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Preface

Quod super est, vacuas auris animumque sagacem
semotum a curis adhibe veram ad rationem,

ne mea dona tibi studio disposta fideli,
intellecta prius quam sint, contempta relinquas.

Titus Lucretius Carus, De Rerum Natura Liber Primus

This book is structured as a course for students with a good knowledge of ba-
sic Quantum Mechanics who want to specialize in Condensed Matter Theory.
Indeed it takes the reader to advanced levels in several topics, but there is an
obvious trick: no teacher can hope to cover all this material in one semester
without facing a serious and rightful student revolt. I am offering alternative
advanced topics that I have been developing in different years of teaching and
updated to the present time. Yet, I had to remove much important material
which is a condicio sine qua non for condensed matter theorists; the most se-
rious sacrifice (wisely urged by the Editor) was the removal of all the chapters
in Relativistic Quantum Mechanics and QED that I have been teaching for
many years in Atomic Physics courses but would have made the size of this
work unacceptable as one book. Such topics are covered in excellent Springer
books, like the series by Greiner. Even so, there is no encyclopedic attitude,
or attempt to cover all the hottest advanced topics, but I privileged those
arguments where I did some work and the methods that I used most often
or where I gave some contribution in my long research activity. The central
part of the book is devoted to the theory and applications of symmetry and
Green’s functions. In the interest of the class, I present them is such a way
that one can easily separate an introductory part, that might be of interest
to a broader audience including experimentalists, and a more advanced and
demanding part.

Nobody really knows how knowledge grows, particularly in theoretical
physics (a rather special environment to study) but my impression is that
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it grows by a vivid (if often not very precise initially) understanding of par-
ticular problems, that are later combined in more powerful units and made
more exact in the process. More complex phenomena require more mathe-
matical ingenuity, new concepts arise, deep unexpected similarities between
diverse problems are discovered. By such processes in which mathematics and
physics merge into the reasoning process and are a source of inspiration for
each other, one can sometimes predict new facts that are later verified exper-
imentally. In condensed matter physics, predicting new experimental features
is not reserved to geniuses, and one can really hope to achieve such results,
and although the success is not uncommon, it is certainly rewarding. I believe
that there is still lot of space for pioneers and while computing is important
in a quantitative science like physics most real discoveries will continue to
come from intuition and original thought.

Most times it is experiment that brings some unexpected and surprising
result. Superconductivity is a typical example: common sense would have
predicted that the resistance will unavoidably be present as a part of the im-
perfection of reality. This is the magic of Quantum Mechanics, that continues
to make stunning yet tangible reality by the effect of phases. The role of Berry
phases, flux quantization an the like is discussed mainly in Chapters 16 and
17. There are many phenomena but if we wish to go from phenomenology to
principles progress is conditioned by methods. A large variety of methods have
been generated by many theoreticians. Some are time honored, but enlighten
new problems in new ways: to make practical predictions in the presence of
symmetry we take advantage of abstract Group theory. However, important
new methods continue to be invented, and there is no sign that the gold mine
of ingenuity is exhausted. On the other hand, while an increasing number
of problems are successfully dealt with by the existing codes and computa-
tional methods, the ingenuity continues to be required, since new interesting
materials and processes are discovered which require fresh modeling.

Some of the subject matter is included because in my carrier I happened
to work in the subject or to make extensive use of the methods; in this way
I suppose I can provide in some measure a first-hand presentation of some
topics. In particular, Chapters 6, 15, 13, 14 and 17 are the most original in the
sense of presenting results from my own research; elsewhere I tried to present
mature results in a fresh and attractive way. At least, I hope I will transmit
some of the fun I have to work using such results. The discussion of general
topics like Group theory or Feynman diagrams, the Keldysh theory, which
are discussed in many textbooks, but are traditionally considered rather hard
aims to help the reader by many examples and by direct procedures and
intuitive arguments. I tend to prove everything and therefore the reader will
find sentences like it can be shown that ... only seldom and for relatively
unimportant side matters. Indeed, in most cases when something is really
understood, there is little difficulty in finding a proof; on the other hand,
the converse is also true: having no clear justification often means having no
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real grasp or lacking mastery of the use of the results. However in several
cases, lengthy formal proofs are readily found in the literature and there is
no strong reason to reproduce them here: for instance, Wick’s theorem and
the linked cluster theorem fall in this category. Then I prefer to give my own
intuitive arguments, that reflect the way I visualize the result for myself, and
reference the literature where the canonical proofs are published.

Finally, I hope the readers will understand that this work costed me a
considerable effort and at some point I had to force the writing process to
converge. It is always possible to improve the book in many ways, but alas at
some point the writing must stop. It was this appeal to the reader’s under-
standing, besides the common interest in the Nature of Things, that prompted
to me the above quotation from Titus Lucretius Carus.

It is a pleasure to thank Professor Giancarlo Rossi, Doctor Gianluca Ste-
fanucci and Doctor Yassen Stanev, all at the Physics Department of Rome
Tor Vergata University, and Doctor Claudio Verdozzi, currently at Lund, for
reading and discussing part of the manuscript and giving useful advice and
encouragement.

Rome, May 7, 2007 Michele Cini
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Part I

I-Introductory Many-Body Physics



1 Basic Many-Body Quantum Mechanics

1.1 Slater Determinants and Matrix Elements

The solutions of eigenvalue equations like the time-independent one-electron
Schrödinger equation hwi = εiwi form a a complete set of spin-orbitals
{wi ≡ ϕi(x)χi} , where ϕi(x) are normalized space orbitals and χi =↑ or
↓ . The set can be taken orthogonal and ordered in ascending energy or in
any other arbitrary way. Any one-electron state can be expanded as a linear
combination of the wi. Moreover, we can think of a state for N electrons ob-
tained as follows. Choose in any way N spin-orbitals out of the set {wi}, keep
them in the original order but call them v1, v2 . . . vN ; now let |v1, v2 . . . vN |
be the state with one electron in each. Imagine labeling1 the indistinguish-
able electrons with numbers 1, 2, · · ·N. In this many-body state one has an
amplitude Ψ(1, 2, . . .N) ≡ Ψ((x1, χ1), (x2, χ2), . . . (xN , χN )) of having elec-
tron i in the one-particle state (xi, χi). How to calculate Ψ? A product like
v1v2 . . . vN =

∏N
k vk is in conflict with the Pauli principle because it fails to

be antisymmetric in the exchange of two particles. However, the remedy is
easy, because anti-symmetrized products are a basis for the antisymmetric
states. To this end, let P : {1, 2, . . .N} → {P1,P2, . . .PN} be one of the N !
permutations of N objects. If N = 3, the set of 6 permutations comprises the
rotations {(1, 2, 3), (2, 3, 1), (3, 1, 2)} and {(2, 1, 3), (3, 2, 1), (1, 3, 2)}.

Anticipating some Group Theory

The last three are just transpositions, that is, they are obtained from the fun-
damental permutation (1,2,3) by one exchange. One can multiply two permu-
tations Q and P ; the product QP is the permutation obtained by performing
P and then Q and the result is:

{Q1,Q2, . . .QN}{P1,P2, . . .PN} = {QP1 ,QP2 , . . .QPN}. (1.1)

For instance2, (3,2,1)(2,1,3)=(2,3,1) . All permutations can be obtained from
transpositions by multiplication. The inverse of a permutation is the one that

1The electrons are identical, but this does not prevent us from labeling them;
rather it imposes that the wave function changes sign for each exchange of labels.

2in words,P sends 1 → 2 and then Q sends 2 → 2, and in the same way 2 →
1 → 3 and 3 → 3 → 1.
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upon multiplication restores the standard (ascending) order (1, 2, . . .N). Any
permutation can be shown to be a product of transpositions, usually in more
than one way: for example, (2,3,1) is obtained from the standard order by
exchanging 1 and 2 and then 1 and 3 but also exchanging 1 and 3 and then
2 and 3. P has a parity or signature (−)P defined such that an exchange is
odd, two are even, and so on, so in the above example (1,2,3), (2,1,3)and
(3,1,2) are even and the others odd. In Chapter 7 we shall see that such
simple observations have far reaching consequences.

Determinants

The antisymmetrizer operator

A =
1
N !

∑
P

(−)PP (1.2)

converts any product into a normalized Slater determinant, so we may write
a physically acceptable solution as

Ψ(1, 2, . . .N) = A
N∏
k

vk =
1√
N !

∑
Q

(−)PvQ1(1)vQ2(2) . . . vQN (N), (1.3)

or, equivalently,

Ψ(1, 2, . . .N) =
1√
N !

⎛
⎜⎜⎝
v1(1) v2(1) . . . vN (1)
v1(2) v2(2) . . . vN (2)
. . . . . . . . . . . .

v1(N) v2(N) . . . vN (N)

⎞
⎟⎟⎠ . (1.4)

Note that the transposed matrix is equivalent since the determinant is the
same. Exchanging two rows, that is, two electrons, one gets a - sign. A per-
mutation of the electrons is equivalent to the inverse permutation of the
spinorbitals, and PΨ(1, 2, . . .N) = Ψ(P1,P2, . . .PN ) = (−)PΨ(1, 2, . . .N).

The set of all determinants is complete provided an arbitrary order is
fixed for the one-electron states (otherwise the set is overcomplete).

Suppose we solve hwi = εiwi for one electron and then consider the same
problem with N electrons and H =

∑N
i h(i). This problem is no harder than

for a single electron, and the N−body Schrödinger equation is solved by (1.4)
with energy eigenvalue ε1 + ε2 + . . .+ εN .

1.1.1 Many-electron Matrix Elements

The matrix element 〈Ψ |F |Φ〉 of operators F (1, 2, . . .N) between determinan-
tal states, when we expand the determinants, means a sum of (N !)2 terms.
This grows disastrously with N ; however there are simple rules to calculate



1.1 Slater Determinants and Matrix Elements 3

such matrix elements. Let Φ(1, . . . N) be a determinant made by N spinor-
bitals u1, u2 . . . uN ; taken out of the orthogonal set {wi} (they may be same
as in Ψ , in which case we are dealing with expectation values). One can
readily observe these rules by working out a 2× 2 example, while the proof
requires a trick which is explained in Sect. 1.1.2. The simplest case is f = 1,
and the rule is: the overlap between determinants is the determinant of the
matrix with elements the one-electron overlaps 〈ui|vj〉:

〈Φ|Ψ〉 = Det [{〈ui|vj〉}] . (1.5)

This useful result holds even if u and v spinorbitals are taken from different
sets w and w′. The overlap of a determinant with itself is indeed 1, as it
should, which verifies the normalization of determinants. The one-electron
matrix elements also imply a spin scalar product.

For one-body operators F (1, 2, . . .N) =
∑N

i f(i), where f acts on one
electron, the rule is simple: determinants gives the same results as simple
product wave functions, and antisymmetry has no consequences. The expec-
tation values are given by

〈Ψ |F |Ψ〉 =
N∑
i

〈ui|f |ui〉. (1.6)

For example, if we pick f(i) = δ(x − xi), F = ρ(x) is the number density
and one finds 〈ρ(x)〉 =

∑N
i |ui(x)|2. Off diagonal elements vanish if Ψ and Φ

differ by more than 1 spinorbital; if they differ only by one spinorbital,vk in
Ψ and uk in Φ,

vk 
= uk ⇒ 〈Φ|F |Ψ〉 = 〈uk|f |vk〉. (1.7)

Two-body operators of the form F =
∑pairs

i�=j fij = 1
2

∑N
i,j,i�=j fij , like the

Coulomb interaction, have vanishing matrix elements when the two determi-
nants differ by more than 2 spin-orbitals. For the rest, the best way to recall
the result is by the interaction vertices in Figure 1.1.1 below (embryos of the
Feynman diagrams that we introduce later). One must just note carefully
which lines enter at 1 and (left and right ) and which are outgoing. The order
of labels is: the one entering at 1, the one entering at 2, the one outgoing at
1. the one outgoing at 2.

If vi and vj in Φ replace ui and uj in Ψ, ui 
= vi, uj 
= vj , then

〈Φ|F |Ψ〉 = 〈vi(1)vj(2)|f(1, 2)|ui(1)uj(2)〉 − 〈vi(1)vj(2)|f(1, 2)|ui(2)uj(1)〉
(1.8)

where the second, exchange term comes from the antisymmetry. These corre-
spond to vertices a) and b) below, respectively. If f does not depend on spin
the exchange term vanishes for opposite spins.

The two-body operator matrix element describes the collision of a couple
of electron, while all the others are spectators. If Φ and Ψ are the same, except
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vi

ui

vj

uj

a)

vi

ui

vj

uj

b)

vk

uk ui

c) d)

vk

uk

ui

ui uj

e) f)

ui

uj

Fig. 1.1. Interaction vertices

for ui 
= vi, we get the vertex c) and its exchange companion d), representing
the two terms in the expression

〈Φ|F |Ψ〉 =
N∑

i�=k

[〈vk(1)ui(2)|f(1, 2)|uk(1)ui(2)〉

−〈ui(1)vk(2)|f(1, 2)|uk(1)ui(2)〉]. (1.9)

This is similar to (1.8), but there is a summation over all the spinorbitals
present in both determinants, which act as background particles while the
i-th electrons jumps from v(i) to u(i). Finally, for the expectation value we
get the vertices e) and f) , that is,

〈Ψ |F |Ψ〉 =
N∑

j �=i

[〈ui(1)uj(2)|f(1, 2)|ui(1)uj(2)〉

−〈uj(1)ui(2)|f(1, 2)|ui(1)uj(2)〉]. (1.10)

1.1.2 Derivation of the Rules

A direct expansion of

〈 Ψ |F |Φ〉 = 1
N !

∑
P,Q

(−)P+Q

〈 uP1(1)uP2(2) . . . uPN (N)|f |vQ1(1)vQ2(2) . . . vQN (N)〉 (1.11)

involves N !2 terms and is formidable unless N is small. However, the proof
of the above rules is easily obtained by a trick, that I exemplify in the case
of one-body operators. The matrix element

〈uP1(1)uP2(2) . . . uPN (N)|f(1, · · · , N)|vQ1(1)vQ2(2) . . . vQN (N)〉

is a multiple integral; we permute the names of dummy variables and get
〈uP1(P1)uP2(P2). . . uPN (PN )|f |vQ1(P1)vQ2(P2) . . . vQN (PN )〉;f does not change

since it must depend on particles in a symmetric way. The bra is independent
of P , since

∏
i〈uPi | =

∏
i〈ui|, and we obtain
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〈u1(1)u2(2) . . . uN(N)|f |vQ1(P1)vQ2(P2) . . . vQN (PN )〉.

Now the Q summation yields back the Ψ determinant with a permutation
P of the electrons, that is, Ψ(−)P ; the (−)P factor cancels the one already
present in (1.11). Hence,

〈Φ|F |ψ〉 = 〈u1(1)u2(2) . . . uN (N)|f |

⎛
⎜⎜⎝
v1(1) v2(1) . . . vN (1)
v1(2) v2(2) . . . vN (2)
. . . . . . . . . . . .

v1(N) v2(N) . . . vN (N)

⎞
⎟⎟⎠ . (1.12)

More explicitly,

〈Φ|f |ψ〉 = 1√
N !
〈u1(1)u2(2) . . . uN(N)|f |

∑
Q

(−)QvQ1(1)vQ2(2) . . . vQN (N).

(1.13)

1.2 Second Quantization

1.2.1 Bosons

Since the time-independent Schrödinger equation for the Harmonic Oscillator,

− h̄
2

2m
d2ψ

dx2
+
mω2x2

2
ψ = Eψ (1.14)

has a characteristic length x0 =
√

h̄
mω , one introduces the annihilation oper-

ator

a =
1√
2

(
x

x0
+
ix0p

h̄

)
. (1.15)

this is equivalent to

x

x0
=
a+ a†√

2
,

ix0p

h̄
=
a− a†√

2
, (1.16)

with the commutation relation

[a, a†]− = 1; (1.17)

the Hamiltonian can be rewritten

H =
(
a†a+

1
2

)
h̄ω. (1.18)

If ψ is a solution of (1.14) with eigenvalue E, aψ must be solution with
eigenvalue E − h̄ω. The conclusions are: 1) aψ0 = 0 if ψ0 is the ground state
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and 2) a† is a creation operator that in fact creates excitations like a destroys
them. One then learns that i) this represents a boson field with one degree of
freedom (the x) ii) when dealing with real physical fields one never observes
the oscillators but only the excitations, e.g. photons for the electromagnetic
field. The noninteracting bosons in a field mode can be created in any number,
and each adds the same energy to the field. The oscillator does not exist at
all, but the unique property of the oscillator potential which has infinitely
many states with uniform spacing h̄ω makes it a perfect representation for
the field.

Example: Coupled Boson Representation of Angular Momentum

Schwinger [8] has shown how one can build a representation of the angular
momentum operators including components Ji, shift J± and more exotic K±
operators that conserve m but raise or lower j. All this was obtained using
creation and annihilation operators of a couple of modes, and everything
comes from a simple observation. For instance let j = 3

2 in units of h̄ and
consider the following scheme: For any j, we can write j = n1+n2

2 in terms of

n1 n2 j = n1+n2
2

jz = n1−n2
2

0 3 3/2 −3/2

1 2 3/2 −1/2

2 1 3/2 1/2

3 0 3/2 3/2

2 integers ≥ 0 in several ways, and each entry corresponds to a choice of jz ;
n2 increases from 0 in 2j + 1 steps. So, a J+ should add 1 to n1 and remove
1 from n2, while K± should add ±1 to both. Two harmonic oscillators can
provide the occupation number operators to represent that. So,

j =
n̂1 + n̂2

2
; jz =

n̂1 − n̂2

2
. (1.19)

To extend this idea, one can observe that introducing a spinor operator

ψ =
(
a1

a2

)
(1.20)

we may write

j =
h̄

2
ψ†ψ; jz =

h̄

2
ψ†σzψ. (1.21)

This extends naturally to
−→
j =

h̄

2
ψ†−→σ ψ (1.22)
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which implies trivially

jx =
h̄

2
(a†1a2 + a†2a1); jy =

ih̄

2
(−a†1a2 + a†2a1) (1.23)

and hence
j+ = h̄a†1a2; j− = h̄a†2a1. (1.24)

Indeed, it is a simple matter to verify that

[jx, jy] = ih̄jz , (1.25)

j2 = h̄2j(j + 1). (1.26)

One can change j by

K+ = h̄a†1a
†
2; K− = h̄a1a2. (1.27)

Using j and m = jz in (1.19) one finds n1 and n2, hence

|jm〉 = (a†1)
j+m(a†2)

j−m√
(j +m)!(j −m)!

|0〉. (1.28)

This is an alternative way to derive results like Clebsh-Gordan coefficients
and the like.

1.2.2 Field Quantization and Casimir Effect

The electromagnetic field fluctuations in vacuo have a macroscopic conse-
quence named Casimir effect. This is of interest for fundamental physics but
also for potential applications.

Let two square mirrors of side L be put in front of each other at a distance
s. Roughly speaking, this causes boundary conditions E‖ = 0 of vanishing
parallel electric field component on both surfaces, at frequencies below the
plasma frequency ωp of the metal. The field between the mirrors is con-
strained and has a reduced zero point energy; thus, the radiation pressure
is lower than in vacuum and a macroscopic attraction between the mirrors
appears. The effect was discovered by Casimir [6] theoretically and then ver-
ified experimentally [7],[200]. It is important at mμ distances, so it is longer
ranged than Van der Waals forces, which are mainly due to the fluctuating
instantaneous dipoles on non-polar systems.

To understand this in more detail consider a metallic pillbox,with reflect-
ing walls, a square basis of side L and hight s. How much is the zero-point
energy U(s) in the pillbox? Each wave-vector k = (πa

s ,
πb
L ,

πc
L ), (with integer

a, b and c) contributes h̄ck and the sum diverges of course, so we impose an
exponential ultraviolet cutoff α, removing the short wavelengths such that
kα� 1. They are not involved anyhow because at ultraviolet frequencies the
mirrors are transparent.
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U(s) = h̄c
∑
abc

√(aπ
s

)2

+
(
bπ

L

)2

+
(cπ
L

)2

e−α
√

( a
s )2

+( b
L)2

+( c
L )2

. (1.29)

We can calculate this exactly for large enough L and the result diverges as
α→ 0. One finds (see Appendix 1)

U(s) =
h̄cπ2L2

2

(
d

dα

)2( 1
α

1
e

α
s − 1

)
(1.30)

Using the expansion

y

ey − 1
= 1− 1

2
y +

1
6
y2

2!
− 1

30
y4

4!
+ ... =

∑
n

Bny
n

n!
(1.31)

(the Bn are called Bernoulli numbers), one obtains:

U(s) =
h̄cπ2L2

2

(
d

dα

)2 [
s

α2
− 1

2α
+

1
12s
− α2

30
1

4!s3
+ · · ·

]
(1.32)

The first two terms lead to the aforementioned divergence: should we try to
remove all the radiation from the cavity, including the high frequency modes,
that would cost us infinite energy. However, the divergence disappears if we
ask: what changes if we shift one side of the cavity by 1 cm? To better answer
this question, suppose a cavity of length R is divided in two equal halves by a
mirror: evidently the energy of the vacuum is the diverging quantity 2U(R/2).
If instead the mirror is at distance s from one end and R− s from the other,
the vacuum energy must be U(s) +U(R− s), which also diverges. The finite
difference

ΔE(s) = lim
R→∞

{U (s) + U (R− s)− 2U
(
R

2

)
} (1.33)

has the physical meaning of an energy that must be supplied to the system
in order to shift the mirror to the middle of the cavity. If the cavity is large,
this can be identified with the interaction energy at distance s. Eventually
one can let α→ 0. The zero point energy decrease per unit surface is thus

ΔE =
π2h̄c

720 s3
, (1.34)

and since the radiation pressure is proportional to the energy density one
observes an attractive force

F = − π2h̄c

240 s4
. (1.35)

Measuring distances s in μm, one finds

F = −0.013
s4

dyne/cm2. (1.36)

This force and its dependence on material and surface properties is actively
investigated and could be used to operate nano-machines.
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1.2.3 Fermions

The second quantization formalism for Fermions was invented in order to
deal with phenomena like neutron decay n → p + e + ν̄ or pair creation in
particle physics, but to create an electron-positron pair one needs about a
million eV. In condensed matter physics the typical energy scale is much
less than that, yet many important phenomena are naturally described in
terms of the creation (or annihilation) of fermion quasi-particles. Electron-
hole pairs can be created very much like electron-positron ones. In scattering
processes, when all the particles are conserved, one can proceed with Slater
determinants in first quantization; however, second quantization formalism
is much easier to work with.

The change from bosons to fermions replaces permanents with determi-
nants. In place of a N-times excited oscillator representing N bosons in a given
mode, we now considerN -fermion determinants |u1u2 . . . uN |, where the spin-
orbitals are chosen from a complete orthonormal set {wi}. The index i can
be discrete or continuous but implies a fixed ordering of the complete set. In
this way, one can convene e.g. that in |u1u2 . . . uN | the indices 1 · · ·N are in
increasing order thereby avoiding multiple counting of the same state. The
zero-particles or vacuum state |vac〉 replaces the oscillator ground state. For
the determinants, it is generally preferable to use a compact notation like

|umun| rather than the explicit 1√
2
Det

(
um(1) um(2)
un(1) um(2)

)
which contains the

same information. Consider the following correspondence3 between determi-
nants and states of the Hilbert space with various numbers of electrons:

First Quantization Second Quantization
No− electrons state(vacuum) |vac〉

1− body state uk c†k|vac〉
2− body determinant |umun| c†mc†n|vac〉

3− body determinant |umunup| c†mc†nc†p|vac〉
. . . . . .

(1.37)

Up to now the second-quantization side looks very similar to the compact
notation for determinants: the new idea is using the operator c†m, clearly
deserving the name of electron creation operator in spin-orbital m, in order
to express all other operators. The left column introduces an occupation
number representation of the basis of the Hilbert space; second quantization
builds such a representation by creation operators c†m. Adding a particle to
any state cannot lead to the vacuum state,

〈vac|c†m = 0. (1.38)

3mathematically, it is an isomorphism; it can be thought of as a change in
notation.
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Moreover, since a determinant is odd when columns are exchanged, we want
an anticommutation rule

[c†m, c
†
n]+ ≡ c†mc†n + c†nc

†
m = 0. (1.39)

It follows that the square of a creation operator vanishes. By definition,

c†m{c†nc†r|vac〉} = c†mc
†
nc

†
r|vac〉 (1.40)

The notation suggests that c†m is the Hermitean conjugate of cm; this is called
annihilation operator. Taking the conjugate of (1.40)

{〈vac|crcn}cm = 〈vac|crcncm (1.41)

and taking the scalar product with c†mc
†
nc

†
r|vac〉, we deduce that

{〈vac|crcn}cm | c†mc†nc†r|vac〉 = 1. (1.42)

If now we consider cm as acting on the right, we see that it is changing the
3-body state c†mc†nc†r|vac〉 into the 2-body one c†nc†r|vac〉. Thus, annihilation
operator is a well deserved name: an annihilation operator cm for a fermion
in the spin-orbital state um removes the leftmost state in the determinant
leaving a N − 1 state determinant:

c1|u1u2 . . . uN | = |u2 . . . uN | (1.43)

and
cm|vac〉 = 0. (1.44)

It obeys the conjugate of the anticommutation rules (1.39), namely,

[cm, cn]+ ≡ cmcn + cncm = 0, c2m = 0. (1.45)

Next consider
cnc

†
mc

†
nc

†
r|vac〉, n,m, r all different. (1.46)

Since the creation operators anticommute, we get

−cnc†nc†mc†r|vac〉 = c†mc
†
r|vac〉

since the m state is created at the leftmost place in the determinant but is
annihilated at once. This shows that creation and annihilation operators also
anticommute,

[cn, c†m]+ = 0, n 
= m. (1.47)

As long as the indices are different c and c† all anticommute, so the pairs
cncm,cnc†m,c†ncm and c†nc†m can be carried through any product of creation or
annihilation operators where the indices n,m do not occur.

Next we note that c†p|vac〉 ≡ |p〉 is a one-body wave function; cpc†p|vac〉 =
|vac〉 and c†pcpc†p|vac〉 = c†p|vac〉. Now one can check that
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np ≡ c†pcp (1.48)

is the occupation number operator, having eigenvalue 1 on any determinant
where p is occupied and 0 if p is empty. On the other hand, cpc†p having
eigenvalue 0 on any determinant where p is occupied and 1 if p is empty. thus
in any case cpc†p + c†pcp = 1. Since this holds on all the complete set it is an
operator identity and we may complete the rules with

[cp, c†q]+ = δpq. (1.49)

Note that n†p = np and n2
p = np.

1.2.4 Basis Change in Second Quantization and Field Operators

We can readily go from basis set {an} to a new set {bn}; since

|bn >=
∑

k

|ak >< ak|bn > (1.50)

the rule is

b†n =
∑

k

a†k < ak|bn >, bn =
∑

k

ak < bn|ak > . (1.51)

It is often useful to go from any set {un} to the coordinate representation
introducing the creation and annihilation field operators{

Ψ †(x) =
∑

n c
†
nu

†
n(x)

Ψ(x) =
∑

n cnun(x), (1.52)

(here u†n denotes the conjugate spinor). Note that c†p|vac〉 is a one-electron
state and corresponds to the first-quantized spinor up(x); Ψ †(y)|vac〉 is a
one-electron state and corresponds to the first-quantized spinor with spatial
wave function

∑
n u

†
n(y)un(x) = δ(x − y); thus it is a perfectly localized

electron. The rules are readily seen to be

[Ψ(x), Ψ(y)]+ = 0, [Ψ †(x), Ψ †(y)]+ = 0, (1.53)

and

[Ψ †(y), Ψ(x)]+ =
∑
p,q

[c†p, cq]+up†(x)uq(y) =
∑
p,q

up†(x)up(y) = δ(x− y)

(1.54)
where the δ also imposes the same spin for both spinors.

A one-body operator V (x) in second-quantized form becomes

V̂ =
∫
dxΨ †(x)V (x)Ψ(x) =

∑
p,q

Vp,qc
†
pcq. (1.55)
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This gives the correct matrix elements between determinantal states, as one
can verify.

The above expressions imply spin sum along with the space integrals,
although this was not shown explicitly; let me write the spin components, for
one-body operators:

V̂ =
∑
α,β

∫
dxΨ †

αVα,β(x)Ψβ (1.56)

For the spin operators, setting h̄ = 1, and using the Pauli matrices, Sz =
1
2σz , S

+ =
(

0 1
0 0

)
and the rule (1.55) one finds

Sz =
1
2

∫
dx
(
Ψ †
↑ (x)Ψ↑(x)− Ψ †

↓ (x)Ψ↓(x)
)
, S+ =

∫
dxΨ †

↑ (x)Ψ↓(x). (1.57)

Often we shall use a discrete basis and notation and we shall write

S+ =
∑

k

c†k↑ck↓ (1.58)

which is obtained from (1.57) by taking a Fourier transform in discrete nota-
tion. A two-body operator U(x, y) becomes

Û =
∫
dx

∫
dyΨ †(x)Ψ †(y)U(x, y)Ψ(y)Ψ(x) =

∑
ijkl

Uijklc
†
ic

†
jclck (1.59)

(please note the order of indices carefully). The Hamiltonian forN interacting
electrons in an external potential ϕ(x) is the true many-body Hamiltonian
in the non-relativistic limit that we shall often regard as the full many-body
problem for which approximations must be sought. It may be written

H (r1, r2, . . . , rN ) = H0 (r1, r2, . . . , rN ) + U (r1, r2, . . . , rN ) (1.60)

where H0 is the free part

H0 = T + Vext =
∑

i

{
−1

2
∇2

i + V (ri)
}

=
∑

i

h0(i) (1.61)

with T the kinetic energy and Vext the external potential energy while

U =
1
2

∑
i�=j

uC (ri − ri) (1.62)

is the Coulomb interaction. This Hamiltonian may be written in second-
quantized form



1.2 Second Quantization 13

H = H0 + U,

H0 =
∑

σ

∫
drΨ †

σ(r)h0Ψσ(r),

U =
1
2

∑
α,β,γ,δ

∫ ∫
dxdyψ†

α(x)ψ†
β(y)uC(x − y)αγ,βδΨδ(y)Ψγ(x). (1.63)

Often the spin indices are understood as implicit in the integrations. It should
be kept in mind that relativistic corrections are needed in most problems with
light elements and the relativistic formulation is needed when heavy elements
are involved. Fortunately, the ideas that we shall develop lend themselves to
a direct generalization to Dirac’s framework.

1.2.5 Hubbard Model for the Hydrogen Molecule

The Hubbard Model is a lattice of atoms or sites that can host one electron
per spin; there is a hopping term between nearest neighbors like in a tight-
binding model and a repulsion U between two electrons on the same atom.
The Hubbard Hamiltonian

H = K +W = t
∑

〈i,j〉,σ
c†jσciσ + U

∑
i

ni↑ni↓ , (1.64)

where K stands for the kinetic energy while W accounts for the on-site re-
pulsive interaction. The summation on 〈i, j〉 runs over sites i and j which
are nearest neighbors in a cubic lattice. This is often called trivial Hubbard
Model to distinguish it from its extensions, involving degenerate orbitals and
off-site interactions, that have been studied for many purposes.4

To model H2 in the same spirit we represent the 1s orbitals of both atoms
by two sites a and b and Ĥ = T̂ + Ŵ with

T̂ = th
∑

σ

[
c†aσcbσ + c†bσcaσ

]
(1.65)

the kinetic energy, with th > 0 the hopping integral;

Ŵ = U (n̂a↑n̂a↓ + n̂b↑n̂b↓) . (1.66)

4Some people blame the Hubbard Model and its extensions as too idealized to
be realistic. Indeed nobody would use them to refine well-understood properties of
Silicon. However, there are lots of problems involving strong correlations and e.g.
transport, spectroscopies, time-dependent perturbations, which are far too hard for
an ab-initio description. Hubbard-like models are primarily conceptual tools aimed
at a semi-quantitative understanding. We shall see particularly in Chapters 4, 5 and
10 that often they allow to deal with highly excited states of strongly interacting
system very successfully. The Bosonic Hubbard Model is also important, e.g. in the
rapidly developing subject of Cold Bosonic Atoms in Optical Lattices (see Ref. [15].
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We wish to solve with two electrons of opposite spin (the ms = 0 sector) so
we take

N̂ =
∑

σ

(n̂aσ + n̂bσ) = 2.

This is conserved. If U = 0, one solves the single-electron problem, and finds
the orbitals

ϕ± =
|a〉 ± |b〉√

2
(1.67)

with energy eigenvalues
ε± = ± th (1.68)

and the ground state Ψ = ‖ϕ−↑ϕ−↓‖ has energy E = −2th. In the interacting
case, we choose a basis

|v1 >= |a ↑ a ↓>, |v2 >= |a ↑ b ↓>,
|v3 >= |b ↑ a ↓>, |v4 >= |b ↑ b ↓> .

U
th

ε

Fig. 1.2. Singlet eigenvalues of the Hydrogen molecule model versus U
th

.

There is a single state in the ms = 1 sector, so out of the 4 states in the
ms = 0 sector we expect one triplet and 3 singlets. We form the matrices
W = UDiag (1, 0, 0, 1) and

T̂ = th

⎛
⎜⎜⎝

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

⎞
⎟⎟⎠ . (1.69)

One finds the eigenvalues: E = 0 for the triplet, and E0 = U,E± =
1
2

(
U ±

√
16t2h + U2

)
for the singlets, with E− the ground state (remark-

ably) for any U > 0. Magnetism never obtains in this model.
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1.3 Schrieffer-Wolff Canonical Transformation

One often meets problems with Hamiltonians

H = H0 + λV (1.70)

such that the interaction λV takes the system to an enlarged Hilbert space,
involving extra degrees of freedom not in action in the simple problem de-
scribed by H0. Let A denote the restricted space and B the enlargement.
Typically,

H0 =
(
HA 0
0 HB

)
, (1.71)

and

V =
(

0 v†

v 0

)
(1.72)

is the mixing term. A standard way to solve such problems, that we shall
meet several times in this book, is by a canonical transformation

H → H̃ = UHU−1 (1.73)

where U is designed such that H̃ is block-diagonal:

H̃ =
(
H̃A 0
0 H̃B

)
(1.74)

The transformation must be unitary in order to preserve the norm of states,
to this end we want U−1 = U †; this is granted if U = eS with S = −S†.
Thus, expanding the exponentials,

H̃ = eSHe−S = H + [S,H ] +
1
2
[S, [S,H ]] + · · · (1.75)

Now we insert (1.70) with S = λS1+λ2S2+· · · and separate orders. Including
up to second-order,

[S,H ]− = λ[S1, H0]− + λ2([S1, V ]− + [S2, H0]−), (1.76)

[S, [S,H ]−]− = λ2[S1, [S1, H0]−. (1.77)

At order λ, we want to have nothing and we require that S1 be such that

V + [S1, H0] = 0, (1.78)

that is, (
0 v†

v 0

)
+ [
(

0 −s†
s 0

)
,

(
HA 0
0 HB

)
]− = 0. (1.79)
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where we tried the solution

S1 =
(

0 −s†
s 0

)
. (1.80)

We immediately obtain two conditions, v = −sHA + HBs and v† =
−HAs

† + s†HB. Picking H0 eigenstates |m〉 in the A subspace and |ν〉 in
the B subspace, with eigenvalues E(A)

m and E(B)
ν , we obtain

sνn =
vνn

E
(B)
ν − E(A)

n

, (s†)mν =
(v†)mν

E
(B)
ν − E(A)

m

. (1.81)

The second-order contribution to (1.75), using (1.76),(1.77) and (1.79), is
λ2

2 [S1, V ] + [S2, H0]. We may set S2 = 0 since

[S1, V ] =
(
−(s†v + v†s) 0

0 s†v + v†s

)
(1.82)

already gives a Hermitean, block-diagonal result. Thus,to second order,

H̃A = HA +Hint (1.83)

where

Hint =
λ2

2
[S1, V ]. (1.84)

The effect of V can be obtained by working within the A subspace with
a renormalized Hamiltonian (see (10.48),( 1.82)) with elements

(Hint)mn =
1
2

∑
ν∈B

[
v†mνvνn

E
(A)
m − E(B)

ν

+
v†mνvνn

E
(A)
n − E(B)

ν

]
. (1.85)

If the energy separation of A and B is large, the dependence of the energy
denominators on m,n is negligible, and we may write

Hint = −
∑
ν∈B

v†|ν〉〈ν|v
E

(B)
ν − E(A)

; (1.86)

the denominator is a positive excitation energy.

1.4 Variational Principle

The energy of a quantum system is a quadratic functional of the wave function
φ. Consider a small variation φ→ φ+αη where η ia an arbitrary function of
the same variables on which φ depends, while α→ 0 is a complex parameter,

E stationary ⇐⇒ {δE = 0, η arbitrary}; (1.87)
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subject to the condition that the norm is conserved, namely,

δ(E − λN) = 0. (1.88)

The Lagrange multiplier λ is fixed by the condition N =< φ(λ)|φ(λ) >= 1.
Applying Lagrange’s method, one finds that the following statements are

equivalent:

{Hφ = Eφ, < φ|φ >= 1} ⇔ {δ(E−λN) = 0, λ = E} ⇔ {δ(E) = 0, N = 1}.
(1.89)

This is an exact refurmulation of Quantum Mechanics

Example

Given the Hamiltonian

H =

⎛
⎜⎜⎜⎜⎝
−3 1 1 1 1
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0

⎞
⎟⎟⎟⎟⎠

find variationally the eigenfunctions of the form

ψ =

⎛
⎜⎜⎜⎜⎝
α
β
β
β
β

⎞
⎟⎟⎟⎟⎠ . Normalizzation requires N = 〈ψ|ψ〉 = α2 + 4β2 = 1 while E =

〈ψ|H |ψ〉 = 8αβ−3α2, thus we must look for the extrema of f(α, β) = E−λN.
One finds ⎧⎨

⎩
∂f
∂α = 0 =⇒ 4β = (3 + λ)α

∂f
∂β = 0 =⇒ α = λβ

The compatibility condition λ(3 + λ) = 4 yields λ = −4, λ = 1. For λ = −4

da α = −4βone finds ψ−4 = 1√
20

⎛
⎜⎜⎜⎜⎝
−4
1
1
1
1

⎞
⎟⎟⎟⎟⎠ which is the ground state with

eigenvalue ε = −4. For λ = 1 da α = β one finds ψ1 = 1√
5

⎛
⎜⎜⎜⎜⎝

1
1
1
1
1

⎞
⎟⎟⎟⎟⎠ which is the

exact excited state witheigenvalue ε = 1.
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1.5 Variational Approximations

One can choose a trial function φ(x, {λ1, λ2, · · ·λn}) depending on parameters
{λ1, λ2, · · ·λn} and look for the extremum. If φ is not already normalized,
the normalization condition can be enforced by Lagrange’s method. If the
exact ground state φ belongs to the class of functions, it corresponds to the
minimum energy, otherwise the minimum always overestimates the ground
state energy. Some variational approximations, like the Hartree-Fock scheme
and the Bardeen- Cooper - Schrieffer theory of superconductivity, have been
highly successful.

The excited states also correspond to extrema of the functional, however
there are severe limitations to the method.

The trouble is that the true eigenstates are orthogonal, but this
cannot be granted in general in a limited class of functions.

We need the orthogonality. For example we cannot give any meaning to
an excited state which fails to be orthogonal to the ground state. However,
the lowest state of any symmetry can always be found variationally, since it
is automatically orthogonal to the ground state.

A symmetry is an operator X , which is unitary (that is XX† = 1), such
that [H,X ]− = 0. The eigenstates of an unitary operatorX belong to different
eigenvalues are orthogonal. Indeed, if Xφ1 = eiαφ1 aand Xφ2 = eiβφ2,

(φ1, φ2) = (φ1, X
†Xφ2) = ei(β−α)(φ1, φ2)

and with α 
= β, this requires (φ1, φ2) = 0.

1.6 Non-degenerate Perturbation Theory

The standard perturbation series yields [25] the corrected eigenvalues

Em = E(0)
m + 〈m|H ′|m〉+

∑̃
n

|〈m|H ′|n〉|2

E
(0)
m − E(0)

n

+ · · · (1.90)

where E(0)
m are unperturbed eigenvalues and 〈m|H ′|n〉 are perturbation ma-

trix elements;
∑̃

m excludes the terms with zero denominators. The perturbed
wave functions are:

ψn = ψ(0)
n +

∑̃
k

ψ
(0)
k

[
〈k|H ′|m〉
E

(0)
m − E(0)

k

(1 − 〈m|H
′|m〉

E
(0)
m − E(0)

k

)

+
∑̃

n

〈k|H ′|n〉〈n|H ′|m〉
(E(0)

m − E(0)
k )(E(0)

m − E(0)
n )

]
+ · · · (1.91)

where ψ(0)
n are the unperturbed ones. A much more general form of pertur-

bation theory will be developed starting from Chapter 11.



2 Adiabatic Switching and Time-Ordered

series

2.1 Time-dependent is Better: start from the Golden
Age

If we can solve a problem with a time independent Hamiltonian H0, we surely
meet many interesting but hard problems with a Hamiltonian

H(t) = H0 + V̂ (t) (2.1)

where an extra term V̂ (t) appears: sometimes the complication V̂ (t) depends
on time, but in other cases it is static. Here,H(t) is in the Schrödinger picture,
the one that comes directly from classical physics with px → ∂

∂x , and so on,
and sometimes we shall write HS(t) and ΨS for extra clarity. So, we have the
task of solving

ih̄
∂

∂t
|ΨS(t)〉 = HS(t)|ΨS(t) (2.2)

which is notoriously difficult. We can solve formally by introducing the uni-
tary time evolution operator US such that

|ΨS(t)〉 = US(t, t0)|ΨS(t0)〉. (2.3)

The time t0 is arbitrary, and in time-independent problems one can choose
t0 = 0, but this is dull. In general, it is a much better idea taking HS(t)
which depends on time, with the condition that for t < t0, V ≡ 0. For static
problems this appears lunatic, but it is a useful formal device. Dynamical and
static problems are best discussed with the adiabatic switching technique.
This is a cool revival of the old tale of the golden age, a happy era in the far
past. Assume that the interaction is added very slowly, starting from a time
t→ t0, when the Hamiltonian was just H0 and everything was easy; if we let
t0 → −∞ we may reasonably assume that the system does not warm up and
evolves adiabatically. Integrating (2.2) over time we find

US(t, t0) = 1− i

h̄

∫ t

t0

dt1HS(t1)US(t1, t0); (2.4)

the advantage is that this may be solved by iteration:
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US(t, t0) = 1− i

h̄

∫ t

t0

dt1HS(t1) + (
−i
h̄

)2
∫ t

t0

∫ t1

t0

dt1dt2HS(t1)HS(t2) + . . .

(2.5)
Iterating, we face the nested integral

In(t) = (
−i
h̄

)n

∫ t

t0

dt1

∫ t1

t0

dt2 . . .

∫ tn−1

t0

dtnH(t1) . . . H(tn) (2.6)

where t the domain is limited to t > t1 > . . . tn > t0. If H does not depend on
time, one gets trivially In(t) = (−i

h̄ )n Hn(t−t0)
n

n! and the resulting exponential
series is immediately summed. This n! denominator proves useful and we can
bring it out in the time dependent case by a trick. Perform any permutation
of the time variables t1 . . . tn in In(t); in the new ordering the earlier times
will remain on the right of the later ones, while the value of the integral
remains unaltered. Thus one can sum all the n! identical replicas obtained
by permutation and divide by n!; accordingly, one defines the time ordering
operator P which puts earlier times on the right. For two terms

P [HS(t1)HS(t2)] = HS(t1)HS(t2)θ(t1 − t2) +HS(t2)HS(t1)θ(t2 − t1);

with more operators,

P [HS(t1)HS(t2) . . .HS(tn)] =∑
Q

HS(tQ1)HS(tQ2) . . . HS(tQn)
∏
n

θ(tQn−1 − tQn). (2.7)

Under the action of P the operators can be permuted freely as if they com-
muted. Actually when dealing with electron operators one uses Wick’s time
ordering operator T which is defined like P except that any exchange of
fermion operators which is needed to go from the given order to the standard
earlier to the right order brings a − sign. Thus, if A ad B are fermion creation
or annihilator operators, T is such that

T [A(t)B(t′)] = A(t)B(t′)θ(t− t′)−B(t′)A(t)θ(t′ − t).

When acting on Hamiltonians where Fermi operators occur in pairs P and
T have the same effect, but T permits simplifying the definition of fermion
Green’s functions. Summing over the permutations, that give identical con-
tributions, and dividing by their number, the integral (2.6) can be rewritten

In(t) =
1
n!

(
−i
h̄

)n

∫ t

t0

dt1 . . .

∫ t

t0

dtnT [H(t1) . . . H(tn)] (2.8)

and we may formally sum the series:

US(t, t0) = T exp
(

−i
h̄

∫ t

t0
dτHS(τ)

)
; (2.9)

here T exp is a conventional notation that means nothing but the exponential
series of time-ordered products.
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2.2 Evolution in Complex Time

2.2.1 Heisenberg Picture

In most cases of interest, the wave function Ψ is a false target and W. Kohn
deserved a Nobel price for inventing the Density Functional Method (Section
12.6) that dispenses us from calculating it in important cases. Simply, Ψ is too
complicated to be computed or even approximated in really hard problems1.
It depends from a huge number of variables and involves all the information
on a system, including 15-electron correlations that nobody cares about. In-
deed, our task is another: doing experiments of some kind and interpreting
them never gives a complete information, so almost all the information that
the Ψ function contains is actually pointless. The interesting information is
expressed in the experiment-oriented Heisenberg correlation functions, that
we discuss starting from Chapter 10. In this Section we shall pretend that we
are still primarily interested in expanding the wave function, but the work is
actually oriented towards the Green’s functions. In the Heisenberg picture,

〈A(t)〉 = 〈ΨH |AH(t)|ΨH〉 (2.10)

where by definition
|ΨH〉 ≡ |ΨS(t0)〉 (2.11)

is the t-independent snapshot of the golden-age Ψ , while any operator A,
including c and c†, has an extra dynamic time dependence

AH(t) = U †
S(t, t0)AS(t)US(t, t0). (2.12)

For a strictly time-independent H (no adiabatic switch) this simplifies to read

A(t) = e
iHt

h̄ Ae−
iHt

h̄ , (2.13)

but in general, from (2.12) one gets:

ih̄
dAH

dt
= ih̄

dU†
S(t, t0)
dt

ASUS(t, t0)

+U†
S(t, t0)ASih̄

dUS(t, t0)
dt

+ U†
S(t, t0)ih̄

dAS

dt
US(t, t0); (2.14)

since

ih̄
dUS(t, t0)

dt
= HS (t)US(t, t0), − ih̄

dU†
S(t, t0)
dt

= U†
S(t, t0)HS (t) (2.15)

the result is
1In 1 dimension, however, the Bethe Ansatz allows solving exactly some impor-

tant models, see Chapter 18.
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ih̄
dAH

dt
= −U†

S(t, t0)HS (t)ASUS(t, t0)

+U†
S(t, t0)ASHS (t)US(t, t0) + ih̄

(
dAS

dt

)
H

. (2.16)

It is natural to introduce the Heisenberg picture Hamiltonian and write:

ih̄
dAH

dt
= [AH (t) , HH (t)] + ih̄

(
dAS

dt

)
H

. (2.17)

In the following, unless otherwise stated, we shall normally use the Heisen-
berg picture, and 〈A(t)〉 = 〈ΨH |AH(t)|ΨH〉 with ΨH〉 eigenstate of H0 (in
practice,the ground state in most cases). In terms of the Schrödinger picture,
this corresponds to evolving the state from t0 to time t, applying the operator
and then evolving back to t0. We can merge the two US evolution operators
by introducing an oriented path C in complex time from t0 to t and back (see
Figure). This needs a generalized T such that (letting h̄ = 1)

AH(t) = U †
S(t, t0)AS(t)US(t, t0) =[

T exp
(
−i
∫ t0

t

dt′H(t′)
)]

AS(t)
[
T exp

(
−i
∫ t

t0

dt′H(t′)
)]

= TC

[
exp
(
−i
∫ t0

t

dt′H(t′)
)
AS(t)

]
(2.18)

where C is an oriented path and TC is the time ordering operator on C. Note
that AS(t) is under the action of TC that places it appropriately.

t0 t

Re(z)

t0

a)

t

t+

t−

t0

Im z

Re z

∞

b)

Fig. 2.1. a) A contour on the complex time z plane for obtaining 〈A(t)〉 from a
single Schrödinger-picture evolution. Since along a closed path starting and ending
at t∗ one collects US(t∗, t∗) = 1, the path can be deformed freely as long as it starts
and ends at t0 and goes through t. b)The Keldysh contour; its main use will be
shown in Chapter (13)
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We shall see in Chapter 10 that this is the most natural way to make
contact with experiment, and is also important for the connection with ther-
mal physics that follows. The evolution operator satisfies the group prop-
ertyU(t, t1)U(t1, t2) = U(t, t2); hence the path can be deformed freely as
long as it starts and ends at t0 and goes through t. In time-dependent prob-
lems, the most common contour is the Keldysh one from t0 to −t0 → +∞
and back to t0; there are an ascending or positive branch and a descending or
negative branch, and a physical time can be taken on any of the two. I shall
write t+ and t− the times taken on the ascending and descending branch
respectively; however 〈A(t)〉 = 〈A(t+)〉 = 〈A(t−)〉.

2.2.2 Thermal Averages

The initial state of the experiment on a solid is never an eigenvector of the
Hamiltonian; it is described [118] by a Hermitean density matrix that we may
denote

ρ =
∑

i

wi|i〉〈i|, (2.19)

where |i〉 is a complete orthonormal set, wi ≥ 0 is the probability of finding
the system in |i〉 with

∑
i wi = 1. The statistical average of any operator Â is

by definition 〈A〉 =
∑

iwiAii and may be obtained as 〈A〉 = TrρÂ, where Tr
denotes the trace (the sum of all the diagonal elements, which is independent
of the basis set.) In temperature-dependent problems, adopting the Grand
Canonical ensemble, ρ is the Boltzmann distribution,

ρ =
e−βK

Z
, K = H − μN, (2.20)

where β = 1
KBT , N the number operator;

Z = Tre−βK (2.21)

is the partition function. As detailed e.g. in [117], this ρ yields the maximum
entropy S = KBρ ln(ρ) with the constraints that Trρ = 1, particle number
and energy must be kept fixed. Thus,

Finite T rule: 〈Â(t)〉 = TrρÂ(t). (2.22)

For an independent-electron system with Hamiltonian H0 =
∑

p εpc
†
pcp,

any energy eigenstate is specified by the set of occupation numbers np of
the one-electron levels, and the trace sums over all possible choices of np.
Each term of the sum is a product of factors e−β(εp−μ) from filled states
and factors 1 from empty states. Let us pick a particular level k and let X(k)
denote the contribution to Z from all the configurations with nk = 0; then, the
contribution to Z from all the configurations with nk = 1 is e−β(εk−μ)X(k),
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since the other levels give the same contribution regardless the population
of level k. We can factor (1 + e−β(εk−μ)) from the trace. Therefore we may
conclude that

Z =
∏
k

(1 + e−β(εk−μ)). (2.23)

This is readily worked out for independent Fermions (Problem 2.1).)
The formal similarity between quantum averages and statistical ones

stems from the fact that e−βK = e−iK(−iβ) looks like a quantum propa-
gation at imaginary time t = −iβ. The system must be considered in ther-
mal equilibrium at a (real) time t0 earlier than any time dependence of the
Hamiltonian. Then

Z = Tr[eβμNe
−i
∫

t0−iβ

t0
dt′H

] ≡ Tr[eβμNTe
−i
∫

t0−iβ

t0
dt′H

]; (2.24)

here T has no effect but was inserted to emphasize that Te
−i
∫

t0−iβ

t0
dt′H

is an evolution operator along the vertical track in Figure 2.2.2 a). In the
complex t plane one draws the so called imaginary-time axis; τ = it along the
axis corresponding to a 90 degrees rotation of the plane is the real variable
τ = −Imt. The statistical average of a time-independent operator may be
written

〈A〉 =
1
Z
Tr[eβμNTe

−i
∫ t0−iβ

t0
dt′H0

A(t0)]. (2.25)

If H is constant and no adiabatic switching is assumed, one can take t0 = 0.
However when using the adiabatic switching we take t0 as the golden age

defined above. The switching of the interaction is so slow that no heating
of the system is caused, so at modern times t we have the full Hamiltonian
H(t) with any further explicit time dependence that may be necessary. This
allows us to perform the thermal average with the simple, particle-number
conserving H0, that is,

〈Â(t)〉 = Trρ0AH(t), ρ =
e−βK0

Z
,

K0 = H0 − μN, [H0, N ] = 0. (2.26)

For evolving along the vertical track with a temperature-independent H one
can introduce the temperature Heisenberg representation

A(τ) = e(H−μN)τAe−(H−μN)τ ; (2.27)

this is obtained from (2.13) by the usual substitution it → τ and by H →
H − μN, in order to introduce the grand-canonical ensemble. The statistical
average of a time-dependent operator may be written

〈A(t)〉 =
1
Z
Tr[eβμNTe

−i
∫

C
dt′H0A(t)], (2.28)

where C is the contour of Figure 2.2.2 b). The utility of such contours will
be more evident in the following, and particularly in Chapter 13.
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τ

t0

tRe(t)

t = t0 − iβ

Im(t)

a)

τ

t0

t Re(t)

Im(t)

t = t0 − iβ b)

Fig. 2.2. a) Contour for thermal averages at time t0. The τ or imaginary time axis
is shown: τ = −Im(t) is actually a real variable. b) Contour for thermal averages
at time t. Complex times in the vertical track are latest.

2.3 The Interaction Picture and the Viable Expansion

In the Heisenberg picture, states are fixed while the operatorsAH(t) carry the
time evolution; however,AH(t) requires US(t, t0); it is ironic that generally we
cannot even write down the Hamiltonian itself

HH(t) = U †
S(t, t0)HS(t)US(t, t0).

Life is easy in the only case of stationary problems, when

AH(t) = exp [iHS(t− t0)]AS exp [−iHS(t− t0)] ,

and in particular HH = HS . In order to be able to expand in powers of V one
introduces the Interaction Picture in which the operators evolve only with
H0:

AI(t) = eiH0tASe
−iH0t (2.29)

while the wave function is defined by

ΨI(t) = eiH0tΨS(t). (2.30)

The physics is unaltered since

〈A(t)〉 = 〈ΨS(t)|AS(t)|ΨS(t)〉 =
〈ΨS(t)|e−iH0teiH0tAS(t)e−iH0teiH0t|ΨS(t)〉 = 〈ΨI(t)|AI(t)|ΨI(t)〉. (2.31)

Note that ΨH = ΨS at t = t0 and ΨI = ΨS at t = 0; moreover, during the
golden age when the system is unperturbed,

ΨI(t) = eiH0tΨS(t) = eiE0tΨS(t). (2.32)

One finds:

i
∂̄

∂t
ΨI(t) = eiH0tV (t)ΨS(t) = VI(t)ΨI(t) (2.33)
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System in
ground state

of H0

Golden age: V=0

ΨI = eiE0tΨS

t0

ΨH = ΨI ΨS = ΨI

0 t

Today

Fig. 2.3. Adiabatic switching and the three quantum pictures.

which is like Scrödinger equation without the obvious part of the dynamics.
The evolution operator in the interaction picture from an arbitrary time τ

ΨI(t) = UI(t, τ)ΨI(τ) (2.34)

satisfies
UI(t, τ) = eiH0(t−τ)US(t, τ) (2.35)

and
i
∂

∂t
UI(t, τ) = VI(t)UI(t, τ). (2.36)

The solution
UI(t, τ) = Te

−i
h̄

∫
t

τ
dt′VI(t′) (2.37)

is at the basis of all perturbation theory.
One must be able to switch representation. In the Heisenberg picture,

〈A〉 = 〈ΨH |AH |ΨH〉, where ΨH = ΨS(t0); moreover, using (2.32), ΨI(t0)) =
eiE0t0ΨS(t0) and we may write 〈A〉 = 〈ΨI(t0)|AH |ΨI(t0)〉. In the interaction
picture,

〈A(t)〉 = 〈ΨI(t)|AI(t)|ΨI(t)〉 = 〈ΨI(t0)|U †
I (t, t0)AI(t)UI(t, t0)|ΨI(t0)〉.

(2.38)
Therefore,

AH = U †
I (t, t0)AI(t)UI(t, t0), (2.39)

which is just (2.12) with S replaced by I . Having succeeded in writing Heisen-
berg operator in terms of interaction ones, we can expand them in series of
VI .

Problems

2.1. For H0 =
∑

p εpc
†
pcp, show that 〈nk〉 is given by the Fermi distribution,

〈np〉 =
1
Z

Tr(npρ) =
1

1 + eβ(εp−μ)
. (2.40)
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2.2. Let H = H0 +H1 and U0S(t, t′) the evolution operator for H0. Write an
equation for the evolution operator US(t, t′) for H .

2.3. Let A1, A2 denote fermion creation or annihilation operators and ρ an
operator such as a density which commutes with A1, A2 under Wick’s T
ordering. Find d

dtT {A1(t1)A2(t2)ρ(t)}. How is the result generalized to several
operators A1, · · ·An?

2.4. Derive the useful identity [205] holding for any Hamiltonian Hλ that
depends on a parameter λ

d

dλ
e−iHλ(t′−t) = −i

∫ t′

t

dτe−iHλ(t′−τ) dH

dλ
e−iHλ(τ−t). (2.41)



3 Atomic Shells and Multiplets

3.1 Shell Structure of Atoms

X-ray spectroscopy and Photoemission (see Chapter 6) show a correspon-
dence between the electronic levels in many-electron atoms and in Hydro-
gen. The next Table shows the inner levels of Fe; the first column presents
the spectroscopic notation, the second the corresponding Hydrogen quantum
numbers and the third the measured binfing energy.

Shell nlj EB(eV)
K 1s 1

2
7112.0

LI 2p 1
2

842.0
LII 2p 3

2
719.9

LIII 3s 1
2

706.8
MI 3p 1

2
94.0

MII 3p 3
2

52.7
MIII 3d 3

2
52.7

It is evident that the shells correspond to the principal quantum numbers
and the subshells to the spin-orbit split levels. This Chapter is devoted to
the elementary theory of the shell structure and the atomic multiplets, which
requires the use of introductory many-body concepts and the inclusion of
relativistic effects.

3.2 Hartree-Fock Method

Consider the true non-relativistic N-body Hamiltonian for an atom or molecule
(1.60,1.61,1.62), namely, H (r1, r2, . . . , rN ) = H0 + V, with

H0 = T +Hw =
∑

i

h(i) ≡
∑

i

{
−1

2
∇2

i + w(ri)
}
, (3.1)

V =
1
2

∑
i�=j

v (ri − ri) (3.2)
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(or (1.63) in second quantization). The external potential w is due to the
nucleus (or nuclei). Solving the Schrödinger equation is a formidable task;
the Hartree-Fock (HF) Method uses as a natural first approximation the
determinantal wave function of the form (1.4)

Ψ(1, 2, . . .N) =
1√
N !

⎛
⎜⎜⎝
u1(1) u2(1) . . . uN(1)
u1(2) u2(2) . . . uN(2)
. . . . . . . . . . . .

u1(N) u2(N) . . . uN(N)

⎞
⎟⎟⎠ (3.3)

written in terms of spin-orbitals ui(i) to be determined. This enables us to
write the average of the one-body operator according to (1.7)

〈Ψ |F |Ψ〉 =
N∑
i

〈ui|f |ui〉.

and the average of the two-body operator according to (1.10)

〈Ψ |F |Ψ〉 =
N∑

j �=i

[〈ui(1)uj(2)|f(1, 2)|ui(1)uj(2)〉−〈uj(1)ui(2)|f(1, 2)|ui(1)uj(2)〉].

The average of the N-electron Hamiltonian yields

〈Ψ |H |Ψ〉 = EN =
∑

i

Ii +
1
2

∑
ij

(Cij − Eij), (3.4)

where Ii = 〈ui|h(i)|ui〉, while Cij and Eij are respectively the Coulomb and
exchange integrals involving the Coulomb interaction and orbitals i and j.

We are facing two main problems: on one hand, the determinantal wave
function is appropriate for independent electrons and on the other we need to
specify the orbitals somehow. We find a way out of both problems if we use the
determinantal form as a variational ansatz and seek for optimal spin-orbitals;
we impose normalization by a Lagrange multiplier for each spin-orbital. If we
wish, we may use other Lagrange multipliers to enforce orthogonality, but if
we forget this requirement, orthogonal spin-orbitals are obtained anyhow.

The main reason why the HF approximation is important is that the
equations are written in the same way for all systems; we can illustrate the
procedure starting with the ground state of He. Then the two spin-orbitals
are u1s↑ = u1s(r)α and u1s↓ = u1s(r)β, in obvious notation, and

E2 = 〈u1s↑(1)|h(1) |u1s↑(1)〉+ 〈u1s↓(2)|h(2) |u1s↓(2)〉
+ 〈u1s↑(1)u1s↓(2)| 1

r12
|u1s↑(1)u1s↓(2)〉 (3.5)

does not involve exchange terms. We vary the orbital u1s(r) requiring δE2 =
εδN, where N is the norm of u1s(r) and ε is the Lagrange multiplier. We
obtain the Hartree equation
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h(1)u1s(1) + u1s(1)
∫
d3r2u1s(2)∗

1
r12

u1s(2) = εu1s(1). (3.6)

(we speak of Hartree-Fock when exchange terms appear). Thus the optimal
orbital is obtained by a Schrödinger-like equation where the electrons feels,
along with the nuclear potential contained in h, the Hartree potential

V H(1) =
∫
d3r2u1s(2)∗

1
r12

u1s(2); (3.7)

V H is just the electrostatic potential due to the charge cloud of the opposite-
spin electron. Having chosen an independent-electron form of Ψ we are trying
to compensate the neglect of the Coulomb interaction by including its average
as an effective potential or mean field. The Hartree approximation takes into
account the quantum nature of the electron and is self-consistent, that is, it
accounts for electrostatics. Indeed, HF is also called the self-consistent field
method. Yet, it is still far from exact. The He ground state energy turns out
to be E2 = −77.866 eV, which is more than 1 eV too high compared to the
exact result (∼ −79 eV). This large discrepancy is the correlation energy and
is due exclusively to the determinantal form of Ψ . In other terms, the electron
does not see the average cloud of the other one, but a point particle with
which it can correlate its motion. The discrepancy may be small compared
to the binding energy of the system and also compared to core-level binding
energies, but since 1eV is the scale of chemical binding energy the accuracy
of the HF method is questionable if one wants to predict chemical trends.

The excited state 1s2s3S of He can also be approximated variationally
as discussed in Sect. 1.4. Triplet He is called Orthohelium and converts to
the singlet Parahelium after a long time (spin-orbit coupling is small). The
relevant configurations are u1s↑u2s↑, with mS = 1, u1s↓u2s↓, with mS = −1.
Of course, there is also mS = 0, with the embarassing non-determinantal
configuration 1√

2
[u1s↑u2s↓ + u1s↓u2s↑]. This state would be outside the scope

of the HF method, but we know that its energy is the same and anyhow it can
be reached from the determinantal states by a 90 degrees rotation. Hence we
can concentrate on u1s↑u2s↑, and repeating the above argument and setting
a = u1s↑, b = u2s↑ we find:

E2 = Ia + Ib + Cab − Eab. (3.8)

The extremal condition δE = 0 is subject to the further conditions 〈a|a〉 =
〈b|b〉 = 1, and we need two Lagrange multipliers εa and εb. So, we get, varying
a:

h(1)a(1) + a(1)
∫
d2 b∗(2)

1
r12

b(2)− b(1)
∫
d2 b∗(2)

1
r12

a(2) = εaa(1). (3.9)

Varying b, we find the same with a and b interchanged. These are the HF
equations for the problem. For parallel spins a non-local exchange potential
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arises. However, this is a non-local potential (the r.h.s does not depend just
on the local value of a).

V ex(⇀
x)a(⇀

x) = b(⇀
x)
∫
d

⇀
y
b∗(y)a(⇀

y )
|x− y| (3.10)

The physical significance of the exchange term will be further discussed in
the next subsection.

It is worth mentioning that had we started with a simple product, without
anti-symmetrization, we should have found the direct term but we would have
missed the exchange one. The Hartree method, which neglects exchange, has
also been widely applied. Its results are not always worse than those of HF.
Indeed, since the orbitals are filled according to the aufbau method, the shell
structure is reproduced and the Pauli principle is not totally ignored; both
methods neglect correlation, and this is the most serious limitation for both.

Let us take the scalar product of Equation (3.9) by |b〉 :

〈b|h |a〉+
∫
d1d2

b∗(1)a(1)|b(2)|2 − |b(1)|2b∗(2)a(2)
r12

= εa 〈b | a〉 .

The formidable-looking integral vanishes and one is left with

〈b|h |a〉 = εa 〈b | a〉 . (3.11)

Exchanging a and b,
〈a|h |b〉 = εb 〈a | b〉 .

Taking the complex conjugate and subtracting from (3.11)we get

0 = (εa − εb) 〈b | a〉 ,

and non-degenerate orbitals are orthogonal.
The analogy of the HF equations to Schrödinger’s suggests that the so

called Koopman’s eigenvalue εa is the energy eigenvalue of the electron mov-
ing in spin-orbital a. However, one should not give any physical significance
to the individual orbitals. One can introduce unitary linear transformations
of orbitals. Then, the determinant Ψ does not change, and nothing changes
since Ψ has a physical meaning, the spin-orbitals do not possess any by them-
selves. No physical observable corresponds to the energy of an orbital. Let us
take the scalar product of Equation (3.9) by |a〉 :

〈a(1)|h(1) |a(1)〉+
∫
d1d2

|a(1)|2|b(2)|2
r12

−
∫
d1d2

a(1)∗b(1)a(2)b(2)∗

r12
= εa,

that is,
εa = Ia + Cab − Eab. (3.12)

Using
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εb = Ib + Cba − Eba, Cba = Cab, Eba = Eab,

we may conclude that

εa + εb = Ia + Ib + 2 (Cab − Eab) 
= E2 = Ia + Ib + Cab − Eab

and the energy of the atom is different from the sum of the Koopman’s
eigenvalues.

Rather, they can be thought of as approximations to ionization poten-
tials. Suppose the atom is photoionized, and the photo-electron is sent to the
threshold of the continuum (also called vacuum level). The ionization poten-
tial is the difference between the energy of the initial state He 1s2s3S and the
energy of the final state He+. The initial energy is E2 = Ia + Ib +Cab −Eab,
where a=1s, b=2s; indeed on removing the electron b, we must remove
εb = Ib +Cab−Eab. This fact is known as Koopmans theorem, and shows that
the HF calculations do bring some information about the excited states, after
all. The main weakness of this approximation is evident from the above He
1s2s 3S example, too. The final state He+ is hydrogen-like, with Z=2. If we
estimate the ionization potential by Koopman’s eigenvalue, we pretend that
in the final state the electron keeps its unrelaxed orbital a, which is computed
including the potential due to the electron in b. Thus, Koopman’s eigenval-
ues imply a frozen-orbital approximation. One can fix this problem by doing
separate HF calculations for the initial and final configurations. This is called
the Δ−SCF method ; the errors due to correlation effects, however, cannot be
removed within the HF approach, and require the methods of Chapter 11.

The advantage of the HF approach over more accurate variational meth-
ods is that the equations are system-independent. The generalization of Equa-
tion ( 3.8) to the N-electron problem reads

EN =
N∑
i

Ii +
1
2

N∑
i�=j

[Cij − Eij ] . (3.13)

The Koopmans eigenvalues are

εi = Ii +
∑

j

(Cij − Eij) = EN − E(i)
N−1 (3.14)

where E(i)
N−1 refers to the system ionized in spin-orbital i, while the other spin-

orbitals remain frozen. Looking for the extremum of energy constrained by
normalization one finds the HF equations. We introduce the direct potential

V d =
N∑
i

V d
i (r), V d

i (r) =
∫
dr′ |ui(r′)|2
|r − r′|

summed over all electrons, and the exchange potential
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V ex =
↑↑∑
i

V ex
i (r), V ex

i (r)f(r) = ui(r)
∫
dr′ ui(r′)∗f(r′)

|r − r′| (3.15)

where the summation
↑↑∑
i

runs over the spin-orbitals with the same spin as i.

For an atom with atomic number Z, the Fock operator

f =
p2

2m
− Z

|r| + V d(r)− V ex(r) (3.16)

allows to write the HF equations in the deceptively simple form

f ui(r) = εi ui(r). (3.17)

The HF equations have a complete othonormal set of solutions. The lowest N
allow to build the determinantal wave functions. The rest are called virtual
orbitals ; they are not directly related to any experiment involving excited
states, but they are often useful to generate multi-determinantal develop-
ments, like the Configuration Interaction expansion.

In open-shell system one does not know a priori which configuration will
give the lowest energy, and problems are generally harder than in closed-
shell systems. For instance, the u1s and u2s orbitals of Be (Z=4) are spin-
independent and are determined by a pair of coupled HF equations.The prob-
lem is more involved with Li (Z=3). We may arbitrarily set the unpaired 2s
electron with spin up. This implies that the up-spin 1s electrons has the ex-
change interaction while the down spin electron does not have such a term,
hence there are 2 1s levels and 3 HF equations must be solved. The splitting
of the core level is physically correct. This is the HF method in its general
form, which is often termed unrestricted HF, or spin-polarized HF. In order
to simplify the computations the restricted HF method has been introduced.
One then imposes the same orbital for both spins, with half exchange interac-
tion for both spin directions. This approximation, however, leads to incorrect
molecular dissociation at large distances and cannot describe magnetism.

The ground state configuration of every atomic species, which is reported
in Mendelejeff tables, is the one which yields the minimum energy with the
HF method (or its relativistic extension). The Koopmans eigenvalues for the
closed-shell Cu+ ions (658.4 eV for 1s, 82.3 eV for 2s, 71.83 eV for 2p, 10.65
eV for 3s, 7.27 eV for 3p and 1.6 eV for 3d) may be compared with the
experimental binding energies (662 eV, 81.3 eV, 61.6 eV, 11.6 eV, 6.1 eV,
0.71 eV, respectively). In this case the relativistic effects are small and there
is no doubt that the general trend is correct, however the relative error for
the external shell exceeds 100%. The methods of Chapter 11 are needed in
order to improve the situation. While the true ground-state energy is always
lower than in the HF approximation, there is no such relation between the
Koopmans eigenvalues and the true levels of the system; in more advanced
theories, actually, they are resonances (see Chapter 5 ).
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The relativistic extension of the HF method is called Dirac-Fock method.
One replaces the one-body Hamiltonian h by Dirac’s Hamiltonian [203][202]

hD(i) = cαi.pi + βmc2 − Ze2

|ri|
, (3.18)

where αi is Dirac’s velocity [203] of electron i, β = γ4 is Dirac’s matrix and a
four-component wave function is sought. For light atoms, the Coulomb inter-
action continues to be used, although a better alternative is Breit’s interaction
[204]

WB(1, 2) =
e2

r12
exp[ikr12](1−α(1) ·α(2)), ck = ω

where h̄ω is the absolute value of the energy jump of each electron in the
collision. Breit’s interaction is particularly needed for the inner shells of
he3avy elements. With such changes, the self-consistent equations work ba-
sically as in the non-relativistic case, and Dirac-Fock atomic codes are avail-
able since a long time. GRASP (General Purpose Relativistic Atomic Struc-
ture Program[158]) labels Dirac-Fock solutions by J2, Jz , parity and seniority
number 9.9(See Chapter 9.9) does a partial configuration interaction, keeps
into account the finite nuclear dimensions and includes the main corrections
due to Quantum Electrodynamics.

3.2.1 Physical Meaning of Exchange: the Cohesion of a Simple
Metal

In all metals, the conduction electrons shield the electric field of the Ions.
The shielded potential seen by an electron at the Fermi level is consider-
ably attenuated, and in Aluminum and other metals with s and p conduction
bands, it is nearly flat. These metals are called simple since many of their
properties can be explained with the model of free electrons. The theory of
Sommerfeld considers a gas of N electrons confined to volume V, with large N
and V such that N

V = n = k3
F

3π2 , where n is the number density of conduction
electrons, that occupy all the states up to the Fermi level. The Fermi sphere
exists indeed and the Sommerfeld theory explains some facts correctly: the
contribution of electrons to the specific heat of the metals is correctly pre-
dicted to grow linearly with the temperature T . But the energy density of
the electron gas E

V = 3nEF

5 is positive, and the electrons are prevented from
escaping from the metal by a box. The real nature of this box is unexplained.
For the metal to be stable, an electron must be attracted by it. The Jel-
lium is a hypothetical metal in which a Fermi liquid, that is an interacting
electron gas, is neutralized by positive uniform charge. The nuclear charges
are smeared out in uniform way and the system have complete translational
symmetry; however oversimplified, this model is still hard and nobody knows
the exact solution. It is a traditional bench mark of the many-body theory ,
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and a constant source of ideas that then are applied to the realistic calcula-
tions. The electrostatic effects are included in the theory, and they improve
it considerably. We see that what we can learn from SCF approximation.
The most fundamental issue is the cohesion of a metal piece. We consider
a large cube of Jellium of volume V containing N electrons, with N/V = n
and impose periodic boundary conditions. The method of Hartree describes
to the state of the Jellium with a product wave function of the form

Φ(1, 2, · · · , N) = u1(r1)u2(r2) · · ·uN(rN ) (3.19)

where ui are unknown spin-orbitals; the Hartree potential is Vb + Vd, where
Vb is the positive background potential and Vd is the direct potential.

We look for a translationally invariant solution1 as a natural first choice.
Then the space function in the u spin-orbitals is a plane-wave; the density
is a constant and cancels exactly the background density. Thus, Vb + Vd = 0
and the electrons are left with the mere kinetic energy, which is positive; the
result (a piece of metal cannot exist) is very unrealistic.

In the Hartree-Fock approximation, we can still find plane-wave orbital
solutions, but since the Hartree term just cancels the background, the only
potential is the exchange potential V (exc)

k . To obtain its expression, one can
write down the direct term Vduk(r) = uk(r)

∑
k′
∫
dr′ e2

|r−r′|u
∗
k′(r′) uk(r) and

perform the charateristic exchange

Vexuk =
∑
k′

∫
dr′

e2

|r − r′|uk′(r′)uk(r) = eikr 1√
V

∑
k′

4πe2

|k′ − k|2 . (3.20)

The exchange term also goes like eikr, and the Hartree-Fock equations read

[
p2

2m
− e2

V

∑
k′

4π
|k′ − k|2 ]

eikr

√
V

= ε(k)
eikr

√
V
. (3.21)

The Koopmans eigenvalue is

ε(k) =
h̄2k2

2m
− 4πe2

(2π)3

∫
d3k′θ(kF − k′)

1
|k′ − k|2. (3.22)

For small k, ε ∼ − 2e2kF

π . The electron moves in a potential well in k space;
there is a singularity for k = kF . The exchange term is attractive, and this
fact has a simple physical interpretation. Every electron travels encircled by a
space region (Fermi hole) in which there is deficiency of electrons of its same
spin. The electron and the Fermi hole constitute with a quasi-particle, very

1Spin density wave solution of the Hartree-Fock equations are energetically fa-
vored at low n, however the energy difference is far too small to be relevant o the
cohesion issue. Cs has low enough n to have a spin density wave in the ground state
according to Hartree-Fock equations; the actual metal, however, is not magnetic.
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different from that of a free electron. The Jellium is stable if an electron at the
Fermi level is bound. This depends on the competition between the negative
contribution of the exchange term and that positive one of the kinetic energy.
The outcome of the competition depends on kF , that is an the density n of the
Jellium. For sufficiently small density (kFa0 << 1) the attraction prevails,
and the metal exists.

The function ε(k) has a logarithmic singularity for k = kF , where its
derivative diverges. This is physically wrong, no such behavior is observed,
but we have understood the reason for the existence of metals, and if we want
to understand more we must go into the many-body problem.

3.3 Virial Theorem

For a classical particle moving in a closed orbit in a potential V, one finds
d
dtr · p = p2

2m + r ·F , where F = −∇V is the force. Averaging over a period,
〈 d

dtr · p〉 = 0, yields the well known Virial theorem 〈2T 〉 = 〈r ·∇V 〉 where T
is the kinetic energy.

For a Schrödinger particle ih̄ d
dtr · p = [r · p, H ]−; averaging over an

eigenstate of H , the r.h.s. vanishes; since the quantum commutators give
dp
dt = −∇V, dr

dt = p
m we obtain the same Virial theorem 〈2T 〉 = 〈r ·∇V 〉.

In Dirac’s theory[203], if ψ is an eigenspinor of H = cα ·p+βmc2 +V (r),
(using standard notation, with α Dirac’s velocity) a similar procedure leads
to 〈ψ|cα · p|ψ〉 = 〈ψ|cr ·∇|ψ〉.

Here we are particularly interested in a system of N non-relativistic par-
ticles, including electrons and nuclei, in Coulomb interaction; let ei and mi

denote charges and masses of the charged particles; the Hamiltonian is of the
form

H = − h̄
2

2

N∑
i=1

∇2
i

mi
+

N∑
i<j

eiej

rij
≡ T + V. (3.23)

The ground state wave function Φ({ri}) depends on the set {ri} of the N
position vectors. Consider the rescaled, normalized wave function

Φη({ri}) = η
3N
2 Φ({ηri}). (3.24)

One checks easily that kinetic and Coulomb energies scale differently, that is,

〈Φη |T |Φη〉 = η2〈Φ|T |Φ〉, (3.25)

while
〈Φη|V |Φη〉 = η〈Φ|V |Φ〉. (3.26)

Hence,
〈Φη|H |Φη〉 = η2〈Φ|T |Φ〉+ η〈Φ|V |Φ〉. (3.27)
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Treating η as a variational parameter, we find the condition

2η〈Φ|T |Φ〉+ 〈Φ|V |Φ〉 = 0, (3.28)

but since the optimum value is η = 1 we end up with the Virial theorem

〈2T + V 〉 = 0. (3.29)

This is one of the few known exact statements about interacting many-body
problems. The Hartree-Fock ground state satisfies the Virial Theorem, and
an approximate self-consistent calculation can be improved by scaling.

3.4 Hellmann-Feynman Theorem

Let H = H(λ) denote a Hamiltonian which depends on a parameter λ and
HΨ = EΨ. Then

dE

dλ
= 〈Ψ |dH

dλ
|Ψ〉. (3.30)

This follows from E(λ) = 〈Ψ |H(λ)|Ψ〉 and from the fact that a small dλ
produces a first-order variation dΨ which is orthogonal to Ψ . This is another
one of the few exact results for interacting many-body problems.

3.5 Central Field

In this Section we study the ground state and the low excited states of the
atom with atomic number Z, including the most important relativistic effects.
Using symmetry (exact and approximate) we can tell a lot without heavy
computing. The model Hamiltonian is

Htot = H0 +HC +H ′
rel (3.31)

with

H0 =
Z∑
i

[
p2

i

2m
− Ze2

ri

]
, (3.32)

HC =
Z∑

i<j

e2

rij
, (3.33)

H ′
rel =

Z∑
i

ξ(ri)Li · Si (3.34)

where pi and ri are electron momenta and coordinates, rij are distances;
H ′

rel contains the spin-orbit coupling between orbital angular momentum Li

and spin Si of electron i which is the most notable relativistic correction
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(other corrections involving the orbital currents are actually larger, but less
evident since they fail to split levels). In the central field model, the states of
the atom are constructed using 1-electron orbitals computed with a suitable
central V (r); the wave functions differ from the Hydrogen-like orbitals only in
the radial functions RnL(r). In terms of the one-electron basis states labeled
by n, L,m,mS quantum numbers2, one starts assuming a configuration of the
atom (see Table 3.1).

