial vector and the angular momentum vector.  Thus, the resulting
acceleration is tangential to the surface of the gravitating body.

Large translational velocities are achievable by executing a
trajectory which is vertical followed by a precession with a large radius
that gives a translation to the craft.  The latter motion is effected by
tilting the spinning craft to cause it to precess with a radius that
increases due to the force provided by the craft acting as an airfoil.  The
tilt is provided by the activation and deactivation of multiple
antigravitational devices spaced so that the desired torque perpendicular
to the spin axis is maintained.  The craft also undergoes a controlled fall
and gains a velocity that provides the centrifugal force to the precession
as the craft acts as an airfoil.  During the translational acceleration,
energy stored in the flywheel is converted to kinetic energy of the
vehicle.  As the radius of the precession goes to infinity the rotational
energy is entirely converted into transitional kinetic energy.  The
equation for rotational kinetic energy ER  and translational kinetic energy
ET  are given as follows:

ER =
1

2
I 2 (26.116)

where I  is the moment of inertia and  is the angular rotational
frequency;
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ET =
1

2
mv2 (26.117)

where m  is the total mass and v  is the translational velocity of the craft.
The equation for the moment of inertia I  of the flywheel is given as:

I = mir
2∑ (26.118)

where mi  is the infinitesimal mass at a distance r  from the center of
mass.  Eqs. (26.116) and (26.118) demonstrate that the rotational
kinetic energy stored for a given mass is maximized by maximizing the
distance of the mass from the center of mass.  Thus, ideal design
parameters are cylindrical symmetry with the rotating mass, flywheel, at
the perimeter of the vehicle.

The equation that describes the motion of the vehicle with a
moment of inertia I , a spin moment of inertial Is , a total mass m , and a
spin frequency of its flywheel of S  is given as follows [10]:

mgl sin = I ˙ ̇ + Is S
˙ sin − I ˙ 2 cos sin (26.119)

0 = I
d

dt

•
sin 

 
 
 − IsS

˙ + I ˙ ̇  cos (26.120)

0 = Is
˙ S (26.121)

where  is the tilt angle between the radial vector and the angular
momentum vector, ˙ ̇  is the acceleration of the tilt angle , g  is the
acceleration due to gravity, l  is the height to which the vehicle levitates,

and 
•
 is the angular precession frequency resulting from the torque

which is a consequence of tilting the craft.  Eq. (26.121) shows that S ,
the spin of the craft about the symmetry axis, remains constant.  Also,
the component of the angular momentum along that axis is constant.

Lz = IsS = constant (26.122)
Eq. (26.120) is then equivalent to

0 =
d

dt
I ˙ sin2 + Is Scos( ) (26.123)

so that
I ˙ sin2 + Is Scos = B = constant (26.124)

The craft is an airfoil which provides the centrifugal force to move the
center of mass of the craft away from the Z axis of the stationary frame.
The schematic appears in Figure 26.8.
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Figure 26.8.  Schematic of the forces on a spinning craft which is caused
to tilt.

If there is no drag acting on the spinning craft to dissipate its energy E ,
then the total energy E  equal to the kinetic T  and potential V  remains
constant:

1

2
I x

2 + I y
2 + IsS

2( ) + mgl cos = E (26.125)

or equivalently in terms of Eulerian angles,
1

2
I ˙ 2 + I ˙ 2 sin2 + IsS

2( ) + mglcos = E (26.126)

From Eq. (26.124), ˙  may be solved and substituted into Eq. (26.126).
The result is

1

2
I ˙ 2 +

B− IsScos( )2

2I sin2 +
1

2
IsS

2 + mgl cos = E (26.127)

which is entirely in terms of .  Eq. (26.126) permits  to be obtained as
a function of time t  by integration.  The following substitution may be
made:

u = cos (26.128)
Then

˙ u = − sin( ) ˙ = − 1− u2( )1 / 2 ˙ (26.129)
Eq. (26.127) is then

˙ u 2 = 1− u2( ) 2E − IsS
2 − 2mglu( )I−1 − B − Is Su( )2

I−2 (26.130)
or

˙ u 2 = f u( ) (26.131)
from which u  (hence ) may be solved as a function of t  by integration:
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t =
du

f u( )∫ (26.132)

In Eq. (26.132), f u( ) is a cubic polynomial, thus, the integration may be
carried out in terms of elliptic functions.  Then the precession velocity ˙ 

may be solved may be solved by substitution of  into Eq. (26.124)
wherein the constant B  is the initial angular momentum of the craft
along the spin axis, IsS  given by Eq. (26.122).  The radius of the
precession is given by

R = lsin (26.133)
And the linear velocity v  of the precession is given by

v = R ˙ (26.134)
The maximum rotational speed for steel is approximately 1100 m /sec  [11].
For a craft with a radius of 10 m , the corresponding angular velocity is
110 cycles

sec
.  In the case that most of the mass of a 104  kg  was at this radius,

the initial rotation energy (Eq. (26.116)) is 6 X 109  J .  As the craft tilts
and changes altitude (increases or decreases), the airfoil pushes the
craft away from the axis that is radial with respect to the Earth.  For
example, as the craft tilts and falls, the airfoil pushes the craft into a
trajectory which is analogous to that of a gyroscope as shown in Figure
26.8.  From Figure 26.8, the centrifugal force provided by the airfoil
(mgcos ) is always less than the force of gravity on the craft.  From Eq.
(26.124), the rotational energy is transferred from the initial spin to the
precession as the angle  increases.  From Eq. (26.125), the precessional
energy may become essentially equal to the initial rotational energy plus
the initial gravitational potential energy.  Thus, the linear velocity of the
craft may reach approximately 1100 m /sec  (2500 mph).  During the
transfer, the craft falls approximately one half the distance of the radius
of the precession of the center of mass about the Z axis.  Thus, the initial
vertical height l  must be greater.

In the cases of solar system and interstellar travel, velocities
approaching the speed of light may be obtained by using gravity assists
from massive gravitating bodies wherein the antigravitational capability
of the craft establishes the desired trajectory to maximize the assist.

EXPERIMENTAL
The electron-impact energy-loss spectrum of helium taken in the

forward direction with 100 eV  incident electrons with a resolution of
0.15 eV  by Simpson, Mielczarek, and Cooper [12] showed large energy-
loss peaks at 57.7 eV , 60.0 eV , and 63.6 eV .  Resonances in the
photoionization continuum of helium at 60 eV  and in the 63.6 eV  region
have been observed spectroscopically by Madden and Codling [13] using
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synchrotron radiation.  Absent was a resonance at 57.7 eV .  Both Simpson
and Madden assign the peaks of their data to two-electron excitation
states in helium.  Each of these states decays with the emission of an
ionization electron of energy equal to the excitation energy minus the
ionization energy of helium, 24.59 eV .  The data of Goruganthu and
Bonham [14] shows ejected-energy peaks at 35.5 eV  and at 39.1 eV
corresponding to the energy loss peaks of Simpson of 60.0 eV  and
63.6 eV , respectively.  The absence of an ejected-energy peak
corresponding to the energy-loss peak at 57.7 eV  precludes the
assignment of this peak to a two-electron resonance.  The energy of
each inelastically scattered electron of incident energy of 100 eV
corresponding to the energy-loss of 57.7 eV  is 42.3 eV .  This is the
resonance energy of hyperbolic electron production by electron
scattering from helium given by Eq. (26.77).  Thus, the 57.7 eV  energy-
loss peak of Simpson arises from inelastic scattering of electrons of
42.3 eV  from helium with resonant hyperbolic electron production.  The
production of electrons with velocity functions having negative
curvature is experimentally supported.

The electron-impact energy-loss spectrum of helium taken in the
forward direction with 400 eV  incident electrons by Priestley and
Whiddington [15] showed large energy-loss peaks at 42.4 eV , and 60.8 eV .
A resonance in the photoionization continuum of helium at 60 eV  has
been observed spectroscopically by Madden and Codling [13] using
synchrotron radiation.  Absent was a resonance at 42.4 eV .  Both Priestley
and Madden assign the peaks of their data to two-electron excitation
states in helium.  Each of these states decay with the emission of an
ionization electron of energy equal to the excitation energy minus the
ionization energy of helium, 24.59 eV .  The data of Goruganthu and
Bonham [14] shows an ejected-energy peak at 35.5 eV  corresponding to
the energy loss peak of Priestley of 60.8 eV .  The absence of an ejected-
energy peak at 17.8 eV  corresponding to the energy-loss peak at 42.4 eV
precludes the assignment of this peak to a two-electron resonance.  This
is the resonance energy of hyperbolic electron production by electron
scattering from helium given by Eq. (26.77).  Thus, the 42.4 eV  energy-
loss peak of Priestley arises from inelastic scattering of electrons of
42.3 eV  from helium with resonant hyperbolic electron production.  The
production of electrons with velocity functions having negative
curvature is experimentally further supported.
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LEPTONS

Only three lepton particles can be formed from photons
corresponding to the Planck equation energy, the potential energy, and
the magnetic energy, where each is equal to the mass energy (Eq.
(23.27).  As opposed to a continuum of energies, leptons arise from
photons of only three energies.  Each "resonant" photon can be
considered to be the superposition of two photons- each possessing the
energy given by Planck's equation, Eq. (23.28) which is equal to the mass
energy of the lepton or antilepton, each possessing   h  of angular
momentum, and each traveling at the speed of light in the lab inertial
frame.

At particle production, a photon having a radius and a wavelength
equal to the Compton wavelength bar of the particle forms a transition
state orbitsphere of the particle of the same wavelength.  Eq. (23.43)
equates the proper and coordinate times at particle production wherein
the velocity of the transition state orbitsphere in the coordinate frame is
the speed of light and the relationships between the masses energies
given by Eq. (23.32) hold.  To describe any phenomenon such as the
motion of a body or the propagation of light, a definite frame of
reference is required.  A frame of reference is a certain base consisting
of a defined origin and three axes equipped with graduated rules and
clocks as described in the Relativity Section.  In the case of particle
production wherein the velocity is the speed of light, only the time ruler
need be defined.  By defining a standard ruler for time in the coordinate
frame, the mass of the particle is then given in terms of the self
consistent system of units based on the definition of the time ruler.  The
mass of the particle must be experimental measured with the same time
ruler as part of a consistent system of units.  In the case that MKS units
are used, the coordinate time is defined as the second, the permeability
of free space is defined as 0 = 4  X 10−7  Hm−1 , and the mass of the particle
is given in kilograms as given in the Particle Production Section.  The
production of a real particles from a transition state orbitsphere is a
spacelike event in terms of special relativity wherein spacetime is
contracted by the gravitational radius of the particle during its
production as given in the Gravity Section.  Thus, the coordinate time is
imaginary as given by Eq. (23.43).  On a cosmological scale, imaginary
time corresponds to spacetime expansion and contraction as a
consequence of the harmonic interconversion of matter and energy as
given by Eq. (24.40).

THE ELECTRON-ANTIELECTRON LEPTON PAIR
Consider the Planck energy equation, Eq. (23.28).  The proper time
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is given by

  
2

= 2
h

mc2 (27.1)

In the lab frame, the relativistic correction of the radius in the
derivation of the Planck's equation for the transition state orbitsphere
(Eq. (20.12)) is −2 .  Substitution of −2r , the relativistically corrected
radius; the second which is the definition for the coordinate time in MKS
units, and the Compton wavelength bar for the radius r , (Eq. (23.21),
into Eq. (23.43) gives

  
2

h
mc2 = sec

2Gm2

c 2h
(27.2)

The Special relativistic factor, −1 , also follows from Eq. (23.34), from
Eqs. (2.44) and (2.49), and from Eq. (5.45) of Fowles [1].  The mass of
the electron/antielectron in MKS units based on the definition of the
coordinate time in terms of the second is

  
me =

h

sec c2

 
 

 
 

1

2 ch
2G

 
 

 
 

1

4
= 9.1097 X 10−31  kg (27.3)

A neutrino/antineutrino pair are formed in each of three cases of
lepton/antilepton production to conserve linear and angular momentum
during the separation of the world lines of each particle and its
antiparticle.  The neutrino and antineutrino are photons which travel at
velocity c  and have energy, but no rest mass.  The electron/antielectron
mass is corrected for the experimental mass/energy deficit of the 18 eV
neutrino.

me = 9.1097 X 10−31
 kg −18 eV ( e ) = 9.1094 X 10−31

 kg (27.4)
me experimental = 9.1095 X 10−31

 kg

Conversely, the Newtonian Gravitational Constant, G , can be calculated
from Eq. (27.2) by substitution of the experimentally determined mass
of the electron.

Gcalculated = 6.644 X 10−11
 
Nm 2

kg2

Gexperimental = 6.666 X 10−11
 
Nm2

kg2

THE MUON-ANTIMUON LEPTON PAIR
Given that the electron is "allowed" by the Planck energy equation

(Eq. (23.28)) and that the proper time is given by General Relativity (Eq.
(23.38)), the muon (antimuon) mass can be calculated from the
potential energy, V , (Eq. (23.27)) and the proper time relative to the
electron inertial frame.  The muon (antimuon) decays to the electron
(antielectron) and may be considered a transient resonance which
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decays to the stable lepton, the electron (antielectron).  For the lab
inertial frame, the relativistic correction of the radius of the transition
state orbitsphere given by the potential energy equations (Eq. (20.10)
and (20.11)) is −2 .  For the electron inertial frame, the relativistic
correction relative to the proper frame is the inverse, 2 .  Furthermore,
the potential energy equation gives an electrostatic energy; thus, the
electron inertial time must be corrected by the relativistic factor of 2
relative to the proper time.  Multiplication of the right side of Eq.
(23.43) by 2 ; substitution of me , the mass of the electron, for M ;
substitution of the second which is the definition for the coordinate
time in MKS units; substitution of 2r , the relativistically corrected
radius for r , and substitution of the Compton wavelength bar for the
radius r , (Eq. (23.21)), into Eq. (23.43) gives the relationship between
the proper time and the electron coordinate time.

  
2

h
mc2 = 2 sec

2Gme
2m

ch
(27.5)

The mass of the muon/antimuon is

  
m =

h
c

1

2Gme sec( )2

 
 
  

 
 

1

3

= 1.8902 X 10−28
 kg (27.6)

The muon/antimuon mass is corrected for the experimental
mass/energy deficit of the 0.25 MeV  neutrino.

m =1.890563 X 10−28
 kg − 0.25 MeV( ) = 1.8857 X 10−28

 kg

m experimental =1.8836 X 10−28
 kg

THE TAU-ANTITAU LEPTON PAIR
Given that the electron is "allowed" by the Planck energy equation

(Eq. (23.28)) and that the proper time is given by General Relativity (Eq.
(23.38)), the tau (antitau) mass can be calculated from the magnetic
energy (Eq. (23.27)) and the proper time relative to the electron inertial
frame.  For the lab inertial frame, the relativistic correction of the radius
of the transition state orbitsphere given by the magnetic energy

equations (Eq. (20.14) and (20.15)) is 
1

(2 )2 4 .  For the electron inertial

frame, the relativistic correction relative to the proper frame is the
inverse, (2 )2 4 .  Furthermore, the transition state comprises two
magnetic moments.  For v = c , the magnetic energy equals, the potential
energy equals the Planck equation energy equals mc2 .  The magnetic
energy is given by the square of the magnetic field as given by Eqs.
(1.122-1.129).  The magnetic energy corresponding to particle
production is given by Eq. (23.32).  Because two magnetic moments are
produced the magnetic energy (and corresponding photon frequency) in
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the proper frame is two times that of the electron frame.  Thus, the
electron time is corrected by a factor of two relative to the proper time.
Another way Multiplication of the right side of Eq. (23.43) by 2 ;
substitution of me , the mass of the electron, for M ; substitution of the
second which is the definition for the coordinate time in MKS units;
substitution of (2 )2 4r , the relativistically corrected radius for r , and
substitution of the Compton wavelength bar for the radius r , (Eq.
(23.21)), into Eq. (23.43) gives the relationship between the proper time
and the electron coordinate time.

  
2

h
mc2 = 2sec

2Gme (2 )2 4m

ch
(27.7)

The mass of the tau/antitau is

  
m =

h
c

1

2Gme

 
 
  

 
 

1

3 1

2sec 2

 
 

 
 

2

3
= 3.17 X 10−27

 kg (27.8)

The tau/antitau mass is corrected for the experimental mass/energy
deficit of the 17 keV  neutrino.

m = 3.17 X 10−27
 kg − 17 keV( ) = 3.17 X 10−27

 kg

m  experimental = 3.17 X 10−27
 kg

In each case a nucleus is present during particle/antiparticle
production to conserve momentum.

A fourth particle/antiparticle pair can arise by the gravitational
potential energy of Eq. (23.27).  However, the pair is not observable
because the mass gives rise to a singularity for Eq. (23.38).
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PROTON AND NEUTRON

Experimental evidence [1] indicates that the proton and neutron
each comprise three charged fundamental particles called quarks and
three massive photons called gluons.  Each quark is found in
combination with a gluon.  It is demonstrated in the Excited States of the
One Electron Atom (Quantization) Section and by Eq. (2.11) that
photons trapped inside of an orbitsphere resonator cavity can provide
an effective charge at the two dimensional orbitsphere.  A model of the
nucleons which is consistent with experimentation and the present
theory is an orbitsphere of mass and charge held in positive curvature
by photons trapped inside of the orbitsphere.  This model explains the
experimental result that half of the angular momentum of each nucleon
is associated with the quarks and half is associated with the gluons.
Fundamental particles and photons each carry   h  of angular momentum.
The experimental radius of a proton is 1.3 X 10−15

 m .
r p = 1.3 X 10−15

 m (28.1)
The Compton wavelength of the proton, C, p , is

C, p =
h

mpc
=1.3214 X 10−15

 m (28.2)

Substitution of Eq. (1.162) and using Eq. (1.168) yields

C, p =
2 ao me

−1mP

= 1.3214 X 10−15
 m (28.3)

It appears that C, p = r p .  To test this assumption we proceed as follows.
We know that a proton is comprised of three quarks and three gluons
("trappe 29.2  The Neutrinopose to form an orbitsphere of radius rq  such that

r p = rq , and that (28.4)

mP = mq + mg
" = mq

" , (28.5)

where rq  is the radius of the quarks, mq  is the rest mass of the quarks, mg
"

is the relativistic mass of the gluons, and mq
"  is the relativistic mass of

the quarks.  The proton is in the ground state and
2 r1,p = 1, p = 2 C, p (28.6)

The boundary condition for the quarks is

2 rn, q = n,q =
h

mqvnq

= 2 r1,p = 2
h

mpc
= 2 C, p (28.7)

A solution to Eq. (28.7) is vnq = c  and mq =
mP

2
.  When the quark velocity is

the speed of light in the photon frame (gluon frame in this case), the
relativistic factor, , for the lab frame is 2 .  Thus, the mass of the
quarks in the lab frame (the relativistic mass) is
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2 mq = 2  X 
mP

2
= mP = mq

"
(28.8)

Furthermore, the (relativistic) mass of the gluons can be determined.

mg
" = mP − mq = mP 1 −

1

2
 
 

 
 

(28.9)

This is consistent with the experimental result that the gluons [1]
comprise the majority of the mass of the proton.  The radius of the
orbitsphere for vnq = c  is then

  
rn,q = r1,p = C, p =

h

mPc
=

h
mqc

= 2  x 
aome

−1mP

= D C,q (28.10)

where   D c,q  is the Compton wavelength bar for the quarks.  This result is
internally consistent and represents the solution of the boundary value
problem of the rest mass of the proton.

The quark mass/charge functions and the gluon mass/charge
functions must have the same angular dependence.  Thus, the force
balance equation is

mqvn
2

rn

=
Zeff e

2

4 orn
2 =

mqvn
2

r1p

=
Zeff e

2

4 or1p
2 , where (28.11)

  
vn =

h
mq r1p

 (28.12)

The result of the substitution of Eq. (28.12) in Eq. (28.11), r1, p = C, p , and

mq =
mP

2
 is that Zeff = −1

, and n = .  Thus, Zeff , the magnitude of the gluon

field is −1 .  The potential energy of the quarks is then

Vq =
−1e2

4 or1p

=
mp

2
c2 (28.13)

Thus, the total energy of the proton is

E = mqc
2 + mgc

2 =
mp

2
c2 + mP 1 −

1

2
 
 

 
 
c2 = mPc2 (28.14)

The neutron rest mass, mN , the rest mass for the neutron quarks,
the Compton wavelength of the neutron, and the Compton wavelength
bar of the neutron quarks are obtained in a similar fashion.

  
C,n = D c, q =

2 aome
−1mN

= 1.3196 X 10−15
 m = r1,n (28.15)

mq =
mN

2
(28.16)

mg
" = mN − mq = mN 1 −

1

2
 
 

 
 

(28.17)
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QUARK AND GLUON FUNCTIONS
Spherical harmonics are solutions to Laplace’s Equations in

spherical coordinates, and the constant orbitsphere is also a solution.
All matter and energy is a linear combination of these functions.  Thus,
matter is created as an orbitsphere with mass/charge being linear
combinations of spherical harmonics and constant functions.  And,
photons whose electric fields are linear combinations of solutions to
Laplace’s Equation, spherical harmonics and constant angular functions,
can be trapped in the orbitsphere at the creation of matter from energy.
(See the Excited States of the One Electron Atom (Quantization) Section
and Atomic Coulomb Field Collapse--Hydrino Theory--BlackLight Process
Section for the equations of these photons.)  The proton and the
neutron are such hybrids of matter and energy.  The proton and neutron
can each be viewed as being comprised of a linear combination of three
quarks possessing mass and charge and three gluons (photons) which
hold the orbitsphere comprised of three quarks per nucleon in positive
curvature.  The proton orbitsphere is comprised of an up, up, and a
down quark, and the neutron is comprised of a down, down, and an up

quark where the charge of an up quark is +
2

3
e  and the charge of a down

quark is −
1

3
e .  Each quark is associated with its gluon where the quark

mass/charge function has the same angular dependence as the gluon
mass/charge function.

To be consistent with experimentation, we choose a solution that
is a linear combination of the three spherical harmonic functions,
corresponding to  = 1, and three constant orbitspheres.  This resultant
function can be viewed as being comprised of three separate particles.
The three functions are orthogonal, and the corresponding gluon
potentials have the same angular dependence as each other and each
quark where there exists a one to one correspondence between each
quark and each gluon.

The Proton
The proton functions can be viewed as a linear combination of

three fundamental particles, three quarks, of +
2

3
e , +

2

3
e , −

1

3
e .  The

magnitude of Zeff  of the radial gluon electric field for a proton is given by

the solution of Eq. (28.11) as −1 , and r1 =
2 aome

−1mP

.  The unnormalized

quark mass function of a proton is
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mP

2

1

3
(1+ sin sin ) +

1

3
(1+ sin cos ) +

1

3
(1+ cos ) 

 
 
 

(28.18)

The unnormalized charge function of the quarks of a proton is

e
2

3
(1+ sin sin ) +

2

3
(1+ sin cos ) −

1

3
(1+ cos ) 

 
 
 

(28.19)

The gluons comprise three orthogonal elliptical polarized photon
orbitsphere as given in the Equation of the Photon Section.  The gluons
travel with the quarks at v = c  (Eq. (28.7); thus, the gluons provide a
central field.  The potential function of the gluons of a proton is

Φ(r, , ) =
−1e

8 or
2

3

2
(1+ sin sin ) +

3

2
(1+ sin cos ) − 3(1+ cos ) 

 
 
 

(28.20)

The radial electric field of the gluons of a proton is

Er =
− −1e

4 or
3

2 ao

mN

me

−1

3

2
(1+ sin sin ) +

3

2
(1+ sin cos ) −3(1+ cos ) 

 
 
 

(28.21)

The Neutron
The neutron functions can be viewed as a linear combination of

three fundamental particles, three quarks, of  charge +
2

3
e , −

1

3
e , and

−
1

3
e .  The magnitude of Zeff  of the radial gluon electric field for a neutron

is given by the solution of Eq. (28.11) as −1 , and r1 =
2 aome

−1mN

 where mN  is

the rest mass of the neutron.  The unnormalized quark mass function of
a neutron is

mN

2

1

3
(1+ sin sin ) +

1

3
(1+ sin cos ) +

1

3
(1+ cos ) 

 
 
 

(28.22)

The unnormalized charge function of  the quarks of a neutron is

e
2

3
(1+ sin sin ) −

1

3
(1+ sin cos ) −

1

3
(1+ cos ) 

 
 
 

(28.23)

The gluons comprise three orthogonal elliptical polarized photon
orbitsphere as given in the Equation of the Photon Section.  The gluons
travel with the quarks at v = c  (Eq. (28.15); thus, the gluons provide a
central field  The potential function of the gluons of a neutron is

Φ(r, , ) =
−1e

8 or
2

2 ao

mN

me

−1

3

2
(1+ sin sin ) − 3(1+ sin cos ) − 3(1+ cos ) 

 
 
 

(28.24)

The radial electric field of the gluons of a neutron is

Er =
− −1e

4 or
3

2 ao

mN

me

−1

3

2
(1+ sin sin ) − 3(1+ sin cos ) − 3(1+ cos ) 

 
 
 

(28.25)
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MAGNETIC MOMENTS
The time dependent charge distributions of the proton and the

neutron give rise to quadrapole moments and magnetic moments.  It is
demonstrated in the derivations of the magnetic moments that follow,
that the magnetic moment of the proton is purely orbital, the magnetic
moment of the neutron is spin and orbital, and only about 30 percent

(
2

2
) of the proton's and neutron's spin is found among the quarks

based on their contribution to the angular momentum and their
contribution to the nucleon mass.  The remainder is due to the gluons
wherein their angular momentum is given by Eq. (28.31).  The predicted
parameters are consistent with the experimental evidence [1,2].

Proton Magnetic Moment
The proton is comprised of three orthogonal mass functions-

spherical harmonics with  = 1; these are the quarks.  In addition, the
proton is comprised of three "trapped orthogonal photons", called
gluons, of the same angular dependence as the quarks. Each gluon is in
phase with a quark.

The combination of a quark and its associated gluon is hereafter
referred to as a quark/gluon.  The projection of the quark/gluon
angular momentum onto the z-axis is given by the sum of the
independent projections.  The angular momentum of the photon is   h ,
and the proton is generated from a photon as demonstrated in the
Neutron and Proton Production Section.  Thus, the sum of the magnitude
of the angular momenta of the three quark/gluons is   h , and the

magnitude of the angular momentum of each quark/gluons is 
  
h
3

.  As

demonstrated in the Orbital and Spin Splitting Section, the z component
of the angular momentum of an excited state electron orbitsphere
corresponding to a multipole of order (  l , m) is

  Lz = mh (28.26)
Thus, the z projection of the angular momentum of a quark/gluon

corresponding to   ml = ±1 is 
  
±

h
3

.  In the case that the two orthogonal up

quark/gluons each of charge +
2

3
 are in the xy-plane with   ml = 1 and the

down quark/gluon of charge −
1

3
 is along the z-axis, the magnetic

moment is aligned along the z-axis.  The magnetic moment is defined [3]
as
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=
charge X angular momentum

2 X mass
(28.27)

The down quark/gluon corresponding to quantum number   ml = 0 has no
magnetic projection on the z-axis.  From Eq. (28.7), the mass of the

quark function which describes the three quarks is 
mP

2
 and the charge of

each up quark/gluon is +
2

3
e .  The angular momentum of Eq. (28.27) for

the proton is the sum of the z projections of the two up quark/gluons.

  
Lz =

1

3
h +

1

3
h =

2

3
h (28.28)

Therefore,

  

proton =

2

3
e

2

3
h

2
mP

2

=
4

9
2

eh
2mP

= 2.79253 N (28.29)

where N  is the nuclear magneton 
  

eh
2mp

.  The experimental magnetic

moment of the proton is 2.79268 N .

Neutron Magnetic Moment
The neutron is unstable and undergoes beta decay with a half-life

of 12 minutes.  Thus, the neutron can be viewed as the sum of an
electron, a proton, and the beta decay energy.  (The calculation of the
energy of beta decay of a neutron is given below.)  The magnetic
moment of a neutron can be calculated as the sum of the following:
− N , the magnetic moment of a constant orbitsphere of charge −e  and

mass mN , which corresponds to the beta particle, 
4

9
2 N , the magnetic

moment of a proton, and the magnetic moment associated with
changing an up quark/gluon to a down quark/gluon [See Quark and
Gluon Functions of the Proton and Neutron Section].  The contribution
due to the transformation of an up quark/gluon to a down quark/gluon
is determined as follows:

The fractional change in the quark functions equals the fractional
change in the gluon function.

3 / 2

3 + 3 + 3 / 2
=

1

5
(28.30)

Substitution of the equation for the time-averaged angular-momentum
density, m , of a photon (Eq. (4.1)

m =
1

8
Re r × (E × B*)[ ] (28.31)

into the vector identity
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A × B ×C( ) = B A ⋅C( ) − C A ⋅ B( ) (28.32)
gives

m =
1

8
Re E r ⋅ B*( ) − E r ⋅E( )[ ] (28.33)

The first term of Eq. (28.33) is zero, and the electric field is radial.
Thus,

m =
1

8
Re −E r ⋅E( )[ ] = −

1

8
Re −r E ⋅ E( )[ ] (28.34)

The gluon is a photon that is phase-matched to a quark.  The
quark/gluon is analogous to the case of an absorbed photon and the
corresponding electron in an excited state as described in the Excited
States of the One Electron Atom (Quantization) Section.  From Eq.
(28.27), Eq. (28.30), and Eq. (28.34), the contribution to the change in
the magnetic moment of the nucleon from the quark/gluon function is
proportional to the dot product of the change in the electric field of the
quark/gluon,

1

5
⋅
1

5
=

1

25
(28.35)

The contribution to the change in the nucleon magnetic moment from a
quark/gluon with  = 1 is a factor of three times greater than that of a
constant angular distribution of mass (  = 0).  The integral of the dot
product of the modulation functions (spherical harmonic functions) of
each quark/gluon function with itself over all space for all three
orthogonal quark/gluons is one, and the integral of the modulation
function of the mass of each quark/gluon over the nucleon is zero.  The
change of an up quark/gluon to a down quark/gluon involves one of the
three where  = 1.  With the mass of parameter of Eq. (28.27) equal to
one third the mass of the nucleon, the contribution to the change in the
magnetic moment due to the transformation of an up quark/gluon to a
down quark/gluon is

3 X 
1

25
 X N (28.36)

The sum of the three components, the magnetic moment of the neutron,
n , is

n = 1 −
4

9
2 −

3

25
 
 

 
 N = −1.91253 N (28.37)

The direction of the positive z-axis is taken as the spin part of the
magnetic moment.  The experimental magnetic moment of the neutron
is −1.91315 N .

NEUTRON and PROTON PRODUCTION
Eq. (23.43) equates the proper and coordinate times in the special
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case that the velocity of the transition state orbitsphere in the
coordinate frame is the speed of light.  In this case, the mass of the
particle is given by defining a standard ruler for time in the coordinate
frame whereby the mass of the particle must be experimental measured
with the same time ruler as part of a consistent system of units.  In the
case that MKS units are used, the coordinate time is defined as the
second, the permeability of free space is defined as 0 = 4  X 10−7  Hm−1 ,
and the mass of the particle is given in kilograms.  The production of a
real particles from a transition state orbitsphere is a space-like event in
terms of special relativity wherein  spacetime is contracted by the
gravitational radius of the particle during its production as given in the
Gravity Section.  Thus, the coordinate time is imaginary as given by Eq.
(23.43).

The considerations for the production of leptons and baryons are
the same as those for leptons as described in the Leptons Section.
Consider the relativistic corrections of the variables of the relationship
between the proper and coordinate times, Eq. (23.43), for the
production of a neutral particle/antiparticle pair, each comprised of
three quarks and three gluons of equivalent mass.  The charges of each
set of three quarks must sum to zero and the lowest energy nonuniform
spherical harmonics are those corresponding to   = 1 ; thus, the

charges are −
1

3
, −

1

3
, and +

2

3
 for the neutron quarks and +

1

3
, +

1

3
, −

2

3
 for

the antineutron quarks.  The neutron possesses three quarks of total

mass 
mN

2
 (Eq. (28.16)); thus, the mass of each quark is

m1q =
mN

(3)2
(28.38)

The quarks/gluons possess magnetic stored energy.  Concomitant with
the "capture" of the gluons by the quark resonator cavity, the magnetic
flux of the gluons is "captured."  To conserve the total quark angular
momentum,   h , the flux is trapped in quanta of the magnetic quantum of
flux.  The quark/gluon velocity is v = c ; thus, the magnetic stored energy
is mN c2  (Eq. (20.14 and 20.15)) with me  replaced by mN ).  The mass
(energy) released due to magnetic flux "capture" (gluon "capture")
follows from Eq. (1.148).

mass deficit = mN 2
(28.39)

The force corresponding to this mass deficit is the strong nuclear force
(which is calculated for the deuterium nucleus in the Strong Nuclear
Force Section).  Combining Eqs. (28.38) and (28.39) gives the bound
individual quark mass
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m1q =
mN

3

1

2
−

2
 
 

 
 

(28.40)

 The radius of the quark orbitsphere at neutron production and
thereafter is given by Eq. (28.15).  No particles or fields propagate out
from the event radius at the speed of light; thus, the lab frame radius
relativistically corrected relative to the v = c  inertial frame is given by Eq.
(20.13) and Eq. (28.15) as (2 )2 r .  The velocity of the quarks in the
proper frame is v = c  (Proton and Neutron Section); thus, the proper
time is relativistically dilated by a factor of 2 .  Multiplication of the left
side of Eq. (23.43) by 2 ; substitution of the second which is the
definition for the coordinate time in MKS units; substitution of (2 )2 r  for
r ; substitution of the Compton wavelength bar for the radius r  (Eq.
(23.21)), and substitution of Eq. (28.40) for M  into Eq. (23.43) gives the
relationship between the neutron proper time and the coordinate time.

  

2
2 h

mN

3
1

2
−

2
 
 

 
 
c2

= sec
2G

mN

3

1

2
−

2
 
 

 
 

 
  

 
  

2

3c(2 )2 h
(28.41)

The neutron mass in MKS units based on the definition of the coordinate
time in terms of the second is

mN calculated = (3)(2 )
1

1 −
 
 

 
 

2 h

sec c2
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2 2 (3)ch

2G
 
 

 
 

1

4
(28.42)

= 1.6744X10−27
 kg

mNexperimental =1.6749X10−27
 kg

The energy of the neutron can be lowered by neutron decay to a proton
and a beta.  The proton mass calculated from the neutron decay
reaction given in the Weak Nuclear Force: Beta Decay of the Neutron
Section is 1.672648 X 10−27

 kg .  The experimental proton mass is
1.672648 X 10−27

 kg .
Three families of quarks arise from Eq. (23.27) as given in the case

of the leptons in the Leptons Section.
Proton production is given in the Weak Nuclear Force: Beta Decay

of the Neutron Section via Beta decay of the neutron.
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THE WEAK NUCLEAR FORCE: BETA DECAY OF THE NEUTRON

BETA DECAY ENERGY
The nuclear reaction for the beta decay of a neutron is

1n→1H + + e + 0.7835 MeV (29.1)
where e  is the electron antineutrino.  The beta decay energy, E , can be
calculated from conservation of mass/energy

E = En − Ep − Ee (29.2)
where En , Ep , and Ee  are the mass/energy of the neutron, proton, and
electron.  Thus,

Ebeta decay = (mn − mP − me )c2 (29.3)
= 0.7835MeV

The experimental value is 0.7835 MeV .
Neutron decay results in the change of the nuclear moment from that of

a neutron 1 −
4

9
2 −

3

25
 
 

 
 N

 
 

 
  to that of a proton (

4

9
2  N )  where these

terms were determined in the Magnetic Moment Section.  The beta
decay energy can be calculated from the magnetic, electric, and kinetic
energy transformations which occur during the decay.  The energy
components are the sum of the following:

• the release of Emag , the magnetic energy stored in one N

corresponding to the emitted Beta particle-following Beta
decay, the Beta particle no longer contains the magnetic
fields of the gluons at a radius of

2 a0

m p

me

−1
= r1 , the radius of the proton;

• minus Emag (gluon), the energy to change the gluon field
corresponding to a down quark to that corresponding to an
up quark;

• minus Eele , the electric energy stored in the electric field of
the proton;

• plus T , the initial kinetic energy of the electron at r1 =
2 a0

m p

me

−1
.

The magnitude of the beta decay contributions are

Emag = mPc
2

2
= 1.09 X 106

 eV ( Eq.(30.27)) (29.4)

  

T =
1

2
mv2 =

1

2

meh
2

mP

2
 
 

 
 

2

r1
2

= 2.553 X 105
 eV  with (Eq. (1.47)) (29.5)
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Eele =
e2

8 or1

= 5.46 X 105
 eV ( Eq.(1.176)) (29.6)

Emag(gluon) =
3

25
 
 

 
 

2

Emag =15.7 X 103  eV (29.7)

where the change in the magnetic moment contribution of quark/gluon

function is 
3

25
 (Eq. (28.36)) and the change in the energy stored in the

magnetic field is proportional to the change magnetic moment squared
(Eq. (1.122)).  Thus, the sum is

E = Emag − Emag(gluon) − Eele + T (29.8)

E = 1.09 X 106  −  15.7 X 103  −  5.46 X 105 + 2.553 X 105

E = 0.7836 MeV

The weak force is the negative gradient of the weak energy.

NEUTRINOS
Furthermore, to conserve energy and linear and angular

momentum an electron antineutrino, e , is emitted with the beta
particle.  The antineutrino is a unique elliptically polarized photon that
has handedness (the neutrino and antineutrino have opposite
handedness), zero rest mass, and travels at the speed c .  Consider the
photon orbitsphere given in the Equation of the Photon Section.  It may
comprise magnetic and electric field lines that are constant in magnitude
as a function of angle over the surface.  Or, the magnitude may vary as a
function of angular position ( , ) on the orbitsphere which corresponds
to an elliptically polarized photon.  The general photon equation for the
electric field is

  
E , =

e

4 orn
2 −1 +

1

n
Y0

0 ,( ) + Re Yl
m ,( ) 1 + ei nt[ ]{ }[ ] 

 
 
 r −

2

 
 

 
 ; n = 0 for m = 0 (29.9)

where rn  is the radius of the photon orbitsphere which is equal to ∆naH ,
the change in electron orbitsphere radius given by Eq. (2.21),  is the
photon wavelength which is equal to ∆ , the change in orbitsphere de

Broglie wavelength given by Eqs. (2.21), (1.54), and (1.46), and =
2 c

is the photon angular velocity which is equal to ∆ , the change in
orbitsphere angular velocity given by Eqs. (2.21).  The magnetic field
photon orbitsphere is given by Eqs. (4.14) and (4.2).  The nature of the
unique elliptically polarized photon orbitsphere which is the
antineutrino (neutrino) is determined by the nature of quark/gluon
functions and the change in the quark/gluon angular harmonic functions
during the transition from a neutron to a proton (proton to a neutron)
with the emission of a beta particle (positron).  A free quark or a free
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gluon is not a stable state of matter, and both are precluded from
existence in isolation.  Quarks and gluons can only exist in pairs, each
comprising a quark and a gluon.  In the case of beta decay, a down
quark/gluon is converted to an up quark/gluon.  Energy and linear
momentum are conserved by the emission of an electron antineutrino,

e , with the beta particle where the maximum energy of the antineutrino
is that of the mass deficit.  To conserve angular momentum, the electric
field, E , of the electron antineutrino has an angular dependence given
by a harmonic function squared corresponding to the change between
the initial and final quark/gluon functions where the electric field of
each gluon and its corresponding quark are radial and Eq. (28.34)
applies.

  

E ∝ Re Yl
m ,( )( )2

1+ e i nt( ){ } r −
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    ∝ cos2 Re 1 + ei nt( ) r −
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 =

1

2
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 Re 1 + ei nt( ) r −

2

 
 

 
 

(29.10)

where   l = 1 and the power is given by Eq. (4.15).  In contrast, the electric
field of a photon corresponding to electronic transitions (Eq. (29.9) is
given by the sum of a constant function plus a spherical harmonic
modulation function which averages to zero over a period.  The angular

momentum of an antineutrino (neutrino) is 
  
−

h
2

 (
  
h
2

); whereas, that of a

photon corresponding to an electronic transition is   ±h.  Due to its
unusual angular momentum, the antineutrino and neutrino interact
extremely weakly with matter.  Essentially, it only has a finite cross-
section for processes which involve transitions of two fundamental
particles simultaneously.  Such cases include beta decay, inverse beta
decay, and the hydrino decay reaction (Eq. (23.173))

e+
1H

aH

n
 
 

 
 

→ + e (29.11)

where e  is the electron neutrino and e is the electron antineutrino.
There are three classes of neutrinos (antineutrinos) corresponding to
the electron (antielectron), muon (antimuon), and tau (antitau) as
described in the Leptons Section.  In the case of the electron neutrino
and antineutrino, the energy of the electric and magnetic fields given by
Eq. (1.122) and Eq. (1.175), respectively, equals the energy given by the
Planck equation (Eq. (4.8)).  This equivalence does not hold for the
other two types of neutrinos due to Special Relativistic effects that
determine the production conditions with General relativistic effects as
given in the Leptons Section.  Thus, each type of neutrino (antineutrino)
is unique, and they cannot be interconverted or interchanged.
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QUARKS

Only three quark families can be formed from photons
corresponding to the Planck equation energy, the potential energy, and
the magnetic energy, where each is equal to the mass energy (Eq.
(23.27).  As opposed to a continuum of energies, fundamental quark
families arise from photons of only three energies.  The considerations
for the production of baryons are described in the Neutron and Proton
Production Section.  Consider the relativistic corrections of the variables
of the relationship between the proper and coordinate times, Eq.
(23.43), for the production of three types of neutral baryon/antibaryon
pairs, each comprised of three quarks and three gluons.  The charges of
each set of three quarks must sum to zero and the lowest energy
nonuniform spherical harmonics are those corresponding to  = 1 ;

thus, the charges are −
1

3
, −

1

3
, and +

2

3
 for the baryon quarks and +

1

3
, +

1

3
,

−
2

3
 for the antibaryon quarks.  The radius of the quark orbitsphere at

baryon production and thereafter follows from by Eq. (28.15).  The

baryon possesses three quarks of total mass 
mB

2
 (Eq. (28.16)); thus, the

mass of each quark is

m1q =
mB

(3)2
(30.1)

The quarks/gluons possess magnetic stored energy.  Concomitant with
the "capture" of the gluons by the quark resonator cavity, the magnetic
flux of the gluons is "captured."  To conserve the total quark angular
momentum,   h , the flux is trapped in quanta of the magnetic quantum of
flux.  The quark/gluon velocity is v = c ; thus, the magnetic stored energy
is mBc2  (Eq. (20.14) and (20.15)) with me  replaced by mB ).  The mass
(energy) released due to magnetic flux "capture" (gluon "capture")
follows from Eq. (1.148).

mass deficit = mB 2
(30.2)

The force corresponding to this mass deficit is the strong nuclear force
(which is calculated for the deuterium nucleus in the Strong Nuclear
Force Section).  Combining Eqs. (30.1) and (30.2) gives the bound
individual quark mass

m1q =
mB

3

1

2
−

2
 
 

 
 

(30.3)

No particles or fields propagate out from the event radius at the speed
of light; thus, the lab frame radius relativistically corrected relative to
the v = c  inertial frame is given by Eq. (20.13) and Eq. (28.15) as (2 )2 r .
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The velocity of the quarks in the proper frame is v = c  (Proton and
Neutron Section); thus, the proper time is relativistically dilated by a
factor of 2 .
Multiplication of the left side of Eq. (23.43) by 2 ; substitution of the
second which is the definition for the coordinate time in MKS units;
substitution of (2 )2 r  for r ; substitution of the Compton wavelength bar
for the radius r  (Eq. (23.21)) gives the general equation for principal
baryon production as the relationship between the particular neutron
proper time and the coordinate time.
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(30.4)

DOWN-DOWN-UP NEUTRON (ddu)
The down-down-up neutron is comprised of a down, down, and an

up quark where the charge of a down quark is −
1

3
e , and the charge of an

up quark is +
2

3
e .  The mass of the down-down-up neutron corresponds

to the Planck equation energy given by Eq. (23.28).  Substitution of Eq.
(30.3) for M  into Eq. (30.4) gives the relationship between the down-
down-up neutron proper time and the coordinate time.
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(30.5)

The neutron mass in MKS units is

mddu  calculated = (3)(2 )
1

1 −
 
 

 
 

2 h

sec c2
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4
(30.6)

mddu  calculated =1.6744 X 10−27
 kg (30.7)

mddu experimental =1.6749 X 10−27
 kg (30.8)

STRANGE-STRANGE-CHARMED NEUTRON (ssc)
The strange-strange-charmed neutron is comprised of a strange,

strange, and a charmed quark where the charge of a strange quark is

−
1

3
e , and the charge of an charmed quark is +

2

3
e .  Given that the down-

down-up neutron is a solution to Eq. (30.4), other solutions follow from
this solution and the other energy solutions.

Consider the case of the potential energy.  Given that the down-
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down-up neutron is "allowed" by the Planck energy equation (Eq.
(23.28)) and that the proper time is given by General Relativity (Eq.
(23.38)), the strange-strange-charmed neutron mass can be calculated
from the potential energy, V , (Eq. (23.27)) and the proper time relative
to the down-down-up neutron inertial frame.  Baryons comprised of
charmed and strange quarks (antiquarks) decay to baryons of up and
down quarks (antiquarks) and may be considered a transient resonance
which decays to the stable baryons, the neutron or proton (antineutron
or antiproton).  For the lab inertial frame, the relativistic correction of
the radius of the transition state orbitsphere given by the potential
energy equations (Eq. (20.10) and (20.11)) is −2 .  For the down-down-
up neutron inertial frame, the relativistic correction relative to the
proper frame is the inverse, 2 .  Furthermore, the potential energy
equation gives an electrostatic energy; thus, the down-down-up neutron
inertial time must be corrected by the relativistic factor of 2  relative to
the proper time.  Multiplication of the right side of Eq. (30.4) by 2  and
substitution of mddu, the mass of the down-down-up neutron, for M  into
Eq. (30.4) gives the relationship between the proper time and the down-
down-up neutron coordinate time.
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The strange-strange-charmed neutron mass in MKS units is

mssc calculated = (3)(2 )
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(30.10)

mssc calculated = 4.90 X10−27
 kg = 2.75 GeV / c2 (30.11)

The observed mass of the Ω−  hyperon that contains three strange quarks
(sss) is [1].

mΩ− = 1673 MeV / c2 (30.12)
Thus, an estimate for the dynamical mass of the strange quark, ms , is

ms =
m

Ω−

3
=

1673 MeV / c2

3
= 558 MeV / c2 (30.13)

The dynamical mass of the charmed quark, mc , has been determined by
fitting quarkonia spectra; and from the observed masses of the charmed
pseudoscalar mesons D0 1865( ) and D+ 1869( )  [2].

mc = 1.580 GeV / c2 (30.14)
Thus,

mssc exp erimental = 2ms + mc = 2(558 MeV / c2 ) +1673 MeV / c2 (30.15)
mssc exp erimental = 2.79 GeV / c2 (30.16)
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Eqs. (30.11) and (30.16) are in agreement.
BOTTOM-BOTTOM-TOP NEUTRON (bbt)

The bottom-bottom-top neutron is comprised of a bottom,

bottom, and a top quark where the charge of a bottom quark is −
1

3
e ,

and the charge of a top quark is +
2

3
e .  Given that the down-down-up

neutron is a solution to Eq. (30.4), other solutions follow from this
solution and the other energy solutions.

Consider the case of the magnetic energy.  Given that the down-
down-up neutron is "allowed" by the Planck energy equation (Eq.
(23.28)) and that the proper time is given by General Relativity (Eq.
(23.38)), the bottom-bottom-top neutron mass can be calculated from
the magnetic energy (Eq. (23.27)) and the proper time relative to the
down-down-up neutron inertial frame.  As given in the Proton and
Neutron Section for the neutron and proton, the bottom-bottom-top
neutron and the antibottom-bottom-top neutron radius, r , is given by
the Compton wavelength.

r = C,bbt =
h

mbbt c
(30.17)

Furthermore, the transition state comprises two magnetic moments.  For
v = c , the magnetic energy equals the potential energy equals the Planck
equation energy equals mc2 .  The magnetic energy is given by the square
of the magnetic field as given by Eqs. (1.122-1.129).  The magnetic
energy corresponding to particle production is given by Eq. (23.32).
Because two magnetic moments are produced, the magnetic energy (and
corresponding photon frequency) in the proper frame is two times that
of the down-down-up neutron frame.  Thus, the down-down-up neutron
time is corrected by a factor of two relative to the proper time.  Both
the bottom-bottom-top neutron and the antibottom-bottom-top neutron
exit the production event in opposite directions with the radius given by
Eq. (30.17).  Whereas, in the case of tau-antitau production given in the
Leptons Section, the radius of the lepton and antilepton increased
symmetrically to produce lepton plane waves at infinity relative to each
other.  Thus, in the lab frame, the mass of the bottom-bottom-top
neutron is not corrected by (2 )2 , and the bottom-bottom-top neutron
mass is given by the center of mass for the two baryonic magnetic
dipoles.

mbbt(center of mass) =
mbbt

2
(30.18)

Furthermore, for the lab inertial frame, the relativistic correction of the
radius of the transition state orbitsphere given by the magnetic energy
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equations (Eq. (20.14) and (20.15)) is 
1

4 .  For the down-down-up

neutron inertial frame, the relativistic correction relative to the proper
frame is the inverse, 4 .  Multiplication of the right side of Eq. (23.43)
by 2 ; substitution of mddu, the mass of the down-down-up neutron, for M

and substitution of 4r , the relativistically corrected radius for r  which
is multiplied by a factor of two as the correction of the radius
corresponding to the reduced bottom-bottom-top neutron mass into Eq.
(30.4) gives the relationship between the proper time and the down-
down-up neutron coordinate time.
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The bottom-bottom-top neutron mass in MKS units is

mbbt  calculated = (3)(2 )
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(30.20)

mbbt  calculated = 3.48 X 10−25
 kg = 195 GeV / c2

The dynamical mass of the bottom quark, mb, has been determined by
fitting quarkonia spectra; and from the observed masses of the bottom
pseudoscalar mesons B0 5275( ) and B+ 5271( ) [2].

mb = 4.580 GeV / c2 (30.21)
Thus, the predicted dynamical mass of the top quark based on the
dynamical mass of the bottom quark is

mt calculated = mbbt  calculated − 2mb =195 GeV / c2 − 2(4.580 GeV / c2 ) (30.22)
mt calculated = 186 GeV / c2

Recently, two independent groups have reported the experimental mass
of the top quark [3].  From about 21 top quark events, the CDF
collaboration calculates the mass of the top quark as 176 ±13 GeV / c2 .
From about 17 top quark events, the D0 collaboration calculates the
mass of the top quark as 199 ± 30 GeV / c2 .

All other hadrons are given as linear combinations of the fundamental
quarks.
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THE STRONG NUCLEAR FORCE

The Deuterium Nucleus.
The deuterium nucleus is a minimum energy superposition of a

neutron and a proton.  Thus, the deuterium quark/gluon function is a
spherical coordinate orbitsphere solution of Laplace's equation (Eq.
(1.1)).  The neutron is electrically neutral; thus, no electric term arises
in the energy calculation.  The neutron and proton quarks of the same
kind or flavor are indistinguishable and superimpose to form the
deuterium orbitsphere.  The gluon electric and magnetic fields of each
nucleon superimpose with conservation of stored electric energy density
(Eq. (1.175)) and stored magnetic energy density (Eq. (1.122));
however, gluon mass/energy is released as the proton and neutron gluon
fields superimpose to provide the central field of the deuterium
orbitsphere comprising the linear combination of quarks from both
nucleons.  The quark/gluons possess magnetic stored energy.
Concomitant with the superposition of the neutron with the proton, the
quark resonator cavity of the proton traps the magnetic flux of the
neutron gluons, and the neutron quark resonator cavity captures the
flux of the proton gluons.  To conserve the total quark angular
momentum of each nucleon,   h , the flux is trapped in quanta of the
quantum of magnetic flux.  As shown in the Quark and Gluon Functions
of the Proton and Neutron Section, the quark/gluon proper velocity is c .
Therefore, the quark/gluon stored magnetic energy is mPc2  and mN c2  for
the proton and the neutron, respectively (Eqs. (20.14) and (20.15) with
me  replaced by the nucleon mass).  The energy released due to the
magnetic flux capture, the deuterium binding energy ( EBinding), follows
from Eq. (1.148).

EBinding =
2

mP +
2

mN

 
 

 
 c

2 (31.1)

EBinding = mP + mN( )
2

c2 (31.2)

The calculated mass of deuterium is

Mass = mP + mN( ) 1 −
2

 
 

 
 = 2.0141 AMU (31.3)

The experimental mass of deuterium is 2.0140 AMU .
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K-CAPTURE

Nuclear transition probabilities are derived by Jackson [1].
Formula 16.104 of Jackson applies for K capture where |Qlm + Qlm

' |2  and
| Mlm + Mlm

' |2  are, respectively, the magnitudes of the electric and magnetic
multipole moments between the electron and the nucleus which
correspond to equivalent multipole components of the two dimensional
charge-density functions of the electron and the nucleus.
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ALPHA DECAY

ELECTRON TRANSMISSION AND REFLECTION AT A POTENTIAL
ENERGY STEP [1]

The electron in free space has its charge-density in a two
dimensional plane as given in the Electron in Free Space Section.
Electron transition and reflection can be modeled as a plane wave at a
potential energy barrier.  An electron of total energy E  is incident at an
angle i  upon a potential energy barrier of height VB  as shown in Figure
33.1.  The incident and transmitted electron wave vectors are shown in
Figure 33.2a.

Figure 33.1.  An electron plane wave of wave vector ki  incident at an
angle i  upon a potential barrier of height VB .
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Figure 33.2.  Electron wave-vector components parallel (y) and
perpendicular (x) to the potential barrier for (a) incident and
transmitted electron plane waves and (b) incident and reflected electron
plane waves.

The kinetic energy of an incident electron (region 1) is

  E = h2 / 2m1
*( ) k ix

2 + kiy
2( ) = h2 / 2m1

*( )ki
2, (33.1)

where, m*  is the electron effective mass, kix  and kiy  are the components
of the incident electron wave vector normal and parallel to the
boundary, respectively, and ki , is the magnitude of the incident electron
wave vector which is given by

  ki = 2m1
*E( )1/2

/ h (33.2)
The incident and reflected electron wave vectors are shown in Figure
33.2b.  The kinetic energy of a transmitted electron (region 2) is

E − VB = h2 / 2m2
*( ) ktx

2 + kty
2( ) = h2 / 2m2

*( )kt
2 ,

(33.3)

where k tx  and k ty are the components of the transmitted electron wave
vector normal and parallel to the boundary, respectively, and k t is the
magnitude of the transmitted wave vector which is given by

  k t = 2m2
* E − VB( )[ ]1/2

/ h (33.4)
The phase of the transmitted electron along the boundary must be
identical to that of the incident electron wave.  This requirement of the
continuity of the instantaneous phase at a boundary is commonly
referred to as "phase matching."  For the transmitted electron wave, the
component of the wave parallel to the boundary is

k ty = kiy (33.5)
The transmitted wave vector normal to the boundary can be obtained by
combining Eqs. (33.2), (33.4), and (33.5).  The result is



© 2000 by BlackLight Power, Inc.  All rights reserved.
484

  
k tx = m2

* / m1
*( ) kix

2 + kiy
2( ) − kiv

2 − 2m2
* / h2( )VB[ ]1/2

(33.6)

The kinetic energy of the reflected electron wave (region 1) is

  E = h2 / 2m1
*( ) krx

2 + kry
2( ) = h2 / 2m1

*( )kr
2 , (33.7)

where krx and kry are the components of the reflected electron wave
vector normal and parallel to the boundary, respectively, and kr , is the
magnitude of the reflected wave vector which is given by

  kr = 2m1
*E( )1/2

/ h (33.8)
The requirement that the reflected wave also be phase matched to the
incident wave means that

kry = k iy (33.9)
Since the kinetic energy of a reflected electron is the same as that of an
incident electron, then

krx = −kix , (33.10)
and thus implies the angle of reflection, r , is equal to the angle of
incidence, i .  That is

r = i (33.11)
Equation (33.5) represents the equivalent of Snell's law for electrons.  It
can be rewritten as

k t sin t = ki sin i (33.12)
In terms of the electron energies, Eq. (33.5) becomes

sin t

sin i

=
ki

kt

=
m1

*E

m2
* E −VB( )

 

 
  

 
 

1/2

(33.13)

For isotropic materials, the electron allowed wave-vector surfaces
are spheres.  For an electron wave obliquely incident upon an infinitely
thick potential barrier as shown in Figure 33.1, the allowed wave-vector
surfaces may be depicted as shown in Figure 33.3.



© 2000 by BlackLight Power, Inc.  All rights reserved.
485

Figure 33.3.  Allowed wave-vector surfaces for the incident and reflected
electron plane wave vectors and for the transmitted plane wave vector.

In general the radius of the allowed wave vector surface is

  k = 2m* E − V( )[ ]1/2
/ h, (33.14)

where E − V  is the kinetic energy of the electron.  The onset of total
internal reflection occurs when t = 90° .  This happens when the angle of
incidence is equal to the critical angle, ic .  Thus from Eq. (33.13), the
critical angle is

ic ={0 for E −VB ≤ 0

sin−1 m2
* E − VB

 
  

 
  / m1

*E
 

 
 
 

 

 
 
 

1/2

for E − VB > 0
(33.15)

For an electron wave incident at an angle greater than ic , the wave is
totally internally reflected for an infinitely thick barrier.  At steady state,
all of the electron current is reflected back into region 1.  The electron
wave function decays exponentially into region 2.  If the kinetic energy
E − VB ≤ 0 , then total internal reflection occurs for any angle of incidence
including normal incidence.  This is in contrast to the electromagnetic
case where total internal reflection can never occur at normal incidence
due to the nonzero value of the minimum (free-space) wave-vector
magnitude.
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TRANSMISSION OUT OF A NUCLEUS - ALPHA DECAY [2]
The equation for the propagation of the electron in free space, a

two dimensional plane, is given by the plane wave equation Eq. (3.1):

E = E0e
−ikz z (33.16)

In the case where electrons of kinetic energy K  are incident on a
rectangular potential barrier whose height VB  is greater than K .  V  is
substituted for VB  and K  is substituted for E  and the wave vector given
by Eq. (33.4) becomes imaginary.  An approximate value of T , the
transmission probability - the ratio between the number of electrons
that pass through the barrier and the number that arrive is given by

T =
E

E0

 

  
 

  

2

(33.17)

From Eqs. (33.4), (33.16), and (33.17) the transmission probability is
T = e−2k 2L (33.18)

where

  
k2 =

2m V − K( )
h

(33.19)

and L  is the width of the barrier.  Eqs. (33.18) and (33.19) were derived
for electrons.  However, protons and neutrons are also two dimensional
in nature, and alpha particles are comprised of protons and neutrons.
Thus, the model applies to alpha particles.  Furthermore, Eqs. (33.18)
and (33.19) were derived for electrons incident on a rectangular
potential barrier; whereas, an alpha particle inside a nucleus is faced
with a barrier of varying height, as shown in Figure 33.4.

Figure 33.4.  The potential energy of an alpha particle as a function of its
distance from the center of the nucleus.
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Eqs. (33.18) and (33.19) can be adapted to the case of a nuclear alpha
particle.  The first step is to rewrite Eqs. (33.18) and (33.19) in the form

ln T = −2k2 L (33.20)
and then express them as the integral

ln T = −2 k2 x( )dx
0

L

∫ = −2 k2 x( )dx
R0

R

∫ (33.21)

where Ro  is the radius of the nucleus and R  is the distance from its
center at which V = K .  The kinetic energy K  is greater than the potential
energy V  for x > R; so, if it can get past R , the alpha particle will have
permanently escaped from the nucleus.

The electrical potential energy of an alpha particle at the distance
x from the center of a nucleus of charge Ze is given by

V x( ) =
2Ze2

4π 0 x
(33.22)

Here Ze is the nuclear charge minus the alpha-particle charge of 2e ;
thus, Z  is the atomic number of the daughter nucleus.

We therefore have

  
k2 =

2m V − K( )
h

=
2m

h2

 
 

 
 

1/2 2Ze2

4π 0x
− K

 
 
  

 
 

1/2

(33.23)

Since V = K  when x = R ,

K =
2Ze2

4π 0 R
(33.24)

and we can express k2  in the form

  
k2 =

2mK

h2

 
 

 
 

1/2 R

x
−1

 
 

 
 

1/2

(33.25)

Hence

ln T = −2 k2 x( )dx
R0

R

∫ (33.26)

  

= −2
2mK

h2

 
 

 
 

1/2 R

x
−1 

 
 
 

1/2

dx
R0

R

∫

= −2
2mK

h2

 
 

 
 

1/2

R cos−1 R0

R
 
 

 
 

1/2

−
R0

R
 
 

 
 

1/2

1 −
R0

R
 
 

 
 

1/2 

  
 

  

(33.27)

Because the potential barrier is relatively wide, R >> Ro , and

cos−1 R0

R
 
 

 
 

1/2

≈ π
2

− R0

R
 
 

 
 

1/2

1 − R0

R
 
 

 
 

1/2

≈1

(33.28)

with the result that
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ln T = −2

2mK

h2

 
 

 
 

1/2

R
π
2

− 2
Ro

R
 
 

 
 

1/2 

  
 

  (33.29)

From the Eq. (33.24)

R =
2Ze2

4π 0 K
(33.30)

and so

  
ln T =

4e

h
m

π 0

 
 
  

 
 

1/2

Z1/2R0
1/2 −

e2

h 0

m

2
 
 

 
 

1/2

ZK −1/2 (33.31)

The result of evaluating the various constants in Eq. (33.31) is
ln T = 2.97 Z1/2R0

1/2 − 3.95ZK −1/ 2 (33.32)
where K  (alpha-particle kinetic energy) is expressed in MeV, Ro  (the
nuclear radius) is expressed in fermis (1 fm = 10−15

 m ), and Z  is the atomic
number of the nucleus minus the alpha particle.  The decay probability
per unit time, , can be expressed as the product of the number of
times per second, υ, that an alpha particle within the nucleus strikes the
potential barrier and the probability, T, that a particle will be
transmitted through the barrier.  And, υ can be expressed as the alpha
particle velocity divided by the nuclear distance.  Thus, the decay
constant, , is given by

= T =
v

2R0

T (33.33)

Taking the natural logarithm of both sides and substituting for the
transmission probability ,T, gives

ln = ln
v

2R0

 
 
  

 
 + 2.97 Z1/2R0

1/2 − 3.95ZK −1/2 (33.34)

To express Eq. (33.34) in terms of common logarithms, we note that

ln A =
log10 A

log10 e
=

log10 A

0.4343
(33.35)

and so

log10 = log10

v

2R0

 
 
  

 
 + 0.4343(2.97Z1/2 R0

1/2 − 3.95ZK −1/2 ) (33.36)

Alpha decay constant = log10

v

2R0

 
 
  

 
 +1.29Z1/2R0

1/2 −1.72ZK −1/2 (33.37)

Figure 33.5 is a plot of log10  versus ZK −1/2  for a number of alpha-
radioactive nuclides.



© 2000 by BlackLight Power, Inc.  All rights reserved.
489

Figure 33.5.  Plot of log10  versus ZK −1/2  for a number of alpha-radioactive
nuclides.

The straight line fitted to the experimental data has the -1.72 slope
predicted throughout the entire range of decay constants which is in
excellent agreement with the experimental data.  We can use the
position of the line to determine Ro , the nuclear radius.  The result
agrees with the results obtained from nuclear scattering experiments.
This approach thus constitutes an independent means of determining
nuclear sizes.
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MÖSSBAUER PHENOMENON

The gluon field of proton or a neutron can transform to another
solution of Laplace’s Equation by the absorption of a gamma ray which
becomes trapped inside the resonator cavity of the orbitsphere
comprising the nucleon.  This is the Mössbauer Effect.  The nuclear size
may increase or decrease depending on the effect of the excitation on
the strong nuclear force via the absorbed photon field superposing with
the gluon field affecting a change in the energy.
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THE SCHRÖDINGER WAVEFUNCTION IN VIOLATION OF
MAXWELL'S EQUATIONS

The Schrödinger equation implicitly postulates time harmonic
motion of the spatial charge function of the electron.  A wave equation
was assumed, and the time harmonic motion was eliminated by
Schrödinger [1] by substituting de Broglie waves, kinetic and potential
energy relationships, and the equation,

 v = f (35.1)
The solution to the Schrödinger equation is a wave function (x).  An
interpretation of (x) is required.  Schrödinger postulated that (x)
represents the amplitude of the particle in some sense, and because the
intensity of a wave is the square of the amplitude the "intensity of the
particle" is proportional to *( x) (x)  [ *( x)  is the complex conjugate of

(x)].  A controversy arose over the meaning of intensity.  Schrödinger
considered e *(x ) (x)  to be the charge-density or e *(x ) (x)  to be the
amount of charge between x  and x + dx .  Thus, he presumed the electron
to be spread all over the region.  The electron has kinetic energy and
angular momentum and energy must be conserved; thus, the motion of
an electron must be time harmonic.  It is demonstrated in the One
Electron Atom Section that emission of electromagnetic radiation occurs
if the spacetime Fourier transform possesses waves that are synchronous
with waves traveling at the speed of light.  It is demonstrated below that
the Schrödinger wave equations have such components; thus, they must
radiate.  That no radiation is observed demonstrates the invalidity of
these equations as an accurate description of an electron.

The angular functions of Schrödinger wave equations are spherical
harmonics and their spacetime Fourier transform is given in the One
Electron Atom Section (Spacetime Fourier Transform of the Electron
Function) as the transforms of g( ) , h( ) , and k(t ).  The radial solutions
(solutions which are a function of the radial variable r ) are of the form
of r  raised to a power times a negative exponential of r .  Thus, it is
appropriate to take the spacetime Fourier transform of the general
solution for psi squared times a time harmonic function (which is
proportional to qdr / dt ) and apply Haus' nonradiative condition [2].  The
most fundamental solution is chosen for analysis.  Additional powers of
the radial functions would give rise to convolution integrals in Fourier
space and additional terms that do not go to zero.  The same applies to
additional linear terms.  It is only necessary to demonstrate that one

component does not vanish for k =
c

.
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The spacetime Fourier transform of the radial function f (r) = re− r / ao

follows:

With spherical symmetry [3],

G(s) = 4 g(r)sinc(2sr)r 2dr
0

∞

∫ , (35.2)

G(s) = 4 re−r / ao sinc(2sr)r2 dr
0

∞

∫ (35.3)

Using the definition of the function

Sinc x =
sin x

x
(35.4)

Eq. (35.3) becomes,

= 4 r 3e− r / ao
sin2 srdr

sr0

∞

∫ (35.5)

=
4

s
r 2e−r / ao sin2 srdr

0

∞

∫ (35.6)

Let

r =
r'

2
    and     dr =

dr'

2
 (35.7)

G(s) =
1

2s 3 r' 2 exp(
−r'

2 ao

)sin sr' dr'
0

∞

∫ (35.8)

From Bateman [4]:

xne− x sin( xy)dx =
0

∞

∫
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m = 0

n

2

∑ (35.9)

Let

x = r,  s = y, =
1

2 ao

,  n = 2 (35.10)

and apply Eq. (35.9) to Eq. (35.8).

