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Preface

Quod super est, vacuas auris animumaque sagacem
semotum a curis adhibe veram ad rationem,
ne mea dona tibi studio disposta fideli,
intellecta prius quam sint, contempta relinquas.

Titus Lucretius Carus, De Rerum Natura Liber Primus

This book is structured as a course for students with a good knowledge of ba-
sic Quantum Mechanics who want to specialize in Condensed Matter Theory.
Indeed it takes the reader to advanced levels in several topics, but there is an
obvious trick: no teacher can hope to cover all this material in one semester
without facing a serious and rightful student revolt. I am offering alternative
advanced topics that I have been developing in different years of teaching and
updated to the present time. Yet, I had to remove much important material
which is a condicio sine qua non for condensed matter theorists; the most se-
rious sacrifice (wisely urged by the Editor) was the removal of all the chapters
in Relativistic Quantum Mechanics and QED that I have been teaching for
many years in Atomic Physics courses but would have made the size of this
work unacceptable as one book. Such topics are covered in excellent Springer
books, like the series by Greiner. Even so, there is no encyclopedic attitude,
or attempt to cover all the hottest advanced topics, but I privileged those
arguments where I did some work and the methods that I used most often
or where I gave some contribution in my long research activity. The central
part of the book is devoted to the theory and applications of symmetry and
Green’s functions. In the interest of the class, I present them is such a way
that one can easily separate an introductory part, that might be of interest
to a broader audience including experimentalists, and a more advanced and
demanding part.

Nobody really knows how knowledge grows, particularly in theoretical
physics (a rather special environment to study) but my impression is that
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it grows by a vivid (if often not very precise initially) understanding of par-
ticular problems, that are later combined in more powerful units and made
more exact in the process. More complex phenomena require more mathe-
matical ingenuity, new concepts arise, deep unexpected similarities between
diverse problems are discovered. By such processes in which mathematics and
physics merge into the reasoning process and are a source of inspiration for
each other, one can sometimes predict new facts that are later verified exper-
imentally. In condensed matter physics, predicting new experimental features
is not reserved to geniuses, and one can really hope to achieve such results,
and although the success is not uncommon, it is certainly rewarding. I believe
that there is still lot of space for pioneers and while computing is important
in a quantitative science like physics most real discoveries will continue to
come from intuition and original thought.

Most times it is experiment that brings some unexpected and surprising
result. Superconductivity is a typical example: common sense would have
predicted that the resistance will unavoidably be present as a part of the im-
perfection of reality. This is the magic of Quantum Mechanics, that continues
to make stunning yet tangible reality by the effect of phases. The role of Berry
phases, flux quantization an the like is discussed mainly in Chapters 16 and
17. There are many phenomena but if we wish to go from phenomenology to
principles progress is conditioned by methods. A large variety of methods have
been generated by many theoreticians. Some are time honored, but enlighten
new problems in new ways: to make practical predictions in the presence of
symmetry we take advantage of abstract Group theory. However, important
new methods continue to be invented, and there is no sign that the gold mine
of ingenuity is exhausted. On the other hand, while an increasing number
of problems are successfully dealt with by the existing codes and computa-
tional methods, the ingenuity continues to be required, since new interesting
materials and processes are discovered which require fresh modeling.

Some of the subject matter is included because in my carrier I happened
to work in the subject or to make extensive use of the methods; in this way
I suppose I can provide in some measure a first-hand presentation of some
topics. In particular, Chapters 6, 15, 13, 14 and 17 are the most original in the
sense of presenting results from my own research; elsewhere I tried to present
mature results in a fresh and attractive way. At least, I hope I will transmit
some of the fun I have to work using such results. The discussion of general
topics like Group theory or Feynman diagrams, the Keldysh theory, which
are discussed in many textbooks, but are traditionally considered rather hard
aims to help the reader by many examples and by direct procedures and
intuitive arguments. I tend to prove everything and therefore the reader will
find sentences like it can be shown that ... only seldom and for relatively
unimportant side matters. Indeed, in most cases when something is really
understood, there is little difficulty in finding a proof; on the other hand,
the converse is also true: having no clear justification often means having no
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real grasp or lacking mastery of the use of the results. However in several
cases, lengthy formal proofs are readily found in the literature and there is
no strong reason to reproduce them here: for instance, Wick’s theorem and
the linked cluster theorem fall in this category. Then I prefer to give my own
intuitive arguments, that reflect the way I visualize the result for myself, and
reference the literature where the canonical proofs are published.

Finally, I hope the readers will understand that this work costed me a
considerable effort and at some point I had to force the writing process to
converge. It is always possible to improve the book in many ways, but alas at
some point the writing must stop. It was this appeal to the reader’s under-
standing, besides the common interest in the Nature of Things, that prompted
to me the above quotation from Titus Lucretius Carus.

It is a pleasure to thank Professor Giancarlo Rossi, Doctor Gianluca Ste-
fanucci and Doctor Yassen Stanev, all at the Physics Department of Rome
Tor Vergata University, and Doctor Claudio Verdozzi, currently at Lund, for
reading and discussing part of the manuscript and giving useful advice and
encouragement.

Rome, May 7, 2007 Michele Cini



Contents

Part I I-Introductory Many-Body Physics

1

Basic Many-Body Quantum Mechanics ................... 1
1.1 Slater Determinants and Matrix Elements ................. 1
1.1.1 Many-electron Matrix Elements .................... 2
1.1.2 Derivation of the Rules............................ 4
1.2 Second Quantization .......... ... ... .. i i, 5
1.21 BOSONS ..ottt )
1.2.2 Field Quantization and Casimir Effect .............. 7
1.2.3 Fermions . ..... ... 9
1.2.4 Basis Change in Second Quantization and Field
OPErators .. .. cv it 11
1.2.5 Hubbard Model for the Hydrogen Molecule .......... 13
1.3 Schrieffer-Wolff Canonical Transformation ................. 15
1.4 Variational Principle .. ........ ... .. . .. 16
1.5 Variational Approximations.................. ... .. ....... 18
1.6 Non-degenerate Perturbation Theory................... ... 18
Adiabatic Switching and Time-Ordered series ............ 19
2.1 Time-dependent is Better: start from the Golden Age . ...... 19
2.2 Evolution in Complex Time ............... ... ... ....... 21
2.2.1 Heisenberg Picture ............ .. ... . ... .. ... .. 21
2.2.2 Thermal Averages .. ..........uuuieiinineiaen. . 23
2.3 The Interaction Picture and the Viable Expansion .......... 25
Problems . ... 26
Atomic Shells and Multiplets ............................. 29
3.1  Shell Structure of Atoms......... ... ... ... .. ... 29
3.2 Hartree-Fock Method ........ ... .. ... .. ... .. ... ..... 29
3.2.1 Physical Meaning of Exchange: the Cohesion of a
Simple Metal ...... .. .. 35
3.3 Virial Theorem......... ... 37
3.4 Hellmann-Feynman Theorem ........... ... ... ... ... ... 38
3.5 Central Field ........ .. . . 38
3.5.1 L-S Multiplets (H/,, — 0 Limit).................... 40



XII

Contents
3.5.2 Hund’sFirst Rule ........ ... .. .. .. . .. .. .. ... 42
3.6 Atomic Coulomb Integrals ............... ... ..., 43
3.6.1 Hund’s Second Rule .............................. 46
3.6.2 J-JCoupling........couiiuiiiniiiii i 46
3.6.3 Intermediate Coupling .......... ... .. ... ... .... 46
3.7  Meitner-Auger Effect and Spectroscopy .. ................. 48
3.7.1 Auger Selection Rules and Line Intensities........... 50
Green’s Functions as Thought Experiments............... 95
4.1 Green’s Theorem for one-Body Problems .................. 55
4.2 How Many-Body Green’s Functions Arise.................. 55
4.2.1 Correlation Functions ............................ 55
4.2.2 Quantum Green’s Functions ....................... 57
4.2.3 Quantum Averages ..............iiiiiiiiiiia.. 58
4.2.4 Green’s functions at Finite Temperature ............ 59
4.3 Non-interacting Propagators for Solids .................... 61
4.3.1 Green’s Functions for Tight-binding Hamiltonians .... 66
4.3.2 Lippmann-Schwinger Equation ..................... 70
433 tmatrix. ... ... 70
4.3.4 Inglesfield Embedding Method ..................... 71
4.4 Kubo Formulae ......... . .. .. . ... 73
4.5 Vacuum Amplitudes ......... ... .. ... 75
4.6 Lehmann Representation .......... ... .. .. ... .. .. ... .. 76
4.6.1 Zero-Temperature Fermi Case...................... 76
4.6.2 Finite Temperatures, Fermi and Bose ............... 78
4.6.3 Fluctuation-Dissipation Theorem .................. 79
Hopping Electron Models: an Appetizer .................. 81
5.1 Fano Resonances and Resolvents ......................... 81
5.1.1 Resonances .............oiiiiiiiiiiiii i 81
5.1.2 FanoModel. ... ... ... .. . 82
5.1.3 Ome-body Treatment ........... ... ... ... ... .... 82
5.1.4 Many-Body Treatment ................... .. .. .... 83
5.1.5 The Resolvent ....... .. ... .. .. . .. .. . . ... 86
5.1.6 Self-Energy Operator ........... ... .. .. ... .... 89
5.2 Magnetic Impurities and Chemisorption on Transition Metal
SUrfaces . ... 90
5.3 Strong Coupling and the Kondo Peak .................. ... 95
5.3.1 Narrow-Band Anderson Model ..................... 95
5.3.2 Anderson Model, s-d Model and Kondo Model .. ..... 98
5.3.3 Fermi Level Singularity and Kondo Minimum ........ 100
5.4 The Ny > 1 Expansion ............... ... ..., 101
5.4.1 Kondo Temperature in the Spin-Fluctuation Case .... 105
5.4.2 Density of Occupied States ............. ... ... .... 106

Problems ... ... 107



Contents

6 Many-body Effects in Electron Spectroscopies ............
6.1 Electron Spectroscopy for Chemical Analysis (ESCA) .......
6.1.1 Chemical Shifts ........ ... ... .. .. .. ... ... .. ..
6.1.2 Core-Level Splitting in Paramagnetic Molecules . .. ...
6.1.3 Shake-up, Shake-off, Relaxation ...................
6.1.4 Lundqvist Model of Phonon and Plasmon Satellites . . .

6.2 Auger CVV Line Shapes: Two-Hole Resonances ............
6.2.1 Desorption ...........c. i

6.3 Two Interacting Fermions in a Lattice ....................
6.4 Quadratic Response Formalism and Spectroscopies .........
6.4.1 One-Step Theory of Auger Spectra .................
6.4.2 Plasmon Gain ........... ... .. .. . i
Problems . ... ...

Part IT Symmetry in Quantum Physics

7 Group Representations for Physicists ....................
7.1 Abstract Groups ... .......viuiiinin i
7.2 Point Symmetry in Molecules and Solids ..................

7.2.1 Symmetry operators .............c... ..
7.2.2 Dirac characters and Irreducible Representations . .. ..
7.2.3 Schur'slemma .......... .. ... .. .. . i
7.2.4 Continuous Groups .. ........cuveuiinnennennaen..
7.3 Accidental degeneracy and hidden symmetries .............
7.4 Great Orthogonality Theorem (GOT) .....................
7.5 Little Orthogonality Theorem (LOT) .....................
7.6 Projection operators ............ ... . . i
7.7 Regular representation ........ .. .. .. . i
Problems . ... ...

8 Simpler Uses of Group Theory ...........................
8.1 Molecular Orbitals....... ... ... o i,
8.1.1 Molecular Orbitals of NHsg ..............cc.......
8.1.2 Molecular Orbitals of CHy ........................
8.1.3 Characters of Angular Momentum Eigenstates . ......
8.1.4 Examples: Oy, Group, Ligand Group Orbitals, Crystal
Field ...
8.2 Normal Modes of vibration ................ ... ... ... ....
8.3 Space-Time Symmetries of Bloch States ...................
8.4 Space groups of solids .. ....... ... .. ... .
8.4.1 Symmorphic and Nonsymmorphic Groups ...........
8.5 Young Diagrams ............... .. ... . i i
Problems . ... ... .



XIV

Contents

Product of Representations and Further Physical

Applications ......... .. 181
9.1 TIrreducible Tensor Operators............ ... ... ..cooon... 181
9.2 Direct Product Representation ................. .. ... .. .. 183
9.2.1 Selection Rules....... ... ... .. i 184
9.3 Reduction of the Direct Product Representation............ 185
9.4 Spin-Orbit Interaction and Double Groups................. 186
9.5 Static and Dynamical Jahn-Teller Effect................... 188
9.5.1 The Born-Oppenheimer (BO) Approximation ........ 188
9.5.2 The Jahn-Teller Theorem .............. .. .. ... ... 189
9.6 Non-Adiabatic Operator........... ... .. i . 193
9.6.1 Dynamical Jahn-Teller Effect ........... ... ... ... 194
9.6.2 How the E x ¢ Hamiltonian arises .................. 196
9.6.3 Nuclear Wave Functions Cannot be Taken Real . ... .. 197
9.7 Wigner-Eckart Theorem with Applications ................ 197
9.8 The Symmetric Group and Many-Electron States........... 199
9.9 Seniority Numbers in Atomic Physics ..................... 201
Problems . ... ... 204

Part IIT More on Green Function Techniques

10

11

Equations of Motion and Further Developments .......... 207
10.1 Equations of motion for the interacting propagator ......... 207
10.1.1 Equations of Motion and Ground-State Energy....... 208
10.2 Time-Dependent Problems............ .. .. ... .. .. .... 208
10.2.1 Auger Induced Ionic Desorption: Knotek-Feibelman
Mechanism ....... ... .. ... 210
10.3 Hierarchy of Greens Functions .............. ... ... ..... 212
10.4 Composite Operator Method . ......... ... ... .. ... ..... 213
Problems . ... ... 216
Feynman Diagrams for Condensed Matter Physics ....... 217
11.1 Diagrams for the Vacuum Propagator ..................... 217
11.1.1 Wick’s Theorem.......... ... . ... 219
11.1.2 Goldstone Diagrams ........... ... ... .. 221
11.1.3 Diagram Rules for the Thermodynamic Potential . .. .. 224
11.2 Linked Cluster Theorem.......... ... ... o i, 225
11.2.1 Valence Electron and Core Hole . ................... 227
11.2.2 Ho Model .. ..o e 229
11.2.3 The Linked Cluster Expansion and Green’s Functions . 230
11.3 Diagrams for the Dressed Propagator ..................... 231
11.3.1 Adiabatic Switching and Perturbation Theory ....... 232
11.3.2 Diagrams for the Propagator in frequency space .. . ... 235

11.4 Dyson Equation . ........ .. . .. i 238



12

13

Contents XV

11.4.1 External Potential ............ ... ... ... ......... 241
11.5 Self-Energy from Interactions ............ ... .. ... ... .. 242
11.6 Skeleton Diagrams......... ... ... .. 245
11.7 Two-body Green’s Function: the Bethe-Salpeter Equation ... 245
11.8 Self-Energy and Two-Body Green’s Function............... 247
11.9 Functional Calculus and Diagrams........................ 248
11.9.1 The Self-Energy as a Functional . ................... 249
11.9.2 Polarization Bubble .............................. 251
11.9.3 The Vertex ... 253
11.10 Hedin’s Equations ......... ... ..., 254
Many-Body Effects and Further Theory ................. 257
12.1 High Density Electron Gas .......... ..., 257
12.1.1 More Physical Insight about the RPA ............... 259
12.2 Low Density Electron gas: Ladder Approximation .......... 263
12.3 Ladder Approximations in Electron Spectroscopies......... 264
12.3.1 XPS and Auger Spectra from Metals . .............. 264
12.3.2 The U<0 Phenomenon . .............couueueenenon.. 267
12.3.3 Correlation in Early Transition Metals .............. 270
12.4 Conserving Approximations. . ............c.oooiuniuneen.... 272
12.4.1 Continuity Equation .......... ... ... ... ... ... .. 272
12.4.2 The @ Functional............. ... ... ... ......... 274
12.4.3 Gauge Transformation ............... ... ... ... .. 275
12.4.4 Ground-State Energy and Grand Potential .......... 276
12.4.5 Luttinger-Ward and ABL Variational Principles ... ... 277
12.5 Generalized Ward Identities ............... ... ... ...... 278
12.6 Connection of Diagramsto D F'T ........................ 279
12.6.1 Highlights on Density Functional Theory ............ 279
12.6.2 Sham - Schliiter Equation ......................... 282
Problems .. ... 283
Non-Equilibrium Theory .......... .. ... ... ... ... ...... 285
13.1 Time-Dependent Probes and Nonlinear Response ........... 285
13.2 Kadanoff-Baym and Keldysh Methods .................... 286
13.3 Complex-Time Integrals by Langreth’s Technique........... 288
13.3.1 Finite temperatures .......... ... ... ... ... ... ... 290
13.4 Keldysh-Dyson Equation on the Contour .................. 291
13.5 Evolution on Keldysh Contour ........................... 294
13.5.1 Contour Evolution of Bosons ...................... 298
13.6 Selected Applications of the Keldysh Formalism ............ 298
13.6.1 Atom-Surface Scattering ................ ... .. ..... 299
13.6.2 Quantum Transport ........... .. ... .. ... ... 304

Problems . ... 309



XVI Contents

Part IV Non-Perturbative Approaches and Applications

14 Some Recursion Techniques with Applications............
14.1 Lanczos-Haydock Recursion........... ... .. .. ... .. ..
14.1.1 Local Green’s Function for a Chain .................
14.1.2 Green’s Function of any System ....................
14.1.3 Terminator .........coo i
14.1.4 Moments . . ... ovt i

14.2 Spin-Disentangled Diagonalization ........................
14.3 Method of Excitation Amplitudes ........................
14.4 Feenberg Method . ........ ... ... i i
14.4.1 Solving Linear Systems ..............c.ooivin....
14.4.2 Homogeneous SyStems .. .........ouvueninenenenn..
Problems . ... ...

15 Aspects of Nonlinear Optics and Many-Photon Effects ...
15.1 Diffusion of Radiation in Dipole Approximation ............
15.1.1 Second-Order Processes . ........... ... .. ... .. .....

15.2 Sum Frequency and Second-Harmonic Generation (SHG) . . ..
15.3 Diffusion of Coherent Light ........... .. ... .. ... .. ...
15.3.1 Effectivemode ...... ... ... ..

15.3.2 Dynamical Stark Effect ........ ... .. .. ... ...
Problems . ... ..

Part V Selected Exact Results in Many-Body Problems

16 Quantum Phases ......... ... ... .. .
16.0.3 Gauge Transformations ...........................

16.0.4 Spinor Rotations .......... .. ... .. ... . ..

16.0.5 Galilean Transformations .........................

16.1 Topologic phases .. ........ . i
16.1.1 Parametric Hamiltonians and Berry Phase...........

16.1.2 Polarization of Solids.............. ... .. ... ... ..

17 Pairing from repulsive interactions .......................
17.0.3 W = 0 Pairing in Cu-O Clusters ...................

17.0.4 Pairing Mechanism ........... ... ... .. ... ... ..

17.0.5 The W =0theorem .............. ... .. ... .......

17.0.6 Examples . ...

17.1 Superconducting flux quantization and Josephson effect .. ...
Problems . ... ...



Contents XVII

18 Algebraic Methods ........... ... .. ... .. .. . ... 383
18.1 Lieb Theorems on the Half Filled Hubbard Model .......... 383
18.2 Bethe Ansatz for the Heisenberg Chain ................... 387
18.3 Bethe Ansatz for Interacting Fermions 1 Dimension......... 392

18.3.1 §-Function Interaction ............ ... ... ... ..... 392
18.3.2 The Hubbard Model in 1d .. ....................... 396
18.3.3 The Periodic Boundary Conditions ................. 401
18.3.4 Spin Chain Analogy ............coiiiiineinn... 403
Problems . ... ... 406

Part VI Appendices

19 Appendix 1: Zero-point Energy in a Pillbox .............. 409
20 Appendix II-Character Tables ............................ 411
21 Proof of the Wigner-Eckart Theorem ..................... 413
Solutions . ... 415
References. . ... ... .. 431



Part I

I-Introductory Many-Body Physics



1 Basic Many-Body Quantum Mechanics

1.1 Slater Determinants and Matrix Elements

The solutions of eigenvalue equations like the time-independent one-electron
Schrodinger equation hw; = €;w; form a a complete set of spin-orbitals
{w; = pi(x)x:}, where ¢;(x) are normalized space orbitals and x; =1 or
| . The set can be taken orthogonal and ordered in ascending energy or in
any other arbitrary way. Any one-electron state can be expanded as a linear
combination of the w;. Moreover, we can think of a state for NV electrons ob-
tained as follows. Choose in any way N spin-orbitals out of the set {w; }, keep
them in the original order but call them vy, vs...vxN; now let |v1,vs ... vN]|
be the state with one electron in each. Imagine labeling! the indistinguish-
able electrons with numbers 1,2,--- N. In this many-body state one has an
amplitude ¥(1,2,...N) = ¥((x1,x1), (x2, X2),-.. (N, xn)) of having elec-
tron 7 in the one-particle state (z;, x;). How to calculate ¥? A product like
V1V ... UN = chv vk is in conflict with the Pauli principle because it fails to
be antisymmetric in the exchange of two particles. However, the remedy is
easy, because anti-symmetrized products are a basis for the antisymmetric
states. To this end, let P : {1,2,...N} — {P1,P2,... Py} be one of the N!
permutations of N objects. If N = 3, the set of 6 permutations comprises the
rotations {(1,2,3),(2,3,1),(3,1,2)} and {(2,1,3),(3,2,1),(1,3,2)}.

Anticipating some Group Theory

The last three are just transpositions, that is, they are obtained from the fun-
damental permutation (1,2,3) by one exchange. One can multiply two permu-
tations @ and P; the product QP is the permutation obtained by performing
P and then Q and the result is:

{Ql7 Q27 v QN}{P17P27 .- PN} = {QP17 Q'Pw v QPN}' (11)

For instance?, (3,2,1)(2,1,3)=(2,3,1) . All permutations can be obtained from
transpositions by multiplication. The inverse of a permutation is the one that

'The electrons are identical, but this does not prevent us from labeling them:;
rather it imposes that the wave function changes sign for each exchange of labels.

2in words,P sends 1 — 2 and then Q sends 2 — 2, and in the same way 2 —
1—-3and 3 -3 — 1.
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upon multiplication restores the standard (ascending) order (1,2,...N). Any
permutation can be shown to be a product of transpositions, usually in more
than one way: for example, (2,3,1) is obtained from the standard order by
exchanging 1 and 2 and then 1 and 3 but also exchanging 1 and 3 and then
2 and 3. P has a parity or signature (—)” defined such that an exchange is
odd, two are even, and so on, so in the above example (1,2,3), (2,1,3)and
(3,1,2) are even and the others odd. In Chapter 7 we shall see that such
simple observations have far reaching consequences.

Determinants

The antisymmetrizer operator
1
A= > ()P (1.2)
P

converts any product into a normalized Slater determinant, so we may write
a physically acceptable solution as

N
w(1,2,...N) = Ao = \/iv' 3 ()P0, (100, (2) - voy (N),  (1.3)
k e

or, equivalently,

1 [ (@) 0(2) ... on(2)

V(1,2 N) =

Ul(N) UQ(N) o UN(N)
Note that the transposed matrix is equivalent since the determinant is the
same. Exchanging two rows, that is, two electrons, one gets a - sign. A per-
mutation of the electrons is equivalent to the inverse permutation of the
spinorbitals, and P¥(1,2,...N) =¥ (P, Ps,...Pn) = (—)7¥(1,2,...N).
The set of all determinants is complete provided an arbitrary order is
fixed for the one-electron states (otherwise the set is overcomplete).
Suppose we solve hw; = €¢;w; for one electron and then consider the same
problem with N electrons and H = va h(4). This problem is no harder than
for a single electron, and the N—body Schrédinger equation is solved by (1.4)
with energy eigenvalue €; 4+ €2 + ... + €n.

1.1.1 Many-electron Matrix Elements

The matrix element (¥|F|®) of operators F(1,2,...N) between determinan-
tal states, when we expand the determinants, means a sum of (N!)? terms.
This grows disastrously with INV; however there are simple rules to calculate
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such matrix elements. Let @(1,... N) be a determinant made by N spinor-
bitals ui,us ... uy; taken out of the orthogonal set {w;} (they may be same
as in ¥ , in which case we are dealing with expectation values). One can
readily observe these rules by working out a 2 x 2 example, while the proof
requires a trick which is explained in Sect. 1.1.2. The simplest case is f =1,
and the rule is: the overlap between determinants is the determinant of the
matrix with elements the one-electron overlaps (u;|v;):

(@) = Det [{{uilv;) }] (1.5)

This useful result holds even if u and v spinorbitals are taken from different
sets w and w’. The overlap of a determinant with itself is indeed 1, as it
should, which verifies the normalization of determinants. The one-electron
matrix elements also imply a spin scalar product.

For one-body operators F(1,2,...N) = Efv f(i), where f acts on one
electron, the rule is simple: determinants gives the same results as simple
product wave functions, and antisymmetry has no consequences. The expec-
tation values are given by

N

(WIFW) = (ui|flui). (1.6)

%

For example, if we pick f(i) = 0(x — x;), F = p(x) is the number density
and one finds (p(x)) = va |ui(z)|?. Off diagonal elements vanish if ¥ and &
differ by more than 1 spinorbital; if they differ only by one spinorbital, vy in
¥ and ug in @,

O # up = (P|F|W) = (ug| flok). (L.7)

Two-body operators of the form F = 757 fi; =} Zf\g#y fij» like the
Coulomb interaction, have vanishing matrix elements when the two determi-
nants differ by more than 2 spin-orbitals. For the rest, the best way to recall
the result is by the interaction vertices in Figure 1.1.1 below (embryos of the
Feynman diagrams that we introduce later). One must just note carefully
which lines enter at 1 and (left and right ) and which are outgoing. The order
of labels is: the one entering at 1, the one entering at 2, the one outgoing at
1. the one outgoing at 2.

If v; and v; in @ replace u; and u; in ¥, u; # v;, u; # vj, then

(BIFI0) = (03 (1)v; (2)]£ (1, 2) [ (L)u; (2)) - <vi<1)vj<2>|f<1,2>|ui<2)uj<(11>>8)
where the second, exchange term comes from the antisymmetry. These corre-
spond to vertices a) and b) below, respectively. If f does not depend on spin
the exchange term vanishes for opposite spins.

The two-body operator matrix element describes the collision of a couple
of electron, while all the others are spectators. If ® and ¥ are the same, except
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U Uy
Uj

Fig. 1.1. Interaction vertices

for u; # v;, we get the vertex c) and its exchange companion d), representing
the two terms in the expression

N
(@ F|@) = [k (1)ui(2)] £ (1, 2) ur (1)ui (2))

ik

—(ui(Dvr(2)] (1, 2)Jur (1)ui(2))]- (1.9)

This is similar to (1.8), but there is a summation over all the spinorbitals
present in both determinants, which act as background particles while the
i-th electrons jumps from v(i ) to u(). Finally, for the expectation value we
get the vertices e) and f) , that is,

N
(P|Fo) = Z[(Uz'(l)uj@)lf(L 2)[ui(1)u;(2))
i
—(u; (Dui(2)[ (1, 2)ui (1)ui(2))]. (1.10)

1.1.2 Derivation of the Rules

A direct expansion of

< Q/‘F‘@ N Z P+Q

(up, (Nup,(2).. ~UPN( N flve, (Mo, (2) .. vax(N))  (1.11)

involves N!? terms and is formidable unless N is small. However, the proof
of the above rules is easily obtained by a trick, that I exemplify in the case
of one-body operators. The matrix element

(up, (Dup, (2) . upy (N)[f(L,- -+, N)vg, (1)ve, (2) .- voy (N))

is a multiple integral; we permute the names of dummy variables and get

(up, (P1)upy (Pa). .. upy (Pn)|flvo, (P1)vo, (P2)...vay (PN)); f does not change
since it must depend on particles in a symmetric way. The bra is independent
of P, since [[,(up,| = [],;(ui|, and we obtain
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(ur(Duz(2) ... un(N)|flvg, (Pr)ve, (P2) - - voy (P ))-

Now the Q summation yields back the ¥ determinant with a permutation
P of the electrons, that is, ¥(—)”; the (—)7 factor cancels the one already
present in (1.11). Hence,

(@|F|¢) = (u1(Duz(2) ... un (N)[f] (1.12)

More explicitly,

(@If1Y) = (ur(Duz(2) ... un (V)| Y (=) %0, (1)v0,(2) . - voy (N).
Q

(1.13)

1
VNI

1.2 Second Quantization
1.2.1 Bosons

Since the time-independent Schrodinger equation for the Harmonic Oscillator,

R? d2) mw?a?

" 2m da? 2 v=>5y (1.14)

has a characteristic length x¢y = \/ wa, one introduces the annihilation oper-
ator ) ]
T TP
a= + . 1.15
V2 (wo h ) (119)

T a+at ixop_a—aT

this is equivalent to

o V2 R 2 (1.16)
with the commutation relation
[a,al]_ =1; (1.17)
the Hamiltonian can be rewritten
H= (aTa + ;) hw. (1.18)

If ¢ is a solution of (1.14) with eigenvalue F, at) must be solution with
eigenvalue F — fiw. The conclusions are: 1) atg = 0 if g is the ground state
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and 2) a' is a creation operator that in fact creates excitations like a destroys
them. One then learns that i) this represents a boson field with one degree of
freedom (the ) ii) when dealing with real physical fields one never observes
the oscillators but only the excitations, e.g. photons for the electromagnetic
field. The noninteracting bosons in a field mode can be created in any number,
and each adds the same energy to the field. The oscillator does not exist at
all, but the unique property of the oscillator potential which has infinitely
many states with uniform spacing hw makes it a perfect representation for
the field.

Example: Coupled Boson Representation of Angular Momentum

Schwinger [8] has shown how one can build a representation of the angular
momentum operators including components J;, shift J+ and more exotic K1
operators that conserve m but raise or lower j. All this was obtained using
creation and annihilation operators of a couple of modes, and everything
comes from a simple observation. For instance let j = ;’ in units of & and

consider the following scheme: For any j, we can write j = "1;"2 in terms of

ning j= 71142rn2 ja = 711;"2
03 3/2 -3/2
12 3/2 —-1/2
2 1 32 1/2
30 3/2 3/2

2 integers > 0 in several ways, and each entry corresponds to a choice of j;
ng increases from 0 in 25 + 1 steps. So, a J; should add 1 to n; and remove
1 from ng, while K1 should add +1 to both. Two harmonic oscillators can
provide the occupation number operators to represent that. So,

. ﬁl + ’flg . ny — N2
- S - , 1.19
2 J 2 ( )

To extend this idea, one can observe that introducing a spinor operator
_ (@
o= () a2

J= 21/J L 2"/J o:1. (121)

This extends naturally to

we may write

—
J

= Z@N?w (1.22)
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which implies trivially

ih

Jo = 2(aJ{a2 + agal); Jy = 5 (—aJ{ag + agal) (1.23)
and hence
Jjt+ = haJ{ag; j- = hagal. (1.24)
Indeed, it is a simple matter to verify that
(s Jy] = i, (1.25)
32 =1 +1). (1.26)
One can change j by
Ky =haldl; K_=haas. (1.27)

Using j and m = j, in (1.19) one finds n; and ng, hence
()™ (ab)i—m
V(G +m)(j —m)!

This is an alternative way to derive results like Clebsh-Gordan coefficients
and the like.

ljm) = 10). (1.28)

1.2.2 Field Quantization and Casimir Effect

The electromagnetic field fluctuations in vacuo have a macroscopic conse-
quence named Casimir effect. This is of interest for fundamental physics but
also for potential applications.

Let two square mirrors of side L be put in front of each other at a distance
s. Roughly speaking, this causes boundary conditions £ = 0 of vanishing
parallel electric field component on both surfaces, at frequencies below the
plasma frequency w, of the metal. The field between the mirrors is con-
strained and has a reduced zero point energy; thus, the radiation pressure
is lower than in vacuum and a macroscopic attraction between the mirrors
appears. The effect was discovered by Casimir [6] theoretically and then ver-
ified experimentally [7],[200]. It is important at my distances, so it is longer
ranged than Van der Waals forces, which are mainly due to the fluctuating
instantaneous dipoles on non-polar systems.

To understand this in more detail consider a metallic pillbox,with reflect-
ing walls, a square basis of side L and hight s. How much is the zero-point
energy U(s) in the pillbox? Each wave-vector k = (", ™" "¢  (with integer
a,b and c¢) contributes Aick and the sum diverges of course, so we impose an
exponential ultraviolet cutoff «, removing the short wavelengths such that
ka > 1. They are not involved anyhow because at ultraviolet frequencies the
mirrors are transparent.
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o= (7 ¢ (5)+ (1) Ve arsr

We can calculate this exactly for large enough L and the result diverges as
a — 0. One finds (see Appendix 1)

U@)zhmjL2<;i)2<;ezil> (1.30)

Using the expansion

Y 1 1y2 1 y4 B,y"
= 1 — — ves — E 1.31
ey —1 2y+62! 304!+ — n! ( )

(the B, are called Bernoulli numbers), one obtains:

her?L? [ d \° s 1 1 a? 1
- - - s 1.32
Uls) 2 (m)[w 20 T 125 T 30413 T ] (1:32)

The first two terms lead to the aforementioned divergence: should we try to
remove all the radiation from the cavity, including the high frequency modes,
that would cost us infinite energy. However, the divergence disappears if we
ask: what changes if we shift one side of the cavity by 1 cm? To better answer
this question, suppose a cavity of length R is divided in two equal halves by a
mirror: evidently the energy of the vacuum is the diverging quantity 2U (R/2).
If instead the mirror is at distance s from one end and R — s from the other,
the vacuum energy must be U(s) + U(R — s), which also diverges. The finite
difference

AE(s) = lim {U (s)+ U (R—s) —2U <R>} (1.33)

R—oo 2
has the physical meaning of an energy that must be supplied to the system
in order to shift the mirror to the middle of the cavity. If the cavity is large,
this can be identified with the interaction energy at distance s. Eventually
one can let @ — 0. The zero point energy decrease per unit surface is thus
m2he

AE = 790 43" (1.34)

and since the radiation pressure is proportional to the energy density one
observes an attractive force

w2he
F= - . 1.
240 s* (1.35)
Measuring distances s in um, one finds
0.013
F=- dyne/cm?. (1.36)

4
s

This force and its dependence on material and surface properties is actively

investigated and could be used to operate nano-machines.
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1.2.3 Fermions

The second quantization formalism for Fermions was invented in order to
deal with phenomena like neutron decay n — p + e 4+ v or pair creation in
particle physics, but to create an electron-positron pair one needs about a
million eV. In condensed matter physics the typical energy scale is much
less than that, yet many important phenomena are naturally described in
terms of the creation (or annihilation) of fermion gquasi-particles. Electron-
hole pairs can be created very much like electron-positron ones. In scattering
processes, when all the particles are conserved, one can proceed with Slater
determinants in first quantization; however, second quantization formalism
is much easier to work with.

The change from bosons to fermions replaces permanents with determi-
nants. In place of a N-times excited oscillator representing N bosons in a given
mode, we now consider N-fermion determinants |ujus . .. ux|, where the spin-
orbitals are chosen from a complete orthonormal set {w;}. The index i can
be discrete or continuous but implies a fized ordering of the complete set. In
this way, one can convene e.g. that in |ujus...uy| the indices 1--- N are in
increasing order thereby avoiding multiple counting of the same state. The
zero-particles or vacuum state |vac) replaces the oscillator ground state. For
the determinants, it is generally preferable to use a compact notation like
tm(1) um(2)> which contains the
Un (1) um(2)
same information. Consider the following correspondence® between determi-
nants and states of the Hilbert space with various numbers of electrons:

|ttty | Tather than the explicit \}2 Det (

First Quantization Second Quantization
No — electrons state(vacuum) |vac)
1 — body state wug c,t|vac>
. RO\ (1.37)
2 — body determinant |, u,| cl el |vac)
3 — body determinant |y, unuy| chochchvac)

Up to now the second-quantization side looks very similar to the compact
notation for determinants: the new idea is using the operator ¢! , clearly
deserving the name of electron creation operator in spin-orbital m, in order
to express all other operators. The left column introduces an occupation
number representation of the basis of the Hilbert space; second quantization
builds such a representation by creation operators cf,. Adding a particle to

any state cannot lead to the vacuum state,

vacle! = 0. 1.38
(vacley,

Smathematically, it is an isomorphism; it can be thought of as a change in
notation.
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Moreover, since a determinant is odd when columns are exchanged, we want
an anticommutation rule

[l elly =cl el +elel =0. (1.39)
It follows that the square of a creation operator vanishes. By definition,

el {clclvac)} = ¢l el el [vac) (1.40)

mn-r

The notation suggests that ¢/, is the Hermitean conjugate of c,,; this is called
annihilation operator. Taking the conjugate of (1.40)

{{vac|crcn tem = (vaclerepem (1.41)
and taking the scalar product with ¢! cf cf|vac), we deduce that
{{vacle,entem | cf el ellvac) = 1. (1.42)

If now we consider ¢, as acting on the right, we see that it is changing the
3-body state ¢}, cf cf|vac) into the 2-body one ¢} cf|vac). Thus, annihilation
operator is a well deserved name: an annihilation operator ¢,, for a fermion
in the spin-orbital state wu,, removes the leftmost state in the determinant
leaving a N — 1 state determinant:

Cl|U1UQ...’LLN‘ = ‘UQ...UN| (143)

and
emlvac) = 0. (1.44)

It obeys the conjugate of the anticommutation rules (1.39), namely,

[Coms Cnl 4 = CmCn + Cnem = 0, 2, = 0. (1.45)
Next consider
cncl el clvac), n,m,r all different. (1.46)

Since the creation operators anticommute, we get

—cpel el cllvac) = ¢l cl|vac)

since the m state is created at the leftmost place in the determinant but is
annihilated at once. This shows that creation and annihilation operators also
anticommute,

[cn, el ]e =0, n#m. (1.47)

As long as the indices are different ¢ and ¢! all anticommute, so the pairs
CnCmsCnCh cl e and ¢l ¢l can be carried through any product of creation or
annihilation operators where the indices n,m do not occur.

Next we note that c;L|vac> = |p) is a one-body wave function; cpc;g\va@ =
lvac) and cfepchlvac) = cf|vac). Now one can check that
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ny = c;r,cp (1.48)

is the occupation number operator, having eigenvalue 1 on any determinant
where p is occupied and 0 if p is empty. On the other hand, cpc;g having
eigenvalue 0 on any determinant where p is occupied and 1 if p is empty. thus
in any case c,cf, + ¢f¢, = 1. Since this holds on all the complete set it is an
operator identity and we may complete the rules with

[Cpacg]+ = Opq- (1.49)

Note that nL = ny, and n2 = ny,.

1.2.4 Basis Change in Second Quantization and Field Operators

We can readily go from basis set {a,} to a new set {b, }; since

b >=>_ |ar >< ag|b, > (1.50)
k
the rule is
= ZaL < aglbp, >, b, = Zak < bplag > . (1.51)
k k

It is often useful to go from any set {u,} to the coordinate representation
introducing the creation and annihilation field operators

() = 3, chul, (@)
{ U(z) =3, entin (), (1.52)

(here ], denotes the conjugate spinor). Note that cf|vac) is a one-electron
state and corresponds to the first-quantized spinor wu,(x); ¥'(y)|vac) is a
one-electron state and corresponds to the first-quantized spinor with spatial
wave function Y uf (y)un(x) = §(z — y); thus it is a perfectly localized
electron. The rules are readily seen to be

W (x), ¥(y)l+ =0, W' (z), ¥ (y)]+ =0, (1.53)
and
Wi (y), w(@)]y = [et,, cqlrupt(x = upf(x) =iz —y)
e " (1.54)

where the ¢ also imposes the same spin for both spinors.
A one-body operator V(z) in second-quantized form becomes

V= /de vaqc Cq- (1.55)
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This gives the correct matrix elements between determinantal states, as one
can verify.

The above expressions imply spin sum along with the space integrals,
although this was not shown explicitly; let me write the spin components, for
one-body operators:

V= Z/dwng(x)% (1.56)
a,B

For the spin operators, setting 7 = 1, and using the Pauli matrices, S, =

502, 8T = (8 (1)> and the rule (1.55) one finds

1
Se=, / dz (w; () (z) — 7] (x)@l(x)), St = / daW} () (). (1.57)
Often we shall use a discrete basis and notation and we shall write

ST=>"clcx (1.58)
k

which is obtained from (1.57) by taking a Fourier transform in discrete nota-
tion. A two-body operator U(zx,y) becomes

U= /dx/dy!PT(x)!PT(y)U(x,y)W(y)W(:ﬁ) = ZUijleIC}Cle (1.59)
ijkl

(please note the order of indices carefully). The Hamiltonian for NV interacting
electrons in an external potential ¢(z) is the true many-body Hamiltonian
in the non-relativistic limit that we shall often regard as the full many-body
problem for which approximations must be sought. It may be written

H(ri,72,...,7rn) = Ho (r1,72,...,7n) + U (11,72, ... ,*N) (1.60)
where Hj is the free part
1, .

HO:T+Vm=zi:{—2V,» —l—V(ri)}:Zi:ho(z) (1.61)

with T' the kinetic energy and V., the external potential energy while

1
U=, ;uc (rs — 14) (1.62)
i#]

is the Coulomb interaction. This Hamiltonian may be written in second-
quantized form
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H=Hy+U,
Hy=>_ / drwl (1 hoW, (1),

U=y X [ [ dedyed @ @ucts - v)an, s (o). (1.63)

a,B3,7,6

Often the spin indices are understood as implicit in the integrations. It should
be kept in mind that relativistic corrections are needed in most problems with
light elements and the relativistic formulation is needed when heavy elements
are involved. Fortunately, the ideas that we shall develop lend themselves to
a direct generalization to Dirac’s framework.

1.2.5 Hubbard Model for the Hydrogen Molecule

The Hubbard Model is a lattice of atoms or sites that can host one electron
per spin; there is a hopping term between nearest neighbors like in a tight-
binding model and a repulsion U between two electrons on the same atom.
The Hubbard Hamiltonian

H=K+W=t Y cleot+Ud nimniy, (1.64)

(i,3),0

where K stands for the kinetic energy while W accounts for the on-site re-
pulsive interaction. The summation on (i,j) runs over sites ¢ and j which
are nearest neighbors in a cubic lattice. This is often called trivial Hubbard
Model to distinguish it from its extensions, involving degenerate orbitals and
off-site interactions, that have been studied for many purposes.*

To model Hs in the same spirit we represent the 1s orbitals of both atoms
by two sites a and b and H =T+ W with

T =1, Z {czacbg + CZUCQU} (1.65)

the kinetic energy, with ¢;, > 0 the hopping integral;
W =U (Rt fiay + oy fin,) - (1.66)

4Some people blame the Hubbard Model and its extensions as too idealized to
be realistic. Indeed nobody would use them to refine well-understood properties of
Silicon. However, there are lots of problems involving strong correlations and e.g.
transport, spectroscopies, time-dependent perturbations, which are far too hard for
an ab-initio description. Hubbard-like models are primarily conceptual tools aimed
at a semi-quantitative understanding. We shall see particularly in Chapters 4, 5 and
10 that often they allow to deal with highly excited states of strongly interacting
system very successfully. The Bosonic Hubbard Model is also important, e.g. in the
rapidly developing subject of Cold Bosonic Atoms in Optical Lattices (see Ref. [15].
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We wish to solve with two electrons of opposite spin (the ms = 0 sector) so
we take R
N =3 (flao + fg) = 2.
o

This is conserved. If U = 0, one solves the single-electron problem, and finds
the orbitals

|a) £ |b)
= 1.67
P+ " (1.67)
with energy eigenvalues
ex =%ty (1.68)

and the ground state ¥ = ||¢_1¢_| || has energy E = —2t;,. In the interacting
case, we choose a basis

lvi >=laTal>|ve>=]albl>,
lvg >=[bTal>|lvau>=bTb]|>.

Fig. 1.2. Singlet eigenvalues of the Hydrogen molecule model versus t(i .

There is a single state in the ms = 1 sector, so out of the 4 states in the

mg = 0 sector we expect one triplet and 3 singlets. We form the matrices
W = UDiag(1,0,0,1) and

0110
. 1001
T=tn| 1001

0110

(1.69)

One finds the eigenvalues: E = 0 for the triplet, and Ey = U, Ey =
) (U +/16t2 +U 2) for the singlets, with E_ the ground state (remark-
ably) for any U > 0. Magnetism never obtains in this model.
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1.3 Schrieffer-Wolff Canonical Transformation

One often meets problems with Hamiltonians
H=Hy+\V (1.70)

such that the interaction AV takes the system to an enlarged Hilbert space,
involving extra degrees of freedom not in action in the simple problem de-
scribed by Hy. Let A denote the restricted space and B the enlargement.
Typically,

_(Ha 0
Ho_< 0 HB)’ (1.71)

V= (2?;) (1.72)

is the mixing term. A standard way to solve such problems, that we shall
meet several times in this book, is by a canonical transformation

and

H— H=UHU"! (1.73)
where U is designed such that H is block-diagonal:

- Hy 0
H= . 1.74
(5 ) w
The transformation must be unitary in order to preserve the norm of states,

to this end we want U~! = UT; this is granted if U = e® with § = —ST.
Thus, expanding the exponentials,

H=e"He ™ = H+[S, H|+ ;[S, [S,H]| + - - (1.75)

Now we insert (1.70) with S = AS1+ %S+ - - and separate orders. Including
up to second-order,

[S, H] = A[S1, Hol- + A\*([S1, V] + [Sa, Ho]-), (1.76)

[Sv [SaH]—]— :AQ[SL[SMHO]—- (1.77)

At order A\, we want to have nothing and we require that S; be such that

V + [S1, Ho] =0, (1.78)

(2%)”(2_5)7(%4 f?3>]:0' (1.79)

that is,
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where we tried the solution

Sy = (2 _OST) . (1.80)

We immediately obtain two conditions, v = —sH4 + Hps and of =
—Has' + st Hp. Picking Hy eigenstates |m) in the A subspace and |v) in

2

the B subspace, with eigenvalues Ey(f ) and E , we obtain

§
Syn = tvn 3 (ST)mV = (U )mlj

) g = L (1.81)

The second-order contribution to (1.75), using (1.76),(1.77) and (1.79), is
/\; [S1, V] + [S2, Ho]. We may set Sz = 0 since

~(—(sTv+0Ts) 0
51, V= < 0 sto+ols

already gives a Hermitean, block-diagonal result. Thus,to second order,

(1.82)

Hy=Hp+ Hiny (1.83)

where )

Hipy = )\2 [S1,V]. (1.84)

The effect of V' can be obtained by working within the A subspace with
a renormalized Hamiltonian (see (10.48),( 1.82)) with elements

1 ’UT Vun 'UT (%7
(Hint)mn = { Y + ™ . (1.85)
2 ,;3 W —gP BN -EP

If the energy separation of A and B is large, the dependence of the energy
denominators on m,n is negligible, and we may write

vyl
Hini ==Y ; (1.86)
veEB E£ ) - E(A)

the denominator is a positive excitation energy.

1.4 Variational Principle

The energy of a quantum system is a quadratic functional of the wave function
¢. Consider a small variation ¢ — ¢ + an where 7 ia an arbitrary function of
the same variables on which ¢ depends, while « — 0 is a complex parameter,

E stationary <= {JF = 0,n arbitrary}; (1.87)
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subject to the condition that the norm is conserved, namely,
d(E—AN)=0. (1.88)

The Lagrange multiplier A is fixed by the condition N =< ¢(\)|d(N) >= 1.
Applying Lagrange’s method, one finds that the following statements are
equivalent:

{Hp=E¢, < ¢l >=1} & {6(E-AN)=0,A=FE} < {§(EF)=0, N =1}.
(1.89)
This is an exact refurmulation of Quantum Mechanics

FEzxzample
Given the Hamiltonian

-31111
10000
H=1] 10000
10000
10000

find variationally the eigenfunctions of the form
a

S . Normalizzation requires N = (1[1)) = o2 + 43% = 1 while E =

B
B
B
&

(Y|H|¢y) = 8af—3a?, thus we must look for the extrema of f(a, 3) = E—AN.
One finds
O =0=48= 3+ \a

=0=a=)8
The compatibility condition A(3 + ) =4 yields A = —4, A =1. For A = —4
—4

da a = —4fone finds ¥_4 = \/120 which is the ground state with

—_ =

which is the

eigenvalue ¢ = —4. For A = 1 da a = 3 one finds ¢y = \}5

—_ e e

exact excited state witheigenvalue € = 1.
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1.5 Variational Approximations

One can choose a trial function ¢(x, { A1, A2, - - - A\, }) depending on parameters
{A1, A2, -+ An} and look for the extremum. If ¢ is not already normalized,
the normalization condition can be enforced by Lagrange’s method. If the
exact ground state ¢ belongs to the class of functions, it corresponds to the
minimum energy, otherwise the minimum always overestimates the ground
state energy. Some variational approximations, like the Hartree-Fock scheme
and the Bardeen- Cooper - Schrieffer theory of superconductivity, have been
highly successful.

The excited states also correspond to extrema of the functional, however
there are severe limitations to the method.

The trouble is that the true eigenstates are orthogonal, but this
cannot be granted in general in a limited class of functions.

We need the orthogonality. For example we cannot give any meaning to
an excited state which fails to be orthogonal to the ground state. However,
the lowest state of any symmetry can always be found variationally, since it
is automatically orthogonal to the ground state.

A symmetry is an operator X, which is unitary (that is XX T = 1), such
that [H, X]_ = 0. The eigenstates of an unitary operator X belong to different
eigenvalues are orthogonal. Indeed, if X¢; = e'*¢;, aand X ¢y = e’ ¢,

(¢17 ¢2) = (¢17 XTX¢2) = ei(ﬁia) ((ZSlv ¢2)
and with a # 3, this requires (¢1, ¢2) = 0.

1.6 Non-degenerate Perturbation Theory
The standard perturbation series yields [25] the corrected eigenvalues

I mIH’\n>|2

Lo (1.90)

Em = EY + (m|H'|m) +Z
where EY are unperturbed eigenvalues and (m\H '|n) are perturbation ma-
trix elements; > = excludes the terms with zero denominators. The perturbed
wave functions are:

(k|H'|m) (m|H'[m)
U ¢(0)+Zw 5O E(°>(1_E§,?)—E,§0))

= (k[H|n)(n|H'|m)
+ .- (1.91)
; (EX — EOYER - D)

where %0) are the unperturbed ones. A much more general form of pertur-
bation theory will be developed starting from Chapter 11.



2 Adiabatic Switching and Time-Ordered
series

2.1 Time-dependent is Better: start from the Golden
Age

If we can solve a problem with a time independent Hamiltonian Hy, we surely
meet many interesting but hard problems with a Hamiltonian

H(t)= Ho + V(t) (2.1)

where an extra term V(t) appears: sometimes the complication V(t) depends
on time, but in other cases it is static. Here, H (¢) is in the Schrédinger picture,
the one that comes directly from classical physics with p* — aa;p’ and so on,
and sometimes we shall write Hg(t) and ¥ for extra clarity. So, we have the

task of solving
L0
Zhath(t» = Hs(t)|¥s(t) (2.2)

which is notoriously difficult. We can solve formally by introducing the uni-
tary time evolution operator Ug such that

Ws(t)) = Us(t,to)|¥s(to))- (2.3)

The time tg is arbitrary, and in time-independent problems one can choose
to = 0, but this is dull. In general, it is a much better idea taking Hg(t)
which depends on time, with the condition that for ¢t < tg, V = 0. For static
problems this appears lunatic, but it is a useful formal device. Dynamical and
static problems are best discussed with the adiabatic switching technique.
This is a cool revival of the old tale of the golden age, a happy era in the far
past. Assume that the interaction is added very slowly, starting from a time
t — tog, when the Hamiltonian was just Hy and everything was easy; if we let
to — —oo we may reasonably assume that the system does not warm up and
evolves adiabatically. Integrating (2.2) over time we find

.t
Us(t,to) =1 — ;/ dty Hs(t1)Us(t1, to); (2.4)

to

the advantage is that this may be solved by iteration:
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. t1
i
Us(t,to) =1- h/ dtlHS tl / / dtldtgHs(tl)Hs(tg)
to to Jto
(2.5)
Iterating, we face the nested integral
—Z t tl tn—l
() = ( )"/ ity [ dts.. / dtnH(t) .. H(ty) (2.6)
h to to to
where t the domain is limited to ¢t > t; > ...t, > tg. If H does not depend on
time, one gets trivially Z, () = (%i ) H (tn—!to) and the resulting exponential

series is immediately summed. This n! denominator proves useful and we can
bring it out in the time dependent case by a trick. Perform any permutation
of the time variables ¢; ...t, in Z,(t); in the new ordering the earlier times
will remain on the right of the later ones, while the value of the integral
remains unaltered. Thus one can sum all the n! identical replicas obtained
by permutation and divide by n!; accordingly, one defines the time ordering
operator P which puts earlier times on the right. For two terms

P[Hg(t1)Hg(t2)] = Hs(t1)Hs(t2)0(t1 — t2) + Hs(to)Hs(t1)0(t2 — t1);
with more operators,
P[Hs(t1)Hg(t2) ... Hs(tn)] =
> Hs(tg)Hs(tqs) .- Hs(tgn) [ [ 0(ten-1 — ton). (2.7)
Q n

Under the action of P the operators can be permuted freely as if they com-
muted. Actually when dealing with electron operators one uses Wick’s time
ordering operator 1" which is defined like P except that any exchange of
fermion operators which is needed to go from the given order to the standard
earlier to the right order brings a — sign. Thus, if A ad B are fermion creation
or annihilator operators, T is such that

T[A®#)B(t)]) = A@t)B(t)0(t —t') — B(t")A@t)0(t' —t).

When acting on Hamiltonians where Fermi operators occur in pairs P and
T have the same effect, but T permits simplifying the definition of fermion
Green’s functions. Summing over the permutations, that give identical con-
tributions, and dividing by their number, the integral (2.6) can be rewritten

)= h')”/ dtl.../ dt, T[H(t) ... H(t,)] (2.8)

to to

and we may formally sum the series:

Us(t,to) = T exp (;j ftto dTHs(T)) ; (2.9)

here T exp is a conventional notation that means nothing but the exponential
series of time-ordered products.
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2.2 Evolution in Complex Time

2.2.1 Heisenberg Picture

In most cases of interest, the wave function ¥ is a false target and W. Kohn
deserved a Nobel price for inventing the Density Functional Method (Section
12.6) that dispenses us from calculating it in important cases. Simply, ¥ is too
complicated to be computed or even approximated in really hard problems!.
It depends from a huge number of variables and involves all the information
on a system, including 15-electron correlations that nobody cares about. In-
deed, our task is another: doing experiments of some kind and interpreting
them never gives a complete information, so almost all the information that
the ¥ function contains is actually pointless. The interesting information is
expressed in the experiment-oriented Heisenberg correlation functions, that
we discuss starting from Chapter 10. In this Section we shall pretend that we
are still primarily interested in expanding the wave function, but the work is
actually oriented towards the Green’s functions. In the Heisenberg picture,

(A(t)) = (Y| A (t)|¥H) (2.10)

where by definition
Yr) = [Ws(to)) (2.11)

is the t-independent snapshot of the golden-age ¥, while any operator A,
including ¢ and ¢, has an extra dynamic time dependence

Ap(t) = UL(t, to) As(t)Us(t, to). (2.12)
For a strictly time-independent H (no adiabatic switch) this simplifies to read
Aty =t Ae™ ", (2.13)

but in general, from (2.12) one gets:

dAy _ Z,hdU;(t,to)

ih dt pr AsUs(t,tO)
+U;(t7tO)ASmdUsg’t0) + U;(mo)mdjts Us(t,ty):  (2.14)
since
T
mdUSC(Zz’tO) — Hs (1) Us(t, to), —ihdUSC(lz’tO) = Ul(t,to)Hs (£)  (2.15)

the result is

n 1 dimension, however, the Bethe Ansatz allows solving exactly some impor-
tant models, see Chapter 18.
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dAg

ih = —Uk(t, to)Hs (t) AsUs(t, to)
dA
+Ug(t,t0)AsHS(t)Us(t,t0)+m( df) . (2.16)
H

It is natural to introduce the Heisenberg picture Hamiltonian and write:

dAy

ih dt

[Ag (), Hy (8)] + i (dAS) . (2.17)
dt )
In the following, unless otherwise stated, we shall normally use the Heisen-
berg picture, and (A(t)) = (u|Ay(t)|Py) with ¥g) eigenstate of Hy (in
practice,the ground state in most cases). In terms of the Schrodinger picture,
this corresponds to evolving the state from ¢ to time t, applying the operator
and then evolving back to tg. We can merge the two Ug evolution operators
by introducing an oriented path C in complex time from ¢, to t and back (see

Figure). This needs a generalized T such that (letting i = 1)

Ap(t) = Ul(t, to) As(t)Us (t, o) =

{Texp (—z‘/tto dt’H(t’))] Ag(t) {Texp (—z/t: dt’H(t’))]
=T¢c [exp (—i /tto dt’H(t’)> As(t)] (2.18)

where C is an oriented path and T¢ is the time ordering operator on C. Note
that Ag(t) is under the action of T that places it appropriately.

Im z

23 Y

Re(z)

“Re z

to

\
g

a) b)

Fig. 2.1. a) A contour on the complex time z plane for obtaining (A(t)) from a
single Schrodinger-picture evolution. Since along a closed path starting and ending
at t* one collects Ug(t*,t*) = 1, the path can be deformed freely as long as it starts
and ends at tp and goes through t. b)The Keldysh contour; its main use will be
shown in Chapter (13)
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We shall see in Chapter 10 that this is the most natural way to make
contact with experiment, and is also important for the connection with ther-
mal physics that follows. The evolution operator satisfies the group prop-
ertyU(t,t1)U(t1,t2) = U(t, t2); hence the path can be deformed freely as
long as it starts and ends at tg and goes through ¢. In time-dependent prob-
lems, the most common contour is the Keldysh one from ty to —tg — +00
and back to tg; there are an ascending or positive branch and a descending or
negative branch, and a physical time can be taken on any of the two. I shall
write ¢4 and t_ the times taken on the ascending and descending branch
respectively; however (A(t)) = (A(t4)) = (A(t-)).

2.2.2 Thermal Averages

The initial state of the experiment on a solid is never an eigenvector of the
Hamiltonian; it is described [118] by a Hermitean density matrix that we may

denote
p=> wli)il, (2.19)

where [i) is a complete orthonormal set, w; > 0 is the probability of finding
the system in |i) with ), w; = 1. The statistical average of any operator Ais
by definition (4) = ", w;A;; and may be obtained as (4) = Trpfl, where Tr
denotes the trace (the sum of all the diagonal elements, which is independent
of the basis set.) In temperature-dependent problems, adopting the Grand
Canonical ensemble, p is the Boltzmann distribution,

—BK

VA

e

p= , K=H — uN, (2.20)

1

where 3 = KpT

N the number operator;
Z =Tre PK (2.21)

is the partition function. As detailed e.g. in [117], this p yields the maximum
entropy S = Kppln(p) with the constraints that Trp = 1, particle number
and energy must be kept fixed. Thus,

Finite T rule: (A(t)) = TrpA(t). (2.22)

For an independent-electron system with Hamiltonian Ho = >_ epChep,
any energy eigenstate is specified by the set of occupation numbers n, of
the one-electron levels, and the trace sums over all possible choices of n,.
Each term of the sum is a product of factors e ?(e»=#) from filled states
and factors 1 from empty states. Let us pick a particular level k and let X (k)
denote the contribution to Z from all the configurations with ny = 0; then, the
contribution to Z from all the configurations with ny = 1 is e P(+=#) X (k),
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since the other levels give the same contribution regardless the population
of level k. We can factor (1 + e~ #(-=1)) from the trace. Therefore we may
conclude that
Z =[]+ e Plemm), (2.23)
k
This is readily worked out for independent Fermions (Problem 2.1).)

The formal similarity between quantum averages and statistical ones
stems from the fact that e #K = =K (=) Jooks like a quantum propa-
gation at imaginary time ¢ = —i(. The system must be considered in ther-
mal equilibrium at a (real) time tg earlier than any time dependence of the
Hamiltonian. Then

—i 0—iB . i to—iB .,
Z = Tr[eP*Ne fto @ H] = Tr[e®*NTe ffo @ H]; (2.24)

ptg—iB L,
here T has no effect but was inserted to emphasize that Teﬂfto i
is an evolution operator along the vertical track in Figure 2.2.2 a). In the
complex t plane one draws the so called imaginary-time axis; 7 = it along the
axis corresponding to a 90 degrees rotation of the plane is the real variable
7 = —Imt. The statistical average of a time-independent operator may be
written

. [to—iB .,
zfto dt’ Ho

(A) = ;Tr[eﬁ”NTe_ A(to)]- (2.25)

If H is constant and no adiabatic switching is assumed, one can take tg = 0.
However when using the adiabatic switching we take to as the golden age

defined above. The switching of the interaction is so slow that no heating

of the system is caused, so at modern times t we have the full Hamiltonian

H(t) with any further explicit time dependence that may be necessary. This

allows us to perform the thermal average with the simple, particle-number

conserving Hy, that is,

. e—BKo

(A(t)) = TrpoAu(t), p= g7

Ko :Ho—/J,N, [HO,N} =0. (226)

For evolving along the vertical track with a temperature-independent H one
can introduce the temperature Heisenberg representation

A(r) = =17 ge=(H-1N)T, (2.27)

this is obtained from (2.13) by the usual substitution it — 7 and by H —

H — uN, in order to introduce the grand-canonical ensemble. The statistical
average of a time-dependent operator may be written

(A(t)) = ;Tr[eﬁuNTe*ifc 4 Ho 5 (4], (2.28)

where C' is the contour of Figure 2.2.2 b). The utility of such contours will
be more evident in the following, and particularly in Chapter 13.
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Im(t) Im(t)

to to
! ‘ Ro(t) —Re(t)

t=to—1if a) t=to—1if b)

Fig. 2.2. a) Contour for thermal averages at time to. The T or imaginary time axis
is shown: 7 = —Im(¢) is actually a real variable. b) Contour for thermal averages
at time ¢t. Complex times in the vertical track are latest.

2.3 The Interaction Picture and the Viable Expansion

In the Heisenberg picture, states are fixed while the operators Ay (t) carry the
time evolution; however, Ay (t) requires Ug(t, to); it is ironic that generally we
cannot even write down the Hamiltonian itself

Hi(t) = UL(t, to) Hs (t)Us (1, to).
Life is easy in the only case of stationary problems, when
Ap(t) =exp[iHg(t — to)] Asexp [—iHg(t — to)] ,

and in particular Hy = Hg. In order to be able to expand in powers of V one
introduces the Interaction Picture in which the operators evolve only with
Hot

Ap(t) = etflot AgetHot (2.29)

while the wave function is defined by
Wy (t) = etHolwg(t). (2.30)

The physics is unaltered since

(A1) = (@s ()| As (D)5 (2))
(W (t)]em ottt Ag (t)e ™ ot ot W (1)) = (W1 (1)| A7 (1)W1 (1)). (2.31)

Note that ¥y = ¥g at t = tg and ¥; = ¥g at t = 0; moreover, during the
golden age when the system is unperturbed,

Ur(t) = eiHOtWS(t) = eiEOtWS(t). (2.32)
One finds: _
0

i Z1(t) = eV ([T () = Vi) (¢) (2.33)
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Golden age: V=0 Today
Wy = iFotyg Uy =Y; Vs =Yg
| |
System in ! !
ground state lo 0 t
Of Ho

Fig. 2.3. Adiabatic switching and the three quantum pictures.

which is like Scrodinger equation without the obvious part of the dynamics.
The evolution operator in the interaction picture from an arbitrary time 7

Ur(t) =Ur(t, 7)¥r(T) (2.34)
satisfies 4
Ur(t, 7) = eot=Ug(t, 1) (2.35)
and 9
iatU[(t,T) = V](f)U](t,T). (2.36)
The solution o
Ur(t,7) = Te v J- Vi) (2.37)

is at the basis of all perturbation theory.

One must be able to switch representation. In the Heisenberg picture,
(A) = (P |An|Pr), where ¥y = WPs(tg); moreover, using (2.32), ¥r(t)) =
etEolowg(ty) and we may write (A) = (¥r(to)|Au|¥;(tp)). In the interaction
picture,

(A(t)) = (1 ()| Ar ()1 (t)) = <U71(750)|U}(t7to)AI(t)UI(ty750)|U71(750)(>- )
2.38
Therefore,

A = Uf(t,t0) Ar(t)Us (t, to), (2.39)

which is just (2.12) with g replaced by ;. Having succeeded in writing Heisen-

berg operator in terms of interaction ones, we can expand them in series of
Vr.

Problems

2.1. For Hy =}, epc;gcp, show that (ny) is given by the Fermi distribution,

1

L e (2.40)

(np) = Tr(nyp) =
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2.2. Let H = Ho+ Hy and Ups(t,t') the evolution operator for Hy. Write an
equation for the evolution operator Ug(t,t') for H.