H 1 ls
He 2 1s2

Li 3 2s
Be 4 2s2

B 5 2s22p
C 6 2s22p2

N 7 2s22p3

O 8 2s22p4

F 9 2s22p5

Ne 10 2p6

Na 11 3s
Mg 12 3s2

Al 13 3s23p
Si 14 3s23p2

P 15 3s23p3

S 16 3s23p4

Cl 17 3s23p5

Ar 18 3p6

K 19 4s
Ca 20 4s 2
Sc 21 3d4s2

Ti 22 3d24s2

V 23 3d34s2

Cr 24 3d54s
Mn 25 3d54s2

Fe 26 3d64s2

Co 27 3d74s2

Ni 28 3d84s2

Cu 29 3d104s
Zn 30 3d104s2

Ga 31 4s24p
Ge 32 4s24p2

As 33 4s24p3

Se 34 4s24p4

Br 35 4s24p5

Kr 36 4p6

Rb 37 5s
Sr 38 5s2

Y 39 4d5s2

Z r 40 4d25s2

Nb 41 4d45s
Mo 42 4d55s
Tc 43 4d55s2

Ru 44 4d75s
Rh 45 4d85s

Pd 46 4dl0

Ag 47 4dl05s
Cd 48 4dl05s2

In 49 5s25p
Sn 50 5s25p2

Sb 51 5s25p3

Te 52 5s25p4

I 53 5s25p5

Xe 54 5p6

Cs 55 6s
Ba 56 6s2

La 57 5d6s2

Ce 58 4f5d6s2

Pr 59 4f36s2

Nd 60 4f46s2

Pm 61 4f56s2

Sm 62 4f66s2

Eu 63 4f76s2

Gd 64 4f75d6s2

Tb 65 4f96s2

Dy 66 4f l06s2

Ho 67 4f116s2

Er 68 4f126s2

Tm 69 4f136s2

Yb 70 4f146s2

Lu 71 5d6s2

Hf 72 5d26s2

Ta 73 5d36s2

W 74 5d46s2

Re 75 5d56s2

Os 76 5d66s2

Ir 77 5d76s2

Pt 78 5d96s
Au 79 5d106s
Hg 80 5d106s
Tl 81 6s26p
Pb 82 6s26p2

Bi 83 6s26p3

Po 84 6s26p4

At 85 6s26p5

Rn 86 6p6

Fr 87 7s
Ra 88 7s2

Ac 89 6d7s2

Th 90 6d27s2

Pa 91 5f26d7s2

U 92 5f36d7s2

Table 3.1. The atomic numbers and the ground state configuration of the elements.

A shell comprises all the orbitals of a given n, and the inner ones, entirely
occupied by electrons, are core shells. The inner shells contribute most of the
binding energy; their charge screens the nuclear potential and contributes in
an important way to the V (r), in which the external electrons move. The
magnetic quantum number of a closed shell is ML =

∑
iMLi = 0, the z

component of spin is zero and thus all angular momentum quantum numbers

2This is a very convenient basis, but individual electron quantum numbers do not
represent observable quantities; any measurement will give the quantum numbers
of the atom.
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vanish; the parity is +1. Thus, the parity and angular momentum quantum
numbers of the atom are determined by the outer (or valence) electrons. This
suggests that Htot can be simplified. The valence electrons are modeled by

H = Hv +H ′
C +H ′

rel, (3.35)

where the sums are restricted to incomplete shells. The residual Coulomb
interaction H ′

C does not contain the core electron contributions and can be
dealt with approximately as a perturbation; for light atoms H ′

rel is also a
perturbation. In the limit H ′

C = H ′
rel = 0 all the states in a given con-

figuration would be degenerate; for instance, a C atom in the fundamental
configuration 1s22s22p2 has 2 electrons in the six p spin-orbitals and would

have a
(

6
2

)
= 15 times degenerate ground state. This degeneracy stems from

the invariance of Hv for independent rotations of electrons orbitals in space
and of the total spin. The orbital angular momentum of each electron and
the total spin are good quantum numbers in this limit. In the presence of
interactions, the only conservation laws are

[H,J ]− = 0 (3.36)

where J = L + S is the total angular momentum (invariance under rigid
rotations) and the parity

[H,Π ]− = 0 (3.37)

(neglecting quite tiny effects of electro-weak mixing).

3.5.1 L-S Multiplets (H ′
rel → 0 Limit)

In light atoms, one can neglect H ′
rel to a good approximation; H ′

C breaks the
invariance for independent orbital rotations of the electrons, that change rij .
One is left with the invariance under rigid rotations R(a) = e−

i
h̄ a·L. Hence

H commutes with the components of the total orbital angular momentum
L, and the configuration gives raise to a Russell-Saunders multiplet, with
different energies for different L. Besides, H commutes with the i-th electron
spin Si. Is Si a good quantum number? Not at all, since individual electrons
do not possess observables. What we can measure is the total spin S =

∑
i Si

of the atom. Moreover, L and the total electronic angular momentum

J = L + S (3.38)

can be measured. But what quantum numbers are compatible? H commutes
with L2, S2, J2, Lz, Sz, Jz . However, since J2 fails to commute with Li and
Si, these operators are not all compatible and we can label states in two
alternative ways: 1) diagonalizing H,L2,S2,Lz ,Sz,Jz = Lz + Sz, defin-
ing the |LSMLMS〉 basis with quantum numbers E,L, S,ML,MS,MJ =
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ML + MS . Since H is invariant for independent rigid rotations in ordi-
nary space and spin space, E is independent of ML and MS . 2) diagonal-
izing H,L2,S2,J2,Jzdefining the |LSJMJ〉 basis with quantum numbers
E,L, S, J,MJ . The two bases are connected by a unitary transformation, and
both schemes are referred to in literature as L-S or Russell-Saunders scheme.
The energy levels of this approximation, or atomic terms, are denoted with
symbols of the type 2S+1L: as an example, 2P has L=1, S=1/2; they are
degenerate (2L+1)(2S+1) times.

L-S Terms Inside a Given Configuration

The L-S terms belonging to a given configuration are resolved by H ′
C . One

can easily find what terms arise. For closed shells there is only 1S. If a single
electron optical electron moves outside filled shells the entire atom has the
quantum numbers L,ML and MS = 1

2 of the electron. If a single electron
lacks in order to make filled shells, there is a single hole, this counts like
an electron with opposite values of ML and MS . If there are two inequiv-
alent electrons (different principal quantum number n) outside filled shells,
one must sum their L and S. For instance, from two electron labeled np, n′p
one builds the atomic terms 1S,3 S,1 P,3 P,1D,3D. With 2 or more equivalent
electrons, the possible terms are limited by from the Pauli principle, and the
best thing is to proceed by examples.
Example: C atom (configuration 1s22s22p2). The closed shells may be ig-
nored, and we must consider the configuration p2. The 1-electron states avail-
able are (m,σ) with m ≡ mL = 1, 0,−1 and σ = ± 1

2 ; there are 6 spin-orbitals
involved. Without the Pauli principle we would find 1S,3 S,1 P,3 P,1D,3D,
that is 1 + 3 + 3 + 9 + 5 + 15 = 36 states. Many of those terms are forbid-
den, since only the 2 electron determinants (m1σ1,m2σ2) involving different

(m,σ) are allowed. There are
(

6
2

)
= 15 pairs of different spin-orbitals; by

linear combination on can form 15 allowed 2-electron states with well defined
L, S,ML,MS. The (m1σ1,m2σ2) determinants are labelled by ML and MS ,
and those with parallel spins belong to S=1; MS = 0 is compatible with
singlet and triplet. Not all determinants have well defined L; however the de-
terminant with the largest ML must belong to the maximum L. In this case
the largest ML is 2, and corresponds to (m1σ1,m2σ2) = (1+, 1−), having
MS = 0. Thus there is a 1D term. 1D has 5 states, ML = 2, 1, 0,−1,−2,
and we must find 10 more orthogonal states, with L < 2. With ML = 1 we
can find the 4 determinants (1±, 0±) having mixed L. A linear combination,
which might be found using the shift operator S− on the state with ML = 2,
belongs to 1D; 3ML = 1 states are left, with L = 1 andMS ≤ 1; these belong
to 3P (9 states). we have found 5+9=14 states out of 15; there is room only
for a 1S. Thus the configuration is resolved as follows:

p2 →1 S,3 P,1D. (3.39)
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(See the Problems section for other examples.)
The parity of the atom is the product of those (−)Li of the orbitals in

the determinant. The ground state configuration of C is even, and all terms
including 3P are. The excited configuration 2s12p3 is odd and yields a term
denoted by 3P o, where o stands for odd.

The L-S wave functions can be obtained by combining the angular mo-
menta with the Clebsh-Gordan coefficients. For two electrons, one forms de-
terminants |m1ms1m2ms2〉, recalling that in order to avoid double counting
the orbitals must be ordered in some way; then,

|LSMLMS〉 = (3.40)∑
m1ms1m2ms2

|m1 m s1m2ms2〉〈L1m1L2m2|LML〉〈
1
2
ms1

1
2
ms2 |SMS〉;

one has to normalize the result again in general (see Problem 3.3, 3.4). A
third electron can then be added if needed by multiplying by a spin-orbital
with the Clebsh-Gordan coefficients, and antisymmetrizing the result. For
many electrons this build-up process becomes very time consuming, but one
can make the process faster by using fractional parentage coefficients [147]
[148]. These table present the wave functions coded in a special way; this
saves labor, but introduces no new physical concepts.

3.5.2 Hund’s First Rule

Hund established two empirical rules, that hold with no exception in atomic
physics, and are very popular with the students because there is no proof to
learn. This is the first.

The lowest L-S level of the atomic config-
uration has the lowest S and the highest L
compatibly with S.

This is no theorem, but is true and reasonable, since high spin implies a
very antisymmetrical orbital wave function and therefore a reduced repul-
sion; increasing L also lowers the energy because higher L wave functions are
more diffuse. For Z=6 ( C atom), the configuration is 2p2 : the terms are
1S,3 P,1D and the ground state is 3P . For Z=74 (Tungsten ) the configura-
tion is 5p65d46s2; the incomplete shell is 5d4. With ML = −2,−1, 0, 1, 2, all
spins can be parallel, so the Hund rule wants S = 2. The maximum ML is
2 + 1 + 0 + (−1) = 2. The ground term is 5D. In the L-S limit (no spin-orbit
interaction) the states of a term are all degenerate. Combining the states of a
LS term with variousML andMS by means of the Clebsh-Gordan coefficients
one builds |L, S, J,MJ〉 states. The allowed values of J are obtained from L
with S by the usual angular momentum summation rule, while MJ ∈ (−J, J).
Thus a term 3F, (L=3, S=1), gives raise to 3F4,

3 F3 and 3F2, where the in-
dex to the right is J . The energy E of the atomic levels is independent of
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p2

1S
1S0

1D 1D2

3P

3P2

3P1

3P0

Fig. 3.1. The p2 configuration splits into the L-S terms 1S,1 D and 3P , separated
by the Coulomb interaction. The relativistic correction then produces the atomic
levels as shown.

J and MJ . If we introduce H ′
rel as a perturbation, the degeneracy is partly

removed; E depends on J but not on MJ . Here is the pattern of the levels
for the Carbon atom (see Fig. 3.1).

3.6 Atomic Coulomb Integrals

The interaction matrix elements 〈uaub| 1
r12
|ucud〉 between spin-orbitals factor

into spin scalar products and Coulomb integrals 〈a(1)b(2)| 1
r12
|c(1)d(2)〉 in-

volving the central field orbitals a(r) = Ra
nL(r)YLM (θ, φ), and the like. One

can expand 1
r12
≡ 1

|r1−r2| in polar coordinates such that ri → (ri, θi, φi).
Imposing that the result be the Green’s function of Poisson’s equation one
finds, in terms of spherical harmonics and of the shorthand notations{

r> = r1θ(r1 − r2) + r2θ(r2 − r1),
r< = r2θ(r1 − r2) + r1θ(r2 − r1),

(3.41)

1
r12

= 4π
∞∑

K=0

rK
<

rK+1
>

K∑
m=−K

Y ∗
Km(θ1, φ1)YKm(θ2, φ2)

(2K + 1)
. (3.42)

To carry out this calculation, one needs integrals involving three spherical
harmonics; these are easily obtained by codes like Mathematica or Maple;
they are tabulated in the literature [144] as cK tables, where

∫
dΩY ∗

Lama
(Ω)YKm(Ω)YLcmc(Ω) ≡

√
2K + 1

4π
cK(Lama, Lcmc)δ(m,ma−mc).

(3.43)
One easily finds that
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〈ab| 1
r12
|cd〉 = δ(ma +mb,mc +md)×

∞∑
K=0

cK(La,ma, Lc,mc)cK(Ld,md, Lb,mb)RK(ab, cd) (3.44)

Actually this summation has in any case a few nonzero terms since they are
restricted by the triangular rules

|Ld − Lb| ≤ K ≤ Ld + Lb

|La − Lc| ≤ K ≤ La + Lc.
(3.45)

The radial integrals contain the specifics of the problem, the rest is geometry.
For the diagonal elements (c,d)=(a,b) one uses the Slater integrals

FK(naLa, nbLb) ≡ RK(a, b, a, b) (Coulomb interaction)
GK(naLa, nbLb) ≡ RK(a, b, b, a) (Exchange interaction). (3.46)

Using other widespread notations,

〈ab| 1
r12
|ab〉 =

∑
K

aK(Lama, Lbmb)FK(naLa, nbLb) (3.47)

with

aK(Lama, Lbmb) = cK(Lama, Lama)cK(Lbmb, Lbmb) (3.48)

and
〈ab| 1

r12
|ba〉 =

∑
K

bK(Lama, Lbmb)GK(naLa, nbLb) (3.49)

with
bK = |cK |2. (3.50)

In this way, one can calculate the multiplet splittings due to H ′
C . The re-

pulsion is invariant for space rotations and (separately) spin rotations of the
atom, which are exponentials in L,S and the HC matrix is diagonal in the
|LSMLMS〉 basis.

A closed shell contains of angular momentum L contains 2(2L+ 1) elec-
trons; the configuration with 2(2L + 1) − n electrons is said to contain n
holes and to be conjugate to the one with n electrons. The expressions of
the matrices of the Coulomb interactions in terms of the Slater integrals are
the same for the conjugate configurations; however the one for n electrons
refers to the empty shell as the energy zero, and the one for n holes refers to
the filled shell. Thus,if the Slater parameters are the same in both cases, the
term separations are the same. The direct diagonalization of the Coulomb
matrix by standard methods becomes painstaking with many electrons; ef-
ficient methods based on tensor operators are reviewed by Weissbluth [147]
who also reports the results for the most common configurations. The multi-
plet energies for many more configurations are given by Condon and Shortley
[144] and by Slater [145].
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Relativistic Correction to the L-S Coupling

Hydrogen is a special case, since L remains a good quantum number3 despite
the spin-orbit coupling H ′

rel = ξL ·S and the states can be labeled |LSJMJ〉.
Besides, H ′

rel = ξ
2 (J2 − L2 − S2) yields the first-order correction ΔE(J) =

ξ
2 (J(J+1)−L(L+1)−S(S+1)). Lande’s interval ruleΔE(J)−ΔE(J−1) = ξJ
is obeyed.

In many-electron atoms H ′
rel =

∑
i ξiLi · Si fails4 to commute with L2

and S2; so, L − S terms sharing the same J are mixed. In the C case, 3P2

and 1D2 contaminate each other, and 1S0 mixes with 3P0. Spins and orbits
exchange angular momentum; only in the H case this does not happen (the
spin of 1 electron is always 1/2.) For light atoms,H ′

rel is small, and the mixing
of different L-S terms is negligible. So,

ΔEJ = 〈LSJMJ |
∑

i

ξiLi · Si|LSJMJ〉 = KLS〈LSJMJ |L · S|LSJMJ〉,

(3.51)
where we have used the Wigner Eckart theorem. for example, the fine struc-
ture of the 3P and 3F terms of the d2 configuration depends on different K
constants. The Lande’ rule can again be derived.

The LSJM scheme is unitarily equivalent to the LSMLMS scheme:

|LSJM〉 =
∑

MLMS

|LSMLMS〉〈LSMLMS |LSJM〉; (3.52)

since the |LSMLMS〉 vectors have the correct normalization and antisym-
metry property the result is automatically normalized. For example, let us
calculate |d2 3P0〉. The relevant Clebsh-Gordan Table is the one for summing
an angular momentum 1 to angular momentum J1;

J m2 = 1 m2 = 0 m2 = −1

J1 + 1
√

(J1+m)(J1+m+1)
(2J1+1)(2J1+2)

√
(J1−m+1)(J1+m+1)

(2J1+1)(J1+1)

√
(J1−m)(J1−m+1)
(2J1+1)(2J1+2)

J1

√
(J1+m)(J1−m+1)

2J1(J1+1)
m√

J1(J1+1)

√
(J1−m)(J1+m+1)

2J1(2J1+1)

J1 − 1
√

(J1−m)(J1−m+1)
2J1(2J1+1)

√
(J1−m)(J1+m)

J1(2J1+1)

√
(J1+m+1)(J1+m)

2J1(2J1+1)

We identify the momenta as follows: L → J1, S → J2,MS → m2. Since we
want J = 0 we use the last line, yielding 1√

3
,− 1√

3
, 1√

3
. So,

|d2 3P0〉 =
1√
3
{|3PML = 1,MS = −1〉

−|3PML = 0,MS = 0〉+ |3PML = −1,MS = 1.〉} (3.53)
3Even in the full Dirac theory the L of the large component can be used to label

the (4-component) spinor although L fails to commute with Dirac’s Hamiltonian.
4developing L2 = (

∑N

k
Lk)2 one obtains squares of angular momenta that com-

mute with the components and cross products that do not; similar considerations
apply to the spin operators.



46 3 Atomic Shells and Multiplets

If one substitutes the determinantal expansion derived in Problem 3.4 the
result

|d2 3P0〉 =
1√
30
{2|1+,−2+| −

√
6|0+,−1+| − 2|2+,−2−|

−2|2−,−2+|+ |1+1−|+ |1−1+|+ 2|2−,−1−| −
√

6|1−, 0−|} (3.54)

is no eigenstate of ML,MS but is eigenstate of J,MJ . The interaction H ′
C is

diagonal in both the LSMLMS and the LSJMJ basis, and both fall within
the L-S or Russell-Saunders scheme . However, LSJMJ remains a suitable
basis even in the presence of the spin-orbit interaction.

3.6.1 Hund’s Second Rule

The ground level can be found by the Second Hund’s rule, also empirical:

The level with the lowest J is lowest if the
shell is less than half filled. The level with
the highest J is lowest if the shell is more
than half filled. There is no spitting (in first
order) for half filled shells.

For the C atom the ground state has J = 0, as shown in Figure 3.1.

3.6.2 J-J Coupling

The J-J approximation is opposite to L-S coupling: one neglects the Coulomb
interaction HC . This scheme is preferable for large Z and for excited states
involving diffuse wave functions. The Hamiltonian reads

H0 =
∑

i

[
p2

i

2m
+ V (ri) + ξLi · Si] (3.55)

The one-electron eigen-spinors are proportional to the generalized spherical
harmonics |L, J,MJ〉. These are obtained combining the spherical harmonics
Y L

m and the spin states α and β with the Clebsh-Gordan coefficients. By the
angular momentum rules one can combine the Slater determinants that we
can form with these spinors to get total J eigenfunctions.

3.6.3 Intermediate Coupling

In intermediate coupling one treats exactly both H ′
C and H ′

rel. This is nec-
essary e.g. for the valence states of heavy atoms where both interactions are
important. With the 1-body eigenspinors of (3.55)one can form Slater deter-
minants |uj1m1uj2m2 · · · | that have MJ quantum number; in general different
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J values can be mixed. In the basis of such determinants the H ′
C + H ′

rel

matrix is computed and diagonalized; the eigenvectors can be labeled with J
and energy eigenvalues areMJ independent. Alternatively, one can start with
the determinantal wave functions |uL1mL1mS1uL2mL2mS2 · · · | and compute the
H ′

rel, then perform the unitary transformation to the |LSJM〉 basis where
H ′

C is already diagonal (its diagonal matrix elements depend only on L and S).
We exemplify the latter procedure in the case of the d2 configuration; L = 2
for both electrons and we denote the determinants as |mσ

1 ,m
σ′
2 |; for example,

|1+,−2+| has two spin-up electrons with m = 1 and m = −2, respectively. .
To calculate the matrix of H ′

rel = ζ [L1 · S1 + L2 · S2] , where ζ is the spin-
orbit parameter, one uses the expansion Li ·Si = LizSiz + 1

2{L
+
i S

−
i +L−

i S
+
i };

we know how to act on the |mσ
1 ,m

σ′
2 | determinants, using Equation (6.1.1).

So,

∑
i

[Li·Si]|1+,−2+| = {(1×1
2
+(−2)×1

2
)|1+,−2+|+1

2
[2|2−,−2+|+2|1,−1−|]},

(3.56)
and so on. We can calculate the effect of the spin-orbit Hamiltonian on the
|LSJMJ〉 basis. Using the results of the problems above,

HSO|d2 3P0〉 =
−ζ√
30

[−2|1+,−2+|+ 8|2−,−2+|+
√

6|0+,−1+| − 7|1−,−1+| − 6|0+, 0−| − 4|2+,−2−|
−2|2−,−1−|+ 5|1+,−1−|+

√
6|1−, 0−|] (3.57)

Hence,
〈d2 3P0|HSO|d2 3P0〉 = −ζ. (3.58)

Besides, since

|d2 1S0〉 =
−1√

5
[|2+,−2−| − |2−,−2+| − |1+,−1−|+ |1−,−1+|+ |0+, 0−|],

(3.59)
〈d2 1S0|HSO|d2 3P0〉 = −ζ

√
6. (3.60)

In this way the full HSO matrix can be built; it is a block matrix since
there is no coupling of different J. Letting ζ = 2α, one finds the following
Hamiltonians.
For J=3 there is only 3F3 with energy −α. For J=1 there is only 3P1, also

with energy −α. For J=4 there is the basis 1G4,
3 F4, and H =

(
0 2α
2α 3α

)
. For

J=2, there is the basis 3F2, 1D2 and 3P2 and H = α

⎛
⎜⎜⎜⎝
−4 −4

√
3
5 0

−4
√

3
5 0

√
42
5

0
√

42
5 1

⎞
⎟⎟⎟⎠ .
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Finally, if J=0 on the 3P0,
1 S0 basis, H = −2α

(
1
√

6√
6 0

)
. The degeneracy

is reduced according to the simple pattern 1S →1 S0,
3P →3 P0,

3 P1,
3 P2,

1D →1 D2,
3F →3 F2,

3 F3,
3 F4,1G →1 G0. More quantum numbers are

needed with more than 2 equivalent electrons, as discussed in Chapter 9.9.

3.7 Meitner-Auger Effect and Spectroscopy

An important spectroscopy is based on the Auger Effect. Actually, this effect
was first reported in 1923 in Zeitschrift für Physik by the Austrian Physicist
Lise Meitner (1878-1968), whose great contributions to physics tended to
be forgotten on the grounds that she was a lady, was of Jewish origin and
lived in the pre-war Germany. In 1925, the great French physicist Pierre
Auger (1899-1993) independently discovered the effect while investigating in
a bubble chamber the emission of an electron from an atom that absorbs a X-
ray photon, that is, photoemission. The photoelectrons have kinetic energy
Ek = hν − EB, where EB(α) is one of the binding energies of the atom
inner levels. However the Auger electrons have ν-indepedent energies given
approximately by the empirical Auger law

EA(αβγ) ≈ EB(α)− EB(β)− EB(γ) (3.61)

as a combination of 3 binding energies. Thus, EA(αβγ) is characteristic of the
atomic species and is related to 3 atomic levels. This suggested that X-rays
of adequate energy produce a primary hole in the state a of binding energy
of EB(α) and a photoelectron; since the ion with a core hole is unstable, the
primary holes is filled up by an electron in a less bound level β, and the energy
gained in the process is taken by an electron in level γ, than is emitted as
the Auger electron.5 For particular transition to happen, it is necessary that
the primary hole is deep enough (its binding energy must exceed the sum of
those of b and c). Of course, energy conservation is compatible with both the
processes a) and b) in Figure 3.2. The Auger transitions are denoted by the
spectroscopic symbols of the shells (or, more precisely, sub-shells) involved:
thus a KL1M2transition is due to a primary hole in the K shell that decays
leaving in the final state L1 and M2 holes and an Auger electron. One speaks
about Core-Core-Core, Core-valence-valence, etc.,transitions depending on
the levels that are involved.

The Auger effect is caused by the Coulomb interaction: two electrons of
the system collide and while one fills up the primary hole, the other is shot
out as the Auger electron. Wentzel already in 1927 proposed a theory of the
Auger effect based on the independent electron model[204]. In the final state,
the atom has two holes in the spin-orbitals β and γ. In the initial state, one

5The present two-step description is not completely right, but the one-step one
is more involved and is presented in Sect. 6.4.1.
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α

β

γ

a)

α

β

γ

b)

Fig. 3.2. The αβγ Auger process. The primary hole α is filled by either the β or
the γ electron while the other one is emitted as the Auger electron.

hole was in the deep level α; the other was in the free particle spin-orbital
k that will be occupied by the Auger electron in the final state. In this way,
the Auger process becomes a collision between two holes. The initial state
|Φi〉 and the final state |Φf 〉 of the atom are represented by 2 × 2 Slater
determinants; they have the same energy and are coupled by the Coulomb
interaction. The transition probability is given by the Fermi golden rule

Pif =
2π
h̄
〈Φi|HC |Φf 〉|2, (3.62)

where HC is the Coulomb interaction. A deep hole can decay X or Auger.
The final-state holes have same the two ways to decay, until a stable ion is
formed, in which all the holes are in the most external levels. X decay is
faster when the involved levels are distant in energy, because of the ν3 factor
in the transition probability due to the density of photon final states. On
the other hand, the Auger decay prevails if the states a, b and c are near
in energy, as the Auger matrix element is particularly large when the spin-
orbitals have similar sizes. For this reason, the Auger effect is the dominant
decay mechanism for inner shell holes of light atoms, while in heavy ones X
decay is much more likely.

An alternative mechanism that could take from |Φi〉 to the final state
|Φf 〉 comes to mind. One of electrons in the upper states β, γ could fill up
the deep hole via a normal radiative process, emitting a X-ray photon; this
photon could then cause the photoemission of the other electron. Would’nt
the final state be the same? Indeed, this alternative process does exist, and
has the name of internal photoemission; unlike the Auger effect, it obeys to
optical selection rules; e.g. it cannot cause a KL1L1 transition that instead
is observed and is about as probable as any other allowed transition (see
Sect. 3.7.1 for the Auger selection rules). The transition probability of the
internal photoemission can be calculated by perturbation theory, but since
it is a second-order process it turns out to be quite small compared to the
Auger effect.
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The Auger spectrum is plot of the current versus the kinetic energy of elec-
trons. The Auger instruments used to measure the spectra of molecules and
solid surfaces keep the sample, the source and the electron detector-analyzer
in vacuum. The exciting source can be an electron gun or a X-ray source, like
in the ESCA (Electron Spectroscopy for Chemical Analysis) machines. When
the sample is a solid surface, in order to limit the problem of the contami-
nation from residual gases one needs the ultra-high vacuum. The mean free
path of electrons in a solid depends on their energy, but for the transitions
that are observed commonly it is just several Angstroms; the technique is
sensitive to the surface. The peaks of the spectrum are characteristic of the
atomic species, and the Auger technique lends itself to the surface chemical
analysis using a tiny amount of material in a non-destructive way. With scan-
ning techniques, magnified images of the surface can be obtained in which
the distribution of elements is visualized .

Actually, the atoms that belong to molecules and solids have transition
energies somewhat different from free atoms, and a detailed analysis of these
chemical shifts supplies further information. This can be done using Core-
Core-Core features, but much more can be learned from the study of the
shapes of Core-Valence-Valence Auger lines, since the external shells are the
most sensitive to the chemical bonds. The analysis of the Auger line shapes
is currently an interesting research topic (see also Chapters 6.4,6.2 12.3. ).

The original Auger formula yields the transition energies with an error
that can be relatively small, but is typically of the order of some tens of eV.
Such an error is very large compared to the precision with which routine
measurements can be done in a modern apparatus. The main problem is that
in the final state there are two holes, and is necessary to account for their
repulsion; the hole-hole interaction shifts the peaks of the spectrum to lower
kinetic energy and splits them into multiplets. Moreover, every diagrammatic
transition (that is, a line which is predicted from the previous arguments)
has in reality various satellites, that correspond to excites states of the final
ion. The Wentzel theory is based on a number of assumptions that limit its
validity; it neglects the correlation effects and Relativity. The detailed theory
of the Auger spectra is necessarily involved, even in the case of free atoms.
Nevertheless, the Auger spectroscopy is one of the most important and direct
methods for the study of the correlation effects in molecules and solids.

3.7.1 Auger Selection Rules and Line Intensities

Selection rules arise in the two-step model from the conservation of J2, Jz

and parity between the initial, core-hole state |Φi〉 and the final state |Φf 〉
including the Auger electron. In the L-S approximation, L2, Lz and S2, Sz are
also conserved, while in the jj scheme, the states are labeled by the j quantum
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M4N4,5N4,5M5N4,5N4,5M5N4,5N4,5

1S0

1G4 +1 D2

3P0,1

3P2

3F2,3

3F4 +1 S0

1G4 +1 D2

3P0,1

Kinetic energy (eV)
360 365 370

Fig. 3.3. Sketch of the M5N4,5N4,5 and M4N4,5N4,5 spectrum of Cd vapor, in
arbitrary units, from measurements by H. Aksela and S. Aksela (Ref. [161]). Many
of the multiplet terms are well resolved. The assignements were done by intermrdiate
coupling calculations of line positions and intensities.

numbers of both holes. Remarkably, the predicted number of lines 6depends
on the scheme used for |Φf 〉: consider for example the KLL transitions. In
the pure jj scheme one would predict 6 transitions, namely, KL1L1,KL1L2,
KL1L3,KL2L2,KL2L3, and KL3L3. In the LS scheme, the 2s02p6 configu-
ration yields a 1S term, 2s12p5 gives 1P and 3P ; from 2s22p4 the coupling of
angular momenta and the Pauli principle would allow 1S,3 P and 1D. How-
ever, 2s22p4 3P is forbidden by parity conservation; indeed, the primary hole
has L=0 and is even, 2s22p4 3P has L=1 and is even, and by L conservation
the Auger electron must be in a p state, which is odd. The transition to
the odd 2s12p5 3P final state is allowed, and one predicts 7 lines. When the
spin-orbit interaction is introduced, in intermediate coupling the forbidden
final-state splits 2s22p4 3P →3 P2,

3P1,
3P0; then, 3P2 mixes with 1D2 and

3P0 mixes with 1S0 from the same 2s22p4 configuration. Thus, 2s22p4 3P2

and 2s22p4 3P0 become more and more allowed as Z grows. Instead, 3P1 re-
mains purely P and forbidden (as long as one can neglect the mixing with
higher configurations). Thus, the number of lines grows to 9.

6If there are open valence shells, each two-hole final state becomes a multiplet
when valence and core-hole angular momenta are recoupled; to a first approximation
we can often neglect such complications since usually the splitting is small.
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In the non-relativistic limit the Auger intensities are computed by evaluat-
ing the matrix elements of HC with Pauli spinors; as a simple approximation,
Coulomb waves are used for the Auger electron states (since the Auger elec-
tron leaves a doubly charged ion behind) and Hartree-Fock orbitals for the
discrete levels. However, configuration mixing is important. For instance, in
computing KLL spectra, the mixing of 2s22p4 1S0 and 2s02p6 1S0 has an
important effect on the wave functions and hence on the intensities. The cal-
culation simplifies if one can approximate |Φi〉 and |Φf 〉 as two-hole states,
and this is often useful (for instance, in noble gas and in transition metal
spectra). One then often uses as a further simplification the mixed coupling
scheme which consists in treating |Φi〉 in the jj coupling scheme but |Φf 〉 in
the LS one. This is useful for core-valence-valence spectra in a wide range of
Z, when the spin-orbit interaction is small for valence holes but is important
for deep states. For quantitative work, we need (particularly for intermediate
and high Z) the relativistic theory with the Breit interaction

WB(1, 2) =
e2

r12
exp[ikr12][1−α(1) ·α(2)], k =

ω

c
(3.63)

where α is Dirac’s velocity and h̄ω is the energy difference between the scat-
tering states (namely, the deep hole and Auger electron states). Codes are
now available; GRASP[158] (General-purpose Relativistic Atomic Structure
Program) computes Dirac-Fock orbitals, takes linear combinations of deter-
minants with the correct J2.Jz, parity and seniority number labels; further
it takes linear combinations of such states, thus doing a partial configuration
mixing, and includes corrections like the effects of nuclear size and the main
QED corrections.

Problems

3.1. Find how the ground configuration of N is resolved into L-S terms.

3.2. Find how the ground configuration of Ti is resolved into L-S terms.

3.3. For the configuration d2 obtain |3PML = 0,MS = 0〉 as a combination
of determinants |m±

L1
,m±

L2
| of one-electron wave functions, using the Clebsh-

Gordan coefficients.

Note that using 〈JMJ ±1|J±|JMJ〉 = h̄
√
J(J + 1)−MJ(MJ ± 1) one finds

for d states

L+|2〉 = 0 L−|2〉 = 2|1〉
L+|1〉 = 2|2〉 L−|1〉 =

√
6|0〉

L+|0〉 =
√

6|1〉 L−|0〉 =
√

6| − 1〉
L+| − 1〉 =

√
6|0〉 L−| − 1〉 = 2| − 2〉

L+| − 2〉 = 2| − 1〉 L−| − 2〉 = 0

(3.64)
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3.4. For the configuration d2 show how to obtain |3PML,MS〉 for the other
values ofML,MS using the results of the previous problem, the shift operators
and (6.1.1). Write down all the 9 states.

3.5. Using the results of the previous problem for |3PML = 0,MS = 1〉 in
the configuration d2 verify explicitly that it is really 3P with the specified
quantum numbers.



4 Green’s Functions as Thought Experiments

4.1 Green’s Theorem for one-Body Problems

Green’s theorem∫
V

(
Φ∇2Ψ − Ψ∇2Φ

)
d3x =

∫
S

(
Φ
−→∇Ψ − Ψ−→∇Φ

)
· −→n dS (4.1)

(where −→n is the outgoing normal to the surface S bounding the volume V )
is obtained from the divergence theorem∫

V

div
−→
Ad3x =

∫
S

−→
A · −→n dS, (4.2)

with −→A = Φ
−→∇Ψ − Ψ−→∇Φ. Consider the one-particle Schrödinger equation

(−1
2
∇2−→r + V (−→r )− ε)ψ(−→r ) = 0 (4.3)

defined in some volume V with some boundary conditions; it is often con-
venient to change it into an integral equation by a method which is familiar
from classical physics. One introduces a Green’s function satisfying

(−1
2
∇2−→r + V (−→r )− ε)G(−→r ′,−→r ) = δ(−→r −−→r ′), (4.4)

multiplies (4.3) by G(−→r ′,−→r ) , (4.4) by ψ(−→r ) and subtracts; the result is
(exchanging −→r with −→r ′)

ψ(−→r ) =
1
2

∫
V

d3−→r ′
[
G(−→r ,−→r′ )∇2−→r ′ψ(−→r ′)− ψ(−→r ′)∇2−→r ′G(−→r ,−→r′ )

]
. (4.5)

The V integral can be changed to a surface integral by Equation (4.1).

4.2 How Many-Body Green’s Functions Arise

4.2.1 Correlation Functions

In terms of the Schrödinger picture, the Heisenberg representation (Section
2.2.1) corresponds to evolving the state from t0 to time t, applying the op-
erator and then evolving back to t0. This appears insane but it is not so.
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Consider for instance a measurement of the light absorption from a system
of Hamiltonian H = H0 + V , where H0 is the kinetic energy and V is the
electron-electron interaction which is a large perturbation and makes the
problem difficult. However, the transitions are due to the time dependent,
further perturbation H ′eiωt driven by the oscillating field. If H ′ is weak we
can calculate the absorption cross section σ(ω) from an initial state |i〉 by the
Fermi golden rule, introducing a complete set of final states {|f〉}. In obvious
notation,

P =
∑

f Pi→f =
∑

f
2π
h̄ |〈f |H ′|i〉|2δ(Ei + ω − Ef )

= 2π
h̄

∑
f 〈i|H ′|f〉δ(Ei + ω − Ef )〈f |H ′|i〉

= 2π
h̄

∑
f 〈i|H ′δ(Ei + ω −H)|f〉〈f |H ′|i〉

= 2π
h̄ 〈i|H ′δ(Ei + ω −H)H ′|i〉 ≡ σ(ω).

(4.6)

Transforming from frequency to time,

σ(t) =
∫
dω

2π
e−iωtσ(ω) = 〈i|H ′e−i(H−Ei)tH ′|i〉

= 〈i|eiHtH ′e−iHtH ′|i〉 = 〈i|H ′
H(t)H ′

H(0)|i〉. (4.7)

This σ(t) is a correlation function and is written as an average over |i〉 of a
product of Heisenberg operators. It may appear that there is little to gain in
this approach, since |i〉 is an interacting many-body state that can be quite
hard or impossible to calculate. Here is the real breakthrough:

The calculation of many-body states can be completely
avoided! There are powerful methods for expanding the corre-
lation functions, or better, their combinations which are called
the Green’s functions.

In the optical absorption case, the perturbation is a one-body operator,
H ′ =

∑
mnMmna

†
man and the cross section can be expressed in terms of the

matrix elements Mmn and of a correlation function

γph(t) = 〈i|a†p(t)aq(t)a†r(0)as(0)|i〉. (4.8)

γph(t) is a particle-hole correlation function and tells us about a thought
experiment: a particle-hole pair ( created in the interacting ground state by
the absorption of a photon) is propagated to time t and then destroyed, and
we want the amplitude that the system returns in the ground state. We shall
discuss photoemission spectra in terms of one-hole correlation functions. In
dealing with Auger spectroscopy we shall have to do in Section 6.2 with 2-hole
correlation functions like

γhh(t) = 〈i|a†p(t)a†q(t)ar(0)as(0)|i〉; (4.9)

we shall also need more complicated operator averages, e.g. in Sect. 6.4.1 .
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4.2.2 Quantum Green’s Functions

It is natural to start assuming for simplicity that the initial state |i〉 = |Ψ0〉 is
the ground state of H . Temperature effects are postponed until Section 4.2.4.
Thus, the initial state averages are understood to be taken over the ground
state |Ψ0〉, and summarizing we shall write:

T=0 rule: 〈Ô〉 = 〈Ψ0|Ô|Ψ0〉, with H |Ψ0〉 = E0|Ψ0〉. (4.10)

Along with γph(t) = 〈a †
p(t)aq(t)a †

r(0)as(0)〉 and γhh(t) = 〈a †
p(t)a

†
q(t)ar(0)as(0)〉

we shall need more complicated objects; however, simpler objects are also ex-
tremely useful. Let us start with the one-body ones. Such are the so called
lesser and greater Green’s functions (ground state averages)

g<
i,j(t, t

′) =
〈
Ψ †

i (t′) Ψj (t)〉 (4.11)

g>
i,j(t, t

′) = 〈 Ψj (t)Ψ †
i (t′)
〉

(4.12)

One is obtained from the other by exchanging the operators, and in equilib-
rium g< informs us about the filled states, while g> knows about the empty
ones. From these, we can build retarded and advanced Green’s functions; now
what matters is the order of times:

igr
i,j(t, t

′) = (g<
i,j(t, t

′) + g>
i,j(t, t

′))θ(t− t′)
=< [Ψj(t′),Ψ

†
i (t)]+>θ(t− t′)

(4.13)

while
−iga

i,j(t, t
′) = (g<

i,j(t, t
′) + g>

i,j(t, t
′))θ(t′ − t). (4.14)

The two are related by g(r)
i,j (t, t′)∗ = g

(a)
j,i (t′, t). How do they depend on

|Ψ0〉? In no way! Averaging on the vacuum, g< = 0 and

i gr
i,j(t, t

′) =
〈
Φvac|cj(t)c†i (t′) |Φvac

〉
θ (t− t′) (4.15)

and since H acting on the vacuum yields 0, we obtain

i gr
i,j(t, t

′) =
〈
Φvac|cje−iH(t−t′)c†i|Φvac

〉
θ (t− t′) , (4.16)

which shows that g(r) is actually a function of t − t′; so we can drop t′ and
write simply

i g
(r)
i,j (t) =

〈
Φvac|cje−iHtc†i|Φvac

〉
θ (t) .

The Fourier transform yields:

i g
(r)
i,j (z) =

〈
Φvac|cj

∫ ∞

0

e−iHt+iztdt c†i |Φvac

〉

=
〈
Φvac|cj

i

z −H + iδ
c†i |Φvac

〉
. (4.17)
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This is a one-body problem, that can be rewritten in first quantization〈
j| i

z−H+iδ |i
〉
. Averaging on a completely filled system, g> = 0 and cre-

ation and annihilation operators are interchanged, but the result is the same
one-hole amplitude. For a partially filled system, g< brings information on
the occupied states and g> on the empty ones, but the end result is again
a one-body matrix element of i

z−H+iδ between spin-orbitals irrespective of
where the Fermi level is. Thus, g(r), g(a) can always be computed with the
average performed over the vacuum, and are a one-particle property. Both
are characterized by the fact that they do not know where is the Fermi level
(for non-interacting systems at least; in the presence of interactions they may
have some smell of a change of occupation numbers through the change in
potential it introduces).

g(r), g(a) are not suited for perturbation theory; the diagrammatic method
(Chapter 11 ) works with the time-ordered ones

ig
(T )
k,k′(t, t′) = 〈Tak(t)a†k′ (t′)〉 (4.18)

where T is Wick’s time ordering operator such that

ig
(T )
kk′ (t, t′) ≡ ig(T )(kt, k′t′) = θ(t− t′)〈ak(t)a†k′(t′)|Ψ0〉

−θ(t′ − t)〈a†k′ (t′)ak(t)〉. (4.19)

This discontinuity is needed; we shall see (Chapter 10) that it implies a source
term in their equation of motion. In field theory every scattering event is
represented as the annihilation of the ingoing particle and the creation of
the outgoing one: here is where the source is necessary. In real space the
time-ordered Green’s function is

g
(T )
σσ′ (xt,x′t′) = −i〈T [ψσ(x, t)ψ†

σ′(x′t′)]〉 (4.20)

with the operators in the Heisenberg picture (the spin indices are often omit-
ted when they are not needed).

4.2.3 Quantum Averages

The average of one-body densities f̂(x) =
∑

σσ′ fσσ′(x)ψ†
σ(x)ψσ′ (x) is

〈f〉 = −i lim
t′→t+

lim
x′→x

∑
σσ′

fσσ′(x)g(T )
σσ′ (xt, x′t′). (4.21)

The number density of spin σ at −→x at time t is given by

ρσ(−→x , t) = −i lim
t′→t+0

lim−→x ′→−→x
g(T )

σσ (xt,x′t′); (4.22)

the current operator is
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ĵ(x) =
e

2m
[px′δ(x− x′) + δ(x− x′)px′ ] (4.23)

and its expectation value is given by

Jσ(−→x , t) = − 1
2m

lim
t′→t+0

lim−→x ′→−→x
(∇−→x −∇−→x ′)g(T )

σσ (xt,x′t′). (4.24)

The average of one-body operators Â =
∑

σσ′
∫
dxaσσ′ (x)ψ†

σ(x)ψσ′ (x) is

〈Â〉 = ±i lim
t′→t+

lim
x′→x

∫
dx
∑
σσ′

aσσ′ (x)g(T )
σσ′ (xt, x′t′), (4.25)

upper sign for Bosons. This may be thought of as a trace over space and spin
variables:

〈Â〉 = ±i lim
t′→t+

lim
x′→x

Tr
[
aσσ′ (x)g(T )

σσ′ (xt, x′t′)
]
. (4.26)

4.2.4 Green’s functions at Finite Temperature

We recall from Section (2.2.2) that

Finite T rule: 〈Â〉 = TrρÂ. (4.27)

The ground state average g(T )
σσ′(xt, x′t′) of Equation (4.20) must be replaced

by a thermal average,

g(T )
σσ′ (xt, x′t′) =

−i
Z
TrρT [ψσ(x, t)ψ†

σ′ (x′, t′)], Z = Trρ; (4.28)

this is the time-ordered finite temperature propagator . When g(T ) is used in
(4.26), all temperature effects are included. It is stated in some books that
g(T ) does not posses a diagrammatic expansion, but in fact it can be obtained
by the methods in Chapter 13 and corresponds to the contour of Figure 2.2
b).

For time-independent problems the temperature Green’s function G(T )

defined along the vertical track of the contour of Figure 2.2 a) offers the
same information most directly:

G(T )σσ′(xτ, x′τ ′) = −〈T [ψσ(x, τ)ψ†
σ′ (x′, τ ′)]〉

= −Tr{ρT [ψσ(x, τ)ψ†
σ′ (x′, τ ′)]} (4.29)

where field operators are in the temperature Heisenberg representation (2.27),
T is the Wick operator that orders along the track. The thermal average (4.27)
means 〈Â〉 =

∫
dxTra(x)ρψ†(x)ψ(x) where spin indices are understood and

traced over by Tr, and can be rewritten as
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〈Â〉 = ∓
∫
dx lim

x′→x,τ→τ ′+δ
Tr[a(x)G(T )(xτ, x′τ ′)]. (4.30)

To see that, one notes that,by the cyclic property of the trace,

Tr[aρeKτψ†(x)ψ(x)e−Kτ ] =
∑
σσ′

∫
dxaσσ′ (x)Tr[e−KτρeKτψ†(x)ψ(x)];

e−Kτ commutes with ρ = e−βK

Z and
∑

σσ′
∫
dxaσσ′ (x)Tr[ρψ†(x)ψ(x)] =

TrρÂ. In this way the common value of τ and τ ′ disappears from the cal-
culation of the observables and the behavior of G for τ far from τ ′ has no
physical meaning. G(T )σσ′(xτ, x′τ ′) is periodic:

G(T )σσ′(xτ, x′τ ′) = ±G(T )σσ′(xτ, x′τ ′ + β), τ > τ ′

G(T )σσ′(xτ, x′τ ′) = ±G(T )σσ′(xτ + β, x′τ ′), τ < τ ′
(4.31)

(upper sign for bosons). Indeed, let τ > τ ′; then −Z G(T )σσ′(xτ, x′τ ′) is given
by Tr{e−βKψσ(x, τ)ψ†

σ′ (x′, τ ′)}; using the cyclic property of trace this may
be transformed to read

Tr{ψ†
σ′(x′, τ ′)e−βKψσ(x, τ)} = Tr{e−βKe+βKψ†

σ′(x′, τ ′)e−βKψσ(x, τ)}.

Thus, we got ψ†
σ′(x′, τ ′ +β), standing on the left of ψ, in agreement with the

fact that τ ′ + β > τ, but this implies a sign change for Fermions, a - sign
comes from the definition of G(T ) and the first line results; the second follows
in a similar way.
G(T ) is useful only in time-independent problems; then it is actually

G(T )σσ′(x, x′, τ − τ ′). According to the above discussion it is a function of
one τ variable defined in (−β, β) which can be extended to the neighboring
intervals like a periodic (antiperiodic) function for Bose (Fermi) systems. For
all practical considerations, we may extend G(T ) in this way to the real axis,
since this has no physical implications but allows to write the Fourier series

G(T )σσ′(x, x′, τ) =
1
β

∞∑
n=−∞

G(T )σσ′(x, x′, ωn)e−iωnt, (4.32)

with the Matsubara frequencies

ωn =
πn

β
, (4.33)

and

G(T )σσ′(x, x′, ωn) =
1
2

∫ β

−β

dτeiωnτGσσ′(x, x′, τ). (4.34)

For Fermi (Bose) system, G(T ) is odd (even) and G(T )σσ′(x, x′, ωn) 
= 0 for
odd (even) n.
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4.3 Non-interacting Propagators for Solids

Non-relativistic Electrons

Consider the non-interacting electron system with HamiltonianH0 = − 1
2∇2−→r +

V (−→r ), such that H0ψk(x) = εkψk(x); in second-quantized form, H0 =∑
k εknk; in the Heisenberg picture, setting h̄ = 1, the annihilation operator

for spin-orbital a evolves with

ca(t) = eiH0tcae
−iH0t.

From the equation of motion ċa = i[H0, ca]−, since [nk, ck′ ]− = −δkk′ck, one
obtains for energy eigenstates ċk = −iεkck and so

ck(t) = cke
−iεkt. (4.35)

The propagator is defined by

iga,b(t2, t1) ≡ iga,b(t2 − t1) = 〈T [ca(t2)c
†
b(t1)]〉, (4.36)

where the average is taken over the ground state. For an empty (totally
full) system, this reduces to the retarded (advanced) Green’s function, but
otherwise ga,b propagates both electrons and holes; for t1 < t2 an electron
is added at t1, propagates forwards in time and is annihilated at t2 , for
t1 > t2 a hole is introduced, propagates backwards and is annihilated. Using
b†n =

∑
k

a†k < ak|bn > (Equation 1.51) one readily finds that

ga,b(t) =
∑

k

〈a|k〉〈k|b〉gk,k(t) (4.37)

where gk,k′(t) = δkk′gk(t) and

igk(t) = e−iεkt{θ(t)[1− nk]− θ(−t)nk} (4.38)

where nk is the occupation number. The propagator evolves with the same
phase factor as the wave functions but has a discontinuity at t = 0 and
satisfies the equation of motion

i
∂

∂t
gk,k′(t) = εkgk,k′ (t) + δk,k′δ(t). (4.39)

This useful result is due to the definition of T . The Fourier component at
frequency ω is found by the frequently used integrals

∫∞
0 ei(ω+x)tdt = i

ω+x+iδ ,
∫ 0

−∞ ei(ω+x)tdt = −i
ω+x−iδ , δ → +0, (4.40)
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G0(k, k′,ω) ≡ δ (k, k′)G0(k,ω)=

∞∫
−∞

dtG0 (k, k′, t) eiωt =
δk,k′

ω − εk + iηk
,

(4.41)
with ηk = +δ for empty states and ηk = −δ for filled ones, and δ stands
for a positive infinitesimal. Thus one has an electron for ηk > 0 and a hole
otherwise. In the space representation the retarded Green’s function (4.17)
reads

g(r)(−→r ′,−→r , ω) =
∑

k

ψk(−→r )ψk(−→r ′)∗

ω − εk + iδ
= 〈−→r | 1

ω −H + iδ
|−→r ′〉 (4.42)

It obeys the same equation of motion as the time-ordered one, the difference
arises from the boundary conditions. Indeed, setting z = ω + iδ, using

〈−→r | 1
z −H (z −H)|−→r ′〉

= 〈−→r |−→r ′〉 = δ(−→r −−→r ′) = z〈−→r | 1
z −H |

−→r ′〉 − 〈−→r | 1
z −HH |

−→r ′〉 (4.43)

and exchanging −→r ′ with −→r one finds

(ω − (−1
2
∇2−→r + V (−→r ))g(r)(−→r ′,−→r , ω) = δ(−→r −−→r ′) (4.44)

which is like (4.39) in another representation. Comparing with (4.4) we see
that g(r) = −G.

For the temperature Green’s function (4.29) we find similar results.

G(k, τ − τ ′) = −TrρT ck(τ)c
†
k(τ ′). (4.45)

Using ck(t) = e−iεkt with the substitution it→ τ and introducing the chem-
ical potential one gets: ck(τ) = e−(εk−μ)τ ck, c

†
k(τ) = e(εk−μ)τ c†k and so

G(k, τ − τ ′) = −e−(εk−μ)(τ−τ ′){θ(τ − τ ′)Trρckc
†
k− θ(τ

′− τ)Trρc†kck}. (4.46)

Now using (2.40) and setting τ ′ = 0 for short we obtain

G(k, τ) = −e−(εk−μ)τ{θ(τ)(1 − n(k))− θ(−τ)n(k)}, (4.47)

where n(k) is the Fermi distribution (2.40). This is similar to (4.38); the
changes are: i becomes -1 (a mere convention), energies are referenced to the
chemical potential, it → τ at the exponent, the energy step functions are
smoothed according to the Fermi distribution and the Wick T now acts on
the vertical track. Next, we find the thermal Green’s function in frequency
space by (4.34) and (2.40)

G(k, ωn) =
1

iωn + μ− εk
, (4.48)

and in this case the only change (apart from using μ) is ω → −iωn.
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Non-relativistic Bosons

Consider a Bose field which obeys the harmonic wave equation

∂2

∂t2
φk (t) = −ω2

kφk (t) . (4.49)

If ωk= ck, this is just

[
∂2

∂t2
+c2k2]φk (t) = 0⇒

[
∂2

∂t2
−c2∇2

]
φ (r, t) = 0. (4.50)

In second quantization φ is dealt with like the coordinate of an oscillator of
(arbitrary) mass m=1, that is

φk (t) = h̄
ak (t) + a†k (t)√

2εk
= h̄

ak exp [−iωkt] + a†k exp [iωkt]√
2εk

(4.51)

The canonically conjugated momentum is

πk = φ̇k (4.52)

and yields the Hamiltonian

H =
∑

k

π2
k + ω2

kφ
2
k

2
=
∑

k

h̄ωk

(
a†kak+

1
2

)
. (4.53)

The propagator is defined as:

Dkk′ (t) = 〈0|P [φk (t)φk′ (0)]| 0〉 (4.54)

where ak|0〉 = 0, P is the time ordering operator (earlier times to the right
but no sign changes on permuting operators like in T .) Now I show that for
t 
= 0 the D and φ have same wave equation, but at t = 0 the source acts.
Since

〈
0|aka†k′ |0

〉
= δkk′ , obviously Dkk′ (t) = δkk′Dk (t) , where

Dk (t) =
θ (t)
〈
0|ak exp [−iωkt] a

†
k|0
〉

+ θ (−t)
〈
0|aka†k exp [iωkt]|0

〉
2ωk

. (4.55)

Therefore,

Dk (t) =
1

2ωk
{θ(t)exp[−iωkt]+θ(−t)exp[iωkt]} =

exp[−iωk | t | ]
2ωk

. (4.56)

This is continuous, however

∂
∂tDk (t) = 1

2ωk
{−iωkθ(t)exp[−iωkt] + iωkθ(−t)exp[iωkt]}

=−i
2 {θ(t)exp[−iωkt]−θ(−t)exp[iωkt]}

(4.57)
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is not, and

∂2

∂t2 Dk (t)=−i
2 { (−iωk) θ(t)e

−iωkt−iωkθ(−t)eiωkt}− i
2 {δ (t) + δ (t)}

= −ωk
2 {θ(t)e

−iωkt + θ(−t)eiωkt} − i δ (t)

that is,
∂2

∂t2
Dk (t)+ω2

kDk (t)= −i δ (t) (4.58)

Therefore,the propagator is Green’s function of the wave equation. Fourier
transforming, one finds

[−ω2+ω2
k]Dk (ω) = −i. (4.59)

However the solution is problematic, because of poles on the real axis, and
the transform of (4.56)

Dk (ω) =
∫ ∞

−∞
dt Dk (t) eiω t =

1
2ωk

⎡
⎣ ∞∫

0

dt ei(ω−ωk)t +

0∫
∞
dt ei(ω+ωk)t

⎤
⎦

does not converge. Therefore one must introduce convergence factors

Dk (ω) =
1

2ωk

⎡
⎣ ∞∫

0

dt ei(ω−ωk+i δ)t +

0∫
∞
dt ei(ω+ωk−i δ)t

⎤
⎦

=
1

2ωk

[
−1

i (ω − ωk + iδ)
+

1
i (ω + ωk − iδ)

]

=
−i
2ωk

[
−1

(ω − ωk + iδ)
+

1
(ω + ωk − iδ)

]
(4.60)

and finally

Dkk′ (ω) =
−iδkk′

−ω2+ε2k − iδ
. (4.61)

For phonons and other non-relativistic bosons commonly one defines, (under-
standing the vacuum average)

D̃k (t) = −i
〈
P
[
φ̂k (t) φ̂k (0)

]〉
(4.62)

in terms of
φ̂k (t) = ak exp [−iεkt] + a†k exp [iεkt] (4.63)

without the normalization factor 1√
2εk

in (4.51); then

iDk (t) = exp[−iωk | t | ]. (4.64)
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Relativistic Bosons, Photons

The Klein-Gordon equation(
∂2

c2∂t2
−∇2 + (

mc

h̄
)2
)
ψ = 0 (4.65)

describes a spinless relativistic paricle. Introducing the relativistic dispersion

εk=
√

(ch̄k)2 +m2c4 (4.66)

one obtains the propagator

Dk (ω) =
−i

−ω2+(ch̄k)2 +m2c4 − iδ
. (4.67)

In a 4-dimensional notation with

p =h̄(k, i
ω

c
) (4.68)

D (p) =
−i

(cp)2 +m2c4 − iδ
. (4.69)

For a massless scalar particle (if it existed) one would write

D (k, ω) = D (p) =
−i

p2 − iδ . (4.70)

For a photon, the propagator between two points x, x′ in a 4-dimensional
notation is naturally given by

Dμ,ν(x, x′) = 〈P [Aμ(x)Aν (x′)]〉, (4.71)

whereAμ = (A, iφ) are the four-vector potential components; however a gauge
transformation Aμ(x) → Aμ + ∂χ(x)

∂xμ
with arbitrary χ(x) will change the

potential and the propagator. In the Lorentz gauge such that

∂μAμ = ∇A +
1
c

∂φ

∂t
= 0, (4.72)

the wave equation is

∂μ∂μAν = −4π
c
Jν . (4.73)

thus for the free field the wave equation is(
∇2 − 1

c2
∂2

∂t2

)
Aμ = 0. (4.74)

which suggests writing



66 4 Green’s Functions as Thought Experiments

Dμ,ν(x, x′) = −iδμ,ν

∫
d4p

(2π
)4
eip(x−x′)

p2 − i0 ; (4.75)

this is evidently a Green’s function of the wave equation. Actually the Green’s
function is not unique and the gauge invariance allows to add to the r.h.s. of
(4.75) ∂2

∂xμ∂xν
f(x−x′), where f is an arbitrary function. The gauge in which

(4.75) holds as it stands is called the Feynman gauge.

4.3.1 Green’s Functions for Tight-binding Hamiltonians

The tight-binding model Hamiltonian

H = th
∑

<i,j>

c†icj , th > 0 (4.76)

is defined in terms of a d-dimensional graph or lattice; i and j stand for two
sets of d coordinates for two sites or nodes of the lattice and the notation∑
<i,j>

means that the sum is over all i and overall j that are nearest neighbors

of i. Here I consider regular linear, square and cubic lattices. Using contin-
uum normalization, and setting the lattice parameter to 1, the Bloch energy
eigenfunctions are

|k〉 = 1√
2π

∑
i

eik·i|i〉. (4.77)

In d dimensions, the energy egenvalues are:

εk = 2th
d∑
α

cos kα. (4.78)

The local density of states at the site at the origin is

ρd (ω) =
∑

k

|〈0 | k〉|2 δ (ω − εk) =
1

(2π)d

∫
BZ

ddk δ

(
ω − 2th

d∑
α

cos (kα)

)
.

(4.79)
where the integral extends to the Brillouin Zone. Converting the δ(ω − εk)-

function into a sum of momentum δ functions, a factor |∇kεk| appears in
the denominator. To better understand the physical meaning, differentiate[

(−→p +
−→
k )2

2m + V (−→x )
]
u−→
k

(−→x ) = εku−→k (−→x ). (Equation 8.23:)

u−→
k

(−→x )(∇k)

[
(−→p +−→k )2

2m

]
+

[
(−→p +−→k )2

2m
+ V (−→x )

]
(∇k)u−→

k
(−→x )

= (∇k)εku−→k (−→x ) + εk∇ku−→k (−→x ). (4.80)



4.3 Non-interacting Propagators for Solids 67

Multiplying by 〈u−→
k
| and recalling (8.22) one obtains

〈ψ−→
k ,λ

(−→x )| p
m
|ψ−→
k ,λ

(−→x )〉 =
1
h̄
∇kεk. (4.81)

1 Dimension

The band edges ε = ±2th are the extrema of εk = 2th cos k at k = ±π and
k = 0 and ρ = 0 if |ω| > 2th. The argument of the δ in (4.79) vanishes for
k = kω = arccos( ω

2h );

ρ1 (ω) =
1
π

π∫
0

dk
δ (k − kω)
2th sin(k)

=
1

2πth sin kω
. (4.82)

This can be rewritten

ρ1 (ω) =
θ(4t2h − ω2)
π
√

4t2h − ω2
, (4.83)

which in fact when integrated over all ω yields 1. The band-edge divergence

-2 20

0.05
0.1

ρ1(ω)

ω

Fig. 4.1. Density of states on the 1d tight-binding lattice. Note the Van Hove
singularities at the band edges .

is characteristic: it reflects the fact that at the band edges the group veloc-
ity vg = ∂ε

∂k vanishes; this, combined with the one-dimensionality, leads to
the inverse-square-root singularity. The symmetry around the band centre is
typical of bipartite graphs. These are lattices with the property that all
sites can be painted red or blue in such a way that any red (blue) site has
only blue (red) first neighbors; in the linear chain these are odd and even-
numbered sites. Changing the sign to all the blue orbitals is just a gauge
transformation and cannot change any physical quantity, yet it is equivalent
to sending the off-diagonal one-electron matrix element th to −th. However,
εk is proportional to th and must change sign as well. This can happen in
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just one way: the spectrum is symmetric and the eigenfunctions at εk and
−εk get exchanged by the gauge transformation.

The off-diagonal elements gm,n of the resolvent may be found by taking
matrix elements of the identity ω 1

ω−H = 1+ 1
ω−HH between site 0 and n 
= 0.

One finds
ω

th
g0,n = g0,n+1 + g0,n−1 (4.84)

which suggests the solution

g0,n = g0,0q
|n| (4.85)

with
q2 − ω

th
q + 1 = 0. (4.86)

Some care is needed to choose between the roots

q± =
ω

2th
±
√

(
ω

2th
)2 − 1 (4.87)

where
√

( ω
2th

)2 − 1 is imaginary for ω in the spectrum between −2th and 2th.
One has to consider the analytic continuation from real ω to complex z,with
a branch cut on the real axis ; taking

√
z =
√
|z| exp[ i

2arg(z)] with the cut
along the negative Re(z) axis,

√
(
z

2th
)2 − 1 =

⎧⎨
⎩ i
√
|( ω

2th
)2 − 1| above the axis

−i
√
|( ω

2th
)2 − 1| below

In the continuum |q±| = 1, but q± is discontinuous across the cut. With ω >
2th, we must prefer q− which is < 1 and implies an exponential attenuation
of the amplitude g with distance whereas q+ > 1 would imply that the
amplitude grows exponentially.√

( ω
2th

)− 1 > 0, ω > 2th becomes negative for ω < −2th and so |q−| ≤ 1
everywhere. Therefore, everywhere,

g0,n(ω) = g0,0(ω)q−(ω)|n|. (4.88)

2 Dimensions

Using Equations (4.79,4.82), one finds

ρ2 (ω) = 1
(2π)2

π∫
−π

dkx

π∫
−π

dky δ (ω − 2th [cos (kx) + cos (ky)]) (4.89)

that is

ρ2 (ω) =
1
2π

π∫
−π

dkρ1 (ω − 2th cos (k)). (4.90)
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This integral can be written in terms of the complete elliptic integral [44]
of the first kind. The band now extends from −4th to 4th, and is symmetric
(the graph is bipartite). Singularities become milder when integrated over,
however they are still evident (see Figure ??). The worst is the logarithmic
Van Hove singularity ( at ω = 0 the integrand of (4.90) goes like 1

|k| for k → 0.
In other terms, this is just the singularity of ρ1 in integrated form, and is a
universal feature of d=2 lattices.) In addition, ρ2 jumps discontinuously to

-4 -2 420

0.05

0.1

ρ2(ω)

ω

Fig. 4.2. Density of states on the 2d tight-binding square lattice. Note the Van
Hove singularities: jumps at the band edges and a diverging cusp a the centre.

0 at the band edges, which represents a milder singularity (in general, this
term involves a point where the function is not analytic, not necessarily a
divergence). This can again be read off (4.90): ρ2 = 0, for ω > 4, but setting
ω = (4 − ε)th the band-edge singularity of ρ1 enters again since there is an
interval near k = 0 where cos k > 1− ε/2; this interval is of order

√
ε and the

integrand there is of order 1√
ε
, so the result is nonzero up to the edge.

-6 -4 -2 6
ω

420

0.05

ρ3(ω)

0.1

Fig. 4.3. Density of states on the tight-binding cubic lattice.
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3 Dimensions

The simple cubic lattice is bipartite, hence the density of states is again
symmetric around ω = 0. We can find it by calculating

ρ3 (ω) =
1
2π

π∫
−π

dkρ2 (ω − 2th cos (k)). (4.91)

From this integral representation and from the behavior of ρ2 it is easy to
show the nature of the singularities . The band-edge singularities at ±6th
are of the square-root type, as for free particles. In addition,there are two
points where dρ3

dω is discontinuous. More details may be found in the book by
Economou[44].

4.3.2 Lippmann-Schwinger Equation

When the Hamiltonian can be decomposed in a free term and a perturbation,
H = H0 +H1, the perturbed resolvent operator function can be written in
terms of the unperturbed one via the often useful identity

1
z −H =

1
z −H0

+
1

z −H0
H1

1
z −H . (4.92)

In one-body problems this translates directly into Green’s functions. The
usual way of treating impurity problems is via the Lippmann-Schwinger equa-
tion,

G(−→r ,−→r ′) = G0(−→r ,−→r ′)−
∫
d3−→r ′′G0(−→r ,−→r ′′)δV (−→r ′′)G(−→r ′′,−→r ′) (4.93)

where δV is the perturbing potential, which is nothing but (4.92) and a special
case of the Dyson equation (see Section 11.4 below).

4.3.3 t matrix

Another form of (4.92)

1
z −H =

1
z −H0

+
1

z −HH1
1

z −H0
(4.94)

is also useful; substituting in the r.h.s. of (4.92) one obtains

1
z −H =

1
z −H0

+
1

z −H0
t

1
z −H0

, (4.95)

where the t matrix obeys

t = H1 +H1
1

z −H0
t. (4.96)

This accounts at once for all the repeated scattering from H1.
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4.3.4 Inglesfield Embedding Method

The Lippmann-Schwinger equation is less convenient when the perturbation
is extended. Typical examples are surface problems, when one wants to treat
the effects of surface creation, reconstruction, or contamination. In such cases
one can resort to slab models, but there are drawbacks in any attempt to
represent a bulk by a few atomic layers, with quantized normal momenta.
The only practical alternative is the method of embedding. By this term one
understands that 1) in an extended system, there is a more or less localized
perturbing potential. A surface S (see Figure 4.4 left) divides the perturbed
region I from the far region II where the potential is negligible. Over S the
potential is also negligible 2) solving the problem in I is easier than in the full
system; the region I might be finite, or, in the case of surfaces, it is the finite
thickness that helps 3) the extended unperturbed system could be treated
easily because it is highly symmetric 4) then one wants to solve the problem
in I in such the way that the wave functions match those of the extended
system on S.

I

S

II

dS

Fig. 4.4. Left:Embedding of region I into II; Right: a pill-box element δV between
S and its slightly inflated, dotted version.

Following J.E. Inglesfield [114] we let the wave function

Φ(−→r ) =

⎧⎨
⎩

φ(−→r ) −→r ∈ I
ψ(−→r ) −→r ∈ II

ψ(−→r ) = φ(−→r ) −→r ∈ S;
(4.97)

Φ must make the functional

E =
〈Φ|H |Φ〉
〈Φ|Φ〉 (4.98)

stationary, with

H = −1
2
∇2 + V (r). (4.99)

We write ψ in II as a functional of φ and reformulate the problem such that
the latter is the only unknown. Thus, the solution in I yields the solution
everywhere. Let us see how this is done in practice.
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〈Φ|H |Φ〉 =
∫

I

d3rφ∗(−→r )Hφ(−→r ) + ε

∫
II

d3rψ∗(−→r )ψ(−→r ) +
∫

S

ηdS (4.100)

The surface element dS contributes

ηdS =
∫

δV

δV Φ∗HΦ = −1
2

∫
δV

Φ∗∇2ΦδV

where the integral is over a pill-box of volume δV around dS (Fig. 4.4 right)
and we kept only the kinetic contribution since the potential one goes to 0
as δε→ 0; since∫

δV

Φ∗∇2Φ = φ∗
∫

δV

∇2Φ = φ∗(∇ψ · −→n outerdS +∇φ · −→n innerdS),

we are left with ∫
S

ηdS =
1
2

∫
S

φ∗(−→r )
(−→∇(φ− ψ)

)
· −→n dS. (4.101)

We wish to write everything in terms of φ, so we must eliminate −→∇ψ from
(4.101) and ψ from the normalization condition. The latter is

〈Φ|Φ〉 =
∫

I

d3−→r φ∗(−→r )φ(−→r ) +
∫

II

d3−→r ψ∗(−→r )ψ(−→r ). (4.102)

To rewrite the normalization integral over II in terms of φ only, we vary ε,
multiply the varied Schrödinger equation Hδψ = δεψ + εδψ by ψ∗ and the
complex conjugate Schrödinger equation by δψ:{

ψ∗Hδψ = δεψ∗ψ + εψ∗δψ
δψHψ∗ = εψ∗δψ.

Dividing by δε and subtracting, one gets:

ψ∗(−1
2
∇2)

∂ψ

∂ε
− ∂ψ

∂ε
(−1

2
∇2)ψ∗ = |ψ|2.

Next, integrating over II and using Green’s theorem one finds∫
II

|ψ|2d3r = −1
2

∫
S

(
∂ψ

∂ε
∇ψ∗ − ψ∗ ∂

∂ε
∇ψ
)
· −→n .dS (4.103)

Here a - sign comes from the outgoing normal from I which is the opposite
of the outgoing normal from II. To simplify matters, we vary ε in such a way
that ψ ≡ φ over S; then ∂ψ

∂ε ≡ 0 in S and we dispose the first term on the
r.h.s. The presence in (4.101,4.103) of −→∇ψ · −→n is the only difficulty left, that
now we proceed to remove. This requires a clever trick: in order to get the
gradient on the surface in terms of ψ, we first find ψ in II and on the surface
in terms of the gradient, and then invert the relation.
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Since the perturbation is localized in I, we know already from Equations
( 4.5 ,4.1) how to solve Hψ = εψ for ψ in II and for an eigenvalue ε if ψ is
assigned on S. This can be achieved using Green’s functions, and Inglesfield
uses the one satisfying

(ω − (−1
2
∇2−→r + V (−→r ))g(−→r ′,−→r , ε) = −δ(−→r −−→r ′) (4.104)

which is the negative of the retarded Green’s function satisfying (4.44).Therefore,
he finds for −→r ∈ II

ψ(−→r ) = −1
2

∫
S

[
g(−→r ,−→r′ )−→∇−→r ′ψ(−→r ′)

−ψ(−→r ′)−→∇−→r ′g(−→r ,−→r′ )
]
· −→n d2−→r ′ (4.105)

and ψ in II is a functional of the boundary values of ψ and −→∇ψ. Now we are
in position to write down −→∇ψ · −→n as another functional of the surface values
of φ. In (4.105) we choose g having zero derivative on S, which eliminates the
second term, obtaining

ψ(−→r ) = −1
2

∫
S

g(−→r ,−→r ′)−→∇ψ(−→r ′) · −→n dS (4.106)

then put −→r on S and invert the relation to read

−→∇ψ(−→r ′) · −→n = −2
∫

S

dS g−1(−→r ,−→r ′)φ(−→r ′), −→r ,−→r ′ ∈ S (4.107)

with g−1 a matrix inverse.
At this point φ is the only unknown; the numerator and the denominator

of the energy functional are written as functionals of φ and the problem can
be solved in region I. From the variational conditions Inglesfield obtained an
effective Schrödinger equation for φ. One finds (Problem 4.5) that the particle
sees the effective potential

Veff (r) = V (r) + U(r)δ(ζ); (4.108)

besides the potential V (r) this comprises an embedding surface potential
U(r)δ(ζ) where ζ is a curvilinear coordinate such that ζ = 0 on S.

The method was intended first for independent-electron problems but
lends itself to iterative self-consistent approaches like density functional the-
ory . The extension of the method to the Dirac equation has been worked
out recently by Crampin [115].

4.4 Kubo Formulae

Particle-hole Green’s functions also arise through the Kubo formulae[29] of
linear response theory. An interacting system with Hamiltonian HS is probed
with a weak time-dependent perturbation
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H ′(t) = −ÂF (t), (4.109)

where F (t) is an adiabatically switched time dependence. The total hamilto-
nian is

H = HS +H ′(t). (4.110)

We seek the linear response ΔB(t) = Trρ(t)B̂ of an observable B̂; by defi-
nition, B̂ is a difference from equilibrium and vanishes for Â = 0 ( that is,
TrρeqB̂ = 0). Similar to the familiar relation P = χE of electric field to
polarization, the linear response equation is

ΔB(t) =
∫ t

−∞
dt′φBA(t− t′)F (t′); (4.111)

the role of the polarizability χ is played by the response function φBA(t). We
need the density matrix ρ(t), which deviates a little bit from the equilibrium
one ρeq. The perturbed ρ(t) obeys the Heisenberg equation of motion

ih̄
d

dt
ρ(t) = [H(t), ρ(t)]−. (4.112)

Setting ρ(t) ∼ ρeq +Δρ(t), one finds a linearized equation

ih̄
d

dt
Δρ(t) = [HS , Δρ(t)] + F (t)[−Â, ρeq]. (4.113)

The solution is

−ih̄Δρ(t) =
∫ t

−∞
e

−i
h̄ HS(t−t′)[Â, ρeq]e

i
h̄ HS(t−t′)F (t′)dt′ (4.114)

as one can readily check by calculating the derivative. Hence

ΔB(t) =
−1
ih̄
T r

∫ t

−∞
e

−i
h̄ HS(t−t′)[Â, ρeq]e

i
h̄ HS(t−t′)B̂F (t′)dt′. (4.115)

Now we move the left exponential to the right (by the cyclic property of the
trace) thereby obtaining B̂(t− t′) in the Heisenberg picture (with HS):

ΔB(t) =
−1
ih̄
T r

∫ t

−∞
[Â, ρeq]B̂(t− t′)F (t′)dt′ (4.116)

Now for the linear response function φBA(t) of (4.111) we obtain

−ih̄φBA(t) = Tr{AρeqB̂(t)− ρeqÂB̂(t)}; (4.117)

using again the cyclic property, we can change this into a more elegant equi-
librium thermal average, namely the Kubo formula[29]
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−ih̄φBA(t) = Tr{ρeqB̂(t)Â − ρeqÂB̂(t)} = 〈[B̂(t), Â(0)]〉. (4.118)

By the identity (Problem 4.1)

[Â, e−βH ]− = e−βH

∫ β

0

dÂ(−ih̄τ)
dt

dτ, (4.119)

and Equation (4.114),

−ih̄φBA(t) = Tr{[Â(0), e−βHS ]−B̂(t)},

one finds the further Kubo formula

φBA(t) =
∫ β

0

〈dÂ(−ih̄τ)
dt

B̂(t)〉dτ. (4.120)

This formalism has many applications; for example, if the system is exposed
to an electric field, Â is proportional to the position vector components of the
electron and the time derivative is proportional to the current, B̂ is the cur-
rent and φ the conductivity tensor. For the frequency-dependent conductivity,
starting from Â(−iτ) = eHτ Âe−Hτ and using the cyclic property again, and
the fact that it is retarded, one can easily show that, up to a factor,

σi,j(ω, T ) =
∫ ∞

0

dt

∫ β

0

dτ〈ji(0)jj(t+ ih̄τ)〉eiωt. (4.121)

4.5 Vacuum Amplitudes

In stationary problems one often uses a zero-body propagator or vacuum
amplitude

R (t) = 〈UI (t) 〉0 , (4.122)

where the thermal average of the interacting picture evolution operator
UI (t) = eiH0te−iHt is taken with the non-interacting distribution function
1

Z0
Tre−βH0 . At zero temperature this becomes

R (t) = 〈Φ| UI (t) |Φ〉 = eiW0t 〈Φ| e−iHt |Φ〉 , (4.123)

where W0 is the ground state energy of H0. Note that unlike all the other
Green’s functions, here the average is taken on the non-interacting ground
state. R is related to the interacting ground state energy E0 through the
following device. Inserting a complete set of H eigenstates,

R (t) =
∑

n

|〈Φ |ψn〉|2 e−i(En−W0)t, (4.124)
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we can isolate the ground state energy from (4.124) by giving the time t an
imaginary part: t→ t− iη, η > 0. In this way, the exponent has a real part

t η (W0 − En)

which is largest for n = 0. In the long run, the ground state dominates:

R (t) = |〈Φ |ψ0〉|2 e−i(E0−W0)t, t→∞ (1 + iη) .

There is a restriction: we need

〈Φ |ψ0〉 
= 0;

therefore V should not change the ground state symmetry . Special care is
needed when Φ is degenerate. When the overlap does not vanish,

Ṙ (t) = −i (E0 −W0) |〈Φ |ψ0〉|2 e−i(E0−W0)t,

and we get the closed formula

E0 = W0 + i lim
t→∞(1−iη)

d

dt
log(R(t)). (4.125)

Since UI admits the T exp expansion (2.37), the methods of Chapter 11 will
provide a practical way to compute R.

4.6 Lehmann Representation

In non-interacting models the poles of the Green’s functions close to the real
axis correspond to eigenstates of the Hamiltonian where a particle can exist
or where one can put a particle. Here we see how to generalize this notion to
the interacting case. In this section we let h̄ = 1.

4.6.1 Zero-Temperature Fermi Case

Denote the complete set of many-body eigenstates of H by |M,n〉, where the
integer M = 0, 1, 2,∞ runs over the electron numbers and n = 0, 1, 2,∞ runs
over the M-body eigenstates, such that

H |M,n〉 = EM,n|M,n〉, N̂ |M,n〉 = M |M,n〉.