G(s) =
1

2s 3 r' 2 exp(
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2 ao
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(35.11)
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The Fourier Transforms of the angular functions are given by Eqs. (1.35)
and (1.36), and the Fourier transform of the time harmonic function is
given by Eq. (1.37).  By Eq. (1.38), the complete spacetime Fourier
transform of a Schrödinger wave equation, W(s,Θ,Φ, ), is the
convolution of Eqs. (35.11), (1.35), (1.36), and (1.37).

W(s,Θ,Φ, ) =
1

2s 3 2!

1

2 ao

1

2 ao

 
 
  

 
 

2

+ s2
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2 +1

2 !

!
s−2
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∑

⊗2
(−1) −1 sinΦ( )2( −1)

( −1)!
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1

2
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1
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cosΦ( )2 +1 2 +1
2 !

!
s−2

=1

∞

∑
1

4
( − n) + ( + n )[ ]

(35.12)

This transform has components n

c
= k  which are not zero and are

synchronous with waves traveling at the speed of light.  Thus, a charge-
density function given by the Schrödinger wave equation must radiate in
accordance with Maxwell’s Equations.
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CLASSICAL ELECTRON RADIUS

Electron scattering from neutral atoms and the classical electron
radius are tests of the nature of bound electrons as orbitspheres of the
Mills model as opposed to point particles of the Schrödinger-Born
model.

Electron scattering experiments support the nature of bound
electrons as orbitspheres of the Mills model, and the data is inconsistent
with the probability point particle model of Schrödinger and Born.
Consider the case given in the Derivation of Electron Scattering by
Helium Section wherein experimental results by Bromberg [1] were
presented.  Quoting from Bromberg [1], "At smaller angles; however, the
Born approximation calculation fails utterly, the experimental curve
rising much more steeply than the theoretical".  This point is explicitly
demonstrated in Figure 8.4.  In contrast, the closed form function (Eqs.
(8.55) and (8.56)) for the elastic differential cross section for the
elastic scattering of electrons by helium atoms is in agreement with the
data of Bromberg as demonstrated in Figure 8.5.  In principle, Quantum
mechanics cannot adequately describe the results of electron scattering
from neutral atoms or the results of the Davidson-Germer experiment.
An assembly of point particles cannot give rise to neutral scattering in
the absence of the violation of Special Relativity.  Otherwise, an internal
inconsistency arises - namely violation of the Uncertainty Principle.
Rutherford scattering would be predicted from a point particle model.

Furthermore, the radius of the electron according to quantum
mechanics is zero and not the classical electron radius as required
according to Einstein.  The electron must spin in one dimension and give
rise to a Bohr magneton, B ,

  
B =

eh
2me

= 9.274 X 10−24
 JT −1 , (36.1)

The magnetic energy corresponding to the magnetic moment of Eq.
(36.1) is

Emag =
1

2 o H 2r2 sin drd dΦ
0

∞

∫
0
∫

0

2

∫ (36.2)

  
H =

eh
2mer

3 (ir 2cos − i sin )   for  r > rn (36.3)

which in the present case is infinity (by substitution of r = 0  for the
model that the electron is a point particle) not the required mc2 .  This
interpretation is in violation of Special Relativity [2].

Eq. (20.14) of the Pair Production Section gives the magnetic
energy correctly as mc2 .  The "effective" orbitsphere radius to be used to
calculate the cross section for pair production using the electric energy
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of Eq. (20.10) and Eq. (20.11) is the classical electron radius,

  
2ao = Dc = 2.82 X10−13

 cm (CGSunits) (36.4)
               = 2.82 X10−15

 m ( MKS units)

  V = −
−2e2

4 oao

(36.5)

V = mec
2 (36.6)

Based on Eqs. (36.5) and (36.6), , the geometric cross section of the
electron can be derived using the classical electron radius.

=
e2

mec
2

 

  
 

  

2

(36.7)

  = D C[ ]2
(36.8)

From the geometric cross section of the electron, the equation for
radiation scattering follows from the equation for radiation by a
Hertzian dipole

I = Io

8

3
= Io

8

3

e2

mec
2

 

  
 

  

2

 (cgs units) (36.9)

which is the formula proposed by Einstein.
Electron-proton force balance exits and the orbitsphere is

nonradiative.  Mechanics and electrodynamics can both be satisfied
simultaneously to achieve these conditions of force balance with
cancellation of all radiation fields.  Directional antennae arrays are
designed using identical principles of achieving cancellation of desired
radiation fields.  For the electron orbitsphere,

∇2 −
1

v2

2

t2

 
  

 
  (r, , ,t) = 0 (36.10)

And, the Fourier transform of the orbitsphere is zero when,

k 2 −
c

 
 

 
 

2 

  
 

  = 0 (36.11)

In contrast, the electron described by a Schrödinger one-electron wave
function would radiate.  (See The Schrödinger Wavefunction in Violation
of Maxwell’s Equation Section).

Furthermore, the correct prediction of the elastic scattering of
electrons by helium atoms wherein the electron radius is a crucial
parameter (Eq. (8.55)), the results of the Stern-Gerlach experiment, the
results of the Davidson-Germer experiment, as well as the correct
derivation of the electron (fluxon) g factor, the resonant line shape, the
Lamb, Shift, spin-orbital coupling energies, and the excited state
spectrum of hydrogen wherein the correspondence principle holds  are
direct verifications that the electron is an orbitsphere with the
calculated radius.  Quantum mechanics has failings in each of these
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cases.
Two dimensional distributions are common in classical physics.  A

two dimensional discontinuity in surface current gives rise to a magnetic
field; a discontinuity in surface charge gives rise to an electric field.
Ampere's and Gauss's Laws also apply in the present theory with respect
to the electron.  Furthermore, a two dimensional discontinuity in mass
according to the Mills model gives rise to a gravitational field which is
consistent with General Relativity which leads to the correct prediction
of the masses of leptons (Leptons Section), the quarks (Quarks Section),
and the classical electron radius as given in Eq. (20.14) of the Pair
Production Section wherein the magnetic energy is correctly given as
mec

2  as shown previously.
Furthermore, Born postulated that the electron is a one

dimensional delta function -- zero volume and infinite mass.  The
Schrödinger solutions for the hydrogen atom exclude the existence of

energy levels below the "ground" state corresponding to n =
1

integer
 in the

Rydberg formula [3]

= R
1

n f
2 −

1

ni
2

 

 
  

 
 (36.12)

where R = 109,677 cm−1 , n =
1

2
,
1

3
,
1

4
,....,  and ni > n f .  The data given in the

Experimental Section proves that the Schrödinger-Born model is
incorrect because it is clearly inconsistent with the experimental
findings.  The two dimensional function given for a bound electron in
the One Electron Atom Section and for a free electron in the Electron in
Free Space Section is the correct description of the electron.  Also, the
two dimensional function given in the Photon Equation Section is the
correct description for electromagnetic radiation which can give rise to
the electron.  The models of the Mills theory are supported by the close
agreement between experimental observation and theoretical
predictions.
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WAVE-PARTICLE DUALITY

[My father] said, "I understand that they say that light is emitted from an
atom when it goes from one state to another, from an excited state to a state of
lower energy."

I said, "That's right."
"And light is kind of a particle, a photon, I think they call it."
"Yes."
"So if the photon comes out of the atom when it goes from the excited to

the lower state, the photon must have been in the atom in the excited state."
I said, "Well no."
He said, "Well, how do you look at it so you can think of a particle photon

coming out without it having been there in the excited state?"
I thought a few minutes, and I said, "I'm sorry; I don't know.  I can't explain

it to you."
-Richard P. Feynman, The Physics Teacher (September 1969).

Many great physicists rejected Quantum Mechanics.  Feynman also
attempted to use first principles including Maxwell's Equations to
discover new physics to replace quantum mechanics [1].  Other great
physicists of the 20th century searched.  "Einstein [...] insisted [...] that a
more detailed, wholly deterministic theory must underlie the vagaries of
quantum mechanics" [2].  He felt that scientists were misinterpreting the
data.  In fact, this is the case.  Experiments by the early part of the 20th
century had revealed that both light and electrons behave as waves in
certain instances and as particles in others.  This was unanticipated from
preconceptions about the nature of light and the electron.  Early 20th
century theoreticians proclaimed that light and atomic particles have a
wave-particle duality that was unlike anything in our common day
experience.  The wave-particle duality is the central mystery of quantum
mechanics - the one to which all others could ultimately be reduced.
Consider the two-slit experiment.  A gun (obeying classical physics)
sprays bullets towards a target.  Before they reach the target, they must
pass through a screen with two slits.  The pattern they make shows how
their probability of arrival varies from place to place.  They are more
likely to strike directly behind the one slit that they went through as
shown in Figure 37.1.  The pattern happens to be simply the sum of the
patterns for each slit considered separately: if half the bullets were fired
with only the left slit open and then half were fired with just the right
slit open, the result would be the same.
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Figure 37.1.  Two-slit experiment with macroscopic particles.

With waves, however, the result is very different, because of
interference.  If the slits were opened one at a time, the pattern would
resemble the pattern for bullets: two distinct peaks.  But, when the slits
are open at the same time, the waves pass through both slits at once and
interfere with each other: where they are in phase they reinforce each
other; where they are out of phase they cancel each other out as shown
in Figure 37.2.
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Figure 37.2.  Two-slit experiment with waves.

Now the quantum paradox: Electrons, like bullets, strike the target
one at a time.  Yet, like waves, they create an interference pattern as
shown in Figure 37.3.
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Figure 37.3.  Two-slit experiment with electrons.

If each electron passes individually through one slit, with what does it
"interfere"?  Although each electron arrives at the target at a single
place and a single time, it seems that each has passed through - or
somehow felt the presence of both slits at once.  Thus, the electron is
understood in terms of a wave-particle duality as represented in Figure
37.4.
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Figure 37.4.  Interpretation of the two-slit experiment with electrons in
terms of a wave-particle duality to the nature of the electron.

The mistake in the direction of the development of the theory of
light and the atom occurred when theoreticians concluded: The laws of
physics that are valid in the macroworld do not hold true in the
microworld of the atom.  In contrast, Mills' theory is based on the
foundation that the laws of physics that are valid in the macroworld do
hold true in the microworld of the atom.  In the present case, the
predictions which arise from the equations of light and atomic particles
are completely consistent with observation including the wave-particle
duality of light and atomic particles.

Maxwell unified electricity and magnetism by proposing the
existence of electromagnetic waves which travel at the velocity c .  In
1888, Hertz showed that electromagnetic waves exist and behave exactly
as Maxwell had predicted - they had electric and magnetic components,
and they could be reflected, refracted, and diffracted.  Toward the end
of the 19th century, many physicists believed that all of the principles of
physics had been discovered.  The accepted principles, now called
classical physics, included laws relating to Newton’s mechanics, Gibbs'
thermodynamics, LaGrange’s and Hamilton’s elasticity and
hydrodynamics, Maxwell-Boltzmann molecular statistics, and Maxwell’s
Equations.  However, the discovery that the intensity of blackbody
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radiation goes to zero, rather than infinity as predicted by the prevailing
laws of electromagnetism, led theoreticians to question the validity of
Maxwell's Equations on the atomic scale.  In 1900, Planck made the
revolutionary assumption that energy levels were quantized, and that
atoms of the blackbody could emit light energy only in amounts given by
h , where  is the radiation’s frequency and h  is a proportionality
constant (now called Planck’s constant).  This assumption does not
conflict with the notion that light is a wave.  However, Hertz's
experiments with light further revealed that photoelectrons were
emitted from illuminated metals, and the photoelectron energy
increases with the frequency of incident light and not its intensity.
Einstein explained this photoelectron effect by proposing that light of a
given frequency is composed of individual photons whose energy is
proportional to that frequency according to Planck’s relationship1.
Einstein's proposal that light has a particle nature in that it travels
through space as distinct photons2 is opposed to the wave view whereby
light waves spread out from a source, and the energy is spread
continuously throughout the wave pattern.  Thus, light has since been
regarded as both a wave and a particle which exhibits one feature or the
other during observation but never both simultaneously.  Early 20th
century theoreticians proclaimed that light has a wave-particle duality
that was unlike anything in our common day experience [3].

A similar course arose in the development of the model of the
atom.  J. J. Balmer showed, in 1885, that the frequencies for some of the
lines observed in the emission spectrum of atomic hydrogen could be
expressed with a completely empirical relationship.  This approach was
later extended by J. R. Rydberg, who showed that all of the spectral lines
of atomic hydrogen were given by the equation:

= R
1

n f
2 −

1

ni
2

 

 
  

 
  (37.1)

where R = 109,677 cm−1 , n f = 1,2,3,... , ni = 2,3,4,... , and ni > n f .  Niels Bohr, in
1913, developed a theory for atomic hydrogen based on an
unprecedented postulate of stable circular orbits that do not radiate.
Although no explanation was offered for the existence of stability for
these orbits, the results gave energy levels in agreement with Rydberg's

1 In 1900, Planck made the revolutionary assumption that energy levels were
quantized, and that atoms of the blackbody could emit light energy only in
amounts given by h , where  is the radiation’s frequency and h  is a
proportionality constant (now called Planck’s constant).  This assumption also
led to our understanding of the photoelectric effect and ultimately to the
concept of light as a particle called a photon.
2 This view was first proposed by Newton.
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equation.  Bohr's theory was a straightforward application of Newton's
laws of motion and Coulomb's law of electric force - both pillars of
classical physics and is in accord with the experimental observation that
atoms are stable.  However, it is not in accord with electromagnetic
theory - another pillar of classical physics which predicts that
accelerated charges radiate energy in the form of electromagnetic
waves.  An electron pursuing a curved path is accelerated and therefore
should continuously lose energy, spiraling into the nucleus in a fraction
of a second.  The predictions of electromagnetic theory have always
agreed with experiment, yet atoms do not collapse.  To the early 20th
century theoreticians, this contradiction could mean only one thing: The
laws of physics that are valid in the macroworld do not hold true in the
microworld of the atom.  In 1923, de Broglie suggested that the motion

of an electron has a wave aspect— =
h

p
.  This concept seemed unlikely

according to the familiar properties of electrons such as charge, mass
and adherence to the laws of particle mechanics.  But, the wave nature
of the electron was confirmed by Davisson and Germer in 1927 by
observing diffraction effects when electrons were reflected from metals.
Schrödinger reasoned that if electrons have wave properties, there must
be a wave equation that governs their motion.  And in 1926, he
proposed the Schrödinger equation, HΨ = EΨ , where Ψ  is the wave
function, H  is the wave operator, and E  is the energy of the wave.  This
equation, and its associated postulates, is now the basis of quantum
mechanics, and it is the basis for the world view that the atomic realm
including the electron and photon cannot be described in terms of
"pure" wave and "pure" particle but in terms of a wave-particle duality.
The wave-particle duality based on the fundamental principle that
physics on an atomic scale is very different from physics on a
macroscopic scale is central to present day atomic theory [4].

The hydrogen atom is the only real problem for which the
Schrödinger equation can be solved without approximations; however, it
only provides three quantum numbers - not four.  Nevertheless, the
application of the Schrödinger equation to real problems has provided
useful approximations for physicists and chemists.  Schrödinger
interpreted eΨ *( x)Ψ(x) as the charge-density or the amount of charge
between x  and x + dx  (Ψ * is the complex conjugate of Ψ ).  Presumably,
then, he pictured the electron to be spread over large regions of space.
Three years after Schrödinger’s interpretation, Max Born, who was
working with scattering theory, found that this interpretation led to
inconsistencies and he replaced the Schrödinger interpretation with the
probability of finding the electron between x  and x + dx  as
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Ψ(x)Ψ *(x)dx∫ (37.2)

Born’s interpretation is generally accepted.  Nonetheless, interpretation
of the wave function is a never-ending source of confusion and conflict.
Many scientists have solved this problem by conveniently adopting the
Schrödinger interpretation for some problems and the Born
interpretation for others.  This duality allows the electron to be
everywhere at one time—yet have no volume.  Alternatively, the electron
can be viewed as a discrete particle that moves here and there (from
r = 0  to r = ∞), and ΨΨ *  gives the time average of this motion.

According to the quantum mechanical view, a moving particle is
regarded as a wave group.  To regard a moving particle as a wave group
implies that there are fundamental limits to the accuracy with which
such "particle" properties as position and momentum can be measured.
Quantum predicts that the particle may be located anywhere within its
wave group with a probability Ψ 2 .  An isolated wave group is the result
of superposing an infinite number of waves with different wavelengths.
The narrower the wave group, the greater range of wavelengths
involved.  A narrow de Broglie wave group thus means a well-defined
position ( ∆x  smaller) but a poorly defined wavelength and a large
uncertainty ∆p  in the momentum of the particle the group represents.  A
wide wave group means a more precise momentum but a less precise
position.  The infamous Heisenberg Uncertainty Principle is a formal
statement of the standard deviations of properties implicit in the
probability model of fundamental particles.

  
∆x∆p ≥

h
2

(37.3)

According to the standard interpretation of quantum mechanics, the act
of measuring the position or momentum of a quantum mechanical entity
collapses the wave-particle duality because the principle forbids both
quantities to be simultaneously known with precision.

THE WAVE-PARTICLE DUALITY IS NOT DUE TO THE UNCERTAINTY
PRINCIPLE

Quantum entities can behave like particles or waves, depending on
how they are observed.  They can be diffracted and produce interference
patterns (wave behavior) when they are allowed to take different paths
from some source to a detector--in the usual example, electrons or
photons go through two slits and form an interference pattern on the
screen behind.  On the other hand, with an appropriate detector put
along one of the paths (at a slit, say), the quantum entities can be
detected at a particular place and time, as if they are point-like particles.
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But any attempt to determine which path is taken by a quantum object
destroys the interference pattern.  Richard Feynman described this as
the central mystery of quantum physics.

Bohr called this vague principle 'complementarity, and explained it
in terms of the uncertainty principle, put forward by Werner Heisenberg,
his postdoc at the time.  In an attempt to persuade Einstein that wave-
particle duality is an essential part of quantum mechanics, Bohr
constructed models of quantum measurements that showed the futility
of trying to determine which path was taken by a quantum object in an
interference experiment.  As soon as enough information is acquired for
this determination, the quantum interferences must vanish, said Bohr,
because any act of observing will impart uncontrollable momentum
kicks to the quantum object.  This is quantified by Heisenberg's
uncertainty principle, which relates uncertainty in positional
information to uncertainty in momentum--when the position of an entity
is constrained, the momentum must be randomized to a certain degree.

More than 60 years after the famous debate between Niels
Bohr and Albert Einstein on the nature of quantum reality, a
question central to their debate --the nature of quantum
interference--has resurfaced.  The usual textbook explanation
of wave-particle duality in terms of unavoidable 'measurement
disturbances' is experimentally proven incorrect by an
experiment reported in the September 3, 1998 issue of Nature
[5] by Durr, Nonn, and Rempe.  Durr, Nonn, and Rempe report
on the interference fringes produced when a beam of cold
atoms is diffracted by standing waves of light.  Their
interferometer displayed fringes of high contrast--but when they
manipulated the electronic state within the atoms with a microwave field
according to which path was taken, the fringes disappeared entirely.
The interferometer produced a spatial distribution of electronic
populations which were observed via fluorescence.  The microwave field
canceled the spatial distribution of electronic populations.  The key to
this new experiment was that although the interferences are destroyed,
the initially imposed atomic momentum distribution left an envelope
pattern (in which the fringes used to reside) at the detector.  A careful
analysis of the pattern demonstrated that it had not been measurably
distorted by a momentum kick of the type invoked by Bohr, and
therefore that any locally realistic momentum kicks imparted by the
manipulation of the internal atomic state according to the particular
path of the atom are too small to be responsible for destroying
interference.

Durr et al. conclude that the "Heisenberg Uncertainty
relationship has nothing to do with wave-particle duality" and
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further conclude that the phenomenon is based on
entanglement and correlation.  Their interpretation of the principles
of the experiment is that directional information is encoded by
manipulating the internal state of an atom with a microwave field, which
entangles the atom's momentum with its internal electronic state.  Like
all such entangled states, the constituent parts lose their separate
identity.  But the attachment of a distinguishable electronic label to each
path means that the total electronic-plus-path wavefunction along one
path becomes orthogonal to that along the other, and so the paths can't
interfere.  By encoding information as to which path is taken within the
atoms, the fringes disappear entirely.  The internal labeling of paths does
not even need to be read out to destroy the interferences:  all you need
is the option of being able to read it out.

According to Durr et al., the mere existence of information about
an entity's path causes its wave nature to disappear.  But, correlations
are observations about relationships between quantities and do not
cause physical processes to occur.  The existence of information
about an entity's path is a consequence of the manipulation of
the momentum states of the atoms which resulted in
cancellation of the interference pattern.  It was not the cause
of the cancellation.  The cancellation is predicted by the
classical atomic theory of Mills.

The explanation for the loss of interference in which-way
experiments that endured and is present in essentially all quantum
physics textbooks is that based on Heisenberg's position-momentum
uncertainty relation.  This has been illustrated in famous gedanken
experiments like Einstein's recoiling slit [6] or Feynman's light
microscope [7].  In the light microscope, electrons are illuminated with
light immediately after they have passed through a double slit with slit
separation d .  A scattered photon localizes the electron with a position
uncertainty of the order of the light wavelength, ∆z = light .  Owing to
Heisenberg's position-momentum uncertainty relation, this localization
must produce a momentum uncertainty of the order of ∆pz ≈ h / light .  This
momentum uncertainty arises from the momentum kick transferred by
the scattered photon.  For light < d , which-way information is obtained,
but the momentum kick is so large that it completely washes out the
spatial interference pattern.

The issue of whether momentum kicks are necessary to explain the
two-slit experiment is revisited.  Obviously, momentum is involved,
because a diffraction pattern is a map of the momentum distribution in
the experiment.  But how is it involved?  Is it everything, as Bohr would
have claimed?
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This is the question addressed by Durr et al. [5] who report on a
which-way experiment with an atom interferometer wherein an incoming
beam of atoms passes through two separated standing wave light beams.
The detuning of the light frequency from the atomic resonance,
∆ = light − atom, is large so that spontaneous emission can be neglected.
The light fields each create a conservative potential U  for the atoms, the
so-called light shift, with U ∝ I / ∆ , where I  is the light intensity.  In a
standing wave, the light intensity is a function of position

I z( ) = I0 cos2 klightz( ) (37.4)

where klight  is the wavevector of the light.  Hence the light shift potential
takes the form

U z( ) = U0 cos2 klightz( ) (37.5)

with U0 ∝ I0 / ∆ .
The atoms are Bragg-reflected from this periodic potential, if they

enter the standing light wave at a Bragg angle.  This process is similar to
Bragg reflection of X-rays from the periodic structure of a solid-state
crystal, but with the role of matter and light exchanged.  The light
creates the periodic structure, from which the matter wave is reflected.

The scheme of the interferometer is shown in Figure 37.5.  The
standing light wave splits the incoming atomic beam A into two beams, a
transmitted beam C and a first-order Bragg-reflected beam B.  The angle
between the beams B and C corresponds to a momentum transfer of
exactly   2hklight  as determined by the spatial period of U(z).  By varying the
light intensity, the fraction of reflected atoms can be adjusted to any
arbitrary value.  Durr et al. tune the reflectivity of the beam splitter to
about 50%.
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Figure 37.5.  Scheme of the atom interferometer.  The incoming atomic
beam A is split into two beams: beam C is transmitted and beam B is
Bragg-reflected from a standing light wave.  The beams are not exactly
vertical because a Bragg condition must be fulfilled.  After free
propagation for a time tsep , the beams are displaced by a distance d .
Then the beams are split again with a second standing light wave.  In the
far field, a spatial interference pattern is observed.

After switching off the first standing light wave, the two beams are
allowed to propagate freely for a time interval tsep .  During this time,
beam B moves a horizontal distance d / 2  to the left, and beam C moves
d / 2  to the right.  The longitudinal velocities (direction normal to the
standing light wave of Figure 37. 5) of the two beams are not affected by
the light field.  Then a second standing light wave is switched on, which
also serves as a 50% beam splitter.  Now two atomic beams D and E are
traveling to the left, while beams F and G are traveling to the right.  In
the far field, each pair of overlapping beams produces a spatial
interference pattern.  The fringe period is the same as in a double-slit
experiment with slit separation d  as given in Two-Beam Interference
Section.  The intensity is given by Eq. (8.22)

I(x) = 16a2C2sinc2 2 ax

f

 
 
  

 
cos2 2 dx

f

 
 
  

 
(37.6)

From Eq. (37.6), it is clear that the resulting pattern has the appearance
of cosine2 fringes of period f / d  with an envelope sinc2 2 ax / f( )  where
and f  is the focal length and a  is the slit width.  In the present case, the
envelope of the fringe pattern is given by the collimation properties of
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the initial atomic beam A.  Note that Eq. (37.6) corresponds to an
amplitude transmission of a plane wave.  The bound unpaired electron
of each 85Rb  atom behaves as a plane wave of wavelength = h / p  as
shown in the Free Electron Section.  The relevant wavelength  of Eq.
(37.6) is the de Broglie wavelength associated with the momentum of
the atoms (Eq. (1.46)) which is transferred to the electrons through
atomic interactions.

The atomic position distribution is observed by exciting atoms with
a resonant laser and detecting the fluorescence photons.  The observed
far-field position distribution is a picture of the atomic transverse
momentum distribution after the interaction.  The pattern is given by Eq.
(37.6).  The pattern may be altered by application of microwave pulses
which transfer momentum to the electrons of the 85Rb  atoms which add
vectorally to that transferred from the interactions with the standing
light field and atomic interactions.

Microwave pulses are now added to manipulate the two internal
electronic states of the atom according to whether it moved along
pathway B or C.  A simplified level scheme of 85Rb  is shown in Figure
37.6.  The manipulation of internal states by two microwave fields which
each apply a / 2  pulse is shown in Figure 37.7.  Rabi oscillations
between states 2  and 3  can be induced by applying a microwave field
of about 3 GHz.  To describe the manipulation of the two internal
electronic states of the atom, we first investigate the properties of a
single Bragg beam splitter.

Figure 37.6.  Simplified level scheme of 85Rb .  The excited state 52P3/2( ) is
labeled e .  The ground state 52P1/2( ) is split into two hyperfine states with
total angular momentum F = 2  and F = 3, which are labeled 2  and 3 ,
respectively.  The standing light wave has angular frequency light .

Figure 37.7.  Scheme of the manipulation of internal states of 85Rb  by two
microwave fields which each apply a / 2  pulse.  The standing light wave
with angular frequency light  induces a light shift for both ground states
which is given as a function of position.  The beam splitter produces a
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phase shift that depends on the internal and external degree of freedom.
A Ramsey scheme, consisting of two microwave / 2  pulses, converts
this phase shift into a population difference.

The frequency of the standing light wave, light  is tuned halfway
between the 2 → e  and 3 → e  transitions. Hence the detunings from
these transitions, ∆ 2e, and ∆3e , have the same absolute value but opposite
sign.  The reflectivity of the beam splitter, that is, the probability of
reflecting an atom, depends on tBraggXU0 , and it is independent of the
internal state.

However, the amplitude of the wavefunction experiences a phase
shift which depends on the internal atomic state.  A simple analogy for
this phase shift can be found in light optics: a light wave reflected from
an optically thicker medium experiences a phase shift of , while
reflection from an optical thinner medium or transmission into an
arbitrary medium does not cause any phase shift.  This argument also
applies in atomic optics: in the present experiment, an atom in 2  sees a
negative light shift potential (because ∆ 2e < 0 ), corresponding to an
optically thicker medium, while an atom in 3  sees a positive potential
(because ∆3e > 0), corresponding to an optically thinner medium.  Hence
an atom will experience a  phase shift only if it is reflected in 2 .

This phase shift can be converted into a population difference
between the hyperfine levels.  For that purpose, two microwave / 2
pulses resonant with the hyperfine transition are applied.  They form a
Ramsey scheme as shown in Figure 37.7.  The atom is initially prepared
in state 2 .  Then a / 2  microwave pulse is applied, converting the beam
into an equal mixture of internal states of 2 + 3 .  After this, each atom
interacts with the standing light wave.  As explained above, each atom
will experience a  phase shift only if it is reflected and in state 2 .
Thus the internal state of the reflected beam is changed to an equal
mixture of internal states of 3 − 2 , while the internal state of the
transmitted beam is not affected.  As a result, the momentum of each
atom is a superposition of the internal and external degree of freedom
of the atom which is specific to the path.  The state vector of the system
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becomes:
∝ B ⊗ 3 − 2( ) + C ⊗ 3 + 2( ) (37.7)

where B  and C  describe the center-of-mass motion for the reflected
and transmitted beams (see Figure 37.5), respectively.  The second
microwave pulse action on both beams (the transmitted and the
reflected), converts the internal state of the transmitted beam to state
3 , while the reflected beam is converted to state - 2 .  Thus, the state

vector after the pulse sequence shown in Figure 37.7 becomes:
∝− B ⊗ 2 + C ⊗ 3 (37.8)

Eq. (37.8) shows that the internal state is correlated with the way taken
by the atom.  The which-way information can be read out later by
performing a measurement of the internal atomic state.  The result of
this measurement reveals which way the atom took: if the internal state
is found to be 2 , the atom moved along beam B, otherwise it moved
along beam C.

After considering a single beam splitter, now consider the
complete interferometer.  Sandwiching the first Bragg beam splitter
between two / 2  microwave pulses produces a reflected and
transmitted beam each of a single internal atomic state, as described
above.  We note that the second Bragg beam splitter does not change the
internal state.  No fringes are experimentally observed in this
case.  The data is recorded with the same parameters with the only
difference being that two microwave pulses are added to produce a
single internal atomic state according to the particular path of the atom.
Atoms in both hyperfine states are detected.  The interference pattern is
also not observed when only atoms in state 2  or only atoms in state 3
are detected.  Of course, the absolute size of the signal is reduced by a
factor of two in these cases.  The key to this new experiment is that
although the interferences are destroyed, the initially imposed atomic
momentum distribution leaves an envelope pattern (in which the fringes
used to reside) at the detector.  A careful analysis of the pattern
finds that it has not been measurably distorted by a
momentum kick of the type invoked by Bohr, and therefore
that any locally realistic momentum kicks imparted by the
manipulation of the internal atomic state according to the
particular path of the atom are too small to be responsible for
destroying interference.

In order to investigate why the interference is lost, we consider the
state vector for the interaction sequence used which causes the
disappearance of the fringes.  The state vector after the interaction with
the first beam splitter sandwiched between the two microwave pulses is
given by Eq. (37.8).  The second beam splitter transforms this state
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vector into a left peak and a right peak given by:

left ∝− D ⊗ 2 + E ⊗ 3 (37.9)

and

right ∝ F ⊗ 2 + G ⊗ 3 (37.10)

where the sign of F  is positive due to the  phase shift during the
reflection from the second beam splitter.  Each peak is a superposition
of atoms which follow separate paths and comprise atoms of a single
internal state.  In each case atoms which interfere have internal states
which are orthogonal; thus, in the far field, the atomic position
distribution under the each peak of the envelope is given by the
superposition of two single slit patterns rather than the double slit
pattern in the absence of the application of the / 2  microwave pulses.
In the far field, the amplitude of the atomic position distribution under
each peak of the envelope ˜ Ψ (x)  is the sum of the independent Fraunhofer
planes and the intensity of the atomic position distribution under each
peak of the envelope ˜ Ψ 2(x)  is given by

˜ Ψ 2(x) = 2aC( )2
 sinc2 kax

f
 
 

 
 (37.11)

where f  is the focal length and a  is the slit width.  In the present case,
the envelope of the fringe pattern is given by the collimation properties
of the initial atomic beam A.

A dramatic change in the spatial momentum distribution occurs
when adding the microwave fields to the interferometer that manifests
itself as loss of interference; even though, the microwave itself does not
transfer enough momentum to the atom to wash out the fringes
according to the Heisenberg Uncertainty Principle.  The addition of the
microwave fields modifies the probability for momentum transfer by the
light fields.  This modification of the momentum transfer probability is
due to the manipulation of the internal atomic state according to the
particular path of the atom.  The disappearance of interference is
explained by the classical quantum mechanics of Mills.

INCONSISTENCIES OF QUANTUM MECHANICS
Quantum mechanics failed to predict the results of the Stern-

Gerlach experiment which indicated the need for an additional quantum
number.  Quantum electrodynamics was proposed by Dirac in 1926 to
provide a generalization of quantum mechanics for high energies in
conformity with the theory of Special Relativity and to provide a
consistent treatment of the interaction of matter with radiation.  From
Weisskopf [8], "Dirac's quantum electrodynamics gave a more
consistent derivation of the results of the correspondence principle, but
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it also brought about a number of new and serious difficulties."
Quantum electrodynamics;  1.) does not explain nonradiation of bound
electrons;  2.) contains an internal inconsistency with Special Relativity
regarding the classical electron radius - the electron mass corresponding
to its electric energy is infinite;  3.) it admits solutions of negative rest
mass and negative kinetic energy;  4.) the interaction of the electron
with the predicted zero-point field fluctuations leads to infinite kinetic
energy and infinite electron mass;  5.) Dirac used the unacceptable
states of negative mass for the description of the vacuum; yet, infinities
still arise.  In 1947, Lamb discovered a 1000 MHz  shift between the 2S1/2

state and the 2P1/2  state of the hydrogen atom.  This so called Lamb Shift
marked the beginning of modern quantum electrodynamics.  In the
words of Dirac [9], "No progress was made for 20 years.  Then a
development came initiated by Lamb's discovery and explanation of the
Lamb Shift, which fundamentally changed the character of theoretical
physics.  It involved setting up rules for discarding ...infinities..."
Renormalization is presently believed to be required of any fundamental
theory of physics [10].  However, dissatisfaction with renormalization
has been expressed at various times by many physicists including Dirac
[11]. who felt that, "This is just not sensible mathematics.  Sensible
mathematics involves neglecting a quantity when it turns out to be small
- not neglecting it just because it is infinitely great and you do not want
it!"

Modern quantum mechanics has encountered several obstacles
that have proved insurmountable as pointed out previously in the
General Considerations Section and the Classical Electron Radius Section.
And, quantum mechanics leads to certain philosophical interpretations
[12] which are not sensible.  Some conjure up multitudes of universes
including "mind" universes; others require belief in a logic that allows
two contradictory statements to be true.  The question addressed is
whether the universe is determined or influenced by the possibility of
our being conscious of it.  The meaning of quantum mechanics is
debated, but the Copenhagen interpretation is predominant.  Its asserts
that "what we observe is all we can know; any speculation about what a
photon, an atom or even a SQUID (Superconducting Quantum
Interference Device) really is or what it is doing when we are not looking
is just that speculation" [13].  According to this interpretation every
observable exists in a state of superposition of possible states, and
observation or the potential for knowledge causes the wavefunction
corresponding to the possibilities to collapse into a definite.  As shown
by Platt [14] in the case of the Stern-Gerlach experiment, "the postulate
of quantum measurement [which] asserts that the process of measuring
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an observable forces the state vector of the system into an eigenvector
of that observable, and the value measured will be the eigenvalue of that
eigenvector".  According to the Zeno no-go theorem which is a
consequence of the postulate of quantum measurement, observation of
an atom collapses its state into a definite; thus, transitions cannot occur
under continuous observation.  Recently, it has become possible to test
this postulate via an experiment involving transitions of a single atom,
and the results are inconsistent with the predictions.  Quoting from the
caption of Figure 10 of the article, by Dehmelt [15],

"Shelving" the Ba+ optical electron in the metastable D  level.  Illuminating the
ion with a laser tuned close to its resonance line produces strong resonance
fluorescence and an easily detectable photon count of 1600 photons/sec.  When
later an auxiliary, weak Ba+ spectral lamp is turned on, the ion is randomly
transported into the metastable D5/2  level for 30-s lifetime and becomes
invisible.  After dwelling in this shelving level for 30 s on average, it drops
down to the S   ground state spontaneously and becomes visible again.  This
cycle repeats randomly.  According to the Zeno no-go theorem, no quantum
jumps should occur under continuous observation.

In addition to the interpretation that photons, electrons, neutrons,
and even human beings [12] have no definite form until they are
measured, a more disturbing interpretation of quantum mechanics is
that a measurement of a quantum entity can instantaneously influence
another light years away.  Einstein argued that a probabilistic versus
deterministic nature of atomic particles leads to disagreement with
Special Relativity.  In fact, the nonlocality result of the Copenhagen
interpretation violates causality.  As a consequence of the indefinite
nature of the universe according to quantum mechanics and the implied
Uncertainty Principle, Einstein, Podolsky, and Rosen (EPR) in a classic
paper [16] presented a paradox which led them to infer that quantum
mechanics is not a complete theory.  They concluded that the quantum-
mechanical description of a physical system should be supplemented by
postulating the existence of "hidden variables," the specification of
which would predetermine the result of measuring any observable of the
system.  They believed the predictions of quantum mechanics to be
correct, but only as consequences of statistical distribution of the
hidden variables.  But, Bell [17] showed that in a Gedanken experiment
of Bohm [18] (a variant of that of EPR) no local hidden-variable theory
can reproduce all of the statistical predictions of quantum mechanics.
Thus, a paradox arises from Einstein's conviction that quantum-
mechanical predictions concerning spatially separated systems are
incompatible with his condition for locality unless hidden variables exist.
Bell's theorem provides a decisive test of the family of local hidden-



© 2000 by BlackLight Power, Inc.  All rights reserved.
517

variable theories (LHVT).  In a classic experiment involving measurement
of coincident photons at spatially separated detectors, Aspect [19]
showed that local hidden-variable theories are inconsistent with the
experimental results.  Although Aspect's results are touted as a triumph
of the predictions of quantum mechanics, the correct coincidence rate
of detection of photons emitted from a doubly excited state of calcium
requires that the z component of the angular momentum is conserved
on a photon pair basis.  As a consequence, a paradox arises between the
deterministic conservation of angular momentum and the Uncertainty
Principle.  The prediction derived from the quantum nature of the
electromagnetic fields for a single photon is inconsistent with Aspect's
results, and Bell's theorem also disproves quantum mechanics.
However, the results of Aspect's experiment are predicted by Mills'
theory wherein locality and causality hold.

THE ASPECT EXPERIMENT - SPOOKY ACTIONS AT A DISTANCE?
The Aspect experiment is often invoked as the proof of the

quantum-mechanical nature of reality [19-27].  According to the
quantum explanation of the Aspect experiment [19], the polarization of
each photon of a pair is not determined until a measurement is made,
and the act of measuring the polarization of one photon causes an
action at a distance with regard to the measurement of the polarization
of the other member of a given pair.  These results are interpreted as
proof of a spooky action at a distance.  Thus, information travels faster
than the speed of light in violation of Special Relativity, or nonlocality
and noncausality are implicit.

Bell's theorem is a simple proof of statistical inequalities of
expectation values of observables given that quantum statistics are
correct and that the physical system possesses "hidden variables".  Mills'
theory is not a hidden-variable theory.  It is a deterministic theory of
classical quantum mechanics, and Bell's theorem does not apply to it.
The correct interpretation of the results of the Aspect experiment
follows from classical quantum-mechanical derivation of Mills' theory.
The expectation value of the coincidence rate at separated randomly
oriented polarization analyzers for pairs of photons emitted from a
doubly excited state atom is derived from the equation of the photon
which appears in the Equation of the Photon Section.

Aspect [19] reports the measurement of polarization correlation
(coincidence count rate) of visible photons ( 1 = 551.3 nm ; 2 = 422.7 nm)
emitted in a J = 0( ) → J =1( ) → J = 0( )  calcium atomic cascade
4 p2  1S0 − 4s4 p 1P1 − 4s 2 1S0( ) .  The calcium atoms were selectively pumped to

the upper level of the cascade from the ground state by the two photon
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absorption via two lasers, a single-mode krypton ion laser and a cw
single-mode Rhodamine 6G dye laser tuned to the resonance for the two
photon process.  The fluorescent light was collected by lenses and made
incident on two detectors - one at position -z and the other at position
+z relative to the emitting calcium atoms.  The polarizers were
independently rotated in the xy-plane, and the coincidence count rate
was measured.

The equation for the transmission of an electromagnetic wave
through a barrier as given in any text of classical electrodynamics such
as that of Kong [28] is

ET = TEie
ik z z (37.12)

where ET  is the transmitted wave, Ei is the incident wave, and T  is the
transmission coefficient.  For a wave that propagates at an angle with
respect to the z-axis, the transmitted photon is given by a sum of
equations of the form of Eq. (37.12) for each vector component.  Using
the convention of Horne [24], the vector transmission efficiencies
(coefficients) can be written in matrix form with a matrix corresponding
to each linear polarizer.  In a basis of linear polarizations along x1  and y1

in the coordinates of photon 1, the most general linear polarizer with
axis along x1  is described by an efficiency matrix

1( ) = M
1 0

0 m
1

 

 
  

 
 (37.13)

where M
1  is the probability of transmitting an x1  linearly polarized

photon and m
1  is the probability of transmitting a y1  linearly polarized

photon (leakage).  In the ideal case M
1 = 1 and m

1 = 0 .  If the polarizer is
not parallel to the x1 -axis but rotated in the plane perpendicular to the
interdetector axis by an angle 1 from x1 , and 1( ) is expressed in the
basis of right hand circular (RHC) and left hand circular (LHC) photon
states formed from x1  and y1 , then the elementary transformations give
the elements of 1( ) as a function of 1 in matrix form:

1
1
' , 1( ) ≡ 1

'
1( )

1 =
1

2

M
1 + m

1 − M
1 − m

1( )e−2i 1

− M
1 − m

1( )e2i 1

M
1 − m

1

 

 
 

 

 
 (37.14)

where 1
'

1( )
1  is defined as the expectation value of the transmission of

the photon 1 with polarization 1, 1 = ±1 are RHC and LHC, respectively,
and the angle between polarizer 1 ( P1 ) and x1  is

∆ 1 = 1 (37.15)
Similarly, 2( ), the efficiency matrix as a function of − 2  of the second
polarizer ( P2 ) in the circular polarization basis of photon 2, is
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2
2
' , 2( ) ≡ 2

'
1( )

2 =
1

2

M
2 + m

2 − M
2 − m

2( )e−2 i − 2( )

− M
2 − m

2( )e2i − 2( )
M
2 − m

2

 

 
 

 

 
 (37.16)

where the angle between polarizer 2 and the x-polarization of photon 2
(i. e. the angle between P2  and x2 ) is

∆ 2 = − 2 (37.17)
The efficiency matrix for coincidence transmission of photon 1 and
photon 2 is given by the product of their independent probabilities,

1( ) 2( ) .  The normalized coincidence counting rate is

R( )
R0

=
Tr 1( ) 2( )p f[ ]

Tr Ip f( ) (37.18)

The normalized coincidence counting rate with polarizer 2 removed, 
R1

R0

,

is

R1

R0

=
Tr 1( )p f[ ]
Tr Ip f( ) (37.19)

The normalized coincidence counting rate with polarizer 1 removed, 
R2

R0

,

is

R2

R0

=
Tr 2( )p f[ ]

Tr Ipf( ) (37.20)

where I  is the identity matrix and p f  is the probability that photon 1 and
photon 2 have the same polarization and is a function of solid angle of
the projection of the propagation vector of each photon onto the z-axis.
In terms of Eq. (37.12), p f  corresponds to the vector correlated electric
field incident on the opposed detectors.  It is given by the normalized
electric field of photons of matched momentum projected onto the z-
axis over the solid angle of the detectors.  For each photon of the two
photon J = 0( ) → J =1( ) → J = 0( )  cascade of calcium, the transition
amplitudes, E , are given by the integral of the product of the multipole
of the photon, pXl ,m ,( ), and the initial, iXl, m ,( ), and final, fXl ,m ,( ),
states as is the case with classical electrodynamics calculations involving
antennas.  The transition amplitudes follow from Eq. (2.42) where the
intensity is proportional to the amplitude squared.

E ∝ E0
iXl ,m ,( )pXl, m ,( ) f Xl, m ,( )

0

2

∫ sin d d
0
∫ (37.21)

The distribution of multipole radiation and the multipole moments of
the electron for absorption and emission are given in the Excited State of
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the Electron Section and in Jackson [29].
Horne postulates the emission as a plane wave which is replaced by

a spherical multipole expansion.  The spherical multipole expansion of a
plane wave such as given in Jackson [30] is consistent with the Green
Function as the function which corresponds to the superposition of an
ensemble of photons given by Eqs. (4.17-4.22) of Mills' theory.  Using
Eqs. (2.34-2.35) of Mills' theory, the projection of the photon pair
propagation vector onto the axis perpendicular to the plane of each
detector gives a factor of one corresponding to the conservation of
angular momentum for each photon pair times a solid angle correction.
The result for the numerator of Eq. (37.19) is

Tr 1( ) 2( )p f[ ] = 1 1
'

1 1
'

2 2
'

∑ 2 2
' 1

1
' , 1( ) 2

2
' , 2( )g 1, 2( )g * 1

' , 2
'( ) (37.22)

where g 1, 2( )g * 1
' , 2

'( ) is a factor corresponding to the solid angle.

Eq. (37.22) is equivalent to Eq. (5.17) of Horne.  To obtain this
result, Horne suppressed the integration over dΩ1  and dΩ2  as well as
the explicit dependence on the photon propagation vectors, k1  and
k2 , respectively.  (The integration was also suppressed over frequency
space as well as the explicit dependence on the photon propagation
vectors, k1  and k2  in the case that QED holds.)  This is only valid if the
z component of angular momentum is conserved on a photon by
photon basis such that the polarization correlation distribution
function is independent of angle.  Otherwise, it cannot be removed
from the integral.  HORNE'S CALCULATION IS NOT CONSISTENT WITH
THE QUANTUM-MECHANICAL NATURE OF THE ELECTROMAGNETIC
FIELDS FOR A SINGLE PHOTON as described below.

Substitution of the Eq. (37.14) and (37.15) and the results of solid angle
term of Eq. (37.22) into Eq. (37.18) gives the normalized coincidence
count rate.

R( )
R0

=
1

4 M
1 + m

1( ) M
2 + m

2( ) +
1

4 M
1 − m

1( ) M
2 − m

2( )F1( )cos2 (37.23)

where the solid angle factor, F1( ), for the 0 −1− 0 electric dipole cascade
is

F1( ) = 2G1
2( ) G2

2 ( ) +
1

2
G3

2( ) 
 

 
 

−1

(37.24)

The normalized coincidence count rate with polarizer 2 removed, 
R1

R0

, is

R1

R0

=
1

2 M
1 + m

1( ) (37.25)
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The normalized coincidence count rate with polarizer 1 removed, 
R2

R0

, is

R2

R0

=
1

2 M
2 + m

2( ) (37.26)

The transmittances M
i  and m

i  of the polarizers (i=1 or 2) for light
polarized parallel or perpendicular to the polarization axis were
measured by Aspect [19]:

M
1 = 0.971 ± 0.005,  m

1 = 0.029 ± 0.005, 

M
2 = 0.968 ± 0.005, m

2 = 0.028 ± 0.005
(37.27)

And, the solid angle factor, F1( ), for the 0 −1− 0 electric dipole cascade
which accounts for the solid angles subtended by the collecting lenses of
the Aspect experiment is

F1( ) = F2 ( ) = 0.984 (37.28)
Substitution of the Eqs. (37.27) and (37.28) into Eq. (37.23) gives the
normalized coincidence count rate as a function of the relative angle
between the polarizers.

R( )
R0

= 0.2490 + 0.2178cos2 (37.29)

The normalized coincidence count rate, 
R( )
R0

, as a function of the

relative polarizer orientation, , given by Eq. (37.29) with the results of
Aspect [19] appears in Figure 37.8.
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Figure 37.8.  The normalized coincidence count rate as a function of the
relative polarizer orientation as given by Eqs. (37.23), (37.24), and Eq.
(37.29) (solid curve) with the results of Aspect [19] (•).

Eq. (5.17) of Horne (same as Eq. (37.22)) is the sum over the
product of the transmission efficiencies of photon pairs of identical
polarization at two independent detectors and a correction for the
solid angle of the detectors for the photon pairs emitted from a
remote isotropic source.  The probability integral over momentum
space was "suppressed" and set equal to one.  Thus, the calculation
is a deterministic equation.  It does not correspond to the equation
for coincident detection predicted by quantum mechanics.
According to Jackson [31]:

For a multipole with a single m  value, Mx  and My  vanish, while a

comparison of (16.67) and (16.60) shows that
dM z

dr
=

m dU

dr
(16.68)

independent of r .  This has the obvious quantum interpretation that the
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radiation from a multipole of order (l,m)  carries off   mh  units of z component of
angular momentum per photon of energy   h .  Even with a superposition of
different m  values, the same interpretation of (16.67) holds, with each multipole
of definite m  contributing incoherently its share of the z component of angular
momentum.  Now, however the x and y components are in general
nonvanishing, with multipoles of adjacent m  values contributing in a weighed
coherent sum.  The behavior continued in (16.64) and exhibited explicitly in
(16.65)-(16.67) is familiar in the quantum mechanics of a vector operator and its
representation with respect to basis states of J2  and Jz * .  The angular
momentum of multipole fields affords a classical example of this behavior, with
the z component being diagonal in the (l,m)  multipole basis and the x and y
components not.

The characteristics of the angular momentum just presented hold true
generally, even though our example (16.57) was somewhat specialized.  For a
superposition of both electric and magnetic multipoles of various (l,m)  values,
the angular momentum expression (16.63) is generalized to

dM
dr

=
1

8 k2
Re aE

* l', m'( )aE l,m( ) + aM
* l' ,m'( )aM l,m( )[ ] L ⋅Xl 'm'( )* Xl ,mdΩ∫{

l, m
l', m'

∑

+ i l'− l aE
* l', m'( )aM l, m( ) − aM

* l', m'( )aE l, m( )[ ] L ⋅ Xl' m'( ) * n × Xl, mdΩ}
(16.69)

The first term in (16.69) is of the same form as (16.63) and represents the sum of
the electric and magnetic multipoles separately.  The second term is an
interference between electric and magnetic multipoles.  Examination of the
structure of its angular integral shows that the interference is between electric
and magnetic multipoles whose l  values differ by unity.  This is a necessary
consequence of the parity properties of the multipole fields (see below).  Apart

from this complication of interference, the properties of 
dM
dr

 are as before.

The quantum-mechanical interpretation of (16.68) concerned the z
component of angular momentum carried off by each photon.  In further
analogy with quantum mechanics, we would expect the ratio of the square of the
angular momentum to the square of the energy to have the value,

M q( )2

U 2 =
M x

2 + M y
2 + Mz

2( )
q

U 2 =
l l +1( )

2 (16.70)

But from (16.60) and (16.65)-(16.67), the classical result for a pure (l,m)
multipole is

M c( )2

U 2 =
M z

2

U 2 =
m2

2 (16.71)

The reason for this difference lies in the quantum nature of the
electromagnetic fields for a single photon.  If the z component of angular
momentum of a single photon is known precisely, the uncertainty principle
requires that the other components be uncertain, with mean square values such
that (16.70) holds.  On the other hand, for a state of the radiation field
containing many photons (the classical limit) the mean square values of the
transverse components of angular momentum can be made negligible compared
to the square of the z component.  Then the classical limit (16.71) applies.  For a
(l,m)  multipole field containing N  photons it can be shown* that
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M q( ) N( )[ ]2

U N( )[ ]2 =
N 2m2 + Nl l +1( ) − m2

N2 2 (16.72)

This contains (16.70) and (16.71) as limiting cases.

Consider the quantum nature of the electromagnetic fields for a
single photon.  According to Eqs. (16.70-16-72) of Jackson, photon pairs
cannot have identical z components of angular momentum; therefore,
each pair cannot have identical polarization.  Each quantum-mechanical
photon is a superposition of RHC, LHC, linear, and elliptic polarization.
And, in the case of Quantum Electrodynamics (QED), each photon is also
a superposition over frequency space.  In the quantum-mechanical case
Eq. (16.71) of Jackson applies - the z component of angular momentum
is conserved on the average of many photons.  Probability applies to the
emission of a pair of photons of identical polarizations (the correlation
of polarizations cannot be one ( P A, B( ) ≠ 1) as well as to the detection of
the photons of equal polarizations.  Furthermore, QED requires that the
probability associated with emission as well as detection applies to a
distribution of photon wavelengths with expectation values of

1 = 551.3 nm  and 2 = 422.7 nm .  The coincidence count rate is a function of
the dot product of the electric field vector of each photon pair having
correlated polarization onto the z-axis, and the probability of detection
of the separate members of each pair at the separate detectors where
the associated probabilities are independent.  Thus, the probability of
detecting a coincident event is given by the product of their independent
probabilities.  The quantum nature of the electromagnetic fields for a
single photon requires a p f  of Eq.(37.18) that includes all distributions.
Thus, the coincident rate predicted by quantum mechanics is less than
the experimental rate.  The extent of the error which is a function of the
relative angle of the polarizers is given by Bell's theorem.

BELL'S THEOREM TEST OF LOCAL HIDDEN VARIABLE THEORIES
(LHVT) AND QUANTUM MECHANICS

Using the convention of Clauser and Horne [22, 24], consider an
ensemble of correlated pairs of photons emitted from the 0 −1− 0
cascade of excited state calcium atoms each moving so that one enters
polarizer 1 ( P1 ) and the other polarizer 2 ( P2 ), where 1 and 2  are
adjustable angles of polarizer 1 and 2.  In each polarizer a photon is
recorded as +1 corresponding to RHC and LHC polarized, respectively.
Let the results of these selections be represented by A a( ) and B b( ), each
of which equals +1 according as the RHC or LHC is recorded.

Suppose now that a statistical correlation of A a( ) and B b( ) is due to
information carried by and localized within each photon, and that at
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some time in the past the photons constituting one pair were in contact
and in communication regarding this information.  The information is
quantum mechanical or is part of the content of a set of hidden
variables, denoted collectively by .  The results of the two polarization
outcomes are then to be functions A a,( ) and B b,( ).  Locality reasonably
requires A a,( ) to be independent of the parameter b  and B b,( ) to be
likewise independent of a , since the two outcomes may occur at an
arbitrarily great distance from each other.  Finally, since the pair of
photons is generally emitted by a source in a manner physically
independent of the adjustable parameters a  and b , we assume that the
normalized probability distribution ( ) characterizing the ensemble is
independent of a  and b .  The requirement that the expectation value of
a  and b  is equal to one ( E a,b( ) = 1) (on the average, the polarization of
photons incident on each polarizer are equal) implies B a,( ) = A a,( ).
Defining the correlation function P(a,b) ≡ ∫Γ A(a, )B(b, ) ( )d  where Γ  is
the total  space, generalization of Bell's theorem gives

P a,b( ) − P a,c( ) ≤∫ Γ A(a, )B(b, )− A(a, )B(c, ) ( )d

    = ∫Γ A(a, )B(b, )  1 − B(b, )B(c, )[ ] ( )d

    = ∫Γ 1− B(b, )B(c, )[ ] ( )d

    = 1− ∫Γ B(b, )B(c, ) ( )d

(37.30)

In the case of the 0 −1− 0 cascade, the coincidence count rate, R a,b( ) ,
replaces the correlation function, P a, b( ), of the generalization of Bell's
theorem which then yields the following inequalities [19]:

−1 ≤ S =
R a,b( ) − R a,b'( ) + R a', b( ) + R a', b'( ) − R1 a'( ) − R2 b'( )[ ]

R0

≤ 0 (37.31)

where R a,b( )  is the rate of coincidences with polarizer 1 in orientation a
and polarizer 2 in orientation b , R1 a'( )  is the coincidence rate with
polarizer 2 removed and polarizer 1 in orientation a' , R2 b'( ) is the
coincidence rate with polarizer 1 removed and polarizer 2 in orientation
b' , and R0  is the coincidence rate with the two polarizers removed.  The
maximum violation of Bell's inequalities (Eq. (37.31)) is predicted by
substituting Eqs. (37.23-37.26) into  Eq. (37.31) and by taking
derivatives with respect to the orientation angles and setting them equal
to zero [24].  Assuming the rotational invariance of R a,b( ) , the
inequalities (Eq. (37.31)) contract to [19]

=
R 22.5°( ) − R 67.5°( )

R0

−
1

4
≤ 0 (37.32)

The calculated value, cal , from Eqs. (37.23) and Eq. (37.32) is

cal = 5.8 X 10−2 ± 0.2 X 10−2 (37.33)
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The experimental value, exp , is [19]

exp = 5.72 X 10−2 ± 0.43 X 10−2 (37.34)
The experimental value is in agreement with the calculated value and
violates the inequality of Eq. (37.32) by 13 standard deviations.  From
Eq. (37.23) and Eq. (37.31), the inequality parameter, Scal , corresponding
to orientations:

−1 ≤ S =
R 22.5°( ) − R 67.5°( ) + R 22.5°( ) + R 22.5°( ) − R1 44.8°( ) − R2 67.5°( )[ ]

R0

≤ 0 (37.35)

is
Scal = 0.118 ± 0.005 (37.36)

The experimental value, Sexp , is [19]
Sexp = 0.126 ± 0.014 (37.37)

The experimental value is in agreement with the calculated value and
violates the inequality of Eq. (37.31) by 9 standard deviations.  These
results refute LHVT and quantum mechanics because both theories
require a distribution function of correlated angular momentum.  Only
Mills' theory correctly predicts the coincidence count rate as a function
of the relative orientation of the polarizers.

A fundamental difference exists between Mills' theory versus
quantum mechanics and quantum electrodynamics (QED).  In the case of
Mills' theory, Eq. (16.70) of Jackson applies - the z component of
angular momentum is conserved on a photon by photon basis.  Whereas,
in the quantum mechanical case, Eq. (16.71) of Jackson applies - the z
component of angular momentum is conserved on the average of many
photons.  The photon is the cause of quantization in the deterministic
Mills' theory; whereas, quantization arises from the expectation values
of probability distribution functions in quantum mechanics and QED.
Bell's theorem accepts quantum-mechanical statistics and hidden
variables as correct simultaneously.  The resulting inequalities predicted
for the measurement of two spatially separated observables that were
historically in communication with the condition that local hidden
variables theories (LHVT) are correct is inconsistent with experimental
results.  Thus, the data refute LHVT.  Furthermore, the calculation of
Horne is not quantum mechanical, the implicit physics is deterministic
with the statistics of the measurement associated with two independent,
inefficient detectors.  For a true quantum-mechanical and QED
calculation, the z component of angular momentum is only conserved
on average over momentum space, and in the case of QED, the z
component of angular momentum is only conserved on average over
momentum space as well as over a continuum of frequencies centered
about the expectation values of 1 and 2 .  (The expectation value of the
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z component of angular momentum must include an integral over all
momentum space and over all frequency space.)  Bell's inequalities
apply not only to LHVT, but also to quantum mechanics and QED.
Consider the consequences of the postulate of quantum mechanics that
photon momentum has a distribution function, and the change in the z
component of angular momentum is zero on the average of many
emission events.  The associated average momentum distribution
function is equivalent to a hidden variable distribution function in Eqs.
(37.18) and (37.30).  The observed coincidence count rate of Aspect
[19] is equal to that predicted classically from the statistics of
measurement at an inefficient detector only.  The additional finite
distribution function required in the case of quantum mechanics and
QED results in incorrect predictions as demonstrated in the Bell's
Theorem Test of Local Hidden Variable Theories (LHVT) and Quantum
Mechanics Section.  The observed results disprove LHVT, quantum
mechanics, and QED and support Mills' theory.

SCHRÖDINGER "BLACK" CATS
A recent report in New York Times [32] entitled "Physicists Put

Atom in 2 Places at Once" states, "a team of physicists has proved that
an entire atom can simultaneously exist in two widely separated places".
The article further states, "In the quantum "microscale" world, objects
can tunnel magically through impenetrable barriers.  A single object can
exist in a multiplicity of forms and places.  In principle, two quantum-
mechanically "entangled" objects can respond instantly to each other's
experiences, even when the two objects are at the opposite ends of the
universe".  (This quantum mechanical prediction of the Spooky Actions
at a Distance was disproved in the previous sections--Aspect Experiment-
Spooky Action at a Distance? and Bell's Theorem Test of Local Hidden
Variable Theories (LHVT) and Quantum Mechanics).  Experimentally,
interference patterns were observed by Monroe et al. [33] for a single
9Be+  ion in a trap in a continuous Stern-Gerlach experiment.  The
phenomenon is similar to that of the Aharonov-Bohm Effect which was
erroneously interpreted as interference of electron wave-functions as
given in the Aharonov-Bohm Effect Section.  In this case, the erroneous
interpretation of the experimental observation was that the ion wave-
function interfered with itself wherein the ion was at two separate places
at the same time corresponding to a wave function state called a
"Schrödinger cat" state [32-34].  According to Monroe et al. [33],

"A "Schrödinger cat"-like state of matter was generated at the single atom level.
A trapped 9Be+  ion was laser-cooled to the zero-point energy and then prepared
in a superposition of spatially separated coherent oscillator states.  This state was
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created by application of a sequence of laser pulses, which entangles internal
(electronic) and external (motional) states of the ion.  The "Schrödinger cat"
superposition was verified by detection of the quantum mechanical
interference between the localized wave packets.  This mesoscopic system may
provide insight into the fuzzy boundary between the classical and quantum
worlds by allowing controlled studies of quantum measurement and quantum
decoherence."

The "Schrödinger cat" state analysis relies on the postulate that the
Pauli Exclusion Principle applies to Rabi states wherein a rotation of the
magnetic moment of the unpaired electron of an RF-trapped 9Be+  ion is
represented by a linear combination of spin 1/2 ( ↑

i
) and spin -1/2

( ↓
i
) states.  Three steps of rotation of the spin magnetic moment by a

time harmonic field provided by pairs of copropagating off-resonant
laser beams which drove two-photon-stimulated Raman magnetic
resonance transitions were each separated by displacement laser pulses
which excited a resonant translational harmonic oscillator level of the
trapped ion by coupling only with the ↑

i
 state.  According to Monroe,

"this selectivity of the displacement force provides quantum
entanglement of the internal state with the external motional state.
Although the motional state can be thought of as nearly classical, its
entanglement with the internal atomic quantum levels precludes any
type of semiclassical analysis".  The interference was detected by
exciting a fluorescent transition which only appreciatively coupled to the
↓

i
 state.  Thus, the fluorescence reading was proportional to the

probability P↓  the ion was in state ↓
i
.  The "Schrödinger cat"

superposition was supposedly verified by detection of the quantum
mechanical interference between the localized wave packets.

However, the interference arises not from the existence of the ion
at two places at once.  The positively charged ion was excited to a time
harmonic translational energy state, and the spin quantization axis was

defined by an applied 0.20 mT  magnetostatic field at an angle of 
4

 with

respect to the x-axis of the RF-trap.  The frequency of the energy to
"flip" the spin state was equivalent to the projection of that of
the translational harmonic oscillator onto the spin axis

x

2
cos2

4
= 11.2 MHz( ) 0.5( ) = 5.605 MHz =

∆Emag
spin

h
(37.38)

given by Eqs. (37.45-37.48), infra.  Thus, interference occurred
between the Stern-Gerlach transition and the synchrotron
radiation corresponding to the charged harmonic oscillator.
Since the displacement beams affected only motion correlated with the
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with the ↑
i
 state, a rotation of the magnetic moment such that ≠ 0

with application of the displacement beams gives rise to a phase shift of
the interference pattern.

Experimental Approach
A classical approach to the description of the experiment and the

results of Monroe [33] are given herein.  The corresponding description
according to a "Schrödinger cat" state is given by Monroe [33].

A single 9Be+  ion was confined in a coaxial-resonator radio
frequency (RF)-ion trap [35] that provided harmonic oscillation
frequencies of x, y , z( ) / 2 ≈ 11.2, 18.2,  29.8( ) MHz  along the principal axes

of the trap.  The ion was laser-cooled to the quantum ground state of
motion [36], and then the electronic and motional states were
coherently manipulated by applying pairs of off-resonant laser beams,
which drove two-photon stimulated Raman transitions.  The two internal
states of interest were the stable 2S1/2 F = 2,mF =−2( )  and 2S1/2 F = 1,mF =−1( )
hyperfine ground states (denoted by ↓

i
 and ↑

i
, respectively),

separated in frequency by HF / 2 ≈ 1.250 GHz .  Here, F  and mF  are
quantum numbers representing the total internal angular momentum of
the atom and its projection along a quantization axis.  The Raman beams
were detuned by ∆ ≈ −12 GHz  from the 2P1/2 F = 2, mF = −2( ) excited state,
which acted as the virtual level, providing the Raman coupling.  The
external motional states were characterized by the quantized vibrational
harmonic oscillator states n e  in the x dimension, separated in frequency
by x / 2 ≈ 11.2 MHz .

When the Raman beam difference frequency was tuned near HF

and the "carrier beams" a and b were applied, the magnetic moment of
the ion was rotated away from the spin axis as described by Slichter
[37].  By adjusting the exposure time of the carrier beams, for example,
the electronic state was "flipped"--a ↓

i
 to ↑

i
 transition by a -pulse or

rotated into the x'y'-plane (the plane perpendicular to the spin axis) of

the rotating coordinate system by a 
2

-pulse.  Transitions on the carrier

did not significantly affect the state of motion, because beams a and b
were copropagating.  When the Raman beam difference frequency was
tuned near x , and the "displacement" beams b and c of were applied,
the displacement beams produced a "walking wave" pattern whose time-
dependent dipole force resonantly excited the harmonic motion.
According to Monroe [33], this force promoted an initial zero-point
state of motion 0 e  to a coherent state
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e
= exp

− 2

2

 

 
  

 
 

n

n!( )1/2 n en∑ (37.39)

where = e i  is a dimensionless complex number that represents the
amplitude and phase of the motion in the harmonic potential.  The
probability distribution of vibrational levels in a coherent state is
Poissonian with mean number of vibrational quanta

n = 2 (37.40)
The coherent state of motion is much like classical motion in a harmonic
potential with amplitude

2 x0 (37.41)
where

  
x0 =

h
2M x

 
 
  

 
 

1/2

= 7.1 nm (37.42)

was the root mean square Gaussian amplitude of the oscillating ion and
M  was the mass of the ion.

The polarizations of the three Raman beams, a, b, and c produced
, + / − , and −  couplings, respectively, with respect to a quantization

axis defined by an applied 0.20 mT  magnetic field which was at an angle

of 
4

 with respect to the x-axis of the RF-trap.  As a result, the

displacement beams (b and c) affected only the motional state
correlated with the ↑

i
 state, because the −  polarized beam c could not

couple the ↓
i
 state to any virtual 2P1/2  states.