2.3. Let Aj, Ay denote fermion creation or annihilation operators and p an
operator such as a density which commutes with A;, Ao under Wick’s T
ordering. Find {, T{A1(t1)A2(t2)p(t)}. How is the result generalized to several
operators Ay, - A,7

2.4. Derive the useful identity [205] holding for any Hamiltonian H, that
depends on a parameter A

d —iH\(t'—t) _ ~/t/ 7iH)\(t/7T)dH —iHy (T—1)
INE =—i t dre NG . (2.41)



3 Atomic Shells and Multiplets

3.1 Shell Structure of Atoms

X-ray spectroscopy and Photoemission (see Chapter 6) show a correspon-
dence between the electronic levels in many-electron atoms and in Hydro-
gen. The next Table shows the inner levels of Fe; the first column presents
the spectroscopic notation, the second the corresponding Hydrogen quantum
numbers and the third the measured binfing energy.

Shell nlj Ep(eV)
K ls% 7112.0
Ly 2p; 8420
L]] 2pg 719.9
L[]] 35% 706.8
M; 3py  94.0
M[] SPS 52.7
Mirr SdS 52.7

It is evident that the shells correspond to the principal quantum numbers
and the subshells to the spin-orbit split levels. This Chapter is devoted to
the elementary theory of the shell structure and the atomic multiplets, which
requires the use of introductory many-body concepts and the inclusion of
relativistic effects.

3.2 Hartree-Fock Method

Consider the true non-relativistic N-body Hamiltonian for an atom or molecule
(1.60,1.61,1.62), namely, H (r1,r2,...,7n) = Ho + V, with

Hy=T+H :Zh(i)EZ{—;V?+w(ri)}, (3.1)
V= ;Zv(ri — ) (3.2)

i#]
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(or (1.63) in second quantization). The external potential w is due to the
nucleus (or nuclei). Solving the Schrédinger equation is a formidable task;
the Hartree-Fock (HF) Method uses as a natural first approximation the
determinantal wave function of the form (1.4)

NI | -
ul(N) UQ(N) . UN(N)
written in terms of spin-orbitals u;(¢) to be determined. This enables us to
write the average of the one-body operator according to (1.7)

N

(W FW) = (] flui).

K3
and the average of the two-body operator according to (1.10)

N

(WF) = s (D)uy (2)]F (1, 2) s (D (2)) = (g (Da(2)] £ (1, 2) i (1) (2)))-

j#i

The average of the N-electron Hamiltonian yields

<W|H‘W> =FEN :ZIZ‘—F ;Z(C’J —Eij), (34)
7 1]
where I; = (u;|h(i)|u;), while Cj; and E;; are respectively the Coulomb and
exchange integrals involving the Coulomb interaction and orbitals i and j.
We are facing two main problems: on one hand, the determinantal wave
function is appropriate for independent electrons and on the other we need to
specify the orbitals somehow. We find a way out of both problems if we use the
determinantal form as a variational ansatz and seek for optimal spin-orbitals;
we impose normalization by a Lagrange multiplier for each spin-orbital. If we
wish, we may use other Lagrange multipliers to enforce orthogonality, but if
we forget this requirement, orthogonal spin-orbitals are obtained anyhow.
The main reason why the HF approximation is important is that the
equations are written in the same way for all systems; we can illustrate the
procedure starting with the ground state of He. Then the two spin-orbitals
are u1s1 = u1s(r)o and uis) = u14(r)0F, in obvious notation, and

By = (u151 (1) (1) Ju1s1 (1)) + (w15 (2)] 2(2) [u1s) (2))
+ (ursr (Dursy (2)] 1 Jursr (Duisy (2))

T12

(3.5)

does not involve exchange terms. We vary the orbital ui4(r) requiring §Ey =
€N, where N is the norm of uq4(r) and € is the Lagrange multiplier. We
obtain the Hartree equation
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1
A1) + (1) [ Eraunc@ L @) =) 30
12
(we speak of Hartree-Fock when exchange terms appear). Thus the optimal
orbital is obtained by a Schriédinger-like equation where the electrons feels,
along with the nuclear potential contained in h, the Hartree potential

Vi(l) = /d3r2u15(2)* r;l? u1s(2); (3.7)
V' is just the electrostatic potential due to the charge cloud of the opposite-
spin electron. Having chosen an independent-electron form of ¥ we are trying
to compensate the neglect of the Coulomb interaction by including its average
as an effective potential or mean field. The Hartree approximation takes into
account the quantum nature of the electron and is self-consistent, that is, it
accounts for electrostatics. Indeed, HF is also called the self-consistent field
method. Yet, it is still far from exact. The He ground state energy turns out
to be Ey = —77.866 eV, which is more than 1 eV too high compared to the
exact result (~ —79 eV). This large discrepancy is the correlation energy and
is due exclusively to the determinantal form of ¥. In other terms, the electron
does not see the average cloud of the other one, but a point particle with
which it can correlate its motion. The discrepancy may be small compared
to the binding energy of the system and also compared to core-level binding
energies, but since 1eV is the scale of chemical binding energy the accuracy
of the HF method is questionable if one wants to predict chemical trends.
The excited state 15253S of He can also be approximated variationally
as discussed in Sect. 1.4. Triplet He is called Orthohelium and converts to
the singlet Parahelium after a long time (spin-orbit coupling is small). The
relevant configurations are uis1ugst, With mg =1, w15 uas|, with mg = —1.
Of course, there is also mg = 0, with the embarassing non-determinantal
configuration \}2 [u1stas) + u1s u2s7]. This state would be outside the scope
of the HF method, but we know that its energy is the same and anyhow it can
be reached from the determinantal states by a 90 degrees rotation. Hence we
can concentrate on uistu2st, and repeating the above argument and setting
a = uis1,b = ugst we find:

Ey=1,+1y+Cu — Eg. (3.8)
The extremal condition dE = 0 is subject to the further conditions (ala) =

(b]b) = 1, and we need two Lagrange multipliers €, and €. So, we get, varying
a:

h(l)a(1)+a(1)/d2 b*(2)r12b(2)—b(1)/d2 b*(g)rla@) — coa(1). (3.9)

Varying b, we find the same with a and b interchanged. These are the HF
equations for the problem. For parallel spins a non-local exchange potential
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arises. However, this is a non-local potential (the r.h.s does not depend just
on the local value of a).

Ve (3)a(7) = b(F) / dy b*;y)_ag) (3.10)

The physical significance of the exchange term will be further discussed in
the next subsection.

It is worth mentioning that had we started with a simple product, without
anti-symmetrization, we should have found the direct term but we would have
missed the exchange one. The Hartree method, which neglects exchange, has
also been widely applied. Its results are not always worse than those of HF.
Indeed, since the orbitals are filled according to the aufbau method, the shell
structure is reproduced and the Pauli principle is not totally ignored; both
methods neglect correlation, and this is the most serious limitation for both.

Let us take the scalar product of Equation (3.9) by |b) :

Da(D)b2)* = b(1)[*6*(2)a(2)

T12

<b\h|a>+/d1d2 o —ea (b a).

The formidable-looking integral vanishes and one is left with
(bl h)a) =€, (b]|a). (3.11)

Exchanging a and b,
(ah|b) = eb (a|b).

Taking the complex conjugate and subtracting from (3.11)we get
0=(ca—eb)(b]a),

and non-degenerate orbitals are orthogonal.

The analogy of the HF equations to Schridinger’s suggests that the so
called Koopman’s eigenvalue ¢, is the energy eigenvalue of the electron mov-
ing in spin-orbital a. However, one should not give any physical significance
to the individual orbitals. One can introduce unitary linear transformations
of orbitals. Then, the determinant ¥ does not change, and nothing changes
since ¥ has a physical meaning, the spin-orbitals do not possess any by them-
selves. No physical observable corresponds to the energy of an orbital. Let us
take the scalar product of Equation (3.9) by |a) :

BRI _ [ g1 o1 UD@SE

T12

= €a,

(a(D)| h(1) |a(1)) + /d1d2

that is,
o =1y +Cop — Egp. (3.12)

Using
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ey = Iy + Cpa — Epa, Cpa = Cap, Epa = Eap,

we may conclude that
€a"’e"«‘b:I¢1‘|'Il7‘|'2(c’ab_IECLb) #EQ :Ia+lb+0ab_Eab

and the energy of the atom is different from the sum of the Koopman’s
eigenvalues.

Rather, they can be thought of as approximations to ionization poten-
tials. Suppose the atom is photoionized, and the photo-electron is sent to the
threshold of the continuum (also called vacuum level). The ionization poten-
tial is the difference between the energy of the initial state He 152525 and the
energy of the final state He™. The initial energy is By = I, + I + Cap — Equp,
where a=1s, b=2s; indeed on removing the electron b, we must remove
€y = I+ Cup — Eqp. This fact is known as Koopmans theorem, and shows that
the HF calculations do bring some information about the excited states, after
all. The main weakness of this approximation is evident from the above He
1s2s 3S example, too. The final state Het is hydrogen-like, with Z=2. If we
estimate the ionization potential by Koopman’s eigenvalue, we pretend that
in the final state the electron keeps its unrelaxed orbital a, which is computed
including the potential due to the electron in b. Thus, Koopman’s eigenval-
ues imply a frozen-orbital approximation. One can fix this problem by doing
separate HF calculations for the initial and final configurations. This is called
the A—SCF method; the errors due to correlation effects, however, cannot be
removed within the HF approach, and require the methods of Chapter 11.

The advantage of the HF approach over more accurate variational meth-
ods is that the equations are system-independent. The generalization of Equa-
tion ( 3.8) to the N-electron problem reads

Ey = ZI + Z — Eyl. (3.13)

z#J

The Koopmans eigenvalues are

=1+ Z i —Ey)=Exy —EY | (3.14)

where E%ll refers to the system ionized in spin-orbital i, while the other spin-
orbitals remain frozen. Looking for the extremum of energy constrained by
normalization one finds the HF equations. We introduce the direct potential

N
d _ d ) Jui(r
_;‘/z (’I") /d |,’,_,’,/|

summed over all electrons, and the exchange potential
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m

Ver =SV (r), V() f(r) = ui(r) /

%

sy 11
7|

(3.15)

17
where the summation ) runs over the spin-orbitals with the same spin as i.

i
For an atom with atomic number Z, the Fock operator

¥ Z ex
f= S— +Ve(r) = Ve (r) (3.16)

allows to write the HF equations in the deceptively simple form

The HF equations have a complete othonormal set of solutions. The lowest N
allow to build the determinantal wave functions. The rest are called virtual
orbitals ; they are not directly related to any experiment involving excited
states, but they are often useful to generate multi-determinantal develop-
ments, like the Configuration Interaction expansion.

In open-shell system one does not know a priori which configuration will
give the lowest energy, and problems are generally harder than in closed-
shell systems. For instance, the u;s; and ugs orbitals of Be (Z=4) are spin-
independent and are determined by a pair of coupled HF equations.The prob-
lem is more involved with Li (Z=3). We may arbitrarily set the unpaired 2s
electron with spin up. This implies that the up-spin 1s electrons has the ex-
change interaction while the down spin electron does not have such a term,
hence there are 2 1s levels and 3 HF equations must be solved. The splitting
of the core level is physically correct. This is the HF method in its general
form, which is often termed unrestricted HF, or spin-polarized HF. In order
to simplify the computations the restricted HF method has been introduced.
One then imposes the same orbital for both spins, with half exchange interac-
tion for both spin directions. This approximation, however, leads to incorrect
molecular dissociation at large distances and cannot describe magnetism.

The ground state configuration of every atomic species, which is reported
in Mendelejeff tables, is the one which yields the minimum energy with the
HF method (or its relativistic extension). The Koopmans eigenvalues for the
closed-shell Cu™ ions (658.4 eV for 1s, 82.3 eV for 2s, 71.83 eV for 2p, 10.65
eV for 3s, 7.27 eV for 3p and 1.6 eV for 3d) may be compared with the
experimental binding energies (662 eV, 81.3 eV, 61.6 ¢V, 11.6 eV, 6.1 eV,
0.71 eV, respectively). In this case the relativistic effects are small and there
is no doubt that the general trend is correct, however the relative error for
the external shell exceeds 100%. The methods of Chapter 11 are needed in
order to improve the situation. While the true ground-state energy is always
lower than in the HF approximation, there is no such relation between the
Koopmans eigenvalues and the true levels of the system; in more advanced
theories, actually, they are resonances (see Chapter 5 ).
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The relativistic extension of the HF method is called Dirac-Fock method.
One replaces the one-body Hamiltonian h by Dirac’s Hamiltonian [203]{202]

Ze?

il

where a; is Dirac’s velocity [203] of electron i, § = -4 is Dirac’s matrix and a
four-component wave function is sought. For light atoms, the Coulomb inter-
action continues to be used, although a better alternative is Breit’s interaction
[204]

hp(i) = coy.p; + Bmc? — (3.18)

2
Wp(1,2) = : explikria](1 — (1) - a(2)), ck = w
12

where fiw is the absolute value of the energy jump of each electron in the
collision. Breit’s interaction is particularly needed for the inner shells of
he3avy elements. With such changes, the self-consistent equations work ba-
sically as in the non-relativistic case, and Dirac-Fock atomic codes are avail-
able since a long time. GRASP (General Purpose Relativistic Atomic Struc-
ture Program[158]) labels Dirac-Fock solutions by J?2, J,, parity and seniority
number 9.9(See Chapter 9.9) does a partial configuration interaction, keeps
into account the finite nuclear dimensions and includes the main corrections
due to Quantum Electrodynamics.

3.2.1 Physical Meaning of Exchange: the Cohesion of a Simple
Metal

In all metals, the conduction electrons shield the electric field of the Ions.
The shielded potential seen by an electron at the Fermi level is consider-
ably attenuated, and in Aluminum and other metals with s and p conduction
bands, it is nearly flat. These metals are called simple since many of their
properties can be explained with the model of free electrons. The theory of

Sommerfeld considers a gas of N electrons confined to volume V, with large N
3

and V such that ]‘\/] =n= ; ¥, where n is the number density of conduction
electrons, that occupy all the states up to the Fermi level. The Fermi sphere
exists indeed and the Sommerfeld theory explains some facts correctly: the
contribution of electrons to the specific heat of the metals is correctly pre-
dicted to grow linearly with the temperature 7. But the energy density of
the electron gas 5 = 3"5’” is positive, and the electrons are prevented from
escaping from the metal by a box. The real nature of this box is unexplained.
For the metal to be stable, an electron must be attracted by it. The Jel-
lium is a hypothetical metal in which a Fermi liquid, that is an interacting
electron gas, is neutralized by positive uniform charge. The nuclear charges
are smeared out in uniform way and the system have complete translational
symmetry; however oversimplified, this model is still hard and nobody knows

the exact solution. It is a traditional bench mark of the many-body theory ,
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and a constant source of ideas that then are applied to the realistic calcula-
tions. The electrostatic effects are included in the theory, and they improve
it considerably. We see that what we can learn from SCF approximation.
The most fundamental issue is the cohesion of a metal piece. We consider
a large cube of Jellium of volume V containing N electrons, with N/V = n
and impose periodic boundary conditions. The method of Hartree describes
to the state of the Jellium with a product wave function of the form

@(1,2,-~-,N):ul(rl)u2(r2)-~-uN(rN) (319)

where u; are unknown spin-orbitals; the Hartree potential is V}, 4+ Vg, where
V4 is the positive background potential and V; is the direct potential.

We look for a translationally invariant solution! as a natural first choice.
Then the space function in the w spin-orbitals is a plane-wave; the density
is a constant and cancels exactly the background density. Thus, V, + V4 =0
and the electrons are left with the mere kinetic energy, which is positive; the
result (a piece of metal cannot exist) is very unrealistic.

In the Hartree-Fock approximation, we can still find plane-wave orbital
solutions, but since the Hartree term just cancels the background, the only
potential is the exchange potential V(em To obtain its expression one can
write down the direct term Vyur(r) = ug(r) >, [ dr’ e Muk’( ") ug(r) and
perform the charateristic exchange

7'('62
emuk = Z/dr Uk’( )Uk( Z |];‘:_ k|2 (320)

The exchange term also goes like €**", and the Hartree-Fock equations read
2 62 A eikr eikr
— =e(k . 3.21
The Koopmans eigenvalue is
h’k? dme? 1
k) = — K0k 3.22
"= (273 / (ke )|k’—/<:|2. (3:22)

For small k, e ~ — Q‘BikF . The electron moves in a potential well in k space;
there is a singularity for £ = kp. The exchange term is attractive, and this
fact has a simple physical interpretation. Every electron travels encircled by a
space region (Fermi hole) in which there is deficiency of electrons of its same
spin. The electron and the Fermi hole constitute with a quasi-particle, very

!Spin density wave solution of the Hartree-Fock equations are energetically fa-
vored at low n, however the energy difference is far too small to be relevant o the
cohesion issue. Cs has low enough n to have a spin density wave in the ground state
according to Hartree-Fock equations; the actual metal, however, is not magnetic.
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different from that of a free electron. The Jellium is stable if an electron at the
Fermi level is bound. This depends on the competition between the negative
contribution of the exchange term and that positive one of the kinetic energy.
The outcome of the competition depends on kg, that is an the density n of the
Jellium. For sufficiently small density (krpag << 1) the attraction prevails,
and the metal exists.

The function e(k) has a logarithmic singularity for k& = kg, where its
derivative diverges. This is physically wrong, no such behavior is observed,
but we have understood the reason for the existence of metals, and if we want
to understand more we must go into the many-body problem.

3.3 Virial Theorem

For a classical particle moving in a closed orbit in a potential V, one finds
jtr p= 2’”; + 7 F, where F = —VV is the force. Averaging over a period,
(47 -p) =0, yields the well known Virial theorem (27") = (r - VV) where T
is the kinetic energy.

For a Schrodinger particle ihgtr -p = [r - p,H|_; averaging over an
eigenstate of H, the r.h.s. vanishes; since the quantum commutators give
Cfl’f = —VV, % = P we obtain the same Virial theorem (27') = (r - VV).

In Dirac’s theory[203], if 9 is an eigenspinor of H = cac- p+ fmec? + V (r),
(using standard notation, with e Dirac’s velocity) a similar procedure leads
to (Ylca - pl) = (pler - V).

Here we are particularly interested in a system of N non-relativistic par-
ticles, including electrons and nuclei, in Coulomb interaction; let e; and m;
denote charges and masses of the charged particles; the Hamiltonian is of the
form

h? N \ve N €t
H=- ! =T g 2
2Zmi+z Tij 1 (3.23)
=1 1<J
The ground state wave function @({r;}) depends on the set {r;} of the N
position vectors. Consider the rescaled, normalized wave function

3N
@y ({ri}) = 0" B({nra}). (324
One checks easily that kinetic and Coulomb energies scale differently, that is,
(@, |T|®,) = n*(D|T|P), (3.25)

while
(Dy|V|®y) = n(P|V|®). (3.26)

Hence,
()| H|®y) = n*(D|T|D) +n(P|V|D). (3.27)
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Treating 7 as a variational parameter, we find the condition
2(@|T|P) + (P|V|P) =0, (3.28)
but since the optimum value is 7 = 1 we end up with the Virial theorem
2T +V)=0. (3.29)

This is one of the few known exact statements about interacting many-body
problems. The Hartree-Fock ground state satisfies the Virial Theorem, and
an approximate self-consistent calculation can be improved by scaling.

3.4 Hellmann-Feynman Theorem

Let H = H()\) denote a Hamiltonian which depends on a parameter A and

HY = EY. Then
dE

d\

This follows from E()\) = (¢|H(N\)|¥) and from the fact that a small dA
produces a first-order variation d¥ which is orthogonal to ¥. This is another
one of the few exact results for interacting many-body problems.

=), (3.30)

3.5 Central Field

In this Section we study the ground state and the low excited states of the
atom with atomic number Z, including the most important relativistic effects.
Using symmetry (exact and approximate) we can tell a lot without heavy
computing. The model Hamiltonian is

Hyot = Hyo+ He + H) (3.31)
with
Z p?  Ze?

Hoy = bo— .32
0 ;[QW T} (3.32)

Z_ 2
He = , (3.33)

— 1

1<J
z

rel = Zﬁ(ﬁ)Li - S; (3.34)

where p; and r; are electron momenta and coordinates, r;; are distances;
H/_, contains the spin-orbit coupling between orbital angular momentum L;
and spin S; of electron i which is the most notable relativistic correction
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(other corrections involving the orbital currents are actually larger, but less
evident since they fail to split levels). In the central field model, the states of
the atom are constructed using 1-electron orbitals computed with a suitable
central V(r); the wave functions differ from the Hydrogen-like orbitals only in
the radial functions R,z (r). In terms of the one-electron basis states labeled
by n, L, m, mg quantum numbers?, one starts assuming a configuration of the
atom (see Table 3.1).

Is Cr 24 3d°4s Ag 47 4d°5s Yb 70 4f'*6s>
1s>  Mn 25 3d°4s® Cd 48 4d'°5s> Lu 71 5d6s>
2s Fe 26 3d°4s®> In 49 5s%5p  Hf 72 5d%6s>
25> Co 27 3d"4s> Sn 50 5s?5p?  Ta 73 5d°6s>
2522p Ni 28 3d®4s® Sb 51 5s%5p® W 74 5d*6s>
2522p Cu 29 3d'%4s Te 52 5s%5p* Re 75 5d°6s>
7 25%2p% Zn 30 3d'%4s® 1 53 5s%5p° Os 76 5d°6s>
8 2s22p* Ga 31 4s%4p Xe 54 5p° Ir 77 5d76s>
9 2522p° Ge 32 4s%4p> Cs 55  6s Pt 78 5d%6s
10 2p°  As 33 45%4p®> Ba 56  6s? AuT9 5d'6s
11 3s Se 34 4s5%4p* La 57 b5d6s® Hg 80 5d'%6s
Mg 12 3s®  Br 35 4s%4p® Ce 58 4f5d6s> TI1 81 6s%6p
Al 13 3s23p Kr 36 4p° Pr 59 4f%6s> Pb 82 6s5%6p>
Si 14 3s?3p> Rb 37 5s Nd 60 4f%6s> Bi 83 6s%6p®
P 153s%3p® Sr 38 55> Pm 61 4f°6s> Po 84 6s%6p*
S 16 3s%3p* Y 39 4d5s> Sm 62 4f°6s®> At 85 6s%6p°
Cl 17 3s?3p® Zr 40 4d*5s®> Eu 63 4f76s> Rn 86  6p°
Ar 18 3p® Nb 4l 4d'5s Gd 64 4f75d6s*> Fr 87  Ts
K 19 4s Mo42 4d°5s Tb 65 4f%s® Ra 88 7s?
Ca 20 4s2 Tc 43 4d°5s® Dy 66 4f°6s> Ac 89 6d7s”
Sc 21 3d4s> Ru 44 4d'5s  Ho 67 4f''6s> Th 90 6d°7s*
Ti 22 3d*4s> Rh 45 4d%5s Er 68 4f'26s> Pa 91 5f26d7s>
V 23 3d%s* Pd 46 4d° Tm 69 4f%6s> U 92 5£°6d7s>

SO W N

ZZmozawPoEm

Table 3.1. The atomic numbers and the ground state configuration of the elements.

A shell comprises all the orbitals of a given n, and the inner ones, entirely
occupied by electrons, are core shells. The inner shells contribute most of the
binding energy; their charge screens the nuclear potential and contributes in
an important way to the V(r), in which the external electrons move. The
magnetic quantum number of a closed shell is My = Y . My, = 0, the z
component of spin is zero and thus all angular momentum quantum numbers

2This is a very convenient basis, but individual electron quantum numbers do not
represent observable quantities; any measurement will give the quantum numbers
of the atom.
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vanish; the parity is +1. Thus, the parity and angular momentum quantum
numbers of the atom are determined by the outer (or valence) electrons. This
suggests that Hy,; can be simplified. The valence electrons are modeled by

H=H,+ H + H.,, (3.35)

where the sums are restricted to incomplete shells. The residual Coulomb
interaction H(, does not contain the core electron contributions and can be
dealt with approximately as a perturbation; for light atoms H/ , is also a
perturbation. In the limit H;, = H_, = 0 all the states in a given con-
figuration would be degenerate; for instance, a C atom in the fundamental

configuration 1522s%22p? has 2 electrons in the six p spin-orbitals and would

2
the invariance of H, for independent rotations of electrons orbitals in space
and of the total spin. The orbital angular momentum of each electron and
the total spin are good quantum numbers in this limit. In the presence of
interactions, the only conservation laws are

have a <6> = 15 times degenerate ground state. This degeneracy stems from

[H,J]_ =0 (3.36)

where J = L + S is the total angular momentum (invariance under rigid
rotations) and the parity
[H,II|- =0 (3.37)

(neglecting quite tiny effects of electro-weak mixing).

3.5.1 L-S Multiplets (H/_, — 0 Limit)

In light atoms, one can neglect H , to a good approximation; H(, breaks the
invariance for independent orbital rotations of the electrons, that change r;;.
One is left with the invariance under rigid rotations R(a) = e~#%L. Hence
H commutes with the components of the total orbital angular momentum
L, and the configuration gives raise to a Russell-Saunders multiplet, with
different energies for different L. Besides, H commutes with the i-th electron
spin S;. Is S; a good quantum number? Not at all, since individual electrons
do not possess observables. What we can measure is the total spin § = ). S;
of the atom. Moreover, L and the total electronic angular momentum

J=L+S (3.38)

can be measured. But what quantum numbers are compatible? H commutes
with L2, 52,J2,L,,S.,J,. However, since J? fails to commute with L; and
S, these operators are not all compatible and we can label states in two
alternative ways: 1) diagonalizing H,L? S* L,,S.,J. = L, + S, defin-
ing the |LSMMg) basis with quantum numbers E, L, S, My, Mg, M; =
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My + Mg. Since H is invariant for independent rigid rotations in ordi-
nary space and spin space, E is independent of M and Mg. 2) diagonal-
izing H, L% 82, J?,J defining the |LSJMj) basis with quantum numbers
E,L,S,J M;. The two bases are connected by a unitary transformation, and
both schemes are referred to in literature as L-S or Russell-Saunders scheme.
The energy levels of this approximation, or atomic terms, are denoted with
symbols of the type 2*!L: as an example, 2P has L=1, S=1/2; they are
degenerate (2L41)(25+1) times.

L-S Terms Inside a Given Configuration

The L-S terms belonging to a given configuration are resolved by H{,. One
can easily find what terms arise. For closed shells there is only 1S. If a single
electron optical electron moves outside filled shells the entire atom has the
quantum numbers L, M and Mg = ; of the electron. If a single electron
lacks in order to make filled shells, there is a single hole, this counts like
an electron with opposite values of M and Mg. If there are two inequiv-
alent electrons (different principal quantum number n) outside filled shells,
one must sum their L and S. For instance, from two electron labeled np, n'p
one builds the atomic terms '$,2 5,! P3 P,! D, D. With 2 or more equivalent
electrons, the possible terms are limited by from the Pauli principle, and the
best thing is to proceed by examples.

Example: C atom (configuration 1522s%2p?). The closed shells may be ig-
nored, and we must consider the configuration p2. The 1-electron states avail-
able are (m,o) withm =my =1,0,—1and 0 = :&:;; there are 6 spin-orbitals
involved. Without the Pauli principle we would find '$,3S,! P3 P! D3 D,
that is 1 + 3+ 3+ 9 4+ 5+ 15 = 36 states. Many of those terms are forbid-
den, since only the 2 electron determinants (mjo1, mao2) involving different
(m, o) are allowed. There are 9
linear combination on can form 15 allowed 2-electron states with well defined
L,S, My, Ms. The (mi01, mao2) determinants are labelled by M, and Mg,
and those with parallel spins belong to S=1; Mg = 0 is compatible with
singlet and triplet. Not all determinants have well defined L; however the de-
terminant with the largest M must belong to the maximum L. In this case
the largest My, is 2, and corresponds to (mjoy, meos) = (14,1-), having
Mg = 0. Thus there is a 'D term. 'D has 5 states, M = 2,1,0,—1, -2,
and we must find 10 more orthogonal states, with L < 2. With My = 1 we
can find the 4 determinants (1+,0+) having mixed L. A linear combination,
which might be found using the shift operator S~ on the state with M = 2,
belongs to ! D; 3 M}, = 1 states are left, with L = 1 and Mg < 1; these belong
to 3P (9 states). we have found 5+9=14 states out of 15; there is room only
for a 1.S. Thus the configuration is resolved as follows:

6) = 15 pairs of different spin-orbitals; by

p? =1 S3PID. (3.39)
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(See the Problems section for other examples.)

The parity of the atom is the product of those (—)% of the orbitals in
the determinant. The ground state configuration of C is even, and all terms
including 3P are. The excited configuration 2s'2p? is odd and yields a term
denoted by 3P°, where o stands for odd.

The L-S wave functions can be obtained by combining the angular mo-
menta with the Clebsh-Gordan coefficients. For two electrons, one forms de-
terminants |mjmsg, mams,), recalling that in order to avoid double counting
the orbitals must be ordered in some way; then,

|LSMMg) = (3.40)
1 1
E |m1 m 51m2m52><L1m1L2m2\LML><2m51 2m52|SMs>;

M1Msy M2Ms,

one has to normalize the result again in general (see Problem 3.3, 3.4). A
third electron can then be added if needed by multiplying by a spin-orbital
with the Clebsh-Gordan coefficients, and antisymmetrizing the result. For
many electrons this build-up process becomes very time consuming, but one
can make the process faster by using fractional parentage coefficients [147]
[148]. These table present the wave functions coded in a special way; this
saves labor, but introduces no new physical concepts.

3.5.2 Hund’s First Rule

Hund established two empirical rules, that hold with no exception in atomic
physics, and are very popular with the students because there is no proof to
learn. This is the first.

The lowest L-S level of the atomic config-
uration has the lowest S and the highest L
compatibly with S.

This is no theorem, but is true and reasonable, since high spin implies a
very antisymmetrical orbital wave function and therefore a reduced repul-
sion; increasing L also lowers the energy because higher L. wave functions are
more diffuse. For Z=6 ( C atom), the configuration is 2p® : the terms are
183 P D and the ground state is 2P. For Z=74 (Tungsten ) the configura-
tion is 5p®5d*6s2; the incomplete shell is 5d*. With M, = —2,—1,0,1,2, all
spins can be parallel, so the Hund rule wants S = 2. The maximum Mj, is
2+1+0+ (—1) = 2. The ground term is 5D. In the L-S limit (no spin-orbit
interaction) the states of a term are all degenerate. Combining the states of a
LS term with various My, and Mg by means of the Clebsh-Gordan coefficients
one builds |L, S, J, M ;) states. The allowed values of J are obtained from L
with S by the usual angular momentum summation rule, while M; € (—J, J).
Thus a term 3F, (L=3, S=1), gives raise to 3Fy,3 F3 and 3Fy, where the in-
dex to the right is J. The energy E of the atomic levels is independent of
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IS 150

Fig. 3.1. The p? configuration splits into the L-S terms 1S,* D and 3P, separated
by the Coulomb interaction. The relativistic correction then produces the atomic
levels as shown.

J and M. If we introduce H/, as a perturbation, the degeneracy is partly
removed; F depends on J but not on M ;. Here is the pattern of the levels
for the Carbon atom (see Fig. 3.1).

3.6 Atomic Coulomb Integrals

The interaction matrix elements (uqup| Tiz |ucug) between spin-orbitals factor
into spin scalar products and Coulomb integrals (a(l)b(2)|r}2 le(1)d(2)) in-

volving the central field orbitals a(r) = R%, (r)Yra (6, ¢), and the like. One
can expand 7&2 = |7'1i"'2‘ in polar coordinates such that r; — (r;,6;, ¢;).
Imposing that the result be the Green’s function of Poisson’s equation one

finds, in terms of spherical harmonics and of the shorthand notations

rs =110(r1 — o) + r26(ra — r1), (3.41)
re =190(r1 —ro) +116(ra — r1), '
1 < K K vE (01, 01)Yrm(O
—ir ;<+1 Z om (01, 01)Yrm (02, 92) (3.42)

T12 (2K +1)

K=0'> m=—K
To carry out this calculation, one needs integrals involving three spherical

harmonics; these are easily obtained by codes like Mathematica or Maple;
they are tabulated in the literature [144] as ¢/ tables, where

2K +1
+CK

[ 495, (@ icn( @Y () =P

(Lamg, Leme)d(m, mg—my).

(3.43)
One easily finds that
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1
<ab|r led) = §(mg + myp, me + myg) X
12
oo
Z (Lo, ma, Leyme)c™ (La, ma, Ly, my) R¥ (ab, cd) (3.44)
K=0
Actually this summation has in any case a few nonzero terms since they are
restricted by the triangular rules

|Lg — Ly| < K < Lg+ Ly

‘La - Lc| S K S La + Lc~ (345)

The radial integrals contain the specifics of the problem, the rest is geometry.
For the diagonal elements (c,d)=(a,b) one uses the Slater integrals

FE(nyLa,nyLy) = R¥(a,b,a,b) (Coulomb interaction)

G¥(ngLa,nyLy) = R¥(a,b,b,a) (Exchange interaction). (3.46)
Using other widespread notations,
1
(ab| " lab) = ax(Lama, Lyms)FX (ngLa, nyLy) (3.47)
T12 1%
with
ar (Lama, Lymy) = ¢ (Lama, Lama)c™ (Lymy, Lyms) (3.48)
and
1 K
(ab] ~ |ba) = Z b (Lamaq, Lymy)G™ (ngLa, npLy) (3.49)
T12 e
with
br = |52 (3.50)

In this way, one can calculate the multiplet splittings due to Hf,. The re-
pulsion is invariant for space rotations and (separately) spin rotations of the
atom, which are exponentials in L, .S and the Ho matrix is diagonal in the
|LSMMg) basis.

A closed shell contains of angular momentum L contains 2(2L + 1) elec-
trons; the configuration with 2(2L + 1) — n electrons is said to contain n
holes and to be conjugate to the one with n electrons. The expressions of
the matrices of the Coulomb interactions in terms of the Slater integrals are
the same for the conjugate configurations; however the one for n electrons
refers to the empty shell as the energy zero, and the one for n holes refers to
the filled shell. Thus,if the Slater parameters are the same in both cases, the
term separations are the same. The direct diagonalization of the Coulomb
matrix by standard methods becomes painstaking with many electrons; ef-
ficient methods based on tensor operators are reviewed by Weissbluth [147]
who also reports the results for the most common configurations. The multi-
plet energies for many more configurations are given by Condon and Shortley
[144] and by Slater [145].



3.6 Atomic Coulomb Integrals 45

Relativistic Correction to the L-S Coupling

Hydrogen is a special case, since L remains a good quantum number® despite
the spin-orbit couphng H' l = ¢L- S and the states can be labeled |LSJM ).
Bes1des H! §(J? — L? — S?) yields the first-order correction AE(.J) =

rel T
5 S(J(J+1)— (L+1)—S(S+1)). Lande’s interval rule AE(J)—AE(J—-1) = &J
is obeyed.

In many-electron atoms H/,, = > . &L; - S; fails* to commute with L2
and S?; so, L — S terms sharing the same J are mixed. In the C case, 3P,
and ' Dy contaminate each other, and .Sy mixes with 3P,. Spins and orbits
exchange angular momentum; only in the H case this does not happen (the
spin of 1 electron is always 1/2.) For light atoms,H_., is small, and the mixing
of different L-S terms is negligible. So,

AE; = (LSIMy| Y &Li - Si|LSIM ;) = Kps(LSJM;|L - S|LSJTM;),

(3.51)
where we have used the Wigner Eckart theorem. for example, the fine struc-
ture of the 3P and 3F terms of the d? configuration depends on different K
constants. The Lande’ rule can again be derived.

The LSJM scheme is unitarily equivalent to the LSMp Mg scheme:

ILSTM) = > |LSMMs)(LSMMs|LSJTM); (3.52)
My Ms

since the |LSMyMg) vectors have the correct normalization and antisym-
metry property the result is automatically normalized. For example, let us
calculate |d? 3 Py). The relevant Clebsh-Gordan Table is the one for summing
an angular momentum 1 to angular momentum Ji;

mo = 1 mo = 0 mo = -1
Ji 41 \/(J1+m)(J1+m+1) (J1=m+1)(J14+m+1)  [(J1—=m)(J1—m+1)
1 (2J1+1)(2J1+2) (2J1+1)(J1+1) (2J1+1)(2J1+2)
\/(J1+m)(J1—m+l) \/(Jl—m)(J1+m+1)
2]1(J1+1) \/Jl(Jl-‘rl) 2]1(2J1+1)
J -1 \/(er)(erH) (J1=m)(J1+m) \/(J1+m+1)(J1+m)
1 2J1(2J141) J1(2J1+1) 2J1(2J141)

We identify the momenta as follows: L — J;1,5 — Js, Mg — mg. Since we
want J = 0 we use the last line, yielding \}3, = \}3, \}3. So,

|d* 3 Py) = V3 {|3PML =1,Ms=-1)

—3PMp =0,Ms =0) + PPMp = —1,Ms = 1.)} (3.53)

3Even in the full Dirac theory the L of the large component can be used to label
the (4 component) spinor although L fails to commute with Dirac’s Hamiltonian.
4developing L? = Zk Lk one obtains squares of angular momenta that com-
mute with the components and cross products that do not; similar considerations
apply to the spin operators.
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If one substitutes the determinantal expansion derived in Problem 3.4 the
result

1
d?3py) = 211, —2F| — v6lot, —11| — 22, —2~
| 0) wgo{ | | | | — 2| |

—2127, 27|+ 1P|+ 171 #2127, —17| = V6]17,07 |} (3.54)

is no eigenstate of My, Mg but is eigenstate of J, M ;. The interaction H’C is
diagonal in both the LSMj Mg and the LSJM basis, and both fall within
the L-S or Russell-Saunders scheme . However, LSJM ; remains a suitable
basis even in the presence of the spin-orbit interaction.

3.6.1 Hund’s Second Rule

The ground level can be found by the Second Hund’s rule, also empirical:

The level with the lowest J is lowest if the
shell is less than half filled. The level with
the highest J is lowest if the shell is more
than half filled. There is no spitting (in first
order) for half filled shells.

For the C atom the ground state has J = 0, as shown in Figure 3.1.

3.6.2 J-J Coupling

The J-J approximation is opposite to L-S coupling: one neglects the Coulomb
interaction H¢. This scheme is preferable for large Z and for excited states
involving diffuse wave functions. The Hamiltonian reads

2
Hy = Xi:[ ;’n L V(i) +EL; - 84 (3.55)
The one-electron eigen-spinors are proportional to the generalized spherical
harmonics |L, J, M ;). These are obtained combining the spherical harmonics
Y.L and the spin states a and 3 with the Clebsh-Gordan coefficients. By the
angular momentum rules one can combine the Slater determinants that we
can form with these spinors to get total J eigenfunctions.

3.6.3 Intermediate Coupling

In intermediate coupling one treats exactly both H(, and H/ . This is nec-
essary e.g. for the valence states of heavy atoms where both interactions are
important. With the 1-body eigenspinors of (3.55)one can form Slater deter-
minants |, m, j,m, - - - | that have M; quantum number; in general different
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J values can be mixed. In the basis of such determinants the Hj + H,
matrix is computed and diagonalized; the eigenvectors can be labeled with J
and energy eigenvalues are My independent. Alternatively, one can start with
the determinantal wave functions |tz m; ;mes ULymamss - - - | and compute the
H].,, then perform the unitary transformation to the |LSJM) basis where
H{, is already diagonal (its diagonal matrix elements depend only on L and S).
We exemplify the latter procedure in the case of the d? configuration; L = 2
for both electrons and we denote the determinants as [m¢, mg |; for example,
|17, —2%| has two spin-up electrons with m = 1 and m = —2, respectively. .
To calculate the matrix of H/; = ([L1-S1+ L2 - S2], where ¢ is the spin-
orbit parameter, one uses the expansion L;-S; = L;,S;, + %{LjS; +L;7 St
we know how to act on the |m¢,mg | determinants, using Equation (6.1.1).

So,

1 1 1
SOILe ST, =2 = {(1x [ +(=2)x )I1T, 2%+ 227, —2* 421, —17 [},
(3.56)
and so on. We can calculate the effect of the spin-orbit Hamiltonian on the
|LSJM ) basis. Using the results of the problems above,

Hoold® Py = -2 1+, —2F| + 827, —2F| +
sol 0) \/30[ | | + 8] |
V6|0t =17 = 7|17, —1F| — 6[0T, 07| — 4]2F, —27|
—2/27, =174+ 5[1F, =17 | +V6]17,07] (3.57)
Hence,
(d? 3Py|Hso|d? 2 Py) = —C. (3.58)

Besides, since

1 ~ ~ _ _ _
|d? 1Sp) = ¢5[|2+,—2 | —[27, 2% = 17, =17+ 17, =1F[ + 0™, 07 ],
(3.59)
(d? 1So|Hso|d? 3 Py) = —CV6. (3.60)

In this way the full Hgo matrix can be built; it is a block matrix since
there is no coupling of different J. Letting ¢ = 2, one finds the following
Hamiltonians.
For J=3 there is only 3F3 with energy —a. For J=1 there is only 3P, also
with energy —a. For J=4 there is the basis !G4,*> Fy and H = (200[ §z> . For
3
-4 —44/7 0

J=2, there is the basis 3F,, ' Dy and 3P and H = « —4\/§’) 0 \/452

42
VA



48 3 Atomic Shells and Multiplets

1 V6
V6 0
is reduced according to the simple pattern 'S —! Sy, 3P —3 Py 3 P 3 P,
1D =1 Dy, 3F =3 B,3F33F,,'G —! Gy. More quantum numbers are
needed with more than 2 equivalent electrons, as discussed in Chapter 9.9.

Finally, if J=0 on the 2Py,' Sy basis, H = —2a < ) . The degeneracy

3.7 Meitner-Auger Effect and Spectroscopy

An important spectroscopy is based on the Auger Effect. Actually, this effect
was first reported in 1923 in Zeitschrift fiir Physik by the Austrian Physicist
Lise Meitner (1878-1968), whose great contributions to physics tended to
be forgotten on the grounds that she was a lady, was of Jewish origin and
lived in the pre-war Germany. In 1925, the great French physicist Pierre
Auger (1899-1993) independently discovered the effect while investigating in
a bubble chamber the emission of an electron from an atom that absorbs a X-
ray photon, that is, photoemission. The photoelectrons have kinetic energy
Ey = hv — Ep, where Eg(a) is one of the binding energies of the atom
inner levels. However the Auger electrons have v-indepedent energies given
approximately by the empirical Auger law

Es(apy) = Ep(a) — Eg(B) — Ep(7v) (3.61)

as a combination of 3 binding energies. Thus, E4(af7) is characteristic of the
atomic species and is related to 3 atomic levels. This suggested that X-rays
of adequate energy produce a primary hole in the state a of binding energy
of Ep(a) and a photoelectron; since the ion with a core hole is unstable, the
primary holes is filled up by an electron in a less bound level 3, and the energy
gained in the process is taken by an electron in level v, than is emitted as
the Auger electron.® For particular transition to happen, it is necessary that
the primary hole is deep enough (its binding energy must exceed the sum of
those of b and c¢). Of course, energy conservation is compatible with both the
processes a) and b) in Figure 3.2. The Auger transitions are denoted by the
spectroscopic symbols of the shells (or, more precisely, sub-shells) involved:
thus a K L; Mstransition is due to a primary hole in the K shell that decays
leaving in the final state L; and Ms holes and an Auger electron. One speaks
about Core-Core-Core, Core-valence-valence, etc.,transitions depending on
the levels that are involved.

The Auger effect is caused by the Coulomb interaction: two electrons of
the system collide and while one fills up the primary hole, the other is shot
out as the Auger electron. Wentzel already in 1927 proposed a theory of the
Auger effect based on the independent electron model[204]. In the final state,
the atom has two holes in the spin-orbitals § and . In the initial state, one

5The present two-step description is not completely right, but the one-step one
is more involved and is presented in Sect. 6.4.1.
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Fig. 3.2. The afy Auger process. The primary hole « is filled by either the 8 or
the ~y electron while the other one is emitted as the Auger electron.

hole was in the deep level «; the other was in the free particle spin-orbital
k that will be occupied by the Auger electron in the final state. In this way,
the Auger process becomes a collision between two holes. The initial state
|®;) and the final state |@f) of the atom are represented by 2 x 2 Slater
determinants; they have the same energy and are coupled by the Coulomb
interaction. The transition probability is given by the Fermi golden rule

2

Pif:h

(®:|He|Pp) [, (3.62)
where H¢ is the Coulomb interaction. A deep hole can decay X or Auger.
The final-state holes have same the two ways to decay, until a stable ion is
formed, in which all the holes are in the most external levels. X decay is
faster when the involved levels are distant in energy, because of the v3 factor
in the transition probability due to the density of photon final states. On
the other hand, the Auger decay prevails if the states a,b and ¢ are near
in energy, as the Auger matrix element is particularly large when the spin-
orbitals have similar sizes. For this reason, the Auger effect is the dominant
decay mechanism for inner shell holes of light atoms, while in heavy ones X
decay is much more likely.

An alternative mechanism that could take from |®;) to the final state
|®¢) comes to mind. One of electrons in the upper states 3, could fill up
the deep hole via a normal radiative process, emitting a X-ray photon; this
photon could then cause the photoemission of the other electron. Would’nt
the final state be the same? Indeed, this alternative process does exist, and
has the name of internal photoemission; unlike the Auger effect, it obeys to
optical selection rules; e.g. it cannot cause a KL1L; transition that instead
is observed and is about as probable as any other allowed transition (see
Sect. 3.7.1 for the Auger selection rules). The transition probability of the
internal photoemission can be calculated by perturbation theory, but since
it is a second-order process it turns out to be quite small compared to the
Auger effect.
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The Auger spectrum is plot of the current versus the kinetic energy of elec-
trons. The Auger instruments used to measure the spectra of molecules and
solid surfaces keep the sample, the source and the electron detector-analyzer
in vacuum. The exciting source can be an electron gun or a X-ray source, like
in the ESCA (Electron Spectroscopy for Chemical Analysis) machines. When
the sample is a solid surface, in order to limit the problem of the contami-
nation from residual gases one needs the ultra-high vacuum. The mean free
path of electrons in a solid depends on their energy, but for the transitions
that are observed commonly it is just several Angstroms; the technique is
sensitive to the surface. The peaks of the spectrum are characteristic of the
atomic species, and the Auger technique lends itself to the surface chemical
analysis using a tiny amount of material in a non-destructive way. With scan-
ning techniques, magnified images of the surface can be obtained in which
the distribution of elements is visualized .

Actually, the atoms that belong to molecules and solids have transition
energies somewhat different from free atoms, and a detailed analysis of these
chemical shifts supplies further information. This can be done using Core-
Core-Core features, but much more can be learned from the study of the
shapes of Core-Valence-Valence Auger lines, since the external shells are the
most sensitive to the chemical bonds. The analysis of the Auger line shapes
is currently an interesting research topic (see also Chapters 6.4,6.2 12.3. ).

The original Auger formula yields the transition energies with an error
that can be relatively small, but is typically of the order of some tens of eV.
Such an error is very large compared to the precision with which routine
measurements can be done in a modern apparatus. The main problem is that
in the final state there are two holes, and is necessary to account for their
repulsion; the hole-hole interaction shifts the peaks of the spectrum to lower
kinetic energy and splits them into multiplets. Moreover, every diagrammatic
transition (that is, a line which is predicted from the previous arguments)
has in reality various satellites, that correspond to excites states of the final
ion. The Wentzel theory is based on a number of assumptions that limit its
validity; it neglects the correlation effects and Relativity. The detailed theory
of the Auger spectra is necessarily involved, even in the case of free atoms.
Nevertheless, the Auger spectroscopy is one of the most important and direct
methods for the study of the correlation effects in molecules and solids.

3.7.1 Auger Selection Rules and Line Intensities

Selection rules arise in the two-step model from the conservation of .J2,.J,
and parity between the initial, core-hole state |®;) and the final state |®y)
including the Auger electron. In the L-S approximation, L?, L, and S2, S, are
also conserved, while in the jj scheme, the states are labeled by the j quantum
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MsNysNys MyNys5Nas
3Po
1G4 41 Dy
ISO
I I I [ I I
360 370

Kinetic energy (eV)

Fig. 3.3. Sketch of the MsN45N45 and MsN4ss5Ny s spectrum of Cd vapor, in
arbitrary units, from measurements by H. Aksela and S. Aksela (Ref. [161]). Many
of the multiplet terms are well resolved. The assignements were done by intermrdiate
coupling calculations of line positions and intensities.

numbers of both holes. Remarkably, the predicted number of lines depends
on the scheme used for |®¢): consider for example the KLL transitions. In
the pure jj scheme one would predict 6 transitions, namely, K L1L1,KL;jLo,
KLng,KL2L27KL2L3, and KL3L3. In the LS scheme, the 2802]96 conﬁgu—
ration yields a 1S term, 2s'2p° gives ' P and 3 P; from 2522p* the coupling of
angular momenta and the Pauli principle would allow 'S,2 P and ! D. How-
ever, 2s22p* 3 P is forbidden by parity conservation; indeed, the primary hole
has L=0 and is even, 2522p* 3P has L=1 and is even, and by L conservation
the Auger electron must be in a p state, which is odd. The transition to
the odd 2s'2p° 3P final state is allowed, and one predicts 7 lines. When the
spin-orbit interaction is introduced, in intermediate coupling the forbidden
final-state splits 2s22p* 3P —3 P, 3P;, 3Py; then, 3P, mixes with 1Dy and
3Py mixes with 1Sy from the same 2s%2p* configuration. Thus, 2522p* 3P,
and 2s%2p* 3 Py become more and more allowed as Z grows. Instead, 3P| re-
mains purely P and forbidden (as long as one can neglect the mixing with
higher configurations). Thus, the number of lines grows to 9.

STf there are open valence shells, each two-hole final state becomes a multiplet
when valence and core-hole angular momenta are recoupled; to a first approximation
we can often neglect such complications since usually the splitting is small.
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In the non-relativistic limit the Auger intensities are computed by evaluat-
ing the matrix elements of Ho with Pauli spinors; as a simple approximation,
Coulomb waves are used for the Auger electron states (since the Auger elec-
tron leaves a doubly charged ion behind) and Hartree-Fock orbitals for the
discrete levels. However, configuration mixing is important. For instance, in
computing KLL spectra, the mixing of 2s22p* 1S, and 2s°2p5 'Sy has an
important effect on the wave functions and hence on the intensities. The cal-
culation simplifies if one can approximate |®;) and |$) as two-hole states,
and this is often useful (for instance, in noble gas and in transition metal
spectra). One then often uses as a further simplification the mized coupling
scheme which consists in treating |®;) in the jj coupling scheme but |®¢) in
the LS one. This is useful for core-valence-valence spectra in a wide range of
Z, when the spin-orbit interaction is small for valence holes but is important
for deep states. For quantitative work, we need (particularly for intermediate
and high Z) the relativistic theory with the Breit interaction

e? w

Wpg(1,2) = o explikrio][l — a(l) - a(2)], k = . (3.63)
where « is Dirac’s velocity and hw is the energy difference between the scat-
tering states (namely, the deep hole and Auger electron states). Codes are
now available; GRASP[158] (General-purpose Relativistic Atomic Structure
Program) computes Dirac-Fock orbitals, takes linear combinations of deter-
minants with the correct J2..J,, parity and seniority number labels; further
it takes linear combinations of such states, thus doing a partial configuration
mixing, and includes corrections like the effects of nuclear size and the main
QED corrections.

Problems

3.1. Find how the ground configuration of N is resolved into L-S terms.
3.2. Find how the ground configuration of Ti is resolved into L-S terms.

3.3. For the configuration d? obtain |>PM;, = 0, Mg = 0) as a combination
of determinants |mjL[1 , mjL[2| of one-electron wave functions, using the Clebsh-
Gordan coefficients.

Note that using (JMy £ 1|JE[JM;) = hy/J(J + 1) — Ms(M; + 1) one finds
for d states

Lt2) =0 L™[2) = 2|1)
LH|1) = 2/2) L~|1) = v/6|0)
LT|0) =+/6[1) L~|0) =6|—1) (3.64)

LT —1)=v6[0) L7| 1) =2|-2)
LT|-2)=2|-1) L7|-2)=0
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3.4. For the configuration d? show how to obtain | PM[, Mg) for the other
values of M1, Mg using the results of the previous problem, the shift operators
and (6.1.1). Write down all the 9 states.

3.5. Using the results of the previous problem for [2PM; = 0, Mg = 1) in
the configuration d? verify explicitly that it is really P with the specified
quantum numbers.



4 Green’s Functions as Thought Experiments

4.1 Green’s Theorem for one-Body Problems
Green’s theorem

/V (@YW — VD) dPz = /S (2Vw —0Va) - Tas (4.1)

(where 7 is the outgoing normal to the surface S bounding the volume V)
is obtained from the divergence theorem

/ divAdr = / A - mds, (4.2)
1% s
with 4 = &V W& — ¥V &. Consider the one-particle Schréodinger equation
1
(—2V2?> +V(7T)—e)(T)=0 (4.3)

defined in some volume V with some boundary conditions; it is often con-
venient to change it into an integral equation by a method which is familiar
from classical physics. One introduces a Green’s function satisfying

(=, V& +V(7) = G(T, 7) = 6(7 = 7). (44)

multiplies (4.3) by G(7',7) , (4.4) by ¥(7) and subtracts; the result is
(exchanging 7 with 7)

W(P) = ; /V PG, T IVZb(F) — oIV G )] (45)

The V integral can be changed to a surface integral by Equation (4.1).

4.2 How Many-Body Green’s Functions Arise

4.2.1 Correlation Functions

In terms of the Schrédinger picture, the Heisenberg representation (Section
2.2.1) corresponds to evolving the state from to to time t, applying the op-
erator and then evolving back to ty. This appears insane but it is not so.
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Consider for instance a measurement of the light absorption from a system
of Hamiltonian H = Hy + V', where Hj is the kinetic energy and V is the
electron-electron interaction which is a large perturbation and makes the
problem difficult. However, the transitions are due to the time dependent,
further perturbation H’e** driven by the oscillating field. If H' is weak we
can calculate the absorption cross section o(w) from an initial state |¢) by the
Fermi golden rule, introducing a complete set of final states {|f)}. In obvious
notation,

P=2Ps=0 I H )[?6(E; + w — By)
= 2T GH | )0(Ei +w — Ep)(f|H'|i)

- . . 4.6
= 5 S GH (B +w — H)|f)(f|H'l3) (4.6)
= T (i|H'0(E; + w — H)H'|i) = o(w).

Transforming from frequency to time,
O'(t) _ / ;lwefiwto,(w) — <Z-|H/efi(H7Ei)tH/|Z->
m
= (il H'e " H'|i) = (i| Hyy (t) Hyy (0)|0). (4.7)

This o(t) is a correlation function and is written as an average over |i) of a
product of Heisenberg operators. It may appear that there is little to gain in
this approach, since i) is an interacting many-body state that can be quite
hard or impossible to calculate. Here is the real breakthrough:

The calculation of many-body states can be completely
avoided! There are powerful methods for expanding the corre-
lation functions, or better, their combinations which are called
the Green’s functions.

In the optical absorption case, the perturbation is a one-body operator,
H = Zmn anafnan and the cross section can be expressed in terms of the
matrix elements M,,,, and of a correlation function

Yon(t) = (ilal(t)aq (t)al (0)as(0)[d). (4.8)

Ypr(t) is a particle-hole correlation function and tells us about a thought
experiment: a particle-hole pair ( created in the interacting ground state by
the absorption of a photon) is propagated to time t and then destroyed, and
we want the amplitude that the system returns in the ground state. We shall
discuss photoemission spectra in terms of one-hole correlation functions. In
dealing with Auger spectroscopy we shall have to do in Section 6.2 with 2-hole
correlation functions like

T (t) = (ilaf(t)af(t)a, (0)as(0)]3); (4.9)

we shall also need more complicated operator averages, e.g. in Sect. 6.4.1 .
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4.2.2 Quantum Green’s Functions

It is natural to start assuming for simplicity that the initial state |i) = |¥p) is
the ground state of H. Temperature effects are postponed until Section 4.2.4.
Thus, the initial state averages are understood to be taken over the ground
state |¥), and summarizing we shall write:

T=0 rule: (O) = (Wo|O|W,), with H|¥) = Eo|¥). (4.10)

Along with v, () = (a,}(t)aq(t)a,[(0)as(0)) and yun(t) = (a,l(t)aj(t)a,(0)as(0))
we shall need more complicated objects; however, simpler objects are also ex-
tremely useful. Let us start with the one-body ones. Such are the so called
lesser and greater Green’s functions (ground state averages)

g5, tt) = (v () w; ) (4.11)
97, t) = (w; (] () (4.12)

One is obtained from the other by exchanging the operators, and in equilib-
rium ¢g< informs us about the filled states, while g~ knows about the empty
ones. From these, we can build retarded and advanced Green’s functions; now
what matters is the order of times:

igi; (6,t) = (g5 (t,t") + 873 (t,t7))0(t — t)

=< [(t"), 7] ()], >0(t — t') (4.13)

while
—igh; (6, t) = (g7 (t,t) + g7, (£, )0t —t). (4.14)

The two are related by g(r)(t t)* g](al)( t). How do they depend on

K3
|¥)? In no way! Averaging on the vacuum, g< = 0 and

90518 = (Puacles (el () [Buac ) 0 (t —F) (4.15)
and since H acting on the vacuum yields 0, we obtain
igl (1) = <¢m|cj H(t=t)) T|43m> (t— 1), (4.16)

which shows that ¢(") is actually a function of ¢t — t'; so we can drop ¢’ and
write simply

ig{(t) = <¢m|cje*““c1 |¢>m> 0(t).

The Fourier transform yields:

i90)(z) = <¢m|cj/ it gy c3|¢>m>
0

= <sl'>mc|cj H n i5 C |Q3mc> . (4.17)
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This is a one-body problem, that can be rewritten in first quantization
< il g +i5\z’>. Averaging on a completely filled system, g~ = 0 and cre-
ation and annihilation operators are interchanged, but the result is the same
one-hole amplitude. For a partially filled system, g< brings information on
the occupied states and g~ on the empty ones, but the end result is again
a one-body matrix element of L h’, +is between spin-orbitals irrespective of
where the Fermi level is. Thus, ¢("), ¢(*) can always be computed with the
average performed over the vacuum, and are a one-particle property. Both
are characterized by the fact that they do not know where is the Fermi level
(for non-interacting systems at least; in the presence of interactions they may
have some smell of a change of occupation numbers through the change in
potential it introduces).

g, () are not suited for perturbation theory; the diagrammatic method
(Chapter 11 ) works with the time-ordered ones

ig\" (t.¢') = (Tar(t)al, (t')) (4.18)

where T is Wick’s time ordering operator such that

gy (t,4) = ig™ (kt, K't') = 0t — t') (ax (t)a], (¢)) o)
-0t — t)(ak, (t)ar(t)). (4.19)
This discontinuity is needed; we shall see (Chapter 10) that it implies a source
term in their equation of motion. In field theory every scattering event is
represented as the annihilation of the ingoing particle and the creation of

the outgoing one: here is where the source is necessary. In real space the
time-ordered Green’s function is

(T)

g (@t &'t') = —i(T[we(z, t)), (x't')) (4.20)

with the operators in the Heisenberg picture (the spin indices are often omit-
ted when they are not needed).

4.2.3 Quantum Averages
The average of one-body densities f(z) = Yoot foor (X)L (2)2hor () is

— i lim 1 o ()9 (2t 2'Y). 4.21
(f) = =i Jum, i, D fow (@)goor (ot ') .2

The number density of spin ¢ at 7 at time t is given by

o (T, 1) = —i li lim  g{D(axt,2't'); 4.22
po(@,t) = =i lim Jim_ goo' (t, 2't); (4.22)

the current operator is
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i@ = pei@—a)+d@—a')ps] (4.23)

and its expectation value is given by

J, (T, t) = U i lim (Vo — V)9S (t, 't)). (4.24)

C2mestro g b

The average of one-body operators A = Yoot [ dxage (x)] (2)0e (2) is

A .. . (T) 141

(A) = £ t,hHrIlg+ 11/1311 dx Z Qoo () gogr (at, 2't'), (4.25)
oo

upper sign for Bosons. This may be thought of as a trace over space and spin

variables:

(A) = i lim lim Tr |05, (@)g00) (at,a't)] (4.26)

t'—tt x/—x

4.2.4 Green’s functions at Finite Temperature

We recall from Section (2.2.2) that
Finite T rule: (A) = TrpA. (4.27)

(T)

The ground state average g,/ (xt, z't") of Equation (4.20) must be replaced

by a thermal average,
gg), (xt,2't") = _ZZ TrpT[z/Jg(nt)zbi, (', )], Z =Trp; (4.28)

this is the time-ordered finite temperature propagator . When g™ is used in
(4.26), all temperature effects are included. It is stated in some books that
g™) does not posses a diagrammatic expansion, but in fact it can be obtained
by the methods in Chapter 13 and corresponds to the contour of Figure 2.2
b).

For time-independent problems the temperature Green’s function G(™)
defined along the vertical track of the contour of Figure 2.2 a) offers the
same information most directly:

¢Doo’ (xr,2'7') = —<T[1/Jg-(w77')1/12_, (', 7))
= —Tr{pT [y (z, )00, (', 7')]} (4.29)
where field operators are in the temperature Heisenberg representation (2.27),
T is the Wick operator that orders along the track. The thermal average (4.27)

means (A) = [ daTra(z)pyt ()9 (x) where spin indices are understood and
traced over by Tr, and can be rewritten as
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(A) =T / de lim Trla@)g® (@r, '), (4.30)

' —x,7—T1'+§

To see that, one notes that,by the cyclic property of the trace,

Trfape ™01 (@)0(a)e™ 7] = 3 [ dnage () Trfe™ " pe ! (0} ()

e~ K7 commutes with p = ‘3751( and Y, . [ dxase (x)Te[pyf () (x)] =
TrpA. In this way the common value of 7 and 7’ disappears from the cal-
culation of the observables and the behavior of G for 7 far from 7' has no
physical meaning. (¥ oo’ (x7, 2'7') is periodic:

Moo’ (xr,2'7") = G Noo’ (w1, 27 + ), T > 7' 431
Moo’ (xr,2'7") = +G Moo’ (x1 + B,2'7'), T < 7' (4.31)
(upper sign for bosons). Indeed, let 7 > 7/; then —Z G(M oo’ (xr, 2'7') is given
by Tr{e PKy, (@, 7)¢!, (x',7')}; using the cyclic property of trace this may
be transformed to read

Tr{yl, (@', 7)e P Koy (x,7)} = Trie PRe PRy (' 7")e PRy (2, 7)}.

Thus, we got wi, (z', 7" + (), standing on the left of ¢, in agreement with the
fact that 7/ + 8 > 7, but this implies a sign change for Fermions, a - sign
comes from the definition of G(T) and the first line results; the second follows
in a similar way.

G(™ is useful only in time-independent problems; then it is actually
GMoo'(z,2', 7 — 7'). According to the above discussion it is a function of
one 7 variable defined in (—#, 8) which can be extended to the neighboring
intervals like a periodic (antiperiodic) function for Bose (Fermi) systems. For
all practical considerations, we may extend G(7) in this way to the real axis,
since this has no physical implications but allows to write the Fourier series

R ,
¢ Do (z,a', 1) = 5 Z G Do’ (z, ', wy)ent, (4.32)
with the Matsubara frequencies
wn = ”ﬂ” , (4.33)
and
IR
G Do’ (z, ' wp) = 2/ dre™n"Goo' (z, 2, 7). (4.34)
-8

For Fermi (Bose) system, G(T) is odd (even) and GM oo’ (x, 2", w,) # 0 for
odd (even) n.
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4.3 Non-interacting Propagators for Solids

Non-relativistic Electrons

Consider the non-interacting electron system with Hamiltonian Hy = — % V%—i—
V(7), such that Hotp(x) = epthp(z); in second-quantized form, Hy =
>k €k in the Heisenberg picture, setting 7 = 1, the annihilation operator
for spin-orbital a evolves with

co(t) = etHot e e—tHot

From the equation of motion ¢, = i[Hy, cq]—, since [ng, cpr]— = —0gp c, One
obtains for energy eigenstates ¢, = —iexc, and so
cr(t) = cpe i, (4.35)

The propagator is defined by

igap(t2,t1) = igap(ts — t1) = (Tlea(tz)c) (1)), (4.36)

where the average is taken over the ground state. For an empty (totally
full) system, this reduces to the retarded (advanced) Green’s function, but
otherwise g, propagates both electrons and holes; for ¢; < ¢ an electron
is added at t;, propagates forwards in time and is annihilated at ¢y , for
t1 > to a hole is introduced, propagates backwards and is annihilated. Using
bl =Y aL < ag|by, > (Equation 1.51) one readily finds that

k

gan(t) =Y _{alk) (k|b)gr k() (4.37)

k
where gkyk/(t) = 5kk'9k(t) and
ig0(8) = e~ A1 — ng] — O(—t)m} (4.38)

where ny is the occupation number. The propagator evolves with the same
phase factor as the wave functions but has a discontinuity at ¢ = 0 and
satisfies the equation of motion

o,
Zatgk’k, (t) = €kGk,k’ (t) + 519)}9/5(15). (4.39)

This useful result is due to the definition of 7. The Fourier component at
frequency w is found by the frequently used integrals

fooo etlwta)t gy — w+mi+i67 fi)o etlwta)t gy — w-&-;i—i&’ 60 — 40, (4.40)
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GOk, K w) = 6 (k, k') GO(k,w)= / dtGO (k, k', t) et = Ok
W — €+
(4.41)
with n, = +90 for empty states and n, = —¢ for filled ones, and ¢ stands
for a positive infinitesimal. Thus one has an electron for 7, > 0 and a hole
otherwise. In the space representation the retarded Green’s function (4.17)
reads

—> —>/
o v 4.42
.7 Z w—€p+1id <r‘w—H+i5|r> (442)

It obeys the same equation of motion as the time-ordered one, the difference
arises from the boundary conditions. Indeed, setting z = w + 4, using

1
(7| _H(z—H)I?”>
1 1
(7N = S — 7 — (7 -/ = -/
=(TIm) =0T -7) =27 _ 7)) —(T| _ H[T")(443)
and exchanging 7’ with 7 one finds
1
(w— (—2V2T> +V(T)Ng(F, T ,w) =T — ) (4.44)

which is like (4.39) in another representation. Comparing with (4.4) we see
that ¢ = —G.
For the temperature Green’s function (4.29) we find similar results.