Let us write the time-ordered Green’s function as

G(N ; xt,x′t′) = −i〈N, 0|T [ψ(x, t)ψ†(x′t′)]|N, 0〉, (4.126)

emphasizing that it is the average over the N-body interacting ground state
of the Hamiltonian H and that the operators are in the Heisenberg pic-
ture. For time-independent H , setting h̄ = 1, ψ(x, t) = eiHtψ(x)e−iHt, and
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G(xt,x′t′) ≡ G(x,x′, t − t′); inserting the complete set we obtain the very
useful Lehmann representation: for t > t′,

iG(x,x′, t− t′) =
∑

n

e−i(EN+1,n−EN,0)(t−t′)

×〈N, 0|ψ(x)|N + 1, n〉〈N + 1, n|ψ†(x′)|N, 0〉, (4.127)

and the eigenstates with one more particle come into play; for t < t′,

iG(x,x′, t− t′) = −
∑

n

ei(EN−1,n−EN,0)(t−t′)

×〈N, 0|ψ†(x)|N − 1, n〉〈N − 1, n|ψ(x′)|N, 0〉, (4.128)

the N-1-particle states appear. By the standard integrals (4.40) we obtain

G(x,x′, ω) =
∑

n

〈N, 0|ψ(x)|N + 1, n〉〈N + 1, n|ψ†(x′)|N, 0〉
ω − (EN+1,n − EN,0) + iδ

+
∑
n

〈N, 0|ψ†(x)|N − 1, n〉〈N − 1, n|ψ(x′)|N, 0〉
ω − (EN,0 − EN−1,n)− iδ . (4.129)

The poles of G provide information on the excitation spectrum, namely, on
the ionization potentials and electron affinities, or in other terms, on quasi-
electron and quasi-hole excitations. Now we simplify the notation dropping
N and N ± 1. The structure of (4.129) invites us to write

G(x, x′, ω) =
∫

ρ(x, x′, ω′)
ω − ω′ + iδω′

dω′ (4.130)

where δw is an infinitesimal quantity, with

ρ(x,x′, ω) =
∑

n

〈0|ψ(x)|n〉〈n|ψ†(x′)|0〉δ(ω − (EN+1,n − EN,0))

+
∑

n

〈0|ψ†(x)|n〉〈n|ψ(x′)|0〉δ(ω − (EN−1,n − EN,0)). (4.131)

The positive spectral function ρ(x,x, ω) generalizes the density of states
(5.16): In normal systems the ionization potentials cannot be smaller than
the electron affinities and infinitesimal δw = δsgn(ω′ − μ) where μ =
Minn,n′ [E(N + 1, n)− E(N,n′)] is the chemical potential. So,

ρ(ω) = − 1
π
ImG(ω)sign(ω − μ). (4.132)

The real and imaginary parts of Green’s functions are Hilbert transform pairs.
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4.6.2 Finite Temperatures, Fermi and Bose

Let us extend the above to finite T , writings = −1 for bosons, s = 1 for
fermions. For the retarded Green’s function,

g(r)(x, x′, t− t′) = −iT r{ρ[ψ(x, t), ψ†(x′, t′)]s}, (4.133)

one finds, with K = H − μN and h̄ωnm = En − Em,

g(r)(x, x′, t− t′) =
−i
Z

∑
mn

( e−βKn〈n|ψ(x)|m〉〈m|ψ†(x′)|n〉eiωmn(t−t′)

+s e−βKn〈n|ψ†(x′)|m〉〈m|ψ(x)|n〉eiωnm(t′−t) ) θ(t− t′). (4.134)

Now,let
Rmn(x,x′) = 〈n|ψ(x)|m〉〈m|ψ†(x′)|n〉; (4.135)

exchanging m with n in the last line and Fourier transforming one readily
arrives at

g(r)(x, x′, ω) =
1
Z

∑
mn

Rmn(x,x′)
ω + ωmn + iδ

(e−βKn + se−βKm); (4.136)

with δ a positive infinitesimal; in the same way the advanced function is

g(a)(x, x′, ω) =
1
Z

∑
mn

Rmn(x,x′)
ω + ωmn − iδ

(e−βKn + se−βKm). (4.137)

The same manipulations on the time-ordered Green’s function yield

G(x,x′, ω) =
1
Z

∑
mn

Rmn(x,x′)(
e−βKn

ω + ωmn + iδ
− s e−βKm

ω + ωmn − iδ
).(4.138)

Equations (4.130,4.131) can be extended to finite T, introducing the T-
dependent spectral function

ρ(x,x′, ω) =
2π
Z

∑
m,n

e−βKnRmn(x,x′)δ(ω + ωmn)(1 + seβω) (4.139)

that allows to write down the retarded and advanced functions

g(r)(x, x′, ω) =
∫
dω′

2π
ρ(x, x′, ω′)
ω − ω′ + iδ

, (4.140)

g(a)(x, x′, ω) =
∫
dω′

2π
ρ(x, x′, ω′)
ω − ω′ − iδ ; (4.141)

the time-ordered one (4.138) may be written
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G(x, x′, ω) =
∫
dω′

2π
[
ns(ω′)ρ(x, x′, ω′)
(ω − ω′ + iδ))

−s
ρ(x, x′, ω′)n̄s(ω′)

(ω − ω′ − iδ) ] (4.142)

with n̄(ω) − 1 − ns(ω) and ns(ω) = (1 + seβω)−1 The knowledge of ρ (also
a function of T ) determines all the one-body Green’s functions. For indepen-
dent electrons, g(r) and (4.139) are purely one-body properties independent
of the Fermi level; therefore the temperature dependence of (4.139) is ne-
glected usually in Density Functional and other self-consistent calculations.
This simplification may be wrong when dealing with strongly correlated sys-
tems.

4.6.3 Fluctuation-Dissipation Theorem

The above results imply a number of relationships involving ρ and the real
and imaginary parts of the various Green’s functions. One shows (Problem
4.2)the following. Assuming that Rmn(x,x′) is real (it must be positive for
x = x′ and it can be taken real anyhow in the absence of magnetic fields)
show that

ReG(x,x′, ω) = −
∫
dω′

π

ImG(x,x′, ω)
ω − ω′ (tanh

[
βω

2

]
)−s, s = ∓. (4.143)

Historically such relations are known as Fluctuation-dissipation theorem.

Problems

4.1. Prove the identity

[Â, e−βH ]− = e−βH

∫ β

0

eτH [H,A]−e−τHdτ, (4.144)

4.2. Show that (4.143) holds.

4.3. In the continuous case of equation (4.44) determine g(x′, x, z) in 1 di-
mension

4.4. In the continuous case of equation (4.44) determine g(x′, x, z) in 3 di-
mensions

4.5. Derive the enbedding potential U(r) of Equation (4.108).



5 Hopping Electron Models: an Appetizer

5.1 Fano Resonances and Resolvents

5.1.1 Resonances

Often we treat excited levels as discrete, as they appear in low resolution
or in some simple approximation. Sooner or later, however a closer analysis
always shows that when all the degrees of freedom are considered they are
in a continuum. Thus, the 2p level of H, H(2p), is coupled to a continuum of
H(1s) + 1 photon, and thereby gains a width and a structure. The 2p state
of H is discrete only if you accept to neglect its interaction with a continuum
of photon modes that eventually take the H atom to the ground state while
producing photons. In 1952, Fermi discovered a peak in the pion-proton (π+−
p) elastic cross section for center-of-mass kinetic energies 1.2 to 1.4 GeV; since
the half width at half maximum (∼ 100 MeV) implies a lifetime τ ∼ 10−23s,
which is very short, the strong interaction was implied in the formation and
also in the decay. This was christened the doubly charged Δ++ resonance.
Such high-energy Physics contents are pertinent to this book: hundreds of
resonances are familiar by now to particle physicists, but Fermi’s concept of
resonances is important in quantum problems at all energy scales. Firing 500
eV electrons on Helium and measuring the loss spectrum, one observes[31]
an asymmetric resonance in the ionization continuum al ∼ 60 eV which has
been identified as the 2s2p1P state of He. Many more are known by now, and
they are all due to the neutral, twice excited He atoms in auto-ionizing states.
Using soft electrons (with not enough energy to produce ionizations) one sees
narrow asymmetric resonances in the elastic cross section, due to temporary
He− ions. In all cases, the transition probability is described by some operator
T , like T ∝ A·p for electromagnetic transitions or, for fast electron scattering,
T ∝ 4πe2

q2

∑
j e

−iq·rj , where rj suns over the target electron positions. However
thre are features that do not depend on T ; for instance, the asymmetric He
resonances are seen also in optical absorption.

We now develop techniques for dealing with such problems.
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5.1.2 Fano Model

Here we consider a system consisting of very unlike parts: let |k〉 stand for a
continuum of states of energy εk and |0〉, ε0 represent a localized state and its
energy. Typically, |0σ〉 might represent atomic spin-orbital and |kσ〉 a free-
particle states or Bloch states in a solid state problem from which an electron
can jump into the continuum of single-particle states |kσ〉 (free-particle states
or Bloch states in a solid state problem.) Some perturbation produces hopping
matrix elements Vk0 coupling the continuum to the discrete state. The Fano
model is

H = H0 +Hh, H0 =
∑

k∈C,σ

εk,σnk,σ +
∑

σ

ε0,σn0,σ (5.1)

while
Hh =

∑
k,σ

{Vka
†
kσa0σ + h.c.} (5.2)

The continuous spectrum of H0 corresponds to a set C of the real εk,σ axis;
C can be bound or unbound, and also it can be compact or consist of several
pieces; for simplicity I assume that the continuum is not degenerate (only one
state corresponds to εk). This assumption can be removed later by a direct
extension of the present treatment[30].

There are no interaction terms (involving 2 creation and 2 annihilation
operators)in the Fano model. In first quantization, it would be

h =
∑

k∈C,σ

εk,σ|kσ〉〈k, σ|+
∑

σ

ε0,σ|0σ〉〈0, σ|+
∑
k,σ

{Vk|kσ〉〈0σ|+ h.c.} (5.3)

and would represent 1 electron instead of representing any number of non-
interacting elements. The two problems are closely related, and, for peda-
gogical reasons, I first present the elementary one-body term and then the
many-body equation of motion approach (this is actually a one-body problem
but the equation of motion method lends itself to the many-body case.)

5.1.3 One-body Treatment

In the elementary approach one writes:{
H |0〉 = ε0 |0〉+

∑
k

V0k |k〉

H |k〉 = εk |k〉+ Vk0 |0〉 .
(5.4)

The H eigenstates are expandable on the old basis:

|λ〉 = |0〉 〈0 | λ〉+
∑

k

|k〉 〈k | λ〉. (5.5)
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Taking the scalar product with 〈λ| one obtains:

(ελ − ε0)〈λ|0〉 −
∑

k

〈λ|k〉V0k = 0 (5.6)

(ελ − εk)〈λ|k〉 − 〈λ|0〉Vk0 = 0. (5.7)

We discuss the solution below.

5.1.4 Many-Body Treatment

In the many-body case, we must still diagonalize the Hamiltonian, that is,
write it in the form

H̃ =
∑

λ

ελnλ; (5.8)

the basis change (5.5) entails new creation operators for λ states such that

a†λ = a†0〈0|λ〉+
∑

k a
†
k〈k|λ〉

aλ = a0〈λ|0〉+
∑

k ak〈λ|k〉
(5.9)

with the inverse ⎧⎪⎨
⎪⎩

ak=
∑
λ

< k|λ> aλ

a0=
∑
λ

< 0|λ> aλ

We can find the λ states by the equation of motion method. Note that

[aλ, nλ′ ]−=δ(λ,λ′)[aλ, nλ]− = δ(λ,λ′)aλa‡λaλ =

δ(λ,λ′)
{[

1− a‡λaλ

]
aλ

}
=δ(λ,λ′)aλ,

here δ is Kroneker δ if we quantize in a big box, or Dirac’s if we normalize
on a continuum. In the diagonal basis,

[aλ, H̃ ]− = ελaλ.

This corresponds to the equation of motion

i
daλ

dt
=
[
aλ, H̃

]
−

= ελaλ ⇒ aλ (t) = aλ (0) e−iελt (5.10)

Written in the old basis, using (5.9), this is

[<λ|0 > a0+
∑
k

<λ|k > ak,H]−=

ελ(<λ|0 > a0+
∑
k

<λ|k > ak)
(5.11)
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Now, [
a0, a

‡
0ak

]
−

= a0a
‡
0ak − a

‡
0aka0 = a0a

‡
0ak + a

‡
0a0ak = ak

and the required commutators read:

[a0, H ]− = ε0a0 +
∑

k

Vk0ak,

[ak, H ]− = εkak + V0ka0. (5.12)

The equality holds separately for the coefficients of a0 and of each ak,
since these are all linearly independent states. So, we find (5.6,5.7) again.
Thus, the many-body formulation yields the same system as the one-body
one, as it should always happen in non-interacting problems. The system
allows to obtain the spin-orbitals and thus build the many-electron Slater
determinants.

Now the discrete and continuous solution methods of Equations (5.6,5.7)
have quite different characters.

1-Discrete Method of Solution

Placing the system in a box, the continuous spectrum becomes discrete; one
can assume εl 
= εk and write

〈λ|k〉 = − Vk0

εk − ελ
〈λ|0〉; (5.13)

substituting into the first one gets an algebraic equation for the discrete
eigenvalues

ε0 − ελ −
∑

k

|Vk0|2
εk − ελ

= 0. (5.14)

Note that here only real quantities appear.
The Figure shows a graphical solution. y =

∑
k

|Vk0|2
εk−ελ

is plotted ver-
sus ε − ε0. For illustration, I have taken k-independent V0k coefficients and
evenly spaced, positive εk values. The roots are the ε values where the sum
crosses y = ε0 − ε. Between two unperturbed εk eigenvalues there is al-
ways one ελ; in addition, there is one root below the discretized contin-
uum. Once the roots are found, one normalizes the wave functions by writing

|〈λ|0〉|2{1+
∑

k

∣∣∣ Vk0
ελ−εk

∣∣∣2} = 1 and the problem is completely solved. This so-
lution is of little use, however, if we wish to understand what happens in the
continuum limit. By increasing the number of k, the degree of the equation
grows; a smaller and smaller interval separates a 0 from an∞ of the sum, and
more significant digits must be included to approximate the roots. This large
amount of information is not about the system, but its interaction with the
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fictitious box. This is not the way to the continuum. A brute force approach
fails because of the irrelevant complications it produces.

ε

60

ε0 -ε

∑
k

|Vk0|2
εk−ελ

Fig. 5.1. Graphical solution of Equation (5.25). The true continuum C, before
placing the system in the box, extends from ε = 0 to ε = 6; a dot marks a root
below it. Here the continuum is replaced by equally spaced roots.

2- Solution in the Continuum

At this stage the discrete and continuous methods of quantization become
different, with the latter which is much more suitable. Now the k summa-
tions must be read as integrals; now perturbed and unperturbed eigenvalues
must coincide, and we want tools to handle the problem, starting with some
definitions.

– The density of states of the system is

ρ(ω) =
∑

λ

δ(ω − ελ). (5.15)

Hence,
∫ E2

E1
dωρ(ω) is the number of states in the interval E1 < ω < E2;

it may diverge in the continuum limit, when N →∞, but we can convert
the sum to an integral with a suitable measure, like

∑
k → Ω

(2π)3

∫
d3k,

where Ω is the volume of the system. At the end all physical quantities
have a finite value when Ω →∞.
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– The local (or projected) density of states (LDOS) measures the degree of
mixing of the eigenstates at energy ω with the 0 orbital,

ρ0(ω) =
∑

λ

δ(ω − ελ)|〈0|λ〉|2. (5.16)

The unperturbed quantity is ρ(0)
0 (ω) = δ(ω− ε0). The V coupling changes

the discrete delta-like level into a virtual level; this has a width, and can
have structure. The λ set is complete, hence

∫∞
−∞ dωρ0(ω) = 1.

– The resolvent, or Green operator

G(ω) = (ω −H + iδ)−1, (5.17)

where δ stands for a positive infinitesimal, or if you like δ = +0 (intel-
ligenti pauca). This is the Fourier transform of causal1 operator G(t) =
e−iHtθ(t), and is analytical in the upper half plane.

Note that

G00(ω) ≡ 〈0|G(ω)|0〉 =
∑

λ

|〈0|λ〉|2
ω − ελ + iδ

, (5.18)

and so

ρ0(ω) = − 1
π
ImG00(ω). (5.19)

Here it is understood that
∑

λ ≡
∫
C dελ +

∑
λ∈D, where D the possible

discrete eigenvalues outside C. If 〈λ|0〉 
= 0, a pole exists just below the real
axis at ω = ελ − iδ, and the residue is |〈λ|0〉|2. In second quantization one
defines the Green’s function as the vacuum average

G00 = 〈vac|a0
1

ω −H + iδ
a†0|vac〉. (5.20)

Inserting a†0 =
∑

λ a
†
λ〈λ|0〉, one finds (5.18) again. However the second quan-

tized formulation lends itself to the many-body treatment when interactions
are included.

5.1.5 The Resolvent

We obtain all the elements of G from the identity (ω−H+ iδ)Ĝ = 1, that is,

〈0| (ω −H + iδ)Ĝ |0〉 = 〈0 | 0〉 = 1
〈k| (ω −H + iδ)Ĝ |0〉 = 〈k | 0〉 = 0
〈0| (ω −H + iδ)Ĝ |k〉 = 〈0 | k〉 = 0
〈k| (ω −H + iδ)Ĝ |k′〉 = 〈k | k′〉 = δ (k − k′) .

1i.e. proportional to θ(t)
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Setting z = ω − iδ, since Hkk′ = 0,

(ω − ε0)G00(ω)−
∑

k V0kGk0(ω) = 1
(ω − εk)Gk0(ω)− Vk0G00(ω) = 0

(ω − ε0)G0k(ω)−
∑

k′ V0k′Gk′k(ω) = 0
−Vk0G0k′ (ω) + (ω − εk)Gkk′ (ω) = δ(k, k′).

(5.21)

Now, thanks to δ, nothing diverges, and we obtain

G00 =
1

ω − ε0 −Σ(ω)
, (5.22)

where

Σ(ω) =
∑

k

|V0k|2
ω − εk + iδ

(5.23)

is the self-energy. For the other elements of the resolvent matrix see Problem
5.3.

Unlike the sum in (5.25) this is a smooth complex function of ω,
∑

k

stands for an integral;

Σ1(ω) ≡ ReΣ(ω) = P
∑

k

|Vk0|2
ω − εk

Σ2(ω) ≡ ImΣ(ω) = −π
∑

k

|Vk0|2δ(ω − εk). (5.24)

As a function of z = ω + iδ, Σ is analytic outside the real axis. If C = {a ≤
ω ≤ b}, then there is a cut just below the axis, with a and b as branch points.
Outside C, Σ2 = 0. Σ is a Herglotz function, that is, −π−1ImΣ(ω) ≥ 0; it
follows that G00(ω) is also Herglotz, which is important to ensure ρ0 ≥ 0.

We can deduce more analytic properties of G. For Hh → 0, G00 → G
(0)
00 =

1
ω−ε0+iδ has a real pole which marks the discrete eigenvalue. For Hh 
= 0,
G00(z) is analytic except for the cut along C and possible poles at the roots
of

z − ε0 = Σ(z). (5.25)

Real roots are possible outside the unperturbed continuum where Σ2 = 0. If
there are roots, equation (5.18) really means

G00(ω) =
∫
C
dελρ(ελ)

|〈0|λ〉|2
ω − ελ + iδ

+
∑
μ∈D

|〈0|λ〉|2
ω − εμ + iδ

; (5.26)

the residue at the pole εμ is the probability that a particle in |μ〉 is found in
|0〉.

Complex roots of (5.24) have ω ∈ C and Imz < 0 by causality (G(t) ∝
θ(t)); they represent resonances. If Σ were constant, ρ0 would be Lorentzian;
although this an be a poor approximation, qualitatively, Σ1 is a shift and Σ2
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a broadening; indeed, Σ2 = −Γ = constant, fot t > 0 we obtain G00(t) by
closing the integral in the lower half plane:∫ ∞

−∞

dω

2π
e−iωt

ω − ε+ iΓ
=
∮
dz

2π
e−izt

z − ε+ iΓ
= ie−iεt−Γt.

To calculate the wave functions, we use the assumption of a non-degenerate
continuum that allows to make the replacement

∑
λ

→
∫
dεlρ(ελ)

and write

ImG00 = −π
∫
dελρ(ελ) |〈0|λ〉|2δ(ω − ελ) = −πρ(ω)|〈0|λω〉|2, (5.27)

where |λω〉 is the eigenstate at energy h̄ω. Hence,

Im z

Re za b

cut

Localized
state

Resonant
state

C

Fig. 5.2. The singularities of G00(z) must be in the lower half of the complex z
plane. Outside the continua one can find poles close to the real axis at localized
states. Branch cuts correspond to the continua; a and b are branch points; poles
below the cuts yield resonant states.

|〈0|λω〉|2 =
−ImG00(ω)
πρ(ω)

=
ρ0(ω)
ρ(ω)

, (5.28)

and the wave function at site 0 is obtained (the phase is arbitrary). In a
similar way, using Fano notations, Vk0 ≡ Vω ≡ V (ω) and one obtains

Σ2(ω) = −π
∫
dερ(0)(εk)|Vk0|2δ(ω − εk) = −πρ(0)(ω)V 2(ω) = −πρ(ω)V 2(ω)

(5.29)
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where the last equality holds in the thermodynamic limit. Now we can solve
(5.7) in the sense of distributions. The most general real solution of xf(x) = C
is

f(x) = C

[
P

1
x

+ Zδ(x)
]
,

whereZ is a constant. Thus we find a family of solutions:

〈λ|k〉 = 〈λω |0〉Vk0

[
P

1
ελ − εk

+ Z(ελ)δ(εk − ελ)
]

(5.30)

Putting into (5.6) we find

Z(ω) = −πω − ε0 −Σ1(ω)
Σ2(ω)

, (5.31)

and the solution is complete.

5.1.6 Self-Energy Operator

The above Anderson method to calculate the resolvent can be cast in operator
form and is very useful in problems when it is convenient to separate the
Hilbert space in two subspaces A and B writing

H =
(
HAA HAB

HBA HBB

)
(5.32)

As in Sect. 5.1.2 take the AA matrix element of the identity (ω −H)G = 1 :

GAA =
1

ω −HAA
+

1
ω −HAA

HABGBA. (5.33)

Then we take the BA element closing the equations:

GBA =
1

ω −HBB
HBAGAA. (5.34)

Hence,

GAA =
1

ω −HAA −HAB
1

ω−HBB
HBA.

(5.35)

Thus we can work within subspace A provided that we work with an energy-
dependent effective hamiltonian

Heff (ω) = HAA +ΣAA, ΣAA = HAB
1

ω −HBB
HBA. (5.36)

ΣAA is called self-energy operator. To get the other matrix elements one
simply exchanges A and B in (5.35,5.34). If several subspaces B,C, · · · are
coupled to A but not among themselves, they yield additive contributions to
ΣAA.



90 5 Hopping Electron Models: an Appetizer

5.2 Magnetic Impurities and Chemisorption on
Transition Metal Surfaces

The Anderson model

H =
∑
kσ

εkσnkσ+
∑

σ

ε00n0σ+
∑
kσ

{Vkσc‡kσc0σ+h.c.}+ Un0↑n0↓ (5.37)

is just a Fano Hamiltonian with the addition of the innocent-looking but
far-reaching U term, which represents an oversimplified electron-electron in-
teraction. It was introduced in a fundamental paper[9] on magnetic impurities
in metals. The main question is: in what conditions will the localize state be
magnetic? The continuum tends equalize the populations n0↑, n0↓ magnetic
sub-levels in order to lower the kinetic energy, but there is a price to pay to
the local interaction.

Vacuum level

-A
φ

Fermi
level

-I

Fig. 5.3. Relative position of energy levels in Newns model (not to scale). φ is the
work function. The bending of the Vacuum level is due to the surface electric field.

Here I mainly discuss a 1969 paper by D.M. Newns[10] dealing with H
chemisorption on Cu and Ni by an Anderson model2 because important points
were made there. In his scheme, the localized atomic state |0 > is the 1s H
level with energy ε(0)0 and the continuum is due to the metal d band states
|k >, delocalized in the bulk but exponentially damped outside the metal.
The chemical bond is due to hopping matrix elements V0k aa in the Fano
model. Unlike the Anderson paper, Newns considered the implications of the
ω dependence of the self-energy Σ(ω) in detail.

U=0 limit

If U is unimportant, we expect localized states if there are real roots of
Equation (5.25). The new feature is the presence of a Fermi level. Instead of
local elements of the resolvent we now handle Green’s functions. The occupied
states are described by the one-hole Green’s function

2Chemisorption is the chemical bond between an atom (molecule) and a surface).
Now it is studied mainly by ab-initio methods, but some key concepts developed
from models remain fundamental.

d band
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G00(ω) = < Ψ|c
†

0

1
ω −H c0 |Ψ〉 , (5.38)

where |Ψ〉 is the ground state. For U = 0, |Ψ〉 is a slater determinant of
solutions |λ〉 of the Fano model, and changing the basis with c†0 =

∑
λ〈λ|0〉c

†
λ,

we find

G00(ω) =
∑

λ

fλ
|〈0 | λ〉|2

ω − ελ + iδ
; (5.39)

this is already familiar except for the appearance of the Fermi function fλ.
For the empty states, one defines the one-electron Green’s function

G00(ω) = <Ψ |c0
1

ω −H c
†
0 |Ψ〉 . (5.40)

From the Fano model we can obtain interesting quantities like the level pop-
ulation

〈n0〉 = 2
∫ EF

−∞
dωρ0(ω) (5.41)

where EF is the Fermi energy and the factor 2 is due to the spin.

Interacting Anderson Model in Mean Field Approximation

For the Hydrogen atom, the ionization potential I = 13.6eV and the electron
affinity A = 0.7eV, are so different that it is impossible to set up a sensible
model without the interaction U ∼ 〈0 ↑ 0 ↓ | e2

r12
|0 ↑ 0 ↓〉 ∼ |I − A|. A work

function (Typically φ ∼ 4.5 eV) separates the Fermi level from the Vacuum
Level (minimum energy of a free electron far from the metal); so even φ is
smaller than I −A. We need a simple calculation to orient ourselves. In the
Hartree-Fock approximation, one assumes a ground state of the determinantal
form

|Ψ〉 =
∏

ελ<EF ,εμ<EF c‡λ+c‡μ− |vac〉 .

Averaging the one-body operator

n0↑ =
∑
λ,μ

c+λ↑cμ↑ 〈λ| 0 >< 0|μ > (5.42)

on |Ψ〉 , only diagonal terms contribute and one finds

〈n0,σ〉 =
∑

λ

fλ|〈λ|0〉|2. (5.43)

Moreover, since the anti-commutation relations allow to lump all the up spin
operators on one side, it is readily seen that

〈Ψ |n0↑n0↓|Ψ〉 = 〈Ψ |n0↑|Ψ〉〈Ψ |n0↓|Ψ〉 ≡ 〈n0↑〉〈n0↓〉. (5.44)
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Thus,

E = 〈Ψ |H |Ψ〉 =
∑
λ,σ

fλ〈λ, σ|h|λ, σ〉 + U〈n0↑〉〈n0↓〉. (5.45)

where h is the one-body (Fano) part of H of (5.3). We Set up the variational
calculation of λ↑ in first quantization, treating bra and ket as independent
unknowns. We use (5.43), and vary the bra, for occupied states:

δ〈n0↑〉
δλ↑

=
δ

δλ↑
〈λ↑|0↑〉〈0↑|λ↑〉 = |0↑〉〈0↑|λ↑〉. (5.46)

This contribution multiplied by ε0 appears in the h term and multiplied
by U〈n0↓〉 in the interaction term. Thus, in the unrestricted3 Hartree-Fock
equation δE

δλ↑
= ελ↑|λ↑〉, the U term produces a shift

ε
(0)
0σ → ε

(0)
0σ + U〈n0−σ〉. (5.47)

Back in second quantization, the spin σ electrons have their Fock Hamiltonian

Hσ=ε0σn0σ+
∑
kσ

εknkσ+
∑
k

{Vkσc
‡
kσc0σ+h.c.} (5.48)

where < n−σ > is a parameter; thus the equations for ±σ are coupled.
No privileged spin direction exists in this problem, and one could have the
impression that 〈n0σ〉 is equal to 〈n0−σ〉 for symmetry reasons: remarkably,
this is wrong if U is large, and the level is about half filled, because the
symmetry is spontaneously broken (see Fig. 3.3). There is a couple of ground
states, namely

〈n0,σ〉>> 〈n0,−σ〉 ,
and another one with σ → −σ. The overall symmetry of the problem is
not respected by each ground states. The chemisorbed atom has a magnetic
moment. The existence of a localized spin requires strong enough U and
partial occupation; the Hartree-Fock approximation is known to overestimate
somewhat the occurrence of magnetism compared to more refined approaches.

Despite this possibility, Newns found a nonmagnetic solution for H
chemisorbed on Cu and Ni; let us consider more closely the case when
〈n0σ〉 = 〈n0−σ〉 = 1

2 〈nσ〉 where 〈n0〉 is the total population of the ad-atom.
Then, ε0 does not depend on spin but according to (5.47) it depends linearly
on 〈n0〉, with ε0 → −I for 〈n0〉 → 0 and ε0 → −A for 〈n0〉 → 2. On the other
hand, the Fano formalism applied to the Fock Hamiltonian yields another
functional dependence through

〈n0〉 = 2
∫ EF

−∞
dωρ0(ω). (5.49)
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〈n↑ − n↓〉

E

〈n↑ − n↓〉

E

a) b)

Fig. 5.4. Qualitative dependence of the energy E on local spin when the virtual
level is about half filled: a) for U small compared to level width b) strong coupling
case.

In this way a self-consistent solution can be obtained. Newns found 〈n0〉 =
1.06 for Cu and 〈n0〉 = 1.16 for Ni; this small negative charge on the H atom
produces an electrostatic dipole at the surface. The result is an increase in
the surface dipole due to the spill-over of the conduction electrons past the
edge of the positive charge and thus an increase in the work function, which
has been observed.

Local View

It is instructive to illustrate this theory by a simple LCAO4 model. By ex-
panding the continuum states on a localized basis,

|k〉 =
∑

i

|i〉〈i|k〉 (5.50)

one can expand the hopping integrals as well:

Vk =
∑

i

Vi〈i|κ〉. (5.51)

The most important Vi are those connecting to nearest neighbors. Various
chemisorption geometries can be modeled ,including Atop, Bridge (bridging
between 2 atoms) and Center (above the center of a triangle) geometries. The

3this is conventional term meaning that we are not assuming that all quantities
be spin-independent.

4Linear Combination of Atomic Orbitals.
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resulting virtual level shapes depend qualitatively on the number of nearest
neighbors. Here I consider the Atop case, denoting in this paragraph a the H
adatom orbital and 0 the top surface atom;

Vk ∼ Va0〈0|k〉, (5.52)

is hopping matrix element, and

Σa(ω) =
∑

k

V 2
k

ω − εk + iδ
∼ |Va0|2GS(ω) (5.53)

where GS(ω) is the local Green’s function of the surface atom, an intrinsic
property of the undisturbed surface. For the sake of argument, let us represent
the d band by a tight binding N+1 atom chain, with orthogonal site orbitals
〈i|j〉 = δij and Hij = β between nearest neighbor sites, Hij = 0 otherwise.
Here, the sites of the chain are 0,1,2,· · ·∞ and chemisorption occurs above
site 0. In this case, GS ≡ G00. Like a moment ago, the self-energy of the
top atom is related to the local Green’s function of the chain with the top
atom removed, that is the 1,2,· · ·∞ atom chain; but removing an atom from
a semi-infinite chain makes no difference, and Σ00 = β2G00. Hence,

G00(z) =
1

z − β2G00(z)
, z = ω + iδ. (5.54)

We find the solutions

G00(z) =
z ±
√
z2 − 4β2

2β2
.

Taking the cut of
√
z along the positive real axis,

√
z =

√
|ω|ei arg ω/2. For√

z2 − 4β2 =
√
|ω2 − 4β2| exp

{
i
2 [arg(ω − 2β) + arg(ω + 2β)]

}
the cut is be-

tween −2β and 2β along the real axis, and corresponds to the band. Just
above the cut,

√
z2 − 4β2 = i

√
|ω2 − 4β2|, just below the cut,

√
z2 − 4β2 =

−i
√
|ω2 − 4β2|. The density of states is ρ(ω) = − 1

π ImG(ω) computed on the
real axis, that is, just above the cut, and in order to have it positive, we must
choose

G00(z) =
z −
√
z2 − 4β2

2β2
. (5.55)

Thus one obtains the semi-elliptic density of states

n(ω) =

√
4β2 − ω2

2πβ2
θ(4β2 − ω2). (5.56)

Re[G00] is the Hilbert transform of n(ω) and is odd; it is linear in the band
and outside

Re[G00] =
ω −
√
ω2 − 4β2

2β2
, ω > 2β. (5.57)
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The chemisorption is weak (strong) when V is small (large) compared to β.
For weak chemisorption, the self-energy is small and ω − εa − Σ1(ω) = 0 is
solved by ω ∼ εa + Σ1(εa). So, if εa is well inside the band, the solution is
a resonance having width ∼ Σ2(εa); if εa is well outside the band, a discrete
state obtains. εa in the continuum can give a discrete solution only if it is close
to the edge. For strong chemisorption, one may have two roots straddling the
band. Then,

0 = ω − εa −
1
π

∫
dω′ Σ2(ω′)

(ω − ω′)
∼ ω − εa −

1
π

∫
dω′Σ2(ω′)
(ω − ωC)

with ωC the center of the band. The two roots obtained in this way are the
bonding and anti-bonding levels of a localized surface molecule.

5.3 Strong Coupling and the Kondo Peak

J. Kondo [34] in 1964 succeeded in explaining the strong effect of a small
amount of magnetic impurities on the resistivity of non-magnetic metals 5.
A magnetic impurity with incomplete d or f shells that at room temperature
behaves like a magnetic dipole at very low temperatures appears to lose its
spin; lowering the temperature further, the resistivity does not continue to
decrease as in pure metals but starts to increase. Even much less than 0.01
atom % Fe in Au suffice to produce the resistivity minimum at the Kondo
temperature TK (several 0K). The Kondo temperature TK (a few millivolts)
is very unlike the characteristic energies (band width, distance of the d or f
level from Fermi level, on-site repulsion.) Here I wish to show that idealized
models do bring many of the characters of the Kondo physics, that cannot
currently be reproduced by the common ab initio methods. The Anderson-
like models explain how such a small energy scale as TK arises and how we
can monitor the electronic structure by electron spectroscopy. Various regions
in parameter space are relevant to different experimental situations. When ε0
is close enough to the Fermi level, like the f levels in SmB6, one speaks of
mixed valence regime because strong charge fluctuations occur and the differ-
ent ions can have different, non-integer valence. When ε0 +U is close enough
to the Fermi level similar phenomena occur. By constrast in this Section we
investigate the Kondo scenario, when the localized level is deep but multiple
occupation is hindered by large U.

5.3.1 Narrow-Band Anderson Model

In the narrow band limit of the Anderson Hamiltonian the continuum is
replaced by a single level k at the Fermi energy εF = 0; we shall have in

5For an introduction to the Kondo effect see e.g. [5]; for fine recent reviews see
Hewson’s book [20] and Ref. [19].
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mind applications to d (or f ) levels of impurities in metals. Accordingly in
this Section we denote the localized state as the d level. A very interesting
situation arises in the strongly correlated case U � |εd| when the d level is
deep (εd < 0 with V << |εd|.) For a single particle, the basis set is {|d〉, |k〉}
and the Hamiltonian matrix is

H(1) =
(
εd V
V 0

)
(5.58)

with eigenvalues ε± = εd±r
2 , r =

√
ε2d + 4V 2. The spin-degenerate ground

state Ψgσ has energy ε− ∼ εd − V 2

εd
. We are interested in the one-electron

Green’s function

Gdd(ω) = 〈Ψg↑|cd↓
1

ω −H c
†
d↓ |Ψg↑〉 , (5.59)

which brings information in the two-particle states in the Sz = 0 sector where
U can act. To predict the poles of Gdd let us examine the expansion of two-
body state c†d↓ |Ψg↑〉 into stationary states. With 2 electrons of opposite spin,
on the basis

{|1〉 = |d ↑ d ↓〉, |2〉 = |d ↑ k ↓〉, |3〉 = |k ↑ d ↓〉|, |4〉 = |k ↑ k ↓〉}, (5.60)

the Hamiltonian matrix is

H(2) =

⎛
⎜⎜⎝

2εd + U V V 0
V εd 0 V
V 0 εd V
0 V V 0

⎞
⎟⎟⎠ . (5.61)

The triplet component brings structure right at εd. Indeed, the 2-particle
triplet states are

{|d ↑ k ↑〉, |d ↓ k ↓〉}, 1√
2
(|d ↑ k ↓〉 − |k ↑ d ↓〉)

but only the last one is in the Sz = 0 sector; they have eigenvalue εd.
In the singlet sector, one finds 3 eigenvalues ofH(2). Referring to the basis

(5.60), the G44 singlet is clearly mainly peaked at 0, but does not enter the
calculation of Gdd. The G11 element gives structure mainly at high energies
ε ∼ U . The singlet |s〉 = 1√

2
(|2〉 + |3〉) is more interesting, and gives the

combination
Gss =

G22 +G33 +G32 +G23

2
.

One can readily compute the resolvent matrix G(ω) = (ω−H(2))−1 and Gss.
The density of states derived from Gss has an interesting structure near the
Fermi level which persists at high U , as shown in Figure 5.4 This is called
theAbrikosov-Suhl or Kondo peak and has a striking physical interpretation.
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−1 0 4

Fig. 5.5. The singlet density of states as obtained from Gss with ε0 = −1, U = 6
and V

ε0
= 0.1; the eigenvalues of H(2) are at ω = −1.023,−1.0, 0.0195, 4.004 and a

triplet at ω = −1. The singlet has little intensity in the high energy peak (here at
ω = 4); it is practically insensitive to changes in U in the low energy sector as long
as U is large. The peak at ε0 = 0.0195 close to the Fermi level is the Kondo peak
due to spin flip. The δ lines are broadened into Lorentzians (width 0.02 |ε0|).

For V = 0 the d level is singly occupied in the ground state and the
impurity has a net free spin; the deep level has a SU(2) degree of freedom.
For small V, the d level remains essentially singly occupied in the ground
state, but the transfer of spectral weight shows that it manages to interact
with the Fermi level. The only way this can occur is by an exchange of the
conduction electron with the localized one, while the impurity flips its spin.

To simplify the algebra, we can chop from the Hilbert space the unin-
teresting state with a doubly occupied d level, since it stands alone at high
energy, and write

H ′(2) =

⎛
⎝ εd 0 V

0 εd V
V V 0

⎞
⎠ (5.62)

on the reduced basis

{|1′〉, |2′〉, |3′〉} = {|d ↑ k ↓〉, |d ↓ k ↑〉|, |k ↑ k ↓〉}. (5.63)

The triplet noted above, with eigenvalue εd, is (r,−r, 0), r = 1√
2
. It is easy

to find 2 normalized vectors orthogonal to (r,−r, 0) and to each other, for in-

stance (r, r, 0) and (0, 0, 1.) Using the orthogonal matrix c =

⎛
⎝ r 0 r
r 0 −r
0 1 0

⎞
⎠ ,

we find the transformed Hamiltonian h̃ = cThc =

⎛
⎝ εd V

√
2 0

V
√

2 0 0
0 0 εd

⎞
⎠ ;

hence we obtain two singlets with eigenvalues ε(2)± =
−εd±

√
ε2

d
+8V 2

2 . While



98 5 Hopping Electron Models: an Appetizer

ε
(2)
+ ∼ 2V 2

εd
, the ground state energy ε

(2)
− ∼ εd − 2 V 2

−εd
says that the

singlet is slightly lower than the triplet for small V , and a bound state
forms in which the spin is screened; the eigenvector (on the basis (5.63)

(− V√
(ε

(2)
+ )2+2V 2

,− V√
(ε

(2)
+ )2+2V 2

,− ε
(2)
+√

(ε
(2)
+ )2+2V 2

) shows that |d ↑ k ↓〉 and

|d ↓ k ↑〉| components are the important ones. The low energy sector (sin-
glet ground state and triplet excited level) is well represented by an effective
Hamiltonian

Heff = −2JS1 · S2 (5.64)

which commutes with the square of the total spin and describes a spin-spin
coupling between the two electrons. The small separation∼ −2 V 2

εF −εd
between

the ground state and the triplet implies that the low-energy excitation is
a spin-flip, while charge excitations are frozen. The coupling between the
conduction electron and the localized one through spin produces a singlet
level in the valence region at ε(2)+ .

The narrow-band model is extremely simple, but calculations on larger
systems confirm and extend the scenario. Recent exact-diagonalization calcu-
lations of Kondo clusters alloyed with mixed-valence impurities in the pres-
ence of disorder are of great interest [36] and show T=0 phase diagrams very
rich in structure.

5.3.2 Anderson Model, s-d Model and Kondo Model

Consider an Anderson model with εd < 0 and U chosen such that for Vk → 0
the d level is singly occupied in the ground state. At small Vk, the low-
energy subspace, say, subspace A, corresponds to singly occupied d level;
there are two high-energy subspaces, say B and B’, with excitation energies
ΔE(d1 → d2) = εd + U and ΔE(d1 → d0) = −εd. Let us use the Schrieffer-
Wolff transformation ( Sect. (1.3)) with the hopping term as v; Equation
(1.86)yields the approximate renormalized interaction

Hint = −
∑

kσ,k′σ′
V ∗

k′Vk

[
(c†kσdσ)(d†σ′ck′σ′ )

εd + U
+

(d†σ′ck′σ′)(c†kσdσ)
−εd

]
. (5.65)

Besides a conventional scattering of conduction electrons by an impurity
potential, Hint produces diffusion with spin flip (of both conduction and
impurity spins). The effective Hamiltonian is clearly a particular form of the
s-d model proposed long ago by Zener[28], that we now recall.

s-d model

We need a slight generalization of Equation (1.58) in which we write

(σk→k′ )x =
(
c†k↑ c

†
k↓
)( 0 1

1 0

)(
ck′↑
ck′↓

)
=
∑
kk′

(σαβ)xc
†
kαck′β , (5.66)
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and so on; if k′ were equal to k this would be the representation of the spin
operator in the k basis, but we are allowing off-diagonal elements. In this
way,

(σk→k′ )z = c†k↑ck′↑ − c†k↓ck′↓, (σk→k′ )+ = 2c†k↑ck′↓.

The s-d model proposed by Zener[28] for an impurity spin S in a metal reads

H = HF +
∑
k,k′

Jk,k′

(
1
2
[
S+(σk→k′ )− + S−(σk→k′ )+

]
+ Sz(σk→k′ )z

)
(5.67)

where HF is a Fano Hamiltonian[32]. For the impurity we denote the creation
operator by d† and use εd ≡ ε0; we set

2Sx = d†↑d↓ + d†↓d↑, 2Sy = −i(d†↑d↓ − d
†
↓d↑), 2Sz = d†↑d↑ − d

†
↓d↓; (5.68)

one can readily verify the angular momentum commutator relations in the
subspace with n↑n↓ = 0, n↑ + n↓ = 1.

Spin-flip and the Kondo Model

Now in Equation (5.65) we consider the spin-flip (σ′ 
= σ) terms ignoring the
dull potential scattering terms; for instance we have a term c†k↑d↑d

†
↓ck′↓ =

1
2 (σk→k′ )+S−

d which fits the s-d model. So we arrive at the Kondo model[35]

H = H0 +HK =
∑
kσ

εkc
†
kσckσ +

∑
k,k′

Jk,k′ (σαβ · S) c†kαck′β (5.69)

where

Jk,k′ = V ∗
k′Vk

[
1

εd + U
+

1
−εd

]
. (5.70)

This describes the net effect of the virtual valence fluctuations; they couple
the local spin density of the conduction electrons with the impurity spin. The
d electron is reduced to its spin degree of freedom, while the charge is fixed.
The k dependence is often neglected. In this case, the Kondo interaction can
be written

Hint = HK = Jψ†
α(0)ψβ(0)(σαβ · Sd), (5.71)

where ψα(0) = 1√
N

∑
k ckα is the electron field operator at the origin. Since

{σαβ} ≡
(

(0, 0, 1) (1,−i, 0)
(1, i, 0) (0, 0,−1)

)
(5.72)

we may also write

HK = J

(
Szψ

†
↑(0)ψ↑(0) S−ψ

†
↑(0)ψ↓(0)

S+ψ
†
↓(0)ψ↑(0) −Szψ

†
↓(0)ψ↓(0)

)
. (5.73)

This is the second quantized form of a Hamiltonian HK = J(σ · Sd)δ(x).
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5.3.3 Fermi Level Singularity and Kondo Minimum

The resistivity of metals decreases with decreasing temperature since the
phonon contribution drops; the Kondo minimum at TK arises because the
magnetic impurity contribution increases as T → 0. The impurity resistivity
is due to k → k′ processes where the conduction electrons scatter from one
Bloch state to another in the impurity potential and is proportional to the
square modulus of the scattering amplitude. The amplitude is an average over
the thermal distributions of electrons, and the distribution peaks at the Fermi
level as T → 0. For K or Ca impurities in a metal, nothing special happens
with lowering T, but for impurities such as Fe or Co the temperature is very
important. This is because the the impurity cross section grows logarithmi-
cally when the Fermi energy is approached, and the effect is entirely due to
the spin. To see how this is borne out by the Kondo model, let

H = H0 +HK , HK =
J

N

∑
k,k′

(σαβ · S) c†kαck′β (5.74)

with σ the conduction electron spin; let |Φ〉 denote a filled Fermi sphere,
with the energy origin such that H0|Φ〉 = 0, c†i↑ and c†f↑ creation operators
for spin-up electrons near the Fermi level,

|Φi〉 = c†i↑|Φ〉, |Φf 〉 = c†f↑|Φ〉.

One obtains the scattering amplitude Ufi = 〈Φi|U |Φf 〉, still an operator in
impurity spin space, by the T exp formula in the interaction picture (2.36)

Ufi = δif − i
∫ ∞

∞
〈i|HK(τ)|f〉dτ

+
(−i)2

2

∫ ∞

∞
dτ1

∫ τ1

∞
dτ2〈i|HK(τ1)HK(τ2)|f〉+ · · · (5.75)

The first-order integral gives 2πδ(ωif )(HK)if , that is, an energy-independent
object. The second-order contribution, introducing a complete set, reads

U
(2)
fi = −1

2

∫ ∞

∞
dτ1

∫ τ1

∞
dτ2e

i(εf τ1−εiτ2)
∑

ν

(HK)fν(HK)νie
iEν(τ2−τ1);

using a convergence factor at t0,
∫ τ1

−∞ dτ2e
i(Eν−εi)τ2 = ei(Eν−εi)τ1

i(Eν−εi)
,

U
(2)
fi ∝ (−i)22πδ(ωfi)

1
i

∑
ν

(HK)fν(HK)νi

Eν − εi
.

Two kinds of matrix elements 〈Φf |HK |ν〉〈ν|HK |Φi〉 occur, with the ci↑
operator in the right HK factor or in the left. The terms with ci↑ in the right
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∑
ν

〈Φf |(σ↑σ · S)c†f↑cqσ|ν〉〈ν|(σσ↑ · S)c†qσci↑|Φi〉
Eν − εi

;

where |ν〉 has an electron in a state qσ, yield, using (5.72),

∑
q,σ

(1− fq)
εq − εi

(σ↑σ · S)(σσ↑ · S) =
∑

q

(1− fq)
εq − εi

[
S2

z + S−S+

]
. (5.76)

In the terms with ci↑ in the left, the operators appear in the order c†qσci↑c
†
f↑cqσ,

so qσ must refer to a filled state and |ν〉 involve two electrons and a hole:

∑
ν

〈Φf |(σσ↑ · S)c†qσci↑|ν〉〈ν|(σ↑σ · S)c†f↑cqσ|Φi〉
Eν − εi

=
∑

q

fq

εq − εi
[
S2

z + S+S−
]
.

Since [S+, S−]− = 2Sz the second-order amplitude has a contribution
proportional to

∑
q

fq

εq−εi
Sz . Neglecting the energy dependence of the density

of states, the q summation gives
∑

q
1

εq−εi
∼
∫ εF

εF −W dεq
1

εq−εi
where W is the

band width.

U
(2)
if ∝ Sz log(

|εi − εF |
W

) (5.77)

This gives a logarithmic singularity of the scattering amplitude when εi
approaches the the Fermi energy. For the physical meaning of the Sz factor
see Problem 5.4.

5.4 The Nf � 1 Expansion

Spectroscopically, Ce compounds and heavy fermion materials show deep f
levels having widths ∼ 0.1 eV, while U is several eV. The above discussion
indicates that such a special region of parameter space of the Anderson model
is particularly intriguing for studies of magnetism: a deep impurity level is
weakly coupled to the Fermi level (Vk << εF − εd) and is singly occupied
in the limit Vk → 0. This requires εd well below the bottom of the band
and U large; actually there is a mathematically well defined U →∞ limit to
study. The density of states will contain structure about ∼ εd and ∼ 2εd +U,
but also about εF . Since U is large one should resort to some expansion in
Vk. Here I shall introduce with some changes and simplifications a method
proposed by Gunnarsson and Schönhammer (in a comprehensive paper [27])
to calculate the relevant densities of states. Consider an Anderson-like model,
with a local impurity level which is Nf times degenerate

H =
∑
k,σ

εknkσ + εf

Nf∑
ν

nfν
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+
Nf∑
kν

[
Vkmc

†
0νckσ + h.c.

]
+ U
∑
ν,ν′

nfνnfν′ , ν ≡ {m,σ}. (5.78)

The bottom of the band is at −B and the Fermi energy is εF = 0. In this
problem it is expedient to use a discrete formalism as in Section 5.1.4, i.e.
with {εk} = ε1, ε2, · · · and Kroneker deltas, and to go to the continuum limit
at the end. Let us assume∑

k VmkVkm′δε,εk
≡ |W̃ (ε)|2δmm′ ;∑

m VmkVk′mδε,εk
≡ |W̃ (ε)|2δkk′

(5.79)

with the energy W̃ linear in the hopping parameters. The U term fails to
account for the multiplet effects, but this has no consequence since the occu-
pation of the impurity is nd � 2. Introducing the degeneracy, the model be-
comes both more realistic and more tractable. The reason is that (as expected
a priori and verified below) each degenerate state gives equal contributions
to the ground state energy shift ΔE, so for deep impurity levels

ΔE = Nf
W̃ 2

εf
, (5.80)

where W̃ 2 is some average of W̃ (ε). Thus, ΔE is fixed (it corresponds anyhow
to a weak chemical interaction), Nf → ∞ is a weak coupling limit, and we
can set up an expansion in inverse powers of Nf . We need the right combi-
nations of conduction states that couple to the impurity, and introduce new
conduction operators with the same symmetry as the impurity m orbital6:

ψ†
εmσ =

1
W̃ (ε)

∑
k

Vmkδε,εk
c†kσ (5.81)

and a combined index ν ≡ {m,σ}. Equations (5.79) yields[
ψ†

εmσ, ψε′m′σ′
]
+

= δε,ε′δν,ν′ .

Then, letting
∫
dε stand for the discrete energy summation (that will become

continuous at the end)∑
mσ

∫
dεεψ†

εmσψεmσ =
∑
mσ

∑
k1k2

εk1Vk1mδ(εk2 − εk1)Vmk2

W̃ 2(εk1)
c†k1σck2σ ; (5.82)

now using the second of (5.79), one arrives at the useful form

H =
Nf∑
ν

[∫
dε εψ†

ενψεν +
∫
dε
(
W̃ (ε)c†0νψεν + h.c.

)
+εfc

†
0νc0ν

]
+ U

∑
{ν,ν′}

nfνnfν′ + extra terms (5.83)

6here unlike Ref [27] I use dimensionless the creation operators
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where
∑

{ν,ν′} is over distinct pairs and the extra terms describe conduction
states that are not coupled to the impurity. We shall see that the ground
state can be calculated exactly for U → ∞, Nf → ∞. We start by calling
|φ0〉 the ground state of H and |Ω〉 the singlet state with a filled shell of k
states up to εF and empty impurity states; let

〈φ0|H |φ0〉 = E0, 〈Ω|H |Ω〉 = E0
0 , ΔE = E0 − E0

0 . (5.84)

Henceforth the many-body energies will be referenced to the constant E0
0 . By

acting on |Ω〉 with the hopping term in the hamiltonian we produce electron-
hole states |f, ε̄〉 with one electron on a superposition of the impurity states
|0mσ〉 and a hole in the conduction band at some occupied energy ε; denoting
holes with bars one writes a particle-hole state as

εf

d band

Fermi level

V

V

V

Fig. 5.6. Left: lowest state |Ω〉 with no occupation of the f state . Center: hopping
leads from |Ω〉 to a state with a single occupation of the f state. The full circle
represents a hole and the empty one a f electron: this configuration would be the
ground state for V → 0 for the hole at the Fermi level. Right: further hopping may
lead to two kind of configurations: 1) a state |E, ε̄〉 with no electrons in the f state
and an electron-hole pair in the valence band (upper panel) 2) a state |f, f ′, ε̄, ε̄′〉
with a double f hole (lower panel). For large U , however the latter is excluded, while
the coupling to |E, ε̄〉 is negligible for large Nf . Thus, when both conditions hold,
one can solve the problem exactly.

|f, ε̄〉 = 1√
Nf

∑
ν

c†0νψεν |Ω〉. (5.85)

Note that 〈f, ε̄|f, ε̄〉 = 1, 〈f, ε̄|H |f, ε̄〉 = εf − ε. To find the coupling to |Ω〉 we
insert (5.81) in (5.85), obtain

H |Ω〉 = E0
0 |Ω〉 +

∑
kν

Vkmc
†
0νckσ|Ω〉 (5.86)
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by the form (5.78) of the Hamiltonian, and take the scalar product. The
nonvanishing contributions are those where the creation and annihilation op-
erators match; then, using (5.79) one performs the k summation introducing
|W̃ |2; the m summation then introduces a Nf factor yielding

〈Ω|H |f, ε̄〉 = 1√
Nf

∑
k

Nf∑
ν

|Vkm|2δ(ε− εk)
W̃ (ε)

= W̃ ∗(ε)
√
Nf ; (5.87)

If we act over (5.85) with the hopping term of the hamiltonian we generate
new states:

H |f, ε̄〉 ⇒ |E, ε̄〉, |f, f ′, ε̄, ε̄′〉; (5.88)

here,

|E, ε̄〉 = 1√
Nf

∑
m,σ

ψ†
Eνψεν |Ω〉 (5.89)

has a conduction electron with energy E > EF and keeps the ε̄ hole while
|f, f ′, ε̄, ε̄′〉 has two impurity electrons and two conduction holes and is ruled
out as U →∞. Since the normalized states |E, ε̄〉 and |f, ε̄〉 both bring a 1√

Nf

factor, their coupling goes like |W̃ |2 and thus vanishes as Nf →∞ because of
(5.80).Therefore, in that case the problem reduces to the one hole subspace,
that is, the ground state may be sought in the form

|φ0〉 = A

[
|Ω〉+

∫ 0

−B

a(ε)|f ε̄〉dε
]

; (5.90)

here
∫ 0

−B
dε provisionally stands for a discrete summation over the band en-

ergies and everything is dimensionless. We write the Schrödinger equation on
a basis set

{|Ω〉, |f, ε̄1〉, |f, ε̄2〉, . . .}
with eigenvectors

v = (1, a(ε1), a(ε2), . . .) (5.91)

acted by the Hamiltonian matrix (recalling (5.87))

HM =

⎛
⎜⎜⎝

0
√
NfW̃

∗(ε1)
√
NfW̃

∗(ε2) · · ·√
NfW̃ (ε1) εf − ε1 0 · · ·√
NfW̃ (ε2) 0 εf − ε2 · · ·
· · · · · · · · · · · ·

⎞
⎟⎟⎠ . (5.92)

The first line of HMv = ΔEv gives

ΔE =
√
Nf

∫ 0

−B

dεW̃ ∗(ε)a(ε), (5.93)

the second and any other line yield
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NfW̃ (ε) = (ΔE − εf + ε)a(ε). (5.94)

Hence,

ΔE = Nf

∫ 0

−B

dε
|W̃ (ε)|2

ΔE − εf + ε
(5.95)

is indeed proportional to Nf , as anticipated. Moreover, the normalization
condition of (5.91) reads

|A|2 =
1

1 + C
, C =

∫ 0

−B

dεa2(ε) = Nf

∫ 0

−B

dε(
W̃ (ε)

ΔE − εf + ε
)2, (5.96)

where again −B is the bottom of the band. The occupation of the impurity
is

nf =
C

1 + C
, (5.97)

and when C � 1 (spin fluctuation limit) nf is close to 1. Equations
(5.95,5.96,5.97) remain the same in the continuum limit, when however the
Kroneker deltas over energy become Dirac’s delta functions and hence

Δ = πW̃ 2 (5.98)

is the inverse life time due to hopping, a the inverse root of an energy, and
so on. Typically, Δ ∼ 0.1eV.

5.4.1 Kondo Temperature in the Spin-Fluctuation Case

ΔE is the energy shift with respect to |Ω〉, but one is more interested in the
Kondo temperature

KBTK = δ = εf −ΔE > 0, (5.99)

which is the correlation-induced energy gain with respect to the non-interacting
lowest eigenvalue of |f, ε̄〉 levels. In the spin fluctuation case,when nf ∼ 1, a
reasonable model takes constant W̃ 2 and assumes that B � δ; then, setting
in (5.95,5.96) W̃ 2 = Δ

π , we find

ΔE =
NfΔ

π
ln |ΔE − εf

B
| = NfΔ

π
ln | δ

B
| (5.100)

and
nf

1− nf
= C =

NfΔ

π|δ| . (5.101)

One obtains from (5.100),

δ = Be
πΔE
Nf Δ ;

we expect the result to be roughly proportional to NfΔ so we introduce this
dependence, using (5.99) to eliminate ΔE :
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δ = (
NfΔ

π
)(
πB

NfΔ
)e

π(εf −δ)
Nf Δ = (

NfΔ

π
)e

ln[ πB
Nf Δ

]+
π(εf −δ)

Nf Δ .

This can be rewritten

δ = (
NfΔ

π
)e

π
Nf Δ{(εf−δ)+

Nf Δ

π ln[( πB
Nf Δ )]} −→ δ = (

Nfδ

π
)e

π(ε∗
f
−δ)

Nf Δ , (5.102)

with the renormalized f level

ε∗f = εf +
NfΔ

π
ln(

πB

NfΔ
). (5.103)

In the Kondo problem the exponent
π(ε∗f−δ)

Nf Δ ∼ πε∗f
Nf Δ is large and negative and

the Kondo temperature is given by

δ = (
NfΔ

π
)e

−
π|e∗

f
|

Nf Δ . (5.104)

The population of the f level can be deduced from (5.101), which says
that nf

1−nf
= Nf Δ

πδ . Since nf is close to 1, the solution is well approximated
by

1− nf = e
−

π|ε∗
f
|

Nf Δ . (5.105)

5.4.2 Density of Occupied States

To obtain the density of filled states relevant e.g. for valence photoemission
(see next Chapter) we need the g<(z) Green’s function. So, we introduce a
(sufficiently) complete set {j} of many body states and write

g<(z) =
∑
i,j

〈φ0|c†mσ|i〉〈i|
1

z − E0(N) +H
|j〉〈j|cmσ|φ0〉. (5.106)

One can compute the matrix elements 〈i|z−H |j〉 without difficulty and then
obtain 〈i| 1

z−E0(N)+H |j〉 by a matrix inversion in analogy with Anderson’s
procedure used above in Sect. (5.1.2). For large U and Nf one can limit
the analysis to the above approximation; the relevant states are the one-hole
states

|εmσ〉 = ψεmσ|Ω〉, (5.107)

such that 〈ε′mσ|εmσ〉 = δ(ε − ε′), and impurity electron -two hole states,
namely,

|0m′σ′, ε1m1σ1, ε2m2σ2〉 =
c†0m′σ′√
Nf − 1

∑
pairs

ψε2m2σ2ψε1m1σ1 |Ω〉. (5.108)
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Here,
∑

pairs sums over differentm,σ channels (the normalization is to Nf−1
since the case of {m1, σ1} = {m2, σ2} is excluded, but 1 is negligible compared
to Nf ). |εmσ〉 is eigenstate of

∑Nf

ν

∫
dε εψ†

ενψεν with eigenvalue E0
0 − ε;

inspection of (5.83) and (5.84) then shows that

〈ε′mσ|z − E0 +H |εmσ〉 = δ(ε− ε′)(z −ΔE − ε) (5.109)

〈0m′σ′, ε1m1σ1, ε2m2σ2|z − E0 +H |0m′σ′, ε′1m1σ1, ε′2m2σ2〉
= δ(ε1 − ε′1)δ(ε2 − ε′2)(z −ΔE − ε1 − ε2 + εf ) (5.110)

The hopping Hamiltonian takes from the one-hole subspace to a two-holes-
impurity-electron one; so the matrix inversion is easy, using the method of
Sect. 5.1.6 which puts a self-energy in the denominator of the inverse of
(5.109); giving

〈ε′mσ|(z−E0+H)−1|εmσ〉 = δ(ε− ε′)
z −ΔE − ε−Nf

∫ 0

−B
dξ|W̃ (ξ)|2

z−ΔE+εf−ε−ξ

. (5.111)

The Kondo peak is borne out by this analysis.
Lacroix [21] using the equation of motion approach computed the density

of states of the Anderson model for U → ∞ by the equation of motion
technique, and obtained the Kondo peak and its disappearence above the
Kondo temperature.

Problems

5.1. Find by direct matrix inversion G00(ω) as the 00 element of (ω − h)−1,
with the matrix of h from Equation (5.3). This is instructive and very easy!

5.2. Prove Equation (13.136).

5.3. Find the other elements of the resolvent matrix by the method used in
the text for G00.

5.4. What does the Sz factor in (5.77) mean?

5.5. Prove Equation (13.136).



6 Many-body Effects in Electron

Spectroscopies

6.1 Electron Spectroscopy for Chemical Analysis
(ESCA)

Electron spectroscopies and their rich phenomenology convey information on
molecules and solids and specifically on their excitations. To describe excited
states we shall develop techniques based on modeling the spectra in terms of
Green’s functions and also more general expectation values. ESCA is a set of
spectroscopies, UPS (Ultraviolet Photoemission Spectroscopy),XPS (X-Ray
Photoemission Spectroscopy)and AES (Auger Electron Spectroscopy). They
can be angular resolved (ARUPS and the like) and time resolved; APECS
(Auger Photoelectron Coincidence Spectroscopy) detects the photoelectron
and the Auger electron most probably coming from the same atom. ESCA
can make a chemical analysis with tiny samples and is able to discriminate
the oxidation states and give information about the electronic structure.

In an ESCA apparatus, the sample is excited with monochromatic ra-
diation ( X-rays in the case of X-ray Photoemission Spectroscopy or XPS,
Ultraviolet light in the case of UPS) and the potoelectrons are analyzed in
energy by a spherical or cylindric analizer. A photoemission spectrum is a
plot of the photoelectron current versus photoelectron kinetic energy. In [94]
the XPS spectra of noble gas atoms and of several molecules are reported and
discussed. Core levels, with a well resolved spin-orbit separation, and valence
levels are observed; they often (but not always) agree qualitatively with the
results of Hartree-Fock calculations. However, correlation effects, (that re-
quire the methods of Chapter 11 and following Chapters for a microscopic
description) are most often clearly seen. Many core and valence levels show a
complex structure due to shake-up effects (excitations) or shake-off effects,
if the excitations involve a continuum. The Xe 4p level seen in photoemission
(see e.g. [95]) shows a broad continuum with sharp superimposed features in
striking contrast with one-particle descriptions, predicting a doublet of lines.

The interaction of the sample with the radiation is

H ′ =
−e
2mc

N∑
i

[A(xi) · pi + pi ·A(xi)] , (6.1)
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where N is the number of electrons and A the vector potential. One also
often finds an alternative formulation, that comes directly from the relativistic
theory, namely

H ′ = −1
c
2mc

N∑
i

∫
d3xA(xi) · ĵ(xi) =

∑
mn

Mmna
†
man (6.2)

where the current operator is (4.23); in the second-quantized form,
∑

mn

runs over an arbitrary complete orthonormal set of one-body states (the set of
Hartree-Fock spin-orbitals is a convenient choice). Let |i〉, Ei denote the initial
state of the sample and its energy, h̄ω and εk the photon and photoelectron
energies. The cross section σ can be worked out starting from the Fermi
golden rule

Δσ =
2π
h̄

∑
f

|〈f |H ′|i〉|2δ(h̄ω + Ei − Ef ) (6.3)

where |f〉, εf are the final state of the sample and its energy. For the sake
of simplicity we shall consider the case of fast photoelectrons, when we can
neglect the post-collisional interaction between the photoelectron and the
ion left behind. We let H̃ be the N-1-electron Hamiltonian of the sample
after photoionization, with H̃|f̃〉 = Ẽf |f̃〉 and write Ef = εk + Ẽf . The
photoelectron state can be approximately described as a plane-wave of wave
vector k, and |f〉 = a†k|f̃〉, where |f̃〉 is the N-1-electron final state of the
sample1. Moreover,

∑
f =
∑

f̃

∑
k∈ΔΩ , where the sum over the wave vectors

accepted by the detector in the solid angle ΔΩ, namely
∑

k∈ΔΩ ∝ ρ(εk)ΔΩ
is the density of final states of the photoelectron ∝ √εk.

Then the cross section reads

Δσ

ΔΩ
=

2π
h̄
ρ(εk)

∑
f̃

|
∑
m

〈f̃ |am|i〉|2δ(Ei − Ef̃ − εk − h̄ω). (6.4)

The highest kinetic energy features in the photoemission spectrum correspond
to events when the system is left at or near the ground state; lower kinetic
energy features correspond to excited states of the system left behind, and
this occurs by energy conservation, without the need for a post-collisional
interaction2. Proceeding as in (4.6) one can write this in terms of the hole
Green’s function

Gmn(ω) = 〈i|a†n
1

ω − H̃ + i0+
am|i〉. (6.5)

1Due to the long range of the Coulomb potential, one should use Coulomb waves,
but at high kinetic energy one has a good excuse for using plane waves instead.

2The outgoing electron can lose energy by collisions, producing secondary elec-
trons; this is not contained in the above simplified description; the spectrum far
from threshold when such effects are important becomes difficult to analyze.
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6.1.1 Chemical Shifts

The core level binding energies depend on the charge on the atom and change
with the chemical state. For example, the Xenon fluorides XeF2, XeF4 and
XeF6 are colorless solids melting at 140, 114 and 46 oC, respectively; their
F and Xe core levels are shifted by some eV along the series. The F 1s
level is 5.48 eV less bound in XeF2 than in F2; this difference reduces to
4.6 eV in XeF4 and to 3.38 eV, in XeF6, while the negative charge on the
Fluorine is reduced. The Xe levels shift in the opposite way, even more: the
binding energy grows if there is positive charge on the atom. A clear linear
correlation exists between the binding energies of the levels and the overall
charges of atoms, determined by self-consistent calculations. In a similar way,
the 1s levels of C in CH3Br,CH2Br2, CHBr3, CBr4 shift compared to CH4.
Many organic molecules contain in-equivalent C atoms and their core peaks
can be resolved .

The chemical shifts are due to a combination of initial state effects and
final state effects . The former are those just mentioned above due to the
mean electrostatic potential on the atom in the ground state; depending on
the chemical environment, a core level can be more or less tightly bound
than in the free atom. The final state effects are due to the polarization of
the system around the core hole and are of the same order of magnitude,
i.e. several eV. However, they always reduce the binding energy since they
stabilize the final state of the sample and the energy is taken off by the
photoelectron. From the the chemical shifts it is often possible to deduce
the valence of given atom in a compound. This is relevant to elements like
transition metals that can have different valence in different compounds.

6.1.2 Core-Level Splitting in Paramagnetic Molecules

The ground electronic configuration of the NO molecule is

O1s2N1s21σ22σ21π43σ22π1;

the ground state is a spin doublet and NO+ has singlet and triplet states.
The ground state of O2 is 3Σg, with a configuration

1s2σg(2s)2σu(2s)2σg(2p)2πu(2p)4[πg(2p)1]2

with two partially filled πg states. In both cases this produces a core-level
splitting[94]. In N2 the 1s level has a binding energy ∼ 410 eV and is ∼ 0.9
eV wide at half maximum; the same level in NO has one component which
is less bound than in N2 by a fraction of eV and is about as wide, but there
is also a second component which is more bound by ∼ 1.5 eV. The intensity
ratio is 3:1. The O level is not resolved in Siegbahn’s data but is 0.3 eV
broader than in O2. To simplify the notation, let us write the degenerate
ground determinantal states by
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Ψ(NO) =
{
|παsαsβ|, sz = 1

2
|πβsαsβ|, sz = −1

2

(6.6)

omitting filled shells; s denotes the 1s level of O or N, according to the process
that we wish to describe. For NO+ we must consider

Ψ(NO+) =

⎧⎨
⎩

|παsα|, sz = 1
|παsβ|, |πβsα|, sz = 0
|πβsβ|, sz = −1.

(6.7)

All these states have Λ = |Lz| = 1, where z is the internuclear axis, but not
all are spin eigenstates. The singlet is

ψ(1Π) =
1√
2
[|παsβ| − |πβsα|]; (6.8)

the triplet states are:

ψ(3Π) =

⎧⎨
⎩

|παsα|, sz = 1
1√
2
|παsβ|+ |πβsα|, sz = 0
|πβsβ|, sz = −1.

(6.9)

Let us write the total energy of the states with sz=0; since

H =
∑

i

hi +
∑
i<j

1
rij
, (6.10)

does not depend on spin and 〈αβ|H |αβ〉 = 〈βα|H |βα〉, one finds:

E(1Π) = 〈|παsβ||H ||παsβ|〉 − 〈|παsβ||H ||πβsα|〉,
E(3Π) = 〈|παsβ||H ||παsβ|〉 + 〈|παsβ||H ||πβsα|〉. .

In the calculation of 〈|παsβ||H ||πβsα|〉, since the two determinants differ by
2 spin-orbitals, there is no contribution from the one-body Hamiltonian; the
splitting is ΔE = 2J , where

J = 〈|παsβ|| 1
r12
||πβsα|〉 (6.11)

is the exchange integral. Hartree-Fock calculations give ΔE(N) = 0.88
eV,ΔE(O) = 0.68 eV. The lowest state is triplet. This agrees with the obser-
vation that the peak at lower binding energy is 3 times more intense.

In a similar way, the 1s spectrum of O2 (binding energy ∼ 547 eV ) has
two components separated by 1.1 eV with an intensity ratio 2:1. From the
3Σg ground state one can go to 4Σ and 2Σ ions. Let π± represent the π
orbitals with Lz = ±1. From the ground state with components ψ(3Σg) =
|π+απ−α|, sz = 1
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ψ(3Σg) =

⎧⎨
⎩

|π+απ−α|, sz = 1
1√
2
[|π+απ−β|+ |π+βπ−α|], sz = 0

|π+βπ−β|, sz = −1

To write the final state, let us include the unpaired 1s level (that in the initial
state was understood with the other closed-shell states). 6 states are found,
including the sz = 3

2 component of 4Σ, namely, ψ(4Σ) = |π+απ−αsα|. The
other components of 4Σ are easily obtained by the S− operator and the
doublet 2Σ by orthogonality. In this way one explains the splitting, which is
again due to an exchange interaction.

6.1.3 Shake-up, Shake-off, Relaxation

In the final state of core-level photoemission, a localized hole exists, producing
a field and a polarization of the system. The polarization phenomena are
not included in independent particles theory. However, they are commonly
observed: they shift the levels towards lower binding energies. The final state
effects show up in the spectrum also with the presence of satellite peaks.
The electron contribute to the relaxation shift, since the spectator electrons
actually are involved in some measure in the photoemission process; there
is some probability that the ion is left, in the final state, excited. We can
adapt the independent particles theory in order to to include some correlation
effects, by using different orbitals for the initial and final states. Neglecting the
energy dependence of the density of states ρ(εk) and of the matrix elements,
the shape of the photoelectron spectrum from a deep level |c〉 is given by

σ(ω) = − 1
π

ImGc(ω) = 〈i|a†cδ(ω −H)ac|i〉 = 〈i; c|δ(ω −H)|i; c〉, (6.12)

where |i; c〉 = ac|i〉 is the N-1 electrons state that is obtained from the initial
state |i〉 by creating the core hole but holding the orbitals frozen. We calculate
|i〉 in the Hartree-Fock approximation for the neutral sample; under known
conditions |i; c〉 is a single Slater determinant. Introducing the eigenstates |ν〉
and eigenvalues εν of H with N-1 electrons, we find

σ(ω) =
∑

ν

|〈i; c|ν〉|2δ(ω − εν). (6.13)

However, the |ν〉 eigenstates must be calculated in the presence of the core-
hole, that is, as determinants formed with relaxed spin-orbitals. We can ob-
tain them too by the Hartree-Fock approximation using an excited N-1 elec-
tron configuration with the core electron missing3. Since the overlap of deter-
minants is the determinant of overlaps (Equation 1.5) all the many-body |ν〉

3Unfortunately, this approximation has the shortcoming that the excited state
is not orthogonal to the ground N-1 electron state or to the lower states of the same
symmetry. This is a general drawback of the Hartree-Fock approximation.
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states contribute to the summation, each yielding a peak at its eigenvalue.
The discrete ones yield narrow shake-up peaks, while those in the continuum
contribute broad shake-off structures. Remarkably, the first two moments of
the spectrum give ∫ ∞

−∞
dω
∑

ν

|〈i; c|ν〉|2δ(ω − εν) = 1 (6.14)

and ∫ ∞

−∞
dωω

∑
ν

|〈i; c|ν〉|2δ(ω − εν) = 〈i; c|H |i; c〉. (6.15)

The excitation of satellites exactly balances the relaxation shift. The 1s
spectrum of Ne is rich of satellites (see next Figure).

Ne 1s main line

380360340320
Kinetic Energy (eV)

J (a.u.)

Fig. 6.1. Sketch of the satellite region of the Ne 1s photoemission spectrum (data
from Ref. ([94])). The peak in the extreme right at 383 eV kinetic energy is due
to 1s holes in the final state; the satellites occur at lower kinetic energy because
the Ne+ ion is left in an excited state. Several satellites are due to states of the
2p5np1 2S final configurations, with n=3, 4, 5, · · ·. The most intense satellites are
some 20 times smaller than the main line, since Ne is a filled-shell system with low
polarizability.

Besides the single particle excitations, other excitations of the system,
like vibrations and plasmons, that can be treated like harmonic oscillators
(bosons) contribute to the relaxation energy and to the shake-up spectrum.

The time scale of vibrations is ∼ 10−13s; typically the dipole-allowed elec-
tronic transitions take much shorter than that and according to the Franck-
Condon principle the nuclei do not have time to move during the transition.
Since the equilibrium bond lengths and angles of the ions are different from
the initial neutral species, the ion is left in an excited vibrational state. This
is easily visualized in the case of bi-atomic molecules by plotting the poten-
tial energy surfaces of the neutral molecule and of the ion versus internuclear
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distance. The energy of the transition between the vibrational ground states
of two electronic states of the neutral species and of the ion is called adi-
abatic ionization energy. The satellites are on the high binding energy side
and appear as energy losses; they correspond to vibrationally excited ions in
the final state. The energy spacing between satellites is the vibration energy
of the ion, which differs from that of the neutral species.

When the equilibrium distances differ slightly compared to the widths of
the Gaussian wave functions, there is a high probability to end up in the
vibrational ground state of the ion, and this corresponds the most intense
peak in the photoemission spectrum. The satellites are small and fast de-
creasing. On the other hand, if the change in equilibrium distance is large,
the intensity of the adiabatic transition is small, the spectrum has many lines
of comparable intensities and appears almost continuous, with an intensity
maximum at the vertical ionization energy, i.e. the energy difference between
the two potential energy surfaces at the ground state bond length. To assign
the peaks in the photoemission spectrum, an important hint comes from the
vibrational structure; this is much more intense for bonding than nonbonding
or core levels.

6.1.4 Lundqvist Model of Phonon and Plasmon Satellites

The coupling of a core electron to a vibrational mode affects the Photoe-
mission line shape. To model the vibration, consider a single Boson mode
of frequency ν0 = ω0

2π with vibration coordinate x; in this way we disregard
the difference between the initial and final state frequencies, but such details
are readily fixed if necessary. Before the photoemission event, the harmonic
potential of the vibration of the ion can be written V (x) = 1

2Mω2
0x

2 and has
a minimum for x = 0. The initial state Hamiltonian of the vibration is

H0 = ω0d
†d, (6.16)

with [d, d†]− = 1; the initial state |i〉 is the vacuum, |i〉 = |0d〉, and the excited
eigenstates are

|nd〉 =
1√
n!
dn|0d〉. (6.17)

The photo-ionization produces a sudden change in the Hamiltonian; the
potential is still harmonic, but the minimum is shifted. For a harmonic po-
tential, the shift x → x + Δ produces a change V (x) → V (x) + Mω2

0xΔ
apart from a constant ∝ Δ2. In second quantization, the new interaction
term proportional to x, may be written in the form

H1 = g(d+ d†). (6.18)

This is the Lunqvist model discussed by Langreth in a very enlightening
paper[39]. In the final-state HamiltonianH = H0+H1 we perform a canonical
transformation to new bosons
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s = d− γ, s† = d† − γ∗, (6.19)

with γ to be found; since the canonical transformation is time-independent,
the transformed Hamiltonian H̃ is just H written in terms of the s operators,

H̃ = ω0[s†s+ γs† + γ∗s+ |γ|2] + g[s+ γ + s† + γ∗].

We require that there be no terms linear in s or s†, and obtain

γ = − g

ω0
; (6.20)

the new Hamiltonian is diagonal:

H̃ = ω0s
†s− g2

ω0
. (6.21)

Note the ground state energy is lowered by the relaxation shift ΔE = − g2

ω0
that pushes the threshold of the photoemission spectrum to higher kinetic
energy. Remarkably, treating H1 in second-order perturbation theory one
would obtain the exact result foe ΔE. Note that the ground state |0s〉 of H̃
is the s vacuum while |i〉 is the d vacuum4. Since

d|0s〉 = γ|0s〉 (6.22)

that is, |0s〉 is an eigenstate of the annihilation operator, we say that it is a
coherent state for the d bosons.

Next I present a very simple way to solve Lundqvist’s model for the whole
spectrum (see 11.49 for a more sophisticated and general method). The eigen-
states of H̃ with eigenvalues En = ΔE + nω0 are

|ns〉 =
1√
n!

(s†)n|0s〉. (6.23)

We seek the density of states

L(ω) ≡ 〈i|δ(ω − H̃)|i〉 =
∞∑

n=0

|〈i|n〉|2δ(ω − En), (6.24)

so we need the Franck-Condon factors |〈i|n〉|2 ≡ |〈0d|ns〉|2. Let 〈0d|0s〉 = C;
then, 〈0d|1s〉 = 〈0d|s†|0s〉 = 〈0d|d† + g

ω0
|0s〉 = g

ω0
C, since the d† contribution

is 0. In general,

〈0d|ns〉 =
1√
n!
〈0d|(s†)n|0s〉 =

1√
n!

(
g

ω0
)nC. (6.25)

4The inflactionary cosmology regards the creation of the universe as a transition
from a false vacuum. In Physics one often meets amazing connections between very
unlike phenomena.
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The normalization condition gives

C = e−
1
2 a, a =

g2

ω2
0

= −ΔE
ω0

. (6.26)

Hence,

L(ω) = e−a
∞∑

n=0

an

n!
δ(ω −ΔE − nω0). (6.27)

The probability of n excited bosons Pn = an

n! e
−a follows the Poisson statis-

tics, reflecting the statistical independence of the non-interacting bosons, and
the average number of excited bosons is

〈n̂〉 = a = γ2. (6.28)

The density of states is normalized to 1 and its first moment is∫ ∞

−∞
dωωL(ω) = e−a

∞∑
n=0

an

n!
(nω0 +ΔE) .

Using (6.26) we readily find that this vanishes since

∞∑
n=1

an

n!
nω0 =

∞∑
n=1

an−1

(n− 1)!
aω0 = −ΔEea.

The center-of-mass of the line remains where it would be for g=0; the thresh-
old is at lower binding energy, at aω0 below the center-of-mass. Fourier trans-
forming L(ω) one finds the correlation function

2πL(t) =
∫ ∞

−∞
dωL(ω)e−iωt = 〈i|e−iHt|i〉

= e−a
∞∑

n=0

an

n!
eiaω0t−inω0t. (6.29)

Thus,
〈i|e−iHt|i〉 = eC(−t), (6.30)

where
C(t) = −iaω0t+ a(eiω0t − 1). (6.31)

Note the characteristic exponential at the exponent. For strongly coupled,
slow modes, the a� 1 case is relevant. Formally, we let ω0 → 0 with g2 = aω2

0

finite. Then, 〈e−iHt〉 → e−
g2t2

2 and one finds the Gaussian line shape

L(ω) =
1

g
√

2π
e
− ω2

2g2 . (6.32)
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The relaxation energy diverges in the Gaussian limit, which is a serious over-
estimate; however the Gaussian line shape is often a good approximation
for phonon broadened core levels in solids and the width provides a sensible
measure of the electron-phonon interaction, although the Gaussian should be
convolved with a Lorentzian (producing a so called Voigt profile) to account
for the core hole lifetime. The result

lim
a→∞ e−a

∞∑
n=0

an

n!
δ(ω + aω0 − nω0) =

1
g
√

2π
e
− ω2

2g2 (6.33)

will be useful in Section 15.3.2.

6.2 Auger CVV Line Shapes: Two-Hole Resonances

Electron spectroscopies are a most interesting window over the various and
apparently fantastic scenarios of many-body theory including the strong cor-
relation case and the appearing of bound states. This is particularly true for
the theory of the Auger effect[107] in solids (for a review of the Auger line
shape theory see Ref. [109]). In the core-valence valence transitions, the pri-
mary core hole decays into the Auger electrons and a pair of valence holes. In
the earliest theory developed by Lander[108] within the band theory of solids,
the Auger spectrum is proportional to the self-convolution of the density of
occupied states. However, Powell[110] pointed out that while the Al spectrum
was qualitatively consistent with the Lander predictions, the Ag spectrum is
quasi-atomic (it shows atomic multiplet peaks much narrower than twice the
band-width). Other authors [111] proposed a classification of spectra after
their atomic-like or band-like shape.