The energy to flip the orientation of the orbitsphere due to its
magnetic moment of a Bohr magneton, B , given by Eq. (1.151) is

∆Emag
spin = 2g BB (37.43)

where

  
B =

eh
2me

(37.44)

In the case that the magnetic flux density was 0.2 mT , the energy was

∆Emag
spin = 2g BB = 2 1.00116( ) 9.2741X10−24 J

T
 
 

 
 0.2 X 10−3  T( ) = 3.714 X 10−27  J (37.45)

The resonance frequency is given by Planck's equation

  
=

∆Emag
spin

h
=

3.714 X 10−27  J

h
= 3.522  X 107  

rads

s
= 5.605 MHz (37.46)

As demonstrated by Eq. (37.72) and Eq. (37.73), infra., energy is
exchanged between the harmonic oscillator state and the spin state
according to the dot product of the wavenumber vector of the spin
transition and the harmonic displacement vector
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k ⋅ u l,( )[ ]2
∝ cos2

4
= 0.5 (37.47)

Because the positively charged ion was excited to a time harmonic
translational energy state along the x-axis, and the spin quantization axis

was defined by an applied 0.20 mT  magnetostatic field at an angle of 
4

with respect to the x-axis of the RF-trap the frequency of the energy to
"flip" the spin state was equivalent to the projection of that of the
translational harmonic oscillator onto the spin axis

x

2
cos2

4
= 11.2 MHz( ) 0.5( ) = 5.605 MHz =

∆Emag
spin

h
(37.48)

Each Raman beam contained ≈ 1 mW  of power at ≈ 313 nm .  This

resulted in a two-photon Rabi frequency of 
Ω
2

= 250 kHz  for the

copropagating Raman carrier beams a and b, or a -pulse exposure time
of about 1 s .  The displacement Raman beams (b and c) were applied to
the ion in directions such that their wave vector difference dk  pointed
nearly along the x-axis of the trap.  Motion in the y or z dimensions was
therefore highly insensitive to the displacement beams.  When the
displacement beams were applied to a zero-point translational state
(correlated with the ↑

i
 state) for time  on average a harmonic

oscillator state of amplitude
= Ωd (37.49)

was created.  Here, = 0.205  is the Lamb-Dicke parameter and
Ωd

2
≈ 300 kHz  is the coupling strength of the displacement beams.  After

each preparation cycle (described below), which spin state ( ↓
i
 or ↑

i
)

the ion occupied was detected independent of its state of motion.  This
was accomplished by applying a few microwatts of − -polarized light
("detection" beam d) resonant with the cycling ↓

i
→2P3/2 F = 3,  mF = −3( )

transition [radiative linewidth 
2

≈ 19.4 MHz  at wavelength ( ) ≈ 313 nm]

and observing the resulting ion fluorescence.  Because this radiation
does not appreciably couple to the ↑

i
 state, the fluorescence reading

was proportional to the probability P↓  the ion was in state ↓
i
.  The

experiment was continuously repeated--cooling, state preparation,
detection--while slowly sweeping the harmonic oscillator phase .

State Preparation and Detection
The ion was first laser-cooled so that the ↓

i
nx = 0

e
 state was
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occupied about 95% of the time.  Then, five sequential pulses of Raman

beams were applied.  In step 1, a 
2

-pulse on the carrier rotated the

magnetic moment into the plane perpendicular to the spin axis (z'-axis)
in a coordinate system which rotates around the z'-axis.  The moment
precessed about the x'-axis of the rotating coordinate frame described
by Slichter [37].  The precessing moment had a time averaged projection
onto the z'-axis equivalent to an equal superposition of states ↓

i
0 e  and

↑
i

0 e .  In step 2, the displacement beams excited the motion correlated

with the ↑
i
 component to a harmonic oscillator state e− i /2

e
.  In step 3,

a -pulse rotated the magnetic moment in the plane perpendicular to
the spin axis such that the moment precessed about the negative x'-axis
of the rotating coordinate frame described by Slichter [37].  The
precessing moment was equivalent to the swap of the superposition of
states ↓

i
0 e  and ↑

i
n e  produced in step 1 to give component states

↓
i

n e  and ↑
i

0 e .  In step 4, the displacement beams excited the motion

correlated with the ↑
i
 component to a second harmonic oscillator state

e i /2

e
.  In step 5, a final 

2
-pulse on the carrier rotated the magnetic

moment to the spin axis to give ↓
i

n e , the initial spin state excited to an

oscillator state of quantum number n , or ↑
i

n e , the flipped spin state

excited to an oscillator state of quantum number n .  In the absence of
interference between the oscillatory state and the spin state, ↓

i
n e  and

↑
i

n e  occur with equal probability.  The relative phases of the above

steps were determined by the phases of the RF difference frequencies of
the Raman beams which were easily controlled by phase-locking RF
sources.  The experiment was continuously repeated--cooling, state
preparation, detection--while slowly sweeping the harmonic oscillator
phase .  The relative populations of ↓

i
 and ↑

i
 depended on the phase

difference  between the two oscillator states because of the
interference of these states, and each coupled (interfered) with the
Stern-Gerlach transition.  The state ↓

i
n e  underwent a transition to the

higher energy spin state ↑
i
 by coupling to the energy of the oscillator

state.  The amplitude of the oscillation, , given by Eq. (37.49) is
modulated by the interference between the displacement beam of step 2

having a phase 
2

 and step 4 having a phase 
2

.  The resultant amplitude,
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( ) , of the oscillation as a function of harmonic oscillator phase 
2

was given by

( ) = e
i
2

 
 
  

 
 

2

= e
−i

2
 
 
  

 
 

2

= sin
2

(37.50)

where the probability (Eq. (37.81), infra.) of detecting the ↓
i
 was =

2
out of phase with the probability of the ion oscillatory state n e  because

the spin flip to the higher energy state occurred-- ↓
i
→ ↑

i
.  The

interference of the oscillator states with the Stern-Gerlach transition was
measured by detecting the probability P↓ ( ) that the ion was in the ↓

i

state for a given value of .  The magnitude of the harmonic oscillator
state was controlled by the duration of the applied displacement beams
(Eq. (37.49)) in steps 2 and 4.  The phase of the harmonic oscillator
state was controlled by the phase of the applied displacement beams in
steps 2 and 4.  Monroe et al. report [33] on average the detection of one
photon per measurement cycle when the ion was in the ↓

i
 state.  The

data represented an average of about 4000 measurements, or 1 second
of integration.

The physical behavior of a large number of continuous Stern-
Gerlach experiments (an ensemble) each detecting the spin state of a
harmonic oscillating RF-trapped ion is equivalent to that of the
interaction of ultrasound with Mössbauer gamma rays (interference of
an electronic transition and an oscillator transition).  Consider the
Lamb-Mössbauer formula for the absorption of a  ray of energy E  by a
nucleus in a crystal given by Maradudin [38].

  

a E( ) =
1

4 0Γ
2 e

−
Em

Z

mn
∑ X

m e
i

p
h

 

 
  

 

 
  ⋅R l( )

n n e
−i

p
h

 

 
  

 

 
  ⋅R l( )

m

E0 − E + En − Em( )2 + 1
4

Γ2
(37.51)

In this equation, E0  is the energy difference between the final and initial
nuclear states of the absorbing nucleus, Em  and En  are the energies of
the eigenstates m  and n  of the crystal, respectively, Γ  is the natural
width of the excited state of the nucleus, p  is the momentum of the 
ray, R l( ) is the instantaneous position vector of the absorbing nucleus, Z

is the crystal's partition function, T = k( )−1 , and 0  is the resonance
absorption cross section for the absorbing nucleus.  By expressing the
denominator of Eq. (37.51) as an integral, Eq. (37.51) is equivalent to

a E( ) =
1

2 0 dtei t − t

−∞

∞

∫ X exp −ik ⋅u l;t( )[ ]exp ik ⋅ u l;0( )[ ] (37.52)
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wherein the position vector R l( ) is
R l( ) = x l( ) + u l( ) (37.53)

For, Eq. (37.53), x l( ) is the position vector of the mean position of the
absorbing nucleus, and u l( ) is its displacement from the mean position.
Eq. (37.52) follows from Eq. (37.51) with the following substitutions:

  

1

h
 
 

 
 p = k (37.54)

  h = E − E0 (37.55)

  
=

Γ
2h

(37.56)

and u l;t( ) denotes the Heisenberg operator,

  u l;t( ) = e
i

t

h
 

 
 

 

 
 H

u l;0( )e
−i

t

h
 

 
 

 

 
 H

(37.57)
where H  is the Hamiltonian.  The angular brackets in Eq. (37.52) denote
an average over the canonical ensemble of the crystal.

The probability P↓ ( ) that the ion of the experiments of Monroe et

al. [33] was in the ↓
i
 state for a given value of  is herein derived from

the correlation function for the statistical average of large number of
continuous Stern-Gerlach experiments (an ensemble) each detecting the
spin state of a harmonic oscillating RF-trapped ion which is equivalent to
that of the interaction of ultrasound with Mössbauer gamma rays.  From
Eq. (37.52), the correlation function Q t( ) of acoustically modulated
gamma ray absorption by Mössbauer nuclei is

Q t( ) = exp −ik ⋅u l;t( )[ ]exp ik ⋅ u l;0( )[ ] (37.58)
In the present case, the position vector is given by Eq. (37.53) where x l( )
is the position vector of the mean position of the trapped ion, and u l( ) is
its displacement from the mean position.  In this case, p  and k  of Eq.
(37.54) are the momentum and the wavenumber, respectively, of the ion
corresponding to the spin flip, E  of Eq. (37.55) is the energy of the
harmonic oscillator, E0  is the difference in energy between the ↑

i
 and

↓
i
 states, and u l;t( ) of Eq. (37.57) is

  u l;t( ) = e
i

t

h
 

 
 

 

 
 E

u l;0( )e
−i

t

h
 

 
 

 

 
 E

(37.59)
The matrix elements of Eq. (37.58) are calculated by using the theorem
[39]

eAeB = eA+ Be
1

2
A ,B[ ]

         if  A,B[ ], A[ ] = A, B[ ], B[ ] = 0 (37.60)
For a harmonic oscillator, the commutator of k ⋅u l;t( ) and k ⋅u l;0( )  is a c

number; thus,
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Q t( ) = exp −ik ⋅u l;t( )[ ]exp ik ⋅ u l;0( )[ ]
      = exp −ik ⋅ u l;t( ) − u l;0( )[ ][ ] X exp

1
2

k ⋅ u l;t( ),  k ⋅u l;0( )[ ] 
 

 
 

(37.61)

Since the correlation function applies to an ensemble of harmonic
oscillator states, the first thermodynamic average can be simplified as
follows:

exp −ik ⋅ u l;t( ) − u l;0( )[ ][ ] = exp −
1

2
k ⋅ u l;t( ) − u l;0( )[ ]{ }2 

 
 
 

(37.62)

This theorem is known in lattice dynamics as Ott's theorem [40] or
sometimes as Bloch's theorem [41].  Using the time independence of the
harmonic potential, Eq. (37.62) is

exp −
1

2
k ⋅ u l;t( ) − u l;0( )[ ]{ }2 

 
 
 

= exp−
1

2
k ⋅ u l;t( )[ ]2

+
1

2
k ⋅ u l;0( )[ ]2 

 
 
 

(37.63)

                                                   = exp− k ⋅ u l( )[ ]2
(37.64)

Substitution of Eqs. (37.62-37.64) into Eq. (37.61) gives

Q t( ) = exp − k ⋅ u l;t( )[ ]2
X exp

1

2
k ⋅ u l;t( ),  k ⋅ u l;0( )[ ] 

 
 
 

(37.65)

Expanding u l;t( ) in terms of the normal coordinates of the harmonic
potential and the phonon operators of that harmonic potential gives

  

u l;t( ) =
h

2Ml

 
 
  

 
 

1

2 B s( ) l( )

s( )
1

2s
∑ bse

−i st + bs
†e i st( ) (37.66)

where  labels the Cartesian components, Ml  is the mass of the ion in
the l th experiment, s  is the frequency of the s th normal mode, B s( ) l( ) is
the associated unit eigenvector, and bs

†  and bs  are the phonon creation
and destruction operators for the s th normal mode.  By use of the
coordinate expansion, the exponential of the correlation function
appearing in Eq. (37.65) can be written as

e k⋅u l; t( )k⋅u l;0( ) = e
−c s

2 ei st

s( )
1

2

+ s( )
1

2 e
−i st

 

 

 
 
  

 

 

 
 
  s

∑

                    = e

− cs
2 e i st

s( )
1

2

+ s( )
1

2 e
−i st

 

 

 
 
  

 

 

 
 
  

s
∏

                    = J0 2cs
2( ) + Jn 2cs

2( ) e i st

s( )
1

2

+ s( )
1

2 e−i s t

 

 
 

 

 
 

n=1

∞

∑
 

 
 
 

 

 
 
 s

∏

(37.67)

where the following substitutions were made:
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s =

ns +1

ns

= e
h s

kT (37.68)

  
ns =

1

e
h s

kT − 1

(37.69)

  
cs

2 =
h

2Ml

k ⋅ B s( ) l( )[ ]2

s

e
h s

2kT

e
h s

kT −1

(37.70)

and where the Bessel function relationship [42]

e
1

2
x y+ y −1( )

= Jn
n=−∞

∞

∑ x( )yn (37.71)

was used.  ns  is the mean number of phonons in the s th mode at
temperature T .  In the case of Monroe's experiments [33], the
correlation function for the exchange of energy between a harmonic
oscillator state and a spin state was independent of time--not a function
of e i st  and e−i s t .  Thus, the time dependent factors are dropped in Eq.
(37.67), and combining Eqs. (37.65-37.67) and Eq. (37.70) gives the
correlation function as

Q cs
2( ) = exp− cs

2[ ] J0 2cs
2( )

s
∏ (37.72)

For the experiment of Monroe et al. [33], the ion was laser-cooled so
that the ↓

i
nx = 0

e
 state was occupied about 95% of the time; thus, the

partition function of Eq. (37.51) is equal to one.  Eq. (37.70) is

  
cs

2 =
h

2M

k ⋅ B s( ) l( )[ ]2

s

(37.73)

The harmonic frequency was s = x  with s = 1 in Eq. (37.67) where the
sum is over the ensemble of translational harmonic oscillator modes for
a series of "Schrödinger cat" state experiments--each a specific Raman
beam pulse sequence with measurement; therefore, the correlation
function is

Q cs
2( ) = exp− cs

2[ ]J0 2cs
2( ) (37.74)

Monroe et al. [33] measured the probability of spin state ↓
i
 as a

function of the phase angle of the displacement lasers of steps 2 and 4.
The probability P↓ ( ) of detecting the ↓

i
 state as a function of phase

angle, , can be derived from the correlation function, Eq. (37.74).  The
expansion of the Bessel function is
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J x( ) =
x

2
 
 

 
 

−x2

4

 
 
  

 

m

m!Γ m + +1( )[ ]m = 0

∞

∑

J0 x( ) =

−x2

4

 
 
  

 

m

m!Γ m +1( )[ ]m= 0

∞

∑ =

−x2

4

 
 
  

 

m

m!m![ ]m= 0

∞

∑

(37.75)

where Γ m +1( ) = m! was used.  The probability distribution function of
vibrational levels in a coherent state is Poissonian.  The probability [43]
of a spin flip with the emission of m  phonons is

Pm =
n me− n

m!
=

2( )m
e− 2

m!
=

2me− 2

m!
(37.76)

with mean number of vibrational quanta n = 2  (Eq. (37.40)).  The
probability P↓ ( ) can be derived by factoring Eq. (37.76) from the Bessel
function of the correlation function (Eq. (37.74)) and its expansion
which follows from Eq. (37.75).

J0 x( ) =

−x2

4

 
 
  

 

m

m!m![ ]m= 0

∞

∑ ;

J0 x( ) =

− x( )2

4

 
 
  

 
 

m

m!m !m =0

∞

∑ = 1

e− 2

−x2

4

 
 
  

 

m

m!m = 0

∞

∑
2 me− 2

m!

(37.77)

Combining Eq. (37.76) and Eq. (37.77) demonstrates that the probability
P↓ ( ) is proportional to

P↓ x( ) ∝

−x2

4

 
 
  

 

m

m!m = 0

∞

∑ (37.78)

Let x = y2 , then the change of variable in Eq. (37.78) is

P↓ y( ) ∝

−x

4
 
 

 
 

m

m!m =0

∞

∑ =

−x2

4

 
 
  

 

m /2

m !m= 0

∞

∑ (37.79)

Let m' = m / 2 , then the change of variable in Eq. (37.79) is

P↓ y( ) ∝

−x 2

4

 
 
  

 

m /2

m!m =0

∞

∑ ∝

−x 2

4

 
 
  

 

m'

2m'( )!m =0

∞

∑ (37.80)

The series expansion of cos x( ) is

cos x( ) =
−x2( )m

2m( )!m= 0

∞

∑ (37.81)



© 2000 by BlackLight Power, Inc.  All rights reserved.
538

Combining Eq. (37.74) and Eqs. (37.78-37.81) gives the probability P↓ ( )
proportional to

P↓ ( ) ∝ cos 2 cs
2( ) (37.82)

where y = x = cs
2 .  The quantization axis was at an angle of 

4
 with

respect to the x-axis.  From Eqs. (37.40-37.42), Eq.(37.50), and Eq.
(37.73),

cs
2 = 2 sin2

2
(37.83)

Combining Eq. (37.82) and Eq. (37.83) gives the probability P↓ ( )
proportional to

P↓ ( ) ∝ cos 2 2 sin
2

 
 

 
 (37.84)

Combining Eq. (37.74), Eq. (37.83), and Eq. (37.84) gives the probability
P↓ ( ) proportional to

P↓ ( ) ∝ exp − 2 sin2[ ]cos 2 2 sin
2

 
 

 
 = exp − 2 1 − cos

2
 
 

 
 

 
  

 
  cos 2 2 sin

2
 
 

 
 (37.85)

The rotation of the magnetic moment with RF fields such that ≠ 0
with application of the displacement beams is equivalent to a phase shift
of the correlation function given by Eq. (37.58)

Q t( ) = expi exp −ik ⋅ u l;t( )[ ]exp ik ⋅u l;0( )[ ] (37.86)
Thus, Eq. (37.85) is phase shifted.

P↓ ,( ) ∝ exp − 2 1− cos

2
 
 

 
 

 
  

 
  cos + 2 2 sin

2
 
 

 
 (37.87)

The probability of detecting either ↓
i
 or ↑

i
 is one.  The initial

state of the ion for each cycle is ↓
i
.  Consider the 

2
-pulses (steps 2 and

5).  In the absence of interference between the oscillator states and the
Stern-Gerlach transition with ≠ 0 , the probability of detecting ↓

i
 or

↑
i
 is the same--1/2.  However, with interference, the spin flip to the

higher energy state occurs, ↓
i
→ ↑

i
.  The probability of detecting ↓

i

with interference is given by 1/2 minus the probability function, Eq.
(37.87), normalized to 1/2.  The probability function for the detection
of ↓

i
 with interference as a function of phase angle, , harmonic

oscillator amplitude, , and phase shift, , is

P↓ ,( ) =
1 − exp − 2 1 − cos

2
 
 

 
 

 
  

 
  cos + 2 2 sin

2
 
 

 
 

2
(37.88)
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The plot of the probability P↓ ( ) of detecting the ↓
i
 state as a function

of phase angle, , harmonic oscillator amplitude, , and phase shift, ,
using the values of the curve fit parameters of Monroe et al. [33] are
given in Figures 37.9 and 37.10.  Monroe et al. report [33] on average
the detection of one photon per measurement cycle when the ion is in
the ↓

i
 state.  The data represented an average of about 4000

measurements, or 1 second of integration.
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Figure 37.9.  The plot of the probability P↓ ( )  (Eq. (37.88)) of detecting the ↓
i
 state

as a function of phase angle, , for the harmonic oscillator amplitude, , and phase
shift, = 0 .  Curves in (A) to (D) represent experiments with various values of  (2,
3, 5, and 15 s, respectively).  The curves are fits of the measurements to the values
of Monroe et al. [33] for the parameter  of =0.84, 1.20, 1.92, and 2.97, respectively.
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Figure 37.10.  The plot of the probability P↓ ( )  (Eq. (37.88)) of detecting the ↓
i

state as a function of phase angle, , for the harmonic oscillator amplitude, =1.5 ,
and phase shift, .  Curves in (A) to (C) are fits of the measurements to the values
of Monroe et al. [33] for the parameter  of =1.03 , 0.48 , and 0.06 , respectively.
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These results confirm that classical physics predicts the
interference patterns observed by Monroe et al. [33] for a single 9Be+  ion
in a trap in a continuous Stern-Gerlach experiment without the
requirement of Monroe [33] or Browne [32], "that an entire atom can
simultaneously exist in two widely separated places".

SCHRÖDINGER FAT CATS-ANOTHER FLAWED INTERPRETATION
A recent report in The New York Times [44] entitled "Here, There

and Everywhere: A Quantum State of Mind" states, "Physicists at Delft
University of Technology have put a 5-micrometer-wide loop of
superconducting wire into a "quantum superposition" of two
contradictory possibilities: in one, the current flows clockwise; in the
other, current flows counterclockwise."  The article further states, "In
the realm of atoms and smaller particles, objects exist not so much as
objects as mists of possibilities being here there and everywhere at the
same time-and then someone looks and the possibilities suddenly
collapse into definite locations."  The experiment was a simplified
version of the concept of Schrödinger's cat.  In 1935, Schrödinger [45]
attempted to demonstrate the limitations of quantum mechanics using a
thought experiment in which a cat is put in a quantum superposition of
alive and dead states.

Instead of a cat, Friedman et al. [46] used a small square loop of
superconducting wire linked to a SQUID (Superconducting Quantum
Interference Device).  A SQUID comprises a superconducting loop with a
Josephson junction, a weak link that causes magnetic flux to be linked in
integer units of the magnetic flux quantum.  When the loop is placed in
an external magnetic field, the loop spontaneously sets up an electrical
current to cancel the field or generate an additional magnetic field,
adjusting the magnetic field to a unit of the magnetic flux quantum, one
of the allowed values.  In the experiment of Friedman et al. [46], the loop
was placed in a magnetic field equal to one half of the first allowed
value, a magnetic flux quantum.  Thus, the loop could set up either a
current to raise the field strength to the first allowed value, or with
equal probability, a current of equal magnitude flowing in the opposite
direction to cancel out the external field.  A pulse of microwaves was
applied at the frequency to cause a transition of the magnetic moment
of the current loop as an entirety.  The absorption of microwaves caused
the magnetic state of the SQUID to change and the current to reverse its
direction.

Experimentally, a measurement always gave one of the two possible
answers, clockwise or counterclockwise, never a zero cancellation.  A
difference in energy at which the flip transition occurred between the
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two possibilities was detected by a group led by J. Lukens and J.
Friedman at the State University of New York (SUNY) [46].  A simple
explanation was that the microwaves simply flipped the current
direction which had a energy bias in one direction versus the opposite
based on the corresponding presence or absence of a magnetic flux
quantum within the SQUID.  Rather, they interpreted the results as
experimental evidence that a SQUID can be put into a superposition of
two magnetic flux states: one corresponding to a few microamperes of
current flowing clockwise and the other corresponding to the same
amount of current flowing anticlockwise.  "Just as the cat is neither alive
nor dead but a ghostly mix of the two possibilities, the current flows
neither clockwise or counterclockwise, but is a mix of the two
possibilities [44]."  According to Friedman, "we can have two of these
macroscopically well-defined states at the same time.  Which is
something of an affront to our classical intuitions about the world [44]."

Current running in both directions simultaneously is nonsensical.
Current is a vector and must have only one direction. The energy
difference observed by Friedman et al. can be explained
CLASSICALLY.  The experimental apparatus comprised a small SQUID
coupled to a large current loop.  A second SQUID magnetometer read
the flux state of the first sample SQUID.  The energy difference was not
due to superposition of flux states.  Rather, it was due to the nature of
the electron which carries the superconducing current and links flux in
units of the magnetic flux quantum.  Consequently, the sample SQUID
linked zero or one magnetic flux quantum.  When excited by
electromagnetic radiation of a resonant frequency, individual electrons
undergo a spin-flip or Stern Gerlach transition corresponding to a
reversal of the electron magnetic moment, angular moment, and
current.  The Stern Gerlach transition energies of electrons superimpose.
The energy difference observed by Friedman et al. matches the
energy corresponding to the flux linkage of the magnetic flux
quantum by the ensemble of superconducting electrons in their
entirety with a reversal of the corresponding macroscopic current.
The linkage was caused by high power microwave excitation of a Stern
Gerlach transition of the magnetically biased loop which caused a
concomitant change in the flux state of the separately magnetically
biased sample SQUID.  In this case, the microwave frequency was kept
constant, and the bias flux of the loop was scanned at a fixed magnetic
bias of the sample SQUID until the resonance with the superposition of
the Stern Gerlach transitions of the superconducting electrons in their
entirety was achieved.

Superconducting Quantum Interference Device (SQUID)
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The electron possesses an angular momentum of   h .  As shown in
the Electron g Factor Section, the electron angular momentum comprises
kinetic and vector potential components.  Angular momentum is
conserved in the presence of an applied magnetic field when the
electron links flux in units of the magnetic flux quantum, Φ0 .

Φ0 =
h

2e
(37.89)

This occurs when the electron rotates by 
2

 radians about an axis

perpendicular to the axis parallel to the magnetic flux lines.  This

electron rotation corresponds to an 
  
h
2

 magnitude, 180°  , rotation of the

electron's angular momentum vector.  In the case that the electrons
carry current, this change in momentum of a given current carrying
electron increases or decreases the current depending on the vector
projection of the momentum change onto the direction of the current.
Recently, it has been demonstrated that 50-nm-diameter rings of InAs on
a GaAs  surface have can host a single circulating electron in a pure
quantum state, that is easily controlled by magnetic fields and voltages
on nearby plates.  The electrons were observed to link flux in the unit of
the magnetic flux quantum with a gain in a unit of angular momentum in
a specific direction with the linkage [47] as given in the Aharonov-Bohm
Effect Section.  Since the electron links flux in units of the magnetic flux
quantum, the magnetic flux that links a superconducting loop with a
weak link called a Josephson junction is the magnetic flux quantum.  The
factor of 2e  in the denominator of the magnetic flux quantum (Eq.
(37.89)) has been erroneously interpreted [48] as evidence that Cooper
pairs are the superconducting current carriers which is central to the
BCS theory of superconductors.  However, single electrons, not electron
pairs, are the carriers of the superconducting current.

The supercurrent and the linkage of flux is dissipationless; thus,
the general form of the equation for the energy of a Josephson junction
is harmonic function as given by Fowles [49].  Each electron links flux
only in units of the magnetic flux quantum, Φ0 , given by Eq. (37.89).
Thus, the natural frequency in terms of the applied flux, Φ , is the
magnetic flux quantum, Φ0 .

The simplest SQUID ( the radio frequency (r.f.) SQUID) is a
superconducting loop of inductance L  broken by a Josephson junction
with capacitance C  and critical current Ic .  In equilibrium, a
dissipationless supercurrent can flow around this loop, driven by the
difference between the flux Φ  that threads the loops and the external
flux Φ x  applied to the loop.  The dynamics of the SQUID can be
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described in terms of the variable Φ  and are analogous to those of a

particle of "mass" C  (and kinetic energy 
1

2
C ˙ Φ 2) moving in a one-

dimensional potential given by the sum of the magnetic energy of the
loop and the Josephson coupling energy of the junction.

U = U0

1

2

2 Φ − Φ x( )
Φ0

 
 
  

 
 

2

− L cos 2
Φ
Φ0

 
 
  

 
 

 

 
 

 

 
 (37.90)

where

U0 ≡
Φ0

2

4 2L
(37.91)

and

L ≡
2 LIC

Φ0

(37.92)

For the parameters of the experiment, this is a double-well potential

separated by a barrier with a height depending on Ic .  When Φ x =
Φ0

2
 the

potential is symmetric.  Any change in Φ x  then tilts the potential.  The
flux state of the sample SQUID was zero or one fluxon.  A static current
flowed either clockwise or counterclockwise around the loop to cancel
or augment Φ x  such that an allowed fluxon state was maintained.

Experimental Approach
The SUNY experiment was a macroscopic Stern-Gerlach experiment

on a macroscopic current loop coupled to a small d.c. SQUID (sample
SQUID).  The SQUID and the current loop were independently biased
with externally applied flux.  The SQUID used in these experiments was
made up of two Nb / AlOx / Nb  tunnel junctions in parallel as shown in
Figure 37.11.  This essentially acted as a tunable junction in which Ic

could be adjusted with a flux Φ xd.c .  applied to the small loop of the d.c.
SQUID.  Another flux Φ x  applied to the loop tuned the tilt  of the
potential wherein Φ xd.c .  tuned the barrier height ∆U0  at = 0 .  The SQUID
was biased such that it was in a zero or one fluxon state.  A separate d.c.
SQUID inductively coupled to the sample acted as a magnetometer,
measuring the flux state of the sample SQUID: zero or one fluxon.

The sample SQUID used in the experiments was characterized by
the following three energies: the charging energy

Ec ≡
e2

2C
= 9.0 mK (37.93)

the inductive energy

EL ≡
Φ0

2

2L
= 645 K (37.94)
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and a tunable Josephson coupling energy

EJ ≡ Ic

Φ0

2
 
 

 
 cos

Φ xd.c.

Φ0

 
 
  

 
 = 76 K cos

Φ xd. c.

Φ0

 
 
  

 
 (37.95)

The plasma frequency J associated with these parameters was,
1.5 −1.8 X 1011  rad s −1(24 − 29 GHz) depending on the value of Φ xd.c . .  The fact
that Ec << EL , E J

 
confirms that flux was the proper basis to describe the

SQUID's dynamics.
The sample was encased in a PdAu shield that screened it from

unwanted radiation.  A coaxial cable entering the shield permitted the
application of controlled external microwaves.  The set-up was carefully
filtered, and cooled to about 40 mK in a dilution refrigerator.

The flux Φ x  tilted the potential from being symmetric at Φ x =
Φ0

2
according to Eq. (37.90).  It was varied over the range
Φ0

2
+11.5 mΦ0 < Φ0 <  

Φ0

2
+15.5 mΦ0 .  The barrier height ∆U0  was varied over

the range 8.559 K ≤ ∆U0 ≤  9.117 K .  The SQUID was established in one state
and excited with a pulse of high power 96.0 GHz (4.61 K)  microwaves as Φ x

was scanned.  The values of Φ x  at which photon absorption occurred
with a change of flux state of the SQUID was recorded at a fixed barrier
height ∆U0 .  The experiment was repeated with ∆U0  changed.

The system was initially prepared in a zero or one fluxon state with
an energy barrier ∆U0  and a tilt energy .  Millisecond pulses of 96 GHz
microwave radiation at a fixed power was then applied.  When the
energy difference between the initial and final states matched the
resonance frequency as  was varied for a given ∆U0 , the system had an
appreciable probability of changing flux state which was detected by the
magnetometer.  The experiment was repeated for different values of
∆U0 .
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Figure 37.11.  The experimental setup.

Data
The probability of the sample SQUID making a flux state transition

when a millisecond pulse of 96.0 GHz (4.61 K)  microwaves was applied was
recorded as shown in Figure 37.12.  For each ∆U0 , two peaks were
observed as Φ x  was varied.  As the energy barrier ∆U0  was reduced, the
observed peaks moved closer together and then separated without
crossing.  For ∆U0 = 9.117 K  (thick solid curve), the right peak
corresponds to level 0  which has a greater relative amplitude than the
left peak which corresponds to level 1 .  When ∆U0  was decreased to
8.956 K  (dotted curve), the peaks moved closer, and the asymmetry
disappeared.  As the barrier was decreased further ( 8.797 K  is the dashed
curve), the peaks moved apart again, and the asymmetry reappeared.
But, in this case, the left larger peak corresponded to level 0 .  Thus,
with a barrier change of about 2 X 0.14 K , the two levels passed through
the point at which the levels were symmetrical according to Eq. (37.90)
at about ∆U0 = 8.956 K . and changed roles without actually intersecting.
The insert shows the position of the peaks in the main figure (as well as
other peaks) in the ∆U0 −Φ x  plane.  Two examples of the convergence
and divergence of the peaks in the ∆U0 −Φ x  plane at point where the
levels were symmetrical according to Eq. (37.90) were observed.  The
dashed line in the insert represents the locus of points where the
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calculated top of the energy barrier was 96 GHz above state i .  All of
the data lies to the left of the dashed line and therefore, corresponds to
levels that are below the top of the barrier according to Eq. (37.90).

Figure 37.12.  The probability Pswitch of making a flux state transition when
a millisecond pulse of 96-GHz microwave radiation is applied.  For
clarity, each curve is shifted vertically by 0.3 relative to the pervious
one.  The insert shows the position of the observed peaks in the ∆U0 −Φ x

plane.

The inductance L  and the impedance Z ≡ L / C  of the loop, and the
Josephson coupling parameter L of the sample SQUID were measured
independently.  The values were L = 240 ±15 pH , Z = 48.0 ± 0.1 Ω , and

L = 2.33 ± 0.01.  The energy levels of the flux states 0  and 1  Elevel  as a
function of  relative to their mean energy Emean ∆U0,Φx( ) using the
experimentally measured L , Z , and L are shown in Figure 37.13.  At the
middle at which point the levels were symmetrical according to Eq.
(37.90), the two levels have a splitting of about ∆ = 0.14 K  in energy and
the upper level is about ∆ = 0.14 K  below the top of the energy barrier as
calculated from Eq. (37.90).

Figure 37.13.  Energy of the measured peaks relative to the calculated
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mean of the two levels as a function of .

The quantum dynamics of the SQUID was determined by the flux
through the loop, a collective phenomenon representing the
superposition of about 1010  electrons acting in tandem.  Since the
experimental temperature was about 500 times smaller than the
superconducting gap, almost all of the microscopic degrees of freedom
were frozen out, and only the collective flux transition retained any
dynamic relevance.  The flux states 0  and 1  differed in flux by Φ0  and
differed in current by 2 − 3 A..  Given the geometry of the SQUID this
corresponded to a local magnetic moment of 1010  B .

Quantum Interpretation
According to quantum theory, a superposition of fluxoid states 0

and 1  would manifest itself in an anticrossing defined as the lifting of
the degeneracy of the energy levels of the two states at the point at
which the states would be degenerate in the absence of coherence.
Coherent tunneling lifts the degeneracy so that at the degeneracy point,
the energy eigenstates are the symmetric and antisymmetric

superposition of flux-basis states: 
1

2
0 + 1( ) and 

1

2
0 − 1( ).  The energy

difference ∆E  between the two states is given approximately by
∆E = 2 +∆2

(37.96)
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where ∆
 
is known as the tunnel spitting.  For a given ∆U0 , Eq. (37.90)

predicts that two peaks would be observed as  is varied by varying Φ x .
It further predicts that the peak separation should decrease and cross as
the experiment is repeated for different values of ∆U0 .  The lifting of
degeneracy or splitting was anticipated to be observed as a decrease in
peak separation and a reversal of the flux states in the ∆U0 −Φ x  plane
without crossing.  Friedman et al. sought to demonstrate the existence of
such a splitting to support the notion of superposition of flux states
corresponding to clockwise and counterclockwise currents
simultaneously.

Classical Interpretation
Two sets of peaks are given by Eq. (37.90) which is derived

from CLASSICAL PHYSICS.  The nondegeneracy of the energy levels
and the absence of crossing of the peaks was due to the linkage of
flux by the electrons of the supercurrent.

As given in the Electron g Factor Section (Eq. (1.132), the angular
momentum of the electron in the presence of an applied magnetic field
is

L = r × (mev + eA) (37.97)
where A  is the vector potential of the external field evaluated at the
location of the electron.  Conservation of angular momentum of the
electron permits a discrete change of its "kinetic angular momentum"

(r × mv)  by the field of 
  
h
2

, and concomitantly the "potential angular

momentum" (r × eA)  must change by - 
  
h
2

.  To conserve angular

momentum in the presence of an applied magnetic field, the electron
magnetic moment can be parallel or antiparallel to an applied field as
observed with the Stern-Gerlach experiment, and the flip between

orientations ( a rotation of 
2

) is accompanied by the "capture" of the

magnetic flux quantum by the electron.
According to Eq. (1.136), the energy to flip the orientation of the

orbitsphere due to its magnetic moment of a Bohr magneton, B , is
∆Emag

spin = 2 BB (37.98)
where

  
B =

eh
2me

(37.99)

The energy change corresponding to the "capture" of the magnetic flux
quantum is derived below.  From Eq. (1.138), the energy stored in the
magnetic field of the electron is
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Emag = 0e

2h2

(me )2 rn
3 (37.100)

The orbitsphere is equivalent to a Josephson junction which can trap
integer numbers of fluxons where the quantum of magnetic flux is

Φ0 =
h

2e
.  Thus, Eq. (1.148) gives

∆Emag
fluxon = 2

2 BB (37.101)

The principal energy of the transition of reorientation of the orbitsphere
is given by Eq. (1.136).  And, the total energy of the flip transition is the
sum of Eq. (1.148), the energy of a fluxon treading the orbitsphere and
Eq. (1.136), the energy of reorientation of the magnetic moment (Eqs.
(1.149-1.151)).

∆Emag
spin = 2 BB +

2 BB
 
 

 
 (37.102)

∆Emag
spin = 2(1+

2
) BB (37.103)

∆Emag
spin = 2g BB (37.104)

The spin-flip transition can be considered as involving a magnetic
moment of g  times that of a Bohr magneton.  The factor g  is
redesignated the fluxon g  factor as opposed to the anomalous g factor
and its value is 1.00116.  The experimental value is 1.00116.

The energy difference ∆  of the flux states 0  and 1  was not the
tunnel spitting energy sought by Friedman et al. to support the notion of
superposition of flux states corresponding to clockwise and
counterclockwise currents simultaneously.  The microwaves simply
flipped the current direction which had a energy bias in one direction
versus the opposite based on the corresponding presence or absence of
a magnetic flux quantum within the SQUID.  The energy difference was
due to the linkage of flux by the current carrying superconducting
electrons with a reversal of the current direction and a corresponding
change in the flux state of the sample SQUID.  The loop and SQUID
transition resulted from a Stern Gerlach transition of a magnetic
moment of 1010  B  that was equivalent to the superposition of 1010

electrons.  The macroscopic spin-flip occurred by the absorption of high
power microwave energy at the 96 GHz resonance frequency of the
equivalent macroscopic magnetic moment.  The energy of the 1010

electrons linking flux of 
1

2
Φ0  is calculated from Eq. (37.101) by

determining the magnetic flux due to 1010  electrons.
The magnetic moment of 1010  electrons  is given by the number of

electrons times a Bohr magneton B  of magnetic moment per electron.
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= 1010 electrons( ) B (37.105)
The magnetic moment is equal to the current of the loop I  times the
area of the loop A .

= 1010 electrons( ) B = IA (37.106)
The magnetic flux B  is given by one half the magnetic flux quantum Φ0

divided by the area of the loop which is given by Eq. (37.106).

B =

1
2

Φ0

A
=

1
2

Φ0

I

=

1
2

Φ0

1010electrons( ) B

I

(37.107)

The energy of the 1010  electrons linking flux of 
1

2
Φ0  by reversing the

direction of supercurrent is calculated from Eq. (37.101) and Eq.
(37.107) wherein the energy is one half that given by Eq. (37.101)
because the flux state of the loop is initially biased at about the
symmetrical point.

∆Emag
fluxon = 1010electrons( )

2 BB

= 1010electrons( )
2 B

1
2

Φ0

I

= 1010electrons( )
2 B

1

2
Φ0

1010 electrons( ) B

I

=
4

IΦ0

(37.108)

The linkage of 
1

2
Φ0  occurs when the electron rotates by 

2
 radians about

an axis perpendicular to the axis parallel to the magnetic flux lines.  This

electron rotation corresponds to an 
  
h
2

 magnitude, 180° , rotation of the

electron's angular momentum vector.  Since the electrons carry current,
this reversal in momentum reverses the current according to the vector
projection of the momentum change onto the direction of the current.
Since the current reverses direction when a magnetic fluxon treads the
loop of the SQUID, the current I  is given by one half of the critical
current Ic .  The critical current Ic  may be calculated from the Josephson
coupling parameter L of the sample SQUID given by Eq. (37.92) using
the independently measured value of L = 2.33 ± 0.01 and the inductance
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L = 240 ±15 pH .

IC ≡ LΦ0

2 L
=

2.33( )Φ0

2 240 X 10−12  H( ) = 3.2 A (37.109)

Substitution of one half Ic  given by Eq. (37.109) into Eq. (37.108) gives
the energy difference between the flux states.

∆Emag
fluxon =

1

2 2
 
 

 
 

1

2
Ic

 
 

 
 Φ0 =

1

4 2
 
 

 
 IcΦ0 =

1

4

IcΦ0

2

∆Emag
fluxon =

4
LΦ0

4 L
Φ0 =

2.33( ) Φ0( )2

4( )2 240 X 10−12  H( ) = 0.012 meV = 0.139 K

(37.110)
Using Eqs. (37.90-37.92), the Josephson coupling energy of the junction
UJ  can be written in a form that is similar to that given by Eq. (37.110).
From Eq. (37.90),

UJ = U0 L cos 2
Φ
Φ0

 
 
  

 
 (37.111)

Substitution of Eq. (37.91) for U0  and Eq. (37.92) for L  gives

UJ = U0 L cos 2
Φ
Φ0

 
 
  

 
 =

Φ0
2

4 2 L L cos 2
Φ
Φ0

 
 
  

 
 =

Φ0
2

4 2 L

2 LIC

Φ0

cos 2
Φ
Φ0

 
 
  

 
 =

ICΦ0

2
cos 2

Φ
Φ0

 
 
  

 
 

(37.112)
The SQUID links flux in integer units of the magnetic flux quantum; thus,
the Josephson coupling energy of the junction UJ  is

UJ =
ICΦ0

2
(37.113)

The switch between Stern Gerlach states is predicted to be
Lorentzian with a maximum transition intensity or probability at the
energy level of 96 GHz difference between the states.  The energy of the
magnetic level 0  or 1  was tuned by the flux Φ xd.c .  which was tilted by
flux Φ x  applied to the large current loop.  In the case that the flux Φ xd.c .

corresponded to an energy level above the symmetrical case according
to Eq. (37.90), the initial flux state 0  under went a transition to the
state 1  at a higher flux Φ x  than in the case that 1  under went a
transition to the state 0 .  In the case that the flux Φ xd.c .  corresponded to
an energy level above the symmetrical case according to Eq. (37.90), the
situation was reversed.  The states were nondegenerate at the
symmetrical point according to Eq. (37.90) because an energy bias
existed based on the presence or absence of a magnetic flux quantum
within the SQUID.  Consequently, the energy difference of the peaks
decreased to a minimum as the symmetrical point was approached,
reversed assignments without crossing, and separated again.  The data
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demonstrate a difference in the energies of the flux states even at the
point at which they were symmetrical according to Eq. (37.90).  The
difference was due to linking of flux by the superconducting electrons.
The transition probability of state 0  to the state 1  occurred with
slightly greater probability than the later since the potential energy of
the state 0  was greater than the state 1 .  Thus, the intensity ratios of
the peaks reversed also with the interchange of the assignments of the
peaks as shown in Figure 37.12.

The energy of the 1010  electrons linking flux of 
1

2
Φ0  is equivalent to

the energy difference ∆  of the flux states 0  and 1  of about ∆ = 0.14 K
measured by Friedman et al as shown in Figure 37.13.  The energy of the
highest energy level is predicted to be about ∆ = 0.14 K  below that given

by Eq. (37.90) since the SQUID is biased by about 
1

2
Φ0  with flux Φ xd.c .

which is perturbed by flux Φ x .  The measured value of about ∆ = 0.14 K  is
in good agreement with the predicted value.

The phenomenon observed by Friedman et al. [46] is similar to that
of the Aharonov-Bohm Effect and the results of Monroe et al. [33] given
in the Aharonov-Bohm Effect Section and the Schrödinger "Black" Cats
Section, respectively.  In the first case, the results of a damped harmonic
oscillatory behavior of the ratio of the change in resistance and the
resistance as a function of the flux applied to a current loop was
erroneously interpreted as interference of electron wave-functions.  The
results were due to the linkage of flux by electrons in units of the
magnetic flux quantum.  In the latter case, the results were erroneously
interpreted as demonstrating that an entire atom can simultaneously
exist in two widely separated places and interfere with itself.  The results
were due to an interference between an oscillatory translational mode
and a Stern Gerlach transition of the electron of a trapped charged ion.
Similarly, the SUNY results confirm that classical physics predicts the
splitting or difference in energy between flux states observed by
Friedman et al.  The behavior of a biased SQUID coupled to a biased
macroscopic loop having the possibility of either clockwise or
counterclockwise current that is interchanged by a Stern-Gerlach
experiment is predicted quantitatively.  The prediction is without the
requirement of Friedman et al. [46] or Chang [44], that "Physicists have
put a loop of superconducting wire into a "quantum superposition" of
two contradictory possibilities: in one, the current flows clockwise; in
the other, current flows counterclockwise".

PHYSICS IS NOT DIFFERENT ON THE ATOMIC SCALE
The central feature of Mills' theory is that all particles (atomic-size
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particles and macroscopic particles) obey the same physical laws.
Whereas Schrödinger postulated a boundary condition: Ψ → 0  as r → ∞ ,
which leads to a purely mathematical model of the electron, the
boundary condition in Mills' theory was derived from Maxwell's
equations by Haus [50]:

For non-radiative states, the current-density function must not
possess space-time Fourier components that are synchronous
with waves traveling at the speed of light.

Application of the latter boundary condition leads to an entirely
different model of particles, atoms, molecules, and to a very different
concept of the nature of the physical universe.  The classical physical
laws are unified and are shown to apply on all scales.

The seemingly esoteric wave-particle duality of light and particles
including the experimentally observed de Broglie relationship can be
simply understood in terms of first principles.  The independent
variables of four dimensional space-time, the fundamental constants
comprising the fine structure constant, ,

  
=

1

4
o

o

e2

h
(37.114)

the gravitational constant, G , the mass of the universe, and the spin of
the electron neutrino determine the nature of the universe as shown in
particular in the Gravity Section and the Unification of Spacetime, the
Forces, Matter, and Energy Section.  Photons and fundamental particles
which arise from photons possess   h  of angular momentum and are two
dimensional.  As a consequence of this nature with first principle laws,
absorption and emission of photons occurs in units or quanta of energy
according to the Planck equation as described in particular in the One
Electron Atom Section.  Photons and electromagnetic fields arise from
fundamental particles as given in the Photon Equation Section and
superimpose due to the linearity of Maxwell's Equations and spacetime.
Interference patterns, surface waves, diffraction, reflection, standing
waves, and/or corpuscular behavior can be observed depending on the
means of observation.  These phenomena are explained according to
first principles [51].

The wave-particle duality of the photon can be understood in
terms of classical physics from the equation of the photon (Eq. (4.14)),
a two dimensional orbitsphere, given in the Photon Equation Section.
This function provides a photon angular momentum of   h , an energy
given by the Planck relationship, a solution to the wave equation and
Maxwell's Equations, a velocity of c , a zero rest mass, and linearly,
circularly, or elliptically polarized light.  Furthermore, photons
superimpose in space and time to give a spherical wave described by the
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Green Function, Eq. (4.22) which is consistent with the Airy pattern (Eq.
(8.22)) in double slit diffraction experiments.

The wave-particle duality of the electron can be understood in
terms of classical physics from the equation of the bound electron, a
two dimensional orbitsphere, given in the One Electron Atom Section
and from the equation of the free electron given in the Electron in Free
Space Section.  In both cases, the electron has an electric field
equivalent to a point charge, e , has mass, me , the electron wavelength is
given by the de Broglie relationship, the angular momentum of the
electron is (  h , two possible orientations are possible in a magnetic field
as observed in the Stern-Gerlach experiment, and the energy of the flip
transition is proportional to the electron (fluxon) g  factor (Eq. (1.151)).
The ionized electron has its electron density in a plane (Eq. (3.7)), and
the superposition of electrons provides a plane wave having the de
Broglie wavelength which is consistent with the Davidson-Germer
experiment given in the Electron Scattering by Helium Section.
Furthermore, the correct prediction of the elastic scattering of electrons
by helium atoms given in the Electron Scattering by Helium Section
wherein the electron radius is a crucial parameter (Eq. (8.55)) and the
excited state spectrum of hydrogen given in the Excited States of the One
Electron atom (Quantization) Section (wherein the correspondence
principle holds) are direct verifications that the electron is an
orbitsphere with the calculated radius.

Atoms are stable according to classical principles as shown in the
Stability of Atoms and Hydrinos Section.  The infinities of quantum
electrodynamics are removed at once by having a finite electron radius
as given in the One Electron Atom Section and the Electron in Free Space
Section.  In addition, the Lamb Shift is due to conservation of energy and
linear momentum and arises from the radiation reaction force between
the electron and the photon as given in the Resonant Line Shape and
Lamb Shift Section.  The negative result of the Michelson-Morley
experiment rendered untenable the hypothesis of the ether by
demonstrating that the ether had no measurable properties.  And, the
more recent related concepts of vacuum fluctuations, vacuum
polarization, and virtual particles which are a source of infinities have
no basis in physical reality; so, they are discarded.
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Abstract
Several myths about quantum mechanics exist due to a loss of

awareness of its details since its inception in the beginning of the last
century or based on recent experimental evidence.  It is taught in
textbooks that atomic hydrogen cannot go below the ground state.
Atomic hydrogen having an experimental ground state of 13.6 eV can
only exist in a vacuum or in isolation, and atomic hydrogen cannot go
below this ground state in isolation.  However, there is no known
composition of matter containing hydrogen in the ground state of 13.6
eV.  It is a myth that hydrogen has a theoretical ground state based on
first principles.  Historically there were many directions in which to
proceed to solve a wave equation for hydrogen.  The Schrödinger
equation gives the observed spontaneously radiative states and the
nonradiative energy level of atomic hydrogen.  On this basis alone, it is
justified despite its inconsistency with physical laws as well as with many
experiments.  A solution compatible with first principles and having first
principles as the basis of quantization was never found.  Scattering
results required the solution to be interpreted as probability waves that
give rise to the uncertainty principle which in turn forms the basis of the
wave particle duality.  The correspondence principal predicts that
quantum predictions must approach classical predictions on a large
scale.  However, recent data has shown that the Heisenberg uncertainty
principle as the basis of the wave particle duality and the
correspondence principle taught in textbooks are experimentally
incorrect.

Recently, a reconsideration of the postulates of quantum
mechanics, has given rise to a closed form solution of a Schrödinger-like
wave equation based on first principles [1].  Hydrogen at predicted
lower energy levels has been identified in previous data.  The transition
of hydrogen to fractional quantum energy levels is reported by the
assignment of soft X–ray emissions from the interstellar medium
observed by Labov and Bowyer [2] and by the assignment of the source
of 50 eV  anomalous thermal broadening of the Balmer lines observed by
Kuraica and Konjevic [3] during a glow discharge of hydrogen-argon
mixtures which was not observed with neon-hydrogen mixtures or pure
hydrogen irrespective of cathode material.

Certain inorganic ions predicted by Mills [1] serve as "transition
catalysts" which resonantly accept energy from hydrogen atoms and
release the energy to the surroundings.  Argon ion is a catalyst that was
present in the hydrogen glow discharge of Kuraica and Konjevic [3].
Lower-energy hydrogen atoms, hydrinos, can cause an autocatalytic
acceleration of this "transition reaction" which is the mechanism
corresponding to the interstellar lines.
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The detection of the transition of atomic hydrogen from the
traditional "ground" state (n = 1) to the fractional quantum energy level
n = 1/ 2  below the traditional "ground" state—hydrinos— is further
reported by the assignment of the anomalous 31 eV backward peak
observed by Rudd, et al. [4] in the electron spectrum from collisions of
70 keV protons with hydrogen atoms.  The transition occurs by a
"resonant collision" mechanism predicted by Mills [1, 5].  Protons effect
this transition of hydrogen by a resonant inelastic collision reaction.  In
this case, a backward 40.8 eV electron is produced which undergoes
Franck-Hertz scattering [6] to give rise predominantly to a 30.6 eV
backward peak, a 27.2 eV backward peak, and a 20.4 eV backward peak.
Discontinuities in the back scattering spectrum at these energies were
observed by Rudd, et al. [4] in the electron spectrum from collisions of
70 keV protons with hydrogen atoms.  The maximum intensity of back
scattering is predicted to be 165° falling to zero at 90° which is in
agreement with the observed maximum at 160° which decreases with
smaller angles to the absence of the backward scattering at 90°.

New evidence mandates that old theories be revised or abandoned.
Recently line spectra of fractional quantum energy levels of atomic
hydrogen have been measured by a 4 ° grazing incidence extreme
ultraviolet spectrometer at INP Greifswald, Germany [7].  Intense EUV
emission was observed by Mills et al. [7-12] at low temperatures (e.g.
< 103  K ) from atomic hydrogen and certain atomized pure elements or
certain gaseous ions which ionize at integer multiples of the potential
energy of atomic hydrogen.  These atomized pure elements or gaseous
ions comprise hydrogen catalysts to form lower energy hydrogen.  New
compositions of matter containing hydrogen at predicted lower energy
levels have recently been observed in the laboratory, which energy levels
are achieved using the novel catalysts.  The Schrödinger wave equation
solutions can not explain these results; thus, the theory must be
modified.



© 2000 by BlackLight Power, Inc.  All rights reserved.
562

Introduction
J. J. Balmer showed, in 1885, that the frequencies for some of the

lines observed in the emission spectrum of atomic hydrogen could be
expressed with a completely empirical relationship.  This approach was
later extended by J. R. Rydberg, who showed that all of the spectral lines
of atomic hydrogen were given by the equation:

= R
1

n f
2 −

1

ni
2

 

 
  

 
  (38.1)

where R = 109,677 cm−1 , n f = 1,2,3,... , ni = 2,3,4,... , and ni > n f .  Niels Bohr, in
1913, developed a theory for atomic hydrogen based on an
unprecedented postulate of stable circular orbits that do not radiate.
Although no explanation was offered for the existence of stability for
these orbits, the results gave energy levels in agreement with Rydberg's
equation.

En = −
e2

n28 o aH

= −
13.598 eV

n2 (38.2)

n = 1,2,3,... (38.3)
where aH  is the Bohr radius for the hydrogen atom (52.947 pm ), e  is the
magnitude of the charge of the electron, and o  is the vacuum
permittivity.  Bohr's theory was a straightforward application of
Newton's laws of motion and Coulomb's law of electric force - both
pillars of classical physics and is in accord with the experimental
observation that atoms are stable.  However, it is not in accord with
electromagnetic theory - another pillar of classical physics which
predicts that accelerated charges radiate energy in the form of
electromagnetic waves.  An electron pursuing a curved path is
accelerated and therefore should continuously lose energy, spiraling into
the nucleus in a fraction of a second.  The predictions of
electromagnetic theory have always agreed with experiment, yet atoms
do not collapse.  To the early 20th century theoreticians, this
contradiction could mean only one thing: The laws of physics that are
valid in the macroworld do not hold true in the microworld of the atom.
In 1923, de Broglie suggested that the motion of an electron has a wave

aspect— =
h

p
.  This concept seemed unlikely according to the familiar

properties of electrons such as charge, mass and adherence to the laws
of particle mechanics.  But, the wave nature of the electron was
confirmed by Davisson and Germer in 1927 by observing diffraction
effects when electrons were reflected from metals.  Schrödinger
reasoned that if electrons have wave properties, there must be a wave
equation that governs their motion.  And in 1926, he proposed the
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Schrödinger equation, HΨ = EΨ , where Ψ  is the wave function, H  is the
wave operator, and E  is the energy of the wave.  This equation, and its
associated postulates, is now the basis of quantum mechanics, and it is
the basis for the world view that the atomic realm including the electron
and photon cannot be described in terms of "pure" wave and "pure"
particle but in terms of a wave-particle duality.  The wave-particle
duality based on the fundamental principle that physics on an atomic
scale is very different from physics on a macroscopic scale is central to
present day atomic theory [1].

Development of Atomic Theory

Bohr Theory
In 1911, Rutherford proposed a planetary model for the atom

where the electrons revolved about the nucleus (which contained the
protons) in various orbits to explain the spectral lines of atomic
hydrogen.  There was, however, a fundamental conflict with this model
and the prevailing classical physics.  According to classical
electromagnetic theory, an accelerated particle radiates energy (as
electromagnetic waves).  Thus, an electron in a Rutherford orbit,
circulating at constant speed but with a continually changing direction
of its velocity vector is being accelerated; thus, the electron should
constantly lose energy by radiating and spiral into the nucleus.

An explanation was provided by Bohr in 1913, when he assumed
that the energy levels were quantized and the electron was constrained
to move in only one of a number of allowed states.  Niels Bohr's theory
for atomic hydrogen was based on an unprecedented postulate of stable
circular orbits that do not radiate.  Although no explanation was offered
for the existence of stability for these orbits, the results gave energy
levels in agreement with Rydberg's equation.  Bohr's theory was a
straightforward application of Newton's laws of motion and Coulomb's
law of electric force.  According to Bohr's model, the point particle
electron was held to a circular orbit about the relatively massive point
particle nucleus by the balance between the coulombic force of
attraction between the proton and the electron and centrifugal force of
the electron.

e2

4 0r
2 =

mev
2

r
(38.4)

Bohr postulated the existence of stable orbits in defiance of classical
physics (Maxwell's Equations), but he applied classical physics according
to Eq. (38.4).  Then Bohr realized that the energy formula Eqs. (38.2-
38.3) was given by postulating nonradiative states with angular
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momentum

  Lz = mevr = nh n = 1,2,3... (38.5)
and by solving the energy equation classically.  The Bohr radius is given
by substituting the solution of Eq. (38.5) for v  into Eq. (38.4).

  
r =

4 0h
2n2

mee
2 = n2a0 n =1, 2,3... (38.6)

The total energy is the sum of the potential energy and the kinetic
energy.  In the present case of an inverse squared central field, the total
energy (which is the negative of the binding energy) is one half the
potential energy [14].  The potential energy, r( ) , is given by Poisson's
equation

r( ) = −
r '( )dv'

4 0 r − r'

V'
∫ (38.7)

For a point charge at a distance r  from the nucleus the potential is

r( ) =−
e2

4 0r
(38.8)

Thus, the total energy is given by

E = −
Z 2e2

8 or
(38.9)

where Z = 1.  Substitution of Eq. (38.6) into Eq.(38.9) with the
replacement of the electron mass by the reduced electron mass gives
Eqs. (38.2-38.3).

Bohr’s model was in agreement with the observed hydrogen
spectrum, but it failed with the helium spectrum, and it could not
account for chemical bonds in molecules.  The prevailing wisdom was
that the Bohr model failed because it was based on the application of
Newtonian mechanics for discrete particles.  And, its limited
applicability was attributed to the unwarranted assumption that the
energy levels are quantized.

Bohr's theory may also be analyzed according to the
corresponding energy equation.  Newton's differential equations of
motion in the case of the central field such as a gravitational or
electrostatic field are

m(˙ ̇ r − r ˙ 2 ) = f (r) (38.10)
m(2 ˙ r ̇  + r ˙ ̇ ) = 0 (38.11)

where f(r) is the central force.  The second or transverse equation, Eq.
(38.11), gives the result that the angular momentum is constant.

r 2 ˙ = constant = L / m (38.12)
where L  is the angular momentum.  The central force equations can be

transformed into an orbital equation by the substitution, u =
1

r
.  The
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differential equation of the orbit of a particle moving under a central
force is

2u
2 + u =

−1
mL2u2

m2

f (u−1) (38.13)

Because the angular momentum is constant, motion in only one plane
need be considered; thus, the orbital equation is given in polar
coordinates.  The solution of Eq. (38.13) for an inverse square force

f (r) = −
k

r2 (38.14)

is

r = r0

1+ e

1+ e cos
(38.15)

e = A
m

L2

m2

k
(38.16)

r0 =
m

L2

m 2

k(1+ e)
(38.17)

where e  is the eccentricity and A  is a constant.  The equation of motion
due to a central force can also be expressed in terms of the energies of
the orbit.  The square of the speed in polar coordinates is

 v2 = ( ˙ r 2 + r 2 ˙ 2 ) (38.18)
Since a central force is conservative, the total energy, E , is equal to the
sum of the kinetic, T , and the potential, V , and is constant.  The total
energy is

1

2
m(˙ r 2 + r2 ˙ 2 ) + V(r) = E =  constant (38.19)

Substitution of the variable u =
1

r
 and Eq. (38.12) into Eq. (38.19) gives

the orbital energy equation.
1

2
m

L2

m2
[(

2u
2
) + u2 ] + V(u-1) = E (38.20)

Because the potential energy function V(r) for an inverse square force
field is

V(r) =-
k

r
=- ku (38.21)

the energy equation of the orbit, Eq. (38.20), is
1

2
m

L2

m2 [(
2u

2 ) + u2 ] − ku = E (38.22)

2u
2 + u2 

  
 
  −

2m

L2 E + ku[ ] = 0 (38.23)
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which has the solution

r =
m

L2

m2
k -1

1+[1+2 Em
L2

m2
k-2]1/2 cos

(38.24)

where the eccentricity, e , is

e = [1+ 2Em
L2

m2 k−2 ]1/2 (38.25)

Eq. (38.25) permits the classification of the orbits according to the total
energy, E , as follows:

E < 0, e <1 ellipse

E < 0, e = 0 circle (special case of ellipse)

E = 0, e = 1 parabolic orbit

E > 0, e >1 hyperbolic orbit
(38.26)

Since E = T + V  and is constant, the closed orbits are those for which
T <|V| , and the open orbits are those for which T ≥|V| .  It can be shown
that the time average of the kinetic energy, < T > , for elliptic motion in
an inverse square field is 1/ 2  that of the time average of the potential
energy, < V > .  < T >= 1/ 2 < V > .

Bohr's solution is trivial in that he specified a circular bound orbit
which determined that the eccentricity was zero, and he specified the
angular momentum as a integer multiple of Planck's constant bar.  Eq.
(38.25) in CGS units becomes

  
E = −

1

2

me4

n2h2 = −
e2

2n2a0

(38.27)

Schrödinger Theory of the Hydrogen Atom
In 1923, de Broglie suggested that the motion of an electron has a

wave aspect— =
h

p
.  This was confirmed by Davisson and Germer in

1927 by observing diffraction effects when electrons were reflected
from metals.  Schrödinger reasoned that if electrons have wave
properties, there must be a wave equation that governs their motion.
And, in 1926, he proposed the time independent Schrödinger equation

HΨ = EΨ (38.28)
where Ψ  is the wave function, H  is the wave operator, and E  is the
energy of the wave.  To give the sought three quantum numbers, the
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Schrödinger equation solutions are three dimensional in space and four
dimensional in spacetime

∇2− 1

v2

2

t2

 
  

 
  Ψ(r, , ,t ) = 0 (38.29)

where Ψ(r, , ,t) according to quantum theory is the probability density
function of the electron as described below.  When the time harmonic
function is eliminated [15],

  
−

h2

2

1

r2 r
r2 Ψ

r

 
 

 
 +

1

r2 sin
sin

Ψ 
 

 
 

r,

+
1

r2 sin2

2Ψ
2

 
 
  

 
r,

 

 
 

 

 
 + V r( )Ψ r, ,( ) = EΨ r, ,( )

(38.30)
where the potential energy V r( ) in CGS units is

V r( ) = −
e2

r
(38.31)

The Schrödinger equation (Eq. (38.30)) can be transformed into a sum
comprising a part that depends only on the radius and a part that is a
function of angle only obtained by separation of variables and linear
superposition in spherical coordinates.  The general form of the
solutions for r, ,( ) are

r, ,( ) = Rnlm r( )
l, m
∑ Ylm ,( ) (38.32)

where l  and m  are separation constants.  The azimuthal (theta) part of
Eq. (38.30) is the generalized Legendre equation which is derived from
the Laplace equation by Jackson (Eq. (3.9) of Jackson [16]).  The
solutions for the full angular part of Eq. (38.30), Ylm ,( ), are the
spherical harmonics

Ylm ,( ) =
2l +1( ) l − m( )!
4 l + m( )! Pl

m cos( )e im (38.33)

By substitution of the eigenvalues corresponding to the angular part
[17], the Schrödinger equation becomes the radial equation, R r( ), given
by

  
−

h2

2mr2

d

dr
r 2 dR

dr
 
 

 
 +

h2l l +1( )
2mr2 + V r( ) 

  
 
  R r( ) = ER r( ) (38.34)

The time independent Schrödinger equation is similar to Eq. (38.20)
except that the solution is for the distribution of a spatial wavefunction
in three dimensions rather than the dynamical motion of a point particle
of mass m  along a one dimensional trajectory.  Electron motion is
implicit in the Schrödinger equation.  For wave propagation in three
dimensions, the full time dependent Schrödinger equation is required;
whereas, the classical case contains time derivatives.  The kinetic energy
of rotation is Krot  is given classically by
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Krot =
1

2
mr2 2 (38.35)

where m  is the mass of the electron.  In the time independent
Schrödinger equation, the kinetic energy of rotation Krot  is given by

  
Krot =

l l +1( )h2

2mr2 (38.36)

where

  L = l l + 1( )h2 (38.37)
is the value of the electron angular momentum L  for the state Ylm ,( ).

In the case of the ground state of hydrogen, the Schrödinger
equation solution is trivial for an implicit circular bound orbit which
determines that the eccentricity is zero, and with the specification that
the electron angular momentum is Planck's constant bar.  With k = e2 , Eq.
(38.25) in CGS units becomes

  
E = −

1

2

me4

h2 = −
e2

2a0

(38.38)

which corresponds to n = 1 in Eq. (38.27).  Many problems in classical
physics give three quantum numbers when three spatial dimensions are
considered.  In order to obtain three quantum numbers, the Schrödinger
equation requires that the solution is for the distribution of a spatial
wavefunction in three dimensions with implicit motion rather than a one
dimensional trajectory of a point particle as shown below.  However, this
approach gives rise to predictions about the angular momentum and
angular energy which are not consistent with experimental observations
as well as a host of other problems which are summarized in the
Discussion Section.

The radial equation may be written as

  

d

dr
r 2 dR

dr
 
 

 
 +

2mr2

h2 E − V r( ) −
l l +1( )h2

2mr 2

 
  

 
  R r( ) = 0 (38.39)

Let U r( ) = rR r( ), then the radial equation reduces to

  
′ ′ U +

2m

h2 E −V r( ) −
l l +1( )h2

2mr2

 
  

 
  U = 0 (38.40)

where

=
1

r
Ulm r( )Ylm ,( ) (38.41)

Substitution of the potential energy given by Eq. (38.31) into Eq. (38.40)
gives for sufficiently large r

′ ′ U ∞ −
2

 
 

 
 

2

U = 0 (38.42)

provided we define
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  2
 
 

 
 

2

=
−2mE

h2 (38.43)

where  is the eigenvalue of the eigenfunction solution of the
Schrödinger equation given infra having units of reciprocal length and E
is the energy levels of the hydrogen atom.  To arrive at the solution
which represents the electron, a suitable boundary condition must be
imposed.  Schrödinger postulated a boundary condition: Ψ → 0  as r → ∞ ,
which leads to a purely mathematical model of the electron.  This
equation is not based on first principles, has no validity as such, and
should not be represented as so.  The right hand side of Eq. (38.43) must
be postulated in order that the Rydberg equation is obtained as shown
below.  The postulate is implicit since Eq. (38.43) arises from the
Schrödinger which is postulated.  It could be defined arbitrarily, but is
justified because it gives the Rydberg formula.  That Schrödinger guessed
the accepted approach is not surprising since many approaches were
contemplated at this time [18], and since none of these approaches were
superior, Schrödinger's approach prevailed.