Gk,r—71") = —TrpTCk(T)CL(T/). (4.45)
Using ¢ (t) = e~ *** with the substitution it — 7 and introducing the chem-
ical potential one gets: ¢ (1) = e~ (*~HM)7¢y, cL (1) = el*=W7¢l and so
Gk, —7") = —e~ (==Y — )\ Trpegel — O(r' — ) Trpeler}. (4.46)
Now using (2.40) and setting 7" = 0 for short we obtain

Gk, 1) = —e_(e’“_“)T{H(T)(l —n(k)) — 6(—7m)n(k)}, (4.47)

where n(k) is the Fermi distribution (2.40). This is similar to (4.38); the
changes are: ¢ becomes -1 (a mere convention), energies are referenced to the
chemical potential, it — 7 at the exponent, the energy step functions are
smoothed according to the Fermi distribution and the Wick T now acts on
the vertical track. Next, we find the thermal Green’s function in frequency
space by (4.34) and (2.40)

1

kowy) = | , 44
Gk wn) iwn + 1t — € (4.48)

and in this case the only change (apart from using u) is w — —iwy,.
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Non-relativistic Bosons

Consider a Bose field which obeys the harmonic wave equation

a0 (6) = ~won (1), (1.49)

If wi= ck, this is just

2

[ “ +c?k?| g (t) = 0 = { 0

ot2 ot2 —CQVQ} o (r,t) =0. (4.50)

In second quantization ¢ is dealt with like the coordinate of an oscillator of
(arbitrary) mass m=1, that is

a (t) + al (1) ag exp [—iwgt] + al. exp [iwpt]

t)="nh =h 4.51
oty =n"" o (4.51)
The canonically conjugated momentum is
Th = Ok (4.52)
and yields the Hamiltonian
2 2 /2
o ﬂ-k + wk¢k o + 1
H=Y" ) = hw (akak+ 5 )" (4.53)
k k
The propagator is defined as:
Dir: (t) = (0P [ (t) o (0)]]0) (4.54)

where ay|0) = 0, P is the time ordering operator (earlier times to the right
but no sign changes on permuting operators like in 7".) Now I show that for
t # 0 the D and ¢ have same wave equation, but at ¢ = 0 the source acts.

Since <O|akaL,|O> = Ok, obviously Dggs (t) = dra Dy (¢) , where

0 (t) <0|ak exp [—iwyt] a;rc|0> + 6 (—t) <0|aka,t exp [iwkt]|0>

Dy (t) = . (4.
() - (4.55)
Therefore,
1 , . exp[—iwi [ t] ]
Dg (t) = {0(t)exp[—iwkt]+0(—t)expliwkt]} = . (4.56)
2wk 2wk
This is continuous, however
aatDk (t) = Qi}k —iwkf(t)exp[—iwkt] + iwid(—t)exp[iwkt]} (4.57)

= H{0(t)exp[—iwit] —0(—t)expliwt]}
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is not, and

25Dk (1) =5 { (—iwi) 0(t)e ™ —iwnf(—t)e™ "}~ 1 {6 () + 6 ()}
= "2 {O(t)e " + O(—t)e "} —1 0 (t)

that is,
62
ot?
Therefore,the propagator is Green’s function of the wave equation. Fourier
transforming, one finds

Dy, (t) +wiDy (1) = —i § (t) (4.58)

[—w?+wi]D,, (w) = —i. (4.59)

However the solution is problematic, because of poles on the real axis, and
the transform of (4.56)

o0 0
Dg (W) _ / dt Dy, (t) euut _ - /dt el(w—wk)t + /dt ez(w+wk)t

oo

does not converge. Therefore one must introduce convergence factors

° 0
1 , , ‘ ‘
Dg (w) = 2w /dt eHw—weti Ot | /dt eilwtwi—i o)t
0 o0

1 -1 1
= 2w L’(w—wk—kié) Tt w —ié)]
! { - + ! ] (4.60)

" 2wk (w—w+10)  (w+wg —1i0)
and finally
— 0k
Dy = . 4.61
ki () —w?el —i6 (4.61)

For phonons and other non-relativistic bosons commonly one defines, (under-
standing the vacuum average)

Dr (1) = —i (P [dn (1) . (0)] ) (4.62)
in terms of R
ke (1) = ag, exp [—iext] + af, exp [ieyt] (4.63)

without the normalization factor \/1 in (4.51); then

25k

iDg (t) = exp[—iwg | t] ]. (4.64)
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Relativistic Bosons, Photons

The Klein-Gordon equation
0? 5 ,MC. 9
-— = 4.
(CQW v+(h)>z/z 0 (4.65)

describes a spinless relativistic paricle. Introducing the relativistic dispersion

Ekz\/(chk)2 + m2ct (4.66)
one obtains the propagator

—1
Dg (w) = . 4.67
k() —w?+ (chk)? + m2ct — i6 (4.67)

In a 4-dimensional notation with

p=h(k,i") (4.68)

—1

(cp)® +m2ct — 6

D (p) = (4.69)

For a massless scalar particle (if it existed) one would write

—1

D (k,w) =D (p) = 02 s

(4.70)
For a photon, the propagator between two points x,z’ in a 4-dimensional
notation is naturally given by

Dyy(z,2') = (P[Au(x) A, (2)]), (4.71)

whereA,, = (A, i¢) are the four-vector potential components; however a gauge
transformation A,(z) — A, + ag‘;z) with arbitrary x(z) will change the

potential and the propagator. In the Lorentz gauge such that

10¢
0,A,=VA =0 4.72
netp + c Ot ’ (472)
the wave equation is
4
0,0, A, = — :J,,. (4.73)
thus for the free field the wave equation is
1 92
2 _
(V 2 81&2) A, =0. (4.74)

which suggests writing
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d4p A eip(asfa:')

Dy(,27) = —id,, / o) (4.75)

p2 —i0’

this is evidently a Green’s function of the wave equation. Actually the Green’s

function is not unique and the gauge invariance allows to add to the r.h.s. of
2

(4.75) Bzfazy f(z—2'), where f is an arbitrary function. The gauge in which

(4.75) holds as it stands is called the Feynman gauge.

4.3.1 Green’s Functions for Tight-binding Hamiltonians
The tight-binding model Hamiltonian

H=t, Z C;[Cj, th >0 (4.76)

<i,j>

is defined in terms of a d-dimensional graph or lattice; ¢ and j stand for two
sets of d coordinates for two sites or nodes of the lattice and the notation

> means that the sum is over all ¢ and overall j that are nearest neighbors
<i,5>
of 4. Here I consider regular linear, square and cubic lattices. Using contin-
uum normalization, and setting the lattice parameter to 1, the Bloch energy

eigenfunctions are
1 -
k) = e t4). 4.77
k= gy 2 (4.77)

In d dimensions, the energy egenvalues are:
d
ek =2ty »_ coska. (4.78)

The local density of states at the site at the origin is

d
pa (@) = S 10| K6 (w—e) = (;)d /ddké (w _ chZcos(ka)> .
BZ «

k
(4.79)
where the integral extends to the Brillouin Zone. Converting the 6(w — € )-
function into a sum of momentum ¢ functions, a factor |Vyex| appears in
the denominator. To better understand the physical meaning, differentiate

{(?;mk )2 + V(7)] U?(T) = 61&?(7) (Equation 8.23:)

uz (7) (V)

(T + §)?
k 2
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Multiplying by <u?| and recalling (8.22) one obtains

p R
wp (@NP e (@) =, Vie. (481)
1 Dimension

The band edges € = +2t;, are the extrema of €, = 2t;, cosk at k = +7 and
k=0 and p = 0 if |w| > 2t;. The argument of the ¢ in (4.79) vanishes for
k =k, = arccos(s; );

1 [ 8(k— k) 1

= dk = . 4.82

p1(w) 77/ 2ty sin(k) 27ty sin k,, (4.82)
0

This can be rewritten Dia )
ty —w
o) = ) (4.83)
7r\/4th —w

which in fact when integrated over all w yields 1. The band-edge divergence

-2 0 2 w

Fig. 4.1. Density of states on the 1d tight-binding lattice. Note the Van Hove
singularities at the band edges .

is characteristic: it reflects the fact that at the band edges the group veloc-
ity vy = gz vanishes; this, combined with the one-dimensionality, leads to
the inverse-square-root singularity. The symmetry around the band centre is
typical of bipartite graphs. These are lattices with the property that all
sites can be painted red or blue in such a way that any red (blue) site has
only blue (red) first neighbors; in the linear chain these are odd and even-
numbered sites. Changing the sign to all the blue orbitals is just a gauge
transformation and cannot change any physical quantity, yet it is equivalent
to sending the off-diagonal one-electron matrix element t; to —t;. However,
€, is proportional to t; and must change sign as well. This can happen in
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just one way: the spectrum is symmetric and the eigenfunctions at €, and
—er, get exchanged by the gauge transformation.
The off-diagonal elements gy, n of the resolvent may be found by taking

matrix elements of the identity w -, =1+ °, H between site 0 and n # 0.
One finds

w

t 90,n = 9o,n+1 + go,n—1 (4.84)

which suggests the solution

go.n = go,0q" (4.85)

with w
- q+1=0. (4.86)
th

Some care is needed to choose between the roots

w w
= + 2_1 4.
w“= w%h) (4.87)

where \/ ( 2t )2 — 1 is imaginary for w in the spectrum between —2¢t, and 2t,.

One has to consider the analytic continuation from real w to complex z,with
a branch cut on the real axis ; taking /2 = \/|z|exp[}arg(z)] with the cut
along the negative Re(z) axis,

\/( z 2 \/| 25, )2 — 1| above the axis
2n \/| 2%, below

In the continuum |g+| = 1, but g is discontinuous across the cut. With w >
2tp,, we must prefer g_ which is < 1 and implies an exponential attenuation
of the amplitude g with distance whereas ¢ > 1 would imply that the
amplitude grows exponentially.

(95,) —1>0,w > 2t), becomes negative for w < —2¢; and so [¢_| <1
everywhere. Therefore, everywhere,

go.n(w) = go,0(w)g_(w)". (4.88)
2 Dimensions

Using Equations (4.79,4.82), one finds
p2(w) = (2 )2 f dk, f dky & (w — 2t [cos (kg) + cos (ky)]) (4.89)

that is

p2 (w) = 2171_ / dkp1 (w — 2ty cos (k)). (4.90)

—T
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This integral can be written in terms of the complete elliptic integral [44]
of the first kind. The band now extends from —4t; to 4t;, and is symmetric
(the graph is bipartite). Singularities become milder when integrated over,
however they are still evident (see Figure ??7). The worst is the logarithmic
Van Hove singularity ( at w = 0 the integrand of (4.90) goes like Iil for k — 0.
In other terms, this is just the singularity of p; in integrated form, and is a
universal feature of d=2 lattices.) In addition, ps jumps discontinuously to

Fig. 4.2. Density of states on the 2d tight-binding square lattice. Note the Van
Hove singularities: jumps at the band edges and a diverging cusp a the centre.

0 at the band edges, which represents a milder singularity (in general, this
term involves a point where the function is not analytic, not necessarily a
divergence). This can again be read off (4.90): p2 = 0, for w > 4, but setting
w = (4 — €)ty, the band-edge singularity of p; enters again since there is an
interval near k = 0 where cosk > 1 — ¢/2; this interval is of order /e and the
integrand there is of order \}6, so the result is nonzero up to the edge.

p3(w)

Fig. 4.3. Density of states on the tight-binding cubic lattice.
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8 Dimensions

The simple cubic lattice is bipartite, hence the density of states is again
symmetric around w = 0. We can find it by calculating
T

1

ps (w) = o / dkps (w — 2t cos (k)). (4.91)

—T
From this integral representation and from the behavior of py it is easy to
show the nature of the singularities . The band-edge singularities at +6ty,
are of the square-root type, as for free particles. In addition,there are two
points where dps ig discontinuous. More details may be found in the book by

dw
Economou[44].

4.3.2 Lippmann-Schwinger Equation

When the Hamiltonian can be decomposed in a free term and a perturbation,
H = Hy + Hi, the perturbed resolvent operator function can be written in
terms of the unperturbed one via the often useful identity

1 1 1 1
= H . 4.92
z—H z—H0+z—H0 Yo H ( )

In one-body problems this translates directly into Green’s functions. The
usual way of treating impurity problems is via the Lippmann-Schwinger equa-
tion,

G(7,7")=Go(7,7') - /d?’?”Go(?’,?’”)6V(?’”)G(T’”,T”) (4.93)
where §V is the perturbing potential, which is nothing but (4.92) and a special
case of the Dyson equation (see Section 11.4 below).

4.3.3 t matrix

Another form of (4.92)
1 1 1 1

= H 4.94
z—H z—H0+z—H 1z—Ho ( )

is also useful; substituting in the r.h.s. of (4.92) one obtains

1 1 1 1
= t , 4.95
z—H Z—H0+Z—H0 Z—Ho ( )
where the t matrix obeys
1

t=H,+H t. 4.96
1+ 11y 2 - H, ( )

This accounts at once for all the repeated scattering from H;.
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4.3.4 Inglesfield Embedding Method

The Lippmann-Schwinger equation is less convenient when the perturbation
is extended. Typical examples are surface problems, when one wants to treat
the effects of surface creation, reconstruction, or contamination. In such cases
one can resort to slab models, but there are drawbacks in any attempt to
represent a bulk by a few atomic layers, with quantized normal momenta.
The only practical alternative is the method of embedding. By this term one
understands that 1) in an extended system, there is a more or less localized
perturbing potential. A surface S (see Figure 4.4 left) divides the perturbed
region I from the far region II where the potential is negligible. Over S the
potential is also negligible 2) solving the problem in I is easier than in the full
system; the region I might be finite, or, in the case of surfaces, it is the finite
thickness that helps 3) the extended unperturbed system could be treated
easily because it is highly symmetric 4) then one wants to solve the problem
in I in such the way that the wave functions match those of the extended
system on S. s

Fig. 4.4. Left:Embedding of region I into II; Right: a pill-box element 6V between
S and its slightly inflated, dotted version.

Following J.E. Inglesfield [114] we let the wave function

7 eIl (4.97)

& must make the functional

(D|H|®)
E= 4.98
(/) (499
stationary, with
1
= - 2v2 +V(r). (4.99)

We write ¢ in II as a functional of ¢ and reformulate the problem such that
the latter is the only unknown. Thus, the solution in I yields the solution
everywhere. Let us see how this is done in practice.
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(B|H|P) — /1 drg" (PVHO(T) + [ dri (P0(T) + [3 ndS  (4.100)
The surface element dS contributes
ndS :/ SV O HP = —1/ V21DV
% 2 Jsv

where the integral is over a pill-box of volume dV around dS (Fig. 4.4 right)
and we kept only the kinetic contribution since the potential one goes to 0
as de — 0; since

/ @*vggﬁ - ¢* / VQQ - ¢* (vw : Wouterds + v¢ : ﬂ)innerds)y
% oV
we are left with

/SndS: ;/qu*(?) (v’(qs—@y)) ST dS. (4.101)

We wish to write everything in terms of ¢, so we must eliminate V)z/J from
(4.101) and ¢ from the normalization condition. The latter is

(0]®) = /I E*T Y (T)P(T) + /1 Id?’m*(?)w(?). (4.102)

To rewrite the normalization integral over II in terms of ¢ only, we vary e,
multiply the varied Schrodinger equation Hdy = deyp + edyp by ™ and the
complex conjugate Schrodinger equation by di):

W HSY = Seip i + ep*Sup
SYHY* = ep* 5.

Dividing by de and subtracting, one gets:

0 0 1
v (=, ) O = OV e =

Next, integrating over II and using Green’s theorem one finds

/\w\ dBr=— /(ww — w) (4.103)

Here a - sign comes from the outgoing normal from I which is the opposite
of the outgoing normal from II. To simplify matters, we vary € in such a way
that ¢ = ¢ over S; then aw = 0 in S and we dispose the first term on the
r.h.s. The presence in (4. 101 ,4.103) of V)z/J is the only difficulty left, that
now we proceed to remove. This requires a clever trick: in order to get the
gradient on the surface in terms of ¥, we first find « in II and on the surface
in terms of the gradient, and then invert the relation.
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Since the perturbation is localized in I, we know already from Equations
(4.5 ,4.1) how to solve Hy = e for ¢ in II and for an eigenvalue € if ¢ is
assigned on S. This can be achieved using Green’s functions, and Inglesfield
uses the one satisfying

(@~ (= ) V2 + V(PNI(T', T, 0) = ~6(F ~ 7) (4.104)

which is the negative of the retarded Green’s function satisfying (4.44).Therefore,
he finds for 7 € 1T

()Y g (T, 7)} R (4.105)

and 1 in II is a functional of the boundary values of ¥ and vzb. Now we are
in position to write down v’w -7 as another functional of the surface values
of ¢. In (4.105) we choose g having zero derivative on S, which eliminates the
second term, obtaining

1
Y(T) = 5 / 9(7, ?')VM(?’) - wdS (4.106)
s
then put 7 on S and invert the relation to read
VW}(?") W= —2/ ds g (7, 7o(T'), 7, 7' €8 (4.107)
s

with g=! a matrix inverse.

At this point ¢ is the only unknown; the numerator and the denominator
of the energy functional are written as functionals of ¢ and the problem can
be solved in region I. From the variational conditions Inglesfield obtained an
effective Schrodinger equation for ¢. One finds (Problem 4.5) that the particle
sees the effective potential

Vers(r) =V(r) +U(r)é(¢); (4.108)

besides the potential V(r) this comprises an embedding surface potential
U(r)d(¢) where ( is a curvilinear coordinate such that ( = 0 on S.

The method was intended first for independent-electron problems but
lends itself to iterative self-consistent approaches like density functional the-
ory . The extension of the method to the Dirac equation has been worked
out recently by Crampin [115].

4.4 Kubo Formulae

Particle-hole Green’s functions also arise through the Kubo formulae[29] of
linear response theory. An interacting system with Hamiltonian Hg is probed
with a weak time-dependent perturbation
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H'(t) = —AF(t), (4.109)

where F'(t) is an adiabatically switched time dependence. The total hamilto-
nian is

H = Hg+ H'(t). (4.110)
We seek the linear response AB(t) = Trp(t)B of an observable B; by defi-
nition, B is a difference from equilibrium and vanishes for A=0 ( that is,
Trpqu = 0). Similar to the familiar relation P = xE of electric field to
polarization, the linear response equation is

AB(t):/t dt' opa(t —t ) F(t'); (4.111)

— 00

the role of the polarizability x is played by the response function ¢ppa(t). We
need the density matrix p(t), which deviates a little bit from the equilibrium
one peq. The perturbed p(t) obeys the Heisenberg equation of motion

i plt) = [H (1), p(1)) (4.112)

Setting p(t) ~ peq + Ap(t), one finds a linearized equation

o d A
Zhdt Ap(t) = [Hs, Ap(t)] + F(t)[—A, peq)- (4.113)
The solution is
t —i AN i ’
—ihAp(t) = / en s[4 p Jer s p(ih)dt! (4.114)

as one can readily check by calculating the derivative. Hence
—1 t —i AN i AN
AB(t) = . Tr/ en AsCA p JenHsE—OBR#Ydt'.  (4.115)

Now we move the left exponential to the right (by the cyclic property of the
trace) thereby obtaining B(t —t’) in the Heisenberg picture (with Hg):

AB(t) = ;thr / t [A, peg) B(t — ') F(t")dt! (4.116)

Now for the linear response function ¢pa(t) of (4.111) we obtain
—ih¢pa(t) = Tr{Ape,B(t) — peg AB(t)}; (4.117)

using again the cyclic property, we can change this into a more elegant equi-
librium thermal average, namely the Kubo formula[29]
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—ihopal) = Tripe BO)A — po AB®)} = (BR), AO).  (4118)
By the identity (Problem 4.1)
. o P dA(—ihT)
[A, e PH]_ = ﬂH/O g (4.119)
and Equation (4.114),
—ihgpa(t) = Tr{[A(0),e *"]_B(t)},

one finds the further Kubo formula

ﬁ N .
Gpat) = / (AACT) gy (4.120)
0 dt
This formalism has many applications; for example, if the system is exposed
to an electric field, A is proportional to the position vector components of the
electron and the time derivative is proportional to the current, B is the cur-
rent and ¢ the conductivity tensor. For the frequency-dependent conductivity,
starting from A(—ir) = e#™ Ae=H7 and using the cyclic property again, and

the fact that it is retarded, one can easily show that, up to a factor,

e} B »
Ui,j(w7T):/0 dt/o dr(j;(0)7;(t + ihT))e™". (4.121)

4.5 Vacuum Amplitudes

In stationary problems one often uses a zero-body propagator or vacuum
amplitude
R(t) = (U (1)), (4.122)

where the thermal average of the interacting picture evolution operator
Ur (t) = etHote=iHt ig taken with the non-interacting distribution function
Zlo Tre=BHo At zero temperature this becomes

R(t) = (2| Ur (t) |®) = ™" (@] 711" |d), (4.123)

where W, is the ground state energy of Hy. Note that unlike all the other
Green’s functions, here the average is taken on the non-interacting ground
state. R is related to the interacting ground state energy Ejy through the
following device. Inserting a complete set of H eigenstates,

R(t)=> (@ |pn)|* e (B oI, (4.124)
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we can isolate the ground state energy from (4.124) by giving the time ¢ an
imaginary part: ¢t — ¢t —n, n > 0. In this way, the exponent has a real part

tn(Wo — Ey)
which is largest for n = 0. In the long run, the ground state dominates:
R(t) = [(@ |go)[* e~ Wo)t ¢ — o0 (1 + i) .
There is a restriction: we need
(2 [¥o) # 0

therefore V' should not change the ground state symmetry . Special care is
needed when @ is degenerate. When the overlap does not vanish,

R(t) = —i (o — Wo) (& [thg)|* e (B0 Mo,

and we get lhe ClOSQd fOI‘mula
t—>00( —in) dt ' ’

Since U; admits the T exp expansion (2.37), the methods of Chapter 11 will
provide a practical way to compute R.

4.6 Lehmann Representation

In non-interacting models the poles of the Green’s functions close to the real
axis correspond to eigenstates of the Hamiltonian where a particle can exist
or where one can put a particle. Here we see how to generalize this notion to
the interacting case. In this section we let i = 1.

4.6.1 Zero-Temperature Fermi Case

Denote the complete set of many-body eigenstates of H by | M, n), where the
integer M = 0, 1, 2, co runs over the electron numbers and n = 0, 1, 2, 0o runs
over the M-body eigenstates, such that

H|M,n) = Eppn|M,n), N|M,n) = M|M,n).
Let us write the time-ordered Green’s function as
G(Nsat,a't') = —i(N,0|T (=, ) @'t))]|N, 0), (4.126)

emphasizing that it is the average over the N-body interacting ground state
of the Hamiltonian H and that the operators are in the Heisenberg pic-
ture. For time-independent H, setting h = 1, (=, t) = e'*p(x)e !, and
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G(xt,x't') = G(x,x’',t — t'); inserting the complete set we obtain the very
useful Lehmann representation: for ¢t > t/,

iG(x, 't —t') = Z e~ UEN+1n—En0)(t=t)
X (N, 0[p(@) [N + 1,n) (N +1,n[s5"(2) N, 0), (4.127)
and the eigenstates with one more particle come into play; for ¢ < ¢/,

iG(z,x' t —t') Zel(EN 1n—En,0)(t—t)

the N-1-particle states appear. By the standard integrals (4.40) we obtain

;e ANV 0fip(@) [N+ 1) (N + 1, n[yT (&) N, 0)
G(w 31370‘))_; w—(EN+1)n_EN)0)+’L.6

(N, 0y ()N —1,n)(N — 1,n[(2")| N, 0)
+3 o (o Exsn) i . (4.129)

The poles of G provide information on the excitation spectrum, namely, on
the ionization potentials and electron affinities, or in other terms, on quasi-
electron and quasi-hole excitations. Now we simplify the notation dropping
N and N = 1. The structure of (4.129) invites us to write

/ /
Gz, 2/, w) = / w"ijﬁj 5) du (4.130)

where d,, is an infinitesimal quantity, with

plx,a’,w) =Y (Og(@)|n)(n|y!(@)|0)5(w — (Ext1n — Eno))

n

+ Z (0" (@)|n) (¢ (2)|0)6(w — (En—1,n — En,0))- (4.131)

The positive spectral function p(x,x,w) generalizes the density of states
(5.16): In normal systems the ionization potentials cannot be smaller than
the electron affinities and infinitesimal §,, = dsgn(w’ — p) where p =
Ming n [E(N +1,n) — E(N,n')] is the chemical potential. So,

plw) = —;_ImG(w)sign(w — 1. (4.132)

The real and imaginary parts of Green’s functions are Hilbert transform pairs.
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4.6.2 Finite Temperatures, Fermi and Bose

Let us extend the above to finite T', writings = —1 for bosons, s = 1 for
fermions. For the retarded Green’s function,
g (@, 2t —t') = —iTr{p[(x,t), vt (@', t)]s}), (4.133)

one finds, with K = H — uN and hwpm = Ep — B,

9,2t =) = S0 (P (nli () ) mfy (o)

+s e BKn <n|wT(x/)|m><m\z/1(x)|n>eiw"m(t/7t) YOt —t). (4.134)
Now,let
R (2, ') = (n|p()|m) (m|f (z')|n); (4.135)

exchanging m with n in the last line and Fourier transforming one readily
arrives at

1 Ryn(z, ') |, _ _
("') ! — mn ) BKn BKm\.
9"z, 2 w) = mEn w+wmn+z’6(e +se ), (4.136)

with ¢ a positive infinitesimal; in the same way the advanced function is

g\ (z, 2 w) e PEn 4 se=FKm) (4.137)

Zzw—i—wmn—zé(

The same manipulations on the time-ordered Green’s function yield
e~ BKx s e BEm

4.1
+ Wi + 90 w—i—wmn—zé)( 38)

Gz, w) ZZRmnmm)(w

Equations (4.130,4.131) can be extended to finite T, introducing the T-
dependent spectral function

plx, z' w) Z Z e PEnR (@, )0 (w 4 winp ) (1 +5€79)  (4.139)

that allows to write down the retarded and advanced functions

dw' p(z, 2", w")
(r) / _ T, T, 414
9" (z, 2", w) /27Tw—w’—|—i5’ (4.140)
do’ p(z, 2’ W)
@ (,2/,w) = PREL ) 4141
g z,w) /27rw—w’—i5’ (4.141)

the time-ordered one (4.138) may be written



4.6 Lehmann Representation 79

Gt = [ 100 )

x, T w

21" (w—w' +140))
plx, o’ wis(w')
e (4.142)

with 72(w) — 1 — ns(w) and ns(w) = (1 + se®*)~! The knowledge of p (also
a function of T') determines all the one-body Green’s functions. For indepen-
dent electrons, ¢ and (4.139) are purely one-body properties independent
of the Fermi level; therefore the temperature dependence of (4.139) is ne-
glected usually in Density Functional and other self-consistent calculations.
This simplification may be wrong when dealing with strongly correlated sys-
tems.

4.6.3 Fluctuation-Dissipation Theorem

The above results imply a number of relationships involving p and the real
and imaginary parts of the various Green’s functions. One shows (Problem
4.2)the following. Assuming that R,,,(x, ) is real (it must be positive for
x = a’ and it can be taken real anyhow in the absence of magnetic fields)
show that

dw' ImG(z, 2’ ,w)

ReG(z, 2’ ,w) = —/ %/ (tanh [ﬂzﬂ)—s, s=7F. (4.143)

™ w—w

Historically such relations are known as Fluctuation-dissipation theorem.

Problems

4.1. Prove the identity

) g
[A, e PH]_ = efBH/ e™M[H, Al_e Hdr, (4.144)
0

4.2. Show that (4.143) holds.

4.3. In the continuous case of equation (4.44) determine g(x',z,2) in 1 di-
mension

4.4. In the continuous case of equation (4.44) determine g(x',z,2) in 3 di-
mensions

4.5. Derive the enbedding potential U(r) of Equation (4.108).
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5.1 Fano Resonances and Resolvents

5.1.1 Resonances

Often we treat excited levels as discrete, as they appear in low resolution
or in some simple approximation. Sooner or later, however a closer analysis
always shows that when all the degrees of freedom are considered they are
in a continuum. Thus, the 2p level of H, H(2p), is coupled to a continuum of
H(1s) 4+ 1 photon, and thereby gains a width and a structure. The 2p state
of H is discrete only if you accept to neglect its interaction with a continuum
of photon modes that eventually take the H atom to the ground state while
producing photons. In 1952, Fermi discovered a peak in the pion-proton (7 —
p) elastic cross section for center-of-mass kinetic energies 1.2 to 1.4 GeV; since
the half width at half maximum (~ 100 MeV) implies a lifetime 7 ~ 10723,
which is very short, the strong interaction was implied in the formation and
also in the decay. This was christened the doubly charged AT resonance.
Such high-energy Physics contents are pertinent to this book: hundreds of
resonances are familiar by now to particle physicists, but Fermi’s concept of
resonances is important in quantum problems at all energy scales. Firing 500
eV electrons on Helium and measuring the loss spectrum, one observes[31]
an asymmetric resonance in the ionization continuum al ~ 60 eV which has
been identified as the 2s2p' P state of He. Many more are known by now, and
they are all due to the neutral, twice excited He atoms in auto-ionizing states.
Using soft electrons (with not enough energy to produce ionizations) one sees
narrow asymmetric resonances in the elastic cross section, due to temporary
He™ ions. In all cases, the transition probability is described by some operator
T, like T' < A-p for electromagnetic transitions or, for fast electron scattering,
T x 4”52 >~ . e~ where r; suns over the target electron positions. However
thre are features that do not depend on T'; for instance, the asymmetric He
resonances are seen also in optical absorption.
We now develop techniques for dealing with such problems.
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5.1.2 Fano Model

Here we consider a system consisting of very unlike parts: let |k) stand for a
continuum of states of energy ¢ and |0), €y represent a localized state and its
energy. Typically, |0o) might represent atomic spin-orbital and |ko) a free-
particle states or Bloch states in a solid state problem from which an electron
can jump into the continuum of single-particle states |ko) (free-particle states
or Bloch states in a solid state problem.) Some perturbation produces hopping
matrix elements Vo coupling the continuum to the discrete state. The Fano
model is

H=Ho+HyHo= Y €holho+ P €0oNoo (5.1)
keC,o o
while
Hy = Z{VkaLGaOU + h.c.} (5.2)
k,o

The continuous spectrum of Hy corresponds to a set C of the real €, axis;
C can be bound or unbound, and also it can be compact or consist of several
pieces; for simplicity I assume that the continuum is not degenerate (only one
state corresponds to €x). This assumption can be removed later by a direct
extension of the present treatment[30].

There are no interaction terms (involving 2 creation and 2 annihilation
operators)in the Fano model. In first quantization, it would be

h= Z ek, |ko)(k,o| + ZGO’U‘OO’><0,J‘ + Z{Vk\ko><00| + h.c} (5.3)
keC,o o k,o

and would represent 1 electron instead of representing any number of non-
interacting elements. The two problems are closely related, and, for peda-
gogical reasons, I first present the elementary one-body term and then the
many-body equation of motion approach (this is actually a one-body problem
but the equation of motion method lends itself to the many-body case.)

5.1.3 One-body Treatment
In the elementary approach one writes:

{H0>:€o|0>+ZV0k|k>

k (5.4)
H k) = e |k) + Vio |0) .

The H eigenstates are expandable on the old basis:

) =10) 0 [ A) + D Ik) (k| A). (5:5)

k
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Taking the scalar product with (A|] one obtains:

(ex — €0)(A0) = > (Alk)Vor = 0 (5.6)
k
(ex — ex)(AJk) — (AJ0) Vo = 0. (5.7)

We discuss the solution below.

5.1.4 Many-Body Treatment

In the many-body case, we must still diagonalize the Hamiltonian, that is,
write it in the form

ﬁZZé‘)\n)\; (5'8)
A
the basis change (5.5) entails new creation operators for A states such that

OO + X2 aj (k1Y) (5.9)
0

with the inverse
ax=y_ < k|A> ay
X

ag= E < 0|)\> a)
A

We can find the X states by the equation of motion method. Note that

[y, ny]_=0(AN)[ay,my]_ = §(AN )aatay =
S(AN) { {1 - aia;} aA} =0(A\\)a,,

here § is Kroneker ¢ if we quantize in a big box, or Dirac’s if we normalize
on a continuum. In the diagonal basis,

[a)\,ﬁ]_ = ENA).

This corresponds to the equation of motion

z'dc‘;t* - [aA,fI] —exan = ay () = ay (0) it (5.10)

Written in the old basis, using (5.9), this is

[<Al0 > a,+ > <Ak >a H| =
k (5.11)
(A0 > ap+ > <Ak >a)
k
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Now,
1 1 1 1 1
a0, 000k | = ApayaE — GyakGo = AoGak + Agaoar = Gk
and the required commutators read:

[ao, H]— = eoao + Z Vioar,
k
lak, H]- = egay + Vokao. (5.12)

The equality holds separately for the coefficients of ag and of each ay,
since these are all linearly independent states. So, we find (5.6,5.7) again.
Thus, the many-body formulation yields the same system as the one-body
one, as it should always happen in non-interacting problems. The system
allows to obtain the spin-orbitals and thus build the many-electron Slater
determinants.

Now the discrete and continuous solution methods of Equations (5.6,5.7)
have quite different characters.

1-Discrete Method of Solution

Placing the system in a box, the continuous spectrum becomes discrete; one
can assume €; # € and write

Vio

Ak) = —
k) =—-_ ",

(A|0); (5.13)
substituting into the first one gets an algebraic equation for the discrete
eigenvalues

- Viol* _ (5.14)
% € — €EX

Note that here only real quantities appear.

The Figure shows a graphical solution. y = >, l::’fe‘j is plotted ver-
sus € — €g. For illustration, I have taken k-independent Vjj coefficients and
evenly spaced, positive €; values. The roots are the e¢ values where the sum
crosses y = €9 — €. Between two unperturbed e¢; eigenvalues there is al-
ways one €y; in addition, there is one root below the discretized contin-

uum. Once the roots are found, one normalizes the wave functions by writing

2
[(A0Y2{1+>, ‘ G ’ } =1 and the problem is completely solved. This so-

A€k
lution is of little use, however, if we wish to understand what happens in the
continuum limit. By increasing the number of k, the degree of the equation
grows; a smaller and smaller interval separates a 0 from an oo of the sum, and
more significant digits must be included to approximate the roots. This large
amount of information is not about the system, but its interaction with the
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fictitious box. This is not the way to the continuum. A brute force approach
fails because of the irrelevant complications it produces.

Z

Fig. 5.1. Graphical solution of Equation (5.25). The true continuum C, before
placing the system in the box, extends from € = 0 to ¢ = 6; a dot marks a root
below it. Here the continuum is replaced by equally spaced roots.

2- Solution in the Continuum

At this stage the discrete and continuous methods of quantization become
different, with the latter which is much more suitable. Now the k summa-
tions must be read as integrals; now perturbed and unperturbed eigenvalues
must coincide, and we want tools to handle the problem, starting with some
definitions.

— The density of states of the system is

plw) = Zé(w—q). (5.15)
A

Hence, | 51 ? dwp(w) is the number of states in the interval £y < w < Fy;
it may diverge in the continuum limit, when N — oo, but we can convert
the sum to an integral with a suitable measure, like >, — (22)3 fcl?’k7
where {2 is the volume of the system. At the end all physical quantities
have a finite value when 2 — oo.
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—  The local (or projected) density of states (LDOS) measures the degree of
mixing of the eigenstates at energy w with the 0 orbital,

po(w) =D 3(w — ex) (0[N, (5.16)
A

The unperturbed quantity is p(()o) (w) = §(w—€p). The V coupling changes

the discrete delta-like level into a virtual level; this has a width, and can
have structure. The ) set is complete, hence ffooo dwpp(w) = 1.

— The resolvent, or Green operator
Gw) = (w—H+i6) !, (5.17)

where ¢ stands for a positive infinitesimal, or if you like 6 = +0 (intel-
ligenti pauca). This is the Fourier transform of causal! operator G(t) =
e "Htg(t), and is analytical in the upper half plane.

Note that ON)2
Goo(w) = OGO =3, 7 i (5.18)
and so
po(w) = —iImGoo(w). (5.19)

Here it is understood that ), = [,dex + >, cp, where D the possible
discrete eigenvalues outside C. If (A\|0) # 0, a pole exists just below the real
axis at w = e — 6, and the residue is [(A|0)|?. In second quantization one
defines the Green’s function as the vacuum average

1
Goo = <Vac\a0w 3 H+i§a$\vac>. (5.20)
Inserting a) = Do air\<)\\0>, one finds (5.18) again. However the second quan-
tized formulation lends itself to the many-body treatment when interactions
are included.

5.1.5 The Resolvent

We obtain all the elements of G from the identity (w — H +id)G = 1, that is,

0| (w—H+i8)G0)=(0]0)=1
(k| (w—H +i6)G|0) = (k] 0) =0
O] (w—H+i6)G k) = (0| k) =0
(k| (w—H+i0)GE) = (k| k)=05(k—F).

!i.e. proportional to 6(t)
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Setting z = w — 44, since Hyy = 0,

(W —€0)Goo(w) = 22 VorGro(w) =1
(w = €k)Gro(w) — VioGoo(w) =

5.21
(w0~ €0)Gor(w) — Ty Vow Gion(w) = (5:21)
—VioGoxr (w) + (w — ek)Gkk/ (w) = 5(k, kl).

Now, thanks to §, nothing diverges, and we obtain

Goo = 1 (5.22)
O e — Dw)’ ’
where
Swy=>" [Vor|* (5.23)
w— €+

k

is the self-energy. For the other elements of the resolvent matrix see Problem
5.3.

Unlike the sum in (5.25) this is a smooth complex function of w, >,
stands for an integral;

21 (w) = ReX(w Z [Viol®

W — €L

Dh(w) =ImZ(w) = =7 ¥ [Vio*d(w — €x). (5.24)
k

As a function of z = w 4 40, X' is analytic outside the real axis. If C = {a <
w < b}, then there is a cut just below the axis, with a and b as branch points.
Outside C, X5 = 0. X is a Herglotz function, that is, —7~ImX(w) > 0; it
follows that Goo(w) is also Herglotz, which is important to ensure pg > 0.
We can deduce more analytic properties of G. For H, — 0, Gog — Gé%) =
wﬁﬁt +is has a real pole which marks the discrete eigenvalue. For Hj # 0,
Goo(z) is analytic except for the cut along C and possible poles at the roots
of
z—¢y = X(z2). (5.25)

Real roots are possible outside the unperturbed continuum where Yo = 0. If
there are roots, equation (5.18) really means

Goo(w /deAp €x) O + Z |<0|/\>|2, ; (5.26)

— e\ + 10 Nepw—eﬂ—i—zé

the residue at the pole €, is the probability that a particle in |x) is found in
|0).

Complex roots of (5.24) have w € C and Imz < 0 by causality (G(t)
6(t)); they represent resonances. If X were constant, pg would be Lorentzian;
although this an be a poor approximation, qualitatively, Y, is a shift and Yo
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a broadening; indeed, Yo = —I" = constant, fot ¢ > 0 we obtain Goo(t) by
closing the integral in the lower half plane:

/oo dw e—iwt f dZ e—izt it Tt
= = 1€ .
oo 2w — €+l 2m z — e+ iI”

To calculate the wave functions, we use the assumption of a non-degenerate
continuum that allows to make the replacement

>~ [ danten

and write

ImGoo = —W/dG)\p(G)\) [{0[A)]?6(w — €x) = —mp(w)[{0|AL)]?, (5.27)

where |\, ) is the eigenstate at energy hw. Hence,

AIrn Z
a C b Re z
cut T
PY Lto%alized
state
Resonant/

state

Fig. 5.2. The singularities of Goo(z) must be in the lower half of the complex z
plane. Outside the continua one can find poles close to the real axis at localized
states. Branch cuts correspond to the continua; a and b are branch points; poles
below the cuts yield resonant states.

—ImGoo(w) _ po(w)
[{02)* = = , (5.28)
mp(w) p(w)
and the wave function at site 0 is obtained (the phase is arbitrary). In a
similar way, using Fano notations, Vi = V,, = V(w) and one obtains

Dy(w) = -7 / dep® ()| Vio|*6(w — ex) = —mp@ (W) V(W) = —mp(w)V? (w)
(5.29)
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where the last equality holds in the thermodynamic limit. Now we can solve
(5.7) in the sense of distributions. The most general real solution of z f(z) = C

) fl@)=C {P; 4 Zé(x)} ,

whereZ is a constant. Thus we find a family of solutions:

k) = (Mo |0)Vio {P + Z(ex)d(ex — eA)} (5.30)

€\ — €k

Putting into (5.6) we find
Z(w) =—7 , (5.31)
and the solution is complete.

5.1.6 Self-Energy Operator

The above Anderson method to calculate the resolvent can be cast in operator
form and is very useful in problems when it is convenient to separate the
Hilbert space in two subspaces A and B writing

Haa Hap
H = 5.32
(HBA HBB) (5:32)

As in Sect. 5.1.2 take the AA matrix element of the identity (w — H)G =1

1 1
Gaa = HapGpa. 5.33
AA w— Haa + w— Has ABGBA ( )

Then we take the BA element closing the equations:

1
G = HpaGaq. 5.34
Ba= g HpaGaa (5.34)

Hence,

1
Gaa =

(5.35)
w—Hpg— Hyp

1
w—Hpp HBA :
Thus we can work within subspace A provided that we work with an energy-
dependent effective hamiltonian
1
Hepp(w) = Haa+ Xaa, Yaa=Hap Hpa. (5.36)
w— Hpp

X aa is called self-energy operator. To get the other matrix elements one
simply exchanges A and B in (5.35,5.34). If several subspaces B,C,--- are
coupled to A but not among themselves, they yield additive contributions to

2aA.
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5.2 Magnetic Impurities and Chemisorption on
Transition Metal Surfaces

The Anderson model

H=> comeo+ Y eonoot »_ {Vi,chocoothe} + Ungmg,  (5.37)
ko o ko

is just a Fano Hamiltonian with the addition of the innocent-looking but
far-reaching U term, which represents an oversimplified electron-electron in-
teraction. It was introduced in a fundamental paper[9] on magnetic impurities
in metals. The main question is: in what conditions will the localize state be
magnetic? The continuum tends equalize the populations ngt, ng; magnetic
sub-levels in order to lower the kinetic energy, but there is a price to pay to
the local interaction.

Vacuum level

Fig. 5.3. Relative position of energy levels in Newns model (not to scale). ¢ is the
work function. The bending of the Vacuum level is due to the surface electric field.

Here I mainly discuss a 1969 paper by D.M. Newns[10] dealing with H
chemisorption on Cu and Ni by an Anderson model? because important points
were made there. In his scheme, the localized atomic state |0 > is the 1s H
level with energy eéo) and the continuum is due to the metal d band states
|k >, delocalized in the bulk but exponentially damped outside the metal.
The chemical bond is due to hopping matrix elements Vy; aa in the Fano
model. Unlike the Anderson paper, Newns considered the implications of the
w dependence of the self-energy ¥(w) in detail.

U=0 limit

If U is unimportant, we expect localized states if there are real roots of
Equation (5.25). The new feature is the presence of a Fermi level. Instead of
local elements of the resolvent we now handle Green’s functions. The occupied
states are described by the one-hole Green’s function

2Chemisorption is the chemical bond between an atom (molecule) and a surface).
Now it is studied mainly by ab-initio methods, but some key concepts developed
from models remain fundamental.
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t 1
Goo(w) =< \I/|C0w . HCO |!p> s (538)

where |¥) is the ground state. For U = 0, |¥) is a slater determinant of
solutions |\) of the Fano model, and changing the basis with CEF) =5 /\()\|0>c;,
we find

[0 ] Y]
G ; 5.39

OO Z A — €\ + 6’ ( )
this is already familiar except for the appearance of the Fermi function f).
For the empty states, one defines the one-electron Green’s function

1
Coo(w) = <Pleo | Hcg ) . (5.40)

From the Fano model we can obtain interesting quantities like the level pop-

ulation
Er

(ng) =2 dwpo(w) (5.41)

— 00

where Ef is the Fermi energy and the factor 2 is due to the spin.
Interacting Anderson Model in Mean Field Approximation

For the Hydrogen atom, the ionization potential I = 13.6eV and the electron
affinity A = 0.7eV, are so different that it is impossible to set up a sensible
model without the interaction U ~ (010 | |f12 [070])~|I—A| A work
function (Typically ¢ ~ 4.5 €V) separates the Fermi level from the Vacuum
Level (minimum energy of a free electron far from the metal); so even ¢ is
smaller than I — A. We need a simple calculation to orient ourselves. In the
Hartree-Fock approximation, one assumes a ground state of the determinantal
form
|W> = H5A<EF7€#<EFC§+C2:17 |’UCLC> :

Averaging the one-body operator

nop = Z c}cm (A0 >< 0Jp > (5.42)
Ap

on |[?), only diagonal terms contribute and one finds
(no,o) Z A0y (5.43)

Moreover, since the anti-commutation relations allow to lump all the up spin
operators on one side, it is readily seen that

(Wlnorno | 0) = (Plnot|0) Py [9) = (nor)(noy).  (5.44)
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Thus,

E = (W|H|P) = > fr(\o|hX, o) + Ulnor)(noy). (5.45)
Ao

where h is the one-body (Fano) part of H of (5.3). We Set up the variational
calculation of A; in first quantization, treating bra and ket as independent
unknowns. We use (5.43), and vary the bra, for occupied states:

Pnor) _ 0 (A101){01]A1) = 101)(01|A)- (5.46)

S\ 6N
This contribution multiplied by €y appears in the h term and multiplied
by U(ng,) in the interaction term. Thus, in the unrestricted® Hartree-Fock
equation (;SAET = ex1|A1), the U term produces a shift

e — e £ Ung_,). (5.47)

Back in second quantization, the spin o electrons have their Fock Hamiltonian

H7=cpon00+ Z Exlks+ Z {ngcfmco(,+h.c.} (5.48)
ko k

where < n_, > is a parameter; thus the equations for +o are coupled.
No privileged spin direction exists in this problem, and one could have the
impression that (ng,) is equal to (ng_,) for symmetry reasons: remarkably,
this is wrong if U is large, and the level is about half filled, because the
symmetry is spontaneously broken (see Fig. 3.3). There is a couple of ground
states, namely

(no,o) >>(no,—¢)

and another one with ¢ — —o. The overall symmetry of the problem is
not respected by each ground states. The chemisorbed atom has a magnetic
moment. The existence of a localized spin requires strong enough U and
partial occupation; the Hartree-Fock approximation is known to overestimate
somewhat the occurrence of magnetism compared to more refined approaches.

Despite this possibility, Newns found a nonmagnetic solution for H
chemisorbed on Cu and Ni; let us consider more closely the case when
(nos) = (no—e) = 3(no) where (ng) is the total population of the ad-atom.
Then, ¢y does not depend on spin but according to (5.47) it depends linearly
on (ng), with eg — —1I for (ng) — 0 and ¢9 — —A for (ny) — 2. On the other
hand, the Fano formalism applied to the Fock Hamiltonian yields another
functional dependence through

Er
(ng) = 2/ dwpo(w). (5.49)

— 00
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a) b)

Fig. 5.4. Qualitative dependence of the energy E on local spin when the virtual
level is about half filled: a) for U small compared to level width b) strong coupling
case.

In this way a self-consistent solution can be obtained. Newns found (ng) =
1.06 for Cu and (ng) = 1.16 for Ni; this small negative charge on the H atom
produces an electrostatic dipole at the surface. The result is an increase in
the surface dipole due to the spill-over of the conduction electrons past the
edge of the positive charge and thus an increase in the work function, which
has been observed.

Local View

It is instructive to illustrate this theory by a simple LCAO* model. By ex-
panding the continuum states on a localized basis,

k) =D i) (ilk) (5.50)
one can expand the hopping integrals as well:

Vi = Z Vii|k). (5.51)

The most important V; are those connecting to nearest neighbors. Various
chemisorption geometries can be modeled ,including Atop, Bridge (bridging
between 2 atoms) and Center (above the center of a triangle) geometries. The

3this is conventional term meaning that we are not assuming that all quantities
be spin-independent.
4Linear Combination of Atomic Orbitals.
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resulting virtual level shapes depend qualitatively on the number of nearest
neighbors. Here I consider the Atop case, denoting in this paragraph a the H
adatom orbital and 0 the top surface atom,;

Vi ~ Vao(0[k), (5.52)

is hopping matrix element, and

V2
Y. (w) = k ~ | Vao |2 .
() gw_eﬁié [Vaol*Gs(w) (5:53)

where Gg(w) is the local Green’s function of the surface atom, an intrinsic
property of the undisturbed surface. For the sake of argument, let us represent
the d band by a tight binding N + 1 atom chain, with orthogonal site orbitals
(i|7) = 6;; and H,;; = 8 between nearest neighbor sites, H;; = 0 otherwise.
Here, the sites of the chain are 0,1,2,--- 00 and chemisorption occurs above
site 0. In this case, Gg = Gpo. Like a moment ago, the self-energy of the
top atom is related to the local Green’s function of the chain with the top
atom removed, that is the 1,2, -- 0o atom chain; but removing an atom from
a semi-infinite chain makes no difference, and X9 = 82Goo. Hence,

1 )
Goo(z) = ¢~ BGoo(2)’ z=w+1id. (5.54)

We find the solutions

24 /22 — 42
232 '

Taking the cut of /2 along the positive real axis, \/z = \/|w|e?**“/2. For
V22 =432 = \/|w? — 4532|exp { | [arg(w — 23) + arg(w + 23)]} the cut is be-
tween —20 and 20 along the real axis, and corresponds to the band. Just
above the cut,\/z2 —462 = i\/\wz — 42|, just below the cut7\/z2 — 462 =
—i4/|w? — 432|. The density of states is p(w) = — 1 ImG(w) computed on the
real axis, that is, just above the cut, and in order to have it positive, we must

Goo(2) =

choose \/
z— /22 — 432
Goo(z) = o . (5.55)
Thus one obtains the semi-elliptic density of states
\/452 - w? 2 2
n(w) = 92 0(408° — w?). (5.56)

Re[Goo] is the Hilbert transform of n(w) and is odd; it is linear in the band
and outside
w — /w? — 432

Re[Goo] = 252

w28 (5.57)
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The chemisorption is weak (strong) when V is small (large) compared to (.
For weak chemisorption, the self-energy is small and w — ¢, — X1 (w) = 0 is
solved by w ~ €, + X1(€q). So, if ¢, is well inside the band, the solution is
a resonance having width ~ Y5(¢,); if €, is well outside the band, a discrete
state obtains. €, in the continuum can give a discrete solution only if it is close
to the edge. For strong chemisorption, one may have two roots straddling the
band. Then,

O=w—¢€4 — —€q
™

1 o Yo(w') e 1 [ dw' X5 (w')
/d (w—w 7 (w—we)

with we the center of the band. The two roots obtained in this way are the
bonding and anti-bonding levels of a localized surface molecule.

5.3 Strong Coupling and the Kondo Peak

J. Kondo [34] in 1964 succeeded in explaining the strong effect of a small
amount of magnetic impurities on the resistivity of non-magnetic metals °.
A magnetic impurity with incomplete d or f shells that at room temperature
behaves like a magnetic dipole at very low temperatures appears to lose its
spin; lowering the temperature further, the resistivity does not continue to
decrease as in pure metals but starts to increase. Even much less than 0.01
atom % Fe in Au suffice to produce the resistivity minimum at the Kondo
temperature Tk (several °K). The Kondo temperature Tk (a few millivolts)
is very unlike the characteristic energies (band width, distance of the d or f
level from Fermi level, on-site repulsion.) Here I wish to show that idealized
models do bring many of the characters of the Kondo physics, that cannot
currently be reproduced by the common ab initio methods. The Anderson-
like models explain how such a small energy scale as Tk arises and how we
can monitor the electronic structure by electron spectroscopy. Various regions
in parameter space are relevant to different experimental situations. When ¢
is close enough to the Fermi level, like the f levels in SmBg, one speaks of
mixed valence regime because strong charge fluctuations occur and the differ-
ent ions can have different, non-integer valence. When ¢y + U is close enough
to the Fermi level similar phenomena occur. By constrast in this Section we
investigate the Kondo scenario, when the localized level is deep but multiple
occupation is hindered by large U.

5.3.1 Narrow-Band Anderson Model

In the narrow band limit of the Anderson Hamiltonian the continuum is
replaced by a single level k at the Fermi energy er = 0; we shall have in

5For an introduction to the Kondo effect see e.g. [5]; for fine recent reviews see
Hewson’s book [20] and Ref. [19].
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mind applications to d (or f ) levels of impurities in metals. Accordingly in
this Section we denote the localized state as the d level. A very interesting
situation arises in the strongly correlated case U > |e4| when the d level is
deep (eq < 0 with V' << |eq].) For a single particle, the basis set is {|d), |k)}
and the Hamiltonian matrix is

H(1) = G}l ‘6) (5.58)

with eigenvalues e+ = edzir,r = \2/ €2 +4V2. The spin-degenerate ground
state Wy, has energy e_ ~ €q — ‘e/d . We are interested in the one-electron
Green’s function

1 T
Gaa(w) = <ng|Cde _ gl 28 (5.59)

which brings information in the two-particle states in the S, = 0 sector where
U can act. To predict the poles of G 44 let us examine the expansion of two-
body state c:ri | [¥g1) into stationary states. With 2 electrons of opposite spin,
on the basis

(I =1dT1d1),12)=ldTkL),3)=[kTd),[4)=1kTk])}  (560)

the Hamiltonian matrix is

2¢ + UV V O

. %4 €q OV
H(2) = v 0 ey V (5.61)

0 VVo

The triplet component brings structure right at ¢;. Indeed, the 2-particle
triplet states are

1
V'

but only the last one is in the S, = 0 sector; they have eigenvalue €4.

In the singlet sector, one finds 3 eigenvalues of H(2). Referring to the basis
(5.60), the G44 singlet is clearly mainly peaked at 0, but does not enter the
calculation of G4q. The G711 element gives structure mainly at high energies
e ~ U. The singlet |s) = \}2(\2> + |3)) is more interesting, and gives the

{ldTET),1dL kL)Y, GUdTE L) =k Tdl)

combination

G _ Gaa + G33 + G3a + Gag
ss — 2 .

One can readily compute the resolvent matrix G(w) = (w—H(2))~! and Gs;s.
The density of states derived from G, has an interesting structure near the
Fermi level which persists at high U, as shown in Figure 5.4 This is called
the Abrikosov-Suhl or Kondo peak and has a striking physical interpretation.
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—1 0 4

Fig. 5.5. The singlet density of states as obtained from G.s with ¢ = —1,U = 6
and :) = 0.1; the eigenvalues of H(2) are at w = —1.023, —1.0,0.0195, 4.004 and a
triplet at w = —1. The singlet has little intensity in the high energy peak (here at
w = 4); it is practically insensitive to changes in U in the low energy sector as long
as U is large. The peak at ¢g = 0.0195 close to the Fermi level is the Kondo peak
due to spin flip. The ¢ lines are broadened into Lorentzians (width 0.02 |eo).

For V' = 0 the d level is singly occupied in the ground state and the
impurity has a net free spin; the deep level has a SU(2) degree of freedom.
For small V, the d level remains essentially singly occupied in the ground
state, but the transfer of spectral weight shows that it manages to interact
with the Fermi level. The only way this can occur is by an exchange of the
conduction electron with the localized one, while the impurity flips its spin.

To simplify the algebra, we can chop from the Hilbert space the unin-
teresting state with a doubly occupied d level, since it stands alone at high
energy, and write

€d oV
H@2)= 0eV (5.62)
VVvao

on the reduced basis
{1,129, 130 ={ld 1k 1), |d L kDI, [k Tk 1)} (5.63)

The triplet noted above, with eigenvalue ¢4, is (r, —r,0), r = \}2. It is easy
to find 2 normalized vectors orthogonal to (r, —r, 0) and to each other, for in-

r0 r

stance (r,r,0) and (0,0, 1.) Using the orthogonal matrix ¢ = | 70 —r |,
010
e VvV20

we find the transformed Hamiltonian h = cThe = VvV2 0 0 |;
0 0 €d

(2) _ —caty/ei+8V2
= 2

hence we obtain two singlets with eigenvalues e . While
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e(f) ~ 2V , the ground state energy @ ~ €q — 2 V says that the
singlet is bhghtly lower than the triplet for small V, and a bound state

forms in which the spin is screened; the eigenvector (on the basis (5.63)
v Vv ff)
( VePyaave’ T @)y’ \/(€f>)2+2v2) shows that |d T k |) and
|d | k 1) components are the important ones. The low energy sector (sin-
glet ground state and triplet excited level) is well represented by an effective
Hamiltonian
Hepp = —-2J51-5 (5.64)

which commutes with the square of the total spin and describes a spin-spin
coupling between the two electrons. The small separation ~ —2 EFV_QGd between
the ground state and the triplet implies that the low-energy excitation is
a spin-flip, while charge excitations are frozen. The coupling between the
conduction electron and the localized one through spin produces a singlet
level in the valence region at ef).

The narrow-band model is extremely simple, but calculations on larger
systems confirm and extend the scenario. Recent exact-diagonalization calcu-
lations of Kondo clusters alloyed with mixed-valence impurities in the pres-
ence of disorder are of great interest [36] and show T=0 phase diagrams very

rich in structure.

5.3.2 Anderson Model, s-d Model and Kondo Model

Consider an Anderson model with €4 < 0 and U chosen such that for V, — 0
the d level is singly occupied in the ground state. At small V, the low-
energy subspace, say, subspace A, corresponds to singly occupied d level;
there are two high-energy subspaces, say B and B’, with excitation energies
AE(d — d?) = €4+ U and AE(d' — d°) = —¢4. Let us use the Schrieffer-
Wolff transformation ( Sect. (1.3)) with the hopping term as v; Equation
(1.86)yields the approximate renormalized interaction

do)(d}, cpror d'ewo)(c d,
7.nt: Z Vk’ Ckcr )( 1Ck )+( o' Ck )(cka ) ) (565)

ko,k'o’ €a + v €

Besides a conventional scattering of conduction electrons by an impurity
potential, H;,; produces diffusion with spin flip (of both conduction and
impurity spins). The effective Hamiltonian is clearly a particular form of the
s-d model proposed long ago by Zener|[28], that we now recall.

s-d model
We need a slight generalization of Equation (1.58) in which we write

A= (et Y(OL) (e f o 5.66
(ki )a (cmckl><10> (Cm) S (Cap)actacrs  (5.66)

kk’
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and so on; if ¥/ were equal to k this would be the representation of the spin
operator in the k basis, but we are allowing off-diagonal elements. In this
way,
(O’kﬁ»k/)z = CLTCJC'T - CLle/l, (O'kﬁ\k/)+ = 2CLTCk'l'
The s-d model proposed by Zener[28] for an impurity spin S in a metal reads
Loy - - +
H=Hp+Y Jow 5 [ST(0hot)™ + S (ohoi) ] + Saohrr)s ) (5.67)
kK’

where H is a Fano Hamiltonian[32]. For the impurity we denote the creation
operator by df and use e; = €g; we set

25, =dld, +d{d;, 28, = —i(d]d, — d{dy), 25. = dld; —dldy; (5.68)

one can readily verify the angular momentum commutator relations in the
subspace with ntn| =0,n; +n| = 1.

Spin-flip and the Kondo Model

Now in Equation (5.65) we consider the spin-flip (¢’ # &) terms ignoring the
dull potential scattering terms; for instance we have a term CLTdeICk' | =

3 (ok—r) TS, which fits the s-d model. So we arrive at the Kondo model[35]

H=Hy+Hg= Z ekcLUCkg + Z Ik it (a'ag . S) Czack/g (5.69)
ko koK'
where
J| = ViV L + L (5.70)
kol = ke Tk €q+U —€q ' ’

This describes the net effect of the virtual valence fluctuations; they couple
the local spin density of the conduction electrons with the impurity spin. The
d electron is reduced to its spin degree of freedom, while the charge is fixed.
The k dependence is often neglected. In this case, the Kondo interaction can
be written

Hint = Hi = JU!,(0)¢3(0)(0as - Sa), (5.71)

where 1,,(0) = \/1N Ek Ckeo 18 the electron field operator at the origin. Since
— (07071) (17_7’50)
{oas} = ((u,m (0.0,-1) (5.72)
we may also write

He — g [ S1©%1(0) S-vi(0)4,(0)
S (0091 (0) =S} (), (0) ) °

This is the second quantized form of a Hamiltonian Hx = J(o - S4)d0(x).

(5.73)
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5.3.3 Fermi Level Singularity and Kondo Minimum

The resistivity of metals decreases with decreasing temperature since the
phonon contribution drops; the Kondo minimum at Tk arises because the
magnetic impurity contribution increases as T" — 0. The impurity resistivity
is due to k — k’ processes where the conduction electrons scatter from one
Bloch state to another in the impurity potential and is proportional to the
square modulus of the scattering amplitude. The amplitude is an average over
the thermal distributions of electrons, and the distribution peaks at the Fermi
level as T'— 0. For K or Ca impurities in a metal, nothing special happens
with lowering T, but for impurities such as Fe or Co the temperature is very
important. This is because the the impurity cross section grows logarithmi-
cally when the Fermi energy is approached, and the effect is entirely due to
the spin. To see how this is borne out by the Kondo model, let

J
H=Hy+ Hg, Hx = N %(Gaﬁ . S) C]Tméck/g (5.74)

with o the conduction electron spin; let |®) denote a filled Fermi sphere,

with the energy origin such that Hy|®) = 0, c;rT and C}T creation operators
for spin-up electrons near the Fermi level,

[B:) = cly|®), B5) = c}4|®).

One obtains the scattering amplitude Uy; = (®;|U|Py), still an operator in
impurity spin space, by the T ezp formula in the interaction picture (2.36)

Ups = b3y — i / (il Hie ()| f)dr

o0

+(_i) /oo dry /T1 dro(i|Hy (1) Hic (12)| ) + -+ (5.75)

2 oo oo

The first-order integral gives 2md(w;¢)(Hr )if, that is, an energy-independent
object. The second-order contribution, introducing a complete set, reads

1 (oo} T1 X .
U(f) — - / dTl/ dTZez(efn—eirz) Z(HK)fU(HK)mezE,,(Tg—n);

v

(B, —€i)T2 ei‘(E”_Ei)"l
i(Ey,—e;)

(Hi) o (Hg )vi
El/ — € .

using a convergence factor at to, [T\ dre
U o (—i)2216(wy) ! >
K3 /Z: ~

Two kinds of matrix elements (®¢|Hg|v)(v|Hgk|P;) occur, with the ¢
operator in the right Hg factor or in the left. The terms with ¢;; in the right
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5~ @lre S)chcao ) (V@01 - S)cl, i)
EV — €; ’

14
where |v) has an electron in a state go, yield, using (5.72),

Z (elq__iqz) (016 -S)(o61-S) = Z (1- fqv) [SZQ 1 5.8.]. (5.76)

49,0 q

In the terms with c;1 in the left, the operators appear in the order cg(, cit C}chg,
so qo must refer to a filled state and |v) involve two electrons and a hole:

(Dfl(o0r - S)elycit ) (Vl(oro - S)chcgo|®s) f4 )
Z E,—¢ _Zeq—ei [SZ+S+S_}'

v q
Since [S4,S_]- = 25, the second-order amplitude has a contribution
proportional to > g f_qe_ S.. Neglecting the energy dependence of the density
a—€i

of states, the g summation gives Zq Eqiei ~ f:;fw deg Eqiq where W is the
band width.
le;i — erl )

W

This gives a logarithmic singularity of the scattering amplitude when ¢;
approaches the the Fermi energy. For the physical meaning of the S, factor
see Problem 5.4.