Strong deviations from one-electron theory arose in the first correlated
theory[75][76] of Auger CVV line shapes (now known as Cini-Sawatzky the-
ory). Let us consider an atom interacting with a solid, assuming for simplicity
that the valence orbitals of the atom and the solid band are completely filled;
the model Hamiltonian[76] in the hole representation is

H = Ha +HS +Hint +Hf (6.34)

where the atomic contribution

Ha = εdhc
†
dh↑cdh↑ + εl

∑
m,σ

c†mσcmσ +Hr (6.35)

comprises a spin-up deep hole term for the primary hole, c†mσ creates a
valence hole with magnetic quantum number m; Hr is the hole-hole re-
pulsion Hamiltonian with screened direct and exchange matrix elements
U(m1,m2,m3,m4). The crystal Hamiltonian HS and the atom-crystal hop-
ping term Hint are one-body contributions that can be chosen according to
any model deemed appropriate. Finally,
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Hf =
∑
k,σ

εkckσc
†
kσ (6.36)

describes the free particle continuum above the vacuum level; in the ground
state |Ψ〉 of H only the −→k holes exist and H |Ψ〉 = 0. Our initial state is
|i〉 = c†dh↑|Ψ〉. Core-Valence-Valence Auger transitions are produced by the
matrix elements

A(m,m′,k) = 〈φdh(1)φk(2)| 1
r12
|φm(1)φm′(2)〉 (6.37)

of the Coulomb interactions and their exchange counterparts. Inter-atomic
Auger transitions, producing holes on nearby atoms, are neglected because
their matrix elements are very small. Thus, the transitions lead to a set of
states

|mnσ〉 = c†nσc
†
m↑|Ψ〉 (6.38)

with two holes localized on the valence orbitals of the same atom that was
ionized initially. At this point Hf may be forgotten.

By the Fermi golden rule one finds[76] that the spectrum is proportional
to the free-electron density of states and to S(Ei − Ek,k), given by

S(ω,k) =
∑

mnpq

A∗
mn(k)Apq(k)Dmnpqσ(ω) (6.39)

where the local density of states (LDOS) for the two final-state valence holes
is

Dmnpqσ(ω) = 〈pqσ|δ(h̄ω −Hr −H1)|mnσ〉; (6.40)

here, H1 is the sum of all the one-body terms of H −Hf . The dependence
on the angles of k can be taken care of by multiple scattering techniques, in
the spirit of Ref. [86], but here we concentrate on the ω dependence.

The fact that the local density of states appears, rather than the band
density of states as in the Lander theory, is one of the main points of Ref.[76]
and qualifies Auger spectroscopy as a local probe of valence states. There
are two trivial special cases. In the atomic limit Hint = 0, and HS = 0;
then the Hamiltonian is diagonal in the L-S or |LSMMS〉 representation;
the spectrum consists of unbroadened multiplet terms. The other simple
limiting case is the non-interacting (Hr → 0) case; density of states ma-
trix D

(0)
mnpqσ(ω) is readily worked out in terms of the one-body local den-

sity of states ρmn(ω) = 〈m|δ(h̄ω − H)|n〉 = ρnm(ω) using their transforms;
here we define the correlation functions Dmnpqσ(t) = 〈pqσ|e−iHt|mnσ〉 and
ρmn(t) = 〈m|e−iHt|n〉, both with diagonal elements equal to 1 for t=0.

Indeed,

D
(0)
mnpq↓(t) = ρmp(t)ρnq(t)

D
(0)
mnpq↑(t) = ρpm(t)ρqn(t)− ρpn(t)ρqm(t). (6.41)
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In frequency space these become convolutions of one-hole densities of states.
To calculate the interacting density of states including the solid one can

use the identity (4.92) 1
z−H = 1

z−H0
+ 1

z−H0
H1

1
z−H that holds ifH = H0+H1.

In this case,H1 is identified with the repulsionHr andH0 is the one-body part
of H −Hf . Taking matrix elements in the basis (6.38) one obtains a matrix
equation for the Fourier transform of Dmnpqσ(t)Θ(t), using

∫∞
0
dt exp[i(ω −

H)t − δt] = i
ω−H+iδ . However, if the solid does not significantly perturb

the spherical symmetry of the atom, the the D matrices are diagonal in the
|LMSMS〉 representation, where Hr is diagonal, and obey uncoupled the
equations.

Then, we may drop the L,M indices and define

φ(0)(ω) = i〈00| 1
ω −H0 + iδ

|00〉 = i[I(0)(ω)− iπD(0)(ω)], (6.42)

with

I(0)(ω) =
∫ ∞

−∞
dω′D

(0)(ω′)
ω − ω′ . (6.43)

One obtains

φ(ω) =
φ(0)(ω)

1 + iUφ(0)(ω)
, (6.44)

and within the bands

D(ω) =
1
π
Reφ =

D(0)(ω)
(1− UI(0)(ω))2 + π2U2D(0)(ω)2

. (6.45)

The center-of-mass of D computed from (6.40) is
∫
dωωD(ω) = 〈H1+Hr〉

averaged over the appropriate multiplet L,M component; understanding the
term, it is shifted by U = 〈Hr〉, so correlation must deform the line shape
within the continuum. However no line shape can ensure this if U is too large,
and something must grow outside. Poles of φ outside the bands are two-hole
resonances.

To better understand the result, let us consider the rectangular local den-
sity of states

ρ(ω) =
θ(α− |ω|)

2α
. (6.46)

To do self-convolutions of functions that vanish outside an interval, it is ex-
pedient to use the identities⎧⎨
⎩
i) θ(a− |x|) = θ(a+ x)θ(a− x),
ii) θ(x+ a)θ(x + b) = θ(b− a)θ(x + a) + θ(a− b)θ(x+ b),
iii) θ(x + a)θ(c− x) = θ(a+ c) [θ(x + a)− θ(x− c)]

(6.47)

where iii) comes from ii) and θ(−x) = 1 − θ(x). One finds the triangular-
shaped result
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D0(ω) = θ(2α− |ω|)( 1
2α
− |ω|

4α2
). (6.48)

As an alternative route to (6.48) we can use ρ(t) = sin(αt)
αt , D0(t) =(

sin(αt
αt

)2

, and as this is symmetric we can compute the real Fourier transform
by calculating the cosine transform:

2πD0(ω) =
∫ ∞

−∞
dt cos(ωt)D0(t). (6.49)

Hence,by direct integration,

I0(ω) =
∫ ∞

−∞

dyD0(y)
ω − y

=
1
2α

log |ω + 2α
ω − 2α

|+ ω

4α2
log |ω

2 − 4α2

ω2
|. (6.50)

This, with (6.45) shows the distortion of band-like line shapes as γ = U
α

grows. However, for γ > 1.44, the intensity of the continuous line shape drops.
The overall intensity cannot drop, however. The missing intensity is in the
split-off the two-hole resonances, that however come into the theory as 0

0
singularities. To clarify the situation, a trick is in order. One changes the
above I0(ω) to a complex function by setting z = ω + iδ, and writing (see
6.42)

−iφ(0)(z) =
1
2α

log(
z + 2α
z − 2α

)+
z

4α2
log(

z2 − 4α2

z2
) = I0(ω)−iπD0(ω). (6.51)

This is equivalent to convolving the line shape with a Lorentzian of width δ,
which, incidentally, is always appropriate to describe broadenings [124] which
are present in reality even if they were not considered in the model. Hence
the two-hole singularities show up as Lorentzian peaks.

Two-hole resonances are also observed when core-holes interact with va-
lence holes and the core-valence repulsion is comparable with the valence band
width. For example,in Zn, Cu,Fe, Co, Ni metals there is evidence[191] that
a L2 hole can decay in a normal L2M45M45 process or in a Coster-Kronig
L2 − L2L3M45 − M45M45M45 process. It is possible to observe the decay
spectrum in coincidence with the L2 photoelectron in APECS (= Auger-
Photoelectron Coincidence spectroscopy) and compare with the L3M45M45

line shapes. In some of these metals the line shape is much narrower; this sug-
gests that in the L2L3M45 process the final-stateM45 hole is localized around
the L3 hole and thus can influence the 3-hole final state in the valence band.
The relation between the quasi-atomic states seen in Auger spectroscopy

and the Kanamori[67] paper was understood only later, after the Sawatzky
paper[112] using the Hubbard model with the Kanamori solution. Indeed a
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Fig. 6.2. For the rectangular band model, the two-hole line shape is triangular
for U = 0 (left panel,dotted), and is shown here broadened with δ = 0.01α. With
increasing U the maximum becomes sharper and shifts to higher ω, as shown for
U = 1.1α (left panel,solid). At U = 1.8 a well developed split-off state develops
(right panel, dotted). The solid line in the right panel shows the result for U = 3α
when most of the intensity is in the two-hole resonance, but a residual band-like
continuum can still be seen.

footnote in Kanamori’s paper on magnetism pointed out a narrow band of
solutions of the Hubbard model outside the band continuum which exist for
large enough U. In a periodic solid, the split-off states themselves form a
band. However Kanamori’s paper was in a different physical context, using
a different Hamiltonian than (6.34), and gave no clue about how to observe
these solutions.

Further extensions are presented below and in Chapter 12.
To deal with the Auger CVV spectra of covalently bonded semiconductors,

one has to include overlap effects[135]; the theory has also been extended to
include relativistic effects in intermediate coupling ([201]) and metallic bands
(Sections 12.3.1,12.3.2,12.3.3 ), but is still rather incomplete for strongly cor-
related nearly half filled bands.

6.2.1 Desorption

Later, Knotek and Feibelman[113] discovered that the two-hole resonances
cause ionic desorption5, e.g. of O+ ions from Ti Oxide surfaces. The primary

5Desorption is the breaking of an atom-surface chemical bond followed by the
emission of a neutral species or an ion; it can be caused e.g. by an increase of the
temperature, or by ionizing radiation.
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D(ω)

ω
α



6.3 Two Interacting Fermions in a Lattice 123

ionization occurs in the Ti 2p level, but the hole has little chance to Auger
decay via intra-atomic transitions since the Ti ion (nominally, T i4+ ) has
no valence electrons left. So, the electrons must come from the surrounding
closed-shell O− ions. One can consider electron transfer to the empty Ti
valence shell and/or direct inter-atomic decay. When two electrons come from
different O ions no desorption occurs; indeed, desorption takes several phonon
periods (of the order of 10−13s) and bond healing by hole delocalization
should be much faster. However, there is some chance of two holes in the
same O. In this case, a two-hole resonance forms and lives long enough to
allow the O+ ion to escape. The generalization of the theory to partially filled
bands is discussed in Section 12.3.

6.3 Two Interacting Fermions in a Lattice

The so called Cini-Sawatzky theory has been applied[153] to the N6,7O4,5O4,5

Auger spectrum of Au metal. The multiplet structure was interpreted in the
intermediate coupling scheme using free atom experimental data[154], and
using as the only parameter the F0 Slater integral, that is modified with
respect to the free atom by the solid state screening. The top panel (a) in
Figure 6.3 shows the experimental data calculated with a value of U(1G4)=3.4
eV (dashed); the solid line in (a) is obtained by shifting the dashed line
to higher binding energy by 1.2 eV. The profile in in excellent agreement
with experiment but its absolute position is wrong by 1.2 eV. On the other
hand, the profile calculated with U(1G4)=4.6 eV is shown in b). Now it is in
agreement with the experimental position of the main features but the shape
is in rather poor agreement with experiment. The profile of (c) is obtained
from the one in (b) by arbitrarily increasing the width of the Lorentzian
lifetime broadening to 2.0 eV. It is clear that this does not fix any problems.
So, it appears that the Cini-Sawatzky theory involves a systematic error on
the position. A similar shift between the best line shape and the experimental
position was found in an accurate analysis of the Ag M4,5N4,5N4,5 line[155],
where it is possible to get a very good agreement with the experimental profile
but the theoretical results must be shifted 2.2 eV to lower binding energy.

In both cases, we traced back the origin of the problem to the extreme
on-site repulsion used in the Cini-Sawatzky model. This prompted the fol-
lowing analysis aiming to generalize the calculation to an arbitrary distance
dependence of the hole-hole interaction.

Consider two electrons (or holes) in a otherwise empty (full) lattice Λ of
N → ∞ sites, interacting through an arbitrary potential V (ρ). Let’s write
|R1R2〉 for the determinantal two-body state with a up-spin electron at site
1 and a down-spin one at site 2; the sites belong to a periodic lattice in d
dimensions. Here I report exact results by Verdozzi and the writer[66] on the
two-hole Green’s function,
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Fig. 6.3. Sketch of the Au N6,7O4,5O4,5 Auger spectrum (Ref. ([153])) compared
with theoretical profiles (see text). The solid line is a drawing of the experimental
profile, on a binding energy scale, where 0 corresponds to both holes from the Fermi
level; the theory used the Slater integral F 0, or equivalently one of the U values,
as an adjustable parameter. The dotted line is the best shift to the theoretical
line shape obtained with U(1G4) = 3.4eV, but appears to be shifted compared to
experiment. By increasing U one can adjust the line position, but the line shape
agreement is lost (dashed line). To fix this problem, one must account for the off-site
interactions (see below).

G(R1,R2,R3,R4, z) = 〈R1 ↑ R2 ↓ |
1

z −H |R3 ↑ R4 ↓〉 (6.52)

with z = E−i0+, as a function of energy E (for two electrons,z = E+i0+,
but nothing else changes). The Hamiltonian is:

H = H0 +H1 =
∑

k

εkn̂k +
∑
R,ρ

V (ρ)|R ↑,R + ρ ↓〉〈R ↑,R + ρ ↓ |. (6.53)

Here, ρ belongs to the lattice of relative motion, which we call the ρ lattice,
isomorphous to Λ. For V = 0, the problem is trivial because H = H↑ +H↓;
then the time evolution operator factors and the non-interacting Green’s
function that we denote by a small g is given by

g(R1,R2,R3,R4, z) = g(1)(R1,R3, z)⊗ g(1)(R2,R4, z) (6.54)

where g(1) is the one-particle Green’s function and ⊗ denotes a convolution.
Let us deal with the interacting case. The center-of-mass vector

Rcm = R +
1
2
ρ (6.55)

belongs to a {Rcm} lattice which besides the sites ∈ Λ also includes the
midpoints of all sides.

The translational symmetry allows to take R1 as the origin without loss
of generality. The key step to exploit the periodicity is a Fourier transfor-
mation: the total crystal momentum Q of the pair is conjugate to Rcm and
is conserved, and one is left with an effective one-body problem over the ρ
lattice to be solved.
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Fourier Transforming the Center-of-mass Motion

Transforming with fixed ρ, and understanding the spin arrows,

|ρ; Q〉 =
∑
Rcm

eiQ·Rcm

√
N
|Rcm −

ρ

2
,Rcm +

ρ

2
〉 = e

i
2 Q·ρ
√
N

∑
R

eiQ·R|R,R + ρ〉

(6.56)
where the integration variable was shifted using (6.55). Moreover,

|R,R + ρ〉 =
1√
N

∑
Q

e−iQ·[R+ 1
2 ρ]|ρ; Q〉. (6.57)

One can immediately check that this {|ρ; Q〉} set is a correctly normalized
basis for two particles.

Fourier Transforming the Relative Motion

The trick is

∑
R

eiQ·R
√
N
|R,R + ρ〉 =

∑
R

eiQ·R
√
N

∑
ρ′
δ(ρ,ρ′)|R,R + ρ′〉 (6.58)

where we can use δ(ρ,ρ′) =
∑

q
eiq(ρ′−ρ)

N . So, this becomes

1
N

3
2

∑
q

e−iq·ρ ∑
R,ρ′

eiQ·R+iq·ρ′
|R,R + ρ′〉 =

1
N

3
2

∑
q

e−iq·ρ ∑
R,ρ′

ei[Q−q]·R+iq·[R+ρ′]|R,R + ρ′〉, (6.59)

but
∑

R,ρ′ =
∑

R,R+ρ′ and the result is

∑
R

eiQ·R
√
N
|R,R + ρ〉 =

1√
N

∑
q

e−iq·ρ|Q− q, q〉, (6.60)

where

|Q− q, q〉 = 1
N

∑
R,R+ρ′

ei[Q−q]·Reiq·[R+ρ′]|R,R + ρ′〉. (6.61)

Substituting (6.60 )in (6.56), one obtains

|ρ,Q〉 =
exp( i

2Q · ρ)√
N

∑
q

e−iq·ρ|Q− q, q〉. (6.62)
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Projected Hamiltonian

In the |ρ,Q〉 basis,

H =
∑
Q

HQ, HQ = HQ
0 +HQ

1 , (6.63)

where the interaction is diagonal,

HQ
1 =

∑
ρ

V (ρ)|ρ,Q〉〈Q,ρ|, (6.64)

while
HQ

0 =
∑
ρ,ρ′
|ρ,Q〉WQ

ρρ′〈Q,ρ′|; (6.65)

we determine WQ
ρρ′ using (6.62): one finds

WQ
ρ,ρ′ = e−

i
2 Q·(ρ−ρ′) 1

N

∑
q

eiq·(ρ−ρ′)[ε(Q− q) + ε(q)]. (6.66)

The Green’s Function

Due to the translational symmetry, G(R1,R2,R3,R4, z) can be computed
as G(0,ρ,R,R + ρ′, z); we change basis using (6.57) and write

〈0,ρ| 1
z −H |R,R + ρ′〉 = 1

N

∑
Q

e−iQ·[R+ 1
2 (ρ′−ρ)]GQ

ρρ′(z), (6.67)

terms of a Q-projected Green’s function

GQ
ρρ′(z) = 〈Q,ρ| 1

z −HQ
|Q,ρ′〉. (6.68)

The non-interacting two-particle function gQ has elements

gQ
ρ,ρ′(z) = e−

i
2 Q·[ρ−ρ′]∑

q

eiq·[ρ−ρ′]

z − ε(Q− q)− ε(q)
. (6.69)

The operator identity

1
z −HQ

=
1

z −HQ
0

+
1

z −HQ
0

V
1

z −HQ
; (6.70)

can be iterated:

1
z −HQ

=
1

z −HQ
0

+
1

z −HQ
0

V

[
1

z −HQ
0

+
1

z −HQ
V

1

z −HQ
0

]

=
1

z −HQ
0

+
1

z −HQ
0

{
V + V

1
z −HQ

V

}
1

z −HQ
0

. (6.71)
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Expanding the inverse operator inside the curly brackets and summing the
geometric series, we obtain

1
z −HQ

=
1

z −HQ
0

+
1

z −HQ
0

1
1− V 1

z−HQ
0

V
1

z −HQ
0

. (6.72)

We take matrix elements of (6.72) on the |ρ; Q〉 basis and we find, adopt-
ing matrix notation on the ρ lattice, with V diagonal,

GQ = gQ + gQ
[
1− V gQ

]−1
V gQ. (6.73)

This is the solution. The size of the matrix that must be inverted depends
on the range of the potential. In the zero-range case of the on-site potential
(Hubbard Model with local interaction U) we set ρ = ρ′, and write

gQ(z) =
∑

q

1
z − ε(Q− q)− ε(q)

. (6.74)

Then, Equation (6.73) is scalar and the solution can be simplified to read:

GQ =
gQ

1− UgQ
. (6.75)

This result by Kanamori[67] was proposed by Sawatzky [112] in the present
context. In the on-site case, a characteristic feature of the Kanamori theory
is the existence of split-off states for each Q for strong enough interaction U
compared to the band width. This single state can develop to a full discrete
spectrum for long-range V (see Ref. [66].) The results of the analysis in Ref.
[66] showed that the above described shift between the Cini-Sawatzy line
shapes and the experimental profile e.g. in Au and Ag could be accounted
for by a realistic screened hole-hole interaction. Sect. (12.2) below shows the
connection of the Kanamori theory to the Galitzkii self-energy in the low
density case and its relation to diagram methods. Some physical applications
of this theory to electron spectroscopy are presented in Sect. 6.2

6.4 Quadratic Response Formalism and Spectroscopies

Consider a weak, adiabatically switched periodic perturbation

V (t) = fV e−iωt+ηt, (6.76)

with η a small positive constant acting on an interacting system with Hamil-
tonian H ; here f is a parameter and V a time-independent operator. We
want the wave function Ψ(t) that reduces to the ground state e−iEtφg for
r → −∞. In the interaction picture,
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i
∂

∂t
ΨI(t) = VI(t)ΨI(t) (6.77)

with the starting condition ΨI(t) → φg in the remote past. In first approxi-
mation, we write (setting h̄ = 1)

i
∂

∂t
ΨI(t) = VI(t)ΨI(t) = fei[H−E−ω−iη]tV φg . (6.78)

Let z = E + ω + iη. The solution with the correct initial conditions is

ΨI(t) = φg + fei[H−z]t 1
z −HV φg. (6.79)

In the Schrödinger picture,

Ψ(t) = e−iEtφg + fe−izt 1
z −HV φg. (6.80)

Photoemission

Now let V = e
mc

∑
i A(xi) · pi (summed over electrons) the operator which

produces photoemission. In second quantization,V =
∑

p′,d τ(p
′, c)c†p′cd where

deep a electron is annihilated and a photoelectron created, and τ(p′, c) are the
matrix elements. We assume thatH includes the photoelectron kinetic energy
Tpe =

∑
p εpnp but no post-collisional interaction with the photoelectrons.

The photoelectron current is

Jp =
d

dt
〈Ψ(t)|np|Ψ(t)〉. (6.81)

in the above approximation, the current is a quadratic response in the pertur-
bation V (which is logical, since it is a d.c. response to an a.c. perturbation.)
Since npφg = 0,

〈np〉 = f2e2ηt〈φg |V
1

z∗ −Hnp
1

z −HV |φg〉. (6.82)

Hence,

Jp = 2ηf2e2ηt〈φg|V
1

z∗ −Hnp
1

z −HV |φg〉. (6.83)

Now since [np, H ]− = 0, we develop:

Jp = 2ηf2e2ηt
∑
dd′

τ∗(p, d′)τ(p, d)〈φg |c†d′
1

z∗ −H
1

z −H cd|φg〉 (6.84)

letting η → 0,
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Jp = 2f2
∑
dd′

τ∗(p, d′)τ(p, d)〈φg |c†d′
η

|z − εp −H |2
cd|φg〉 (6.85)

where the photoelectron energy εp has appeared (up to now, Tpe was part
of H , but now we use H for the system Hamiltonian without Tpe.) This is
actually

Jp = 2πf2
∑
dd′

τ∗(p, d′)τ(p, d)〈φg |c†d′δ(E + ω − εp −H)cd|φg〉 (6.86)

so the result depends on the one-hole density of states matrix ρdd′(ω) of the
system. This formalism generalizes the elementary theory of photoemission,
but offers the possibility of a clear enhancement of the understanding of the
Auger effect.

6.4.1 One-Step Theory of Auger Spectra

Let k label the Auger electron; for the current Jk = d
dt 〈Ψ(t)|nk|Ψ(t)〉 we find

like above

Jk = 2ηf2e2ηt〈φg |V
1

z∗ − (H +W + T )
nk

1
z − (H +W + T )

V |φg〉, (6.87)

where now, with a slight change in notation, we made explicit the operator

W =
∑

Whh′dkc
†
dc

†
kch′ch + h.c. (6.88)

producing the Auger transitions; c†k and c†d create the Auger electron and the
deep electron, respectively, and the annihilation operators create the pair of
final-state holes; also, T = Tpe + TA the kinetic energies of photoelectrons
and Auger electrons. Using

1
z −H −W − T =

1
z −H − T +

1
z −H − T W

1
z −H −W − T

and

1
z −H −W − T =

1
z −H − T +

1
z −H −W − T W

1
z −H − T

since nk
1

z−H−T V |φg〉 = 0 one is left with

Jk = 2ηf2e2ηt〈φg |V
1

z∗ −H −W − T W
1

z∗ −H − T nk

× 1
z −H − T W

1
z −H −W − T V |φg〉 (6.89)
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But nk commutes with H and T, for η → 0,

η
1

z∗ −H − T nk
1

z −H − T = πnkδ(E + ω −H − T ).

So, we reach the general expression of the one-step description of the Auger
effect by Gunnarsson and Schönhammer [22]:

Jk = 2πηf2〈φg |V
1

z∗ −H −W − T Wnk

×δ(E + ω −H − T )W
1

z −H −W − T V |φg〉. (6.90)

The most important terms are diagonal in the deep hole; writing V explicitly
and replacing T by TA + εp, where εp is the photoelectron energy,

Jk = 2πηf2
∑
p,d

|τ(p, d)|2〈φg |a†d
1

z∗ −H −W − εp − TA
Wnk

×δ(E + ω −H − T )W
1

z −H −W − εp − TA
ad|φg〉. (6.91)

The W operators in the denominators produce any number of virtual Auger
transitions after the deep hole creation and before the real transition takes
place; this can mix different decay channels giving interference effects. For
filled bands, it is reasonable to neglect interband excitations and deep hole
mixing letting (up to a constant)

1
z −H −W − T V |φg〉 ∼ V |φg〉〈φg |V

1
z −H −W − T V |φg〉,

recovering the Cini-Sawatzky theory.
Auger CVV spectra of transition metals with incomplete bands and the

so-called U<0 phenomenon are discussed in Section 12.3.

6.4.2 Plasmon Gain

Gunnarsson et al. [26] analyzed by their theory the plasmon gain satellites
which are observed experimentally in the KL2L3 spectra of Na and Mg by a
failure of the two-step model.

Problems

6.1. Verify that ĵ(x) is the current operator and that (6.2) yields the same
matrix elements as (6.1) and so the two formulations are equivalent.

6.2. Prove Equation 13.136.
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Symmetry in Quantum Physics



7 Group Representations for Physicists

.

7.1 Abstract Groups

Groups are central to Theoretical Physics, not only as mathematical aids
to solve problems, but above all as conceptual tools. We shall develop the
Group Theory that should be known by Condensed Matter theorists using
a physical language and building on what the readers know already about
quantum mechanical operators. In this Section, however, we need to introduce
some abstract mathematical definitions.

A Group G is a set with an operation or multiplication between any two
elements satisfying the following conditions:

– G is closed, i.e. a ∈ G, b ∈ G =⇒ ab ∈ G.
– The product is associative : a(bc) = (ab)c.
– ∃ an identity e ∈ G such that ea = ae = a, ∀a ∈ G.
– ∀a ∈ G, ∃a−1 that is every element has an inverse, such that a−1a =

aa−1 = e.

It is not necessary that G be commutative and generally ab 
= ba. Com-
mutative Groups are called Abelian. Quantum Mechanical operators do not
generally commute, and we are mainly interested in non-Abelian Groups. The
discrete Groups may have a finite number NG of elements; NG is called the
order of G.

Many Groups of interest have a finiteNG, like: the GroupC3v of symmetry
operations of an equilateral triangle, the Group S(N) of permutations of N
objects.

Infinite-order Groups are also important. The translations that leave a
Bravais lattice are an Abelian Group; the set of symmetry translations and
rotations of a crystal are is Space Group, and is not Abelian; both are infi-
nite discrete Groups. Among the continuous Groups, the most useful are the
Lie Groups , introduced by Sophus Lie in 1870 to discus the symmetries of
differential equations; by definition, Lie Groups are such that the elements de-
pend smoothly on some parameters. For example, GL(n) (the General Linear
Group in n dimensions) is the set of linear operations x′i =

∑
j aijxj , where
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A = aij is such that DetA 
= 0. The simplest case is GL(2), the set of 2 × 2

matrices
(
a b
c d

)
with ad−bc 
= 0 depends on 4 parameters (such a smooth de-

pendence defines a 4-dimensional manyfold). The SL(n) Group is a particular
case of GL(n), being the Special Linear Group in n dimensions or unimodu-
lar Group in n dimensions and is the set of linear operations x′i =

∑
j aijxj ,

where A = aij is such that DetA = 1. Other frequently used Groups are: the
rotation Group O(n) of orthogonal transformations, that leave Euclidean dis-
tances invariant1, and also of the orthogonal matrices such that AT = A−1.
We shall also need the Group U(n) of the unitary n×n matrices such that
A† = A−1 and the Group SU(n) of special (determinant equal to +1) unitary
transformations.

Let A and B denote two Groups with all the elements different, that is,
a ∈ A ⇒ a /∈ B, (except the identity, of course.) We also assume that all
the elements of A commute with those of B. This is what happens if the
two Groups have nothing to do with each other, for instance one could do
permutations of 7 objects and the other spin rotations. In such cases it is
often useful to define a direct product C = A×B, which is a Group whose
elements are ab = ba.

If H ⊂ G is a Group itself it is a subgroup of the Group G. For instance,
GL(2) has a subgroup O(2) which leaves distances invariant; the transla-
tions are a subgroup of the Space Group. Another subgroup of GL(2) is
defined such that given two points (x, y) and (ξ, η) in the plane, the op-

erations do not change Det
(
x y
ξ η

)
= xη − yξ. Writing the transformation(

x′

y′

)
=
(
a b
c d

)(
x
y

)
and

(
ξ′

η′

)
=
(
a b
c d

)(
ξ
η

)
, one finds the condition

Det

(
a b
c d

)
= 1, so one is left with SL(2). Usually one proceeds the other

way: one knows a Group H, discovers new operations and so builds G.
Let H be a subgroup of G; for A ∈ G consider the set

H̃(a) = {aha−1, h ∈ H}.

Since ah1a
−1ah2a

−1 = ah1h2a
−1, this is a subgroup of G, the conjugate

subgroup with respect to a. Occasionally, it may coincide with H itself (as
a set, not element by element), in which case we write aH = Ha. If ∀a ∈
G, aH = Ha, then H is called invariant subgroup of G, or normal divisor of
G.

1in 3d, the rotation operators R(α) = ei
−→α ·

−→
L

h̄ are familiar; the angular momen-
tum operators are generators of rotations.
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7.2 Point Symmetry in Molecules and Solids

In this section I give a brief account of Point Groups with the most frequently
used information; for further details, one can use crystallography books, like
Ref. [24]. The operations of the 32 point Groups are rotations (proper and
improper) and reflections. In the Schönflies notation, which is frequently used
in molecular Physics, proper rotations by an angle 2π

n are denoted Cn and
reflections by σ; improper rotations Sn are products of Cn and σ, the reflec-
tion plane being orthogonal to the rotation axis. The molecular axis is one
of those with highest n. A symmetry plane can be vertical (i.e. contain the
molecular axis) or horizontal (i.e. orthogonal to it), and the reflections are σv

or σh accordingly.

7.2.1 Symmetry operators

Let G = {R,S, T, · · ·} denote the symmetry Group. Unlike the operators of
observables, that must be Hermitean, those of symmetries are unitary:

∀R ∈ G, R−1 = R† (7.1)

in order to preserve normalization: 〈Rψ|Rψ〉 = 〈ψ|R†Rψ〉 = 1; this is evident
from the familiar rotation operators

Rα = exp
[
− i
h̄

α ·L
]
. (7.2)

The same holds for reflections: the σz : (x, y, z) → (x, y,−z) reflection is
represented by the unitary matrix diag(1,1,-1). Since R|ψ〉 = λ|ψ〉 ⇒ 〈ψ|R† =
λ∗〈ψ| ⇒ |λ|2 = 1, the eigenvalues are phase factors: λ = eiα, with real α.

The rule that eigenstates belonging to different eigenvalues are orthogonal
holds for unitary operators as well. Let R|φα〉 = eiα|φα〉, R|φβ〉 = eiβ |φβ〉.
Then,

Rαβ = 〈φα|R|φβ〉 = eiβ〈φα|φβ〉; (7.3)

on the other hand, taking the complex conjugate

R∗
αβ = 〈φβ |R†|φα〉 = φβ |R−1|φα〉 = e−iα〈φβ |φα〉; (7.4)

thus if the phases are different the scalar product is 0.
We can represent the operator S by the matrix

Dμν(S) = 〈ψμ|S|ψν〉 (7.5)

on an arbitrary basis; then

S|ψν〉 =
∑

μ

|ψμ〉Dμν(S). (7.6)
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Then, for the symmetry RS ∈ G

RS|ψν〉 = R
∑

μ

|ψμ〉Dμν(S) =
∑
μρ

|ψρ〉Dρμ(R)Dμν(S) =
∑

ρ

|ψρ〉Dρν(RS)

(7.7)
with

Dρν(RS) =
∑

μ

Dρμ(R)Dμν(S). (7.8)

thus, the matrices are multiplied like the operators and in the same order,
providing a representation of the Group.

In simple cases, all the symmetry operators commute; then we can diago-
nalize them simultaneously with the Hamiltonian matrix 〈ψμ|H |ψν〉. We can
diagonalize R, then with the new basis diagonalize S, and continue until we
have a new basis labeled with all the symmetry-related quantum numbers.
This breaks up the Hilbert space into several orthogonal subspaces. Then,
we can diagonalize H separately in each subspace. In such cases,we get the
maximum simplification from symmetry without Group Theory. The names
of Groups are just nicknames for the symmetry of the problem.

Bloch’s Theorem

In band structure calculations one solves[
p2

2m
+ V (x)

]
ψ(x) = εψ(x) (7.9)

in a periodic V (x). The translation operators Ti = e
ip·ti

h̄ , p = −ih̄∇ where
ti primitive translations of the Bravais lattice, define an Abelian Group GT .
The periodic boundary conditions TN

i = 1 for some large integer N allow
to use a finite, cyclic GT .Let −→G be a reciprocal lattice vector; by definition,

ei
−→
G ·−→t = 1 for any lattice translation −→t . We solve the eigenvalue equation

for all the unitary operators Ti

Tiψ(x) = ψ(x + ti) = eiαiψ(x) (7.10)

at a time, by the Bloch Theorem:

Theorem 1. Equation (7.9) is solved by

ψ(x) = ψk(x) = eik·xuk(x) (7.11)

with
uk(x) = uk(x + ti) (7.12)

periodic; αi = k · ti with the wave vector −→k =
−→
G
N .
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Indeed, the conditions TN
i = 1 require that eNkti = 1, so Nk must be a

reciprocal lattice vector. On the Bloch basis one has a sub-problem for each
k which reduces to seeking periodic solutions of

[
(p + k)2

2m
+ V (x)]uk(x) = εkuk(x) (7.13)

Water Molecule

Suppose want to calculate the molecular orbitals of H2O in a LCAO model
neglecting overlap. Putting the molecule on the xz plane, with z as the molec-
ular axis, we see that it belongs to the C2v point Group, with the operations
C2 : (x, y, z)→ (−x,−y, z); σ(xz) : (x, y, z)→ (x,−y, z); σ(yz) : (x, y, z)→
(−x, y, z) We can form the Multiplication Table:

E C2 σ(xz) σ(yz)
C2 E σ(yz) σ(xz)
σ(xz) σ(yz) E C2

σ(yz) σ(xz) C2 E

the Group is Abelian and the square of each operation is the identity E.
Therefore the eigenstates of H will be even or odd under any of the operations.
From an arbitrary basis {|ψν〉} we can generate 2 bases |C2±〉 = 1±C2√

2
|ψν〉,

then 4 bases |C2 ± σ(xz)±〉 = 1±σ(xz)√
2

1±C2√
2
|ψν〉, and 8 bases |C2 ± σ(xz) ±

σ(yz)±〉 = 1±σyz√
2

1±σ(xz)√
2

1±C2√
2
|ψν〉.One can diagonalizeH separately on these

bases. Here is a representation of the Group. If we replace every operator by
1, the multiplication Table is trivially verified; -1 choices are also allowed, as
follows:

C2v I C2 σxz σyz g = 4
A1 1 1 1 1 z
A2 1 1 −1 −1 xy,Rz

B1 1 −1 1 −1 x,Ry

B2 1 −1 −1 1 y,Rx

Such are the possible symmetry types of the solutions,that have conven-
tional names shown in the first column.

The C3v Group (NH3)

The C3v (or 3m) Group is the symmetry Group of an equilateral triangle (or
the Group S(3) of the permutations of 3 objects). Let the vertices be labeled
(a,b,c). The operations are a C3 rotation, its square (or inverse, which is the
same) and three vertical planes σa, σb, σc through the center and the vertices.
The sense of rotation is arbitrary and we may choose C3 as the operation
(a, b, c)→ (c, a, b); clearly σa (a, b, c)→ (a, c, b). Next, we need a convention
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about the multiplication of two operation. σaC3(a, b, c) = σa(c, a, b) The com-
monly adopted one states that the result is (c, b, a), that is, σa keeps the first
entry fixed, although the first operation sent a elsewhere. In other terms, it is
the position of symmetry elements that matters, while the label can change.

In this way, one notices that σaC3 = σb, but C3σa = σc, thus the Group
is not Abelian. All the information about the abstract Group is in the mul-
tiplication table.

E C3 C
2
3 σa σb σc

C3 C
2
3 E σc σa σb

C2
3 E C3 σb σc σa

σa σb σc E C3 C
2
3

σb σc σa C
2
3 E C3

σc σa σb C3 C
2
3 E

(7.14)

The rearrangement theorem holds:

Theorem 2. Each line and each column contain all R ∈ G.
This follows from the definition of Group. In any line or column there are g
elements, and all are distinct since for instance C3R = C3S ⇒ R = S. Every
operation does a permutation of the vertices. In C3v the converse is also true,
so C3v is isomorphous to S(3). Already in C4v the 8 operations are fewer
than the 24 permutations of 4 objects. The Cayley theorem states that

Theorem 3. Any group of order NG is isomorphous to a subgroup of S(NG).

Z3 = {E,C3, C
2
3} ⊂ C3v is an invariant Abelian subgroup. A Group G is

called simple if it does not have invariant subgroups. So, Z3 is simple, but
C3v is not. A Group G is called semi-simple if it does not have abelian
invariant subgroups. So, Z3 is semi-simple, but C3v is not.

It is interesting to find representations of Z3 using the multiplication table
above. Besides the trivial one, with all the operators represented by 1 (the
A1 representation below in Table 7.1 ) one can represent C3 by ε = e

2πi
3

and C2
3 by the third cubic root of 1, namely ε∗; in a third representation,

C3 → ε∗, C2
3 → ε. Thus, there are two complex conjugate representations.

The p orbitals of an atom centered at the origin behave differently un-
der Z3 : the z orbital, that we assume parallel to the rotation axis, is not
transformed and belongs to A1. The combination x + iy is multiplied by ε
and x− iy is multiplied by ε∗; thus the (x,y) pair is a basis for the conjugate
representations. This is reported in the last column of Table 7.1 )

The Quotient Group

Let H be a subgroup of order NH of G and g ∈ G. the sets

Hg = {hg, h ∈ H}, gH = {gh, h ∈ H}

are respectively right and left cosets. Both have exactly NH elements; for
instance, h1g = h2g multiplied on the right by g−1 becomes h1 = h2.
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C3 = Z3 I C3 C2
3 ε = e

2iπ
3

A1 1 1 1 z

E

{
1
1

{
ε
ε∗

{
ε∗

ε
(x, y)

Table 7.1. The Z3 Group and its representations.

For example, in C3v, using Z3 and σa one forms the right coset

{E,C3, C
2
3}σa = {σa, σb, σc}.

Using σb or σc one finds the same coset, while a rotation gives Z3. Actually,
we have split C3v in two subsets of 3 elements each as follows:

C3v = Z3 + Z3σa. (7.15)

Let us generalize these findings to any G. If we form a right coset using a
subgroup H ⊂ G of order NH and g ∈ H we only get elements hg ∈ H. On
the other hand, if g1 /∈ H the coset Hg1 is totally disjoint from H since for
all its NH elements we conclude hg1 /∈ H ; otherwise from hg1 = h′ ∈ H we
could deduce g1 ∈ H. If G is the union of H and Hg, we may conclude that
NG = 2NH . Otherwise, we form the coset Hg2 with g2 /∈ H, g2 /∈ Hg; now
Hg2 is disjoint from H and from Hg1 (since hg2 = h′g1 ⇒ g2 = h−1h′g1 ∈
Hg1). We go on until G has been totally partitioned:

G =
∑

j

Hgj. (7.16)

This proves the famous Lagrange Theorem:

Theorem 4. The order of any subgroup of G is a divisor of NG.

Let H be an invariant subgroup of G. All its right cosets are equal to the
left cosets, i.e. aH = Ha, ∀a. It is useful to define some multiplications of
sets. We may say that aH ×H = aH , meaning that for any element of the
coset ahh′ = ah′′ is again in aH.

For example,Z3 is an invariant subgroup of C3v and the left coset σaZ3 =
{σa, σb, σc} is the set of reflections; multiplying by the rotations in Z3 we
get nothing more and {σa, σb, σc} × Z3 = {σa, σb, σc} . In a similar way, we
can define an abstract set multiplication, treating the cosets as elements; for
instance aH × bH is the set of all the elements ah1bh2, h1 ∈ H,h2 ∈ H ; it is
understood that every element may occur more than once and we remove all
duplicates. Since H is invariant, h1b = bh3 for some h3 ∈ H ; so, aH × bH =
abH and aH × a−1H = H. Thus, the cosets are elements of the quotient
Group G/H, where H is the identity. Broadly speaking C3v/Z3 reduces to
two elements, the rotations and the reflections; rotation× rotation= rotation,
rotation × reflection= reflection, and reflection × reflection= rotation. This
is a powerful synthesis of the multiplication table of C3v.
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7.2.2 Dirac characters and Irreducible Representations

When G is not Abelian, the elementary method allows diagonalizing H si-
multaneously with one or a few R ∈ G. In the C3v example, one can choose
C3 (and C2

3 , but this adds nothing) or one reflection. In this way, one is ne-
glecting most of the symmetry related information. Although this does not
cause errors, the use of Group Theory is much more rewarding.

We must find functions of the operators R ∈ G such that they commute
with all G elements (besides H ; but this we take for granted, by definition of
a symmetry Group). We could think about powers or products, but since G
is closed the most general function is a linear combination. For any abstract
Group, the linear combinations of the elements constitute the Group algebra.
Intuitively, Ω =

∑NG

T∈G T should be a symmetric object. This is a good idea,
since, by the rearrangement theorem (2)

∑NG

T∈G TS =
∑NG

T∈G T = S
∑NG

T∈G T,
so Ω commutes with all G.

Actually, we can do much better than that; intuitively, the sum of all
rotations of a given angle is already a symmetric object, the sum of all reflec-
tions another one. To proceed, we need to introduce the class concept, that
allows to classify together operations that do essentially the same thing: such
operators are called conjugated2. Mathematically, two operators A and B are
conjugated

A " B = {∃X ∈ G : A = X−1BX} (7.17)

which is tantamount to say that X is a change of reference that converts
B into A. Thus, C3v has 3 classes {E} ,

{
C3, C

2
3

}
, {σa, σb, σc} . In Abelian

Groups each element is conjugated to itself. The Identity E is trivially a
class. For every class C, with nC elements, we define Dirac’s character

ΩC =
nC∑

T∈C

T, (7.18)

that commutes with all G, that is ∀X ∈ G,ΩC = X−1ΩCX. Indeed,
X−1ΩCX =

∑nC

T∈C X−1TX has nC terms conjugated with T and such
terms are all different because X−1TX = X−1T ′X ⇒ T = T ′. So, we have a
quantum number for each class.

For C3v, the Dirac characters are

ΩE = E,ΩR = C3 + C2
3 , Ωσ = σa + σb + σc.

These are simultaneously diagonal and their eigenvalues ωE = 1, ωR, ωσ (ex-
cept the first, which is trivial) are useful wavefunction labels. They are not
independent, but occur in combinations. Using the multiplication table,

2this term is rather strange, since an element can be conjugated to any number
of elements.
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Ω2
R = 2 +ΩR; (7.19)

hence

ω2
R = 2 + ωR ⇒ ωR =

{
2
−1 (7.20)

Ω2
σ = 3 + 3ΩR ⇒ ω2

σ = 3 + 3ωR. (7.21)

The allowed combinations correspond to the possible symmetry types allowed
by C3v; they are called Irreducible Representations or Irreps for short:

Irrep ωR ωσ

A1 2 3
A2 2 -3
E -1 0

(7.22)

We can label H eigenstates by the irreps; remarkably, they are never
mixed by symmetry operations since

∀X ∈ G,ΩC |ψ〉 = ωC |ψ〉 ⇒ ΩCX |ψ〉 = ωCX |ψ〉. (7.23)

A1 is a trivial representation with all operators represented by 1 and Dirac
characters equal to nC for each class. This totalsymmetric representation
exists for any Group, since any multiplication table is satisfied. A2 is similar
but odd for reflections. In all non-Abelian Groups there are irreps that require
matrices, rather than numbers, to represent operators, and the irrep E above
is an example. Just consider transforming a point (x, y) in the plane ((px, py)

1

23
x

y

Fig. 7.1. The chosen geometry, with the σ1 reflection that changes x into -x.

orbitals or any pair of functions transforming like (x,y) will do the same):

D(E) =
(

1 0
0 1

)
;D(C3) =

(
c −s
s c

)
;D(σa) =

(
−1 0
0 1

)
(7.24)

with c = cos(2π
3 ) = − 1

2 , s = sin(2π
3 ) =

√
3

2 . These are the generators, i.e., the
others can be obtained by multiplication:

D(C2
3 ) = D(C3)2 =

(
c s
−s c

)
; D(σb) = D(σa)D(C3) =

(
−c s
s c

)
;

D(σc) = D(σa)D(C2
3 ) =

(
−c −s
−s c

)
. (7.25)
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The multiplication table is obeyed. How can the Dirac characters commute

with every D? One finds ΩR =
(
−1 0
0 −1

)
, Ωσ =

(
0 0
0 0

)
. The size m of the

representative matrices of the Irreps (m=1 for A1 and A2, m=2 for E) grows
with the size and complexity of the Group. In the 32 point Groups one finds
at most vector or pseudovector representations having m=3, but much larger
sizes occur in more advanced applications.

The whole Hilbert space is partitioned into subspaces labelled by the
irreps; besides the symmetry operators, H does not have matrix elements be-
tween states with different good quantum numbers and the diagonalization
problem is broken. Diagonalizing H within each subspace one finds eigen-
states carrying the Irrep label. Consider a pair of eigenfunctions (ψx, ψy)
belonging to the Irrep E; Hψx = εxψx, Hψy = εyψy. However, εx = εy = ε,
because every operation S ∈ G maps ψx into a linear combination Sψx =
αψx +βψy, but since [S,H ]− = 0, the transformed function Sψx must belong
to the same eigenvalue as before. The same reasoning can be repeated for the
Ω matrices. To sum up, the matrices of H and those of Dirac characters have
the remarkable property of being constants, that is, identity matrices I(m×m

multiplied by numbers:

H = εIm×m, ΩC = ωCIm×m (7.26)

By a unitary transformation
(
x′

y′

)
= U

(
x
y

)
we can change basis

and matrices within the E irrep. Let U be a rotation: then ∀R,D(R) →
UD(R)U−1 is consistent with the multiplication table and does not modify
the Dirac characters. Thus, one of the non-trivial D(R) matrices can always
be chosen diagonal. Up to this unitary transformation, the Irreps with the
same characters are to be identified. For instance, we may wish to have a new

representation D̃ in which D̃(C3) is diagonal. Picking U =

(
1√
2

i√
2

1√
2

−i√
2

)
, which

is unitary (U †U =unit matrix), D̃(C3) = U ·D(C3)·U † = diag(e2iπ/3, e−2iπ/3)

is diagonal; D̃(C2
3 ) is also diagonal of course, but U ·D(σa) ·U † =

(
0 −1
−1 0

)
and the other reflections are off-diagonal.

By joining the basis of an Irreps of size m1 with basis of an Irreps of
size m2 we obtain a basis of size m1 +m2 with D matrix in block form. By
unitary transformations we can generate m1 +m2 representatives which are
no longer in block form. In general, by taking linear combinations of several
bases of Irreps, we can form bigger representatives with no simple pattern
of vanishing elements. These are called reducible representations to imply
that the intelligent thing to do is just the reverse of this process. Starting
with an arbitrary basis that yield big and useless D matrices one would like
to find linear transformations that put the D matrices in block form, and
allow separating the basis in symmetry-adapted parts; when the blocks can
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no longer be reduced in size, the Irreps are obtained. Therefore we cannot
put all the matrices of an irrep in the same block form.

Traces and Characters of an Irrep

Consider a basis and the representative matrices of a m-dimensional irrep i
(in this paragraph I omit the index i for short). The trace

χ(C) = TrD(R) =
∑

μ

Dμμ(R), R ∈ C (7.27)

is the same for all D matrices in the given class C, since the Tr operation
is invariant under unitary transformations like conjugation. χ(C) is called
character, and is related to Dirac’s character. The matrices of the ΩC are
constants3, hence, recalling the definition of ΩC

TrΩC = mωC = nCχ(C). (7.28)

Thus,
χ(C) =

m

nC
ωC . (7.29)

The characters χ(C) are very useful, as we shall see, and are tabulated for
the point Groups (See Appendix II; note that these tables are square (the
number of irreps is equal to the number of classes).). In particular TrΩE = m
can be read off the Tables.

Actually, the tables were computed (and can be found for new Groups
when necessary) from the multiplication Table; one first deduces the classes
and ωc as in the above example. One does not know m a priori but shall
derive below

m2 =
NG∑
C

ω2
C

nC

. (7.30)

With this result, the reader is already able to calculate the character tables.

7.2.3 Schur’s lemma

We have shown above that the matrices of Dirac characters and of H within
an irrep are multiples of the identity matrix. Due to the importance of this
crucial point I’ll present a second proof, the traditional one based on Shur’s
lemma. The two arguments enlighten different facets of the problem; it will
be apparent below that this is just a matter of algebra.

Lemma 1. Any m×m matrix M commuting with all the representative ma-
trices D(Ri), 1 = 1, · · ·NG) of an m-dimensional Irrep must be proportional
to the Identity matrix Im×m.

3H is also constant and TrH = mε.
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We first prove the lemma for a 2× 2 diagonal matrix, then generalize to any
matrix of any size.

Proof for a diagonal matrix

For 2× 2 matrices, we let M = Δ = diag(d1, d2), with A =
(
a11 a12

a21 a22

)
, and

[A,Δ]− =
(

0 a12(d2 − d1)
−a21(d2 − d1) 0

)
=
(

0 0
0 0

)
.

Now, if d2 were 
= d1, this would require a diagonal A. Since one cannot
diagonalize simultaneously all the D(Ri), 1 = 1, · · ·NG), we conclude that
d2 = d1.

In the 3×3 case, we let M = Δ = diag(d1, d2, d3), and the same reasoning
leads to

[A,Δ]− =

⎛
⎝ 0 a12(d2 − d1) a13(d3 − d1)
a21(d1 − d2) 0 a23(d3 − d2)
a31(d1 − d3) a32(d2 − d3) 0

⎞
⎠ .

If all the di are different, this vanishes only for diagonal A. If d1 is different
from the other diagonal elements, the a11 element must be one block, sepa-
rated from the rest, which cannot be true for all the representative matrices
in an irrep. This is formally generalized formally to matrices of any size with
the conclusion that Δ = λIm×m for some λ.

Proof for a Hermitean M
Assuming M hermitean we know that by a unitary transformation U it can
be diagonalized U · M · U † = Δ = λIm×m and actually this implies that
M = λIm×m in any basis.

Proof for any M

We can do without the assumption that M is Hermitean. Indeed, H1 =
M + M † and H2 = −i(M − M †) are Hermitean at any rate. Now, we
show that M † also commutes, for, by taking the Hermitean conjugate of
D(Ri)M = MD(Ri), one finds M †D(Ri)† = D†(Ri)Mdag. Now we multi-
ply on the left and on the right by D(Ri) and since it is unitary we find
D(Ri)M † = M †D(Ri). Then H1 and H2 also commute, and are constants.
Therefore, M = 1

2 (H1 − iH2) = λIm×m,
q.e.d.

7.2.4 Continuous Groups

Many Groups of fundamental importance in Physics are Lie Groups. They
are continuous (elements can be labeled by parameters) and continuously
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connected ( for every pair of elements a continuous path in parameter space
can be found that joins them). Moreover, the parameters of the products are
C1 functions of those of the factors.

A compact Lie Group has all parameters that vary over a closed interval;
the Lorentz Group and the Group of all translations are noncompact Lie
Groups, while the rotations are a compact Lie Group.

The phase factors eiα constitute the Group U(1). The SO(3) Group of
rotations in 3d is a continuous Group. An element may be represented as a
vector −→φ directed along the axis and with length equal to the angle of (say,
counterclockwise) rotation φ; this corresponds to a sphere of radius π where,
however, each point of the surface is equivalent to the opposite one. All the
rotations with the same |φ| belong to the same class. the angular momentum
operator −→L is the generator of infinitesimal rotations. For integer L one finds
2L+1 spherical harmonics YLM (θ, φ) that are simultaneous eigenvectors of
L2 and Lz. Only the harmonics of a given L mix under rotations; they are
the basis of an irrep.

For angular momentum J = 1
2 , the rotation operators (7.2) build a double

valued representation, since R−−−−→
φ+ 2π

= −R−→
φ

; they make up SU(2), the

covering Group of O(3) corresponding to a sphere of radius 2π. The Wigner
matrices are defined by

Rα|Jm〉 =
J∑

m′=−J

|Jm′〉DJ
m′m(α). (7.31)

The SU(3) Group is a paradigm of Particle Physics. SO(4) is the rotation
group in 4d; rotations are in the planes ij with i and j = 1 to 4. Therefore

there are
(

4
2

)
= 6 generators A1, A2, A3, B1, B2, B3; it can be shown that

[Ai, Aj ]− = iεijkAk,[Bi, Bj ]− = iεijkBk and [Ai, Bj ]− = 0.

7.3 Accidental degeneracy and hidden symmetries

Let H be a Hamiltonian of C3v symmetry; if one succeeds to separate the
Hilbert space according to the irreps, the problem breaks down into inde-
pendent subproblems of A1, A2 and E symmetry; in the E subspace one can
decide to have σa diagonal; if σa is the reflection that sends x to −x one has
(ψx, ψy) pairs that are not mixed by H since they form a m = 2 subspace
where H is constant. If one diagonalizes H in the x subspace finds all the ψx;
from each ψx one then finds the corresponding ψy without need of further
diagonalizations; one could apply any off-diagonal operator like C3 and then
orthogonalize to ψx. In general, the knowledge of one eigenfunction is enough
to determine all the m degenerate eigenfunctions belonging to the same irrep.

Sometimes one finds unexpected degeneracies. Eigenfunctions belonging
to non-degenerate irreps are found to be degenerate; or the actual degeneracy
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d is higher than m. The most popular case occurs in the Schrödinger theory
of the H atom, when energy depends only on the principal quantum number
n and orbitals have a n2−fold degeneracy, while the spherical symmetry only
allows the energy to be independent on magnetic quantum number. In such
cases, one cannot produce the 2p orbitals by rotating the 2s one. In such
cases, one speaks of accidental degeneracy.

It is possible that by accident two states unrelated by symmetry come so
close in energy to appear degenerate in low resolution experiment; however
a mathematically exact degeneracy with no symmetry reason is miraculous.
Simply, one was unaware of using a Subgroup of the actual Group, because
some symmetry had still to be discovered, as in the following examples.

Hydrogen Atom

The n2−fold degeneracy of the non-relativistic H atom Hamiltonian

H =
p2

2m
− k

r
(7.32)

is explained by a dynamical symmetry, specific of the 1
r potential.

The Classical Runge-Lenz Vector

The fact that the force −→F = −k
−→r
r3 is central explains the conservation of

angular momentum: d
−→
L
dt = −→v ∧−→p +−→r ∧−→F = 0. We take the z axis along −→L ,

and the motion occurs in the z = 0 plane. The special form of the potential
entails the conservation of the Runge-Lenz vector

−→
R =

−→p ∧ −→L
m

− k
−→r
r
. (7.33)

To see that, using d
dt

1
r = −

−→r ·−→v
r3 , one works out

d

dt

−→r
r

=
r2−→v −−→r (−→r · −→v )

r3
. (7.34)

The x component of the numerator is (x2 + y2)vx − x(xvx + yvy) = − L
my.

Developing in this way, one finds

d

dt

−→r
r

=
L

mr3
(−y, x, 0). (7.35)

The conservation of −→R follows comparing this with

d

dt

−→p ∧ −→L
m

=
L

m
(Fy ,−Fx, 0) =

kL

mr3
(−y, x, 0). (7.36)
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During the motion,−→p ∧−→L is in the xy plane. At perihelion,−→p ⊥ −→r ⇒ −→p ∧−→L ‖
−→r ⇒ −→R ‖ −→r . Since it is conserved, −→R is pinned at the aphelion-perihelion
direction4 and this is why the orbits are closed5 .

Quantum Runge-Lenz Vector

The quantum Runge-Lenz vector

−→
R =

−→p ∧−→L −−→L ∧ −→p
2m

− k
−→r
r
. (7.37)

commutes with H ; the calculation can be carried out like above, with dA
dt

replaced by i
h̄ [H,A]−. Hence,

HψLM = EψLM ⇒ H
−→
RψLM = E

−→
RψLM ;

but one can check that −→R does not commute with L2, so −→RψLM does not
belong to L and the energy must be L independent. More details and the rela-
tion to the O(4) Group worked out by Pauli can be found on Schiff’s book[25].
In the relativistic case, the Dirac-Coulomb HamiltonianHDC commutes with
the Biedernharn-Johnson-Lippman (BJL) pseudoscalar operator

B =
i

mc2
Kγ5(HDC − βmc2)−

Ze2

c

−→
Σ · −→r
r

(7.38)

where K = β
[−→
Σ · −→L + h̄

]
, −→Σ =

(−→σ 0
0 −→σ

)
, β = γ4, γ5 = γ1γ2γ3γ4. This is

the reason why the levels do not depend on the sign of K and for instance
the pairs (2s1/2, 2p1/2), (3s1/2, 3p1/2), (3p3/2, 2d3/2) are degenerate in Dirac’s
theory.

Appearence is Deceptive: Simple Example

The square tight-binding cluster described by

h =

⎛
⎜⎜⎝

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

⎞
⎟⎟⎠ (7.39)

has the following spectrum:

4For circular orbits, using mv2

r
= k

r2 one fonds that
−→
R vanishes.

5The 2d isotropic harmonic oscillator also does; the energy is conserved along
both axes, so there is an extra conserved quantity also in that case.
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ε ψ

-2 ψ−2 = (1
2 ,−

1
2 ,−

1
2 ,

1
2 )

0 ψ0,1 = ( 1√
2
, 0, 0,− 1√

2
)

0 ψ0,2 = (0, 1√
2
,− 1√

2
, 0)

2 ψ2 = (1
2 ,

1
2 ,

1
2 ,

1
2 )

and the degeneracy is expected because the irrep E of C4v has to be repre-
sented. The eigenvalues come in pairs (±|ε|) since this graph is bipartite.

a)

3 4

1 2

b)

3 4

1 2

Fig. 7.2. llustrative example of dynamical symmetry. a) square tight-binding clus-
ter b) deformed cluster with heavy lines denote doubled matrix elements. The sym-
metry Group of b) is isomorphic to the Group of the square.

Now we deform the square, by changing the hopping integrals to and
from an atom: let’say, we double those connecting site 3 to 1 and 4. Now, the
Hamiltonian reads

ȟ =

⎛
⎜⎜⎝

0 1 2 0
1 0 0 1
2 0 0 2
0 1 2 0

⎞
⎟⎟⎠ . (7.40)

The deformed cluster has much less geometrical symmetry but as much dy-
namical symmetry as before. Was the degeneracy removed? No. The first
and last lines are equal and the other two are proportional, thus two zero
eigenvalues are still there. Indeed, ȟ has the following spectrum:

ε ψ

−
√

10 (1
2 ,−

1√
10
,−
√

2
5 ,

1
2 )

0 ( 1√
2
, 0, 0,− 1√

2
)

0 (0,− 2√
5
, 1√

5
, 0)

√
10 (1

2 ,
1√
10
,
√

2
5 ,

1
2 )

There is accidental degeneracy. One symmetry element is the reflection
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σ =

⎛
⎜⎜⎝

0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

⎞
⎟⎟⎠

with σψ0,1 = −ψ0,1; σψ0,2 = ψ0,1. To explain this degeneracy we want a
non-Abelian Group. Indeed, the 90 degree rotation is broken, but we seek a
convenient generalization S, with ST = S−1, ST ȟS = ȟ. We seek it such that
opposite sites are not coupled ( S14 = S23 = 0) and S12 = S24, S13 = S34.
One solution is the generalized 900 rotation

S =

⎛
⎜⎜⎝

0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

⎞
⎟⎟⎠→ Š =

1√
10

⎛
⎜⎜⎝

0 −1 3 0
3 0 0 −1
1 0 0 3
0 3 1 0

⎞
⎟⎟⎠ (7.41)

Note that S4 = 1 and S does not produce a permutation of sites but
is a genuine generalization. Moreover S mixes ψ0,1and ψ0,2, does not com-
mute with σ and explains the degeneracy. The deformed problem has a lower
geometrical symmetry, but actually is still C4v symmetric because of a hid-
den dynamical symmetry. More dynamical symmetries will be discussed in
Sect.17.0.6.

7.4 Great Orthogonality Theorem (GOT)

The theorem states that the D matrices are orthogonal over all their indices.

Theorem 5. (Great Orthogonality Theorem)
Let D(i)

μν(R) be the μν element of the matrix of the irrep i representing the
element R ∈ G. Let NG be the order of the Group and let mi be the dimension
of the irrep i. Then

∑
R∈GD

(i)
μν(R)∗D(j)

αβ(R) = NG

mi
δijδμαδνβ . (7.42)

The GOT is the central result of Group representation theory, and I prepare
the proof by a few remarks.

Remark 1: I am going to present the proof for discrete Groups, however
the GOT extends to continuous ones. The following orthogonality holds for
the Wigner matrices[23]∫

dΩDJ∗
ab (αβγ)DJ′

a′b′(αβγ) =
8π2

2J + 1
δa,a′δb,b′δJ,J′ (7.43)

where α, β, γ are Euler angles and
∫
dΩ =

∫ 2π

0
dα
∫ π

0
sinβdβ

∫ 2π

0
dγ.
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Remark 2: Let us resume the degenerate (m = 2) irrep of C3v and the
matrices

E C3 C2
3 σa σb σc(

1 0
0 1

) (
− 1

2 −
√

3
2√

3
2 − 1

2

) (
− 1

2

√
3

2

−
√

3
2 −

1
2

) (
−1 0
0 1

) (
1
2

√
3

2√
3

2 −
1
2

) (
1
2

−√
3

2
−√

3
2 − 1

2

)
(7.44)

Note that C2
3 is the inverse of C3 and its matrix is D(C3)T . More generally,

the operators are unitary and

D(i)
μν(R)∗ = D(i)

νμ(R−1). (7.45)

Remark 3: Let ψi
μ be basis function belonging to the μ-th component of

the irrep i and O represent a total-symmetric operator, that is,

[O, R]− = 0, ∀R ∈ G.

Theorem 6. The matrix elements obey the following rule:

〈ψi
μ|O|ψj

ν〉 = O(i)δijδμν . (7.46)

For i 
= j, ψi and ψj are orthogonal because they belong to different eigen-
values of at least some Ωc. The invariant operator O commutes with the
Dirac characters, so O|ψj〉 has the same characters as |ψj〉. For i = j the
matrix {Oμν} represents an operator that commutes with everything, so it
must commute with all the D matrices; so Schur’s lemma applies.

For example, a spherically symmetric potential has vanishing matrix el-
ements between states of different L and within L it has vanishing matrix
elements between states of different ML; the diagonal matrix elements are
independent of ML and depend on L.

Remark 4:

Theorem 7. Consider an arbitrary operator Ξ.

O =
∑
R∈G

R−1ΞR (7.47)

is an invariant operator.

This follows immediately from the rearrangement theorem: ∀ T ∈ G,OT =
TT−1

∑
R∈GR

−1ΞRT = T
∑

R∈G(TR)−1Ξ(TR) = TO.

Remark 5:
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(example of GOT)

Let us form 6-component lists with the elements of the D matrices; if we
treat them like vectors and compute the norms we find 6 for the irreps with
m=1 and 3 for those with m=2.

element list
∑

of squares
11 of irrep E (1,− 1

2 ,−
1
2 ,−1, 1

2 ,
1
2 ) 3

12 of irrep E (0,−
√

3
2 ,

√
3

2 , 0,
√

3
2 ,−

√
3

2 ) 3
21 of irrep E (0,

√
3

2 ,−
√

3
2 , 0,

√
3

2 ,−
√

3
2 ) 3

22 of irrep E (1,− 1
2 ,−

1
2 , 1,−

1
2 ,−

1
2 ) 3

irrep A1 (1, 1, 1, 1, 1, 1) 6
irrep A2 (1, 1, 1,−1,−1,−1) 6

Moreover these vectors are all orthogonal.

Proof of GOT

We insert (7.47) into (7.46)but do not specify yet Ξ:∑
R∈G

〈ψi
μ|R−1ΞR|ψj

ν〉 = O(i)δijδμν . (7.48)

Letting R operate with

R|ψj
ν〉 =

∑
ρ

|ψj
ρ〉|D(j)

ρν (R),

〈ψi
μ|R† =

∑
σ

〈ψi
σ|D(i)

σμ(R)∗,

we find

〈ψ(i)
μ |Ξ|ψ(j)

ν 〉 =
∑
R∈G

∑
ρσ

〈ψi
σ|Ξ|ψj

ρ〉D(j)
ρν (R)D(i)

σμ(R)∗ = O(i)δijδμν . (7.49)

To prove the GOT we must eliminate
∑

ρσ〈ψi
σ|Ξ|ψj

ρ〉. Now we take advantage
of the total freedom to choose Ξ as we like. If we assume that for some pair
of components, α and β, say ,

Ξ = |ψi
α〉〈ψ

j
β |, (7.50)

then 〈ψi
σ|Ξ|ψj

ρ〉 = δασδβρ, we end up with∑
R∈G

D
(j)
βν (R)D(i)

αμ(R)∗ = Oαβ(i)δijδμν . (7.51)
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The matrix element Oαβ(i) could in principle have acquired a dependence
on the α and β indices, but we have proven the orthogonality on the second
indices. The orthogonality on the first indices α and β is obtained by tak-
ing the complex conjugate, and noting that this exchanges the indices and∑

R−1 =
∑

R. Thus,∑
R∈G

D
(j)
βν (R)D(i)

αμ(R)∗ = O(i)δijδμνδαβ . (7.52)

To determine O(i) we set i = j, μ = ν and α = β. We get∑
R∈G

D(i)
αμ(R)∗D(i)

αμ(R) = O(i) =
∑
R∈G

D(i)
μα(R−1)D(i)

αμ(R). (7.53)

Summing over α from 1 to mi,

miO(i) =
∑
R∈G

D(i)
μμ(E) =

∑
R∈G

1 = NG. (7.54)

This completes the proof.

The GOT is an orthogonality relation between vectors having NG com-
ponents, one for each component of D(i)

αβ(R); each irrep contributes m2
i com-

ponents, and in order that they be orthogonal∑
i

m2
i ≤ NG. (7.55)

This is an important restriction on the number and on the dimensions of
irreps. We prove below Burnside’s theorem∑

i

m2
i = NG. (7.56)

7.5 Little Orthogonality Theorem (LOT)

From GOT we may obtain an orthogonality theorem between characters
which is called LOT. The diagonal elements obey∑

R∈G

D(i)
μμ(R)∗D(j)

αα(R) =
NG

mi
δijδμα. (7.57)

Summing on μ, α one obtains the LOT

∑
R∈G χ

(i)(R)∗χ(j)(R) = NGδij . (7.58)

In particular,
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R∈G

|χ(i)(R)|2 = NG, (7.59)

which gives a method to verify that a given representation is indeed ir-
reducible; if we mix two irreps i and j with coefficients ni and nj , then
χ(R) = niχ

(i) + njχ
(j) and the r.h.s. becomes NG

[
n2

i + n2
j + 2ninjδij

]
.

Rewriting the LOT in terms of classes,∑
C

nC |χ(i)(C)|2 = NG, (7.60)

and inserting χ(i)(C) = miωC

nC
we obtain

mi =

√√√√ NG∑
C

ω2
C

nC

. (7.61)

A reducible representation can be reduced to block form and the block of the
i-th irrep appears ni times along the diagonal; on any basis, the trace is

χ(R) =
∑

j

njχ
(j)(R).

Now multiply by χ(i)(R)∗ and sum over R:∑
R

χ(i)(R)∗χ(R) =
∑

j

nj

∑
R

χ(i)(R)∗χ(j)(R)

which implies

ni =
1
NG

∑
R

χ(i)(R)∗χ(R). (7.62)

Also,

ni =
1
NG

∑
C

nCχ
(i)(C)∗χ(C). (7.63)

The LOT becomes:
∑

C χ
(i)(C)∗χ(j)(C) = NGδij , so the vectors with compo-

nents
√
NGχ

(i)(C) are also orthogonal. They have component for each class
and there is one of them for each irrep. Thus,the number of irreps does not
exceed the number of classes. Actually one can prove that they are equal, that
is, the character tables must be square [156]. This is related to the second
character orthogonality theorem

∑
i χ

(i)(C)χ(i)(C′)∗ = NG

nC
δCC′ , (7.64)

also demonstrated in Ref.[156].
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7.6 Projection operators

From any f(x) one can obtain functions of well-defined parity using the inver-
sion operator and its eigenvalues to write f (±)(x) = f(x)± f(−x). The GOT
generalizes this trick converting an arbitrary basis set into symmetry-adapted
basis functions without any need to diagonalize any matrix. Multiply (7.42)∑

R∈GD
(i)
μν(R)∗D(j)

αβ(R) = NG

mi
δijδμαδνβ by ψj

α and sum over α, using the fact

that
∑

αD
(j)
αβ(R)ψj

α = Rψj
β:

∑
α

ψj
α

∑
R∈G

D(i)
μν(R)∗D(j)

αβ(R) =
∑
R

Di
μν(R)∗Rψj

β =
∑

α

ψj
α

NG

mi
δijδμαδνβ

that is,
mi

NG

∑
R

D(i)
μν(R)∗Rψj

β = δijδνβψ
j
μ. (7.65)

Hence
P i

μν =
mi

NG

∑
R

D(i)
μν(R)∗R (7.66)

is a generalized projection operator6such that P i
μν = |ψi

μ〉〈ψi
ν |. In other terms,

P i
μνψ

j
λ = δijδνλψ

i
μ. (7.67)

The diagonal P i
μμ operators are all what we want, and require only the

diagonal elements of the Dμν matrices. Let ψ =
∑

jν c(j, ν)ψ
j
ν belong to a

reducible representation:
P i

μμψ = c(i, μ)ψi
μ (7.68)

is projected on ψi
μ, unless c(i, μ) = 0 (if the choice was unlucky never mind,

we shall succeed with another ψ of the reducible set). To transform the {ψ}
set to the new {ψj

ν} basis we just need to know how every R ∈ G operates on
the old set and the diagonal elements of the D(i)

μν(R) matrices. The D(i)
μν(R)

matrices are properties of the abstract Group,and we know them in principle:
they aremi×mi matrices and having fixed which operators R we can and wish
to have diagonal, we have enough relations from the multiplication table to
build them; in the most common problems this is just a matter of geometry to
determine how the components of a point or other simple functions transform.

Moreover, the matrices are not really needed to project to the new basis.
Indeed, ∑

μ

P i
μμψ =

∑
μ

c(i, μ)ψi
μ. (7.69)

In the combination on the r.h.s. all functions belong to the irrep i, so the
l.h.s. is the projection operator,

6The name is deserved since the diagonal terms are such that (P i
μμ)2 = P i

μμ.
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P (i) =
∑

μ

P i
μμ =

∑
R

χi(R)∗R. (7.70)

The characters are enough to build P (i) and to obtain P (i)ψ which belongs to
irrep i. Repeating this with enough ψ, one builds a basis for the irrep. These
bases are typically small sets, where one can easily orthonormalize; usually
one readily performs the unitary transformations needed to have as many
diagonal operators as possible, in order to increase the number of quantum
numbers.

7.7 Regular representation

The next theorem has a very elegant proof:

Theorem 8. ∑
i

m2
i = NG. (7.71)

Recall the rearrangement theorem: left-multiplying the group elements by
one of them produces a permutation. In any Group of order NG = g with
elements R1 · · ·Rg , we associate to each element a vector

R1 → (1, 0, 0, 0, 0, 0), R2 → (0, 1, 0, 0, 0, 0), · · ·

and a g × g matrix that does the permutation. Thus, for each R ∈ G there
is a vector and a matrix; what matters is the Multiplication Table, and the
vectors are just a way to get the matrices. Let us rewrite the multiplication
Table of C3v.

E C3 C
2
3 σa σb σc

C3 C
2
3 E σc σa σb

C2
3 E C3 σb σc σa

σa σb σc E C3 C
2
3

σb σc σa C
2
3 E C3

σc σa σb C3 C
2
3 E

Let us denote the operations R1 · · ·R6 with R1 = E,R2 = C3, and so on; the
effect of the left-multiplication by C3 is 1 → 2, 2 → 3, 3 → 1, 4 → 6, 5 →
4, 6→ 5; the matrix is

D(C3) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠ ,
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while D(E) = Diag(1, 1, 1, 1, 1, 1). This regular representation exists for any
G; χ(E) = NG while for all the other classes χ = 0 since no other element
can have 1 on the diagonal (RX = X ⇔ R = E ) . Irrep i is contained in
the regular representation ni = 1

NG

∑
R χ

i(R)∗χ(R) = 1
NG
χi(E)∗χ(E) = mi

times. Reducing the representation, we shall have on the diagonal mi times
the mi × mi block, and the length of the diagonal is NG. This proves the
Burnside theorem.

Problems

7.1. Prove Equation 13.136.

7.2. Build the character table of C4v.

7.3. Build the projection operator for the irrep E, componet y, of C4v.



8 Simpler Uses of Group Theory

8.1 Molecular Orbitals

To exemplify Group theory methods, I present LCAO calculations of molec-
ular orbitals for simple molecules starting with a minimal basis set (only
the atomic orbitals which are most directly involved in covalent bond-
ing)neglecting overlap.

8.1.1 Molecular Orbitals of NH3

1

2

3

x

y

Fig. 8.1. The H atoms of ammonia are at the vertices of an equilateral triangle.

NH3 belongs to the C3v Group (see the character table in Appendix). A
minimal basis set comprises 2s, 2px, 2py, 2pz for N and the ground state or-
bitals s1, s2, s3 for the H atoms. The geometry is sketched in Figure 8.1.1; the
N atom (not shown) is above the origin and is not shifted by any operations.
Therefore 2s and 2pz are assigned to A1 while (2px, 2py) is a basis for E. Let
us write a representation on the basis

s1 →

⎛
⎝ 1

0
0

⎞
⎠ , s2 →

⎛
⎝0

1
0

⎞
⎠ , s3 →

⎛
⎝0

0
1

⎞
⎠ .

one finds:

E C3 C2
3 σa σb σc⎛

⎝1 0 0
0 1 0
0 0 1

⎞
⎠
⎛
⎝ 0 0 1

1 0 0
0 1 0

⎞
⎠
⎛
⎝0 1 0

0 0 1
1 0 0

⎞
⎠
⎛
⎝1 0 0

0 0 1
0 1 0

⎞
⎠
⎛
⎝0 0 1

0 1 0
1 0 0

⎞
⎠
⎛
⎝0 1 0

1 0 0
0 0 1

⎞
⎠
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This representation can be reduced by the LOT into A1 ⊕ E. The A1

combination is ψ1 = s1+s2+s3√
3

; to find a basis for E one can use projection
operators. The operator that projects onto E is

P (E) =
∑
R

χ(E)(R)R =

⎛
⎝ 2 −1 −1
−1 2 −1
−1 −1 2

⎞
⎠ . (8.1)

The ψ that one obtains depends on the s orbital; if we start from s1, which
is σv(1) invariant, we get (upon normalization) ψ2 = 2s1−s2−s3√

6
which is

also σv(1) invariant. This is the x component, which is invariant under the
exchange of 2 and 3. The orthogonal function is odd under such an exchange
and is ψ3 = s2−s3√

2
. One can get this result by the projection operator. Starting

from s2, one obtains ψ′
3 = 2s2−s1−s3√

6
which is not orthogonal to ψ2 but has

the orthogonal component ψ3. Alternatively, one can obtain those results by
projecting directly on the x and y components of the irrep E, by

P (E)
xx =

2
6

∑
R

D(E)
xx (R)∗R. (8.2)

In the current geometry, unlike the last Chapter, the reflection 1 leaves x

invariant, so we must take σ1 =
(

1 0
0 −1

)
. The other reflections are obtained

as σ2 = σ1C3 =

(
−1
2 −

√
3

2

−
√

3
2

1
2

)
and σ3 = σ1C

2
3 =

(
−1
2

√
3

2√
3

2
1
2

)
. Thus, one

obtains

P (E)
xx =

1
3

⎛
⎝ 2 −1 −1
−1 1

2
1
2

−1 1
2

1
2

⎞
⎠ . (8.3)

In a similar way,

P (E)
yy =

⎛
⎝0 −0 0

0 1
2 −

1
2

0 − 1
2

1
2

⎞
⎠ . (8.4)

Thus, we have determined the symmetry orbitals; 2s, 2pz, ψ1 belong to A1 and
the pairs (2px, 2py), (ψ2, ψ3) belong to E. The 7 × 7 determinant is broken
into a 3 × 3 determinant for the A1 basis and a pair of 2 × 2 determinants
for the x, y components of E; moreover, by the Schur lemma, the latter are
identical.

8.1.2 Molecular Orbitals of CH4

CH4 belongs to the tetrahedral symmetry Group Td; we may put the C atom
at the origin and H atoms at (-1,1,1),(1,-1,1),(-1,-1,-1),(1,1,-1) in appropriate
units. There are NG=24 operations. There are C3 and C2

3 rotations around
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CH bonds,C2 and S4 rotations around the x,y,z axes, and 6 σd reflexions in
the planes that contain two CH bonds. The C orbitals (2s,2px, 2py, 2pz) are
classified at once under A1 and T2.

z

y

1

2

3

4

Fig. 8.2. Tetrahedral CH4 molecule inscribed in a cube; the open circle denotes
the C position.

Td E 8C3 3C2 6σd 6S4 g = 24
A1 1 1 1 1 1 r2

A2 1 1 1 −1 −1
E 2 −1 2 0 0 (3z2 − r2, x2 − y2)
T1 3 0 −1 −1 1 (Rx, Ry, Rz)
T2 3 0 −1 1 −1 (x, y, z)

For the Hydrogens, let d(i, C) denote the list of the destinations of atom 1
under the operations in class C. Here is the situation:

Class moved unmoved χ d(1,C)

E 0 4 4 1
8C3 3 1 1 {1,1,2,2,3,3,4,4}
3C2 4 0 0 {2,3,4}
σd 2 2 2 {1,1,1,2,3,4}
6S4 4 0 0 {2,2,3,3,4,4}

Table 8.1. Effects of the operations of Td on atom 1 and characters of the repre-
sentation of Hydrogens.

Under each operation, every atom which changes position contributes 0 to
the character χ (we are neglecting overlaps), while unmoved atoms contribute
1. Using the LOT with NG = 24 we find that Γ (H4) = A1 ⊕ T2. The A1

combination is trivially ΨA1 = |1〉+|2〉+|3〉+|4〉
2 . The destinations in the above
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Table 8.1.2 and the Character Table allow to project on T2 by the operator
(7.70):

P (T2)|1〉 = 3|1〉− (|2〉+(|3〉+ |4〉)+ [3|1〉+(|2〉+ |3〉+ |4〉)]−2(|2〉+(|3〉+ |4〉)

= 2[3|1〉 − (|2〉+ (|3〉+ |4〉)].
If we wish to obtain Ψz the fastest way is probably to symmetrize between

1 and 2. Indeed, if 3|1〉 − (|2〉 + (|3〉 + |4〉) is in T2, 3|2〉 − (|1〉 + (|3〉 + |4〉)
also is; we sum and normalize obtaining

|Ψz〉 =
|1〉+ |2〉 − |3〉 − |4〉

2
.