The solution of Eq. (38.42) that is consistent with the boundary
condition is

U∞ = c1e
/ 2( )r + c2e

− / 2( )r (38.44)
In the case that  is real, the energy of the particle is negative.  In this
case U∞  will not have an integrable square if c1 fails to vanish wherein the
radial integral has the form

R2r2

0

∞

∫ dr = U∞
2∫ dr (38.45)

It is shown below that the solution of the Schrödinger corresponds to
the case wherein c1 fails to vanish.  Thus, the solutions with sufficiently
large r  are infinite.  The same problem arises in the case of a free
electron that is ionized from hydrogen.  If  is imaginary, which means
that E  is positive, Eq. (38.42) is the equation of a linear harmonic
oscillator [19].  U∞  shows sinusoidal behavior; thus, the wavefunction for
the free electron can not be normalized and is infinite.  In addition, the
angular momentum of the free electron is infinite since it is given by

  l l +1( )h2  (Eq. (38.37)) where   l → ∞ .
In order to solve the bound electron states, let

E = −W (38.46)
so that W  is positive.  In Eq. (38.39), let r = x /  where  is given by Eq.
(38.43).

  
x

d2 R

dx2 + 2
dR

dx
+

2me2

h2 −
x

4
−

l l +1( )
x

 
  

 
  R = 0 (38.47)

Eq. (38.47) is the differential equation for associated Laguerre functions
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given in general form by

x ′ ′ y + 2 ′ y + n * −
k −1

2
−

x

4
−

k2 −1

4x

 
  

 
  y = 0 (38.48)

which has a solution possessing an integrable square of the form

y = e−x / 2 x k −1( ) / 2 d k

dxk Ln* x( ) (38.49)

provided that n * and k  are positive integers.  However, n * does not have
to be an integer, it may be any arbitrary constant .  Then the
corresponding solution is [20]

y = e−x / 2 x k −1( ) / 2 d k

dxk L x( ) (38.50)

In the case that n * is chosen to be an integer in order to obtain the
Rydberg formula, n * −k ≥ 0 since otherwise Ln*

k x( ) of Eq. (38.49) would
vanish.  By comparing Eq. (38.47) and Eq. (38.48),

  
k 2 −1

4
= l l +1( ) (38.51)

Thus,
  k = 2l +1 (38.52)

and

  
n * −

k −1

2
= n * −l =

me2

h 2
 
 

 
 

−1

(38.53)

Substitution of the value of  and solving for W  gives

  
W =

1

2

me4

n * −l( )2 h2 (38.54)

Because of the conditions on n * and k , the quantity   n * −l  can not be
zero.  It is usually denoted by n  and called the principal quantum
number.  The energy states of the hydrogen atom are

  
Wn =− En =

1

2

me4

n2h2 (38.55)

and the corresponding eigenfunctions from Eq. (38.49) are

  Rn,l = cn,le
−x /2 xlLn+ l

2l+1 x( ) (38.56)
where the variable x  is defined by

  
x = r =

8mW

h
r =

2me2

nh2 r (38.57)

In the Bohr theory of the hydrogen atom, the first orbital has a radius in
CGS units given by

  
a0 =

h2

me2 = 0.53 X 10−8  cm (38.58)

Thus, = 2/ na0  and

x =
2

n

r

a0

(38.59)
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The energy states of the hydrogen atom in CGS units in terms of the Bohr
radius are given by Eq. (38.27).  From Eq. (38.56),   Rn,l  for the hydrogen
atom ground state is

R1,0 = c1,0e
− r / a0 L1

1 = 2a0
−3 / 2e−r / a0 (38.60)

For this state
Y00 = cons tan t = 4( )−1 / 2 (38.61)

when the function is normalized.  Thus, the ground state function is

0 = a0
3( )−1 / 2

e− r / a0 (38.62)
Immediately further problems arise.  Since   l  must equal zero in the
ground state, the predicted angular energy and angular momentum given
by Eq. (38.36) and Eq. (38.37), respectively, are zero which are
experimentally incorrect.  In addition, different integer values of   l  exist
in the case of excited electron states.  In these cases, the Schrödinger
equation solutions, Eq. (38.36) and Eq. (38.37), predict that the excited
state rotational energy levels are nondegenerate as a function of the   l
quantum number even in the absence of an applied magnetic field.
Consider the case of the excited state with   n = 2; l = 1 compared to the
experimentally degenerate state   n = 2; l = 0 .  According to Eq. (38.37) the
difference in angular energy of these two states is 3.4 eV  where the
expectation radius, 4a0 , is given by the squared integral of Eq. (38.70)
over space.  Thus, the predicted rotational energy in the absence of a
magnetic field is over six orders of magnitude of the observed
nondegenerate energy (10−7 −10−6  eV ) in the presence of a magnetic field.

Schrödinger realized that his equation was limited.  It is not
Lorentzian invariant; thus, it violates special relativity.  It also does not
comply with Maxwell's equations and other first principle laws.
Schrödinger sought a resolution of the incompatibility with special
relativity for the rest of his life.  He was deeply troubled by the physical
consequences of his equation and its solutions.  His hope was that the
resolution would make his equation fully compatible with classical
physics and the quantization would arise from first principles.

Quantum mechanics failed to predict the results of the Stern-
Gerlach experiment which indicated the need for an additional quantum
number.  Quantum electrodynamics was proposed by Dirac in 1926 to
provide a generalization of quantum mechanics for high energies in
conformity with the theory of special relativity and to provide a
consistent treatment of the interaction of matter with radiation.  From
Weisskopf [21], "Dirac's quantum electrodynamics gave a more
consistent derivation of the results of the correspondence principle, but
it also brought about a number of new and serious difficulties."
Quantum electrodynamics;  1.) does not explain nonradiation of bound
electrons;  2.) contains an internal inconsistency with special relativity
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regarding the classical electron radius - the electron mass corresponding
to its electric energy is infinite;  3.) it admits solutions of negative rest
mass and negative kinetic energy;  4.) the interaction of the electron
with the predicted zero-point field fluctuations leads to infinite kinetic
energy and infinite electron mass;  5.) Dirac used the unacceptable
states of negative mass for the description of the vacuum; yet, infinities
still arise.

A physical interpretation of Eq. (38.28) was sought.  Schrödinger
interpreted eΨ *( x)Ψ(x) as the charge-density or the amount of charge
between x  and x + dx  (Ψ * is the complex conjugate of Ψ ).  Presumably,
then, he pictured the electron to be spread over large regions of space.
Three years after Schrödinger’s interpretation, Max Born, who was
working with scattering theory, found that this interpretation led to
logical difficulties, and he replaced the Schrödinger interpretation with
the probability of finding the electron between r, ,  and r + dr, + d , + d
as

Ψ(r, , )Ψ *(r, , )drd d∫ (38.63)

Born’s interpretation is generally accepted.  Nonetheless, interpretation
of the wave function is a never-ending source of confusion and conflict.
Many scientists have solved this problem by conveniently adopting the
Schrödinger interpretation for some problems and the Born
interpretation for others.  This duality allows the electron to be
everywhere at one time—yet have no volume.  Alternatively, the electron
can be viewed as a discrete particle that moves here and there (from
r = 0  to r = ∞), and ΨΨ *  gives the time average of this motion.

Schrödinger was also troubled by the philosophical consequences
of his theory since quantum mechanics leads to certain philosophical
interpretations [22] which are not sensible.  Some conjure up multitudes
of universes including "mind" universes; others require belief in a logic
that allows two contradictory statements to be true.  The question
addressed is whether the universe is determined or influenced by the
possibility of our being conscious of it.  The meaning of quantum
mechanics is debated, but the Copenhagen interpretation is
predominant.  Its asserts that "what we observe is all we can know; any
speculation about what a photon, an atom, or even a SQUID
(Superconducting Quantum Interference Device) really is or what it is
doing when we are not looking is just that speculation" [22].  As shown
by Platt [23] in the case of the Stern-Gerlach experiment, "the postulate
of quantum measurement [which] asserts that the process of measuring
an observable forces the state vector of the system into an eigenvector
of that observable, and the value measured will be the eigenvalue of that
eigenvector".  According to this interpretation every observable exists in
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a state of superposition of possible states, and observation or the
potential for knowledge causes the wavefunction corresponding to the
possibilities to collapse into a definite.

According to the quantum mechanical view, a moving particle is
regarded as a wave group.  To regard a moving particle as a wave group
implies that there are fundamental limits to the accuracy with which
such "particle" properties as position and momentum can be measured.
Quantum predicts that the particle may be located anywhere within its
wave group with a probability Ψ 2 .  An isolated wave group is the result
of superposing an infinite number of waves with different wavelengths.
The narrower the wave group, the greater range of wavelengths involved.
A narrow de Broglie wave group thus means a well-defined position (∆x
smaller) but a poorly defined wavelength and a large uncertainty ∆p  in
the momentum of the particle the group represents.  A wide wave group
means a more precise momentum but a less precise position.  The
infamous Heisenberg uncertainty principle is a formal statement of the
standard deviations of properties implicit in the probability model of
fundamental particles.

  
∆x∆p ≥

h
2

(38.64)

According to the standard interpretation of quantum mechanics, the act
of measuring the position or momentum of a quantum mechanical entity
collapses the wave-particle duality because the principle forbids both
quantities to be simultaneously known with precision.

The Wave-Particle Duality is Not Due to the Uncertainty
Principle

Quantum entities can behave like particles or waves, depending on
how they are observed.  They can be diffracted and produce interference
patterns (wave behavior) when they are allowed to take different paths
from some source to a detector--in the usual example, electrons or
photons go through two slits and form an interference pattern on the
screen behind.  On the other hand, with an appropriate detector put
along one of the paths (at a slit, say), the quantum entities can be
detected at a particular place and time, as if they are point-like particles.
But any attempt to determine which path is taken by a quantum object
destroys the interference pattern.  Richard Feynman described this as
the central mystery of quantum physics.

Bohr called this vague principle 'complementary', and explained it
in terms of the uncertainty principle, put forward by Werner Heisenberg,
his postdoc at the time.  In an attempt to persuade Einstein that wave-
particle duality is an essential part of quantum mechanics, Bohr
constructed models of quantum measurements that showed the futility
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of trying to determine which path was taken by a quantum object in an
interference experiment.  As soon as enough information is acquired for
this determination, the quantum interferences must vanish, said Bohr,
because any act of observing will impart uncontrollable momentum
kicks to the quantum object.  This is quantified by Heisenberg's
uncertainty principle, which relates uncertainty in positional
information to uncertainty in momentum--when the position of an entity
is constrained, the momentum must be randomized to a certain degree.

More than 60 years after the famous debate between Niels Bohr
and Albert Einstein on the nature of quantum reality, a question central
to their debate --the nature of quantum interference--has resurfaced.
The usual textbook explanation of wave-particle duality in terms of
unavoidable 'measurement disturbances' is experimentally proven
incorrect by an experiment reported in the September 3, 1998 issue of
Nature [24] by Durr, Nonn, and Rempe.  Durr, Nonn, and Rempe report
on the interference fringes produced when a beam of cold atoms is
diffracted by standing waves of light.  Their interferometer displayed
fringes of high contrast--but when they manipulated the electronic state
within the atoms with a microwave field according to which path was
taken, the fringes disappeared entirely.  The interferometer produced a
spatial distribution of electronic populations which were observed via
fluorescence.  The microwave field canceled the spatial distribution of
electronic populations.  The key to this new experiment was that
although the interferences are destroyed, the initially imposed atomic
momentum distribution left an envelope pattern (in which the fringes
used to reside) at the detector.  A careful analysis of the pattern
demonstrated that it had not been measurably distorted by a momentum
kick of the type invoked by Bohr, and therefore that any locally realistic
momentum kicks imparted by the manipulation of the internal atomic
state according to the particular path of the atom are too small to be
responsible for destroying interference.

The Correspondence Principle Does Not Hold
Recent experimental results also dispel another doctrine of

quantum mechanics [25, 26].  Bohr proposed a rule of thumb called the
correspondence principle [27].  A form of the principle widely repeated
in textbooks and lecture halls states that predictions of quantum
mechanics and classical physics should match for the most energetic
cases.

In the Nov. 22 Physical Review Letters [25], Bo Gao calculates
possible energy states of any chilled, two-atom molecule, such as
sodium, that's vibrating and rotating almost to the breaking point.  He
performs the calculations via quantum mechanical and so called
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semiclassical methods and compares the results.  Instead of the results
agreeing better for increasingly energetic states.  The opposite happens.

Classical Solution of the Schrödinger Equation
Mills has solved and published a solution of a Schrödinger type

equation based on first principles [1].  The central feature of this theory
is that all particles (atomic-size and macroscopic particles) obey the
same physical laws.  Whereas Schrödinger postulated a boundary
condition: Ψ → 0  as r → ∞ , the boundary condition in Mills' theory was
derived from Maxwell's equations [28]:

For non-radiative states, the current-density function must not
possess space-time Fourier components that are synchronous
with waves traveling at the speed of light.

Application of this boundary condition leads to a physical model of
particles, atoms, molecules, and, in the final analysis, cosmology.  The
closed-form mathematical solutions contain fundamental constants only,
and the calculated values for physical quantities agree with experimental
observations.  In addition, the theory predicts that Eq. (38.3), should be
replaced by Eq. (38.65).

n = 1,2,3,..., and , n =
1

2
,
1

3
,
1

4
,... (38.65)

Some revisions to standard quantum theory are implied.  Quantum
mechanics becomes a real physical description as opposed to a purely
mathematical model where the old and the revised versions are
interchangeable by a Fourier Transform operation [1].

The theories of Bohr, Schrödinger, and presently Mills all give the
identical equation for the principal energy levels of the one electron
atom.

Eele = −
Z2e2

8 on
2aH

= −
Z 2

n2  X 2.1786 X 10−18  J = −Z 2
 X 

13.598

n2  eV (38.66)

The Mills theory solves the two dimensional wave equation for the
charge density function of the electron.  And, the Fourier transform of
the charge density function is a solution of the three dimensional wave
equation in frequency k,( ) space.  Whereas, the Schrödinger equation
solutions are three dimensional in spacetime.  The energy is given by

H
−∞

∞

∫ dv = E 2

−∞

∞

∫ dv ; (38.67)

2

−∞

∞

∫ dv = 1 (38.68)
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Thus,

H
−∞

∞

∫ dv = E (38.69)

In the case that the potential energy of the Hamiltonian, H , is a constant
times the wavenumber, the Schrödinger equation is the well known
Bessel equation.  Then with one of the solutions for , Eq. (38.69) is
equivalent to an inverse Fourier transform.  According to the duality and
scale change properties of Fourier transforms, the energy equation of
the present theory and that of quantum mechanics are identical, the
energy of a radial Dirac delta function of radius equal to an integer
multiple of the radius of the hydrogen atom (Eq. (38.66)).  And, Bohr
obtained the same energy formula by postulating nonradiative states
with angular momentum

  Lz = mh (38.70)
and solving the energy equation classically.

The mathematics for all three theories converge to Eq. (38.66).
However, the physics is quite different.  Only the Mills theory is derived
from first principles and holds over a scale of spacetime of 45 orders of
magnitude: it correctly predicts the nature of the universe from the
scale of the quarks to that of the cosmos.

Mills revisions transform Schrödinger's and Heisenberg's quantum
theory into what may be termed a classical quantum theory.  Physical
descriptions flow readily from the theory.  For example, in the old
quantum theory the spin angular momentum of the electron is called the
"intrinsic angular momentum".  This term arises because it is difficult to
provide a physical interpretation for the electron's spin angular
momentum.  Quantum Electrodynamics provides somewhat of a physical
interpretation by proposing that the "vacuum" contains fluctuating
electric and magnetic fields.  In contrast, in Mills' theory, spin angular
momentum results from the motion of negatively charged mass moving
systematically, and the equation for angular momentum, r × p , can be
applied directly to the wave function (a current density function) that
describes the electron.  And, quantization is carried by the photon,
rather than probability waves of the electron.

Fractional Quantum Energy Levels of Hydrogen
The nonradiative state of atomic hydrogen which is historically

called the "ground state" forms the basis of the boundary condition of
Mills theory [1] to solve the wave equation.  Mills further predicts [1]
that certain atoms or ions serve as catalysts to release energy from
hydrogen to produce an increased binding energy hydrogen atom called
a hydrino atom having a binding energy of
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Binding Energy =
13.6 eV

n2 (38.71)

where

 n =
1

2
,
1

3
,
1

4
,...,

1

p
(38.72)

and p  is an integer greater than 1, designated as H
aH

p

 
  

 
   where aH  is the

radius of the hydrogen atom.  (Although it is purely mathematical, these
stable energy levels are also given by both Bohr's and Schrödinger's
theories by postulating integer values of the central charge.  Justification
may be based on notions such virtual particles which are acceptable in
other applications of Schrödinger's equation.)  Hydrinos are predicted
to form by reacting an ordinary hydrogen atom with a catalyst having a
net enthalpy of reaction of about

m ⋅ 27.2 eV (38.73)
where m  is an integer.  This catalysis releases energy from the hydrogen
atom with a commensurate decrease in size of the hydrogen atom,
rn = naH .  For example, the catalysis of H(n = 1) to H(n = 1/2)  releases

40.8 eV , and the hydrogen radius decreases from aH  to 
1

2
aH .

It is taught in textbooks that atomic hydrogen cannot go below the
ground state.  Atomic hydrogen having an experimental ground state of
13.6 eV can only exist in a vacuum or in isolation, and atomic hydrogen
cannot go below this ground state in isolation.  However, there is no
known composition of matter containing hydrogen in the ground state
of 13.6 eV.  Atomic hydrogen is radical and is very reactive.  It may react
to form a hydride ion or compositions of matter.  It is a chemical
intermediate which may be trapped as many chemical intermediates may
be by methods such as isolation or cryogenically.  A hydrino atom may
be considered a chemical intermediate that may be trapped in vacuum
or isolation.  A hydrino atom may be very reactive to form a hydride ion
or a novel composition of matter.  Hydrogen at predicted lower energy
levels, hydrino atoms, has been identified in the extreme ultraviolet
emission spectrum from interstellar medium.  In addition, new
compositions of matter containing hydrogen at predicted lower energy
levels have recently been observed in the laboratory, which energy levels
are achieved using the novel catalysts.

The excited energy states of atomic hydrogen are also given by Eq.
(38.71) except that

n = 1,2,3,... (38.74)
The n = 1 state is the "ground" state for "pure" photon transitions (the
n = 1 state can absorb a photon and go to an excited electronic state, but
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it cannot release a photon and go to a lower-energy electronic state).
However, an electron transition from the ground state to a lower-energy
state is possible by a nonradiative energy transfer such as multipole
coupling or a resonant collision mechanism.  These lower-energy states

have fractional quantum numbers, n =
1

integer
.  Processes that occur

without photons and that require collisions are common.  For example,
the exothermic chemical reaction of H + H  to form H2  does not occur
with the emission of a photon.  Rather, the reaction requires a collision
with a third body, M , to remove the bond energy- H + H + M → H2 + M *
[29].  The third body distributes the energy from the exothermic
reaction, and the end result is the H2  molecule and an increase in the
temperature of the system.  Some commercial phosphors are based on
nonradiative energy transfer involving multipole coupling [30].  For
example, the strong absorption strength of Sb3+ ions along with the
efficient nonradiative transfer of excitation from Sb3+ to Mn2+ , are
responsible for the strong manganese luminescence from phosphors
containing these ions.  Similarly, the n = 1 state of hydrogen and the

n =
1

integer
 states of hydrogen are nonradiative, but a transition between

two nonradiative states is possible via a nonradiative energy transfer, say
n = 1 to n = 1/ 2 .  In these cases, during the transition the electron couples
to another electron transition, electron transfer reaction, or inelastic
scattering reaction which can absorb the exact amount of energy that
must be removed from the hydrogen atom.  Thus, a catalyst provides a
net positive enthalpy of reaction of m ⋅ 27.2 eV  (i.e. it absorbs m ⋅ 27.2 eV
where m  is an integer).  Certain atoms or ions serve as catalysts which
resonantly accept energy from hydrogen atoms and release the energy to
the surroundings to effect electronic transitions to fractional quantum
energy levels.

Once formed hydrinos have a binding energy given by Eqs. (38.71-
38.72); thus, they may serve as catalysts which provide a net enthalpy of
reaction given by Eq. (38.73).  Also, the simultaneous ionization of two
hydrogen atoms may provide a net enthalpy given by Eq. (38.73).  Since
the surfaces of stars comprise significant amounts of atomic hydrogen,
hydrinos may be formed as a source to interstellar space where further
transitions may occur.

A number of experimental observations lead to the conclusion that
atomic hydrogen can exist in fractional quantum states that are at lower
energies than the traditional "ground" (n = 1) state.  For example, the
existence of fractional quantum states of hydrogen atoms explains the
spectral observations of the extreme ultraviolet background emission
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from interstellar space [2], which may characterize dark matter as
demonstrated in Table 2.  (In these cases, a hydrogen atom in a

fractional quantum state, H ni( ), collides, for example, with a n =
1

2

hydrogen atom, H
1

2
 
 

 
 , and the result is an even lower-energy hydrogen

atom, H n f( ), and H
1

2
 
 

 
  is ionized.

H ni( ) + H
1

2
 
 

 
 → H n f( ) + H + + e− + photon (38.75)

The energy released, as a photon, is the difference between the energies
of the initial and final states given by Eqs. (38.71-38.72) minus the

ionization energy of H
1

2
 
 

 
 , 54.4 eV .)  The catalysis of an energy state of

hydrogen to a lower energy state wherein a different lower energy state
atom of hydrogen serves as the catalyst is called disproportionation by
Mills [1].

Identification of Lower-Energy Hydrogen by Soft X-rays from
Dark Interstellar Medium

The first soft X-ray background was detected and reported [31]
about 25 years ago.  Quite naturally, it was assumed that these soft X-ray
emissions were from ionized atoms within hot gases.  In a more recent
paper, a grazing incidence spectrometer was designed to measure and
record the diffuse extreme ultraviolet background [2].  The instrument
was carried aboard a sounding rocket and data were obtained between
80 Å and 650 Å  (data points approximately every 1.5 Å ).  Here again, the
data were interpreted as emissions from hot gases.  However, the
authors left the door open for some other interpretation with the
following statement from their introduction:

"It is now generally believed that this diffuse soft X-ray background
is produced by a high-temperature component of the interstellar
medium.  However, evidence of the thermal nature of this emission is
indirect in that it is based not on observations of line emission, but
on indirect evidence that no plausible non-thermal mechanism has
been suggested which does not conflict with some component of the
observational evidence."

The authors also state that "if this interpretation is correct, gas at
several temperatures is present."  Specifically,  emissions were
attributed to gases in three ranges: 5.5 < log T < 5.7; log T = 6;  6.6 < log
T < 6.8.
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The explanation proposed herein of the observed dark interstellar
medium spectrum hinges on the possibility of energy states below the
n = 1 state, as given by Eqs. (38.71-38.72).  Thus, lower-energy
transitions of the type,

∆E =
1

n f
2 −

1

ni
2

 

 
  

 
 X13.6 eV − 54.4 eV   n = 1,

1

2
,
1

3
,
1

4
,...,   and ni > n f (38.76)

induced by a disproportionation reaction with H
aH

2
 
 

 
 
 ought to occur.

The wavelength is related to ∆E  by

 (in Å) =
1.240 X 104

∆E(in eV )
(38.77)

The energies and wavelengths of several of these proposed transitions
are shown in Table 1.  Note that the lower energy transitions are in the
soft X-ray region.

Table 1.  Energies (Eq. (38.76)) of several fractional-state transitions

catalyzed by H
aH

2
 
 

 
 
.

ni nf ∆E (eV) λ (Å)

1
2

1
3 13.6 912

1
3

1
4 40.80 303.9

1
4

1
5 68.00 182.4

1
5

1
6 95.20 130.2

1
6

1
7 122.4 101.3

1
7

1
8 149.6 82.9

The Data And Its Interpretation
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In their analysis of the data, Labov and Bowyer [2] established
several tests to separate emission features from the background.  There
were seven features (peaks) that passed their criteria.  The wavelengths
and other aspects of these peaks are shown in Table 2.  Peaks 2 and 5
were interpreted by Labov and Bowyer as instrumental second-order
images of peaks 4 and 7, respectively.  Peak 3, the strongest feature, is
clearly a helium resonance line:  He(1s12p1 → 1s2).  At issue here, is the
interpretation of peaks 1, 4, 6, and 7.  It is proposed that peaks 4, 6, and

7 arise from the  
1
3  →  

1
4 ,  

1
4  →  

1
5 , and  

1
6 →  

1
7  hydrogen atoms

transitions given by Eq. (38.76).  It is also proposed that peak 1 arises

from inelastic helium scattering of peak 4.  That is, the  
1
3  →  

1
4

transition yields a 40.8 eV  photon (303.9 Å).  When this photon strikes
He (1s2 ) , 21.2 eV  is absorbed in the excitation to He (1s12 p1 ).  This leaves a
19.6 eV  photon (632.6 Å), peak 1.  For these four peaks, the agreement
between the predicted values (Table 1) and the experimental values
(Table 2) is remarkable.
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One argument against this new interpretation of the data is that

the transition  
1
5  →  

1
6  is missing—predicted at 130.2 Å by Eqs. (38.76-

38.77).  This missing peak cannot be explained into existence, but a
reasonable rationale can be provided for why it might be missing from
these data.  The data obtained by Labov and Bowyer are outstanding
when the region of the spectrum, the time allotted for data collection,
and the logistics are considered.  Nonetheless, it is clear that the signal-
to-noise ratio is low and that considerable effort had to be expended to
differentiate emission features from the background.  This particular

peak,  
1
5  →  

1
6 ,  is likely to be only slightly stronger than the  

1
6  →  

1
7

peak (the intensities, Table 2, appear to decrease as n decreases), which
has low intensity.  Labov and Bowyer provided their data (wavelength,
count, count error, background, and background error).  The counts
minus background values for the region of interest, 130.2 ± 5 Å , are shown
in Table 3 (the confidence limits for the wavelength of about ±5 Å  are
the single-side 1 confidence levels and include both the uncertainties in
the fitting procedure and uncertainties in the wavelength calibration).
Note that the largest peak (count – background) is at 129.64 Å  and has a
counts −  background = 8.72 .  The counts −  background  for the strongest signal of
the other hydrino transitions are: n = 1/3  to n = 1/4 , 20.05 ; n = 1/4  to
n = 1/5 , 11.36; n = 1/6  to n = 1/7 , 10.40 .  Thus, there is fair agreement with
the wavelength and the strength of the signal.  This, of course, does not
mean that there is a peak at 130.2 Å.  However, it is not unreasonable to
conclude that a spectrum with a better signal-to-noise ratio might
uncover the missing peak.
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Table 3.  Data (Labov & Bowyer) near the predicted 
1

5
→

1

6
 transition

(130.2 Å).

l counts background counts – background
(Å)

125.82 26 21.58 4.42

127.10 22 21.32 0.68

128.37 18 19.50 –1.50

129.64 29 20.28 8.72

130.90 18 19.76 –1.76

132.15 20 19.50 0.50

133.41 19 19.50 –0.50

134.65 19 20.80 –1.80

Another, and more important, argument against this new
interpretation is the fact that the proposed fractional-quantum-state
hydrogen atoms have not been detected before.  There are several
explanations.  Firstly, the transitions to these fractional states must be
forbidden or must have very high activation energies—otherwise all
hydrogen atoms would quickly go to these lower energy states (an
estimated transition probability, based on the Labov and Bowyer data, is
be between 10−15 and 10−17s−1 ).  In actuality, a catalyst is required in order
to obtain emission.  Secondly, the number of hydrogen atoms (n = 1), the
hydrogen-atom density, and the presence of an active catalyst under any
conditions on Earth is exceeding low.  The combination of extremely low
population and extremely low transition probability makes the detection
of these transitions especially difficult.  Thirdly, this is a very
troublesome region of the electromagnetic spectrum for detection
because these wavelengths do not penetrate even millimeters of the
atmosphere (i.e. this region is the vacuum ultraviolet which requires
windowless spectroscopy at vacuum for detection).  Lastly, no one
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previously has been actively searching for these transitions.  The
Chandra X-ray Observatory is scheduled to perform similar experiments
with detection at much better signal to noise than obtained by Labov and
Bowyer.

Hydrogen Catalysts
The catalysis of hydrogen involves the nonradiative transfer of

energy from atomic hydrogen to a catalyst which may then release the
transferred energy by radiative and nonradiative mechanisms.  As a
consequence of the nonradiative energy transfer, the hydrogen atom
becomes unstable and emits further energy until it achieves a lower-
energy nonradiative state having a principal energy level given by Eqs.
(38.71-38.72).

Potassium ions can provide a net enthalpy of a multiple of that of
the potential energy of the hydrogen atom.  The second ionization
energy of potassium is 31.63 eV ; and K+  releases 4.34 eV  when it is
reduced to K .  The combination of reactions K+  to K2+  and K+  to K ,
then, has a net enthalpy of reaction of 27.28 eV , which is equivalent to
m = 1 in Eq. (38.73).

27.28 eV + K+ + K + + H
aH

p

 
  

 
  → K + K2 + + H

aH

( p +1)

 
  

 
  + [(p +1)2 − p2 ] X 13.6 eV (38.78)

K + K2+ → K+ + K + + 27.28 eV (38.79)

The overall reaction is

H
aH

p

 
  

 
  → H

aH

(p +1)

 
  

 
  + [(p +1)2 − p2 ] X 13.6 eV (38.80)

Argon ion is a catalyst.  The second ionization energy is 27.63 eV .

27.63 eV + Ar+ + H
aH

p

 
  

 
  → Ar2+ + e− + H

aH

( p +1)

 
  

 
  + [( p +1)2 − p2 ]X13.6 eV (38.81)

Ar2+ + e− → Ar+ + 27.63 eV  (38.82)
And, the overall reaction is

H
aH

p

 
  

 
  → H

aH

(p +1)

 
  

 
  + [(p +1)2 − p2 ]X13.6 eV (38.83)

An argon ion and a proton can also provide a net enthalpy of a
multiple of that of the potential energy of the hydrogen atom.  The third
ionization energy of argon is 40.74 eV , and H + releases 13.6 eV  when it is
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reduced to H .  The combination of reactions of Ar2+  to Ar3+ and H + to H ,
then, has a net enthalpy of reaction of 27.14 eV , which is equivalent to
m = 1 in Eq. (38.73).

27.14 eV + Ar2+ + H + + H
aH

p

 
  

 
  → H + Ar3+ + H

aH

(p +1)

 
  

 
  + [(p +1)2 − p2 ]X13.6 eV (38.84)

H + Ar3+ → H + + Ar2 + + 27.14 eV (38.85)
And, the overall reaction is

H
aH

p

 
  

 
  → H

aH

(p +1)

 
  

 
  + [(p +1)2 − p2 ]X13.6 eV (38.86)

Anomalous Thermal Broadening of the Atomic Hydrogen
Emission Spectrum in a Gas Discharge Cell by the Presence of
Argon

The observation by Kuraica and Konjevic [3] of hydrogen Balmer
lines in argon-hydrogen, neon-hydrogen, and pure hydrogen mixtures
revealed intense wing developments with argon present in the plasma of
negative glow of a glow discharge irrespective of cathode material
(carbon, copper, and silver).  The authors offer a tentative explanation
for hydrogen line shapes in the presence of argon which is based on a
quasiresonace charge transfer between metastable argon ions and
hydrogen molecules and the formation of a hydrogen molecular ion.
According to the authors,

"... it is essential that the H2
+ or H3

+ ion must gain energy in the
electric field before dissociation.  Otherwise, the large energy of
excited hydrogen atoms (on the average 50 eV per atom) cannot
be explained".

The source of 50 eV  anomalous thermal broadening of the Balmer
lines observed by Kuraica and Konjevic [3] during a glow discharge of
hydrogen-argon mixtures which was not observed with neon-hydrogen
mixtures or pure hydrogen irrespective of cathode material is assigned
to lower-energy hydrogen transitions.  Transitions of hydrogen to lower-
energy levels occurs in a hydrogen plasma discharge cell via a catalyst
with a net enthalpy of about 27.2 electron volts including thermal
broadening.  The catalyst, Ar+  ions (Eqs. (38.81-38.83)), or Ar2+  ions and
protons (Eqs. (38.84-38.86)) are formed by the discharge which also
produces reactant hydrogen atoms.  The transitions to lower-energy
levels catalyzed by argon ions result in the release of energy (Eqs.
(38.81-38.86)).  Hydrogen atoms in fractional quantum states can under
go an autocatalytic reaction to further lower energy states.  Line spectra
in the extreme ultraviolet and soft x-ray regions corresponding to these
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transitions have been observed by a 4 ° grazing incidence extreme
ultraviolet spectrometer at INP, Greifswald, Germany [7].  The energy
heats the plasma and causes thermal broadening of the hydrogen
spectrum.

Backward Peak in the Electron Spectrum from Collisions of 70
keV Protons with Hydrogen Atoms

The energy removed by a scattering reaction is resonant with the
hydrogen energy released to stimulate this transition.  Consider the case
wherein a proton undergoes a collision with an electron of a hydrogen
atom to effect an electronic transition from n = 1 to n = 1/ 2 .  The initial
and final electronic states are nonradiative; thus, the transition must
occur without radiation.  The end result is a lower-energy state for the
hydrogen and backward scattered electron which is required to conserve
energy, momentum, and satisfy the boundary condition for
nonradiation.  The energy of the hydrogen transition must be
transferred to a backward free electron.  The reaction for the n = 1 to
n = 1/ 2  hydrogen transition effected by inelastic scattering of a 70 keV
proton is

H + 70 keV( ) + H n =1( ) + e− 0 eV( ) → H + 70 keV( ) + H n =1/ 2( ) + e− 40.8 eV( ) (38.87)

The backward electron is Franck-Hertz [6] scattered by free hydrogen
atoms.  For hydrogen, the Franck-Hertz scattered peaks of hydrogen
transitions, ni → n f  is

E =
1

n f
2 −

1

ni
2

 

 
  

 
 X13.6 eV −10.2 eV (38.88)

(when this electron strikes H (1s1 ), 10.2 eV  is absorbed in the excitation to
H (2 p1)).  For the n = 1 to n = 1/ 2  hydrogen transition, a backward 40.8 eV
electron is produced which undergoes Franck-Hertz scattering to give
rise to a 30.6 eV backward peak.  Franck-Hertz scattering of the 30.6 eV
peak gives rise to a 20.4 eV backward peak.  Or, the backward 40.8 eV
electron ionizes a hydrogen atom to give rise to a 27.2 eV peak.

E =
1

n f
2 −

1

ni
2

 

 
  

 
 X13.6 eV −13.6 eV (38.89)

(when this electron strikes H (1s1 ), 13.6 eV  is absorbed in the ionization to
H + + e− ).  Other transitions will occur to a lesser extent.  Discontinuities
at the position of the major transitions of 40.8 eV, 30.6 eV, 27.2 eV, and
20.4 eV were observed by Rudd, et al. [4] in the electron spectrum from
collisions of 70 keV protons with hydrogen atoms shown in Figure 1.
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Figure 1.  Spectrum of Rudd et al. [4] of electrons ejected at 160° from
70 keV proton impact on the target gas from the Slevin hydrogen atom
source.  Open circles, the RF excitation was on and the measured
hydrogen dissociation fraction was 93%; solid circles, the RF excitation
was off, making the target pure H2 .

The angle of the maximum intensity of back scattering can be
calculated via the boundary condition of nonradiation.  The condition
for radiation by a moving charge is derived from Maxwell's equations
[28].  The condition for nonradiation of a moving charge-density
function is that the spacetime Fourier transform of the current-density
function must not possess waves synchronous with waves traveling at

the speed of light, that is synchronous with n

c
 or synchronous with

n

c o

 where  is the dielectric constant of the medium.  The condition

for nonradiation by a moving point charge is that its spacetime Fourier
transform does not possess components that are synchronous with
waves traveling at the speed of light, as shown by Haus [28].  The Haus
derivation applies to a moving charge-density function as well because
charge obeys superposition.  The Haus derivation is summarized below.

The Fourier components of the current produced by the moving
charge are derived.  The electric field is found from the vector equation
in Fourier space (k, ω-space).  The inverse Fourier transform is carried
over the magnitude of k .  The resulting expression demonstrates that

the radiation field is proportional to J⊥ (
c

n, ) , where J⊥ (k, )  is the

spacetime Fourier transform of the current perpendicular to k  and
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n ≡
k
|k|

.  Specifically,

E⊥ r,( ) d

2
=

c

2
,Ω( )∫ d dΩ 0

0

n X n X J⊥ c
n,

 
 

 
 e

i
c

 

 
 

 

 
 n•r 

 
  

 
 (38.90)

The field E⊥ r,( ) d

2
 is proportional to J⊥ c

n,
 
 

 
  , namely, the Fourier

component for which k =
c

.  Factors of  that multiply the Fourier

component of the current are due to the density of modes per unit
volume and unit solid angle.  An unaccelerated charge does not radiate
in free space, not because it experiences no acceleration, but because it

has no Fourier component J⊥ c
n,

 
 

 
 .

Consider a 70 keV proton of position r0 t( ).  The charge density of
the proton is described by

r,t( ) = e (r − r0 t( )) (38.91)
where (r − r0 t( )) is the spatial unit impulse function.  The current density
is

J r,t( ) = e
•

r0 t( ) (r − r0 t( )) (38.92)
The spatial Fourier transform represents the current density as a
superposition of spatial exponentials, exp− ik ⋅r .

J k,t( ) = d3re
•

r0 t( ) (r − r0 t( ))exp − ik ⋅r∫∫∫
         = e

•
r0 t( )e−ik⋅r 0

(38.93)

The full spacetime Fourier transform is
J k,( ) = dteve− ik⋅vt+ i t∫∫∫
           = 2 ev − k ⋅ v( )

(38.94)

The only nonzero Fourier components are for

kz =
vz cos

>
c

(38.95)

where  is the angle between the wavenumber vector, k z , and the
velocity vector, v z .  Thus, no Fourier components that are synchronous

with light velocity with the propagation constant kz =
c

 exist.  Radiation

due to charge motion does not occur when this boundary condition is
met.

Consider the case wherein the proton undergoes a collision with
the electron of a hydrogen atom to effect an electronic transition from
n = 1 to n = 1/ 2 .  The initial and final electronic states are nonradiative;
thus, the transition must occur without radiation.  If the proton removes



© 2000 by BlackLight Power, Inc.  All rights reserved.
590

the energy, then radiation will occur during the concomitant
acceleration.  With acceleration, the current density is

J r,t( ) = e
•

r0 t( ) 1− e− t( ) (r − r0 t( )) (38.96)
where  is the transition decay constant.  The spatial Fourier transform
represents the current density as a superposition of spatial exponentials,
exp− ik ⋅r .

J k,t( ) = d3re
•

r0 t( ) 1− e− t( ) (r − r0 t( ))exp − ik ⋅r∫∫∫
         = e

•
r0 t( )e−ik⋅r 0 1 − e− t( )

(38.97)

The full spacetime Fourier transform is
J k,( ) = dteve− ik⋅vt+ i t − t∫∫∫
           = 2 ev

+ i − k ⋅ v( )
(38.98)

For Eq. (38.98), Fourier components that are synchronous with light

velocity with the propagation constant kz =
c

 do exist.

However, nonradiation can be achieved during the transition by
coupling between the proton and a free electron.  During the transition
from n = 1 to n = 1/ 2 , a transfer of energy from a hydrogen atom causing
a backward electron is required to satisfy the nonradiative boundary
condition.  In the limit, the current density function approaches that of a
charge moving at constant velocity.  This condition also applies to the
backward electron.  Thus, the condition for the final velocity of the
backward electron is given by Eqs. (38.94) and (38.95).  The boundary
condition for the velocity of the proton, vp , and the velocity of the
backward electron, ve , is

−ve cos e = vp cos p (38.99)
where e  is the laboratory frame electron scattering angle and p  is the
laboratory frame proton scattering angle.  The velocity, ve , of an
electron as a function of the energy, Ee , is

ve =
2Ee

me

(38.100)

where me  is the mass of the electron.  The velocity, vp , of an electron as a
function of the energy, Ep , is

vp =
2Ep

m p

(38.101)

where m p  is the mass of the proton.  Substitution of Eqs. (38.100) and
(38.101) into Eq. (38.99) gives
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−
2Ee

me

cos e =
2Ep

mp

cos p (38.102)

From the nonradiative boundary condition, the angle of the backward
electron is

= cos−1 −
Epme

mp Ee

cos p

 

 
 

 

 
 (38.103)

In the case that the initial and final velocity vectors of the incident
proton are equal, Ep initial

= Ep final
= 70 keV , and the initial and final energies of

the electron are Eeinitial
= 0 eV  and Ee final

= 40.8 eV , respectively, the maximum

intensity of the peaks is predicted (Eq. (38.103)) to be 165°.  This is in
agreement with the observed maximum at about 160° [4].  For small
proton scattering angles, Eq. (38.103) is also in agreement with the
absence of the backward peaks at 90° [4].  The maximum intensity of the
backward peaks from collisions of hydrogen atoms with 30 keV protons
predicted from Eq. (38.103) is 130°.  Thus, the intensity of the backward
peaks at 160° with 30 keV protons is predicted to be less than that of 70
keV incident protons in agreement with Rudd [4].

Novel Energy States of Hydrogen Formed by a Catalytic
Reaction

Typically the emission of extreme ultraviolet light from hydrogen
gas is achieved via a discharge at high voltage, a high power inductively
coupled plasma, or a plasma created and heated to extreme
temperatures by RF coupling (e.g. > 106  K ) with confinement provided by
a toroidal magnetic field.  Intense EUV emission was observed by Mills et
al. [7-12] at low temperatures (e.g. < 103  K ) from atomic hydrogen and
certain atomized pure elements or certain gaseous ions which ionize at
integer multiples of the potential energy of atomic hydrogen.  The
release of energy from hydrogen as evidenced by the EUV emission must
result in a lower-energy state of hydrogen.  The lower-energy hydrogen
atom called a hydrino atom by Mills [1] would be expected to
demonstrate novel chemistry.  The formation of novel compounds based
on hydrino atoms would be substantial evidence supporting catalysis of
hydrogen as the mechanism of the observed EUV emission.  A novel
hydride ion called a hydrino hydride ion having extraordinary chemical
properties given by Mills [1] is predicted to form by the reaction of an
electron with a hydrino atom.  Compounds containing hydrino hydride
ions have been isolated as products of the reaction of atomic hydrogen
with atoms and ions identified as catalysts in the  Mills et al. EUV study
[1, 7-12, 32-37].  The novel hydride compounds were identified
analytically by techniques such as time of flight secondary ion mass
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spectroscopy, X-ray photoelectron spectroscopy, and proton nuclear
magnetic resonance spectroscopy.  For example, the time of flight
secondary ion mass spectroscopy showed a large hydride peak in the
negative spectrum.  The X-ray photoelectron spectrum showed large
metal core level shifts due to binding with the hydride as well as novel
hydride peaks.  The proton nuclear magnetic resonance spectrum
showed significantly upfield shifted peaks which corresponded to and
identified novel hydride ions.

Discussion
The Schrödinger equation gives the observed spontaneously

radiative energy levels and the nonradiative state of hydrogen.  On this
basis alone, it is justified despite its inconsistency with physicals laws
and numerous experimental observations such as

• The appropriate eigenvalue must be postulated and the variables
of the Laguerre differential equation must be defined as integers in order
to obtain the Rydberg formula.

• The Schrödinger equation is not Lorentzian invariant.

• The Schrödinger equation violates first principles including
special relativity and Maxwell's equations [1, 38].

• The Schrödinger equation gives no basis why excited states are
radiative and the 13.6 eV state is stable [1].  Mathematics does not
determine physics.  It only models physics.

• The Schrödinger equation solutions, Eq. (38.36) and Eq. (38.37),
predict that the ground state electron has zero angular energy and zero
angular momentum, respectively.

• The Schrödinger equation solution, Eq. (38.36), predicts that the
ionized electron may have infinite angular momentum.

• The Schrödinger equation solutions, Eq. (36) and Eq. (37),
predict that the excited state rotational energy levels are nondegenerate
as a function of the   l  quantum number even in the absence of an
applied magnetic field, and the predicted energy is over six orders of
magnitude of the observed nondegenerate energy in the presence of a
magnetic field.  In the absence of a magnetic field, no preferred
direction exists.  In this case, the   l  quantum number is a function of the
orientation of the atom with respect to an arbitrary coordinate system.
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Therefore, the nondegeneracy is nonsensical and violates conservation
of angular momentum of the photon.

• The Schrödinger equation predicts that each of the functions
that corresponds to a highly excited state electron is not integrable and
can not be normalized; thus, each is infinite.

• The Schrödinger equation predicts that the ionized electron is
sinusoidal over all space and can not be normalized; thus, it is infinite.

• The Heisenberg uncertainty principle arises as the standard
deviation in the electron probability wave, but experimentally it is not
the basis of wave particle duality.

• The correspondence principle does not hold experimentally.

• The Schrödinger equation does not predict the electron magnetic
moment and misses the spin quantum number all together.

• The Schrödinger equation is not a wave equation since it gives
the velocity squared proportional to the frequency.

• The Schrödinger equation is not consistent with conservation of
energy in an inverse potential field wherein the binding energy is equal
to the kinetic energy and the sum of the binding energy and the kinetic
energy is equal to the potential energy [14].

• The Schrödinger equation permits the electron to exist in the
nucleus which is a state that is physically nonsensical with infinite
potential energy and infinite negative kinetic energy.

• The Schrödinger equation interpreted as a probability wave of a
point particle can not explain neutral scattering of electrons from
hydrogen [1].

• The Schrödinger equation interpreted as a probability wave of a
point particle gives rise to infinite magnetic and electric energy in the
corresponding fields of the electron.

• A modification of the Schrödinger equation was developed by
Dirac to explain spin which relies on the unfounded notions of negative
energy states of the vacuum, virtual particles, and gamma factors.
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The success of quantum mechanics can be attributed to 1.) the
lack of rigor and unlimited tolerance to ad hoc assumptions in violation
of physical laws, 2.) fantastical experimentally immeasurable corrections
such as virtual particles, vacuum polarizations, effective nuclear charge,
shielding, ionic character, compactified dimensions, and
renormalization, and 3.) curve fitting parameters that are justified solely
on the basis that they force the theory to match the data.  Quantum
mechanics is now in a state of crisis with constantly modified versions of
matter represented as undetectable minuscule vibrating strings that exist
in many unobservable hyperdimensions, that can travel back and forth
between undetectable interconnected parallel universes.  And, recent
data shows that the expansion of the universe is accelerating.  This
observation has shattered the long held unquestionable doctrine of the
origin of the universe as a big bang [39].  It may be time to reconsider
the roots of quantum theory, namely the theory of the hydrogen atom.
Especially in light of the demonstration that the hydrogen atom can be
solved in closed form from first principles, that new chemistry is
predicted, and that the predictions have substantial experimental
support.  New evidence mandates that old theories be revised or
abandoned.  Recently line spectra of fractional quantum energy levels of
atomic hydrogen have been measured by a 4 ° grazing incidence extreme
ultraviolet spectrometer at INP, Greifswald, Germany [7].  The
Schrödinger wave equation solutions can not explain the experimental
results which confirm the existence of lower energy states of hydrogen;
thus, the theory must be modified.

Billions of dollars have been spent to harness the energy of
hydrogen through fusion using plasmas created and heated to extreme
temperatures by RF coupling (e.g. > 106  K ) with confinement provided by
a toroidal magnetic field.  Mills et al. [7-12] have demonstrated that
energy may be released from hydrogen using a chemical catalyst at
relatively low temperatures with an apparatus which is of trivial
technological complexity compared to a tokomak.  And, rather than
producing radioactive waste, the reaction has the potential to produce
compounds having extraordinary properties [32-37].  The implications
are that a vast new energy source and a new field of hydrogen chemistry
have been discovered.
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THE NATURE OF CONSCIOUSNESS

Consciousness arises from a "negative" entropy state of a being at
the expense of its surroundings wherein the being increases the
spontaneous decay rate of the surroundings.  The relationship between
the energy decay rate according to Maxwell's Equations, spacetime
expansion due to energy decay with the rate given by General Relativity,
entropy due to spacetime expansion, and the imaginary nature of
coordinate time due to spacetime expansion permits the phenomenon of
consciousness.

RELATIONSHIP OF SPACETIME AND THE ARROW OF TIME
The provision of the equivalence of inertial and gravitational mass

by the Mills theory of fundamental particles wherein spacetime is
Riemannian due to its relativistic correction with particle production
permits the correct derivation of the General Theory.  And, the former
provision of the two-dimensional nature of matter permits the
unification of atomic, subatomic, and cosmological gravitation.  The
unified theory of gravitation is derived by first establishing a metric.

A space in which the curvature tensor has the following form:
R , = K ⋅(g g − g g ) (39.1)

is called a space of constant curvature; it is a four-dimensional
generalization of Friedmann-Lobachevsky space.  The constant K  is
called the constant of curvature.  The curvature of spacetime results
from a discontinuity of matter having curvature confined to two spatial
dimensions.  This is the property of all matter as an orbitsphere.
Consider an isolated orbitsphere and radial distances, r , from its center.
For r  less than rn  there is no mass; thus, spacetime is flat or Euclidean.
The curvature tensor applies to all space of the inertial frame
considered; thus, for r  less than rn , K = 0 .  At r = rn  there exists a
discontinuity of mass of the orbitsphere.  This results in a discontinuity
of the curvature tensor for radial distances greater than or equal to rn .
The discontinuity requires relativistic corrections to spacetime itself.  It
requires radial length contraction and time dilation that results in the
curvature of spacetime.  The gravitational radius of the orbitsphere and
infinitesimal temporal displacement in spacetime which is curved by the
presence of the orbitsphere are derived in the Gravity Section.

The Schwarzschild metric gives the relationship whereby matter
causes relativistic corrections to spacetime that determines the
curvature of spacetime and is the origin of gravity.  The separation of
proper time between two events x  and x + dx  given by Eq. (), the
Schwarzschild metric [1-2], is
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d 2 = 1 −
2Gm0

c2r
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  (39.2)

Eq. (39.2) can be reduced to Newton's Theory of Gravitation for rg , the

gravitational radius of the particle, much less than r* , the radius of the

particle at production (
rg

r* << 1), where the radius of the particle is its

Compton wavelength bar (  r
* = Dc ).

F =
Gm1m2

r2 (39.3)

where G  is the Newtonian gravitational constant.  Eq. (39.2)
relativistically corrects Newton's Gravitational Theory.  In an analogous
manner, Lorentz transformations correct Newton's Laws of Mechanics.
Consider a general point in the xy plane having dr = 0 ; d = 0 ; sin2 =1.
Substitution of these parameters into Eq. (39.2) gives

d = dt 1 −
2Gm0

c2r
−

v2

c2

 
 
  

 

1
2

(39.4)

In the case of matter/energy conversion with v2 = c2 , Eq. (39.4) becomes

= ti
2GM

c2 r
= ti

2GM

c2r
(39.5)

And, the particle energies are all equal to the particle production mass
energy.  The particle production energies given in the Gravity Section are
the mass energy, the Planck energy, electric potential, magnetic energy,
the gravitational potential energy, and the mass/spacetime metric
energy.

  moc
2 = h * = V = Emag = Egrav = Espacetime (39.6)

  
m0c

2 = h * =
h2
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2 = −1 e2

4 0DC
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3
= −1 0e

2c2

2h

Gm0

D C

hc

G
=

h

1 sec

DCc2

2Gm

(39.7)
The equations which unify de Broglie’s Equation, Planck’s Equation,
Maxwell’s Equations, Newton’s Equations, and Special and General
Relativity define the mass of fundamental particles in terms of the
spacetime metric.  Eqs. (39.6-39.7) gives the equivalence of particle
production energies corresponding to mass, charge, current, and gravity
according to the proportionality constants which are given in terms of a
self consistent set of units.  This equivalence is a consequence of
equivalence of the gravitational mass and the inertial mass together with
Special Relativity.  According to Eqs. (39.6-39.7) matter, energy, and
spacetime are conserved.
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Period Equivalence
The Schwarzschild metric (Eq. (39.2)) with the equivalence of the

particle production energies (Eqs. (39.6-39.7)) permit the equivalence

of mass/energy ( E = mc2 ) and spacetime (
c3

4 G
= 3.22 X 1034

 
kg

sec
).  Spacetime

expands as mass is released as energy which provides the basis of the
atomic, thermodynamic, and cosmological arrows of time.  The proper
time of the electron is given by Eq. (27.1), and the electron mass
corresponding to this amount of time is given by Eq. (27.3).  Thus, Q ,
the mass/energy to expansion/contraction quotient of spacetime is
given by the ratio of Eq. (27.3) and Eq. (27.1) wherein Eq. (39.5) gives
the General Relativistic factor which divides the electron mass and
multiplies the electron proper time to give the corresponding spacetime
expansion.
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The universe undergoes time harmonic expansion and contraction
corresponding to matter/energy conversion.  The equation of the radius
of the universe, ℵ, which is derived in the Gravity Section is

ℵ=
2GmU
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From Eq. (39.9), the period of the expansion/contraction cycle of the
radius of the universe, T , is

T =
2 GmU

c3  sec (39.10)

It was derived in the Unification of Spacetime, the Forces, Matter,
and Energy Section that the periods of spacetime
expansion/contraction and particle decay/production for the
universe are equal.  It follows from the Poynting Power Theorem (Eq.
(7.27)) with spherical radiation that the transition lifetimes are given by
the ratio of energy and the power of the transition [3].  Magnetic energy
is a Special Relativistic consequence of electric energy and kinetic
energy.  Thus, only transitions involving electric energy need be
considered.  The transition lifetime, , in the case of the electric
multipole moment given by Jackson [4] as

  
Qlm =

3

l + 3
e rn( )l

(39.11)
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where in the exemplary case of an excited state of atomic hydrogen rn  is
the radius of the electron orbitsphere which is na0  (Eq. (27.17)).  From
Eq. (24.35), the transition lifetime is proportional to the ratio of , the
radiation resistance of free space.

= 0

0

(39.13)

and, the Quantum Hall resistance, 
h

e2 .  The Quantum Hall resistance

given in the Quantum Hall Effect Section was derived using the Poynting
Power Theorem.  Also, from Eq. (39.12), the transition lifetime is
proportional to the fine structure constant, ,

  
=

1

4
o

o

e2

h
(39.14)

From Eq. (24.17) and Eq. (24.35), the lifetime an excited state of a
hydrogen atom is inversely proportional to the frequency of the
transition.  This is also the case for the universe which is a 3-sphere
universe.  (More explicitly, the universe is a Riemannian three
dimensional hyperspace plus time with a constant positive curvature).
During an electromagnetic transition, the total energy of the system
decays exponentially.  Applying Eqs. (2.45) and (2.46) to the case of
exponential decay,

h( t) = e
− 1

T
t

u t( ) (39.15)
However, Eq. (39.5) determines that the coordinate time is imaginary
because energy transitions are spacelike due to General Relativistic
effects.  For example, Eq. (27.2) gives the mass of the electron (a
fundamental particle) in accordance with Eq. (39.5).

  

2 DC

2Gme

D C

=
2 DC

vg

= i −1 sec (39.16)

where Newtonian gravitational velocity vg  is given by Eq. (23.35).
Replacement of the coordinate time, t , of Eq. (39.15) by the spacelike
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time, it , gives.

h( t) = e
−i

1

T
t

= cos
2

T
t (39.17)

where the period is T .  The periods of spacetime expansion/contraction
and particle decay/production for the universe are equal due to the Eq.
(39.5) which determines the masses of fundamental particles, the
equivalence of inertial and gravitational mass, the phase matching
condition of mass to the speed of light and charge to the speed of light,
and that the coordinate time is imaginary because energy transitions are
spacelike due to General Relativistic effects.  From Eq. (39.5)

  

proper time
coordinate time

= gravitational wave condition
electromagnetic wave condition

= gravitational mass phase matching
charge/inertial mass phase matching

proper time

coordinate time
= i

2Gm
c2DC = i

vg

c
(39.18)

Eq. (24.24) gives the ratio of Eq. (39.18) in terms of the coordinate
particle mass and the Grand Unification Mass/Energy.
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(39.19)

As fundamental particles, atoms, molecules, and macroscopic
configurations of fundamental particles, atoms, and molecules release
energy, spacetime increases.  The superposition of expanding spacetime
arising at the atomic level over all scales of dimensions from the atomic
to the cosmological gives rise to the observed expanding universe.  The
wavefront of energy and spacetime from matter to energy conversion
travel at the speed of light.  Consider Eq. (23.43).  As given in the Gravity
Section, at the present time in the cycle of the universe, the world line of
the expanding spacetime and the released energy are approximately
coincident.  In terms of Eq. (23.38), the proper time and the coordinate
time are approximately equal.  The ratio of the gravitational radius, rg

given by Eq. (23.36), and the radius of the universe equal to one and the
gravitational velocity given by Eq. (23.35) is the escape velocity.  And, Q ,
(Eq. (23.140)) is equal to the matter to energy conversion rate of the
time harmonic expansion/contraction cycle of the universe which
permits light energy (photons) to propagate (escape the gravitational
hole of the universe).
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When the gravitational radius rg  is the radius of the universe, the
proper time is equal to the coordinate time (Eq. (23.43)), and the
gravitational velocity vg  of the universe is the escape velocity which is
the speed of light.

Mass/energy must be conserved during the harmonic cycle of
expansion and contraction.  The gravitational potential energy Egrav  of
the universe is given by Eq. (24.43).  In the case that the radius of the
universe r  is the gravitational radius rG given by Eq. (23.22), the
gravitational potential energy is equal to mUc2  which follows that given
by Eq. (23.27).  The gravitational velocity vG  is given by Eq. (23.33)
wherein an electromagnetic wave of mass/energy equivalent to the mass
of the universe travels in a circular orbit wherein the eccentricity is
equal to zero (Eq. (26.20)), and the escape velocity from the universe
can never be reached.  The wavelength of the oscillation of the universe
and the wavelength corresponding to the gravitational radius rG must be
equal.  Electromagnetic energy and gravitational mass obey
superposition, and both spacetime expansion/contraction and
electromagnetic energy corresponding to particle decay/production
travel at the speed of light and obey the wave relationship given by Eq.
(20.4).  The wavelength is given in terms of the radius by Eq. (2.2).
Thus, the harmonic oscillation period, T , is

T =
2 rG

c
=

2 GmU

c3 =
2 G 2 X 1054  kg( )

c3 =  3.10 X 1019  sec = 9.83 X 1011  years

(39.20)
where the mass of the universe, mU .

The Arrow of Time and Entropy
The principle of entropy was invented to provide an explanation

for the direction of time as it pertains to macroscopic processes.  The
present theory provides an explanation for the expanding universe which
unifies the microscopic, thermodynamic, and cosmological arrows of
time.

Physical phenomena involve exchange of energy between matter
and spacetime.  Eq. (39.5) gives the relationship between the
equivalence of mass/energy conversion and the
contraction/expansion of spacetime.  This relationship provides the
arrow of time.  Thus, the creation of mass from energy causes an
infinitesimal contraction or collapse of spacetime much like a dimple in
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a plastic ball but in three dimensions plus time; whereas, the release of
energy causes an expansion of spacetime.  Time goes forward in the
direction of lower energy states and greater entropy because these states
correspond to an expansion of spacetime relative to the higher energy
states of matter.  Expanded space corresponds to a smaller cross section
for reverse time as opposed to forward time.  Thus, the arrow of time
arising on the subatomic and atomic level gives rise to the Second Law of
thermodynamics;

In an isolated system, spontaneous processes occur in the
direction of increasing entropy.

Stated mathematically:
The entropy change, dS, which is equal to the change in heat, dq,
divided by the temperature, T, is greater than zero.

dS =
dq

T
> 0 (39.21)

The atomic arrow of time also applies to cosmology and provides
for the expansion of spacetime on a cosmological scale.  As fundamental
particles, atoms, molecules, and macroscopic configurations of
fundamental particles, atoms, and molecules release energy, spacetime
increases.  The superposition of expanding spacetime arising at the
atomic level over all scales of dimensions from the atomic to the
cosmological gives rise to the observed expanding universe which
continues to increase in entropy.

The universe is a four dimensional hyperspace of constant positive
curvature.  The coordinates are spherical, and the space can be
described as a series of spheres each of constant radius r  whose centers
coincide at the origin.  The existence of the mass mU  causes the area of
the spheres to be less than 4 r2  and causes the clock of each r-sphere to
run so that it is no longer observed from other r-spheres to be at the
same rate.  Only in the case that the radius of the universe is equal to
the gravitational radius, is the area given by 4 r2 ; otherwise, the area of
the sphere corresponding to the radius of the universe is less than that
given by 4 r2 .  The Schwarzschild metric given by Eq. (39.2) is the
general form of the metric which allows for these effects.  The proper
area is given by solving Eq. (39.2) for the coordinate radius as a function
of the proper radius followed by the substitution of the coordinate
radius into the area equation, 4 r2 .  Eq. (39.5) determines that the
coordinate time is imaginary because energy transitions are spacelike
due to General Relativistic effects.  This relation used in Eq. (39.17) and
the linked relationship between the equivalence of mass/energy
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conversion and the contraction/expansion of spacetime (Eq. (39.5))
have implications for the nature of consciousness.

CONSCIOUSNESS
A distinction exists between animate beings and inanimate objects.

If the brain chemistry of conscious beings behaved as typical chemical
reactions following an arrow of time according to typical enthalpy and
concomitant entropy changes, then any information stored and
processed by the brain would decrease over time, and consciousness
would not be possible.  The brain chemistry comprising ion channel
conductance changes, ion flows, ion pump activity, metabolic reactions,
etc., comprise an energy state in opposition to the thermodynamic
arrow of time.  Living beings produce negative entropy at the expense of
their surroundings.  Consciousness, the ability of a chemical reaction to
be aware of itself arises from the relationship of energy changes to
entropy.  Eq. (39.6) also applies to the case of an excited state of matter.
Thus, ultimately consciousness arises from the relationship between
matter/energy conversion, spacetime expansion, and the arrow of time.

The time harmonic period of the universe for electromagnetic
energy decay according to Maxwell's Equations and spacetime expansion
and contraction according to General Relativity are equal (Eq. (39.20)).
By Eq. (39.4), when the radius of the universe is the gravitational radius,
rg , (Eq. (23.147)) the coordinate time is equal to the proper time.
Thereafter, a phase shift in the coordinate time relative to the proper
time arises due to spacetime expansion effected by matter to energy
conversion.  The rates of spontaneous electromagnetic energy decay and
spacetime expansion for the universe as a whole remain such that the
harmonic rate equation is obeyed.  However, animate matter can
decrease its rate of decay at the expense of the surrounding matter.  The
unique feature of the phenomena of life and consciousness arises from a
different coordinate time phase shift corresponding to matter/energy
conversion to spacetime expansion of the life form with respect to that
of the matter comprising the life form's environment due to an
artificially increased energy state of the life form.  Consider a being that
simultaneously increases its energy state and state of order.  The
absorption of energy increases its mass.  The corresponding excited
energy state would decay according to Eq. (39.17) with concomitant
spacetime expansion according to Eq. (39.8).  Entropy would increase.
However, living beings comprise chemical systems which increase the
rate of decay of other parts of the universe to achieve a "charged" or
high energy ordered state which deviates from the rate law given by Eq.
(39.17).  Whereas, the rate of the being's surroundings decays faster at
the expense of the being such that their sum obeys the rate given by Eq.
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(39.17).  As a consequence of the time phase shift due to its "charged"
energy state change, a living being follows a shifted thermodynamic
arrow of time relative to that of the spontaneous reactions of their
surroundings.  The arrow of time for the beings is delayed with
respect to that of the local universe.  The phenomenon of
consciousness is permitted from the time-phase difference.

Information is a form of energy.  The brain has the ability to
process and assimilate energy permitted by its shifted thermodynamic
arrow of time.  The brain which comprises hundreds of billions of
neurons is the center of consciousness.  Neurons achieve an artificial
high energy state in the form of ion gradients across their cell
membranes.  The fluctuations and patterns of discharge of the energy
state is the mechanism of conscious experience.  Unlike a conventional
processor such as a Turing Machine, the brain constantly changes its
state such that the output to a given input may not be identical.  The
brain is governed by the entropy principle of thermodynamics whereby
the chemical system achieves a state representative of a predominant
configuration, the most probable state in time.  The brain must be
active continuously as a predominant configuration.  The
predominant configuration is based on and represents the physical
universe as described in the BlackLight Brainchild Section.  This time
dependent state based on the second law of thermodynamics and
representative of the physical universe is the basis of
consciousness.

In addition to exploiting the second law of thermodynamics with
the formation of a predominant configuration, the brain has evolved to
exploit several fundamental signal processing principles to achieve
consciousness.  For example, the brain functions as an analog Fourier
processor which represents and processes information as Fourier series
in Fourier space.  The brain exploits time directly and time indirectly via
spatial segregation of information as a means to encode context.  The
brain associates information by exploiting the principle that cascaded
stages such as association neurons give rise to delayed Gaussian filters.
And, filtered signals may be associated based on the physics of energy
exchange between two or more harmonic states.  The workings of the
brain and the underlining physics and signal processing theory are
described for a digital processor or the brain in the BlackLight Brainchild
Section.  Given the evolutionary ascension of multicelluar organisms
each producing a negative entropic states and having specialized cells
with excitable membranes, the progress to consciousness and
intelligence was inevitable.

Consciousness is shaped by and requires the environment with
which the brain interacts.  A conscious being is made of energy, quarks,
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gluons, electrons, atoms, molecules, etc. that originate from and are
part of the universe.  For example, the elements of humans other than
hydrogen originate in stars.  Therefore, in broader terms, the physics of
the universe dynamically gives rise to a conscious being, and it is
implicit that the universe is aware of itself.

REASON AND INTELLIGENCE
The brain is capable of accepting input, and storing, retrieving, and

processing data to form novel conceptual content.  Reason and
intelligence arise from the massive directional connectivity of the brain
which functions as an analog Fourier processor.  The neuronal response
is a series of action potentials in time.  The superposition of the
neuronal responses of multiple neurons becomes a Fourier series, a
superposition of trigonometric functions, in frequency space
( k, −space) wherein information is digitized in amplitude, frequency,
and phase.  The Fourier series  in k, −space is then modulated, sampled,
associated, and ordered via the filtering properties of cascaded groups
of association neurons with couplings governed by Poissonian
probability.  The processing of information depends on and dynamically
alters (through feedback) the total state of stored information, the
cascades of association neurons, and the hierarchical relationships of
association neurons and stored information (memory).  A strongly
linked group of cascaded association neurons comprises an "association
ensemble", and a strongly linked group of memory neurons comprises
an "memory ensemble".  Repetitive activation of a memory or
association neuron increases its excitability.  A configuration of
couplings between "memory ensembles" and "association ensembles"
increases the excitability of the configuration.  Analogously to statistical
thermodynamics, a predominant configuration arises from the ensemble
level.  Consider the brain globally.  The firing history of each ensemble
relates to a hierarchical relationship of coupled "memory and
association ensembles" which gives rise to a precedence of higher order
predominant configurations.  Intelligence, the ability to associate
information and create novel information, is a consequence.  Learning
arises by the feedback loop of sensory input to the coupled predominant
configurations which increases the basis for intelligence.  The basis of
consciousness is the Predominant Configuration Layer given infra..