UP o 5. log( (5.77)

5.4 The Ny > 1 Expansion

Spectroscopically, Ce compounds and heavy fermion materials show deep f
levels having widths ~ 0.1 eV, while U is several eV. The above discussion
indicates that such a special region of parameter space of the Anderson model
is particularly intriguing for studies of magnetism: a deep impurity level is
weakly coupled to the Fermi level (V, << ep — €4) and is singly occupied
in the limit Vi — 0. This requires ¢4 well below the bottom of the band
and U large; actually there is a mathematically well defined U — oo limit to
study. The density of states will contain structure about ~ €4 and ~ 2¢4+ U,
but also about ep. Since U is large one should resort to some expansion in
Vi. Here I shall introduce with some changes and simplifications a method
proposed by Gunnarsson and Schénhammer (in a comprehensive paper [27])
to calculate the relevant densities of states. Consider an Anderson-like model,
with a local impurity level which is Ny times degenerate

Ny
H = Zeknkg +€fznfy
k,o v
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Ny
+ Z [Vkmcgyckg + h.c.] + Uan,,nf,,/, v={m,c}. (5.78)
kv v,

The bottom of the band is at —B and the Fermi energy is ep = 0. In this
problem it is expedient to use a discrete formalism as in Section 5.1.4, i.e.
with {ex} = €1, €a, - - - and Kroneker deltas, and to go to the continuum limit
at the end. Let us assume

Zk: mGVkm’(se,ek = ‘W(€)|25mm’;

= 5.79
> Vi VirmOe,e, = [W(€)*0pn (5.79)

with the energy W linear in the hopping parameters. The U term fails to
account for the multiplet effects, but this has no consequence since the occu-
pation of the impurity is nq < 2. Introducing the degeneracy, the model be-
comes both more realistic and more tractable. The reason is that (as expected
a priori and verified below) each degenerate state gives equal contributions
to the ground state energy shift AFE, so for deep impurity levels

72

AE=n,"", (5.80)

€f
where W2 is some average of W (). Thus, AE is fixed (it corresponds anyhow
to a weak chemical interaction), Ny — oo is a weak coupling limit, and we
can set up an expansion in inverse powers of Ns. We need the right combi-
nations of conduction states that couple to the impurity, and introduce new
conduction operators with the same symmetry as the impurity m orbital®:

1
¢ema I (6) vak(se,ekc;ia (581)
k

and a combined index v = {m, c}. Equations (5.79) yields
[wimav we’m/a’]_i_ = (56,5/(51,’,/.

Then, letting [ de stand for the discrete energy summation (that will become
continuous at the end)

V m - Vm
Z / dectplpotoms = 3 3 (€2 = ex1) Rl ke (5.82)

mo k1k2 W2(€k1)

now using the second of (5.79), one arrives at the useful form

H= Z { / de el e, + / de (W(e)eh, ve +hc.)

—l—echVco,,} +U Z NN fyr + extra terms (5.83)
{vv'}

Shere unlike Ref [27] T use dimensionless the creation operators



5.4 The Ny > 1 Expansion 103

where 3.,y is over distinct pairs and the extra terms describe conduction
states that are not coupled to the impurity. We shall see that the ground
state can be calculated exactly for U — oo, Ny — oo. We start by calling
|¢o) the ground state of H and |{2) the singlet state with a filled shell of k
states up to er and empty impurity states; let

(¢o|H|¢o) = Eo, (2|H|2) = E), AE = Ey — E{. (5.84)

Henceforth the many-body energies will be referenced to the constant E§. By
acting on |£2) with the hopping term in the hamiltonian we produce electron-
hole states | f,€) with one electron on a superposition of the impurity states
|0mo) and a hole in the conduction band at some occupied energy €; denoting

holes with bars one writes a particle-hole state as
/
v

—
=~
\

ioa i

Fig. 5.6. Left: lowest state |2) with no occupation of the f state . Center: hopping
leads from |£2) to a state with a single occupation of the f state. The full circle
represents a hole and the empty one a f electron: this configuration would be the
ground state for V' — 0 for the hole at the Fermi level. Right: further hopping may
lead to two kind of configurations: 1) a state |E, €) with no electrons in the f state
and an electron-hole pair in the valence band (upper panel) 2) a state |f, f', €, €’)
with a double f hole (lower panel). For large U, however the latter is excluded, while
the coupling to |E, €) is negligible for large Ny. Thus, when both conditions hold,
one can solve the problem exactly.

) 1 :
18 = y, Zebelo) (5.55)

Note that (f,€|f,€) =1, (f,é|H|f,€ = e; —e. To find the coupling to |2) we
insert (5.81) in (5.85), obtain

H|2) = EQ|Q2) + Y Vimcl,cro|2) (5.86)
kv
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by the form (5.78) of the Hamiltonian, and take the scalar product. The
nonvanishing contributions are those where the creation and annihilation op-
erators match; then, using (5.79) one performs the k& summation introducing
\W|2; the m summation then introduces a Ny factor yielding

(R|H|f,&) = % szmm :W*(f)\/Nﬁ (5.87)

If we act over (5.85) with the hopping term of the hamiltonian we generate
new states: ~
H|f, €)= |E,e),|f, f &¢€); (5.88)

here,

|E,e) = ¢ Zwmwm (5.89)

has a conduction electron with energy £/ > Er and keeps the € hole while

|, f/,€ €) has two impurity electrons and two conduction holes and is ruled

out as U — oo. Since the normalized states |E, €) and | f, €) both bring a \/iv
f

factor, their coupling goes like |WW|? and thus vanishes as N t — 00 because of
(5.80).Therefore, in that case the problem reduces to the one hole subspace,
that is, the ground state may be sought in the form

o) = A {m +/OB a(ﬁ)f6>d6} ; (5.90)

here fB  de provisionally stands for a discrete summation over the band en-
ergies and everything is dimensionless. We write the Schrodinger equation on
a basis set

{2, 1f, 1), f, €2), -}

with eigenvectors
v=(1,a(e1),a(e),...) (5.91)

acted by the Hamiltonian matrix (recalling (5.87))
0 VNW*(er) /NiW*(e) -
Hy = | VNW(Q) e —a 0 L (5.92)
\/NfW (e2) 0 €f — €
The first line of Hyv = AFEv gives

0
AE = /N, [ i (€ale). (5.93)

the second and any other line yield
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VNiW(e) = (AE — ¢ + €)a(e). (5.94)
Hence,
|2
AE = Ny / AE_€f+€ (5.95)

is indeed proportional to Ny, as anticipated. Moreover, the normalization
condition of (5.91) reads

o 1 _/O 20y — /0 W(E) 2
|A]? = s C = 7Bdea (€) = Ny dE(AE—€f+€)7 (5.96)

where again —B is the bottom of the band. The occupation of the impurity
is
C
ng = ,
Ti1+c
and when C' > 1 (spin fluctuation limit) ny is close to 1. Equations

(5.95,5.96,5.97) remain the same in the continuum limit, when however the
Kroneker deltas over energy become Dirac’s delta functions and hence

(5.97)

A= a2 (5.98)

is the inverse life time due to hopping, a the inverse root of an energy, and
so on. Typically, A ~ 0.1eV.

5.4.1 Kondo Temperature in the Spin-Fluctuation Case

AFE is the energy shift with respect to |2), but one is more interested in the
Kondo temperature
KBTKZCS:GJC—AE>O, (599)

which is the correlation-induced energy gain with respect to the non-interacting
lowest eigenvalue of | f, €) levels. In the spin fluctuation case,when ny ~ 1, a

reasonable model takes constant W2 and assumes that B > 0; then, setting

in (5.95,5.96) W2 =2 we find

AE:N;A1H|AEB_”|:N;A1H|;| (5.100)
and 0 Ny A
L == (5.101)
One obtains from (5.100),
0= Be}:’?g;

we expect the result to be roughly proportional to NyA so we introduce this
dependence, using (5.99) to eliminate AFE :
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(e s —5)
) ln[N A+ NJ;A

NfA B ey =9 NfA

NfA —
T NfA)e ( T

This can be rewritten

~ NpA (s =)
6= (NfA)e”f“{(ef_‘s)Jr LS TZL G (Nf(s)e Nya (5.102)
s s

with the renormalized f level

& =es+ 7fT In( ). (5.103)

N¢A
=0 . .

In the Kondo problem the exponent ﬂ(;,f; A ) Iz;;fA is large and negative and

the Kondo temperature is given by

NpA, 7
s=("e NfA. (5.104)
7r
The population of the f level can be deduced from (5.101), which says
that 1:2 ;= Nf A Since n ¢ is close to 1, the solution is well approximated

by

et

|
_ f
1—np=e N4, (5.105)

5.4.2 Density of Occupied States

To obtain the density of filled states relevant e.g. for valence photoemission
(see next Chapter) we need the g<(z) Green’s function. So, we introduce a
(sufficiently) complete set {j} of many body states and write

05(:) = S nlehali)il o D lenol0). (106)

,J

One can compute the matrix elements (i|z — H|j) without difficulty and then
obtain (i| Eo(lN) 4 ;17) by a matrix inversion in analogy with Anderson’s
procedure used above in Sect. (5.1.2). For large U and Ny one can limit
the analysis to the above approximation; the relevant states are the one-hole
states

lema) = Yemeo|12), (5.107)

such that (e¢/molemo) = d(e — €'), and impurity electron -two hole states,
namely,

t
C, /-
‘Om’g/’elmlo'l,€2m20'2> = \/]O\;;J_ 1 Z¢€2m20217[}€1m10-1‘9>. (5108)
pairs
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Here, 3 . sums over different m, o channels (the normalization is to Ny —1
since the case of {m1, o1} = {ma, o2} is excluded, but 1 is negligible compared
to Ny ). |emo) is eigenstate of ijvf [ de el 1pe, with eigenvalue Ej — ¢;
inspection of (5.83) and (5.84) then shows that

(¢molz — Eg + Hlemo) = 6(e — € )(z — AE —¢) (5.109)

0m'o’, exmio1, eamoos|z — Eg + H|0m/ o', €, mio1, €hmoos
1 2
=0(e1 — €))d(e2 — €5) (2 — AE —e1 — e+ ¢f)  (5.110)

The hopping Hamiltonian takes from the one-hole subspace to a two-holes-
impurity-electron one; so the matrix inversion is easy, using the method of
Sect. 5.1.6 which puts a self-energy in the denominator of the inverse of
(5.109); giving

d(e—¢€)

0 de|W (€)]2
s—AE—e— Ny [0 GPTOR

(¢mo|(z—Eg+H) emo) = . (5.111)

The Kondo peak is borne out by this analysis.

Lacroix [21] using the equation of motion approach computed the density
of states of the Anderson model for U — oo by the equation of motion
technique, and obtained the Kondo peak and its disappearence above the
Kondo temperature.

Problems

5.1. Find by direct matrix inversion Goo(w) as the 00 element of (w — h)~1,

with the matrix of h from Equation (5.3). This is instructive and very easy!
5.2. Prove Equation (13.136).

5.3. Find the other elements of the resolvent matrix by the method used in
the text for Gog.

5.4. What does the S, factor in (5.77) mean?

5.5. Prove Equation (13.136).



6 Many-body Effects in Electron
Spectroscopies

6.1 Electron Spectroscopy for Chemical Analysis
(ESCA)

Electron spectroscopies and their rich phenomenology convey information on
molecules and solids and specifically on their excitations. To describe excited
states we shall develop techniques based on modeling the spectra in terms of
Green’s functions and also more general expectation values. ESCA is a set of
spectroscopies, UPS (Ultraviolet Photoemission Spectroscopy),XPS (X-Ray
Photoemission Spectroscopy)and AES (Auger Electron Spectroscopy). They
can be angular resolved (ARUPS and the like) and time resolved; APECS
(Auger Photoelectron Coincidence Spectroscopy) detects the photoelectron
and the Auger electron most probably coming from the same atom. ESCA
can make a chemical analysis with tiny samples and is able to discriminate
the oxidation states and give information about the electronic structure.

In an ESCA apparatus, the sample is excited with monochromatic ra-
diation ( X-rays in the case of X-ray Photoemission Spectroscopy or XPS,
Ultraviolet light in the case of UPS) and the potoelectrons are analyzed in
energy by a spherical or cylindric analizer. A photoemission spectrum is a
plot of the photoelectron current versus photoelectron kinetic energy. In [94]
the XPS spectra of noble gas atoms and of several molecules are reported and
discussed. Core levels, with a well resolved spin-orbit separation, and valence
levels are observed; they often (but not always) agree qualitatively with the
results of Hartree-Fock calculations. However, correlation effects, (that re-
quire the methods of Chapter 11 and following Chapters for a microscopic
description) are most often clearly seen. Many core and valence levels show a
complex structure due to shake-up effects (excitations) or shake-off effects,
if the excitations involve a continuum. The Xe 4p level seen in photoemission
(see e.g. [95]) shows a broad continuum with sharp superimposed features in
striking contrast with one-particle descriptions, predicting a doublet of lines.

The interaction of the sample with the radiation is

N
S [A(x) - pi +pi - Al)], 6.1)

H = _°
2me
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where N is the number of electrons and A the vector potential. One also
often finds an alternative formulation, that comes directly from the relativistic
theory, namely

N
H =~ lomey / ErA(w) - j (@) = > Munahan  (62)
C N

where the current operator is (4.23); in the second-quantized form, >
runs over an arbitrary complete orthonormal set of one-body states (the set of
Hartree-Fock spin-orbitals is a convenient choice). Let |i), E; denote the initial
state of the sample and its energy, fiw and € the photon and photoelectron
energies. The cross section o can be worked out starting from the Fermi
golden rule

Ao — 2;Z|<f\H’\i>\2§(hw+Ei—Ef) (6.3)
f

where |f), e are the final state of the sample and its energy. For the sake
of simplicity we shall consider the case of fast photoelectrons, when we can
neglect the post-collisional interaction between the photoelectron and the
ion left behind. We let H be the N-1-electron Hamiltonian of the sample
after photoionization, with H|f) = Ey|f) and write E; = e + Ey. The
photoelectron state can be approximately described as a plane-wave of wave
vector k, and |f) = aL\f), where |f) is the N-1-electron final state of the
sample'. Moreover, 3~ » = 3>~ 7 >4 A, Where the sum over the wave vectors
accepted by the detector in the solid angle Af2, namely >, - 1, o< p(ex)AS2
is the density of final states of the photoelectron oc |/eg.
Then the cross section reads

= 2 o) Y I Flai) POEs — By — e~ ho). (6.0)
f m

The highest kinetic energy features in the photoemission spectrum correspond
to events when the system is left at or near the ground state; lower kinetic
energy features correspond to excited states of the system left behind, and
this occurs by energy conservation, without the need for a post-collisional
interaction?. Proceeding as in (4.6) one can write this in terms of the hole
Green’s function

s 1 ,
Grn(w) <z\anw _H+i0+am|z>. (6.5)
'Due to the long range of the Coulomb potential, one should use Coulomb waves,
but at high kinetic energy one has a good excuse for using plane waves instead.
2The outgoing electron can lose energy by collisions, producing secondary elec-
trons; this is not contained in the above simplified description; the spectrum far
from threshold when such effects are important becomes difficult to analyze.
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6.1.1 Chemical Shifts

The core level binding energies depend on the charge on the atom and change
with the chemical state. For example, the Xenon fluorides XeF,, XeFy and
XeFy are colorless solids melting at 140, 114 and 46 °C, respectively; their
F and Xe core levels are shifted by some eV along the series. The F 1s
level is 5.48 eV less bound in XeFy than in Fy; this difference reduces to
4.6 eV in XeF, and to 3.38 eV, in XeFg, while the negative charge on the
Fluorine is reduced. The Xe levels shift in the opposite way, even more: the
binding energy grows if there is positive charge on the atom. A clear linear
correlation exists between the binding energies of the levels and the overall
charges of atoms, determined by self-consistent calculations. In a similar way,
the 1s levels of C in CH3 Br,C' Hy Bro, CH Brs, C Bry shift compared to CHy.
Many organic molecules contain in-equivalent C atoms and their core peaks
can be resolved .

The chemical shifts are due to a combination of initial state effects and
final state effects . The former are those just mentioned above due to the
mean electrostatic potential on the atom in the ground state; depending on
the chemical environment, a core level can be more or less tightly bound
than in the free atom. The final state effects are due to the polarization of
the system around the core hole and are of the same order of magnitude,
i.e. several eV. However, they always reduce the binding energy since they
stabilize the final state of the sample and the energy is taken off by the
photoelectron. From the the chemical shifts it is often possible to deduce
the valence of given atom in a compound. This is relevant to elements like
transition metals that can have different valence in different compounds.

6.1.2 Core-Level Splitting in Paramagnetic Molecules
The ground electronic configuration of the NO molecule is
01s’N1s*16%20%17*30% 27!

the ground state is a spin doublet and NO™ has singlet and triplet states.
The ground state of Os is 3X, with a configuration

150, (25) 0 (25) 0 (2p)*mu(2p) [y (2p)')?

with two partially filled 7, states. In both cases this produces a core-level
splitting[94]. In Nz the 1s level has a binding energy ~ 410 eV and is ~ 0.9
eV wide at half maximum; the same level in NO has one component which
is less bound than in Ny by a fraction of eV and is about as wide, but there
is also a second component which is more bound by ~ 1.5 eV. The intensity
ratio is 3:1. The O level is not resolved in Siegbahn’s data but is 0.3 eV
broader than in Os. To simplify the notation, let us write the degenerate
ground determinantal states by
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|rasasp|, s. = 3

|TBsasf|, s, = ’21 (6.6)

W(NO) = {

omitting filled shells; s denotes the 1s level of O or N, according to the process
that we wish to describe. For NOT we must consider

|rasal, s, =1
U(NOY) = |rmasp|,|mBsal, s.=0 (6.7)
|78sB|, s.=—1.

All these states have A = |L,| = 1, where z is the internuclear axis, but not
all are spin eigenstates. The singlet is

B(HIT) = \}2[Imsﬁ| ~ |nBsal); (6.8)

the triplet states are:

|rasal, s, =1
Y(IT) = \}Z\wasﬂ\ +|mBsal, s, =0 (6.9)
|7BspB], s.=—1.

Let us write the total energy of the states with s,=0; since

H=> hi+)» iy (6.10)

i<y
does not depend on spin and («8|H|aS) = (Ba|H|Sa), one finds:

E(MT) = (|rasp||H|maspl) — (|rasp||H||xBsal),
E(I) = (|rasp|[H||masB|) + (|rasp||H||mBsal).”

In the calculation of (|rasB||H||mBsal), since the two determinants differ by
2 spin-orbitals, there is no contribution from the one-body Hamiltonian; the
splitting is AFE = 2J, where

J= <|7rasﬁ|\r12 ||mBsal) (6.11)

is the exchange integral. Hartree-Fock calculations give AE(N) = 0.88
eV,AE(O) = 0.68 eV. The lowest state is triplet. This agrees with the obser-
vation that the peak at lower binding energy is 3 times more intense.

In a similar way, the 1s spectrum of Oy (binding energy ~ 547 eV ) has
two components separated by 1.1 eV with an intensity ratio 2:1. From the
3%, ground state one can go to X and 2X ions. Let 7¥ represent the 7
orbitals with L, = £1. From the ground state with components ¥ (3%,) =
Intar~al,s, =1
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) |mtar~al, s, =1
P2y =3 pllmtan™ B+ |nBr"al], 5. =0
|m* B A, s, =—1

To write the final state, let us include the unpaired 1s level (that in the initial
state was understood with the other closed-shell states). 6 states are found,
including the s, = 3 component of X, namely, ¢(*X) = |rtar~asal. The
other components of X are easily obtained by the S~ operator and the
doublet 2X by orthogonality. In this way one explains the splitting, which is
again due to an exchange interaction.

6.1.3 Shake-up, Shake-off, Relaxation

In the final state of core-level photoemission, a localized hole exists, producing
a field and a polarization of the system. The polarization phenomena are
not included in independent particles theory. However, they are commonly
observed: they shift the levels towards lower binding energies. The final state
effects show up in the spectrum also with the presence of satellite peaks.
The electron contribute to the relaxation shift, since the spectator electrons
actually are involved in some measure in the photoemission process; there
is some probability that the ion is left, in the final state, excited. We can
adapt the independent particles theory in order to to include some correlation
effects, by using different orbitals for the initial and final states. Neglecting the
energy dependence of the density of states p(ex) and of the matrix elements,
the shape of the photoelectron spectrum from a deep level |¢) is given by

o(w) = —iIch(w) = <i|al(5(w — H)ac|t) = (i;¢|6(w — H)|i;¢),  (6.12)

where |i;¢) = a.|i) is the N-1 electrons state that is obtained from the initial
state |i) by creating the core hole but holding the orbitals frozen. We calculate
|i) in the Hartree-Fock approximation for the neutral sample; under known
conditions |i; ¢) is a single Slater determinant. Introducing the eigenstates |v)
and eigenvalues €, of H with N-1 electrons, we find

o(w) =Y |(ie[)d(w —e,). (6.13)

However, the |v) eigenstates must be calculated in the presence of the core-
hole, that is, as determinants formed with relaxed spin-orbitals. We can ob-
tain them too by the Hartree-Fock approximation using an excited N-1 elec-
tron configuration with the core electron missing®. Since the overlap of deter-
minants is the determinant of overlaps (Equation 1.5) all the many-body |v)

3Unfortunately, this approximation has the shortcoming that the excited state
is not orthogonal to the ground N-1 electron state or to the lower states of the same
symmetry. This is a general drawback of the Hartree-Fock approximation.
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states contribute to the summation, each yielding a peak at its eigenvalue.
The discrete ones yield narrow shake-up peaks, while those in the continuum
contribute broad shake-off structures. Remarkably, the first two moments of
the spectrum give

/Oo do 3| el) 28w — ) = 1 (6.14)

and

/oo dww 3" [{i; ) P6(w — ) = (i c|His o). (6.15)

The excitation of satellites exactly balances the relaxation shift. The 1s
spectrum of Ne is rich of satellites (see next Figure).

Ne 1s main line

J (a.n.) A

320 340 360 380

Kinetic Energy (eV)
Fig. 6.1. Sketch of the satellite region of the Ne 1s photoemission spectrum (data
from Ref. ([94])). The peak in the extreme right at 383 eV kinetic energy is due
to 1s holes in the final state; the satellites occur at lower kinetic energy because
the Ne%t ion is left in an excited state. Several satellites are due to states of the
2p°np* 28 final configurations, with n=3,4,5,---. The most intense satellites are
some 20 times smaller than the main line, since Ne is a filled-shell system with low
polarizability.

Besides the single particle excitations, other excitations of the system,
like vibrations and plasmons, that can be treated like harmonic oscillators
(bosons) contribute to the relaxation energy and to the shake-up spectrum.

The time scale of vibrations is ~ 107 3s; typically the dipole-allowed elec-
tronic transitions take much shorter than that and according to the Franck-
Condon principle the nuclei do not have time to move during the transition.
Since the equilibrium bond lengths and angles of the ions are different from
the initial neutral species, the ion is left in an excited vibrational state. This
is easily visualized in the case of bi-atomic molecules by plotting the poten-
tial energy surfaces of the neutral molecule and of the ion versus internuclear
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distance. The energy of the transition between the vibrational ground states
of two electronic states of the neutral species and of the ion is called adi-
abatic ionization energy. The satellites are on the high binding energy side
and appear as energy losses; they correspond to vibrationally excited ions in
the final state. The energy spacing between satellites is the vibration energy
of the ion, which differs from that of the neutral species.

When the equilibrium distances differ slightly compared to the widths of
the Gaussian wave functions, there is a high probability to end up in the
vibrational ground state of the ion, and this corresponds the most intense
peak in the photoemission spectrum. The satellites are small and fast de-
creasing. On the other hand, if the change in equilibrium distance is large,
the intensity of the adiabatic transition is small, the spectrum has many lines
of comparable intensities and appears almost continuous, with an intensity
maximum at the vertical ionization energy, i.e. the energy difference between
the two potential energy surfaces at the ground state bond length. To assign
the peaks in the photoemission spectrum, an important hint comes from the
vibrational structure; this is much more intense for bonding than nonbonding
or core levels.

6.1.4 Lundqvist Model of Phonon and Plasmon Satellites

The coupling of a core electron to a vibrational mode affects the Photoe-
mission line shape. To model the vibration, consider a single Boson mode
of frequency vy = ° with vibration coordinate x; in this way we disregard
the difference between the initial and final state frequencies, but such details
are readily fixed if necessary. Before the photoemission event, the harmonic
potential of the vibration of the ion can be written V(z) = %M wdz? and has

a minimum for x = 0. The initial state Hamiltonian of the vibration is
Hy = wod'd, (6.16)

with [d,d']_ = 1; the initial state |¢) is the vacuum, |i) = |0,), and the excited
eigenstates are )
— mn

|nd> = \/n!d |0d>- (6.17)

The photo-ionization produces a sudden change in the Hamiltonian; the

potential is still harmonic, but the minimum is shifted. For a harmonic po-

tential, the shift z — x + A produces a change V(z) — V(x) + MwizA

apart from a constant o< A2. In second quantization, the new interaction
term proportional to x, may be written in the form

H, = g(d+d"). (6.18)

This is the Lunqgvist model discussed by Langreth in a very enlightening
paper[39]. In the final-state Hamiltonian H = Hy+ H; we perform a canonical
transformation to new bosons
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s=d—v, st =d —~*, (6.19)

with v to be found; since the canonical transformation is time-independent,
the transformed Hamiltonian H is just H written in terms of the s operators,

H=uwls's+~vst +y* s+ |7 +gls+~v+s" +~7.
We require that there be no terms linear in s or sf, and obtain

-_7. 2
y o (6.20)

the new Hamiltonian is diagonal:

2

H = wys's — I (6.21)
wo

Note the ground state energy is lowered by the relaxation shift AE = — zz
that pushes the threshold of the photoemission spectrum to higher kinetic
energy. Remarkably, treating H; in second-order perturbation theory one
would obtain the exact result foe AE. Note that the ground state |0,) of H

is the s vacuum while |i) is the d vacuum?. Since
d|0s) = ~|0s) (6.22)

that is, |0s) is an eigenstate of the annihilation operator, we say that it is a
coherent state for the d bosons.

Next I present a very simple way to solve Lundqvist’s model for the whole
spectrum (see 11.49 for a more sophisticated and general method). The eigen-

states of H with eigenvalues E,, = AE + nwy are

1 n
ey = (sD)"105). (6.23)
We seek the density of states
L(w) = (ild(w — H)li) = Y [{iln)[*8(w — En), (6.24)
n=0

so we need the Franck-Condon factors |(i|n)|? = [(04]ns)|?. Let (04]05) = C;
then, (0q|15) = (04]s7(05) = (04ld" + 2 105) = 7 C, since the d' contribution
is 0. In general,

1 n L g
nl (0al(s7)"105) = Uil "€ (6.25)

4The inflactionary cosmology regards the creation of the universe as a transition
from a false vacuum. In Physics one often meets amazing connections between very
unlike phenomena.

(Oalns) =
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The normalization condition gives

1 2 AE
C=c2 qg=9 =_77 (6.26)
Wy wo
Hence,
o0 an
L(w)=e* Z;) ol §(w— AE — nwy). (6.27)

The probability of n excited bosons P,, = ‘:: e~ * follows the Poisson statis-
tics, reflecting the statistical independence of the non-interacting bosons, and
the average number of excited bosons is

(R = a =~ (6.28)

The density of states is normalized to 1 and its first moment is

/ dwwL(w) =e€e"* E a' (nwo + AE) .
n!
— 00 n=0

Using (6.26) we readily find that this vanishes since

e n e n—1

a a
E | o = E 1 |awo = —AFe®.
n=1 s n=1 (n - )

The center-of-mass of the line remains where it would be for g=0; the thresh-
old is at lower binding energy, at awy below the center-of-mass. Fourier trans-
forming L(w) one finds the correlation function

o L(t) = / dwL(w)e—™t = (ile=iHt];)

n

_ _—a a tawot—inwot
=e ngo”!e ot—inwot, (6.29)
Thus, _
(ile= "t |3) = €1, (6.30)
where ‘
C(t) = —iawot + a(e™°" —1). (6.31)

Note the characteristic exponential at the exponent. For strongly coupled,

slow modes, the a >> 1 case is relevant. Formally, we let wy — 0 with g2 = aw?

. 2,2
finite. Then, (e~ ") — ¢=’ 2 and one finds the Gaussian line shape

1 _e?

L(w) = g\/27re 297, (6.32)



118 6 Many-body Effects in Electron Spectroscopies

The relaxation energy diverges in the Gaussian limit, which is a serious over-
estimate; however the Gaussian line shape is often a good approximation
for phonon broadened core levels in solids and the width provides a sensible
measure of the electron-phonon interaction, although the Gaussian should be
convolved with a Lorentzian (producing a so called Voigt profile) to account
for the core hole lifetime. The result

. a = a” W2
alirgoe ZO nl 0(w + awg — nwp) = g\/27re 242 (6.33)

will be useful in Section 15.3.2.

6.2 Auger CVV Line Shapes: Two-Hole Resonances

Electron spectroscopies are a most interesting window over the various and
apparently fantastic scenarios of many-body theory including the strong cor-
relation case and the appearing of bound states. This is particularly true for
the theory of the Auger effect[107] in solids (for a review of the Auger line
shape theory see Ref. [109]). In the core-valence valence transitions, the pri-
mary core hole decays into the Auger electrons and a pair of valence holes. In
the earliest theory developed by Lander[108] within the band theory of solids,
the Auger spectrum is proportional to the self-convolution of the density of
occupied states. However, Powell[110] pointed out that while the Al spectrum
was qualitatively consistent with the Lander predictions, the Ag spectrum is
quasi-atomic (it shows atomic multiplet peaks much narrower than twice the
band-width). Other authors [111] proposed a classification of spectra after
their atomic-like or band-like shape.

Strong deviations from one-electron theory arose in the first correlated
theory[75][76] of Auger CVV line shapes (now known as Cini-Sawatzky the-
ory). Let us consider an atom interacting with a solid, assuming for simplicity
that the valence orbitals of the atom and the solid band are completely filled;
the model Hamiltonian|[76] in the hole representation is

H=H,+Hs+ Hy,s + Hy (6.34)

where the atomic contribution

H, = edhciihTthT + ¢ Z CInaCmU + H, (6.35)

m,o

comprises a spin-up deep hole term for the primary hole, ¢l _ creates a
valence hole with magnetic quantum number m; H, is the hole-hole re-
pulsion Hamiltonian with screened direct and exchange matrix elements
U(m1,mz2,m3,my). The crystal Hamiltonian Hg and the atom-crystal hop-
ping term H,,; are one-body contributions that can be chosen according to

any model deemed appropriate. Finally,
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Hf = ercroc), (6.36)
k,o

describes the free particle continuum above the vacuum level; in the ground
state |¥) of H only the ¥ holes exist and H|Ww) = 0. Our initial state is
li) = CLM|W>. Core-Valence-Valence Auger transitions are produced by the
matrix elements

Al ) = (Gan(on (]| 61 (2) (6:37)

of the Coulomb interactions and their exchange counterparts. Inter-atomic
Auger transitions, producing holes on nearby atoms, are neglected because
their matrix elements are very small. Thus, the transitions lead to a set of
states

|mno) = CLUCLT|W> (6.38)

with two holes localized on the valence orbitals of the same atom that was
ionized initially. At this point Hy may be forgotten.

By the Fermi golden rule one finds[76] that the spectrum is proportional
to the free-electron density of states and to S(F; — Ek, k), given by

S(w, k) = Z Asin (k) Apg (k) Dmnpgo (w) (6.39)

where the local density of states (LDOS) for the two final-state valence holes
is
Dipnpgo (w) = (pqo|d(hw — H, — Hy)|mno); (6.40)

here, H; is the sum of all the one-body terms of H — Hy. The dependence
on the angles of k can be taken care of by multiple scattering techniques, in
the spirit of Ref. [86], but here we concentrate on the w dependence.

The fact that the local density of states appears, rather than the band
density of states as in the Lander theory, is one of the main points of Ref.[76]
and qualifies Auger spectroscopy as a local probe of valence states. There
are two trivial special cases. In the atomic limit H;,; = 0, and Hg = 0;
then the Hamiltonian is diagonal in the L-S or |LSM Mg) representation;
the spectrum consists of unbroadened multiplet terms. The other simple
limiting case is the non-interacting (H, — 0) case; density of states ma-
trix DESZquU(w) is readily worked out in terms of the one-body local den-
sity of states ppgn(w) = (m|d(hw — H)|n) = ppm(w) using their transforms;
here we define the correlation functions Dynpeo (t) = (pgole ™ mno) and
pmn(t) = (m|e~™t|n), both with diagonal elements equal to 1 for t=0.

Indeed,

D) () = () g (t)
qugzlqu (t) = ppm (t)pqn (t) - ppn (t)pqm (t) (641)



120 6 Many-body Effects in Electron Spectroscopies

In frequency space these become convolutions of one-hole densities of states.

To calculate the interacting density of states including the solid one can
use the identity (4.92) ., = Yy 4+, Yy Hi, 'y that holds if H = Ho+H,.
In this case, H; is identified with the repulsion H and Hj is the one-body part
of H — Hy. Taking matrix elements in the basis (6.38) one obtains a matrix
equation for the Fourier transform of D,,npe0 (£)O(t), using fooo dt expli(w —
H)t — 6t] = w_1§+i5. However, if the solid does not significantly perturb
the spherical symmetry of the atom, the the D matrices are diagonal in the
|LM SMg) representation, where H, is diagonal, and obey uncoupled the
equations.

Then, we may drop the LM indices and define

1

O (W) =4 —ilIO(w) — ixDO®
P (w) z<00|w L +i6|00> i[I'"Y(w) —in D" (w)], (6.42)
with o
IO (w / dw ’D ,). (6.43)
One obtains
¢ (w)
= 44
00)= | s (6.4
and within the bands
1 DO)(w)
Dlw) = 7TR6¢ (1 -UIO(W))2 + 72U02DO) (w)2" (6.45)

The center-of-mass of D computed from (6.40) is [ dwwD(w) = (H1+H,)
averaged over the appropriate multiplet L,M component; understanding the
term, it is shifted by U = (H,), so correlation must deform the line shape
within the continuum. However no line shape can ensure this if U is too large,
and something must grow outside. Poles of ¢ outside the bands are two-hole
resonances.

To better understand the result, let us consider the rectangular local den-
sity of states ( )

Ola — |w
plw)y= """,
To do self-convolutions of functions that vanish outside an interval, it is ex-
pedient to use the identities

(6.46)

1) O(a— |z|) = 0(a + x)0(a — x),
1) O(x +a)f(x+b) =0(0b—a)f(z+a)+0(a—0)0(x+Db), (6.47)
i)  Ox+a)flc—z)=0(a+c)[f(x+a)—0(x—c)

where iii) comes from ii) and §(—z) = 1 — 6(z). One finds the triangular-
shaped result
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Ll
0 _
D% (w) =6(2a — |w|)(2a - 4042)' (6.48)
As an alternative route to (6.48) we can use p(t) = Sinéf‘t)7 DO(t) =

‘ 2
t P . .
(S”;(to‘ ) , and as this is symmetric we can compute the real Fourier transform

by calculating the cosine transform:

2rD%(w) = /OO dt cos(wt)DO(t). (6.49)

— 00

Hence,by direct integration,

°° dyDO
IO(w):/ Yy (y)

—0 WY
1 |w+2a|+ w o |w2—4a2
o — 2« 402 &

o e (6.50)

This, with (6.45) shows the distortion of band-like line shapes as v = U
grows. However, for v > 1.44, the intensity of the continuous line shape drops.
The overall intensity cannot drop, however. The missing intensity is in the
split-off the two-hole resonances, that however come into the theory as 8
singularities. To clarify the situation, a trick is in order. One changes the
above I(w) to a complex function by setting z = w + id, and writing (see
6.42)

1 z 4+ 2« z 22 — 402

—igp(2) = o log( )+ o2 log( L ) = I°(w)—irD°(w). (6.51)

z—2a
This is equivalent to convolving the line shape with a Lorentzian of width 9,
which, incidentally, is always appropriate to describe broadenings [124] which
are present in reality even if they were not considered in the model. Hence
the two-hole singularities show up as Lorentzian peaks.

Two-hole resonances are also observed when core-holes interact with va-
lence holes and the core-valence repulsion is comparable with the valence band
width. For example,in Zn, Cu,Fe, Co, Ni metals there is evidence[191] that
a Lo hole can decay in a normal LoMy5Mys5 process or in a Coster-Kronig
Lo — LoL3Mys — MysMysMys process. It is possible to observe the decay
spectrum in coincidence with the Lo photoelectron in APECS (= Auger-
Photoelectron Coincidence spectroscopy) and compare with the LgMysMys
line shapes. In some of these metals the line shape is much narrower; this sug-
gests that in the Lo L3My5 process the final-state Mys hole is localized around
the L3 hole and thus can influence the 3-hole final state in the valence band.

The relation between the quasi-atomic states seen in Auger spectroscopy
and the Kanamori[67] paper was understood only later, after the Sawatzky
paper[112] using the Hubbard model with the Kanamori solution. Indeed a
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D(w) D(w)

=)

-2 0 2 v -2 0 2 ¢
Fig. 6.2. For the rectangular band model, the two-hole line shape is triangular
for U = 0 (left panel,dotted), and is shown here broadened with § = 0.01c. With
increasing U the maximum becomes sharper and shifts to higher w, as shown for
U = 1.1a (left panelsolid). At U = 1.8 a well developed split-off state develops
(right panel, dotted). The solid line in the right panel shows the result for U = 3«
when most of the intensity is in the two-hole resonance, but a residual band-like
continuum can still be seen.

footnote in Kanamori’s paper on magnetism pointed out a narrow band of
solutions of the Hubbard model outside the band continuum which exist for
large enough U. In a periodic solid, the split-off states themselves form a
band. However Kanamori’s paper was in a different physical context, using
a different Hamiltonian than (6.34), and gave no clue about how to observe
these solutions.

Further extensions are presented below and in Chapter 12.

To deal with the Auger CVV spectra of covalently bonded semiconductors,
one has to include overlap effects[135]; the theory has also been extended to
include relativistic effects in intermediate coupling ([201]) and metallic bands
(Sections 12.3.1,12.3.2,12.3.3 ), but is still rather incomplete for strongly cor-
related nearly half filled bands.

6.2.1 Desorption

Later, Knotek and Feibelman[113] discovered that the two-hole resonances
cause ionic desorption®, e.g. of O ions from Ti Oxide surfaces. The primary

5Desorption is the breaking of an atom-surface chemical bond followed by the
emission of a neutral species or an ion; it can be caused e.g. by an increase of the
temperature, or by ionizing radiation.
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ionization occurs in the Ti 2p level, but the hole has little chance to Auger
decay via intra-atomic transitions since the Ti ion (nominally, 74" ) has
no valence electrons left. So, the electrons must come from the surrounding
closed-shell O~ ions. One can consider electron transfer to the empty Ti
valence shell and/or direct inter-atomic decay. When two electrons come from
different O ions no desorption occurs; indeed, desorption takes several phonon
periods (of the order of 10713s) and bond healing by hole delocalization
should be much faster. However, there is some chance of two holes in the
same O. In this case, a two-hole resonance forms and lives long enough to
allow the O ion to escape. The generalization of the theory to partially filled
bands is discussed in Section 12.3.

6.3 Two Interacting Fermions in a Lattice

The so called Cini-Sawatzky theory has been applied[153] to the Ng 704504 5
Auger spectrum of Au metal. The multiplet structure was interpreted in the
intermediate coupling scheme using free atom experimental data[154], and
using as the only parameter the Fj Slater integral, that is modified with
respect to the free atom by the solid state screening. The top panel (a) in
Figure 6.3 shows the experimental data calculated with a value of U(*G4)=3.4
eV (dashed); the solid line in (a) is obtained by shifting the dashed line
to higher binding energy by 1.2 eV. The profile in in excellent agreement
with experiment but its absolute position is wrong by 1.2 eV. On the other
hand, the profile calculated with U('G4)=4.6 eV is shown in b). Now it is in
agreement with the experimental position of the main features but the shape
is in rather poor agreement with experiment. The profile of (c) is obtained
from the one in (b) by arbitrarily increasing the width of the Lorentzian
lifetime broadening to 2.0 eV. It is clear that this does not fix any problems.
So, it appears that the Cini-Sawatzky theory involves a systematic error on
the position. A similar shift between the best line shape and the experimental
position was found in an accurate analysis of the Ag My 5N4 5Ny 5 line[155],
where it is possible to get a very good agreement with the experimental profile
but the theoretical results must be shifted 2.2 eV to lower binding energy.

In both cases, we traced back the origin of the problem to the extreme
on-site repulsion used in the Cini-Sawatzky model. This prompted the fol-
lowing analysis aiming to generalize the calculation to an arbitrary distance
dependence of the hole-hole interaction.

Consider two electrons (or holes) in a otherwise empty (full) lattice A of
N — oo sites, interacting through an arbitrary potential V(p). Let’s write
|R1R>) for the determinantal two-body state with a up-spin electron at site
1 and a down-spin one at site 2; the sites belong to a periodic lattice in d
dimensions. Here I report exact results by Verdozzi and the writer[66] on the
two-hole Green’s function,
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Fig. 6.3. Sketch of the Au Ng,704,504,5 Auger spectrum (Ref. ([153])) compared
with theoretical profiles (see text). The solid line is a drawing of the experimental
profile, on a binding energy scale, where 0 corresponds to both holes from the Fermi
level; the theory used the Slater integral F°, or equivalently one of the U values,
as an adjustable parameter. The dotted line is the best shift to the theoretical
line shape obtained with U(*G4) = 3.4eV, but appears to be shifted compared to
experiment. By increasing U one can adjust the line position, but the line shape
agreement is lost (dashed line). To fix this problem, one must account for the off-site
interactions (see below).

(R Ry, Ry Ri2) = (Ry TRy L] IR TRL) (652)

with z = F—i07, as a function of energy F (for two electrons,z = E+i07,
but nothing else changes). The Hamiltonian is:

H=Hy+H =) e+ Y V(p)[RT,R+p)(RT,R+pl| (653)
k R,p

Here, p belongs to the lattice of relative motion, which we call the p lattice,
isomorphous to A. For V' = 0, the problem is trivial because H = Hy + H|;
then the time evolution operator factors and the non-interacting Green’s
function that we denote by a small g is given by

g(R1,Ro,R3, Ry, 2) = ¢V(Ry, R, 2) ® ¢ (R2, Ru, 2) (6.54)

where ¢g(1) is the one-particle Green’s function and ® denotes a convolution.
Let us deal with the interacting case. The center-of-mass vector

1
R.,=R+ 2p (6.55)

belongs to a {R.y,} lattice which besides the sites € A also includes the
midpoints of all sides.

The translational symmetry allows to take Ry as the origin without loss
of generality. The key step to exploit the periodicity is a Fourier transfor-
mation: the total crystal momentum @ of the pair is conjugate to R, and
is conserved, and one is left with an effective one-body problem over the p
lattice to be solved.
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Fourier Transforming the Center-of-mass Motion

Transforming with fixed p, and understanding the spin arrows,

e!Q-Rem

p P iQ-R
; RCm - Rcm + e R R +
(6.56)
where the integration variable was shifted using (6.55). Moreover,
IR.R+p) = w Z QR0 Q). (6.57)

One can immediately check that this {|p; Q)} set is a correctly normalized
basis for two particles.

Fourier Transforming the Relative Motion

The trick is

¢iQR ciQ-R
>y 'R’R“’>:§¢N > dp. R+ ) (6.58)

R

iq(p’ —
where we can use d(p, p') = >, ¢ q?V ”) So, this becomes

vy T S R R g =
R,p’

Z eiae 3 lQ-d-Rtia[Reo]| R R4 ), (6.59)
R,p’

1
N3

but , = , and the result is
R,p R,R+p
QR
> IR, R+ p) = Ze‘“’”IQ q.q), (6.60)
N N

where

1 X ) ,
|Q —q, q> — N Z ez[Q*q]-Rezq.[Rer ] |1{7 R+ p/>. (6.61)
R,R+p’

Substituting (6.60 )in (6.56), one obtains

exp(4Q - p)

P, Q) = /N

D e PQ — q,q). (6.62)

q
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Projected Hamiltonian
In the |p, Q) basis,

H=Y H? H?=HF+HP, (6.63)
Q

where the interaction is diagonal,

H?—ZV )lp. Q)(Q. pl, (6.64)

while
H = Z 10, QWE,(Q.p'l; (6.65)

we determine WS,, using (6.62): one finds
— O A r—p ]_ ia-(p—p'
ng,:e 3Q(p p)Nzeq(p Pe(Q — q) + e(q)]- (6.66)
q

The Green’s Function

Due to the translational symmetry, G(R1, R2, R3, Ry4,2) can be computed
as G(0,p, R, R+ p/, z); we change basis using (6.57) and write

<O,p|z IR,R+p) Ze%’ B3 (P-)lG2 (2), (6.67)

terms of a Q-projected Green’s function
G2, =(@pl ' 1Q.0) (6.69)
pp’ 9 5 HQ 5 . .
The non-interacting two-particle function ¢g@ has elements

cia[p—r']

Q () — o 5Q[p—r] ) )
I (2) Zz_e(Q_q)_g(q) (6.69)

q
The operator identity

1 1 1 1

= 14 ; 6.70
z—HQ z—H3?+z—H3? z—HQ’ ( )

can be iterated:

1 B 1 n 1 v
Z—HQ_z—HOQ z—HOQ

1 1

1 1
+ V+V V} . 6.71
z—H(g‘2 z—H(?{ z— HQ z—H(g‘2 (6.71)

1 n 1 v 1
z—Hé’2 z—H? z—H(?
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Expanding the inverse operator inside the curly brackets and summing the
geometric series, we obtain

1 1 1 1 1

= + \%4 .
z—HQ ,_HZ Z—H(?l—szq(? z—HZ

(6.72)

We take matrix elements of (6.72) on the |p; Q) basis and we find, adopt-
ing matrix notation on the p lattice, with V diagonal,

G =g?+¢gQ1-Vg? Vg« (6.73)

This is the solution. The size of the matrix that must be inverted depends
on the range of the potential. In the zero-range case of the on-site potential
(Hubbard Model with local interaction U) we set p = p’, and write

Q) 1
9%(2) ;Z_G(Q_q)_e(q). (6.74)

Then, Equation (6.73) is scalar and the solution can be simplified to read:

g

Q:
2= Y

(6.75)
This result by Kanamori[67] was proposed by Sawatzky [112] in the present
context. In the on-site case, a characteristic feature of the Kanamori theory
is the existence of split-off states for each @ for strong enough interaction U
compared to the band width. This single state can develop to a full discrete
spectrum for long-range V' (see Ref. [66].) The results of the analysis in Ref.
[66] showed that the above described shift between the Cini-Sawatzy line
shapes and the experimental profile e.g. in Au and Ag could be accounted
for by a realistic screened hole-hole interaction. Sect. (12.2) below shows the
connection of the Kanamori theory to the Galitzkii self-energy in the low
density case and its relation to diagram methods. Some physical applications
of this theory to electron spectroscopy are presented in Sect. 6.2

6.4 Quadratic Response Formalism and Spectroscopies

Consider a weak, adiabatically switched periodic perturbation
V(t) = fVe witnt, (6.76)

with n a small positive constant acting on an interacting system with Hamil-
tonian H; here f is a parameter and V a time-independent operator. We
want the wave function ¥(¢) that reduces to the ground state e~ *£t¢, for
r — —o0o. In the interaction picture,
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.0

Zat%(t) = Vi(t)¥1(?) (6.77)

with the starting condition ¥;(t) — ¢4 in the remote past. In first approxi-
mation, we write (setting A = 1)

0

i, 21 () = Vi) (t) = felH-E-w—inlty g (6.78)

Let z = E + w + in. The solution with the correct initial conditions is

, 1
Ty (t) = ¢y + felll—=It gV (6.79)

In the Schrodinger picture,

U(t) = e Flg, 4+ fe it . _1 V. (6.80)

H

Photoemission

Now let V = © > . A(x;) - p; (summed over electrons) the operator which
produces photoemission. In second quantization,V = Zp’,d T(p/, c)c;,cd where
deep a electron is annihilated and a photoelectron created, and 7(p’, ¢) are the
matrix elements. We assume that H includes the photoelectron kinetic energy
Tye = )., €pnp but no post-collisional interaction with the photoelectrons.
The photoelectron current is

d

=

(@(t)Inp|@(t)). (6.81)
in the above approximation, the current is a quadratic response in the pertur-
bation V' (which is logical, since it is a d.c. response to an a.c. perturbation.)
Since np¢, = 0,

1 1
(np) = f2e2’7t<¢g\VZ* g, HV\ng}. (6.82)
Hence,
1 1
Ty =22 MgV~ my L VIdy): (6.83)
Now since [n,, H]— = 0, we develop:
Ty =2 Y o, d Yo d) ool L cdo)  (689)
P ’ ’ R . S A

dd’

letting n — 0,
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=202 3T ) ) okl T cdds) (6.85)
dd’ P

where the photoelectron energy €, has appeared (up to now, Tpe was part

of H, but now we use H for the system Hamiltonian without T}..) This is
actually

Jp =2mf2Y "7 (p,d)7(p,d){pglch0(E + w — € — H)caldg)  (6.86)
dd’

so the result depends on the one-hole density of states matrix pgq:(w) of the
system. This formalism generalizes the elementary theory of photoemission,
but offers the possibility of a clear enhancement of the understanding of the
Auger effect.

6.4.1 One-Step Theory of Auger Spectra

Let k label the Auger electron; for the current Ji, = & (¥ (t)|ng|¥(t)) we find
like above

1 1

=9 2 2nt Vv
T =2 OalV o g w )™ (W T)

Vidg), (6.87)

where now, with a slight change in notation, we made explicit the operator
W = Z Whh/dkcgclch/ch + h.c. (6.88)

producing the Auger transitions; CL and CL create the Auger electron and the
deep electron, respectively, and the annihilation operators create the pair of
final-state holes; also, " = T}, + T'4 the kinetic energies of photoelectrons
and Auger electrons. Using

1 B 1 N 1 - 1
2~ H-W-T z—-H-T z—-H-T z—-H-W-T
and
1 1 1 1
+ w

s~ H-W-T 2-H-T 2-H-W-T 2—H-T
since ng , 4 7 Vl]dg) =0 one is left with

1

1
—9 2 2nt Vv
Ik nfe” (¢ P H-W-T 2*—H-T
1 1

xz—H—TWz—H—W—TV|¢g> (6.89)

Nk
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But ny commutes with H and T, for n — 0,

1 1

Z*_H_TnkZ_H_T:wnké(E—l—w—H—T).

n
So, we reach the general expression of the one-step description of the Auger
effect by Gunnarsson and Schénhammer [22]:
1

Jy, = 27mf2<¢g|vz* gV

L Vide). (6.90)

E —H-T
x0(E 4 w )Wz—H—W—T

The most important terms are diagonal in the deep hole; writing V' explicitly
and replacing T' by T4 + €5, where €, is the photoelectron energy,

1

Ji = 27r17f22 |T(p,d)|2<¢g|a22* —H—-—W —¢€, — TAwnk
p,d "

x0(E4+w—H-T)W !

. 91
Z—H_W—€p—TAad|¢g> (69)

The W operators in the denominators produce any number of virtual Auger
transitions after the deep hole creation and before the real transition takes
place; this can mix different decay channels giving interference effects. For
filled bands, it is reasonable to neglect interband excitations and deep hole
mixing letting (up to a constant)

1

s H—W — TV|¢9> ~ V‘¢g><¢g‘v

Z—H—W—TV|¢Q>7

recovering the Cini-Sawatzky theory.
Auger CVYV spectra of transition metals with incomplete bands and the
so-called U<0 phenomenon are discussed in Section 12.3.

6.4.2 Plasmon Gain

Gunnarsson et al. [26] analyzed by their theory the plasmon gain satellites
which are observed experimentally in the K Lo L3 spectra of Na and Mg by a
failure of the two-step model.

Problems

6.1. Verify that j(x) is the current operator and that (6.2) yields the same
matrix elements as (6.1) and so the two formulations are equivalent.

6.2. Prove Equation 13.136.
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7 Group Representations for Physicists

7.1 Abstract Groups

Groups are central to Theoretical Physics, not only as mathematical aids
to solve problems, but above all as conceptual tools. We shall develop the
Group Theory that should be known by Condensed Matter theorists using
a physical language and building on what the readers know already about
quantum mechanical operators. In this Section, however, we need to introduce
some abstract mathematical definitions.

A Group G is a set with an operation or multiplication between any two
elements satisfying the following conditions:

— Gisclosed,ie.a € G, be G = abe .

— The product is associative : a(bc) = (ab)ec.

— Jan identity e € G such that ea = ae = a, Va € G.

— Va € G,3a"! that is every element has an inverse, such that ¢ 'a =
aa"! =e.

It is not necessary that G be commutative and generally ab # ba. Com-

mutative Groups are called Abelian. Quantum Mechanical operators do not

generally commute, and we are mainly interested in non-Abelian Groups. The

discrete Groups may have a finite number Ng of elements; Ng is called the

order of G.

Many Groups of interest have a finite N¢, like: the Group C',, of symmetry
operations of an equilateral triangle, the Group S(N) of permutations of N
objects.

Infinite-order Groups are also important. The translations that leave a
Bravais lattice are an Abelian Group; the set of symmetry translations and
rotations of a crystal are is Space Group, and is not Abelian; both are infi-
nite discrete Groups. Among the continuous Groups, the most useful are the
Lie Groups , introduced by Sophus Lie in 1870 to discus the symmetries of
differential equations; by definition, Lie Groups are such that the elements de-
pend smoothly on some parameters. For example, GL(n) (the General Linear
Group in n dimensions) is the set of linear operations x; = >, a;jz;, where
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A = a;; is such that DetA # 0. The simplest case is GL(2), the set of 2 x 2

cd

pendence defines a 4-dimensional manyfold). The SL(n) Group is a particular
case of GL(n), being the Special Linear Group in n dimensions or unimodu-
lar Group in n dimensions and is the set of linear operations z; = > ; QigTs,
where A = a;; is such that DetA = 1. Other frequently used Groups are: the
rotation Group O(n) of orthogonal transformations, that leave Euclidean dis-
tances invariant!, and also of the orthogonal matrices such that AT = A~1.
We shall also need the Group U(n) of the unitary nxn matrices such that
At = A1 and the Group SU(n) of special (determinant equal to +1) unitary
transformations.

Let A and B denote two Groups with all the elements different, that is,
a € A= a¢ B, (except the identity, of course.) We also assume that all
the elements of A commute with those of B. This is what happens if the
two Groups have nothing to do with each other, for instance one could do
permutations of 7 objects and the other spin rotations. In such cases it is
often useful to define a direct product C = A x B, which is a Group whose
elements are ab = ba.

If H C G is a Group itself it is a subgroup of the Group G. For instance,
GL(2) has a subgroup O(2) which leaves distances invariant; the transla-
tions are a subgroup of the Space Group. Another subgroup of GL(2) is
defined such that given two points (z,y) and (£,n) in the plane, the op-

matrices (a b) with ad—bc # 0 depends on 4 parameters (such a smooth de-

erations do not change Det zz = zn — y€. Writing the transformation
/ !/
x/ — (¢ b ) and 5, — (¢ b ¢ , one finds the condition
Y cd Y n cd n
Det (Z Z) = 1, so one is left with SL(2). Usually one proceeds the other

way: one knows a Group H, discovers new operations and so builds G.
Let H be a subgroup of G; for A € G consider the set

H(a) = {aha™", h € H}.

Since ahia~lahsa™! = ahihoa™!, this is a subgroup of G, the conjugate
subgroup with respect to a. Occasionally, it may coincide with H itself (as
a set, not element by element), in which case we write aH = Ha. If Va €

G,aH = Ha, then H is called invariant subgroup of G, or normal divisor of
G.

a. T
Yin 3d, the rotation operators R(a) = e’ #  are familiar; the angular momen-
tum operators are generators of rotations.
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7.2 Point Symmetry in Molecules and Solids

In this section I give a brief account of Point Groups with the most frequently
used information; for further details, one can use crystallography books, like
Ref. [24]. The operations of the 32 point Groups are rotations (proper and
improper) and reflections. In the Schonflies notation, which is frequently used
in molecular Physics, proper rotations by an angle 2;; are denoted C,, and
reflections by o; improper rotations S,, are products of C,, and o, the reflec-
tion plane being orthogonal to the rotation axis. The molecular axis is one
of those with highest n. A symmetry plane can be vertical (i.e. contain the
molecular axis) or horizontal (i.e. orthogonal to it), and the reflections are o,

or o, accordingly.

7.2.1 Symmetry operators

Let G = {R,S,T,---} denote the symmetry Group. Unlike the operators of
observables, that must be Hermitean, those of symmetries are unitary:

VRe G, R°'=R' (7.1)

in order to preserve normalization: (Ri|Rvy) = (1| RTRy) = 1; this is evident
from the familiar rotation operators

Re = exp {—;a : L} . (7.2)

The same holds for reflections: the o, : (z,y,2) — (z,y, —2) reflection is
represented by the unitary matrix diag(1,1,-1). Since R|v)) = A|[¢)) = (¢|RT =
A* (1| = |A\|? = 1, the eigenvalues are phase factors: A = e'*, with real a.

The rule that eigenstates belonging to different eigenvalues are orthogonal
holds for unitary operators as well. Let R|p,) = €'®|da), Rlds) = €|¢p).
Then,

Rap = (¢a|R|9p) = ¥ (daldp); (7.3)
on the other hand, taking the complex conjugate
Rzﬁ = <¢B|RT|¢OC> = ¢ﬁ|R71|¢a> = eiia<¢ﬁ|¢a>; (74)

thus if the phases are different the scalar product is 0.
We can represent the operator S by the matrix

Dy (S) = (@ulS1¥w) (7.5)

on an arbitrary basis; then

Slw) =D 1) Dy (). (7.6)
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Then, for the symmetry RS € G

RSW}V> = RZ W}M>DM/(5) = Z |1/}p>DPM(R)DuV(S) = Z W}P>Dpl/(RS)

P
(7.7)
with

D,y (RS) = ZDW L (9). (7.8)

thus, the matrices are multiplied like the operators and in the same order,
providing a representation of the Group.

In simple cases, all the symmetry operators commute; then we can diago-
nalize them simultaneously with the Hamiltonian matrix (y,,|H|v,). We can
diagonalize R, then with the new basis diagonalize S, and continue until we
have a new basis labeled with all the symmetry-related quantum numbers.
This breaks up the Hilbert space into several orthogonal subspaces. Then,
we can diagonalize H separately in each subspace. In such cases,we get the
maximum simplification from symmetry without Group Theory. The names
of Groups are just nicknames for the symmetry of the problem.

Bloch’s Theorem

In band structure calculations one solves

2
V)| ve) = ete) (7.9
in a periodic V(x). The translation operators T; = e , p = —thV where

t; primitive translations of the Bravais lattice, define an Abelian Group Gr.
The periodic boundary conditions T = 1 for some large integer N allow
to use a finite, cyclic Gp.Let G be a reciprocal lattice vector; by definition,

. rEd
e’@‘ t =1 for any lattice translation 7. We solve the eigenvalue equation

for all the unitary operators T;

Tip(x) = vz + t;) = " ¢p() (7.10)
at a time, by the Bloch Theorem:
Theorem 1. Equation (7.9) is solved by

P(x) = i (x) = e Tug () (7.11)
with
uk(zc) = uk(m + tl) (7.12)

¢

periodic; a; = k - t; with the wave vector % =
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Indeed, the conditions TN = 1 require that eV¥* = 1, so Nk must be a
reciprocal lattice vector. On the Bloch basis one has a sub-problem for each
k which reduces to seeking periodic solutions of

[(p+k)2

om + V(x)]ug(z) = epur(x) (7.13)

Water Molecule

Suppose want to calculate the molecular orbitals of H,O in a LCAO model
neglecting overlap. Putting the molecule on the xz plane, with z as the molec-
ular axis, we see that it belongs to the Cs, point Group, with the operations
Co:(w,y,2) = (=2, —y,2); 0(22) : (2,9,2) = (,-y,2); o(yz) : (z,9,2) —
(—z,y,2z) We can form the Multiplication Table:

E Oy o(x2) o(yz)

Cy E o(yz) o(xz)
o(xz) o(yz) E Oy
o(yz) o(xzz) Cy E

the Group is Abelian and the square of each operation is the identity E.
Therefore the eigenstates of H will be even or odd under any of the operations.
From an arbitrary basis {|i,)} we can generate 2 bases |Cat) = 1i02 [y,

then 4 bases |Cy + o(zz)+) = 172 1ic2 [4,), and 8 bases |Cy + o’(xz) +

V2
o(yz)*) = 1i\/”2y2 1i”\/2wz) 1£C2 145,). One can diagonalize H separately on these

bases. Here is a representatlon of the Group. If we replace every operator by
1, the multiplication Table is trivially verified; -1 choices are also allowed, as
follows:

CQ»U 1 CQ Oxz Oyz g=4
Ay 11 1 1 z

Ay 11 -1 -1 zy,R,
B, 1-1 1 -1 z,R,
By 1-1-1 1 y,R,

Such are the possible symmetry types of the solutions,that have conven-
tional names shown in the first column.

The Cs, Group (NHs)

The C3, (or 3m) Group is the symmetry Group of an equilateral triangle (or
the Group S(3) of the permutations of 3 objects). Let the vertices be labeled
(a,b,c). The operations are a C3 rotation, its square (or inverse, which is the
same) and three vertical planes o4, 0y, 0. through the center and the vertices.
The sense of rotation is arbitrary and we may choose C3 as the operation
(a,b,¢c) — (¢, a,b); clearly o, (a,b,¢) — (a,c,b). Next, we need a convention
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about the multiplication of two operation. 0,C3(a, b, ¢) = o,(c, a,b) The com-

monly adopted one states that the result is (¢, b, a), that is, o, keeps the first

entry fixed, although the first operation sent a elsewhere. In other terms, it is

the position of symmetry elements that matters, while the label can change.

In this way, one notices that 0,C35 = o}, but C30, = o, thus the Group

is not Abelian. All the information about the abstract Group is in the mul-
tiplication table.

E Cs 032 T4 Op Oc

Cs C’g E o. 04 0p

C? E C3 0y 0. 04

oq 0p 0o E C3 C§

o, 0. 0, C2 E Cs

0. 04 0p C3 C’g FE

The rearrangement theorem holds:

(7.14)

Theorem 2. Fach line and each column contain all R € G.

This follows from the definition of Group. In any line or column there are g
elements, and all are distinct since for instance CsR = C3S = R = S. Every
operation does a permutation of the vertices. In C,, the converse is also true,
so (3, is isomorphous to S(3). Already in Cjy, the 8 operations are fewer
than the 24 permutations of 4 objects. The Cayley theorem states that

Theorem 3. Any group of order Ng is isomorphous to a subgroup of S(Ng).

Z3 = {E,C5,C3} C Cs, is an invariant Abelian subgroup. A Group G is
called simple if it does not have invariant subgroups. So, Z3 is simple, but
Cs, is not. A Group G is called semi-simple if it does not have abelian
invariant subgroups. So, Z3 is semi-simple, but Cs, is not.

It is interesting to find representations of Z3 using the multiplication table
above. Besides the trivial one, with all the operators represented by 1 (the
A; representation below in Table 7.1 ) one can represent Cs5 by ¢ = e’
and C? by the third cubic root of 1, namely €*; in a third representation,
C5 — €*,C3 — ¢e. Thus, there are two complex conjugate representations.

The p orbitals of an atom centered at the origin behave differently un-
der Z3 : the z orbital, that we assume parallel to the rotation axis, is not
transformed and belongs to A;. The combination x + iy is multiplied by €
and x — iy is multiplied by €*; thus the (x,y) pair is a basis for the conjugate
representations. This is reported in the last column of Table 7.1 )

The Quotient Group
Let H be a subgroup of order Ny of G and g € G. the sets
Hg={hg,h € H}, gH={gh,hec H}

are respectively right and left cosets. Both have exactly Ny elements; for
instance, hyg = hog multiplied on the right by ¢g~' becomes h; = hy.
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247

03223 I 03 C§ gE==e€ 3

1 5 ¥
E {1 {6* {5 (z,y)

Table 7.1. The Z3 Group and its representations.

For example, in C,, using Z3 and o, one forms the right coset
{E,C5,C5}00 = {04, 00,0}

Using o} or 0. one finds the same coset, while a rotation gives Z3. Actually,
we have split C3, in two subsets of 3 elements each as follows:

Csy = Z3 + Z3o,. (715)

Let us generalize these findings to any G. If we form a right coset using a
subgroup H C G of order Ny and g € H we only get elements hg € H. On
the other hand, if g1 ¢ H the coset Hg; is totally disjoint from H since for
all its Ny elements we conclude hg; ¢ H; otherwise from hgy = h' € H we
could deduce g1 € H. If G is the union of H and Hg, we may conclude that
N¢g = 2Npg. Otherwise, we form the coset Hgs with g2 ¢ H, g2 ¢ Hg; now
H gy is disjoint from H and from Hg; (since hgs = h'g1 = g2 = h™h/g; €
Hgp). We go on until G has been totally partitioned:

G=> Hg;. (7.16)

This proves the famous Lagrange Theorem:
Theorem 4. The order of any subgroup of G is a divisor of N¢.

Let H be an invariant subgroup of G. All its right cosets are equal to the
left cosets, i.e. aH = Ha,Va. It is useful to define some multiplications of
sets. We may say that aH x H = aH, meaning that for any element of the
coset ahh/ = ah” is again in aH.

For example,Z3 is an invariant subgroup of Cs, and the left coset 0,23 =
{04, 00,0} is the set of reflections; multiplying by the rotations in Zs we
get nothing more and {o,,0p,0.} X Z3 = {04, 0p,0.} . In a similar way, we
can define an abstract set multiplication, treating the cosets as elements; for
instance aH x bH is the set of all the elements ahibho, h1 € H,hy € H; it is
understood that every element may occur more than once and we remove all
duplicates. Since H is invariant, h1b = bhs for some hs € H; so, aH x bH =
abH and aH x a 'H = H. Thus, the cosets are elements of the quotient
Group G/H, where H is the identity. Broadly speaking Cs,/Z5 reduces to
two elements, the rotations and the reflections; rotation x rotation= rotation,
rotation X reflection= reflection, and reflection x reflection= rotation. This
is a powerful synthesis of the multiplication table of Cs,.
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7.2.2 Dirac characters and Irreducible Representations

When G is not Abelian, the elementary method allows diagonalizing H si-
multaneously with one or a few R € G. In the (s, example, one can choose
Cs (and C2, but this adds nothing) or one reflection. In this way, one is ne-
glecting most of the symmetry related information. Although this does not
cause errors, the use of Group Theory is much more rewarding.