Also,

|Ψx〉 =
|1〉 − |2〉 − |3〉+ |4〉

2
,

|Ψy〉 =
|1〉 − |2〉+ |3〉 − |4〉

2
.

8.1.3 Characters of Angular Momentum Eigenstates

The set {|J,MJ〉} is the basis of an irrep of O(3) but reduces in its sub-
groups. A rotation Rz(α) by an angle α about the z axis multiplies |J,MJ〉
by exp(iMJα), thus the character of Rz(α) is

χ(α) =
J∑

MJ=−J

exp(iMJα) =
sin((J + 1

2 )α)
sin(α

2 )
. (8.5)

All rotations by an angle α belong to the same class, thus the character is
this, independently of the rotation axis.

8.1.4 Examples: Oh Group, Ligand Group Orbitals, Crystal Field

The Oh Group

We consider a cube with a system of cartesian axes through the centers of the
faces. The centers of the faces are vertices of an octahedron. The operations
of symmetry of the cube and octahedron are the same. We label the vertices
of the octahedron as in Figure 8.1.4. There are 48 operations in the cubic
Group Oh. The C4 rotations around the cartesian axes and their inverses
form the 6C4 class, and the C2 rotations form the 3C2 class. The 2π

3 rotations
in both senses around the 4 cube diagonals give a class 8C3; these axes are
perpendicular to faces of the octahedron. Joining the center of EC with the
center of FB we have a C2 axis. There are 12 edges, so there are 6 axes and the
class is 6C2. The inversion forms a class; the 3σh class includes reflections like
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the one in the BCEF plane. The C4 rotations followed by a σh reflection in the
plane perpendicular to the rotation axis form the 6S4 improper rotation class.
The plane containing A,D and the midpoints of EC and BF is a symmetry
plane, and the reflection belongs to a 6σd class. Finally,there are S6 improper
rotations: the axes are those of the C3 rotations; if we look along a C3 axis,
opposite faces appear as concentric triangles; the figure is invariant under
a C6 rotation followed by a reflection in the orthogonal plane through the
center (Figure 6.2). With 4 axes and two senses of rotations one builds a 8S6

class.

A

E

C

D

B

F

y

x

z

Fig. 8.3. Octahedron

Ligand Group Orbitals

Oh E 6C4 3C2 6C′
2 8C3 i 6S4 3σh 6σd 8S6 g = 48

A1g 1 1 1 1 1 1 1 1 1 1 x2 + y2 + z2

A1u 1 1 1 1 1 −1 −1 −1 −1 −1
A2g 1 −1 1 −1 1 1 −1 1 −1 1
A2u 1 −1 1 −1 1 −1 1 −1 1 −1
Eg 2 0 2 0 −1 2 0 2 0 −1 (x2 − y2, 2z2 − x2 + y2)
Eu 2 0 2 0 −1 −2 0 −2 0 1
T1g 3 1 −1 −1 0 3 1 −1 −1 0 (Rx, Ry, Rz)
T1u 3 1 −1 −1 0 −3 −1 1 1 0 (x, y, z)
T2g 3 −1 −1 1 0 3 −1 −1 1 0 (xy, xz, yz)
T2u 3 −1 −1 1 0 −3 1 1 −1 0
Γ 6 2 2 0 0 0 0 4 2 0

The Oh Group is the point Group of many interesting solids, including com-
plexes like CuSO4 · 5H2O and FeCl3 where a transition metal ion at the center
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of an octahedron; most often the octahedral symmetry is only approximate,
as in CuSO4 · 5H2O where the central Cu++ is bound to 4 H2O molecules
and 2 SO−−

4 ions. A LCAO model of their properties is often called ligand
field theory.

If A · · · F represent 6 s orbitals, they are the basis of a representation Γ
with the characters shown above. One finds that Γ = A1g ⊕Eg ⊕T1u. Let us
work out the projection of orbital A into T1u:

Class C
∑

R∈C RA χ(T1u) contribution
E A 3 3A

6C4 2A+B+C+E+F 1 2A+B+C+E+F
3C2 A+2D -1 -(A+2D)
6C2’ 2D+B+C+E+F -1 -( 2D+B+C+E+F)
8C3 2(B+C+E+F) 0 0
I D -3 -3D

6S4 2D+B+C+E+F -1 -(2D+B+C+E+F)
3σh 2A+D 1 2A+D
6σd 2A+B+C+E+F 1 2A+B+C+E+F
8S6 2(B+C+E+F) 0 0

The normalized T1u projection is ψ1 = A−D√
2
. Operating in the same way

on D we again get ψ1. Operating on the other functions, we obtain ψ2 = B−E√
2

and ψ3 = C−F√
2
. In this way one easily builds the ligand group orbitals.

Crystal Field

The number of d electrons in transition metal ions is:

Ti V Cr Mn Fe Co Ni Cu
M++ 2 3 4 5 6 7 8 9
M+++ 1 2 3 4 5 6 7 8

Hund’s rule allows to find the ground state of partially filled d shells and
the corresponding number of unpaired electrons as follows:

d1 d2 d3 d4 d5 d6 d7 d8 d9

ground state 2D 3F 4F 5D 6S 5D 4F 3F 2D
unpaired 1 2 3 4 5 4 3 2 1

for isolated transition ions one would always predict paramagnetism, but the
compounds can be paramagnetic or not. The bivalent Fe ( 3d6 configuration)
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forms the complexes [Fe(H2O)6]2+, which is green, and paramagnetic, but
also [Fe(CN)6]4−, which is yellow and diamagnetic. These facts can already
been understood by the crystal field theory, in which the ligands behave like
point charges, or anyhow they generate a field to octahedral symmetry that
resolves the degeneracy of the atomic terms (for the first transition series the
spin-orbit interaction is a small perturbation to be introduced subsequently).
A more quantitative treatment is obtained then from the ligand field theory.

For d (or D) states, from (8.5) and from the even parity we find the
characters

Oh E 6C4 3C2 6C′
2 8C3 i 6S4 3σh 6σd 8S6

Γd 5 −1 1 1 −1 5 −1 1 1 −1

and conclude Γd = Eg ⊕T2g. This is already clear from the Character Table,
reporting (dxy, dxz, dyz) as a basis for T2g and (dx2−y2 , z2) for Eg. In transition
metal complexes usually Δ = E(Eg)−E(T2g) > 0, since the T2g orbitals stay
far from the negative ligands. Thus in the absence of Coulomb interactions
one would fill the available levels according to the aufbau principle, starting
with T2g. In crystal field theory one tries to predict the magnetic properties by
diagonalizing a many-electron Hamiltonian which is the sum of the isolated
ion Hamiltonian and the one of the crystal field.

There are two simple limiting cases. If Δ  U, where U represent the
order of magnitude of the multiplet splitting, due mainly to the Coulomb
interaction, one treats Δ as a perturbation of the isolated ion multiplet. The
atomic Hund rule holds, and paramagnetism obtains. If Δ� U, Hund’s rule
holds (high spin is preferred) within the degenerate T2g and Eg levels, but Eg

starts being filled only after T2g is full, and 6 electrons yield a diamagnetic
complex.

8.2 Normal Modes of vibration

In the Born-Oppenheimer approximation, the potential that governs the mo-
tion of electrons depends parametrically on the positions of the nuclei. The
total energy U of the molecule is calculated in function of the nuclear coordi-
nates and the configuration of equilibrium correspond to a minimum energy.
The vibrations can then be studied by considering U as the potential energy
of the nuclei. The configuration of the molecule is given by a vector −→v that
specifies the shift from equilibrium of the coordinates of all the N nuclei,

−→v = (δx1, δy1, δz1, δx2, · · · δxN , δyN , δzN) ≡ (v1, · · · , v3N ) (8.6)

where I introduced a notation vi for the generic cartesian coordinate. All the
possible motions of the nuclei are described classically from the equations of
Newton,
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miv̈i = −∂U
∂vi

(8.7)

where mi is the mass associated to v in the obvious way x1, y1, z1→ m1 and
so on. In the harmonic approximation, expanding around to one configuration
of equlibrium,

U =
1
2

∑
ij

Uijvivj , (8.8)

and the Fourier transform of the equations of the motion is

ω2vi =
1
mi

∑
j

Uijvj . (8.9)

We introduce
Qi = vi

√
mi (8.10)

and the symmetrized matrix

Wij =
Uij√
mimj

(8.11)

then the equations of the motion read:

ω2Qi =
∑

j

WijQj . (8.12)

The eigenvectors Qα of the W matrix are the normal modes, and their eigen-
frequencies ωα are obtained from the secular equation. Three modes, of null
frequency, correspond to rigid translations of the molecule, and 3 others (or
2, for linear molecules) to rigid rotations. Rotations also have ω = 0, since
the energy of the molecule does not depend on its orientation. The remaining
3N-6 (or 3N-5) frequencies are vibrational. The Group theory is helpful to
simplify the solution of the secular equation. Every R operation of the Group
of the molecule sends every nucleus in itself or to another identical nucleus in
an equivalent position; meantime, it produces a (proper or improper) rota-
tion the system of cartesian axes that we can imagine fixed at every nucleus.
So, R maps each Qi into a linear combination of the components. In such
a way, we associate to every R a matrix D(R), and obtain a representation
of the Group in the space of the vectors Q. Every D(R) commutes with
W , since R is a symmetry and W must be invariant under R; thus if Qa

is a solution of the secular equation, also D(R)Qa must be a solution, and
with the same ω. Therefore, we can diagonalize W simultaneously with the
maximum number of commuting D(R) matrices. The theory of the Groups
adds the Dirac characters; this means that in a new basis whose elements
are vibrations pertaining to irreps of the Group, W is block diagonal. Thus,
the normal modes can be assigned to irreps of the Group; the reduction of
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the Q, (or equivalently v) representation, allows to gain in simple way the
symmetry and the degeneracy of the normal ways, without having to resolve
the secular equation.

The H2O molecule (C2v Group), and that requires a 9-dimensional v. We
place the molecule on the xz plane. The cartesian components of the shift
from the position of equilibrium of each atom transform like its p orbitals
and can be thought of as numbered arrows,parallel to the x,y and z axes
respectively; th earrows (1,2,3) from one H, (4,5,6) from O and (7,8,9) from
the other H, constitute a basis. The operations are C2, σ(xz), and σ(yz). The
C2 operation has the representative

D(C2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 1
0 0 0 −1 0 0 0 0 0
0 0 0 0 −1 0 0 0 0
0 0 0 0 0 1 0 0 0
−1 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (8.13)

D(C2) and D(σv(yz)) have the same block structure

D(C2) =

⎛
⎝0 0 b

0 b 0
b 0 0

⎞
⎠ (8.14)

where now 0 is for a null 3× 3 block, and

b(C2) =

⎛
⎝−1 0 0

0 −1 0
0 0 1

⎞
⎠ , b(σ(yz)) =

⎛
⎝−1 0 0

0 1 0
0 0 1

⎞
⎠ ; (8.15)

D(σ(xz)) is block diagonal with b = diag(1,−1, 1). From the matrices we
gain the characters:

Γ : χ(E) = 9, χ(C2) = −1, χ(σ(yz)) = 1, χ(σ(xz)) = 3. (8.16)

We could arrive to this result without writing the D matrices, taking into
account that for each operation:

– the atoms that change position contribute 0 to the character; 2)
– each arrow (cartesian movement) that it remains invariant contributes

+1, and every arrow that changes sign contributes -1,
– more generally, the cartesian shifts of an atom that does not change posi-

tion behave like (x, y, z), so if the arrow is rotated by θ the contribution
is cos(θ).
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C2v I C2 σv σ′v g = 4
A1 1 1 1 1 z
A2 1 1 −1 −1 xy,Rz

B1 1 −1 1 −1 x,Ry

B2 1 −1 −1 1 y,Rx

The representation Γ is clearly reducibile. It includes all the possible
movements of atoms, therefore not only the vibrations, but also the rigid ro-
tations and translations of the molecule. In order to classify the vibrations,
it is in the first place necessary to separate them from the rigid motions.

The rigid translations along the (x,y,z) axes transform like (x,y,z); they
are marked in the character tables and are a basis for the representation of
polar vectors (reducible or not, according to the Group).

Adding the characters of x, y and z, we get for the 3 translations the
characters:

C2v E C2 σ(xz) σ(yz)
Γtrasl 3 -1 1 1

(8.17)

Having separated 3 coordinated of the center of mass, N-3 remain The
motion that they describe is to be decomposed in a rigid rotation and a
vibration. So, we can separate to others 3 degrees of freedom (2 for linear
molecules) in order to describe the rigid rotation. An infinitesimal rigid rota-
tion transforms the coordinate ri of the atom i according to δri = dφ× ri;
one can expand dφ as a linear combination of rotationsRx, Ry and Rz around
the axes. These are mixed among themselves under the symmetry operations,
and are a basis of a representation Γrot. Since δφ is an axial vectors, Γrot

is the axial vectors representation. The rotation about the x axis transforms
like the Rx generator, that is, like yz, and so on; the tables of the charac-
ters report the classification of the rotations. In the Abelian Groups, there
are only one-dimensional irreps with characters ±1; R is odd (even) if the
sense of rotation changes (does not change). For the water molecule, using
the character table, we find

C2v E C2 σ(xz) σ(yz)
Γrot 3 -1 -1 -1

(8.18)

We can proceed to separate the vibrations as it follows:

C2v E C2 σ(xz) σ(yz)
Γ 9 -1 3 1

Γtrasl 3 -1 1 1
Γrot 3 -1 -1 -1
Γvibr 3 1 3 1

The reduction of the representation yields
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Γvibr = 2A1 ⊕B1.

Finally. The water molecule has two total-symmetric vibrations and one of
B1 symmetry.

A total-symmetric vibration, that all the molecules have, is the breathing
mode. In the symmetric stretch the angle between the OH bonds varies. In
order to discover what kind of vibration is the one labeled B1 that goes like
x one can construct the projection operator

P (B1) = E − C2 + σ(xz)− σ(yz); (8.19)

in terms of block representative matrices,

P (B1) =

⎛
⎝ 1 + b(σ(xz)) 0 −b(C2)− b(σ(yz))

0 β 0
−b(C2)− b(σ(yz)) 0 1 + b(σ(xz))

⎞
⎠ , (8.20)

where β = 1− b(C2) + b(σ(xz))− b(σ(yz)). Projecting, one finds a vibration
where the only arrows are 3 and 9, and are opposite. One H shifts up along
the molecular axis and the other goes down; such a vibration indeed changes
sign under C2 and σ(yz).

Vibrations of NH3

Here the complete table of the characters of the Group.

C3v I 2C3 3σv g = 6
A1 1 1 1 z
A2 1 1 −1 Rz

E 2 −1 0 (x, y)

The Cartesian movements of N are transformed like the coordinates. There-
fore for N we have:

C3v E 2C3 3σv

Γ (N) 3 0 1 (8.21)

Let’s find the characters of Γ (H3). χ(E) = 9 (no arrows move) χ(C3) = 0
(all the H move and contribute 0) χ(σv) = 1 (two H reflected one in the
other: character 0; for the other H, two arrows in the reflection plane and one
orthogonal: character 1) Therefore:

C3v E 2C3 3σv

Γ (N) 3 0 1
Γ (H3) 9 0 1
Γ (NH3) 12 0 2
Γtrasl 3 0 1
Γrot 3 0 -1
Γvibr 6 0 2

Finally, Γvibr = 2A1 + 2E.
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Vibrations of Methane (CH4)

Methane is a tetrahedral molecule.

– With 5 atoms χ(E) = 15.
– 8C3 : all the atoms move except a H and the C: for each an arrow

is along the rotation axis (+1),while the others two, on the ⊥ plane,
are transformed as the coordinates (x,y) of this plane and contribute
TrD(R) = 2 cos(2π

3 ) = −1. Therefore χ(8C3) = 0.
– 3C2 : 2 arrows of the C change sign and the third does not move: χ = −1
– 6σd CH2 remains in place; each atom has 2 arrows in plane and one

reflected and χ = 3.
– S4 H moved; for the atom of C: 900 rotation around z, (x, y, z) →

(y,−x, z); then reflection → (y,−x,−z). So, χ = −1.

Thus,
Td E 8C3 3C2 6σd 6S4 g = 24
A1 1 1 1 1 1 r2

A2 1 1 1 −1 −1
E 2 −1 2 0 0 (3z2 − r2, x2 − y2)
T1 3 0 −1 −1 1 (Rx, Ry, Rz)
T1 3 0 −1 1 −1 (x, y, z)
Γtot 15 0 −1 3 −1
Γtrasl 3 0 −1 1 −1 = T2

Γrot 3 0 −1 −1 1 = T1

Γvibr 9 0 1 3 −1 A1 ⊕ E ⊕ 2T2

Vibrations of Benzene (C6H6)

There are 12 atoms and 36 coordinates, therefore χ(E) = 36. The rotations
C2, C3 and C6 around the vertical axis move all the atoms and have character
0. Rotation C′

2 around to a diagonal of the hexagon leaves 4 atoms in place:
for each one arrow is invariant and the others two change sign. Therefore,
χ(C′

2) = −4. Rotation C”2 around an axis ⊥ to opposite sides and S3 and
S6 move all the atoms and have character 0. The reflection σh in the plane of
the hexagon leaves two arrows invariant for every atom and changes sign to
the third, therefore χ(σh) = 12. The reflection for a plane containing the C”2

axis has character 0 . The reflection for a plane containing a axis C′
2 leaves 4

atoms in place, with two arrows invariant and one changed of sign for every
atom. Therefore χ(σv) = 4. The characters of Γtrasl are the sums of those of
A2u and E1u; those of Γrot adding those of A2g and E1g.
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D6h E 2C6 2C3 C2 3C′
2 3C′′

2 i 2S3 2S6 σh 3σd 3σv g = 24
A1g 1 1 1 1 1 1 1 1 1 1 1 1
A2g 1 1 1 1 −1 −1 1 1 1 1 −1 −1 Rz

B1g 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1
B2g 1 −1 1 −1 −1 1 1 −1 1 −1 −1 1
E1g 2 1 −1 −2 0 0 2 1 −1 −2 0 0 (Rx, Ry)
E2g 2 −1 −1 2 0 0 2 −1 −1 2 0 0

(
x2 − y2, xy

)
A1u 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1
A2u 1 1 1 1 −1 −1 −1 −1 −1 −1 1 1 z
B1u 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1
B2u 1 −1 1 −1 −1 1 −1 1 −1 1 1 −1
E1u 2 1 −1 −2 0 0 −2 −1 1 2 0 0 (x, y)
E2u 2 −1 −1 2 0 0 −2 1 1 −2 0 0
Γtot 36 0 0 0 −4 0 0 0 0 12 4 0
Γtrasl 3 2 0 −1 −1 −1 −3 −2 0 1 1 1
Γrot 3 2 0 −1 −1 −1 3 2 0 −1 −1 −1
Γvibr 30 −4 0 2 −2 2 0 0 0 12 4 0

The Group has 24 elements, and it is found thatΓvibr = 2A1g ⊕A2g ⊕A2u ⊕
2B1u ⊕ 2B2g ⊕ 2B2u ⊕ E1g ⊕ 3E1u ⊕ 4E2g ⊕ 2E2u.

8.3 Space-Time Symmetries of Bloch States

Let t1, t2, t3 be the primitive translation vectors of a crystal lattice, {Ti} the
set of lattice translation operators and V (−→x ) the periodic crystal potential,
such that [Ti, V ]− = 0. Periodic boundary conditions are assumed, that is,
for some N � 1, TN

i = 1. The simultaneous eigenfunctions ψ−→
k

(−→x ) of H and

any Ti are such that Tiψ−→k (−→x ) = ψ−→
k

(−→x + −→t i) = Cψ−→
k

(−→x ) with CN = 1.

Now, TN
i e

i
−→
k ·−→x = ei

−→
k ·−→x requires −→k · −→t i = 2π

N ∗ integer; therefore,

−→
k =

pg1 + qg2 + rg2
N

with p, q, r ∈ Z, and the reciprocal lattice vectors defined by ti · gj = 2πδij .
We know from Sect. 7.2.1 that Bloch’s functions are

ψ−→
k ,λ

(−→x ) = ei
−→
k ·−→x u−→

k
(−→x ), (8.22)

where u−→
k

(−→x ) are lattice periodic. Moreover, since (letting h̄ = 1)

−→p ei
−→
k ·−→x = ei

−→
k ·−→x (−→p +−→k ),

we may write
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(−→p +−→k )2

2m
+ V (−→x )

]
u−→
k

(−→x ) = εku−→k (−→x ). (8.23)

No degeneracy is predicted, since Abelian Groups have only one-dimensional
representations. Each translation T by a vector t is a class, while each k
vector labels a different irrep. The LOT of Equation(7.58) yields the useful
relation

1
NC

∑
t

ei(k−k′)·t = δ(k − k′), (8.24)

where NC is the number of cells. The second character orthogonality theorem
7.64 gives: ∑

k∈BZ

ei(t−t′)·k = NCδ(t− t′), (8.25)

with the sum extended to the Brillouin zone.
The trivial spin degeneracy is lifted if the spin-orbit interaction is in-

cluded,

H =
p2

2m
+ V (−→x ) +H ′

SO (8.26)

with
H ′

SO =
1

4m2c2
−→σ ∧ ∇V · −→p . (8.27)

Eigen-spinors can be taken of the Bloch form,

ψ−→
k ,λ

(−→x ) = ei
−→
k ·−→x u−→

k ,λ
(−→x ) = ei

−→
k ·−→x

{
u−→
k ,+

(−→x )

u−→
k ,−

(−→x ) (8.28)

One finds spinors with λ = + and - that reduce to up and down spin for
c→∞, but otherwise spin and orbital degrees of freedom mix. The periodic
functions are obtained by solving[

(−→p +−→k )2

2m
+ V (−→x ) +

1
4m2c2

−→σ ∧ ∇V · (−→p + −→k )

]
u−→
k ,λ

(−→x )

= ε−→
k ,λ

u−→
k ,λ

(−→x ). (8.29)

Space Inversion

The inversion is the operator P 0 : P 0−→x = −−→x . Let ψ−→
k ,λ

(−→x ) solve the

Schrödinger equation with a periodic potential V (−→x ); an inverted crystal
poses the same problem with V (i)(−→x ) = P 0V (−→x ) = V (−−→x ) instead. Since
(P 0)2 is the identity, from Hψk(x) = εkψk(x) one gets

P 0HP 0P 0ψk = H(−x)P 0ψk = εkP
0ψk;
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thus the solution the inverted crystal is the spinor ψ−→
k

(−−→x ) and the energy

ε−→
k

is the same as in the original problem. If V (i)(−→x ) 
= V (−→x ), one cannot
speak of degeneracy, since the corresponding problems remain distinct. If
however the crystal has inversion symmetry, that is, [P 0, H ]− = 0, adding
this element to the translations produced a non-Abelian Group which implies
degeneracy. Indeed, ψk(x) and ψk(−x) both belong to the eigenvalue ε−→

k
.

However, P 0ψk(x) ≡ ψk(−x) = e−ik·xu
k
(−x) belongs to −k since it gets

multiplied by e−ik·t under a translation by t. Therefore we must make the
identifications

P 0ψk(x) = ψ−k(x), (8.30)

and uk(−x) = u−k(x); so,
ε
−−→k = ε−→

k
. (8.31)

Time Reversal

The antilinear1 Kramers operator K takes the complex conjugate, and is
useful to discuss time reversal symmetry, as I show in a moment. In the
Schrödinger theory, assume one knows how to solve a time-dependent problem

ih̄
∂φ(t)
∂t

= H(t)φ(t) (8.32)

but wants to solve the Schrödinger equation with a time-reversed Hamiltonian

ih̄
∂φ′(t′)
∂t′

= H(−t′)φ′(t′). (8.33)

Applying K to both sides of (8.32) we get −ih̄∂φ(t)∗

∂t = H(t)φ(t)∗ and setting
t = −t′ in the operators,

ih̄
∂φ(t)∗

∂t′
= H(−t′)φ(t)∗. (8.34)

Comparing with (8.33) we conclude that φ′(t′) = φ(t)∗; introducing a time
reversal operator T this may be interpreted by saying that φ′(t′) = T φ(t) is
the time reversed wave function with T = K.

Things are more involved with the Pauli equation; I write H0 the spin-
independent part of the Hamiltonian, which I assume real, and separate the
spin-field coupling:

ih̄
∂ψ(t)
∂t

= [H0(t) + λσ ·B(t)]ψ(t), λ =
eh̄

2mc
. (8.35)

1An operator Ô is antilinear if Ô(aφ + bψ) = a∗Ôφ + b∗Ôψ).
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Taking the complex conjugate and multiplying both sides by−iσ2 =
(

0 1
−1 0

)
,

one finds

i
∂

∂(−t)(−iσ2)ψ(t)∗ = H0(t)(−iσ2)ψ(t)∗ + λ(−iσ2)σ∗ · B(t)ψ(t)∗

= H0(t)(−iσ2)ψ(t)∗ + (−1)λ{(−iσ2)σ∗ ·B(t)(−iσ2)}(−iσ2)ψ(t)∗.(8.36)

The familiar anticommutation relations give

(−iσ2)σ∗ ·B(t)(−iσ2) = σ · B(t).

Now let t′ = −t in the operators.

i
∂

∂t′
(−iσ2)ψ(t)∗ = H0(−t′)(−iσ2)ψ(t)∗ + (−1)λσ ·B(−t′)(−iσ2)ψ(t)∗.

(8.37)
which says that now (−iσ2)ψ(t)∗ is the time reversed spinor with B(−t′) =
−B′(t′) . But this sign is wanted: indeed the currents do change sign under
time reversal, hence the vector potential and the magnetic field also change
sign. Thus,

T = −iσyK. (8.38)

Note that

〈Kφ,Kψ〉 = 〈ψ, φ〉, (8.39)

and
〈T φ, T ψ〉 = 〈ψ, φ〉. (8.40)

Then

T 2ψ = −ψ,
thus

T −1 = −T .
T reverses the sign of −→p (indeed T −→p T −1 = −−→p because of the complex
conjugation) and of the angular momenta −→L and −→S (for instance, σ2σ1 =
−σ1σ2 ⇒ T σ1T −1 = −σ1). Thus the scalar product σ · L is time-reversal
invariant.

Kramers’ Theorem for one-electron states says that a stationary Hamil-
tonian like (8.26), without magnetic fields, even in the presence of the spin-
orbit interaction, has a twofold degeneracy since φ and T φ have the same
energy and are orthogonal.

Since T commutes with H , if φ is a stationary state of H , T φ also is.

Moreover T φ ⊥ φ; indeed, if φ =
(
α
β

)
,
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T φ = −iσyK

(
α
β

)
=
(

0 −1
1 0

)(
α∗

β∗

)
=
(
−β∗

α∗

)

then

〈T φ|φ〉 = (−β, α)
(
α
β

)
= 0.

Since [T , H ]− = 0, the time reversed Bloch eigenspinors

T ψ−→
k

(−→x ) = −ie−i
−→
k ·−→x σyu

∗−→
k ,λ

(−→x ) (8.41)

have the same energy and belong to −−→k , ( they are periodic spinors times

e−i
−→
k ·−→x ). Besides, they belong to −λ since time reversal reverses spin. Using

(8.40),
〈ψ−→
k

(−→x ), σzψ−→k (−→x )〉 = 〈T σzψ−→k (−→x ), T ψ−→
k

(−→x )〉;

the anticommutation rules give

= −〈σzT ψ−→k (−→x ), T ψ−→
k

(−→x )〉;

since σz is Hermitean,

〈ψ−→
k

(−→x ), σzψ−→k (−→x )〉 = −〈T ψ−→
k

(−→x ), σzT ψ−→k (−→x )〉.

In summary the time reversal invariance requires

T ψ−→
k ,λ

(−→x ) = ψ
−−→k −λ

(−→x ); ε−→
k ,λ

= ε
−−→k ,−λ

. (8.42)

Conjugation

If P 0 and T are simultaneous symmetries,the conjugation

C = P 0T (8.43)

also is conserved. Using equations (8.30),(8.42) we see that this is such that

Cψ−→
k ,λ

(−→x ) = ψ−→
k ,−λ

(−→x ); ε−→
k ,λ

= ε−→
k ,−λ

(8.44)

and there is degeneracy at every −→k point.

8.4 Space groups of solids

The Space Group elements are [93]

(α|a) : −→r ′ = α−→r +−→a (8.45)
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where α denotes an operation of the Point Group while −→a is a translation (as
we will see, not always a Bravais one). This is a Group with the multiplication
rule

(β|−→b )(α|−→a ) = (βα|−→b + β−→a ) (8.46)

and it has the Point Group as a subgroup. We can write the faithful repre-
sentation2 (−→r ′

1

)
=
(
α −→a
0 1

)(−→r
1

)
. (8.47)

The inverse operation is

(α|−→a )−1 = (α−1| − α−1−→a ). (8.48)

Since
(α|−→a )−1(β|−→b )(α|−→a ) = (α−1βα|α−1(−→b + β−→a −−→a )) (8.49)

the translations (unlike rotations) are an invariant subgroup.
A Space Group generated them from the Bravais translations and from the

Point Group is symmorphic. The definition (8.46) (8.47) does not correspond
to the direct product, that it would give instead (β|−→b )(α|−→a ) = (βα|−→b +−→a ).
It is called a semidirect product. The translation depends on the choice of the
origin: consider the operation

−→r ′ = α−→r +−→a ; (8.50)

let us rewrite it in a reference with the origin shifted to −−→b . The starting
point in the new reference is −→s = −→r + −→b and the transformed one is

−→
s′ =−→

r′ +−→b ; therefore the transformation is described by

−→s ′ = α−→s − α−→b +−→a +−→b . (8.51)

So, the rotation is the same, but −→a → −→a ′ = −→a − α−→b + −→b . The operation
can be made homogeneous, that is, −→a ′ = 0, if we can find −→b such that

−→
b = (α− 1)−1−→a . (8.52)

8.4.1 Symmorphic and Nonsymmorphic Groups

The symmorphic Groups have the rotations of the point Group and the trans-
lations of the Bravais lattice; nonsymmorphic Groups have extra symmetry
elements are called screw axes and glide planes . These new operations
depend on special relations between the dimensions of the basis (that is, of
the unit which is periodically repeated) and of the Bravais translations. For

2different operations have different matrices.
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example, CdS (hexagonal close-packed structure) has both kinds of extra
symmetries. A plane a − b contains alternated Cd and S ions arranged in a
regular hexagonal pattern and above this plane at a distance c

2 another a− b
plane with Cd and S exchanged, and so on. The C6 rotation about the center
of the hexagon exchanges Cd and S; for the same reason, a translation by c

2
along the c axis does not belong to the Bravais lattice and is no symmetry;
however the combined operation (C6 and translation by c

2 ) leaves the system
invariant. The σv reflection of the hexagon is broken since it leads to the ex-
change of Cd and S; however, the σv plane is a glide plane: reflection in this
plane becomes a symmetry when accompanied by the c

2 translation along the
screw axis.

It is natural to ask whether one can eliminate the c
2 translation from the

screw axis operation by simply shifting the origin to −−→b . According to (8.51)
the transformation becomes homogeneous, −→s ′ = α−→s , if 0 = (1− α)−→b + −→a .
This requires satisfying (8.52) but if α−→a = −→a , there is no solution, and this
is the case since the translation −→a is along the axis of the rotation α. So, the
screw axes cannot be eliminated.

Iterating a screw axis operation we must obtain a Bravais translation.
Since α belongs to the Point Group, αn must be the identity for some integer
n ; then (8.46) implies (α|−→a )2 = (α2|α−→a +−→a ), (α|−→a )3 = (α3|α2−→a +α−→a +−→a )
and iterating we find

(α|−→a )n = (αn|
n−1∑
k=0

αk−→a ) = (1,−→t ). (8.53)

where −→t is a pure translation.
Let us write −→a = −→a ‖+−→a ⊥ where −→a ⊥ is normal to the rotation axis. The

condition (8.52) can always be solved to eliminate −→a ⊥. Setting −→a = −→a ‖, it
follows that

∑n−1
k=0 α

k−→a = n−→a and

−→a =
−→
t

n
. (8.54)

For instance, a screw-axis with an angle α = π
2 can have a translation equal to

1/4, 2/4 o 3/4 a Bravais vector. In the case of a glide plane, α is a reflection;
the above holds with n = 2, and α−→a + −→a = 2−→a = −→t ; hence a glide plane
has a translation of half a Bravais vector.

International Notation

In the international notation3, a screw-axis with an angle α = π
2 and a

translation equal to 1/4, 2/4 o 3/4 a Bravais vector is denoted by 41, 42 o
43 . The international notation for a Space Group starts with a letter ( P

3International Tables for X-Ray Crystallography (1952)
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for primitive, I for body-centered, F for face centered, R per rombohedric)
followed by the indication of the Point Group. Thus,

F
4
m

3̄
2
m

is the face centered Group with the Oh Point Group, with a C4 axis with
an horizontal symmetry plane, a C3 axis and inversion symmetry; this is
symmorphic,while the diamond Group

F
41

d
3̄

2
m

is not; d denotes a glide plane with a translation 1/4 Bravais vector.

Representations of the Translation Group and of the Space Group

Every −→k labels a representation of the Translation Group , with eigenvalue

ei
−→
k ·−→t . In general, one defines Rf(−→r ) = f(R−1−→r ); so

(α,−→a )ei
−→
k ·−→r = ei

−→
k ·(α,−→a )−1−→r

and using the inverse operation

(α,−→a )ei
−→
k ·−→r = ei

−→
k ·(α−1−→r −α−1−→a ).

Rotating two vectors by the same angle the scalar product does not change;
so we may write

(α,−→a )ei
−→
k ·−→r = ei(α

−→
k )·(−→r −−→a ). (8.55)

In terms of Bloch functions, (α,−→a )ψn(−→k ,−→r ) yields a linear combination of
ψn′(α−→k ,−→r ), where n → n′ because in general Point Group operations mix
degenerate bands.

One defines Star of −→k −→k the set {α−→k }. Higher symmetry points have
stars with fewer elements. For non-degenerate bands, −→k points of low sym-
metry correspond to a single ψ, but in general there is a subspace associated
to a given −→k point.

The Group of the wave vector −→k or little Group is the Subgroup G−→
k
∈ G

which consists of the operations (α,−→a ) (with −→a that may be a Bravais vector
or not) such thet α does not change −→k :

α
−→
k = −→k +−→G

with −→G in the reciprocal lattice (k vectors that differ by −→G are equivalent).
G−→
k

has the invariant Subgroup T−→
k
∈ T ∈ G of the translations −→t such that

ei
−→
k ·−→t = 1. The set of the basis functions of a representation of G−→

k
for all

the points of a star provide a basis for a representation of the Space Group
G. For further reading on this subject see [93].
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8.5 Young Diagrams

Young Tableaux for S(3)

Let us consider again the Group C3v. All operators can be expressed as
reflections or products of reflections (C3 = σ1σ2, C

2
3 = σ1σ3); moreover since

σ1 exchanges 2 with 3, etc., all operations are permutations and C3v ≡ S(3).
In the irrep A1 all the operators are represented by 1; in A2 the reflections
σi are represented by -1. The totally symmetric functions belong to A1 while
those of A2 are totally antisymmetric under any σi. Young diagrams represent
the irreps of S(n) by schemes with n boxes. Horizontal lining of boxes is
associated with symmetrization, vertical lining with antisymmetrization, and
the length of lines does not increase. So the first diagram refers to A1, the last
to A2 and the intermediate one to E. Here are the Young diagrams for S(3).
Each diagram correspond to an irrep, and this fact is general. E corresponds

to a mixed symmetry; in the geometry of Figure 7.1 with 1 on the y axis,
the projector on the x component is

P (E)
xx = 1− 1

2
(C3 +C2

3 )−σ1+
1
2
(σ2+σ3) = 1− 1

2
σ1(σ2 +σ3)−σ1+

1
2
(σ2 +σ3),

(8.56)
that is, introducing the anti-symmetrizer A(2, 3) = 1 − σ1 and the sym-
metrizer S(2, 3) = 1 + σ1

P (E)
xx = A(2, 3)[S(1, 3) + S(1, 2)]. (8.57)

A(2, 3)S(1, 3) and A(2, 3)S(1, 2) are mixed symmetries and project on E.
These projectors written in terms of symmetrizers and antisymmetrizers are
called Young projectors. They may be thought of as projectors on the various
irreps based on the regular representation. The three diagrams exhaust the
possible partitions of 3 in not increasing integers, that is, 3 =2+1=1+1+1.

The Young tables or Young tableaux are obtained from the Young dia-
grams by inserting numbers from 1 to 3 so that every line and every column
grow along. The tableau

1 2 3
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represents the projection operator S(1, 2, 3), the symmetrizer ; the Young

projection operator A(1, 3)S(12) is given by
1 2
3

but one can also

antisymmetrize with respect to 2, getting 1 3
2

. Finally,
1
2
3

projects on A2.
The fact that there are two tables with mixed permutation symmetry is

due to degeneracy 2 of the irrep E. In general, in the Young tables for S(N),
the m-dimensional irreps occur m times.

Young Tableaux for S(4)

S(4), has 24 elements and the following 5 irreps that may be found by the
above stated rules.

1 2 3 4 is the 1-dimensional A1 representation.

1 2 3
4

1 2 4
3

1 3 4
2

are 3 occurrences of a 3-dimensional irrep, while

1 2
3 4

1 3
2 4

is 2-dimensional,

1 2
3
4

1 3
2
4

1 4
2
3

is 3d and finally

1
2
3
4

is the totally antisymmetric ir-

rep. These correspondences are useful as it extends to all groups S(N) of
permutations of N objects. Thus, the irreps of S(N) are known for any N.

Young Tableaux for Spin Eigenfunctions

Consider a system consisting of N spins 1/2 and a set of eigenstates |S,MS〉
obtained e.g. by solving the eigenvalue problems for S2 and Sz. Any permu-
tation of the spins sends an eigenfunction into a linear combination of the
eigenfunctions with the same eigenvalues S,MS ; in other terms, the S,MS

quantum numbers label subspaces of functions that do not mix under permu-
tations. Within each subspace, one can use projection operators to produce S
andMS eigenfunctions that form a basis of irreps of S(N). For each symmetry
type (i.e. for each component of each irrep) there exists one solution.

For instance, for N=3 a quartet and two doublets exist. With MS = 3
2

the only state is | ↑↑↑〉, which is invariant for any permutation of the arrows;
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by the shift operators one finds that |32 ,
1
2 〉 =

1√
3
(| ↑↑↓〉+ | ↑↓↑〉|+ ↓↑↑〉). This

is invariant for spin permutations, too, and belongs to the A1 irrep of S(3).
The shift operators preserve the permutation symmetry, and all the 2MS +1
states belong to the same irrep. The ortogonal subspace involving one down
spin yields two doublets; one is |12 ,

1
2 〉 = 1√

2
[| ↑↑↓〉−| ↑↓↑〉] ; another one which

is not orthogonal is |12 ,
1
2 〉 = 1√

2
[| ↓↑↑〉 − | ↑↓↑〉]; orthonormalizing we obtain

|12 ,
1
2 〉 = 1√

6
[2| ↓↑↑〉 − | ↑↓↑〉 − | ↑↑↓〉]. These doublets are not invariant for

spin permutations; they are just the two components of the familiar irrep E of
the C3v permutation symmetry. Moreover, by the shift operators each yields
its |12 ,−

1
2 〉 companion. A quarted and 2 doublets exhaust all the 23 states

available for N=3, and there is no space for the A2 irrep. This is general:
since spin 1/2 has two states available, any spin wave function belongs to a
Young diagram with 1 or 2 rows.

Thus we realize that rather than solving eigenvalue problems we can be
smarter and obtain the eigenfunctions directly by Young projectors. The per-
mutation symmetry of the full many-electron wave function will be discussed
in Sect. 9.8.

Problems

12

3

4

5

a) b)

Fig. 8.4. a) The CuO4 Hubbard model cluster. b) The Cu5O4 Hubbard model
cluster.

8.1. The CuO4 Hubbard model cluster
Consider the Hubbard model cluster in Figure (8.5 a)), belonging to C4v

symmetry. (1) Find the irreps of the one-electron orbitals.
(2) Consider this cluster with 4 fermions, in the Sz = 0 sector. Classify the
4-body states with the irreps of the Group.

8.2. The Cu5O4 Hubbard model cluster
For the cluster in Figure (8.5 b)) classify the 4-fermion states in the Sz = 0
with the irreps of C4v.



9 Product of Representations and Further

Physical Applications

9.1 Irreducible Tensor Operators

Let Φ = ÂΨ, where Ψ is a wave function and Â some operator. Then, act-
ing with a unitary operator R, one finds RΦ = Â′RΨ = RÂR†RΨ, where the
transformed operator is Â′ = RÂR†. Thus, functions are transformed accord-
ing to Ψ → RΨ while operators are transformed according to Â → RÂR†;
actually the two rules differ by a matter of notation. R acts on everything
on its right, so in the case of operators the last factor R† = R−1 is there
just to ensure that the action of R is limited to Â, while functions are at the
extreme right and there is no need for that. We can consider (x1, x2, x3) as a
set of functions or as the components of an operator. As functions that trans-
form as a basis of a representation of some symmetry Group, they transform
according to the rule

(x1, x2, x3)→ (Rx1, Rx2, Rx3) = (D(R)k1xk, D(R)k2xk, D(R)k3xk);

this is the vector representation, which is irreducible in cubic and higher
Groups. If we treat them as a set of operators, we write

(x, y, z)→ (RxR†, RyR†, RzR†).

This defines a vector operator, but the linear combinations that result are
the same. A tensor is a set of operators Ti (the components) that are mapped
into linear combinations by every R, that is,

Ti
S→ STiS

† =
∑

j

TjDji(S); (9.1)

the multiplication Table is followed since

Ti
RS→ RSTiS

†R† =
∑

j

TjDji(RS). (9.2)

If the representation is the irrep α, we can speak of the irreducible tensor
operator T (α) and in any representation all its components are mixed by the
Group operations. In GL(n) a tensor of rank r is a set of operators T such
that
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T ′
α(1),α(2),···,α(r) =

∑
β(1),β(2),···,β(r)

aα(1)β(1)aα(2)β(2) · · ·aα(r)β(r)Tβ(1),β(2),···,β(r).

(9.3)
Given a second-rank tensor T , one can build a symmetric tensor Sij =
Tij + Tji and an antisymmetric one Aij = Tij − Tji. Obviously a symmetric
(antisymmetric) tensor remains symmetric (antisymmetric) under the trans-
formations of GL(n). In general, the tensors of GL(n) are reduced into ir-
reducible parts by taking linear combinations according to the irreps of the
permutation Group S(r). Further reduction is possible in subgroups of GL(n).

Tensors in Polar Form

Under the operators of O+(3) the ITO transform like spherical harmonics.
Therefore, the following polar form is expedient. For a vector, the polar com-
ponents are xm,m = 0,±1, where, using a traditional notation,

x+1 = −x+ iy√
2
, x0 = z, x−1 = −x− iy√

2
, (9.4)

and transform according to

RxmR
−1 =

∑
n

xnD
1
nm(R), (9.5)

where D1
nm(R) represents the rotation in the basis of the spherical harmonics

with l = 1. It is natural to put the basis vectors in polar form too,

e+1 = −e1 + ie2√
2

, e0 = e3, e−1 = −e1 − ie2√
2

. (9.6)

In this way the expansion of a vector in the basis, V =
∑3

i=1 Viei is replaced
by

V =
1∑

m=−1

(−)mVmem. (9.7)

The scalar product of two real vectors V and W in polar form is

V ·W =
1∑

m=−1

(−)mV−mWm, (9.8)

as one can readily verify. The advantage of the polar form is that now we can
generalize to an ITO of any rank of O+(3). The definition of such an ITO is

RT (γ)
p R−1 =

∑
q

T (γ)
q D(γ)

qp (R). (9.9)

For instance if γ denotes the representation with J = 0, then q = 0 and T is
a scalar; if γ denotes the representation with J = 1, then q = 0,±1 and T (1)

is a vector in the polar representation; in general, T (l)
q transforms like Y (l)

q .
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9.2 Direct Product Representation

Direct Product of Matrices

From the pair of matrices

A =
(
a11 a12

a21 a22

)
, B =

(
b11 b12
b21 b22

)
,

one can build the direct product, thet is, the block matrix

D = A⊗B =
(
a11B a12B
a21B a22B

)
=

⎛
⎜⎜⎝
a11b11 a11b12 a12b11 a12b12
a11b21 a11b22 a12b21 a12b22
a21b11 a21b12 a22b11 a22b12
a21b21 a21b22 a22b21 a22b22

⎞
⎟⎟⎠ .

Note that TrD = TrATrB.
We can number rows and columns as usual and say for instance D24 =

a12b22, but for direct-product matrices a different rule is used. One denotes
the matrix element by a pair if row indices and a pair of column indices, so
a12b22 = D12,22. In general, Dkp,ij = akibpj is the element of a mn × mn
matrix D = A⊗B, where m and n are the sizes of A nd B respectively.

Direct Product of Representations

Further important developments of the theory of symmetry are needed for
systems that consist of parts (e.g. two electrons, spin and orbit of an electron,
one electron and a vibration mode). One starts with two parts 1 and 2.
The basis can always be chosen as if they were independent, and any state
is a linear combination of products f (α)(1)g(β)(2), where f (α)

1 , · · · f (α)
m and

g
(β)
1 , · · · g(β)

n are bases for irreps of dimensions m and n respectively:{
Rf

(α)
i =

∑m
k=1 f

(α)
k (1)D(α)

ki (R),
Rg

(β)
j =

∑n
p=1 g

(β)
p (2)D(β)

pj (R).
(9.10)

are a convenient basis; they transform according to

R|αiβj〉 =
m∑
k

n∑
p

|αkβp〉D(α)
ki (R)D(β)

pj (R)

≡
m∑
k

n∑
p

|αkβp〉D(αβ)
kp,ij(R). (9.11)

Thus, the direct product matrix D(αβ) = D(α) ⊗ D(β) with elements
D

(αβ)
kp,ij(R) = D

(α)
ki (R)D(β)

pj (R) is the representative matrix of R in what is
called the direct product representation. Its characters are
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χ(αβ(R) =
∑
kp

D
(αβ)
kp,kp(R) = χ(α(R)χ(β(R). (9.12)

It is almost a tongue-twister, but is a far reaching result: the character of
the direct product of two representations is the product of the characters of
the two representations. Great! We can now perform the usual analysis of
the product into irreps by the character orthogonality theorem. Consider for
instance the Group of the Square, and suppose that the two parts 1 and 2
belong to known irreps: their products define a representation of G and we
wish to reduce it:

C4v I C2 2C4 2σv 2σd g = 8
A1 1 1 1 1 1 z
A2 1 1 1 −1 −1 Rz

B1 1 1 −1 1 −1 x2 − y2

B2 1 1 −1 −1 1 xy
E 2 −2 0 0 0 (x, y)

A2 ⊗B1 1 1 −1 −1 1 B2

B2 ⊗B1 1 1 1 −1 −1 A2

E ⊗A2 2 −2 0 0 0 E
E ⊗ E 4 4 0 0 0 A1 ⊕A2 ⊕B1 ⊕B2

(9.13)

In this way we can build a multiplication table for the irreps of C4v.

C4v A1 A2 B1 B2 E
A1 A1 A2 B1 B2 E
A2 A2 A1 B2 B1 E
B1 B1 B2 A1 A2 E
B2 B2 B1 A2 A1 E

E E E E E
A1 +A2

+B1 +B2

(9.14)

Here A1 occurs in the diagonal and only there because

nA1 =
1
NG

∑
R

1 · χ(αβ)(R) =
1
NG

∑
R

χ(α)χ(β)(R) = δαβ . (9.15)

9.2.1 Selection Rules

Suppose the amplitude of a physical transition governed by some operator T̂
depends on the matrix element 〈φ|T̂ |ψ〉 which is cumbersome and expensive
to compute. It would be disappointing at the end of a computational tour de
force to discover that the matrix element is 0, or that it is identical to another
one that we knew already. Group theory predicts which matrix elements must
be equal and which must vanish by establishing selection rules. Indeed, T̂ is
some tensor component and T generates a representation Γ (T ); the states also
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belong to representations Γ (ψ) and Γ (φ) of the Group G. A matrix element
〈φ|T̂ |ψ〉 is an integral, which is invariant, therefore it vanishes unless the
integrand gets some contribution from A1. If the reduction of Γ (φ) ⊗ Γ (T ) ⊗
Γ (ψ) to irreps yields (among others ) A1, then 〈φ|T̂ |ψ〉 
= 0, otherwise we
can dispense from the calculation of the matrix element since it vanishes by
symmetry. In other terms, the condition for a non-vanishing result is that the
reductions of Γ (T ) and of Γ (φ)⊗Γ (ψ) have at least one irrep in common. For
example, if one is interested in electromagnetic transitions in C4v symmetry,
the dipole operator transforms like a vector (x, y, z), so one component is
in A1 and two are in E. Thus one finds that a transition from B1 to B2

is forbidden, while from the E states all the other states can be reached
by the in-plane component of the dipole, while E → E is allowed by the z
component.

Most molecules with an even number of electrons have filled shells con-
figuration in the ground state, which is total-symmetric1. Then, the excited
states that can be reached by photon absorption are those where one of the
components of the dipole is classified. A similar analysis can be done for the
infrared transitions between vibrational states that belong to the same elec-
tronic level. Clearly, the phonon vacuum belongs to A1 and the one-phonon
states have the symmetry of the normal mode which is excited. On the other
hand, the Raman effect is a two-photon process in which the system goes
from an initial state |i〉 to a final state |f〉 by absorbing a photon of po-
larization vector ε1 and emitting another one of polarization vector ε2 and
different frequency. Emission and absorption are coherent, that is, they are
one quantum process, and the amplitude is given by the matrix element of
the operator

R =
∑
pq

Rpq(ε2)p(ε1)q

where Rpq ∝ xpxq is the Raman tensor. From the symmetry viewpoint, what
matters is that the components of the Raman tensor transform like xpxq,
and this determines the selection rules. In systems with inversion symmetry,
the normal modes must be gerade or ungerade (even or odd). Only ungerade
modes are infrared active and gerade ones are Raman active. For instance,
infrared and Raman spectra of Benzene have no frequencies in common.

9.3 Reduction of the Direct Product Representation

From the mα-times degenerate irrep α and the mβ-times degenerate irrep β
one forms a direct product representation Γ (α) ⊗ Γ (α) of dimension mαmβ .
We have seen how the direct product representation is reduced; but it re-
mains to be seen how the basis separates in symmetry-adapted bases. By

1See the Section 9.5.2on the Jahn-Teller effect for a justification of this state-
ment.
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inserting a complete set one can go, with a unitary transformation, from the
basis {|αiβj〉} of the direct product Γ (α) ⊗ Γ (α) to a basis of functions that
transform according to irrep Γ (γ) of the Group G.

|αiβj〉 =
irreps∑

g

mγ∑
r

|γr〉〈γr|αiβj〉. (9.16)

The coefficients 〈γr|αiβj〉 are the Clebsh-Gordan (CG) coefficients of the
Group; in the case of the rotation Group O(3) they are the well known co-
efficients 〈LM |L1M1L2M2〉. For a point group, the CG coefficients are even
easier to find than for O(3). One forms a table R|αiβj〉, i = 1, · · ·mα, j =
1, · · ·mβ , R ∈ G, of the effects of the operations on the direct-product basis,
then combines them according to the projectors. In order to decompose the
D matrices, we want a basis change, obtained by inserting complete sets:

D
(α)
ki (R)D(β)

pj (R) = D
(αβ)
kp,ij(R) = 〈αkβp|Rαiβj〉

=
∑
γrs

〈αkβp|γs〉D(γ)
sr (R)〈γr|αiβj〉. (9.17)

This corresponds to the familiar use of CG coefficients for the sum of angular
momenta (for an example, see Problem 9.1).

9.4 Spin-Orbit Interaction and Double Groups

Up to now we have considered only the Group of transformations of the
space orbitals, ignoring spin. The spin-orbit interaction makes the problem
less symmetrical: as an example, a Hydrogen level of angular L 
= 0, 2(2L+1)
times degenerate, separates in two levels J± = L ± 1/2, degenerate 2J± + 1
times.

The spin, alone, or in an A1 orbital, yields a representation of the opera-
tors. The rotation around to the z axis by an angle ω is done by

Rω = e−i ω
2 σz =

(
ei ω

2 0
0 e−i ω

2

)
= cos(

ω

2
)− iσz sin(

ω

2
) (9.18)

and belongs to the SU(2) covering group of SO(3). For ω = 2π, Rω = −1. If
we rotate around axis n, since (σ · n)2 = 1,

Rω = e−i ω
2 σ·n = cos(

ω

2
) + i(σ · n) sin(

ω

2
) (9.19)

and for ω = 2π, R = −1 anyway2; this is a rotation that commutes with any
other symmetry.

2a closely similar formula with the 4×4 matrices Σ in place of σ is the starting
point of the Group theory using Dirac’s equation. In this section we assume that
the Pauli theory with the relativistic corrections is adequate.
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Following Teller (1929) we indicate with Ē the 2π rotation around an
arbitrary axis; Ē = E for a function without spin and Ē = −E and for the
spinor representation: in both the cases, Ē commutes with all the R ∈ G.
Adding Ē to the generators of the symmetry Group we obtain the so-called
double Group G’ which has, along with every R ∈ G, also ĒR.

Ē alone is a class. A rotation by α forms a class with 4π−α i.e. its inverse
in G’, since the two operations are conjugated by a vertical reflection or by
another rotation. Reflections times Ē may form a separate class.

Since Ē2 = E the eigenvalues are ±1. By Schur’s lemma, D(α)(Ē) =
±D(α)(E) ∀α, so χ(α)(ĒR) = ±χ(α)(R).

Among the new irreps, where the - sign holds, the spinor representation is
always there; it is suitable for an electron in a total-symmetric orbital. χ(Ē) =
−2; rotation by ω about n are represented by the SU(2) matrices D(ω) =
e−

i
2 σ·ω. Since the characters are invariant for unitary transformations, we

may take n along the axis z: thus D(ω) =
(
e−i ω

2 0
0 ei ω

2

)
. Thus the character

for spin 1/2 is
χ(1/2)(ω) = 2 cos(

ω

2
). (9.20)

If the inversion î is in G, it leaves spin and any angular momentum invariant,
so D(̂i) = D(E) and χ(i) = 2. The reflections and all the improper rota-
tions can be written like products îRω.

3 In such a way, we can complete the
characters of the spinorial representation4. This describes an electron with
an orbital A1.

The above information is enough to build easily the character table for
G’ from that of G, without having to work out everything from the multi-
plication table. Having listed the classes, one can append the irreps of G,
with χ(α)(ĒR) = +χ(α)(R). Then one appends the spinor representation,
and knows how many irreps are missing to reach the number of classes. The
sizes are found by the Burnside theorem, and the LOT allows to find the
characters. As an example, we can extend from C3v to C′

3v.

C′
3v E Ē

C3

C2
3 Ē

C2
3

C3Ē
3σv 3σvĒ

A′
1 1 1 1 1 1 1

A′
2 1 1 1 1 −1 −1
E′ 2 2 −1 −1 0 0
E1/2 2 −2 1 −1 0 0
Γ 5 1 −1 −1 1 i −i
Γ 6 1 −1 −1 1 −i i

3Example: a reflection in (xyz) → (xy − z) in the (x,y) plane can be obtained
as a rotation (xyz) → (−x − yz) followed by î.

4The character tables for the most common double Groups are available in the
literature, and some are reported in Appendix B
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The A′
1, A

′
2 and E′ irreps have the same charcters as in C3v, and E1/2 is

the spinor representation. Since the classes are 6 two irreps are missing, and
since the sum of the squares of the dimensions must be 12, the new ones
are one-dimensional. By orthogonality, we find that they are conjugate rep-
resentations as shown above. At this point the reader could solve Problem
9.4.

In a physical problem, one can begin by classifying the space orbitals
according to G and then extend the theory to G’ including spin. The direct
product of the orbital irrep by the spinor representation will include the
spin. In general , the result will be reducible in the double Group applying
the LOT. We will be able to thus establish how the spin-orbit interaction
reduces the degeneracy in the problem in issue. For example, if the orbital
belongs to A1 or A2 of C3v, the spinor belongs to E1/2, and no level splitting
occurs; if the orbital belongs to E the product representation has dimension
4, but one finds that in C′

3v, E ⊗ E1/2 = E1/2 + Γ 5 + Γ 6.

9.5 Static and Dynamical Jahn-Teller Effect

9.5.1 The Born-Oppenheimer (BO) Approximation

The total Hamiltonian of a system of electrons and nuclei may be written,
with R for set of nuclear and r for the electronic cordinates,

Htot(r,R) = Te(r) + TN (R) + V (r,R) (9.21)

where Te(r) and TN (R) are the electronic and nuclear kinetic terms, and

V (r,R) = Vee + VeN + VNN (9.22)

contains all interactions. The Schrödinger equation

Htot(r,R)Ψtot(r,R) = WΨtot(r,R) (9.23)

is intractable. In order to separate variables approximately, one keeps the
nuclei fixed (TN ≈ 0) introducing the adiabatic electronic Hamiltonian

He(r;R) = Te + V (r,R) (9.24)

where the R dependence is only parametric; the Schrödinger equation

HeΨn(r;R) = En(R)Ψn(r;R) (9.25)

yields the adiabatic eigenstates Ψn(r;R) and the potential energy surfaces
En(R). This is the BO approximation, which further assumes that if nuclei
move their evolution is confined to an adiabatic surface, and the harmonic
oscillations about equilibrium correspond to the minimum of E0(R).
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Below we adopt a compact notation, writing the nuclear kinetic energy
TN = −h̄2

2M
∂2

∂R2 and understanding indices and summations. The nuclear wave
function is then expected to be given by5

− h̄2

2M
∂2

∂R2
χ+ E0(R)χ(R) = Wχ(R). (9.26)

Summarizing the BO approximation:

– the positions of the nuclei are external parameters that determine the
Coulomb external potential in which the electrons move, and the Hamil-
tonian H(R)

– the momenta −ih̄∇R canonically conjugated to the nuclear positions are
ignored. This assumes that the nuclear masses are infinitely large

– The equilibrium configuration corresponds to a minimum of the total
energy:

E0(R) = 〈Ψ0|H |Ψ0〉 (9.27)

δE0

δR
= 0. (9.28)

( δE0
δR = 0 represents extremum conditions in all the components of the

nuclear position vectors)
– the electronic states are calculated at the equilibrium configuration and

E0(R) is the potential energy for the nuclear motion.

9.5.2 The Jahn-Teller Theorem

CH4 is a tetrahedron (Td Group), SF6 an octahedron (Oh Group), and
snowflakes have beautiful regular shapes. Why are so many molecules and
solids highly symmetric in Nature? Is a maximum symmetry principle to
be discovered? Although the concept of symmetry is central to quantum
physics, from solids down to subnuclear particles, the answer is definitely no.
Bloch waves that carry crystal momentum and Hydrogen states with angu-
lar momentum are less symmetrical then the respective Hamiltonians. Many
atoms and nuclei have non-spherical ground states. Yet, the regular shapes
of molecules and solids is striking since there would be an infinite number of
ways to move the nuclei and seek for a lower energy configuration; we must un-
derstand why such molecules cannot gain energy from any distortion. Within
the Born-Oppenheimer approximation, the Jahn-Teller Theorem provides an
answer, for the 32 point Groups: what matters is degeneracy. The electronic
cloud needs to be degenerate, otherwise the electrons do not have enough
degrees of freedom to lower the symmetry; on the other hand, if there is de-
generacy, a suitable deformation always exists, except for linear molecules.

5In Equation (9.41) below we shall see that this statement although reasonable
is a bit too simple-minded and actually something is missing.
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The CH4 ground state is non-degenerate in the Td symmetry; but by remov-
ing a bonding t2 electron the CH+

4 ion distorts until the symmetry Group
becomes Abelian.

Initially proposed as a computational aid which exploits a given symmetry
of the Hamiltonian, Group Theory eventually dictates which symmetries are
allowed or forbidden at all.

Mathematical Formulation of the Problem

We want a criterion to decide if a given configuration R̃ of the nuclei in
the BO approximation can be the equilibrium one, according to (9.28). We
must minimize with respect to the shifts of the nuclei from to the reference
configuration R̃; but first, we eliminate the rigid shifts of the molecule by
using the normal modes of vibration of Section (8.2) instead of the nuclear
positions. These modes are labeled by the index α of the frequency and by
an index i for the degeneracy and multiplicity (the same symmetry can occur
several times). The amplitude of the motion according to a normal mode
is specified by a normal coordinate qα

i , and we must minimize E(q), where
q ≡ {qα

i } stands for the whole set.
Actually, we do not have any analytic expression of E(q) to differentiate.

Therefore, we expand the Hamiltonian H around R̃ in powers of q, letting
H0 = H(R̃); this enables us to find the correction to E(q) by perturbation
theory. The correction terms ofH yield the interactions between electrons and
vibrations, also called the vibronic couplings. Including up to the quadratic
terms, we find

H = H0 +
∑
αi

Vαiq
(α)
i +

∑
αβ

∑
ik

Wαiβkq
α
i q

β
k . (9.29)

The equilibrium condition is that the average first-order corrections to the
energy vanish.

In the Born-Oppenheimer approximation, Vαi operates on electrons; the
true Hamiltonian depends quadratically on the momenta pα

i canonically con-
jugated to the qα

i . If we take into account the momenta, we go beyond the
Born-Oppenheimer approximation; one then speaks about the dynamical
Jahn-Teller effect, see next Section. Note that V α

i and qα
i must transform

in the same way, as H must be a scalar and in the table of the direct prod-
ucts A1 appears only on the diagonal. We do not mind V A1

i here: such terms
do not distort the symmetry. 6 The equilibrium condition is

〈H ′〉 =
∑
αi

〈Vαi〉q(α)
i = 0. (9.30)

Since the q(α)
i are linearly independent we really need

〈Ψ0|Vαi|Ψ0〉 = 0. (9.31)
6Actually, they could in principle only increase it: with a A1 motion the water

molecule could be straightened and become a D∞h molecule.
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Non-degenerate Case

If the ground state is not degenerate, Γ (Ψ0Ψ0) = A1 and 〈Ψ0|Vαi|Ψ0〉 = 0 for
α 
= A1. So, all the nuclei move, keeping the symmetry of the molecule, until
〈Ψ0|V (A1)

i |Ψ0〉 = 0. This 0 is not due to the symmetry, but to the existence of
a minimum of energy versus breathing mode coordinate: we can vary a bond
length or an angle until the condition is satisfied.

Degenerate Case

When H0Ψ
(0)
ν = E0Ψ

(0)
ν is solved by several Ψ (0)

ν , we must apply degener-
ate perturbation theory, diagonalizing the perturbation matrix with elements
〈Ψ (0)

ν |H ′|Ψ (0)
ν 〉. If the eigenvalues do not vanish all identically, one predicts

a splitting linear in the q(α)
i of the degenerate level, a lowering of the sym-

metry and a distortion of the molecule. The only Hermitean matrix that has
all eigenvalues equal to 0 is the null one. Thus, for equilibrium we need to
satisfy the strong condition

〈Ψ (0)
ρ |Vαi|Ψ (0)

σ 〉 = 0 ∀α, σ, ρ. (9.32)

Now we must examine the normal modes occurring in the assumed geometry
in order to see if any generates matrix elements that destroy the symmetry.
Let Γ 0 denote the irrep where Ψ (0)

σ belongs. The Jahn-Teller effect is caused
by a normal mode belonging to an irrep α 
= A1 which is contained in Γ 0⊗Γ 0.
In such cases there is no reason why the matrix elements vanish, and the
molecular configuration is unstable7.

In 1937, Jahn and Teller demonstrated that for a non-linear molecule
with degenerate ground state irrep Γ 0, a vibration ωα always exists such that
Γα 
= A1 is contained in Γ 0⊗Γ 0; this implies that the fundamental electronic
terms of non-linear molecules are not degenerate (even if not necessarily total-
symmetric). The proof is obtained by repeating for all the 32 point Groups8

the same analysis that we now exemplify in the case of Td.

Example

We resume CH4 (Sections 8.1.2,8.2);

Td E 8C3 3C2 6σd 6S4 g = 24
A1 1 1 1 1 1 r2

A2 1 1 1 −1 −1
E 2 −1 2 0 0 (3z2 − r2, x2 − y2)
T1 3 0 −1 −1 1 (Rx, Ry, Rz)
T1 3 0 −1 1 −1 (x, y, z)

7One speaks about pseudo-Jahn-Teller effect when the distortion is caused by a
vibronic coupling of close energy levels of the same symmetry.

8when other Groups are appropriate the situation needs verification.
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The degenerate irreps of the Td Group they are E, T1 and T2, and

E ⊗ E = A1 ⊕A2 ⊕ E, T1 ⊗ T1 = T2 ⊗ T2 = A1 ⊕ E ⊕ T1 ⊕ T2 (9.33)

We saw Γvibr = A1 + E + 2T2. Therefore at least one Jahn-Teller active
vibration , able to distort the molecule, exists for any degenerate state. The
considerable width of the t2 level of CH4 seen in photoemission is due just to
the fact that the ionization excites the vibrations of the molecule compelling
the nuclei to seek a new equilibrium new position. The distortion must remove
the degeneracy completely. The basis of an irrep of a Group G is also a basis
of a representation of every subgroup of G, since by eliminating some matrices
the remaining ones continue to obey the multiplication Table of the subgroup;
but usually the representation is reducible. As an example, from Td one can
go to D2d, e.g. by stretching the tetrahedron along the z axis. This stretching
completely resolves the degeneracy of electronic states of symmetry E, but is
not enough for T2 states. Under Td, the characters are:

Td E 8C3 3C2 6σd 6S4 g = 24
E 2 −1 2 0 0 (3z2 − r2, x2 − y2)
T2 3 0 −1 1 −1 (x, y, z)

while the Character Table of the Subgroup is:

D2d E C2 2C′
2 2σd 2S4

A1 1 1 1 1 1
A2 1 1 −1 −1 1
B1 1 1 1 −1 −1
B2 1 1 −1 1 −1
E 2 −2 0 0 0

C3 is broken; for Td there is no distinction between C2 and C′
2, therefore

one of the 3C2 one goes under C2, and two under C′
2. We then consider the

operations of Td that survive in the D2d subgroup. The D(R) are the same,
even if they are not irreducible any more, and they have the same traces. We
place the characters of the surviving operations under the classes of D2d, and
analyze the representation. For the degenerate ones one finds

D2d E C2 2C′
2 2σd 2S4 analysis

E(Td) 2 2 2 0 0 A1 ⊕B1

T2(Td) 1 −1 −1 1 −1 E ⊕B2

therefore the distortion is enough in the first case but not in the second. This
analysis cannot determine the type of distortion uniquely.

Linear Molecules

Why is CO2 straight? For the linear molecules the theorem does not apply.
Let Λ denote the electron angular momentum parallel to the molecular axis.



9.6 Non-Adiabatic Operator 193

In molecules with Λ = 0 degenerate the electronic ground state is unique and
there is no problem. In those with |Λ| ≥ 1, the states ±Λ are degenerate.
Therefore between the unperturbed states ΔΛ = 2, 4, 6 . . . In order to resolve
the degeneracy it would be necessary to fold the molecule; but no fold can
occur since the vibronic matrix element vanishes:

∫
ΨΛV Ψ−Λ = 0. In fact,

a shift of a nucleus outside of the axis is a vector (cosφ, sinφ); the matrix
elements are subject to the rule of selection rule ΔΛ = ±1. Therefore the
matrix elements vanish and the degeneracy remains.

9.6 Non-Adiabatic Operator

In the BO approximation the evolution is confined to an adiabatic surface9

and one could expect to derive Equation (9.26) for the nuclear motion from
the ansatz:

Ψtrial(r;R) = χ(R)Ψ0(r;R). (9.35)

This is not exactly true, as we shall see shortly. Let us look for the best
solution of the form (9.35) variationally, with a given Ψ0(r;R), looking for
the χ(R) that yields the minimum of the energy

E = 〈Htot〉 = 〈TN +He〉. (9.36)

Again we adopt a compact notation, writing the nuclear kinetic energy
TN = −h̄2

2M
∂2

∂R2 and understanding indices and summations. One looks for
the unconditional minimum of

F [χ] =
−h̄2

2M

∫
drdR χ∗Ψ∗

0

∂2

∂R2
χΨ0 +

∫
dR χ∗(R)E0(R)χ(R)

− W
∫
dRχ∗(R)χ(R) (9.37)

where W is a Lagrange multiplier that ensures normalization. Using

∂2

∂R2
|χΨ0〉 = |Ψ0〉

∂2

∂R2
|χ〉+ 2

∂|Ψ0〉
∂R

∂|χ〉
∂R

+ |χ〉 ∂
2

∂R2
|Ψ0〉

9If in R0 one has degenerate wave functions,

Ψn(r; R0), n = 1 . . . ν (9.34)

with
He(r; R0)Ψn(r; R0) = E(R0)Ψn(r; R0),

the topology of the surfaces is important. For conical intersections, when the sur-
faces cross each other, one speaks of Jahn-Teller effect; when surfaces touch at ex-
tremal points one speaks of Renner-Teller effect [5]. However, the JT theorem limits
the occurrence of glancing intersections to linear molecules (and to cases when the
gradient is accidentally vanishing or particularly small for reasons independent of
Group theory).
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one finds

F [χ] = − h̄2

2M

{∫
dRχ∗ ∂

2χ

∂R2
+ 2
∫
drdRχ∗Ψ∗

0

∂Ψ0

∂R

∂χ

∂R

(9.38)

+
∫
dRχ∗χ

∫
drΨ∗

0

∂Ψ0

∂R2

}

+
∫
dRχ∗(R)E0(R)χ(R)−W

∫
dRχ∗(R)χ(R).

We vary the bra (variation of bra and ket produces identical results).

δF =
∫
dRδχ∗(R)

{
− h̄2

2M
∂2

∂R2
χ− h̄2

M

(∫
drΨ∗

0

∂Ψ0

∂R

)
∂χ

∂R

− h̄2

2M

(∫
drΨ∗

0

∂2Ψ

∂R2

)
χ(R) + (E0(R)−W )χ(R)

}
= 0. (9.39)

This implies:

− h̄2

2M
∂2

∂R2
χ+ E0(R)χ(R)− h̄2

M

(∫
drΨ∗

0

∂Ψ0

∂R

)
∂χ

∂R

− h̄2

2M

(∫
drΨ∗

0

∂2Ψ

∂R2

)
χ(R) = Wχ(R) (9.40)

The minimum condition is

− h̄2

2M
∂2

∂R2
χ+ E0(R)χ(R) + Λ(R)χ(R) = Wχ(R) (9.41)

where the non adiabatic operator appears

Λ(R) = − h̄
2

M

(∫
drΨ∗

0

∂Ψ0

∂R

)
∂

∂R
− h̄2

2M

(∫
drΨ∗

0

∂2Ψ0

∂R2

)
. (9.42)

This has been often ignored in the literature; the reasons are that 1) the first
contribution, averaged over real electronic wave functions vanishes since∫

drΨ0(r;R)
∂

∂R
Ψ0(r;R) =

1
2
∂

∂R

∫
drΨ0(r;R)Ψ0(r;R);

2) the second contribution is small (of order m
M ). It will be apparent shortly

that such reasons are not generally as safe as they may appear to be.

9.6.1 Dynamical Jahn-Teller Effect

At strong vibronic coupling , the energy surfaces have Ndeg deep and distant
minima and the nuclear degrees of freedom can hardly tunnel between them.
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Then, the kinetic energy of the nuclei does not play a role, and one can
observe a static JT effect with broken symmetry. At weak coupling, one
speaks about dynamic JT effect and the system oscillates between several
minima; the overall symmetry remains unbroken10. The JT approximation
to the solutions of HtotΨ

tot = WΨ tot ( Equation 9.23) uses as a reduced basis
set the Ndeg degererate adiabatic functions in the symmetric configuration
R0 :

Ψ tot(r,R) ∼
Ndeg∑

n

χn(R)Ψn(r) (9.43)

here Ψn(r) are assumed known, and one seeks the nuclear amplitudes χn(R).
Substituting into Equation (9.23) and taking the scalar product by 〈ψm| leads
to ∫

drψ∗
m(r;R0) [Htot −W ]

∑
χn(R)Ψn(r) = 0, (9.44)

that is,∫
drψ∗

m

[
TN + Te(r) + V (r,R)︸ ︷︷ ︸−W

]∑
χn(R)Ψn(r) = 0,

where Te(r) + V (r,R) = He(r,R). By orthogonality,

− h̄2

2M
∂2

∂R2
χm(R) +

∑
n

χn(R)
∫
drψ∗

m(r;R0)He(r,R)Ψn(r) = Wχm(R).

(9.45)
Defining

Vmn(R) =
∫
drψ∗

m(r;R0)He(r,R)Ψn(r) (9.46)

we get the coupled problem

− h̄2

2M
∂2

∂R2
χm(R) +

∑
n

Vmn(R)χn(R) = Wχm(R). (9.47)

or in matrix form

10The distinction between dynamical and static JT effect usually depends only
on the time scale of the experiment. For example, (Cu·6H2O)++ ions look perfectly
octahedral when observed at room temperatures in EPR experiments, but below
20 0K or with fast spectroscopies it is seen that this symmetrical configuration is
the time average of stretched and compressed ones as the top and bottom H2O
molecules oscillate up and down. On the other hand, X-Ray diffraction at room
temperature shows that (CuBr6)

4− ions is a tetragonally distorted, stretched oc-
tahedron; the latter is classified as an example of static JT effect. It should be kept
in mind, however, that the JT approximation may fail completely, as it does in
strongly correlated models with strong electron-phonon coupling [71].
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HJT = − h̄2

2M
∂2

∂R2
+

⎛
⎜⎜⎝
V11(R) . . . V1ν(R)
. . . . .
. . . . .

Vν1(R) . . . Vνν(R)

⎞
⎟⎟⎠ . (9.48)

9.6.2 How the E × ε Hamiltonian arises

In the popular E × ε problem two degenerate potential energy surfaces with
electronic wave functions (ψx, ψy) of E symmetry interact with degenerate
vibrations of the same symmetry 11; let (qx, qy) be the normal coordinates.
Neglecting anharmonic terms, (9.29) reads

He = qxV̂ (x) + qyV̂ (y) + K̂q2. (9.49)

Here, V̂ (x), V̂ (y) transform according to E and represent the operator poten-
tial due to the phonons acting on the electrons; K̂ must belong to A1 and
q2 = q2x + q2y . Then, (9.48) becomes

HJT = − h̄2

2M
∂2

∂q2x
− h̄2

2M
∂2

∂q2y
+ qx

(
(V (x))xx (V (x))xy

(V (x))yx (V (x))yy

)

+qy

(
(V (y))xx (V (y))xy

(V (y))yx (V (y))yy

)
+ 〈K̂〉q2. (9.50)

Group theory dictates the form of the vibronic interaction; for illustration, we
adopt the geometry of Figure 7.1 of Section 7.2.2. (x, y) is a basis for E; for
the present purpose, however, we shall use an alternative basis for E in C3v,
with the same D matrices, namely, (fx, fy) = (2xy, x2 − y2). It is is evident
that 2xy transforms like x and x2 − y2 like y in the chosen geometry, since
2xy is odd and x2 − y2 even under the σ1 reflection. For any basis (fx, fy) of
E, we know from (7.46) that 〈fx|y〉 = 〈fy|x〉 = 0 and that 〈fx|x〉 = 〈fy|y〉.
Therefore, if now (ψx, ψy) are electronic states and are a basis for E, ψ2

x +ψ2
y

belongs to A1 and for the V (x) elements we find:⎧⎨
⎩
∫
dr(ψ2

x − ψ2
y)V (y) = 2λ = 2

∫
drψxψyV (x),∫

dr(ψ2
x + ψ2

y)V (y) = 0 =
∫
dr(ψ2

x + ψ2
y)V (x),∫

dr(ψ2
x − ψ2

y)V (x) = 0 = 2
∫
drψxψyV (y).

(9.51)

Thus, V (x) has equal off-diagonal matrix elements on (ψx, ψy) and nothing
on the diagonal and V (y) has opposite diagonal elements and 0 off-diagonal;
this is clear already when one considers the σa parity. Thus, the form of the
JT hamiltonian in the E × ε problem is:

HJT = − h̄2

2M
∂2

∂q2x
− h̄2

2M
∂2

∂q2y
+ λ [qxσx + qyσz ] + 〈K̂〉(q2x + q2y). (9.52)

11The Na3 molecule offers a simple example of this sutuation.
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The second-quantized version is:

HJT = (a†xax + 1/2)h̄ω + (a†yay + 1/2)h̄ω + λ′
[
(a†x + ax)σx + (a†y + ay)σz

]
;

(9.53)
(two levels and two-bosons problem) and is among those exactly solved by
the method of Excitation Amplitudes (See ([77]) and Section 14.77 ).

9.6.3 Nuclear Wave Functions Cannot be Taken Real

The BO wave functions are readily found in the M →∞ limit, and the result
is very interesting. Letting qx = q cos(θ), qy = q sin(θ)),

HJT → +λ [qxσx + qyσz ] + 〈K̂〉q2 = λqM + 〈K̂〉q2. (9.54)

with

M =
(

sin(θ) cos(θ)
cos(θ) − sin(θ)

)
.

〈K̂〉q2 is an additive constant, and HJT is the Hamiltonian 12 for a spin
in a magnetic field −→B = (qx, 0, qy). The above matrix M has eigenvalues
±1, and the potential energy surfaces are obtained by rotating two intersect-
ing parabolas around the energy axis. The eigenstates corresponding to the
eigenvalues ±1 of M are

χ−(θ) =
(

cos(θ/2 + π/4)
− sin(θ/2 + π/4)

)
, χ+(θ) =

(
sin(θ/2 + π/4)
cos(θ/2 + π/4)

)
. (9.55)

These wave functions change sign under a 2π rotation. This is normal in
spin-dependent problems (see Section 9.4) but is striking and unacceptable
in the present problem; of course, the nuclear wave function must be unique.
Indeed, one can have the unique wave function, by inserting a phase factor,

χ−(θ) = eiθ/2

(
cos(θ/2 + π/4)
− sin(θ/2 + π/4)

)
, χ+(θ) = e−iθ/2

(
sin(θ/2 + π/4)
cos(θ/2 + π/4)

)
.

(9.56)
but then the solution is complex. This means that the Berry phase (See Sect.
??) is coming into play. For further information on this and other JT systems
one may consult reference [5].

9.7 Wigner-Eckart Theorem with Applications

Let |αi > and |βj > denote the components of bases of irreps Γα and Γ β

(that could also coincide) and T (γ)
p the p component of an irreducible tensor

12The Hamiltonian given in Ref. [5] is obtained by a harmless rotation qx →
qy , qy → −qx in q space.
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RT (γ)
p R−1 =

∑
q

T (γ)
q D(γ)

qp (R). (9.57)

As the components i,p and k vary, one finds a number of matrix elements
< αi|T (γ)

p |βk > that are all connected by the Wigner-Eckart theorem

Theorem 9.
〈αi|T (γ)

q |βk〉 = 〈α‖T (γ)‖β〉〈αi|γpβk〉, (9.58)

where the reduced matrix element < α‖T (γ)‖β > does not depend on the
components;〈αi|γpβk〉 is the Clebsh-Gordan coefficient.