The features of the brain such as 1.) layer structure, 2.)
components such as processor neurons, association neurons, memory
neurons, and domains, 3.) systems such as association ensembles, and
4.) processes such as association and ordering of information may be
simulated using systems and methods to produce alternative intelligence
(AI).  The systems and methods are given in Mills US Patent Application
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[5].  The brain can be understood in customary terms with the following
definitions applied to the Mills Patent Application infra.

"processor" brain

"P element" (processor element) processor neuron

"M element" (memory element) memory neuron

"stage" association neuron

"impulse response" action potential

"register" domain

exponential decay decay of neurotransmitter
of input between "stages" concentration at a synapse

of association neurons

The switching time of the brain is limited by the physiology of
neurons.  The brain operates at 10's of hertz.  The maximum amount of
memory used by the brain at any instant based on the ability to recall a
test list is about a megabyte.  In contrast, microprocessors process
signals at rates of 100's of megahertz with a comparatively unlimited
memory capacity.  The brain's wet chemistry which processes
information can be simulated using solid state systems.  The possibility
of running a simulation of the brain's operations based on the same
physical and signal processing principles holds great promise to reach
advanced levels of abstraction, conceptualization, and understanding of
the physical universe.  The subsequent advancement of technology is
anticipated.

BlackLight Brainchild

Abstract

The present invention provides a method and system for pattern
recognition and processing.  Information representative of physical
characteristics or representations of physical characteristics is
transformed into a Fourier series in Fourier space within an input
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context of the physical characteristics that is encoded in time as
delays corresponding to modulation of the Fourier series at
corresponding frequencies.  Associations are formed between Fourier
series by filtering the Fourier series and by using a spectral similarity
between the filtered Fourier series to determine the association based
on Poissonian probability.  The associated Fourier series are added to
form strings of Fourier series.  Each string is ordered by filtering it
with multiple selected filters to form multiple time order formatted
subset Fourier series, and by establishing the order through
associations with one or more initially ordered strings to form an
ordered string.  Associations are formed between the ordered strings
to form complex ordered strings that relate similar items of interest.
The components of the invention are active based on probability
using weighting factors based on activation rates.
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A METHOD AND SYSTEM FOR PATTERN RECOGNITION AND
PROCESSING

Cross Reference to Related Applications

This application claims the benefit of United States provisional
application Serial No. 60/068,834, filed December 24, 1997.

Background Of the Invention

Attempts have been made to create pattern recognition systems
using programming and hardware.  The state of the art includes neural
nets.  Neural nets typically comprise three layers--an input layer, a
hidden layer, and an output layer.  The hidden layer comprises a series
of nodes which serve to perform a weighted sum of the input to form
the output.  Output for a given input is compared to the desired output,
and a back projection of the errors is carried out on the hidden layer by
changing the weighting factors at each node, and the process is
reiterated until a tolerable result is obtained.  The strategy of neural nets
is analogous to the sum of least squares algorithms.  These algorithms
are adaptive to provide reasonable output to variations in input, but
they can not create totally unanticipated useful output or discover
associations between multiple inputs and outputs.  Their usefulness to
create novel conceptual content is limited; thus, advances in pattern
recognition systems using neural nets is limited.

SUMMARY OF THE INVENTION

The present invention is directed to a method and system for
pattern recognition and processing involving processing information in
Fourier space.

The system of the present invention includes an Input Layer for
receiving data representative of physical characteristics or
representations of physical characteristics capable of transforming the
data into a Fourier series in Fourier space.  The data is received within an
input context representative of the physical characteristics that is
encoded in time as delays corresponding to modulation of the Fourier
series at corresponding frequencies.  The system includes a memory that
maintains a set of initial ordered Fourier series.  The system also
includes an Association Layer that receives a plurality of the Fourier
series in Fourier space including at least one ordered Fourier series from
the memory and forms a string comprising a sum of the Fourier series
and stores the string in memory.  The system also includes a String
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Ordering Layer that receives the string from memory and orders the
Fourier series contained in the string to form an ordered string and
stores the ordered string in memory.  The system also includes a
Predominant Configuration Layer that receives multiple ordered strings
from the memory, forms complex ordered strings comprising
associations between the ordered strings, and stores the complex
ordered strings to the memory.  The components of the system are
active based on probability using weighting factors based on activation
rates.

One aspect of the present invention is directed to inputting
information as data to the system within an input context and
associating the data.  This aspect of the invention includes encoding the
data as parameters of at least two Fourier components in Fourier space,
adding the Fourier components to form at least two Fourier series in
Fourier space, the Fourier series representing the information, sampling
at least one of the Fourier series in Fourier space with a filter to form a
sampled Fourier series, and modulating the sampled Fourier series in
Fourier space with the filter to form a modulated Fourier series.  This
aspect of the invention also includes determining a spectral similarity
between the modulated Fourier series and another Fourier series,
determining a probability expectation value based on the spectral
similarity, and generating a probability operand having a value selected
from a set of zero and one, based on the probability expectation value.
These steps are repeated until the probability operand has a value of
one.  Once the probability operand has a value of one, the modulated
Fourier series and the other Fourier series are added to form a string of
Fourier series in Fourier space, and the string of Fourier series is stored
in the memory.

Another aspect of the present invention is directed to ordering a
string representing the information.  This aspect of the invention utilizes
a High Level Memory section of the memory that maintains an initial set
of ordered Fourier series.  This aspect of the invention includes
obtaining a string from the memory and selecting at least two filters
from a selected set of filters stored in the memory.  This aspect also
includes sampling the string with the filters such that each of the filters
produce a sampled Fourier series.  Each Fourier series comprises a
subset of the string.  This aspect also includes modulating each of the
sampled Fourier series in Fourier space with the corresponding selected
filter such that each of the filters produce an order formatted Fourier
series.  Furthermore, this aspect includes adding the order formatted
Fourier series produced by each filter to form a summed Fourier series
in Fourier space, obtaining an ordered Fourier series from the memory,
determining a spectral similarity between the summed Fourier series and
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the ordered Fourier series, determining a probability expectation value
based on the spectral similarity, and generating a probability operand
having a value selected from a set of zero and one, based on the
probability expectation value.  These steps are repeated until the
probability operand has a value of one.  Once the probability operand
has a value of one, this aspect includes storing the summed Fourier
series to an intermediate memory section.  Thereafter, this aspect
includes removing the selected filters from the selected set of filters to
form an updated set of filters, removing the subsets from the string to
obtain an updated string, and selecting an updated filter from the
updated set of filters.  This aspect further includes sampling the updated
string with the updated filter to produce a sampled Fourier series
comprising a subset of the string, modulating the sampled Fourier series
in Fourier space with the corresponding selected updated filter to
produce an updated order formatted Fourier series, recalling the
summed Fourier series from the intermediate memory section, adding
the updated order formatted Fourier series to the summed Fourier series
to form an updated summed Fourier series in Fourier space, and
obtaining an updated ordered Fourier series from the memory.  This
aspect further includes determining a spectral similarity between the
updated summed Fourier series and the updated ordered Fourier series,
determining a probability expectation value based on the spectral
similarity, and generating a probability operand having a value selected
from a set of zero and one, based on the probability expectation value.
These steps are repeated until the probability operand has a value of one
or all of the updated filters have been selected from the updated set of
filters.  If all of the updated filters have been selected before the
probability operand has a value of one, then clearing the intermediate
memory section and repeating the steps starting with selecting at least
two filters from a selected set of filters.  Once the probability operand
has a value of one, the updated summed Fourier series is stored to the
intermediate memory section and steps beginning with removing the
selected filters from the selected set of filters to form an updated set of
filters are repeated until one of the following set of conditions is
satisfied: the updated set of filters is empty or the remaining subsets of
the string is nil.  If the remaining subsets of the string is nil, then the
Fourier series in the intermediate memory section is stored in the High
Level Memory section of the memory.

Another aspect of the present invention is directed to forming
complex ordered strings by forming associations between a plurality of
ordered strings.  This aspect of the invention includes recording ordered
strings to the High Level Memory section, forming associations of the
ordered strings to form complex ordered strings, and recording the
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complex ordered strings to the High Level Memory section.  A further
aspect of the invention is directed to forming a predominant
configuration based on probability.  This aspect of the invention
includes generating an activation probability parameter, storing the
activation probability parameter in the memory, generating an activation
probability operand having a value selected from a set of zero and one,
based on the activation probability parameter, activating any one or
more components of the present invention such as matrices
representing functions, data parameters, Fourier components, Fourier
series, strings, ordered strings, components of the Input Layer,
components of the Association Layer, components of the String Ordering
Layer, and components of the Predominant Configuration Layer, the
activation of each component being based on the corresponding
activation probability parameter, and weighting each activation
probability parameter based on an activation rate of each component.

DETAILED DESCRIPTION OF THE INVENTION

The present invention is directed to systems and methods for
performing pattern recognition and association based upon receiving,
storing, and processing information.  The information is based upon
physical characteristics or representations of physical characteristics
and a relationship of the physical characteristics, hereinafter referred to
as physical context, of an item of interest.  The physical characteristics
and physical context serve as a basis for stimulating a transducer.  The
transducer converts an input signal representative of the physical
characteristics and the physical context into the information for
processing.  The information is data and an input context.  The data is
representative of the physical characteristics or the representations of
physical characteristics and the input context corresponds to the
physical context based upon the identity of a specific transducer and its
particular transducer elements.  The physical context maps on a one to
one basis to the input context.  The information defines a Fourier series
in Fourier space that represents the item of interest.  In other words, a
Fourier series in Fourier space represents the information parameterized
according to the data and the input context.  In addition, the input
context maps on a one to one basis to an Input Layer section of a
memory.  Thus, there is a one to one map of physical context to input
context to Input Layer section of a memory.  The representation of
information as a Fourier series in Fourier space allows for the mapping.

As illustrated in Figure 1, at a high level, the system 10 includes
several function specific layers.  These include an Input Layer 12, an
Association Layer 14, an String Ordering Layer 16 and a Predominant
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Configuration Layer 18.  The Input Layer 12 receives the data within the
input context and transforms the data into the Fourier series in Fourier
space representative of the information.  The system 10 also includes a
memory 20 for storing information.  The Input Layer 12 also encodes the
input context as delays in time corresponding to a modulation factor of
the Fourier series at corresponding frequencies.  The Association Layer
14 receives a plurality of Fourier series in Fourier space, including at
least one ordered Fourier series from the memory 20, forms a string
comprising a sum of the Fourier series and stores the string to the
memory 20.  The String Ordering Layer 16 receives the string from the
memory 20, orders the Fourier series contained in the string to form an
ordered string and stores the ordered string in the memory 20.  The
Predominant Configuration Layer 18 receives multiple ordered strings
from the memory 20, forms associations between the ordered strings to
form a complex ordered string, also referred to as a predominant
configuration string, and stores the predominant configuration string to
the memory 20.  The memory 20 may be partitioned in several distinct
sections for storing different types of information or distinctly classified
types of information.  Specifically, the memory may include a High Level
Memory section, an intermediate level memory section, etc. as will be
described in more detail below.

The following example illustrates how the present invention
processes the physical characteristics of an item of interest, specifically
a triangle.  In flat geometry, the physical characteristics of a triangle are
three connected lines at angles aggregating to 180°.  The physical
characteristics provide spatial variations of light scattering.  In one
embodiment, a light responsive transducer (not shown) of the system 10
transduces the light scattering into the data.  An exemplary transducer is
a charge coupled device ("CCD") array.  One data element at a point in
time may be a voltage of a particular CCD element of the CCD array.
Each CCD element of the CCD array has a spatial identity.  The physical
context for the triangle is the relationship of the lines at the
corresponding angles providing a spatial variation of light scattering.
The input context is the identity of each CCD element that responds
according to the physical context.  For example, a CCD element (100,13)
of a 512 by 512 CCD array will uniquely respond to light scattered by the
lines and angular relations of the triangle relative to the other CCD
elements of the CCD array.  The response is stored in a specific memory
register of an Input Layer section of the memory 20.  The specific
memory register is reflective of the input context.  In the present
invention, a Fourier series in Fourier space represents the information of
the triangle parameterized according to the voltage and the CCD element
identity.
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Referring to FIGURE 2, in the first step, the Input Layer 12 receives
the data from the transducer (not shown).  A Fourier transform
processor 22 encodes each data element as parameters of a Fourier
component in Fourier space and stores the data parameter values to the
Input Layer section 24 of the memory 20.  Each Fourier component of
the Fourier series may comprise a quantized amplitude, frequency, and
phase angle.  For example the Fourier series in Fourier space may be:
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having a quantized amplitude, frequency, and phase angle, wherein a0m
 is

a constant, k  and kz  are the frequency variables, n , m , and M  are
integers, and Nm

0
, Nm z0

, 0m
, and z0 m

 are the data parameters.

In a first embodiment, the data parameters Nm
0
 and Nm z0

 of the

Fourier series component are proportional to the rate of change of the
physical characteristic.  Each of the data parameters 0m

 and z0 m
 of each

Fourier component is inversely proportional to the amplitude of the
physical characteristic.  In the triangle example, the amplitude of the
voltage at a given CCD element relative to the neighboring CCD element
defines the rate of change of the voltage which is converted into the data
parameters Nm

0
 and Nm z0

.  The inverse of the amplitude of the voltage of

each CCD element is converted into the data parameters 0m
 and z0 m

.  As
illustrated in FIGURE 3 and described above, for each CCD element, the
Fourier series, parameterized accordingly, are stored to a specific sub
register 27 of a specific register 26 of the Input Layer section 24 of the
memory 20.  Since the structure of a Fourier series is known in the art,
only the parameters need to be stored in a digital embodiment.

The number and types of transducers that may supply information
to the system is only limited by available technology, hardware and
economics, as is the number m  of corresponding registers 26 for each
transducer.  Each register 26 may have any number d  of subregisters 27,
where the number d  of subregisters of one register 26 is not necessarily
the same as other registers 26.  For example, "Level 1 " register "1 " may
have thirty "Level 2 " subregisters 27 and "Level 1 " register "2 " may
have one-hundred subregisters 27.  Furthermore, each "Level 2 " register
may have any number e  of subregisters, where the number e  of
subregisters of one register 27 is not necessarily the same as other
registers 27.  For example, "Level 2 " register "1 " may have fifty "Level
n " subregisters 29 and "Level 2 " register "2 " may have seventy "Level n "
subregisters 29.  Still further, each "Level n " register 29 may have any
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number f  of time buffer elements 31, where the number f  of time
buffer elements 31 is not necessarily the same as other time buffer
elements 31.

In a second embodiment, each of the data parameters Nm
0
 and Nm z0

of the Fourier series component is proportional to the amplitude of the
physical characteristic.  Each of the data parameters 0m

 and z0 m
 of each

Fourier component is inversely proportional to the rate of change of the
physical characteristic.  As in the first embodiment, for each CCD
element, these parameters are stored in a specific sub register of the
Input Layer section of the memory.

In a third embodiment, each of the data parameters Nm
0
 and Nm z0

of the Fourier series component is proportional to the duration of the
signal response of each transducer.  Each of the data parameters 0m

 and
z0 m

 of each Fourier component is inversely proportional to the physical
characteristic.  As in the first embodiment, for each CCD element, these
parameters are stored in a specific sub register of the Input Layer
section of the memory.

As an alternative example, the Fourier series in Fourier space may
be:
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having a quantized frequency, and phase angle, wherein a0m
 is a

constant, k  and kz  are the frequency variables, n , m , and M  are integers,
and Nm

0
, Nm z0

, 0m
, and z0 m

 are the data parameters.  As described with

respect to the previous example, for each CCD element, these
parameters are stored in a specific sub register of the Input Layer
section of the memory.

The physical context is conserved by mapping with a one to one
basis between the physical context and the input context based on the
identity of each transducer.  The input context is conserved by mapping
on a one to one basis to the Input Layer section 24 of memory 20.  In an
embodiment, the input context is encoded in time as a characteristic
modulation frequency band in Fourier space of the Fourier series.  The
characteristic modulation frequency band in Fourier space represents
the input context according to the identity of a specific transducer of
the relationship of two transducer elements.  The modulation within
each frequency band may encode not only input context but context in a
general sense.  The general context may encode temporal order, cause
and effect relationships, size order, intensity order, before-after order,
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top-bottom order, left-right order, etc. all of which are relative to the
transducer.

Still referring to FIGURE 3, the transducer has n  levels of
subcomponents.  Each transducer is assigned a portion 26 of the Input
Layer section 24 of the memory 20.  The memory 20 is arranged in a
hierarchical manner.  Specifically, the memory is divided and assigned to
correspond to a master time interval with n +1 sub time intervals.  The
hierarchy parallels the n  levels of the transducer subcomponents.  The n
th level transducer sub component provides a data stream to the system
10.  The data stream is recorded as a function of time in the n +1 sub
time interval.  The time intervals represent time delays which
correspond to the characteristic modulation frequency band in Fourier
space which in turn represents the input context according to the
specific transducer or transducer subcomponent.

An exemplary complex transducer which may be represented by a
data structure comprising a hierarchical set of time delay intervals is a
CCD array of a video camera comprising a multitude of charge coupled
devices (CCDs).  Each CCD comprises a transducer element and is
responsive to light intensity of a given wavelength band at a given spatial
location in a grid.  Another example of a transducer is an audio recorder
comprising transducer elements each responsive to sound intensity of a
given frequency band at a given spatial location or orientation.  A signal
within the band 300-400 MHz may encode and identify the signal as a
video signal; whereas, a signal within the band 500-600 MHz may encode
and identify the signal as an audio signal.  Furthermore, a video signal
within the band 315-325 MHz may encode and identify the signal as a
video signal as a function of time of CCD element (100,13) of a 512 by
512 array of CCDs.

In one embodiment, the characteristic modulation having a
frequency within the band in Fourier space is represented by e− j 2 ft0 .  The
modulation corresponds to the time delay t − t0( ) wherein f  is the
frequency variable, t  is the time variable, and t0  is the time delay.  The
characteristic modulation is encoded as a delay in time by storing the
Fourier series in a specific portion of the Input Layer section of the
memory wherein the specific portion has  n +1 sub time intervals.  Each
sub time interval corresponds to a frequency band.

In an alternative embodiment, the characteristic modulation,

having a frequency within the band is represented by e
− jk fbm

+ tm( ) .  Thus,
the Fourier series in Fourier space may be:
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wherein tm
= vtm

ttm
 is the modulation factor which corresponds to the

physical time delay ttm
, fbm

= v fbm
t fbm

 is the modulation factor which

corresponds to the specific transducer time delay t fbm
, vtm

 and v fbm
 are

constants such as the signal propagation velocities, a0m
 is a constant, k

and kz  are the frequency variables, n , m , and M  are integers, and Nm
0
,

Nm z0
, 0m

, and z0 m
 are data parameters.  The data parameters are selected

in the same manner as described above.
Transducer strings may be created by obtaining a Fourier series

from at least two selected transducers and adding the Fourier series.
Transducers that are active simultaneously may be selected.  The
transducer string may be stored in a distinct memory location of the
memory.  The characteristic modulation, having a frequency within the
band in Fourier space can be represented by e− j 2 ft0  which corresponds to
the time delay t − t0( ) wherein f  is the frequency variable, t  is the time
variable, and t0  is the time delay.

Recalling any part of the transducer string from the distinct
memory location may thereby cause additional Fourier series of the
transducer string to be recalled.  In other words the Fourier series are
linked.  Fourier series, in addition to those of transducer strings may be
linked.  In order to achieve linking of the Fourier series, the system
generates a probability expectation value that recalling any part of one
of the Fourier series from the memory causes at least another Fourier
series to be recalled from the memory.  The system stores the
probability expectation value to memory.  The system generates a
probability operand having a value selected from a set of zero and one,
based on the probability expectation value.  The system recalls at least
another Fourier series from the memory if the operand is one.  The
probability expectation value may increase with a rate of recalling any
part of any of the Fourier series.

The system may be initialized by learning.  The relationship
between the data and the data parameters such as 0m

 and Nm
0
 of each

component of the Fourier series is learned by the system by applying
standard physical signals.  In the case of the triangle example, the
standard physical signals are the scattered light from the physical
characteristics of the triangle.  The physical signals are applied to each
transducer together with other information that is associated with the
standard.  A data base is established.  This information that is associated



© 2000 by BlackLight Power, Inc.  All rights reserved.
619

with the standard is recalled and comprises input into the Association
Layer and the String Ordering Layer.

The data parameters and the input context are established and
stored in the Input Layer section 24 of the memory 20.

Referring again to Figure 2, several parameterized Fourier
components are input to the Association Layer to form associations of
the Fourier series.  The Fourier components may be stored in a Fourier
component section 30 of a temporary memory section 28.  The Fourier
components are added to form multiple Fourier series which in turn may
be stored in a Fourier series section 32 of the temporary memory
section 28.  At least one of the Fourier series stored in the Fourier series
section 32 is input to a filter 34 wherein the filter 34 samples and
modulates the Fourier series.  The filtered Fourier series is input to a
spectral similarity analyzer 36.  The spectral similarity analyzer 36
determines the spectral similarity between the filtered Fourier series and
another Fourier series stored in the Fourier series section 32 of the
temporary memory section 28.  A spectral similarity value is output
from the spectral similarity analyzer 36 and input to a probability
expectation analyzer 38.  The probability expectation analyzer 38
determines a probability expectation value based on the spectral
similarity value.  The probability expectation value output from the
probability expectation analyzer 38 is input to a probability operand
generator 40.  The probability operand generator 40 generates a
probability operand value of one or zero based upon the probability
expectation value.  The probability operand value is output to a
processor 42.  If the probability operand value is zero, the processor 42
sends another Fourier series from the Fourier series section 32 of the
temporary memory section 28 to the filter 34 and begins the process
again.  If the probability operand value is one, the filtered Fourier series
and the other Fourier series are added to form a string and the string is
stored in a string memory section 44.

The filter 34 can be a time delayed Gaussian filter in the time
domain.  The filter may be characterized in time by:
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wherein 
N

 is a delay parameter,  is a half-width parameter, and t  is

the time parameter.  The Gaussian filter may comprise a plurality of
cascaded stages each stage having a decaying exponential system
function between stages.  The filter, in frequency space, can be
characterized by:
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 and  are a corresponding delay parameter and a half-

width parameter in time, respectively, and f  is the frequency parameter.
The probability distribution may be Poissonian.  Thus, the probability
expectation value can be based upon Poissonian probability.  The
probability expectation value may be characterized by
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wherein P  is the maximum probability of at least one other Fourier
series being associated with a first Fourier series, p↑s
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at least one other Fourier series being associated with a first Fourier
series in the absence of coupling of the first Fourier series with the at
least one other Fourier series, s

2  is a number that represents the
amplitude of spectral similarity between at least two filtered or
unfiltered Fourier series, s  represents the frequency difference angle
between at least two filtered or unfiltered Fourier series, and s , is a
phase factor.  s
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delayed Gaussian filter, respectively, 1  and s  corresponding half-width
parameters of a first and s-th time delayed Gaussian filter, respectively,
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 are constants, vm1
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N1

1

 and 
Ns

s

 correspond to delay parameters of a first and s-th time

delayed Gaussian filter, respectively, 1  and s  corresponding half-width
parameters of a first and s-th time delayed Gaussian filter, respectively,
M1  and Ms  are integers, a0m1

 and a0ms
 are constants, vm1

 and vms
 are

constants such as the signal propagation velocities, and Nm1
, Nm s

, 0m1
,

and 0ms
 are data parameters.  The data parameters are selected in the

same manner as described above.
An exemplary string with a characteristic modulation having a

frequency within the band represented by e
− jk fbm

+ tm( )  is:
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= v ts ,m

tts, m
 is the modulation factor which corresponds to the

physical time delay tts, m
, fbs,m
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 is the modulation factor which

corresponds to the specific transducer time delay t fbs,m
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 and v fbs,m
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constants such as the signal propagation velocities, a0s, m
 is a constant, k
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 are data parameters.  The data parameters are

selected in the same manner as described above.
An exemplary string with each Fourier series multiplied by the

Fourier transform of the delayed Gaussian filter represented by
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form the string is:
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delay parameters and s 0
 and sz0

 are half-width parameters of a
corresponding Gaussian filter in the  and z  directions, respectively,

ts,m
= v ts ,m

tts, m
 is the modulation factor which corresponds to the physical

time delay tts, m
, fbs,m

= v fbs, m
t fbs, m

 is the modulation factor which corresponds

to the specific transducer time delay t fbs,m
, vts, m

 and v fbs,m
 are constants

such as the signal propagation velocities, a0s, m
 is a constant, k  and kz  are

the frequency variables, n , m , s , Ms , and S  are integers, and Ns, m
0
, Ns, mz0

,

0s,m
, and z0s, m

 are data parameters.  The data parameters are selected in

the same manner as described above.
Therein, the Association Layer forms associations between Fourier

series and sums the associated Fourier series to form a string.  The string
is then stored in the string memory section.

The next aspect of the present invention is the ordering of the
strings stored in the string memory section 44.  The ordering may be
according to any one of the following: temporal order, cause and effect
relationships, size order, intensity order, before-after order, top-bottom
order, or left-right order.  Referring to FIGURE 4, the method for
ordering the strings stored in the string memory section 44 entails the
following:

a.) obtaining a string from the string memory section 44 and
storing the string to a temporary string memory section 46;

b.) selecting at least two filters 48, 50 from a selected set of filters
52;

c.) sampling the string with the filters 48, 50, each of the filters
forming a sampled Fourier series, each Fourier series comprising a
subset of the string;

d.) modulating each of the sampled Fourier series in Fourier space
with the corresponding selected filter 48, 50, each forming an order
formatted Fourier series;

e.) adding the order formatted Fourier series to form a summed
Fourier series in Fourier space;

f.) obtaining an ordered Fourier series from the High Level Memory
section 54;

g.) determining a spectral similarity with a spectral similarity
analyzer 56 between the summed Fourier series and the ordered Fourier
series;

h.) determining a probability expectation value, with a probability
expectation value analyzer 58 based on the spectral similarity;

i.) generating a probability operand, with a probability operand
generator 60 having a value selected from a set of zero and one, based
on the probability expectation value;
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j.) repeating steps b-i until the probability operand has a value of
one as determined by the processor 42;

k.) storing the summed Fourier series to an intermediate memory
section 62;

l.) removing the selected filters from the selected set of filters 52
to form an updated set of filters 52;

m.) removing the subsets from the string to obtain an updated
string;

n.) selecting an updated filter 64 from the updated set of filters;
o.) sampling the updated string with the updated filter to form a

sampled Fourier series comprising a subset of the string;
p.) modulating the sampled Fourier series in Fourier space with the

corresponding selected updated filter to form an updated order
formatted Fourier series;

q.) recalling the summed Fourier series from the intermediate
memory section 62;

r.) adding the updated order formatted Fourier series to the
summed Fourier series from the intermediate memory section to form
an updated summed Fourier series in Fourier space;

s.) obtaining another ordered Fourier series from the High Level
Memory section 54;

t.) determining a spectral similarity between the updated summed
Fourier series and the another ordered Fourier series;

u.) determining a probability expectation value based on the
spectral similarity;

v.) generating a probability operand having a value selected from a
set of zero and one, based on the probability expectation value;

w.) repeating steps n-v until the probability operand has a value of
one or all of the updated filters have been selected from the updated set
of filters as determined by processor 42;

x.) if all of the updated filters have been selected before the
probability operand has a value of one, then clearing the intermediate
memory section and returning to step b;

y.) if the probability operand has a value of one, then clearing the
intermediate memory section and storing the updated summed Fourier
series to the intermediate memory section;

z.) repeating steps l-y until the one of the following set of
conditions is satisfied: the updated set of filters is empty, or the
remaining subsets of the string of step m.) is nil as determined by the
processor 42;

aa.) storing the Fourier series of intermediate memory section to
the High Level Memory section 54.
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Each filter of the set of filters can be a time delayed Gaussian filter
having a half-width parameter  which determines the amount of the
string that is sampled.  Each filter of the set of filters can be a time

delayed Gaussian filter having a delay parameter 
N

 which corresponds

to a time point.  Each Fourier series of the ordered string can be
multiplied by the Fourier transform of the delayed Gaussian filter
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wherein vs 0
 and vsz0

 are constants such as the signal propagation

velocities in the  and z  directions, respectively, 
N

s 0

s 0

 and 
Nsz0

sz0

 are

delay parameters and s 0
 and sz0

 are half-width parameters of a
corresponding Gaussian filter in the  and z  directions, respectively,

ts,m
= v ts ,m

tts, m
 is the modulation factor which corresponds to the physical

time delay tts, m
, fbs,m

= v fbs, m
t fbs, m

 is the modulation factor which corresponds

to the specific transducer time delay t fbs,m
, vts, m

 and v fbs,m
 are constants

such as the signal propagation velocities, a0s, m
 is a constant, k  and kz  are

the frequency variables, n , m , s , Ms , and S  are integers, and Ns, m
0
, Ns, mz0

,

0s,m
, and z0s, m

 are data parameters.  The data parameters are selected in

the same manner as described above.
The probability expectation value may be based upon Poissonian

probability.  The probability expectation value is represented by
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wherein P  is the maximum probability of at least one other Fourier
series being associated with a first Fourier series, p↑s

 is a probability of

at least one other Fourier series being associated with a first Fourier
series in the absence of coupling of the first Fourier series with the at
least one other Fourier series, s

2  is a number that represents the
amplitude of spectral similarity between at least two filtered or
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unfiltered Fourier series, s  represents the frequency difference angle
between at least two filtered or unfiltered Fourier series, and s , is a
phase factor.  s

2  may be characterized by
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respectively, vtm1

, vtm s

, v fbm1

, and v fbms

 are constants such as the signal

propagation velocities, 
N1

1

 and 
Ns

s

 correspond to delay parameters of

a first and s-th time delayed Gaussian filter, respectively, 1  and s

corresponding half-width parameters of a first and s-th time delayed
Gaussian filter, respectively, M1 , and Ms  are integers, a0m1

 and a0ms
 are

constants, vm1
 and vms

 are constants such as the signal propagation
velocities, and Nm1

, Nm s
, 0m1

, and 0ms
 are data parameters.  The data

parameters are selected in the same manner as described above.
The String Ordering Layer produces an ordered string of Fourier

series, wherein the ordered string is stored in the High Level Memory
section.

The next aspect of the present invention is the formation of a
predominant configuration by forming complex ordered strings through
the association of ordered strings.  Referring to FIGURE 5, the method
for forming the complex ordered strings from strings stored in the string
memory section entails the following.  The Predominant Configuration
Layer 18 receives ordered strings from the High Level Memory section
54 and forms more complex ordered strings by forming associations
between the ordered strings.  The complex ordered strings are stored in
the complex ordered string section 72 of the memory 20.

The Predominant Configuration Layer 18 also activates components
within the Input Layer 12, the Association Layer 14, and the String
Ordering Layer 16.  The layers of the present invention may be treated
and implemented as abstract data types in the art of computer science
relating to object-oriented programming.  The components of the layers
therefore refer to all classes, instances, methods, attributes, behaviors,
and messages of the layer abstractions as defined above.  A class is the
implementation of an abstract data type (ADT). It defines attributes and
methods implementing the data structure and operations of the ADT,
respectively. Instances of classes are called objects. Consequently,
classes define properties and behavior of sets of objects. An object can
be uniquely identified by its name and it defines a state which is
represented by the values of its attributes at a particular time. The
behavior of an object is defined by the set of methods which can be
applied to it. A method is associated with a class. An object invokes a
method as a reaction to receipt of a message.

Thus, the components of a layer comprise all entities in anyway
related to or associated with the layer such as inputs, outputs, operands,
matrices representing functions, systems, processes, methods, and
probability parameters.  In a digital embodiment, activation results in



© 2000 by BlackLight Power, Inc.  All rights reserved.
627

the recall of the component from memory and may further result in
processing steps such as matrix multiplication of matrices representing
functions.  Activation involves generating an activation probability
parameter.  The activation probability parameter is a parameter
responsible for activating any component of the system and is
dependent on a prior activation history of each component in the
system.

The Predominant Configuration Layer 18 includes an activation
probability parameter generator 66.  The activation probability
parameter generator 66 receives a listing of prior activation frequencies
of all of the available components of the present invention such as
matrices representing functions, data parameters, Fourier components,
Fourier series, strings, ordered strings, components of the Input Layer,
components of the Association Layer, components of the String Ordering
Layer, and components of the Predominant Configuration Layer from an
activation frequency memory section 68.  The activation probability
parameter generator 66 also receives a listing of all active components
from the processor 42.  Alternatively, the activation probability
parameter generator 66 may receive a listing of all active components
directly from the active components.  The activation probability
parameter is stored in memory 20.  The activation probability parameter
is input to an activation probability operand generator 70.  The
activation probability operand generator 70 generates a probability
operand value of one or zero based upon the activation probability
parameter.  The probability operand value is output to the processor 42.
Any one or more of the components are activated when the probability
operand corresponding to each component has a value of one as
determined by the processor 42.  Thus, the activation of each
component is based on the corresponding activation probability
parameter.  Each activation probability parameter is weighted based on
the activation rate of the component.  The activation process continues
while the system is on.  Thus, the activation process is akin to an
operating system kernel in a forever loop.

Embodiments of the system for performing pattern recognition and
processing may comprise a general purpose computer.  Such a general
purpose computer may have any number of basic configurations.  For
example, such a general purpose computer may comprise a central
processing unit (CPU), one or more specialized processors, system
memory, a mass storage device such as a magnetic disk, an optical disk,
or other storage device, an input means such as a keyboard or mouse, a
display device, and a printer or other output device.  A system
implementing the present invention can also comprise a special purpose
computer or other hardware system and all should be included within its
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scope.
Embodiments within the scope of the present invention also

include computer program products comprising computer readable
medium having embodied therein program code means.  Such computer
readable media can be any available media which can be accessed by a
general purpose or special purpose computer. By way of example, and
not limitation, such computer readable media can comprise RAM, ROM,
EPROM, CD ROM, DVD or other optical disk storage, magnetic disk
storage or other magnetic storage devices, or any other medium which
can embody the desired program code means and which can be accessed
by a general purpose or special purpose computer.  Combinations of the
above should also be included within the scope of computer readable
media.  Program code means comprises, for example, executable
instructions and data which cause a general purpose computer or special
purpose computer to perform a certain function of a group of functions.

The present invention may be embodied in other specific forms
without departing from the spirit or essential attributes thereof and,
accordingly, reference should be made to the appended claims, rather
than to the foregoing specification, as indicating the scope of the
invention.

Also, included as part of this application is a Support Appendix and
associated sub-appendices.  These include the following:

SUB-APPENDIX I is the derivation of the Input and the Band-Pass Filter
of the Analog Fourier Processor according to the present invention;

SUB-APPENDIX II is the derivation of the Modulation and Sampling
Gives the Input to the Association Mechanism and Basis of Reasoning
according to the present invention;

SUB-APPENDIX III is the derivation of the Association Mechanism and
Basis of Reasoning according to the present invention;

SUB-APPENDIX IV is the Ordering of Associations: Matrix Method
according to the present invention;

SUB-APPENDIX V is the GENOMIC DNA SEQUENCING METHOD/MATRIX
METHOD OF ANALYSIS according to the present invention;

SUB-APPENDIX VI is the derivation of the Input Context according to
the present invention, and

SUB-APPENDIX VII is the derivation of the Comparison of Processing
Activity to Statistical Thermodynamics/Predominant Configuration
according to the present invention.

SUPPORT APPENDIX

The methods and systems of the present invention are herein
defined as the "processor" which is capable of storing, retrieving, and
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processing data to form novel conceptual content according to the
present invention.  The "processor" comprises systems and associated
processes which serve specific functions which are collectively called
"layers".  The "layers" are organized so as to receive the appropriate
inputs and produce the appropriate outputs according to the present
invention.  In a preferred embodiment, the memory layer is organized in
a hierarchical manner according to the significance of the stored
information.  The significance may be measured by how frequently the
information is recalled during processing, or it may be significant
because it represents reference or standard information.  The most
significant information may be stored in a layer called "High Level
Memory".  Unlike a conventional processor such as a Turing Machine,
the "processor" of the present invention may constantly change its state
such that the output to a given input may not be identical.  The
"processor" may be governed by a principle similar to the entropy
principle of thermodynamics whereby a chemical system achieves a state
representative of a predominant configuration, most probable state in
time.  The "predominant configuration" of the present "processor" is the
total systems of the "processor" and the total state of their components
in time.  The following invention of Pattern Recognition, Learning, and
Processing Methods and Systems comprises analog or digital
embodiments of:

1.) an Input Layer which receives data representative of physical
characteristics or representations of physical characteristics of the
environment and transforms it into a Fourier series in k, −space
wherein input context is encoded in time as delays which corresponds to
modulation of the Fourier series at corresponding frequencies.  The
derivation of the input comprising a Fourier series in k, −space is given
in SUB-APPENDIX I--The Input and the Band-Pass Filter of the Analog
Fourier Processor.  The derivation of the encoding of input context in
time as delays which corresponds to modulation of the Fourier series at
corresponding frequencies is given in SUB-APPENDIX VI--Input Context.
A flow diagram of an exemplary transducer data structure of a time
delay interval subdivision hierarchy is shown in FIGURE 3.  The
corresponding derivations are also given in SUB-APPENDIX VI;

2.) an Association Filter Layer which receives multiple Fourier
series from the Input layer, and High Level Memory, and forms a series
(called a "string") of multiple Fourier series each representative of
separate information by establishing "associations" between "string"
member Fourier series.  In k, −space, the Fourier series are sampled and
modulated via time delayed Gaussian filters called "association filters" or
"association ensembles" that provide input to form the "associations".
The derivation of the time delayed Gaussian filters which provide
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sampling and modulation (frequency shifting) of the Fourier series in
k, −space is given in SUB-APPENDIX II--Modulation and Sampling Gives
the Input to the Association Mechanism and Basis of Reasoning.  The
derivation of the "association" of Fourier series is given SUB-APPENDIX
III--Association Mechanism and Basis of Reasoning;

3.) a "String" Ordering Layer which receives the "string" as input
from the Association Filter Layer and orders the information represented
by the "string" as a nested set of subsets of information with a Matrix
Method of Analysis Algorithm via Poissonian probability based
associations with input from High Level Memory.  The methods of
ordering the "string" comprising associated information are given SUB-
APPENDIX IV--Ordering of Associations: Matrix Method, and

4.) an Output of the Ordered "String" to High Level Memory Layer
with Formation of the "Predominant Configuration" which is analogous
to statistical thermodynamics and arises spontaneously because the
activation of any association filter, input to the Association Filter Layer
to form a "string", and the input to the "String" Ordering Layer are based
on their activation history whereby activation is effected by probability
operators.  The derivation of the predominant configuration structure is
given in SUB-APPENDIX VII--Comparison of Processing Activity to
Statistical Thermodynamics/Predominant Configuration.

A flow diagram of an exemplary hierarchical relationship between
the characteristics and the processing and storage elements of the
present "processor" is shown in FIGURE 18.  FIGURE 19 is a flow diagram
of an exemplary hierarchical relationship of the signals in Fourier space
comprising "FCs", "SFCs", "groups of SFCs", and a "string" accordance
with the present invention.  An exemplary layer structure is shown in
FIGURE 20.  A flow diagram of an exemplary layer structure and
exemplary signal format which demonstrates the relationships of the
inputs and outputs of the processing layers is shown in FIGURE 21.

All layers comprise processor elements called "P elements" each
with a system function response defined as the "impulse response" (Eqs.
(39.22-39.24)) and an output (herein defined as the "P element
response") shown in FIGURE 6 comprising a "pulse train of impulse
responses"--an integer number of traveling dipole waveforms (each
called an "impulse response").  The Fourier transform of this signal is
the convolution of a sinc function with a periodic series of delta
functions where the amplitude and the width of the sinc function is
determined by the integer number of "impulse responses" of the signal.
In a preferred embodiment, the amplitude of the "impulse response", the
temporal and spatial spacing or repetition frequency of the "impulse
responses", and the integer number of "impulse responses" of the "P
element" signal is proportional to rate of voltage change called
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"depolarization" of the "P element".  This rate is determined by the
amplitude and rate of change of the input.  Thus, in the preferred
embodiment, each "P element" is a linear differentiator--the output
(pulse train of "impulse responses") is the sum (superposition) of the
derivative of the inputs.  Additionally in the embodiment, the "P
element" has a threshold of "depolarization" to generate an output.  In
this case, the Fourier transform of "P element response" comprises a
repeated series of a Fourier component herein defined as a "FC" with
quantized frequency and phase angle.  In another embodiment, the
amplitude is also quantized.  In k, −space, the Fourier transform of the
"impulse response" function filters the "FC" of a "P element" and is a
band-pass when the spatial frequency of the "FC" is equal to the
temporal frequency (i.e. the "FC" is band-passed when k = kz).

An exemplary output signal of an analog "P element" to an input of
the form given by Eq. (39.26) is given in time by Eq. (39.27) (the
parameters 0 , z0 , and N  may encode quantitative information such as
intensity and rate of change of a physical parameter such as
temperature) and in k, −space by Eq. (39.32).  The latter equation is
that of a series of a Fourier component with information encoded in the
parameters 0  and N  of the Fourier component.  "P elements" are
directionally massively interconnected in terms of the inputs and the
outputs of the present invention which may superimpose.  Multiple "P
elements" input into any given "P element" which then outputs to
multiple "P elements.  The Fourier transform of the superposition of the
output of multiple "P elements" is a repeating Fourier series--a repeating
series of trigonometric functions comprising a series of Fourier
components "FCs" herein referred to as a " SFCs".  Exemplary
representations are given by Eq. (39.33) and Eq. (39.33a).  Thus, the
present "processor" may function as an analog Fourier processor.

All layers also comprise memory elements called "M elements" that
store an input such as a "P element response".  The stored "P element
response" may be recalled from the "M element".  Each "M element" has
a system function response defined as the "impulse response" (Eqs.
(39.22-39.24)) and an output (herein defined as the "M element
response") also shown in FIGURE 6 comprising a "pulse train of impulse
responses"--an integer number of traveling dipole waveforms (each
called an "impulse response").  In a preferred embodiment, the output,
the "M element response", is the product of the "pulse train of impulse
responses" and a time ramp.  In this case, the Fourier transform of "M
element response" comprises a repeated series of a Fourier component
herein defined as a "FC" with quantized amplitude, frequency, and phase
angle.  An exemplary output signal of a group of analog "M elements" to
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an input time ramp is given in k, −space by Eq. (39.33a) (the
parameters 0m

, z0 m
, Nm

0
, and Nm z0

 of the recalled function are typically

the same as those stored).  The "M elements" are directionally massively
interconnected in terms of the inputs and the outputs of the present
invention which may superimpose.  Multiple "M elements" input into any
given "M element" which then outputs to multiple "M elements".  The
collective of multiple "M elements" including their stored inputs is
referred to as "memory" of the "processor".  The collective storage of a
signal such as a " SFCs" having an exemplary representation given by Eq.
(39.33) to multiple "M elements" is called "store to memory".  The
collective activation of multiple "M elements" to provide a signal such as
a " SFCs" having an exemplary representation given by Eq. (39.33a) is
referred to as "recall from memory".  An exemplary representation of
information "recalled from memory" with input context encoded by
specific modulation is given by Eq. (39.110).

The Association Layer and the "String" Ordering Layer comprise
cascaded processor stages which are herein defined as "stages".  The
"stages" need not be identical.  Let hi t( ) be the impulse response of the i th

stage and assume that hi t( ) ≥ 0 , so that the step response of each stage (or
indeed of any number of cascaded stages) is monotonic.  Cascaded
stages form filters.  The Central Limit Theorem of probability theory
states in effect that, under very general conditions, the cascade of a
large number of linear-time-invariant (LTI) systems will tend to have a
delayed Gaussian impulse response, almost independent of the
characteristics of the systems cascaded.  Sufficient conditions of the
Central Limit Theorem are given by Eqs. (39.52-39.55) of SUB-APPENDIX
II--Modulation and Sampling Gives the Input to the Association
Mechanism and Basis of Reasoning.  The collective of multiple cascaded
"stages" comprises an "association ensemble" that receives input such as
a " SFCs".  Each "association ensemble" serves as a heterodyne having an
exemplary representation given by Eq. (39.50) by modulating the Fourier
series in k, −space.  It further samples the Fourier series in k, −space.
The modulation and sampling functions correspond to a delayed
Gaussian filter in the time domain having an exemplary representation
given by Eq. (39.51).

The "stages", "P elements", and "M elements" in one embodiment
of the present "processor", are directionally massively interconnected in
terms of the inputs and the outputs of the present invention which may
superimpose.  Multiple "stages", "P elements", and "M elements" input
into any given "stage", "P element", or "M element" which then outputs
to multiple "stages", "P elements", and "M elements".

The Input Layer comprises transducers that convert physical
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signals from the environment into measurements called "data" which in
an analog circuit embodiment, is processed into an analog time signal
which corresponds to a Fourier series in k, −space.  In a digital
equivalent embodiment, the "data" is further transformed by a Fourier
transform processor into a Fourier series in k, −space.  According to
the present invention information is encoded in a Fourier series in
k, −space.  Information is not limited to that corresponding to data, but
is meant include all forms of information such as conceptual
information, temporal order, cause and effect relationships, size order,
intensity order, before-after order, top-bottom order, left-right order,
and knowledge derived from study, experience, or instruction.  Data
which are transducer measurements is processed into a Fourier series in
k, −space to form input to higher layers such as the Association Layer
shown in FIGURE 21 whereby:

i.) "Data" such as the intensity and the rate of change of a physical
signal such as the surface roughness, or the intensity of sound, light, or
temperature recorded by a transducer is represented in terms of the
frequency and amplitude parameters, 0m

 and Nm
0
, of each component of

the Fourier series (e.g. Eq. (39.33a)).  Information is represented in
terms of the parameters 0m

 and Nm
0
 of each component of the Fourier

series in the sense that if the transducer and Fourier processor were
each a reciprocal device, then inputting the Fourier series into the
output of the Fourier transform processor would yield the measured
physical signals at the input of the transducers.

ii.) The input from the Input Layer to other layers can be an analog
waveform in the analog case and a matrix in the digital case.  Input
context of a given transducer can be encoded in time as delays which
correspond to modulation of the Fourier series in k, −space at
corresponding frequencies whereby the data corresponding to each
transducer maps to a distinct memory location called a "register" that
encodes the input context by recording the data to corresponding
specific time intervals of a time division structured memory.

iii.) Input context of a complex transducer system can be encoded
in time by the mapping of data from the components of the transducer
system to a memory structured according to a corresponding
hierarchical set of time intervals representative of each transducer
system with respect to different transducer systems, a transducer
element's rank relationship relative to other transducer elements, and
the response of a transducer element as a function of time.  In terms of
digital processing, the data from a transducer having n  levels of
subcomponents is assigned a master time interval with n +1 sub time
intervals in a hierarchical manner wherein the data stream from the final
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n  th level transducer element is recorded as a function of time in the
n +1 th time coded sub memory buffer.  During processing the time
intervals represent time delays which are transformed into modulation
frequencies which encode input context.  A flow diagram of an
exemplary transducer data structure of a time delay interval subdivision
hierarchy is shown in FIGURE 3.  An exemplary complex transducer
which may represented by a data structure comprising a hierarchical set
of time delay intervals is a video camera which is comprised of a
multitude of charge coupled devices (CCDs), transducer elements each
responsive to light intensity of a given wavelength band at a given spatial
location in a grid.  Another example is an audio recorder comprising
transducer elements each responsive to sound intensity of a given
frequency band at a given spatial location or orientation.  A signal within
the band 300-400 MHz may encode and identify the signal as a video
signal; whereas, a signal within the band 500-600 MHz may encode and
identify the signal as an acoustic signal.  Furthermore, a video signal
within the band 315-325 MHz may encode and identify the signal as a
video signal as a function of time of CCD element (100,13) of a 512 by
512 array of CCDs.  An exemplary representation of a " SFCs" output of
"P elements" or "M elements" with input context encoded by specific
modulation is given by Eq. (39.110);

iv.) The relationship between the "data" and the parameters 0m

and Nm
0
 of each component of the Fourier series, may be learned by the

"processor" by applying standard physical signals to each transducer
together with other information that is "associated" with the standard.
The information that is "associated" with the standard can be recalled
and may comprise input to the Association Layer and the "String"
Ordering Layer during processing according to the present invention.

The Association Filter Layer receives multiple Fourier series from
the Input Layer, and High Level Memory, and forms a series (called a
"string") of multiple Fourier series each representative of separate
information by establishing associations between "string" member
Fourier series.  The "association" between one or more Fourier series
that form the "string" occurs with Poissonian probability based on the
spectral similarity of each association filtered Fourier series member
with that of one or more others filtered by the same or different
association filters as described further below.

The process of storing output from multiple transducers to
memory further comprises creation of "transducer strings".  In one
embodiment of this case, associations occur at the transducer level, and
"SFCs" are mapped to distinct "registers" from the corresponding
distinct transducers responding simultaneously, for example.  Consider a
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"transducer string" made up of multiple "groups of SFCs" where each
"SFCs" represents information of the transducer system with respect to
different transducer systems, a transducer element's rank relationship
relative to other transducer elements, and the response of a transducer
element as a function of time.  These aspects of each transducer are
encoded via time delays corresponding to modulation in k, −space
within a frequency band corresponding to each aspect of the transducer.

Two or more "transducer string" Fourier series such as two or
more "SFCs" may become "linked" which is defined according to a
corresponding linkage probability weighting parameter wherein
activation of one "string" Fourier series may cause other "string" Fourier
series to become active in according to the linkage probability weighting
parameter.  The probability that other "string" Fourier series are
activated when any given "string" Fourier series is activated defines the
"linkage".  "Active" in this case of an analog embodiment is defined as
providing an output signal; thus, "activate" is defined as causing an
output signal.  "Active" in a digital embodiment is defined as recalled
from memory; thus, "activate" is defined according to causing a Fourier
series to be recalled from memory.

In a general sense, the "string" in k, −space is analogous to a
multidimensional Fourier series.  The modulation within each frequency
band may encode context in a general sense.  In one embodiment, it
encodes temporal order, cause and effect relationships, size order,
intensity order, before-after order, top-bottom order, left-right order,
etc. which is relative to the transducer.  Further associations are
established between "groups of SFCs" (i.e. a new "string" is created) by
the Association Filter Layer.

The Association Filter Layer receives multiple Fourier series from
the Input layer, and High Level Memory, and forms a series (called a
"string") of multiple Fourier series each representative of separate
information by establishing "associations" between "string" member
Fourier series.  FIGURE 19 is a flow diagram of an exemplary hierarchical
relationship of the signals in Fourier space comprising "FCs", "SFCs",
"groups of SFCs", and a "string" in accordance with the present
invention.  Each "FC" is "carried" (processed as a response to an input)
by a "P element" or stored into and/or recalled from a "M element" as
shown in FIGURE 18 which is a flow diagram of an exemplary hierarchical
relationship between the characteristics and the processing and storage
elements of the present "processor".  Each Fourier series such as a "SFCs"
representing information is filtered and delayed in the time domain
(modulated and sampled in the frequency domain or k, −space) as it is
recalled from memory and "carried" (processed as a response to the
memory input) by a series of cascaded association "stages" called an
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"association ensemble" or "association filter".  Since the Fourier series is
in k, −space, the modulation corresponds to a frequency shift.  Each
"association ensemble" is weakly linked with multiple other "association
ensembles" at the level of the "stages".  The "association ensembles"
produce interference or "coupling" of the "SFCs" of one set of "stages"
with that of another by producing frequency matched and phase locked
Fourier series --sums of trigonometric waves that are frequency matched
and periodically in phase--that give rise to "association" of the
corresponding recalled or prior processed information.

"Coupling" gives rise to the formation of "associations" between
one or more Fourier series that form the "string".  "Coupling" refers to
interference or energy exchange between "association ensembles" in an
analog embodiment.  In a digital embodiment, "coupling" refers to
calculating an "association" probability parameter based on the spectral
similarity of the each Fourier series such as a "SFCs" filtered by an
"association filter" with that of one or more other Fourier series filtered
by the same or different "association filters".  The statistics may be
Poissonian.  "Association" refers to recording "coupled" Fourier series to
memory based on the probability of the "coupling".  In a digital
embodiment, "association" refers to marking two or more Fourier series
as associated based on a zero or one outcome of a probability operand
applied to the "association" probability parameter and recording the
"associated" Fourier series to memory.  The "association" probability
parameter based on Poissonian probability is derived from a correlation
function in SUB-APPENDIX III--Association Mechanism and Basis of
Reasoning.  The "association" probability parameter has a "coupling
cross section" amplitude and a "frequency difference angle" as
parameters.  The former is a weighting parameter of the spectral
similarity of Fourier series which may become "associated".  The
"frequency difference angle" is the fractional difference in the
frequencies of the Fourier series which may become "associated"
expressed as an angle.  The derivation of these parameters as well as the
derivation of the "association" of Fourier series that "couple" with
Poissonian probability is also found in SUB-APPENDIX III.

In a preferred embodiment, the "string" is formed by the
Association Filter Layer with input context.  In this case, "association"
occurs whereby the "SFCs" or "groups of SFCs" such as those comprising
"transducer strings" comprise a transducer specific frequency
modulation factor.  Exemplary representations of "string" outputs of "P
elements" or "M elements" with input context encoded by specific
modulation are given by Eq. (39.114) and Eq. (39.115).  In this case, an
exemplary representation of the "coupling cross section" amplitude and
the "frequency difference angle" based on the spectral similarity of the
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each "SFCs" filtered by an "association filter" with that of one or more
other "SFCs" filtered by the same or different "association filters" is
given by Eq. (39.111) and Eq. (39.112).

The "String" Ordering Layer receives the "string" as input from the
Association Filter Layer and orders the information represented in the
"string" via a method developed by Mills for sequencing DNA called the
"Matrix Method" which is herein presented as a mechanism used by the
"processor" to sequence information temporally, conceptually, or
according to causality.  First, the "string" (multiple Fourier series) is
stored in memory.  The "string" is recalled and processed by further sets
of specific "association ensembles" that "couple" with other "higher level
associations", information with conceptual significance established by a
previous execution of the present procedure.  In k, −space, each
specific "association ensemble" samples the "string", a Fourier series in
k, −space.  It also serves as a heterodyne by modulating the Fourier
series in k, −space.  The sampling in the frequency domain is dependent
on the particular half-width parameter, s , of each specific "association
ensemble".  The collective sampling of the specific "association
ensembles" provides a nested set of subsets of information where each
subset maps to a specific time point corresponding to the specific delay,

Ns

s

, of the specific Gaussian filter of the "association ensemble" (Eqs.

(39.50-39.51)).  The nested set of subsets of information is ordered by
the Matrix Method of Analysis Algorithm of Mills with Poissonian
probability based associations with input from High Level Memory.  Each
"group of SFCs" of the input "string" has the corresponding time delay

parameter, 
Ns

s

, and the half-width parameter, s , of the Gaussian filter

of the "association ensemble" (Eqs. (39.50-39.51)) that resulted in the
"coupling" and "association" to form the "string".  The process of

ordering assigns a particular time delay, 
Ns'

s'

, and half-width parameter,

s' , to each "group of SFCs" of the output "string".  The half-width
parameter, s'  corresponds to each specific delayed Gaussian filter that
samples the input "string" in the frequency domain to provide each
"group of SFCs" of the output "ordered string".  Each corresponding

particular time delay, 
Ns'

s'

, encodes and corresponds to the time

domain order of each "group of SFCs" of the output "ordered string".  An
order processed "string" called a "P string" may comprise complex
information having conceptual content.
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The Output of the Ordered "String" to High Level Memory Layer
with Formation of the Predominant Configuration receives ordered
strings from the High Level Memory and forms more complex ordered
strings as shown in FIGURE 20.  This layer also activates components
within other layers.  The Output of the Ordered "String" to High Level
Memory Layer with Formation of the Predominant Configuration is
analogous to statistical thermodynamics and arises spontaneously
because the activation of any "processor" component such as any "P
element", "M element", "stage", "association ensemble", "SFCs", "string",
"ordered string", "transducer string" having "linkages", Fourier series
"linkage", input to the Association Filter Layer to form a "string", and the
input to the "String" Ordering Layer are based on their past activation
frequency whereby activation is effected by probability operators.  In
one embodiment, an activation probability parameter is generated and
stored in memory for each "processor" component.  A probability
operand is generated having a value selected from a set of zero and one,
based on the activation probability parameter.  If the value is one, the
component is activated.  Thus, any "processor" component is randomly
activated wherein the activation is based on the activation probability
parameter.  The activation probability parameter is weighted based on
an activation rate.  "Processor" components may become "linked" which
is defined according to the corresponding probability weighting
parameter wherein activation of one "processor" component may cause
other "processor" components to become "active" according to the
probability weighting parameter.  The probability that other "processor"
components are activated when any given "processor" component is
activated defines the "linkage".

The processing of information depends on and dynamically alters
(through feedback) the total state of stored information, the cascades of
association "stages", and the hierarchical relationships of association
"stages" and stored information (memory).  "Memory linkages" occur
whereby recalling any part of a string from a distinct memory location
thereby causes additional Fourier series of the string to be recalled.
"Linkages" between "stages" occur whereby activating any "stage"
thereby causes additional "stages" to become "active".  A strongly
"linked group of cascaded association "stages" comprises an "association
ensemble", and a strongly linked group of memory elements comprises a
"memory ensemble".  Repetitive activation of a "memory element" or
association "stage" increases the probability of its future activation.  A
configuration of "couplings" between "memory ensembles" and
"association ensembles" increases the probability of future activation of
the configuration.  Analogously to statistical thermodynamics, a
predominant configuration arises from the ensemble level.  Consider the
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"processor" on a higher level.  The activation history of each ensemble
relates to a hierarchical relationship of coupled "memory and
association ensembles" which gives rise to a precedence of higher order
predominant configurations.  Pattern recognition, learning, and the
ability to associate information and create novel information is a
consequence.  Machine learning arises by the feedback loop of
transducer input to the coupled predominant configurations which
increases the basis for machine intelligence.

Pattern recognition and learning arise from the massive directional
connectivity in terms of the output to input relationships of the
"processor" which in one embodiment functions as an analog Fourier
processor wherein a superposition of "P element responses" becomes a
superposition of trigonometric functions in frequency space
( k, −space).  Information is digitized in amplitude, frequency, and
phase in k, −space via the "P element response".  It is then modulated,
sampled, associated, and ordered via the properties of cascaded groups
of association "stages" with "couplings" governed by Poissonian
probability.  For the "processor", since information is encoded in Fourier
series in k, −space, specific time delays achieve the specific
modulations equivalent to that of heterodynes of conventional signal
processing circuits.  In other words, a clock substitutes for a multitude
of heterodyne circuits to encode input context wherein aspects of each
transducer are encoded via time delays corresponding to modulation in
k, −space within a frequency band corresponding to each aspect of the
transducer.  The modulation and sampling functions correspond to a
delay and filter (delayed Gaussian filter) in the time domain analogous
to the key components of amplitude modulation (AM) radio except that
the Fourier series of the signal and its modulation occurs k, −space in
the case of the present "processor" versus the time domain in the AM
signal processing case.  The filtering function occurs in the time domain
in both cases.  The unique processing features of the "processor" further
permits ordering of information by a method developed by Mills for
sequencing DNA called the "Matrix Method" which is herein presented as
a mechanism used by the "processor" to sequence information
temporally, conceptually, or according to causality.  According to the
Fourier theorem any waveform can be recreated by an infinite series of
trigonometric functions, and any aspect of the universe can be
represented by an infinite series of sine and cosine functions as
processed by the "processor".  For the "processor" of the present
invention, the trigonometric function is the basis element of
information.  The quantity of information such as "inputs" that can be
associated into ordered "strings" ("P strings") is essentially infinite based
on it being encoded in Fourier series in k, −space.  And, the number of
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terms necessary to represent most objects is not overwhelming.  In fact,
even a potentially challenging object having sharp edges such as a square
pulse poses no difficulty in that is fairly accurately represented by only
seven terms of a Fourier series in the time domain comprising the prior
art [6].  The same principle applies to information represented as a
Fourier series in k, −space.

The following invention of Pattern Recognition, Learning, and
Processing Methods and Systems comprises analog or digital
embodiments.  In one embodiment, analog circuit elements store,
retrieve, and process input waveforms wherein the circuit elements have
the system functions or impulse responses or comprise the operators
and structures which transform input to output as described herein.  In
another embodiment, the mathematical functions corresponding to the
waveforms of any stage of storage, retrieval, or processing are
represented digitally, and the digital waveforms are digitally processed
in a manner equivalent to the analog embodiment according to signal
processing theory such as the Nyquist theorem.  In a preferred
embodiment, a digitally based "processor" comprises simulations
methods and systems according to the analog systems and processes of
the present invention.  The Nyquist theorem states that all of the
information in any waveform can be conserved and recovered by digital
processing with frequency components equal to twice the maximum
frequency of any waveform [7].  Thus, the analog and digital
embodiments perform equivalently.

Exemplary Layer Structure and Exemplary Signal Format

FIGURE 20 shows an exemplary layer structure in accordance with
the present invention.  FIGURE 21 shows a flow diagram of an exemplary
layer structure and exemplary signal format in accordance with the
present invention.  The present invention comprises an analog Fourier
"processor" wherein the basis element of information in k, − space  is the
Fourier component.  In a preferred embodiment, the analog systems and
processes are implemented using the corresponding digital
embodiments.  The "processor" is applicable to standard computers
comprising digital processors, and digital memory, storage, and retrieval
systems where discrete values of the continuous functions evaluated at
selected frequencies and/or at the Nyquist rate [7] form matrices upon
which the operations of the exemplary signal format are performed in
place of the continuous functions.  Exemplary embodiments of the
present invention according to the layer structure of FIGURE 20 and the
exemplary layer structure and exemplary signal format of FIGURE 21
comprises:
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Input Layer

The Input Layer receives data and transforms it into a Fourier
series in k, −space wherein input context is encoded in time as delays
which corresponds to modulation of the Fourier series at corresponding
frequencies.  Data is processed into a Fourier series in k, −space that
represents information as given by Eq. (39.33) and Eq. (39.33a)
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whereby i.) data such as intensity and rate of change recorded by a
transducer is represented in terms of the parameters 0m

 and Nm
0
 of

each component of the Fourier series; ii.) input context is encoded in
time by a hierarchical set of time delay intervals representative of each
transducer system with respect to different transducer systems, a
transducer element's rank relationship relative to other transducer
elements, and the response of a transducer element as a function of
time, and iii.) the input from the Input Layer to other layers shown in
FIGURE 21 can be an analog waveform in the analog case and a matrix in
the digital case wherein input context of a given transducer can be
encoded in time as delays which correspond to modulation of the
Fourier series in k, −space at corresponding frequencies as given by the

terms e
− jk fbs,m

+ t s,m( )  of Eq. (39. 113)
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whereby the data corresponding to each transducer maps to a distinct
memory location called a "register" that encodes the input context by
recording the data to corresponding specific time intervals of a time
division structured memory, and iv.) the relationship between the "data"
and the parameters 0m

 and Nm
0
 of each component of the Fourier series,

may be learned by the "processor" by applying standard physical signals
to each transducer together with other information that is associated
with the standard.  The information that is "associated" with the
standard can be recalled and may comprise input into the Association
Layer and the "String" Ordering Layer during processing according to the
present invention.  In terms of digital processing, the data from a
transducer having n  levels of subcomponents is assigned a master time
interval with n +1 sub time intervals in a hierarchical manner wherein
the data stream from the final n  th level transducer element is recorded
as a function of time in the n +1 th time coded memory buffer.  During
processing the time intervals represent time delays which are
transformed into modulation frequencies which encode the input
context.  FIGURE 3 is a flow diagram of an exemplary transducer data
structure of a time delay interval subdivision hierarchy wherein the data
from a transducer having n  levels of subcomponents numbering integer
m  per level is assigned a master time interval with n +1 sub time intervals
in a hierarchical manner wherein the data stream from the final n  th
level transducer element is recorded as a function of time in the n +1 th
time coded sub memory buffer in accordance with the present
invention.

The process of storing output from multiple transducers to
memory further comprises creation of "transducer strings".  In one
embodiment, associations occur at the transducer level, and "SFCs" are
mapped to distinct "registers" from the corresponding distinct
transducers responding simultaneously, for example.  Consider a
"transducer string" made up of multiple "groups of SFCs" where each
"SFCs" represents information of the transducer system with respect to
different transducer systems, a transducer element's rank relationship
relative to other transducer elements, and the response of a transducer
element as a function of time.  These aspects of each transducer are
encoded via delays corresponding to modulation in k, −space (Eq.
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(39.109)) within a frequency band corresponding to each aspect of the
transducer.

x t( ) = X f( )
−∞

∞

∫ e j 2 ftdf X t( ) = x t( )
−∞

∞

∫ e− j 2 ftdt

Delay t − t0( ) ⇔ e− j 2 ft0

(39.109)

Two or more "transducer string" Fourier series such as two or
more "SFCs" may become "linked" which is defined according to a
corresponding linkage probability weighting parameter wherein
activation of one "string" Fourier series may cause other "string" Fourier
series to become "active" according to the linkage probability weighting
parameter.  The probability that other "string" Fourier series are
activated when any given "string" Fourier series is activated defines the
"linkage".

The "string" in k, −space is analogous to a multidimensional
Fourier series.  The modulation within each frequency band may further
encode context in a general sense.  In one embodiment, it encodes
temporal order, cause and effect relationships, size order, intensity
order, before-after order, top-bottom order, left-right order, etc. which
is relative to the transducer.