We must find functions of the operators R € G such that they commute
with all G elements (besides H; but this we take for granted, by definition of
a symmetry Group). We could think about powers or products, but since G
is closed the most general function is a linear combination. For any abstract
Group, the linear combinations of the elements constitute the Group algebra.
Intuitively, 2 = ZQJYSG T should be a symmetric object. This is a good idea,
since, by the rearrangement theorem (2) Z?SG TS = Z?SG T=S5S Z?SG T,
so {2 commutes with all G.

Actually, we can do much better than that; intuitively, the sum of all
rotations of a given angle is already a symmetric object, the sum of all reflec-
tions another one. To proceed, we need to introduce the class concept, that
allows to classify together operations that do essentially the same thing: such
operators are called conjugated?. Mathematically, two operators A and B are
conjugated

A—-B={3Xe€G:A=X"'BX} (7.17)

which is tantamount to say that X is a change of reference that converts
B into A. Thus, Cs, has 3 classes {E},{C3,C3},{0q,05,0.}. In Abelian
Groups each element is conjugated to itself. The Identity E is trivially a
class. For every class C, with n¢ elements, we define Dirac’s character

nc
Qc=> T, (7.18)
TeC

that commutes with all G, that is VX € G,2¢c = X '02cX. Indeed,
X '0cX = Y 7% X 'TX has nc terms conjugated with T and such
terms are all different because X 17X = X '7'X = T = T’. So, we have a
quantum number for each class.

For Cj3,, the Dirac characters are

QE:E,QR:C;),—FCP?,QU:UQ—FU[,—FUC.

These are simultaneously diagonal and their eigenvalues wg = 1, wr,w, (ex-
cept the first, which is trivial) are useful wavefunction labels. They are not
independent, but occur in combinations. Using the multiplication table,

2this term is rather strange, since an element can be conjugated to any number
of elements.
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912% =2+ g; (7.19)

hence
w%=2+wR #wRZ{El (7.20)
22 =3+30p = w2 =3+ 3ws. (7.21)

The allowed combinations correspond to the possible symmetry types allowed
by Cs,; they are called Irreducible Representations or Irreps for short:

Irrep wr ws

A 2 3
4 2 3 (7.22)
E -1 0

We can label H eigenstates by the irreps; remarkably, they are never
mixed by symmetry operations since

VX e G7 Qc|1/1> = wc|¢> = QcX|1/J> = ch|1/J>. (7.23)

Ay is a trivial representation with all operators represented by 1 and Dirac
characters equal to ng for each class. This totalsymmetric representation
exists for any Group, since any multiplication table is satisfied. Ag is similar
but odd for reflections. In all non-Abelian Groups there are irreps that require
matrices, rather than numbers, to represent operators, and the irrep E above
is an example. Just consider transforming a point (z,y) in the plane ((pz,py)

y
1

\

3l No ¥

Fig. 7.1. The chosen geometry, with the o1 reflection that changes x into -x.

orbitals or any pair of functions transforming like (x,y) will do the same):

o) = (g )o@ = (§7) o= (3]) a2

with ¢ = cos(% ) = —5, s =sin(% ) = 43. These are the generators, i.e., the

others can be obtained by multiplication:

) . D(oy) = D(02)D(Cs) = (“‘ ) ;

s C

c S
—SC

D(C3) = D(Cs)? = (

Dor) = DD} = (7277 (7.25)

—Ss C
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The multiplication table is obeyed. How can the Dirac characters commute

with every D7 One finds {25 = _01 _01) , 2 = 8 8

representative matrices of the Irreps (m=1 for A; and Ay, m=2 for E) grows
with the size and complexity of the Group. In the 32 point Groups one finds
at most vector or pseudovector representations having m=3, but much larger
sizes occur in more advanced applications.

The whole Hilbert space is partitioned into subspaces labelled by the
irreps; besides the symmetry operators, H does not have matrix elements be-
tween states with different good quantum numbers and the diagonalization
problem is broken. Diagonalizing H within each subspace one finds eigen-
states carrying the Irrep label. Consider a pair of eigenfunctions (¢, 1y)
belonging to the Irrep E; Ht), = €95, Hpy = €,1,. However, €, = €, = ¢,
because every operation S € G maps 1, into a linear combination Sy, =
)y + By, but since [S, H]_ = 0, the transformed function S, must belong
to the same eigenvalue as before. The same reasoning can be repeated for the
{2 matrices. To sum up, the matrices of H and those of Dirac characters have
the remarkable property of being constants, that is, identity matrices I(;, xm
multiplied by numbers:

. The size m of the

H= €Im><m7 QC - wCImxm (726)

/

By a unitary transformation (;,) =U (;) we can change basis

and matrices within the E irrep. Let U be a rotation: then VR, D(R) —
UD(R)U~! is consistent with the multiplication table and does not modify
the Dirac characters. Thus, one of the non-trivial D(R) matrices can always
be chosen diagonal. Up to this unitary transformation, the Irreps with the
same characters are to be identified. For instance, we may wish to have a new

1 7
representation D in which D(Cg) is diagonal. Picking U = ( \{2 L/f > , which
V2 V2
is unitary (UTU =unit matrix), D(C3) = U-D(C3)-Ut = diag(e?/3, ¢=2/3)
is diagonal; D(C3) is also diagonal of course, but U - D(o,)-Ut = ( 01 _01>
and the other reflections are off-diagonal.

By joining the basis of an Irreps of size m; with basis of an Irreps of
size mo we obtain a basis of size m1 + mo with D matrix in block form. By
unitary transformations we can generate mj + ms representatives which are
no longer in block form. In general, by taking linear combinations of several
bases of Irreps, we can form bigger representatives with no simple pattern
of vanishing elements. These are called reducible representations to imply
that the intelligent thing to do is just the reverse of this process. Starting
with an arbitrary basis that yield big and useless D matrices one would like
to find linear transformations that put the D matrices in block form, and
allow separating the basis in symmetry-adapted parts; when the blocks can
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no longer be reduced in size, the Irreps are obtained. Therefore we cannot
put all the matrices of an irrep in the same block form.

Traces and Characters of an Irrep

Consider a basis and the representative matrices of a m-dimensional irrep %
(in this paragraph I omit the index ¢ for short). The trace

X(C) =TrD(R) =>_ Duu(R), ReC (7.27)

is the same for all D matrices in the given class C, since the Tr operation
is invariant under unitary transformations like conjugation. x(C) is called
character, and is related to Dirac’s character. The matrices of the {2¢ are
constants®, hence, recalling the definition of £2¢

Tr2c = mwe = nex(C). (7.28)
Thus,
m
x(C)= " wc. (7.29)
nc

The characters x(C) are very useful, as we shall see, and are tabulated for
the point Groups (See Appendix II; note that these tables are square (the
number of irreps is equal to the number of classes).). In particular Tr2r = m
can be read off the Tables.

Actually, the tables were computed (and can be found for new Groups
when necessary) from the multiplication Table; one first deduces the classes
and w. as in the above example. One does not know m a priori but shall
derive below
2 _ Ng

= 5 -
>0 e

With this result, the reader is already able to calculate the character tables.

m (7.30)

7.2.3 Schur’s lemma

We have shown above that the matrices of Dirac characters and of H within
an irrep are multiples of the identity matrix. Due to the importance of this
crucial point I’ll present a second proof, the traditional one based on Shur’s
lemma. The two arguments enlighten different facets of the problem; it will
be apparent below that this is just a matter of algebra.

Lemma 1. Any m x m matriz M commuting with all the representative ma-
trices D(R;), 1 =1,---Ng) of an m-dimensional Irrep must be proportional
to the Identity matriz Ly, xm.

3H is also constant and TrH = me.
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We first prove the lemma for a 2 x 2 diagonal matrix, then generalize to any
matrix of any size.

Proof for a diagonal matrix

For 2 x 2 matrices, we let M = A = diag(dy,ds), with A = (le Zl2> , and
21 @22

A, A = <—a21(d02 . 12t = dl)) - (8 8) .

Now, if dy were # dp, this would require a diagonal A. Since one cannot
diagonalize simultaneously all the D(R;), 1 = 1,--- Ng), we conclude that
do = dy.

In the 3 x 3 case, we let M = A = diag(dy,ds, ds), and the same reasoning
leads to

0 ar2(da — di) ai3(ds — dr)
[A, Al = | a21(d1 — d2) 0 az3(ds — d2)
as1(dr — ds) aza(da — ds) 0

If all the d; are different, this vanishes only for diagonal A. If d; is different
from the other diagonal elements, the a1 element must be one block, sepa-
rated from the rest, which cannot be true for all the representative matrices
in an irrep. This is formally generalized formally to matrices of any size with
the conclusion that A = A, x.,, for some .

Proof for a Hermitean M
Assuming M hermitean we know that by a unitary transformation U it can
be diagonalized U - M - Ut = A = A,,x,, and actually this implies that
M = A« in any basis.

Proof for any M

We can do without the assumption that M is Hermitean. Indeed, H; =
M + M and Hy = —i(M — M') are Hermitean at any rate. Now, we
show that MT also commutes, for, by taking the Hermitean conjugate of
D(R;)M = MD(R;), one finds MTD(R;)" = DT(R;)M%9. Now we multi-
ply on the left and on the right by D(R;) and since it is unitary we find
D(R;)MT = MTD(R;). Then H; and Hs also commute, and are constants.
Therefore, M = é(Hl —iHs) = Mpxm,
q.e.d.

7.2.4 Continuous Groups

Many Groups of fundamental importance in Physics are Lie Groups. They
are continuous (elements can be labeled by parameters) and continuously
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connected ( for every pair of elements a continuous path in parameter space
can be found that joins them). Moreover, the parameters of the products are
C! functions of those of the factors.

A compact Lie Group has all parameters that vary over a closed interval;
the Lorentz Group and the Group of all translations are noncompact Lie
Groups, while the rotations are a compact Lie Group.

The phase factors €@ constitute the Group U(1). The SO(3) Group of
rotations in 3d is a continuous Group. An element may be represented as a
vector E} directed along the axis and with length equal to the angle of (say,
counterclockwise) rotation ¢; this corresponds to a sphere of radius m where,
however, each point of the surface is equivalent to the opposite one. All the
rotations with the same |¢| belong to the same class. the angular momentum
operator T is the generator of infinitesimal rotations. For integer L one finds
2L+1 spherical harmonics Y7 (6, ¢) that are simultaneous eigenvectors of
L? and L. Only the harmonics of a given L mix under rotations; they are
the basis of an irrep.

For angular momentum J = é, the rotation operators (7.2) build a double
valued representation, since Rm = _R$; they make up SU(2), the
covering Group of O(3) corresponding to a sphere of radius 27. The Wigner
matrices are defined by

J
Ra|Jm) = > [Jm/)D},,,(c). (7.31)
m'=—J
The SU(3) Group is a paradigm of Particle Physics. SO(4) is the rotation
group in 4d; rotations are in the planes ij with ¢ and j = 1 to 4. Therefore

2
[Ai7 Aj], = ieijkAk,[Bi, Bj], = ieijk)Bk} and [AZ', Bj], =0.

there are (4> = 6 generators A, As, Az, B1, Bo, Bs; it can be shown that

7.3 Accidental degeneracy and hidden symmetries

Let H be a Hamiltonian of Cj, symmetry; if one succeeds to separate the
Hilbert space according to the irreps, the problem breaks down into inde-
pendent subproblems of Ay, A; and E symmetry; in the E subspace one can
decide to have o, diagonal; if o, is the reflection that sends x to —z one has
(1z,1y) pairs that are not mixed by H since they form a m = 2 subspace
where H is constant. If one diagonalizes H in the x subspace finds all the ,;
from each 1, one then finds the corresponding v, without need of further
diagonalizations; one could apply any off-diagonal operator like Cs and then
orthogonalize to 1. In general, the knowledge of one eigenfunction is enough
to determine all the m degenerate eigenfunctions belonging to the same irrep.

Sometimes one finds unexpected degeneracies. Eigenfunctions belonging
to non-degenerate irreps are found to be degenerate; or the actual degeneracy
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d is higher than m. The most popular case occurs in the Schridinger theory
of the H atom, when energy depends only on the principal quantum number
n and orbitals have a n?—fold degeneracy, while the spherical symmetry only
allows the energy to be independent on magnetic quantum number. In such
cases, one cannot produce the 2p orbitals by rotating the 2s one. In such
cases, one speaks of accidental degeneracy.

It is possible that by accident two states unrelated by symmetry come so
close in energy to appear degenerate in low resolution experiment; however
a mathematically exact degeneracy with no symmetry reason is miraculous.
Simply, one was unaware of using a Subgroup of the actual Group, because
some symmetry had still to be discovered, as in the following examples.

Hydrogen Atom

The n?—fold degeneracy of the non-relativistic H atom Hamiltonian
H= — (7.32)

is explained by a dynamical symmetry, specific of the i potential.

The Classical Runge-Lenz Vector

N
The fact that the force F = —k Z; is central explains the conservation of

=
angular momentum: ddlt’ =TAD+T ATF = 0. We take the z axis along T,
and the motion occurs in the z = 0 plane. The special form of the potential
entails the conservation of the Runge-Lenz vector

—

7TAL T
B=" k. (7.33)
m r
- =
To see that, using C‘fti = — TT'BU , one works out

d7 P77 (77

= . 7.34
dt r r3 (7.34)
The z component of the numerator is (2% + y?)v, — z(zv, +yvy) = — L.
Developing in this way, one finds
d T L
= —y, z,0). 7.35
dt r mr3( y,2,0) ( )
The conservation of R follows comparing this with
dPANL L kL
= (F,,—F;,0)= -y, x,0). 7.36
e (S L R G (7.36)
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During the motion, AL is in the xy plane. At perihelion, 7 L 7 = AL I
7 = R || 7. Since it is conserved, T is pinned at the aphelion-perihelion
direction* and this is why the orbits are closed® .

Quantum Runge-Lenz Vector
The quantum Runge-Lenz vector

N i T —
ANL—LA
B=" LA (7.37)
2m r

commutes with H; the calculation can be carried out like above, with Cﬁl?
replaced by | [H, A]_. Hence,

Hpn = By = H Rypy = E R

but one can check that ﬁ does not commute with L?, so ﬁl/}L M does not
belong to L and the energy must be L independent. More details and the rela-
tion to the O(4) Group worked out by Pauli can be found on Schift’s book[25].
In the relativistic case, the Dirac-Coulomb Hamiltonian Hpc commutes with
the Biedernharn-Johnson-Lippman (BJL) pseudoscalar operator

Ze2 S -7
c

i
B= — Knvs(Hpc — fmc®) —
mc r

(7.38)

where K = 3 [f~f+h}7 T = (? ;) B = Y1, V5 = 711727374 This is

the reason why the levels do not depend on the sign of K and for instance
the pairs (2s1/2,2p1/2), (351/2, 3p1/2), (3p3/2, 2d3/2) are degenerate in Dirac’s
theory.

Appearence is Deceptive: Simple Example
The square tight-binding cluster described by

0110
1001
h=11001 (7.39)

0110

has the following spectrum:

2
4For circular orbits, using myo= fz one fonds that R vanishes.
5The 2d isotropic harmonic oscillator also does; the energy is conserved along
both axes, so there is an extra conserved quantity also in that case.
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O 77[}0,2: 07 la )
2 — 1\/21 l\/12
1/}2 (2727272)

and the degeneracy is expected because the irrep E of Cy, has to be repre-
sented. The eigenvalues come in pairs (+le|) since this graph is bipartite.

Fig. 7.2. llustrative example of dynamical symmetry. a) square tight-binding clus-
ter b) deformed cluster with heavy lines denote doubled matrix elements. The sym-
metry Group of b) is isomorphic to the Group of the square.

Now we deform the square, by changing the hopping integrals to and
from an atom: let’say, we double those connecting site 3 to 1 and 4. Now, the

Hamiltonian reads
0120

1001
2002
0120

J— (7.40)

The deformed cluster has much less geometrical symmetry but as much dy-
namical symmetry as before. Was the degeneracy removed? No. The first
and last lines are equal and the other two are proportional, thus two zero
eigenvalues are still there. Indeed, & has the following spectrum:

€ (4

_\/10 (%7_1\/1107_\/]?)7 %)
0 (\/2’0270’—1\/2)
0 (07_\/57\/570)

VIO (3 Ao/3 )

There is accidental degeneracy. One symmetry element is the reflection
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0001
0100
0010
1000

with o901 = —0,1; ovo,2 = ¥o,1. To explain this degeneracy we want a
non-Abelian Group. Indeed, the 90 degree rotation is broken, but we seek a
convenient generalization S, with ST = S~ SThS = h. We seek it such that
opposite sites are not coupled ( S14 = So3 = 0) and S12 = So4, S13 = Ss4.
One solution is the generalized 90° rotation

0010 0-13 0
1000 = 1 [300-1

S=1oo01| 7%  yio|1 003 (741)
0100 0310

Note that S* = 1 and S does not produce a permutation of sites but
is a genuine generalization. Moreover S mixes 1o jand g 2, does not com-
mute with ¢ and explains the degeneracy. The deformed problem has a lower
geometrical symmetry, but actually is still Cy, symmetric because of a hid-
den dynamical symmetry. More dynamical symmetries will be discussed in
Sect.17.0.6.

7.4 Great Orthogonality Theorem (GOT)

The theorem states that the D matrices are orthogonal over all their indices.

Theorem 5. (Great Orthogonality Theorem,)

Let D,(fz (R) be the pv element of the matriz of the irrep i representing the
element R € G. Let Ng be the order of the Group and let m; be the dimension
of the irrep i. Then

> Rrec DSB(R)*DS[%(R) = 665 0uadus. (7.42)

The GOT is the central result of Group representation theory, and I prepare
the proof by a few remarks.

Remark 1: I am going to present the proof for discrete Groups, however
the GOT extends to continuous ones. The following orthogonality holds for
the Wigner matrices[23]

" / 872
/ d2DZ} (aBv)DZ,, (aBy) = o) 4 laa,a,(sb,b,(sj,J, (7.43)

where «, 3, are Euler angles and [ df2 = fo% do foﬁ sin 3d3 fo% dry.



150 7 Group Representations for Physicists

Remark 2: Let us resume the degenerate (m = 2) irrep of Cs, and the
matrices

E Cg 032 Oq Ob Oc

01 V3 1 _V3 _1 01 V3 1 -v3 1
2 2 2 2 2 2 2 2

(7.44)
Note that C? is the inverse of C3 and its matrix is D(C3)T. More generally,
the operators are unitary and

7 * 7 —1
DI(UZ(R) :Dgg(R ). (7.45)

Remark 3: Let z/JfL be basis function belonging to the p-th component of
the irrep i and O represent a total-symmetric operator, that is,

[O,R]- =0, VReG.
Theorem 6. The matrix elements obey the following rule:
(¥ |Ol)) = O(1)850 - (7.46)

For i # j, ¥ and 97 are orthogonal because they belong to different eigen-
values of at least some (2.. The invariant operator @ commutes with the
Dirac characters, so O|¢7) has the same characters as [/7). For i = j the
matrix {O,, } represents an operator that commutes with everything, so it
must commute with all the D matrices; so Schur’s lemma applies.

For example, a spherically symmetric potential has vanishing matrix el-
ements between states of different L and within L it has vanishing matrix
elements between states of different My ; the diagonal matrix elements are
independent of M}, and depend on L.

Remark 4:

Theorem 7. Consider an arbitrary operator =.

O=) R'ER (7.47)
ReG

s an invariant operator.

This follows immediately from the rearrangement theorem: VT € G,OT =
TT 'Y pe R'ERT =T Y peo(TR)'Z(TR) =TO.

Remark 5:
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(example of GOT)

Let us form 6-component lists with the elements of the D matrices; if we
treat them like vectors and compute the norms we find 6 for the irreps with
m=1 and 3 for those with m=2.

element list > of squares
11 of irrep E (1,;;,;5,—?;% 3
: 3 V3 3 3
12 of irrep E (0, = %7, %°,0, %, —%°)
21 of irrep E (0, 437—‘/3 0, V3 —\/3)
22 ofirrep E (1, —
irrep A (1,
irrep As (1,

DD W W W

[y

)

Moreover these vectors are all orthogonal.

Proof of GOT

We insert (7.47) into (7.46)but do not specify yet =:

> WLIRTVER) = O(i)5:50 . (7.48)

ReG

Letting R operate with

RlYS) =) [43)IDS)(R),
p

(Wi |RY = (i DS (R)",

g

we find

WP 1Z10P) = 3 D WEEWH DI (RIDER)™ = O)3i;6-  (7.49)

ReG po

To prove the GOT we must eliminate 3 (W% Z[¢). Now we take advantage
of the total freedom to choose = as we like. If we assume that for some pair
of components, o and 3, say ,

= = i)W, (7.50)

then (1% |Z[¢]) = dacdp,, we end up with

3" DY(R)DID(R)* = Oup(i)8:j8- (7.51)
ReG



152 7 Group Representations for Physicists

The matrix element O,g(¢) could in principle have acquired a dependence
on the o and [ indices, but we have proven the orthogonality on the second
indices. The orthogonality on the first indices a and [ is obtained by tak-
ing the complex conjugate, and noting that this exchanges the indices and

> p-1 = > p- Thus,
Z ngg (R)D(&ZZ(R)* = O(Z)ézjéul/(saﬁ (752)
ReG

To determine O(4) we set ¢ = j,u = v and o = (5. We get
> DO(R =Y DO(RMDO(R). (7.53)
ReG ReG

Summing over « from 1 to m,,

=Y DU(E)=> 1=Ng. (7.54)

ReG ReG

This completes the proof.

The GOT is an orthogonality relation between wvectors having Ng com-
ponents, one for each component of D(z) 3(R); each irrep contributes m; com-
ponents, and in order that they be orthogonal

> m} < Ng. (7.55)

This is an important restriction on the number and on the dimensions of
irreps. We prove below Burnside’s theorem

> mi = Ng. (7.56)

7.5 Little Orthogonality Theorem (LOT)

From GOT we may obtain an orthogonality theorem between characters
which is called LOT. The diagonal elements obey

i * j NG
> DR DQR) = 8ijba. (7.57)
ReG 4

Summing on p, @ one obtains the LOT

Y ree XV(R)*xY) (R) = Ngéij. (7.58)

In particular,
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> (R = Na, (7.59)
ReG

which gives a method to verify that a given representation is indeed ir-
reducible; if we mix two irreps i and j with coefficients n; and n;, then
X(R) = nix® + an(j) and the r.h.s. becomes Ng [n? —|—n§ +2ninj5ij] .
Rewriting the LOT in terms of classes,

> nelx(C)P = N, (7.60)
c
and inserting (V) (C) = mieC we obtain

Ng

- (7.61)
ZC’ ng

m; =

A reducible representation can be reduced to block form and the block of the
i-th irrep appears n; times along the diagonal; on any basis, the trace is

X(R) =) _npx 7 (R).

Now multiply by x(?(R)* and sum over R:
D XVR X (R) = 0y Y xRNV (R)
R j R

which implies
1 )
_ (2) *
n; = R R). 7.62
N 2 X R X(R) (7.62)

Also,
1 -
n; E n . 7.
N, . ox"(C) x(C) ( )

The LOT becomes: > x(C)*x)(C) = Ngdyj, so the vectors with compo-
nents v/ Ngx ¥ (C) are also orthogonal. They have component for each class
and there is one of them for each irrep. Thus,the number of irreps does not
exceed the number of classes. Actually one can prove that they are equal, that
is, the character tables must be square [156]. This is related to the second
character orthogonality theorem

S XD O = Tedecr, (7.64)

also demonstrated in Ref.[156].
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7.6 Projection operators

From any f(z) one can obtain functions of well-defined parity using the inver-
sion operator and its eigenvalues to write f(*)(x) = f(z) £ f(—=). The GOT
generalizes this trick converting an arbitrary basis set into symmetry-adapted
basis functions without any need to diagonalize any matrix. Multiply (7.42)
> rec foy)(R)*Dgﬁ)(R) = N9 61j6uadup by ¢4, and sum over , using the fact

that 3, DY)(R)¥), = R

. ; , - Ng

D 3 DR DR = 3 D (RY B = 3 4 iduadus

a ReG a v
that is,
i ZD R)* Ry, = 6,36,503. (7.65)
Hence ‘ e

P, =" ZD@) (7.66)
is a generalized projection operator®such that P, |1/J’ ) (1! |. In other terms,
Pi = 52J5y,\1/) (7.67)

The diagonal Pﬁ# operators are all what we want, and require only the
diagonal elements of the D, matrices. Let ¢ = >, c(j, v)Y) belong to a
reducible representation:

Py = (i, ), (7.68)

is projected on 1/, unless c(i, 1) = 0 (if the choice was unlucky never mind,
we shall succeed with another v of the reducible set). To transform the {¢}
set to the new {97} basis we just need to know how every R € G operates on
the old set and the diagonal elements of the DI(L?(R) matrices. The DI(L?(R)
matrices are properties of the abstract Group,and we know them in principle:
they are m; x m; matrices and having fixed which operators R we can and wish
to have diagonal, we have enough relations from the multiplication table to
build them; in the most common problems this is just a matter of geometry to
determine how the components of a point or other simple functions transform.

Moreover, the matrices are not really needed to project to the new basis.

Indeed, ‘ ‘
DB = cli m (7.69)
Iz Iz

In the combination on the r.h.s. all functions belong to the irrep i, so the
Lh.s. is the projection operator,

The name is deserved since the diagonal terms are such that (P,)* = P},.
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PO =3"Pi => X(R)R. (7.70)
m R

The characters are enough to build P¥ and to obtain P4 which belongs to
irrep i. Repeating this with enough 1, one builds a basis for the irrep. These
bases are typically small sets, where one can easily orthonormalize; usually
one readily performs the unitary transformations needed to have as many
diagonal operators as possible, in order to increase the number of quantum
numbers.

7.7 Regular representation

The next theorem has a very elegant proof:

Theorem 8.

> mi = Ng. (7.71)

Recall the rearrangement theorem: left-multiplying the group elements by
one of them produces a permutation. In any Group of order Ng = g with
elements R, --- Ry , we associate to each element a vector

Ry — (1,0,0,0,0,0), Ry — (0,1,0,0,0,0), - --

and a g x g matrix that does the permutation. Thus, for each R € G there
is a vector and a matrix; what matters is the Multiplication Table, and the
vectors are just a way to get the matrices. Let us rewrite the multiplication
Table of Cs,.

E Cs C'§ T4 Op Oc

C3C3 E o, 04 0

C2 E C3 0y 0. 04

o, 0p 0. E C3 C3

Op Oc Og C’g E Cs

0. 04 0p Cs C’§ E

Let us denote the operations R; - - - Rg with Ry = E, Re = C3, and so on; the
effect of the left-multiplication by C3is 1 - 2,2 —-3, 3 —-1,4—6, 5 —
4, 6 — 5; the matrix is

001000
100000
010000
000010
000001
000100
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while D(F) = Diag(1,1,1,1,1,1). This reqular representation exists for any
G; x(E) = N¢ while for all the other classes x = 0 since no other element
can have 1 on the diagonal (RX = X <& R = FE ) . Irrep i is contained in
the regular representation n; = NlG DX (R)*Xx(R) = NlG X'(E)'x(E) =m;
times. Reducing the representation, we shall have on the diagonal m; times
the m; x m; block, and the length of the diagonal is Ng. This proves the
Burnside theorem.

Problems

7.1. Prove Equation 13.136.
7.2. Build the character table of Cl,.

7.3. Build the projection operator for the irrep E, componet y, of Cly,.
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8.1 Molecular Orbitals

To exemplify Group theory methods, I present LCAO calculations of molec-
ular orbitals for simple molecules starting with a minimal basis set (only
the atomic orbitals which are most directly involved in covalent bond-
ing)neglecting overlap.

8.1.1 Molecular Orbitals of INHg

1]

Fig. 8.1. The H atoms of ammonia are at the vertices of an equilateral triangle.

N Hj belongs to the C3, Group (see the character table in Appendix). A
minimal basis set comprises 2s, 2p,, 2py, 2p. for N and the ground state or-
bitals s1, s9, s3 for the H atoms. The geometry is sketched in Figure 8.1.1; the
N atom (not shown) is above the origin and is not shifted by any operations.
Therefore 2s and 2p, are assigned to A; while (2p,, 2p,) is a basis for E. Let
us write a representation on the basis

1 0 0
s1—(0),s2—=|1],s3— 1[0
0 0 1
one finds:
E 03 032 Oq Oy Oc

100 001 010 100 001 010
010 100 001 001 010 100
001 010 100 010 100 001
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This representation can be reduced by the LOT into A; @ E. The A
combination is 1; = 51+\‘°‘/23+53; to find a basis for E one can use projection

operators. The operator that projects onto E is

2 —-1-1
P(E):ZX(E)(R)RZ -12 -1]. (8.1)
R —-1-1 2

The v that one obtains depends on the s orbital; if we start from s;, which
is 0,(1) invariant, we get (upon normalization) ¢ = 251_\;2_53 which is
also 0,(1) invariant. This is the x component, which is invariant under the
exchange of 2 and 3. The orthogonal function is odd under such an exchange
and is 3 = 82\;283 . One can get this result by the projection operator. Starting

from sy, one obtains ¥} = 2527(13_53 which is not orthogonal to 13 but has

the orthogonal component 3. Alternatively, one can obtain those results by
projecting directly on the x and y components of the irrep E, by

2
P = > DR R (8:2)
R

In the current geometry, unlike the last Chapter, the reflection 1 leaves x
10

0 _1> . The other reflections are obtained

invariant, so we must take o1 = (

-1 V3 -1 V3

as oo = 010y = 2, 2 | and oy = 0103 = % % |- Thus, one
T2 2 2 2

obtains

1
PE="-11 1], 8.3
D=y (33)
2 2
In a similar way,

0-0 0
P =103 -3 1. (8.4)

0_1 1

2 2

Thus, we have determined the symmetry orbitals; 2s, 2p., 11 belong to A; and
the pairs (2py,2py), (Y2, 1¥3) belong to E. The 7 x 7 determinant is broken
into a 3 x 3 determinant for the A; basis and a pair of 2 x 2 determinants
for the x,y components of E; moreover, by the Schur lemma, the latter are
identical.

8.1.2 Molecular Orbitals of CH,4

C H,4 belongs to the tetrahedral symmetry Group Ty; we may put the C atom
at the origin and H atoms at (-1,1,1),(1,-1,1),(-1,-1,-1),(1,1,-1) in appropriate
units. There are Ng=24 operations. There are C3 and C3% rotations around
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CH bonds,Cs and Sy rotations around the x,y,z axes, and 6 o4 reflexions in
the planes that contain two CH bonds. The C orbitals (2s,2p,, 2py, 2p,) are

classified at once under A; and T5.

Fig. 8.2. Tetrahedral CH4 molecule inscribed in a cube; the open circle denotes

the C position.

Td FE 803 302 60’d 654

A 11
Ay 1 1
E 2 -1
0 3 0
> 3 0

1 1 1
1 -1 -1
2 0 0
-1 -1 1
-1 1 -1

g=24

r2

(3Z2 - T27 Iz - y2)
(Rs, Ry, R)
(z,y,2)

For the Hydrogens, let d(i,C') denote the list of the destinations of atom 1
under the operations in class C. Here is the situation:

Class moved unmoved x d(1,C)

E 0
8C3 3
3C2 4
Oq 2
654 4

4
1
0
2
0

4 1
1{1,1,2,2,3,3,4,4}
0 {2,3,4}

2 {1,1,1,2,3.4}
0 {223,344}

Table 8.1. Effects of the operations of Ty on atom 1 and characters of the repre-

sentation of Hydrogens.

Under each operation, every atom which changes position contributes 0 to
the character y (we are neglecting overlaps), while unmoved atoms contribute
1. Using the LOT with Ng = 24 we find that I'(Hy) = A; @ Ts. The A

combination is trivially ¥4, =

|1>+\2>42-|3>+\4>

. The destinations in the above
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Table 8.1.2 and the Character Table allow to project on 75 by the operator
(7.70):

PT2)|1) = 3|1) — (|2) + (13) + [4)) + [3]1) + (|2) + [3) +[4))] — 2(|2) + (13) + |4))

= 2[3]1) — (|2) + (3) + [4))].

If we wish to obtain ¥, the fastest way is probably to symmetrize between
1 and 2. Indeed, if 3|1) — (|2) + (|3) + |4)) is in T5, 3|2) — (|1) + (13) + |4))
also is; we sum and normalize obtaining

1) +12) = 13) = [4)

|!I/2> = 9 .
Also,

RECECRLA

gy = 1012+ 1)

8.1.3 Characters of Angular Momentum Eigenstates

The set {|J, M)} is the basis of an irrep of O(3) but reduces in its sub-
groups. A rotation R,(«) by an angle o about the z axis multiplies |J, M)
by exp(iMja), thus the character of R, («) is

J

x(@) = Y exp(iMya) =

My=—-J

sin((J + Da
sin(5)

All rotations by an angle o belong to the same class, thus the character is
this, independently of the rotation axis.

8.1.4 Examples: Op Group, Ligand Group Orbitals, Crystal Field
The Oy, Group

We consider a cube with a system of cartesian axes through the centers of the
faces. The centers of the faces are vertices of an octahedron. The operations
of symmetry of the cube and octahedron are the same. We label the vertices
of the octahedron as in Figure 8.1.4. There are 48 operations in the cubic
Group Oj,. The C4 rotations around the cartesian axes and their inverses
form the 6C} class, and the Cs rotations form the 3C5 class. The 23” rotations
in both senses around the 4 cube diagonals give a class 8C; these axes are
perpendicular to faces of the octahedron. Joining the center of EC with the
center of FB we have a (5 axis. There are 12 edges, so there are 6 axes and the

class is 6C5. The inversion forms a class; the 3oy, class includes reflections like
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the one in the BCEF plane. The Cjy rotations followed by a o}, reflection in the
plane perpendicular to the rotation axis form the 6.54 improper rotation class.
The plane containing A,D and the midpoints of EC and BF is a symmetry
plane, and the reflection belongs to a 604 class. Finally,there are Sg improper
rotations: the axes are those of the C3 rotations; if we look along a C3 axis,
opposite faces appear as concentric triangles; the figure is invariant under
a (g rotation followed by a reflection in the orthogonal plane through the
center (Figure 6.2). With 4 axes and two senses of rotations one builds a 85
class.

2

N |
i A
MW
/
4 /
IR B
N y
D
Fig. 8.3. Octahedron
Ligand Group Orbitals
Oh FE 604 302 6Cé 803 1 654 30'h 6Jd 856 g = 48
Ay, 11 1 1 1 1 1 1 1 1 z? 4 y? 4 22
A, 1 1 1 1 1 -1-1-1-1-1
Ay 1 -1 1 -1 1 1 -1 1 -1 1
Ay, 1 -1 1 -1 1 -1 1 -1 1 -1
E, 20 2 0 -1 2 0 2 0 -1 (22-9%222—-22+4?)
E, 20 2 0 -1-20 -2 0 1
Ty 31 -1 -1 0 3 1 -1-10 (Rs, Ry, R>)
T 31 -1 -1 0 -3-1 1 1 0 (z,y, 2)
Tyy 3 -1 -1 1 0 3 -1 -1 1 0 (xy,xz,y2)
T, 3 -1 -1 1 0 -31 1 -1 0
Ir 6 2 2 0 0 0 0 4 2 0

The Oy, Group is the point Group of many interesting solids, including com-
plexes like CuSOy4 - 5H50 and FeCls where a transition metal ion at the center
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of an octahedron; most often the octahedral symmetry is only approximate,
as in CuSO4 - 5H50 where the central Cu™t is bound to 4 HyO molecules
and 2 SO, ~ ions. A LCAO model of their properties is often called ligand
field theory.

If A --- F represent 6 s orbitals, they are the basis of a representation I’
with the characters shown above. One finds that I' = A1, ® E; ® T14,. Let us
work out the projection of orbital A into T7,:

Class C > pc RA x (T contribution

E A 3 3A
6Cs 2A+B+C+E+F 1 2A+B+CH+E+F
3Cq A+2D -1 -(A+2D)
6Cy’ 2D+B+C+H+E+F -1 -(2D+B+C+E+F)
8Cs 2(B+C+E+F) 0 0
1 D -3 -3D
6S; 2D+B+C+E+F -1 -(2D+B+C+E+F)
3o, 2A+D 1 2A+D
604 2A+B+C+E+F 1 2A+B+C+E+F
85 2(B+C+E+F) 0 0
The normalized Ti, projection is ¥ = A\;2D . Operating in the same way
on D we again get 1. Operating on the other functions, we obtain 1, = szE

and 3 = CJZF . In this way one easily builds the ligand group orbitals.

Crystal Field

The number of d electrons in transition metal ions is:

TiV Cr Mn Fe Co Ni Cu
Mt* 234 5 6 7 8 9
Mttt 123 4 5 6 7 8

Hund’s rule allows to find the ground state of partially filled d shells and
the corresponding number of unpaired electrons as follows:

dt d* d® d* d&° 45 d7 4 d&°
ground state 2D 2F 4F 5D SS°D4F3F 2D
unpaired 1 2 3 4 5 4 3 2 1

for isolated transition ions one would always predict paramagnetism, but the
compounds can be paramagnetic or not. The bivalent Fe ( 3d® configuration)
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forms the complexes [Fe(H20)g]?", which is green, and paramagnetic, but
also [Fe(CN)g]*~, which is yellow and diamagnetic. These facts can already
been understood by the crystal field theory, in which the ligands behave like
point charges, or anyhow they generate a field to octahedral symmetry that
resolves the degeneracy of the atomic terms (for the first transition series the
spin-orbit interaction is a small perturbation to be introduced subsequently).
A more quantitative treatment is obtained then from the ligand field theory.

For d (or D) states, from (8.5) and from the even parity we find the
characters

Oh FE 604 302 GOé 803 7 654 30'h 604 856
Iy -1 1 1 —-15-1 1 1 -1

and conclude I'y = F; ® Ty,. This is already clear from the Character Table,
reporting (dyy, dy=, dy-) as a basis for Thy and (d,2_ 2, 22) for E,. In transition
metal complexes usually A = E(E,) — E(Ty4) > 0, since the Ty, orbitals stay
far from the negative ligands. Thus in the absence of Coulomb interactions
one would fill the available levels according to the aufbau principle, starting
with T5,. In crystal field theory one tries to predict the magnetic properties by
diagonalizing a many-electron Hamiltonian which is the sum of the isolated
ion Hamiltonian and the one of the crystal field.

There are two simple limiting cases. If A <« U, where U represent the
order of magnitude of the multiplet splitting, due mainly to the Coulomb
interaction, one treats A as a perturbation of the isolated ion multiplet. The
atomic Hund rule holds, and paramagnetism obtains. If A > U, Hund’s rule
holds (high spin is preferred) within the degenerate To, and E, levels, but E,
starts being filled only after 15, is full, and 6 electrons yield a diamagnetic
complex.

8.2 Normal Modes of vibration

In the Born-Oppenheimer approximation, the potential that governs the mo-
tion of electrons depends parametrically on the positions of the nuclei. The
total energy U of the molecule is calculated in function of the nuclear coordi-
nates and the configuration of equilibrium correspond to a minimum energy.
The vibrations can then be studied by considering U as the potential energy
of the nuclei. The configuration of the molecule is given by a vector T that
specifies the shift from equilibrium of the coordinates of all the N nuclei,

v = (6x1,0y1,021,0x2, - 0T N, OYN,O2ZN) = (V1, -+, U3N) (8.6)

where I introduced a notation v; for the generic cartesian coordinate. All the
possible motions of the nuclei are described classically from the equations of
Newton,
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ou

1V 61]i
where m; is the mass associated to v in the obvious way x1,y1, 21 — m; and
so on. In the harmonic approximation, expanding around to one configuration

of equlibrium,

(8.7)

1
U= 9 ZUijUin, (8.8)
(]
and the Fourier transform of the equations of the motion is
1
2, — s
w; m, ZU,JUJ. (8.9)
J
We introduce
and the symmetrized matrix
wy, = i (8.11)
\/mimj
then the equations of the motion read:
wQ; = ZWiij~ (8.12)
J

The eigenvectors @, of the W matrix are the normal modes, and their eigen-
frequencies w, are obtained from the secular equation. Three modes, of null
frequency, correspond to rigid translations of the molecule, and 3 others (or
2, for linear molecules) to rigid rotations. Rotations also have w = 0, since
the energy of the molecule does not depend on its orientation. The remaining
3N-6 (or 3N-5) frequencies are vibrational. The Group theory is helpful to
simplify the solution of the secular equation. Every R operation of the Group
of the molecule sends every nucleus in itself or to another identical nucleus in
an equivalent position; meantime, it produces a (proper or improper) rota-
tion the system of cartesian axes that we can imagine fixed at every nucleus.
So, R maps each @Q; into a linear combination of the components. In such
a way, we associate to every R a matrix D(R), and obtain a representation
of the Group in the space of the vectors Q. Every D(R) commutes with
W, since R is a symmetry and W must be invariant under R; thus if Q,
is a solution of the secular equation, also D(R)Q, must be a solution, and
with the same w. Therefore, we can diagonalize W simultaneously with the
maximum number of commuting D(R) matrices. The theory of the Groups
adds the Dirac characters; this means that in a new basis whose elements
are vibrations pertaining to irreps of the Group, W is block diagonal. Thus,
the normal modes can be assigned to irreps of the Group; the reduction of
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the @, (or equivalently v) representation, allows to gain in simple way the
symmetry and the degeneracy of the normal ways, without having to resolve
the secular equation.

The H20 molecule (C2, Group), and that requires a 9-dimensional v. We
place the molecule on the zz plane. The cartesian components of the shift
from the position of equilibrium of each atom transform like its p orbitals
and can be thought of as numbered arrows,parallel to the x,y and z axes
respectively; th earrows (1,2,3) from one H, (4,5,6) from O and (7,8,9) from
the other H, constitute a basis. The operations are Cs, o(zz), and o(yz). The
C5 operation has the representative

0 000 00-100
0 000 000 —10
0 000 000 01
0 00-1000 00
D(C2)=| 0 000 -100 00 (8.13)
0 000 010 00O
-1000 000 0O
0-100 000 00O
0010 000 0O
D(C3) and D(o,(yz)) have the same block structure
00b
D(Cy)=100b0 (8.14)
b00
where now 0 is for a null 3 x 3 block, and
-100 -100
b(Cy)=1 0 =10 |, bo(yz))=1 0 10 ]; (8.15)
0 01 001

D(o(zz)) is block diagonal with b = diag(1,—1,1). From the matrices we
gain the characters:

I':X(B) = 9,x(C2) = =1, x(0(y2)) = 1,x(o(22)) = 3. (8.16)

We could arrive to this result without writing the D matrices, taking into
account that for each operation:

— the atoms that change position contribute 0 to the character; 2)

— each arrow (cartesian movement) that it remains invariant contributes
+1, and every arrow that changes sign contributes -1,

— more generally, the cartesian shifts of an atom that does not change posi-
tion behave like (x, y, z), so if the arrow is rotated by 6 the contribution
is cos(6).
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Cy I1Cy 0, 0, g=4
A; 11 1 1 z

Ay 11 —1-1 zy,R,
By 1-11 -1 x,R,
By 1-1-11 y,R,

The representation I' is clearly reducibile. It includes all the possible
movements of atoms, therefore not only the vibrations, but also the rigid ro-
tations and translations of the molecule. In order to classify the vibrations,
it is in the first place necessary to separate them from the rigid motions.

The rigid translations along the (x,y,z) axes transform like (x,y,z); they
are marked in the character tables and are a basis for the representation of
polar vectors (reducible or not, according to the Group).

Adding the characters of x, y and z, we get for the 3 translations the
characters:

Coy E Cs o(x2) o(yz2)

T 3 -1 1 1 (8.17)

Having separated 3 coordinated of the center of mass, N-3 remain The
motion that they describe is to be decomposed in a rigid rotation and a
vibration. So, we can separate to others 3 degrees of freedom (2 for linear
molecules) in order to describe the rigid rotation. An infinitesimal rigid rota-
tion transforms the coordinate r; of the atom i according to ér; = d¢ x ry;
one can expand d¢ as a linear combination of rotations R, R, and R, around
the axes. These are mixed among themselves under the symmetry operations,
and are a basis of a representation [.,;. Since d¢ is an axial vectors, It
is the axial vectors representation. The rotation about the x axis transforms
like the R, generator, that is, like yz, and so on; the tables of the charac-
ters report the classification of the rotations. In the Abelian Groups, there
are only one-dimensional irreps with characters +1; R is odd (even) if the
sense of rotation changes (does not change). For the water molecule, using
the character table, we find

Coy E Cy o(22) o(yz)
It 3 -1 -1 -1

We can proceed to separate the vibrations as it follows:

(8.18)

Cyy E Cyo(x2) o(yz)
r 9-1 3 1
Ftrasl 3 -1 1 1
Lot 3 -1 -1 -1
Lyie 3 1 3 1

The reduction of the representation yields
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Fm’br = 2A1 S Bl-

Finally. The water molecule has two total-symmetric vibrations and one of
B; symmetry.

A total-symmetric vibration, that all the molecules have, is the breathing
mode. In the symmetric stretch the angle between the OH bonds varies. In
order to discover what kind of vibration is the one labeled B1 that goes like
x one can construct the projection operator

P(B1)=FE —Cy+o(xz) —o(yz); (8.19)

in terms of block representative matrices,

1+b(o(xz)) 0 —b(Cs)—b(o(yz))
P(B;) = 0 8 0 , (8.20)
—b(Cs) —b(o(yz)) 0 1+b(o(xz))

where 8 =1—b(C2) +b(c(xz)) — b(o(yz)). Projecting, one finds a vibration
where the only arrows are 3 and 9, and are opposite. One H shifts up along
the molecular axis and the other goes down; such a vibration indeed changes
sign under Cy and o(yz).

Vibrations of N Hs

Here the complete table of the characters of the Group.

Cgv 1 203 3O'U g = 6
Ay 11 1 z
Ay 11 -1 R,
E 2-1 0 (z,9)

The Cartesian movements of N are transformed like the coordinates. There-

fore for N we have:
Cs, E 2C3 30,
I'(N)3 0 1
Let’s find the characters of I'(Hs). x(£) = 9 (no arrows move) x(C3) = 0
(all the H move and contribute 0) x(o,) = 1 (two H reflected one in the

other: character 0; for the other H, two arrows in the reflection plane and one
orthogonal: character 1) Therefore:

(8.21)

Cgv E203 30’U
I'(N) 3 0 1

I'(Hy) 9 0 1
I'(NH3) 12 0 2
Ftrasl 3 0 1
Lot 3 0 -1
LTyisr 6 0 2

Finally, Iy = 24, + 2E.
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Vibrations of Methane (CHy)

Methane is a tetrahedral molecule.

With 5 atoms x(F) = 15.

8C5 : all the atoms move except a H and the C: for each an arrow
is along the rotation axis (41),while the others two, on the L plane,
are transformed as the coordinates (x,y) of this plane and contribute
TrD(R) = 2cos(% ) = —1. Therefore x(8C3) = 0.

3C : 2 arrows of the C change sign and the third does not move: y = —1
604 C'Hy remains in place; each atom has 2 arrows in plane and one
reflected and x = 3.

S; H moved; for the atom of C: 90° rotation around z, (v,y,z) —
(y, —z, z); then reflection — (y, —x, —z). So, x = —1.

Thus,
Ty, FE 8C53C5 60465, g=24
A1 1 1 1 1 r?
As 1 1 1 -1 -1
E 2 -1 2 0 0 (32-r%22—9?%
7 3 0 -1 -1 1 (Rz, Ry, R)
7 3 0 -1 1 -1 (x,y,2)
Iig¢ 15 0 -1 3 -1
Tirast 3 0 —1 1 -1 =T
It 3 0 -1 -1 1 =T
Lype 9 0 1 3 -1 Ay & E 2T,

Vibrations of Benzene (CgHg)

There are 12 atoms and 36 coordinates, therefore x(E) = 36. The rotations
C5, C3 and (g around the vertical axis move all the atoms and have character
0. Rotation C} around to a diagonal of the hexagon leaves 4 atoms in place:
for each one arrow is invariant and the others two change sign. Therefore,
x(C%) = —4. Rotation C”5 around an axis L to opposite sides and S5 and
Se move all the atoms and have character 0. The reflection o}, in the plane of
the hexagon leaves two arrows invariant for every atom and changes sign to
the third, therefore x(op) = 12. The reflection for a plane containing the C”5
axis has character 0 . The reflection for a plane containing a axis C} leaves 4
atoms in place, with two arrows invariant and one changed of sign for every
atom. Therefore x(o,) = 4. The characters of I},,s are the sums of those of
Az, and Ey; those of Io adding those of Agg and Eiy.
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DGh EQCG 203 CQ 302 30 1 253 256 Ohp 3(Td 3JU 9224
Ay, 11 1 1 1 1 1 1 1 1 1 1

Ay 11 1 1 -1 -11 1 1 1 -1-1 R.
By 1 -11-11 -11-11-11 -1

By 1 -11-1-11 1-11-1-11

By 21 -1-20 0 2 1 -1-20 0 (R Ry)
By 2 -1-12 0 0 2 -1-12 0 0 (22—y%ay)
A, 11 1 1 1 1 —-1-1-1-1-1-1

Ay 11 1 1 -1 -1 -1-1-1-11 1 z
B, 1-11-11 -1-11-11-11

By 1 -1 1 -1-11-11-11 1 -1

B, 21 -1-20 0 -2-11 2 0 0 (z,y)
By 2 -1-12 0 0 -21 1 -20 0

Lot 36 0 0 0 -4 0 0 0 0 12 4 0

Fyast 3 2 0 -1 -1 -1 -3-20 1 1 1

Lot 3 2 0 -1-1-13 2 0 —-1-1-1

Ty 30 -4 0 2 =2 2 0 0 0 12 4 0

The Group has 24 elements, and it is found thatl, = 2415 © Aoy ® Az
2B1y © 2B2g ® 2B2y, @ E1g ® 3E1, © 4FE2; © 2E3,.

8.3 Space-Time Symmetries of Bloch States

Let t1,to, t3 be the primitive translation vectors of a crystal lattice, {T;} the
set of lattice translation operators and V() the periodic crystal potential,
such that [T;, V] = 0. Periodic boundary conditions are assumed, that is,
for some N > 1, TN = 1. The simultaneous eigenfunctions 1/1? (T) of H and

any T; are such that Tizb?(ﬁ) = ¢?(T> + 7)) = Cw? (7) with CN = 1.

2T

™ 7 =
Now, TNe! kT _ el kT requires T - 7}1 = 7y * integer; therefore,

?:p91+qg2+7°92
N

with p,q,r € Z, and the reciprocal lattice vectors defined by ¢; - g; = 27;;.
We know from Sect. 7.2.1 that Bloch’s functions are

k-7
_ ik —
b (T)=e uz(7), (8.22)
where u?( T') are lattice periodic. Moreover, since (letting i = 1)
— —
?ei k- T — ¢ k ?(? + ?)7

we may write
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(P + &)
2m

F V(@) | us () = epuss (T). (8.23)

k k

No degeneracy is predicted, since Abelian Groups have only one-dimensional
representations. Each translation T by a vector t is a class, while each k
vector labels a different irrep. The LOT of Equation(7.58) yields the useful
relation

J\} > el Bt = 5k — k), (8.24)
c t

where N¢ is the number of cells. The second character orthogonality theorem
7.64 gives:
7 etk = Neo(t - t), (8.25)
keBZ
with the sum extended to the Brillouin zone.

The trivial spin degeneracy is lifted if the spin-orbit interaction is in-

cluded,
2

p
H= om +V(Z)+ Hgo (8.26)
with 1
Hp = A2 TAVV.-T. (8.27)
Eigen-spinors can be taken of the Bloch form,
— u— ()
-\ _ ik T -\ _ ik T k .+
v (@)= F T (@)= {U?_(?) (3.25)

One finds spinors with A = 4 and - that reduce to up and down spin for
¢ — 00, but otherwise spin and orbital degrees of freedom mix. The periodic
functions are obtained by solving

(7P + ?)2 1 . i
2m

Space Inversion

The inversion is the operator P° : P°% = — 7. Let Yp /\(?) solve the

Schrodinger equation with a periodic potential V(7T); an inverted crystal
poses the same problem with V() (%) = P'V(%) = V(~7) instead. Since
(P%)? is the identity, from Hg(x) = etk (x) one gets

PYHPP 4y, = H(—x) P9y = e, POy;
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thus the solution the inverted crystal is the spinor ¢?(—T’) and the energy

ez is the same as in the original problem. If V() (&) # V(7), one cannot

speak of degeneracy, since the corresponding problems remain distinct. If
however the crystal has inversion symmetry, that is, [P, H]_ = 0, adding
this element to the translations produced a non-Abelian Group which implies

degeneracy. Indeed, ¥ (x) and ¥ (—a) both belong to the eigenvalue e

However, Poz/)k(q:) = Yr(—x) = e"* @y, (—x) belongs to —k since it gets
multiplied by e~*** under a translation by t. Therefore we must make the

identifications
Poyp(z) = ¢_i(2), (8.30)
and ug(—x) = u_g(x); so,
€ TR (8.31)

Time Reversal

The antilinear' Kramers operator K takes the complex conjugate, and is
useful to discuss time reversal symmetry, as I show in a moment. In the
Schrédinger theory, assume one knows how to solve a time-dependent problem

op(t
ih gg) = H(t)o(t) (8.32)
but wants to solve the Schrédinger equation with a time-reversed Hamiltonian
o9’ (t'
ih q;; ) = H(—t"¢'(t). (8.33)

Applying K to both sides of (8.32) we get —ih%&;?* = H(t)p(t)* and setting
t = —t’ in the operators,
0o (t)*
ih qg(t/) = H(—t)p(t)". (8.34)
Comparing with (8.33) we conclude that ¢'(t') = ¢(¢)*; introducing a time

reversal operator 7 this may be interpreted by saying that ¢'(t') = T $(t) is
the time reversed wave function with 7 = K.

Things are more involved with the Pauli equation; I write Hy the spin-
independent part of the Hamiltonian, which I assume real, and separate the
spin-field coupling:

G‘gi’f) — [Ho(t) + Ao - BOJ(®), A= | (8.35)

ih
2me
LAn operator O is antilinear if O(a¢p + b)) = a*O¢p + b*O).
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Taking the complex conjugate and multiplying both sides by —ioy = ( _01 (1)) ,

one finds

i@(?t) (—io2)y(t)" = Ho(t)(—io2)y(t)" + M—ioz)o™ - B(t)y(t)"

= Ho(t)(—io2)p(t)" + (=1)M(—io2)o™ - B(t)(—io2) H(—io2)y(t)". (8.36)
The familiar anticommutation relations give
(—io9)o™ - B(t)(—ios) = o - B(t).
Now let t' = —t in the operators.

i3 (ioa)(0)" = Ho(—)(—io2)(t)" + (~1)Ao - B(—1')(~io2)i(t)".
(8.37)
which says that now (—io2)w(t)* is the time reversed spinor with B(—t') =
—B'(t") . But this sign is wanted: indeed the currents do change sign under
time reversal, hence the vector potential and the magnetic field also change

sign. Thus,

T = —io,K. (8.38)
Note that
(Ko, K¢) = (¢, ¢), (8.39)
and
(T, T) = (¥, ). (8.40)
Then
TQQZ} = _1/}7
thus
T 1=-7.
T reverses the sign of P (indeed 7P7 ' = —7 because of the complex
conjugation) and of the angular momenta L T and S (for instance, o0y =
—0109 = To1T~! = —0q). Thus the scalar product o - L is time-reversal
invariant.

Kramers’ Theorem for one-electron states says that a stationary Hamil-
tonian like (8.26), without magnetic fields, even in the presence of the spin-
orbit interaction, has a twofold degeneracy since ¢ and 7 ¢ have the same
energy and are orthogonal.

Since 7 commutes with H, if ¢ is a stationary state of H, 7 ¢ also is.

Moreover 7 ¢ L ¢; indeed, if ¢ = <g),
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ro= i (5)= (1) (5) = ()

then
o
(Tolo) = (-5, () =o.
Since [T, H]- = 0, the time reversed Bloch eigenspinors
—
Ty (7) = —ie *F '?Uyu% (@) (8.41)

have the same energy and belong to —?, ( they are periodic spinors times

—
e—i K T) Besides, they belong to — A since time reversal reverses spin. Using
(8.40),

W7 (7),0:42(T) = (To4p (T), Ty (T));

the anticommutation rules give
= —<JZT¢?(T)7T¢—>(T)>;
since o, is Hermitean,

W5 (7),0:42(T) = =T (T), 0:TY2 (7))

In summary the time reversal invariance requires

—e = . (8.42)

Conjugation
If P° and 7 are simultaneous symmetries,the conjugation

C=PT (8.43)
also is conserved. Using equations (8.30),(8.42) we see that this is such that

Cib?)\( T) = 1/1?7_>\( z); 6?7)\ = 6?7_)\ (8.44)

and there is degeneracy at every % point.

8.4 Space groups of solids

The Space Group elements are [93]

(ala) : 7' =a7 + @ (8.45)



174 8 Simpler Uses of Group Theory

where « denotes an operation of the Point Group while @ is a translation (as
we will see, not always a Bravais one). This is a Group with the multiplication
rule

(B18)(a@) = (Ba| D + @) (8.46)
and it has the Point Group as a subgroup. We can write the faithful repre-

sentation? . _ _
T aa T
(7)=(5)(7) 34

(of@)t = (a7t —at@). (8.48)

The inverse operation is

Since - -
(@) (Bl D) (@) = (o ' Bala™ (b + fa@ - @)) (8.49)

the translations (unlike rotations) are an invariant subgroup.

A Space Group generated them from the Bravais translations and from the
Point Group is symmorphic. The definition (8.46) (8.47) does not correspond
to the direct product, that it would give instead (ﬁ|7)(a\ﬁ’) = (Ba|b +@).
It is called a semidirect product. The translation depends on the choice of the
origin: consider the operation

7' =aT + @; (8.50)

let us rewrite it in a reference with the origin shifted to ~7. The starting

point in the new reference is 3 = 7 + D and the transformed one is ? =

Y + 7; therefore the transformation is described by

$ =aF —ab+TaT+Db. (8.51)

So, the rotation is the same, but @ — @' = @ — ab + Z_}) The operation
can be made homogeneous, that is, @’ = 0, if we can find b such that

bV =(a—1""a. (8.52)

8.4.1 Symmorphic and Nonsymmorphic Groups

The symmorphic Groups have the rotations of the point Group and the trans-
lations of the Bravais lattice; nonsymmorphic Groups have extra symmetry
elements are called screw azes and glide planes . These new operations
depend on special relations between the dimensions of the basis (that is, of
the unit which is periodically repeated) and of the Bravais translations. For

2different operations have different matrices.
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example, CdS (hexagonal close-packed structure) has both kinds of extra
symmetries. A plane a — b contains alternated Cd and S ions arranged in a
regular hexagonal pattern and above this plane at a distance 5 another a —b
plane with Cd and S exchanged, and so on. The Cy rotation about the center
of the hexagon exchanges Cd and S; for the same reason, a translation by §
along the c¢ axis does not belong to the Bravais lattice and is no symmetry;
however the combined operation (Cs and translation by ) leaves the system
invariant. The o, reflection of the hexagon is broken since it leads to the ex-
change of Cd and S; however, the o, plane is a glide plane: reflection in this
plane becomes a symmetry when accompanied by the 7 translation along the
screw axis.

It is natural to ask whether one can eliminate the § translation from the
screw axis operation by simply shifting the origin to—1b. According to (8.51)
the transformation becomes homogeneous, 5 s =a7,if0=(1- oz)? +a
This requires satisfying (8.52) but if '@ = @, there is no solution, and this
is the case since the translation @ is along the axis of the rotation «. So, the
screw axes cannot be eliminated.

Iterating a screw axis operation we must obtain a Bravais translation.
Since a belongs to the Point Group, a™ must be the identity for some integer
n ; then (8.46) implies (| @)? = (@?|a@+@), (a|@)? = (a®|a?* T +a @ +7)
and iterating we find

(@] @)" = (a”| i " @) = (1,7). (8.53)
k=0

where T is a pure translation.
Let us write @ = @+ @ 1 where @ is normal to the rotation axis. The
condition (8.52) can always be solved to eliminate @, . Setting @ = @, it

follows that Zk 0 @@ =na and

T = . (8.54)

For instance, a screw-axis with an angle a = 7 can have a translation equal to
1/4,2/4 0 3/4 a Bravais vector. In the case of a glide plane, « is a reflection;
the above holds with n = 2, and @ + @ = 2@ = ¢ ; hence a glide plane
has a translation of half a Bravais vector.

International Notation

In the international notation®, a screw-axis with an angle o = 5 and a

translation equal to 1/4, 2/4 o 3/4 a Bravais vector is denoted by 41,42 o
45 . The international notation for a Space Group starts with a letter ( P

3International Tables for X-Ray Crystallography (1952)
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for primitive, I for body-centered, F for face centered, R per rombohedric)
followed by the indication of the Point Group. Thus,

4_2
F 3

m m
is the face centered Group with the O Point Group, with a Cy axis with
an horizontal symmetry plane, a C3 axis and inversion symmetry; this is
symmorphic,while the diamond Group

4,-2
F 3
d m

is not; d denotes a glide plane with a translation 1/4 Bravais vector.

Representations of the Translation Group and of the Space Group

Every ¥ labels a representation of the Translation Group , with eigenvalue

s
etk -t In general, one defines Rf(7) = f(R'7); so

— —
T = A N
(a,_’a)elk [3 61]{1 (o, @)= T

and using the inverse operation

— —
. — . _1—>7 —1—
(Q,E))elk T ik (@ 'T -« a)'

e
Rotating two vectors by the same angle the scalar product does not change;
SO we may write

N —
(a, @) BT = citaB)-(T-T) (8.55)

In terms of Bloch functions, (a, E’)wn(?, 7) yields a linear combination of
Ups (a?, 7), where n — n’ because in general Point Group operations mix
degenerate bands.

One defines Star of %k k the set {a?}. Higher symmetry points have
stars with fewer elements. For non-degenerate bands, % points of low sym-
metry corregpond to a single 1, but in general there is a subspace associated
to a given k point. -

The Group of the wave vector k or little Group is the Subgroup G? eqG

which consists of the operations («, @) (with @ that may be a Bravais vector

or not) such thet a does not change %
ok =% +G

with G in the reciprocal lattice (k vectors that differ by G are equivalent).
G? has the invariant Subgroup T? € T € G of the translations ¢ such that
i
etk -t — 1 The set of the basis functions of a representation of G- for all
the points of a star provide a basis for a representation of the Space Group
G. For further reading on this subject see [93].
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8.5 Young Diagrams

Young Tableauz for S(3)

Let us consider again the Group Cjs,. All operators can be expressed as
reflections or products of reflections (C3 = 0102,C3 = 0103); moreover since
o1 exchanges 2 with 3, etc., all operations are permutations and Cs,, = S(3).
In the irrep A; all the operators are represented by 1; in Ay the reflections
o; are represented by -1. The totally symmetric functions belong to A; while
those of Ay are totally antisymmetric under any o;. Young diagrams represent
the irreps of S(n) by schemes with n boxes. Horizontal lining of boxes is
associated with symmetrization, vertical lining with antisymmetrization, and
the length of lines does not increase. So the first diagram refers to A, the last
to Az and the intermediate one to E. Here are the Young diagrams for S(3).
Each diagram correspond to an irrep, and this fact is general. E corresponds

to a mixed symmetry; in the geometry of Figure 7.1 with 1 on the y axis,
the projector on the x component is

1 1 1 1
PJEIE) = 1—2(03+C§)—U1+2(02+03) = 1—201(02+03)—01+2(02+03),

(8.56)
that is, introducing the anti-symmetrizer A(2,3) = 1 — 07 and the sym-
metrizer S(2,3) =1+ o0y

P = A(2,3)[S(1,3) + S(1,2)]. (8.57)

A(2,3)5(1,3) and A(2,3)5(1,2) are mixed symmetries and project on E.
These projectors written in terms of symmetrizers and antisymmetrizers are
called Young projectors. They may be thought of as projectors on the various
irreps based on the regular representation. The three diagrams exhaust the
possible partitions of 3 in not increasing integers, that is, 3 =2+1=1+141.

The Young tables or Young tableaux are obtained from the Young dia-
grams by inserting numbers from 1 to 3 so that every line and every column
grow along. The tableau

123
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represents the projection operator S(1,2,3), the symmetrizer; the Young
projection operator A(1,3)5(12) is given by ; 2 but one can also

1
antisymmetrize with respect to 2, getting ; 3 . Finally, 2
3

projects on As.

The fact that there are two tables with mixed permutation symmetry is
due to degeneracy 2 of the irrep E. In general, in the Young tables for S(V),
the m-dimensional irreps occur m times.

Young Tableauz for S(/4)

S(4), has 24 elements and the following 5 irreps that may be found by the
above stated rules.

1234 is the 1-dimensional A; representation.

123 124 134 are 3 occurrences of a 3-dimensional irrep, while

4 3 2
12 13
34 24
is 2-dimensional,
1
12 13 14 9

3 2 2 is 3d and finally 3 is the totally antisymmetric ir-
4 4 3 4

rep. These correspondences are useful as it extends to all groups S(N) of
permutations of N objects. Thus, the irreps of S(N) are known for any N.