Since the Clebsh-Gordan coefficients are mere geometry, the dynamics
enters through the reduced matrix element. A formal proof is given in Ap-
pendix C, but an intuitive argument is also useful. A very crucial point in
that the tensor and the function spaces must be irreducible. If you know one
basis function of an irrep you can build all of them by the Group operations
and orthogonalization; and the same is true of the tensor components; then
it is at least very plausible that all the matrix elements can in principle be
obtained by symmetry from the knowledge of any non-vanishing one of them.
Based on this, the theorem is then most simply understood. Suppose that by
direct computation we obtain a particular element 〈αi0|T (γ)

p0 |βk0〉 = Q 
= 0.
Next, we decide to look at the system from a new transformed reference ob-
tained by some R ∈ G; then, |αi0〉 , |βk0〉 and T

(γ)
p0 transform to linear

combinations of all the components, still remaining in their irreps; however
the matrix element is still Q. Varying R, we can write a system of linear
equations linking the components, all with the same right-hand-side. Are all
those equations must be compatible, and since there are enough relations to
determine < αi|T (γ)

q |βk >, one can solve and each matrix element must be
proportional to the only r.h.s. Q. Any two tensors T and T ′ of the same ir-
rep generate the same system, except that the r.h.s. are Q and Q’; so they
must yield proportional results. There is a particularly simple tensor defined
by T γ

p |βk〉 = |γpβk〉 which yields the theorem with < α‖T (γ)‖β >≡ 1. For all
the other tensors the theorem holds with some reduced matrix element.

Simple Applications

The theorem reduces the calculation of a tensor to one of one its components.
It implies less that in a symmetry adapted basis all the irreducible tensor
operators have the same elements matrix elements, up to a multiplicative
constant. We can choose the most comfortable operator (as long as it does
not have a null reduced matrix element). As an example, in O(3), j = 1 labels
the irrep of vectors and T

(1)
q , q = 0,±1 is a vector operator in polar form.

Therefore, its matrix elements are proportional them to those of j, that they
are easy to calculate in this basis:
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〈jm|T |j′m′〉 = C〈jm|J |j′m′〉. (9.59)

To determine the constant C, it is enough to compute explicitly 〈jm|T |jm〉.
Often it is easier to calculate the matrix elements of the scalar T ·J . Indeed,

〈jm|T · J |jm〉 =
∑
m′
〈jm|T |jm′〉〈jm′|J |jm〉 (9.60)

but this is simply

C
∑
m′
〈jm|J |jm′〉〈jm′|J |jm〉 = CJ(J + 1). (9.61)

For example the nuclear quadrupole moment is the tensor

Qik =
∑

p

3xpixpk − δikr2p, (9.62)

where xpi is a Cartesian component of the radius vector rp of proton p in
the nucleus. It is a traceless symmetric tensor and we can replace it with the
tensor with components

Qik =
3Q

2I(2I − 1)
IiIk + IkIi −

2
3
δikI

2, (9.63)

built with a constant Q (named the quadrupole moment) and withthe com-
ponents of the nuclear spin I. In a similar way one can build an atomic
quadrupole moment tensor from J .

The spin-orbit interaction is HSO =
∑

i ζl(i)s(i) in many-electron atoms,
where l(i) is the orbital angular momentum of electron i , s(i) is its spin;.
Since l(i) is a vector like the total orbital angular momentum L and s(i) is
a vector in spin space like the total spin angular momentum S, the Wigner-
Eckart theorem allows to write

〈LMLSMS|HSO|LMLSMS〉 = A〈LMLSMS |L · S|LMLSMS〉, (9.64)

where A is a constant.

9.8 The Symmetric Group and Many-Electron States

For anN−electron system, let φ(α)
i (x1 . . . xN ) denote an amplitude depending

on the space coordinates only and transforming according the component i
of irrep (α): if P denote a permutation,

Pφ(α)
i =

m∑
j

φ
(α)
j D

(α)
j,i (P). (9.65)
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Let χ(β)
q (σ1 . . . σN ) denote an amplitude depending on the spin coordinates

only and transforming according the component q of irrep (β), such that

Pχ(β)
q =

m∑
n

χ(β)
n D(β)

n,q(P). (9.66)

When permuting the electrons, i.e. doing the same permutation on spins and
coordinates, the wave function Ψ must go into itself up to a sign, therefore
components must enter symmetrically, like in

Ψ =
m∑
k

φ
(α)
k χ

(β)
k . (9.67)

Is Ψ a fully antisymmetrized wave function? One preliminary condition is
that both irreps must have the same dimension m. Next, we impose

PΨ = (−)PΨ =
m∑
k

[Pφ(α)
k ][Pχ(β)

k ]; (9.68)

using (9.65,9.66) we find that this requires
m∑
k

D
(α)
j,k (P)D(β)

n,k(P) = (−)Pδnj . (9.69)

Since the identity permutation is represented by the identity matrix, it is
readily seen that this holds if

D
(α)
j,k (P) = (−)PD(β)

k,j (P−1). (9.70)

Two irreps that satisfy the condition (9.70) are conjugate or associate. We
saw in Sect. 8.5 that the spin eigenfunction have a Young tableau consisting
of up to two lines. The following [N −M,M ] two-line tableau (left) with
N −M integers denoted ai · · · aN−M on the top line and M integers denoted
bi · · · bM on the bottom line is suitable for a spin eigenfunction symmetry of
spin S = 1

2 (N − 2M) (Equation 9.71, left); then, the conjugate tableau is[
2M , 1N−M

]
as shown below (right).

a1 a2 . . . . . . . aN−M

b1 b2 . . . . . bM

a1 b1
a2 b2
. .
. .
. .
. .
. .
. bM
.
.

aN−M

(9.71)
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9.9 Seniority Numbers in Atomic Physics

Let ψm(x) denote the d orbitals of an atom; under the rotation of an angle
α, that we denote Rα = e

−iα·L
h̄ ∈ O+(3), they transform according to

Rαψm(x) =
∑

n

ψn(x)Dl
mn(Rα), (9.72)

where l = 2 and Dl
mn(Rα) is the Wigner matrix; therefore {ψm(x)} is a basis

of the irrep l = 2 of O+(3). However, Dl
nm(Rα) also play a second role: the

transformation

ψm(x)→ Rψm(x) =
∑

n

ψn(x)Dl
mn(Rα), (9.73)

qualifies ψm(x) at fixed x as polar components of a vector under SU(2l+1) =
SU(5), and so Dl

nm(R) ∈ SU(2l+ 1). For the same reason

Tmn(x1,x1) = ψm(x2)ψn(x2)
Tmnp(x1,x2,x3) = ψm(x1)ψn(x2)ψp(x3)

· · ·
(9.74)

for fixed points xi, are components of tensors of rank 2, 3, · · · , respectively.
The permutation of two indices of a tensor commutes with the operations of
the Group; so the tensors that belong to irrep of SN of permutation of the
indices are the bases of the irreps of SU(5). With 2 indices, the possibilities
are

Tm n = Tmn + Tnm

Tm
n

= Tmn − Tnm
(9.75)

Tm
n

is associated with triplet states, while Tm n to singlets. Let us see how

we can classify the singlet states of d2configuration using the polar Tmn of
(9.74) projected into . In obvious notation (m1 ↑,m2 ↓) for the two-
electron determinants, one finds by the shift operators

1GM=4 = (2, 2)
1GM=3 = (1,2)+(2,1)√

2
1GM=2 =

√
6[(0,2)+(2,0)]+4(1,1)√

28

(9.76)

and by orthogonality

1DM=2 =
√

2[(0, 2) + (2, 0)]−
√

3(1, 1)√
5

; (9.77)
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then
1GM=1 = [(−1,2)+(2,−1)]+

√
6[(0,1)+(1,0)]√

14
1GM=0 = [(−2,2)+(2,−2)]+4[(−1,1)+(1,−1)]+6(0,0)√

70
1DM=0 = 2[(−2,2)+(2,−2)]+[(−1,1)+(1,−1)]−2(0,0)√

14

(9.78)

and finally

1S =
[(−2, 2) + (2,−2)]− [(−1, 1) + (1,−1)] + (0, 0)√

5
. (9.79)

The form of 1S is remarkably simple: it is just a scalar product ψ · ψ in the
polar form (9.8). Let us see how this calculation extends to the case of more
electrons, and higher rank tensors. With 3 indices, the irrep .. .. .. does not
take part in the construction of the states to 3 electrons since the function of

spin would have to be
..
..
..

which cannot be antisymmetrized totally on α and

β. Thus one is left with
..
..
..

(for quartets) and .. ...
..

(for doublets). Actually

there are two doublets:

Tm n
p

= A13S12Tmnp = Tmnp + Tnmp − Tpnm − Tnpm

Tm p
n

= A12S13Tmnp = Tmnp + Tpnm − Tnmp − Tpmn

(9.80)

SU(5) has the subgroup O+(5) of proper rotations in 5 dimensions; on a
cartesian basis its representatives are orthogonal matrices such that aT = a−1

that is amxamy = δxy. Transforming any cartesian tensor according to

T ′
mn = amxanyTxy

and then taking the trace, that is, setting m=n and summing over n, one gets

T ′
nn = anxanyTxy = δxyTxy = Txx;

in other terms, the trace Tmm is invariant. For a tensor whose cartesian
components Tmn = vmwn are the products of cartesian vector components
the trace becomes the scalar product Tmm = vmwm. Thus, in O+(5) the
traces acquire particular meaning. The invariance remains obviously true with
any number of components; for instance taking the trace of

T ′
mnp = amxanyapzTxyz
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one finds

T ′
mmp = amxamyapzTxyz = δxyapzTxyz = apzTxxz,

thus Txxz is a vector. On the other hand a cartesian tensor of the form Txyz =
δxyvz is transformed as follows: T ′

xyz = amxanyapzδxyvz = amxanxapzvz =
δmnapzvz , and retains its form.

The ψ and the T of Equation (9.74) are tensor components also for the
subgroup, except that since they are polar tensors the rule must be slightly
modified. In order to agree with the scalar product (9.8), the polar form of
the trace reads

TrT =
∑
m

(−)mTm,−m. (9.81)

For a cartesian tensor Tmnp of rank 3, one defines the traces:

Tr(1,2)T = Tmmp

Tr(1,3)T = Tmnm

Tr(2,3)T = Tmpp.

(9.82)

Since the Tr operation commutes with the operations of the Group O+(5),
many irreps of SU(5) are no longer irreducible. Vectors are sent to vectors and
are bases of an irreducible representation of O+(5). Traceless tensors are sent
to traceless tensors and are bases of irreducible representations of O+(5).
Tm

n

is traceless, while Tm n must be reducible. In fact, all the d2 states

above belong to of SU(5), but in O+(5) the invariant 1S is classified
in the (0, 0) irrep (the notation means: no boxes in either the first and the
second line). The state with no electrons is already invariant, so this singlet
is assigned the seniority number v = 0. From of SU(5), in O+(5) one
can extract a traceless tensor which is classified in the irrep (2,0). All irreps
of O+(5) are labelled by (μ1, μ2), μ1 ≥ μ2; the parentheses denote the space
of traceless tensors. Since (2,0) cannot be made with fewer than 2 electrons
1D and 1F receive v = 2.

With
1 2
3

the 1-3 trace vanishes and the other two are equal in absolute

value; clearly, vp = Tr(1,2)Tm n
p

is a 5-component vector, so it deserves

to be classified in (1, 0); it is obviously a doublet, so it corresponds to 2
1D.

The other doublet states 2
3P,

2
3D,

2
3F,

2
3G,

2
3H will correspond to the traceless

tensor T(2,0) ≡ Tm n
p

− δmnvp

5 . This does not occur with less than 3 electrons

nor with orbital angular momentum < 2. These states deserve the seniority
number v = 3 along with 4

3P and 4
3F that are classified in (1,1) and are also

unprecedented.
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Problems

9.1. In a molecule of C3v symmetry, two electrons are in orbitals of the irrep
E. Find the space part of the singlet wave function of A1 symmetry (if any
exists) and the relevant CG coefficients.

9.2. In a molecule of C3v symmetry, two electrons are in orbitals of the irrep
E. Find the space part of the singlet wave function of A2 symmetry and the
relevant Clebsh-Gordan coefficients.

9.3. In a molecule of C3v symmetry, two electrons are in orbitals of the irrep
E. Find the space part of the singlet wave function of E symmetry and the
relevant Clebsh-Gordan coefficients.

9.4. Build the character table for C′
4v.

9.5. Consider the Cu++ ion, with one configuration 3d9. How are the J =
3/2, 5/2 levels split by a square planar D′

4 environment?



Part III

More on Green Function Techniques



10 Equations of Motion and Further

Developments

10.1 Equations of motion for the interacting propagator

We used EOM several times (see Sections 4.3,4.4,5.1.2); now we extend the
approach used in Equation (4.39) for the free propagator to interacting prob-
lems. Using the many-body Hamiltonian (1.63) one readily obtains

[ψα(x), H ]− = h0(x)ψα(x) +∑
β′γ

∫
dy ψ+

γ (y) v (x,y)αβ′,γγ′ ψγ′ (y)ψβ′ (x) , (10.1)

with all the operators in the Heisenberg representation (h0 is a first-quantized
one-body operator), with the notation x = (x, tx). We multiply on the left
by ψ†

α(z) and perform an interacting ground state average:[
i
∂

∂t
− h0(x)

]
〈ψ†

α(z)ψα(x)〉 =

∑
β′γ

∫
dy w (x,y)αβ′,γγ′ 〈ψ†

α(z)ψ†
γ (y)ψγ′ (y)ψβ′ (x)〉 , tz > tx. (10.2)

The order of operators in the l.h.s. is appropriate for g(T ) (Equation (4.20))
if z is later, that is, tz > tx, and we assume this for the moment. For the
r.h.s. we must define the time-ordered two-particle Green’s function1 and
understanding the spin indices, we write, still in terms of Heisenberg operators

G2(x1, x2, x3, x4) = −〈T [ψ(x1)ψ(x2)ψ†(x3)ψ†(x4)]〉. (10.3)

Comparison with (10.2) is easier using the fact that Heisenberg operators
anticommute under T ordering , hence it holds that G2(x1, x2, x3, x4) =
−〈T [ψ†(x4)ψ†(x3)ψ(x2)ψ(x1)]〉 and

〈ψ†
α(z)ψ†

γ (y)ψγ′ (y)ψβ′ (x)〉 = (−)G2(x, y, y+, z) (10.4)

where the notation y+ means that although ty = tx that particular y is just
later.

1Some authors use different orderings of the arguments.
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i
∂

∂t
−H0(x)

]
ig(T )(x, z) =

∑
β′γ

∫
dy w (x,y)αβ′,γγ′ (−)G2(x, y, y+, z). (10.5)

Extending the calculation to tz ≤ tx one finds that the Green function
obeys

[i
∂

∂t
−H0]g(T )(xt,x′t′) = δ(x−x′)δ(t−t′)−i

∫
dx1v(x−x1)G2(xt, x1t, x1t

+, x ′t ′)

(10.6)
which is often written in the literature using lighter notations like{
i
d

dt1
−H0(1)

}
G(1; 1′) = δ(11′)− i

∫
d2v(1, 2)G2(1; 2|2+; 1′) (10.7)

One has also the adjoint equation{
−i d
dt2

+
∇2

2

2m
− U(2)

}
G(1; 2) = δ(1− 2)− i

∫
G2(1; 1̄−|1̄+; 2)V (1̄− 2).

(10.8)

10.1.1 Equations of Motion and Ground-State Energy

As a byproduct, using (10.4, 10.5) one obtains an expression yielding the
ground state energy in terms of the one-body Green’s function. Setting z = x
with tz = t+x and integrating over x one finds:

∫
dx lim

t′→t+
lim
r′→r

[
i
∂

∂t
−H0(x)

]
g(T ) (x, t,x′, t′)

= i

∫
dxdyv(x, y)〈ψ†(x)ψ†(y)ψ(y)ψ(x)〉 = 2i〈v〉. (10.9)

The average of H0 can be obtained from Equation (4.26). So, we get the
exact ground state energy (lower sign for fermions):

E = 〈H0 + V 〉 = ± i
2

∫
dx lim

t′→t+
lim
r′→r

[
i
∂

∂t
+ h0(x)

]
g(T ) (x, t,x′, t′)

(10.10)

10.2 Time-Dependent Problems

The EOM are rewarding when the Hamiltonian depends in time. Let
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H = H0 +H1(t) =
∑

k

εknk +
∑
k,k′

Vk,k′ (t)a†kak. (10.11)

For ig r
k,k′(t, t′) = θ(t− t′)〈[ak(t) , a†k′ (t′)]+〉 one finds

i
∂

∂t
g r

k,k′(t, t′) = δ(t− t′)δk,k′ + (−i)θ(t− t′)〈[ ∂
∂t
iak(t) , a†k′(t′)]+〉. (10.12)

Since
iȧk = [ak, H ]− = εkak +

∑
k′
Vk,k′ (t)ak′ (10.13)

one finds the EOM

i
∂g r

k,k′

∂t
= δ(t− t′)δk,k′ + εkg

r
k,k′ (t, t′) +

∑
p

Vk,p(t)g r
p,k′(t, t′). (10.14)

This must be solved with the initial condition

ig r
k,k′(t, t− 0) = δk,k′ . (10.15)

No information about the filling enters the problem, and g r
k,k′ is actually a

one-body quantity which does not depend on the filling. It is no harder to
calculate than a one-body wave function, even in time-dependent problems.
The same is true for advanced one, −ig a

k,k′(t, t′) = θ(t′− t)〈[ak(t) , a†k′(t′)]+〉.
For later use, we are interested in the time-ordered Green’s function, defined
as usual by

ig
(T )
k,k′(t, t′) = 〈Tak(t)a†k′(t′)〉. (10.16)

Now, the initial conditions

g
(T )
k,k′ (0, 0−) = −iδkk′(1− fk), g

(T )
k,k′ (0, 0+) = iδkk′fk (10.17)

know where is the Fermi level; note the characteristic discontinuity

i
[
g
(T )
k,k′(t, t+ 0)− g(T )

k,k′(t, t− 0)
]

= −〈a†k′ak + aka
†
k′〉 = −δk,k′ . (10.18)

Let us calculate the t derivative of Eq.(4.19), taking into account that the θ
functions contribute

δ(t− t′)〈aka
†
k′ + a†k′ak〉 = δ(t− t′)δk,k′ .

Using (10.13), one finds

i
∂g

(T )
k,k′

∂t
= δ(t− t′)δk,k′ + εkg

(T )
k,k′ (t, t′) +

∑
p

Vk,p(t)g
(T )
p,k′(t, t′). (10.19)
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This EOM is the same as (10.14), the difference is in the initial conditions. I
stress that g(T ) depends on the Fermi level and can describe genuine many-
body effects, so it is important to be able to express it in terms of the much
simpler g(r). This is achieved as follows:

ig
(T )
k,k′(t, t′) =

∑
q

g r
k,q(t, τ)g

a
q,k′ (τ, t′)ξq(t, t′), (10.20)

where τ is any time such that τ < t, τ < t′ and

ξq(t, t′) = (1 − fq)θ(t− t′)− fqθ(t′ − t) = θ(t− t′)− fq. (10.21)

This solution was first obtained by Ref. ([48]) by the Keldysh fomalism [84];
I found the simple derivation below and used the result to re-formulate the
theory of transport[63] (See Chapter 13.6.2). Since retarded and advanced
functions do not depend on filling, we may take the system empty, denoting
the vacuum by |0〉, and write

g r
k,k′ (t, t′) = −iθ(t− t′)〈0|ak(t)a†k′ (t′)|0〉 = −iθ(t− t′)δkk′e−iεk(t−t′),

g a
k,k′(t, t′) = iθ(t′ − t)〈0|ak(t)a†k′ (t′)|0〉 = iθ(t′ − t)δkk′e−iεk(t−t′).

Hence, ∑
q

g r
k,q(t, τ)g

a
q,k′ (τ, t) = δk,k′ , (10.22)

∑
q

fqg
r

k,q(t, τ)g
a

q,k′ (τ, t) = δk,k′fk. (10.23)

Thus, the initial conditions are obeyed; the EOM are also satisfied because
they are obeyed by g r

k,q(t, τ): the δ(t− τ) term does not arise because τ < t,
but the required δ comes in from the ξ derivative. Thus, (10.20) is readily
seen to satisfy EOM and initial conditions and is the exact solution.

10.2.1 Auger Induced Ionic Desorption: Knotek-Feibelman
Mechanism

Desorption (Section 6.2) is a process of emission of atoms, molecules or ionic
species that previously belonged to a surface or were adsorbed (i.e. chemically
bound to it). The amount of ions emitted depends on the electronic properties
of the species in a striking way. For example, if a Ag surface is bombarded
with Ar+ in the KeV range, some Ag+ ions can be collected by a mass
spectrometer, but the ion yield is often much lower than theK+ signal arising
from traces of K on the surface. This is because Ag+ has a much lower
probability than K+ of escaping without being neutralized.

When ionic surfaces are irradiated with X-rays one observes the desorption
of O+ or other positive ions that originally were anions[113]. When O−−
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initially bound by the Madelung potential becomes O+ by Auger processes, it
starts being repelled from the surface; however, the copious ion yield remained
quite a puzzle for some time. The reason is that the desorption process occurs
on the time scale " 10−13s of vibrations; electrons move on the time scale of
the inverse band width W and have a lot of time for bond healing.

Knotek and Feibelman pointed out[113] that O+ remains O+ due to
the same mechanism that localizes the two-hole resonances[76] (Section 6.2).
Sometimes it is the easy production of neutrals that needs explanation. For
example, F desorbs from fluorides as F and F−; in the solid it is basically F−,
but if some process produces neutral F , the Madelung force holding the ion
in the solid disappears and desorption starts; however desorption is a slow
process and one would expect the ion to quickly resume the electron. The
writer proposed[13] to compute the ion yield by a time-dependent Anderson
model

H(t) = ε(t)(n0+ + n0−) + U(t)n0+n0− +
∑
k,σ

εknk,σ

+
∑
k,σ

[Vk(t)a†0,σak,σ + h.c.]; (10.24)

at time t=0 two holes are created in the adatom orbital 0 and the consequent
desorption causes the time dependence. The band was assumed initially filled
and the amplitude for the two holes to be still on-site at time t is

N(t) = 〈a0−(t)a0+(t)a†0+(0)a†0−(0)〉Θ(t), (10.25)

averaged over the hole vacuum. I solved the two-body problem by the EOM
method. Consider the correlation functions (averaged over the vacuum)

γ(t, τ) = −i〈a0+(t)a†0+(τ)〉, (10.26)

γk(t, τ) = −i〈ak+(t)a†0+(τ)〉, (10.27)

Γ (t, τ) = −i〈a0−(t)a0+(τ)a†0+(0)a†0−(0)〉, (10.28)

Γk(t, τ) = −i〈ak−(t)ak+(τ)a†k+(0)a†0−(0)〉, (10.29)

where the left hand sides are spin-independent; we want to compute

N(t) = iΓ (t, t)θ(t). (10.30)

From the equations of motion

iȧ0σ = ε(t)a0σ +
∑

k Vk(t)akσ + U(t)a0σn0−σ,
iȧkσ = εkakσ + Vk(t)a0σ(t), (10.31)

one obtains
i ∂
∂tγ(t, τ) = ε(t)γ(t, τ) +

∑
k Vk(t)γk(t, τ),

i ∂
∂tγk(t, τ) = εkγk(t, τ) + Vk(t)γ(t, τ).

(10.32)
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The initial conditions are γ(t, t) = −i, γk(t, t) = 0. It is convenient (although
not essential) to set Vk(t) = Vk(0)u(t); then, introducing the self-energy of
the local Green’s function of H(0),

Σ(ω) =
∑

k

|V(0)|2
ω − εk + iδ

, δ = 0+ (10.33)

we obtain

i
∂

∂t
γ(t, τ) = ε(t)γ(t, τ) + u(t)

∫ t

τ

dt′u(t′)Σ(t− t′)γ(t′, τ). (10.34)

Moreover,

i
∂

∂τ
Γ (t, τ) = ε(τ)Γ (t, τ) +

∑
k

Vk(τ)Γk(t, τ)

+ iU(τ)g(t, τ)Γ (τ, τ), (10.35)

i
∂

∂τ
Γk(t, τ) = εkΓk(t, τ) + Vk(τ)Γk(t, τ). (10.36)

Γk(t, τ = 0) = 0, and we find the closed equation

i
∂

∂τ
Γ (t, τ) = ε(τ)Γ (t, τ) + iU(τ)γ(t, τ)Γ (τ, τ)

+u(τ)
∫ τ

0

dτ ′u(τ ′)Σ(τ − τ ′)Γ (t, τ ′). (10.37)

This can be integrated[13]:

Γ (t, τ)θ(τ) = iγ(t, 0γ(τ, 0)θ(τ)

+i
∫ τ

0

dτ ′γ(t, τ ′)γ(τ, τ ′)U(τ ′)G(τ ′, τ ′)θ(τ ′). (10.38)

Finally,

N(t) = −γ2(t, 0)θ(t)− iU
∫ t

0

dt′γ2(t, t′)U(t′)N(t′). (10.39)

The theory accounts for the Knotek-Feibelman mechanism. The theory of
desorption and atom-surface scattering with a partially filled band will be
discussed in Chapter 13.6.

10.3 Hierarchy of Greens Functions

We can use the EOM to generate approximate non-perturbative solutions of
open-shell interacting models. Consider for instance the time-dependent An-
derson model obtained by adding an on-site interaction to the time-dependent
Fano model of Equation (10.11):
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H = H0 +H1(t)+W =
∑

k

εknk +
∑
k,k′

Vk,k′ (t)a†kak +
∑

s

Usns,↑ns,↓. (10.40)

Let ϕk(s) denote the one-electron wave function labeled by k at site s, such
that ak =

∑
s asφk(s). Since

iȧk,↑ = [ak,↑, H ]− = εkak,↑ +
∑
k′
Vk,k′ (t)ak′,↑ +

∑
s

Usϕk(s)as,↑ns,↓ (10.41)

the EOM read:

i
∂g

(T )
k,k′

∂t
= δ(t− t′)δk,k′ + εkg

(T )
k,k′(t, t′)

+
∑

p

Vk,p(t)g
(T )
p,k′ (t, t′) +

∑
s

Usϕk(s)Dσ,s,k′(t, t′) (10.42)

where the two-body propagator

Dσ,s,k′(t, t′) = 〈Tas,σ(t)ns,−σ(t)a†k′,σ(t′)〉. (10.43)

appears. The interaction makes the problem hard and the equations do not
close any more. If one can be content with a mean-field approximation, then
one can try

Dσ,s,k′(t, t′)
?
≈
?
〈Tas,σ(t)a†k′,σ(t′)〉〈ns,−σ(t)〉 (10.44)

which closes the equations again. Otherwise, one can generate an equation of
motion for Dσ,s,k(t, t′) in order to truncate the hierarchy of Green’s functions
at an higher level. When we cannot achieve the exact solution, one should
compare various approximations.

10.4 Composite Operator Method

For finite systems, one can in principle find the exact solution by the EOM
method. As a trivial example, the one-site Hubbard model

H1site = E(n+ + n−) + Un+n− (10.45)

yields the closed set of equations:

i
da+

dt
= Ea+ + Ua+n−, i

da+n−
dt

= (E + U)a+n−.

Without interactions the particles are those annihilated by a±, while in the
presence of interactions one has particles Ψ(1) = a+, Ψ(2) = a+n− and
Ψ(3) = a−, Ψ(4) = a−n+; the zoological garden Ψ contains no more beasts.
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This idea of the hierarchy can be generalized (see Ref.([49],[50][51]) and ref-
erences therein). These authors call Ψ a composite operator, and write

Ψ =

⎛
⎜⎜⎝

a+

a+n−
a−
a−n+

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
Ψ(1)
Ψ(2)
Ψ(3)
Ψ(4)

⎞
⎟⎟⎠ , J = i

dΨ

dt
=

⎛
⎜⎜⎝
J(1)
J(2)
J(3)
J(4)

⎞
⎟⎟⎠ (10.46)

adopting a spinor notation (these are not spinors, they are just lists.) Any-
how, since the equation (10.46) is closed in this case, we may write

J(μ, t) =
∑

ν

ε(μ, ν)Ψ(ν, t), (10.47)

where for the sake of generality I imply a possible time dependence of the
operators. For H1site, the 4×4 matrix ε is block diagonal, since the first two
entries are not connected to the others; each block is

εσ =
(
E U
0 E + U

)
.

Following Ref.([49],[50][51]), we introduce

Sμ,ν(t, t′) = θ(t− t′)〈Ψ0|[Ψμ(t) , Ψ †
ν (t′)]+|Ψ0〉, (10.48)

which is just i times the retarded Green’s function (4.13), possibly averaged
over the Grand-Canonical Ensemble; we are using [, ]+ for Fermi particles,
but it would be [, ]− for Bosons. The EOM read

i
∂S(t, t′)
∂t

|t′=t = 〈[J(t), Ψ †(t)]+〉. (10.49)

We define the m matrix by

m = i
∂S(t, t′)
∂t

|t′=t, (10.50)

use Eq.(10.47) and the so called normalization matrix I = {Iμ,ν} with ele-
ments

Iμ,ν(t) = Sμ,ν(t, t). (10.51)

The nonzero diagonal blocks of I are(
〈[aσ, a

†
σ]+〉 〈[aσ, a

†
σn−σ]+〉

〈[aσn−σ, a
†
σ]+〉 〈[aσn−σ, a

†n−σ]+〉,

)
=
(

1 〈n−σ〉
〈n−σ〉 〈n−s〉

)
for σ = +,−.

Finally the EOM become
m = ε I. (10.52)
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Let us extend the treatment to many sites, denoted by latin indices; we
start with a Nop-component spinor Ψμ(p, t) for each site involving cp and the
operators of nearby sites. We write Green’s functions

Sμ,ν(p, t, p, t′) = θ(t− t′)〈[Ψμ(p, t) , Ψ †
ν (q, t′)]+〉, (10.53)

and the initial conditions

Iμ,ν(p, q, t) = Sμ,ν(p, t, q, t); (10.54)

the normalization matrix has site indices as well. From now on spinor indices
can be understood; we write the m matrix

m(p, q) = 〈[J(p, t), Ψ †(q, t)]+〉. (10.55)

Formally, the argument proceeds as above: understanding the site indices as
well the EOM are still given by Equation (10.52); the eigenvalues of ε could
be interpreted as the eigen-energies of the system. The trouble is that when
one calculates J = idΨ

dt , new operators arise; Equation (10.47) does not hold,
but is replaced by

J(p, t) =
Nop∑

q

ε(p, q)Ψ(q, t) + δJ(p), (10.56)

with δJ is a nonlinear rest. In other terms, the set of operators is not closed,
and the spinors have more components than we can afford.

To keep the calculation manageable, one could trivially truncate the
spinors at Nop operators, throwing away the unwanted ones and δJ ; the
ε matrix gives a solvable approximation. This is less accurate than the stan-
dard EOM method, which prescribes to replace the extra operators by some
approximation like (10.44).

However, there is a more clever alternative criterion for sorting out the
terms linear in Ψ in the r.h.s. of Equation (10.56). From the Nop-component
Ψ one can work out the truncated I matrix. The map Ψμ(p), Ψν(q) → Ip,q

sends two operators into a number like a scalar product in operator space. In
this Section I denote this scalar product by 〈〈· · · , · · ·〉〉 and write

〈〈Ψ(p), Ψ(q)〉〉 = I(p, q) = 〈[Ψ(p, t), Ψ †(q, t)]+〉.

Taking the scalar product of (10.56)

〈〈J(p), Ψ(s)〉〉 =
Nop∑

q

ε(p, q)〈〈Ψ(q, t), Ψ(s)〉〉 + 〈〈δJ(p), Ψ(s)〉〉. (10.57)

Now in order to drop the last term we do not need to assume that δJ is
small; we make the milder assumption that it is orthogonal to the spinors.
Dropping δJ we finally obtain (10.52), that is,
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ε = mI−1 (10.58)

and achieve a well defined, solvable approximation. In this way, the new ε
depends on those complicated operators that we are not considering explic-
itly. Although this is not a unique way to proceed, it is certainly appealing.
Fourier transforming to momentum space, the retarded Green’s function is
approximated by

g(r)(ω, k) =
Nop∑

i

σi(k)
ω − Ei(k) + iδ

, (10.59)

where Ei(k) are the eigenvalues of ε(k) and the spectral functions σi(k) can
be derived[199] from I(k).

For a review on the applications to the Hubbard Model, see [198].

Problems

10.1. Verify (10.10) explicitly in the non-interacting limit.

10.2. Prove Equation 13.136.

10.3. Use the tight-binding method to calculate the retarded Green’s func-
tions of the tight-binding Hamiltonians in d=1,2,3 dimensions.

10.4. Dealing with X-Ray absorption and emission in Metals, Langreth[205]
considered the model Hamiltonian

H =
∑

q

εqa
†
qaq + E0b

†b+
∑
qq′

Vqq′a†qaqbb
† (10.60)

where b and aq annihilate core and conduction electrons, respectively; the
Green’s functions g(t− t′) = 〈Tb(t)b†(t′)〉 describes the deep state dynamics
and Fkk′ (τ, τ ′; t, t′) = 〈Tak(τ)ak′ (τ ′)b(t)b†(t′)〉 the absorption and emission
processes. For absorption, the average is a ground-state expectation value in
the presence of the core electron. Derive the EOM for Fkk′ in the absorption
case.



11 Feynman Diagrams for Condensed Matter

Physics

11.1 Diagrams for the Vacuum Propagator

Consider a many-body system, like a molecule or solid, with Hamiltonian
H = H0 + V , where V is the interaction, H0 =

∑
j εjnj is the kinetic energy

with ground state |Φ〉 and eigenvalue W0. I shall write

|Φ〉 =
∏

εk<EF

c†k↑c
†
k↑|0〉 (11.1)

to mean that the product is over occupied spin-orbitals, and produces a Fermi
sphere in the thermodynamic limit. How can we find the ground state energy
E0 of H? Standard perturbation theory fails unless V is small compared to
the unperturbed energy difference; in practice, it fails almost always, since in
most interesting problems, the spectrum H0 is continuous.

Continuous spectra can be perturbed in such way that discrete spectra
arise. Suppose one wants to find the bound states of the Hydrogen atom by
treating the Coulomb interaction as a perturbation: for any Z an infinity of
bound levels exists, but there is no hope to get any sensible result with any
finite number of terms. The very existence of bound states requires poles of
Green’s functions to form. The pole of 1

1−z = 1 + z + z2 + . . . can only be
found at infinite order. The formula (4.125) forE0 from the vacuum amplitude
(4.123)

R (t) = 〈Φ| UI (t) |Φ〉 = eiW0t 〈Φ| e−iHt |Φ〉 (11.2)

is useful because we know R at least formally, recalling (2.36)

UI (t) = eiH0te−iHt = Te
−i
h̄

∫ t

0
dt′VI(t′)

= 1 +
−i
h̄

∫ t

0

dt1VI(t1) + (
−i
h̄

)2
∫ t

0

dt1

∫ t1

0

dt2VI(t2) + · · · , (11.3)

Note that in this section we use the telescope form (2.6) of the nested
integrals. To illustrate the method, I shall use the simplified interaction

V =
∑
ijkl

U(i, j, k, l)c†i↑c
†
j↓cl↓ck↑. (11.4)
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In this way, we assume that only opposite-spin electrons interact, and this is
the simplification1. Since 〈Φ|VI(t)|Φ〉 = 〈Φ|V |Φ〉, the first-order contribution
is

R(1) (t) = −i
t∫

0

dt1 〈Φ|V |Φ〉

= −i t 〈Φ| V |Φ〉 = −i t
∑
ij

U(i, j, i, j)〈Φ|ni↑nj↓|Φ〉 (11.5)

where n is the occupation number. In (11.5) we must average a product of

t1i j

k l

Fig. 11.1. The first-order contribution, with i=k, j=l. One says that i is contracted
with k and j with l. A more explicit definition follows shortly.

occupation numbers, and for each spin-orbital the creation operator is rep-
resented by a line leaving a vertex and the annihilation operator by a line
entering the vertex. Graphically, if we represent the up-spin operators as
the ends of the left line, and the interaction to the dashed line, this corre-
sponds to the pattern of Fig. (15.4). The occupation number product over
the non-interacting |Φ〉 can be written as a vacuum average and using the
anticommutation rules we can separate the two spins: thus it factors:

〈Φ|ni↑nj↓|Φ〉 = 〈Φ|ni↑|Φ〉〈Φ|nj↓|Φ〉 = ninj (11.6)

where the average occupation numbers have been assumed spin-independent
for the sake of simplicity. However we did not achieve much, yet: substitution
in the energy formula (4.125) yields 0. In second-order,

R(2) (t) = −
∑
ijkl

∑
i′j′k′l′

U(i, j, k, l)U(i′j′k′l′)
t∫
0

dt1
∫ t1
0 dt2

〈Φ|T [c†i↑ (t1) c
†
j↓ (t1) cl↓ (t1) ck↑ (t1) c

†
i′↑ (t2) c

†
j′↓ (t2) cl′↓ (t2) ck′↑ (t2)] |Φ〉 .

(11.7)
More generally, we need to calculate the ground state average

M = 〈Φ| T [A1(t1)A2(t2)A3(t3) . . .]|Φ〉 (11.8)

where A1, A2, A3 . . . are interaction-picture operators - either creation or an-
nihilation operators - defined on an orthonormal basis in the interaction pic-
ture and |Φ〉 is the Fermi sphere. This calculation can be worked out by

1Later we can easily restore the full interaction by adding exchange terms.
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writing down all the operators that make up the Fermi sphere according to
Equation (11.1); then this becomes an average over the vacuum |0〉; then,
by the anticommutation relations, we can bring the annihilation operators
to act on |0〉 to produce 0; all what remains from the anticommutators is
the result. However, we naturally ask if we can do something to reduce all
this groundwork. Fortunately, we can, in terms of contractions. A contrac-
tion of two operators A and B which are either creation or annihilation
interaction-picture operators, is defined as

A (t)B (t′) = 〈Φ|T [A (t) B (t′)] |Φ〉 . (11.9)

For this to be non zero one of the two operators must create and the other
annihilate the same one-body state, and the contractions yield (up to a sign)
the non-interacting propagators ( Equation (4.38))

igk(t) = 〈T [ck,σ(t)c†k,σ(0)]〉 = e−iεkt{θ(t)[1− nk]− θ(−t)nk}, (11.10)

which propagates a hole for t < 0 and an electron for t > 0. For equal time
contractions one defines:

c† (t) c (t) ≡ 〈c†(t)c(t)〉. (11.11)

11.1.1 Wick’s Theorem

Wick’s theorem, basic for all sorts of perturbation expansions, reads:

M = 〈T [A1(t1)A2(t2)A3(t3) . . .]〉 =
∑

P (−)PAP1AP2 AP3AP4 . . . ;
(11.12)

in words, M is the sum of the products (−)PAP1AP2 AP3AP4 . . . of the
contractions; P is the permutation that takes from the initial expression
A1A2A3 . . . to the final one, and (−)P its signature. I propose an intuitive
proof2.

As a warm-up, we calculate the ground state expectation value of the
product in the second-order term (11.7); for an easy start, we do so without
the time ordering T, and for the moment we let

M = 〈Φ| c†i↑ (t1) c
†
j↓ (t1) cl↓ (t1) ck↑ (t1) c

†
i′↑ (t2) c

†
j′↓ (t2) cl′↓ (t2) ck′↑ (t2) |Φ〉 .

Also, we assume provisionally that the canonical basis is the one of H0 eigen-
states; then the time dependences are given by c-number phase factors as in
Equation (4.35), ck(t) = cke

−iεkt. The ↓ operators come in pairs at each time
and since Fermi operators anticommute, one can lump all the ↑ spins on the
left without changing sign: we obtain

M = 〈Φ| c†i↑ (t1) ck↑ (t1) c
†
i′↑ (t2) ck′↑ (t2) c

†
j↓ (t1) cl↓(t1)c

†
j′↓ (t2) cl′↓ (t2) |Φ〉 .

2the (much longer) standard one by induction may be found in textbooks[2].
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Now the ↑ and ↓ are different species (mathematically, linearly independent
operators); since actually |Φ〉 = |Φ ↑〉 |Φ ↓〉 the matrix element M factors,

M = 〈Φ| c†i↑ (t1) ck↑ (t1) c
†
i′↑ (t2) ck′↑ (t2) |Φ〉

× 〈Φ| c†j↓ (t1) cl↓(t1)c
†
j′↓ (t2) cl′↓ (t2) |Φ〉 . (11.13)

The assumption that the canonical basis is the one of H0 eigenstates can be
removed, since anyhow H0 = H0↑ +H0↓, and since H0↑ and H0↓ commute,
we can write cσ(t) = eiH0σtcσe

−iH0σt and the time-dependent creation and
annihilation operators simply anticommute. While using Bloch waves to de-
fine the Fermi sphere, we may wish to work with contractions in a site basis.
Next, we restore the T operation, and consider

M = 〈Φ|T [c†i↑ (t1) ck↑ (t1) c
†
i′↑ (t2) ck′↑ (t2) c

†
j↓ (t1) cl↓(t1)c

†
j′↓ (t2) cl′↓ (t2)] |Φ〉

= θ(t1 − t2)M12 + θ(t2 − t1)M21 (11.14)

M12 = 〈Φ| c†i↑ (t1) ck↑ (t1) c
†
j↓ (t1) cl↓(t1)c

†
i′↑ (t2) ck′↑ (t2) c

†
j′↓ (t2) cl′↓ (t2) |Φ〉 ,

M21 = 〈Φ| c†i′↑ (t2) ck′↑ (t2) c
†
j′↓ (t2) cl′↓ (t2) c

†
i↑ (t1) ck↑ (t1) c

†
j↓ (t1) cl↓(t1) |Φ〉 .

Again, the ↓ operators come in pairs at each time, so in each term of the
sum ( 11.14) we can lump the ↑ spins on the left and factorize like above:

M12 = 〈Φ| c†i↑ (t1) ck↑ (t1) c
†
i′↑ (t2) ck′↑ (t2) |Φ〉

×〈Φ|c†j↓ (t1) cl↓(t1)c
†
j′↓ (t2) cl′↓ (t2) |Φ〉

M21 = 〈Φ| c†i′↑ (t2) ck′↑ (t2) c
†
i↑ (t1) ck↑ (t1) |Φ〉

×〈Φ|c†j′↓ (t2) cl′↓ (t2) c
†
j↓ (t1) cl↓(t1) |Φ〉

and the whole time-ordered matrix element ( 11.14) breaks down into the
time ordered factors:

M = 〈Φ|T [c†i↑ (t1) ck↑ (t1) c
†
i′↑ (t2) ck′↑ (t2)] |Φ〉

× 〈Φ|T [c†j↓ (t1) cl↓(t1)c
†
j′↓ (t2) cl′↓ (t2)] |Φ〉 . (11.15)

Thus, the time-ordering does not prevent the factorization, and the argument
works independently of the number of creation and annihilation operators.
Now we can breath a little bit, but can we do any better? We can actually
use the different spin-orbitals of any canonical basis as the different species,
but now we must keep track of the signs. Consider the matrix element for ↑
spins. Particle i↑ created at time t1 must be annihilated either by ck↑(t1) or by
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ck′↑(t2); so, two contractions contribute, but in each case the matrix element
breaks as before3. Therefore the ground state average can be obtained as a
sum over permutations. However, there is more. In the above discussion, we
used no specific property of the ground state |Φ〉; we can average the matrix
element on any state in the same way (the contractions are then redefined
accordingly). We can analytically continue Equation (11.12) from the real
axis to the verical track of Figure 2.2.2 b) (Sect.2.2.2). So, Wick’s theorem
holds at finite temperatures as well; 〈· · ·〉 then stands for a thermal average.

Comments

This is a very general theorem that is often understated in books. It is obvious
that Wick’s theorem also holds for averages over the vacuum |0〉. By the way,
Φ is itself a vacuum; for states above the Fermi level we can create electrons
like on |0〉; for occupied states the annihilation of an electron is the creation
of a hole. The transformation to hole operators c = b† is canonical, or if you
like it is just a change in notation. So Wick’s theorem works in both cases
for the same reason.

Wick’s theorem for bosons works in the same way, and for the same rea-
sons, except that the Bose operators commute under T and there is no sign
nuisance in this case.

11.1.2 Goldstone Diagrams

We represent the second-order terms diagrammatically by drawing two in-
teraction lines, labeled t1 and t2 with t2 < t1 according to the scheme of
Fig. (11.1.2). These are time-ordered or Goldstone diagrams. Two diagrams
must be identified if they are topologically equivalent in the Goldstone sense,
that is, if they can be deformed into one another without changing the time
ordering. In this example with no interaction for parallel spins the vertices
on the left refer to spin up and there are no exchange terms. If we contract
only equal-time operators we get the a) diagram of Figure 11.1.2. All the non-
propagating lines (those that begin and end at the same time) must refer to
occupied orbitals (equal-time Wick’s rule).

Diagrams consisting of two separated pieces, like a), are called unlinked.
Diagrams b),c) and d) are linked and b)and c) have the same value. The
contribution of diagram a) is obtained setting k = i, l = j, k′ = i′, l′ = j′ in
R(2) (t) :

3The possibility of contracting 4 or more operators with the same indices can
also be included. For averages on either |0〉 or Φ, 〈c†c〉 are either 0 or 1, so the Wick
factorization is granted since 0*0=0 and 1*1=1. So, these terms do not modify
the result. As emphasized in the Landau series[3], in the thermodynamic limit the
theorem holds for averages on any state, since taking the same index for two c†c
factors means selecting a set of null measure.
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time

t1

t2

i

i’

j

j’

k

k’ l’

l

Fig. 11.2. Starting the setup of the second-order contribution.

R(a) (t) = −
∑
ij

∑
i′j′
U(i, j, i, j)U(i′j′i′j′)

t∫
0

dt1
∫ t1
0
dt2

〈Φ|T [c+i+ (t1) c+j− (t1) cj− (t1) ci+ (t1) c+i′+ (t2) c+j′− (t2) cj′− (t2) ci′+ (t2)] |Φ〉 .
(11.16)

and contracting one finds

R(a) (t) =
−t2
2

⎛
⎝∑

ij

U(i, j, i, j)ninj

⎞
⎠
⎛
⎝∑

i′j′
U(i′j′i′j′)ni′nj′

⎞
⎠ . (11.17)

Here again we note that a line labeled i closing on itself, or tadpole, simply
contributes ni.

Diagram b) arises from the identifications k = i, l′ = j, k′ = i′, l = j′ and
to the contractions

c+i+ (t1) ck+ (t1).c+i′+ (t2) ck′+ (t2).c+j− (t1) cl′− (t2).cl− (t1) c+j′− (t2). (11.18)

The equal-time contractions

c†i+ (t1) ck+ (t1) = δ (i, k)ni (11.19)

and
c+i′† (t2) ck′+ (t2) = δ (i′, k′)ni′ (11.20)

are immediate;let us consider the lines that represent propagators (see (4.37)).
The descending line yields

c†j− (t1) cl′− (t2) = δ (j, l′) eiεj(t1−t2) [njθ (t1 − t2)− (1− nj) θ (t2 − t1)]
= δ (j, l′) (−i)gj(t2 − t1) (11.21)

The - sign in front of (−i)gj comes from the order of operators which is
opposite to the convention of ( 4.36 ).
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The ascending line gives:

cl− (t1) c
†
j′− (t2) = δ (j′, l) eiεl(t2−t1) [(1− nl) θ (t1 − t2)− nlθ (t2 − t1)]

= δ (j′, l) (i)gl(t1 − t2) (11.22)

In both cases, the time argument of g is the final time minus the initial time
of the directed line. Since t2 < t1, the contribution of the descending l′ = j
line represents a hole in a occupied state, while the for the ascending line is
an electron in an empty one. In both cases the directed line brings a factor
ig.

a)

t1

i=k j=l

t2

i’=k’ j’=l’

b)

i’=k’

i=k

j=l’
j’=l

c)

i=k’

i’=k

j=l

j’=l’

d)

i=k’

i’=k j=l’

j’=l

Fig. 11.3. Second-order contributions to R(t).

Thus, diagram b) ( like the identical one c)) yields the following expression:

R(b) = −
∑
ijkl

∑
i′j′k′l′

U(i, j, k, l)U(i′, j′, k′, l′)δikδi′k′δl′jδj′lnini′

∫ t

0

dt1

∫ t1

0

dt2

i gj(t2 − t1)igl(t1 − t2). (11.23)

What is coming from these observations is a convention for representing
mathematical expressions graphically; each fermion line labeled j and di-
rected from t to t′ yields igj(t′ − t); each interaction line brings a factor
(−i)U(i, j, k, l) (where the arguments refer to the top interaction in Figure
11.1.2 and each closed fermion loop brings a - sign; all internal indices are
summed over; the nested time integrals are then evaluated. To evaluate the
ground state energy, one takes the t → ∞(1 − iη) limit and uses the energy
formula (4.125). Working out (11.23) one finds

R(b) = −
∑
ijli′

U(i, j, i, l)U(i′, l, i′, j)nini′

∫ t

0

dt1

∫ t1

0

dt2

e−i(εl−εj)(t1−t2)(−)nj(1− nl). (11.24)
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The integral is elementary:∫ t

0

dt1

∫ t1

0

dt2e
−i(εl−εj)(t1−t2) =

1 + it(εj − εl)− eit(εj−εl)

(εj − εl)2
. (11.25)

The term linear in t contributes to the ground state energy. Note however
that j is a hole, l is an electron,hence εj − εl < 0 and the exponential in the
r.h.s. drops out as t→∞(1− iη). Problem 11.1 deals with diagram d).

Despite the heuristic appeal of cartoons showing the basic scattering
events between particles, the diagrammatic expansion does not look promis-
ing at all at this stage. The number of different diagrams and their com-
plexity grows catastrophically with the order, and we need to go to order
∞ to get useful results. Worse still, diagrams may defy intuition severely.
Their heuristic appeal can become very misleading, since the processes they
describe include counter-intuitive ones. Diagrams obtained from d) by ap-
pending tadpoles or bubbles freely to each line do belong to the expansion,
and must be included, even when the lines at a given time over-number the
electrons in the sample and/or violate the Pauli principle. No such principle
holds in diagrammatics, and several lines can bear the same quantum num-
bers. In one-particle problems, diagrams arise that appear to describe several
fermions propagating at a time.

11.1.3 Diagram Rules for the Thermodynamic Potential

Using imaginary time, the above results extend directly to the calculation of
the thermodynamic potential

Ω = −KBT lnZG (11.26)

where
ZG = Tre−β(H−μN) (11.27)

is the grand partition function, μ the chemical potential and N the par-
ticle number operator. Ω may be found as the sum of ring diagrams (see
Sect. 12.4.5) .The mean energy and particle number are related by Ē =
Ω + μN̄ + TS, and since the entropy S goes to 0 at T=0 the ground-state
energy may be found from the zero-temperature limit. Luttinger and Ward
[55] derived and stated the rules for βΩ in frequency space as follows. 1) Draw
all possible n-th order diagrams. Put labels on each line (a label like r stands
for one-body labels including spin, and the non-interacting Hamiltonian is
supposed diagonal with eigenvalues εr) and associate a Matsubara frequency
ζl = μ + (2l+1)πi

β , with integer l. Conserve frequency at each vertex. 2) For
each diagram: insert a factor 〈rs|v|r′s′〉 for each interaction (labeled by one-
body states, r’ and s’ entering and r,s leaving), a factor (−)n+1

2nn! and a (-) sign
for each loop 3) For each line labelled by r write a factor Gr(ζl) = 1

ζl−εr
. This
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factor is called propagator. Next, sum over all internal labels and all frequen-
cies ζl with 1

β

∑
l, including a convergence factor eζl0

+
for loops. Examples

may be found in Ref.[55]. The T=0 version of the expansion is obtained by
removing μ, replacing ζl by real frequencies ω and 1

β

∑
l by

∫∞
−∞ dω. Please

note that 1) simple diagrams may be easily computed without the diagram
rules directly from the T exp formula, 2) nobody ever computes very complex
diagrams, which are too many and too complicated to be of any use. The real
point is: how to avoid any heavy-duty use of the diagram rules.

11.2 Linked Cluster Theorem

+ + = ×

+ = ×2 ×

Fig. 11.4. Combining diagrams. Those summed in the first row consist of different
subdiagrams, while those of the second row are made up with like subdiagrams.

The only cheap and efficient way to produce and compute lots of high-
order diagrams is by combining smaller ones. In a linked diagram one can
go from any vertex to any other one by following propagator or interaction
lines. The diagram a) of Figure 11.3 is an example of an unlinked diagram
made up of two simpler linked ones. Consider doing the same with any pair of
different connected diagrams. They give raise to different combined graphs for
R as shown in Figure 11.4. The diagrams on the l.h.s., top row, differ by the
order of interactions in time and are to be counted as different contributions
because the ordering is enforced by different θ functions; their sum is just the
product of the original diagrams. If however the same diagram is considered
twice, (bottom row and diagram 11.3 a) ) the contribution to R comes only
once so the result must be divided by 2. Denoting by {D̃i} the set of linked
diagrams, consider a particular unlinked diagram of order n containing, say,
3 linked parts D̃α, D̃β, D̃γ . Each of its n interaction lines labeled by times
tn < tn−1 < · · · < t1 belongs to one of the 3 sub-diagrams. Within each sub-
diagram, the ordering of the interaction lines is fixed by the fact that it is a
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replica of one of the D̃i(t), however by varying the relative ordering of two
interaction lines belonging to different sub-diagrams we get a diagram which
belongs to the series for R. Summing over all such interchanges we simply
get rid of the relative orderings; if the three sub-diagrams are different the
result is

D̃α(t)D̃β(t)D̃γ(t);

however, if there are identical subdiagrams we must pay attention. If, say,
D̃α(t) = D̃β(t), then each contribution to R is counted twice (each has a
ghost with the two sub-diagrams exchanged, but the series has one of them)
and the result is

1
2!
D̃α(t)2D̃χ(t).

These observations extend to any order and to any number of linked sub-
diagrams D̃i. The sum of all the unlinked diagrams of any order containing
p linked parts chosen in any way in {D̃i} is

Rp(t) =
∑
{ni}

δ(p,
∑

i

ni)

[∏
i

D̃ni

i (t)
ni!

]
; (11.28)

here {ni} = n1, n2, · · · is a list of non-negative integers specifying the num-
ber ni of occurrences of D̃i, while the total number of parts is fixed by the
Kroneker δ. This is just

Rp(t) =
1
p!

∑
{np}

(n1, n2, · · · , nk, · · ·)!
∏

i

D̃ni

i (t) (11.29)

where (n1, n2, · · · , nk, · · ·)! =
(
∑

ni)!

n1!n2!...
is the multinomial coefficient ; thus

Rp(t) ==
1
p!

(
∑

i

D̃i(t))p =
1
p!

(L(t))p (11.30)

where L =
∑
D̃i(t) is the sum of all linked diagrams.

Thus we have obtained the simple but far reaching Linked Cluster Theo-
rem:

R(t) = eL(t) (11.31)

Every approximation to L(t) takes us to infinite order in the series for R(t),
and a way to achieve real progress is open.

This exact result is the basis of the so called cumulant expansion4. Now
our task is calculating L and the unlinked second-order diagram 11.3 a) must
be discarded, while the first-order generates a partial series:

4Note that a Linked Cluster Theorem exists[42] even if the interactions are
mediated by bosons; each sub-diagram must then be divided by its order. The
combinatorial argument is similar, but is modified by the fact that each line gets
two labels instead of one.
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lnR(1) (t) = −it
∑
ij

U(i, j, i, j)ninj ,

and differentiating with respect to t and multiplying by i we find

E(1) =
∑
i,j

U(i, j, i, j)ninj

which is the Hartree-Fock approximation, a marked improvement over the
previous null result.

11.2.1 Valence Electron and Core Hole

To see the Linked Cluster Theorem and the diagram rules at work, consider
the simplest molecular-orbital model with sites a and b with hopping matrix
element V

H0 =
(

0 V
V 0

)
(11.32)

with eigenvalues ±V ; now suppose that a core electron sits at site a; the
valence Hamiltonian becomes

H =
(
U V
V 0

)
; (11.33)

where U is the valence electron-core electron interaction. The new eigenvalues
are

ε± =
U ± ξ

2
, (11.34)

with ξ =
√
U2 + 4V 2. The core occupation number is nc ≡ 1 and the core

Green’s function enters only through nc. The unperturbed (U=0) valence
propagator on site a reads

igaa(t) =
−θ(−t)eiV t + θ(t)e−iV t

2
, (11.35)

where the first term is the contribution of the filled ground state orbital, and
the second comes from the excited state. The unperturbed filling is n0

a = 1/2.
The first-order diagram is −itUna. There is one second-order diagram (Fig.
11.3 b) or c)).The descending line brings a - sign, another one is due to the
ring; one obtains

(−iU)2

4

∫ t

0

dt1

∫ t1

0

dt2e
2iV (t2−t1) = (

U

V
)2
(
−1 + e−2iV t + 2iV t

16

)
. (11.36)
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In third order we may add a third tadpole on the electron or on the
hole lines; the contributions cancel (since the descending line brings a - sign)
and there is no third-order term. In fourth-order one could consider adding
two tadpoles to the second-order bubble, but there is a similar cancellation
between those attached to electron and hole lines. The contribution comes
from the diagram in Figure 11.5 and from a similar diagram with t3 < t4.

t4

t1

t2

t3

Fig. 11.5. The fourth-order contributions to R(t). Note that two valence electron
lines propagate between t3 and t2, although in this problem there is just 1 valence
electron. This illustrates that particle-number-violating diagrams must be included.

We get

( −)
(−iU)4

8

∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3

∫ t3

0

dt4e
2iV (t4+t3−t1−t2)

= (
U

V
)4
[
5− e−4iV t − 4e−2iV t

512
− iV t1 + 2e−2iV t

128

]
. (11.37)

Since the problem is simply solved exactly, we can check these results
by calculating R(t) and its expansion. One easily derives the Hamiltonian
matrix H̃ on the basis of the U = 0 eigenstates and the ground-state-diagonal
element its exponential:

H̃ =
(

U
2 − V

U
2

U
2

U
2 + V

)
⇒ R(t) = e−

iV t
2 {cos(

ξt

2
) +

2iV
ξ

sin(
ξt

2
)}. (11.38)

where we choose V > 0 by setting

R(t) = e−iV t
(
e−iH̃t

)
11
.

Expanding C(t) = log(R(t)) one finds

C(t) = −iV t+ iV t− i

2
Ut+ (

U

V
)2
(
−1 + e−2iV t + 2iV t

16

)

+(
U

V
)4
[
5− e−4iV t − 4e−2iV t

512
− iV t1 + 2e−2iV t

128

]
+O(

U

V
)6. (11.39)
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Using (4.125) we compute the time derivative and let the exponential die out
as t→∞(1− iη); we obtain, in agreement with the exact solution,

W0 = −V +
U

2
− U2

8V
+

U4

128V 3
+O(U6) (11.40)

11.2.2 H2 Model

As a further example, we shall use the H2 model of Sect. 1.2.5.

igaa(t) =
1
2
{−θ(−t)eitht + θ(−t)e−itht} (11.41)

From (4.37) one gets

iga,a = igb,b =
1
2
[
e−ithtθ(t)− eithtθ(−t)

]
,

iga,b = igb,a = −1
2
[
e−ithtθ(t) + eithtθ(−t)

]
.

The net second-order contribution comes from only 11.3 d). It is

4 ∗ (−iu)2
∫ t

0

dt1

∫ t1

0

dt2[ga,a(t2 − t1)ga,a(t1 − t2)]2

= u2

[
it

16th
− 1− e−4itht

64t2h

]
(11.42)

where a factor 4 comes from the fact that each interaction line can be labeled a
or b indifferently. The diagrams 11.3 b) and c) vanish because the terms with
the like interaction lines are canceled by those on interactions on different
atoms. In third-order there is no contribution because shifting any vertex
from an electron to a hole line changes sign to the diagram. For the same
reason, there is considerable cancelation in fourth order, the only surviving
terms being the one of Figure (11.2.2) and the one which results from the
exchange of t3 and t4. Direct calculation shows that

C(t) = 2itht−
itu

2
+ u2

[
it

16th
− 1− e−4itht

64t2h

]

+
u4

t4h

{
+

5− e−8itht

8192
− itth

1024
− e−4itht

2048
− itth

e−4itht

512

}
. (11.43)
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t4, s4

t1, s1

t2, s2

t3, s3

Fig. 11.6. One of the fourth-order diagrams that contribute to R(t) for the Hub-
bard H2 model. The interaction lines are labeled with time and site (si = a or b)
indices.

t’

t

=

t’

t

+

t’

t

+

t’

t

+ · · ·

Fig. 11.7. Contributions to the core propagator

11.2.3 The Linked Cluster Expansion and Green’s Functions

The Lundqvist model[38]

H = εc†c+
∑

q

ωqa
†
qaq + cc†

∑
q

gq(aq + a†q) (11.44)

has been used to discuss plasmon effects in core photoelectron spectra. The
removal of the core electron shifts the plasmon coordinates and the density
of states relevant to the spectrum is obtained from the correlation function

N(ω) =
∫ ∞

−∞

dω

2π
eiωt〈ψ+|c†(0)c(t)|ψ+〉, (11.45)

where ψ+ is the plasmon vacuum with the core electron present. N(ω) is
obtained from the core propagator

g(t) = −i〈ψ+|Tc(t)c†(0)|ψ+〉. (11.46)

By expanding the propagator as above we generate diagrams where the boson
propagator (4.64) iDk (t) = exp[−iωk | t | ] appears; each electron-plasmon
vertex contributes a factor igq; plasmon lines ( iDq(t) factors ) may be
emitted and adsorbed any number of times according to any pattern.
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Langreth[39] noted that g(0)(t−t′) is a simple phase factor for t < t′ while
g(0)(t−t′) ≡ 0 for t > t′; thus the ascending time line must be labeled t at the
bottom and t’ at the top. From each diagram one can collect the same phase
factor:

∏
g(0)(ti − tj) = g(0)(t − t′). Hence, g(t − t′) = g(0)(t − t′)γ(t − t′).

Erasing the deep hole propagator from the diagrams for g we find those for γ,
a succession of interaction lines ordered in a particular way; one can classify
these diagrams as linked and unlinked. Repeating the above argument one
finds that Linked Cluster Theorem applies,

g(t− t′) = g(0)(t− t′)eC(t−t′), (11.47)

where C is the only unlinked diagram, namely the second-order one: a boson
is emitted at time t2 > t and later re-adsorbed at t1 < t′. Hence,

C(t− t′) =
∑

q

(igq)2
∫ t′

t

dt1

∫ t1

t

dt2Dq(t1 − t2). (11.48)

and one achieves the exact solution5

C(−t′) =
∑

q

(igq)2
∫ t′

0

dt1

∫ t1

0

dt2e
−iωq(t1−t2)

= −
∑

q

g2
q

1− iωqt
′ − e−iωqt′

ω2
q

. (11.49)

In addition,the Linked Cluster Theorem has been invoked as an ansatz
which is useful for special problems[40], [41]. The idea is simple. Start with
the ansatz (11.47) and expand both sides in powers of the interaction using
the cumulant expansion

exp[
∞∑
1

anx
n] = 1 + a1x+ (

a2
1

2
+ a2)x2 + (

a3
1

3!
+ a1a2 + a3)x3 + . . .

From a few diagrams for g that one can compute directly we can obtain
an equal number of an coefficients that perform a particular infinite re-
summation of the series.

11.3 Diagrams for the Dressed Propagator

The time-ordered propagator (4.20) averaged over the interacting ground
state or over the grand-canonical ensemble lends itself to a perturbation ex-
pansion. In this section we consider in detail the zero temperature case, using

5This agrees with Equations (6.30 6.31) taking into account that there the
Fourier transform involved e−i(ω+H)t and here we are using ei(ω+H)t instead.
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a slightly lighter, discrete notation and the fact that for time-independent
problems the dependence is on a single time, namely, t = t1 − t2. In the
non-interacting problem with Hamiltonian H0, the propagator is

g0(a, b, t) = −i 〈Φ| T
[
ca (t) c

†
b (0)
]
|Φ〉 , (11.50)

where |Φ〉 is the ground state and c†b creates an electron in a single-particle
state |b〉. We know that g0 is diagonal on the basis of the H0 eigenstates and
is Green’s function of the Schrödinger equation; moreover,

g0(k, k′,ω) =
δkk′

ω − εk + iηk
≡ δkk′g0(k,ω), (11.51)

with ηk = +0 for empty states, ηk = −0 for filled ones.
With H = H0 + V , where V is the interaction, the propagator is

ig(a, b, t) = 〈Ψ0|T
[
ca(t)c

†

b (0)
]
|Ψ0〉 (11.52)

averaged over the unknown interacting ground state, and the operators
are in the Heisenberg Picture. We use the standard definition (2.12) for the
Heisenberg operators but switch to the interaction picture, using (2.39)

AH = U †
I (t, t0)AI(t)UI(t, t0),

in order to obtain g from an infinite order series expansion of the evolution
operator in powers of V :

11.3.1 Adiabatic Switching and Perturbation Theory

To obtain g we do not really need Ψ0, as the definition seems to suggest. We
can resort to the trick of the adiabatic switching of V. Here we assume6 a
time-independent H and write

UI (t1, t2) = UI (t1, 0)UI (t2, 0)
† = eiH0t1e−iH(t1−t2)e−iH0t2 (11.53)

Assume that at time t = t0 in the remote past the system was in the un-
perturbed ground state Φ, with energy eigenvalue W0; then at time 0 the
interaction picture state is a wave packet containing Ψ0:

UI (0, t0) |Φ〉 = eiHt0e−iH0t0 |Φ〉 = e−iWnt0
∑

n

|Ψn〉 〈Ψn| eiEnt0 |Φ〉 (11.54)

For t0 → −∞ we can distil from it the interacting ground state by shifting
the path in the complex t plane with a small tilt setting t→ t(1−iη), η = 0+.
In this way, among the exponentials

6The general case is presented in Chapter 13.
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eiEnt0(1−iη) = eiEnt0e−ηEn|t0|, (11.55)

the one of the ground state dominates, and one is left with

UI (0, t0) |Φ〉 = |Ψ0〉 〈Ψ0| eiE0t0 |Φ〉 e−iW0t0 = |Ψ0〉 〈Ψ0|UI (0, t0) |Φ〉 ; (11.56)

formally, (provided that the denominators do not vanish)

t0

−t0
Re(t)

Im(t)

Fig. 11.8. The complex t plane with the tilted Gell-Mann and Low path.

|Ψ0〉 =
UI (0, t0) |Φ〉
〈Ψ0|UI (0, t0) |Φ〉

, 〈Ψ0| =
〈Φ|UI (−t0, 0)
〈Φ|UI (−t0, 0) |Ψ0〉

. (11.57)

This is the Gell-Mann and Low Theorem [83]7. Any expectation value
〈Ψ0|A|Ψ0〉 on the interacting ground state can be obtained from non-interacting
ground state averages. One obtains:

〈Ψ0|A |Ψ0〉 =
〈Φ|UI (−t0, 0)AUI (0, t0) |Φ〉

〈Φ|UI (−t0, 0) |Ψ0〉 〈Ψ0|UI (0, t0) |Φ〉
; (11.58)

but along the tilted path, |Ψ0〉〈Ψ0| is equivalent to
∑

n |Ψn〉〈Ψn|; so

〈Ψ0|A |Ψ0〉 =
〈Φ|UI (−t0, 0)AUI (0, t0) |Φ〉
〈Φ|UI (−t0, 0)UI (0, t0) |Φ〉

=
〈Φ|UI (−t0, 0)AUI (0, t0) |Φ〉

〈Φ|UI (−t0, t0) |Φ〉
.

(11.59)
We take advantage to set the propagator in this form. Consider g for t > 0,
ig(a, b, t) = 〈Ψ0| ca(t)c

†

b (0) |Ψ0〉 with Heisenberg operators. In order to use the
T exp expansion we must go over to the interaction picture8 with caH(t) =
U †

I (t, 0)ca(t)UI(t, 0), hence

7The original proof reported by Ref. [2] is based on the perturbation series, so
it depends on its validity; also, it shows that numerators and denominators bear a
phase factor that diverges in the adiabatic limit.

8Recall that with our convention the Schrödinger, Heisenberg and inter-
action wave functions coincide at t = 0 and that at any other time the
change of representation is obtained by 〈A (t)〉 = 〈ΨI (0)|AH (t) |ΨI (0)〉 =
〈ΨI (0)|UI (0, t) AI (t)UI (t, 0) |ΨI (0)〉 .



234 11 Feynman Diagrams for Condensed Matter Physics

ig(a, b, t) = 〈Ψ0|U †
I (t, 0)ca(t)UI(t, 0)c†b(0)|Ψ0〉

=
〈Φ|UI(−t0, 0)U †

I (t, 0)ca(t)UI(t, 0)c†b(0)UI(0, t0)|Φ〉
〈Φ|UI(−t0, t0)|Φ〉

, t > 0. (11.60)

Using the Group property of U , the unitarity propertyU †
I (t, 0) = UI(0, t), and

the fact that under T the fermion operators anticommute, we shall manoeuvre
to obtain a single U in the numerator as well:

ig(a, b, t) =
〈Φ|UI(−t0, 0)UI(0, t)ca(t)UI(t, 0)c†b(0)UI(0, t0)|Φ〉

〈Φ|UI(−t0, t0)|Φ〉
, t > 0.

(11.61)
In other terms,

ig(a, b, t) =
〈Φ|UI(−t0, t)ca(t)UI(t, 0)c†b(0)UI(0, t0)|Φ〉

〈Φ|UI(−t0, t0)|Φ〉
, t > 0. (11.62)

More generally we can write 9 , setting Ŝ = UI(∞,−∞),

ig(a, b, t1, t2) =
〈Φ|T [Ŝca(t1)c

†
b(t2)]|Φ〉

〈Φ|Ŝ|Φ〉
(11.63)

and expand in powers of V using the T exp formula (2.36). At each order
one obtains a sum of partial amplitudes, involving V and the bare propa-
gator g0; these expressions are best handled when represented as diagrams.
The key point is that different partial amplitudes give topologically inequiv-
alent10 diagrams; at order n there is a finite set of possible topologies and all
correspond to partial amplitudes. In all diagrams, an oriented g0 line enters
at a point b, goes through some interaction vertices and then reaches the exit
point a. Between two interaction vertices, the propagator line is labeled by
a spin-orbital: the one entering from outside will correspond to spin-orbital
b and the outgoing one to a. Dotted interaction lines start at each vertex;
at order n the diagram contains n interaction lines. A properly oriented and
labeled propagator line must pass by every vertex; each graph presents a path
which takes from b to a, and circuits attached to it (and possibly to other
circuits) by interaction lines.

The denominator of Equation (11.63) is like the vacuum amplitude in
(11.2) and yields all diagrams not connected to the main line; the only differ-
ence is that in (11.2) the interactions are between times 0 and t and here
they can take place at any time. In the time representation (11.63), the
mathematical expression or amplitude of a disconnected diagram consist-
ing of two parts is the product of the two amplitudes. Therefore, we may

9We shall find the result (11.63) more in general in Equation (13.56).
10Two diagrams are topologically equivalent if they can be deformed with conti-

nuity to the same shape; in complex graphs this criterion requires a talent for the
fine arts. I shall give a more practical prescription below.
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write 〈Φ|T [Ŝca(t1)c
†
b(t2)]|Φ〉 = 〈Φ|T [Ŝca(t1)c

†
b(t2)]|Φ〉L〈Φ|Ŝ|Φ〉 where the L

suffix means that only linked diagrams must be kept (no parts must be dis-
connected from the b − a line). The denominator cancels with the unlinked
diagrams and we are left with

ig(a, b, t1, t2) = 〈Φ|T [Ŝca(t1)c
†
b(t2)]|Φ〉L. (11.64)

11.3.2 Diagrams for the Propagator in frequency space

The diagram rules will be derived in the Chapter 13, and can be verified
by working out low-order terms from the T exp formula (2.36). I present the
Feynman method in frequency space, that is, the expansion of the interacting
time-ordered gab(ω) in terms of g(0)

ab (ω) and interaction vertices; the interac-
tion is a two-body operator (typically, the Coulomb potential). We must label

q, α

b, ω

a, ω

a)

q, α
k, ω

b)

q, α

q, α
k, ω

k, ω

k, ω

c) bω d)

aω

k

ω − α

m

β
n

β + α

Fig. 11.9. Diagrams for g: a) and b) exhaust the first order, c) and d) are second-
order contributions.

the g0 lines and the interaction lines by frequencies such that a and b have
frequency ω and at all vertices the sum of ingoing frequencies equals the sum
of outgoing ones. When momentum or crystal momentum are also good quan-
tum numbers (translationally invariant or periodic systems) four-momentum
is conserved at each vertex. must pay attention to avoid double counting. To
see if two diagrams with an apparent correspondence between the vertices
are indeed topologically equivalent, one can start considering a path on one
diagram and the corresponding path on the other. If one meets the corre-
sponding points in the same order in both diagrams, and this remains true
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for all possible paths, the diagrams are topologically equivalent. For example,
the two diagrams in Figure 11.3.2 left are equivalent; I have added letters to
show that all vertices can be labeled in such a way that all paths correspond.
The orientation of arrows does not point to the evolution in time and each
propagator corresponds to electrons and holes, so the fact that one arrow
goes back in the second diagram is not meaningful.

A

B

C

D A

B

C

D

k p

m n

k

p

m

n

Fig. 11.10. Left panel: two diagrams that look different but are the same. Right
panel: two ways to represent the interaction −iVkpmn.

Topologically equivalent diagrams are the same diagram and we
Next, I list the rules to translate a diagram into a formula in the frequency

representation. Write a factor

ig0 (k,ω)=
i

ω−εk+iηk
, (11.65)

for each electronic line with ηk = +0 for empty states and ηk = −0 for filled
ones (0 stands for a positive infinitesimal, as usual). For every interaction line
labeled like in the left diagram a) include a factor

−iVkpmn= −i
∫

d3r
∫

d3r′
φ

†
k (r)φ

†
p (r′)φm (r)φn (r′)
|r − r′| = −iVpknm. (11.66)

As we see in the right panel of Figure 11.3.2, what matters is the identity
of the ingoing and outgoing lines, and seemingly different pictures yield the
same expression. Multiply by (−1) for each closed electron ring, sum over
intermediate spin-orbitals and integrate over intermediate frequencies α, β, . . .
with

∫
dα
2π

∫
dβ
2π . . .. This rule must be better specified when there are non-

propagating lines, like the tadpole. The contribution of the line (excluding
q, ω

=
∑

q
n

(0)
q · · ·

Fig. 11.11. A tadpole is a line that starts and ends at the same vertex.

the vertex) is:
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∑
q

∞∫
−∞

dω
2π

ig0(q,ω) = i
∑
q

g0(q, t = 0). (11.67)

Since
ig0(q, t) = 〈0|T

[
cq (t) c

†
q (0)
]
|0〉 , (11.68)

is discontinuous, we introduce the equal-times rule

〈Tc†q(τ)cq(τ)〉 = 〈c†q(τ+)cq(τ−)〉 (11.69)

where τ+ is just after τ and τ− just before. The transform must be taken for
t = 0− (the non-propagating lines simply have no time to propagate). Since

ig0(q, t = 0−) = −n(0)
q ,

where n(0)
q is the unperturbed occupation number, the result is −

∑
k n

(0)
k .

Including a (−) for the circuit, the tadpole yields +
∑

q n
(0)
q · · · , which is

ready for inserting the q dependence of the interaction vertex. Let us see the
first-order diagram (Figure (11.3.2), a)) and its value D[a)]: one obtains

D[a)] = ig0(a,ω)ig0(b,ω)

[
(−i)

∑
k

Va k b kn
0
k

]
. (11.70)

If k stands for a one-electron wave-vector which is conserved in the absence
of interactions, the matrix element Va,k,b,k brings a δ(a, b) factor (the tad-
pole cannot exchange energy and momentum). In first-order there is also the
exchange diagram (Figure (11.3.2), b)) which is obtained by exchanging the
outgoing interaction lines. The (-) sign must not be inserted; the arc is a
non-propagating line; one obtains

D[b)] = ig0(a,ω)ig0(b,ω)
∑

k

∞∫
−∞

dα

2π
ig0 (k, α) (−i)Vk a b k. (11.71)

(11.3.2), c)) shows a second-order diagram with a couple of tadpoles in-
serted into a propagating line. In this case,

D[c)] = D[a)]ig0(k,ω)

[
(−i)

∑
k

Va k b kn
0
k

]
, (11.72)

where the new term in parentheses may be identified with the added tadpole
and the new ig0 represents the new propagator piece.

So, we can calculate a subset of a diagram for later use, knowing that
it will appear in many other diagrams and bring some type of process into
play. As another example of the diagram rules, we calculate the pair bubble
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that appears as an inset in the second-order diagram (11.3.2), d)). This is
a prototype polarization part, that is, a graph that can be inserted into an
interaction line; it will be useful later, and the big bubble unlike the tadpole
does exchange energy and momentum.

−iπ0(α)= (−1) · 2·
∑
m,n

∫
dβ
2π

ig0(m,β)ig0(n,β + α), (11.73)

where the (-1) factor is due to the closed circuit and the 2 factor to the
sum over the spins of the circuit. We start evaluating the bubble with the β
integral

∞∫
−∞

dβ
2π

g0(m,β)g0(n,β + α) =

∞∫
−∞

dβ
2π

1
β−εm+iηm

1
β + α−εn+iηn

(11.74)

by the residue method. When the poles are on the same side of the real axis
(ηmηn > 0,) one closes the path on the other side and gets 0. Otherwise we
integrate in the upper half plane, and there are two cases: a) n occupied and
m empty b) m occupied and n empty. These represent respectively hole and
electron propagation. One finds:

∞∫
−∞

dβ
2π

1
β−εm+iηm

1
β + α−εn+iηn

=

⎧⎪⎨
⎪⎩

−ifn[1−fm]
α−εn+εm−i0 case a

ifm[1−fn]
α−εn+εm+i0 case b

(11.75)

So, we end up with

−iπ0 (α) = 2 ·
∑
m,n

[
−i fn(1 − fm)
α+ εm − εn − i0

+ i
fm(1− fn)

α+ εm − εn + i0

]
. (11.76)

It is already evident at this stage that as the number of interaction lines
increases and progressively more complex diagrams arise the labor involved
tends to increase in a prohibitive way, except for cases like the one shown
in (11.72), when the complex diagrams arise as combinations of simple ones.
Now, combining simple things to build structures is something that we may
do by using ingenuity, while the most general graph at order n requires com-
puting power. If the crucial physics is hidden in some monster-diagram that
first appears at some high order, we have little hope to understand. However,
no such cases are known, and ingenuity has been rewarding.

11.4 Dyson Equation

Like the Linked Cluster method, Dyson’s leads to a summation to infinite
order of selected classes of diagrams. A look to Figure 11.12 , where g with
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= + + +

+ + + + · · ·+

Fig. 11.12. Some of the lowest-order diagrams for g; there are two kinds in first-
order, but the variety grows with order in an impressive way.

the thick line, shows that as we proceed the number and complexity of the
diagrams grows in an inordinate way. However, although normally we cannot
obtain g exactly, we can use topology to make exact statements about g. All
terms except the first have a factor ig(0)(a, ω)ig(0)(b, ω), that is, an incoming
and an outgoing line. The stuff in between is a self-energy part. The latter
does not have external lines, but is usually drawn with short ones to show
where they belong in the full diagram. Therefore the mathematical expression
for the self-energy part is just the one for ig(0) divided by ig(0)(a, ω)ig(0)(b, ω).
Having computed a simple self-energy part, like the tadpole or the bubble,
one can conceive iterating it indefinitely. The diagrammatic series is summed

= +
Σ

= +
Σ

+ Σ

Σ

Fig. 11.13. Left: Dyson’s equation. Right: iterative solution.

by writing the Dyson equation (Figure 11.13). The simplest approximation
to Σ includes in g the repeated scattering of the simplest type any number
of times; any approximation is a partial re-summation of the series to infinite
order. We can also sum two different self-energy parts, e.g. tadpole + bubble,
and the iteration will give all sorts of diagrams in which such insertions occur
in any sequence; all such diagrams will occur once. However, if we iterate
a diagram showing a bubble followed by a tadpole we miss all the diagrams
where two consecutive bubbles (or tadpoles) occur. To avoid missing diagrams
in this silly way it is important to use irreducible self-energy Σ . A self-
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energy part is called reducible if it can be split into two diagrams by cutting
a single propagator. The left diagram in Figure(11.4) is reducible, the right
one is not.

Fig. 11.14. Reducible (left) self-energy part and irreducible (right) self-energy
parts.