A "FC" of Eq. (39.32) is a series of a Fourier component.  A distinct
superposition or series of "FCs" is called a "SFCs" which further
superimpose to form "groups of SFCs".  The data is digitized
according to the parameter N  of Eqs. (39.33), (39.33a), and (39.87).
Input to higher layers is in a Fourier series format in k, −space or
data is processed with a FFT (Fast Fourier Transform) routine and
stored in memory as a series of a Fourier component in k, −space
with quantized amplitude, frequency, and phase angle (Eq. (39.33a)).
Or, data is processed with a FFT (Fast Fourier Transform) routine and
stored in memory as a series of a Fourier component in k, −space
with quantized frequency, and phase angle of the form of Eq. (39.33).
In this case, "groups of SFCs" representing information are recalled
from memory with a time ramp multiplication of each "FC" of a "SFCs"
to give the form of Eq. (39.33a).  In the digital case, multiplication is
performed via multiplication of corresponding matrices formed from
the continuous functions by evaluating them at discrete frequency
values.  A summary of an exemplary method of inputting data follows:

a.) data is recorded by one or more transducers each having one
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or more levels of component elements;

b.) the data recorded by each transducer is encoded as parameters
such as 0m

 and Nm
0
 of a Fourier series in Fourier space with input

context representing the information based on the physical
characteristics and the physical context;

c.) the data from a transducer having n  levels of subcomponents is
assigned a master time interval with n +1 sub time intervals in a
hierarchical manner wherein the data stream from the final n  th level
transducer element is recorded as a function of time in the n +1 th
time coded memory buffer;

d.) the time intervals represent time delays which are transformed
into modulation frequencies which encode input context (e.g. the
transducer element relationship of more than one transducer
elements, its rank in the transducer hierarchy, and the time point of
data recording);

e.) the representation of the data is given by Eq. (39.110)
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f.) in the digital case, the function of Eq. (39.110) comprising a
"SFCs" is evaluated at discrete frequencies at twice the rate of the

highest discrete frequency (
Nm 0 m

2
) to form a matrix for each "SFCs";

g.) "SFCs" are mapped to distinct "registers" from corresponding
distinct transducers responding simultaneously to form "transducer
strings" having a representation given by Eq. (39.113) wherein input

context is encoded by the transducer modulation factor e
− jk fbs,m

+ t s,m( ) ;

h.) in the digital case comprising "memory linkages" of a
"transducer string", recalling any part of a "transducer string" from a
distinct memory location may thereby cause additional "linked"
Fourier series of the "transducer string" to be recalled.  In one
embodiment, a linkage probability parameter is generated and stored
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in memory for each "string" Fourier series such as a "SFCs".  A
probability operand is generated having a value selected from a set of
zero and one, based on the linkage probability parameter.  If the
value is one, the corresponding Fourier series is recalled.  Thus, when
any part of a "transducer string" is recalled from memory, any other
"string" Fourier series is randomly recalled wherein the recalling is
based on the linkage probability parameter.  The linkage probability
parameter is weighted based on the linkage rate.

Association Filter Layer to Form a "String"

Each "SFCs" is filtered and delayed in the time domain (modulated
and sampled in the frequency domain) as it is processed by a cascade of
association filters (subprograms in the digital case) called an
"association ensemble".  Each "association ensemble" is weakly linked
with multiple other such "association ensembles".  These "association
ensembles" produce interference or "coupling" of one "SFCs" with
another by producing frequency matched and phase locked Fourier
series --sums of trigonometric waves that are frequency matched and
periodically in phase--that give rise to "association" of the recalled or
prior processed information "carried" by the cascade.  The Poissonian
probability of such "association" (Eq. (39.106c)) is given by a
correlation function given in the SUB-APPENDIX III--Association
Mechanism and Basis of Reasoning wherein Eq. (39.87) and Eq. (39.89)
are parameters.
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The set of "associated" "groups of SFCs" is herein called a "string".  The
"string" comprises a Fourier series, a linear sum of "FCs".  FIGURE 19 is a
flow diagram of an exemplary hierarchical relationship of the signals in
Fourier space comprising "FCs", "SFCs", "groups of SFCs", and a "string"
in accordance with the present invention.  Each "FC" is encoded by a "P
element" or stored into and/or recalled from a "M element" as shown in
FIGURE 18 which is a flow diagram of an exemplary hierarchical
relationship between the characteristics and the processing and storage
elements of the present "processor".

A summary of an exemplary method of establishing "associations"
between "groups of SFCs" (i.e. a creating a "string" ) by "coupling"
with Poissonian probability between "association ensembles"
"carrying" the "groups of SFCs" comprising a transducer frequency
band modulation factor according to Eq. (39.110) follows:

a.) n  (n  an integer) inputs each comprising a "SFCs", the function
of Eq. (39.110) which in the digital case is evaluated at discrete
frequencies at twice the rate of the highest discrete frequency

(
Nm 0 m

2
) to form a "SFCs" matrix, is recalled from memory;

b.) in the digital case, discrete values are determined at twice the

rate of the highest discrete frequency (
Nm 0 m

2
) of the Fourier series

inputs of up to n  different Fourier transforms of delayed Gaussian
filters functions (39.50) to form up to n  different association filter
matrices;

c.) in the digital case, the discrete values of each of n  (n  an
integer) inputs each comprising a "SFCs", the function of Eq. (39.110)
which is evaluated at discrete frequencies to form a "SFCs" matrix, are
multiplied on a matrix element by matrix element basis
corresponding to the same frequency with one or more of the n
different association filter matrices each comprising the Fourier
transform of a delayed Gaussian filter (Eq. (39.50));
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d.) the "coupling cross section" amplitude, s
2 , and frequency

difference angle, s , of the harmonic "coupling", is calculated for two
or more filtered inputs.  In the case of input context, the amplitude,

s
2 , which follows from Eq. (39.87c) is given by Eq. (39.111b), and the

frequency difference angle, s , which follows from Eq. (39.89) is
given by Eq. (39.112a);
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e.) the Poissonian probability of "association" is calculated (Eq.
(39.106c)) with the "coupling cross section" amplitude, s

2 , and
frequency difference angle, s , as parameters;

f.) a Poissonian probability operand with the expectation value
given by the Poissonian probability of "association" (step e) is
activated to return a value of zero or one;

g.) if the output of the Poissonian probability operand is one, then
the two or more filtered inputs are marked as "associated" and this
status is stored in memory;

h.) the process of forming "associations" (Steps a-g) are repeated
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including processing the "SFCs" inputs and "associated" "SFCs" inputs
with multiple "association ensembles" comprising Gaussian filters

each of different delay, 
Ns

s

, and half-width parameter, s  to extend

the number of associated "SFCs" to form a string;

i.) in one analog embodiment, the output V
m
∑  in Fourier space is

the "string" given by Eq. (39.113) comprising the superposition of S
"groups of SFCs" wherein each "SFCs" corresponds to the response of
M  "M or P elements", with input context.  In another embodiment, the
output V

m
∑  is the "string" of Eq. (39.114)

V
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(39.114)
wherein each "SFCs" is multiplied by the Fourier transform of the
delayed Gaussian filter (Eq. (39.50)) (i.e. the modulation factor
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) which gave rise to "coupling" and

"association" to form the "string".  In the digital case, the output V
m
∑

in Fourier space is the "string" given by Eq. (39.113) comprising the
superposition of S  "groups of SFCs" wherein each "SFCs" corresponds
to a matrix digitized according to Eq. (39.110), with input context.  In
another embodiment of the digital case, the output V

m
∑  is the "string"

of Eq. (39.114) wherein each "SFCs" corresponds to a matrix digitized
according to Eq. (39.110) that is multiplied by a digitized matrix
according to the Fourier transform of the delayed Gaussian filter (Eq.
(39.50)) which gave rise to the "coupling" and "association" to form
the "string".

"String" Ordering Layer

The "string" representing information is temporally or
conceptually ordered via the Matrix Method of Analysis of Mills [8, 9].
Each "group of SFCs" of the input "string" has the corresponding time
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delay parameter, 
Ns

s

, and the half-width parameter, s , of the Gaussian

filter of the "association ensemble" (Eq. (39.51)) that resulted in the
"coupling" and "association" to form the "string".

hN t( ) ≈
2

e

−
t − N 

 
  

 

 
  

2

2
2 (39.51)

The "string" comprises a Fourier series, a linear sum of "FCs" each
multiplied by its corresponding Gaussian filter modulation factor and
modulation factor which encodes input context (Eq. (39.114)).
Therefore, new series of "FCs", "SFCs" or "groups of SFCs", may be
formed using additional "association filters" that sample the input
"sting" in k, − space .  In a preferred embodiment, the string is sampled
with specific "association ensembles" which provide a "nested set of
subsets" of information comprised of a "SFCs" and "groups of SFCs"
where each "subset" sampled from the input "string" maps to a specific

time point corresponding to the specific delay, 
Ns

s

, of the specific

Gaussian filter of the "association ensemble" (Eqs. (39.50-39.51)).  The

process of ordering assigns a particular time delay, 
Ns'

s'

, and half-width

parameter, s' , to each "subset" of the output "string" using the "nested
set of subsets" as input to the Matrix Method which is herein presented
as a mechanism used by the "processor" to sequence information
temporally, conceptually, or according to causality.

Consider Eqs. (39.33) and (39.33a) which represent a "SFCs" in
k, − space  comprising a Fourier series.  A "string" is a sum of Fourier
series which follows from Eqs. (39.33) and (39.33a) and is given by Eqs.
(39.107) and (39.108).
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The corresponding equations in the time domain are a sum of multiple
finite series of traveling dipoles (each an "impulse response") wherein
each dipole series is periodic in space and time.  In frequency space,
each time delayed Gaussian filter ("association ensemble" corresponding
to a "SFCs") modulates and samples the Fourier series representing
information.  Thus, the time delayed Gaussian filter selects information
from the "string" and provides input for the association mechanism as
the "processor" implements the Matrix Method of Analysis to find the
order of the associated pieces of information represented by each "SFCs"
or "group of SFCs" of the "string".

Consider the time interval t = t i to t = t f  of a "string" associated by
"association ensembles" and recorded to memory.  By processing the
"string' with multiple "association ensembles" comprising Gaussian

filters each of different delay, 
Ns

s

, and half-width parameter, s , the

"string" can be "broken" into "groups of SFCs" each having a center of

mass at a time point corresponding to the delay 
Ns

s

 and frequency

composition corresponding to s  which form a nested set of "sequential
subsets" of "groups of SFCs" of the "string" in k, −space which map to
time points which are randomly positioned along the time interval from
the t = t1 -side and the t = t2 -side as shown in  FIGURES 8, 10, 12, and 14.
This nested set of "sequential subsets" of random "groups of SFCs"
mapping to random time points from the t = t i-side and the t = t f -side is
analogous to the nested set of "sequential subsets" of random DNA
fragments from the 5' end and the 3' end.  The order in both cases can
be solved by the Genomic DNA Sequencing Method/Matrix Method of
Analysis of Mills [8, 9] described in SUB-APPENDIX V.

The output of an association filter is the convolution of the input
"groups of SFCs" ( each "SFCs" is given by Eqs. (39.33) and (39.33a)) of a
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"string" (Eq. (39.108)) or the string itself with a delayed Gaussian.  In
terms of the matrix method of analysis (hereafter "MMA"), the filter
parameter  of the time delayed Gaussian filter corresponds to the
acquisition of the composition of a polynucleotide member of a nested
set of subsets.  The time delay (time domain) and modulation

(frequency domain) parameter 
N

 determines the center of mass of the

output, and it corresponds to the terminal nucleotide data.  By forming
"associations" with input from "High Level Memory", the "processor"
determines the relative position of the center of mass of each Fourier
series such as a "group of SFCs" as either "before" or "after" the center
of mass of the preceding and succeeding Fourier series "associated" with
Fourier series input from "High Level Memory".  The complete set of
Fourier series "associated" with Fourier series input from "High Level
Memory" covers all of the frequencies of the "string".  By Parseval's
theorem, by processing the entire interval in k, −space, the information
is entirely processed in the time domain.  The order such as temporal
order of the Fourier series representing information is determined using
the MMA.

"Groups of SFCs" such as the "groups of SFCs" represented by Eq.
(39.110) comprising a transducer frequency band modulation factor
"carried" by "association ensembles" "couple" with Poissonian
probability.  "Associations" are established between "groups of SFCs"
that result in the output of a second ordered "string" created from the
input "string".  In this case of input context, the "coupling cross section"
amplitude, s

2 , which follows from Eq. (39.87) is given by Eq. (39.111).
And, the frequency difference angle, s , of the "coupling" which follows
from Eq. (39.89) is given by Eq. (39.112a).

Input to form "associations" is provided by changing the decay
constant  and the number of "stages" in the cascade N , or by
processing "a SFCs" of a "string" using an "association ensemble" with
different parameters  and N  over all "groups of SFCs" that make up the
entire "string".  Each "group of SFCs" is determined to be on the t = t i-side
or the t = t f -side of the "axis" of the "string" corresponding to the 5'-side
or 3'-side of the "axis" of a polynucleotide to be sequenced via the
Matrix Method of Analysis.  A feedback loop comprises sequentially
switching to different "known", "set", or "hardwired" delayed Gaussian
filters which corresponds to changing the decay constant, s , with a
concomitant change in the half-width parameter, s , and the number of

elements, Ns , with a concomitant change in the delay, 
Ns

s

, where each
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s  and 
Ns

s

 is "known" from past experiences and associations.  The

feedback loop whereby information from memory encoded in the
"string" is filtered and delayed (modulated and sampled in frequency
space) to provide "FCs", "SFCs" or "groups of SFCs" which are
"associated" with input from "High Level Memory" provides the data
acquisition and processing equivalent to the formation, acquisition, and
analysis of the composition and terminal nucleotide data of a set of
"sequential subsets" of the Matrix Method of Analysis.  Changing the
filters which process the "string" corresponds to changing the "guess" of
the "known" nucleotides, K1K2 K3K4 ⋅ ⋅ ⋅ Kn ' , as well as the "unknown"
nucleotides, X1, X2 , X3, X4 ⋅ ⋅ ⋅ , of the Matrix Method of Analysis as applied to
DNA sequencing.  The order of the "groups of SFCs" of the "string" is
established when "associations" with the "High Level Memory" are
achieved for a given set of delayed Gaussian filters.  Then each Fourier
series of the ordered "string" is recorded to the "High Level Memory"
wherein each Fourier series of the ordered "string" may be multiplied by
the Fourier transform of the delayed Gaussian filter represented by
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 that established the correct order to

form the ordered "string".  The total output response V
m
∑  in Fourier

space comprising the superposition of S  "groups of SFCs" wherein each
"SFCs" corresponds to the response of M  "M or P elements", with input
context, is the "string" given by Eq. (39.113).

A summary of a method of ordering the nested set of subsets of
Fourier series (e.g. each a "group of SFCs") follows:

a.) the "string" of the Association Filter Layer to Form a "String
Section is recalled from memory;

b.) the recalled "string" is filtered and delayed (modulated and
sampled in frequency space) to provide input to form "associations"
with "High Level Memory" as given in the Association Filter Layer to
Form a "String Section;

c.) a feedback loop is used to sequentially switch as described
below to different "known", "standardized", "set", or "hardwired"
delayed Gaussian filters which corresponds to changing the decay
constant, s , with a concomitant change in the half-width parameter,

s , and the number of elements, Ns , with a concomitant change in the
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delay, 
Ns

s

, where each s  and 
Ns

s

 is "known" or "standardized"

from past "associations";

d.) "associations" are established between Fourier series by their
"coupling" with Poissonian probability with Fourier series input from
"High Level Memory" as given in the Association Filter Layer to Form a
"String Section.  The "associations" establish the relative position of
the center of mass of each Fourier series such as a "group of SFCs" as
either "before" or "after" the center of mass of the preceding and
succeeding Fourier series "associated" with Fourier series input from
"High Level Memory".  The complete set of Fourier series "associated"
with Fourier series input from "High Level Memory" covers all of the
frequencies of the "string";

e.) "groups of SFCs" of a sequential "set of subsets" are
sequentially mapped to a time line by being added to the "before" or
"after" end of the emerging temporally, conceptually, or causally
ordered "string" wherein assignment of each "group of SFCs" is
consistent with the frequency compositional and center of mass data
to arrive at the order of the entire "string";

f.) steps c)- e) are performed reiteratively until an order can be
assigned without contradiction;

g.) the order of the associated "groups of SFCs" is established when
"associations" with the "High Level Memory" are achieved for a given
set of delayed Gaussian filters (i.e. the order is established when
internal consistence is achieved with input from ordered "strings" of
High Level Memory);

h.) the "groups of SFCs" of the " P string" of the form of Eqs.
(39.113-39.115) that are parameterized according to their relative
order are recorded to the "High Level Memory".  For example, each
Fourier series of the ordered string is recorded to the "High Level
Memory" wherein each Fourier series of the ordered "string" is
multiplied by the Fourier transform of the delayed Gaussian filter
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the correct order to form the ordered "string" represented by
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Output of the Ordered "String" to High Level Memory Layer with
Formation of the Predominant Configuration

The activation of a "P element" increases its excitability or
probability of future activation with input.  Each "P element" has an
activation memory with a finite half-life.  Repetitive activation of a "P
element" results in a longer half-life of the increased excitability; thus,
the activation memory becomes long term.  The same principle applies
to cascade of association "stages" ("association ensembles") and M
elements ("memory ensembles") and "configurations" of "couplings" of
ensembles.  For example, each "association ensemble" is comprised of
"stages" in different states of "activity" where each state is equivalent to
a microstate of statistical thermodynamics.  A predominant
configuration arises for any "association ensemble".  Of the immense
total number of microstates that can be assumed by an "association
ensemble", an overwhelming proportion arises from one comparatively,
small set of configurations centered on, and only minutely different
from, the predominant configuration--with which they share an
empirically identical set of macroscopic properties.  On a higher level, a
configuration of "couplings" between "association ensembles" increases
the activation of the "stages" comprising the "association ensembles".
Analogously to statistical thermodynamics, a predominant configuration
arises from the "association ensemble" level.  Consider the "processor"
on a higher level.  The activation history of each "association ensemble"
relates to a hierarchical activation relationship of coupled "association
ensembles" which gives rise to a precedence of higher order
predominant configurations.  The ability to associate information and
create novel information, is a consequence.  Machine learning arises by
the feedback loop of transducer input to the coupled predominant
configurations which increases the basis for creating information with
novel conceptual content.

A summary of the method of Output of the Ordered "String" to
High Level Memory Layer with Formation of the Predominant
Configuration follows:

a.) the "groups of SFCs" of the " P string" of the form of Eqs.
(39.113-39.115) that are parameterized according to their relative
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order are recorded to the "High Level Memory";
b.) a counter corresponding to each "P string" and each

"association ensemble" increases its stored count each time the "P
string" or "association ensemble" is activated.  In one embodiment,
the count is also proportional to the length of time the "P string" or
"association ensemble" is "active", and the count decays over time;

c.) the count is transformed into an expectation value and stored
in a probability register which corresponds to each "string" and each
"association ensemble";

d.) during the process of establishing "associations" a probability
operand causes a given "P string" or "association ensemble" to
become "active" with an expectation value according to the value
stored in its corresponding probability register;

f.) on a lower level, the mechanism whereby past activation
increases the probability of future activation applies to "P and M
elements" as well;

e.) as more "P strings" are created, more "P elements", "M
elements", and "stages" are activated, and more "association
ensembles" are created and activated, the relationship of the
probability of future activation based on past activation gives rise to a
processing predominant configuration of the "processor" analogous
to that of statistical thermodynamics.
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SUB-APPENDIX I
The Input and the Band-Pass Filter of the Analog Fourier Processor

The "P element" "impulse response" is a traveling wave in one

spatial dimension ( ) plus time ( t =
z

v
) where the wave function is a

dipole traveling at a constant velocity v .  The magnitude of the potential,
V , in cylindrical spacetime coordinates at the point ( ,z)  due to an
"impulse response" centered at the position ( 0, z0)  is

V =
2 z − z0( )2 − − 0( )2( )

[ − 0( )2
+ z − z0( )2

]5/2
(39.22)

V =
2z2 − 2( )

[ 2 + z 2 ]5/2 ⊗ − 0, z − z0( ) (39.23)

where
z0 = vt0 (39.24)

The potential is the convolution of the system function,  h , z( ), (the left-
handed part of Eq. (39.23)) with the delta function (the right-hand part
of Eq. (39.23)) at the position ( 0, z0) .  A very important theorem of
Fourier analysis states that the Fourier transform of a convolution is the
product of the individual Fourier transforms, and the Fourier transform
of a product is the convolution of the individual Fourier transforms [10].
The Fourier transform of the system function,  h , z( ), is given in Box 16.1
of the Superconductivity Section of Mills [11].  Also, see Mills [12].

An "impulse response" has the system function,  h , z( ), which has
the Fourier transform, H[k ,kz ], which is shown in FIGURE 7.

H[k ,kz ] =
4 k 2

kz
2 + k2 =

4

1+ kz
2

k 2

(39.25)

The output of a "P element", V tr , to an input of a pulse train of one
or more "impulse responses" is another pulse train of "impulse
responses".  The spacetime "P element response", a pulse train function,
is the convolution of the array pattern with the elemental pattern.  The
elemental pattern is the system function,  h , z( ),--the spacetime potential
function of an "impulse response".  And, the array pattern is a finite
periodic array of delta functions each at the center position of an
"impulse response".
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(39.26)

where an  is a constant and U + 0N
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  is the unitary step function
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.  Multiple "P elements" input

into any given "P element" which then outputs to multiple "P elements".
And, the amplitude, frequency, and length of the "P element response"
(pulse train) is proportional to the length and rate of voltage change--
the amplitude and rate of change of the input.  Thus, each "P element" is
an linear differentiator--the output, V0ut , is the sum (superposition) of
the derivative of the inputs.  An exemplary output signal of an analog "P
element" to an input of the form given by Eq. (39.26) is
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The Fourier Transform of the periodic array of delta functions of Eq.
(39.27) is also a periodic array of delta functions in k, −space
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where z0 = vt0 .  The Fourier Transform of the window function given by
the difference of the unitary step functions of Eq. (39.27) is the product
of two sinc functions in k, −space
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(39.29)

By the Fourier Theorem, the Fourier Transform of Eq. (39.26) is the
product of the Fourier Transform of the elemental function, system
function given by Eq. (39.25), and the Fourier Transform of the array
function given by Eq. (39.28) convolved with the Fourier transform of
the window function given by Eq. (39.29).

4

1 + kz
2

k2

1

0 z0

an k − n
2

0

,kz − n
2

vt0

 
 
  

 
 

n=−∞

∞

∑ ⊗4
sin k

N 0

2
k

sin kz

Nz0

2
kz

(39.30)



© 2000 by BlackLight Power, Inc.  All rights reserved.
658

Each "P element" is an linear differentiator--the output is the sum
(superposition) of the derivative of the inputs.

  
The differentiation

property of Fourier transforms [13] is

x t( ) = X f( )
−∞

∞

∫ e j 2 ftdf X t( ) = x t( )
−∞

∞

∫ e− j 2 ftdt

Differentiation
dx t( )
dt

⇔ j2 fX f( )

(39.31)

From Eqs. (39.30) and (39.31), the Fourier transform of a "P element
response", V k ,kz( ), called a "FC" is

V k ,kz( ) = k kz
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(39.32)

Information "carried" by "P elements" may be represented by a Fourier
series called a "SFCs" (series of Fourier components) comprising the
superposition of the "P element responses" of multiple "P elements".
Each "P element" contributes a Fourier component comprising an

amplitude, a0m
, at a specific frequency, 

Nm 0 m

2
, 

Nm 0 m

2
, which is repeated

as a series with a specific phase, 
nNm

2
.  A "SFCs" comprising the Fourier

transform of the superposition of the "P element responses" of M  "P
elements", V

m
∑ , is represented by

V
m
∑ k ,kz( ) =

4

1+ kz
2
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(39.33)
Each "FC" of Eqs. (39.33) is a series of a Fourier component with
quantized frequency and phase angle.

Consider the case that the amplitude of all "P element responses" ,
are equal where each amplitude is represented by a0m

.  The "P element
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response" function given by Eq. (39.33) corresponds to recording to
memory ("writing").  Consider the case that memory elements are
activated to read the stored information.  In one embodiment, this
"read" operation is effected by a voltage ramp that is linear with time.
The Fourier transform of the response is given by the differentiation and
duality properties of Fourier transforms [13].  The "read" total response
V

m
∑  in Fourier space comprising a "SFCs", the superposition of M  "FCs"

wherein each "FC" corresponds to the response of a "M or P element" is
V

m
∑ k ,kz( )

=
4

1+ kz
2

k 2

4
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0
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2
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(39.33a)
Each "FC" of Eqs. (39.33a) is a series of a Fourier component with
quantized amplitude, frequency, and phase angle.

The relationship between k, −space and real space is

k =
2

=
2

=
2

n 0

kz = 2

z

= 2

z
= 2

nvt0

(39.34)

In k, −space, the Fourier transform of the "impulse response" function
(the left-hand side of Eq. (39.33)) filters each "FC" of a "P element".  In
the special case that

k = kz (39.35)
the Fourier Transform of the system function (the left-hand side of Eq.
(39.33)) is given by

H = 4 (39.36)
Thus, the Fourier Transform of the system function band-passes the
Fourier Transform of the time dependent "P element response" function
when the spatial frequency of the "FC" is equal to the temporal
frequency.  In one embodiment, "FC" filtering may be provided by
adjusting the "P element" response corresponding to k  versus kz  such
that the band-pass condition of Eq. (39.35) is not met.  In an analog
embodiment, the "FC" may be filtered by adjusting the "impulse
response" frequency as a function of time and therefore space
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corresponding to k  since the "impulse response" is a traveling wave.  In
another analog embodiment, the "FC" may be filtered by adjusting the
conduction velocity which alters the output corresponding to kz .

When the band-pass condition is met (Eq. (39.35)), the Fourier
transform of the superposition of a series of pulse trains of "impulse
responses" of multiple "P elements" representing information is a series
of trigonometric functions.  Thus, in one embodiment of the present
invention, the "processor" is an analog Fourier processor.  According to
the Fourier theorem any waveform can be recreated by an infinite series
of trigonometric functions.

x t( ) = a0 + an
n =1

∞

∑ cos nt + bn sin nt
n=1

∞

∑ (39.37)

where a0 , an , and bn  are constants.  And, any aspect of the universe can
be represented by an infinite series of sine and cosine functions as
processed by the "processor".  For the present "processor", the
trigonometric function is the basis element of information.  And, the
complexity or information content of any analog waveform or digital
equivalent is reducible to the number of Fourier components required
for its assimilation.

A unique feature of the present invention is that information is
encoded in a Fourier series in k, −space versus a conventional Fourier
series in time and space.
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SUB-APPENDIX II
Modulation and Sampling Gives the Input to the Association Mechanism

and Basis of Reasoning

Each "P element" connects to multiple other "P elements" which
further connect to association "stages" that propagate the "P element
responses" as input along these "stages" in a linear cascade.  Consider an
amplifier made up of cascaded stages.  The stages need not be identical.
Let hi t( ) be the impulse response of the i th  stage and assume that hi t( ) ≥ 0 ,
so that the step response of each stage (or indeed of any number of
cascaded stages) is monotonic.  Assuming that both integrals exist, Ti ,
the normalized first moment of hi t( ) is defined as

Ti =
thi t( )dt

−∞

∞

∫

hi t( )dt
−∞

∞

∫
(39.38)

which can be interpreted as the center of gravity of a mass distributed
along the t-axis with density hi t( ).  If hi t( ) is positive, it is analogous to a
probability density function, and Ti  corresponds to the statistical analog-
-the mean of hi t( ).  Thus, Ti  is considered as the measure of the delay in
the impulse or step response of the i th  stage.  The delay resulting from a
cascade of n  stages is the sum of the delays of each stage [14]; that is if

h t( ) = h1 t( ) ⊗ h2 t( ) ⊗⋅⋅⋅⊗ hn t( ) (39.39)
where ⊗  is the convolution operator, then

T = T1 + T2 +⋅ ⋅ ⋅+ Tn (39.40)

Similarly, assuming that both integrals exist, 
∆Ti

2
 
 

 
 

2

, the normalized

moment of inertia about a center of gravity of a mass distribution hi t( ) is
defined as

∆Ti( )2 = 4
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∞

∫
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= 4

t − Ti( )2
hi t( )dt

−∞

∞

∫

hi t( )dt
−∞

∞

∫

(39.41)

If hi t( ) is positive, it is analogous to a probability density function, and
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∆Ti

2
 
 

 
 

2

 can be interpreted as the statistical analog--the variance or

dispersion of hi t( ).  ∆Ti is twice the radius of gyration of the mass
distribution.  Thus, ∆Ti is a measure of the duration of hi t( ) or of the rise
time of the step response of the i th  stage.  The rise time resulting from a
cascade of n  stages is the sum of the rise times of each stage [15]; that is
if h t( ) is given by Eq. (39.39), then

∆T( )2 = ∆T1( )2
+ ∆T2( )2

+⋅ ⋅ ⋅+ ∆Tn( )2
(39.42)

Thus, in particular, for identical stages, the rise time is proportional to
the square root of the number of stages.  If hi t( ) is not positive, rather
than the definition of Eq. (39.41), the measure of duration is better
defined as

∆T( )2 = 4

t2h2 t( )dt
−∞

∞

∫

h2 t( )dt
−∞
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∫
−

th2 t( )dt
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∫
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hi t( )dt
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∞

∫

hi t( )dt
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∞

∫

(39.43)

In many ways ∆T  of Eq. (39.43) is the most analytically satisfactory
simple general measure of duration; for virtually any hi t( ) for which the
integrals exist, Eq. (39.43) will give a reasonable estimate of duration.
Equivalently, possibly the best simple measure of bandwidth for real
lowpass waveforms is

∆W( )2 = 4

f 2 H f( ) 2
df

−∞

∞

∫

H f( )2
df

−∞

∞

∫
(39.44)

From the definitions of ∆T  and ∆W  given by Eq. (39.43) and Eq. (39.44),
respectively, it is possible to prove the following Uncertainty Principle
[14]:

For any real waveform for which ∆T  and ∆W  of Eq. (39.41) and Eq.
(39.43) exist,

∆T∆W ≥
1

(39.45)

In other words, ∆T  and ∆W  cannot simultaneously be arbitrarily small: A
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short duration implies a large bandwidth, and a small-bandwidth
waveform must last for a long time.

Consider a cascade of association "stages".  The Uncertainty
Principle given by Eq. (39.45) applies to the "P element response" as it is
transmitted from one "stage" to another in the cascade.  In one
embodiment, the "voltage" decays exponentially at the junction or
linkage of any two "stages".  The cascade forms a filter, and an ideal
filter response is that which has the smallest duration-bandwidth
product in the sense of Eqs. (39.43) and (39.44).  Such a response is a
Gaussian pulse which also has the same form in the time and space
domain [14].  However, a Gaussian pulse cannot be the impulse response
of any casual system, even with substantial delay.  Consider, for
example, an N -stage amplifier with the impulse response of each stage
equal to

h t( ) = Ne− Ntu t( ) (39.46)
The frequency response of the cascade of N  such stages is

HN f( ) = H f( )[ ]N
=

1

1+ j2 f
N

 

 

 
 

 

 

 
 

N

(39.47)

The shape of HN f( ) for large N  can be determined by taking logarithms
and using the power series expansion

ln 1 + x( ) = x −
x2

2
+

x3

3
... (39.48)

The power series expansion of the ln H N  is
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where the remaining terms vanish as fast as 
1

N
 for large N .  Thus, the

frequency response tends to

HN f( ) ≈ e
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(39.50)
for large N , and the impulse response of the cascade tends to

hN t( ) ≈
2

e

−
t − N 

 
  

 

 
  

2

2
2 (39.51)

that is, a Gaussian pulse delayed by 
N

.  This result is a very special
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case of a remarkable theorem [15]--the Central Limit Theorem of
probability theory--which states in effect that, under very general
conditions, the cascade of a large number of linear-time-invariant (LTI)
systems will tend to have a Gaussian impulse response, almost
independent of the characteristics of the systems cascaded.  Sufficient
conditions of the Central Limit Theorem are that

1. The absolute third moments,

t
−∞

∞

∫
3

hi t( )dt (39.52)

exist for all components of the systems and are uniformly
bounded;

2. The durations, ∆Ti, of the component systems in the sense of Eq.
(39.43) satisfy the relation

lim
N→∞

1

N
∆Ti( )2

i =1

N

∑ ≠ 0 (39.53)

For large N , the first condition allows the higher order terms in the
expansion such as Eq. (39.49) to be ignored, and the second condition
guarantees that no finite subset of the component systems will dominate
the result because the remainder have relatively wide bandwidths.  Given
this theorem, it follows from Eqs. (39.38-39.45) [14] that the overall
impulse response of N  cascaded stages is approximately

h t( ) ≈
k

2 ∆T
e

−
t −T( )2

2 ∆T( )2

(39.54)

where T  and ∆T  are given by Eq. (39.40) and Eq. (39.42), respectively,
and

k = hi t( )
−∞

∞

∫
i =1`

N

∏ dt (39.55)

Eq. (39.54) is a filter function.  Consider Eq. (39.33) where the
Fourier transform of the superposition of "P element responses" (the
sum of multiple pulse trains of "impulse responses" representing
information) is given by a series of trigonometric functions wherein the
"processor" can be an analog Fourier processor.  The input of
information to the association mechanism arises as the Fourier series is
modulated and sampled.  Consider the output of a cascade of association
"stages"--each with an "impulse response".  The "stages" are cascaded as
an N -stage amplifier with the transmission impulse response of each
stage in one embodiment equal to that of a decaying exponential given
by Eq. (39.46).  The filtered signal is the sum of the convolution of the
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response of each transmission stage of the cascade with each "P element
response".  Using the distributive, commutative, and associative laws of
the convolution operation and using the Central Limit Theorem, the
filtered signal is the convolution of the superposition of the "P element
responses" over the cascade of "stages" also given by Eq. (39.27) with
the Gaussian response given by Eq. (39.51).  A very important theorem
of Fourier analysis states that the Fourier transform of a convolution is
the product of the individual Fourier transforms [10].  Thus, the output
of a cascade of N  stages each with a transmission decay constant 
(corresponding to the transmission impulse response) is the product of
Eq. (39.33) and Eq. (39.50).  By changing the decay constant  and the
number of "stages" N  in the cascade, Fourier series representing
information including that from memory can be filtered and delayed
(modulated and sampled in frequency space) to provide input to form
associations of the Association Filter Layer.  For example, consider the
result on exemplary filter functions and the corresponding Fourier
transforms shown in FIGURES 8 to 15 as the decay constant  and the
number of "stages" N  of each corresponding cascade are altered.  In
frequency space, the time delayed Gaussian filter corresponds to
modulation and sampling of the Fourier series representation of the
memory output comprising the superposition of multiple "M element
responses".  Thus, the time delayed Gaussian filter selects memory
output and provides input for the association mechanism and basis of
reasoning.

In another embodiment, the time delayed Gaussian filter may be
modulated in the time domain to effect a frequency shift in k, −space.
The shift follows from Eq. (39.109) and the duality property of Fourier
transforms [13].
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SUB-APPENDIX III
The Association Mechanism and Basis of Reasoning

"Coupling"
A cascade of association "stages" called an "association ensemble"

is "activated" with input from "M elements", "P elements", or "stages" of
a different "association ensemble".  The "association ensemble" is
"active" if it is "carrying" a Fourier series such as a "SFCs" wherein
"active" in the digital case may refer to a recall of an "SFCs" from
memory followed by steps a-i of the Association Filter Layer to Form a
"String" Section.  The "association ensemble" is "inactive" if it has no
output and is not "carrying" a Fourier series such as a "SFCs" wherein
"inactive" in the digital case may refer to no recall of an "SFCs" from
memory.

In an analog embodiment, the "stages" of an "association
ensemble" are intraconnected and interconnected.  A first "active"
cascade of association "stages" can interfere with and "couple" with a
second set, third set, etc.  The probability distribution function of
"coupling" between a first "active" "association ensemble" and at least
one other "active" "association ensemble" is Poissonian.  Each
"association ensemble" is comprised of a large number of cascaded
association "stages" each weakly linked to one or more "stages" of the
one or more different "association ensembles".  (The "coupling" is
analogous to interference between coherent or harmonic states.)  The

probability P↑
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,
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s

 

 
  

 
  that a first "active" cascade of

association "stages" with modulation e
− j N1

2 f

1

 

 
  

 

 
  
 given by Eq. (39.50) will

interfere with and "couple" with s  separate "active" cascades of
association "stages" ("association ensembles") each with modulation

e
− j N s

2 f

s

 

 
 
 

 

 
 
 
 given by Eq. (39.50) can be derived from the correlation

function (Eq. (39.78) for the statistical average of the large number of
possible "couplings" between the individual weakly linked "stages".

The physical behavior of a large number of "active" cascaded
association "stages" (an "association ensemble") each weakly linked to
provide a Poissonian probability of "coupling" to one or more "stages" of
one or more different "association ensembles" is equivalent to that of
the interaction of ultrasound with Mössbauer gamma rays.  Each
"association ensemble" "carries" a Fourier series in k, −space such as a
"M or P element response" which comprises a sum of harmonic
functions.  Thus, physically, the former case corresponds to interference
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of a first Fourier series input filtered by an "association ensemble" with a
second, third, or s  th Fourier series input filtered by s  th "association
ensemble".  The latter case corresponds to interference of an electronic
transition and an oscillator transition.  In both cases, a harmonic
energized state interferes with another.

Consider the Lamb-Mössbauer formula for the absorption of a 
ray of energy E  by a nucleus in a crystal given by Maradudin [16].

  

a E( ) =
1

4 0Γ
2 e

−
Em

Z

mn
∑ X

m e
i
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n n e
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m

E0 − E + En − Em( )2 + 1
4

Γ2
(39.56)

In this equation, E0  is the energy difference between the final and initial
nuclear states of the absorbing nucleus, Em  and En  are the energies of
the eigenstates m  and n  of the crystal, respectively, Γ  is the natural
width of the excited state of the nucleus, p  is the momentum of the 
ray, R l( ) is the instantaneous position vector of the absorbing nucleus, Z

is the crystal's partition function, T = k( )−1 , and 0  is the resonance
absorption cross section for the absorbing nucleus.  By expressing the
denominator of Eq. (39.56) as an integral, Eq. (39.56) is equivalent to

a E( ) =
1

2 0 dtei t − t

−∞

∞

∫ X exp −ik ⋅u l;t( )[ ]exp ik ⋅ u l;0( )[ ] (39.57)

wherein the position vector R l( ) is
R l( ) = x l( ) + u l( ) (39.58)

For, Eq. (39.58), x l( ) is the position vector of the mean position of the
absorbing nucleus, and u l( ) is its displacement from the mean position.
Eq. (39.57) follows from Eq. (39.56) with the following substitutions:

  

1

h
 
 

 
 p = k (39.59)

  h = E − E0 (39.60)

  
=

Γ
2h

(39.61)

and u l;t( ) denotes the Heisenberg operator,

  u l;t( ) = e
i

t

h
 

 
 

 

 
 H

u l;0( )e
−i

t

h
 

 
 

 

 
 H

(39.62)
where H  is the Hamiltonian.  The angular brackets in Eq. (39.57) denote
an average over the canonical ensemble of the crystal.

The correlation function for the statistical average of a large
number of "active" cascaded association "stages" (an "association
ensemble") each weakly coupled to one or more "stages" of one or more
different "active" "association ensembles" is equivalent to that of the
interaction of ultrasound with Mössbauer gamma rays.  From Eq.
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(39.57), the correlation function Q t( ) of acoustically modulated gamma
ray absorption by Mössbauer nuclei is

Q t( ) = exp −ik ⋅u l;t( )[ ]exp ik ⋅ u l;0( )[ ] (39.63)
In the present case, u l( ) corresponds to the delay of an "association
ensemble" s  comprising a time delayed Gaussian filter.  In k, −space,
the time delay corresponds to a modulation of the s  th Fourier series
(e.g. "P or M element response" given by Eq. (39.33)) that is "carried" by
the "association ensemble" s ).  Since the Fourier series is a sum of
trigonometric functions in k, −space, the modulation corresponds to a
frequency shift of the Fourier series "carried" by the "association
ensemble" s .  k  of Eq. (39.59) corresponds to the wavenumber of the

frequency shifted s  th Fourier series.  
  
E − E0

h
 of Eq. (39.60) is the shifted

frequency of a first Fourier series that is "carried" by a first "association
ensemble".

In the case of acoustically modulated gamma ray absorption by
Mössbauer nuclei, u l;t( ) of Eq. (39.62) is
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(39.64)
The matrix elements of Eq. (39.63) are calculated by using the theorem
[17]

eAeB = eA+ Be
1

2
A ,B[ ]

         if  A,B[ ], A[ ] = A, B[ ], B[ ] = 0 (39.65)
For a harmonic oscillator, the commutator of k ⋅u l;t( ) and k ⋅u l;0( )  is a c

number; thus,
Q t( ) = exp −ik ⋅u l;t( )[ ]exp ik ⋅ u l;0( )[ ]
      = exp −ik ⋅ u l;t( ) − u l;0( )[ ][ ] X exp

1
2

k ⋅ u l;t( ),  k ⋅u l;0( )[ ] 
 

 
 

(39.66)

Since the correlation function applies to an ensemble of harmonic
oscillator states, the first thermodynamic average can be simplified as
follows:

exp −ik ⋅ u l;t( ) − u l;0( )[ ][ ] = exp −
1

2
k ⋅ u l;t( ) − u l;0( )[ ]{ }2 

 
 
 

(39.67)

This theorem is known in lattice dynamics as Ott's theorem [18] or
sometimes as Bloch's theorem [19].  Using the time independence of the
harmonic potential, Eq. (39.67) is

exp −
1

2
k ⋅ u l;t( ) − u l;0( )[ ]{ }2 

 
 
 

= exp−
1

2
k ⋅ u l;t( )[ ]2

+
1

2
k ⋅ u l;0( )[ ]2 

 
 
 

(39.68)

                                                   = exp− k ⋅ u l( )[ ]2
(39.69)

Substitution of Eqs. (39.67-39.69) into Eq. (39.66) gives



© 2000 by BlackLight Power, Inc.  All rights reserved.
669

Q t( ) = exp − k ⋅ u l;t( )[ ]2
X exp

1

2
k ⋅ u l;t( ),  k ⋅ u l;0( )[ ] 

 
 
 

(39.70)

Expanding u l;t( ) in terms of the normal coordinates of the harmonic
potential and the phonon operators of that harmonic potential gives

  

u l;t( ) =
h

2Ml

 
 
  

 
 

1

2 B s( ) l( )

s( )
1

2s
∑ bse

−i st + bs
†e i st( ) (39.71)

where  labels the Cartesian components, Ml  is the mass of the ion in
the l th experiment, s  is the frequency of the s th normal mode, B s( ) l( ) is
the associated unit eigenvector, and bs

†  and bs  are the phonon creation
and destruction operators for the s th normal mode.  By use of the
coordinate expansion, the exponential of the correlation function
appearing in Eq. (39.70) can be written as
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(39.72)

where the following substitutions were made:

  
s =

ns +1

ns

= e
h s

kT (39.73)

  
ns =

1

e
h s

kT − 1

(39.74)

  
cs

2 =
h

2Ml

k ⋅ B s( ) l( )[ ]2

s

e
h s

2kT

e
h s

kT −1

(39.75)

and where the Bessel function relationship [20]

e
1

2
x y+ y −1( )

= Jn
n=−∞

∞

∑ x( )yn (39.76)

was used.  ns  is the mean number of phonons in the s th mode at
temperature T .

In the case of "coupling" between a first "active" "association
ensemble" and at least one other "active" "association ensemble", the
correlation function is independent of time--not a function of e i st  and
e−i s t .  Thus, the time dependent factors are dropped in Eq. (39.72), and
combining Eqs. (39.70-39.72) and Eq. (39.75) gives the correlation
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function as
Q cs

2( ) = exp− cs
2 J0 2cs

2( )
s

∏ (39.77)

For the "coupling" of "active" "association ensembles", the partition
function of Eq. (39.56) is equal to one.  By the Central Limit Theorem,
s = 1 in Eq. (39.72) corresponds to each cascade of association "stages"
giving rise to a specific frequency shift.  The correlation function for
each "association ensemble" is

Q cs
2( ) = exp− cs

2[ ]J0 2cs
2( ) (39.78)

The probability P↑

N1

1

,
N2

2

,...,
Ns

s

 

 
  

 
  that a first "active"

"association ensemble" will "couple" with s  "active" "association
ensembles" can be derived from the correlation function, Eq. (39.78).
The expansion of the Bessel function is

J x( ) =
x

2
 
 

 
 

−x2

4

 
 
  

 

m

m!Γ m + +1( )[ ]m = 0

∞

∑

J0 x( ) =

−x2

4

 
 
  

 

m

m!Γ m +1( )[ ]m= 0

∞

∑ =

−x2

4

 
 
  

 

m

m!m![ ]m= 0

∞

∑

(39.79)

where Γ m +1( ) = m! was used.  The probability distribution function of
"coupling" between "association ensembles" (coherent states) is
Poissonian.  From SUB-APPENDIX II--Modulation and Sampling Gives the
Input to the Association Mechanism and Basis of Reasoning, the output
of a cascade of N  "stages" with a transmission decay constant  is the
product of Eq. (39.33) and Eq. (39.50).  From Eqs. (39.40), (39.42),
(39.46), (39.50), (39.51), and (39.54), the frequency shift of

"association ensemble" one is 
N1

1

, and the frequency shift of

"association ensemble" s  is 
Ns

s

 where the impulse response of each

"stage" in both "association ensembles" is
h t( ) = Ne− Ntu t( ) (39.80)

"Coupling" of filtered Fourier series is based on their spectral
similarity.  In one embodiment, the "coupling cross section" amplitude,

s
2 , is given by the integral of the product of the spectrum of the first

Fourier series sampled and modulated by the first "association
ensemble" and the complex conjugate of the spectrum of the s  th
Fourier series sampled and modulated by the s  th "association
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ensemble".  The spectrum of a Fourier series ("SFCs") sampled and
modulated by an "association ensemble" is given by the product of Eq.
(39.33) and Eq. (39.50).  Thus, Eq. (39.75) is

s
2 =

0

∞

∫
0

∞

∫ V1 k , kz f( )( )Vs
* k , kz f( )( )HN f( )

1
H N

* f( )
s
dfdk (39.81)
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(39.82)
Let k = kz , then 0 = z0 = vt0 .  Thus, Eq. (39.82) is
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(39.83)

Substitution of kz =
2 f

v
 and sin = e− j  into Eq. (39.83) gives
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(39.84)

The integral of Eq. (39.84) is given by Hogg and Tanis [21]
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s
2 = 8( )2 1

2
1
2

s
2

1
2 + s

2
m1 =1

M1

∑ 4

0 m1
z0m1

a0 m1
m s =1

Ms

∑ 4

0ms
z0ms

a0ms

n ' =−∞

∞

∑
n=−∞

∞

∑ cos2
nNm1

z0 m1

2vm1
t0 m1

−
n' Nm s

z0 ms

2vms
t0ms

 

 
 

 

 
 exp−

1
2

s
2

1
2 + s

2

N1

1

−
N s

s

+
Nm1

z0m1

2vm1

−
Nms

z0ms

2vms

 

 
 

 

 
 

2

2

 

 
  

 
 
 

 

 
  

 
 
 

(39.85)

where 2 = 1
2

s
2

1
2 + s

2  and  t = − j
N1

1

−
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s

+
Nm1

z0 m1
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−
Nm s
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  in corresponding

integrals.  It was given previously (Eq. (39.83)) that 0 = z0 = vt0 ; thus, Eq.
(39.85) simplifies to
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where 2 = 1
2

s
2

1
2 + s

2  and t = − j
N1

1

−
N s

s

+
Nm1

t0m1

2
−

Nms
t0 ms
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  in corresponding

integrals.  Consider the case that the amplitude of all "P element
responses" are equal, thus a0m1

= a0ms
 for all m1 and ms  in Eq. (39.86).  In the

case that each "SFCs" is represented by Eq. (39.33a), Eq. (39.86) is
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(39.87a)
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where 2 = 1
2

s
2

1
2 + s

2  and t = − j
N1

1

−
N s

s

+
Nm1

t0m1

2
−

Nms
t0 ms

2

 

 
  

 
  in corresponding

integrals.
In one embodiment, the present "processor" is an analog Fourier

processor wherein the data is digitized according to the parameter N  of
Eqs. (39.33), (39.33a), and (39.87).  Each "FC" of Eqs. (39.33) is a series
of a Fourier component with quantized frequency and phase angle.  Each
"FC" of Eqs. (39.33a) is a series of a Fourier component with quantized
amplitude, frequency, and phase angle.  Each "SFCs" represented by Eq.
(39.33) and Eq. (39.33a) is filtered and delayed in the time domain
(modulated and sampled in the frequency domain) as it is recalled from
memory and processed by an "association ensemble".  "Association
ensembles" produce interference or "coupling" of the "SFCs" of one set
of "M or P elements" with that of another by producing frequency
matched and phase locked Fourier series --sums of trigonometric waves
that are frequency matched and periodically in phase--that give rise to
"association" of the corresponding recalled or processed information.
The Poissonian probability of such "coupling" (Eq. (39.106)) can be
derived from the correlation function (Eq. (39.78) wherein Eq. (39.87) is
a parameter.  The magnitude of the "coupling cross section" of Eq.
(39.87a) and Eq. (39.86) is independent of any phase matching
condition because the phase angle is quantized.  Thus, the argument of
the cosine function of Eq. (39.87a) and Eq. (39.86) is zero or an integer
multiple of .  Consequentially, in each case, the corresponding time
convolution of Eq. (39.84) is a cyclic convolution, and the sum over n  is
eliminated.  Whereas, the frequency matching condition provided by the
frequency shifts of the cascades of association "stages" comprises the
zero argument of the exponential function of Eq. (39.87a).  Thus, the
magnitude of the "coupling cross section" follows from Eq. (39.87a)

s
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(39.87b)

In terms of the relationship 0 = z0 = vt0 , Eq. (39.87b) is
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(39.87c)
"Coupling" between "active" "association ensembles" further

depends on the frequency difference angle, s , between the two or more
Fourier series "carried" by the corresponding "association ensembles".
In k, − space , the information is represented as Fourier series which
comprise sums of harmonic functions.  Thus, the "coupling cross
section" is a complex number with a projection in k, − space  that is a

function of the frequency shift 
N1

1

 of the first "association ensemble"

and the frequency shift 
Ns

s

 of the s  th "association ensemble".  The

frequency shift of each "association ensemble" corresponds to the
respective modulation function given by the Fourier transform of the
delayed Gaussian filter (Eq. (39.50)).  The resultant "coupling cross
section", s

2
s( ) , as a function of frequency difference angle, s , is given

by

s
2

s( ) = s
2ei 2 s (39.88)

where the frequency difference angle, s , is

s =
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s

+
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1

+
m1 =1

M1

∑
Nm1 0m1

2vm1

(39.89)

Thus, the "coupling cross section" given by Eq. (39.88) is a
dimensionless complex number that comprises a "coupling cross
section" amplitude, s

2 , and frequency difference angle, s , of the
harmonic "coupling".  In other embodiments of the present invention,
further operations may be performed on s

2
s( )  such as phase shifting,

normalizing to a given parameter, scaling, multiplication by a factor or
parameter such as a gain factor, addition or subtraction of a given
parameter or number such as an offset, etc.  In a further embodiment,
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s
2

s( )  may be represented by different equations than those such as

Eq.(39.87c) and Eq. (39.81) that also represent the spectral similarity
and difference of the frequencies of filtered or unfiltered Fourier series
that may "couple".

In the case that 0 = z0 = vt0 , the frequency difference, s , is

s =

N1

1

−
Ns

s

+
m1 =1
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Nm1
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m s =1
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Nm s

t0 ms

2

 

 
  

 
 

N1

1

+
m1=1
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∑
Nm1

t0m1

2

(39.90)

The probability distribution of "coupling" between two
"association ensembles" each "carrying" a Fourier series such as a "SFCs"
is Poissonian with mean number of "stage" "couplings"

n = 2 (39.91)
The probability [22] of "coupling" with a second "association ensemble"
with m  "couplings" between "stages" is

Pm =
n me− n

m!
=

2( )m
e− 2

m!
=

2me− 2

m!
(39.93)

with mean number of "stage" "coupling" events n = 2 .  The probability

P↑

N1

1

,
N2

2

,...,
Ns

s

 

 
  

 
  can be derived by factoring Eq. (39.93) from the

Bessel function of the correlation function (Eq. (39.78)) and its
expansion which follows from Eq. (39.79).
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(39.94)

Combining Eq. (39.93) and Eq. (39.94) demonstrates that the probability

P↑

N1

1

,
Ns

s

 

 
  

 
 = P↑ x( )  is proportional to

P↑ x( ) ∝

−x2

4

 
 
  

 

m
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∑ (39.95)

Let x = y2 , then the change of variable in Eq. (39.95) is
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Let m' = m / 2 , then the change of variable in Eq. (39.96) is

P↑ y( ) ∝

−x 2

4

 
 
  

 

m/2

m!m =0

∞

∑ ∝

−x 2

4

 
 
  

 

m'

2m'( )!m =0

∞

∑ (39.97)

The series expansion of cos x( ) is

cos x( ) =
−x2( )m

2m( )!m= 0

∞

∑ (39.98)

Combining Eq. (39.78) and Eqs. (39.95-39.98) gives the probability
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,
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s
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 ∝ cos 2 cs

2( ) (39.99)

where y = x = cs
2 .  From Eqs. (39.81-39.90),

cs
2 = −2

s( ) = s
−2 sin2

s (39.100)

Combining Eq. (39.99) and Eq. (39.100) gives the probability
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 ∝ cos 2sin s( ) (39.101)

where s  is the frequency difference angle.  Combining Eq. (39.78), Eq.
(39.100), and Eq. (39.101) gives the probability P↓ ( ) proportional to

P↑

N1

1

,
Ns

s

 

 
  

 
 ∝ exp − s

−2 sin2
s[ ]cos 2sin s( ) = exp − s

−2 1− cos2 s

2
 
 

 
 

 
  

 
  cos 2sin s( )

(39.102)
where s  is the frequency difference angle and s

2  is the "coupling cross
section" amplitude.

According to the time delay property of Fourier transforms [13], a
time delay, t − t0( ), during independent activation of a given "association
ensemble" with recall from memory is equivalent to a phase shift of the
correlation function given by Eq. (39.63)

Q t( ) = expi exp −ik ⋅ u l;t( )[ ]exp ik ⋅u l;0( )[ ] (39.103)
Thus, Eq. (39.102) is phase shifted.
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P↑

N1

1

,
Ns

s

, s

 

 
  

 
 ∝ exp − s

−2 1− cos2 s

2
 
 

 
 

 
  

 
  cos s + 2sin s( ) (39.104)

where s  is the frequency difference angle, s
2  is the "coupling cross

section" amplitude, and s  is the phase shift.
In an analog embodiment, each of the s  separate "association

ensembles" that may "couple " with the first "active" "association
ensemble" may be "inactive" before "coupling".  The "coupling" causes
the corresponding "association ensemble" to become "active".  Eq.
(39.104) represents the probability that a first "active" "association
ensemble" will "couple" with s  "active" "association ensembles" as a
function of the frequency difference angle, s , the "coupling cross
section" amplitude, s

2 , and the phase shift, s .  Eq. (39.104) also
represents the probability that a first "active" "association ensemble"
will "couple" with and "activate" s  "inactive" "association ensembles" as
a function of the frequency difference angle, s , the "coupling cross
section" amplitude, s

2 , and the phase shift, s .  In the latter case, the
Fourier series such as a "SFCs" "carried" by the "activated" s  th
"association ensemble" may be "linked" with the "association ensemble".
The "linkage" is as described for "transducer strings" in SUB-APPENDIX
VI--Input Context.

"Association"
Given that a first "association ensemble" is "active", the probability

of the occurrence of either the "active" state or the "inactive" state of
the s  th "association ensemble" is one.  In one embodiment, in the
absence of interference (i.e. "coupling") between the "association
ensembles", the probability of the occurrence of the "active" state of the
s  th "association ensemble" is the same as the probability of the
occurrence of the "inactive" state--1/2.  However, in the event that
"coupling" between the first and s  th "association ensemble" may occur,
the s  th "association ensemble" may be "activated".  The probability of
the occurrence of the "active" state of the s  th "association ensemble"
with the possibility of "coupling" with the first "active" "association
ensemble" is 1/2 plus the probability function, Eq. (39.104), normalized
to 1/2.  Therefore, given that the first "active " "association ensemble"
may "couple" with the s  th "association ensemble", the probability
function for the occurrence of the "active" state of the s  th "association
ensemble" is
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  cos s + 2sin s( )
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(39.105)

where s  is the frequency difference angle, s
2  is the "coupling cross

section" amplitude, and s  is the phase shift.
In an embodiment, the two Fourier series (e.g. each a "SFCs") are

"associated" if they are "active" simultaneously.  Thus, given that the
first "active" "association ensemble" may "couple" with the s  th
"association ensemble", Eq. (39.105) is the probability function for the
occurrence of the "association" of the Fourier series of the first "active"
"association ensemble" with that which may be "carried" by the s  th
"association ensemble" as a function of the frequency difference angle,

s , the "coupling cross section" amplitude, s
2 , and the phase shift, s .

The probability of the occurrence of "association" between a first

Fourier series and s  other Fourier series PA
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,...,
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  wherein

the first "active" "association ensemble" may "couple" with each of s
"association ensembles" is the product of the probabilities
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∏ (39.106a)

wherein the first "association ensemble" provides modulation e
− j N1

2 f

1

 

 
  

 

 
  

given by Eq. (39.50), the s  th "association ensembles" provides

modulation e
− j N s

2 f

s

 

 
 
 

 

 
 
 
 given by Eq. (39.50, s  is the frequency difference

angle, s
2  is the "coupling cross section" amplitude, and s  is the phase

shift.  The plot of the probability PA

N1

1

,
N2

2

,...,
N s

s

, s

 

 
  

 
  of the

occurrence of "association" of the first Fourier series with the s  th
Fourier series according to Eq. (39.106a) is given in FIGURES 16 A-C and
FIGURES 17 A-D.

In another embodiment, in the absence of "coupling" between the
"association ensembles", the probability of the occurrence of
"association" is p↑ .  With the replacement of 1/2 of Eq.(39.106a) with
p↑ , the probability of the occurrence of "association" of the
corresponding Fourier series based on a first "active" "association
ensemble" "coupling" with s  separate "association ensembles" is
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where p↑s

 is the probability of the occurrence of "association" in the

absence of "coupling", s  is the frequency difference angle, s
2  is the

"coupling cross section" amplitude, and s  is the phase shift.
Eq.(39.106b) gives one as the maximum probability of the

occurrence of "association".  In other embodiments, the probability
maximum may be less than one.  In this case, Eq. (39.106b) is
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(39.106c)

where P  is the maximum probability of the occurrence of "association".
Eq. (39.105) and Eq. (39.106) represent the "association" probability
parameter.

The probability of "association" of Fourier series was herein
derived for Poissonian statistics using delayed Gaussian filters; however,
the invention is not limited to Poissonian statistics and the use of
Gaussian filters.  In other embodiments, the "association" can be based
on alternative statistics corresponding to their respective distributions.
Examples are Gaussian or normal statistics, binomial statistics, Chi-
square statistics, F statistics, and t statistics.  Other statistical
distributions are given in Hogg and Tanis [23] which are herein
incorporated by reference.  Furthermore, in other embodiments, the
"association" can be base on alternative filters such as Butterworth,
band pass, low pass, and high pass filters.  Other filters are given in
Siebert [24] which are herein incorporated by reference.

In an analog embodiment, "coupling" may potentiate the two or
more Fourier series.  For example, each signal in the time domain
corresponding to the Fourier series k, −space may repeat in time and
therefore increase in duration.  In an embodiment, potentiated Fourier
series are recorded to memory as "associated" with a probability that
depends of the potentiation.  In an embodiment, the probability is given
by Eq. (39.106c) wherein the potentiation is via "coupling".

Eq. (39.106c) also applies to the probability of "association"
between a first "active" "association ensemble" and s  "active"
"association ensembles".  In this case, an equivalent digital embodiment
comprises the recall of Fourier series such as two or more "SFCs" from
memory followed by steps a-i of the Association Filter Layer to Form a



© 2000 by BlackLight Power, Inc.  All rights reserved.
680

"String" Section.

Eq. (39.106) gives the probability PA
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 given by Eq. (39.50) and

independent phase shift, s .  The process of first establishing
"associations" between different Fourier series representative of
different pieces of information is the basis of producing information
with novel conceptual content.  The formation of "associations" is
also the basis of reasoning.  The generation of "associations"
depends on the statistics of "coupling" of multiple "association
ensembles" each comprised of cascaded association "stages".  Then
the "associated" information is ordered or further processed to
provide general context such as cause and effect relationships by a
mechanism involving the half-width parameters, s , the time delay

parameters, 
Ns

s

, and potentially the independent phase shifts, s ,

of Eq. (39.106).  The ordering of "associated" information is
described in SUB-APPENDIX IV--Ordering of Associations: Matrix
Method.
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SUB-APPENDIX IV
Ordering of Associations: Matrix Method

The set of "associated" Fourier series such as at least two "groups
of SFCs" and/or at least two "SFCs" is herein called a "string".  The
"string" is a superposition of Fourier series; thus, it comprises a Fourier
series, a linear sum of "FCs".  FIGURE 19 is a flow diagram of an
exemplary hierarchical relationship of the signals in Fourier space
comprising "FCs", "SFCs", "groups of SFCs", and a "string" in accordance
with the present invention.  Each "FC" is the output of a "P element" or is
stored into and/or recalled from a "M element" as shown in FIGURE 18.
The information of "string" may be ordered to provide cause and effect,
chronology, and hierarchical relationships.  The ordered "string" is
retained in memory to provide successive associative reference or
further ordering of information.  The information of the "string" is
ordered or sequenced temporally, conceptually, or according to
causality via the Matrix Method of Analysis of Mills [8, 9].

Consider Eqs. (39.33) and (39.33a) where each represents a "SFCs"
in k, − space  comprising a Fourier series.  A "string" is a sum of Fourier
series which follows from Eqs. (39.33) and (39.33a) as follows:
V
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(39.108)
The corresponding equations in the time domain are a sum of multiple
finite series of traveling dipoles ("impulse responses") wherein each
dipole series is periodic in space and time.  In frequency space, each
time delayed Gaussian filter ("association ensemble" corresponding to a
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"SFCs") modulates and samples the Fourier series which encodes
information.  Thus, the time delayed Gaussian filter selects information
from the "string" and provides input for the association mechanism as
the "processor" implements the Matrix Method of Analysis to find the
order of the associated pieces of information represented by each "SFCs"
of the "string".

Consider the time interval t = t i to t = t f  of a "string" associated by
"association ensembles" and recorded to memory.  By processing the
"string' with multiple "association ensembles" comprising Gaussian

filters each of different delay, 
Ns

s

, and half-width parameter, s , the

"string" can be "broken" into "groups of SFCs" each having a center of

mass at a time point corresponding to the delay 
Ns

s

 and frequency

composition corresponding to s  which form a nested set of "sequential
subsets" of "groups of SFCs" of the "string" in k, −space.  The set
members map to time points which are randomly positioned along the
time interval from the t = t1 -side and the t = t2 -side as shown in FIGURES 8,
10, 12, and 14.  This nested set of "sequential subsets" of random
"groups of SFCs" mapping to random time points from the t = t i-side and
the t = t f -side is analogous to the nested set of "sequential subsets" of
random DNA fragments from the 5' end and the 3' end.  The order in
both cases can be solved by the Genomic DNA Sequencing
Method/Matrix Method of Analysis of Mills [8, 9] described in SUB-
APPENDIX V.

The output of an association filter is the convolution of the input
"groups of SFCs" (each "SFCs" given by Eqs. (39.33) and (39.33a)) of a
"string" (Eq. (39.108)) or the "string" itself with a delayed Gaussian.  In
terms of the matrix method of analysis (hereafter "MMA"), the filter
parameter  of the time delayed Gaussian filter corresponds to the
acquisition of the composition of a polynucleotide member of a nested
set of subsets.  The time delay (time domain) and modulation

(frequency domain) parameter 
N

 determines the center of mass of the

output, and it corresponds to the terminal nucleotide data.  By forming
"associations" with input from "High Level Memory" as given in SUB-
APPENDIX III--Association Mechanism and Basis of Reasoning, the
"processor" determines the relative position of the center of mass of
each Fourier series such as a "group of SFCs" as either "before" or "after"
the center of mass of the preceding and succeeding Fourier series
"associated" with Fourier series input from "High Level Memory".  The
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complete set of Fourier series "associated" with Fourier series input from
"High Level Memory" covers all of the frequencies of the "string".  By
Parseval's theorem, by processing the entire interval in k, −space, the
information is entirely processed in the time domain.  The order such as
temporal order of the Fourier series representing information is
determined using the MMA.

Input to form associations is provided by changing the decay
constant  and the number of "stages" in the cascade N , or by
processing each "group of SFCs" of a "string" using an "association
ensemble" with different parameters  and N  over all "groups of SFCs"
that make up the entire "string".  Each "group of SFCs" is determined to
be on the t = t i-side or the t = t f -side of the "axis" of the "string"
corresponding to the 5'-side or 3'-side of the "axis" of a polynucleotide
to be sequenced via the Matrix Method of Analysis.  A feedback loop
comprises sequentially switching to different "known", "set", or
"hardwired" delayed Gaussian filters which corresponds to changing the
decay constant, s , with a concomitant change in the half-width
parameter, s , and the number of elements, Ns , with a concomitant

change in the delay, 
Ns

s

, where each s  and 
Ns

s

 is "known" from past

experiences and associations.  The feedback loop whereby information
from memory encoded in the "string" is filtered and delayed (modulated
and sampled in frequency space) to provide "FCs", "SFCs" or "groups of
SFCs" which are associated with input from "High Level Memory"
provides the data acquisition and processing equivalent to the
formation, acquisition, and analysis of the composition and terminal
nucleotide data of a set of "sequential subsets" of the Matrix Method of
Analysis.  Changing the filters which process the "string" corresponds to
changing the "guess" of the "known" nucleotides, K1K2 K3K4 ⋅ ⋅ ⋅ Kn ' , as well
as the "unknown" nucleotides, X1, X2 , X3, X4 ⋅ ⋅ ⋅ , of the Matrix Method of
Analysis as applied to DNA sequencing.  The order of the "groups of
SFCs" of the "string" is established when "associations" with the "High
Level Memory" are achieved for a given set of delayed Gaussian filters
(i.e. the order of Fourier series representing information is solved when
internal consistence is achieved according to the MMA).  Then each
Fourier series of the ordered "string" is recorded to the "High Level
Memory" wherein each Fourier series of the ordered "string" may be
multiplied by the Fourier transform of the delayed Gaussian filter

represented by e
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Also, multiple other cascades of association "stages" ("association
ensembles") may act as delay-line memory actuators that produce a time
delay, t − t0( ), during independent "activation" of a given "association
ensemble" with recall from memory.  In k, −space, the time delay is
equivalent to a modulation of the correlation function given by Eq.
(39.63) corresponding to the independent phase shifts, s , of the
correlation function (Eq. (39.106)) of the separate "associated" "groups
of SFCs".  During "string" ordering by the Matrix Method of Analysis, the
independent phase shifts, s , may modify the order of the Fourier series
of the "string" representing information.  In addition, the independent
phase shifts, s , may initially modify the content of the "string" by
altering the correlation function (Eq. (39.106)) to cause information to
be "associated" which otherwise would not likely be or inhibit the
"association" of information which otherwise would be.  These
mechanisms further provide for information with novel conceptual
content.
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SUB-APPENDIX V

GENOMIC DNA SEQUENCING METHOD/MATRIX METHOD OF ANALYSIS

Abstract
As an overview, the Mills method of sequencing DNA comprises the steps of:
a) preparing from segments of a DNA strand to be sequenced, families of

polynucleotides, each family including all polynucleotides, complementary to at least a portion of
the DNA segment and at least a portion of the 3' flanking DNA segment of the DNA strand to be
sequenced, of the formula:

Kn' ⋅ ⋅ ⋅ K4K3K2K1X1X2 X3X4 ⋅ ⋅ ⋅ Xn

ranging in length from K1 X1  to Kn' − Xn  wherein K1K2 K3K4 ⋅ ⋅ ⋅ Kn '  represents the nucleotides 5'
to an internal reference point, the reference point defined as the dividing line between K1  and X1 ;
wherein X1X2X3X4 ⋅ ⋅ ⋅ Xn  represents the nucleotides 3' to the internal reference point; wherein n
and n'  are integers and n + n' , the number of nucleotides in a polynucleotide, is less than or equal
to the number of nucleotides in a polynucleotide of length within the analyzable limit of the
method for determining base composition and identity of the 3' terminal nucleotide of a
polynucleotide; and wherein each polynucleotide in the family conforms to the criterion that if the
polynucleotide contains Xn  it also contains Xn −1, Xn− 2 ⋅ ⋅ ⋅ X1 ; and the criteria that if the
polynucleotide contains Kn  it also contains Kn' −1,Kn' −2 ⋅ ⋅ ⋅ K1 ;

b) determining the base composition (the number of A's, T's, C's, and G's) and the
identity of the 3' terminal base of each polynucleotide of each family;

c) determining the base sequence of the longest polynucleotide in each family from
the determined base composition and identity of the 3' terminal base of each polynucleotide in the
family and derived change in base composition and terminal base between polynucleotides in each
family;  and

d) determining the base sequence of the entire DNA strand to be sequenced based
upon the overlapping sequences of the longest polynucleotides in each family.