Young Tableauz for Spin Figenfunctions

Consider a system consisting of N spins 1/2 and a set of eigenstates |.S, Mg)
obtained e.g. by solving the eigenvalue problems for S? and S,. Any permu-
tation of the spins sends an eigenfunction into a linear combination of the
eigenfunctions with the same eigenvalues S, Mg; in other terms, the S, Mg
quantum numbers label subspaces of functions that do not mix under permu-
tations. Within each subspace, one can use projection operators to produce S
and Mg eigenfunctions that form a basis of irreps of S(N). For each symmetry
type (i.e. for each component of each irrep) there exists one solution.

For instance, for N=3 a quartet and two doublets exist. With Mg = g
the only state is | 111}, which is invariant for any permutation of the arrows;
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by the shift operators one finds that |3, )) = \}3(| T+ T+ LTT)). This

is invariant for spin permutations, too, and belongs to the A; irrep of S(3).
The shift operators preserve the permutation symmetry, and all the 2Mg + 1
states belong to the same irrep. The ortogonal subspace involving one down
spin yields two doublets; one is |%, 3) = \/12 [ 711)—| 711)] ; another one which

is not orthogonal is |27 2> [| 111) =] 111)]; orthonormalizing we obtain

1 1) = \/6 2] 111) — | TLT> — | 171)]. These doublets are not invariant for
Spln permutations; they are just the two components of the familiar irrep E of
the C3, permutation symmetry. Moreover, by the shift operators each yields
its |}, —5) companion. A quarted and 2 doublets exhaust all the 2% states
available for N=3, and there is no space for the Ay irrep. This is general:
since spin 1/2 has two states available, any spin wave function belongs to a
Young diagram with 1 or 2 rows.

Thus we realize that rather than solving eigenvalue problems we can be
smarter and obtain the eigenfunctions directly by Young projectors. The per-
mutation symmetry of the full many-electron wave function will be discussed
in Sect. 9.8.

Problems

°
O

e O e O o
O
°

a) b)

Fig. 8.4. a) The CuO4 Hubbard model cluster. b) The CusO4 Hubbard model
cluster.

8.1. The CuO,4 Hubbard model cluster

Consider the Hubbard model cluster in Figure (8.5 a)), belonging to Cy,
symmetry. (1) Find the irreps of the one-electron orbitals.

(2) Consider this cluster with 4 fermions, in the S, = 0 sector. Classify the
4-body states with the irreps of the Group.

8.2. The Cu;0,4 Hubbard model cluster
For the cluster in Figure (8.5 b)) classify the 4-fermion states in the S, =0
with the irreps of Cly,.



9 Product of Representations and Further
Physical Applications

9.1 Irreducible Tensor Operators

Let & = fllI/, where ¥ is a wave function and A some operator. Then, act-
ing with a unitary operator R, one finds R = A’R¥ = RAR' RW, where the
transformed operator is A’ = RAR'. Thus, functions are transformed accord-
ing to ¥ — RY¥ while operators are transformed according to A — RART;
actually the two rules differ by a matter of notation. R acts on everything
on its right, so in the case of operators the last factor R = R~! is there
just to ensure that the action of R is limited to A, while functions are at the
extreme right and there is no need for that. We can consider (z1,x2,x3) as a
set of functions or as the components of an operator. As functions that trans-
form as a basis of a representation of some symmetry Group, they transform
according to the rule

(1,22, 23) — (Rx1, Rae, Rr3) = (D(R)k1xk, D(R)rexk, D(R)r3xr);

this is the vector representation, which is irreducible in cubic and higher
Groups. If we treat them as a set of operators, we write

(z,y,z) — (RzR', RyR', RzR").

This defines a vector operator, but the linear combinations that result are
the same. A tensor is a set of operators T; (the components) that are mapped
into linear combinations by every R, that is,

T, 5 STt =3 TiD;i(9); (9.1)
J

the multiplication Table is followed since

T; ™2 RSTiSTRY = 3 T3D;:(RS). (9.2)
J

If the representation is the irrep «, we can speak of the irreducible tensor
operator T(® and in any representation all its components are mixed by the
Group operations. In GL(n) a tensor of rank r is a set of operators T such
that
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To/é(l)704(2)7‘“704(7‘) = Z Ao (1)3(1)8a(2)8(2) " Ca(r)Br) TB(1).8(2). - B(r)-
B(1),8(2),B(r)

(9.3)
Given a second-rank tensor 7', one can build a symmetric tensor S;; =
Ti; + T}; and an antisymmetric one A;; = T3; — T);. Obviously a symmetric
(antisymmetric) tensor remains symmetric (antisymmetric) under the trans-
formations of GL(n). In general, the tensors of GL(n) are reduced into ir-
reducible parts by taking linear combinations according to the irreps of the
permutation Group S(r). Further reduction is possible in subgroups of GL(n).

Tensors in Polar Form

Under the operators of O"(3) the ITO transform like spherical harmonics.
Therefore, the following polar form is expedient. For a vector, the polar com-
ponents are x,,, m = 0, =1, where, using a traditional notation,

T+ T —1
Ty = — \/2y o =2,T_1 = — \/2:1/7 (94)
and transform according to
Rep R~ = 2,D},.(R), (9.5)

where D} (R) represents the rotation in the basis of the spherical harmonics
with [ = 1. It is natural to put the basis vectors in polar form too,

oL — e+ ies o — e o1 — el —ies
+1 — — \/ y €0 — €3,€6—-1 — —
2 V2

In this way the expansion of a vector in the basis, V' = Z?:l V;e; is replaced
by

(9.6)

1
V=S (5)"Vien. 9.7)
m=—1

The scalar product of two real vectors V' and W in polar form is

1
VW= Y ()" W, (9.8)

m=—1

as one can readily verify. The advantage of the polar form is that now we can
generalize to an ITO of any rank of OT(3). The definition of such an ITO is

RT{VR™' = ZT("’ DY(R (9.9)

For instance if 7y denotes the representation with J = 0, then ¢ = 0 and T is

a scalar; if v denotes the representation with J = 1, then ¢ = 0, +1 and 7'

1)

is a vector in the polar representation; in general, Tq( transforms like Yq(l).
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9.2 Direct Product Representation

Direct Product of Matrices

From the pair of matrices

Ao (o) p_ bi1 b12 ’
a21 A22 b21 b22
one can build the direct product, thet is, the block matrix

a11b11 a11b12 a12b11 a12b12

B _(anBai2B\ | ai1b21 a11ba2 ai12b21 a12b22
D=A® B = =

a21B axB a21b11 a21b12 az2bi1 azebio

a21b21 a21b22 a22b21 a22b22

Note that TrD = TrATrB.

We can number rows and columns as usual and say for instance Doy =
a12ba2, but for direct-product matrices a different rule is used. One denotes
the matrix element by a pair if row indices and a pair of column indices, so
a12b22 = Di2,92. In general, Dyy ;5 = aribp; is the element of a mn x mn
matrix D = A® B, where m and n are the sizes of A nd B respectively.

Direct Product of Representations

Further important developments of the theory of symmetry are needed for
systems that consist of parts (e.g. two electrons, spin and orbit of an electron,
one electron and a vibration mode). One starts with two parts 1 and 2.
The basis can always be chosen as if they were independent, and any state
is a linear combination of products f(*(1)g(*(2), where fl(a), ) and

956)7 e gr(lﬂ ) are bases for irreps of dimensions m and n respectively:

Rff(g =Y, f,§;;<1>0;g)><3>, (9.10)
jo = E;:l 9p (2)‘Dpj (R).

are a convenient basis; they transform according to
R|aifj) = Z Z lakBp) DL (R)DS (R)

_szkﬁp D (R). (9.11)

Thus, the direct product matrix D@ = D @ D®) with elements

D (R) = D (R)DY? (R) is the representative matrix of R in what is

called the direct product representation. Its characters are
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XO(R) =" DA (R) = X (R (R). 9.12)
kp

It is almost a tongue-twister, but is a far reaching result: the character of
the direct product of two representations is the product of the characters of
the two representations. Great! We can now perform the usual analysis of
the product into irreps by the character orthogonality theorem. Consider for
instance the Group of the Square, and suppose that the two parts 1 and 2
belong to known irreps: their products define a representation of G and we
wish to reduce it:

Cuv I Cy 204 20, 204 g=2_8
Ay 11 1 1 1 z
Ao 11 1 -1 -1 R,
By 11 -1 1 -1 % — 2
Bs 11 -1 -1 1 Ty
E 2-20 0 0 (,y) (9-13)
Ao®B; 11 -1 -1 1 B>
BB 11 1 -1 -1 Aqy
E®A 2-2 0 0 0 E
F®FE 44 0 0 0 A1 ® Ay B D B>
In this way we can build a multiplication table for the irreps of Cly,.
Cyv A1 Ay By By E
Ay Ay Ay By B E
Ay Ay Ay By By E
By Bi By Ay A, E (9.14)
By By By Ay Ay E
A+ A
F E E FE FE
+B1 + By
Here A; occurs in the diagonal and only there because
Z 1- xR me BN(R) = bup. (9.15)

9.2.1 Selection Rules

Suppose the amplitude of a physical transition governed by some operator T
depends on the matrix element (¢|7’|¢) which is cumbersome and expensive
to compute. It would be disappointing at the end of a computational tour de
force to discover that the matrix element is 0, or that it is identical to another
one that we knew already. Group theory predicts which matrix elements must
be equal and which must vanish by establishing selection rules. Indeed, T is
some tensor component and 7" generates a representation I'(T); the states also
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belong to representations I'¥) and I'®) of the Group G. A matrix element
(¢|T|¢) is an integral, which is invariant, therefore it vanishes unless the
integrand gets some contribution from A;. If the reduction of I'?) @ I'T) @
') to irreps yields (among others ) Ay, then (¢|T]¢)) # 0, otherwise we
can dispense from the calculation of the matrix element since it vanishes by
symmetry. In other terms, the condition for a non-vanishing result is that the
reductions of I'™) and of I'(¥) @ I'¥) have at least one irrep in common. For
example, if one is interested in electromagnetic transitions in Cy, symmetry,
the dipole operator transforms like a vector (z,y,z), so one component is
in A; and two are in E. Thus one finds that a transition from B; to B,
is forbidden, while from the E states all the other states can be reached
by the in-plane component of the dipole, while £ — FE is allowed by the z
component.

Most molecules with an even number of electrons have filled shells con-
figuration in the ground state, which is total-symmetric!. Then, the excited
states that can be reached by photon absorption are those where one of the
components of the dipole is classified. A similar analysis can be done for the
infrared transitions between vibrational states that belong to the same elec-
tronic level. Clearly, the phonon vacuum belongs to A; and the one-phonon
states have the symmetry of the normal mode which is excited. On the other
hand, the Raman effect is a two-photon process in which the system goes
from an initial state |i) to a final state |f) by absorbing a photon of po-
larization vector €; and emitting another one of polarization vector e; and
different frequency. Emission and absorption are coherent, that is, they are
one quantum process, and the amplitude is given by the matrix element of
the operator

R = Z Rypq(€2)p(€1)q

pq

where R, o< 2,74 is the Raman tensor. From the symmetry viewpoint, what
matters is that the components of the Raman tensor transform like z,zq,
and this determines the selection rules. In systems with inversion symmetry,
the normal modes must be gerade or ungerade (even or odd). Only ungerade
modes are infrared active and gerade ones are Raman active. For instance,
infrared and Raman spectra of Benzene have no frequencies in common.

9.3 Reduction of the Direct Product Representation

From the mq-times degenerate irrep a and the mg-times degenerate irrep 3
one forms a direct product representation I'(®) @ I'(®) of dimension m,mg.
We have seen how the direct product representation is reduced; but it re-
mains to be seen how the basis separates in symmetry-adapted bases. By

1See the Section 9.5.2on the Jahn-Teller effect for a justification of this state-
ment.
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inserting a complete set one can go, with a unitary transformation, from the
basis {|ai37)} of the direct product I'(®) @ I'(®) to a basis of functions that
transform according to irrep I of the Group G.

irreps Mey

By = > Y ) (yrlaisy). (9.16)

The coefficients (yr|aiBj) are the Clebsh-Gordan (CG) coefficients of the
Group; in the case of the rotation Group O(3) they are the well known co-
efficients (LM |Ly M, Ly Ms). For a point group, the CG coefficients are even
easier to find than for O(3). One forms a table R|aiBj),i = 1,---mq,j =
1,---mg, R € G, of the effects of the operations on the direct-product basis,
then combines them according to the projectors. In order to decompose the
D matrices, we want a basis change, obtained by inserting complete sets:
D\ (R)DYY (R) = Di2%)(R) = (akfBp|Raif3i)
= _{akfplys) D (R)(yr|aifs). (9-17)
yrs

This corresponds to the familiar use of CG coefficients for the sum of angular
momenta (for an example, see Problem 9.1).

9.4 Spin-Orbit Interaction and Double Groups

Up to now we have considered only the Group of transformations of the
space orbitals, ignoring spin. The spin-orbit interaction makes the problem
less symmetrical: as an example, a Hydrogen level of angular L # 0, 2(2L+1)
times degenerate, separates in two levels Jx = L +1/2, degenerate 2J4 + 1
times.

The spin, alone, or in an A; orbital, yields a representation of the opera-
tors. The rotation around to the z axis by an angle w is done by
_ —ivo._ (€2 0 _ wy o LW
R,=e"27 = ( 0 eiﬁ) = cos(2) io, Sln(2) (9.18)

and belongs to the SU(2) covering group of SO(3). For w =27, R, = —1. If
we rotate around axis m, since (o - n)? =1,

@

R, =e '29m = cos(;}) +i(o-n) Sin(;) (9.19)
and for w = 27, R = —1 anyway?; this is a rotation that commutes with any

other symmetry.

2a closely similar formula with the 4 x 4 matrices X in place of o is the starting
point of the Group theory using Dirac’s equation. In this section we assume that
the Pauli theory with the relativistic corrections is adequate.
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Following Teller (1929) we indicate with E the 27 rotation around an
arbitrary axis; E = F for a function without spin and £ = —FE and for the
spinor representation: in both the cases, E commutes with all the R € G.
Adding E to the generators of the symmetry Group we obtain the so-called
double Group G’ which has, along with every R € G, also ER.

E alone is a class. A rotation by a forms a class with 47 — o i.e. its inverse
in G’, since the two operations are conjugated by a vertical reflection or by
another rotation. Reflections times £ may form a separate class.

Since E? = E the eigenvalues are +1. By Schur’s lemma, D(®)(E) =
+D)(E) Va, so (Y (ER) = £x(*(R).

Among the new irreps, where the - sign holds, the spinor representation is
always there; it is suitable for an electron in a total-symmetric orbital. y(E) =
—2; rotation by w about m are represented by the SU(2) matrices D(w) =
e~ 2%, Since the characters are invariant for unitary transformations, we

e7'2 0
;» | . Thus the character
0 ez

may take n along the axis z: thus D(w) = (
for spin 1/2 is
XD (w) = 2COS(;}).

If the inversion 7 is in G, it leaves spin and any angular momentum invariant,
so D(i) = D(E) and x(i) = 2. The reflections and all the improper rota-
tions can be written like products iR,,.> In such a way, we can complete the
characters of the spinorial representation®. This describes an electron with
an orbital Al.

The above information is enough to build easily the character table for
G’ from that of G, without having to work out everything from the multi-
plication table. Having listed the classes, one can append the irreps of G,
with x(®)(ER) = +x(®(R). Then one appends the spinor representation,
and knows how many irreps are missing to reach the number of classes. The
sizes are found by the Burnside theorem, and the LOT allows to find the
characters. As an example, we can extend from Cs, to C}, .

(9.20)

2
i, E E CC?%% ci% 30, 30,E
A11 1 1 1 1
A, 11 1 1 -1 -1
E 22 -1 -1 0 0

Eyp 2-2 1 -1 0 0
s 1-1 -1 1 4 —i
' 1-1 -1 1 —i i

3Example: a reflection in (zyz) — (zy — z) in the (x,y) plane can be obtained
as a rotation (zyz) — (—z — yz) followed by .

4The character tables for the most common double Groups are available in the
literature, and some are reported in Appendix B
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The A}, Ay and B’ irreps have the same charcters as in Cs,, and Ej/; is
the spinor representation. Since the classes are 6 two irreps are missing, and
since the sum of the squares of the dimensions must be 12, the new ones
are one-dimensional. By orthogonality, we find that they are conjugate rep-
resentations as shown above. At this point the reader could solve Problem
9.4.

In a physical problem, one can begin by classifying the space orbitals
according to G and then extend the theory to G’ including spin. The direct
product of the orbital irrep by the spinor representation will include the
spin. In general , the result will be reducible in the double Group applying
the LOT. We will be able to thus establish how the spin-orbit interaction
reduces the degeneracy in the problem in issue. For example, if the orbital
belongs to A; or Az of C3,, the spinor belongs to E /5, and no level splitting
occurs; if the orbital belongs to E the product representation has dimension
4, but one finds that in C3,, E® Ey/5 = Ey/5 + IS+ 716,

9.5 Static and Dynamical Jahn-Teller Effect

9.5.1 The Born-Oppenheimer (BO) Approximation

The total Hamiltonian of a system of electrons and nuclei may be written,
with R for set of nuclear and r for the electronic cordinates,

Hiot(r,R) = T.(r) + Tn(R) + V(r, R) (9.21)
where T (r) and T (R) are the electronic and nuclear kinetic terms, and
V(r,R) = Vee + Ven + Van (9.22)
contains all interactions. The Schrodinger equation
Hiot(r, R)W0t (1, R) = WW0i(r, R) (9.23)

is intractable. In order to separate variables approximately, one keeps the
nuclei fixed (Ty =~ 0) introducing the adiabatic electronic Hamiltonian

H.(r;R)=T.+V(r,R) (9.24)
where the R dependence is only parametric; the Schrodinger equation
Hewn({m R) =FE, (R)Wn(r, R) (925)

yields the adiabatic eigenstates ¥, (r; R) and the potential energy surfaces
E,(R). This is the BO approximation, which further assumes that if nuclei
move their evolution is confined to an adiabatic surface, and the harmonic
oscillations about equilibrium correspond to the minimum of Ey(R).



9.5 Static and Dynamical Jahn-Teller Effect 189

Below we adopt a compact notation, writing the nuclear kinetic energy
2 2
Ty = 51@ 6(3%2 and understanding indices and summations. The nuclear wave
function is then expected to be given by”

h? o2
~ons oz X T Eo(B)IX(R) = Wx(R). (9.26)

Summarizing the BO approximation:

— the positions of the nuclei are external parameters that determine the
Coulomb external potential in which the electrons move, and the Hamil-
tonian H(R)

— the momenta —thV g canonically conjugated to the nuclear positions are
ignored. This assumes that the nuclear masses are infinitely large

— The equilibrium configuration corresponds to a minimum of the total

energy:
Eo(R) = (¥o|H|W) (9.27)
0Ey
=0. 9.28
oR ( )
(55% = 0 represents extremum conditions in all the components of the

nuclear position vectors)
— the electronic states are calculated at the equilibrium configuration and
Ey(R) is the potential energy for the nuclear motion.

9.5.2 The Jahn-Teller Theorem

CH, is a tetrahedron (T; Group), SFs an octahedron (O, Group), and
snowflakes have beautiful regular shapes. Why are so many molecules and
solids highly symmetric in Nature? Is a mazimum symmetry principle to
be discovered? Although the concept of symmetry is central to quantum
physics, from solids down to subnuclear particles, the answer is definitely no.
Bloch waves that carry crystal momentum and Hydrogen states with angu-
lar momentum are less symmetrical then the respective Hamiltonians. Many
atoms and nuclei have non-spherical ground states. Yet, the regular shapes
of molecules and solids is striking since there would be an infinite number of
ways to move the nuclei and seek for a lower energy configuration; we must un-
derstand why such molecules cannot gain energy from any distortion. Within
the Born-Oppenheimer approximation, the Jahn-Teller Theorem provides an
answer, for the 32 point Groups: what matters is degeneracy. The electronic
cloud needs to be degenerate, otherwise the electrons do not have enough
degrees of freedom to lower the symmetry; on the other hand, if there is de-
generacy, a suitable deformation always exists, except for linear molecules.

®In Equation (9.41) below we shall see that this statement although reasonable
is a bit too simple-minded and actually something is missing.
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The CHy ground state is non-degenerate in the T; symmetry; but by remov-
ing a bonding ¢ electron the CH, ion distorts until the symmetry Group
becomes Abelian.

Initially proposed as a computational aid which exploits a given symmetry
of the Hamiltonian, Group Theory eventually dictates which symmetries are
allowed or forbidden at all.

Mathematical Formulation of the Problem

We want a criterion to decide if a given configuration R of the nuclei in
the BO approximation can be the equilibrium one, according to (9.28). We
must minimize with respect to the shifts of the nuclei from to the reference
configuration R; but first, we eliminate the rigid shifts of the molecule by
using the normal modes of vibration of Section (8.2) instead of the nuclear
positions. These modes are labeled by the index « of the frequency and by
an index 7 for the degeneracy and multiplicity (the same symmetry can occur
several times). The amplitude of the motion according to a normal mode
is specified by a normal coordinate ¢, and we must minimize E(q), where
q = {¢¢} stands for the whole set.

Actually, we do not have any analytic expression of E(q) to differentiate.
Therefore, we expand the Hamiltonian H around R in powers of ¢, letting
Hy = H(R); this enables us to find the correction to E(q) by perturbation
theory. The correction terms of H yield the interactions between electrons and
vibrations, also called the vibronic couplings. Including up to the quadratic
terms, we find

H = Hy+ Z Vaiqga) + Z Z Waigkngg. (9.29)
[e% af ik

The equilibrium condition is that the average first-order corrections to the
energy vanish.

In the Born-Oppenheimer approximation, V,; operates on electrons; the
true Hamiltonian depends quadratically on the momenta p$* canonically con-
jugated to the ¢*. If we take into account the momenta, we go beyond the
Born-Oppenheimer approximation; one then speaks about the dynamical
Jahn-Teller effect, see next Section. Note that V* and ¢ must transform
in the same way, as H must be a scalar and in the table of the direct prod-
ucts Ay appears only on the diagonal. We do not mind ViA1 here: such terms
do not distort the symmetry. ¢ The equilibrium condition is

(H') =3 (Vaidg!® = 0. (9.30)

at

Since the ¢\®

, are linearly independent we really need

(Wo|Vai|®o) = 0. (9.31)

S Actually, they could in principle only increase it: with a A; motion the water
molecule could be straightened and become a Do molecule.
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Non-degenerate Case

If the ground state is not degenerate, I'(Po¥) = Ay and (¥y|V,i|¥s) = 0 for
a # Aj. So, all the nuclei move, keeping the symmetry of the molecule, until
(lI/o|Vi(A1) |@o) = 0. This 0 is not due to the symmetry, but to the existence of
a minimum of energy versus breathing mode coordinate: we can vary a bond
length or an angle until the condition is satisfied.

Degenerate Case

When HOIIID(O) = EOWLEO) is solved by several %(O), we must apply degener-
ate perturbation theory, diagonalizing the perturbation matrix with elements
<W£O)|H ! |WLEO)>. If the eigenvalues do not vanish all identically, one predicts

a splitting linear in the q(a)

, of the degenerate level, a lowering of the sym-
metry and a distortion of the molecule. The only Hermitean matrix that has
all eigenvalues equal to 0 is the null one. Thus, for equilibrium we need to

satisfy the strong condition
(@0 |Vis | #8) = 0 Ve, 0, p. (9.32)

Now we must examine the normal modes occurring in the assumed geometry
in order to see if any generates matrix elements that destroy the symmetry.
Let I'Y denote the irrep where Wéo) belongs. The Jahn-Teller effect is caused
by a normal mode belonging to an irrep o # A; which is contained in I'°® 1.
In such cases there is no reason why the matrix elements vanish, and the
molecular configuration is unstable”.

In 1937, Jahn and Teller demonstrated that for a non-linear molecule
with degenerate ground state irrep 'Y, a vibration w,, always exists such that
'™ # A; is contained in I'°® I'?; this implies that the fundamental electronic
terms of non-linear molecules are not degenerate (even if not necessarily total-
symmetric). The proof is obtained by repeating for all the 32 point Groups®
the same analysis that we now exemplify in the case of T}.

FEzxzample

We resume C'Hy (Sections 8.1.2,8.2);

Td FE 803 302 60’d 654 g = 24

A 1 1 1 1 1 r2

Ay 1 1 1 -1 -1

E 2 -1 2 0 0 (322—7r%2%2—9?%
T 3 0 -1 -1 1 (Rs, Ry, R>)
Tm 3 0 -1 1 -1 (z,9,2)

“One speaks about pseudo-Jahn-Teller effect when the distortion is caused by a
vibronic coupling of close energy levels of the same symmetry.
8when other Groups are appropriate the situation needs verification.
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The degenerate irreps of the Ty Group they are E,T7 and Ts, and
EQRQE=A0AETIRTI=ThT,=A1®dFE0T,dT, (933)

We saw Iy = Ay + E + 2T5. Therefore at least one Jahn-Teller active
vibration , able to distort the molecule, exists for any degenerate state. The
considerable width of the to level of C Hy seen in photoemission is due just to
the fact that the ionization excites the vibrations of the molecule compelling
the nuclei to seek a new equilibrium new position. The distortion must remove
the degeneracy completely. The basis of an irrep of a Group G is also a basis
of a representation of every subgroup of G, since by eliminating some matrices
the remaining ones continue to obey the multiplication Table of the subgroup;
but usually the representation is reducible. As an example, from Ty one can
go to Doy, e.g. by stretching the tetrahedron along the z axis. This stretching
completely resolves the degeneracy of electronic states of symmetry E, but is
not enough for 75 states. Under Ty, the characters are:

Ty E 8C3 3C5 604 654 g=24
E 2 -1 2 0 0 (322-r%2%2—1¢?
T, 3 0 -1 1 -1 (2,9, 2)

while the Character Table of the Subgroup is:

Doq E Co 2C% 204 254
Ay 11 1 1 1

A 11 -1 -1 1
B 11 1 —-1-1
B, 11 -1 1 -1
E 2-20 0 0

C3 is broken; for Ty there is no distinction between Cy and C%, therefore
one of the 3C5 one goes under Cy, and two under C}. We then consider the
operations of T, that survive in the Dag subgroup. The D(R) are the same,
even if they are not irreducible any more, and they have the same traces. We
place the characters of the surviving operations under the classes of Ds4, and
analyze the representation. For the degenerate ones one finds

Dyy E Cs 2CY 204 254 analysis
ETy22 2 0 0 AoB
To(T) 1 -1 -1 1 -1 E®B,

therefore the distortion is enough in the first case but not in the second. This
analysis cannot determine the type of distortion uniquely.

Linear Molecules

Why is CO5 straight? For the linear molecules the theorem does not apply.
Let A denote the electron angular momentum parallel to the molecular axis.
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In molecules with A = 0 degenerate the electronic ground state is unique and
there is no problem. In those with |A] > 1, the states +/A are degenerate.
Therefore between the unperturbed states AA = 2,4,6... In order to resolve
the degeneracy it would be necessary to fold the molecule; but no fold can
occur since the vibronic matrix element vanishes: f U V_, = 0. In fact,
a shift of a nucleus outside of the axis is a vector (cos¢,sin ¢); the matrix
elements are subject to the rule of selection rule AA = +1. Therefore the
matrix elements vanish and the degeneracy remains.

9.6 Non-Adiabatic Operator

In the BO approximation the evolution is confined to an adiabatic surface®
and one could expect to derive Equation (9.26) for the nuclear motion from
the ansatz:

Yirial (T‘; R) = X(R)WO (T‘; R) (935)

This is not exactly true, as we shall see shortly. Let us look for the best
solution of the form (9.35) variationally, with a given ¥y(r; R), looking for
the x(R) that yields the minimum of the energy

E - <Htot> - <TN + He> (936)

Again we adopt a compact notation, writing the nuclear kinetic energy
2 2

Th = gf\} 681%2 and understanding indices and summations. One looks for

the unconditional minimum of

_h2 KT,k 82 *
Fix) = 5y [ drdR x5 ot + [ dR (R E(RIXR)

W / ARy (R)x(R) (9.37)

where W is a Lagrange multiplier that ensures normalization. Using

o o 0l%o) d|x) o2
Yy) = |, 2 Y
o2 X0 = 0] o DO 2 5 TN g 1700

If in Ro one has degenerate wave functions,
U (r;Ro), n=1...v (9.34)

with
He(r; Ro)Wn(r; Ro) = E(Ro)¥n(r; Ro),

the topology of the surfaces is important. For conical intersections, when the sur-
faces cross each other, one speaks of Jahn-Teller effect; when surfaces touch at ex-
tremal points one speaks of Renner-Teller effect [5]. However, the JT theorem limits
the occurrence of glancing intersections to linear molecules (and to cases when the
gradient is accidentally vanishing or particularly small for reasons independent of
Group theory).
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one finds

h? , 0? o Oy O
Fil =, {/dRX 8R>§+2/drdR v 6562

oy
/dRX X/erDO 3R2}
/ dRx*(R)Eo(R -w / dRx*(R

We vary the bra (variation of bra and ket produces identical results).

. n? 92 oV,
6F:/dR6X(R){ ot ope X M(/d% °>

73\24 (/ dr g aRﬁ) X(R) + (Eo(R) — W)X(R)} =0.  (9.39)

(9.38)

This implies:

h? 92 R oWy dx
“onr greX T EENXE) =, (/d o aR) OR

—27;\2/[ (/ dr&§ g;g) X(R) = Wx(R) (9.40)
The minimum condition is
n® 92
ot e X B BRX(R) + ARIX(R) = Wx(R)  (9.41)
where the non adiabatic operator appears
2
A(R) = —Z (/d r&g %fg) 381% 27;\/[ (/ dr&§ (9;]%@20) (9.42)

This has been often ignored in the literature; the reasons are that 1) the first
contribution, averaged over real electronic wave functions vanishes since

/dr!llo(r;R) aaRJ/o(r;R) 9 9R /er’o r; R)Wo(r; R);

2) the second contribution is small (of order 7). It will be apparent shortly

that such reasons are not generally as safe as they may appear to be.

9.6.1 Dynamical Jahn-Teller Effect

At strong vibronic coupling , the energy surfaces have Ngey deep and distant
minima and the nuclear degrees of freedom can hardly tunnel between them.
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Then, the kinetic energy of the nuclei does not play a role, and one can
observe a static JT effect with broken symmetry. At weak coupling, one
speaks about dynamic JT effect and the system oscillates between several
minima; the overall symmetry remains unbroken!?. The JT approximation
to the solutions of Hy, Wt = Wwt°t ( Equation 9.23) uses as a reduced basis
set the Ng.q degererate adiabatic functions in the symmetric configuration
Ro :
Ngeg

Wil (r, R) Z X (R) W, ( (9.43)

here ¥, (r) are assumed known, and one seeks the nuclear amplitudes x, (R).
Substituting into Equation (9.23) and taking the scalar product by (¢,,| leads
to

/dw;(r;Ro [Hiot = WD xa(R)W(r) = 0, (9.44)

that is,

/dmp [TN+T()+V7"R }ZXH @, (r) =0,

where Te(r) + V(r, R) = He(r, R). By orthogonality,

h? 92 .
ot o B+ R / dr, (: Ro)Ho(r, )P (r) = W (R).
(9.45)
Defining

Vin(R) = / dri, (r; Ro)He (r, R) W, (1) (9.46)

we get the coupled problem

h? 92

~ ot g2 (B) + Xn: Vinn (R)Xn(R) = Wxm(R). (9.47)

or in matrix form

0The distinction between dynamical and static JT effect usually depends only
on the time scale of the experiment. For example, (Cu-6H20)"" ions look perfectly
octahedral when observed at room temperatures in EPR experiments, but below
20 °K or with fast spectroscopies it is seen that this symmetrical configuration is
the time average of stretched and compressed ones as the top and bottom H20
molecules oscillate up and down. On the other hand, X-Ray diffraction at room
temperature shows that (CuBre)?™ ions is a tetragonally distorted, stretched oc-
tahedron; the latter is classified as an example of static JT effect. It should be kept
in mind, however, that the JT approximation may fail completely, as it does in
strongly correlated models with strong electron-phonon coupling [71].
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Vii(R) ... Vi, (R)
R 9? S

Hir==grrope +

(9.48)
Via(R) ... Vo (R)
9.6.2 How the FE X ¢ Hamiltonian arises

In the popular E X € problem two degenerate potential energy surfaces with
electronic wave functions (¢, 1,) of E symmetry interact with degenerate
vibrations of the same symmetry !; let (g, gy) be the normal coordinates.
Neglecting anharmonic terms, (9.29) reads

H, =q,V(z)+q,V(y) + K¢ (9.49)

Here, V(:):), V(y) transform according to E and represent the operator poten-
tial due to the phonons acting on the electrons; K must belong to A; and
¢*> = ¢} + q;- Then, (9.48) becomes

= R A a?+ (
T ToMoagz T aMag: Y

))zy -\ 2
) >+<K>q. (9.50)

Group theory dictates the form of the vibronic interaction; for illustration, we
adopt the geometry of Figure 7.1 of Section 7.2.2. (z,y) is a basis for E; for
the present purpose, however, we shall use an alternative basis for F in Cj,,,
with the same D matrices, namely, (fz, f,) = (2zy,x? — y?). It is is evident
that 2zy transforms like x and z2 — 42 like y in the chosen geometry, since
2zy is odd and 2? — y? even under the oy reflection. For any basis (fs, fy) of
E, we know from (7.46) that (f;|y) = (fylx) = 0 and that (f;|z) = (fy|y).
Therefore, if now (1,1, ) are electronic states and are a basis for E, ¢3 + 12
belongs to A; and for the V' (z) elements we find:

[dr(¥z —vg)V(y) = 2A =2 [ driey,V (@),
Jdr(@z +95)V(y) =0= [dr(v; +¢5)V(2), (9.51)
[dr@? =)V (x) = 0=2 [dri.,V(y).

Thus, V(z) has equal off-diagonal matrix elements on (¢,,) and nothing
on the diagonal and V (y) has opposite diagonal elements and 0 off-diagonal;
this is clear already when one considers the o, parity. Thus, the form of the
JT hamiltonian in the E X € problem is:

K 92 B% 92

Hyp = — -
T 7 9M 92 2M6q§+

Maoos + ay0:] + (K) (@2 +q2). (9.52)

1 The Nas molecule offers a simple example of this sutuation.
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The second-quantized version is:

Hyr = (alags +1/2)hw + (alay + 1/2)hw + X [(al + ag)ow + (af + ay)o] ;

(9.53)
(two levels and two-bosons problem) and is among those exactly solved by
the method of Excitation Amplitudes (See ([77]) and Section 14.77 ).

9.6.3 Nuclear Wave Functions Cannot be Taken Real

The BO wave functions are readily found in the M — oo limit, and the result
is very interesting. Letting ¢, = ¢ cos(), g, = gsin(6)),

Hypr — +A [QIU:D + Qyoz] + <K>q2 = )\(]M + <K>q2' (954)

with .
- () ).

(K)q? is an additive constant, and Hyp is the Hamiltonian 12 for a spin
in a magnetic field B = (¢z,0,qy). The above matrix M has eigenvalues
41, and the potential energy surfaces are obtained by rotating two intersect-
ing parabolas around the energy axis. The eigenstates corresponding to the
eigenvalues +1 of M are

(0/2+7/4) sin(0/2 + w/4)
X-(0) = (—CZisn(G/2+7r/4)> (0= (cos(0/2+7r/4)> - (9.55)

These wave functions change sign under a 27 rotation. This is normal in
spin-dependent problems (see Section 9.4) but is striking and unacceptable
in the present problem; of course, the nuclear wave function must be unique.
Indeed, one can have the unique wave function, by inserting a phase factor,

072 [ cos(0/2+7/4) _ig/2 [ sin(0/2 + 7 /4)
x-(0) =€/ (—sin(G/Q +7r/4)> X+ (O) = (cos(0/2+ﬂ'/4)> :
(9.56)
but then the solution is complex. This means that the Berry phase (See Sect.
?7) is coming into play. For further information on this and other JT systems
one may consult reference [5].

9.7 Wigner-Eckart Theorem with Applications
Let |ai > and |3j > denote the components of bases of irreps I'* and I'”
(that could also coincide) and TZE'Y) the p component of an irreducible tensor

12The Hamiltonian given in Ref. [5] is obtained by a harmless rotation g, —
Qy,qy — —g= in q space.
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RTR™ =3 "TDY)(R). (9.57)
q

As the components i,p and k vary, one finds a number of matrix elements
< ai\T,SW)Wk: > that are all connected by the Wigner-Eckart theorem

Theorem 9.
(0d| T\ |BE) = (| T|B) (cxi|ypBE), (9.58)

where the reduced matrix element < «o||T0)||8 > does not depend on the
components;(«ilypBk) is the Clebsh-Gordan coefficient.

Since the Clebsh-Gordan coefficients are mere geometry, the dynamics
enters through the reduced matrix element. A formal proof is given in Ap-
pendix C, but an intuitive argument is also useful. A very crucial point in
that the tensor and the function spaces must be irreducible. If you know one
basis function of an irrep you can build all of them by the Group operations
and orthogonalization; and the same is true of the tensor components; then
it is at least very plausible that all the matrix elements can in principle be
obtained by symmetry from the knowledge of any non-vanishing one of them.
Based on this, the theorem is then most simply understood. Suppose that by
direct computation we obtain a particular element <ai0|T]§8’)\6ko> =Q #0.
Next, we decide to look at the system from a new transformed reference ob-
tained by some R € G; then, |aig) , |Bko) and Tlgg) transform to linear
combinations of all the components, still remaining in their irreps; however
the matriz element is still Q. Varying R, we can write a system of linear
equations linking the components, all with the same right-hand-side. Are all
those equations must be compatible, and since there are enough relations to
determine < ai\Tq(A’)\ﬁk >, one can solve and each matriz element must be
proportional to the only r.h.s. Q. Any two tensors T and T’ of the same ir-
rep generate the same system, except that the r.h.s. are Q and Q’; so they
must yield proportional results. There is a particularly simple tensor defined
by T)|Bk) = |ypBk) which yields the theorem with < o||T™)||3 >= 1. For all
the other tensors the theorem holds with some reduced matriz element.

Simple Applications

The theorem reduces the calculation of a tensor to one of one its components.
It implies less that in a symmetry adapted basis all the irreducible tensor
operators have the same elements matrix elements, up to a multiplicative
constant. We can choose the most comfortable operator (as long as it does
not have a null reduced matrix element). As an example, in O(3), j = 1 labels
the irrep of vectors and Tq(l), q = 0,%£1 is a vector operator in polar form.
Therefore, its matrix elements are proportional them to those of j, that they
are easy to calculate in this basis:
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(Gm|T|j'm’) = C(jm|J|j'm’). (9.59)

To determine the constant C, it is enough to compute explicitly (jm|T|jm).
Often it is easier to calculate the matrix elements of the scalar T - J. Indeed,

Gm|T - J|jm) = > (jm|T|jm’)(jm|T|jm) (9.60)

m/’

but this is simply

C > (GmlJ|jm/)(jm/[J|jm) = CJ(J +1). (9.61)

m’

For example the nuclear quadrupole moment is the tensor

Qi = Z 3TpiTpk — &kri, (9.62)
p

where x,; is a Cartesian component of the radius vector r, of proton p in
the nucleus. It is a traceless symmetric tensor and we can replace it with the
tensor with components

Qik = 21(23[@_ l)IiIk + I l; — zdikﬂ, (9.63)
built with a constant Q (named the quadrupole moment) and withthe com-
ponents of the nuclear spin I. In a similar way one can build an atomic
quadrupole moment tensor from .J.

The spin-orbit interaction is Hgo = ), ¢I(i)s(¢) in many-electron atoms,
where I(4) is the orbital angular momentum of electron i , s(i) is its spin;.
Since I(7) is a vector like the total orbital angular momentum L and s(i) is
a vector in spin space like the total spin angular momentum S, the Wigner-
Eckart theorem allows to write

(LMLsMg|Hso|LMLsMs) = A(LMLsMg|L - S|LMLsMs),  (9.64)

where A is a constant.

9.8 The Symmetric Group and Many-Electron States

For an N —electron system, let qbz(-a) (z1...xn) denote an amplitude depending
on the space coordinates only and transforming according the component ¢
of irrep (a): if P denote a permutation,

Pl = Z o\ D (P). (9.65)
J
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Let Xﬁf’ )(01 ...on) denote an amplitude depending on the spin coordinates
only and transforming according the component ¢ of irrep (), such that

(5) Zx(ﬁ)D(ﬁ) (9.66)

When permuting the electrons, i.e. doing the same permutation on spins and
coordinates, the wave function ¥ must go into itself up to a sign, therefore
components must enter symmetrically, like in

v=> oix. (9.67)
k

Is ¥ a fully antisymmetrized wave function? One preliminary condition is
that both irreps must have the same dimension m. Next, we impose

PU = (—)Pw = i[w;‘*)]m;ﬁ)}; (9.68)
k
using (9.65,9.66) we find that this requires
ZD(‘” )DLUP) = (=)P 6. (9.69)
Since the identity permutation is represented by the identity matrix, it is
readily seen that this holds if

DI)(P) = (-)P D) (P, (9.70)

Two irreps that satisfy the condition (9.70) are conjugate or associate. We
saw in Sect. 8.5 that the spin eigenfunction have a Young tableau consisting
of up to two lines. The following [N — M, M| two-line tableau (left) with
N — M integers denoted a; - - - an—ps on the top line and M integers denoted
b; - - - bpys on the bottom line is suitable for a spin eigenfunction symmetry of

spin S = ?( — 2M) (Equation 9.71, left); then, the conjugate tableau is
[2M 1N=M] as shown below (right).
aq b1
ag bg
ay ag .. ... . .AaAN-—-M ’ )
bl bg ..... b]\/[ ’ ’ (971)
bm

aN—-M
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9.9 Seniority Numbers in Atomic Physics

Let by, (x) denote the d orbitals of an atom; under the rotation of an angle

a, that we denote Ry = ¢ n € O7(3), they transform according to

Ratm(x) =Y ¢n(@) D, (Ra), (9.72)

where [ = 2 and D! (Rg) is the Wigner matrix; therefore {1/, ()} is a basis
of the irrep [ = 2 of O*(3). However, D!, (Rq) also play a second role: the
transformation

Y (@) = Ry (@) =Y (@) Dl (Rar), (9.73)

qualifies ¥, (x) at fixed x as polar components of a vector under SU (21+1) =
SU(5), and so D!, (R) € SU(2l + 1). For the same reason

Tmn(m17 :131) = 1/)m(5132)¢n({132)
Trnp(T1, T2, T3) = Y (1) Y0 (2)Yp (T3) (9.74)

for fixed points z;, are components of tensors of rank 2,3, .-, respectively.
The permutation of two indices of a tensor commutes with the operations of
the Group; so the tensors that belong to irrep of Sy of permutation of the
indices are the bases of the irreps of SU(5). With 2 indices, the possibilities

are
Tm n = Tmn + Tnm

(9.75)

Tm is associated with triplet states, while Tm 0 to singlets. Let us see how

n
we can classify the singlet states of d?configuration using the polar T},, of
(9.74) projected into . In obvious notation (m; T,mso |) for the two-
electron determinants, one finds by the shift operators

'Gr=a = (2,2)
'Gr=s = (1’2)+2(271) (9.76)
LGy = %6[(0,2)+522,§)]+4(1,1)
and by orthogonality
2((0,2) + (2,0)] — v3(1,1

V5 ’
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then LGy = [(71,2)+(2,—1)\]/2/6[(0,1)+(1,0)]
Lo = [(—2,2)+(2,—2)]+4[\(/—7é,1)+(1,—1)]+6(0,0) (9.78)
Do = 2[(72,2)+(2,72)]+[\(/71411,1)+(1,71)]72(0,0)

and finally

IS — [(_27 2) + (2’ _2)} - [(_1’ 1) + (1’ _1)} + (070)
V5 '

The form of 1S is remarkably simple: it is just a scalar product v - ¢ in the
polar form (9.8). Let us see how this calculation extends to the case of more
electrons, and higher rank tensors. With 3 indices, the irrep .. .. .. does not
take part in the construction of the states to 3 electrons since the function of

(9.79)

spin would have to be .. which cannot be antisymmetrized totally on a and

(. Thus one is left with .. (for quartets) and (for doublets). Actually

there are two doublets:
Tm n = A13512Tmnp = Lmnp + Tnmp - Tpnm - Tnpm

p
(9.80)
Tm P = A12513Tmnp = Lmnp + Tpnm - Tnmp - Tpmn

n
SU(5) has the subgroup OT(5) of proper rotations in 5 dimensions; on a

cartesian basis its representatives are orthogonal matrices such that a” = a~!
that is @ma@my = duy. Transforming any cartesian tensor according to

Té@n = Umalny Loy
and then taking the trace, that is, setting m=n and summing over n, one gets
Tr/Ln = anwanyTwy = 6xyTxy = Tww;

in other terms, the trace Ty, is invariant. For a tensor whose cartesian
components T,,, = v.,w, are the products of cartesian vector components
the trace becomes the scalar product Tp,m = Vpmwy,. Thus, in OT(5) the
traces acquire particular meaning. The invariance remains obviously true with
any number of components; for instance taking the trace of

/
Tmnp = UmznyQpz Txyz
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one finds

!
Tmmp = amwamyapszyz = 6wyapszyz = apszwz7

thus Ty is a vector. On the other hand a cartesian tensor of the form 75, =
duyv, is transformed as follows: T;yz = Umalny0pz0pyVs = QmalnzlpV; =
OmnGp-Vz, and retains its form.

The ¢ and the T' of Equation (9.74) are tensor components also for the
subgroup, except that since they are polar tensors the rule must be slightly
modified. In order to agree with the scalar product (9.8), the polar form of
the trace reads

TrT = (=)™ Ton,—m. (9.81)
For a cartesian tensor T,,,, of rank 3, one defines the traces:

TrAT = Ty
Tr3T = Thm (9.82)
Tr@3OT = Trpp-

Since the Tr operation commutes with the operations of the Group O*(5),
many irreps of SU(5) are no longer irreducible. Vectors are sent to vectors and
are bases of an irreducible representation of O™ (5). Traceless tensors are sent
to traceless tensors and are bases of irreducible representations of O (5).
Tm is traceless, while Tm n must be reducible. In fact, all the d? states

n

above belong to of SU(5), but in O (5) the invariant 1S is classified
in the (0,0) irrep (the notation means: no boxes in either the first and the
second line). The state with no electrons is already invariant, so this singlet
is assigned the seniority number v = 0. From of SU(5), in O%(5) one
can extract a traceless tensor which is classified in the irrep (2,0). All irreps
of O%(5) are labelled by (1, pi2), 1 > p2; the parentheses denote the space
of traceless tensors. Since (2,0) cannot be made with fewer than 2 electrons
D and 'F receive v = 2.

L, 12 . .
With 3 the 1-3 trace vanishes and the other two are equal in absolute
value; clearly, v, = Tr(1,2)Tm n is a b-component vector, so it deserves

p
to be classified in (1,0); it is obviously a doublet, so it corresponds to ?D.

The other doublet states 3P, 2D, 2F, 3G, 3H will correspond to the traceless

mn 6”gvp . This does not occur with less than 3 electrons

p
nor with orbital angular momentum < 2. These states deserve the seniority
number v = 3 along with 4P and 3F that are classified in (1,1) and are also
unprecedented.

tensor T(g.0) =T
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Problems

9.1. In a molecule of Cs, symmetry, two electrons are in orbitals of the irrep
E. Find the space part of the singlet wave function of A; symmetry (if any
exists) and the relevant CG coefficients.

9.2. In a molecule of (s, symmetry, two electrons are in orbitals of the irrep
E. Find the space part of the singlet wave function of As symmetry and the
relevant Clebsh-Gordan coefficients.

9.3. In a molecule of (s, symmetry, two electrons are in orbitals of the irrep
E. Find the space part of the singlet wave function of £ symmetry and the
relevant Clebsh-Gordan coefficients.

9.4. Build the character table for CY,,.

9.5. Consider the Cutt ion, with one configuration 3d°. How are the J =
3/2, 5/2 levels split by a square planar D) environment?



Part II1

More on Green Function Techniques



10 Equations of Motion and Further
Developments

10.1 Equations of motion for the interacting propagator

We used EOM several times (see Sections 4.3,4.4,5.1.2); now we extend the
approach used in Equation (4.39) for the free propagator to interacting prob-
lems. Using the many-body Hamiltonian (1.63) one readily obtains

o (@), H] = ho(@)a(a) +
S [y )0 @ W )0 (@), (10.1)
By

with all the operators in the Heisenberg representation (kg is a first-quantized
one-body operator), with the notation = (x,t;). We multiply on the left
by 9! (z) and perform an interacting ground state average:

iy~ @] (o) -

Z/dyw(w,y)w,w WL () oy (9) Y () 5 e > te. (10.2)
By

The order of operators in the Lh.s. is appropriate for g(™) (Equation (4.20))
if z is later, that is, t, > t,, and we assume this for the moment. For the
r.h.s. we must define the time-ordered two-particle Green’s function! and
understanding the spin indices, we write, still in terms of Heisenberg operators

Ga(w1, 2, w3, 24) = —(T (1) (w2) YT (w3)1" (24)]). (10.3)

Comparison with (10.2) is easier using the fact that Heisenberg operators
anticommute under 7' ordering , hence it holds that Ga(z1, 2,3, 24) =

—(T[T (z4)T (23)10(22)3(1)]) and
@WL)YE () vy () e (2)) = (—)Ga(z, 4,47, 2) (10.4)

where the notation y™ means that although ¢, = t, that particular y is just
later.

'Some authors use different orderings of the arguments.
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iy~ Ho(@)| ig e 2) =

Z/dy W (T, Y) 0pr ey (—)G2(z,y,y™, 2). (10.5)
By

Extending the calculation to ¢, < t, one finds that the Green function
obeys

[igt—Ho]g(T)(cct, z't) = 6(m—m’)6(t—t')—i/d:clv(x—xl)Gg(:Ct,xlt,x1t+,x’t')

(10.6)
which is often written in the literature using lighter notations like

One has also the adjoint equation

. d V3 , S _
— -U(2 1;2) =6(1-2) — L1171 2)Vv(1 - 2).
{cig * o - U6 =00 -2~ [ GuTTrDva-2)
(10.8)
10.1.1 Equations of Motion and Ground-State Energy

As a byproduct, using (10.4, 10.5) one obtains an expression yielding the
ground state energy in terms of the one-body Green’s function. Setting z = «
with ¢, = ¢ and integrating over  one finds:

0
: : : _ (T) 1oyt
dx t/llIItl+ Tl/lmr {z ot Ho(m)] gv (z,t, 2’ 1)

— i [ dedyo(ar ) (01 (@01 ()00} 0()) = 2000 (10.9)

The average of Hy can be obtained from Equation (4.26). So, we get the
exact ground state energy (lower sign for fermions):

E=(Hy+V)= i; de lim lim [igt + ho(m)} ¢ (z,t,2' ')

t'—tt+tr’'—r
(10.10)

10.2 Time-Dependent Problems

The EOM are rewarding when the Hamiltonian depends in time. Let
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H = Hy+ Hy(t Zeknk + Y Viw (t)afax. (10.11)
k,k’

For igl,., (¢,t") = 0(t — t'){[ax(?) , al,(t')]+) one finds

i 91, 1) = 800~ 1)+ (<00 — ([ ian(t) . al()]). (1012

Since

i, = [ak’ H], =¢epar + Z Vk7k’ (t)ak/ (1013)
k/

one finds the EOM

T
iagkyk,

oy =t - )0k pr + Ergip () + > Vip(B)gw (8,).  (10.14)

p

This must be solved with the initial condition
igp g (t, 6 —0) = O pr- (10.15)

No information about the filling enters the problem, and gy 1s actually a
one-body quantity which does not depend on the filling. It is no harder to
calculate than a one-body wave function, even in time-dependent problems.
The same is true for advanced one, —ig,%;. (¢, 1) = 0(t' —t)([ax(t) , aJ,rC, )] +)-
For later use, we are interested in the time-ordered Green’s function, defined
as usual by

igi") (8,1) = (Tay(t)al, (t'). (10.16)
Now, the initial conditions
g (0,02) = —id (1= fi), g5 (0,04) = b fi (10.17)
know where is the Fermi level; note the characteristic discontinuity

i |gtt+0) — gt~ 0)} = —(a},ax + aral,) = —Spp.  (10.18)

Let us calculate the t derivative of Eq.(4.19), taking into account that the 6
functions contribute

5(t — ') {apal, + al,ar) = 6(t — t')0p s

Using (10.13), one finds

.agl(ch)' T T)
i =0t =)+ g () + D Vip(Wg (). (10.19)

p
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This EOM is the same as (10.14), the difference is in the initial conditions. I
stress that g(7) depends on the Fermi level and can describe genuine many-
body effects, so it is important to be able to express it in terms of the much
simpler ¢("). This is achieved as follows:

Qg (4 t) =3 g4 (8, 7)g 0 (7. 8)Eq (E ), (10.20)
q

where 7 is any time such that 7 < ¢t,7 < and

E(tt) = (L= J )0 — 1) = [,60 —) =0t —¢) — . (10.21)

This solution was first obtained by Ref. ([48]) by the Keldysh fomalism [84];
I found the simple derivation below and used the result to re-formulate the
theory of transport[63] (See Chapter 13.6.2). Since retarded and advanced
functions do not depend on filling, we may take the system empty, denoting
the vacuum by |0), and write

gt (8, 1)) = —i0(t — t'){(0lar(t)al, (t')|0) = —if(t — )G e k1)

9% (4, 1) = i0(t' — 1) (0|ak(t)al, (t')]0) = i0(t' — t)Spe =),

Hence,

D9 (879l (7.1) = S, (10.22)
q

qugqu(t,T)gq‘fk, (1,t) = O ke fr- (10.23)
q

Thus, the initial conditions are obeyed; the EOM are also satisfied because
they are obeyed by g,/ (¢, 7): the 6(t — 7) term does not arise because 7 < ¢,
but the required ¢ comes in from the ¢ derivative. Thus, (10.20) is readily
seen to satisfy EOM and initial conditions and is the exact solution.

10.2.1 Auger Induced Ionic Desorption: Knotek-Feibelman
Mechanism

Desorption (Section 6.2) is a process of emission of atoms, molecules or ionic
species that previously belonged to a surface or were adsorbed (i.e. chemically
bound to it). The amount of ions emitted depends on the electronic properties
of the species in a striking way. For example, if a Ag surface is bombarded
with Ar* in the KeV range, some Ag™ ions can be collected by a mass
spectrometer, but the ion yield is often much lower than the K signal arising
from traces of K on the surface. This is because Ag™ has a much lower
probability than K+ of escaping without being neutralized.

When ionic surfaces are irradiated with X-rays one observes the desorption
of O% or other positive ions that originally were anions[113]. When O™~
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initially bound by the Madelung potential becomes OT by Auger processes, it
starts being repelled from the surface; however, the copious ion yield remained
quite a puzzle for some time. The reason is that the desorption process occurs
on the time scale = 10~ 35 of vibrations; electrons move on the time scale of
the inverse band width W and have a lot of time for bond healing.

Knotek and Feibelman pointed out[113] that O" remains OT due to
the same mechanism that localizes the two-hole resonances[76] (Section 6.2).
Sometimes it is the easy production of neutrals that needs explanation. For
example, F' desorbs from fluorides as F and F~; in the solid it is basically F'~,
but if some process produces neutral F', the Madelung force holding the ion
in the solid disappears and desorption starts; however desorption is a slow
process and one would expect the ion to quickly resume the electron. The
writer proposed[13] to compute the ion yield by a time-dependent Anderson
model

H(t) = e(t)(no+ +no-) + U(t)notno- + Z €kNko
k,o
+> Vi(t)ad yano + hocl; (10.24)

k,o

at time t=0 two holes are created in the adatom orbital 0 and the consequent
desorption causes the time dependence. The band was assumed initially filled
and the amplitude for the two holes to be still on-site at time t is

N(t) = {ao(t)aos (Hah, (0)aj_(0))O/(2), (10.25)

averaged over the hole vacuum. I solved the two-body problem by the EOM
method. Consider the correlation functions (averaged over the vacuum)

Y(t,7) = —iaos (t)ad (7)), (10.26)
W(t, 7) = —i{a (t)apy (1)), (10.27)
I(t,7) = —ilao—(Haos ()ah, (0)aj_(0)), (10.28)
Ti(t,7) = —iar— (Hany (7)al, (0)al_(0)), (10.29)
where the left hand sides are spin-independent; we want to compute
N(t) =iI'(t,t)0(t). (10.30)
From the equations of motion
Z.dOO' = 6(t)aO(r + Zk Vk(t)ak:a + U(t)aOanOfo'u (10 31)
take = €xake + Vi(t)aos (t), .
one obtains s
Zat’}/(tu T) = G(t)’}/(t, T) + Zk Vk (t)’}/k(ta T)a (1032)

i St 7) = e (t, ) + Vi (t)y(t, 7).



212 10 Equations of Motion and Further Developments

The initial conditions are v(t,t) = —i, v (¢,t) = 0. It is convenient (although
not essential) to set Vi(t) = Vi(0)u(t); then, introducing the self-energy of
the local Green’s function of H(0),

_ [V(0)? o+
E(w)—;w_%wﬁ—ﬂ (10.33)
we obtain
t
igtv(t,T) =e(t)y(t,7) + u(t) / dtu(t) Xt — )y (t, 7). (10.34)
Moreover,
’aF(t)— I(t, +ZV )V (t, 7)
Z@T , T 6 7’ k k T
+1iU(7)g (t,T)F(T, 7), (10.35)
zaa Ii(t, 1) = ex L(t, 7) + V() Ik (t, 7). (10.36)
T
I',(t,7 = 0) = 0, and we find the closed equation
i;F(t 7)=¢€(r)(t, 7) +U(T)v(t, 7)) (7,7)
T
/ dr'u(r")X(r — (¢, 7). (10.37)

This can be integrated[13]:
I'(t,m)0(r) = iy(t,0v(r,0)0(T)
—l—i/ dr'y(t, ")y (r, U ()G (7', 7)o (7). (10.38)
0
Finally,
N(t) = —v%(t,0)0(t) — iU /t dt' v (t, YU )N (). (10.39)
0

The theory accounts for the Knotek-Feibelman mechanism. The theory of
desorption and atom-surface scattering with a partially filled band will be
discussed in Chapter 13.6.

10.3 Hierarchy of Greens Functions

We can use the EOM to generate approximate non-perturbative solutions of
open-shell interacting models. Consider for instance the time-dependent An-
derson model obtained by adding an on-site interaction to the time-dependent
Fano model of Equation (10.11):
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H = H0+H1(t) +W = Z&knk+z Vi (t)aLa;ﬁ—Z Usng ins, | - (10.40)
A k! s

Let o (s) denote the one-electron wave function labeled by k at site s, such
that ap =), as¢r(s). Since

1Ak, = [akm H|_ = EkQk,1 + Z View (B)ags 1+ Z Usor(s)as,ims,; (10.41)
k' s

the EOM read:

agl(cj;v)/ T)
i = ot —t")oppr + €kg£7k/(t, t')
T
+3 Vip gl ) + Y Uspr(s) Do (8, 1) (10.42)
P K

where the two-body propagator
Do st (t,) = (Tas o (t)ns o (t)al, , (). (10.43)

appears. The interaction makes the problem hard and the equations do not
close any more. If one can be content with a mean-field approximation, then
one can try

?

Dot t/)j<Ta5,(,<t)a;,ﬁ<y)><n5,,(,<t)> (10.44)

which closes the equations again. Otherwise, one can generate an equation of
motion for Dy 1 (t,t) in order to truncate the hierarchy of Green’s functions
at an higher level. When we cannot achieve the exact solution, one should
compare various approximations.

10.4 Composite Operator Method

For finite systems, one can in principle find the exact solution by the EOM
method. As a trivial example, the one-site Hubbard model

Higite = E(ny +n_) + Unyn_ (10.45)
yields the closed set of equations:

d dayn_
i Z: =Fay +Uagn_, 1 a:lrtn =(E+U)ayn_.
Without interactions the particles are those annihilated by a-, while in the
presence of interactions one has particles ¥(1) = a4,¥(2) = ayn_ and
¥(3) = a_,¥(4) = a_ny; the zoological garden ¥ contains no more beasts.
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This idea of the hierarchy can be generalized (see Ref.([49],[50][51]) and ref-
erences therein). These authors call ¥ a composite operator, and write

) e (2
ayn_ 2 . 2

U= Z, = w) |- J=i g, = 7(3) (10.46)
a_ny v(4) J(4)

adopting a spinor notation (these are not spinors, they are just lists.) Any-
how, since the equation (10.46) is closed in this case, we may write

J(u,t) = Z e(p, V) (v, 1), (10.47)

v

where for the sake of generality I imply a possible time dependence of the
operators. For Higte, the 4x4 matrix € is block diagonal, since the first two
entries are not connected to the others; each block is

(E U
“=\oE+U)"

Following Ref.([49],[50][51]), we introduce
S () = 0(t — t')(Pol[Lyu(t) , UL ()] +]%0), (10.48)

which is just 4 times the retarded Green’s function (4.13), possibly averaged
over the Grand-Canonical Ensemble; we are using [,] for Fermi particles,

but it would be [,]_ for Bosons. The EOM read
L0S(t, ¢
R R ON) (10.49)

We define the m matrix by

0S(t,t
m =1 ((9t ) ‘t’:t7 (1050)

use Eq.(10.47) and the so called normalization matrix I = {I,,} with ele-
ments
L (t) = Sy (t, 1) (10.51)

The nonzero diagonal blocks of I are

<<[<[aa,au+> ([a0, an o)) ):(<1 <n_a>)fm:+,_.

aon—o,af]1) ([agn—q,atn_s]4), ng) (ns)

Finally the EOM become
m=c¢l. (10.52)
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Let us extend the treatment to many sites, denoted by latin indices; we
start with a N,,-component spinor ¥, (p, t) for each site involving ¢, and the
operators of nearby sites. We write Green’s functions

Spw(ptspt) = 0t — ) ([Wu(p, 1) . T} (g, 1)]4), (10.53)
and the initial conditions
I,u,u(p,qﬂ‘:) = SﬂyV(p7taQ7t); (1054)

the normalization matrix has site indices as well. From now on spinor indices
can be understood; we write the m matrix

m(p,q) = ([J(p,1), ¥"(q,1)]+). (10.55)

Formally, the argument proceeds as above: understanding the site indices as
well the EOM are still given by Equation (10.52); the eigenvalues of € could
be interpreted as the eigen-energies of the system. The trouble is that when
one calculates J = i‘fl‘f, new operators arise; Equation (10.47) does not hold,

but is replaced by

Nop

J(p,t) = e(p,q)¥(q,t) + 6 (p), (10.56)
a
with . is a nonlinear rest. In other terms, the set of operators is not closed,
and the spinors have more components than we can afford.

To keep the calculation manageable, one could trivially truncate the
spinors at N,, operators, throwing away the unwanted ones and 6.J; the
€ matrix gives a solvable approximation. This is less accurate than the stan-
dard EOM method, which prescribes to replace the extra operators by some
approximation like (10.44).

However, there is a more clever alternative criterion for sorting out the
terms linear in ¥ in the r.h.s. of Equation (10.56). From the N,,-component
¥ one can work out the truncated I matrix. The map ¥,(p), ¥, (q) — Ipq
sends two operators into a number like a scalar product in operator space. In
this Section I denote this scalar product by ((---,---)) and write

(W (p), ¥(0)) = 1(p,q) = ([#(p. 1), ¥"(g,0)])-
Taking the scalar product of (10.56)

Nop
(T(p), w(9))) = > e, @) (((a,t), (s)) + (6T (), ¥(5))).  (10.57)

q

Now in order to drop the last term we do not need to assume that d.J is
small; we make the milder assumption that it is orthogonal to the spinors.
Dropping 6J we finally obtain (10.52), that is,
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e=mI! (10.58)

and achieve a well defined, solvable approximation. In this way, the new e
depends on those complicated operators that we are not considering explic-
itly. Although this is not a unique way to proceed, it is certainly appealing.
Fourier transforming to momentum space, the retarded Green’s function is

approximated by
Nop

where E;(k) are the eigenvalues of €¢(k) and the spectral functions o; (k) can
be derived[199] from I(k).
For a review on the applications to the Hubbard Model, see [198].

Problems

10.1. Verify (10.10) explicitly in the non-interacting limit.
10.2. Prove Equation 13.136.

10.3. Use the tight-binding method to calculate the retarded Green’s func-
tions of the tight-binding Hamiltonians in d=1,2,3 dimensions.

10.4. Dealing with X-Ray absorption and emission in Metals, Langreth[205]
considered the model Hamiltonian

H =Y egafag+ Eob'b+ > Vygalabb' (10.60)

q qq’

where b and a, annihilate core and conduction electrons, respectively; the
Green’s functions g(t — t') = (Tb(t)b(t')) describes the deep state dynamics
and Fy (1,7'5t,t") = (Tag(T)aw (7")b(t)bT (') the absorption and emission
processes. For absorption, the average is a ground-state expectation value in
the presence of the core electron. Derive the EOM for Fyx in the absorption
case.