The Irreducible (or proper) Self-Energy Σ is the sum of all the irre-
ducible self-energy parts. The analytic expression of Σ is −iΣ(ω), and the
function Σ is also called self-energy. The first-order self-energy part reads:

(−i)Σ(1)= (−i)

[∑
k

Va k b k n0
k−
∑
k

Vk a b k n0
k

]
. (11.77)

The Dyson equation yields the exact diagrammatic expansion of the green’s
function if the exact Σ is known. Indeed, each diagram containing whatever
insertions in Σ any number of times in any order comes out of by the
iteration of Figure 11.13 exactly once. Figure 11.13 reads:

ig = ig0+ig0(−iΣ)ig⇒ g = g0+g0Σg;⇐⇒ g = g0+gΣg0; (11.78)

with x = (r, t) and
∫
dx =

∫
d3rdt, these are

g(x, x′) = g0(x, x′) +
∫
dx1dx2g0(x, x1)Σ(x1, x2)g(x2, x

′)

g(x, x′) = g0(x, x′) +
∫
dx1dx2g(x, x1)Σ(x1, x2)g0(x2, x

′).
(11.79)

In analogy with (10.7) we can rewrite Dyson’s equation in differential
form. This analogy will be exploited in Section 11.8. Since the noninteracting
g(0) obeys {

ih̄
d

dt1
−H0(1)

}
g(0)(1; 1′) = δ(11′) (11.80)

by applying
{
i d

dt1
−H0(1)

}
we obtain

[i
∂

∂t
−H0(x)]g(x,x′)−

∫
dx1Σ(x, x1)g(x1, x

′) = h̄δ(x− x′). (11.81)

The solution of Dyson’s equation is simple when the symmetry is so high
that g is diagonal on the basis of H0 eigenstates. Jellium is a theorist’s toy
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metal; an infinite electron system with a uniform neutralizing background of
positive charge. Both g0 and g are diagonal on a plane-wave basis, and the
scalar Dyson’s equation yields

g(k,ω) =
1

ω−ε0 (k)−Σ(k,ω)
; (11.82)

thus Σ can be thought of as a complex correction to the energy eigenvalue.
The Dyson equation leads to the notion of a quasi-particle; as far as g is con-
cerned, the many-body interactions can be summarized in a self-energy cor-
rection to the one-body dispersion, leading to a useful picture of an effective,
modified or dressed electron moving around. One can produce many-body
states that behave like a quasi-electron or a quasi-hole added to the system,
although the imaginary part of Σ eventually damps the single-particle char-
acter and redistributes the energy. In this way some of the simplicity of the
independent-electron picture is retained; moreover, the independent-electron
model is partly validated; thus one understands the fact that band-structure
calculations and the Sommerfeld theory are useful in many cases although
electrons are far from being independent.

11.4.1 External Potential

b

a

b

a

b

a

b

a

b

a

b

a

p
q= + + + + · · ·

Fig. 11.15. Propagator in external potential (big dot).

For non-interacting electrons in an external potential the diagram rules
are similar. The series is shown in Figure 11.15 where the heavy oriented
line is ig(a, b, ω), the light one represents

ig0(a, b,ω) =
iδab

ω−εa + iηa
,

and the big dot between two lines , one ending with a label p and the second
starting with label q stands for for −iVpq. In the Fano model one has only
the V0k matrix elements; to calculate the local Green’s function g00(ω) one
can use two ways (see Figure 11.16).

g00 (ω) = g(0)
00

(ω) + g(0)
00

(ω)Σ00 (ω) g00 (ω)
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Σ Σ =

0

0

i) ii)

=

Fig. 11.16. Two ways to derive Σ for the Fano model: i) the Dyson equation for
g00 ii) the Dyson equation for the g matrix.

One can write the Dyson equation using the self-energy i) for g00(ω),
which is ready for inserting g(0)

00 lines; since

−iΣ(ω) =
∑
k

(−iV0k)ig
0
k(ω)(−iVk0) = −i

∑
k

|V0k|2

ω − εk + iηk
(11.83)

we find back the self-energy of Chapter 5, but with the important inclusion
of the Fermi level, where ImΣ changes sign. The matrix Dyson equation

↔g = ↔g
0
+↔g

0 ↔
Σ

↔g

could be solved by matrix inversion, but it is simpler to write

g00= g0
00+g0

00

∑
k

V0kgk0(ω),

gk0= g0
kkVk0g00 = Vk0

ω−εk+iηk
g00

In the alternative method ii) we are seeking a matrix self-energy, where one
should insert not g(0)

00 lines, but any two lines.which is readily solved.
Another interesting example occurs in the theory of resistivity of metals;

the external potential is due to impurities. At second and higher order, the
self-energy is complex. One has the problem of calculating the Green’s func-
tion and then averaging over a random impurity distribution; however, in the
dilute case, repeated scattering against the same impurity dominates. The
inverse quasi-particle lifetime 1

τ is given by ImΣ; actually this can be taken
as 1

τ in Drude theory and is the dominant contribution to the resistivity at
low temperature, while at higher T phonon scattering becomes important.

11.5 Self-Energy from Interactions

First-Order

Suppose we know the spin-orbitals {a, b, · · ·} that diagonalize the free-particle
Hamiltonian H0 and the Green’s function g(0); we wish the Green’s function
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g(1) including the effects of the direct first-order Coulomb self-energy, i.e. the
tadpole (see Fig. 11.5a)). The self-energy is a matrix with elements (from
Equation 11.77) Σab(ω) =

∑
k Vakbkf

(0)
k , that is,

Σ =
a)

Σ = +

b)

Fig. 11.17. a) Direct Hartree self-energy b) Hartree-Fock self-energy.

Σab(ω) =
∑

k

f
(0))
k

∫
d3rd3r′

a(r)∗k(r′)∗b(r)k(r′)
|r − r′| . (11.84)

Σab(ω) = W
(0)
ab is just the ab matrix element of an effective potential

W (0)(r) =
∫
dr′
∑

k f
(0)
k |k(r′)|2
|r − r′| ; (11.85)

but this is nothing else than the electrostatic potential produced by the tad-
pole charge density. Had we considered non-interacting electrons in an ef-
fective external potential W (0)(r), we should have obtained the same Σab.
Note that Σab includes the effects of W (0)(r) exactly, as if we had found the
eigenstates {a(1), b(1), · · ·} of H0 + W (0)(r) and computed the new Green’s
function g(1), taking the matrix elements in the old basis {a, b, · · ·} We can
still improve the approximation using just the tadpole, but this time with
g(1). The new correction Σ(1)

ab can then be interpreted as if the electrons did
not interact, but moved in an additional potential W (1)(r). By iterating the
argument, one reaches the self-consistency, as shown in Fig. 11.5b) where
the exchange term has also been included, and the internal propagators are
dressed, renormalized, fully interacting propagators, shown as the thick lines.
This corresponds to the Hartree-Fock approximation. Hence, if one starts
with the Hartree-Fock basis as {a, b, · · ·} the series for Σ starts with the
second order.

Second-Order

The proper Σ(2) has two diagrams ( direct and an exchange).
The direct one is shown in Figure 11.18 a). It is convenient to introduce

the pair bubble (11.114), and to write:
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α

ω

ω

ω − α

k
β

m
β + α

n

b

a)

α

ω

ω

ω − α
k

β

m

β + α n

b

b)

Fig. 11.18. Second-order self-energy: a) direct b) exchange

−iΣ(ω) =
∫

dα
2π

ig0(k,ω−α)(−iVknbm)(−iVamkn)(−iπ0(α)) (11.86)

The calculation is an exercise in contour integration similar to the cal-
culation of the bubble, and the contribution of Equation (11.76 ) to (11.86)
is

−i
∑

k,m,n

fn[1− fm]VknbmVamkn

∫
dα

2π
1

ω − α− εk + iηk

−i
α− εn + εm − i0

.

Again, we get zero unless the poles α = εn− εm + i0 and α = ω− εk + iηk are
on opposite subplanes, which requires ηk < 0, that is, k must be occupied;
the pole in the upper half plane comes from the second factor and yields the
contribution −i

∑
klm

fkfn(1−fm)VknbmVamkn

ω+εm−εn−εk−iηm
. Adding the second contribution

with m filled and k, n empty,

Σab(ω) =

∑
m,k,n

[(1− fm) fkfn + fm (1− fk) (1− fn)]VknbmVamkn

ω−εn+εm−εk−iηm
(11.87)

To get the exchange term from Figure 11.18 a) one cuts the lines rais-
ing from the bottom vertices and exchanges their upper ends, labeling in
such way that the exchange is done in the upper interaction resulting in
Vamkn → Vamnk. The value of the diagram is obtained from (11.86) by
Vamkn → −Vamnk, (no closed circuit any more). Thus, the total second-order
self-energy is:

Σ
(2)
ab (ω) =

∑
m,k,n

[(1− fm) fkfn + fm (1− fk) (1− fn)]

×Vknbm[Vamkn−Vamnk]
ω−εn+εm−εk−iηm

. (11.88)
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Unlike the first-order result, this correction is beyond Hartree-Fock, com-
plex and ω-dependent. Starting from Hartree-Fock, we now obtain correc-
tions to Koopman ionization potentials and electron affinities and lifetimes
without resorting to the often prohibitive Configuration-Interaction compu-
tations. This is very useful in atomic and molecular calculations [4]. Typically
the corrections are of the order of 1 eV.

11.6 Skeleton Diagrams

We can do better for free (no other diagrams to compute) by considering the
self-energy of Figure 11.19. where the heavy lines are dressed propagators.
This is self-consistent perturbation theory, in analogy with the diagrammatic
version of the Hartree-Fock approximation (by the way, no tadpoles and no
open-oysters appear, since we assume that the self-consistent potential is our
one-body potential). This procedure is equivalent to a summation to infinite

Σ = +

Fig. 11.19. By expanding the right-hand side, one finds an infinite series of self-
energy corrections.

order of a series of more and more complex self-energy diagrams, and can
simplify enormously the task of summing the most relevant parts of the series
for Σ.

Skeleton diagrams are those with no self-energy insertions. Since all the
internal propagators are dressed, to avoid double counting only skeleton di-
agrams are allowed. A few skeleton diagrams can replace an infinity of self-
energy ones, if the self-consistency can be carried out by numerical iteration.
This can be a very good solution, depending on the choice of skeletons.

11.7 Two-body Green’s Function: the Bethe-Salpeter
Equation

One can perform a Dyson type analysis on the series for the two-particle
Green’s function G2 (10.3). Working in the time representation, we sort out
the direct and exchange contributions to G2 consisting of diagrams with only
self-energy insertions. In obvious shorthand notation,
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G2(1, 2, 3, 4) = ig(3, 1)g(4, 2)− ig(3, 2)g(4, 1)

+
∫
d5d6d7d8ig(3, 5)ig(7, 1)ig(4, 6)ig(8, 2)γ(5, 6, 7, 8), (11.89)

where γ is the scattering amplitude. The corresponding diagrammatic equa-
tion is shown in Figure 11.20. γ is the sum of all two-body diagrams such that
each ingoing line starts with an interaction, and each outgoing line leaves an
interaction. Internal lines can have all sorts of self-energy insertions.

G2

1

2

3

4

= + +

1 1 1

2 2 2

3 3 3

4 4 4

γ

5

6

7

8

Fig. 11.20. The two-body Green’s function G2 and the scattering amplitude γ.
The dressed incoming and outgoing lines belong to G2

= + + + + · · ·γ

Fig. 11.21. γ is the scattering amplitude; the heavy lines represent dressed prop-
agators, the first two diagrams shown are irreducible, the other two are not; J the
irreducible scattering amplitude.

In γ one can separate out the irreducible interaction diagrams, that cannot
be split in two by cutting only two dressed lines; let J denote their sum. All
terms in γ can be obtained by iteration from those of J, and this enables us
to write down a Dyson-like equation for γ.

Finally, the whole series is obtained from the Bethe-Salpeter equation

G2(1234) = g(31)g(42)−g(32)g(41)+
∫
d5d6d7d8J(5678)ig(35)ig(46)G2(7812)

(11.90)
which is shown in Figure 11.23.
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γ J + J γ

Fig. 11.22. γ is obtained by iterating J .

G2

1

2

3

4

= + +

1 1
1

2 2 2

3 3 3

4 4 4

7 5

8 6

G2 J

Fig. 11.23. The Bethe-Salpeter equation for the two-body Green’s function.

1 1’

Σ

5
6

1

=

2

1’

γ

7 8

Fig. 11.24. The relation of the self-energy to the scattering amplitude. Replacing
γ by its diagrammatic expansion one gets the expansion for Σ. This differs from
Ref. [116], Chapter 10.6, since we assume that the Hartree-Fock approximation is
embodied in our bare propagator.

11.8 Self-Energy and Two-Body Green’s Function

Let us rewrite the equation of motion (10.7),{
i
∂

∂t1
−H0(1)

}
g(1; 1′) = δ(11′)− i

∫
d2v(1, 2)G2(1; 2|2+; 1′) (11.91)

where H0 is the non-interacting Hamiltonian. We compare with the Dyson
equation (11.81)

[i
∂

∂t1
−H0(1)]g(1, 1′)−

∫
d2Σ(1, 2)g(1, 1′) = h̄δ(1, 1′). (11.92)

Σ is a non-local potential that can have some local contribution (proportional
to δ(r− r′)), so there is some freedom in the definition of Σ. One can decide
to include the Hartree potential VH(x) due to the charge−ig(x, x+) as a local
part of Σ or as a potential in H0(x). We shall write the one-body term in
both the above equations as H0(x) + VH(x), where the second term actually
comes from the local part of Σ. Thus,
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[i
∂

∂t1
−H0(1)− VH(1)]g(1, 1′) = δ(1, 1′) +

∫
d2Σ(1, 2)g(2, 1′). (11.93)

We find∫
d2 [VH(1)δ(1, 2) +Σ(1, 2)] g(2, 1′) = −ih̄

∫
d2v(1, 2)G2(1, 2|2+, 1′).

(11.94)
We have obtained Σg, not just Σ, since G2 comprises the incoming and
outgoing legs; a formal relation between self-energy and two-body function is
obtained by amputating the outgoing one, that is,

Σ(1; 1′) + VH(1)δ(1, 1′) = −ih̄
∫
d2d3v(1, 2)G2(1, 2|2+, 3)g−1(3; 1′) (11.95)

where g−1 is the inverse of g in the matrix sense.
It is clear that the approximations for the two-body function and for the

self-energy cannot be chosen independently. The relation to the scattering
amplitude is given by the figure 11.23.

11.9 Functional Calculus and Diagrams

Given a functional F which depends on a function ϕ(x), one defines the
functional derivative11

δF [ϕ(x)]
δφ(y)

=
d

dη
F [ϕ(x) + ηδ(x− y)]. (11.96)

For instance, if F [ϕ] =
∫
d3xf(ϕ(x),∇ϕ(x)), then it turns out that

δF

δϕ(x)
=
∂f

∂ϕ
−∇ ∂f

∂∇ϕ.

If we think of the integrals in discrete form, and the integrand does nor de-
pend on derivatives of ϕ, the functional derivative is just a partial derivative
with respect to the value of ϕ in a particular space-time point. Functional
differentiation is a powerful tool that we shall use in parallel with the di-
agrammatics. Functional derivatives with respect to the propagator g are
particularly easy because they undo the integrations which are prescribed by
the rules (see Figure 11.25. ) This remark will be useful later.

11We shall often use a 4-dimensional notation x ≡ (x, t) and write

δF [ϕ]

δϕ(x3, t3)
=

d

dη
F [ϕ(x, t) + ηδ(x − x3)δ(t − t3)].
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2 1

4 5
+

2 1

4

5
+ · · ·

= Σ(1, 2)
2 1

4 5

+
2 1

4

5

+ · · ·

= δΣ(1,2)
δg(4,5)

Fig. 11.25. Diagrammatic interpretation of the functional derivative.

11.9.1 The Self-Energy as a Functional

Functional derivatives also naturally arise for another reason. To study an
interacting many-body system, one can introduce an external probe poten-
tial ϕ(x, t) and look for a one-body response. The response arises from the
dependence of the propagator g on small changes in the perturbation

H1 =
∫
dxρ(x)ϕ(x, t) (11.97)

where ρ(x) = Ψ †(x)Ψ(x) is the density operator. The most direct way to
study the dependence of g on ϕ is through the functional derivative δg(1,2)

δϕ(3) .

Rewriting (11.63) in the form

ig(1, 2) =
〈Φ|T [Ŝψ(1)ψ†(2)]|Φ〉

〈Φ|Ŝ|Φ〉
, (11.98)

since 〈Φ|Ŝ|Φ〉 = limη,ε→0 UI(∞, t3 + ε)UI(t3 + ε, t3 − ε)UI(t3 − ε,−∞), and
UI(t3 + ε, t3 − ε) = 1− i

h̄

∫ t3+ε

t3−ε H1(τ)dτ + · · · one finds

δ

δϕ(x3)
Ŝ = lim

η,ε→0
UI(∞, t3 + ε)

× ∂

∂η

[
1− iη

h̄

∫
dx

∫ t3+ε

t3−ε

dtρ(x)δ(x − x3)δ(t− t3)
]

×UI(t3 − ε,−∞) =
−i
h̄
Ŝρ(3), (11.99)

i
δ

δϕ(3)
g(1, 2) = − i

h̄

[
〈Φ|TSρ(3)ψ(1)ψ†(2)|Φ〉

〈Φ|S|ϕ〉 − ig(1, 2)
〈Φ|TSρ(3)|Φ〉
〈Φ|S|Φ〉

]
.

(11.100)
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We may conclude that

ih̄
δg(1, 2)
δϕ(3)

= −iG2(1, 3|3+, 2) + ig(1, 2)g(3, 3+). (11.101)

This yields a new, useful link between g and G2, but we are interested in
involving Σ.We multiply by v(1, 3) and integrate over 3 (that is, over dx3dt3,
of course). Since −ig(3, 3+) = ρ(3) is the density, we may introduce the
Hartree potential VH(1) =

∫
d3v(1, 3)n(3) and write

ih̄

∫
d3v(1, 3)

δg(1, 2)
δϕ(3)

= −i
∫
d3v(1, 3)G2(1, 3|3+, 2)− VH(1)g(1, 2).

(11.102)
Now replace 2 by 1’ and 3 by 2. The result may be used again in (11.91){

i
∂

∂t1
−H0(1)

}
g(1; 1′) = δ(11′)− i

∫
d2v(1, 2)G2(1; 2|2+; 1′)

with ϕ added to H0, and yields

(i
∂

∂t1
−H0(1)−Veff (1))g(1, 1′) = δ(1, 1′)+ih̄

∫
d2v(1, 2)

δg(1, 1′)
δϕ(2)

; (11.103)

here the screened potential Veff (1) = ϕ(1) + VH = ϕ(1) +
∫
d3v(1, 3)ρ(3)

appears.
Comparison with (11.93),

[i
∂

∂t1
−H0(1)− VH(1)]g(1, 1′) = δ(1, 1′) +

∫
d2Σ(1, 2)g(2, 1′).

again with VH changed to Veff , yields∫
Σ(1, 3)g(3, 2)d3 = ih̄

∫
v(1, 3)

δg(1, 2)
δϕ(3)

d3 (11.104)

where the instantaneous Coulomb potential v fixes t3 = t1. We can solve this
for Σ, introducing the (matrix) inverse g−1 of g, such that∫

d3g(1, 3)−1g(3, 2) =
∫
d3g(1, 3)g−1(3, 2) = δ(1, 2). (11.105)

Differentiating (11.105) we obtain∫
δg−1(1, 3)
δϕ(2)

g(3, 2)d3 = −
∫
g−1(1, 3)

δg(3, 2)
δϕ(2)

d3

and substituting in (11.104) we get

δg(1, 2)
δϕ(3)

= −
∫
d4d5g(1, 4)

δg−1(4, 5)
δϕ(3)

g(5, 2); (11.106)
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now the rhs has a comfortable g factor on the right. Hence, post-multiplying
by g−1 we obtain the desired result

Σ(1, 6) = −ih̄
∫
d(3, 4)v(1, 3)g(1, 4)

δg−1(4, 6)
δϕ(3)

. (11.107)

11.9.2 Polarization Bubble

The dielectric function ε(x,x′) is defined by the relation (using a notation
with x ≡ (r, t),

∫
dx ≡

∫
d3rdt,)

D(x, t) =
∫
dx′ε(x,x′, t− t′)E(x′, t′)

between displacement vector and electric field which holds in linear media.
The external charges are the sources of D; hence, the effective potential
Veff (r) due to an external source having bare potential ϕ is

Veff (r) =
∫
dr′dt′ε−1(r, t, r′, t′)ϕ(r′, t′), (11.108)

the inversion implied in the notation ε−1 is matrix inversion in the r, t, r′

indices. Hence,adopting a lighter notation,

ε−1(1, 2) =
δVeff (1)
δϕ(2)

. (11.109)

In the microscopic theory,

Veff (1) = ϕ(1) +
∫
d3v(1, 3)ρ(3), ρ(3) = −ig(3, 3+) (11.110)

where v(1, 2) is the Coulomb interaction v(x) = 1
r δ(t). When ϕ is produced

by a point charge at r1(t), Veff (2) is the screened interaction W (1, 2);

W (1, 2) =
∫
d3
δVeff (2)
δϕ(3)

v(1, 3). (11.111)

By a Dyson equation, one can determine the screened interaction W in
terms of the bare (Coulomb) one v. In Figure 11.26 the light dotted line
stands for −iV and the bold dotted line stands for −iW . Therefore, W is

= +

Fig. 11.26. The Dyson equation for the screened interaction W (heavy dashed
line) in terms of the Coulomb interaction (light dashed line)and the full polarization
propogator π.
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determined by the polarization π according to Figure 11.26:

W(1, 2) = v(1, 2)−
∫

v(1, 3)π(3, 4)W(4, 2)d(3, 4). (11.112)

Here, π is the sum of all the irreducible polarization parts that cannot be
split by cutting a single V line. Since the series for π(1, 2) is symmetric
under a mirror reflection that exchanges 1 and 2, π(2, 1) = π(1, 2), and also
W (2, 1) = W (2, 1); moreover the alternative form exists

W (1, 2) = v(1, 2)−
∫
d(74)W (1, 7)π(7, 4)v(4, 2). (11.113)

The general structure of the diagrams for π (Figure 11.27 ) shows that it can
be obtained from g and a vertex Γ :

π(1, 2) = −ih̄
∫
g(2, 3)g(4, 2+)Γ (341)d (34) (11.114)

2 1 2 1

3

4

=

π Γ

Fig. 11.27. the structure of π, according to Equation (11.114), showing the points
where interaction lines can be inserted.

Any approximation for π yields the corresponding approximation to γ,
and we shall give an exact expression for this in the next Section. A similar
analysis can be done on the diagrams for Σ.

1 2

Σ

3

41

= Γ

2

Fig. 11.28. The relation of the self-energy to the vertex function, after Equation
(11.115).

A formal expression for Σ is:



11.9 Functional Calculus and Diagrams 253

Σ(1, 2) = ih̄

∫
g(1, 4)Γ (4, 2; 3)W (1+, 3)d(34) (11.115)

in terms of the dressed interaction W and of the vertex Γ . The fact that
the same function Γ indeed appears in the expressions for π and Σ will be
apparent shortly.

11.9.3 The Vertex

We evaluate (11.111) and obtain a new form of Dyson’s equation (11.113)
for W , and a new π formula to compare with (11.114). Taking the functional
derivative of (11.110) Veff (1) = ϕ(1) +

∫
d3v(1, 3)ρ(3), one finds

δVeff (2)
δϕ(3)

= δ(2, 3)− ih̄
∫
d4
δg(4, 4+)
δϕ(3)

v(2, 4).

Since (11.114) says that we want two g factors, we evaluate δg(4,4+)
δϕ(3) by the

trick (11.106),

δg(4, 4+)
δϕ(3)

= −
∫
d(56)g(4, 5)

δg−1(5, 6)
δϕ(3)

g(6, 4+),

and then substitute into (11.111): this gives the screened interaction

W (1, 2) = v(1, 2) + ih̄

∫
v(1, 3)g(4, 5)

δg−1(5, 6)
δϕ(3)

g(6, 4+)v(2, 4)d(3456). (11.116)

The integral on the r.h.s. is a functional that begins with a bare interaction
v(1, 3) and ends with another bare v(2, 4). If we aim at (11.113) we must
convert the first to a screened interaction: we need to screen it by ε and
we can if we screen ϕ as well. The correct way to do this is by changing
the independent variable from the external to the effective potential via the
functional chain rule

δ

δϕ(3)
=
∫
d(7)

δVeff (7)
δϕ(3)

δ

δVeff (7)
=
∫
d(7)ε−1(7, 3)

δ

δVeff (7)
. (11.117)

This produces

W (1, 2) = v(1, 2) +
∫
d(47)v(2, 4)

ih̄

∫
d(56)g(4, 5)g(6, 4+)

δg−1(5, 6)
δVeff (7)︸ ︷︷ ︸

[∫
d3v(1, 3)ε−1(7, 3)

]
. (11.118)
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Here the square brackets contain W (1, 7) (see Equation 11.111); the result
agrees with Equation (11.113) if the under-braced quantity is π(7, 4):

π(7, 4) =
∫
d(56)g(4, 5)

δg−1(5, 6)
δVeff (7)

g(6, 4+). (11.119)

This yields the following expression for the vertex of Equation (11.114):

Γ (1, 2, 3) = −δg
−1(1, 2)

δVeff (3)
. (11.120)

Using the solution to Problem 11.4,

g−1(1, 2) = (i
∂

∂t
−H0 − Veff (1))δ(1, 2)−Σ(1, 2), (11.121)

we obtain the exact result

Γ (1, 2, 3) = δ(1, 2)δ(1, 3) +
δΣ(1, 2)
δVeff (3)

. (11.122)

We can re-derive Equation (11.115) for Σ in terms of the dressed interaction
W and of the vertex Γ using (11.117) and (11.120) in (11.107).

11.10 Hedin’s Equations

Hedin’s equations fully determine g, in principle at least. Dyson’s equation

g(1, 1′) = g0(1, 1′) +
∫
d2d3g0(1, 2)Σ(2, 3)g(3, 1′) (11.123)

requires the knowledge of Σ; this is given by Equation (11.115), namely,

Σ(1, 2) = ih̄

∫
g(1, 4)Γ (4, 2; 3)W (1+, 3)d(34), (11.124)

in terms of the screened interaction W and the vertex Γ. Equation (11.112)

W(1, 2) = v(1, 2)−
∫

v(1, 3)π(3, 4)W(4, 2)d(3, 4) (11.125)

allows to calculate W if one knows the polarization π, which by Equation
(11.114)

π(1, 2) = −ih̄
∫
g(2, 3)g(4, 2+)Γ (341)d (34) (11.126)

again requires the vertex. To close the equations we have to find one for
the vertex. To lowest order, Γ (123) ≈ δ(1, 2)δ(1, 3) (this is called the GW
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approximation); Migdal proposed plausible arguments to show that the vertex
corrections can be neglected to a good approximation in Jellium and weakly
correlated solids. This Migdal theorem is often violated in strongly correlated
systems, but Hedin found a rigorous equation for Γ . The starting point is
Equation (11.122)

Γ (1, 2, 3) = δ(1, 2)δ(1, 3) +
δΣ(1, 2)
δVeff (3)

. (11.127)

The functional derivative is done via the chain rule

δΣ(1, 2)
δVeff (3)

=
∫
d(4, 5)

δΣ(1, 2)
δg(4, 5)

δg(4, 5)
δVeff (3)

.

By differentiating the identity g−1g = 1 and left-multiplying by g one obtains
the analogue of (11.106), namely,

δg(1, 2)
δVeff (3)

= −
∫
g(1, 4)

δg−1(4, 5)
δVeff (3)

g(5, 2)d(4, 5). (11.128)

Thus,
δΣ(1, 2)
δVeff (3)

= −
∫
d(45)

δΣ(1, 2)
δg(4, 5)

g(4, 6)
δg−1(6, 7)
δVeff (3)

g(7, 5).

Now inserting Equation (11.120) Γ (1, 2, 3) = − δg−1(1,2)
δVeff (3) we obtain the least

obvious of Hedin’s equations:

Γ (123) = δ(1, 2)δ(1, 3) +
∫
δΣ (1, 2)
δg(4, 5)

g(46)g(75)Γ (673)d(4567). (11.129)

Hedin[53] obtained these exact equations that formally determine self-
energy, polarization, vertex function and Green’s function. Although they
were not solved exactly, they lie at the heart of powerful approximate meth-
ods for first-principle calculations [54]. This equation lends itself to a di-
agrammatic interpretation (see Figure 11.10). Indeed, functional differenti-
ation may be understood as removing a propagator line from a self-energy
diagram, which then becomes a for-point function with 2 incoming and 2 out-
going lines. By the Hedin equation, all possible combinations and iterations
of such scattering diagrams give raise to the most general vertex.

It was pointed out recently[139] that Hedin’s equations are helpful in
counting Feynman diagrams.
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2 1

4

5

2 1

4

5

2 1

4

5

6

7

Fig. 11.29. A skeleton Self-energy diagram contributing to Σ(1, 2), the correspond-

ing contribution to δΣ(1,2)
δg(4,5)

, obtained by deleting the g(4, 5) line (Figure 11.9), and

the contribution to Γ (2, 1, 3) arising from the Hedin equation (11.129).

Problems

11.1. Compute diagram d).

11.2. Express the improper self-energy
∗
Σ in terms of Σ.

11.3. Are there any skeleton diagrams in the next Figure?

a) b) c)

Fig. 11.30. Are there any skeleton diagrams?.

11.4. Evaluate g−1 in terms of Σ.
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12.1 High Density Electron Gas

kω

kω

k-q

ω − α

m

β
m+q

β + α

Fig. 12.1. Diagram for g with a self-energy insertion involving π0 in Jellium.

For Jellium, due to momentum conservation, we re-label the diagram
11.10 d) involving the bubble π0 as in Figure 12.1 and (11.73) becomes

−iπ0(q, α) = −2
∫

d3m

(2π)3

∫
dβ

2π
ig0 (m, β) ig0 (m + q, β + α) (12.1)

and (11.76) becomes, restoring h̄,

π0(q, α) = 2
∫

d3m

(2π)3

[
fm(1− fm+q)

h̄α+ εm − εm+q + iη
− fm+q(1− fm)
h̄α+ εm − εm+q − iη

]
(12.2)

with

Reπ0(q, α) = 2
∑

m
fm−fm+q

h̄α+εm−εm+q
,

Imπ0(q, α) = −2π
∑

m fm(1− fm+q)δ(h̄α+ εm − εm+q).
(12.3)

So, the self-energy (11.86) becomes

−iΣ(ω) =
∫

d3q

(2π)3

∫
dα
2π

ig0(k − q,ω − α)(−iVq)2(−i)π0(q, α) (12.4)
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and since Vq = 4πe2

q2 , this diverges at small q. The electron gains self-energy by
exciting the medium and then re-adsorbing the excitations, but the process
runs out of control for the long-wavelength ones. What is going wrong at long
distances? It is the Coulomb interaction V , which is causing the divergence by
its long range, but should actually be replaced by a shorter ranged screened
interaction W .

Equation (11.112) is solved by Fourier transformation thanks to the trans-
lational invariance and becomes:

W (q, ω) =
Vq

ε(q, ω)
, (12.5)

where the exact dielectric function is given by

ε(q, ω) = 1 + Vqπ(q, ω) (12.6)

in terms of the exact irreducible polarization part. The cheapest approxima-
tion prompts itself: it consists of using instead of the unknown π the low-
est polarization part; the resulting approximation is popular as the Random
Phase Approximation (RPA) based on

εRPA(q, ω) = 1 + Vqπ0(q, ω). (12.7)

As usual, simplicity brings extra benefits; in this case, we can identify the
RPA as asymptotically exact in the case of high density (or perfect Fermi gas).
Dimensionally π0 = [E−1], that is, it is inverse energy, and any polarization
part is clearly the same; to check this, recall that momentum integrals are
actually

∑
q summations and carry no dimension, interaction lines V and

frequency integrals
∫
dβ carry E and Green’s functions g bring E−1. Thus,

inserting a new V into a polarization part to build a more complicated one
brings a dimensionless factor

∑
q

∫
dβVqg

2 ≡
∑

q Vqg = [1]. However, if we
scale the density of the liquid, we are changing the Fermi wave vector kF ;
then for every interaction line Vq scaling like k−2

F there is a q summation
(k3

F ) and an energy denominator k−2
F (each energy must be counted k2

F );
thus,

∑
q

∫
dβVqg

2 ∼ k3
F k

2
Fk

−2
F k−4

F ∼ k−1
F , and the factor scales like k−1

F ,
that is, like the Wigner-Seits radius rs. Thus π0 is the dominant polarization
part at high density, and the RPA is good in that case. The second fraction
in Equation (12.2) may be transformed setting m + q = −n, which gives
fm+q = fn, fm = fn+q; now renaming with n→m one finds

π0(q, ω) = 2
∫

d3m

(2π)3
fm(1− fm+q)[

1
h̄ω + εm − εm+q + iη

− 1
h̄ω + εm+q − εm − iη

]
. (12.8)

This was first evaluated by Lindhard [52]. Writing q for q
kF

and setting:
ν = h̄ω

2EF
, a− = ν

q −
q
2 , a+ = ν

q + q
2 ,
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Re(π0) =
mkF

2π2h̄2 [−1

+
1
2q
{[1− a2

−] log |1 + a−
1− a−

| − [1− a2
+] log |1 + a+

1− a+
|}
]
,

Im(π0) =
−mkF

4πqh̄2 ×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[1− a2
−], q > 2, q2

2 + q > ν > q2

2 − q
[1− a2−], q < 2, q2

2 + q > ν > − q2

2 + q

2ν, q < 2,− q2

2 + q > ν > 0
0 otherwise.

(12.9)

12.1.1 More Physical Insight about the RPA

It is fairly common that important results are first obtained the hard way
by the advances of the general theory and after a while somebody finds that
they could have been arrived at by a much simpler, but smart, method.
This sort of re-derivation is important as it offers a fuller understanding of
the result. H. Ehrenreich and M. H. Cohen [43] have shown that one can
derive the Lindhard dielectric function in a purely one-electron formulation.
Accordingly, in this Subsection we let H be a one-body Hamiltonian and look
for the density response to a weak potential W (ω)eiωt.

The average of any operator A can be obtained from the density matrix
ρ as TrρA. The density operator at x is n̂(x) = δ(x−xe) = 1

Ω

∑
q e

iq·(xe−x)

with xe the electron position operator; hence n(x) = 1
Ω

∑
q e

−iq·xTr[ρeiq·xe ]
and the Fourier transform is n(q, ω) = 1

ΩTr[ρe
iq·xe ]. Writing the trace on a

plane-wave basis,

n(q, ω) =
2
Ω

∑
k

〈k|ρ|k + q〉. (12.10)

A factor of 2 is due to the spin trace. ForW = 0 one is left with a free-particle
problem and the zeroth approximation ρ(0) such that its action on the plane
waves is ρ(0)|k〉 = f(Ek)|k〉. We consider the equation of motion

ih̄
∂ρ

∂t
= [H, ρ] (12.11)

for the one-electron density matrix in the presence of the perturbationW and
expand the density matrix ρ = ρ(0)+ρ(1)+· · · in powers ofW . Linearizing the
equation of motion for the linear response ρ(1) and taking matrix elements
between plane-wave states one readily arrives at

ih̄
∂

∂t
〈k|ρ(1)|k + q〉 =

(Ek − Ek+q)〈k|ρ(1)|k + q〉+ [f(Ek+q)− f(Ek)]〈k|W |k + q〉. (12.12)

Using 〈k|W |k+q〉 = W (q, ω)eiωt and dropping eiωt in all terms we obtain:
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〈k|ρ(1)|k + q〉 = W (q, ω)
f(Ek+q)− f(Ek)
Ek+q − Ek + h̄ω

(12.13)

Inserting into (12.10),

δn = W (q, ω)
2
Ω

∑
k

f(Ek+q)− f(Ek)
Ek+q − Ek + h̄ω

. (12.14)

W (q, ω) is the screened potential induced by introducing external charge
with number density δn(ext)(q, ω):

W (q, ω) =
4πe
q2

(
δn(ext)(q, ω) + δn(q, ω)

)
(12.15)

where δn(q, ω) is the induced density. δn(ext)(q, ω) alone would produce a
potental Vq,ω and with a slight generalization of Equation (12.5) we write

4πe
q2
δn(ext)(q, ω) = Vq,ω = ε(q, ω)W (q, ω); (12.16)

hence,

δn(q, ω) = − q2

4πe2
(ε(q, ω)− 1)W (q, ω) (12.17)

and comparing with (12.12) we obtain the Lindhard dielectric function,

ε(q, ω) = 1 +
8πe2

q2Ω

∑
k

f(εk)− f(εk+q)
εk+q − εk − h̄ω − iη

. (12.18)

In the static limit, this may be evaluated to read

ε(q, 0) = 1 +
2me2kF

πh̄2q2
+

2me2

πh̄2q3
(k2

F −
q2

4
) ln |2kF + q

2kF − q
|. (12.19)

It can be shown that for q → 0,

ε(q, 0) ∼ 1 +
K2

TF

q2
(12.20)

where KTF = 4kF

πaB
is the Thomas-Fermi wave vector. Using (12.20), one finds

that the screened potential of a point charge becomes a Yukawa potential
∝ 1

r exp(−KTF r). Actually, the asymptotic behavior of Fourier transform
reflects the singularities [92]; at long distance the behavior of the screening
charge is oscillatory (Friedel oscillations):

δn(r) ∝ cos(2kF r)
r3

. (12.21)
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This is due to a divergence in dε(q,0)
dq at q = 2kF , the largest q that can be

transferred to an electron in the Fermi sphere without increasing its energy.
Note that for ω > 0 we may write

ε2 ≡ Im(ε(q, ω)) =
8πe2

q2Ω
π
∑

k

f(εk) [1− f(εk+q)] δ(εk+q − εk − h̄ω) (12.22)

which is positive in the part of the ω − q plane where h̄ω = εk+q − εk =
h̄2

2m

[
2k · q + q2

]
can be satisfied with k inside the Fermi sphere and k = q

outside. For a given ω, the shortest q vector is obtained by setting k right at
the Fermi surface and q parallel to k, and the longest with q antiparallel to
k.

k

qmin

qmax

Fig. 12.2. The longest and shortest q vectors for electron-hole excitations with a
given excitation energy. One starts with a Fermi wave vector k and must reach the
energy surface at EF + h̄ω.

Electron-hole excitations and ε2 are confined to strip between the two
parabolas h̄ω = h̄2

2m (2kF q + q2). and h̄ω = h̄2

2m (−2kF q + q2).
The term in f(εk+q) in the summation in Equation (12.18) can be rewrit-

ten

−f(εk′)
εk′ − εk+q − h̄ω − iη

by a change of variable k + q → −k′; then, we can restyle ε as

ε(q, ω) = 1 +
16πe2

q2Ω

∑
k

f(εk)
εk+q − εk

(εk+q − εk)2 − (h̄ω + iη)2
. (12.23)

The Drude dielectric function

The classical treatment by Drude also gave raise to a dielectric function.
Starting from the electron equation of motion in a periodic field,mr̈ = −m

τ ṙ−
eE0e

i(q·r−ωt) were τ is the electron mean free time, one neglects q and solves
with r(t) = Ae−iωt, obtaining A = eτ

mω
E0

ωτ+i . Then, the current density is

j = −enṙ = ne2τ
m

E0
1−iωτ e

−iωt. Thus,
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J = σE, (12.24)

with the conductivity σ(ω) = σ0
1−iωτ with σ0 = ne2τ

m . Assuming that every-
thing depends only on z, Maxwell’s equations give:

d2E(z)
dz2

= −ω
2

c2
E − 4πiω

c2
J(z).

Then (12.24) gives

d2E(z)
dz2

= −ω
2

c2

[
1 +

4πiσ(ω)
ω

]
E(z).

this is tantamount to say that the medium produces a refractive index nref

and c→ c
nref

with n2
ref = ε = 1 + 4πiσ(ω)

ω . Thus we arrive at

ε = 1−
ω2

p

ω(ω + i
τ )

(12.25)

where ωP =
√

4πne2

m is the Plasma frequency. This is qualitatively correct for
simple metals, but looks very different from the Lindhard result.

Plasmons and the Lindhard dielectric function

Some resemblance of the Lindhard to the classical calculation is recovered by
a long-wavelength (q → 0) expansion. The q → 0 limit of Equation ( 12.23)is
obtained by inspection since the k · q term in εk+q − εk averages to 0 and∑
f(εk) = n

2 , with the result that ε(q, ω) ∼ 1 − ω2
P

(ω+iη)2 . A more accurate
analysis readily gives:

ε(q, ω) ∼ 1− ω2
P

(ω + iη)2
− 3

5
(
h̄kF

m
)2

ω2
P

(ω + iη)4
q2 + · · · (12.26)

Plasmon modes are defined by ε(q, ω) = 0, which is the condition for self-
sustained oscillations (one can have W (q, ω) finite with Vq,ω = 0. They are
collective modes of the electron liquid with

ω(q) = ωP

(
1 +

3
10

(
h̄kF

m
)2
q2

ω2
P

+ · · ·
)

(12.27)

With increasing q, eventually the plasmon branch enters the electron-hole
continuum and becomes unstable against converting into a pair. Actually they
are sharply defined as q → 0 but are damped with increasing q; this Landau
damping is due to decay in multiple electron-hole pairs. Thus, the plasmons
dominate the high-frequency, long wavelength screening, while electron-hole
pairs in metals are slower and act as shorter distance (higher q) screening
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modes. Plasmon satellites are typically observed in electron spectroscopies of
metals in the 10 to 25 eV range (see Chapter 6.4). In semiconductors and
insulators plasmons are seen in a similar way, since the gap is often small
compared to the ωP value that can be deduced from the valence electron
concentration. The phenomenon of ultraviolet transparency is well known:
metals become transparent at frequencies above the plasma frequency because
the electrons cannot follow the field.

The Jellium energy in the high density case can be found by summing
over the ring diagrams. Gell-Mann and Brueckner found the result

Ẽ =
∫
dx[t[n] + εx[n] + εc[n]]n, (12.28)

where I have introduced the following energies per particle (small rS):

kinetic t[n] = 3
10 (3π2n)

2
3 ≈ 2.21

r2
s
Ry

exchange ≈ − 0.916
rs

Ry

correlation −0.062 ln(rr)− 0.096Ry.
(12.29)

12.2 Low Density Electron gas: Ladder Approximation

In the low density case the quantum electron gas is far from perfect, that is,
the kinetic energy is dominated by the interaction energy. Yet things again
simplify, since many-electron collisions become unlikely and one approaches
a two-body problem. So,we start adding two particles to an empty lattice (or
holes to a filled one; these two problems can reflect quite different physics,
but are related by a canonical particle-hole transformation). The solution for
G2 is very interesting and can be obtained in several ways.

In Sect.(6.3) I show how one can write the two-particle Green’s function
for two electrons in the empty lattice for any interaction potential; the solu-
tion is simplest when the potential in on-site (Hubbard interaction). Let Rcm

be the center-of mass of the pair and gQ be the Fourier transform of the two-
particle Green’s function with respect to Rcm, with gQ the non-interacting
limit. The two-particle Green’s function is given by the Kanamori [67]result,

gQ =
gQ

1− UgQ
, (12.30)

where, as in (6.74),

gQ(z) =
∑

q

1
z − ε(Q− q)− ε(q)

. (12.31)

This formula is readily obtained as the sum of a series of ladder diagrams,
which in the empty lattice gives the exact solution, and is a useful approxi-
mation at low density. Each scattering introduces an interaction and a couple
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of propagators; if the pair carries momentum Q and frequency ω, the propa-
gators may be labeled Q− q, ω− η and q, η. According to the diagram rules,
the interaction brings a factor −iU and we must perform the

∑
q

∫ dη
2π sum

on internal labels. Doing the frequency integral by countour integration, we
can show that introducing an interaction and a couple of propagators brings
a factor UgQ (see Equation 6.69 with z = ω + i0).

= + + + ...γ

= + + + ...Σ

Fig. 12.3. Ladder approximation for the scattering amplitude γ and for the self-
energy Σ (the first term is the Hartree contribution). Note that γ and Σ are simply
related; there is a general link, as discussed in Section 12.5 below.

Then, the sum of the geometrical series gives the Kanamori result, that
we obtained in Sect. 6.3 by quite different means. Then the one-particle self-
energy at low density can be gained by Equation of Figure 12.3. This Low
Density Approximation (LDA) was first proposed by V. Galitzkii [133].

12.3 Ladder Approximations in Electron Spectroscopies

12.3.1 XPS and Auger Spectra from Metals

The theory of the Auger CVV spectra of closed-band solids outlined in Section
(6.2) brings valuable information on the local electronic structure, but needs
to be extended to conduction bands. The presence of a Fermi level in the
band where the two holes are produced by the transition complicates the
problem in several ways. The most evident are: 1) the band can be polarized
by the primary hole, so a two-hole Green’s function cannot tell the whole
story 2) the existence of electron-hole excitations offers an intra-band decay
channel for the two-hole resonances. The writer[91] proposed the following
model Hamiltonian:

H = H0 +H1 +H2. (12.32)

The independent-particle part is
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H0 =
∑
ijσ

εijc
†
iσcjσ + εcb

†b, (12.33)

with the first term (in obvious notation) describes the band structure, b†

creates the core electron;
H1 = Un0+n0− (12.34)

introduces the local repulsion at site 0, and

H2 = Ucv(n0+ + n0−)b†b (12.35)

introduces the on-site core-electron valence-electron repulsion.
The theory based on assumption that the band is almost full, that is the

number of holes per quantum state in the band satisfies

nh = 〈a0σa
†
oσ〉  1; (12.36)

this is satisfied e.g. for the Ni d bands. The nh  1 assumption makes it easier
to justify the 2-step model, treating the core-hole decay separately from its
creation (by the way, the 1 step approach was not yet available in 1979).

Due to the band polarizability, one needs a 3-body Green’s function (the
third body is the core electron)

g(3)(t) = 〈Tb(t)c†0+(t)c†0−(t)c0−(0)c0+(0)b†(0)〉. (12.37)

Then, the nh  1 assumption makes it possible to factor the 3-body
Green’s function as a core-propagator times a two-hole Green’s function,

g(3)(t) ∼ 〈Tb(t)b†(0)〉〈c†0+(t)c†0−(t)c0−(0)c0+(0)〉,

(see the original paper for details). The core propagator can be expressed
a-la Langreth as shown in Section 11.2.3. Thus, the CVV spectrum from the
almost filled band can be modeled as a two-hole spectrum convoluted with an
asymmetric core line shape. Finally,the nh  1 assumption justifies the low
density approximation (for holes); this is expected to be a good approximation
up to nh ∼ 0.1 if U is comparable to the band width, but this range shrinks
at stronger coupling, while at weak coupling any approximation works. The
LDA self-energy was calculated analytically for a band structure having an
arbitrary spectral density

B(ω), ωB < ω < 0
A(ω), 0 < ω < ωT

(12.38)

where ωB is the bottom and ωT the top of the band. Thus,nh =
∫ ωT

0 dεA)ε)
and the non-interacting propagator is given by

ig0(ω) =
∫ ωT

0

dε
A(ε)

ω − ε+ iδ
+
∫ −ωB

0

dε
B(ε)

ω + ε− iδ . (12.39)
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The results were displayed numerically for the rectangular band model of
Section (6.2). It was necessary to remove the first-order (tadpole) contribution

Σ(1) = −iU〈n〉 : (12.40)

it would make the site where the Auger decay takes place more repulsive than
the rest of the sites. Thus,

Σ(ω) = iU〈n〉+
∫ ∞

−∞
dω′g0(ω′)T (ω + ω′), (12.41)

where the T matrix is given by

T (ω) =
iU

1 + iUg
(2)
0 (ω)

, g
(2)
0 (ω) =

∫ ∞

−∞

dω′

2π
g0(ω′)g0(ω − ω′). (12.42)

The integrals can be done with the help of the Lehmann representation.
When U is large enough to produce split-off states in the closed-band theory,
there is structure outside the continuum. One finds

ReΣ(ω) ∼ πU2A(−ω − U)θ(ωT + ω + U)θ(−ω + U), (12.43)

that is, a bump between ω = −U − ωT and ω = −U . As a result, there is
a bump in the density of states too, due to broadened split-off states. This
explained[91] a satellite peak observed in the Ni photoemission spectrum; the
physical picture is that the hole produced in the photoemission process has
a chance to find another of opposite spin already there; a two-hole resonance
forms outside the band continuum, and decays into band holes plus a number
of electron-hole pairs. The Auger spectrum was also obtained in this model,
in qualitative agreement with the experiments.

The next step appeared to be the self-consistent LDA, obtained as in
Section (11.6); it had been applied to the Anderson Model [132] and was
expected to have an enhanced range of validity. To our surprise, the writer
and Verdozzi in cluster studies found[134] that the self-consistent procedure
actually ruins the approximation. Comparing with exact results we found
that the non-selfconsistent version, keeping only the diagrams that remain
in the closed-band limit, was much superior; we called this the Bare Ladder
Approximation (BLA). Actually, the self-consistent LDA puts weight in pro-
cesses where many electron-hole pairs are virtually excited simultaneously,
but the on-site interaction does not allow this, and a vertex correction tends
to remove the dressing of the internal lines. The BLA has the further ad-
vantage that the Herglotz property is granted, that is, the density of states
is non-negative. This is of course quite necessary, but most approximations
have no built-in device to ensure this.

The property of vertex corrections that tend to undress internal propa-
gators was later observer by people working on the GW approximation (see
Section 11.10).
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12.3.2 The U<0 Phenomenon

Measurements of Auger spectra of compounds of Sc, Ti and Cr [159] showed
that the peak kinetic energy was higher than expected by Lander’s theory
(Section 6.2); shifts as large as 4 eV were reported. This led the authors to
conclude that in such cases the on-site interaction is U < 0 and to propose an
explanation based on a dynamic bipolaron effect. An alternative, U > 0 ex-
planation was put forth by Václav Drchal and the writer[128]. We think that
the on-site interaction is always repulsive; the repulsion can indeed produce
an effective attraction by a correlation effect (W=0 pairing, see Chapter 17)
but this is off-site and the binding energies are expected to be of the order of
tens of meV. The probability [22] of measuring a photoelectron of momen-
tum p and an Auger electron of momentum k in APECS (Sect. 6.4) is We
approximate the probability of emitting by

Itot(E,p,k) =
∫ ∞

0

dt

∫ ∞

0

dt′f(t, t′,p,k)eiE(t−t′), (12.44)

where, introducing complete set summations
∑
μ,μ′

over the states of the neutral

system,
f(t, t′,p,k) =

∑
μ,μ′

∑
c,c′
〈Ψ |a†c′ei[H(0)+iΓop ]t′ac′ |μ〉

× 〈μ|H†
A(k)eiH(1)(t−t′)HA(k) |μ′〉

× 〈μ′| a†ce−i[H(0)−iΓop ]tac |Ψ〉V (c′,p)∗V (c,p)

(12.45)

Here, V (c,p) is the matrix element of the electro-magnetic Hamiltonian be-
tween the core-electron state c and the photoelectron state, H(ν) is the
hamiltonian of the system with ν core electrons in the primary-hole state,
the operator Γop describes virtual Auger transitions, but is often replaced by
a constant

HA(k) =
∑
αβ

Mαβ(k)a0αa0β

is the operator that describes the valence hole creation at site 0 in the local
spin-orbitals denoted by greek letters; Mαβ(k) are Auger matrix elements.
Moreover, |Ψ〉 is the true ground state with no core-hole (ν = 1), and the sums
run over complete sets. For degenerate core levels a set of relaxed ground states
must be included. We considered a non-degenerate core state and assumed
that these sums are saturated by two main contributions, namely |μ〉 = |Ψ〉
and |μ〉 = |Φ〉, where |Φ〉 is the relaxed ground state with the core-hole and its
screening cloud. In the case it is necessary one could easily extend the theory
including plasmon satellites and other excited states. One of the ingredients
is the core-hole Green’s function gc(t) = −i〈Ψ |a†cei[H(0)+iΓop]t′ac |Ψ〉 . One
can observe the core density of states in Photoemission experiments as an
asymmetric line shape. We argue that the terms with μ 
= μ′ are negligible,
since the factor
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〈μ|H†
Ae

iH(0)(t−t′)HA |μ′〉

represents the evolution without the core-hole and it is unlikely that a screen-
ing cloud can be created taking from |Ψ〉 to |Φ〉 if there in nothing to screen.

Let δ denote the inverse lifetime of the core hole and Γ denote the in-
verse characteristic time of the electron-hole pairs screening the core hole
and contributing the asymmetry. We assume that both are small com-
pared to the other relevant energies. thus, we may model the situation with
gc(t) = −ie−i[εc−i(Γ+δ)]t, where εc is the core energy level, while

βc(t) = −i 〈Φ| a†cei[H(0)+iΓop]tac |Ψ〉 ≈ e−iεβt−δt (12.46)

involves a screened core energy εβ. Collecting these results,

Itot = |V (p)|2 [I
ΨΨ

+ I
ΦΦ

]

with the unrelaxed contribution

I
ΨΨ

= |M(k)|2
∫ ∞

−∞

dω

2π
D(E − ω)

(ω − εc)
2 + Γ 2

written in terms of the two-holes density of states D as in closed-band theory,
and an average square matrix element. On the other hand,

I
ΦΦ

=
∫ ∞

−∞

dω

2π
Irel(E − ω)

(ω − E)2 + δ2

where the relaxed line shape requires modeling the screening cloud. We mod-
eled the ground state of the system in the presence of the core hole, using a
Hamiltonian of the form

H = H0 +Hee +Hch, (12.47)

where H0 is the usual band term,

Hee = U
∑
iαβ

niαniα (12.48)

is an approximate electron-electron interaction with i running over the lattice
sites and the greek indices over the local atomic valence orbitals, and

Hch = −W
∑

α

n0α (12.49)

is the core hole-valence electron interaction at site i=0 (W > 0). Letting |Ψ〉
denote the ground state with no core-hole ( determinantal state in HF and
Local Density approximations) we looked for the ground state |Φ〉 with the
core-hole in the form
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|Φ〉+ (a+
∑
qα

bqαa
†
0αaqα) |Ψ〉

with q as the wavevector and bqα variational parameters.
By minimizing the energy one finds a complicated but physically relevant

solution until it is clear that the solution must be found in the space of
distributions in terms of a wave packet

β(h, ε) =
√

(1− n)ρ(EF )hd θ(EF − ε)θ(−EF + ε+ h)

as the following singular limit for h→ 0:

|Fα〉 =
√

(1− n)d lim
h→0

1√
N

∑
q

β(h,E(q))|qα〉. (12.50)

The relaxed state turns out to be

|Φ〉 =
1√

(1− n)d

∑
α

a†0αaFα|Ψ〉. (12.51)

The screening electron comes from the Fermi surface. Now within the two-
step model one can obtain the Fermi golden rule expression for the relaxed
spectrum

Irel(E) =
−1
π

2|M(k)|2
(1− n)d

Im[
∫ ∞

0

dte−i(E−i0)t
∑
αβγ

g(hhe)
c (αβγ, t)] (12.52)

where

g(hhe)
c (αβγ, t) = (−i)3 〈Ψ |T [a0γ(t)a†0β(t)a†0α(t)a0αa0β(t)a†0γ ] |Ψ〉 (12.53)

is a three-body causal Green’s function averaged over the unrelaxed ground
state. In order to compute g(hhe)

c we proposed the approximation 1 was shown
i Figure 12.3.2 for α, β and γ all different.

This means:

g
(hhe)
c (αβγ, t) = g

(hh)
c (αβ, t)g(e)

c (γ, t) + g
(he)
c (αγ, t)g(h)

c (β, t)
+g(he)

c (βγ, t)g(h)
c (α, t)− 2g(h)

c (α, t)g(h)
c (β, t)g(e)

c (γ, t),
α, β, γ all different

(note the factor 2, which is needed to give the correct U=0 limit.) When two
indices coincide, we find

g
(hhe)
c (αγγ, t) = (1− n2)g(h)

c (α, t) + g
(hh)
c (αγ, t)g(h)

c (λ, t)
+g(he)

c (αγ, t)g(h)
c (α, t)− g(h)

c (α, t)g(h)
c (γ, t)g(e)

c (γ, t),

1The exact three-body wave function for a system of interacting identical par-
ticles can be obtained by a method by Faddeev [206] but here we were looking for
a simple approximation for the three-body Green’s function.
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α
β
γ

= + + +

Fig. 12.4. The approximation for g
(hhe)
c introduced in ref. [128] for α, β and γ all

different. The black box represent ladder interactions involving pairs of Fermions,
while all diagrams involving all Fermions are neglected.

and a similar expression if α = γ. The Auger intensity is

Irel(E) = − 1
π

ImA(E)Θ(EF − E) (12.54)

where, calling Δg
(he)
c the correlation part of g(he)

c , that is, the difference
between g(he)

c and its U=0 limit,

A(E) = (1 − n)2g(h)
c (E) + (d− 1)

∫∞
−∞

dω
2πiΔg

(he)
c (E − ω)gh

c (ω)
+ d

2

∫∞
−∞

dω
2πig

(hh)
c (E − ω)g(e)

c (ω).
(12.55)

For partially filled bands, a one-body contribution arises, along with the rest
of 3-body contributions and the 2-body ones in the unrelaxed contributions;
we called our approach the 1-2-3 theory. In was shown in Ref. [128] (see
Figure 12.5 ) that this theory qualitatively reproduces the experimental trend
for early transition metals.

12.3.3 Correlation in Early Transition Metals

Part of the intensity in Auger CVV and APECS spectra from transition
metals comes from the decay of core-holes that are unscreened in the initial
state; this is obtained by a two-body Green’s function, as in the filled band
case. However, much of the intensity comes from core holes that are screened
when the Auger decay occurs.

Some of these spectral features are amenable to the one-body g, but the
rest requires[128] a two-hole-one-electron propagator, that is a 3-body func-
tion g(3). In the strongly correlated case the approximation of the last Section
runs into trouble because the Herglotz property is not granted (the density of
states may turn negative.) The Core-Ladder approximation [127]is an exten-
sion of the ladder approximation to this problem that has several attractive
features. It is based on the idea of formally rewriting the problem in terms of
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-6 0 6

kinetic energy, eV

I

Fig. 12.5. Thick solid line:schematic drawing of the experimental Ti L2M45M45 line
shape (see Ref. [160]) on a kinetic energy scale centered at the maximum. Dashed
line: the theory of Ref. [128] (dashed), with U=1.684 eV, band width w=7.14 eV
and n=0.254. Thin solid line: the closed-band theory result with the same U and w,
which predicts too low kinetic energy and is clearly not applicable in this case.

a fictitious three-body interaction, where the third body is forward-scattered
by an interaction x.

a)

x

x

b)

Fig. 12.6. a) typical second-order diagram for the 1 hole- 2-electron function g(3)(t);
b) the same diagram with a fictitious 3-body interaction that allows to carry on a
partial summation of the 3-line ladder series to infinite order.
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The third body is filtered through a x=
∑

i |i〉〈i|−type projector, that is,
it is left undisturbed. In core problems, one can exactly dispose of the infinite
summation in favour of a local projector. The same applies to localized split-
off states that occur at strong coupling. Thus one can base an approximation
that can be systematically improved by including more terms if needed. It
treats electrons and holes at equal footing, carries on a partial summation of
the perturbation series to infinite order, and becomes exact both at weak and
at strong coupling (in the sense that it becomes equivalent to a full Ladder
approximation). A particularly interesting feature is that our approach grants
the Herglotz property, that is, the density of states is granted to be non-
negative. Indeed it is a common drawback of perturbation approaches that
potentially powerful diagram summations become untenable by the failure to
guarantee this zero-order requirement of positive probability. In this case we
achieve the result by proving that there exists a model Hamiltonian for which
our Core-Ladder series gives the exact answer. The theory naturally explains
the apparent negative-U behaviour of the early transition metal spectra.

12.4 Conserving Approximations

When working with approximate self-energies, we must be ready to get some
quantitative details wrong, but we can make no use of approximations that vi-
olate the basic conservation laws. The continuity equation must hold; energy
and momentum conservation laws, when applicable, must also be obeyed. An
approximation that respects these fundamental symmetries is called con-
serving. The Hartree-Fock approximation is, but if we pick a general Σ this
is not granted automatically.

12.4.1 Continuity Equation

Let us see how the Green’s function formalism embodies current conservation.
The Dyson equation has two forms:

g(x, x′) = g0(x, x′) +
∫
dx1dx2g0(x, x1)Σ(x1, x2)g(x2, x

′) (12.56)

g(x, x′) = g0(x, x′) +
∫
dx1dx2g(x, x1)Σ(x1, x2)g0(x2, x

′) (12.57)

By applying the g−1
0 operator one obtains two equations: 2

{
i
∂

∂t1
+
∇2

1

2m
− U(1)

}
g(1; 2) = δ(1 − 2) +

∫
d1̄Σ(1; 1̄)g(1̄; 2) (12.58)

2recall from (4.20) that g(1, 2) = −i〈T [ψ(1)ψ†(2)]〉.
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{
−i ∂
∂t2

+
∇2

2

2m
− U(2)

}
g(1; 2) = δ(1− 2) +

∫
d1̄g(1; 1̄)Σ(1̄; 2). (12.59)

Taking the difference and writing ∇2
1 −∇2

2 = (∇1 + ∇2) · (∇1 −∇2), we
get:

(i∂t1 + i∂t2)g(1; 2) + (∇1 + ∇2) ·
∇1 −∇2

2m
g(1; 2) =

[U(1)− U(2)]g(1; 2) + Z(1; 2), (12.60)

where
Z(1; 2) =

∫
d1̄ {Σ(1; 1̄)g(1̄; 2)− g(1; 1̄)Σ(1̄; 2)} . (12.61)

Now we set 2 = 1+, which means t2 = t+1 , r2 = r1. In the left hand side,

ig(1; 1+) = −〈Ψ †(1)Ψ(1)〉 = −〈n̂(1)〉 (12.62)

is the particle density and {∇1 −∇2

2m
g(1; 2)

}
2=1+

= − 1
2mi
〈Ψ †(1)∇1Ψ(1)−∇1Ψ

†(1)Ψ(1)〉 = −〈j(1)〉 (12.63)

is the current density. Hence we end up with the continuity equation, which
is the number conservation law in a differential form, provided that the right
hand side vanishes, and this requires

Z(1, 1+) = 0. (12.64)

The exact Dyson equations (12.56,12.57) must imply the continuity equation
and (12.64). The best way to check this is to use the equations of motion
(10.7) involving the two-particle Green’s function{

i
d

dt1
+
∇2

1

2m
− U(1)

}
g(1; 1′) = δ(1, 1′)− i

∫
d1̄V (1, 1̄)G2(1; 1̄−|1̄+; 1′)

(12.65)
and{
−i d
dt1′

+
∇2

1′

2m
− U(1′)

}
g(1; 1′) = δ(1, 1′)− i

∫
d1̄G2(1; 1̄−|1̄+; 1′)V (1̄, 1′).

(12.66)
In this way, taking the difference, we get
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(i∂t1 + i∂t1′ )g(1; 1′) +
1

2m
(∇1 + ∇2) · (∇1 −∇1′)g(1; 1′) =

= [U(1)− U(1′)]g(1; 1′)

−i
∫
d1̄[V (1, 1̄)− V (1′, 1̄)]G2(1; 1̄−|1̄+; 1′). (12.67)

When we set 1′ = 1+ the r.h.s. vanishes.
This is an obvious statement about the exact Σ and g; however it is also a

condition on approximations, which can only be tenable if they are conserv-
ing. The condition on approximate Σ and g is that both forms (12.56,12.57)
of the Dyson equation be obeyed and (12.64) holds. Next, we discuss how to
build conserving approximations.

12.4.2 The Φ Functional

There is a simple diagrammatic prescription for creating conserving approxi-
mations. Let δΣ(n)

skel. denote a skeleton diagram of order n for the self-energy
Σ(1, 2) and imagine joining the two ends by a propagator g(2, 1) . The result
is the ring diagram in the next Figure:

1 2

g

δΣ
(n)
skel.

Fig. 12.7. Building a contribution δΦ(n) to the Φ functional (occurring 2n times)

from a skeleton diagram δΣ
(n)
skel. for the self-energy, by closing the ends by an inter-

acting propagator g.

δΦ(n) =
∫
Σ(1, 2)g(2, 1)d1d2 (12.68)

similar to one of those bubble diagrams that contribute to the no-particle
propagator or ground-state energy (Section 11.1) , except that the 2n inter-
nal propagators are dressed g and there are no self-energy insertions. The
analytical expression of any diagram is a functional of g. As illustrated in
Figure 11.10 the inverse operation (opening the g(2, 1) line to restore the
original self-energy) is a functional differentiation. We introduce an inter-
action strength parameter λ (which is 1 in the fully interacting case). Any
graph with 2n g lines must be divided by 2n to avoid multiple counting of
contributions to Σ(1, 2) (see Figure 12.8). Let σn represent the sum of all the
skeleton diagrams with n vertices, and
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Φ[g, λ] =
∑

n

λn

2n
Tr[g(ω)σn(ω)], (12.69)

where the Tr operation now sums over spin and all one-electron labels and
integrates in dω

π . This leads to the following result.

Theorem 10. (Luttinger-Ward theorem) [55] The exact self-energy is given
by (note the order of arguments!)

Σ(1, 2) =
δΦ

δg(2, 1)
. (12.70)

A further theorem by Baym and Kadanoff [56] states that the continuity
equation and the momentum, angular momentum and energy conservation
laws are embodied in the Φ functional;

Theorem 11. If (and only if) a self-energy is Φ-derivable, that is, comes ac-
cording to (12.70) from some approximate Φ, the approximation is conserving.
In other terms, even for approximate Σ Equation (12.70) is equivalent to the
conservation laws.

The GW approximation is also Φ-derivable and hence conserving.

Φ = 1
2×

Σ =

+1
4×

+

+ 1
4 × + · · ·

+ + · · ·
Fig. 12.8. Diagrams for Φ and the corresponding Σ. The first-order example refers
to the Hartree-Fock approximation.

12.4.3 Gauge Transformation

We prove Theorem 11 for the continuity equation (the other proofs are some-
what longer but similar). Under a gauge transformation Ψ(x) → Ψ(x)eiΛ(x)

or
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g(1, 2)→ eiΛ(1)g(1, 2)e−iΛ(2), (12.71)

Φ is invariant, since for any line entering a vertex there is another one leaving
it. In an infinitesimal gauge transformation δΛ, g changes by the amount
δg = [δΛ(1) − δΛ(2)]g(1, 2). Then to first order Φ as a functional of g will
change by the amount

0 = δΦ =
∫
d1d2

δΦ

δg(1, 2)
δg(1, 2) =

∫
d1d2Σ(2, 1)δg(1, 2)

= i

∫
d1d2Σ(2, 1)[δΛ(1)− δΛ(2)]g(1, 2). (12.72)

Exchanging the dummy variables in the second term, Eq.(12.72) yields

0 =
∫
d1d2 [Σ(2, 1)g(1, 2)− g(2, 1)Σ(1, 2)]δΛ(1) (12.73)

The coefficient of δΛ(1) must vanish identically. that is∫
d2 {Σ(1, 2)g(2, 1)− g(1, 2)Σ(2, 1)} = 0. (12.74)

and we are back to Equation (12.64): the approximation is conserving.

12.4.4 Ground-State Energy and Grand Potential

1 2

g(0)

δ
∗
Σ

(n)

Fig. 12.9. Building a contribution δΩ(n) to the grand potential (occurring 2n times)

from a diagram δ
∗
Σ for the self-energy. This looks very much like Fig. 12.7, but

please observe the differences: propagators are bare, and the self-energy improper.

The grand potential is the sum of ring diagrams. One may work out the
grand-potential and the ground-state energy in parallel; just, in the former
case one uses 1

β

∑
l, while in the latter case

∫∞
−∞ dω. We use a short-hand no-

tation valid for both cases 3. Let δΩ(n) denote any such diagram of order n;
it may be thought of as the result of closing a self-energy diagram (improper,
in general) with a bare propagator. Mutatis mutandis, this is similar to the

3Note however that some expressions are ambiguous if taken literally at T=0
and then one should take the T → 0 limit at the end (see below).



12.4 Conserving Approximations 277

procedure for building Φ from the skeleton diagrams for the self-energy, since
there are 2n bare lines in δΩ(n). J.M.Luttinger and J.C. Ward [55], derived
the diagram rules for the grand-potential in the frequency-momentum repre-
sentation for Jellium. They wrote the contribution of order n, summed over
one-body states r, such that g(0) is diagonal,

Ωn =
1
2n

∑
r

∫
dωg(0)

r (ω)
∗
Σ

(n)

r ≡
1
2n
Trg(0)

∗
Σ; (12.75)

here
∫
dω stand for KBT times the summation over Matsubara frequencies

in the finite T case, and the Tr operation implies summing over indices and
integrating over frequency. To compute

∑
nΩn one can use the fact that

a(λ) =
∑

n

anλ
n ⇒

∑
n

an

n
λn =

∫ λ

0

a(α)dα
α

. (12.76)

Thus,writing Σr(ω, α) for Σ at coupling constant α,

Ω = Ω0 +
1
2

∑
r

∫
dω

∫ λ

0

dα

α
g(0)

r (ω)
∗
Σr (ω, α), (12.77)

where Ω0 is the non-interacting limit. Recalling (2.23) one finds

Ω0 = − 1
β

∑
r

ln(1 + e−β(εr−μ)). (12.78)

Using the solution to Problem 11.2 and the Dyson equation we end up with

Ω = Ω0 +
1
2

∑
r

∫
dω

∫ λ

0

dα

α
gr(ω)Σr(ω, α), (12.79)

which is a new expression for the ground-state energy in terms of the Green’s
function, involving a coupling-constant integration. This implies

λ
dΩ

dλ
=

1
2
Trg(ω, λ)Σ(ω, λ). (12.80)

12.4.5 Luttinger-Ward and ABL Variational Principles

From Equation (12.70) we know that Σ = δΦ
δg ; hence Luttinger and Ward

obtained a new functional Ω with the interesting property of being stationary
with respect to the correct g, that is,

δΩ

δg
= 0, (12.81)

provided that g obeys the Dyson equation g = (g−1
0 − Σ)−1. Indeed, using

the same Tr notation as above for the sums of ring diagrams
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δ

δg
T r
[
ln(Σ − g−1

0 ) + gΣ
]

=
1

Σ − g−1
0

δΣ

δg
+Σ + g

δΣ

δg
= Σ, (12.82)

and so one finds that (12.81) holds for the functional

Ω = Tr{ln(Σ − g−1
0 ) +Σg} − Φ. (12.83)

Luttinger and Ward [55] further proved that, as the notation suggests,Ω veri-
fies (12.80) and coincides withΩ0 for λ = 0; so, it is indeed the grand potential
(at finite temperatures) or the ground-state energy (at T=0). These results
have been generalized in the nineties; the Lund Group (C. -O.Almbladh and
U. von Barth) [136][137] have constructed a functional Ω̄ which depends on g
and on the screened interaction W and is variational in both variables; they
tested numerically the performance of Ω̄ by using simple approximations for
g and W and found that the results where competitive. The derivation in
Ref.[137] also points out the connection with Kohn-Sham theory (see below).

12.5 Generalized Ward Identities

Still, we have to exploit the continuity equation

∂ρ

∂t
+ divJ = 0 (12.84)

as a source of exact relations betwen the Green’s functions. Here, in obvious
notation, ρ(x) = ψ†(x)ψ(x), Ji(x) = −ih̄

2m

[
( ∂

∂xi
− ∂

∂x′
i
)ψ†(x′)ψ(x)

]
x′=x

. Let
A1, A2 denote Heisenberg operators such as fermion creation or annihilation
operators and ρ an operator such as a density which commutes with A1, A2

under Wick’s T ordering. We know (see Problem 2.3) that

d

dt
T {A1(t1)A2(t2)ρ(t)} = T {A1(t1)A2(t2)ρ̇(t)}

+ δ(t− t1)T {[ρ(t), A1(t1)]−A2(t2)}
+ δ(t− t2)T {A1(t1)[ρ(t), A2(t2)]−}. (12.85)

Following [140] (see also [1]) we set A1(t1) = ψ(x1), A2(t2) = ψ†(x2), take
a (ground-state or thermal ) average, use the continuity equation to replace
ρ̇ and obtain

∂t〈T {ψ(x1)ψ†(x2)ψ†(x)ψ(x)}〉 = T {ψ(x1)ψ†(x2)∇J(x)}〉
+δ(t− t1)〈T {[ρ(x), ψ(x1)]−ψ†(x2)}〉
+δ(t− t2)〈T {ψ(x1)[ρ(x), ψ†(x2)]−}〉. (12.86)

Since [ρ(x), ψ(x1)]− = −δ(x−x1)ψ(x) and [ρ(x), ψ†(x2)]− = δ(x−x1)ψ†(x),
one obtains the Ward identity [141]



12.6 Connection of Diagrams to D F T 279

∂tG2(x, x1, x2, x) +
h̄

2mi
∇(∇−∇′)G2(x, x1, x2, x

′) =

= iδ(4)(x − x1)g(x, x2)− iδ(4)(x− x2)g(x, x1) (12.87)

where δ(4)(x) = δ(3)(r)δ(t) is the 4-dimensional δ and the limit x′ → x is un-
derstood. The continuity equation is an expression of charge conservation and
is associated by Noether’s theorem to the gauge invariance. Ward identities
generally arise from invariance Groups of the theory.

12.6 Connection of Diagrams to D F T

12.6.1 Highlights on Density Functional Theory

As W. Kohn emphasized in his Nobel lecture, the many-body problem is
rather ill posed in terms of the many-body wave function ψ0(x1, x2, · · ·), with
xi ≡ {ri, σi}, and it of paramount practical and conceptual importance that
it can be formulated in terms of the density,

n(r) = 〈ψ0|n̂|ψ0〉 = N
∑

σ

∫
dx2 · · ·

∫
dxN |ψ(r, σ, x2, · · · , xN |2. (12.88)

Indeed, ψ0 requires an immense amount of information for large N and a
very small change in it gives an orthogonal state, while n(r) is observable. I
summarize the topic, starting with the Hohenberg-Kohn theorem [121] .

Theorem 12. For an N-electron liquid in an external potential Vext(x), the
ground state energy E0 is an universal functional of the density n(r).

This means that n determines E0 and also the wave function ψ0: symbolically,

n⇒ E0, ψ0.

Proof. Suppose we know the ground state wave function ψ0(x1, x2, · · ·) and
energy E0 of an interacting electron liquid in an external potential Vext

(Equations 1.60,1.61,1.62) with Hamiltonian H = T + U + Vext. Since
Hψ0 = (T + U + Vext)ψ0 = E0ψ0, we can infer Vext (apart from an
additive constant). Thus, for a different potential energy V ′

ext, one gets
H ′ψ′

0 = (T + U + V ′
ext)ψ′

0 = E′
0ψ

′
0 with ψ′

0 
= ψ0. Assuming ψ′
0 = ψ0 one

should find (Vext−V ′
ext)ψ0 = (E0−E′

0)ψ0 and Vext and V ′
ext should differ by

a constant. If Vext is such that the ground state is degenerate, several wave
functions belong to E0, but this conclusion is not affected.Thus, ψ′

0 is a wave
packet of eigenstates of H involving excited states.

Having shown that ψ0 determines Vext, that is, ψ0 ⇒ Vext; we next show
that we can do with much less information, since n ⇒ Vext, too. Assume
the converse is true: then ∃ V ′

ext 
= Vext such that n is the same; the change
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Vext → V ′
ext produces a new hamiltonian H ′, with a different ground state

wave function ψ′
0 and eigenvalue E′

0; by the variational principle

E0 = 〈ψ0|H |ψ0〉 < 〈ψ′
0|H |ψ′

0〉 = 〈ψ′
0|H ′ + Vext − V ′

ext|ψ′
0〉. (12.89)

Thus,

E0 < E′
0 +
∫
d3x[Vext(x)− V ′

ext(x)]n(x). (12.90)

But this is absurd! If one starts by considering H ′ one finds

E′
0 < E0 +

∫
d3x[V ′

ext(x)− Vext(x)]n(x), (12.91)

and summing the two one finds the contradictory result E0 +E′
0 < E0 +E′

0.
Note that in the case of degeneracy the ground state density is not unique,
but this does not change the conclusion that the same n cannot be compatible
with two potentials. Thus, n⇒ Vext, or (in the DFT parlance) Vext(r) in an
unique functional of n(r). So, n ⇒ Vext ⇒ H and since in principle one can
solve the Schrödinger equation, we may conclude that n⇒ ψ0, E0.

The functional E0[n] is unknown: it would be the solution of all kinds of
ground state problems in a formula. We can think physically, and separate
out some obvious contributions. We set

E0[n] =
∫
dxVext(x)n(x) + VH [n] + Ẽ[n] (12.92)

where

VH [n] =
1
2

∫
dxdx′

n(x)n(x′)
|x− x′| (12.93)

is the Hartree term; this shifts the problem to a new unknown universal
functional Ẽ. The electrostatic potential is

φ(x) = Vext(x) +
∫
dx′

n(x′)
|x− x′| =

δ

δn
[E0[n]− Ẽ[n]]. (12.94)

Since δE0
δn = μ we are left with

φ(x) +
δẼ

δn
= μ. (12.95)

One can try a simple approximation by extrapolating the high-density Jellium
result (12.28,12.29) (see also Problem 23). This is not accurate outside the
Jellium case. Gradient corrections involving ∇n have been considered but do
not take far: the approach remains semi-classical, closely related to the (1927)
Thomas-Fermi scheme.
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Kohn and Sham [122] invented the fully quantum mechanical version,
just in time to take advantage of the computer revolution. To find a quan-
tum kinetic energy functional T [n], first of all one must realize that it ex-
ists. As noted above n ⇒ Vext ⇒ H. Now, H determines ψ0, E0 and also
T = 〈ψ0|T̂ |ψ0〉. We cannot carry on this program because we cannot solve
the Schrödinger equation for the interacting system. However for a non-
interacting system S of electrons moving in some external potential VS we
can. Let TS[n] be the kinetic energy of a fictitious N-electron system S having
the same density as the real one; Kohn and Sham wrote

E0[n] = TS[n] +
∫
dxVext(x)n(x) + VH [n] +Exc[n], (12.96)

where Exc[n] is a new unknown exchange-correlation functional. Indeed, we
can apply to S the above argument showing that the density yields the ex-
ternal potential: n ⇒ VS . Therefore, the required potential ensuring that S
has the exact density must exist; having separated out the kinetic energy of
S (that will differ from the exact kinetic energy of the interacting system)
we can write (12.96) and pretend we know all but Exc[n] potential that must
be approximated in some way, usually drawing from the Jellium theory at
the density n(x) prevailing at a given point. This is the Local Density Ap-
proximation. Among the popular approximations, I mention the interpolation
formula

Exc[n] = − 3
10

(
3
π

) 1
3
∫
n

4
3 d3r − 0.056

∫
n

4
3

0.079 + n
1
3
d3r (12.97)

and the extensions including gradient corrections

Exc[n] =
∫
d3r
{
εxc(n)n(r) + ε(2)xc (n)|∇n(r)|2 + · · ·

}
. (12.98)

Exc[n] produces the exchange-correlation potential

Vxc =
δExc

δn
. (12.99)

This contributes to the chemical potential, along with the electrostatic po-
tential φ, since

δE0

δn
= μ =

δTS

δn
+ φ+ Vxc. (12.100)

Thus in the fictitious system the electrons do not interact but feel a potential

VS = φ(x) +
δExc

δn
, (12.101)

which does not coincide with the screened potential but includes Vxc. One
must solve self-consistently the set of N equations, the Kohn-Sham equations
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(−1
2
∇2 + VS)ψi(x) = εiψi(x), (12.102)

and compute TS and the density

n(x) =
N∑

i=1

|ψi(x)|2 (12.103)

from the determinant of the orbitals ψi(x). The exchange-correlation po-
tential can be improved over the jellium estimate (12.29) by including the
generalized gradient corrections[138] and the accuracy of the results strongly
depends on the system. In metals, typical error may be 0.3 eV per atom
but for finite systems they are usually much worse. Bond lengths are usually
reproduced to better than 10−9 cm.