The base sequence of the longest polynucleotide of each family is determined by the Matrix
Method of Analysis of the base composition of each polynucleotide in the family and the identity
of the 3' terminal base of each polynucleotide.

The base sequence of the longest polynucleotide in each set is determined by:

a) setting up a matrix consisting of 
1

2
M +1 columns and 

1

2
M  rows where M  is the

number of nucleotides in the longest polynucleotide of the set;
b) assigning the longest polynucleotide a coordinate position in the matrix of column

1, row 1;
c) assigning polynucleotides which are successively one nucleotide shorter on the 5'

end to each column position and polynucleotides which are successively one nucleotide shorter
on the 3' end to each row position;

d) determining all paths through the matrix from position 1,1 to position 
1

2
M +1,

1

2
M  which are consistent with the base composition and the 3' terminal base of the

polynucleotide assigned to each position in the matrix and with the change in base composition
and 3' terminal base between polynucleotides;  and
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e) from position 
1

2
M +1, 

1

2
M  determining the path back to position 1,1 which

permits the assignment of specific bases at each step either the 5' or 3' end of a polynucleotide,
consistent with the compositional and terminal base data, to arrive at the sequence of the longest
polynucleotide wherein the K1K2 K3K4 ⋅ ⋅ ⋅ Kn '  is guessed and steps d) and e) are performed
reiteratively until a sequence can be assigned without contradiction.

Mills [8, 9] has developed a method of determining the nucleotide
sequence of a DNA molecule of arbitrary length as a single procedure by
sequencing portions of the molecule in a fashion such that the sequence
of the 5' end of the succeeding contiguous portion is sequenced as the 3'
end of its preceding portion is sequenced, for all portions, where the
order of contiguous portions is determined by the sequence of the DNA
molecule.  Sequencing of the individual portions is accomplished by
generating a family of polynucleotides under conditions which
determine that the elements are partial copies of the portion and are of
random nucleotide length on the 3' and 5' ends about a dinucleotide
which is an internal reference point; determining the base composition
and terminal base identity of each element of the family and solving for
the sequence by a method of analysis wherein the base composition and
terminal base data of each element is used to solve for a single base of
the sequence by assigning the base to either the 5' or 3' end of the
partial sequence about the internal reference point as the entire
sequence of the portion is built up from a dinucleotide.

The molecules generated from the DNA to be sequenced comprise
families of polynucleotides.  Each family corresponds to a segment of the
DNA to be sequenced and is made up of a longest polynucleotide (the
length of which is selected to be within the analyzable limit of the
procedure used to determine base composition and identity of the
terminal base) and shorter polynucleotides which form a "sequential
subset" of the longest polynucleotides.  Grouped hierarchically from the
longest to the shortest polynucleotide of the family is progressively one
nucleotide shorter than the preceding polynucleotide and has the same
sequence except that it lacks the one nucleotide.  A further restraint on
the elements of the family is that there is a specific dinucleotide of the
sequence contained in each element.  The molecules can be envisioned
as being built around an "axis" which is at the mid position of the
common dinucleotide.  The "axis" constitutes an internal reference
point.  The polynucleotides vary  around the "axis," each containing one
less nucleotide on the 3' or 5' end than its longer predecessor in the
group.  All such molecules are included in the family, from the longest
to the shortest, a dinucleotide.

The sequence of the DNA portion from which each family of
polynucleotides has been made can be solved by determining the base



© 2000 by BlackLight Power, Inc.  All rights reserved.
687

composition (the number of A's, T's, C's, and G's) and the identity of the
3' terminal base of each polynucleotide of the family.  The composition
and terminal nucleotide data of the elements of each family of
polynucleotides are used to solve the sequence of the corresponding
DNA portion template by a method of first generating all polynucleotides
which can be obtained from a guessed solution of the sequence by
successive removal of a 3' or 5' nucleotide consistent with the data of
the change in composition between set elements and with the further
constraint that a specific dinucleotide of the sequence must be present
in all polynucleotides.  The terminal nucleotide data is used to determine
if a subset of the hypothetical family of polynucleotides exists such that
the elements have a one to one correspondence with the data of
terminal nucleotide as well as composition.  If no such subset exists, the
process is repeated for improved guesses until convergence to the
correct solution for the sequence occurs.

A method which performs this analysis by testing for the validity of
a guess for part of the sequence while solving for the remaining part
using the composition and terminal base data independently to execute
binary hypothesis testing decisions compatible with computer logic is
the matrix method of analysis algorithm.

The matrix method of analysis is analogous to solving a system of n
equations in n unknowns where the knowns are:  1)  the structural
properties of the polynucleotides, 2)  the base composition and the
identity of the terminal base, 3)  the change in composition and change
in terminal base between a polynucleotide and the next in the family.
The method exploits the given information by implementing a reiterative
procedure to find a path through a matrix of the possible
polynucleotides having sequences consistent with the data.  Final
assignment of the sequence is made when the entire path finding
procedure can be accomplished without contradictions between
sequence assignment and actual data.

Strategy of the Sequencing Method
The strategy is to create a group of molecules which contain a

reference point which is internal.  Initially, location of the reference
point is unknown, but it exists in all of the molecules.  The molecules are
a family of polynucleotides comprising complementary copies of a
portion of the parent molecule from which they are generated and
superimpose on the parent by alignment of this internal point of
reference.  The location of the point of reference or "axis," and the
sequence of the parent molecule is solved for simultaneously by an
algorithm called the matrix method of analysis.

The family of polynucleotides can be thought of as being all
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molecules which result from the sequential loss of nucleotides from the
5' and 3' end of the longest polynucleotide of the group.  An ordered
pattern of terminal nucleotide change and nucleotide compositional
change occurs between members of sequential subsets.  This algorithm
exploits the pattern of ordered systematic nucleotide compositional
change and terminal nucleotide change that a designated longest
polynucleotide with a given internal reference point and given
nucleotide loss constraints can produce.

Criteria of Polynucleotides
The nucleotide sequence of a DNA strand can be solved by

generating a family of polynucleotides overlapping portions of the DNA
to be sequenced.  Each family of polynucleotides forms a "sequential
subset" of the longest polynucleotide of the group.  The molecules are
identical less one nucleotide from either the 5' or 3' end of a given
molecule, and the former are defined as sequential subsets of the latter.

The molecules can be depicted as follows:
Kn'  . . . K4  K3 K2  K1 X1 X2  X3 X4 . . . Xn

Where the series K1, K2 ,K3 ,K4 ⋅ ⋅ ⋅ Kn '  represent the nucleotides of the
polynucleotide 5' to the internal reference point, or axis, and the
series X1, X2 , X3, X4 ⋅ ⋅ ⋅ Xn  represents the nucleotides of the polynucleotide
on the 3' side of the axis.  The 5' end with respect to the axis is
designated as the "known" portion of the molecules (this does not
necessarily imply that this sequence is initially known), and the 3' end
of the polynucleotide is designated as the "unknown" portion .  Thus,
K1, K2 ,K3 ,K4 ⋅ ⋅ ⋅  represent the "known" sequence and X1, X2 , X3, X4 ⋅ ⋅ ⋅

represent the "unknown" sequence.  The distinction is that in the
matrix, as described below K1, K2 ,K3 ,K4 ⋅ ⋅ ⋅  appear as nucleotides, where
as the X's represent variables.  The nucleotides of the "known"
portion can be known extrinsically or they can be guessed.

The polynucleotides are governed by the following constraints.  No
polynucleotide contains X2  without containing X1 .  In general terms,
no polynucleotide contains Xn  without containing Xn −1, Xn− 2, ⋅⋅⋅ X1.  In
addition, no polynucleotide contains K2  without containing K1 .  That
is, polynucleotide contains an unknown with out containing all
preceding unknowns and, every polynucleotide contains all
succeeding knowns if it contains any given known.  As a set, all the
polynucleotides satisfy these criteria and vary randomly at the 3' and
5' ends.

The criteria can be represented symbolically as follows:
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Xn → X1   ( Xn  implies X1 )

Kn → K1   ( Kn ' implies K1 )

   ⋅⋅⋅Kn ' − Xn ⋅ ⋅ ⋅  (the polynucleotides are random at the 5' and 3'; ends;
the knowns and unknowns are variables where K  = Known, X  =
Unknown, n' = 1 to 4 ⋅⋅⋅  and n = 1 to 4 ⋅⋅⋅ )

Principles of Matrix Method of Analysis
The matrix method of analysis entails setting up a rectangular

matrix where the designated longest polynucleotide appears at position
(1,1).  The sequence of one half of this molecule is "known".  The
nucleotide sequence at the other one half of the molecule is designated
"unknown" and is represented by variables.  The term "known" does not
necessarily imply that the nucleotide sequence of the parent molecule is
known initially.  The division between the "knowns" and "unknowns" is
the internal reference point.  The location of the internal reference point
is not necessarily known initially and can be changed by changing the
knowns so that this sequence superimposes a different region of the
parent molecule.  That is, when the sequence is solved, it will
superimpose a region of the parent and the location of the internal
reference point will be fixed.  The location on the parent is at the line
dividing the "knowns" and the "unknowns".  If the 5' end of the
sequence (and consequently the entire sequence) superimposes on a
different region of the parent, the location of the internal reference
point would be different.  Thus, the location of the internal reference
point relative to the parent molecule is determined by the "knowns".

An exemplary matrix is shown below for polynucleotides which
conform to the criteria set forth.  For a designated longest
polynucleotide which contains a total of eight (8) nucleotides the matrix
consists of 5 rows and 4 columns.
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K4 K3 K2 K1 X1 X2 X3 X4

K4K3K2K1X1X2 X3X4         K4 K3K2 K1X1 X2 X3       K4K3K2 K1X1X2          K4K3K2K1X1

    K3K2K1X1X2 X3X4                K3K2K1X1X2X3             K3 K2K1X1X2               K3K2K1X1

        K2K1X1X2X3X4                      K2K1X1X2X3                   K2 K1X1 X2                     K2 K1 X1

            K1X1 X2 X3 X4                            K1X1X2 X3                         K1X1 X2                           K1X1

                X1 X2 X3 X4                                 X1X2X3                               X1X2                                  X1

The matrix columns contain polynucleotides which have lost
nucleotides at the 5' end; the rows are formed of polynucleotides which
have lost nucleotides from the 3' end.  Nucleotides are lost from the 5'
end down any column and lost from the 3' end across any row.  The
matrix is constructed such that all the constraints governing the
polynucleotides are satisfied, and all possible polynucleotides are
recorded in the matrix according to the describe format.

The determination of the sequence of the polynucleotides
proceeds as follows:  starting at position (1,1) in the matrix, the base
which has been lost is determined by the difference in base composition
between the longest polynucleotide and the next longest of the set.  The
change is consistent with a move to position (1,2) and/or (2,1) of the
matrix.  The step is repeated for each polynucleotide of the family.
These moves are down a column and/or across the row from left to
right.  Moves down a column or across a row from left to right are
designated from/to moves.  The result can be recorded, e.g. in a "lattice"
which contains all coordinate positions arranged in levels such that each
successive level from top to bottom corresponds to all possible from/to
moves, and each successive level from bottom to top corresponds to all
possible to/from moves.  A to/from move is a movement up a column
and/or across a row from right to left.
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For each step, the base which could have been lost from the 3' or
5' end is determined, and the appropriate move to a position in the
matrix is made.  This establishes the appropriate path in the matrix
which can be designated by connecting the corresponding coordinates in
the lattice.  This procedure is repeated until all consistent from/to
moves are recorded in the lattice.  At least one path is formed from
coordinate position (1,1) to a point of convergence, i. e., a coordinate
position from which no further from/to moves can be made.

The next step is to determine which path is the correct path.  This
is accomplished by starting at a point of convergence and determining
which to/from steps for all single or binary decisions are consistent with
the terminal base data as moves are made back to position (1,1) from
the point of convergence.  Assignment of a base to the 3' or 5' end is
made by a to/from move which does not contradict the change in base.
For all to/from moves, if the path that is chosen from one coordinate to
another corresponds to a move across a row from right to left, then the
base is assigned to the 3' end which is consistent with the move.  That is
the base change determined from the data occurred from the 3' end.  A
contradiction arises if this assignment is inconsistent with terminal base
data for the polynucleotide represented at the coordinate position or if
the change in terminal base for this step is inconsistent with the data.
For all to/from moves, if the path that is chosen from one coordinate to
another corresponds to a move up a column then the base change for
that step indicates which base to assign to the 5' end.  A contradiction
would arise if the next "known" up the column in the matrix is different
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from that indicated by the base change.
The sequence is solved when at least one path is found from (1,1)

to a point of convergence by from/to moves and to the (1,1) position
from the point of convergence by to/from moves at each data step
without contradictions.  The matrix method of analysis yields a unique

solution for a matrix of all possible polynucleotides of size (
1

2
M +1, 

1

2
M )

that conform to the constraints for polynucleotides, for any set of data
of M −1 polynucleotides that are successively one nucleotide less and are
sequential subsets from M −1 nucleotides to a dinucleotide.  (The longest
polynucleotide is M  nucleotides in length.)

The key to the matrix method of analyze is that there is
convergence to at least one of  the terminal possibilities (point in the
matrix at which no further from/to moves can be made).  It may
converge to more than one (e.g., if the sequence contained only A, or T,
or C, or G bases, then it would converge to all possible termini of the
matrix that yields the solution of the sequence).  Once any terminus is
determined to be correct, it can serve as an initiation point, that is, a
point, or coordinate position from which the initial to/from move is
made.  A terminus representing a single nucleotide or single variable in
the matrix is correct if it is consistent with the data.  The sequence can
be deciphered by making decisions at branch points and by taking the
return path that is determined to be correct by the data, i. e. the
terminal base and the change in the terminal base at each step.  If more
than one path is correct, anyone of the correct paths will yield the
sequence.

Examples of Solving Sequences by the Matrix Method of Analysis

To further illustrate the matrix method of determining sequence,
examples of its application are given below.  In each example a matrix
for a polynucleotide family of eight nucleotides in length is shown.  The
lattice diagram shows all possible matrix from/to moves consistent with
the change in composition data.  The column labeled "path" represents
the possible to/from moves in the matrix which are consistent with the
terminal base data and the change in terminal base.  The path which
determines the solution to the sequence is read from bottom to top.
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SUB-APPENDIX VI
Input Context

An Input Layer receives data and transforms it into a Fourier series
in k, −space wherein input context is encoded in time as delays which
corresponds to modulation of the Fourier series at corresponding
frequencies.  The Fourier series in Fourier space represents information
parameterized according to the data and the input context.  The
information is the data and the input context.  The information is based
on physical characteristics or representations of physical characteristics
and physical context.  Data from transducers responding to an input
signal representative of the physical characteristics and the physical
context is used to parameterize the Fourier series in k, −space whereby

i.) "Data" such as intensity and rate of change recorded by a
transducer is represented in terms of the parameters 0m

 and Nm
0
 of

each component of the Fourier series wherein the input context
corresponds to the physical context based upon the identity of a specific
transducer and its particular transducer elements.  The physical context
maps on a one to one basis to the input context.  The processed signals
from each transducer which can be input from the Input Layer to other
layers such as the Association Layer and the "String" Ordering Layer, and
the Predominant Configuration Layer comprises a Fourier series as given
by Eq. (39.33) and Eq. (39.33a) wherein:

each of the factors Nm
0
 and Nm z0

 of the Fourier series component is

proportional to the rate of change of the signal response of each
transducer which is proportional to the rate of change of the physical
signal such as the surface roughness, or the intensity of sound, light, or
temperature; and

each of the factors 0m
 and z0 m

 of each Fourier component is
inversely proportional to the amplitude of the signal response of each
transducer which is proportional to the physical signal such as the
surface roughness, or the intensity of sound, light, or temperature; or

each of the factors Nm
0
 and Nm z0

 of the Fourier series component is

proportional to the amplitude of the signal response of each transducer
which is proportional to the physical signal such as the surface
roughness, or the intensity of sound, light, or temperature; and

each of the factors 0m
 and z0 m

 of each Fourier component is
inversely proportional to the rate of change of the signal response of
each transducer which is proportional to the rate of change of the
physical signal such as the surface roughness, or the intensity of sound,
light, or temperature; or



© 2000 by BlackLight Power, Inc.  All rights reserved.
695

each of the factors Nm
0
 and Nm z0

 of the Fourier series component is

proportional to the duration of the signal response of each transducer;
and

each of the factors 0m
 and z0 m

 of each Fourier component is
inversely proportional to the amplitude of the signal response of each
transducer which is proportional to the physical signal such as the
surface roughness, or the intensity of sound, light, or temperature.

ii.) The input from the Input Layer to other layers shown in FIGURE
21 can be an analog waveform in the analog case and a matrix in the
digital case.  Input context of a given transducer can be encoded in time
as delays which correspond to modulation of the Fourier series in
k, −space at corresponding frequencies whereby the data
corresponding to each transducer maps to a distinct memory location
called a "register" that encodes the input context by recording the data
to corresponding specific time intervals of a time division structured
memory.  The input context maps on a one to one basis to an Input Layer
section of a memory.  Thus, there is a one to one map of physical
context to input context to Input Layer section of a memory.  The
representation of information as a Fourier series in Fourier space allows
for the mapping.

 iii.) Input context of a complex transducer system can be encoded
in time by the mapping of data from the components of the transducer
system to a memory structured according to a corresponding
hierarchical set of time intervals representative of each transducer
system with respect to different transducer systems, a transducer
element's rank relationship relative to other transducer elements, and
the response of a transducer element as a function of time.  In terms of
digital processing, the data from a transducer having n  levels of
subcomponents is assigned a master time interval with n +1 sub time
intervals in a hierarchical manner wherein the data stream from the final
n  th level transducer element is recorded as a function of time in the
n +1 th time coded memory buffer.  During processing the time intervals
represent time delays which are transformed into modulation
frequencies which encode input context.  FIGURE 3 is a flow diagram of
an exemplary transducer data structure of a time delay interval
subdivision hierarchy wherein the data from a transducer having n  levels
of subcomponents numbering integer m  per level is assigned a master
time interval with n +1 sub time intervals in a hierarchical manner
wherein the data stream from the final n  th level transducer element is
recorded as a function of time in the n +1 th time coded sub memory
buffer in accordance with the present invention.

The "processor" may be taught the relationship between the "data"
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such as intensity and rate of change recorded by a transducer and the
parameters such as 0m

 and Nm
0
 of each component of the Fourier series

by inputting standard physical signals to each transducer together with
other information that is "associated" with the standards.  A data base
may be established.  The information that is "associated" with the
standard may be recalled and can comprise input into the Association
Layer and the "String" Ordering Layer shown in FIGURE 20 and FIGURE 21
during "processing" according to the present invention.

The process of storing output from multiple transducers to
memory further comprises creation of "transducer strings".  In one
embodiment, associations occur at the transducer level, and "SFCs" are
mapped to distinct memory "registers" from the corresponding distinct
transducers responding simultaneously, for example.  In one
embodiment, two or more Fourier series such as two or more "SFCs" of
the "string" are "linked" whereby activation of any Fourier series such as
a "SFCs" of the "string" may thereby activate other or all Fourier series of
the "string" stored in the corresponding "registers".  The activation may
be based on probability.  The activation probability may depend on the
"strength of the linkage" which is defined in terms of a linkage
probability parameter which increases with the linkage rate, the rate at
which the activation of a Fourier series of a "string" thereby causes the
activation of another Fourier series of the "string".  Probability operators
may activate other or all Fourier series of the "string" when any Fourier
series of the "string" is "active" based on the linkage probability
parameter.

In a digital embodiment comprising "memory linkages" of the
"transducer string", recalling any part of a "transducer string" from a
distinct memory location may thereby cause additional "linked" Fourier
series of the "transducer string" to be recalled.  In one embodiment, a
linkage probability parameter is generated and stored in memory for
each "string" Fourier series such as a "SFCs".  A probability operand is
generated having a value selected from a set of zero and one, based on
the linkage probability parameter.  If the value is one, the corresponding
Fourier series is recalled.  Thus, when any part of a "transducer string" is
recalled from memory, any other "string" Fourier series is randomly
recalled wherein the recalling is based on the linkage probability
parameter.  The linkage probability parameter is weighted based on the
linkage rate.



© 2000 by BlackLight Power, Inc.  All rights reserved.
697

x t( ) = X f( )
−∞

∞

∫ e j 2 ftdf X t( ) = x t( )
−∞

∞

∫ e− j 2 ftdt

Delay t − t0( ) ⇔ e− j 2 ft0

(39.109)

Consider a "transducer string" made up of multiple "groups of
SFCs" where each "SFCs" represents information of the transducer
system with respect to different transducer systems, a transducer
element's rank relationship relative to other transducer elements, and
the response of a transducer element as a function of time, space, or
space and time.  (The latter case applies to a transducer which is
responsive to changes in the intensity of a parameter over time and
spatial position).  These aspects of each transducer are encoded via
delays corresponding to modulation in k, −space within a frequency
band corresponding to each aspect of the transducer.

The "string" in k, −space is analogous to a multidimensional
Fourier series.  The modulation within each frequency band may further
encode context in a general sense.  In one embodiment, it encodes
temporal order, cause and effect relationships, size order, intensity
order, before-after order, top-bottom order, left-right order, etc. which
is relative to the transducer.

Eq. (39.33a), the "read" total response V
m
∑  in Fourier space

comprising the superposition of M  "FCs" wherein each "FC" corresponds
to the response of a "M or P element" with input context encoded by the

modulation factor e
− jk fbs,m

+ t s,m( )  becomes
V

m
∑

k ,kz( ) =

    
4

1+ kz
2

k2

a0m
Nm

0
Nmz0

e
− jk fbm

+ tm( ) sin k
Nm

0
0 m

2
− n

2 Nm
0

2

 
 
  

 
 sin kz

Nmz0
z0m

2
− n

2 Nmz0

2

 
 
  

 
 

n=−∞

∞

∑
m =1

M

∑

(39.110)
where tm

= vtm
ttm

 is the modulation factor which corresponds to the

physical time delay ttm
 and fbm

= v fbm
t fbm

 is the modulation factor which

corresponds to the specific transducer time delay t fbm
.  vtm

 and v fbm
 are

constants such as the signal propagation velocities..
"Associations" are established between Fourier series such as

"SFCs" and "groups of SFCs" (i.e. a "string" is created) by "coupling" with
Poissonian probability between "association ensembles" "carrying" the
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"SFCs" and "groups of SFCs".  Input context is encoded by the transducer

frequency band modulation factor e
− jk fbs,m

+ t s,m( )  according to Eq. (39.110).
In this case, Eq. (39.87b) is

s
2 = 8( )2 1

2
1
2

s
2

1
2 + s

2
m1 =1

M1

∑ a0m1
Nm1

m s =1

Ms

∑ a0ms
Nms

        exp −

1
2

s
2

1
2 + s

2

N1

1

−
Ns

s

+
Nm1

t0m1

2
+ t fbm1

+ t tm1

 
 
  

 
 −

Nm s
t0 ms

2
+ t fbms

+ ttms

 
 
  

 
 

 

 
  

 
 

2

2

 

 
  

 
 
 

 

 
  

 
 
 

(39.111a)
And, Eq. (39.87c) is

s
2 = 8( )2 1

2
1
2

s
2

1
2 + s

2
m1 =1

M1

∑ a0m1
Nm1

m s =1

Ms

∑ a0ms
Nms

     exp −

1
2

s
2

1
2 + s

2

N1

1

−
Ns

s

+
Nm1 0m1

2vm1

+
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+
tm1

v tm1

 

 
 

 

 
 −
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2
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(39.111b)
The corresponding frequency difference angle, s , which follows from
Eq. (39.89) is

s =

N1

1

−
Ns

s

+
m1 =1

M1

∑
Nm1 0 m1

2vm1

+
fbm1

v fbm1

+
tm1

vtm1

 

 
 

 

 
 −

m s =1

Ms

∑
Nms 0 ms

2vm s

+
fbm s

v fbms

+
tms

v tm s

 

 
 

 

 
 

 

 
 

 

 
 

N1

1

+
m1 =1

M1

∑
Nm1 0 m1

2vm1

+
fbm1

v fbm1

+
tm1

vtm1

 

 
 

 

 
 

(39.112a)
The corresponding frequency difference angle, s , which follows from
Eq. (39.90) is

s =

N1

1

−
Ns

s

+
m1 =1

M1

∑
Nm1

t0m1

2
+ t fbm1

+ ttm1

 
 
  

 
 −

ms =1

Ms

∑
Nms

t0ms

2
+ t fbms

+ tt ms

 
 
  

 
 

 

 
  

 
 

N1

1

+
m1 =1

M1

∑
Nm1

t0m1

2
+ t fbm1

+ ttm1

 
 
  

 
 

(39.112b)

Eq. (39.108), the "read" total response V
m
∑  in Fourier space comprising

the superposition of S  "SFCs" wherein each "SFCs" corresponds to the
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response of Ms  "M or P elements", with input context encoded by the

modulation factor e
− jk fbs,m

+ t s,m( ) , becomes the following "string".

V
s, m
∑ k ,kz( ) =

4

1 + kz
2

k2

a0s, m
Ns,m

0
Ns, mz0

e
− jk fbs, m

+ t s,m( )
n=−∞

∞

∑
m =1

Ms

∑
s =1

S

∑

                     sin k − n
2

0s, m

 

 
 

 

 
 

N s,m
0

0 s,m

2

 

 
 

 

 
 sin kz − n

2
vs,mt0s, m

 

 
 

 

 
 

Ns ,mz0
z0s, m

2

 

 
 

 

 
 

(39.113)

where ts,m
= v ts ,m

tts, m
 is the modulation factor which corresponds to the

physical time delay tts, m
 and fbs,m

= v fbs, m
t fbs, m

 is the modulation factor which

corresponds to the specific transducer time delay t fbs,m
.  vts, m

 and v fbs,m
 are

constants such as the signal propagation velocities.  In another
embodiment, the output V

m
∑  is the Gaussian sampled and modulated

"string" of Eq. (39.113) wherein each "SFCs" is multiplied by the Fourier
transform of the delayed Gaussian filter (Eq. (39.50)) (i.e. the

modulation factor e
−

1

2
vs 0

k
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sz0
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) which gave rise

to "coupling" and "association" to form the "string".  V
m
∑  is given by

V
s, m
∑ k , kz( ) =

4

1+ kz
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(39.114)

wherein input context is encoded by the modulation factor e
− jk fbs,m

+ t s,m( ) .
Eq. (39.114) is also an exemplary "string" with each Fourier series
multiplied by the Fourier transform of the delayed Gaussian filter

represented by e
−

1

2
vs 0

k

s 0

 

 

 
 

 

 

 
 

2

e
− j

Ns 0

s 0

vs 0k( )
e

−
1

2
vsz 0

k z

sz0

 

 
 
 

 

 
 
 

2

e
− j

Nsz 0

sz0

vsz 0kz( )
 that established the

correct order to form the ordered "string" given in SUB-APPENDIX IV--
Ordering of Associations: Matrix Method.  The index over s  is
independent of m  since each "FC" of a given "SFCs" is filtered by the
same Gaussian filter.  In embodiments, the index for the Gaussian filter
is not independent of m .  In one case, some "FCs" may be filtered by the
same Gaussian filters; whereas, other "FCs" may be filtered by different
Gaussian filters.  In another case, each "FC" may be filtered by a different



© 2000 by BlackLight Power, Inc.  All rights reserved.
700

Gaussian filter.
For the case where vs,mt0s, m

= 0s,m
 and k = kz ., the "string" in Fourier

space is one dimensional in terms of k  and is given by

V
s, m
∑ k , kz( ) = a0s, m

Ns, m
0
e

−
1

2
vs 0

k

s 0
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e
− j
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∑
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∑ e
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2
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N s,m
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0s, m

2

 

 
 

 

 
 

(39.115)
The "string" comprises a Fourier series, a linear sum of "FCs" each
multiplied by its corresponding Gaussian filter modulation factor and
modulation factor which encodes input context (Eqs. (39.114-39.115)).
FIGURE 19 is a flow diagram of an exemplary hierarchical relationship of
the signals in Fourier space comprising "FCs", "SFCs", "groups of SFCs",
and a "string" in accordance with the present invention.  Each "FC" is
encoded by a "P element" or stored into and/or recalled from a "M
element" as shown in FIGURE 18.
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SUB-APPENDIX VII
Comparison of Processing Activity to Statistical
Thermodynamics/Predominant Configuration

The quantity of information that can be "associated" into ordered
"strings" called "P strings" is essentially infinite based on the input to the
layers of the "processor" comprising Fourier series in k, −space.
Consider Eq. (39.33a).  In the case that the parameter Ns, m spans 1 to
100, 0s,m

 spans 1 to 1000, and there are 1000 modulation bands, the

number of distinct inputs W  is
W = 1000!1000!100! (39.116)

Using Sterling's approximation
ln N! = N ln N − N (39.117)

W  is approximately
W = e12,360 (39.118)

In essence an infinite amount of information can be represented as
distinct Fourier series in k, −space according to this method of
encoding it.

According to statistical thermodynamics [25], a macroscopic
thermodynamic system is viewed as an assembly of myriad
submicroscopic entities in ever changing quantum states.  Consider the
number of distinct ways each called a microstate that a set number
quanta of energy can be distributed between a set number of energy
levels.  The total number of microstates W  associated with any
configuration involving N  distinguishable units is

W =
N!

a !( ) b !( )⋅⋅⋅
(39.119)

where a  represents the number of units assigned the same number of
energy quanta (and, hence, occupying the same quantum number), and

b  represents the number of units occupying some other quantum level.
As the number of units increases, the total number of microstates
skyrockets to unimaginable magnitudes.  Thus, one can calculate that an
assembly of 1000 localized harmonic oscillators sharing 1000 energy
quanta possesses more than 10600 different microstates.  This explosive
expansion of the total number of microstates with increasing N  is a
direct consequence of the mathematics of permutations, from which
arises also a second consequence of no less importance.  Statistical
analysis shows that the emergence of a predominant configuration  is
characteristic of any assembly with a large number ( N ) of units.  Of the
immense total number of microstates that can be assumed by a large
assembly, an overwhelming proportion arises from one comparatively,
small set of configurations centered on, and only minutely different
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from, the predominant configuration--with which they share an
empirically identical set of macroscopic properties.

Eq. (39.119) is equally valid for the number of distinct ways that a
set of "active" states at any given time can be distributed over N  "P
elements" and "M elements" where a  represents one set of
indistinguishable "P elements", or "M elements", and b  represents
another set of indistinguishable "P elements", or "M elements".  Eq.
(39.119) is equally valid for the number of distinct ways that
interference or "coupling" can occur between cascades of association
"stages" at any given time distributed over N  "links" where a  represents
one set of indistinguishable "links", and b  represents another set of
indistinguishable "links".  Of the immense total number of microstates
that can be assumed by a large assembly of "active" states distributed
over a large set of "P or M elements" or by a large assembly of
"couplings" distributed over many cascades of association "stages", an
overwhelming proportion arises from one comparatively, small set of
configurations centered on, and only minutely different from, the
predominant configuration--with which they share an empirically
identical set of macroscopic properties.  Due to the large numbers of "P
and M elements" and cascades of association "stages" involved in
information processing, the present "processor's" performance is stable.

Consider the "processor" on a component level such as that of a "P
element".  In an embodiment, the activation of a "P element" increases
its excitability or probability of future activation with input.  Each "P
element" has an "activation" memory with a finite half-life.  Repetitive
"activation" of a "P element" results in a longer half-life of the increased
excitability; thus, the "activation" memory becomes long term.  The
same principle applies to ensembles of association "stages", "processor
elements" ("P elements"), and "memory elements" ("M elements") and
"configurations" of "couplings" of ensembles.  Each ensemble is
comprised of "stages", "P elements", or "M elements" in different states
of "activity" where each state is equivalent to a microstate of statistical
thermodynamics.  A predominant configuration arises for any ensemble.
Of the immense total number of microstates that can be assumed by an
ensemble, an overwhelming proportion arises from one comparatively,
small set of configurations centered on, and only minutely different
from, the predominant configuration--with which they share an
empirically identical set of macroscopic properties.  On a higher level, a
configuration of "couplings" between ensembles increases the activation
of the "stages" "P elements", or "M elements" comprising the ensembles.
Analogously to statistical thermodynamics, a predominant configuration
arises from the ensemble level.  Consider the "processor" on a higher
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level.  The activation history of each ensemble relates to a hierarchical
activation relationship of "coupled" ensembles which gives rise to a
precedence of higher order predominant configurations.  The ability to
associate information and create novel information, is a consequence.
Machine learning arises by the feedback loop of transducer input to the
coupled predominant configurations which increases the basis for
creating information with novel conceptual content.

EXPERIMENTAL
The brain processes input data from each transducer such as an

olfactory bulb as a Fourier series in k, −space.  The Fourier series
represents information with context.  The context is encoded in time.
The input is produced by its transducer and encoded to its transducer.
The encoding occurs by each transducer having a characteristic
modulation frequency band in k, −space.  The input of each transducer
maps to a distinct memory location called a "domain" such as a specific
location in the olfactory lobe.  The mapping encodes transducer context
within the corresponding frequency band as a delay in time.  The delay
in time corresponds to the "domain".  The process of storing "input"
from multiple transducers to memory further comprises creation of
"memory connections" called "transducer strings" in APPENDIX VI--Input
Context.

Identifications of sensory "input" can be made by forming
associations with memory.  A cascade of association neurons ("stages")
comprise an association assemble.  As shown in APPENDIX II--Modulation
and Sampling Gives the Input to the Association Mechanism and Basis of
Reasoning, the cascade comprises a delayed Gaussian filter in the time
domain.  An important feature of the statistics of cascaded stages is that
not all of the cascaded "stages" need to be active at any cycle to achieve
essentially the same characteristic for large N  as given by Eq. (39.50).
The association neurons ("stages") of an association ensemble are
weakly linked to the cascaded association neurons ("stages") of other
association ensembles.  Association ensembles carrying the
corresponding Fourier series "couple" with Poissonian probability to
form association of Fourier series.  Each Fourier series has a specific
transducer frequency band modulation factor.  (See APPENDIX III--The
Association Mechanism and Basis of Reasoning.)  Each association
ensemble modulates and samples the Fourier series in k, −space.  In the
time domain, each association ensemble, a delayed Gaussian filter, time
delays and filters the sensory and memory time waveforms or functions.
Each time domain function corresponding to an input "carried" by an
"association ensemble" is a superposition of pairs of Gaussian pulses
where each pair is active in a precise spatial and temporal sequence.
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The phase of firing contains no information as given by Eq. (39.86) and
Eq. (39.87a).  Thus, a stimulus is predicted to evoke activity in dynamic
(evolving) ensembles of transiently synchronized neurons.  The active
neurons composing these ensembles should change in a stimulus-
specific manner and with a high degree of reliability on a cycle-by cycle
basis during a stimulus response.  Hence, information about a stimulus
is contained not only in the neural assembly active at each oscillation
cycle, but also in the precise temporal sequence in which these
assemblies are updated during an a stimulus response.  Neural coding
with oscillations thus allows combinatorial representations in time as
well as in space.  This predicted stimulus response is consistent with the
recent results of Wehr and Laurent [26] who measured the odour evoked
response of the olfactory antennal lobe of the locust.

Wehr and Laurent report [26] in their Nature article entitled
"Odour encoding by temporal sequences of firing in oscillating neural
assemblies" that stimulus-evoked oscillatory synchronization of activity
has been observed in many neural systems, including the cerebral cortex
and the brain of insects.  The possible functions of such rhythmic
synchronization in neural coding, however, remain largely speculative.
In the locust, odours evoke activity in dynamic (evolving) ensembles of
transiently synchronized neurons.  They report that the active neurons
composing these ensembles change in a stimulus-specific manner and
with a high degree of reliability on a cycle-by-cycle basis during an
odour response.  Hence, information about an odour is contained not
only in the neural assembly active at each oscillation cycle, but also in
the precise temporal sequence in which these assemblies are updated
during an odour response.  Neural coding with oscillations thus allows
combinatorial representations in time as well as space.

Although stimulus-evoked oscillations of brain potentials caused
by synchronized neural activity have been known for about 50 years, the
roles, if any, they might play in information coding remain conjectural.
Wehr and Laurent tested two functional hypotheses of temporal codes
that use oscillations.  The first  proposes that oscillations, by virtue of
their periodic nature, allow the phase of neural signals ( that is, the
timing of action potentials relative to a specific or common reference
during each cycle) to be a coding parameter.  Different and possibly
coexisting stimuli could thus be represented by different  neural
assemblies, respectively defined by a common phase of activity.  The
hypothesis predicts that the neural assemblies activated by different
stimuli should synchronize at different phases.  The second hypothesis
rather proposes that oscillations allow rank order ( for example, cycles
1, 2, and 4 of the oscillation) of action potentials produced by
participating neurons to be coding parameters.  In this scheme, the
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order of recruitment of neurons in an oscillating assembly should be
stimulus-specific.  To test these hypotheses, they used the olfactory
antennal lobe of the locust, in which individual odours are represented
combinatorially by oscillating and dynamic neural assemblies, each
formed by about 10% of a total of about 800 projection neurons (PNs).
They recorded simultaneously the responses of small ensembles of PNs--
the analogues of the mitral-tufted cells of the vertebrate olfactory bulb--
in vivo, to airborne odourants.  Odours evoked reliable temporal
response patterns in projection neurons, with tight oscillatory
synchronization and neuron-specific modulation of period firing
probability.  The phase of firing contained no information (i.e. in no
case did the phase of action potentials relative to the field potential or
to action potentials of other participating neurons appear to vary with,
and thus participate in encoding, the stimulus).  Thus, the first
hypothesis was inconsistent in the evidence, but the second hypothesis
was.  Stimulus identity is encoded in the temporal features of firing of
groups of neurons.  The results showed that odours can reliably evoke
specific sequences of activity across neural assemblies.  The fine
temporal structure of PN responses to mixtures of odours were not
simple or predictable combinations of their responses to the
components presented separately.  Each odour, however complex,
apparently evoked activity in its own specific neuronal set and its own
specific sequence of activity (coarse and fine levels of analysis).  In
reality, PN firing is probabilistic and average firing possibilities are not
available to the animal on a single odour sampling.  Information is,
therefore, probably gathered from multiple neurons at once as well as
over several oscillation cycles.  Previous results indicate that odours are
probably represented by about 100 neurons; only a subgroup of these
are likely to be coactive during any given oscillation cycle.

In summary, Wehr and Laurent have shown that odours evoke
activity in neural assemblies that are updated non-randomly at each
cycle of an oscillatory response pattern.  Information about the stimulus
is found not in the phase of active neurons ( which is statistically
invariant when neurons synchronize to each other) but rather in their
identity and in the temporal pattern in which they are recruited ( this
study [26]).  The firing probability of individual neurons during one
cycle of the response can be linked to that of other neurons during the
same or other cycles, indicating deterministic and stimulus-specific
sequential activation of groups of neurons.  In principle, the timing of
these odour-encoding sequences need not be precisely locked to the
stimulus, although it is the feature which allowed their detection.  Wehr
and Laurent propose that oscillations are a means to encode stimuli in a
temporal combinatorial fashion.  In this hypothesis, stimuli are
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represented both by spatial (instantaneous) ensembles, that is, the
neurons activated together during any given cycle, and by temporal
sequences, reflected in the responses of individual or groups of neurons
over several cycles.  Given the probabilistic nature of any neuron firing
in any one cycle of the oscillatory response, the information provided by
spatial ensembles alone is often ambiguous.  Wehr and Laurent propose
that the brain reduces the ambiguity by assigning "meaning" to the
pattern in which these ensembles succeed each other.  In particular,
such a mechanism might aid reliable and rapid stimulus identification.
In mammals, for example, each inspiration evokes 5-10 cycles of gamma
frequency (30-60 Hz) oscillations in the olfactory bulb.  In insects,
behavioral studies indicate that odour identification is possible in a few
hundred milliseconds, allowing in principle only 4-6 cycles of 20-30 Hz
oscillations.  Such a coding mechanism might also occur in any sensory
system (cortical or not) expressing oscillatory synchronization, such as
the visual and somatosensory cortices of mammals.  Evidence from flies
and from rat, cat, and primate neocortical neurons in vitro and in vivo is
also consistent with the possibility that spike timing might play a role in
information coding here, although previous studies did not consider
spike timing within the context of oscillatory synchronization.  Wehr and
Laurent's study shows that oscillations can support combinatorial coding
in time, and that information about a stimulus is contained in the
precise temporal firing pattern of groups of neurons and is not
dependent on phase.
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FIGURE 1 is a high level block diagram illustrating an embodiment of
the present "processor".
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FIGURE 2 is a detailed block diagram illustrating an Input Layer, an
Association Layer, and a memory layer of the embodiment of FIGURE 1.
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FIGURE 3 is a flow diagram of an exemplary transducer data structure of a time

delay interval subdivision hierarchy wherein the data from a transducer having n

levels of subcomponents numbering integer m  per level is assigned a master time

interval with n +1  sub time intervals in a hierarchical manner wherein the data

stream from the final n  th level transducer element is recorded as a function of

time in the n +1  th time coded sub memory buffer.
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FIGURE 4 is a detailed block diagram illustrating an String Ordering
Layer and the memory layer of the embodiment of FIGURE 1.
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FIGURE 5 is a detailed block diagram illustrating a Predominant
Configuration Layer and the memory of the embodiment of FIGURE 1 in
relation to the Input Layer, the Association Layer, and the String
Ordering Layer.
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FIGURE 6 is a schematic drawing of the "P or M element response"
comprised of a series of seven "impulse responses".

FIGURE 7 is a schematic drawing of the Fourier Transform H[k ,kz ] of

the system function  h , z( ) corresponding to the "impulse response".
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FIGURE 8 is a schematic of h t( ) given by Eq. (39.51) where =1 and

N =100 .

FIGURE 9 is a schematic of H f( ) given by Eq. (39.50) where =1 and

N =100 .
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FIGURE 10 is a schematic of h t( ) given by Eq. (39.51) where =10  and

N =100 .

FIGURE 11 is a schematic of H f( ) given by Eq. (39.50) where =10

and N =100 .
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FIGURE 12 is a schematic of h t( ) given by Eq. (39.51) where =1 and

N = 500 .

FIGURE 13 is a schematic of H f( ) given by Eq. (39.50) where =1 and

N = 500 .
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FIGURE 14 is a schematic of h t( ) given by Eq. (39.51) where =10  and

N = 500 .

FIGURE 15 is a schematic of  H f( ) given by Eq. (39.50) where =10

and N = 500 .
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FIGURES 16A and 16B illustrate plots of the probability PA( ) (Eq.

(39.106a)) of association of the corresponding Fourier series based on a
first active association ensemble coupling with a second association
ensemble as a function of frequency difference angle, s , coupling cross
section amplitude, s

2 , and phase shift, s = 0 wherein the parameter

s
2 =0.01 and 0.25 respectively.
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FIGURES 16C illustrates a plot of the probability PA( ) (Eq. (39.106a))

of association of the corresponding Fourier series based on a first active
association ensemble coupling with a second association ensemble as a
function of frequency difference angle, s , coupling cross section
amplitude, s

2 , and phase shift, s = 0 wherein the parameter s
2 =1.00.
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FIGURES 17A and 17B illustrate plots of the probability PA( ) (Eq.

(39.106a)) of association of the corresponding Fourier series based on a
first active association ensemble coupling with a second association
ensemble as a function of frequency difference angle, s , and phase
shift, s , for the coupling cross section amplitude, s

2 = 0.25 , wherein the
parameter s=0 and 0.25 , respectively.
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FIGURES 17C, and 17D illustrate plots of the probability PA( ) (Eq.

(39.106a)) of association of the corresponding Fourier series based on a
first active association ensemble coupling with a second association
ensemble as a function of frequency difference angle, s , and phase
shift, s , for the coupling cross section amplitude, s

2 = 0.25 , wherein the
parameter s=0.50 , and , respectively.
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FIGURE 18 is a flow diagram of an exemplary hierarchical relationship
between the characteristics and the processing and storage elements.
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FIGURE 19 is a flow diagram of an exemplary hierarchical relationship
of the signals in Fourier space comprising FCs, SFCs, groups of SFCs, and
a string.
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FIGURE 20 is an exemplary layer structure.
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FIGURE 21 is a flow diagram of an exemplary layer structure and
exemplary signal format.
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SPECTRAL DATA OF HYDRINOS FROM THE DARK INTERSTELLAR
MEDIUM AND SPECTRAL DATA OF HYDRINOS, DIHYDRINOS, AND

HYDRINO HYDRIDE IONS FROM THE SUN

Randell L. Mills

BlackLight Power, Inc.

493 Edinburg Road

Cranbury, NJ 08512

The detection of atomic hydrogen in fractional quantum energy
levels below the traditional "ground" state—hydrinos—is reported by the

assignment of soft x–ray emissions from the interstellar medium, the
Sun, and stellar flares, and by assignment of certain lines obtained by

the far-infrared absolute spectrometer (FIRAS) on the Cosmic
Background Explorer.  The detection of a new molecular species—the
diatomic hydrino molecule—is reported by the assignment of certain
infrared line emissions from the Sun.  The detection of a new hydride

species—hydrino hydride ion—is reported by the assignment of certain
soft X-ray, ultraviolet (UV), and visible emissions from the Sun.
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INTERSTELLAR MEDIUM
Hydrogen Transitions to Electronic Energy Levels Below the

"Ground" State Corresponding to Fractional Quantum Numbers Match
the Spectral Lines of the Extreme Ultraviolet Background of Interstellar
Space.

Dark Matter
The Universe is predominantly comprised of hydrogen and a small

amount of helium.  These elements exist in interstellar regions of space,
and they are expected to comprise the majority of interstellar matter.
However, the observed constant angular velocity of many galaxies as the
distance from the luminous galactic center increases can only be
accounted for by the existence of nonluminous weakly interacting
matter, dark matter.  Dark matter exists at the cold fringes of galaxies
and in cold interstellar space.  It may account for the majority of the
universal mass.

The identity of dark matter has been a cosmological mystery.
Postulated assignments include τ neutrinos, but a detailed search for
signature emissions has yielded nil [1].  It is anticipated that the
emission spectrum of the extreme ultraviolet background of interstellar
matter possesses the spectral signature of dark matter.  In a recent
paper, a grazing incidence spectrometer was designed to measure and
record the diffuse extreme ultraviolet background [2].  The instrument
was carried aboard a sounding rocket, and data were obtained between
80 Å and 650 Å  (data points approximately every 1.5 Å ).  Several lines
including an intense 635 Å  emission associated with dark matter were
observed [2].

"Regardless of the origin, the 635 Å  emission observed could be a
major source of ionization.  Reynolds (1983, 1984, 1985) has shown
that diffuse Hα emission is ubiquitous throughout the Galaxy, and
widespread sources of flux shortward of 912 Å  are required.  Pulsar
dispersion measures (Reynolds 1989) indicate a high scale height for
the associated ionized material.  Since the path length for radiation
shortward of 912 Å  is low, this implies that the ionizing source must
also have a large scale height and be widespread.  Transient heating
appears unlikely, and the steady state ionization rate is more than can
be provided by cosmic rays, the soft X-ray background, B stars, or hot
white dwarfs (Reynolds 1986; Brushweiler & Cheng 1988).  Sciama
(1990) and Salucci & Sciama (1990) have argued that a variety of
observations can be explained by the presence of dark matter in the
galaxy which decays with the emission of radiation below 912 Å .
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The flux of 635 Å  radiation required to produce hydrogen
ionization is given by F = H / = 4.3 X 104

−13   photons cm−2s−1 , where −13  is
the ionizing rate in units of 10−13s−1  per H  atom.  Reynolds (1986)
estimates that in the immediate vicinity of the Sun, a steady state
ionizing rate of −13  between 0.4 and 3.0 is required.  To produce this

range of ionization, the 635 Å  intensity we observe would have to be
distributed over 7% - 54% of the sky."

Dark Matter Spectrum
In addition to the peak at 635 Å , the spectral data [2] show peaks at

85 Å,  101 Å, 117 Å,  130 Å,  140 Å, 163 Å,  182 Å, 200 Å, 

234 Å, 261 Å, 303 Å, 460 Å, 584 Å,  608 Å, and 633 Å
.  The authors interpreted

these data as soft X-ray emissions from ionized atoms within hot gases.
However, the authors left the door open for some other interpretation
with the following statement from their introduction:

"It is now generally believed that this diffuse soft X-ray
background is produced by a high-temperature component of
the interstellar medium.  However, evidence of the thermal
nature of this emission is indirect in that it is based not on
observations of line emission, but on indirect evidence that no
plausible non-thermal mechanism has been suggested which
does not conflict with some component of the observational
evidence."

The authors also state that "if this interpretation is correct, gas at
several temperatures is present."  Specifically,  emissions were
attributed to gases in three ranges: 5.5 < log T < 5.7; log T = 6; 6.6 < log T < 6.8.

Mills' Theory
Mills' theory provides an alternative explanation for the soft X-ray

emissions of the dark interstellar medium observed by Labov and
Bowyer [2] based on the predicted existence of fractional-quantum-
energy-level hydrogen atoms, hydrinos.  J. J. Balmer showed in 1885
that the frequencies for some of the lines observed in the emission
spectrum of atomic hydrogen could be expressed with a completely
empirical relationship.  This approach was later extended by J. R.
Rydberg, who showed that all of the spectral lines of atomic hydrogen
were given by the equation:
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= R
1

n f
2 −

1

ni
2

 

 
  

 
 (40.1)

where R = 109,677 cm−1,  n f =1, 2,3,..., ni = 2,3,4,..., and ni > n f .  Niels Bohr, in
1913, developed a theory for atomic hydrogen that gave energy levels in
agreement with Rydberg's equation.  An identical equation, based on a
totally different theory for the hydrogen atom, was developed by E.
Schrödinger, and independently by W. Heisenberg, in 1926.

En = −
e2

n2 8 oaH

=
13.598 eV

n2 (40.2a)

n = 1,2,3,... (40.2b)
where aH  is the Bohr radius for the hydrogen atom (52.947 pm ), e  is the
magnitude of the charge of the electron, and o  is the vacuum
permittivity.  Mills' theory predicts that Eq. (40.2b), should be replaced
by Eq. (40.2c).

n = 1,2,3,..., and , n =
1

2
,
1

3
,
1

4
,... (40.2c)

The n = 1 state is the "ground" state for "pure" photon transitions
(the n = 1 state can absorb a photon and go to an excited electronic state,
but it cannot release a photon and go to a lower-energy electronic
state).  However, an electron transition from the ground state to a
lower-energy state is possible by a nonradiative energy transfer such as
multipole coupling or a resonant collision mechanism.  These lower-

energy states have fractional quantum numbers, n =
1

integer
.  Processes

that occur without photons and that require collisions are common.  For
example, the exothermic chemical reaction of H + H  to form H2  does not
occur with the emission of a photon.  Rather, the reaction requires a
collision with a third body, M , to remove the bond energy-
H + H + M → H2 + M *.  The third body distributes the energy from the
exothermic reaction, and the end result is the H2  molecule and an
increase in the temperature of the system.  Some commercial phosphors
are based on nonradiative energy transfer involving multipole coupling.
For example, the strong absorption strength of Sb3+ ions along with the
efficient nonradiative transfer of excitation from Sb3+ to Mn2+ , are
responsible for the strong manganese luminescence from phosphors
containing these ions.  Similarly, the n = 1 state of hydrogen and the

n =
1

integer
 states of hydrogen are nonradiative, but a transition between

two nonradiative states is possible via a nonradiative energy transfer, say
n = 1 to n = 1/ 2 .  In these cases, during the transition the electron couples
to another electron transition or electron transfer reaction which can
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absorb the exact amount of energy that must be removed from the
hydrogen atom, a resonant energy sink called an energy hole.  The
reaction of hydrogen-type atoms to lower-energy states is referred to as
a transition reaction.  Lower-energy hydrogen atoms, hydrinos, can act
as a source of energy holes that can cause a transition reaction with the
absorption of an energy hole of m X 27.2 eV  (Eq.(5.5)).  Thus, the

transition cascade for the pth cycle of the hydrogen-type atom, H
aH

p

 
  

 
  ,

with the hydrogen-type atom, H
aH

m'
 
 

 
 
, that is ionized as the source of

energy holes to cause a the transition reaction is represented by

m X 27.21 eV + H
aH

m'
 
 

 
 

+ H
aH

p

 
  

 
  → H + + e− + H

aH

( p + m)

 
  

 
  + [ p + m( )2 − p2 − m' 2 −2m( )]X13.6 eV

(40.3)

H + + e− → H
aH

1
 
 

 
 

+13.6 eV (40.4)

And, the overall reaction is

H
aH

m'
 
 

 
 

+ H
aH

p

 
  

 
  → H

aH

1
 
 

 
 

+ H
aH

( p + m)

 
  

 
  + 2pm + m2 − m'2[ ]X13.6 eV +13.6 eV (40.5)

Rather than undergoing internal conversion, the energy emitted by a
hydrino which has nonradiatively transferred m X 27.2 eV  of energy to a
second hydrino may be emitted as a spectral line since hydrinos may
only accept energy by a nonradiative mechanism.

Line Assignments
In Table 1, the peaks recorded by Labov and Bowyer are assigned

to the hydrogen electronic transitions to energy levels below the ground
state corresponding to fractional quantum numbers that are induced by
disproportionation reactions as described in the Disproportionation of
Energy States Section (Eqs. (40.3-40.5)).  Consider the case where m' = 2 .
A hydrogen atom in a fractional quantum state, H ni( ), collides with a

n =
1

2
 hydrogen atom, H

1

2
 
 

 
 , and the result is an even lower-energy

hydrogen atom, H n f( ), and H
1

2
 
 

 
  is ionized.
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H ni( ) + H
1

2
 
 

 
 → H n f( ) + H + + e− + photon (40.6)

The energy released, as a photon, is the difference between the energies
of the initial and final states given by Eqs. (40.2a-40.2c) minus the

ionization energy of H
1

2
 
 

 
 , 54.4 eV .  The agreement between the

experimental data and the values predicted for the proposed transitions
is remarkable.  Furthermore, the 304 Å (40.8 eV ) transition of hydrogen is
scattered by interstellar neutral helium giving rise to a broad He I
emission centered at 584 Å (21.21 eV )  and a broad scattered hydrogen
emission at about 634 Å (19.6 eV ).  When this photon strikes He (1s2 ) ,
21.2 eV  is absorbed in the excitation to He (1s12 p1 ).  This leaves a 19.6 eV

photon (632.6 Å ).  Similarly, the 114 Å (108.8 eV ) transition of hydrogen is
scattered by interstellar neutral helium giving rise to a broad He I
emission centered at 584 Å (21.21 eV )  and a broad scattered hydrogen
emission at about 141 Å (87.6 eV) .  Also, the 182.3 Å (68 eV ) transition of
hydrogen is scattered by interstellar neutral helium giving rise to a
broad He I emission centered at 584 Å (21.21 eV )  and a broad scattered
hydrogen emission at about 265 Å (46.8 eV ) .  Conspicuously absent is the
256 Å (48.3 eV )  line of He II which eliminates the assignment of the 303 Å

and the 234 Å  lines to the He II transitions.
As shown in Table 1, hydrogen transitions to electronic energy

levels below the "ground" state corresponding to fractional quantum
numbers predicted by Mills' theory match the spectral lines of the
extreme ultraviolet background of interstellar space.  And, hydrogen
disproportionation reactions yield ionized hydrogen, energetic
electrons, and hydrogen ionizing radiation.  This assignment resolves the
paradox of the identity of dark matter and accounts for many celestial
observations such as: diffuse Hα emission is ubiquitous throughout the
Galaxy, and widespread sources of flux shortward of 912 Å  are required
[2].

Line Intensity
The intensity of the extreme ultraviolet emission, I , of

disproportionation transitions of hydrinos can be calculated from the
column density of hydrogen or hydrino atoms, N(H) , and the rate of the
disproportionation reaction, rm ,m', p , given by Eq. (5.70) of the Interstellar
Disproportionation Rate Section.  Photons are emitted with equal

probability in all directions; thus, Eq. (5.70) is multiplied by 
1

4
 to give
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the rate constant in terms of the solid angle.  The intensity is

I =
1

4
Aul N(H ) =

1

2
nH

aH

p

 
 
  

 

2
3kT

mH

N(H ) (40.7)

where Aul  is the Einstein A coefficient, and   N(H) = nHl is the column
density.  The path length,   l , is calculated in steradians from its integral.
In the case that m = 1, m' = 2 , and p = 3 in Eqs. (5.50-5.52); T = 50 ° K ,

gm , p = 1 (the result of F o
••

rster's theory for the efficiencies of dipole-dipole
resonant energy transfers), and using N(H) = 2 X 1018  cm−2  as the column

density of hydrino atoms, H
aH

3
 
 

 
 , which is estimated from typical values

of the column density of H  in diffuse hydrogen regions along the sight-
line at b=48 deg and which corresponds to a density of lower-energy

hydrogen atoms, H
aH

3
 
 

 
 , of nH = 4 X 103  atom / m3 , the calculated intensity of

the 304 Å line which is herein assigned as the 1/ 3 → 1/ 4 H  transition is
I = 2000 photons cm−2s −1sr−1 (40.8)

The intensity reported by Labov and Bowyer for the 304 Å line is
I = 2080+740

−720  photons cm−2s −1sr−1 (40.8a)
The experimental intensity is in agreement with the intensity calculated
from Mills' theory.
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SOLAR DATA

Solar Neutrino Problem
Another two-decade-old cosmological mystery is the discrepancy

between solar neutrino flux observed with the Homestake detector,
2.1 ± 0.03 SNU , and that predicted based on the Standard Solar Model,
7.9 ± 2.6 SNU  [3-5].  According to the Standard Solar Model, the pp chain
is the predominant energy source of main-sequence stars which
commences with proton-proton fusion according to the following
reaction [3];

1H+1H→2H + e+ + e (40.9)
And, according to this model, strong coupling exists between luminosity
and neutrino flux because they are both based on nuclear reactions.  A
recent experiment with a radioactive solar surrogate at the Gallex solar
neutrino detector in Italy supports the results that over the past several
years the Gallex and Russia's SAGE , the other large gallium detector, see
only about 60% of the solar neutrino signal predicted to within 1 to 2%
by astrophysical models [6].  The paradox of the paucity of solar
neutrinos to account for the solar energy output by the pp chain is
resolved by assigning a major portion of the solar output to hydrogen
transitions.  Hydrogen transitions to electronic energy levels below the
"ground" state corresponding to fractional quantum numbers can yield
energies comparable to nuclear energies.  For example, all transitions to

the n =
1

100
 state of hydrogen taken together release 136 keV .  Data

strongly supporting this tenant is the observation by Labov and Bowyer
of an intense 304 Å (40.8 eV ) solar emission line corresponding to the
transition given by Eqs. (5.44-5.46),

H
aH

3
 
 

 
 

H
aH

2

 
  

 
  

 →    H
aH

4
 
 

 
 

(40.10)

in the absence of the 256 Å (48.3 eV )  line of He II which eliminates the
assignment of the 304 Å line to the He II transition.

Temperature of the Solar Corona Problem
In addition to the questions of what powers the sun and why the

solar neutrino flux is significantly deficient, there exists no satisfactory
answer to two additional solar questions:  The cause of sunspots and
other solar activity and why the Sun emits X-rays is unknown [7].  In
fact, a possible anticorrelation exists between the abundance of sunspots
and the solar neutrino flux observed with the Homestake detector [8].
The cause of sunspots and other solar activity, and why the Sun emits X-
rays can be explained by energy releasing transitions of hydrogen to



© 2000 by BlackLight Power, Inc.  All rights reserved.
740

lower energy levels.  The photosphere of the Sun is 6000 K ; whereas, the
temperature of the corona based on the assignment of the emitted X-
rays to highly ionized heavy elements is in excess of 106  K .  No
satisfactory power transfer mechanism is known which explains the
excessive temperature of the corona relative to that of the photosphere.
The mechanism must explain the constant transfer over time of energy
from the photosphere at 6000 K  to the corona at 106  K  which radiates
energy into cold space.  Further compounding the temperature mystery
is the observation of a strong coronal hydrogen Lyman series, beginning
with Lα at 1216 Å  and ending at 912 Å , corresponding to unionized
hydrogen atoms.  The hydrogen lines would indicate that the corona is
less than 104  K .  The paradox is resolved by the existence of a power
source associated with the corona.  The energy which maintains the
corona at a temperature in excess of 106  K  is that released by
disproportionation reactions of lower-energy hydrogen as given by Eqs.
(40.3-40.5).

Disproportionation may be the predominant mechanism of
hydrogen electronic transitions to lower energy levels of solar hydrogen
and hydrinos.  Hydrogen transitions to electronic energy levels below the
"ground" state corresponding to fractional quantum numbers match lines
of the solar emission spectrum in the extreme ultraviolet and X-ray
regions.  The solar lines that match the energy of disproportionation
reactions of lower-energy hydrogen given by Eqs. (40.3-40.5) are given in
Table 2.  The energy of the emission line for the transition given by Eqs.

(40.3-40.5) whereby H
aH

m'
 
 

 
 
 is ionized as the source of the energy hole of

m X 27.2 eV  that causes a transition reaction is
2pm + m2 − m'2[ ]X13.6 eV +13.6 eV :

H
aH

m'
 
 

 
 

+ H
aH

p

 
  

 
  → H

aH

1
 
 

 
 

+ H
aH

( p + m)

 
  

 
  + 2pm + m2 − m'2[ ]X13.6 eV +13.6 eV

(40.11)
For example, the line corresponding to the disproportionation reaction:

H
aH

2
 
 

 
 

H
aH

2

 
  

 
  

 →    H
aH

3
 
 

 
 

(40.12)

is 912 Å .  Transitions of hydrogen to lower-energy states catalyzed by
hydrogen gives rise to a broad band emission with an edge at 912 Å  and a
tail to shorter wavelengths as given in the Broadening of the Hydrogen
912 Å  Line Problem Section.  The coronal hydrogen Lyman series,
beginning with Lα at 1217 Å and ending at 912 Å , corresponds to hydrogen
scattering, and the helium series starting at 584 Å  and ending on the
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helium continuum at 504 Å  corresponds to helium scattering of the EUV
emitted from lower-energy hydrogen transitions as given in Table 2.
This assignment resolves the mystery of the observation of a strong
coronal hydrogen Lyman series, beginning with Lα at 1216 Å  and ending at
912 Å , corresponding to unionized hydrogen atoms.  The hydrogen lines
would indicate that the corona is less than 104  K ; whereas, the actual
temperature is in excess of 106  K .  The excess intensity of these lines for
the low number of scatters in the corona is due to the strong scattering
at EUV wavelengths.

The energy released by the transition of the hydrino atom with the

initial lower-energy state quantum number p  and radius 
aH

p
 to the state

with lower-energy state quantum number p + m( ) and radius 
aH

p + m( )
catalyzed by a hydrino atom with the initial lower-energy state quantum

number m' , initial radius 
aH

m'
, and final radius aH  are given in Table 2.  

The agreement between the calculated (nonrelativistic) and the
experimental values is remarkable.  Furthermore, many of the lines of
Table 2 had no previous assignment, or the assignment was
unsatisfactory.  Some lines assigned in the literature may have been
assigned incorrectly by trying to fit the spectrum to known lines.  But,
inconsistencies arise.  For example, the intensity of the peak assigned to
He II by Thomas [9] is extremely strong ( I = 62,200 ).  The laboratory He II
transition intensities are: I 303.780 Å( ) =1000; I 303.786 Å( ) = 500; I 256 Å( ) = 300 .

Therefore, the predicted peak intensity of the 256 Å (48.3 eV )  line of He II
is I = 12,440 ; whereas, the observed intensity is too weak ( I = 1580 ) which
eliminates the assignment of the 304 Å line to the He II transition.
Several of the disproportionation lines are slightly broadened due to the
collision and electron ejection mechanism (Eqs. (40.3-40.5)) and
temperature broadening.  The line intensities vary from strong to fairly
weak, but in general the intensity of emission due to disproportionation
is weakened due to energy transfer to the ionized electron versus
photon emission (Eqs. (40.3-40.5)).  The ejected electron energy is
dissipated as synchrotron radiation.  The line intensities are further
weakened due to the high cross section for absorption and scattering at
extreme UV wavelengths.  In fact the disproportionation line intensities
may be weaker than those of highly ionized heavy elements.  Ionized
heavy elements emit high in the corona at 2M K  where the path length to
space is much less than the path length for emission from
disproportionation reaction regions such as at the solar surface.  The
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helium and hydrogen scattered peaks corresponding to
disproportionation reactions are of different intensities depending on
the concentration of unionized scatters in the region where the
disproportionation emission occurs.  The scattered line intensity is a
function of temperature because that will determine the concentration
of both unionized hydrino as well as unionized scattering atoms.
Temporal variation in the disproportionation line intensities may reflect
solar activity.  For example, the coronal power is ≅ 0.01 % of the solar
power in the case of a quite Sun and as high as 100 %  of the solar power
in the case of an active Sun [10].  Several lines which are assigned in
Table 3 to transitions of lower-energy hydrogen in the Stellar Data
Section greatly increase in intensity during a flare event which is
evidence that lower-energy hydrogen transitions are the cause of solar
flares.