11 Feynman Diagrams for Condensed Matter
Physics

11.1 Diagrams for the Vacuum Propagator

Consider a many-body system, like a molecule or solid, with Hamiltonian
H = Hy+V, where V is the interaction, Hy = Zj e;n; is the kinetic energy
with ground state |®) and eigenvalue Wy. I shall write

@)= [ cliels10) (11.1)

ex<Ep

to mean that the product is over occupied spin-orbitals, and produces a Fermi
sphere in the thermodynamic limit. How can we find the ground state energy
Ey of H? Standard perturbation theory fails unless V' is small compared to
the unperturbed energy difference; in practice, it fails almost always, since in
most interesting problems, the spectrum Hjy is continuous.

Continuous spectra can be perturbed in such way that discrete spectra
arise. Suppose one wants to find the bound states of the Hydrogen atom by
treating the Coulomb interaction as a perturbation: for any Z an infinity of
bound levels exists, but there is no hope to get any sensible result with any
finite number of terms. The very existence of bound states requires poles of
Green’s functions to form. The pole of 1; =142+ 224 ... can only be
found at infinite order. The formula (4.125) for Ey from the vacuum amplitude
(4.123)

R() = (@] Uy (t) &) = ot (@] e~ " | ) (11.2)

is useful because we know R at least formally, recalling (2.36)
U (t) = eHote=iHt — T S fo‘ dat'vi(t)

ot o t t1
=1+ Z/ dt1Vi(ty) + ( Z)2/ dtl/ dtaVi(ta) + -+,  (11.3)
h 0 h 0 0

Note that in this section we use the telescope form (2.6) of the nested
integrals. To illustrate the method, I shall use the simplified interaction

V=> U(i,j kel ayerr. (11.4)
ijkl
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In this way, we assume that only opposite-spin electrons interact, and this is
the simplification!. Since (@|V;(t)|®) = (®|V|®), the first-order contribution
is

t
RW ( z/dtl (D|V |®)
0
= —it (B|V|®) =—it Y U(i,j,i,5)(@lniin; | @) (11.5)

ij

where n is the occupation number. In (11.5) we must average a product of

J

OO

k 1

Fig. 11.1. The first-order contribution, with i=k, j=I1. One says that i is contracted
with k and j with 1. A more explicit definition follows shortly.

occupation numbers, and for each spin-orbital the creation operator is rep-
resented by a line leaving a vertex and the annihilation operator by a line
entering the vertex. Graphically, if we represent the up-spin operators as
the ends of the left line, and the interaction to the dashed line, this corre-
sponds to the pattern of Fig. (15.4). The occupation number product over
the non-interacting |®) can be written as a vacuum average and using the
anticommutation rules we can separate the two spins: thus it factors:

(@nitn | |P) = (P|nit|@)(P|n; | |) = nin; (11.6)

where the average occupation numbers have been assumed spin-independent
for the sake of simplicity. However we did not achieve much, yet: substitution
in the energy formula (4.125) yields 0. In second-order,

t
RO (== % U(i,j,kJ)U(i’j’k’l’)fdt1 oty

ikl 5K
(@ Tlel; (th) el (1) ey (t1) eny (1) eliy (t2) €l (2) vy (t2) enry (£2)] 1) -
(11.7)
More generally, we need to calculate the ground state average
— (8 T[Ay(t1) As (t2) As (t3) .. ]| ) (11.8)

where A1, Ao, A3 ... are interaction-picture operators - either creation or an-
nihilation operators - defined on an orthonormal basis in the interaction pic-
ture and |®) is the Fermi sphere. This calculation can be worked out by

'Later we can easily restore the full interaction by adding exchange terms.
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writing down all the operators that make up the Fermi sphere according to
Equation (11.1); then this becomes an average over the vacuum |0); then,
by the anticommutation relations, we can bring the annihilation operators
to act on |0) to produce 0; all what remains from the anticommutators is
the result. However, we naturally ask if we can do something to reduce all
this groundwork. Fortunately, we can, in terms of contractions. A contrac-
tion of two operators A and B which are either creation or annihilation
interaction-picture operators, is defined as

A(t)B(t) = (2| TIA(t) B(t)]|®). (11.9)

For this to be non zero one of the two operators must create and the other
annihilate the same one-body state, and the contractions yield (up to a sign)
the non-interacting propagators ( Equation (4.38))

igi() = (Tlewa (D)e] L (0)]) = e (O(0)[1 —ne] — O(~tne},  (11.10)

which propagates a hole for ¢ < 0 and an electron for ¢ > 0. For equal time
contractions one defines:

ct () e(t) = (e (t)e(t)). (11.11)

11.1.1 Wick’s Theorem

Wick’s theorem, basic for all sorts of perturbation expansions, reads:

M = <T[A1 (tl)Ag(tQ)Ag(tg) .. ]> = ZP(—)PAplAPQ AP3AP4 e
(11.12)
in words, M is the sum of the products (=)’ Ap1Aps Ap3Aps... of the
contractions; P is the permutation that takes from the initial expression
A1 AsAz ... to the final one, and (—)” its signature. I propose an intuitive
proof?.
As a warm-up, we calculate the ground state expectation value of the
product in the second-order term (11.7); for an easy start, we do so without
the time ordering T, and for the moment we let

M = (@|cl; (1) el (tr) ey (1) ewr (t2) chiy (2) €l (t2) vy (t2) cary (£2) |@) -

Also, we assume provisionally that the canonical basis is the one of Hy eigen-
states; then the time dependences are given by c-number phase factors as in
Equation (4.35), cx(t) = cxe~“*t. The | operators come in pairs at each time
and since Fermi operators anticommute, one can lump all the T spins on the
left without changing sign: we obtain

M = (Bl (t1) exr (t1) €l (B2) ewrr (t2) by (01) ey (tr)ch) (t2) vy (t2) |@) .

2the (much longer) standard one by induction may be found in textbooks[2].
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Now the T and | are different species (mathematically, linearly independent
operators); since actually |®) = |® 1) |® |) the matrix element M factors,
M = (@|cl; (t1) euy (t1) cly (82) cary (£2) |@)

x (D] chy (tr) iy (tr)el, | (t2) vy (t2) D). (11.13)
The assumption that the canonical basis is the one of Hj eigenstates can be
removed, since anyhow Hy = Hgyy + Hy|, and since Hys and Hy; commute,
we can write ¢, (t) = eflostc e~iHoot and the time-dependent creation and
annihilation operators simply anticommute. While using Bloch waves to de-

fine the Fermi sphere, we may wish to work with contractions in a site basis.
Next, we restore the T' operation, and consider

M = (| T[c]; (tr) eny (tr) ely (t2) cwry (t2) el (01) euy (tr)eh | (b2) ey (£2)] @)
= 9(t1 — t2)M12 + 9(t2 — tl)Mgl (1114)

My = (@l (1) ewr (1)l (t1) ey (tr)ely (t2) curp (k) el (t2) vy (t2) )
My = (®| el (t2) ey (t2) cli | (t2) ey (t2) €y (t1) ey (1)l (t1) cuy (t1) | ).

Again, the | operators come in pairs at each time, so in each term of the
sum ( 11.14) we can lump the 7 spins on the left and factorize like above:

AM=@U@MM@MM)%@M@
x (@t Ji (t1) cuy(tr)eh, | (t2) ey (t2) )
Mz = (2] c T(tz)ckf (tz)CI (t1) cry (t1) | @)
x(@|ch | (t2) evy (t2) el (t1) ery (1) |)

and the whole time-ordered matrix element ( 11.14) breaks down into the
time ordered factors:

M = (9| T(cl, (t1) ciy (t1) chiy (t2) ey (2)] D)
(D] Tlehy (tr) cuy (tr)ch | (t2) ey (£2)] |B) . (11.15)

Thus, the time-ordering does not prevent the factorization, and the argument
works independently of the number of creation and annihilation operators.
Now we can breath a little bit, but can we do any better? We can actually
use the different spin-orbitals of any canonical basis as the different species,
but now we must keep track of the signs. Consider the matrix element for 1
spins. Particle iy created at time ¢; must be annihilated either by cx1(¢1) or by
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c1(t2); so, two contractions contribute, but in each case the matrix element
breaks as before?. Therefore the ground state average can be obtained as a
sum over permutations. However, there is more. In the above discussion, we
used no specific property of the ground state |@); we can average the matrix
element on any state in the same way (the contractions are then redefined
accordingly). We can analytically continue Equation (11.12) from the real
axis to the verical track of Figure 2.2.2 b) (Sect.2.2.2). So, Wick’s theorem
holds at finite temperatures as well; (- --) then stands for a thermal average.

Comments

This is a very general theorem that is often understated in books. It is obvious
that Wick’s theorem also holds for averages over the vacuum |0). By the way,
@ is itself a vacuum; for states above the Fermi level we can create electrons
like on |0); for occupied states the annihilation of an electron is the creation
of a hole. The transformation to hole operators ¢ = b’ is canonical, or if you
like it is just a change in notation. So Wick’s theorem works in both cases
for the same reason.

Wick’s theorem for bosons works in the same way, and for the same rea-
sons, except that the Bose operators commute under 7" and there is no sign
nuisance in this case.

11.1.2 Goldstone Diagrams

We represent the second-order terms diagrammatically by drawing two in-
teraction lines, labeled ¢; and ty with t2 < t; according to the scheme of
Fig. (11.1.2). These are time-ordered or Goldstone diagrams. Two diagrams
must be identified if they are topologically equivalent in the Goldstone sense,
that is, if they can be deformed into one another without changing the time
ordering. In this example with no interaction for parallel spins the vertices
on the left refer to spin up and there are no exchange terms. If we contract
only equal-time operators we get the a) diagram of Figure 11.1.2. All the non-
propagating lines (those that begin and end at the same time) must refer to
occupied orbitals (equal-time Wick’s rule).

Diagrams consisting of two separated pieces, like a), are called unlinked.
Diagrams b),c) and d) are linked and b)and c¢) have the same value. The
co(ntribution of diagram a) is obtained setting k = 4,1l = j, k' = ;' = j/ in
R® (t):

3The possibility of contracting 4 or more operators with the same indices can
also be included. For averages on either |0) or &, (c'¢) are either 0 or 1, so the Wick
factorization is granted since 0*0=0 and 1*1=1. So, these terms do not modify
the result. As emphasized in the Landau series[3], in the thermodynamic limit the
theorem holds for averages on any state, since taking the same index for two cf¢
factors means selecting a set of null measure.
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time

Fig. 11.2. Starting the setup of the second-order contribution.

R® (t) = =3 > U4, 4,4, 5)U(i'5'1'§") f dty f)" dts

g i
(@I T[ciy (1) ¢ (1) ¢j— (t1) ciy (1) ¢y (ka) ¢ (t2) ¢jo— (ta) ciry (t2)] D) .
(11.16)
and contracting one finds
—¢2
R (t) = 5 ZU(i,j,i,j)nmj ZU (@' 5 npmj | . (11.17)

(]

Here again we note that a line labeled ¢ closing on itself, or tadpole, simply
contributes n;.

Diagram b) arises from the identifications k = ,l’ = j, k' = ', = j' and
to the contractions

(tl) Cl+ (tl) (tg) Ck/+ (tg).cj_ (tl) Clr— (tz).Cl, (tl) C;;_ (tz). (1118)

The equal-time contractions

C + (tl) Ck+ (tl) =0 (i, ]{1) n; (1119)

and
i (b2) ey (t2) = 6 (i, k') mas (11.20)

are immediate;let us consider the lines that represent propagators (see (4.37)).
The descending line yields

/) eisj(tl—tz) [lee (tl _ tg) _ (1 - nj) 9(t2 . tl)]
") (=i)gj(t2 —t1) (11.21)

The - sign in front of (—i)g; comes from the order of operators which is
opposite to the convention of ( 4.36 ).

c;f (t1) cv— (t2) = 6 (4,

5 (5,1
=051
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The ascending line gives:

(', 1) et [(1 —ny) 0 (81 — o) — B (t2 — t1)]
(") (D)gi(ts — t2) (11.22)

- (t)ch_(t2) =0
5

In both cases, the time argument of g is the final time minus the initial time
of the directed line. Since t2 < t1, the contribution of the descending I’ = j
line represents a hole in a occupied state, while the for the ascending line is
an electron in an empty one. In both cases the directed line brings a factor
ig.

b d
a) ) c) o )
j=1
O" "O =k =k =0
j=1
>0 oM N o Ui
P=k =0 =k’ y=r

Fig. 11.3. Second-order contributions to R(t).

Thus, diagram b) ( like the identical one ¢)) yields the following expression:

t1
(b) _ Z Z U’L j,kl ( a] kl /)61]@5%/51/ 5/ 1Ty / dtl/ dtQ

ijkl i/ §' k'l
i gj(ta —t1)igi(ty — t2). (11.23)

What is coming from these observations is a convention for representing
mathematical expressions graphically; each fermion line labeled j and di-
rected from ¢ to t' yields ig;(t' — t); each interaction line brings a factor
(=)U (4,4, k,1) (where the arguments refer to the top interaction in Figure
11.1.2 and each closed fermion loop brings a - sign; all internal indices are
summed over; the nested time integrals are then evaluated. To evaluate the
ground state energy, one takes the ¢ — oco(1 — in) limit and uses the energy
formula (4.125). Working out (11.23) one finds

RO — _ ZUZJ’Z’Z 7,7l77,7j NN / dtl/ dty

igli’

efi(qfej)(hftz)(_)nj(]_ —ny). (11.24)
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The integral is elementary:

/t dtl /tl dth—i(Gl—éj)(tl—t2) — 1 + Zt(EJ - El) - eit(ej_q) . (11.25)
0 0 (e —e)?

The term linear in t contributes to the ground state energy. Note however
that j is a hole, 1 is an electron,hence €; — ¢; < 0 and the exponential in the
r.h.s. drops out as t — oco(1 — in). Problem 11.1 deals with diagram d).

Despite the heuristic appeal of cartoons showing the basic scattering
events between particles, the diagrammatic expansion does not look promis-
ing at all at this stage. The number of different diagrams and their com-
plexity grows catastrophically with the order, and we need to go to order
oo to get useful results. Worse still, diagrams may defy intuition severely.
Their heuristic appeal can become very misleading, since the processes they
describe include counter-intuitive ones. Diagrams obtained from d) by ap-
pending tadpoles or bubbles freely to each line do belong to the expansion,
and must be included, even when the lines at a given time over-number the
electrons in the sample and/or violate the Pauli principle. No such principle
holds in diagrammatics, and several lines can bear the same quantum num-
bers. In one-particle problems, diagrams arise that appear to describe several
fermions propagating at a time.

11.1.3 Diagram Rules for the Thermodynamic Potential

Using imaginary time, the above results extend directly to the calculation of
the thermodynamic potential

Q= —KgTinZg (11.26)

where
Zg = Tre PH=1N) (11.27)

is the grand partition function, p the chemical potential and N the par-
ticle number operator. {2 may be found as the sum of ring diagrams (see
Sect. 12.4.5) .The mean energy and particle number are related by E =
2 + puN + TS, and since the entropy S goes to 0 at T=0 the ground-state
energy may be found from the zero-temperature limit. Luttinger and Ward
[55] derived and stated the rules for 312 in frequency space as follows. 1) Draw
all possible n-th order diagrams. Put labels on each line (a label like r stands
for one-body labels including spin, and the non-interacting Hamiltonian is

supposed diagonal with eigenvalues €,) and associate a Matsubara frequency
G =p+ (2l+ﬁl)m, with integer [. Conserve frequency at each vertex. 2) For
each diagram: insert a factor (rs|v|r’s’) for each interaction (labeled by one-
body states, r’ and s’ entering and r,s leaving), a factor (5,)::,1
for each loop 3) For each line labelled by r write a factor G (G;) =

and a (-) sign
!, . This

1
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factor is called propagator. Next, sum over all internal labels and all frequen-
cies (; with é >, including a convergence factor 10" for loops. Examples
may be found in Ref.[55]. The T=0 version of the expansion is obtained by
removing u, replacing (; by real frequencies w and é > by ffooo dw. Please
note that 1) simple diagrams may be easily computed without the diagram
rules directly from the T exp formula, 2) nobody ever computes very complex
diagrams, which are too many and too complicated to be of any use. The real
point is: how to avoid any heavy-duty use of the diagram rules.

11.2 Linked Cluster Theorem
+ Oe—e0O = Qo0 X g@

Oe—eO QOe—eO
+ = 2 xQe—e0 * Oe—eO

OCe—e0O  OQe—eO

Fig. 11.4. Combining diagrams. Those summed in the first row consist of different
subdiagrams, while those of the second row are made up with like subdiagrams.

The only cheap and efficient way to produce and compute lots of high-
order diagrams is by combining smaller ones. In a linked diagram one can
go from any vertex to any other one by following propagator or interaction
lines. The diagram a) of Figure 11.3 is an example of an unlinked diagram
made up of two simpler linked ones. Consider doing the same with any pair of
different connected diagrams. They give raise to different combined graphs for
R as shown in Figure 11.4. The diagrams on the Lh.s., top row, differ by the
order of interactions in time and are to be counted as different contributions
because the ordering is enforced by different 6 functions; their sum is just the
product of the original diagrams. If however the same diagram is considered
twice, (bottom row and diagram 11.3 a) ) the contribution to R comes only
once so the result must be divided by 2. Denoting by {D } the set of linked
diagrams, consider a particular unlinked diagram of order n containing, say,
3 linked parts D, Dﬂ7 D Each of its n interaction lines labeled by times
th <th_1 <<t belongs to one of the 3 sub-diagrams. Within each sub-
diagram, the ordering of the interaction lines is fixed by the fact that it is a
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replica of one of the D;(t), however by varying the relative ordering of two
interaction lines belonging to different sub-diagrams we get a diagram which
belongs to the series for R. Summing over all such interchanges we simply
get rid of the relative orderings; if the three sub-diagrams are different the
result is ~ ~ ~

Da(H)Ds(t)D, (1);

however, if there are identical subdiagrams we must pay attention. If, say,
D, (t) = Dg(t), then each contribution to R is counted twice (each has a
ghost with the two sub-diagrams exchanged, but the series has one of them)

and the result is 1

2!
These observations extend to any order and to any number of linked sub-
diagrams D;. The sum of all the unlinked diagrams of any order containing
p linked parts chosen in any way in {D;} is

D (1)
Ry(t) = 6(p, > ni) [H . 1 ; (11.28)
{n:} i i v
here {n;} = ny,ng, - is a list of non-negative integers specifying the num-
ber n; of occurrences of D;, while the total number of parts is fixed by the
Kroneker 6. This is just

Do () Dy (t).

Ry(t) = ;, D (na,ng,e e mg, )] Hf);” (t) (11.29)

' {np}
where (ny,n9,- -+, ng, )l = g,:n:f)' is the multinomial coefficient ; thus
1 ~ 1
R — (S DOy = (L)Y (11.30)

where L = 3" D;(t) is the sum of all linked diagrams.
Thus we have obtained the simple but far reaching Linked Cluster Theo-
rem:

R(t) = el® (11.31)

Every approximation to L(t) takes us to infinite order in the series for R(t),
and a way to achieve real progress is open.

This exact result is the basis of the so called cumulant expansion?. Now
our task is calculating L and the unlinked second-order diagram 11.3 a) must
be discarded, while the first-order generates a partial series:

‘Note that a Linked Cluster Theorem exists[42] even if the interactions are
mediated by bosons; each sub-diagram must then be divided by its order. The
combinatorial argument is similar, but is modified by the fact that each line gets
two labels instead of one.
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InRM () = —it > _U(i, j,4, j)nin;,

j
and differentiating with respect to t and multiplying by i we find
EW =>"U(i,j,i,j)nin;
4,J

which is the Hartree-Fock approximation, a marked improvement over the
previous null result.

11.2.1 Valence Electron and Core Hole

To see the Linked Cluster Theorem and the diagram rules at work, consider
the simplest molecular-orbital model with sites a and b with hopping matrix

element V'
oV
Hy = (V 0) (11.32)
with eigenvalues £V; now suppose that a core electron sits at site a; the
valence Hamiltonian becomes
uv
H= (V 0) ; (11.33)

where U is the valence electron-core electron interaction. The new eigenvalues

are
U+¢

2 )
with £ = VU? +4V2, The core occupation number is n. = 1 and the core

Green’s function enters only through n.. The unperturbed (U=0) valence
propagator on site a reads

ex (11.34)

—0(—t)eVt +0(t)e V!

2 )
where the first term is the contribution of the filled ground state orbital, and
the second comes from the excited state. The unperturbed filling is n® = 1/2.
The first-order diagram is —itUn,. There is one second-order diagram (Fig.
11.3 b) or ¢)).The descending line brings a - sign, another one is due to the
ring; one obtains

igaa(t) = (11.35)

(—iU)? /lt /ltl 2V (ta—ty) _ (Uno (—1+e 2V 42iVt
dt dtoe”tV 271 = . (11,
4 o Jo * (V) 16 (11.36)
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In third order we may add a third tadpole on the electron or on the
hole lines; the contributions cancel (since the descending line brings a - sign)
and there is no third-order term. In fourth-order one could consider adding
two tadpoles to the second-order bubble, but there is a similar cancellation
between those attached to electron and hole lines. The contribution comes
from the diagram in Figure 11.5 and from a similar diagram with ¢3 < 4.

Fig. 11.5. The fourth-order contributions to R(¢). Note that two valence electron
lines propagate between t3 and t2, although in this problem there is just 1 valence
electron. This illustrates that particle-number-violating diagrams must be included.

We get
t t t
ZU / dtl/ldtg/zdtg by eV (e ti—ta)
U 4 —41Vt 46—2z\/t 1 + 26—21\/1&
- - . 11.
() [ 512 Wt o (11.37)

Since the problem is simply solved exactly, we can check these results
by calculating R(t) and its expansion. One easily derives the Hamiltonian
matrix H on the basis of the U = 0 eigenstates and the ground-state-diagonal
element its exponential:

~ vy U _iye & 6V . &t
H=<2 v +V>:>R() {005(2)4- ¢ 8111(2)}. (11.38)
where we choose V' > 0 by setting
R(t) = e~ iVt (=it}
= (),

Expanding C(t) = log(R(t)) one finds

. . i U, (—1+e 2Vt 42Vt
C(t)——th+th—2Ut+(V) < 16
U 4 5 _ e—4in _ 46—21'\/1& ) 1 + 26—2i\/t U
- . (11
) 512 Wt g [ TOG e (1139)
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Using (4.125) we compute the time derivative and let the exponential die out
as t — oo(1 — in); we obtain, in agreement with the exact solution,

u U? Ut

Wo==V+ ) =gy ¥+ 1083

+O(U®) (11.40)

11.2.2 H, Model

As a further example, we shall use the Hs model of Sect. 1.2.5.

1

2{—9(—t)e“hf + O(—t)e it} (11.41)

Z'gota (t) =

From (4.37) one gets
1 , ,
iga,a = igb,b = ) [e—zthte(t) _ eztnto(_t)] 7

| itnt
— [e="t0(t) + et (—1)] .

The net second-order contribution comes from only 11.3 d). It is

7:ga,b - 7:gb,a -

t t1
4 (—iu)2/ dtl / dt2[9a7a(t2 — tl)gma(tl — tg)]2
0 0

9 { it 1 — e~ 4itnt

- 11.42
16t} 642 ( )

where a factor 4 comes from the fact that each interaction line can be labeled a
or b indifferently. The diagrams 11.3 b) and c) vanish because the terms with
the like interaction lines are canceled by those on interactions on different
atoms. In third-order there is no contribution because shifting any vertex
from an electron to a hole line changes sign to the diagram. For the same
reason, there is considerable cancelation in fourth order, the only surviving
terms being the one of Figure (11.2.2) and the one which results from the
exchange of t3 and t4. Direct calculation shows that

itu it 1 — e 4itnt
C(t) = 2itpt — 2 -
T T }

u4 5 _ efgitht Ztth 674itht . e*4itht
4 - Ztth
th

+ 8192 1024 2048 512

(11.43)



230 11 Feynman Diagrams for Condensed Matter Physics

t1, 81
LE B B B B N |

- .-
to, S2
- - -
t3, s3

- .-
ta, 84

Fig. 11.6. One of the fourth-order diagrams that contribute to R(t) for the Hub-
bard Hs model. The interaction lines are labeled with time and site (s; = a or b)
indices.

t, t7 t7 t7
7
_ - + v+
\\
AN
t t t t

Fig. 11.7. Contributions to the core propagator

11.2.3 The Linked Cluster Expansion and Green’s Functions

The Lundqvist model[38]

H = ecTc—l—quaLaq +ccTqu(aq +ag) (11.44)

q q

has been used to discuss plasmon effects in core photoelectron spectra. The
removal of the core electron shifts the plasmon coordinates and the density
of states relevant to the spectrum is obtained from the correlation function

> dw |
Nw = [ e e O, (11.45)
where ¢4 is the plasmon vacuum with the core electron present. N(w) is
obtained from the core propagator

g(t) = =iy |Te(t)c (0)]¢y ). (11.46)

By expanding the propagator as above we generate diagrams where the boson
propagator (4.64) iDy (t) = exp[—iwk |t | ] appears; each electron-plasmon
vertex contributes a factor igy; plasmon lines ( iD,4(t) factors ) may be
emitted and adsorbed any number of times according to any pattern.
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Langreth[39] noted that ¢(°)(t —#') is a simple phase factor for t < ¢ while
g9 (t—t") = 0 for t > t'; thus the ascending time line must be labeled t at the
bottom and t’ at the top. From each diagram one can collect the same phase
factor: [[ g (t; — t;) = gO(t — /). Hence, g(t —t') = gO(t — t')y(t — t').
Erasing the deep hole propagator from the diagrams for g we find those for +,
a succession of interaction lines ordered in a particular way; one can classify
these diagrams as linked and unlinked. Repeating the above argument one
finds that Linked Cluster Theorem applies,

gt —t') = g Ot — )€1, (11.47)

where C' is the only unlinked diagram, namely the second-order one: a boson
is emitted at time ¢ > ¢ and later re-adsorbed at t; < t’. Hence,

ty

Ct—t)= Z(igq)Q/t dt, dtaDgy(t1 — t2). (11.48)

q t t

and one achieves the exact solution®

t t1
C(-t) = Z(igq)2/ dtl/ dtge™waltr=t2)
0 0

q
1 — iwgt’ — e~iwat’
== g o, : (11.49)

w

q q
In addition,the Linked Cluster Theorem has been invoked as an ansatz
which is useful for special problems[40], [41]. The idea is simple. Start with
the ansatz (11.47) and expand both sides in powers of the interaction using

the cumulant expansion

3

a3 2 aj 3
+ az)z” + ( '—i—alag—&—ag)x +...

exp[z anz"] =1+ a1z + ( ) 3
1

From a few diagrams for g that one can compute directly we can obtain
an equal number of a, coefficients that perform a particular infinite re-
summation of the series.

11.3 Diagrams for the Dressed Propagator

The time-ordered propagator (4.20) averaged over the interacting ground
state or over the grand-canonical ensemble lends itself to a perturbation ex-
pansion. In this section we consider in detail the zero temperature case, using

5This agrees with Equations (6.30 6.31) taking into account that there the
Fourier transform involved e~ *“*+)t and here we are using ¢'“+? instead.
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a slightly lighter, discrete notation and the fact that for time-independent
problems the dependence is on a single time, namely, t = t; — t5. In the
non-interacting problem with Hamiltonian Hy, the propagator is

g%(a,b,t) = i (@] T [ca (t) 0y (0)] [0}, (11.50)

where |P) is the ground state and cz creates an electron in a single-particle
state |b). We know that ¢° is diagonal on the basis of the Hj eigenstates and
is Green’s function of the Schrédinger equation; moreover,

Ok

Ok, k' \w) =
g ) w — €L+ ing

= g (k,w), (11.51)

with 7 = 40 for empty states, np = —0 for filled ones.
With H = Hy + V, where V is the interaction, the propagator is

ig(a,b, £) = (%] T [ca(t)cy (0)] 190) (11.52)

averaged over the unknown interacting ground state, and the operators
are in the Heisenberg Picture. We use the standard definition (2.12) for the
Heisenberg operators but switch to the interaction picture, using (2.39)

Ap = Uj(t,to) A (1)U (t, to),
in order to obtain g from an infinite order series expansion of the evolution

operator in powers of V:

11.3.1 Adiabatic Switching and Perturbation Theory

To obtain g we do not really need Wy, as the definition seems to suggest. We
can resort to the trick of the adiabatic switching of V. Here we assume® a
time-independent H and write

Up (t1,t2) = U (t1,0) Uy (t2,0)" = etHotre =i (ti=t2) =ithots (11.53)

Assume that at time ¢ = ty in the remote past the system was in the un-
perturbed ground state @, with energy eigenvalue Wy; then at time 0 the
interaction picture state is a wave packet containing ¥y:

Ur(0,t) |@) = eftoe™toto @) = o= Woto N ") (@, | 'm0 ) (11.54)

For tg — —oo we can distil from it the interacting ground state by shifting
the path in the complex ¢ plane with a small tilt setting ¢ — ¢(1—in), n = 0T.
In this way, among the exponentials

5The general case is presented in Chapter 13.
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e’iEnto(l—iT]) — e’iEntoe—nEn‘tol’ (1155)

the one of the ground state dominates, and one is left with
Ut (0,t0) |@) = [Wo) (Wo| P @) e="MVolo = |Wh) (Wo| Uy (0, 40) |€) 5 (11.56)

formally, (provided that the denominators do not vanish)

Im(t)
-

@
to

Fig. 11.8. The complex t plane with the tilted Gell-Mann and Low path.

U; (0,0) |9)
(Wo| Uz (0,0) |9)”

(@] Ur (—10,0)

o) = (@|Ur (—to,0) [Wo)

(W] = (11.57)

This is the Gell-Mann and Low Theorem [83]". Any expectation value
(Po|A|Py) on the interacting ground state can be obtained from non-interacting
ground state averages. One obtains:

(@ Uy (—to,0) AU} (0,10) |D)

(ol A|¥) = (@] Uy (—to,0) [ W) (| Uy (0, t0) |&)’

(11.58)

but along the tilted path, |#)(¥p| is equivalent to >, |¥,)(¥y|; so

ol A1) = (F1UT (—t0,0) A1 (0,0) ) _ (B[ U (~t0,0) AU (0, t0) )
0 0/ = (DU (—t0,0) Uy (0,10) |P) o (@| Uy (—to, to) |q’)>(11 )

We take advantage to set the propagator in this form. Consider g for ¢t > 0,

:
ig(a, b, t) = (¥ ca(t)c, (0) [¥) with Heisenberg operators. In order to use the
T exp expansion we must go over to the interaction picture® with c,p(t) =
UJ(t,0)ca(t)Ur(t,0), hence

"The original proof reported by Ref. [2] is based on the perturbation series, so
it depends on its validity; also, it shows that numerators and denominators bear a
phase factor that diverges in the adiabatic limit.

8Recall that with our convention the Schrodinger, Heisenberg and inter-
action wave functions coincide at ¢ = 0 and that at any other time the
change of representation is obtained by (A (¢)) = (¥;(0)|An (t)|¥:1(0)) =
(@7 (0)| Ur (0,¢) Ar (t) Uz (¢,0) |7 (0)) .
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ig(a,b,t) = (W|U} (¢, 0)ca(t)Ur(t, 0)c}(0)|%o)
®|U;(—t F(t,0)ea (UL (8,0l to)|®
_ (U (=40, 0)U; (t, 0)ea(®)Ur (, 0), (0)Ur(0,10)I®) (11.60)
(@|U1(—to,t0)|®)
Using the Group property of U, the unitarity property U}r (t,0) =U;(0,t), and
the fact that under T the fermion operators anticommute, we shall manoeuvre
to obtain a single U in the numerator as well:

(U (—t0, 0)Ur (0, t)ea (YU (£, 0)el (0)U1(0, o) |)

> 0.
(@|U1(~t0,t0)|®)

(11.61)

ig(a,b,t) =

In other terms,

(@|U1(—to, t)ca(t)Us(t, 0)c} (0)Ur (0, t0)|D)

ig(a,b,t) = (D|Ur(—to, to)|®)

>0, (11.62)

More generally we can write ? , setting S = Ur (o0, —00),

(DT [Scq(tr)c)(t2)]|P)

. 11.63
(2|5]2) —

ig(a7 b7 tly t2) =

and expand in powers of V' using the T exp formula (2.36). At each order
one obtains a sum of partial amplitudes, involving V' and the bare propa-
gator ¢%; these expressions are best handled when represented as diagrams.
The key point is that different partial amplitudes give topologically inequiv-
alent!'® diagrams; at order n there is a finite set of possible topologies and all
correspond to partial amplitudes. In all diagrams, an oriented ¢° line enters
at a point b, goes through some interaction vertices and then reaches the exit
point a. Between two interaction vertices, the propagator line is labeled by
a spin-orbital: the one entering from outside will correspond to spin-orbital
b and the outgoing one to a. Dotted interaction lines start at each vertex;
at order n the diagram contains n interaction lines. A properly oriented and
labeled propagator line must pass by every vertex; each graph presents a path
which takes from b to a, and circuits attached to it (and possibly to other
circuits) by interaction lines.

The denominator of Equation (11.63) is like the vacuum amplitude in
(11.2) and yields all diagrams not connected to the main line; the only differ-
ence is that in (11.2) the interactions are between times 0 and ¢t and here
they can take place at any time. In the time representation (11.63), the
mathematical expression or amplitude of a disconnected diagram consist-
ing of two parts is the product of the two amplitudes. Therefore, we may

9We shall find the result (11.63) more in general in Equation (13.56).

10Two diagrams are topologically equivalent if they can be deformed with conti-
nuity to the same shape; in complex graphs this criterion requires a talent for the
fine arts. I shall give a more practical prescription below.
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write (B|T[Scq(t1)c) (t2)]|®) = (D|T[Sca(tr)e) (2)]|®) L (B]S|®) where the L
suffix means that only linked diagrams must be kept (no parts must be dis-
connected from the b — a line). The denominator cancels with the unlinked
diagrams and we are left with

ig(a,b,t1,ts) = (B|T[Scq(tr)ch (t2)]|D) .- (11.64)

11.3.2 Diagrams for the Propagator in frequency space

The diagram rules will be derived in the Chapter 13, and can be verified
by working out low-order terms from the T exp formula (2.36). I present the
Feynman method in frequency space, that is, the expansion of the interacting
time-ordered gqp(w) in terms of gg;) (w) and interaction vertices; the interac-
tion is a two-body operator (typically, the Coulomb potential). We must label

b,w
aw

k,w e |
- k m

k

' w—a I}
-——== n
ko ~> 00 pF—-————=

q,« ﬂ—f—a

c) bw d)

Fig. 11.9. Diagrams for g: a) and b) exhaust the first order, ¢) and d) are second-
order contributions.

the ¢° lines and the interaction lines by frequencies such that a and b have
frequency w and at all vertices the sum of ingoing frequencies equals the sum
of outgoing ones. When momentum or crystal momentum are also good quan-
tum numbers (translationally invariant or periodic systems) four-momentum
is conserved at each vertex. must pay attention to avoid double counting. To
see if two diagrams with an apparent correspondence between the vertices
are indeed topologically equivalent, one can start considering a path on one
diagram and the corresponding path on the other. If one meets the corre-
sponding points in the same order in both diagrams, and this remains true
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for all possible paths, the diagrams are topologically equivalent. For example,
the two diagrams in Figure 11.3.2 left are equivalent; I have added letters to
show that all vertices can be labeled in such a way that all paths correspond.
The orientation of arrows does not point to the evolution in time and each
propagator corresponds to electrons and holes, so the fact that one arrow
goes back in the second diagram is not meaningful.

Fig. 11.10. Left panel: two diagrams that look different but are the same. Right
panel: two ways to represent the interaction —¢Vipmn.

Topologically equivalent diagrams are the same diagram and we
Next, I list the rules to translate a diagram into a formula in the frequency
representation. Write a factor

i

ig? (k,w) (11.65)

- w—€k+i77k ’
for each electronic line with 7, = +0 for empty states and 7, = —0 for filled
ones (0 stands for a positive infinitesimal, as usual). For every interaction line
labeled like in the left diagram a) include a factor

+ t ’ ’
_ivkpmn: _i/d?)r/d?)r/ ¢k (’I") ¢p (r )¢m (’I") (;Sn (r ) _ _inknm~ (1166)

r— |

As we see in the right panel of Figure 11.3.2, what matters is the identity
of the ingoing and outgoing lines, and seemingly different pictures yield the
same expression. Multiply by (—1) for each closed electron ring, sum over
intermediate spin-orbitals and integrate over intermediate frequencies «, 3, . . .
with [ gi gf .... This rule must be better specified when there are non-
propagating lines, like the tadpole. The contribution of the line (excluding

q,w

SR ME R

Fig. 11.11. A tadpole is a line that starts and ends at the same vertex.

the vertex) is:
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T dw . .
> / o ig’(qw) =1) g%(q,t=0). (11.67)
4 % a
Since .
ig(a,) = (0] [eq (£) ¢, (0)] 10}, (11.68)
is discontinuous, we introduce the equal-times rule
(Tch(T)eq (1)) = (el (71 )cq(m-)) (11.69)

where 7 is just after 7 and 7_ just before. The transform must be taken for
t = 0— (the non-propagating lines simply have no time to propagate). Since

ig(q,t =0") = —nl”,

where n,go) is the unperturbed occupation number, the result is — ), n

Including a (—) for the circuit, the tadpole yields + >, n,go) -++, which is
ready for inserting the ¢ dependence of the interaction vertex. Let us see the
first-order diagram (Figure (11.3.2), a)) and its value D[a)]: one obtains

(0)
P

Dla)] = ig°(a.w)ig’ (bw) l(—i)ZVakban] : (11.70)
k

If £ stands for a one-electron wave-vector which is conserved in the absence
of interactions, the matrix element V, 15 5 brings a d(a,b) factor (the tad-
pole cannot exchange energy and momentum). In first-order there is also the
exchange diagram (Figure (11.3.2), b)) which is obtained by exchanging the
outgoing interaction lines. The (-) sign must not be inserted; the arc is a
non-propagating line; one obtains

D)) = ig”(aw)ig’ (bw) Y | / 90 () (=) Viar. (11.71)

(11.3.2), ¢)) shows a second-order diagram with a couple of tadpoles in-
serted into a propagating line. In this case,

Dle)] = Dla)]ig” (kw) l(—i) ZVakban] , (11.72)
k

where the new term in parentheses may be identified with the added tadpole
and the new i¢° represents the new propagator piece.

So, we can calculate a subset of a diagram for later use, knowing that
it will appear in many other diagrams and bring some type of process into
play. As another example of the diagram rules, we calculate the pair bubble
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that appears as an inset in the second-order diagram (11.3.2), d)). This is
a prototype polarization part, that is, a graph that can be inserted into an
interaction line; it will be useful later, and the big bubble unlike the tadpole
does exchange energy and momentum.

—imo () -2. Z/ m,3)ig’ (0,8 + ), (11.73)

m,n

where the (-1) factor is due to the closed circuit and the 2 factor to the
sum over the spins of the circuit. We start evaluating the bubble with the
integral

ds dg 1 1
/ o 8 (m,3)g" (3 +a) = / o B tin § + oo, LY
by the residue method. When the poles are on the same side of the real axis
(Mmnn > 0,) one closes the path on the other side and gets 0. Otherwise we
integrate in the upper half plane, and there are two cases: a) n occupied and
m empty b) m occupied and n empty. These represent respectively hole and
electron propagation. One finds:

oo —ifn[l—fm] ,
/ 48 1 1 ] amelrentio case a )
S AT En I B st | o) e,
So, we end up with
. fn 1_fm) . fm(l_fn)
_ —9. . 11.76
imo ( Z[ a+€m—6n—0+za+6m—5n+i0 ( )

It is already evident at this stage that as the number of interaction lines
increases and progressively more complex diagrams arise the labor involved
tends to increase in a prohibitive way, except for cases like the one shown
n (11.72), when the complex diagrams arise as combinations of simple ones.
Now, combining simple things to build structures is something that we may
do by using ingenuity, while the most general graph at order n requires com-
puting power. If the crucial physics is hidden in some monster-diagram that
first appears at some high order, we have little hope to understand. However,
no such cases are known, and ingenuity has been rewarding.

11.4 Dyson Equation

Like the Linked Cluster method, Dyson’s leads to a summation to infinite
order of selected classes of diagrams. A look to Figure 11.12 , where g with
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Fig. 11.12. Some of the lowest-order diagrams for g; there are two kinds in first-
order, but the variety grows with order in an impressive way.

the thick line, shows that as we proceed the number and complexity of the
diagrams grows in an inordinate way. However, although normally we cannot
obtain g exactly, we can use topology to make exact statements about g. All
terms except the first have a factor ig(?) (a,w)ig(® (b, w), that is, an incoming
and an outgoing line. The stuff in between is a self-energy part. The latter
does not have external lines, but is usually drawn with short ones to show
where they belong in the full diagram. Therefore the mathematical expression
for the self-energy part is just the one for ig(®) divided by ig(®) (a, w)ig(®) (b, w).
Having computed a simple self-energy part, like the tadpole or the bubble,
one can conceive iterating it indefinitely. The diagrammatic series is summed

I

Fig. 11.13. Left: Dyson’s equation. Right: iterative solution.

by writing the Dyson equation (Figure 11.13). The simplest approximation
to X includes in g the repeated scattering of the simplest type any number
of times; any approximation is a partial re-summation of the series to infinite
order. We can also sum two different self-energy parts, e.g. tadpole + bubble,
and the iteration will give all sorts of diagrams in which such insertions occur
in any sequence; all such diagrams will occur once. However, if we iterate
a diagram showing a bubble followed by a tadpole we miss all the diagrams
where two consecutive bubbles (or tadpoles) occur. To avoid missing diagrams
in this silly way it is important to use irreducible self-energy X' . A self-
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energy part is called reducible if it can be split into two diagrams by cutting
a single propagator. The left diagram in Figure(11.4) is reducible, the right

one is not.
o [80)

Fig. 11.14. Reducible (left) self-energy part and irreducible (right) self-energy
parts.

The Irreducible (or proper) Self-Energy X is the sum of all the irre-

ducible self-energy parts. The analytic expression of X is —iX(w), and the
function X' is also called self-energy. The first-order self-energy part reads:

(—1 2(12 —1 Zvakbknk kaabknk (11.77)

The Dyson equation yields the exact diagrammatic expansion of the green’s
function if the exact X is known. Indeed, each diagram containing whatever

insertions in X~ any number of times in any order comes out of by the
iteration of Figure 11.13 exactly once. Figure 11.13 reads:

- - 0,:0 . . 0 0 . _ 40 0.

ig = ig"Hg (-iY)ig = g =g +g Yg; <= g = g +gXe’; (11.78)

with « = (r,t) and [dz = [ d®rdt, these are

g(z,2") = go(x,2') + [ drrdage(w,x1) X (21, x2)g(w2, ")
(11.79)
g(z,2") = go(z,2) + [ derdasg(w, x1) X (x1, 22) g0 (22, 2').

In analogy with (10.7) we can rewrite Dyson’s equation in differential
form. This analogy will be exploited in Section 11.8. Since the noninteracting
9 obeys

&hﬁ —Hdn}¢®uﬂqzéur) (11.80)
1
by applying {idctll — Ho(l)} we obtain

0

[zat — Ho(2)]|g(z,2") — /dajlﬂ(:ﬁ,xl)g(:ﬁl,x') =hé(x —a').  (11.81)

The solution of Dyson’s equation is simple when the symmetry is so high
that ¢ is diagonal on the basis of Hy eigenstates. Jellium is a theorist’s toy
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metal; an infinite electron system with a uniform neutralizing background of
positive charge. Both g9 and g are diagonal on a plane-wave basis, and the
scalar Dyson’s equation yields

1 .
w—ed (k) — S(kw)’

thus X' can be thought of as a complex correction to the energy eigenvalue.
The Dyson equation leads to the notion of a quasi-particle; as far as g is con-
cerned, the many-body interactions can be summarized in a self-energy cor-
rection to the one-body dispersion, leading to a useful picture of an effective,
modified or dressed electron moving around. One can produce many-body
states that behave like a quasi-electron or a quasi-hole added to the system,
although the imaginary part of X' eventually damps the single-particle char-
acter and redistributes the energy. In this way some of the simplicity of the
independent-electron picture is retained; moreover, the independent-electron
model is partly validated; thus one understands the fact that band-structure
calculations and the Sommerfeld theory are useful in many cases although
electrons are far from being independent.

glkw) = (11.82)

11.4.1 External Potential

a a a a a
= q ..
HEE
b b b b b
Fig. 11.15. Propagator in external potential (big dot).

For non-interacting electrons in an external potential the diagram rules
are similar. The series is shown in Figure 11.15 where the heavy oriented
line is ig(a, b,w), the light one represents

i0ab

ig'(a,bw) = ") in.’

and the big dot between two lines , one ending with a label p and the second
starting with label ¢ stands for for —iV,,. In the Fano model one has only
the Vo, matrix elements; to calculate the local Green’s function gop(w) one
can use two ways (see Figure 11.16).

goo (W) = g (w) + 90 (w) Zoo (@) goo (w)
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o

=] = =] - ¢

i) 0 ii)

Fig. 11.16. Two ways to derive X' for the Fano model: i) the Dyson equation for
goo ii) the Dyson equation for the g matrix.

One can write the Dyson equation using the self-energy i) for goo(w),
which is ready for inserting gég) lines; since

Vor |

. (11.83)
W —Ek + Mk

SiD(w) = 3 (CiVeigh (@) (~1Vyg) = —i >
Kk k

we find back the self-energy of Chapter 5, but with the important inclusion
of the Fermi level, where I'mJX’ changes sign. The matrix Dyson equation

o <0 L0e
g=g +g Xg
could be solved by matrix inversion, but it is simpler to write
00= 8001800 2~ Vokgko(w),
K
gro= g1 Vkogoo = w,;;kimk 200

In the alternative method ii) we are seeking a matrix self-energy, where one
should insert not g(()g) lines, but any two lines.which is readily solved.
Another interesting example occurs in the theory of resistivity of metals;
the external potential is due to impurities. At second and higher order, the
self-energy is complex. One has the problem of calculating the Green’s func-
tion and then averaging over a random impurity distribution; however, in the
dilute case, repeated scattering against the same impurity dominates. The
inverse quasi-particle lifetime i is given by I'mJX; actually this can be taken
as i in Drude theory and is the dominant contribution to the resistivity at
low temperature, while at higher T' phonon scattering becomes important.

11.5 Self-Energy from Interactions

First-Order

Suppose we know the spin-orbitals {a, b, - - -} that diagonalize the free-particle
Hamiltonian Hy and the Green’s function ¢(9); we wish the Green’s function
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g including the effects of the direct first-order Coulomb self-energy, i.e. the
tadpole (see Fig. 11.5a)). The self-energy is a matrix with elements (from

Equation 11.77) Zap(w) = 3, Varer £, that is,

U=t 0¥ =0

a) b)
Fig. 11.17. a) Direct Hartree self-energy b) Hartree-Fock self-energy.

) [ 3,3 ra(r) k(") b(r)k(r")
g = . 11.84
) =2 /drdr . (11.84)
Yap(w) = ng) is just the ab matrix element of an effective potential
(0) 2
wO(r) = /dr'Zk |f‘f |k(|r/)| ; (11.85)
r—r '

but this is nothing else than the electrostatic potential produced by the tad-
pole charge density. Had we considered non-interacting electrons in an ef-
fective external potential W (% (r), we should have obtained the same Y.
Note that X, includes the effects of W () () exactly, as if we had found the
eigenstates {a(, b ...} of Hy + WO (r) and computed the new Green’s
function g™, taking the matrix elements in the old basis {a,b,---} We can
still improve the approximation using just the tadpole, but this time with
gM). The new correction Eé},) can then be interpreted as if the electrons did
not interact, but moved in an additional potential W) (r). By iterating the
argument, one reaches the self-consistency, as shown in Fig. 11.5b) where
the exchange term has also been included, and the internal propagators are
dressed, renormalized, fully interacting propagators, shown as the thick lines.
This corresponds to the Hartree-Fock approximation. Hence, if one starts
with the Hartree-Fock basis as {a,b,---} the series for X' starts with the
second order.

Second-Order

The proper X has two diagrams ( direct and an exchange).
The direct one is shown in Figure 11.18 a). It is convenient to introduce
the pair bubble (11.114), and to write:
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Fig. 11.18. Second-order self-energy: a) direct b) exchange

i) = / ;:igo(k,w—a)(—ivknbm)(—iVamkn)(—iﬂo(a)) (11.86)

The calculation is an exercise in contour integration similar to the cal-
culation of the bubble, and the contribution of Equation (11.76 ) to (11.86)
is

—1 Z fn[l _fm]vknbmvamkn/

k,m,n

do 1 —1
2T W — o — € + ik & — €5 + €y — 10

Again, we get zero unless the poles @ = €, — €,;, + 10 and o = w — €}, +iny, are
on opposite subplanes, which requires 1 < 0, that is, k¥ must be occupied;
the pole in the upper half plane comes from the second factor and yields the
contribution —i Y, I+ (1= fm)Vinsn Vamin A dding the second contribution

Wt€m—€n—€L—1Nm

with m filled and k, n empty,

Xk: [(1 - fm) fkfn + fm (1 - fk) (1 - fn)}vknbmvamkn

Yab(w) ot it (11.87)
To get the exchange term from Figure 11.18 a) one cuts the lines rais-
ing from the bottom vertices and exchanges their upper ends, labeling in
such way that the exchange is done in the upper interaction resulting in
Vamkn — Vamnk. The value of the diagram is obtained from (11.86) by
Vamkn — —Vamnk, (no closed circuit any more). Thus, the total second-order
self-energy is:

@) = D [0 = fm) fifat Fn (1= fi) (1= fu)]
m,k,n
% anbm [Vamkn_vamnk] )

. (11.88)
W—En+Em—Ek—1Mm
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Unlike the first-order result, this correction is beyond Hartree-Fock, com-
plex and w-dependent. Starting from Hartree-Fock, we now obtain correc-
tions to Koopman ionization potentials and electron affinities and lifetimes
without resorting to the often prohibitive Configuration-Interaction compu-
tations. This is very useful in atomic and molecular calculations [4]. Typically
the corrections are of the order of 1 eV.

11.6 Skeleton Diagrams

We can do better for free (no other diagrams to compute) by considering the
self-energy of Figure 11.19. where the heavy lines are dressed propagators.
This is self-consistent perturbation theory, in analogy with the diagrammatic
version of the Hartree-Fock approximation (by the way, no tadpoles and no
open-oysters appear, since we assume that the self-consistent potential is our
one-body potential). This procedure is equivalent to a summation to infinite

N

Fig. 11.19. By expanding the right-hand side, one finds an infinite series of self-
energy corrections.

order of a series of more and more complex self-energy diagrams, and can
simplify enormously the task of summing the most relevant parts of the series
for X.

Skeleton diagrams are those with no self-energy insertions. Since all the
internal propagators are dressed, to avoid double counting only skeleton di-
agrams are allowed. A few skeleton diagrams can replace an infinity of self-
energy ones, if the self-consistency can be carried out by numerical iteration.
This can be a very good solution, depending on the choice of skeletons.

11.7 Two-body Green’s Function: the Bethe-Salpeter
Equation

One can perform a Dyson type analysis on the series for the two-particle
Green’s function Gy (10.3). Working in the time representation, we sort out
the direct and exchange contributions to G2 consisting of diagrams with only
self-energy insertions. In obvious shorthand notation,
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—i—/d5d6d7d8z’g(3,5)@'9(7,1)z'g(4,6)@'9(8,2)@/(5,6,77 8), (11.89)

where v is the scattering amplitude. The corresponding diagrammatic equa-

tion is shown in Figure 11.20. vy is the sum of all two-body diagrams such that

each ingoing line starts with an interaction, and each outgoing line leaves an
interaction. Internal lines can have all sorts of self-energy insertions.

1 3 1 .3 1 3 1 T 5 3

Go = + +

Fig. 11.20. The two-body Green’s function G2 and the scattering amplitude ~.
The dressed incoming and outgoing lines belong to G2

Fig. 11.21. ~ is the scattering amplitude; the heavy lines represent dressed prop-
agators, the first two diagrams shown are irreducible, the other two are not; J the
irreducible scattering amplitude.

In 7 one can separate out the irreducible interaction diagrams, that cannot
be split in two by cutting only two dressed lines; let J denote their sum. All
terms in y can be obtained by iteration from those of J, and this enables us
to write down a Dyson-like equation for +.

Finally, the whole series is obtained from the Bethe-Salpeter equation

G2(1234) = g(31)g(42)—g(32)g(41)+/d5d6d7d8J(5678)ig(35)@'9(46)(?2(7812)

(11.90)
which is shown in Figure 11.23.
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O O IO

Fig. 11.22. ~v is obtained by iterating J.

)

1 3 1 3 1 3 1 7 5 3

Ga = + + Go J

>
2 4 2™y 2 4 9 8 6 4

Fig. 11.23. The Bethe-Salpeter equation for the two-body Green’s function.

17

1 7 8

Fig. 11.24. The relation of the self-energy to the scattering amplitude. Replacing
~ by its diagrammatic expansion one gets the expansion for Y. This differs from
Ref. [116], Chapter 10.6, since we assume that the Hartree-Fock approximation is
embodied in our bare propagator.

11.8 Self-Energy and Two-Body Green’s Function

Let us rewrite the equation of motion (10.7),

{ia(i - Ho(l)}g(l;l’) =45(11) —i/d2v(172)G2(1;2|2+;1’) (11.91)
1

where Hj is the non-interacting Hamiltonian. We compare with the Dyson
equation (11.81)

[ia(?l — Ho(1)]g(1,1") — /dQE(l,Q)g(l7 1) = hé(1,1"). (11.92)
X is a non-local potential that can have some local contribution (proportional
to §(r —7')), so there is some freedom in the definition of X'. One can decide
to include the Hartree potential Vi (x) due to the charge —ig(z, 1) as a local
part of X or as a potential in Ho(x). We shall write the one-body term in
both the above equations as Hy(z) 4+ Vi (x), where the second term actually
comes from the local part of 3. Thus,
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i 2
oty

We find

— Ho(1) — Vg (D]g(1,1) = §(1,1") + /d22(1,2)g(2, ). (11.93)

/d2 Vi (1)6(1,2) + 2(1,2)] g(2,1) = _m/dgu(1,2)02(1,2|2+, ).

(11.94)
We have obtained Xg, not just X, since Gy comprises the incoming and
outgoing legs; a formal relation between self-energy and two-body function is
obtained by amputating the outgoing one, that is,

2(11) 4+ Ve (1)6(1,1) = —ih/d?d?ﬂ;(l,2)G2(1,2\2+,3)g‘1(3;1’) (11.95)

where g~ is the inverse of g in the matrix sense.

It is clear that the approximations for the two-body function and for the
self-energy cannot be chosen independently. The relation to the scattering
amplitude is given by the figure 11.23.

11.9 Functional Calculus and Diagrams

Given a functional F which depends on a function ¢(z), one defines the
functional derivative!!

5F[p(z)] _ d
5é(y) dn

For instance, if Flp] = [ d®zf(¢(x), Vi(z)), then it turns out that

Flo(x) +nd(z —y)). (11.96)

oOF _0f o Of

dp(x)  Op OV

If we think of the integrals in discrete form, and the integrand does nor de-
pend on derivatives of ¢, the functional derivative is just a partial derivative
with respect to the value of ¢ in a particular space-time point. Functional
differentiation is a powerful tool that we shall use in parallel with the di-
agrammatics. Functional derivatives with respect to the propagator g are
particularly easy because they undo the integrations which are prescribed by
the rules (see Figure 11.25. ) This remark will be useful later.

"'We shall often use a 4-dimensional notation x = (z,t) and write

OF[p] _ d » )
Sp(xs,tz) an[np(x,t) +nd(x — x3)0(t — ta)].
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4 :.
ety o
T

. 5212
=2(1,2) = 59((4,5))

Fig. 11.25. Diagrammatic interpretation of the functional derivative.

11.9.1 The Self-Energy as a Functional

Functional derivatives also naturally arise for another reason. To study an
interacting many-body system, one can introduce an external probe poten-
tial ¢(x,t) and look for a one-body response. The response arises from the
dependence of the propagator g on small changes in the perturbation

H, = /dwp(:c)go(w,t) (11.97)

where p(x) = UT(z)¥(x) is the density operator. The most direct way to

study the dependence of g on ¢ is through the functional derivative 6{?;1(52)).

Rewriting (11.63) in the form

G T

(2]S|P)
since (|S|@) = lim,, o Ur(co,t3 + €)Us(ts + €, t3 — €)Us(ts — €, —00), and
Ur(ts + ety —e)=1—1 ftt;’j: H,(1)dr + - - - one finds

[ Zn/dw/t3+€dtp I—Ig)d(f—tg):l

xUp(ts — €, —00) = ;;Sp(?)), (11.99)

| @SR @)8) L (BTS(3)|)
’ h2)= h{ (@]5]¢) 912" g1510) }

(11.100)

5(3) ¢
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We may conclude that

0g(1,2)

M o(3)

= —iGa(1,3|37,2) +ig(1,2)9(3,37). (11.101)

This yields a new, useful link between g and G2, but we are interested in
involving X'. We multiply by v(1, 3) and integrate over 3 (that is, over dasdts,
of course). Since —ig(3,3") = p(3) is the density, we may introduce the
Hartree potential V(1) = [ d3v(1, 3)n(3) and write

. dg9(1,2)
zh/d3v(1,3) bo®) = —z/d3v(1,3)G2(1,3|3+,2) — Vi (1)g(1,2).

(11.102)
Now replace 2 by 1’ and 3 by 2. The result may be used again in (11.91)

{z’ai - Ho(l)} g(1;1") = §(11") —i/d2v(1,2)G2(1; 212+: 1)
1
with ¢ added to Hy, and yields

0

, dg(1,1')
(ot

Ho(1) = Vepp(1)g(1, 1) = 6(1,1) +ih / 2u1.2) 5 09)

(11.103)

here the screened potential Verr(1) = (1) + Vg = ¢(1) + [ d3v(1,3)p(3)
appears.
Comparison with (11.93),

0

g, — HoL) = Vir(Dlg(1,1) = 3(1,1) + [ d22(1,2)g(2. 1)
1
again with Vg changed to Vs, yields

/2(1,3)9(3,2)d3 :ih/v(l,i%)ég;l(;j)di% (11.104)

where the instantaneous Coulomb potential v fixes t3 = t;. We can solve this
for X, introducing the (matrix) inverse g~! of g, such that

/d3g(1,3)*1g(3,2) = /d3g(1,3)g*1(3,2) =4(1,2). (11.105)

Differentiating (11.105) we obtain

69~ 1(1,3)
dp(2)

and substituting in (11.104) we get

9(3,2)d3 = — /g—1(1,3)5§§’2§)d3

0g(1,2
op(3)

) —/d4d5g(1,4)5g(5;§§;5)g(5,2); (11.106)
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now the rhs has a comfortable g factor on the right. Hence, post-multiplying
by ¢! we obtain the desired result

)6971(4,6).

$(1,6) = —ih/d(3,4)v(1,3)g(1,4 o)

(11.107)

11.9.2 Polarization Bubble

The dielectric function e(x, ') is defined by the relation (using a notation
with z = (r,t), [ dz = [ d®rdt,)

D(@,t) = /dx’e(w,w’,t — VBt
between displacement vector and electric field which holds in linear media.

The external charges are the sources of D; hence, the effective potential
Vers(r) due to an external source having bare potential ¢ is

Ver(r) = /d?“dt'e*l(r,t,?“,zf’)<,a(r',t')7 (11.108)

the inversion implied in the notation ¢!

indices. Hence,adopting a lighter notation,

is matrix inversion in the 7, ¢, 7’

) §Vess(1)
11,2 =" 11.109
(1,2) 5(2) ( )
In the microscopic theory,
VorsV) = o) + [ @133, p3) = —ig(3:3%)  (11.110)

where v(1,2) is the Coulomb interaction v(z) = 14(t). When ¢ is produced
by a point charge at 71 (t), Vers(2) is the screened interaction W(1,2);

W(1,2) = /d36?<;{3()2)v(173). (11.111)

By a Dyson equation, one can determine the screened interaction W in
terms of the bare (Coulomb) one v. In Figure 11.26 the light dotted line
stands for —iV and the bold dotted line stands for —iW. Therefore, W is

Fig. 11.26. The Dyson equation for the screened interaction W (heavy dashed
line) in terms of the Coulomb interaction (light dashed line)and the full polarization
propogator .
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determined by the polarization 7 according to Figure 11.26:

W(l1,2) =v(1,2) — /v(1,3)7r(3,4)W(4,2)d(3,4). (11.112)
Here, 7 is the sum of all the irreducible polarization parts that cannot be
split by cutting a single V' line. Since the series for 7(1,2) is symmetric

under a mirror reflection that exchanges 1 and 2, 7(2,1) = 7(1,2), and also
W(2,1) = W(2,1); moreover the alternative form exists

W(1,2) = v(1,2) —/d(74)W(1,7)7r(7,4)v(4,2). (11.113)

The general structure of the diagrams for 7 (Figure 11.27 ) shows that it can
be obtained from g and a vertex I

7(1,2) = —ih /9(2,3)9(4,2+)F(341)d(34) (11.114)

3
Fig. 11.27. the structure of 7, according to Equation (11.114), showing the points
where interaction lines can be inserted.

Any approximation for 7 yields the corresponding approximation to -,
and we shall give an exact expression for this in the next Section. A similar
analysis can be done on the diagrams for 2.

Fig. 11.28. The relation of the self-energy to the vertex function, after Equation
(11.115).

A formal expression for X' is:



11.9 Functional Calculus and Diagrams 253
X(1,2) = ih/g(1,4)F(4,2;3)W(1+,3)d(34) (11.115)

in terms of the dressed interaction W and of the vertex I'. The fact that
the same function I" indeed appears in the expressions for 7 and X will be
apparent shortly.

11.9.3 The Vertex

We evaluate (11.111) and obtain a new form of Dyson’s equation (11.113)
for W, and a new 7 formula to compare with (11.114). Taking the functional
derivative of (11.110) Vess(1) = ¢(1) + [ d3v(1,3)p(3), one finds

6Verr(2)
dp(3)

47F)

3) v(2,4).

= 6(2,3) —m/d4595(§&

Since (11.114) says that we want two g factors, we evaluate 595(;1&?,);) by the

trick (11.106),

8g(4,47) *1(5,6)
5p(3) 6p(3)

and then substitute into (11.111): this gives the screened interaction

_ —/d(56)g(4,5)5g 9(6,47),

W,2) = o(1,2) —|—ih/v(l,3)g(4,5)

59~ 1(5,6)

50(3) g(6,47)v(2,4)d(3456). (11.116)

The integral on the r.h.s. is a functional that begins with a bare interaction
v(1,3) and ends with another bare v(2,4). If we aim at (11.113) we must
convert the first to a screened interaction: we need to screen it by e and
we can if we screen ¢ as well. The correct way to do this is by changing
the independent variable from the external to the effective potential via the
functional chain rule

o _ OVerp(7) 6
5o(3) - [ am 50(3) 6Vers(7)

This produces

:/d(7)61(773)5veff(7). (11.117)

W(1,2) =v(1,2) + /d(47)v(2,4)

697"(5,6)

ih / d(56)g(4,5)g(6,47) 6Vess(7)

~ ~

Ud:av(l,?,)el(z 3)} . (11.118)
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Here the square brackets contain W (1,7) (see Equation 11.111); the result
agrees with Equation (11.113) if the under-braced quantity is 7(7,4):

697(5,6)

Vi (1) 9(6,47). (11.119)

x(7,4) = / d(56)g(4, 5)

This yields the following expression for the vertex of Equation (11.114):

(1,2
I(1,2,3) = _6<59‘/;f(f(’3))' (11.120)
Using the solution to Problem 11.4,
g 1(1,2) = (Z;)t — Ho —Verp(1))0(1,2) — X(1,2), (11.121)
we obtain the exact result
I'(1,2,3) =6(1,2)0(1,3) + 92(1,2) (11.122)

Verr(3)

We can re-derive Equation (11.115) for X' in terms of the dressed interaction
W and of the vertex I" using (11.117) and (11.120) in (11.107).

11.10 Hedin’s Equations

Hedin’s equations fully determine ¢, in principle at least. Dyson’s equation
g(1,1") = go(1,1") + /d2d390(1,2)2(2,3)g(3, 1) (11.123)
requires the knowledge of X; this is given by Equation (11.115), namely,
X(1,2) = ih/g(1,4)F(4, 2;3)W(17,3)d(34), (11.124)
in terms of the screened interaction W and the vertex I'. Equation (11.112)
W(1,2) =v(1,2) — /V(].,3)7‘(’(3,4)W(4,2)d(3,4) (11.125)

allows to calculate W if one knows the polarization 7, which by Equation
(11.114)

7(1,2) = —ih /9(2,3)9(4,2+)F(341)d(34) (11.126)

again requires the vertex. To close the equations we have to find one for
the vertex. To lowest order, I'(123) ~ §(1,2)d(1,3) (this is called the GW
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approximation); Migdal proposed plausible arguments to show that the vertex
corrections can be neglected to a good approximation in Jellium and weakly
correlated solids. This Migdal theorem is often violated in strongly correlated
systems, but Hedin found a rigorous equation for I'. The starting point is
Equation (11.122)

0X(1,2)
OVers(3)
The functional derivative is done via the chain rule

53(1,2) 53(1,2) S9(4,5)
6Ves s (3) / H45) 5g(4,5) 6Vips(3)°

By differentiating the identity g~ 'g = 1 and left-multiplying by g one obtains
the analogue of (11.106), namely,

I(1,2,3) =6(1,2)8(1,3) + (11.127)

dg(1,2) / 59~ "(4,5)
—— [ 40,4 9(5,2)d(4, 5). 11.128
et a5, U a5, 2a.5) (11.128)
Thus,
§x(1, 2 52(1,2) 3g=1(6,7)
s / A5) )5 9.0, T an.5)

Now inserting Equation (11.120) I'(1,2,3) = —%gv_;il(f)) we obtain the least

obvious of Hedin’s equations:

I (123) = §(1,2)s /5 46)g(75)(673)d(4567). (11.129)

Hedin[53] obtained these exact equations that formally determine self-
energy, polarization, vertex function and Green’s function. Although they
were not solved exactly, they lie at the heart of powerful approximate meth-
ods for first-principle calculations [54]. This equation lends itself to a di-
agrammatic interpretation (see Figure 11.10). Indeed, functional differenti-
ation may be understood as removing a propagator line from a self-energy
diagram, which then becomes a for-point function with 2 incoming and 2 out-
going lines. By the Hedin equation, all possible combinations and iterations
of such scattering diagrams give raise to the most general vertex.

It was pointed out recently[139] that Hedin’s equations are helpful in
counting Feynman diagrams.
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D & GO

2 1 2 1 2 1

Fig. 11.29. A skeleton Self-energy diagram contributing to X(1, 2), the correspond-

ing contribution to 655((41’52)), obtained by deleting the g(4,5) line (Figure 11.9), and

the contribution to I'(2, 1, 3) arising from the Hedin equation (11.129).
Problems
11.1. Compute diagram d).

11.2. Express the improper self-energy i‘ in terms of X.

11.3. Are there any skeleton diagrams in the next Figure?

Fig. 11.30. Are there any skeleton diagrams?.

11.4. Evaluate g~ in terms of X.



12 Many-Body Effects and Further Theory

12.1 High Density Electron Gas

kw
k-q | m,
m-+q
w—aa I6]
____\JBHa
kw

Fig. 12.1. Diagram for g with a self-energy insertion involving 7o in Jellium.

For Jellium, due to momentum conservation, we re-label the diagram
11.10 d) involving the bubble 7y as in Figure 12.1 and (11.73) becomes

3
mimige) =2 [ 00 [ i tm @i m 5w (2

and (11.76) becomes, restoring 7,

mo(g, o) 22/ d*m l: Jm(1 = fm+q) . fmiq(1 = fm)
’ (277)3 hot+ em — Emtq +1 R+ Em — Emiq — i1
(12.2)
with

fm—Ffm+q
RGWO((L Oé) =2 Em ha+£m75jn+q ’ (123)

Immo(q, o) = =27 Zm fm(1 = fim1q)d(ha + €m — Emtq)-

So, the self-energy (11.86) becomes

3 «
—iw) = [ oty [ e - gw - @)Vl (-im(@a) (124
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and since Vg = 42262 , this diverges at small q. The electron gains self-energy by

exciting the medium and then re-adsorbing the excitations, but the process
runs out of control for the long-wavelength ones. What is going wrong at long
distances? It is the Coulomb interaction V', which is causing the divergence by
its long range, but should actually be replaced by a shorter ranged screened
interaction W.

Equation (11.112) is solved by Fourier transformation thanks to the trans-
lational invariance and becomes:

W(q,w) = E(:"w), (12.5)

where the exact dielectric function is given by

e(q,w) =1+ Vgm(q,w) (12.6)

in terms of the exact irreducible polarization part. The cheapest approxima-
tion prompts itself: it consists of using instead of the unknown 7 the low-
est polarization part; the resulting approximation is popular as the Random
Phase Approximation (RPA) based on

6RPA(qv("J) =1+ Vqﬂ—O(q7w)‘ (127)

As usual, simplicity brings extra benefits; in this case, we can identify the
RPA as asymptotically exact in the case of high density (or perfect Fermi gas).
Dimensionally my = [E~1], that is, it is inverse energy, and any polarization
part is clearly the same; to check this, recall that momentum integrals are
actually > ¢ Summations and carry no dimension, interaction lines V' and
frequency integrals [ d3 carry E and Green’s functions g bring E~'. Thus,
inserting a new V into a polarization part to build a more complicated one
brings a dimensionless factor 35, [ dVy9* = 3, Vyg = [1]. However, if we
scale the density of the liquid, we are changing the Fermi wave vector kp;
then for every interaction line V; scaling like k;g there is a ¢ summation
(k3. ) and an energy denominator k,* (each energy must be counted k%);
thus, qudﬁV(ng ~ k%k%k;gk;‘L ~ k‘}l, and the factor scales like k‘}l,
that is, like the Wigner-Seits radius r,. Thus 7 is the dominant polarization
part at high density, and the RPA is good in that case. The second fraction
in Equation (12.2) may be transformed setting m + ¢ = —n, which gives
fm+q = frns fm = fnt+q; nOW renaming with n — m one finds

3m
ro(g,w) = 2 / (iﬂ)gfm(l ~ fsa)

1 1

— . 12.8
hw+em —€myq+ i AW+ emiq—eEm —in ( )

This was first evaluated by Lindhard [52]. Writing ¢ for |’ and setting:

_ hw _ v _q v q
V=opp 0-= 49 G+= 19,
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mkp
R,e(Tro) = 27r2h2 [—1

1 1+a_ 1+a
g = allogly T — - adlog] T

2q
[1—a2_]7 q>2 +q>u>q 4
—mk 2 _
Tm(mg) = 0 § L—al] <25 +Q>V> % +q (12.9)

drqh? 2v, q<2,—2+q>1/>0
0 otherwise.

12.1.1 More Physical Insight about the RPA

It is fairly common that important results are first obtained the hard way
by the advances of the general theory and after a while somebody finds that
they could have been arrived at by a much simpler, but smart, method.
This sort of re-derivation is important as it offers a fuller understanding of
the result. H. Ehrenreich and M. H. Cohen [43] have shown that one can
derive the Lindhard dielectric function in a purely one-electron formulation.
Accordingly, in this Subsection we let H be a one-body Hamiltonian and look
for the density response to a weak potential W (w)ei“?.

The average of any operator A can be obtained from the density matrix
p as TrpA. The density operator at @ is #(z) = 0(x — @) = [ dq ' (Te—)
with @, the electron position operator; hence n(z) = /, >q e T r[peid ]
and the Fourier transform is n(q,w) = }ZTr[peiq"”e]. Writing the trace on a
plane-wave basis,

na,w)= oS (kllk +q). (12.10)
k

A factor of 2 is due to the spin trace. For W = 0 one is left with a free-particle
problem and the zeroth approximation p(o) such that its action on the plane
waves is p(¥)|k) = f(Fy)|k). We consider the equation of motion

dp
ot

for the one-electron density matrix in the presence of the perturbation W and
expand the density matrix p = p(® +p() +. .. in powers of W. Linearizing the
equation of motion for the linear response p(!) and taking matrix elements
between plane-wave states one readily arrives at

in' " = [H, p] (12.11)

zhaat<k|p<1>|k +4q) =
(Ex — Eryq)(klpV |k + q) + [f(Exiq) — f(Ew)(kIW|k +q). (12.12)

Using (k|W |k+q) = W(q,w)e™? and dropping *! in all terms we obtain:
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f(Ek+q) - f(Ek)

kloMW |k =W 12.13
(k[p* |k + q) (q,w) Frq — En + I ( )
Inserting into (12.10),
E f(E
on = § J(Ei+q) — J(Er) (12.14)

Ek+q — Ek + hw

W(q,w) is the screened potential induced by introducing external charge
with number density 6n(°*)(q,w):

W(gq,w) = 4;26 (5n(”t) (q,w) + 5n(q,w)) (12.15)

where 0n(q,w) is the induced density. én(¢*®)(q,w) alone would produce a
potental Vg ., and with a slight generalization of Equation (12.5) we write

4me
, 0l (qw) = Vg = e(q,w)W(q,w); (12.16)
hence,
2
e

and comparing with (12.12) we obtain the Lindhard dielectric function,

871'6 flex (€k+q)
dlgw) =1+ . 12.18
(q ZekJrq—Ek— w—m ( )

In the static limit, this may be evaluated to read

2me’kr  2me? q 2kr +q
e(q,0) =1+ k2 — 7 )In . 12.19
(@0 =1+ b e k= ml T 29
It can be shown that for ¢ — 0,
K2
€(q,0) ~ 1+ qTQ“F (12.20)

where Krp = i’;; is the Thomas-Fermi wave vector. Using (12.20), one finds
that the screened potential of a point charge becomes a Yukawa potential
o< iexp(—KTFr). Actually, the asymptotic behavior of Fourier transform
reflects the singularities [92]; at long distance the behavior of the screening
charge is oscillatory (Friedel oscillations):

cos(2kpr)
r3

on(r) « (12.21)
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This is due to a divergence in degqu’o) at ¢ = 2kp, the largest q that can be

transferred to an electron in the Fermi sphere without increasing its energy.
Note that for w > 0 we may write

7T€2
&2 = Im(e(q,w)) = ;szf(ek) (1= ferra)) Serry — e — hw) (12.22)
k

which is positive in the part of the w — ¢ plane where hw = €j1q — € =
B2 [2k -q+ q2] can be satisfied with k inside the Fermi sphere and k = q

2m
outside. For a given w, the shortest q vector is obtained by setting k right at

the Fermi surface and q parallel to k, and the longest with g antiparallel to
k.

dmin

o .Qmaz

Fig. 12.2. The longest and shortest g vectors for electron-hole excitations with a
given excitation energy. One starts with a Fermi wave vector k and must reach the
energy surface at Er + hw.

Electron-hole excitations and e; are confined to strip between the two
2 2
parabolas hw = ;”m (2kpq + ¢?). and hw = 2hm(—2kpq +q%).
The term in f(egtq) in the summation in Equation (12.18) can be rewrit-

ten
—f(err)
€k’ — €kt+q — hw — N

by a change of variable k + ¢ — —k’; then, we can restyle € as

16me? Cktq — €k
. q . 12.2
e(q,w) + 20 Zk: f(er) (€hiq — €k)2 — (hw + in)? (12.23)

The Drude dielectric function

The classical treatment by Drude also gave raise to a dielectric function.
Starting from the electron equation of motion in a periodic field,m# = — "7 —
eEqe@m=1) were 7 is the electron mean free time, one neglects ¢ and solves
with r(t) = Ae™ ™!, obtaining A = ¢ o Then, the current density is

mw wt+1°
2 .
s . _ ne‘t Ep —iwt
j=—enr=""7 70 ¢ . Thus,
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J = oE, (12.24)
with the conductivity o(w) = | % with o9 = "f;T. Assuming that every-

thing depends only on z, Maxwell’s equations give:

d*E(z) _ _sz _Amiw J1(2).

dz? c? c?

Then (12.24) gives

dz2 c?

d*E(z) w? [1 N 4mio(w)

] E(2).

this is tantamount to say that the medium produces a refractive index n,.f

C

and ¢ —  ©  with nly=e=1+ 4“5(‘”). Thus we arrive at

w
e=1-— L (12.25)

ww+ 1)
where wp = \/ 4mne? s the Plasma frequency. This is qualitatively correct for

simple metals, but looks very different from the Lindhard result.
Plasmons and the Lindhard dielectric function

Some resemblance of the Lindhard to the classical calculation is recovered by
a long-wavelength (¢ — 0) expansion. The ¢ — 0 limit of Equation ( 12.23)is
obtained by inspection since the k - g term in €4, — €, averages to 0 and

> f(ex) = %, with the result that e(q,w) ~ 1 — (wj:fj?n)g. A more accurate
analysis readily gives:
w? 3 hkp w?
~1-— P = S L SR 12.26
)~ 1= 7 SO (12.26)

Plasmon modes are defined by €(g,w) = 0, which is the condition for self-
sustained oscillations (one can have W(q,w) finite with Vg, = 0. They are
collective modes of the electron liquid with

3 hkp oy 2
12.2
10( m ) w? + ( 7

w(q) = wp <1 +
With increasing q, eventually the plasmon branch enters the electron-hole
continuum and becomes unstable against converting into a pair. Actually they
are sharply defined as ¢ — 0 but are damped with increasing q; this Landau
damping is due to decay in multiple electron-hole pairs. Thus, the plasmons
dominate the high-frequency, long wavelength screening, while electron-hole
pairs in metals are slower and act as shorter distance (higher q) screening
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modes. Plasmon satellites are typically observed in electron spectroscopies of
metals in the 10 to 25 eV range (see Chapter 6.4). In semiconductors and
insulators plasmons are seen in a similar way, since the gap is often small
compared to the wp value that can be deduced from the valence electron
concentration. The phenomenon of ultraviolet transparency is well known:
metals become transparent at frequencies above the plasma frequency because
the electrons cannot follow the field.

The Jellium energy in the high density case can be found by summing
over the ring diagrams. Gell-Mann and Brueckner found the result

P= / deltln] + exln] + eo[n]In, (12.28)

where I have introduced the following energies per particle (small rg):

kinetic  t[n] = 2, (372n)3 ~ >3 Ry
exchange ~ — 0916 Ry (12.29)

correlation —0.0621In(r, ) — 0.096 Ry.

12.2 Low Density Electron gas: Ladder Approximation

In the low density case the quantum electron gas is far from perfect, that is,
the kinetic energy is dominated by the interaction energy. Yet things again
simplify, since many-electron collisions become unlikely and one approaches
a two-body problem. So,we start adding two particles to an empty lattice (or
holes to a filled one; these two problems can reflect quite different physics,
but are related by a canonical particle-hole transformation). The solution for
G is very interesting and can be obtained in several ways.

In Sect.(6.3) I show how one can write the two-particle Green’s function
for two electrons in the empty lattice for any interaction potential; the solu-
tion is simplest when the potential in on-site (Hubbard interaction). Let R,
be the center-of mass of the pair and ¢g? be the Fourier transform of the two-
particle Green’s function with respect to R, with g@ the non-interacting
limit. The two-particle Green’s function is given by the Kanamori [67]result,

g?

Q:
1-Ug®@’

g (12.30)

where, as in (6.74),

Q) — 1
99(2) gZ_G(Q_q)_e(q). (12.31)

This formula is readily obtained as the sum of a series of ladder diagrams,
which in the empty lattice gives the exact solution, and is a useful approxi-
mation at low density. Each scattering introduces an interaction and a couple
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of propagators; if the pair carries momentum @ and frequency w, the propa-
gators may be labeled @ — q,w —n and g, 7. According to the diagram rules,
the interaction brings a factor —iU and we must perform the Z i 2" sum
on internal labels. Doing the frequency integral by countour 1ntegrat10n we
can show that introducing an interaction and a couple of propagators brings
a factor Ug®@ (see Equation 6.69 with z = w + i0).

OIS
I -

i
3

1t e

3

tiD e

&*O H
£

Fig. 12.3. Ladder approximation for the scattering amplitude + and for the self-
energy X (the first term is the Hartree contribution). Note that v and X are simply
related; there is a general link, as discussed in Section 12.5 below.

Then, the sum of the geometrical series gives the Kanamori result, that
we obtained in Sect. 6.3 by quite different means. Then the one-particle self-
energy at low density can be gained by Equation of Figure 12.3. This Low
Density Approximation (LDA) was first proposed by V. Galitzkii [133].

12.3 Ladder Approximations in Electron Spectroscopies

12.3.1 XPS and Auger Spectra from Metals

The theory of the Auger CVV spectra of closed-band solids outlined in Section
(6.2) brings valuable information on the local electronic structure, but needs
to be extended to conduction bands. The presence of a Fermi level in the
band where the two holes are produced by the transition complicates the
problem in several ways. The most evident are: 1) the band can be polarized
by the primary hole, so a two-hole Green’s function cannot tell the whole
story 2) the existence of electron-hole excitations offers an intra-band decay
channel for the two-hole resonances. The writer[91] proposed the following
model Hamiltonian:

H=Hy+ H, + Hs. (12.32)

The independent-particle part is
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Hy =Y eijel,cjo + ecbld, (12.33)

jo

with the first term (in obvious notation) describes the band structure, b
creates the core electron;
Hl = UTLO+77,0, (1234)

introduces the local repulsion at site 0, and
Hy = Uey(nos +no-)b'h (12.35)

introduces the on-site core-electron valence-electron repulsion.
The theory based on assumption that the band is almost full, that is the
number of holes per quantum state in the band satisfies

nh = (a0saly) < 1; (12.36)

this is satisfied e.g. for the Ni d bands. The nj, < 1 assumption makes it easier
to justify the 2-step model, treating the core-hole decay separately from its
creation (by the way, the 1 step approach was not yet available in 1979).

Due to the band polarizability, one needs a 3-body Green’s function (the
third body is the core electron)

g (t) = (Tb(t)c, (t)cy_ (t)co—(0)cos (0)b7(0)). (12.37)

Then, the n, <« 1 assumption makes it possible to factor the 3-body
Green’s function as a core-propagator times a two-hole Green’s function,

g (1) ~ (T(t)b1(0)) {ch (£)cb— (t)eo— (0)co-(0)),

(see the original paper for details). The core propagator can be expressed
a-la Langreth as shown in Section 11.2.3. Thus, the CVV spectrum from the
almost filled band can be modeled as a two-hole spectrum convoluted with an
asymmetric core line shape. Finally,the n;, < 1 assumption justifies the low
density approximation (for holes); this is expected to be a good approximation
up to np ~ 0.1 if U is comparable to the band width, but this range shrinks
at stronger coupling, while at weak coupling any approximation works. The
LDA self-energy was calculated analytically for a band structure having an
arbitrary spectral density

B(w),wp <w <0

Alw), 0 < w < wr (12.38)

where wp is the bottom and wz the top of the band. Thus,n;, = f:T deA)e)
and the non-interacting propagator is given by

igo(w):/ow ge A +/0w3 g B (12.39)

w—€e+1i0 w+e—id
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The results were displayed numerically for the rectangular band model of
Section (6.2). It was necessary to remove the first-order (tadpole) contribution

20 = —iU(n) : (12.40)

it would make the site where the Auger decay takes place more repulsive than
the rest of the sites. Thus,

Y(w) =iU(n) + / dw' go(W")T (w + '), (12.41)
where the 7 matrix is given by
iU * dw’
T(w) = @ ,982)(w) = / ) go(w)go(w — w'). (12.42)
14+iUg " (w) —oo 4T

The integrals can be done with the help of the Lehmann representation.
When U is large enough to produce split-off states in the closed-band theory,
there is structure outside the continuum. One finds

ReX(w) ~ nU%A(—w — U)B(wr +w + U)0(—w + U), (12.43)

that is, a bump between w = —U — wr and w = —U. As a result, there is
a bump in the density of states too, due to broadened split-off states. This
explained[91] a satellite peak observed in the Ni photoemission spectrum; the
physical picture is that the hole produced in the photoemission process has
a chance to find another of opposite spin already there; a two-hole resonance
forms outside the band continuum, and decays into band holes plus a number
of electron-hole pairs. The Auger spectrum was also obtained in this model,
in qualitative agreement with the experiments.

The next step appeared to be the self-consistent LDA, obtained as in
Section (11.6); it had been applied to the Anderson Model [132] and was
expected to have an enhanced range of validity. To our surprise, the writer
and Verdozzi in cluster studies found[134] that the self-consistent procedure
actually ruins the approximation. Comparing with exact results we found
that the non-selfconsistent version, keeping only the diagrams that remain
in the closed-band limit, was much superior; we called this the Bare Ladder
Approximation (BLA). Actually, the self-consistent LDA puts weight in pro-
cesses where many electron-hole pairs are virtually excited simultaneously,
but the on-site interaction does not allow this, and a vertex correction tends
to remove the dressing of the internal lines. The BLA has the further ad-
vantage that the Herglotz property is granted, that is, the density of states
is non-negative. This is of course quite necessary, but most approximations
have no built-in device to ensure this.

The property of vertex corrections that tend to undress internal propa-
gators was later observer by people working on the GW approximation (see
Section 11.10).
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12.3.2 The U<0 Phenomenon

Measurements of Auger spectra of compounds of Sc¢, Ti and Cr [159] showed
that the peak kinetic energy was higher than expected by Lander’s theory
(Section 6.2); shifts as large as 4 eV were reported. This led the authors to
conclude that in such cases the on-site interaction is U < 0 and to propose an
explanation based on a dynamic bipolaron effect. An alternative, U > 0 ex-
planation was put forth by Vaclav Drchal and the writer[128]. We think that
the on-site interaction is always repulsive; the repulsion can indeed produce
an effective attraction by a correlation effect (W=0 pairing, see Chapter 17)
but this is off-site and the binding energies are expected to be of the order of
tens of meV. The probability [22] of measuring a photoelectron of momen-
tum p and an Auger electron of momentum k in APECS (Sect. 6.4) is We
approximate the probability of emitting by

L (Bp k) = [t [ a0, p k)P0, (12.44)
0 0
where, introducing complete set summations Y . over the states of the neutral
Mo
system,
f 1 p k) = 3 3 (Wlal et Ol q  |p)
W ocyc!
; T 12.45
x {ul HY (k)OO 1 (k) 1) (12.45)

x (u| afe O =ilonltq |F) V (', p)*V (¢, p)

Here, V(c,p) is the matrix element of the electro-magnetic Hamiltonian be-
tween the core-electron state ¢ and the photoelectron state, H(v) is the
hamiltonian of the system with v core electrons in the primary-hole state,
the operator I, describes virtual Auger transitions, but is often replaced by
a constant

Hy(k) = Z Meas(k)aoaaos
af

is the operator that describes the valence hole creation at site 0 in the local
spin-orbitals denoted by greek letters; M,g(k) are Auger matrix elements.
Moreover, |¥) is the true ground state with no core-hole (v = 1), and the sums
run over complete sets. For degenerate core levels a set of relaxed ground states
must be included. We considered a non-degenerate core state and assumed
that these sums are saturated by two main contributions, namely |u) = |¥)
and |p) = |P), where |P) is the relazed ground state with the core-hole and its
screening cloud. In the case it is necessary one could easily extend the theory
including plasmon satellites and other excited states. One of the ingredients
is the core-hole Green’s function g.(t) = —i(W|afelHO+ilep]t g W) . One
can observe the core density of states in Photoemission experiments as an
asymmetric line shape. We argue that the terms with p # u' are negligible,
since the factor
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<,U| HLe’LH(O)(t—t/)HA ‘M/>

represents the evolution without the core-hole and it is unlikely that a screen-
ing cloud can be created taking from |¥) to |®@) if there in nothing to screen.

Let 9 denote the inverse lifetime of the core hole and I' denote the in-
verse characteristic time of the electron-hole pairs screening the core hole
and contributing the asymmetry. We assume that both are small com-
pared to the other relevant energies. thus, we may model the situation with
ge(t) = —ie eI+t where e, is the core energy level, while

Be(t) = —i (@] aftHO+ilolty |7y ~ gmient =0t (12.46)
involves a screened core energy €. Collecting these results,
Itot = ‘V(p)P [I‘p‘p + Iqw]

with the unrelaxed contribution
* dv D(E-w)
Ly = M@E)P [ L
o0 2T (w—e)" + T

written in terms of the two-holes density of states D as in closed-band theory,
and an average square matrix element. On the other hand,

7 _/°° dw I.e(F —w)
P T 70027T(w—E)2+(52

where the relaxed line shape requires modeling the screening cloud. We mod-
eled the ground state of the system in the presence of the core hole, using a
Hamiltonian of the form

H = Hy+ Heo + Hp, (12.47)

where Hj is the usual band term,

Hee =U MiaMia (12.48)
iaf
is an approximate electron-electron interaction with i running over the lattice
sites and the greek indices over the local atomic valence orbitals, and

Hep = =W noa (12.49)

is the core hole-valence electron interaction at site i=0 (W > 0). Letting |¥)
denote the ground state with no core-hole ( determinantal state in HF and
Local Density approximations) we looked for the ground state |®) with the
core-hole in the form



12.3 Ladder Approximations in Electron Spectroscopies 269

[2) + (a+ Y bgaafaga) |¥)
qo
with q as the wavevector and by, variational parameters.
By minimizing the energy one finds a complicated but physically relevant
solution until it is clear that the solution must be found in the space of
distributions in terms of a wave packet

B(h,e) = /(1 =n)p(Ep)hd 6(Ep — €)0(—Ep + € + h)

as the following singular limit for A — 0:
|Fa) = /(1 — n)d lim \/ Zﬂ (h, E(q))|qa). (12.50)
The relaxed state turns out to be

= 1 aT a
@) = m_n)dg Saral¥). (12.51)

The screening electron comes from the Fermi surface. Now within the two-
step model one can obtain the Fermi golden rule expression for the relaxed
spectrum

—12|M (k)]

Lra(E) = 7 (1—n)d

Im[/ dte= (B0}t Zgghhe)(aﬁ% t)]  (12.52)
0

aBy

where

98" (. 1) = (—i)® (@] Tlagy (ady(Dal, (acaaos(tal,] ) (1253)

is a three-body causal Green’s function averaged over the unrelaxed ground

state. In order to compute g¢""® we proposed the approximation ! was shown

i Figure 12.3.2 for «, 8 and ~ all different.
This means:

9 (0B, t ) — g(h")(aﬁ 9 (7, 1) + g9 (o, g™ (8, 1)

+9£" (37, £)9" (0, 1) — 208 (0, )9 (8,8)9 (1, 8),
a, 3, all different

(note the factor 2, which is needed to give the correct U=0 limit.) When two
indices coincide, we find

9" (ayy,t) = (1= n?)g" (1) T)gghh)(a% £ (A1)
g

h h h h
98" (. 109" (0, 1) — gt (@, )9 (3, )9l (1, 1),
!The exact three-body wave function for a system of interacting identical par-

ticles can be obtained by a method by Faddeev [206] but here we were looking for
a simple approximation for the three-body Green’s function.
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Fig. 12.4. The approximation for gﬁhhe) introduced in ref. [128] for «, 8 and ~ all
different. The black box represent ladder interactions involving pairs of Fermions,
while all diagrams involving all Fermions are neglected.

and a similar expression if & = . The Auger intensity is
1
L (E) = — ImA(E)O(Ep — E) (12.54)
7r

(he)

where, calling Ag: ’ the correlation part of gghe), that is, the difference
(he)

between g¢' and its U=0 limit,

A(E) = (1 —n)%g “‘><E>+<d—1>f°;§;:A PNE - w)gh(w)
+4 7% 8598 (E = w)gl ().

'S} 27rz

(12.55)

For partially filled bands, a one-body contribution arises, along with the rest
of 3-body contributions and the 2-body ones in the unrelaxed contributions;
we called our approach the 1-2-8 theory. In was shown in Ref. [128] (see
Figure 12.5 ) that this theory qualitatively reproduces the experimental trend
for early transition metals.

12.3.3 Correlation in Early Transition Metals

Part of the intensity in Auger CVV and APECS spectra from transition
metals comes from the decay of core-holes that are unscreened in the initial
state; this is obtained by a two-body Green’s function, as in the filled band
case. However, much of the intensity comes from core holes that are screened
when the Auger decay occurs.

Some of these spectral features are amenable to the one-body g, but the
rest requires[128] a two-hole-one-electron propagator, that is a 3-body func-
tion ¢(®. In the strongly correlated case the approximation of the last Section
runs into trouble because the Herglotz property is not granted (the density of
states may turn negative.) The Core-Ladder approximation [127]is an exten-
sion of the ladder approximation to this problem that has several attractive
features. It is based on the idea of formally rewriting the problem in terms of
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kinetic energy, eV

Fig. 12.5. Thick solid line:schematic drawing of the experimental T4 Lo Mas Mas line
shape (see Ref. [160]) on a kinetic energy scale centered at the mazimum. Dashed
line: the theory of Ref. [128] (dashed), with U=1.684 eV, band width w=7.14 eV
and n=0.254. Thin solid line: the closed-band theory result with the same U and w,
which predicts too low kinetic energy and is clearly not applicable in this case.

a fictitious three-body interaction, where the third body is forward-scattered
by an interaction x.

a) b)

Fig. 12.6. a) typical second-order diagram for the 1 hole- 2-electron function g® (t);
b) the same diagram with a fictitious 3-body interaction that allows to carry on a
partial summation of the 3-line ladder series to infinite order.
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The third body is filtered through a x=)", |7)(i|—type projector, that is,
it is left undisturbed. In core problems, one can exactly dispose of the infinite
summation in favour of a local projector. The same applies to localized split-
off states that occur at strong coupling. Thus one can base an approximation
that can be systematically improved by including more terms if needed. It
treats electrons and holes at equal footing, carries on a partial summation of
the perturbation series to infinite order, and becomes exact both at weak and
at strong coupling (in the sense that it becomes equivalent to a full Ladder
approximation). A particularly interesting feature is that our approach grants
the Herglotz property, that is, the density of states is granted to be non-
negative. Indeed it is a common drawback of perturbation approaches that
potentially powerful diagram summations become untenable by the failure to
guarantee this zero-order requirement of positive probability. In this case we
achieve the result by proving that there exists a model Hamiltonian for which
our Core-Ladder series gives the exact answer. The theory naturally explains
the apparent negative-U behaviour of the early transition metal spectra.

12.4 Conserving Approximations

When working with approximate self-energies, we must be ready to get some
quantitative details wrong, but we can make no use of approximations that vi-
olate the basic conservation laws. The continuity equation must hold; energy
and momentum conservation laws, when applicable, must also be obeyed. An
approximation that respects these fundamental symmetries is called con-
serving. The Hartree-Fock approximation is, but if we pick a general X this
is not granted automatically.

12.4.1 Continuity Equation

Let us see how the Green’s function formalism embodies current conservation.
The Dyson equation has two forms:

g(z,2") = go(z,2') + /dxldxggo(x,xl)ﬂ(xl,xg)g(xg,x’) (12.56)

g(z,2") = go(z,2) + /dxldxgg(x,xl)ﬂ(xl,xg)go(xg,x') (12.57)

By applying the g, ! operator one obtains two equations: 2

2
{iai + Zrll - U(l)}g(l;Q) =46(1-2)+ /dTE(l;i)g(Lz) (12.58)

2recall from (4.20) that g(1,2) = —i(T[»(1)%"(2)]).
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2m

{45;33_maﬁwazarm+/ﬂwﬂww%-ﬂ“%

Taking the difference and writing V2 — V3 = (V1 + V3) - (V1 — V3), we
get:

(100, +i0)9(01:2) + (V1 +92) -~ ' V2 g(12) =
V) - U912 + 212, (12:60)

where

Z(1;2) = /di {2(1;1)g(1;2) — g(1;1)X(1;2)} . (12.61)
Now we set 2 = 1, which means t3 = t], 72 = ;. In the left hand side,
ig(1:17) = —@ ()@ (1)) = —((1) (12,62

is the particle density and
{Vl -V,

2m 2=1+

9(1;2)}
1

= omi 1)V (1) — VT ()P (1)) = —(G(1)) (12.63)

is the current density. Hence we end up with the continuity equation, which
is the number conservation law in a differential form, provided that the right
hand side vanishes, and this requires

Z(1,1%) = 0. (12.64)

The exact Dyson equations (12.56,12.57) must imply the continuity equation
and (12.64). The best way to check this is to use the equations of motion
(10.7) involving the two-particle Green’s function

. d V% 1 / . 7 T T T
{Zdtl + om U(l)}g(l,l )=46(1,1") — z/le(L G2 (1,171 17)
(12.65)
and

{ L ZQ’ _U(1')}g(1;1’) = 5(1,1') —i/dIG2(1;1_|i+;1’)V(i,1’).

_Zdtl/ m
(12.66)
In this way, taking the difference, we get
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(i, +10p,,)9(1;1") + 271%(V1 +Va)- (Vi —Vi)g(l;1) =
=[U@1) -U1)]g(1;1)
—i/di[V(l,i) — V(' D)]Go(1;17[1F;1"). (12.67)

When we set 1’ = 17 the r.h.s. vanishes.

This is an obvious statement about the exact X' and g; however it is also a
condition on approximations, which can only be tenable if they are conserv-
ing. The condition on approximate X and g is that both forms (12.56,12.57)
of the Dyson equation be obeyed and (12.64) holds. Next, we discuss how to
build conserving approximations.

12.4.2 The ¢ Functional

There is a simple diagrammatic prescription for creating conserving approxi-
mations. Let ¢ Eizzl_ denote a skeleton diagram of order n for the self-energy
XY(1,2) and imagine joining the two ends by a propagator ¢g(2,1) . The result
is the ring diagram in the next Figure:

52(70

skel.

g

Fig. 12.7. Building a contribution & to the & functional (occurring 2n times)
from a skeleton diagram 522;214 for the self-energy, by closing the ends by an inter-

acting propagator g.

s — /2(1,2)9(2, 1)d1d2 (12.68)

similar to one of those bubble diagrams that contribute to the no-particle
propagator or ground-state energy (Section 11.1) , except that the 2n inter-
nal propagators are dressed g and there are no self-energy insertions. The
analytical expression of any diagram is a functional of g. As illustrated in
Figure 11.10 the inverse operation (opening the ¢(2,1) line to restore the
original self-energy) is a functional differentiation. We introduce an inter-
action strength parameter A\ (which is 1 in the fully interacting case). Any
graph with 2n g lines must be divided by 2n to avoid multiple counting of
contributions to X(1,2) (see Figure 12.8). Let o, represent the sum of all the
skeleton diagrams with n vertices, and
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n

Blg. N =3 ) Trig(w)on(w)] (12.69)

where the Tr operation now sums over spin and all one-electron labels and
integrates in ”i‘:. This leads to the following result.

Theorem 10. (Luttinger-Ward theorem) [55] The exact self-energy is given
by (note the order of arguments!)
0P
$(1,2) = . 12.70
(12) 49(2,1) (1270)
A further theorem by Baym and Kadanoff [56] states that the continuity
equation and the momentum, angular momentum and energy conservation
laws are embodied in the @ functional;

Theorem 11. If (and only if) a self-energy is @-derivable, that is, comes ac-
cording to (12.70) from some approximate @, the approximation is conserving.
In other terms, even for approximate X Equation (12.70) is equivalent to the
conservation laws.

The GW approximation is also @-derivable and hence conserving.

P 1 1 P
E: J/—\-|-‘_‘—|-J—Q\—¥—/'-|--.-

Fig. 12.8. Diagrams for ¢ and the corresponding Y. The first-order example refers
to the Hartree-Fock approximation.

12.4.3 Gauge Transformation

We prove Theorem 11 for the continuity equation (the other proofs are some-
what longer but similar). Under a gauge transformation ¥(z) — ¥(z)e*4®)
or
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9(1,2) — 1MW g(1,2)e~ @), (12.71)

& is invariant, since for any line entering a vertex there is another one leaving
it. In an infinitesimal gauge transformation 64, g changes by the amount
dg = [6A(1) — 6A(2)]g(1,2). Then to first order ¢ as a functional of g will
change by the amount

5
0=00= /d1d2§g(172)6g(1,2) = /d1d2 2(2,1)89(1,2)

= i/dld? 2(2,1)[0A(1) — 6A(2)]g(1,2). (12.72)
Exchanging the dummy variables in the second term, Eq.(12.72) yields
0= /d1d2 [X(2,1)9(1,2) — g(2,1)X(1,2)]6A(1) (12.73)

The coefficient of §A(1) must vanish identically. that is

/d2 {2(1,2)9(2,1) — g(1,2)2(2,1)} = 0. (12.74)

and we are back to Equation (12.64): the approximation is conserving.

12.4.4 Ground-State Energy and Grand Potential

« (n)
o0x

g(O)

Fig. 12.9. Building a contribution §2™ to the grand potential (occurring 2n times)

from a diagram § fj for the self-energy. This looks very much like Fig. 12.7, but
please observe the differences: propagators are bare, and the self-energy improper.

The grand potential is the sum of ring diagrams. One may work out the
grand-potential and the ground-state energy in parallel; just, in the former
case one uses /13 >, while in the latter case ffooo dw. We use a short-hand no-

tation valid for both cases 2. Let 62(™ denote any such diagram of order n;
it may be thought of as the result of closing a self-energy diagram (improper,
in general) with a bare propagator. Mutatis mutandis, this is similar to the

3Note however that some expressions are ambiguous if taken literally at T=0
and then one should take the T — 0 limit at the end (see below).
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procedure for building @ from the skeleton diagrams for the self-energy, since
there are 2n bare lines in 602("). J.M.Luttinger and J.C. Ward [55], derived
the diagram rules for the grand-potential in the frequency-momentum repre-
sentation for Jellium. They wrote the contribution of order n, summed over
one-body states r, such that ¢(© is diagonal,

(n) 1

1 * *
0, = (0) = " Trg® 5. 12.
2n;/dwgr Wz, =, Trg™ 5 (12.75)

here [ dw stand for KpT times the summation over Matsubara frequencies
in the finite T case, and the Tr operation implies summing over indices and
integrating over frequency. To compute ) {2, one can use the fact that

an) = a =Y CZ“A" - /0A a(a)da (12.76)

(07

Thus,writing Y, (w, ) for X' at coupling constant «,
1 rd *
2=+, E/dw/o ;‘gﬁm (w) 5r (w,a), (12.77)
where (2 is the non-interacting limit. Recalling (2.23) one finds
1
2= 5 D (14 e flerm), (12.78)
Using the solution to Problem 11.2 and the Dyson equation we end up with
1 A d
2=+, g/dw/o (jgr(w)Zr(w7a)7 (12.79)

which is a new expression for the ground-state energy in terms of the Green’s
function, involving a coupling-constant integration. This implies

R 1
=T 2(w, A). 12.
Ay = g Trelw, N Z(w, A) (12.80)

12.4.5 Luttinger-Ward and ABL Variational Principles

From Equation (12.70) we know that X = ‘f;j; hence Luttinger and Ward
obtained a new functional {2 with the interesting property of being stationary
with respect to the correct g, that is,

00

= 12.81
s =0 (12:81)

provided that g obeys the Dyson equation g = (g; ' — X)~'. Indeed, using
the same T'r notation as above for the sums of ring diagrams
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ox ox
I 5 R 12.82
X -9 L §g ( )

)
Trln(X —g ) +gX] =
gr[n( 90)9] 5q

0
and so one finds that (12.81) holds for the functional
Q=Tr{in(X —gy") + Xg} — &. (12.83)

Luttinger and Ward [55] further proved that, as the notation suggests, {2 veri-
fies (12.80) and coincides with £2 for A = 0; so, it is indeed the grand potential
(at finite temperatures) or the ground-state energy (at T=0). These results
have been generalized in the nineties; the Lund Group (C. -O.Almbladh and
U. von Barth) [136][137] have constructed a functional {2 which depends on g
and on the screened interaction W and is variational in both variables; they
tested numerically the performance of {2 by using simple approximations for
g and W and found that the results where competitive. The derivation in
Ref.[137] also points out the connection with Kohn-Sham theory (see below).

12.5 Generalized Ward Identities

Still, we have to exploit the continuity equation

dp

v = 12.84
8t+de 0 (12.84)

as a source of exact relations betwen the Green’s functions. Here, in obvious
notation, p(z) = ! ()v(x), Ji(z) = 5" [(a‘l -2 )¢T(x/)¢(x)] . Let

Aq, A denote Heisenberg operators such as fermion creation or annihilation
operators and p an operator such as a density which commutes with A, Ay
under Wick’s T ordering. We know (see Problem 2.3) that

ST As(t2)0(0)) = T{AN1) As(12)p(1))

+ 0t —t)T{[p(t), A1 (t1)]- A2(t2)}
+ 0(t — t2)T{A1(t1)[p(t), A2(t2)] - }. (12.85)

Following [140] (see also [1]) we set A1 (t1) = ¥(z1), Aa(t2) = ¥ (22), take
a (ground-state or thermal ) average, use the continuity equation to replace
p and obtain

0T {w (1) (22)0" (2)(2)}) = T{w(e1)0' (22) VI (2)})
+6(t = ti)(T{[p(2), ¥ (21)] ¥ (22)})
+6(t — ) (T{w (1) [p(), ¥1 (22)]-}).  (12.86)

Since [p(x), (1)) = —b(z —21)(x) and [p(x), ! (22)]- = 6(z —21)01 (@),
one obtains the Ward identity [141]
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h
2miV(V -~ VGa(x, 21, 10,2") =

=i6W(z — z1)g(x, 22) — i6W (x — x2)g(x, 1) (12.87)

8tG2(x7xla (E271') +

where 6 () = §©)(r)§(t) is the 4-dimensional § and the limit 2/ — z is un-
derstood. The continuity equation is an expression of charge conservation and
is associated by Noether’s theorem to the gauge invariance. Ward identities
generally arise from invariance Groups of the theory.

12.6 Connection of Diagrams to D F T

12.6.1 Highlights on Density Functional Theory

As W. Kohn emphasized in his Nobel lecture, the many-body problem is
rather ill posed in terms of the many-body wave function g (1, z2, - - ), with
x; = {r;,0;}, and it of paramount practical and conceptual importance that
it can be formulated in terms of the density,

n(r) = (Yolft|to) :NZ/CZ$2~“/dﬂCNW(?“,U,xQ,“',xNIQ. (12.88)

Indeed, 9y requires an immense amount of information for large N and a
very small change in it gives an orthogonal state, while n(r) is observable. I
summarize the topic, starting with the Hohenberg-Kohn theorem [121] .

Theorem 12. For an N-electron liquid in an external potential Veyi(x), the
ground state energy Eq is an universal functional of the density n(r).

This means that n determines Ey and also the wave function 1y: symbolically,
n = E07 ’lﬁo.

Proof. Suppose we know the ground state wave function tg(z1, 22, --) and
energy Ey of an interacting electron liquid in an external potential V..:
(Equations 1.60,1.61,1.62) with Hamiltonian H = T 4+ U + V.. Since
Hyg = (T + U + Veg)tbo = Eotbg, we can infer V. (apart from an
additive constant). Thus, for a different potential energy V. .,, one gets
H'Yy = (T + U + V5, ) = By with o . Assuming v = o one
should find (Vegr — VZ,1)v0 = (Eo — E{)¢o and Veye and VY, should differ by
a constant. If V,; is such that the ground state is degenerate, several wave
functions belong to Ep, but this conclusion is not affected. Thus, v, is a wave
packet of eigenstates of H involving excited states.

Having shown that 1y determines V.,¢, that is, 19 = Veyt; we next show
that we can do with much less information, since n = Vi, too. Assume

the converse is true: then 3 V! , # V. such that n is the same; the change
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Vewt — V.., produces a new hamiltonian H', with a different ground state
wave function ¢, and eigenvalue E{; by the variational principle
Eo = (volH|o) < (ol HIvbo) = (Vo|H' + Vear — Vi lthp)- (12.89)
Thus,
Eo < E\ + /dsx[Vext(x) — V! (@)]n(x). (12.90)

But this is absurd! If one starts by considering H’ one finds
Ej < Ep+ /d?’x[Ve’mt(x) — Vezt(2)]n(2), (12.91)

and summing the two one finds the contradictory result Ey + Ej < Eop + Ej.
Note that in the case of degeneracy the ground state density is not unique,
but this does not change the conclusion that the same n cannot be compatible
with two potentials. Thus, n = Viu, or (in the DFT parlance) Ve, () in an
unique functional of n(r). So, n = V.;+ = H and since in principle one can
solve the Schrodinger equation, we may conclude that n = g, Fp.

The functional Ey[n] is unknown: it would be the solution of all kinds of
ground state problems in a formula. We can think physically, and separate
out some obvious contributions. We set

Eyn] = /diewt(x)n(x) + Vir[n] + E[n) (12.92)
where ) (2)n(z’)
Vi ln] = 5 /dxdx’ | (12.93)

is the Hartree term; this shifts the problem to a new unknown universal
functional F. The electrostatic potential is

n(z’ ) .
8(0) = Vers(o) + [ ' - ; x),| = 1 [Boln] — B[]l (12.94)
Since %En“ = p we are left with
SE
o(x) + 5 =M (12.95)

One can try a simple approximation by extrapolating the high-density Jellium
result (12.28,12.29) (see also Problem 23). This is not accurate outside the
Jellium case. Gradient corrections involving Vn have been considered but do
not take far: the approach remains semi-classical, closely related to the (1927)
Thomas-Fermi scheme.
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Kohn and Sham [122] invented the fully quantum mechanical version,
just in time to take advantage of the computer revolution. To find a quan-
tum kinetic energy functional T'[n], first of all one must realize that it ex-
ists. As noted above n = V.,; = H. Now, H determines g, Ey and also
T = <1/10|T|1/10>. We cannot carry on this program because we cannot solve
the Schrodinger equation for the interacting system. However for a non-
interacting system S of electrons moving in some external potential Vs we
can. Let Tg[n] be the kinetic energy of a fictitious N-electron system S having
the same density as the real one; Kohn and Sham wrote

Foln] = Ts[n] + / Voo (2)0() + Vir[n] + Eucln], (12.96)

where E,.[n] is a new unknown exchange-correlation functional. Indeed, we
can apply to S the above argument showing that the density yields the ex-
ternal potential: n = Vg. Therefore, the required potential ensuring that S
has the exact density must exist; having separated out the kinetic energy of
S (that will differ from the exact kinetic energy of the interacting system)
we can write (12.96) and pretend we know all but E,.[n] potential that must
be approximated in some way, usually drawing from the Jellium theory at
the density n(z) prevailing at a given point. This is the Local Density Ap-
proximation. Among the popular approximations, I mention the interpolation
formula

1 4

3 3\3 4 ns
Eycn] = — nsd3r — 0.056/ d3r 12.97
i 10 (w) / 0.079 4 ns ( )

and the extensions including gradient corrections
Eyeln] = /d3r {ewc(n)n(r) + €@ ()| Vn(r)]2 + - - } . (12.98)

E.c[n] produces the exchange-correlation potential

5Exc
5n ( )
This contributes to the chemical potential, along with the electrostatic po-

tential ¢, since

5E0 5TS
== Vie. 12.100
5n —HT g TOT ( )
Thus in the fictitious system the electrons do not interact but feel a potential
0FE .
Vs = o(x) + P (12.101)

which does not coincide with the screened potential but includes V.. One
must solve self-consistently the set of N equations, the Kohn-Sham equations
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1
(—2v2 + Vs )ibi () = e (), (12.102)

and compute Ts and the density

N
n(x) =Y |vi(z)[? (12.103)
=1

from the determinant of the orbitals ;(x). The exchange-correlation po-
tential can be improved over the jellium estimate (12.29) by including the
generalized gradient corrections[138] and the accuracy of the results strongly
depends on the system. In metals, typical error may be 0.3 eV per atom
but for finite systems they are usually much worse. Bond lengths are usually
reproduced to better than 1079 cm.

Further Developments

The density functional perturbation theory is a technique that allows to cal-
culate e.g. phonon dispersion in solids[149]. I quote the following useful result
by Janak[146] without reporting the proof.

Theorem 13. In density functional theory,

oE

=€, 12.104
on, € ( )

that is, the derivative of the total energy with respect to the occupation number
of a Kohn-Sham orbital is equal to the eigenvalue of that orbital.

Vignale and Rasolt [119]formulated the current-density-functional theory,
an extension which is needed to include magnetic fields; the current couples
to the vector potential A and a term in A% appears. A few pioneers [129],[130]
tried time-dependent versions of Kohn-Sham equations in atomic problems;
the results were rather encouraging, but a justification was lacking untill
Runge and Gross[131] found a suitable formalism. This was based on the
variational principle 0A = 0, where A = j;tj (W@®))i 2 — H(t)|y(t)), but for
the rest the theory parallels the static one. For further details see[54].

This is the basis of Density Functional method on which most ab-initio
calculations are performed, [125] and is of paramount importance as a practi-
cal calculational scheme when the correlation effects are not too severe. Very
good comprehensive reviews on this subject are available [125], [54]; however
I wish to discuss less well known consequences.

12.6.2 Sham - Schliiter Equation

There is no diagrammatic expansion for either E,. or v,., however L.J. Sham
and M. Schliiter [123] devised a scheme that in principle allows to deduce vy,



12.6 Connection of Diagrams to D F T 283

from the self-energy. The exchange-correlation self-energy X, which is all the
self-energy minus the Hartree term, enters the Dyson equation for the Green’s
function ¢ in terms of the Hartree approximation gy (which also accounts for
the external potential); in a shorthand self-evident matrix notation reads:

1

9=90+ 9nY2cd = 9" = 95" — Zac. (12.105)

In the fictitious non-interacting system the electrons see an effective potential
Veff = Vet + Vi + Uge. (12.106)
Thus the Green’s function g g of the fictitious Kohn-Sham system obeys

grs = g + 9uVec9xs = 9xs = 95" — Vae: (12.107)

rather than Equation (12.105). Hence,

9 —9xs = —(Zoe = Vae) = 9 = grs + 9r5(Zue — Vae)g. (12.108)

Now, we observe that gxg # g, but both yield the same density; thus, intro-
ducing as usual the positive infinitesimal §,

glr,t,r =r t+6) =grs(r,t,r =r,t +08) = n(r). (12.109)

Hence,
[gKS(Ezc - Vwc)g]r’:mt’:tthS = 0; (12110)

more explicitly, letting z = (v, ),z = (r,t + §), this means

/dm’dm”g;{g(x,:c’) { S, 2") = 8(2" — 2")WVae(z")} g(2”,27) = 0.

(12.111)
If an approximation to X,. is given, the corresponding g can be obtained
from the Dyson equation and this may be considered as an equation for
Vae(2z"). This Sham - M. Schliiter equation is awkward and highly non-linear
(the unknown is also contained in gxg) however it is considered [126] as an
important source of information on V.. Like the density-functional approach,
the Sham - M. Schliiter equation also holds generally for time-dependent
problems.

Problems

12.1. If as an approximate E[n] one keeps only t[n] (see Equation 12.28),
what kind of approximation is obtained?

12.2. Evaluate the diagram of Figure 11.2.2 with all s; = a.



13 Non-Equilibrium Theory

13.1 Time-Dependent Probes and Nonlinear Response

Phenomena like electron transport, electronic transitions in chemisorption,
desorption®, molecule-surface collision processes, and sputtering 2 are natu-
rally described by time-dependent electronic Hamiltonians. What happens in
the Fano-Anderson model (Chapter 5.1.2) if the € and V' parameters depend
on time? Such a time-dependence occurs because the Hamiltonian of elec-
trons depends on the position of the nuclei, and, through this, from the time
3. Such problems are completely outside the scope of the diagram method dis-
cussed so far; the equation of motion method (EOM) can work but depends
on some approximate truncation procedure. This Chapter is devoted to the
quantum theory of such non-equilibrium processes. A powerful generalized
perturbation method enables us to deal with time dependent problems and
processes that are far from equilibrium, generalizing the Kubo approach [29]
to all orders. It is a general and in principle exact technique; the Feynman
method is recovered as a particular case. There is no need to assume that
the perturbation is small or that the system deviates little from equilibrium;
one does not need to make any assumption that the system evolves in a
reversible way. As one could expect, the study of the excited states and out-
of-equilibrium situations involves special difficulties, however this generalized
theoretical framework is also powerful for exploring the equilibrium nonlinear
response to strong perturbations, that can be treated to all orders.

1See Chapters 6.2, 10.2.1.

2This is an important process in industry, and generates a clean surface under
vacuum. The surface is bombarded with ions with energies in the KeV range, and
can typically disintegrate with the speed of some atomic layers per second.

3In a truly complete theory, the Hamiltonian would be time-independent and
there would be no ezternal fields, but then one should simultaneously deal with
all the degrees of freedom, including light sources, electron beams and all that.
Already in the static case this turns out to be difficult and one tries to apply, when
possible, the Born-Oppenheimer approximation. The obvious generalization of such
approximation to the dynamic case consists in treating the nuclei like classical
particles, with a well defined trajectory: the electrons then are subject to a time-
dependent potential.
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To this end we will develop a formalism introduced many years ago by
L.P.Kadanoff and G.Baym[82], above all in the version elaborated little later
by L.V.Keldysh[84]. A somewhat generalized formulation in which the initial
state is completely arbitrary was provided by Wagner [101]. In the literature,
the application of this method is not yet very frequent, although it is gaining
ground in recent years e.g. in the field of transport theory; it is still used
much less than its potential and importance would deserve; this is due to a
the relative shortage of examples which constitutes an obstacle to its spread,
and surely to its undeniable complexity. The technique generalizes the dia-
grammatic development of the Green functions to time-dependent problems
and systems that are far from the thermodynamic equilibrium. Several kinds
of Green functions are indeed needed, each with its place in the theory. Since
there are several ways to choose which functions to define and since all possi-
ble choices have been made in the literature, the reader of the original articles
finds a true zoo of such functions. I "1l introduce all the most common species,
but having care to specify their relations; I'll try to avoid the notation incon-
sistencies that frequently transform those exotic beasts into monsters.

13.2 Kadanoff-Baym and Keldysh Methods

Kadanoff and Baym[56] and Keldysh[84] devised different versions of the
generalized diagram method; ultimately they are equivalent but the Kadanoff-
Baym formalism is more popular in Statistical Mechanics while the Keldysh
has been mostly used for dynamics. Here I'll follow the Keldysh scheme.

As in Equation (2.1) we split the Hamiltonian in two parts, H(t) = Ho +
V(t), with a free part Hy, and a perturbation V(t) which is not necessarily
small nor even time-dependent. In Sectlon 2.3 we found how to expand the
Interaction Picture evolution operator U in powers of Vi,

t
Ui(t,to) = T exp {—i dt’VI(t’)} , Ul(t, to) = Ur(to, t). (13.1)

to

The operators in the Green’s functions are in the Heisenberg picture; however
for any operator A we can switch representation by starting the evolution
from a golden age ty when Heisenberg and Schrédinger pictures are the same,

according to
A (t) = Ul(t, to) Ar(t)Us (t, to). (13.2)

There are four UIT factors to expand in series in
9= (6,1) = (@ (to) [, (¢') W (1) [Wo (t0)) =
(Wo|UT (¥, o) ] (UL (t', t0)US (¢, t0) 1 ()U1 (¢, t0) o), (13.3)

although we can reduce them to 3 since Uy (¢, to)UIT(t, to) =Ur(t', to)Ur(to, )
and this is Uy (¢',t) by the group property. It would still be cumbersome to
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expand the three Uy factors, but we can do with just one expansion, since for
each operator A

Ap(t) = Ul (t, t0) Ar())Us (L, to) =
= (e VO gy e e V)
=Tc {exp (—z/ dt’V,(t’)) A,(t)} (13.4)

where C is any oriented path in complex time through ¢y and ¢ , using the
generalized time-ordering T along C' that we met ins Section (2.2.1). Note
that Ay(t) is under the action of T that places it appropriately. In a similar

Im(t)

T T Re(t)

Fig. 13.1. A contour on the complex t plane for inserting A(t) is a single
interaction-picture evolution.

way, we can read from left to right g<(t,t') = (Wy(to) W), (') ()| W0 (to)) as
one story: the system starts at the golden age t; — —oo, evolves to t, is acted
on by ¥, then evolves to receive the action of W' at time t’ and eventually
it evolves back to the golden age. Physically, t' can be before or after . In
this story, we meet ¥ after ¥ because g< is defined with &' on the left of
V. Thus along the path C' = C1UCs, t precedes t/, I write t <¢ t', and

Im(t)

L
Ng t’Re(t)

Fig. 13.2. The contour C for g< on the t plane with t <c t'. Note that C' can be
analyzed as a two-step path C = C1|JCa2 , C1 starts from to and returns there after
visiting t, and Cy starts from to and returns there after visiting t’. The first return
and restart from to can be avoided thanks to the group property.
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o5t t) = <{T01€_ifcl T g <t’>} {T@e‘if% e ’wJ<t>}>

= (Toe e TVt wd (1)
= (Tee e OB i (), <ot (13.5)

Because of the group property, the contour C is largely arbitrary. It can go
back to tg between t and t’ any number of times, including 0. The terms
arising in the series development of the operators are ordered automatically
by T with earlier times (on C) to the right. Moreover,

07 (t.1') = (To exp{—i /C drVi(r)} U ()T (1)
— (Tpexp{—i /C drVi (1)} BT (1), ¢ >e t (13.6)

We can also use the same C in both cases, placing t and t’ in opposite orders.
As we know, the knowledge of both g~ an ¢g< gives access to the physically
important retarded and advanced Green’s functions. We also need to define
a time-ordered (on C) Green’s function:

ig(t,t') = (TePu ()], () = g7 (t,t)0c(t —t') — g=(t,t)0c(t’ —t), (13.7)

where the contour C goes through t and t’ and 6¢(t —¢') = 1 if C is such
that t’ is met first and 0 otherwise.

13.3 Complex-Time Integrals by Langreth’s Technique

Let A and B denote contour-time-ordered Green’s functions analyzed in >
and < parts as in Equations ( 13.5, 13.6)

A(t, ') = —ia” (t,t")0c(t — t') +ia<(t,t")0c(t' —©) (13.8)
B(t,t') = —ib” (t,t)0c(t —t') +ib<(t,t")0c(t' —t); :
following Langreth we must develop their combinations in series and in par-
allel which are needed to calculate diagrams in this theory. The combination
in series D = AB is defined by

D(t,t") = AB(t,t') :/ drA(t,7)B(1,t")
C
= —id” (t,t")0c(t —t") +id=(t,t")0c(t' —1). (13.9)

and must be rewritten as a combination of ordinary real-axis integrals. To
calculate d<(¢,t') we want t to be earlier on the contour, so we adopt C' =
Cy |J Oy like in Figure (13.2). C starts from to and returns there after visiting
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t, C starts from ty and returns there after visiting t’. Along C1, 7 <¢ t' =
B = ib<, while along Cs, 7 >¢ t = A = ia~, hence

d<(t,t') = —iD = d<[Cy] + d<[Cy)] (13.10)

d<[C1] = —i drA(t, 7)ib<(1,t')

d<[Co] = —i | dria<(t,7)B(7,t"). (13.11)
C2

On C;, A= —ia” on the tg < 7 < t branch, A = ia~ on the back trip, so

to

d<[C1] :/ dT(—i)a>(t7T)b<(T7tl)+/ dria<(t,7)b<(1,t') =

/t dr(—i) [a” (t,7) — a=(t,7)] b=(7,)(13.12)

Now we let t9 — —oo, and formally extend the integration to the full real
axis introducing a theta function. The result is

d<[Cy] = /jo dr {(—z) [a>(t,7') — a<(t,T)] o(t — T)} b<(r,t')

= / dra,(t, 7)b<(1,t') = a,b< (13.13)

— 00

using Langreth’s convenient shorthand notation (product of small letters for
real axis integrals). One finds d<[C5] and d~ in a similar way and gets

d< =ab< +a<b,; d° =ab” +a”b,. (13.14)
From d<,d” one finds d,, d,:
dr = —if(t —t')[d~ +d”] = —if(t — t')[a,b< + a“by + a,b” +a”by], (13.15)

that is, more explicitly,

d.(t,t') = —if(t —t') /oo dr {a,(t,7) [b7 (7, t') + b=(7,1")] +

[a” (7, ') + a< (7, )] ba(7, ')} . (13.16)

Since g< + ¢~ = i(gr — ga), we can simplify this to read

o0

d,(t,t") = e(t—t’)/ dr {a, (t,7)b.(1,t') — aa(t,7)ba (T, t")} . (13.17)

— 0o

However, the second integrand vanishes unless ¢ > 7 > ¢ but then the 6 in
front of the integral vanishes; therefore, we conclude that
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dy = apby, dy = agbg. (13.18)
The series combination £ = ABC' is immediately obtained:
e” = (AB),c¢” + (AB)” ¢, = aybrc” + (arb” + a” by)ca, (13.19)
e< = (AB),c< + (AB)<c, = a,b.c= + (a;b~ + a<by)cq, (13.20)
and so on. Langreth also introduced the parallel combination
F(t,t") = At,t")B(t',t), (13.21)

where no integration is understood. Recalling (13.8) and splitting F' in the
same way, one finds

—if> (YY) = o (E ) (H, 1)

PfS(t ) =a<(5t)b> (¢, 1) (13.22)

where again no integration is understood. Hence,

Fr(t ) = —i0(t — ') (f~ + f5) = 0(t — t')[a" b~ — a<b”]. (13.23)
Other forms are useful. Substituting a”0(t — t') by (ia, —a”)0(t — ¢'), and
using b~ + b< = ib,., we obtain

fr(t,t) =i0(t —t")[abs — a~b,]; (13.24)
alternatively one can eliminate b<6(t — t’) in favor of (ib. — b~)8(t — ') to

write
fr(t,t) =0t —t")[a”b, — a,b7]; (13.25)

the advanced part is dealt with in the same way.

13.3.1 Finite temperatures

For the finite temperature extension of this technique we must insert at the
end of the contour C' the vertical track in Figure 2.2.2 a). Then one can
introduce kl(7,t), kl(t,7) and the Matsubara function k™ (7,7") where t is
on the real time axis and along C' comes before 7,7/ which are imaginary, on
the vertical track. Moreover let us detote the integrals on the vertical track

—iB
fxg= /0 dzf(2)g(2). (13.26)

Equations (13.14) become
d< = a,b< +a<by +al xbl, > = a,b> +a” b, +al xbl; (13.27)
(13.18) remains as it is. The new functions obey (see [101], [120]):
dM = M 4 pM

dl = a.b +al x oM (13.28)
dl =aM xbl 4 alb,.
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13.4 Keldysh-Dyson Equation on the Contour
The Feynman method of Chapter 11 is generalized by expanding
ia(t) = (e [Pa(OF]) = (T | e ™ Omr] )] 320
where the evolution in the interaction picture is on C' and*
et fodrVit _ > (_nll) /Cdn e /C dr, V(1) -+ V(1n). (13.30)

n=0

The diagrams are the same as in the Feynman scheme, but the time integrals
must be done on C, e.g. by the Langreth technique.

Ezxample: Independent Particles
In independent-particle problems, V' is a one-body operator. Let’s write
V() = v(t)ote, (13.31)

where a matrix multiplication on spin-orbital indices such as in

V(t) = Z V() ki ¢l¢k'

kK’

is understood. In first-order,
69 = (—i)Q/CdTv(TMTc [T (M) () @)yt (). (13.32)

Using Wick’s theorem (Section 11.1.1) we may write

(T (D ()Y @)t ()]) = (Tew! (PP ()N (Tev )y () +
(T () (Tew(r)e! (') (13.33)

with the equal-times rule (11.69)

(Tept (T)w(r)) = @ (r4)0(7-)) (13.34)

where 7, is just after 7 and 7_ just before. Each contraction (Tcyf(£)i(t')) =
ig®(t, ') brings an unperturbed Green’s function; each product of contractions
brings a factor (—)F which is the signature of the permutation of operators
implied in doing the contraction. So, 13.32 becomes:

8g = (—i)* /C dro(r) {—ig°(r,7)ig’ (t, ') +ig°(t,7)ig°(r,t')}  (13.35)
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Fig. 13.3. First-order contribution of a one-body perturbation

The first contribution in Figure 13.3 is disconnected. It contains a factor
Jo d€(T), where € is independent of ¢ and ¢'. The contour C' may be taken
on the real axis from —oo to co and then back to —oo; the integral vanishes
independently of the positions of £ and ¢’ on the contour. This result extends
to all orders, the Linked Cluster Theorem of Section 11.9.1 again applies,
and the unlinked diagrams yield nothing. So, one obtains the same rules as
in Section 11.9.1 with the only difference that the time integrals are on C.
Thus, one obtains the Dyson equation,

g=9¢"+¢"%g (13.36)
again with the time integrals on C.
Solving the Dyson equation

If X is known, one can develop the Dyson equation where ¢"Xg is a series
combination. Indeed, the self-energy, like g, depends on two times, and we
write:

iX(t,t) =0 (t,t")0c(t —t) —o<(t,t")0c(t —1). (13.37)
Naturally, for ¢ # t' one also defines

iop(t,t') = [0 (t, ) o<(t, )W(t t),
Cialt ) = [0 (L) 4 0 (L )] B(E — 1), (13.38)

So, from (13.36) one obtains:

9r = g? + ggargr (1339)
_ 0,0
g - ga + gaaaga (13.40)
97 =9" +9%0,9” + 9°07 ga + 97 0aga (13.41)

4from now on, all operators are understood to be in the Interaction Picture, and
I drop the index I. Moreover I'll often understand % to simplify the writing of the
equations.
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9= =9"< +900:9% + 970 ga + §°0uga. (13.42)

However all the information is contained in g~ and ¢<; we need just
two equations. The equations for ¢(") and ¢(*) are equivalent and provide
[0 (t,t') + o<(t,t")], so all we need is

f=9"—-g° (13.43)
and to this effect we define
2=0" 0% (13.44)
The difference of the equations for g~ and g< gives
=149 f + 92290 + f°0aga- (13.45)

We can also give a closed solution in terms of the self-energy. This equation
is a matrix equation in the indices t,t” with the formal solution

f=1=g%] " (F° 11+ ougal + 6720a.) - (13.46)

The matrix inversion is readily carried out:

[1 - ggo—r]_l = 1+920r+920r920r+' = 1+[9? + ggorgg + - ] or = 14gror;
moreover,
—1
[l_ggor] QSZQS‘FQSUTQS‘F"'ZQT-
So,
f=0+gr00] O [L+0aga] + 9-929a- (13.47)

In summary, once X' is known, a clear cut procedure yields g. One can use o,
and o, to solve for g, and g, like in one-electron problems. The results and
{2 are then used in Equation 13.47 for f, where the dependence on the Fermi
level enters. Eventually, from g,, g, and f one also obtains g< and g~.

Dynamical Independent-Particle Problems

The special case of independent electrons can be solved exactly but is far
from trivial due to many-body effects; this case also lends itself to include
interactions approximately in a dynamical-Hartree-Fock or time-dependent
density-functional scheme. In this case all the self-energy comes from the
connected first-order diagram on the right of Figure 13.3, that is,

dg = /C