Table 2.  Observed line emission of the disproportionation reaction given by
Eqs. (40.3-40.5).  (Raw extreme ultraviolet solar spectral data taken from
Figures 3a-k of [9], Figures 1a-d (observed lines from Table 1) of [11];
Figure 7.5 of [12], and Figure 4.10 of Phillips [13].)
____________________________________________________________________________
Observed

Line
(Å)

bPredicted
(Mills)

(Å)
m, m'

f

Assignment
(Mills)

Ref Assignment
(Other)

1215.7 1215.67 d H 2 p1( ) → H 1s1( ) +10.2 eV 12,
13

Collisional
Excitation,

Lα  scattering

911.8 911.78 1,
1;1c

1, 2

1 → 1/2 H transition

1/2 → 1/3 H transition

12,
13

H + + e− → H

     + 13.6 eV
at

T > 20,000 K

584.5 584.5 e He (1s12 p1 ) → He (1s2 )

                    + 21.2 eV

12,
13

Collisional
Excitation

373.7 373.73 2, 2 Inelastic Scattering (He) of
1 → 1/3 H transition

9 None

303.784 303.92 1, 2 1/3 → 1/4 transition 9 He II

280.2a

280.8a
280.54 2, 2 Inelastic Scattering (H) of

1 → 1/3 H transition
11 None
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264.80 265.08 1, 2 Inelastic Scattering (He) of
1/4 → 1/5 H transition

11 Fe XIV

228a 227.95 2, 2 1 → 1/3 H transition 11 None

215.16 214.54 1, 2 Inelastic Scattering (H) of
1/4 → 1/5 H transition

11 S XII

182.16 182.36 1, 2 1/4 → 1/5 H transition 11 Fe XI

167.50 167.62 1, 2 Inelastic Scattering (He) of
1/5 → 1/6 H transition

11 Fe VIII

152.15 151.97 3, 3 1 → 1/4 H transition 11 Ni XII

145.9a 145.88 1, 2 Inelastic Scattering (H) of
1/5 → 1/6 H transition

11 None

141a 141.59 2, 2 Inelastic Scattering (He) of
1/2 → 1/4 H transition

11 None

129.87 130.26 1, 2 1/5 → 1/6 H transition 11 O VI

125.5a 125.76 2, 2 Inelastic Scattering (H) of
1/2 → 1/4 H transition

11 None

122.2a 122.56 1, 2 Inelastic Scattering (He) of
1/6 → 1/7 H transition

11 None

114a 113.97 2, 2 1/2 → 1/4 H transition 11 None

110.5a 110.52 1, 2 Inelastic Scattering (H) of
1/6 → 1/7 H transition

11 None

101.3a 101.31 1, 2 1/6 → 1/7 H transition 11 None

96.7a 96.59 1, 2 Inelastic Scattering (He) of
1/7 → 1/8 H transition

11 None

88.8 88.95 1, 2 Inelastic Scattering (H) of
1/7 → 1/8 H transition

11 None

87.0a 87.34 2, 2 Inelastic Scattering (He) of
1/3 → 1/5 H transition

11 None

82.9a 82.89 1, 2 1/7 → 1/8 H transition 11 None

81.1a 81.05 2, 2 Inelastic Scattering (H) of
1/3 → 1/5 H transition

11 None

79.58 79.70 1, 2 Inelastic Scattering (He) of
1/8 → 1/9 H transition

11 Fe XII
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76.0a 75.98 2, 2 1/3 → 1/5 H transition 11 None

70.1a 70.14 1, 2 1/8 → 1/9 H transition 11 None

67.5a 67.84 1, 2 Inelastic Scattering (He) of
1/9 → 1/10 H transition

11 None

63.12 63.14 2, 2 Inelastic Scattering (He) of
1/4 → 1/6 H transition

11 Mg X

61.0a 60.78 1, 2 1/9 → 1/10 H transition 11 None

59.7a 59.79 2, 2 Inelastic Scattering (H) of
1/4 → 1/6 H transition

11 None

____________________________________________________________________________
a Wavelength read from Figue 1 of [11]; wavelength not given in Table of [11];

b For lower-energy transitions, n = 1,
1

2
,
1

3
,
1

4
,...,  and ni > n f  induced by a

disproportionation reaction with H
aH

2
 
 

 
 
, E =

1

n f
2 −

1

ni
2

 

 
  

 
 X13.6 eV − m' 2 X13.6 eV ;

b For helium inelastic scattered peaks of hydrogen transitions, ni → n f ,

E =
1

n f
2 −

1

ni
2

 

 
  

 
 X13.6 eV − m' 2 X13.6 eV − 21.21 eV  (when this photon strikes He (1s2 ) ,

21.2 eV  is absorbed in the excitation to He (1s12 p1 ));
b For hydrogen inelastic scattered peaks of hydrogen transitions, ni → n f ,

E =
1

n f
2 −

1

ni
2

 

 
  

 
 X13.6 eV − m' 2 X13.6 eV −10.2 eV  (when this photon strikes H (1s1 ) ,

10.2 eV  is absorbed in the excitation to H (2 p1));

c H n = 1[ ] 2H →   H n =
1

2
 
 

 
 

+ h  911.8 Å( )  (Eqs. 40.16-40.18);

d H 2 p1( ) → H 1s1( ) +10.2 eV   (excitation by emission of lower-energy hydrogen

transitions);
e He (1s12 p1 ) → He (1s2 ) + 21.2 eV   (excitation by emission of lower-energy

hydrogen transitions);
f Eqs. (40.3-40.5).

____________________________________________________________________________

Disproportionation takes place at the surface and the corona of
the Sun where the reactants, hydrogen and lower-energy hydrogen
atoms, are present and where the gas is rarefied enough that the
electron of the hydrino atom which provides the energy hole ionizes to
vacuum versus to a plasma as in the case of the photosphere.  With
ionization to vacuum, the integral of Eq. (6.27) is one.  The power, Pm,m ', p ,
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from the disproportionation reaction of the transition of the hydrino
atom with the initial lower-energy state quantum number p  and radius
aH

p
 to the state with lower-energy state quantum number p + m( ) and

radius 
aH

p + m( )  catalyzed by a hydrino atom with the initial lower-energy

state quantum number m' , initial radius 
aH

m'
, and final radius aH  is given

in the Interstellar Disproportionation Rate Section.

Pm,m ', p =
NH

2

V
4 2

aH

p

 
 
  

 

2
3kT

mH

2pm + m2 − m'2 +1[ ]X2.2 X10−18  W (40.13)

where NH  is the total number of hydrogen or hydrino atoms, V  is the
volume, k  is Boltzmann's constant, T  is the absolute temperature, and
mH  is the mass of the hydrogen or hydrino atom.  The total number of
hydrogen or hydrino atoms, NH , is given by

NH = HV (40.14)
where H  is the density of hydrogen or hydrino atoms.  The volume V  is

V =
4

3
RC

3 − RP
3( ) (40.15)

where RC  is the radius of the corona and RP  is the radius of the
photosphere.  The density of hydrogen atoms at the surface of the

photosphere is 1021  
H atoms

m 3 .  The density of hydrogen atoms in the

corona varies as a function of height.  It ranges from 1015  
H atoms

m3  at the

photosphere to vacuum at the edge of the corona which has a height of
greater than 109  m .  An estimate of the power of the Sun from

disproportionation reactions is given by substitution of H =1015  
H*  atoms

m3

( H*  refers to hydrino atoms), RC = 2 X 109  m , RP = 1 X 109  m , T = 2 X 106  K ,
p = 2 , m = 1 and m' = 2  into Eqs. (40.22-40.24).  The calculated maximum
power of 4 X 1026  W  matches the observed maximum power output of
4 X 1026  W .  Thus, a major part of the solar power can be attributed to
disproportionation reactions using the same rate equation that predicts
the observed line intensity (Eq. (40.8)) of the 40.8 eV  line of Labov and
Bowyer [2] assigned to Eq. (40.10).

Broadening of the Hydrogen 911.8Å Line Problem
As shown in Figure 7.5 of [12], Figure 4.10 of Phillips [13], and

Figure 9.5 of Stix [14] (See Figure 1), the extreme ultraviolet spectrum of
the solar disk is a sharp line spectrum for hydrogen and helium except
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for the continuum lines, the H I 911.8 Å  line and the He I 504.3 Å  line.  In
both cases, the continuum line has a sharp edge and a broad band on the
shorter wavelength side only.  Recombination at a continuum of very
high electron energies is the mechanism proposed previously [15].
However, the broadening of the H I 911.8 Å  line (911.8 Å to ≈ 600 Å  ) is six
times that predicted based on the thermal electron energy (T = 6,000 K  in
Eq. (40.25)) at the surface of the photosphere where the H I 911.8 Å
continuum originates, and based on the relative width of the helium
continuum lines, He I 504.3 Å  ( He I 504.3 Å to ≈ 530 Å ) and He II 227.9 Å

( He II 227.9 Å to ≈ 225 Å  [11]).  The latter lines are proportionally much
narrower; yet the corresponding temperatures of origin must be higher
because the transitions are more energetic.  Furthermore, the H 911.8 Å
continuum line of the spectrum of a prominence is about one half the
width of the same line of the quiet Sun spectrum as shown in Figure 1.
Yet, the temperature rises to greater than 10,000 K  in a prominence [16].
The proposed recombination continuum line also is inconsistent with the
line shape shown in Figure 1.  A plasma with a Maxwellian distribution
would give a line of constant slope when plotted on a logarithmic scale;
whereas, more than one slope is present in Figure 1.  The problem of the
anomalous spectral feature of the excessive broadening of the
continuum line of hydrogen to higher energies can be resolved by
assignment of the broadening mechanism to energetic
disproportionation reactions involving hydrogen atoms as reactants.

The Sun itself is the source of lower-energy hydrogen for reactants
for interstellar disproportionation reactions given by Eqs. (40.3-40.5).
The source of energy holes in solar production are hydrogen and singly
ionized helium, He+ .  The ionization energy of hydrogen is 13.6 eV .
Disproportionation can occur between three hydrogen atoms whereby
two atoms provide an energy hole of 27.21 eV  for the third hydrogen
atom.  Thus, the transition cascade for the pth cycle of the hydrogen-

type atom, H
aH

p

 
  

 
  , with two hydrogen atoms, H

aH

1
 
 

 
 
, as the source of

energy holes that causes the transition reaction is represented by

27.21 eV + 2H
aH

1
 
 

 
 

+ H
aH

p

 
  

 
  → 2H + + 2e− + H

aH

(p +1)

 
  

 
  + [(p +1)2 − p2 ]X13.6 eV (40.16)

2H + + 2e− → 2H
aH

1
 
 

 
 

+ 27.21 eV (40.17)

And, the overall reaction is
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H
aH

p

 
  

 
  → H

aH

(p +1)

 
  

 
  + [(p +1)2 − p]X13.6 eV (40.18)

Helium II is one of the catalysts that can causes a transition
reaction because the second ionization energy is 54.4 eV , m = 2 in Eq.
(5.5).  Thus, the transition cascade for the pth cycle is represented by

54.4 eV + He+ + H
aH

p

 
  

 
  → He2 + + e− + H

aH

(p + 2)

 
  

 
  + [( p + 2)2 − p2]X13.6 eV (40.19)

He2+ + e− → He+ + 54.4 eV (40.20)

And, the overall reaction is

H
aH

p

 
  

 
  → H

aH

(p + 2)

 
  

 
  + [(p + 2)2 − p]X13.6 eV (40.21)

Also, Helium II is a catalyst that can cause a transition reaction
with the absorption of an energy hole of 27.21 eV , m = 1 in Eq. (5.5).  Thus,
the transition cascade for the pth cycle is represented by

27.21 eV + He+ + H
aH

p

 
  

 
  → He2+ + e− + H

aH

( p + 1)

 
  

 
  + [(p +1)2 − p2 ]X13.6 eV − 27.21 eV

(40.22)

He2+ + e− → He+ + 54.4 eV (40.23)

And, the overall reaction is

H
aH

p

 
  

 
  → H

aH

(p +1)

 
  

 
  + [(p +1)2 − p]X13.6 eV (40.24)

In the case of the three body catalytic reaction given by Eqs.
(40.16-40.18) with p = 1, the electronic transition of one of the hydrogen

atoms from the "ground" state to the lower-energy state, n =
1

2
, is

possible by a "resonant collision" mechanism wherein the emitted
photon of 911.8 Å  is shifted to a continuum of shorter wavelengths
between 911.8 Å − 455.9 Å via a mechanism analogous to that of a doubly
excited state transition.  In general, the reaction requires a collision with
a body, M , to remove part of the transition energy-
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H + M → H n =
1

2
 
 

 
 

+ M * +h .  Consider the case that hydrogen atom one,

H 1( ), and two, H 2( ), provide an energy hole of 27.21 eV  for hydrogen atom
H 3( ).  H 1( ) is ionized, serving as the body which removes energy in the
resonant collision, and H 2( ) remains in a continuum excited state.  Then,
H 2( ) and H 3( ) emit radiation simultaneously.  Thus, the H I 911.8 Å

continuum line is broadened with a sharp edge at 911.8 Å  and a
continuum tail of shorter wavelengths between 911.8 Å − 455.9 Å.  A second
edge at 739 Å  would correspond to the superposition of the energy of the
H I 911.8 Å  transition of H 3( ) and the 3647 Å  Balmer continuum of H 2( ).
This second continuum edge at 739 Å  is observed as demonstrated in the
quiet sun-center spectrum of Figure 1.  The three-body-hydrogen
catalytic reaction occurs on the surface of the photosphere where the
temperature permits hydrogen atoms to form at sufficient
concentrations for the occurrence of hydrogen-three-body collisions.
This mechanism of broadening of the H I 911.8 Å  continuum line is not
possible in the case that He+  (Eqs. (40.19-40.21)) or (Eqs. (40.22-
40.24)) is the source of the energy hole; thus, the corresponding helium
continuum lines, He I 504.3 Å , and He II 227.9 Å , are not anomalous.  The
911.8 Å  emission corresponding lower-energy hydrogen transition,

H n = 1[ ] He +  or  He 2+

 →      H n =
1

2
 
 

 
 

+ h  911.8 Å( ) , is sharp.

The disproportionation reactions of hydrogen wherein hydrogen
atoms are the source of energy holes occur at the surface of the
photosphere where the temperature is 6000 K .  A major portion of the
power of the Sun is due to solar emission in the region of the H I 911.8 Å

band [17] and longer wavelengths.  The intensity of the H I 911.8 Å  band is
weakened due to the high cross section for absorption and scattering at
extreme UV wavelengths.  In fact, the disproportionation line intensities
may be weaker than those of highly ionized heavy elements.  Ionized
heavy elements emit high in the corona at 2M K  where the path length to
space is much less than the path length for emission from
disproportionation reaction regions such as at the solar surface as
shown in Figure 1.

The reaction product, lower-energy hydrogen, can be reionized as
it is diffuses towards the center of the Sun which has a temperature of
15.8 X 106  K .  Thus, lower-energy hydrogen provides a mechanism to
transfer energy from the photosphere to the corona at a much higher
temperature.
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Figure 1a.  (Top) Skylab extreme ultraviolet spectrum of the solar disk is
a sharp line spectrum for hydrogen and helium except for the
continuum lines, He I 504.3 Å  and H I 911.8 Å  line.  The H I 911.8 Å  line is
excessively broad at short wavelengths.  The hydrogen Lyman series,
beginning with Lα at 1216 Å  and ending at 912 Å  is marked.  The helium
series starting at 584 Å  and ending on the helium continuum at 504 Å  is
also marked.  (Bottom) A similar spectrum, but observed in the corona
above the solar limb.  In this spectrum, the emission from
chromospheric lines and continua is severely attenuated.  The strongest
lines in this spectrum are produced by high-temperature, multiply
ionized ions such as the indicated doublets of Ne VIII, Mg X, or Si XII.
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Figure 1b.  (Top and Middle) Skylab (Harvard College Observatory
spectrometer) extreme ultraviolet spectra of the solar disk and a
prominence are each a sharp line spectrum for hydrogen and helium
except for the continuum lines, He I 504.3 Å  and H I 911.8 Å  line.  In the
quiet Sun-center spectrum, the H I 911.8 Å  line is excessively broad at
short wavelengths.  The hydrogen Lyman series, beginning with Lα at
1216 Å  and ending at 912 Å  is marked.  The helium series starting at 584 Å

and ending on the helium continuum at 504 Å  is also marked.  (Bottom)
A similar spectrum, but observed in the corona above the solar limb.  In
this spectrum, the emission from chromospheric lines and continua is
severely attenuated.  The strongest lines in this spectrum are produced
by high-temperature, multiply ionized ions such as the indicated
doublets of Mg X, or Si XII.
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Temperature of the Transition from "Radiation Zone" to
"Convection Zone" Problem

The reaction product, lower-energy hydrogen, can be reionized as
it diffuses towards the center of the Sun.  The abrupt change in the
speed of sound and transition from "radiation zone" to "convection
zone" at a radius of 0.7 the solar radius, 0.7 RS , with a temperature of
2 X 106  K  matches the ionization temperature of lower-energy hydrogen.
The central temperature of the Sun is 15.8 X 106  K .  A stable "radiation
zone" overlays the core where energy diffuses outward and stratification
is governed by the opacity of matter to the passage of radiation.  By
0.7 RS , the temperature has dropped to about 2 X 106  K .  The Sun becomes
opaque to radiation for outward distances greater than 0.7 RS , and the
speed of sound abruptly changes at 0.7 RS  [7].  This observation is
consistent with the ionization of lower-energy hydrogen for radii shorter
than 0.7 RS  with a resulting strong increase in opacity.  Previously, this
observation was assigned to the onset of capture of electrons by highly
ionized atoms.  However, the Sun is composed of about 2% heavy
elements for which various states of ionization are achieved essentially
continuously for radii short of 0.7 RS  to the surface.  The average energy,
E , of an ideal gas atom given by Eq.(16.32) with three degrees of
freedom is

E =
3

2
kT (40.25)

where k  is Boltzmann's constant and T  is the temperature.  Substitution
of 2 X 106  K  into Eq. (40.25) gives 260 eV  as the average kinetic energy of
the atoms at the location of 0.7 RS  which corresponds to the ionization

temperature of lower-energy hydrogen of quantum number n =
1

4
(Hydrinos tend to lower-energy states with time; therefore, the radius of
this speed-of-sound-transition region decreases with time).  The increase
in opacity caused by the presence of unionized lower-energy hydrogen
atoms initiates a "convection zone" reaching nearly to the surface
wherein thermal convection is nearly adiabatic, until a rapid drop in
density and temperature just beneath the visible surface produces a thin
superadiabatic layer.  The atmosphere and extended heliosphere above
the surface are the sites of many amazing phenomenon including solar
flares, the greatest explosions in the Solar System.  Limb measurements
of the transition-region ultraviolet lines point to the much of the
emission coming from tiny (less than 100 km  across) structures not
resolvable by any instrument so far used, and only a small part is due to
the "true" transition region (the interface of the chromosphere and the
corona).  A sudden release of energy gives rise to exploding granules
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[18].  These previously poorly understood phenomena are caused by
disproportination reactions which release a major portion of the Solar
power.  Disproportionation takes place at the surface and corona of the
Sun where the gas is sufficiently rarefied such that the electron of the
hydrino atom which provides the energy hole ionizes to vacuum versus
to a plasma in the case of the photosphere.  With ionization to vacuum,
the integral of Eq. (6.27) is one corresponding to a high reaction rate.

Cool Carbon Monoxide Clouds Problem
Another spectroscopic mystery concerns an infrared absorption

band of the chromosphere.  According to Phillips [19]:

"The most puzzling observations of the chromosphere have been
made in the infrared, at a wavelength of 4.7 m , where there are
absorption bands (i.e. numerous spectral lines crowded together to
form a continuous absorption feature) due to the molecule carbon
monoxide.  This appears to be present at altitudes well into the
chromosphere, where the temperature has risen to 6000 K  or more,
yet the molecule can only exist at temperatures of about 4000 K -at
higher temperatures it would break up into its constituent carbon and
oxygen atoms.  It seems that the chromosphere has pockets of much
cooler gas.  This has altered our perception of the chromosphere's
nature..."

This problem can be resolved by assignment of the broad 4.7 m  feature
to a temperature broadened rotational transition of a molecular ion of
lower-energy hydrogen.

A hydrino atom can react with a proton to form a dihydrino
molecular ion.

H
aH

p

 
  

 
  + H+ → H2

* 2c' =
2ao

p

 
  

 
  

+

(40.26)

The energy released is the bond dissociation energy of the dihydrino
molecular ion given by Eq. (12.90).

ED = E(H
aH

p

 
  

 
  ) − ETzeroorder

−
Evib

2
(40.27)

where the total energy of the dihydrino molecular ion with zero order
vibration, ETzeroorder

, is given by Eqs. (12.76), (12.90), and (12.91).  The
binding energy of the hydrino atom is

E H
aH

p

 
  

 
  

 
 
  

 
 = p213.6 eV (40.28)

From Eqs. (12.58) and (12.89), the vibrational energy, Evib , without the
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small correction do to the elongation of the molecular ion due to
vibration is

Evib = p2 0.59 eV (40.29)
The effect of zero order vibration is a small contribution to the total
energy, ET , thus; the total energy of the hydrino molecular ion is
approximately given by Eq. (12.76).

ET = 13.6 eV(−4 p2 ln3 + p2 + 2 p2 ln3) (40.30)
The energy, E , for the reaction (Eq. (40.26)) of the hydrino atom,

H
aH

p

 
  

 
  , with a proton to form the hydrogen-type molecular ion,

H2
* 2c' =

2ao

p

 
  

 
  

+

, is approximately

E = E H
aH

p

 
  

 
  

 
 
  

 
 − ET −

Evib

2
(40.31)

The rotational wavelength of the hydrogen-type molecular ion

H2
* 2c' =

2ao

p

 
  

 
  

+

 including vibration given by Eq. (14.33) is

=
169

p2 J + 1[ ]  m (40.32)

where p  is an integer.  The wavelength calculated from Eq. (40.32) for
the J = 0 to J = 1 transition of the hydrogen-type molecular ion

H2
* 2c' =

2ao

p

 
  

 
  

+

 for p = 6 is 4.7 m .  A broad 4.7 m  solar chromospheric

absorption line is observed which was previously assigned to cool
carbon monoxide clouds; however, the temperature of the
chromosphere, > 6000 K , is higher than that at which carbon monoxide
completely decomposes into carbon and oxygen, < 4000 K  [19].  The

energy, E , for the reaction (Eq. (40.26)) of hydrino atom, H
aH

6
 
 

 
 
, with a

proton to form the hydrogen-type molecular ion H2
* 2c' =

ao

3
 
 

 
 

+

 is equal to

the bond dissociation energy, ED  given by Eqs (40.28-40.31).  The

calculated bond dissociation energy, ED , of H2
* 2c' =

ao

3
 
 

 
 

+

 is ED = 100 eV .

The bond dissociation temperature of the hydrogen-type molecular ion

H2
* 2c' =

ao

3
 
 

 
 

+

 can be calculated from the relationship between the average

kinetic energy, E , of an ideal gas atom and the T .  Substitution of
E = 100 eV  into Eq. (40.25) gives T = 7.7 X 105  K  as the temperature
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corresponding to the average kinetic energy of the atoms of the
chromosphere which is equal to the bond dissociation energy of

H2
* 2c' =

ao

3
 
 

 
 

+

.  The assignment of the 4.7 m  absorption line to the J = 0 to

J = 1 transition rotational transition of H2
* 2c' =

ao

3
 
 

 
 

+

 provides a resolution

of the problem of cool carbon monoxide clouds.

Stellar Age Problem
Modeling how stars evolve leads to age estimates for some stars

that are greater than the age of the universe [7].  Mills' theory predicts
that presently, stars exist which are older than the elapsed time of the
present expansion as stellar evolution occurred during the contraction
phase.  The maximum energy release of the universe given by Eq.
(23.142) of the Gravity Section occurred at the beginning of the
expansion phase.  PU , the maximum power radiated by the universe is

  

PU =

mec
2

2GM

c2Dc

2GM

c2Dc

=
c5

4 G
= 2.89 X 1051

 W (40.33)

The observed power of the present universe from stellar mass to energy
conversion calculated from the number of galaxies (400 billion ) times the
number of stars per galaxy (400 billion ) times the average mass to energy
conversion rate per star (5 billion  kg c2 / sec⋅ star ) is close to that given by
Eq. (40.33).  Thus, stars existed at the beginning of the present
expansion.

Solar Rotation Problem
A further mystery concerns the rotation of the Sun [7].  First, the

surface rotation decreases with increasing latitude, and rotation
throughout the "convection zone" is unexpectedly similar to that at the
surface.  Second, the outer part of the "radiation zone" appears to rotate
at a constant intermediate rate.  Third, a significant amount of angular
momentum loss was necessary for the Sun to form.  Otherwise, the
centrifugal force of gravity would have been too weak to collapse the gas
cloud that contracted to form the Sun.  Conservation of angular
momentum would have caused the angular velocity of the gases to
exceed the escape velocity.  The outer layers of the Sun transferred most
of the original angular momentum of the gas cloud to the solar wind.  To
conserve angular momentum, evolutionary models require that the core



© 2000 by BlackLight Power, Inc.  All rights reserved.
755

must be spinning at a faster rate than the overlying layers.  However,
current helioseimology results indicate that the core may be the most
slowly rotating part of the Sun.  More angular momentum must have
been lost from the core than from the outer layers which directly lose
angular momentum to the solar wind.  This solar rotation problem may
be resolved by including the consequences of spacetime expansion
affected by matter to energy conversion in the Sun (Eq. (23.140)) to the
loss of angular momentum by the Sun.  The expansion of spacetime is a
mechanism to transfer angular momentum to the universe.  For example,
in the limit that a body is completely converted to energy, the body's
total angular momentum is completely transferred to the universe.
Fusion (mainly the pp chain (Eq. (40.9)) and disproportionation (Eqs.
(40.3-40.5)) reactions are the sources of the Sun's output power.  Both
reactions convert matter into energy; thus, they cause spacetime to
expand.  The gravitational equation (Eq. (23.38)) with the equivalence of
the particle production energies (Eqs. (23.48a-23.48b)) permit the
equivalence of mass/energy ( E = mc2 ) and spacetime

(
c3

4 G
= 3.22 X 1034

 
kg

sec
).  Spacetime expands as mass is released as energy

according to Eq. (23.140) which provides the basis of the atomic,
thermodynamic, and cosmological arrows of time.

Solar energy is electromagnetic.  The multipole fields of a radiating
source can be used to calculate the energy and the angular momentum
carried off by the radiation [20].  For harmonically varying fields, the
time-averaged energy density is

u =
1

16
E • E* + B •B*( ) (40.34)

The time-averaged angular-momentum density is

m =
1

8 c
Re r × E × B *( )[ ] (40.35)

The ratio of the square of the angular momentum, M2 , to the square of
the energy, U2 , for a pure (l,m) multipole follows from Eq. (2.25) and
Eqs. (2.31-2.33)

M2

U 2 =
m 2

2 (40.36)

The loss of the solar angular momentum can be calculated from
the mass deficit over time with angular momentum transfer by photons
propagating in the corresponding expanding spacetime.  The relationship
between proper time and coordinate time given by the Schwarzschild
metric for the infinitesimal spatial temporal displacement [21], d 2 , is:
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d 2 = 1 −
2Gm0

c2r
 
 

 
 dt2

−
1

c2

dr2

1− 2Gm0

c2r

 

 

 
 

 

 

 
 

+ r2 d 2 + r2 sin2 d 2

 

 

 
 

 

 

 
 

(40.37)

Consider a general point in the xy-plane having dr = 0 ; d = 0 ; sin2 =1.
Substitution of these parameters into Eq. (40.37) gives

d = dt 1 −
2Gm0

c2r
−

v2

c2

 
 
  

 

1
2

(40.38)

with v2 = c2 , Eq. (40.31) becomes

= ti
2GM

c2 r
= ti

2GM

c2r
(40.39)

The unification of Maxwell's equations and general relativity give the
following relationships which follow from Eq. (40.39)

  

proper time
coordinate time

= gravitational wave condition
electromagnetic wave condition

= gravitational mass phase matching
charge/inertial mass phase matching

proper time

coordinate time
= i

2Gm
c2DC = i

vg

c
(40.40)

Eq. (24.41) given in the Unification of Spacetime, the Forces, Matter, and
Energy Section determines that the periods of spacetime
expansion/contraction (General Relativity) and particle
decay/production (Maxwell's Equations) for the universe are equal.  The
period, T , is

T =
2 GmU

c3  sec (40.41)

It is calculated in Gravity Section from the mass energy of the universe,
mUc2 , at the point where v = c  in Eq. (40.38) and the radius of the
universe is equal to the gravitational radius (Eq. (23.147)).

rg =
2Gm

c2 (40.42)

Thus, the proper time is equal to the coordinate time (Eq. (40.39).  In
the case of the Sun, v << c , and the radius of the Sun is much greater
than its gravitational radius (Eq. (40.42)).  In the case of Eq. (40.36), the
relationship between the proper time corresponding to Maxwell's
Equations and coordinate time corresponding to the solar mechanics
effected by spacetime expansion is given by Eq. (40.38).  The loss of the
solar rotational kinetic energy can be calculated from the mass deficit
over time with angular momentum transfer by photons propagating in
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the corresponding expanding spacetime using the relationship between
proper and coordinate time.  The average rotation rate of the Sun is
approximately 450 nHz  [7].  The mass and the radius of the Sun are
1.99 X 1030  kg  and 6.96 X 108  m , respectively.  The present angular
momentum of the Sun can be estimated from the angular momentum of
a sphere where the moment of inertia, I , is given by Fowles [22].

L = I =
2

5
mRS

2 =
2

5
2 X 1030  kg( ) 6.96 X 108  m( )2

2  X 450 nHz( ) =1.1 X 1042  Js

(40.43)
where RS  is the solar radius.  The rotational kinetic energy, K , of the Sun
is

K =
L2

2I
= I =

1

5
mRS

2 2 =
1

5
2 X 1030  kg( ) 6.96 X 108  m( )2

2  X 450 nHz( )2 = 1.5 X 1036  J

(40.44)
The Sun comprises 99.85 % of the mass of the Solar System.  Therefore,
the angular momentum loss, ∆L , by the Solar System including the Sun is
approximately equal to the angular momentum loss of the Sun.  To
conserve the angular momentum of the Solar System, the average
angular frequency of the Sun was 52 times greater in the past [23, 24].
In this case, the initial rotational velocity of the Sun, vi , was

vi = RS = 6.96 X 108 m( ) 52 X 2  X 450 nHz( ) = 1.0 X 105  
m

sec
(40.45)

Consider Eq. (40.36) which gives the ratio of the square of the angular
momentum, M2 , to the square of the energy, U2 , for a pure (l,m)
electromagnetic multipole.  The relationship between the angular
frequency change of the Sun, ∆ coordinate , corresponding to the loss of
rotational energy to electromagnetic radiation and the angular
frequency in Eq. (40.36), ∆ proper , corresponding to the electromagnetic
radiation is

∆ coordinate

∆ proper

= 1 −
2GmS

c2r
− 1 −

2GmS

c2r
−

∆v( )2

c2

 

 
 

 

 
 (40.46)

where ∆v  is the change in rotational velocity of the Sun.  Eq. (40.36) is
given in terms of the rotational energy by using Eq. (40.46).

M2

U 2 =
12

2 (40.47)

I∆ coordinate

Ucoordinate

=
1

∆ coordinate

1 −
2GmS

c2r
− 1−

2GmS

c2r
−

∆v( )2

c2

 

 
 

 

 
 (40.48)

∆K =
1

2
I ∆ coordinate( )2

=
1

2
U 1−

2GmS

c2r
− 1 −

2GmS

c2r
−

∆v( )2

c2

 

 
 

 

 
 ≅

1

4
U

∆v( )2

c2 (40.49)
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∆K ≅
1

4
∆mSc

2 ∆v( )2

c2 (40.50)

The velocity change over time, ∆v , is essentially equal to the initial
velocity given by Eq. (40.45).  The power of the Sun is 4 X 1026  W , and the
time span which the Sun has spent on the main sequence, converting
hydrogen to helium is 4.6 X 109  years  [24].  Thus, the energy released by
the Sun over its life is 5.8 X 1043  J .  In terms of the symmetry of energy
emission, the Sun is a monopole; thus, m = 1 in Eq. (40.36).  Substitution
of the mass/energy deficit 5.8 X 1043  J  for ∆mSc

2  and the rotational

velocity change ∆v = 1.0 X 105  
m

sec
 gives the change in rotational energy of

the Sun, ∆K , due to General Relativistic effects.

∆K ≅
1

4
5.8 X 1043  J( ) 1 X 105

 m

c

 
  

 
  

2

= 1.6 X 1036  J (40.51)

The lost rotational energy (angular momentum) due to matter to energy
conversion with spacetime expansion is comparable with the present
rotational energy (angular momentum) of the Sun.

The differential rates of matter to energy conversion
predominantly by fusion within the core and by disproportionation
reactions of lower-energy hydrogen in the outer layers of the Sun effect
the relative rotation rates.  The relative rotation rate for the core would
be less than expected if the core was the predominant source of Solar
power.  Furthermore, the relative ratio of the radius of a reacting mass
and its gravitational radius (Eqs. (40.42) and (40.49)) also effect the
relative rotation rates.  In the case that matter to energy conversion
rates of the core ("radiation zone") and the "convection zone" are
approximately equal, the transfer of angular momentum to the universe
via general relativistic effects is greater for the core due to its
significantly greater density.  The core has the largest gravitational
radius.  General relativity provides a resolution to the problem of the
loss of angular momentum of the core which is in agreement with the
current Solar models and helioseismology data.  The photon transfer of
momentum to expanding spacetime mechanism provides a resolution to
the solar rotation problem of the slowly rotating Solar core.  The outer
layers transfer momentum to the solar wind as a function of the latitude;
thus, the equator rotates the fastest.  A possible explanation of the
absence of the change in the rotation with latitude of the core versus the
outer layers is the general relativistic mechanism of angular momentum
transfer.  Due to the sin  dependence (Eqs. (40.37) and (40.49)), the
transfer of angular momentum increases as a function of the distance
from the rotation axis.  In the case that the general relativistic angular
momentum transfer is comparable to the angular momentum transfer to
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the solar wind, the absence of a change in the rotation with latitude of
the core would be predicted.  This case agrees with the present
observations.

STELLAR DATA
Further stellar evidence of disproportionation reactions is the

emission of extreme ultraviolet radiation by young stars called A stars.
They appear to have energetic, ultraviolet-emitting upper atmospheres,
or coronas, even though astronomers believe such stars lack the ability
to heat these regions [25].

Numerous late-type stars, particularly dM stars, are known to flare
from time to time at visible and X-ray wavelengths.  An extremely
pronounced flare was observed by the Extreme Ultraviolet Explorer
(EUVE) Deep Survey telescope on the star AU Microscopii at a count of
20 times greater than that at quiescence [26].  The flare consisted of a
sharp peak in the level of the EUV emission that lasted for two hours
followed by a decaying tail that lasted more than a day.  The total energy
of this event has been estimated to be 3 X 1027  J , with an emission
measure of ≈ 6 X 1053  cm−3  which indicates that large volumes of material
are involved in the flaring process, with flare-loop lengths estimated to
be the size of at least one solar radius.  Emission lines in the extreme
ultraviolet were observed for which there is no satisfactory assignment.
These spectral lines match hydrogen transitions to electronic energy
levels below the "ground" state corresponding to fractional quantum
numbers as shown in Table 3.  The lines assigned to lower-energy
hydrogen transitions increased significantly in intensity during the flare
event.  The data is consistent with disproportionation reactions of lower-
energy hydrogen as the mechanism of solar flare activity.

EQ Peg is a nearby visual binary system.  Both components of the
system are flare stars of spectral types dM4e and dM5e and visual
magnitudes 10.38  and 12.4 , respectively.  The flare activity is very
prominent, and the system exhibits frequent large flares in the U band.
Extreme ultraviolet spectroscopic observations of the star EQ Pegasi were
made with the Extreme Ultraviolet Explorer (EUVE) Deep Survey
photometer [27].  Emission lines in the extreme ultraviolet were
observed for which there is no satisfactory assignment.  These spectral
lines match hydrogen transitions to electronic energy levels below the
"ground" state corresponding to fractional quantum numbers as shown
in Table 4.

The energy released by the transition of the hydrino atom with the

initial lower-energy state quantum number p  and radius 
aH

p
 to the state
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with lower-energy state quantum number p + m( ) and radius 
aH

p + m( )
catalyzed by a hydrino atom with the initial lower-energy state quantum

number m' , initial radius 
aH

m'
, and final radius aH  are given in Tables 3

and 4.
The agreement between the calculated (nonrelativistic) and the

experimental values is remarkable.  Furthermore, many of the lines of
Tables 3 and 4 had no previous assignment, or the assignment was
unsatisfactory.
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Table 3.  Observed line emission of the disproportionation reaction given by
Eqs. (40.3-40.5).  (Raw extreme ultraviolet spectral data of stellar flare on
AU Mic taken from Figure 1 of [26])
____________________________________________________________________________
Observed

Line
(Å)

aPredicted
(Mills)

(Å)
m, m'

b

Assignment
(Mills)

Assignment
(Other)

183 182.36 1, 2 1/4 → 1/5 H transition None

168 167.62 1, 2 Inelastic Scattering (He) of
1/5 → 1/6 H transition

None

130 130.26 1, 2 1/5 → 1/6 H transition None

126 125.76 2, 2 Inelastic Scattering (H) of
1/2 → 1/4 H transition

None

123 122.56 1, 2 Inelastic Scattering (He) of
1/6 → 1/7 H transition

None

114 113.97 2, 2 1/2 → 1/4 H transition None

111 110.52 1, 2 Inelastic Scattering (H) of
1/6 → 1/7 H transition

None

101 101.31 1, 2 1/6 → 1/7 H transition None

97 96.59 1, 2 Inelastic Scattering (He) of
1/7 → 1/8 H transition

None

90 88.95 1, 2 Inelastic Scattering (H) of
1/7 → 1/8 H transition

None

87 87.34 2, 2 Inelastic Scattering (He) of
1/3 → 1/5 H transition

None

83 82.89 1, 2 1/7 → 1/8 H transition None

81 81.05 2, 2 Inelastic Scattering (H) of
1/3 → 1/5 H transition

None

79.5 79.70 1, 2 Inelastic Scattering (He) of
1/8 → 1/9 H transition

None

76 75.98 2, 2 1/3 → 1/5 H transition None
____________________________________________________________________________

____________________________________________________________________________
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a For lower-energy transitions, n = 1,
1

2
,
1

3
,
1

4
,...,  and ni > n f  induced by a

disproportionation reaction with H
aH

2
 
 

 
 
, E =

1

n f
2 −

1

ni
2

 

 
  

 
 X13.6 eV − 54.4 eV ;

a For helium inelastic scattered peaks of hydrogen transitions, ni → n f ,

E =
1

n f
2 −

1

ni
2

 

 
  

 
 X13.6 eV − 54.4 eV − 21.21 eV  (when this photon strikes He (1s2 ) ,

21.2 eV  is absorbed in the excitation to He (1s12 p1 ));
a For hydrogen Inelastic scattered peaks of hydrogen transitions, ni → n f ,

E =
1

n f
2 −

1

ni
2

 

 
  

 
 X13.6 eV − 54.4 eV − 10.2 eV  (when this photon strikes H (1s1 ) , 10.2 eV

is absorbed in the excitation to H (2 p1));
b Eqs. (40.3-40.5).

____________________________________________________________________________
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Table 4.  Observed line emission of the disproportionation reaction given by
Eqs. (40.3-40.5) where m = 1 and m' = 2 .  (Raw extreme ultraviolet stellar
spectral data of star EQ Pegasi taken from Figures 1-3 of [27])
____________________________________________________________________________
Observed

Line
(Å)

aPredicted
(Mills)

(Å)
m, m'

b

Assignment
(Mills)

Assignment
(Other)

304 303.93 1, 2 1/3 → 1/4 H transition He II

265 265.08 1, 2 Inelastic Scattering (He) of
1/4 → 1/5 H transition

None

182 182.36 1, 2 1/4 → 1/5 H transition None

130 130.26 1, 2 1/5 → 1/6 H transition None

122.5 122.56 1,2 Inelastic Scattering (He) of
1/6 → 1/7 H transition

None

101.3 101.31 1, 2 1/6 → 1/7 H transition None

89 88.95 1, 2 Inelastic Scattering (H) of
1/7 → 1/8 H transition

None

83 82.89 1, 2 1/7 → 1/8 H transition None

81 81.05 2, 2 Inelastic Scattering (H) of
1/3 → 1/5 H transition

None

____________________________________________________________________________
a For lower-energy transitions, n = 1,

1

2
,
1

3
,
1

4
,...,  and ni > n f  induced by a

disproportionation reaction with H
aH

2
 
 

 
 
, E =

1

n f
2 −

1

ni
2

 

 
  

 
 X13.6 eV − 54.4 eV ;

a For helium inelastic scattered peaks of hydrogen transitions, ni → n f ,

E =
1

n f
2 −

1

ni
2

 

 
  

 
 X13.6 eV − 54.4 eV − 21.21 eV  (when this photon strikes He (1s2 ) ,

21.2 eV  is absorbed in the excitation to He (1s12 p1 ));
a For hydrogen inelastic scattered peaks of hydrogen transitions, ni → n f ,

E =
1

n f
2 −

1

ni
2

 

 
  

 
 X13.6 eV − 54.4 eV − 10.2 eV  (when this photon strikes H (1s1 ) , 10.2 eV

is absorbed in the excitation to H (2 p1));
b Eqs. (40.3-40.5)

____________________________________________________________________________
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PLANETARY DATA
Planetary evidence of disproportionation reactions is the emission

of energy by Jupiter and Uranus in excess of that absorbed from the
Sun.  Jupiter is gigantic ball of gaseous hydrogen.  Saturn and Uranus are
also largely comprised of hydrogen.  H3

+ is detected from all three
planets by infrared emission spectroscopy [28].  Disproportionation
reactions of hydrogen yield ionizing electrons, energy, and ionized
hydrogen atoms.  Ionizing electrons and protons can both react with
molecular hydrogen to produce H3

+ .  The reactions are as follows:
Lower-energy hydrogen atoms can act as a source of energy holes

that can cause a transition reaction with the absorption of an energy
hole of m X 27.2 eV  (Eq.(5.5)) with the release of significant energy.  Thus,
the transition cascade for the pth cycle of the hydrogen-type atom,

H
aH

p

 
  

 
  , with the hydrogen-type atom, H

aH

m'
 
 

 
 
, that is ionized as the source

of energy holes that causes the transition reaction where the energetic
ionized electron and proton lead to production of H3

+ is represented by

m X 27.21 eV + H
aH

m'
 
 

 
 

+ H
aH

p

 
  

 
  → H + + e− + H

aH

( p + m)

 
  

 
  + [( p + m)2 − p2 − m' 2 −2m( )]X13.6 eV

(40.52)

1.86 eV + H + + H2 → H2
+ + H (40.53)

15.46 eV + e− + H2 → H2
+ + 2e− (40.54)

2H2
+ + 2H2 → 2H3

+ + 2H + 2 1.7 eV( ) (40.55)

And, the overall reaction is

4H2 + H
aH

m'
 
 

 
 

+ H
aH

p

 
  

 
  → 2H3

+ + 2e− + 3H
aH

1
 
 

 
 

+ H
aH

( p + m)

 
  

 
  + 2pm + m2 − m'2[ ]X13.6 eV −13.92 eV

(40.56)
An unsolved puzzle involves the energy source for the mid-

latitude H2  band emissions of Saturn.  The Voyager 2 measurements
show H2  band emissions which must be electron excited.  Yet
insufficient energy is available from the solar flux alone, suggesting
the existence of an additional source of energy [29].  Voyager 2
measurements show that the H2  band intensity in the shadow of the
rings is less than 15 percent of its value just north of the shadow.
This fact, and the sharp edge of the ring shadow, are further
evidence against excitation by precipitating magnetospheric
particles.  Also, high resolution measurements of Jupiter' northern
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auroral ultraviolet emission show that the equatorial H2  dayglow
spectrum was 13% of the strength of the observed auroral emission,
and secondary electron excitation is consistent with the observed
Jovian northern FUV H2  auroral emissions [30].  These observations
indicate that disproportionation reactions of hydrogen comprise a
planetary ionizing energy source.

Two unidentified lines in Jupiter's near-infrared K-band spectrum
match the lowest energy vibrational transition of the dihydrino
molecular ion H2

* 2c' = ao[ ]+
 and this transition with the lowest energy

rotational transition.  Two occasions of exceptionally widespread but
distinct emission activity have been observed in Jupiter's near-infrared
K-band spectrum during September and November of 1988 as reported
by Trafton and Watson [31].  Two distinct sets of emission features were
involved on the two dates of observation.  During these occasions, these
normally absent emission features extended from the South polar limb
to at least the equator, over a broad range of longitudes.  Meanwhile,
Jupiter's auroral H2  and H3

+ remained confined to their usual magnetic
polar domains.  The one emission feature at 2.22 m  matches the energy
of the n = 1 to n = 0  vibrational transition of the dihydrino molecular ion,
H2

* 2c' = ao[ ]+
 given by Eq. (12.157).  The other feature at 2.1055 m  matches

the energy of the n = 1 to n = 0  vibrational transition of the dihydrino
molecular ion, H2

* 2c' = ao[ ]+
 given by Eq. (12.157) with the J +1 to J

rotational transition given by Eq. (14.29).  One potential source of these
emissions is auroral excitation from precipitation of protons during
Jovian magnetospheric storms.  The reaction giving rise to the dihydrino
molecular ion is

 H
aH

2
 
 

 
 

+ H+ → H2
* 2c' = ao[ ]+

(40.57)

The n = 1 to n = 0  vibrational transition of the corresponding dihydrino

molecule H2
* 2c' =

ao

2
 
 

 
 
 is forbidden, but it may be seen with the presence

of sufficient concentration.  The Sun may be a source of the dihydrino
molecular vibrational transition.  The calculated energy is given by Eq.
(12.172).  This energy is very close to that of the coronal 'green' line at
530.3 nm  which has a less than straightforward assignment [32].  And,
many lines which correspond to dihydrino rotational transitions are
observed in the infrared spectrum of the Sun as given in the Solar
Infrared Data Section.

COSMIC BACKGROUND EXPLORER DATA
The spin/nuclear hyperfine structure transition energies of lower-
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energy hydrogen match closely certain spectral lines obtained by COBE
[33-35] for which no other satisfactory assignment exists.  The far-
infrared absolute spectrometer (FIRAS) on the Cosmic Background
Explorer has carried out an all-sky survey in the far infrared region
(1 to 90 cm−1 ).  Averaged over many positions in the Galaxy, spectral
features are observed which correspond closely with the predicted
hydrino hyperfine transition energies.  The lines obtained by COBE that
match the hyperfine structure transitions of lower-energy hydrogen as
calculated in the Spin-Nuclear and Orbital-Nuclear Coupling of Hydrinos
Section are given in Table 5.  The energy, the wavelength, and the
frequency corresponding to the spin-nuclear coupling energy of the
hydrino atom with the lower energy state quantum numbers n  and   l  and

with the radius 
aH

n
 are given in Table 5.
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Table 5.  The spin-nuclear coupling energy of the hydrino atom with the

lower energy state quantum numbers n  and   l  and with the radius 
aH

n
.

____________________________________________________________________________
n   l Energya

( J X 1023)

Lambda
(cm )

Frequency
(GHz)

Wave Number
(cm−1)

Experimental
Wave

Number [33,34]
(cm−1)

1 0 0.09592 20.71 1.447 0.04829 0.0485

2 0 1.918 1.0355 28.95 0.9657 0.965

2 1 5.051 0.3933 76.23 2.543 2.55

3 0 7.769 0.2557 117.2 3.911 3.90

4 0 19.95 0.09957 301.1 10.04 10.0

5 0 40.77 0.04873 615.2 20.52 20.5
____________________________________________________________________________
aFor the case that   l = 0 ,
∆Etotal

S/N O/N = n2 2.878 X 10−24  J − n3 3.837 X 10−24  J (40.58)
aFor the case that   l ≠ 0 ,

  
r1± =

aH + aH
2 ±

6 oe l l +1( ) +
3

4

 
 
  

 
 

Pao

h
2n

(40.59)

  
∆Etotal

S/N O/N =
ne2

8 o

1

r1−

−
1

r1+

 

  
 

  − l l +1( ) +
3

4

 
 
  

 
 2 P

n3
0eh

meaH
3 (40.60)

SOLAR INFRARED DATA

Diatomic Molecular Rotation of Hydrogen-Type Molecules
Two hydrogen atoms react to form a diatomic molecule, the

hydrogen molecule.
 2H aH[ ] → H2 2c' = 2ao[ ] (40.61)

where 2c'  is the internuclear distance.  Also, two hydrino atoms react to
form a diatomic molecule, a dihydrino molecule.

2H
aH

n
 
 

 
 

→ H2
* 2c' =

2ao

n

 
  

 
  (40.62)

where n  is an integer.  The rotational energy emitted by a hydrogen-type
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molecule with the transition from the state with the rotational quantum
number J +1 to one with the rotational quantum number J  given by Eq.
(14.29) is

=
8.43 X 105

n2 J + 1[ ]  Å (40.63)

where n  is an integer which corresponds to, 
1

n
, the fractional quantum

number of the hydrogen-type molecule.
The rotational transition energies of lower-energy molecular

hydrogen match closely certain spectral lines obtained by Livingston and
Wallace [36] using the 1-m Fourier Transform Spectrometer at the
McMath telescope on Kitt peak for which no other satisfactory
assignment exists.  Livingston and Wallace combined infrared solar
spectra at different air masses to obtain a solar spectrum in the infrared
from 1850 to 9000 cm-1 (1.1 to 5.4 m ) corrected for atmospheric
absorption by a point-by point extrapolation to zero air mass.  The
spectra were obtained at disk center.  The observed region was free of
sunspots, and a 1-m out-of-focus image (~40 arc-sec diameter area)
assured that any surface velocity and brightness structure was averaged
over.  The spectra band width was set at long wavelengths (~5.4 m ) by
the response of the InSb detectors and at the short wavelength end (~1.1

m ) by a silicon filter. The infrared lines corrected for atmospheric
absorption that match the rotational transitions of lower-energy
molecular hydrogen are given in Table 6.  Similar observations of
spectral lines obtained by Brault et al. at Kitt Peak National Observatory
[37], M. Migeotte made at Jungfraujoch International Scientific Station
of Switzerland [38], and Cohen [39] recorded on Skylab with the NRL's
Apollo Telescope also appear in Table 6.  The frequency corresponding
to the J +1 to J  rotational transition of the dihydrino molecule (Eq.

(40.63) where n  is an integer which corresponds to 
1

n
, the fractional

quantum number of the hydrogen-type molecule) are given in Table 6.
The assignment of additional lines to rotational transitions of lower-
energy hydrogen molecules was limited by the range of the spectrum,
the weakness of the spectrum in certain regions, and strong atmospheric
components in some regions.  The presence of all of the lines in order of
energy over the region observed for n ≥ 5  may be indicative of a greater
population where states n < 5  are ionized at 0.7 RS  as described in the
Temperature of the Transition from "Radiation Zone" to "Convection
Zone" Problem Section.  Also, the intensity of these forbidden lines is
indicative of a substantial abundance of dihydrino molecules in the Sun.
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Table 6.  The J +1 to J  rotational energy of Solar dihydrino molecules.
________________________________________________________________________
Observed Line
Wave Number

( cm−1)

Predicted
Mi l ls

( cm−1)
Eq. (40.63)

n
Eq. (40. 62)

Assignment
Mi l l s

Transition
J +1 to J

Eq. (40.63)

Ref. Assignment
(Other)

1898.2 1898.1 2 4 to 3 36 CO,  ∆ = 1 peak

1897.9
1894.4

1898.1 2 4 to 3 37 None

1898.1 1898.1 2 4 to 3 38 Solar in origin
CO

2846.8 2847.1 2 6 to 5 36 None

2847.7 2847.1 2 6 to 5 37 None

2847.1 2847.1 2 6 to 5 38 CH4  (telluric)

3322 3321.6 2 7 to 6 36 None

3320.4
3322

3321.6 2 7 to 6 37 None

3321.6 3321.6 2 7 to 6 38 Solar in origin
Not identified

4270.8 4270.7 2 9 to 8 36 CO,  ∆ = 2 peak

4270.7 4270.7 2 9 to 8 37 None

4745.3 4745.2 2 10 to 9 37 None

1067.7 1067.7 3 1 to 0 38 O3  (telluric)

2135.3 2135.3 3 2 to 1 36 CO,  ∆ = 1 peak

2135.5 2135.3 3 2 to 1 37 None

2135.3 2135.3 3 2 to 1 38 CO  (telluric)

3203.1 3203.0 3 3 to 2 37 None

3203.0 3203.0 3 3 to 2 38 Not identified

4270.8 4270.7 3 4 to 3 36 CO,  ∆ = 2 peak

4270.7 4270.7 3 4 to 3 37 None
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6406.18 6406.0 3 6 to 5 36 Ni,  6406.18

6406.2 6406.0 3 6 to 5 37 None

7473.7 7473.7 3 7 to 6 37 None

8540.9
8542.3

8541.4 3 8 to 7 37 None

1898.2 1898.1 4 1 to 0 36 CO,  ∆ = 1 peak

1897.8
1898.4

1898.1 4 1 to 0 37 None

5693.8 5694.2 4 3 to 2 36 None

5693.7
5694.4

5694.2 4 3 to 2 37 None

7592.2 7592.3 4 4 to 3 36 None

7592.6 7592.3 4 4 to 3 37 None

9490.5 9490.4 4 5 to 4 37 None

2967.12 2965.8 5 1 to 0 36 None

2965.7
2966

2965.8 5 1 to 0 37 None

2965.8 2965.8 5 1 to 0 38 H2O, 2 2

(telluric)

5931.3 5931.5 5 2 to 1 36 None

5931.5 5931.5 5 2 to 1 37 None

8896.7 8897.3 5 3 to 2 36 None

8897.3 8897.3 5 3 to 2 37 None

4270.8 4270.7 6 1 to 0 36 CO,  ∆ = 2 peak

4270.7 4270.7 6 1 to 0 37 None

8540.9
8542.3

8541.4 6 2 to 1 37 None

5812.26
5814.2

5812.9 7 1 to 0 36 Fe at 5812.26
None

5812.7 5812.9 7 1 to 0 37 None
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7592.2 7592.3 8 1 to 0 36 None

7592.6 7592.3 8 1 to 0 37 None

60,124 60,142 13 3 to 2 39 Fe II( )

69,783 69,750 14 3 to 2 39 None

53,362 53,381 15 2 to 1 39 Active region
Unidentified

80,038 80,071 15 3 to 2 39 None

60,710 60,735 16 2 to 1 39 Active region
Unidentified

68,582 68,564 17 2 to 1 39 C I( )

76,869 76,868 18 2 to 1 39 None
________________________________________________________________________

IDENTIFICATION OF HYDRINO HYDRIDE ENERGY LEVELS BY SOFT
X-RAYS, ULTRAVIOLET (UV), AND VISIBLE EMISSIONS FROM THE
SUN

Hydrino H
aH

p

 
  

 
   reacts with an electron to form a corresponding

hydrino hydride ion, hereinafter designated as H − n = 1/ p( ):

H
aH

p

 
  

 
  + e− → H − n = 1/ p( ) (40.64)

The product is a hydride ion ( H −) having a binding energy given by
the following formula (Eq. (7.58)) derived in the Hydrino Hydride
Section

  

Binding Energy =
h2 s(s + 1)

8 ea0
2 1+ s(s +1)

p

 

  
 

  

2 − 0e
2h2

me
2 a0

3 1 +
22

1 + s(s +1)

p

 

  
 

  

3

 

 

 
 
 

 

 

 
 
 

(40.65)

where p  is an integer greater than one, s = 1/ 2,  is pi,   h  is the Planck's
constant bar, o  is the permeability of vacuum, me  is the mass of the
electron, e  is the reduced electron mass, ao  is the Bohr radius, and e  is
the elementary charge.  Each hydride ion having fractional quantum
energy level comprises two indistinguishable electrons bound to a
proton where the radius of the two electrons of the hydrino hydride ion
as a function of p  (Eq. (7.57)) is
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r2 = r1 =
a0

p
1 + s s +1( )( ); s =

1

2
(40.66)

Solar Hydrino Hydride Lines
The Solar hydrino hydride emission lines were sought.  For typical

conditions in the photosphere Figure 2 [40] shows the continuous
absorption coefficient C ( )  of the Sun.  In the visible and infrared, the
hydride ion H − is the dominant absorber.  Its free-free continuum starts
at = 1.645 m , corresponding to the ionization energy of 0.745 eV  for H −

with strongly increasing absorption towards the far infrared.

Figure 2.  Continuum absorption coefficient (per particle) in the solar
atmosphere, at 500 = 0.1.

Hydrinos soft X-ray emissions from the dark interstellar medium
observed by Labov and Bowyer [2] and the soft X-ray emissions of the
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Sun [9,11-13] are given in the INTERSTELLAR MEDIUM Secton and the
SOLAR DATA Section, respectively.  In these cases, a hydrogen atom in a

fractional quantum state, H ni( ), collides, for example, with a n =
1

2

hydrogen atom, H
1

2
 
 

 
 , and the result is an even lower-energy hydrogen

atom, H n f( ), and H
1

2
 
 

 
  is ionized.

H ni( ) + H
1

2
 
 

 
 → H n f( ) + H + + e− + photon (40.67)

The energy released, as a photon, is the difference between the energies
of the initial and final states given by Eq. (40.2a) with Eq. (40.2c) minus

the ionization energy of H
1

2
 
 

 
 , 54.4 eV .  For example, in Table 2, all of the

transitions between different fractional quantum energy levels are
present in order of energy from the 1 → 1/2 H transition to the 1/9 → 1/10 H

transition.  A solar hydrino atom H
aH

p

 
  

 
   may react with free electrons in

the Sun or ionize an atom of lower electron affinity to form the hydrino
hydride H − n = 1/ p( ) according to Eq. (40.64).  The ionization energies of
the hydrino hydride ion H − n = 1/ p( ) as a function of p , where p , is an
integer are shown in Table 7.  These lines were sought in published solar
spectra.  Each predicted peak is a sharp emission peak in the case that
the solar temperature is lower than the ionization energy of the hydrino
hydride and a continuum absorption peak increasing to lower
wavelengths of width corresponding to the local solar temperature in the
case that the ionization energy is lower than the local solar temperature.

A.  The Data and Hydrino Hydride Assignments

The calculated (Eq. (40.65) with Eq. (40.66)) and observed
emission and continuum peaks at the ionization energy of the hydrino
hydride ion H − n = 1/ p( ) as a function of p , for p = 1  to p = 10  are given in
Table 7.



© 2000 by BlackLight Power, Inc.  All rights reserved.
774

Table 7.  The calculated (Eq. (40.65) with Eq. (40.66)) and observed emission and
continuum peaks at the ionization energy of the hydrino hydride ion H − n = 1/ p( )
as a function of p , for p = 1  to p = 10 .  (Raw extreme ultraviolet (EUV) solar

spectral data 17 − 45 nm( )  taken from Figures 3a-k of [9], Raw EUV solar spectral data

20 −170 nm( )  taken from spectra of [41] and 70 −160 nm( )  taken from spectra of [42];

Raw UV solar spectral data 117.5 −195 nm( )  taken from spectra of [43]; Raw near

UV/visible 119.5 − 420.5 nm( )  taken from spectra of [44]).

Hydride Ion r1

(ao )a

Calculated
Ionization

Energyb (eV)

Calculated
Wavelength
(nm)

Experimental
Wavelength
(nm)

Ref. Assignment
(Other)
& Comments

H − n = 1( ) 1.866 0.754 1645 1645 45 H − n = 1( )

H − n = 1/ 2( ) 0.9330 3.047 406.9 407 44 None
Continuum Peak

H − n = 1/ 3( ) 0.6220 6.610 187.57 187.58 43 Ratio of 1875.7 Å Peak to Fe II
peak at 1876.838 Å increased
by a factor of 25 in a Flare
Versus the Quiet Sun

H − n = 1/ 4( ) 0.4665 11.23 110.4 110.4 41;
42

None
Continuum Peak
3 eV Width

H − n = 1/ 5( ) 0.3732 16.70 74.23 74.23 41 None
Continuum Peak
3 eV Width

H − n = 1/ 6( ) 0.3110 22.81 54.36 54.36 41 None
Continuum Peak 3 eV Width

H − n = 1/ 7( ) 0.2666 29.34 42.26 42.26 9 Peak Indicated
Unassignable

H − n = 1/8( ) 0.2333 36.08 34.36 34.36 9 Peak Indicated
Unassignable

H − n = 1/ 9( ) 0.2073 42.83 28.95 28.92 9 Fe XIV
Broad Peak

H − n = 1/10( ) 0.1866 49.37 25.11 25.11 9 Fe XVI
Sharp Peak on Top
of Broad Peak

a Equation (40.66)
b Equation (40.65)
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B.  Discussion

As shown in Table 7 hydrino hydride ionization energies predicted
by Mills' theory match the emission spectral lines of the Sun for high
energies and match the continuum lines at lower energies.  Two of the
emission lines of Table 7 corresponding to H − n = 1/ 7( ) and H − n = 1/8( )  had
no previous assignment.  The continuum lines at 407 nm , 110.4 nm ,
74.23 eV , and 54.36 eV  corresponding to H − n = 1/ 2( ), H − n = 1/ 4( ) , H − n = 1/ 5( ),
H − n = 1/ 6( ), respectively, were previously unidentified.  And, the width of
the continuum lines corresponding to H − n = 1/ 4( ) , H − n = 1/ 5( ), and
H − n = 1/ 6( ) shown in Figure 3 and Figure 4 are each 3 eV  wide indicating a
very consistent local solar temperature of 23,000 °K  [46].  The
continuum line at 407 nm  corresponding to H − n = 1/ 2( ) appears in Figure
5.  The hydrino hydride continuum lines and the normal hydride
continuum line shown in Figure 2 extends the series of Solar continuum
lines from H − n = 1( ) to H − n = 1/ 6( ) with the exception of H − n = 1/ 3( )  for
which no absolute intensity data is available.  (Figure 5 covers the
spectral range at the wavelength predicted for H − n = 1/ 3( ) --187.58 nm , but
the spectrometer was ground-based.  Wavelengths short of 260 nm  were
essentially eliminated by nitrogen, oxygen and water vapor absorption.)
The existence of the peaks at the predicted energies with the continuum
features substantially identifies the 407 nm , 110.4 nm , 74.23 eV , and 54.36 eV

peaks as hydrino hydride peaks.  And, the 1875.8 Å  peak can be
substantially assigned to H − n = 1/ 3( )  by comparing the intensity of this
peak during a flare versus the quiet Sun.  Solar emission lines in the
extreme ultraviolet were observed by the Extreme Ultraviolet Explorer
(EUVE) Deep Survey telescope on the star AU Microscopii and the star
EQ Pegasi for which there is no satisfactory assignment.  These spectral
lines match hydrino transitions as shown in Tables 3 and 4.  The lines
assigned to hydrino transitions increased significantly in intensity during
the flare event.  The data is consistent with disproportionation reactions
of hydrinos as the mechanism of solar flare activity.  Because flare
activity is due to hydrino formation reactions and flares possess free
electrons, hydrino hydride ions are predicted to form in abundance
during a flare event.  The 1875.8 Å  peak at the ionization energy of the
hydrino hydride ion H − n = 1/ 3( )  and the 1876.838 Å  peak of Fe II from the
quiet Sun spectrum and from a Solar flare spectrum recorded on Skylab
with NRL's Apollo Telescope Mount Experiment are shown in Figures 6A
and 6B, respectively.  The ratio of the intensity above background of the
H − n = 1/ 3( )  at 1875.8 Å  relative to the Fe II peak at 1876.838 Å  increases by a
factor greater than 25 during a solar flare event.  This is a "smoking
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gun" of hydrino hydride formation.  The agreement between the
predicted and observed continuum series and increased intensity of the
1875.8 Å  peak during a solar flare is remarkable.

Hydrino hydride compounds may be the source of the diffuse
interstellar bands (DIBs) [47].  Compounds comprising hydrino hydride
ion(s), hydrino atom(s), dihydrino molecular ion(s), and/or dihydrino
molecule(s) as well as normal hydrogen atoms and molecules are given
in the Additional Increased Binding Energy Hydrogen Compounds Section
of Mills PCT Patent Appl. [48].  Many are predicted to have unique
absorption features in the visible due energy shifts of elements other
than hydrogen by lower-energy hydrogen.  And, examples of the hydride
H − n = 1/ 2( ) as a possible carrier of some DIBs due to its shifted free space
continuum at 407 nm are the 4,430 DIB [49] and others in this
wavelength region [47].  The source of the colors of Jupiter including
the Red Spot is a mystery [50].  Hydrino Hydride compounds and the
hydrino hydride ion H − n = 1/ 2( ) may be the carrier.  A unique feature in
the albedos of Jupiter is observed at the H − n = 1/ 2( ) bound-free
continuum [51] wavelengths.  And a broadband 410 nm filter generates
the greatest contrast in global latitude-longitude maps [52] of Jupiter.
Other emission features which can be assigned to hydrino hydride are
observed in the spectra of Jupiter as well as the other hydrogen planets,
Saturn and Neptune.  For example, the 110 nm emission of H − n = 1/ 4( )  is
seen in the case of Jupiter [53], Saturn [54], and Neptune [55].
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Figure 3A.  The continuum peaks at the ionization energy of the hydrino
hydride ions H − n = 1/ 4( ) , H − n = 1/ 5( ), and H − n = 1/ 6( ) from the Solar
Extreme Ultraviolet Hichhiker (SEH) [41].



© 2000 by BlackLight Power, Inc.  All rights reserved.
778

Figure 3B.  The continuum peaks at the ionization energy of the hydrino
hydride ions H − n = 1/ 4( ) , H − n = 1/ 5( ), and H − n = 1/ 6( ) from the Solar
Extreme Ultraviolet Hichhiker (SEH) [41].
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Figure 4.  The continuum peaks at the ionization energy of the hydrino
hydride ions H − n = 1/ 4( )  and H − n = 1/ 5( ) and from the SUMER EUV
Spectrum: 25/30-Jan-1996 [42].
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Figure 5.  The continuum peak at the ionization energy of the hydrino
hydride ion H − n = 1/ 2( ) from the ground-based UARS/SOLSTICE Irradiance
119.5 nm to 420.5 nm, 1 nm spectral resolution, UARS day 145 = 3 Feb
1992, UARS day 1250 = 12 Feb 1995 [44].
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Figure 6A.  The 1875.8 Å  peak at the ionization energy of the hydrino
hydride ion H − n = 1/ 3( )  and the 1876.838 Å  peak of Fe II from the quiet Sun
spectrum recorded on Skylab with NRL's Apollo Telescope Mount
Experiment [43].
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Figure 6B.  The 1875.8 Å  peak at the ionization energy of the hydrino
hydride ion H − n = 1/ 3( )  and the 1876.838 Å  peak of Fe II from a Solar flare
spectrum recorded on Skylab with NRL's Apollo Telescope Mount
Experiment [43].
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