Further Developments

The density functional perturbation theory is a technique that allows to cal-
culate e.g. phonon dispersion in solids[149]. I quote the following useful result
by Janak[146] without reporting the proof.

Theorem 13. In density functional theory,

∂E

∂ni
= εi, (12.104)

that is, the derivative of the total energy with respect to the occupation number
of a Kohn-Sham orbital is equal to the eigenvalue of that orbital.

Vignale and Rasolt [119]formulated the current-density-functional theory,
an extension which is needed to include magnetic fields; the current couples
to the vector potential A and a term in A2 appears. A few pioneers [129],[130]
tried time-dependent versions of Kohn-Sham equations in atomic problems;
the results were rather encouraging, but a justification was lacking untill
Runge and Gross[131] found a suitable formalism. This was based on the

variational principle δA = 0, where A =
∫ t2

t1
〈ψ(t)|i ∂

∂t − H(t)|ψ(t)〉, but for
the rest the theory parallels the static one. For further details see[54].

This is the basis of Density Functional method on which most ab-initio
calculations are performed, [125] and is of paramount importance as a practi-
cal calculational scheme when the correlation effects are not too severe. Very
good comprehensive reviews on this subject are available [125], [54]; however
I wish to discuss less well known consequences.

12.6.2 Sham - Schlüter Equation

There is no diagrammatic expansion for either Exc or vxc, however L.J. Sham
and M. Schlüter [123] devised a scheme that in principle allows to deduce vxc
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from the self-energy. The exchange-correlation self-energyΣxc,which is all the
self-energy minus the Hartree term, enters the Dyson equation for the Green’s
function g in terms of the Hartree approximation gH (which also accounts for
the external potential); in a shorthand self-evident matrix notation reads:

g = gH + gHΣxcg ⇒ g−1 = g−1
H −Σxc. (12.105)

In the fictitious non-interacting system the electrons see an effective potential

veff = Vext + VH + vxc. (12.106)

Thus the Green’s function gKS of the fictitious Kohn-Sham system obeys

gKS = gH + gHVxcgKS ⇒ g−1
KS = g−1

H − Vxc. (12.107)

rather than Equation (12.105). Hence,

g−1 − g−1
KS = −(Σxc − Vxc)⇒ g = gKS + gKS(Σxc − Vxc)g. (12.108)

Now, we observe that gKS 
= g, but both yield the same density; thus, intro-
ducing as usual the positive infinitesimal δ,

g(r, t, r′ = r, t+ δ) = gKS(r, t, r′ = r, t+ δ) = n(r). (12.109)

Hence,
[gKS(Σxc − Vxc)g]r′=r,t′=t+δ = 0; (12.110)

more explicitly, letting x ≡ (r, t), x+ ≡ (r, t+ δ), this means∫
dx′dx′′gKS(x, x′) {Σxc(x′, x′′)− δ(x′ − x′′)Vxc(x′′)} g(x′′, x+) = 0.

(12.111)
If an approximation to Σxc is given, the corresponding g can be obtained
from the Dyson equation and this may be considered as an equation for
Vxc(x′′). This Sham - M. Schlüter equation is awkward and highly non-linear
(the unknown is also contained in gKS) however it is considered [126] as an
important source of information on Vxc. Like the density-functional approach,
the Sham - M. Schlüter equation also holds generally for time-dependent
problems.

Problems

12.1. If as an approximate E[n] one keeps only t[n] (see Equation 12.28),
what kind of approximation is obtained?

12.2. Evaluate the diagram of Figure 11.2.2 with all si = a.
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13.1 Time-Dependent Probes and Nonlinear Response

Phenomena like electron transport, electronic transitions in chemisorption,
desorption1, molecule-surface collision processes, and sputtering 2 are natu-
rally described by time-dependent electronic Hamiltonians. What happens in
the Fano-Anderson model (Chapter 5.1.2) if the ε and V parameters depend
on time? Such a time-dependence occurs because the Hamiltonian of elec-
trons depends on the position of the nuclei, and, through this, from the time
3. Such problems are completely outside the scope of the diagram method dis-
cussed so far; the equation of motion method (EOM) can work but depends
on some approximate truncation procedure. This Chapter is devoted to the
quantum theory of such non-equilibrium processes. A powerful generalized
perturbation method enables us to deal with time dependent problems and
processes that are far from equilibrium, generalizing the Kubo approach [29]
to all orders. It is a general and in principle exact technique; the Feynman
method is recovered as a particular case. There is no need to assume that
the perturbation is small or that the system deviates little from equilibrium;
one does not need to make any assumption that the system evolves in a
reversible way. As one could expect, the study of the excited states and out-
of-equilibrium situations involves special difficulties, however this generalized
theoretical framework is also powerful for exploring the equilibrium nonlinear
response to strong perturbations, that can be treated to all orders.

1See Chapters 6.2, 10.2.1.
2This is an important process in industry, and generates a clean surface under

vacuum. The surface is bombarded with ions with energies in the KeV range, and
can typically disintegrate with the speed of some atomic layers per second.

3In a truly complete theory, the Hamiltonian would be time-independent and
there would be no external fields, but then one should simultaneously deal with
all the degrees of freedom, including light sources, electron beams and all that.
Already in the static case this turns out to be difficult and one tries to apply, when
possible, the Born-Oppenheimer approximation. The obvious generalization of such
approximation to the dynamic case consists in treating the nuclei like classical
particles, with a well defined trajectory: the electrons then are subject to a time-
dependent potential.
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To this end we will develop a formalism introduced many years ago by
L.P.Kadanoff and G.Baym[82], above all in the version elaborated little later
by L.V.Keldysh[84]. A somewhat generalized formulation in which the initial
state is completely arbitrary was provided by Wagner [101]. In the literature,
the application of this method is not yet very frequent, although it is gaining
ground in recent years e.g. in the field of transport theory; it is still used
much less than its potential and importance would deserve; this is due to a
the relative shortage of examples which constitutes an obstacle to its spread,
and surely to its undeniable complexity. The technique generalizes the dia-
grammatic development of the Green functions to time-dependent problems
and systems that are far from the thermodynamic equilibrium. Several kinds
of Green functions are indeed needed, each with its place in the theory. Since
there are several ways to choose which functions to define and since all possi-
ble choices have been made in the literature, the reader of the original articles
finds a true zoo of such functions. I ’ll introduce all the most common species,
but having care to specify their relations; I’ll try to avoid the notation incon-
sistencies that frequently transform those exotic beasts into monsters.

13.2 Kadanoff-Baym and Keldysh Methods

Kadanoff and Baym[56] and Keldysh[84] devised different versions of the
generalized diagram method; ultimately they are equivalent but the Kadanoff-
Baym formalism is more popular in Statistical Mechanics while the Keldysh
has been mostly used for dynamics. Here I’ll follow the Keldysh scheme.

As in Equation (2.1) we split the Hamiltonian in two parts, H(t) = H0 +
V̂ (t), with a free part H0, and a perturbation V̂ (t) which is not necessarily
small nor even time-dependent. In Section 2.3 we found how to expand the
Interaction Picture evolution operator U †

I in powers of V̂I ,

UI(t, t0) = T exp
[
−i
∫ t

t0

dt′VI(t′)
]
, U †

I (t, t0) = UI(t0, t). (13.1)

The operators in the Green’s functions are in the Heisenberg picture; however
for any operator A we can switch representation by starting the evolution
from a golden age t0 when Heisenberg and Schrödinger pictures are the same,
according to

AH(t) = U †
I (t, t0)AI(t)UI(t, t0). (13.2)

There are four U †
I factors to expand in series in

g<(t, t′) = 〈Ψ0(t0)|Ψ †
H(t′)ΨH(t)|Ψ0(t0)〉 =

〈Ψ0|U †
I (t′, t0)Ψ

†
I (t′)UI(t′, t0)U

†
I (t, t0)ΨI(t)UI(t′, t0)|Ψ0〉, (13.3)

although we can reduce them to 3 since UI(t′, t0)U
†
I (t, t0) = UI(t′, t0)UI(t0, t)

and this is UI(t′, t) by the group property. It would still be cumbersome to
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expand the three UI factors, but we can do with just one expansion, since for
each operator A

AH(t) = U †
I (t, t0)AI(t)UI(t, t0) =

= (Te−i
∫ t0

t
dt′VI(t′))AI(t)(Te

−i
∫

t

t0
dt′VI (t′)

) =

= TC

[
exp
(
−i
∫ t

t0

dt′VI(t′)
)
AI(t)

]
(13.4)

where C is any oriented path in complex time through t0 and t , using the
generalized time-ordering TC along C that we met ins Section (2.2.1). Note
that AI(t) is under the action of TC that places it appropriately. In a similar

t0 t Re(t)

Im(t)

Fig. 13.1. A contour on the complex t plane for inserting A(t) is a single
interaction-picture evolution.

way, we can read from left to right g<(t, t′) = 〈Ψ0(t0)|Ψ †
H(t′)ΨH(t)|Ψ0(t0)〉 as

one story: the system starts at the golden age t0 → −∞, evolves to t, is acted
on by Ψ , then evolves to receive the action of Ψ † at time t’ and eventually
it evolves back to the golden age. Physically, t′ can be before or after t. In
this story, we meet Ψ † after Ψ because g< is defined with Ψ † on the left of
Ψ . Thus along the path C = C1UC2, t precedes t′, I write t <C t′, and

t0 t t’
Re(t)

Im(t)

Fig. 13.2. The contour C for g< on the t plane with t <C t′. Note that C can be
analyzed as a two-step path C = C1

⋃
C2 , C1 starts from t0 and returns there after

visiting t, and C2 starts from t0 and returns there after visiting t’. The first return
and restart from t0 can be avoided thanks to the group property.
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g<(t, t′) = 〈
{
TC1e

−i
∫

C1
dτVI(τ)

Ψ †
I (t′)
}{

TC2e
−i
∫

C2
dτ ′VI(τ ′)

Ψ †
I (t)
}
〉

= 〈TCe
−i
∫

C
dτVI(τ)

Ψ †
I (t′)Ψ †

I (t)〉

= −〈TCe
−i
∫

C
dτVI(τ)

Ψ †
I (t)Ψ †

I (t′)〉, t <C t′. (13.5)

Because of the group property, the contour C is largely arbitrary. It can go
back to t0 between t and t’ any number of times, including 0. The terms
arising in the series development of the operators are ordered automatically
by TC with earlier times (on C) to the right. Moreover,

g>(t, t′) = 〈TC exp{−i
∫

C

dτVI(τ)} ΨI(t)Ψ
†
I (t′)〉

= −〈TC exp{−i
∫

C

dτVI(τ)} Ψ †
I (t′)ΨI(t)〉, t >C t′ (13.6)

We can also use the same C in both cases, placing t and t’ in opposite orders.
As we know, the knowledge of both g> an g< gives access to the physically
important retarded and advanced Green’s functions. We also need to define
a time-ordered (on C) Green’s function:

ig(t, t′) = 〈TCΨH(t)Ψ †
H(t′)〉 = g>(t, t′)θC(t− t′)− g<(t, t′)θC(t′ − t), (13.7)

where the contour C goes through t and t’ and θC(t − t′) = 1 if C is such
that t’ is met first and 0 otherwise.

13.3 Complex-Time Integrals by Langreth’s Technique

Let A and B denote contour-time-ordered Green’s functions analyzed in >
and < parts as in Equations ( 13.5, 13.6)

A(t, t′) = −ia>(t, t′)θC(t− t′) + ia<(t, t′)θC(t′ − t)
B(t, t′) = −ib>(t, t′)θC(t− t′) + ib<(t, t′)θC(t′ − t); (13.8)

following Langreth we must develop their combinations in series and in par-
allel which are needed to calculate diagrams in this theory. The combination
in series D = AB is defined by

D(t, t′) = AB(t, t′) =
∫

C

dτA(t, τ)B(τ, t′)

= −id>(t, t′)θC(t− t′) + id<(t, t′)θC(t′ − t). (13.9)

and must be rewritten as a combination of ordinary real-axis integrals. To
calculate d<(t, t′) we want t to be earlier on the contour, so we adopt C =
C1

⋃
C2 like in Figure (13.2). C1 starts from t0 and returns there after visiting
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t, C1 starts from t0 and returns there after visiting t’. Along C1, τ <C t′ ⇒
B = ib<, while along C2, τ >C t⇒ A = ia<, hence

d<(t, t′) = −iD = d<[C1] + d<[C2] (13.10)

d<[C1] = −i
∫

C1

dτA(t, τ)ib<(τ, t′)

d<[C2] = −i
∫

C2

dτia<(t, τ)B(τ, t′). (13.11)

On C1, A = −ia> on the t0 < τ < t branch, A = ia< on the back trip, so

d<[C1] =
∫ t

t0

dτ(−i)a>(t, τ)b<(τ, t′) +
∫ t0

t

dτia<(t, τ)b<(τ, t′) =∫ t

t0

dτ(−i)
[
a>(t, τ)− a<(t, τ)

]
b<(τ, t′).(13.12)

Now we let t0 → −∞, and formally extend the integration to the full real
axis introducing a theta function. The result is

d<[C1] =
∫ ∞

−∞
dτ
{
(−i)

[
a>(t, τ) − a<(t, τ)

]
θ(t− τ)

}
b<(τ, t′)

=
∫ ∞

−∞
dτar(t, τ)b<(τ, t′) = arb

< (13.13)

using Langreth’s convenient shorthand notation (product of small letters for
real axis integrals). One finds d<[C2] and d> in a similar way and gets

d< = arb
< + a<ba; d> = arb

> + a>ba. (13.14)

From d<, d> one finds dr, da:

dr = −iθ(t− t′)[d< + d>] = −iθ(t− t′)[arb
< + a<ba + arb

> + a>ba], (13.15)

that is, more explicitly,

dr(t, t′) = −iθ(t− t′)
∫ ∞

−∞
dτ
{
ar(t, τ)

[
b>(τ, t′) + b<(τ, t′)

]
+[

a>(τ, t′) + a<(τ, t′)
]
ba(τ, t′)

}
. (13.16)

Since g< + g> = i(gr − ga), we can simplify this to read

dr(t, t′) = θ(t− t′)
∫ ∞

−∞
dτ {ar(t, τ)br(τ, t′)− aa(t, τ)ba(τ, t′)} . (13.17)

However, the second integrand vanishes unless t′ > τ > t but then the θ in
front of the integral vanishes; therefore, we conclude that
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dr = arbr, da = aaba. (13.18)

The series combination E = ABC is immediately obtained:

e> = (AB)rc
> + (AB)>ca = arbrc

> + (arb
> + a>ba)ca, (13.19)

e< = (AB)rc
< + (AB)<ca = arbrc

< + (arb
< + a<ba)ca, (13.20)

and so on. Langreth also introduced the parallel combination

F (t, t′) = A(t, t′)B(t′, t), (13.21)

where no integration is understood. Recalling (13.8) and splitting F in the
same way, one finds

−if>(t, t′) = a>(t, t′)b<(t′, t)
if<(t, t′) = a<(t, t′)b>(t′, t) (13.22)

where again no integration is understood. Hence,

fr(t, t′) = −iθ(t− t′)(f> + f<) = θ(t− t′)[a>b< − a<b>]. (13.23)

Other forms are useful. Substituting a>θ(t − t′) by (iar − a>)θ(t − t′), and
using b> + b< = ibr, we obtain

fr(t, t′) = iθ(t− t′)[arb
< − a<br]; (13.24)

alternatively one can eliminate b<θ(t − t′) in favor of (ibr − b>)θ(t − t′) to
write

fr(t, t′) = iθ(t− t′)[a>br − arb
>]; (13.25)

the advanced part is dealt with in the same way.

13.3.1 Finite temperatures

For the finite temperature extension of this technique we must insert at the
end of the contour C the vertical track in Figure 2.2.2 a). Then one can
introduce k�(τ, t), k�(t, τ) and the Matsubara function kM (τ, τ ′) where t is
on the real time axis and along C comes before τ, τ ′ which are imaginary, on
the vertical track. Moreover let us detote the integrals on the vertical track

f $ g =
∫ −iβ

0

dzf(z)g(z). (13.26)

Equations (13.14) become

d< = arb
< + a<ba + a� $ b�, d> = arb

> + a>ba + a� $ b�; (13.27)

(13.18) remains as it is. The new functions obey (see [101], [120]):⎧⎨
⎩

dM = aM $ bM

d� = arb
� + a� $ bM

d� = aM $ b� + a�ba.
(13.28)
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13.4 Keldysh-Dyson Equation on the Contour

The Feynman method of Chapter 11 is generalized by expanding

ig(t, t′) = 〈TC

[
ΨH(t)Ψ †

H(t′)
]
〉 = 〈TC

[
e
−i
∫

C
dτVI(τ)

ΨI(t)Ψ
†
I (t′)
]
〉 (13.29)

where the evolution in the interaction picture is on C and4

e
−i
∫

C
dτVI(τ) =

∞∑
n=0

(−i)n

n!

∫
C

dτ1 · · ·
∫

C

dτnV (τ1) · · ·V (τn). (13.30)

The diagrams are the same as in the Feynman scheme, but the time integrals
must be done on C, e.g. by the Langreth technique.

Example: Independent Particles

In independent-particle problems, V is a one-body operator. Let’s write

V (t) = v(t)ψ†ψ, (13.31)

where a matrix multiplication on spin-orbital indices such as in

V (t) =
∑
kk′

v(t)kk′ψ†
kψk′

is understood. In first-order,

δg = (−i)2
∫

C

dτv(τ)〈TC

[
ψ†(τ)ψ(τ)ψ(t)ψ†(t′)

]
〉. (13.32)

Using Wick’s theorem (Section 11.1.1) we may write

〈TC [ψ†(τ)ψ(τ)ψ(t)ψ†(t′)]〉 = 〈TCψ
†(τ)ψ(τ)〉〈TCψ(t)ψ†(t′)〉+

〈TCψ(t)ψ†(τ)〉〈TCψ(τ)ψ†(t′)〉 (13.33)

with the equal-times rule (11.69)

〈TCψ
†(τ)ψ(τ)〉 = 〈ψ†(τ+)ψ(τ−)〉 (13.34)

where τ+ is just after τ and τ− just before. Each contraction 〈TCψ
†(t)ψ(t′)〉 =

ig0(t, t′) brings an unperturbed Green’s function; each product of contractions
brings a factor (−)P which is the signature of the permutation of operators
implied in doing the contraction. So, 13.32 becomes:

δg = (−i)2
∫

C

dτv(τ)
{
−ig0(τ, τ)ig0(t, t′) + ig0(t, τ)ig0(τ, t′)

}
(13.35)
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t t’τ t t’τ
+

Fig. 13.3. First-order contribution of a one-body perturbation

The first contribution in Figure 13.3 is disconnected. It contains a factor∫
C
dτξ(τ), where ξ is independent of t and t′. The contour C may be taken

on the real axis from −∞ to ∞ and then back to −∞; the integral vanishes
independently of the positions of t and t′ on the contour. This result extends
to all orders, the Linked Cluster Theorem of Section 11.9.1 again applies,
and the unlinked diagrams yield nothing. So, one obtains the same rules as
in Section 11.9.1 with the only difference that the time integrals are on C.
Thus, one obtains the Dyson equation,

g = g0 + g0Σg (13.36)

again with the time integrals on C.

Solving the Dyson equation

If Σ is known, one can develop the Dyson equation where g0Σg is a series
combination. Indeed, the self-energy, like g, depends on two times, and we
write:

iΣ(t, t′) = σ>(t, t′)θC(t− t′)− σ<(t, t′)θC(t′ − t). (13.37)

Naturally, for t 
= t′ one also defines

iσr(t, t′) = [σ>(t, t′) + σ<(t, t′)] θ(t− t′),
−iσa(t, t′) = [σ>(t, t′) + σ<(t, t′)] θ(t′ − t). (13.38)

So, from (13.36) one obtains:

gr = g0
r + g0

rσrgr (13.39)

ga = g0
a + g0

aσaga (13.40)

g> = g0> + g0
rσrg

> + g0
rσ

>ga + g0>σaga (13.41)

4from now on, all operators are understood to be in the Interaction Picture, and
I drop the index I. Moreover I’ll often understand h̄ to simplify the writing of the
equations.
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g< = g0< + g0
rσrg

< + g0
rσ

<ga + g0<σaga. (13.42)

However all the information is contained in g> and g<; we need just
two equations. The equations for g(r) and g(a) are equivalent and provide
[σ>(t, t′) + σ<(t, t′)], so all we need is

f = g> − g< (13.43)

and to this effect we define

Ω = σ> − σ<. (13.44)

The difference of the equations for g> and g< gives

f = f0 + g0
rσrf + g0

rΩga + f0σaga. (13.45)

We can also give a closed solution in terms of the self-energy. This equation
is a matrix equation in the indices t,t’ with the formal solution

f =
[
1− g0

rσr

]−1 (
f0 [1 + σaga] + g0

rΩga.
)
. (13.46)

The matrix inversion is readily carried out:[
1− g0

rσr

]−1
= 1+g0

rσr+g0
rσrg

0
rσr+· · · = 1+

[
g0

r + g0
rσrg

0
r + · · ·

]
σr = 1+grσr;

moreover, [
1− g0

rσr

]−1
g0

r = g0
r + g0

rσrg
0
r + · · · = gr.

So,
f = [1 + grσr] f0 [1 + σaga] + grΩga. (13.47)

In summary, once Σ is known, a clear cut procedure yields g. One can use σa

and σr to solve for ga and gr like in one-electron problems. The results and
Ω are then used in Equation 13.47 for f , where the dependence on the Fermi
level enters. Eventually, from ga, gr and f one also obtains g< and g>.

Dynamical Independent-Particle Problems

The special case of independent electrons can be solved exactly but is far
from trivial due to many-body effects; this case also lends itself to include
interactions approximately in a dynamical-Hartree-Fock or time-dependent
density-functional scheme. In this case all the self-energy comes from the
connected first-order diagram on the right of Figure 13.3, that is,

δg =
∫

C

dτg0(t, τ) v(τ) g0(τ, t′); (13.48)

this must be interpreted as
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δg =
∫

C

dτ

∫
C

dτ ′g0(t, τ) Σ(τ, τ ′) g0(τ, t′) (13.49)

which implies that
Σ(τ, τ ′) = v(τ)δC (τ − τ ′) (13.50)

that is, the time-dependent self-energy is instantaneous and the propagator
line comes out of it at the very same point along the contour where it entered
the interaction. This implies that σ<, σ> and Ω vanish, so σr = σa = 0,
but at equal times equations (13.38) do not hold, so we may have σr and σa

proportional to δ(t− t′). From δg = g0vg0 one gets{
δgr = g0

rvg
0
r

δg< = g0
rvg

0< + g0<vg0
a

(13.51)

where g0
rvg

0
r =
∫
dτg0

r(t, τ)v(τ)g0
r (τ, t′), while the Dyson equation is

δgr = g0
rσrg

0
r

δg< = g0
rσrg

0< + g0
rσ

<g0
a + g0<vg0

a.
(13.52)

This means that the self-energy is given by

Ω = 0; σr(t, t′) = σa(t, t′) = δ(t− t′)v(t). (13.53)

13.5 Evolution on Keldysh Contour

The contour C can be deformed freely as long as it starts and ends at the
golden age t0 and goes through t and t’. We have used one with two wings
ad hoc for series combinations. We could keep introducing new contours to
calculate the various combinations arising in the diagrams; however it is more
practical to have a standard contour and consider the various position of the
times on it. In time-dependent problems, one usually prefers the Keldysh con-
tour of Figure (15.3.2) from t0 to −t0 and back to t0; there are an ascending
or positive branch and a descending or negative branch, and g(t, t′) can have
each of its arguments on any of the two. Thus, there are 4 different Green’s
functions defined on the real axis, that as above I shall denote with small
letters. Taking both times on the positive branch, one gets

gc(t, t′) = −i〈TCψH(t+)ψ†
H(t′+)〉. (13.54)

Note that gc(t, t′) = −i〈TψH(t)ψ†
H(t′)〉 is nothing but the time-ordered

Green’s function of the usual theory

igc(t, t′) = g>(t, t′)θ(t− t′)− g<(t, t′)θ(t′ − t). (13.55)

The traditional diagram expansion, that holds for constant V , is a special case
of the general one. The time sequence of Figure 13.5 in the interaction pic-
ture yields (−)(−i)〈U(−∞,∞)U(∞, t′)ψ†

I(t
′)U(t′, t)ψI(t)U(t,−∞)〉 where a
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(-) factor arises from the interchange of ψ and ψ†. Including the other order-
ing of t and t’, one obtains −i〈U(−∞,∞)T

[
ψI(t)ψ

†
I(t

′)U(∞,−∞)
]
〉 with

the descending or backwards evolution operator U(−∞,∞) relegated on the
far left. The expectation value is taken at the golden age t0 over the non-
interacting ground state Φ (Chapter 1).

t t’

t0

Re t

Fig. 13.4. The Keldysh contour with t and t′ on the ascending branch.

At finite temperature one completes the contour as follows:

t t’

t0

Re t

−iβ

Fig. 13.5. The Keldysh contour with t and t’ on the ascending branch. The vertical
track is necessary for finite-temperature averages as in Figure 2.2.2.

It is interesting to note that if V is static one can adopt the adiabatic
switching on at t0 and off at −t0; then the adiabatic theorem states that
〈Φ|U(−∞,∞) = eiα〈Φ|. So,

gc(t, t′) = −i
〈Φ|T

[
ψ(t)ψ†(t′)U(∞,−∞)

]
|Φ〉

〈Φ|U(∞,−∞)|Φ〉 , (13.56)

which is just Equation (11.63), the starting point of the usual expansion.
If V = V (t), the adiabatic theorem does not apply, and the new formalism
is needed, however even if V is constant there is no need for the adiabatic
theorem in the new formalism. So, the general scheme is more powerful and
conceptually simpler.

Taking both times on the negative branch one obtains

g̃c(t, t′) = −i〈TCψH(t−)ψ†
H(t′−)〉 = −i〈T̃CψH(t)ψ†

H(t′)〉, (13.57)

with T̃ that orders times as the reverse of T ; instead of (13.55) we write
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ig̃c(t, t′) = g>(t, t′)θ(t′ − t)− g<(t, t′)θ(t− t′) (13.58)

The other two combinations, where the order on C is fixed, are

g+(t, t′) = −i〈TCψH(t+)ψ†
H(t−)〉 = ig<(t, t′)

g−(t, t′) = −i〈TCψH(t−)ψ†
H(t+)〉 = −ig>(t, t′).

(13.59)

Note that
g+(t, t′) + g−(t, t′) = gc(t, t′) + g̃c(t, t′), (13.60)

gc(t, t′)− g+(t, t′) =
− i
[
g>θ(t− t′)− g<θ(t′ − t)

]
− ig< [θ(t− t′)− θ(t′ − t)]

= −i
[
g> + g<

]
θ(t− t′) = gr(t, t′), (13.61)

and in a similar way5

gc(t, t′)− g−(t, t′) = ga(t, t′). (13.62)

On the Keldysh contour,
∫

C dτ =
∫∞
−∞ dt++

∫ −∞
∞ dt−; so one can write all

integrals on the real axis by introducing a matrix notation with the pattern(
++ +−
−+ −−

)
of time labels, that is, by introducing the 2 × 2 matrix Green’s

function

G(t, t′) =
(
gc g+

g− g̃c

)
. (13.63)

However, since we wish to rewrite
∫ −∞
∞ dt− as −

∫∞
−∞ dt− we must insert a

- sign for each integration in dt−. This is conveniently done by inserting a
Pauli σz matrix factor between any two matrix Green’s functions in series
combinations. For example, the linked first-order diagram due to a one-body
perturbation V (t) given by Equation (13.48) becomes

δg =
∫

C

dτg0(t, τ) v(τ) g0(τ, t′)→
∫ ∞

−∞
dτv(τ) G0(t, τ)σzG0(τ, t′). (13.64)

Here

G0(t, τ)σzG0(τ, t′) =
(
gc(t, τ) −g+(t, τ)
g−(t, τ) −g̃c(t, τ)

) (
gc(τ, t′) g+(τ, t′)
g−(τ, t′) g̃c(τ, t′)

)
(13.65)

5These are the correct equations, although in the literature gr and ga are often
confused.
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Check: Dyson’s equation from Keldysh matrix formalism

The Keldysh formalism the reproduces the results of Sect. 13.3 (although it
may be more friendly when performing the diagram expansion). To see that,
we define

X (t, t′, τ) =
(
xc x+

x− x̃c

)
= G0(t, τ)σzG0(τ, t′) (13.66)

and do the matrix multiplications; X is given by(
gc(t, τ)gc(τ, t′)− g+(t, τ)g−(τ, t′) gc(t, τ)g+(τ, t′)− g+(t, τ)g̃c(τ, t′)
g−(t, τ)gc(τ, t′)− g̃c(t, τ)g−(τ, t′) g−(t, τ)g+(τ, t′)− g̃c(t, τ)g̃c(τ, t′)

)
.

Thus for instance x− = −ix> = g−(t, τ)gc(τ, t′) − g̃c(t, τ)g−(τ, t′) that is,
x> = [g>(t, τ)gc(τ, t′)− g̃c(t, τ)g>(τ, t′)] .

Eliminating gc by Equation (13.62) and g̃c by Equation (13.60), one finds
x> = g>ga + grg

>, in agreement with (13.14). The Dyson equation reads

G(t, t′) = G0(t, t′) +
∫ ∞

−∞
dτ1

∫ ∞

−∞
dτ2G0(t, τ1)σzΣ(τ1, τ2)σzG(τ2, t′), (13.67)

where of course

Σ =
(
σc σ+

σ− σ̃c

)
. (13.68)

Again, this can be cast as in Sect. 13.3 in terms of advanced and retarded
functions. To this end, we use the unitary matrix

U =
1 + iσy√

2
=

(
1√
2
− 1√

2
1√
2

1√
2

)
, U−1 =

(
1√
2

1√
2

− 1√
2

1√
2

)
(13.69)

leading to

U · G · U−1 =

(
gc−g−−g++g̃c

2
gc−g−+g+−g̃c

2
gc+g−−g+−g̃c

2
gc+g−+g++g̃c

2

)
=
(

0 ga

gr f
′

)
(13.70)

where f ′ = −if = g+ + g− and

U ·Σ · U−1 =
(

0 σa

σr Ω
′

)
(13.71)

where Ω′ = −iΩ = σ+ + σ−. To transform the Dyson equation we also want

UσzU
−1 = σx =

(
0 1
1 0

)
; the self-energy appears in the combination

UσzΣσzU
−1 = σx

(
0 σa

σr Ω
′

)
σx =

(
Ω′ σr

σa 0

)
, (13.72)
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and in the literature sometimes Σ is defined as the latter matrix, omitting
the problem that leads to introducing the σz factors. Using the Langreth
shorthand notation of Section 13.3 the Dyson equation becomes (since the
(-i) factors in f ′ and Ω′ cancel)(

0 ga

gr f

)
=
(

0 g0
a

g0
r f

0

)
+
(

0 g0
a

g0
r f

0

)(
Ω σr

σa 0

)(
0 ga

gr f

)
, (13.73)

which agrees with the previous result (Equations 13.39 and following ones).

13.5.1 Contour Evolution of Bosons

In the case of bosons, TC does not imply any sign change when two creation or
annihilation operators are exchanged. Green’s function are written in terms of
field operators φ. For instance, for phonons with field operators φm = dm+d†m
one defines[62] the Green’s functions

Dmn(t, t′) = −i〈TCφm(t)φn(t′)〉 (13.74)

with D>
mn(t, t′) = 〈φm(t)φn(t′)〉 and so on, such that

iDmn(t, t′) = D>
mn(t, t′)θC(t− t′) +D<

mn(t, t′)θC(t′ − t). (13.75)

Moreover, on the Keldysh contour

D+ = −iD<, D− = −iD> (13.76)

without the sign change, and so

D+
mn(t, t′) = −i〈φn(t′)φm(t)〉 = D−

nm(t′, t). (13.77)

Moreover, in the definitions of the retarded and advanced functions,

Dr
mn(t, t′) = −iθ(t− t′)〈[φm(t), φn(t′)]−〉, (13.78)

Da
mn(t, t′) = −iθ(t′ − t)〈[φm(t), φn(t′)]−〉, (13.79)

commutators rather than anticommutators occur. With these modifications,
the Keldysh formalism extends to bosons.

13.6 Selected Applications of the Keldysh Formalism

Being a general theoretical set-up for the many-body problem, this diagram
method is virtually unlimited in scope. The examples discussed below were
selected among the most instructive known to the writer.
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13.6.1 Atom-Surface Scattering

Consider processes like atom-surface scattering, desorption or sputtering,
when a moving atom interacts with a surface. As in Section 10.2.1 we model
the situation by a Fano model (Chapter 5) with a non-degenerate atomic
energy level εd interacting via time-dependent hopping matrix elements Vdk(t)
with a solid having a continuum of Bloch eigenvalues εk; spin indices are
suppressed in this problem. For the sake of definiteness we consider below a
problem, where the atom is scattered or is being emitted from the surface,
Vdk(t)→ 0 for t→∞, and we are interested in the probability of detecting a
neutral atom or a ion. We want the long-time limit of the mean occupation
number nd(t) = 〈c†d(t)cd(t)〉. We split the hamiltonian H = H0 +Hh, H0 =∑

k∈C,σ εknk,σ + εdn0,σ with Hh =
∑

k,σ{Vka
†
kσa0σ + h.c.} like in ( 5.1) but

here it is convenient to write

H0 =
∑

λ

ελc
†
λcλ (13.80)

with greek indices running over d and all the k states. Up to time t0 → −∞
the system is in an eigenstate of H0 specified by occupation numbers n0

λ;
this sets the initial condition of the problem. In some cases we wish to use
adiabatic switching to introduce Hh, as in desorption problems; in scattering
problems on the other hand the initial condition does not necessarily coincide
with the ground state oh H0. The unperturbed Green’s functions are readily
obtained.

g0<
λμ (t, t′) = 〈c†λ(t′)cμ(t)〉 = δλμn

0
λe

−iελ(t−t′) (13.81)

g0>
λμ (t, t′) = 〈cμ(t)c†λ(t′)〉 = δλμ(1 − n0

λ)e−iελ(t−t′). (13.82)

Hence,the unperturbed retarded and advanced functions are

g0
r,λμ(t, t′) = −iδλμe

−iελ(t−t′), (13.83)

g0
a,λμ(t, t′) = +iδλμe

−iελ(t′−t), (13.84)

both independent of occupation numbers. The perturbation is, with a slight
change in notation,

HI(t) =
∑

k

Vdk(t)c†dck + h.c., (13.85)

and we want

nd(t) = 〈c†d(t)cd(t)〉 = g<
dd(t, t) = −igc

dd(t, t+ 0), t→∞ (13.86)

where t+ 0 is just more than t.
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The self-energy is given by (13.53) where σa and σr ar matrices in the
state indices; he Dyson equation may be simplified using the instantaneous
character of the self-energy to read

gr,λμ(t, t′) = g0
r,λμ(t, t′) +

∑
νρ

∫ ∞

−∞
dτgr,λν(t, τ)Vνρ(τ)g0

r,ρμ(τ, t′). (13.87)

But g0
r,ρμ ∝ δρμ and we can further simplify 6

gr,λμ(t, t′) = δλμg
0
r,λμ(t, t′) +

∑
ν

∫ ∞

−∞
dτgr,λν(t, τ)Vνμ(τ)g0

r,μμ(τ, t′). (13.89)

The local (dd) component has a closed Dyson equation; indeed, using (in
matrix notation)

gr,dd = g0
r,dd + g0

r,dd

∑
k

Vdkgr,kd (13.90)

and inserting
gr,kd = g0

r,kkVkdgr,dd (13.91)

one finds
gr,dd = g0

r,dd + g0
r,ddΣ

(d)
r gr,dd, (13.92)

with the dynamical self-energy

Σ(d)
r (t, t′) =

∑
k

Vdk(t)g0
r,kk(t, t′)Vkd(t′). (13.93)

These equations solve the problem of an electron in a empty system (and
the conjugate problem of a hole in a filled one). Please note carefully that
the instantaneous self-energy becomes retarded when a closed (dd) Dyson
equation is written; this is similar to what happens in Section 5.1.2 where
the proper self-energy of the localized state is ω-dependent.

As an example, we can come back to the desorption model of Section
10.2.1. For instance, if at time t = 0, a neutral F atom starts desorbing from
a Fluoride surface, where it is F−, we describe it in the hole picture with
n0

d = nd(0) = 1, n0
k = nk(0) = 0; the problem requires the retarded hole

Green’s function.
For simplicity one usually introduces the assumption that the time de-

pendence of Vdk(t) is the same for all k, that is,

Vdk(t) = u(t)Vdk (13.94)
6The advanced function parallels the retarded one:

ga,λμ(t, t′) = δλμg0
a,λμ(t, t′) +

∑
ν

∫ ∞

−∞
dτga,λν(t, τ )Vνμ(τ )g0

a,μμ(τ, t′). (13.88)
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where u(t) is some time-dependent function. Then,

Σ(d)
r (t, t′) = −iθ(t, t′)u∗(t)u(t′)

∑
k

|Vdk|2e−iεk(t−t′). (13.95)

In static conditions (time-independent H), the virtual level is characterized
by a self-energy Σ(ω), that here I’ll denote as ΣS(ω). So, a Fourier transfor-
mation gives

ΣS(ω) =
∑

k

|Vdk|2
ω − εk + iδ

⇒ ΣS(t) = −iθ(t)
∑

k

|Vdk|2e−iεkt, (13.96)

leading to
Σ(d)

r (t, t′) = u∗(t)u(t′)ΣS(t− t′). (13.97)

The dynamics of the virtual levels is factored from the dynamics due to
the time-dependent Hamiltonian. Using (13.83), the Dyson equation for the
retarded function reads

gr,dd(t, t′) = −ie−iεt { eiεt′θ(t− t′) + (13.98)∫ t

−∞
dτ1

∫ τ1

t′
dτ2e

iετ1u(τ1)u(τ2)ΣS(τ1 − τ2)gr,dd(τ2, t′
}

; (13.99)

the limits of integration are the effect of the θ functions. By differentiation
one can check that7

i
∂

∂t
gr,dd(t, t′) = εgr,dd(t, t′) + u∗(t)

∫ t

t′
dτu(τ)ΣS(t− τ)gr,dd(τ, t′). (13.100)

In the theory of desorption from an ionic crystal, gr,dd(t, t′) is the probability
amplitude that a hole created on the desorbing species at time t’ is found
there at time t. Let us calculate the probability

P = gr,dd(∞, 0)|2 (13.101)

in a simple model with
u(t) = e−λt; (13.102)

this may be reasonable if the hopping integrals decrease exponentially with
the atom-surface distance and the normal component v of the speed is about
constant. The frequency associated with bond-breaking is λ ∼ v

d , where d ∼
1

o

A is the bond length. For any atom desorbing with a kinetic energy of some
eV one finds that h̄λ 1 eV is much less than a typical band width.

7this integro-differential equation remains valid even if ε depends on time (see
Ref. [99])
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For a Lorentzian virtual level, ΣS = Λ− 2iΔ is a complex constant, with
the real part Λ a mere shift of the level that we can re-adsorb in the definition
of εd. The lifetime width Δ is significant. Then one can assume8

ΣS(t) = −2iΔθ(t)δ(t). (13.103)

Thanks to the δ equation (13.100) become differential,

i
∂

∂t
gr,dd(t, t′) =

[
ε− 2iΔe−2λt

]
gr,dd(t, t′), (13.104)

and its solution is straightforward:

gr,dd(t, 0) = −iθ(t)e−iεt−Δ
λ (1−e−2λt). (13.105)

Thus, the probability P that a neutral F is detected at infinity is

P = e−
2Δ
λ . (13.106)

The Lorenzian model predicts a velocity dependence P (v) ∝ e−
v0
v , where v0

is a constant; for v  v0, P is close to 0. However, P (v) is not analytic as
v → 0, and any development in powers of λ fails despite the fact that λ

Δ  1.
An evident weakness of the Lorentzian approximation is that P in (13.106)

is independent of the position of εd with respect to the band continuum, while
the shape of the virtual level depends on it. The solutions of Equation (13.100)
(Ref. [47] ) show that P may be enhanced by orders of magnitude if the level
is near the band edges.

Including the Fermi Level

The general formalism is necessary when the band is partly occupied. f is the
quantity that depends explicitly on the occupation numbers, and the Dyson
equation for Ω = 0 is solved by

f = [1 + grσr] f0 [1 + σaga] (13.107)

where it is understood that

f0
μν(t, t′) = g0>

μν (t, t′)− g0<
μν (t, t′) = δμν(1− 2n0

μ)e−iεμ(t−t′). (13.108)

The equation for f is a matrix equation in the time indices (t,t’ and inter-
mediate times) and in those denoting spin-orbital states (d, k and interme-
diate states). Let me make such dependence explicit by the notation change
f → [f ]λρ (t, t′), and the like, when necessary; then, Equation (13.107) reads

8The self-energy must have a factor θ(t) because it is retarded. However, the
product θ(t)δ(t) is ambiguous; here it is understood that θ(0) = 1 and therefore the
transform is ΣS(ω) = −2iΔ.
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fλρ(t, t′) =
∑
μν

∫ ∞

−∞
dτ1 [1 + grσr]λμ (t, τ1)

×
∫ ∞

−∞
dτ2 f

0
μν(τ1, τ2) [1 + σaga]νρ (τ2, t′). (13.109)

The following device is very useful. Introducing t0 → −∞ and the trivial
factorization

e−iελ(t−t′) = (−i)e−iελ(t−t0)θ(t− t0)(i)e−iελ(t−t′)θ(t′ − t0),

one can write

f0
λμ(t, t′) = δλμ(1− 2n0

λ)g0
r,λλ(t, t0g0

a,λλ(t0, t′). (13.110)

When this is inserted into (13.109) the result is

fλρ(t, t′) =
∑

ν

(
1− 2n0

λ

) ∫ ∞

−∞
dτ1 [1 + grσr]λν (t, τ1)g0

r,νν(τ1, t0)

×
∫ ∞

−∞
dτ2 g

0
a,νν(t0, τ2) [1 + σaga]νρ (τ2, t′). (13.111)

Now we recall the Dyson equations [1 + grσr ]g0
r = gr,[1 + gaσa]g0

a = ga, and
simplify to

fλρ(t, t′) =
∑

ν

(
1− 2n0

λ

)
gr,λν(t, t0)ga,νρ(t0, t′). (13.112)

This compact result completes the general solution of the many-electron prob-
lem with time-dependent Hamiltonian which is exact in the absence of in-
teractions. The advanced and retarded are merely single-electron problems,
while the many body effects are accounted for by the equation for f.

Once we know gr, ga and f, since

2g< = g< + g> + g< − g> = i(gr − ga)− f, (13.113)

we readily gain nd(t) = g<
dd(t). Applying Equation(13.113) to the vacuum,

g< ≡ 0 and i(grλρ− gaλρ)− fλρ = 0, hence (13.112) yields the rather unusual
expression of a matrix difference as a matrix product

i(grλρ − gaλρ) =
∑

ν

gr,λν(t, t0)ga,νρ(t0, t′). (13.114)

Remarkably, for a noninteracting system gr and ga and do not depend on
the filling, so this expression must hold for any9 n0

λ. Inserting (13.114) into
(13.113) one gets

9It is easy to check this for the totally filled system, writing 2g> = i(gr−ga)+f =
0 and using (13.112) again.
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2g<
λρ =

∑
ν

gr,λν(t, t0)ga,νρ(t0, t′)− fλρ,

that is,
g<

λρ(t, t
′) =
∑

ν

n0
νgr,λν(t, t0)ga,νρ(t0, t′). (13.115)

To solve the atom-surface scattering problem we set λ = ρ = d,

nd(t) =
∑

ν

n0
νgr,dν(t, t0)ga,νd(t0, t) =

∑
ν

n0
ν |gr,dν(t, t0)|2. (13.116)

If an atom with an occupied d level scatters against the surface and the k
states of interest are empty, we shall consider n0

d = 1, n0
k = 0; then this is

essentially a one-particle problem and the result says nd(t) = |gr,dd(t, t0)|2. In
the case of F desorption from an alkali fluoride, approximately n0

d = 1, n0
k = 0

in the hole picture. the many-body complications arise in the study of the
ionization probability of a positive ion hitting a metal surface. In this case,
n0

d = 0 and
nd(t) =

∑
k

n0
k |gr,dk(t, t0|2, (13.117)

where n0
k is the Fermi distribution. We can write the result in terms of the

local component gr,dd by using the appropriate component of the Dyson equa-
tion, namely,

gr,dk(t, t0 =
∫ ∞

−∞
dτgr,dd(t, τ)Vdk(τ)g0

r,kk(τ, t0)

= −ieiεkt

∫ ∞

t0

dτgr,dd(t, τ)Vdk(τ)e−iεkτ ; (13.118)

this is convenient as gr,dd can be determined by a closed equation in terms
of Σ(d)

r .
A.Blandin, A.Nourtier and D.W.Hone[48] developed the theory for an

atom which is initially in equilibrium with a metal surface with Fermi energy
EF and is suddenly sputtered away with speed v; they assumed a Lorentzian
virtual level. The deviation from the adiabatic (v → 0) result nd(∞) =
θ(EF−ε) is still of the singular form e−

v0
v , with v0 a characteristic speed. This

looks like the one-body result (13.106), but should change when including a
less pathological virtual level shape.

13.6.2 Quantum Transport

Partitioned Static Transport Theories

The earliest quantum theory of transport through a junction which is still
used today after 50 years is the pioneering one due to Landauer [61]. I It deals
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with non-interacting electrons and allows to calculate the current-voltage
characteristics, that is, J(V ), where J is the stationary (d.c.) current due to
a static potential difference V. Consider a system S between two electrodes;
we let the L and R subscripts or superscripts refer to left and right leads, e.g.
ρ(L)(ε), ρ(R)(ε) are the respective densities of states, and V R

m , V
L
m the hopping

matrix elements between the lead states at energy ε and the eigenstate m
of S. (We shall omit these labels when unnecessary). In the presence of a
bias, the chemical potentials μL, μR differ, and therefore there are two Fermi
distributions fL, fR. The Landauer formula for the current is

J =
e

h

∫
dε[fL(ε)− fR(ε)]

∑
m,n

tm,nt
∗
n,m (13.119)

wherem,n label eigenstates of the isolated S and the transmission coefficients
are

tm,n = 2π
√
ρ(L)(ε)ρ(R)(ε)V R

m V
L∗
n g(r)

m,n(ε).

Phenomenological approaches, like the one due to Beenakker, [69] based
on a master equation, are very useful, particularly when dealing with strongly
correlated systems, like for instance single-electron transistors and related
devices. For an application to superconducting systems see for example [70]
where the main issue is the Coulomb blockade pattern of two-electron tun-
neling in the framework of W=0 pairing (Chapter 17).

The application of the Keldysh formalism to the calculation of station-
ary tunneling currents was pioneered by C. Caroli,R. Combescot, P. Nozieres
and D.Saint-James in a series of fundamental joint papers [62]. They consid-
ered a 1d tight-binding model for a metal-insulator-metal (MIM’) junction.
The main feature of their approach is the use of an ideal partition which
enables them to reach the stationary state adiabatically: to zeroth order,
the applied bias is already there, but J = 0 since left and right subsystems
are disconnected. The perturbation to be accounted for to all orders is a
static pseudo-Hamiltonian that establishes the connection. In principle, the
pseudo-Hamiltonian can be calculated ab initio. It is switched on adiabati-
cally in the presence of the bias and a stationary state is obtained in which
a time-independent current flows. The theory was originally formulated in a
tight-binding model and the expression for the current was established from
the continuity equation and written in terms of Green’s functions:

J =
eT

ih̄
(〈c†αca − c†acα〉) =

eT

h̄

∫ ∞

−∞

dω

2π
{g<

aα(ω)− g<
αa(ω)}, (13.120)

where a, α stand for tho sites connected by the hopping T . The theory was
then extended to a continuous formulation. In both cases, the current-voltage
characteristics were obtained in terms of local densities of states calculated
on both sides of the partition. However, the left and right unperturbed sub-
systems cannot exist in insulation because the zero-order wave functions obey
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special boundary conditions at the idealized partition. The partitioned the-
ory of transport through junctions was put on a more general foundation
by Feuchtwang[85], who obtained the current-voltage characteristics of one-
dimensional model systems, rigorous within the Schrödinger theory in the
non-interacting limit; he also used the Keldysh formalism but questioned
some technical aspects of the previous formulations.

The partitioned approaches manage to work out the theory without in-
troducing the time by an artifice. One considers that the left and right halves
of the system are already biased while an ideal partition prevents the elec-
trical continuity. The adiabatic removal of the partition eventually allows a
stationary current to flow. Thus, the partitioned approach describes a situa-
tion that is quite different form the experimental one, when the connection is
there when the bias is applied. The static treatments were based on a crucial
assumption of equivalence with the physical situation; this assumption can
fail as we know today (see below).

Partition-free Dynamical Transport Theory

A time-dependent, partition-free framework was proposed in 1980 by the
writer[63]; the new scheme was found to be powerful to calculate the current-
voltage characteristics, but above all for the first time allowed to obtain tran-
sient responses as well. The dynamical theory using the Keldysh formalism
and the equation of motion method is no harder than the static one and
yields much more information; it has not received much attention in the past
but it is gaining ground in recent years for its clear advantages. One crucial
point in favour of my approach is that it is partition-free: the whole sys-
tem including the leads is in thermal equilibrium at some temperature until
the bias is applied. This is physically much more appealing, and reflects the
experimental situation. I worked out the theory in parallel for discrete and
continuous models using time-ordered Green’s functions and Equation (4.24)
for the current. In the discrete one-dimensional case, when the unperturbed
Hamiltonian is of the form

H0 =
∞∑

s=−∞
c†s(cs+1 + cs−1) (13.121)

the perturbation, which is dealt with exactly,is

H1 = Θ(t)
∞∑

s=−∞
Vs(t)c†scs (13.122)

and the current flowing through site s in the 1d electrodes is

Js =
eTs

h̄
lim

t′→t+0

[
gT

s,s+1(t, t
′)− gT

s,s−1(t, t
′);
]
, (13.123)
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this is physically equivalent if not identical to (13.120). where Ts is the hop-
ping matrix element between site s and its neighbors. For the continuous
model,in obvious notation,

H0 =
∑

k

εkc
†
kck, (13.124)

H1(t) =
∑
k,k′

Θ(t)Vk,k′ (t)c†kck′ , (13.125)

and the current density was obtained by Equation (4.24). As we saw below
Equation (10.16), the equation of motion

i
∂

∂t
gT

kk′ (t, t′) = δkk′δ(t− t′) + εkg
T
kk′ (t, t′) +

∑
p

Vkp(t)gT
pk′ (t, t′), (13.126)

with the initial conditions gT
kk′(0, 0−) = −iδkk′(1 − fk), gT

kk′ (0, 0+) = iδkk′fk

( fk is the Fermi function) and gT
kk′ (t, t + 0+) − gT

kk′ (t, t + 0−) = iδkk′ , are
satisfied by

gT
kk′ (t, t′) = iΘ(t′ − t)

∑
q

fqg
(r)
kq (t, τ)g(a)

qk′ (τ, t′)

−iΘ(t− t′)
∑

q

(1− fq)g
(r)
kq (t, τ)g(a)

qk′ (τ, t′) (13.127)

provided that τ is earlier than t and t’. This is essentially the Blandin et al.
solution[48] with a much simpler derivation. Here we need gT (t, t′) with t > 0,
and t’ just large than t, so we may set τ = 0. Writing gr,a

kk′(t) = gr,a
kk′ (t, 0), one

finds
J(x, t) =

eh̄

m
Im
∑

q

g(r)
x,q(t)∗∇g(r)

x,q(t). (13.128)

The corresponding solution for the current flowing at site {i, j, k} in a lead
oriented along the x axis in a 3d discrete model is

Jijk =
2eT
h̄
#
∑

q

fqg
(r)
ijk,q(t)g

r∗
i−1jk,q(t). (13.129)

The solution is valid for any time dependence of V , but in order to make
the results more explicitly in Reference [63] I assumed H1(t) = Θ(t)V (x),,
with V (x) → 0 deep in the left electrode and V (x) → constant deep in the
right one. Now the retarded and advanced Green’s functions can be computed
simply using a constant final-state Hamiltonian.

In the non-interacting case, the current-voltage characteristics are ob-
tained by taking the t → ∞ limit by asymptotic methods[63] [92] and agree
with the results by Feuchwang[85]. It turns out that the current response is
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very indirectly related to the local Green’s functions and is much more natu-
rally written in terms of the asymptotic behavior of the wave function at long
distance in the free-electron wires. For small enough V , both the continuous
and the discrete models become ohmic and

J = −eV
πh̄
. (13.130)

It was shown in Ref. [63] and proved formally by Stefanucci and Am-
bladh [103] that for the non-interacting system the current-voltage charac-
teristics obtained by the partitioned approach must coincide generally with
those of the partition-free approach; moreover, these Authors considered in-
cluding correlation effects within the Time Dependent Density Functional
Theory (TDLDA) scheme. In strongly correlated systems and in the pres-
ence of bound states the proof does not apply and the current can oscillate
for long times, as in the Josephson effect . Examples are discussed in Ref.
[192] where Hubbard clusters produce Josephson supercurrents by the W=0
mechanism (Chapter 17). A new implementation of the time-dependent quan-
tum transport theory within the TDLDA scheme has proposed quite recently
([102]).

Meir-WinGreen Weak-Coupling Formula

In 1992, Yigal Meir and Ned S. WinGreen [64] proposed a Laudauer formula
for the current through an interacting electron region. The system S is placed
between two non-interacting electrodes characterized by

g<
k,k (ω) = 2πi f (ω) δ (ω − εk) , g>

k,k (ω) = −2πi [1− f (ω)] δ (ω − εk) .
(13.131)

They started from

J =
e

h

∑
kL,n

∞∫
−∞

dω

2π

[
V L

kL,ng
<
n,kL

(ω)− V L∗
k,ng

<
kL,n (ω)

]
. (13.132)

Here, g<
kL,n links the k state in the left electrode to the S state annihilated

by dn, and once integrated in ω yields 〈c†kL
dn〉. Let us calculate the current

which enters from L. One can write down these mixed Green’s functions in
terms of those based in S through

g<
k,n =

∑
m
Vk,m

[
gT

k,k (ω) g<
m,n (ω)− g<

k,k (ω) g̃T
m,n (ω)

]
,

g<
n,k =

∑
m
V ∗

k,m

[
g<

k,k (ω) gT
n,m (ω)− g̃T

k,k (ω) g<
n,m (ω)

]
.

(13.133)

Substituting in (13.132), we are free to exchangem and n in the second term;
in this way, we can collect terms and get a summand proportional to
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Vk,n V
∗
k,m

{
g<

k,k

(
gT

n,m + g̃T
n,m

)
− g<

n,m

(
g̃T

k,k + gT
k,k

)}
;

now we replace gT
n,m + g̃T

n,m by g<
n,m + g̃>

n,m, simplify according to

g<
(
g> + g<

)
− g<

(
g> + g<

)
= g<g> − g>g<,

and use g> = g< +g(r)−g(a). Next, we perform the sum with
∑

k =
∫
dερ(ε)

and introduce
γm,n = 2π

∑
a

dερ(ε)Va,nV
∗
a,m, (13.134)

where
∑

a adds some generality by summing over possible independent chan-
nels in the L electrode, like for instance angular momentum or spin.

J =
ie

h

∫
dε
∑
m,n

γ
(L)

m,n (ε)
{
f (L) (ε)

[
gr

n,m − ga
n,m

]
+ g<

n,m

}
. (13.135)

The same formula with R in place of L will give the current entering from
the right electrode, which is the opposite in stationary conditions; thus one
can symmetrize the expression with

γ(L) → γ(L) − γ(R)

2
, γ(L)f (L) → γ(L)f (L) − γ(R)f (R)

2
.

In the special case γ(L)
m,n(E) = λγ

(R)
m,n(E), that is when the couplings are

the same apart from a constant, the formula simplifies to (see Problem 15.1)

J =
ie

h

∫
dε[f (L)(ε)− f (R)(ε)]

∑
m,n

γm,n[g(r)
m,n − g(a)

m,n]. (13.136)

where

γ =
γ(L)γ(R)

γ(L) + γ(R)
. (13.137)

Since ∑
m,n

γm,n[g(r)
m,n − g(a)

m,n] = 2iIm
∑
m,n

γm,ng
(r)
m,n,

this expression has a strong intuitive appeal if γm,n can be taken real: con-
tributions to the current arise from that slice of the density of states which
is occupied at the μ one side of the junction and empty at μ of the other
side. The density of states must be computed in the presence of the connec-
tions; however, the theory of [64] is particularly suited for small γ, when the
coupling to the leads is so weak that one can approximate g as the Green’s
function of the isolated S.

Problems

13.1. Prove Equation (13.137).
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Applications



14 Some Recursion Techniques with

Applications

14.1 Lanczos-Haydock Recursion

14.1.1 Local Green’s Function for a Chain

Any stationary quantum problem, with any number of degrees of freedom,
can be mapped into a solvable linear chain one-body tight-binding model
exactly. From an abstract mathematical viewpoint, the method for putting
a symmetric matrix in three-diagonal form which is readily diagonalized was
invented by Lanczos[58] in 1950. This is enough to calculate the Green’s func-
tion of systems with a finite number of states, and the algorithm is powerful
and convenient even for large matrices provided that they are sparse, that is,
most elements vanish. Haydock and coworkers[59] extended the method and
developed applications to physical systems with many degrees of freedom.
Let un, n = 0, 1, 2 . . . be the site orbitals of a semi-infinite chain, with local
levels an. The Hamiltonian is defined by

Hun = anun + bn+1un+1 + bnun−1, (14.1)

where b’s are hopping integrals, and its matrix is three-diagonal:

H =

⎛
⎜⎜⎜⎜⎝
a0 b1 0 0 . . .
b1 a1 b2 0 . . .
0 b2 a2 b3 0
0 0 b3 a3 b4
. . . . . . . . . . . . . . .

⎞
⎟⎟⎟⎟⎠ . (14.2)

For this model, we want the local retarded Green’s function is

G0(E) = 〈u0|
1

E −H |u0〉, (14.3)

which is the 00 element of

(E −H)−1 =

⎛
⎜⎜⎜⎜⎝
E − a0 −b1 0 0 . . .
−b1 E − a1 −b2 0 . . .
0 −b2 E − a2 −b3 0
0 0 −b3 E − a3 −b4
. . . . . . . . . . . . . . .

⎞
⎟⎟⎟⎟⎠

−1

. (14.4)
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Now, 1
z−H with z = E + iδ, δ = +0 is the Fourier transform of eiHtΘ(t),

hence G0(z) is causal; moreover it vanishes for z → ∞ in all directions,
G0(z)∗ = G0(z∗) and is a Herglotz function, i.e. yields a non-negative density
of states n(E) = − 1

π ImG0(z = E) ≥ 0. According to the standard rule, the
00 element is given by

G0(E) =
D1(E)
D0(E)

, (14.5)

where the denominator is det(E −H) and the numerator is obtained from it
by cropping the first row and column,

D0 = Det

⎛
⎜⎜⎜⎜⎝
E − a0 −b1 0 0 . . .
−b1 E − a1 −b2 0 . . .
0 −b2 E − a2 −b3 0
0 0 −b3 E − a3 −b4
. . . . . . . . . . . . . . .

⎞
⎟⎟⎟⎟⎠ ,

D1 = Det

⎛
⎜⎜⎜⎜⎝
E − a1 −b2 0 0 . . .
−b2 E − a2 −b3 0 . . .
0 −b3 E − a3 −b4 0
0 0 −b4 E − a4 −b5
. . . . . . . . . . . . . . .

⎞
⎟⎟⎟⎟⎠ . (14.6)

Both are secular determinants of matrices representing chain Hamiltonians.
Similarly, we define Dn as obtained by a crop of the first n rows and columns;
it refers to a shortened chain with the first n sites removed. Later, we shall
also consider shortening the chain the other way, defining ΔN = D0 and
Δn, n < N the shortened chain with the first n sites left. Now expand D0

by Laplace’s rule along the first line:

D0 = (E − a0)D1 − (−b1)Det

⎛
⎜⎜⎝
−b1 −b2 0 0 . . .
0 E − a2 −b3 0 . . .
0 −b3 E − a3 −b4 . . .
. . . . . . . . . . . . . . .

⎞
⎟⎟⎠ . (14.7)

The −b2 term in the first line does not contribute, and

D0(E) = (E − a0)D1(E)− b21D2(E)

which inserted into Eq.(14.5) yields

G0(E) =
D1

D0
=

D1

(E − a0)D1 − b21D2
=

1
(E − a0)− b21 D2

D1

.

Then,
D2

D1
=

1
(E − a1)− b22 D3

D2

and iterating,
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G0(E) =
1

E − a0 − b21

E−a1−
b22

E−a2−
b2
3

E−a3−...

. (14.8)

For the uniform chain, with an ≡ 0 and bn ≡ b, one gets

G0(E) =
1

E − b2G0(E)
. (14.9)

This yields the semi-elliptic density of states

n(E) =
Θ(4b2 − E2)

√
4b2 − E2

2πb2
.

14.1.2 Green’s Function of any System

Consider an arbitrary Hamiltonian H , possibly representing a complicated
many-body system, and any normalized state u0; if this is an eigenstate we
are finished, otherwise we may always write :

H |u0〉 = a0|u0〉+ b1|u1〉, 〈u0|u1〉 = 0, 〈u1|u1〉 = 1. (14.10)

This is tantamount to call b1|u1〉 the part of H |u0〉 which is orthogonal to
|u0〉, and implies that a0 = 〈u0|H |u0〉, and b1 = 〈u1|H |u0〉; since

u1 =
1
b1

(H − a0)|u0〉 (14.11)

is normalized, we get (up to an arbitrary phase factor)

b1 = ‖(H − a0)|u0〉‖, (14.12)

where ‖v‖ denotes the norm of v. This can be computed from the given H
and u0; now we also know u1 and we can proceed with

H |u1〉 = a1|u1〉+ b1|u0〉+ b2|u2〉, 〈u0|u2〉 = 0, 〈u1|u2〉 = 0. (14.13)

Here, b1 is the same as above since H is Hermitean and u2 is taken to be nor-
malized. Thus, a1 = 〈u1|H |u1〉, and b2|u2〉 = (H −a1)|u1〉− b1|u0〉. Imposing
that u2 is indeed normalized, we obtain, since the phase of b2 can be chosen
at will,

b2 = ‖(H − a1)|u1〉 − b1|u0〉‖; (14.14)

again, we can compute that, write

u2 =
1
b2

[(H − a1)|u1〉 − b1|u0〉] (14.15)

and expect the next step
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H |u2〉 = a2|u2〉+ c|u0〉+ b2|u1〉+ b3|u3〉

This might appear a boring way to get equations of increasing complexity,
but here the clever idea first comes into play, since H |u2〉 does not contain
anything like c|u0〉. This is because c = 〈u0|H |u2〉, but Eq. (14.10) shows
that H |u0〉 is orthogonal to all un with n > 1. Hence, continuing to introduce
orthogonal un states, we always get three-term recursion relations

H |un〉 = an|un〉+ bn|un−1〉+ bn+1|un+1〉 (14.16)

with

an = 〈un|H |un〉 (14.17)
bn+1 = ‖(H − an)|un〉 − bn|un−1〉‖ (14.18)

|un+1〉 =
1

bn+1
[(H − an)|un〉 − bn|un−1〉] . (14.19)

Hence, we have a general algorithm to find the local Green’s function of any
state u0, mapping it to site 0 of a chain of un that can be generated stepwise,
with their levels an and hoppings to their nearest neighbors. The chain is
semi-infinite, that is does not end, unless the system has a finite Hilbert
space or the choice of u0 was extremely clever.

14.1.3 Terminator

Let N be the number of sites that we can afford to compute; the N -th denom-
inator of the continued fraction ( 14.8) reads E−aN−1−b2N/ . . . and one gets
an approximation by setting bN = 0. By truncating the continued fraction in
this way we get a discrete spectrum; this can then be broadened by shifting
the poles a bit below the real axis with E → z = E+ iδ, which converts the δ
functions into Lorentzians. As an illustration, consider the rectangular level
with band width W = 2α, n(E) = Θ(α2 −E2)/2α, which we met in Section
6.2 and arises from

G(z) =
1
2α

log
(
z + α

z − α

)
. (14.20)

We shall see in Sect. (14.1.4) how to calculate the a and b coefficients from
G. The comparison with the N = 5, 10 and 40 continued fractions (Figure
14.1) shows that such an artificial procedure, while allowing a comparison of
some qualitative kind, is too rough for many purposes; it is mathematically
pathological, e.g. the second and all the even moments of the approximate
n(E) diverge.

As an alternative to the Lorentzian broadening, one can compute the
integrated local dos

N (E) =
∫ E

−∞
n(E)dE,
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which is a bar diagram but converges to the exact result in norm. One can
smooth it by fitting with a continuous function and then differentiate to find
an approximate n(E); the results are much better than before, and at least for
one-electron problems converge quickly almost everywhere. Interestingly, for
regular solids there are always special intervals centered at E values where the
approximation fails badly; these singular values, where n is a bad function, are
band-edge singularities or Van Hove singularities , where dn

dE is discontinuous.
If one is interested in the overall line shape of some spectroscopy, this may
be of minor importance, since such singularities tend to be masked somewhat
by the experimental broadenings. However there is a message there: the long-
time behavior of the Fourier transform of any function of frequency depends
[92] precisely on such details, and the transform is a correlation function,
which can be observed in appropriate experiments. We know from Section

0.2 0.2 0.2

Fig. 14.1. The rectangular n(E) with W = 0.5 and a broadening δ = 0.05 (dashed)
compared with the continued fraction approximations using N=5 denominators
(left), N=10 denominators (centre), N=40 (right). The continued fraction coefficient
are discussed in the next Sections.

4.3.1 that the band-edge singularities depend only on dimensionality; some
weaker singularities inside the band depend on the lattice symmetry, too. The
Van-Hove singularities are universal features, independent of the details of
the Hamiltonian. Stubborn computing fails, but one can gain them directly
from a simpler model in the same universality class. We do not need the model
to be realistic, but to have the correct singularities at the correct places. Such
a model is called terminator. The local Green’s function of the terminator is
exactly known and we can calculate, say, N denominators of the continued
fraction expansion, using Greek letters for the coefficients we write
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Γ0(E) =
1

E − α0 − β2
1

E−α1−
β2
2

E−α2−
β2
3

E−α3−.........

(14.21)

At level N the full continued fraction truncated ends with

E − αN−1 −
β2

N−1

E − αN−1 − β2
N tN (E)

.

Here, tN (E) defines the tail of the continued fraction. The idea is: pick the
tail and attach it to G. Doing this by brute force is not rewarding, while
deepening the mathematics is a far better idea.

Pade’ Representation

Orthogonal Polynomials

It is evident that the continued fraction truncated at level N is the ratio of
two polynomials. To find them, consider the linear chain eigenstates,

|α〉 =
N∑

n=0

f (α)
n |n〉 (14.22)

that satisfy
N∑

n=0

fα∗
n fβ

n = δα,β, (14.23)

and the Schrödinger equation

N∑
n=0

f (α)
n [an|n〉+ bn+1|n+ 1〉+ bn|n− 1〉]

= E(α)
∞∑

n=0

f (α)
n |n〉, b0 = 0. (14.24)

Since
∑N

n=0 fnbn+1|n + 1〉 =
∑N

n=0 fn−1bn|n〉, and
∑N

n=0 fnbn|n − 1〉 =∑N
n=0 fn+1bn+1|n〉, (fN+1 = 0), one finds

∞∑
n=0

[
(an − E(α))f (α)

n + bn+1f
(α)
n+1 + bnf

(α)
n−1

]
|n〉 = 0. (14.25)

This implies the recurrence relations (r.r.)

(an − E(α))f (α)
n + bn+1f

(α)
n+1 + bnf

(α)
n−1 = 0, f

(α)
−1 = 0. (14.26)
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fα
0 ≡ 〈0|α〉 does not vanish (otherwise fn ≡ 0 ) and we may define N inde-

pendent functions

Pn(E(α)) =
fα

n

fα
0

, (14.27)

having the same r.r.

(an − E(α))Pn + bn+1Pn+1 + bnPn−1 = 0, P−1=0. (14.28)

but P0(E) = 1; all the others are determined by the r.r. and depend on the
a, b coefficients of the previous sites. Evidently, they are just polynomials in
E. Changing the sum

N∑
α

fα∗
m fα

n = δm,n (14.29)

to an energy integral,

δm,n =
N∑
α

∫ ∞

−∞
dEδ(E − E(α))fα∗

m fα
n (14.30)

and using (14.27) we find

δm,n =
∫ ∞

−∞
dE

N∑
α

〈0|α〉〈α|0〉δ(E − E(α))P ∗
m(E)Pn(E) (14.31)

that is, the P are orthogonal polynomials

δm,n =
∫ ∞

−∞
dE n(E)P ∗

m(E)Pn(E) (14.32)

with a weight n(E), the local density of states at |0〉 (compare with Section
5.1.4).

Polynomials, Secular Determinants and G

The secular determinant ΔN (E) consists of the first N rows and columns of
D0 (Equation 14.6)

ΔN = Det

⎛
⎜⎜⎜⎜⎝
E − a0 −b1 0 0 . . .
−b1 E − a1 −b2 0 . . .
0 −b2 E − a2 −b3 0
0 0 −b3 E − a3 −b4
. . . . . . . . . . . . . . .

⎞
⎟⎟⎟⎟⎠

N×N

; (14.33)

let us consider then the succession of determinants Δn(E) and expand
Δn+1(E) using the last row:
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Δn+1 = Det

⎛
⎜⎜⎜⎜⎝
. . . . . . . . . . . . . . .
. . . E − a3 −bn−2 0 0
. . . −bn−2 E − an−2 −bn−1 0
. . . 0 −bn−1 E − an−1 −bn
. . . 0 0 −bn E − an

⎞
⎟⎟⎟⎟⎠

n+1×n+1

= (E − an)Δn + bnDet

⎛
⎜⎜⎝
. . . . . . . . . . . .
. . . E − a3 −bn−2 0
. . . −bn−2 E − an−2 0
. . . 0 −bn−1 −bn

⎞
⎟⎟⎠

n×n

;(14.34)

and we are left with

Δn+1(E) = (E − an)Δn(E)− b2nΔn−1(E). (14.35)

Multiplying (14.28) by
∏n

i=1 bn we find (14.35) with

Δn(E) = Pn(E)
n∏

i=1

bn. (14.36)

Thus, we have got D0 = ΔN (E) for the N -site chain in terms of the Pn and
in view of (14.5) a new expression for G0 is within reach if we can also express
D1(E). However, D1(E) is the counterpart of D0(E) in a chain where site 0
has been cut off. The polynomials of that chain satisfy the same r.r.(14.28)
but they vanish on site 0. We can specify them as follows:

Q0 = 0, Q1(E) = 1, (an − E)Qn + bn+1Qn+1 + bnQn−1 = 0. (14.37)

Pn and Qn are the independent solutions for the N site chain that correspond
to different initial conditions. Therefore,

D1(E) = QN (E)
N∏

i=2

bn. (14.38)

Finally, we get for the N site chain

G
(N)
0 (E) =

QN(E)
b1PN (E)

. (14.39)

Such a representation as a ratio of polynomials is exact here, but is popular
as a way to approximate functions and is called Pade’ approximant.

How to Append the Terminator ’s Tail to G.

We compute G up to the N -th denominator, and continue the continued
fraction with tN (E) taken from the terminator. That will be much better
than nothing, and will bring much of the missing information. We need to
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pick up tN (E) from the terminator continued fraction, but we are not so
silly to use it directly. For the truncated terminator, we write, in place of
(14.39,14.28,14.37)

Γ
(N)
0 (E) =

ΘN (E)
β1ΠN (E)

. (14.40)

where Θ’s are the counterparts of the Q’s in the terminator’s chain; the
polynomials,

(αn − E(α))Πn + βn+1Πn+1 + βnΠn−1 = 0, Π−1=0. (14.41)

Θ0 = 0, Θ1(E) = 1, (αn − E)Θn + βn+1Θn+1 + βnΘn−1 = 0. (14.42)

The rule for inserting the tail is:

αN−1 → αN−1 + β2
N tN (E) (14.43)

In order to use (14.43) in (14.40,) we need to show up αN−1, so we obtain
Πn+1 and Θn+1 from (14.41,14.42), then set n+ 1 = N and obtain:

Γ
(N)
0 =

1
β1

E − αN−1ΘN−1(E)− βN−1ΘN−2(E)
E − αN−1ΠN−1(E)− βN−1ΠN−2(E)

. (14.44)

Now, using (14.43), the full terminator reads:

Γ0(E) =
1
β1

E − [αN−1 + β2
N tN (E)]ΘN−1(E)− βN−1ΘN−2(E)

E − [αN−1 + β2
N tN (E)]ΠN−1(E)− βN−1ΠN−2(E)

. (14.45)

We can clean it up using (14.41,14.42) again to eliminate the N−2 items:

Γ0 =
1
β1

ΘN − βN tN (E)ΘN−1

ΠN − βN tN (E)ΠN−1
. (14.46)

Finally, this is a compact tail indeed:

tN (E) =
1
βN

ΠNβ1Γ0 −ΘN

β1ΠN−1Γ0 −ΘN−1
. (14.47)

The transplantation is obtained by replacing Greek by Latin letters in (14.46):

G0(E) =
1
b1

QN − bN tN (E)QN−1

PN − bN tN (E)PN−1
. (14.48)

This method can give excellent results already with N ≈ a few tens if the
terminator has the correct edges of the continua with the right edge and Van
Hove singularities.
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14.1.4 Moments

The above method is in a way a refined version of the moments method [60],
which is itself worth considering for its conceptual and practical importance.
Let |0〉 be any state of the system, and

n(ω) = 〈0|δ(ω −H)|0〉 = − 1
π
ImG(ω) (14.49)

the local density of states. Even for complicated H we can obtain useful
results by computing the moments

μn = 〈0|Hn|0〉 =
∫ ∞

−∞
dωωnn(ω); (14.50)

if we could obtain them all and sum an exponential series we would build
the Fourier transform of (14.49). Now, μ0 = 1, μ1 is the center-of-mass of
the virtual level, μ2 informs us about its width, μ3 characterizes its skew-
ness, and with increasing n finer details are revealed. The moments allow
computing the Green’s function: if Re z is larger than the eigenvalues of H ,
G(z) =

∑∞
k=0

μk

zk+1 . The short time behavior of n(t) depends on the first
moments, that we can compute; the long-time n(t)is often needed and even
the asymptotic trend is of interest, but that information must be sought else-
where. Letting N denote the number of moments that we can compute, we
face the problem of using them in the best way. One possibility would be
choosing a functional form which depends on N parameters and imposing the
values of N moments. For instance, if the edges of the continuum are known
one can pick a polynomial or an expansion in Tchebychev polynomials. How-
ever, the Van Hove singularities will prevent the uniform convergence of the
procedure. A more powerful method exists. By the M + 1-site chain Hamil-
tionian1 HM of the form (14.2) one computes the moments μp = (Hp

M )00 by
matrix multiplication; from μp, p = 1, · · ·N one can deduce the ak and bk
coefficients for k ≤ N − 1. In fact, μ1 = a0; inserting into μ2 = a2

0 + b21 we
have one unknown and solve immediately obtaining b21 = μ2 − μ2

1. The third
moment is

μ3 = a3
0 + (2a0 + a1)b21;

inserting the previous results we obtain

a1 =
−μ3

1 + 2μ1μ2 − μ3

μ2
1 − μ2

.

We can continue in this way as long as we please:

μ4 = (a0 + a1)2b21 + (a2
0 + b21)

2 + b21b
2
2;

1The N moments obtained by matrix multiplication using HM are obviously
exact if M is large enough.
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again we have only one unknown and find

b22 =
−μ3

2 + 2μ1μ2μ3 − μ2
3 − μ2

1μ4 + μ2μ4

(μ2
1 − μ2)2

.

General explicit formulas are also available from the theory of Pade’ approx-
imants [157].

In this way we solve the inverse of Haydock’s problem: given a normalized
Herglotz function n(ω), to determine a semi-infinite chain Hamiltonian such
that n(ω) is its density of states. For a symmetric n(ω), like those arising from
bipartite lattices (Section 4.3.1 ) we may take ak ≡ 0. For the rectangular
band model (14.20) one readily determines the coefficients (Problem 14.2);
in this way I performed the comparison between the truncated fraction and
the exact density of states following Equation(14.20).

14.2 Spin-Disentangled Diagonalization

If the Hamiltonian matrix H is too large to store, and is not assumed to
be sparse2, we may still be able to find eigenvalues and eigenvectors by the
recently introduced Spin-Disentangled technique [18]. I find that it is fast
and easy to use and works very well with the Lanczos-Haydock algorithm
discussed above. Let Mσ be the number of electrons of spin σ, and M↑ +
M↓ = N their total number. Consider a real orthonormal basis {|φασ〉}, α =
1 · · ·mσ, of dimension mσ, for the Mσ electrons of spin σ. The dimension
of the Hilbert space is NH = m↑m↓ and H is a NH × NH matrix; now I
show how to solve by matrices no larger than the largest between m↑ ×m↑
and m↓ ×m↓. For m↑ = m↓, a 1, 000, 000× 1, 000, 000 problem is solved by
1, 000× 1, 000 matrices. One can write the ground state wave function in the
interesting form

|Ψ〉 =
∑

αβ Lαβ |φα↑〉 ⊗ |φβ↓〉 (14.51)

which shows how the ↑ and ↓ configurations are entangled. The particles of
one spin are treated as the bath for those of the opposite spin: this form also
enters the proof of a famous theorem by Lieb[37] discussed in Section 18.6.
In Equation (14.51) Lαβ is a m↑ ×m↓ rectangular matrix.

Schrödinger Equation

LetKσ denote the kinetic energymσ×mσ square matrix in the basis {|φασ〉},
and n(σ)

s the spin-σ occupation number matrix at site s in the same basis (n(σ)
s

2If it is sparse, one can store and manipulate the nonzero elements Hij together
with i and j; this procedure is annoying and leads to a slowing down of the com-
putations. Moreover, in many problems of interest H is not sparse.
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is a symmetric matrix since the |φασ〉’s are real). The Hamiltonian (in a
lattice model, or the realistic Hamiltonian on a discrete grid) is H = H0 +U ,
with H0 = K↑ + K↓, while U =

∑
s,s′ U(s, s′)ns↑ns′↓. Using (K↑)φα↑ =∑

γ(K↑)γαφγ↑ and the like, one finds that

H0|Ψ〉 =
∑
αβγ

Lαβ [|φγ↑〉|φβ↓〉(K↑)γα + |φα↑〉|φγ↓〉(K↓)γβ ]

=
∑
βγ

(K↑L)γβ|φγ↑〉|φβ↓〉+
∑
αγ

(LKT
↓ )αγ |φα↑〉|φγ↓〉

=
∑
αβ

[
K↑L+ LKT

↓
]
αβ
|φα↑〉|φβ↓〉 (14.52)

where T stands for Transpose. Since nsσ|φασ〉 =
∑

γ |φγσ〉〈φγσ|nsσ|φασ〉,

U |Ψ〉 =
∑
s,s′

U(s, s′)
∑
α,β

∑
γ,δ

Lα,β|φγ↑〉|φδ↓〉 (ns↑)γα (ns′↓)δβ ; (14.53)

but (ns↓)δβ = (ns↓)βδ and one can write

U |Ψ〉 =
∑
s,s′

U(s, s′)
∑
γ,δ

(ns↑Lns′↓)γ,δ |φγ↑〉|φδ↓〉

≡
∑
s,s′

∑
α,β

(ns↑Lns′↓)α,β |φα↑〉|φβ↓〉. (14.54)

Recalling Equation (14.51) we see how H acts:

H : L→ K↑L+ LKT
↓ +
∑
s,s′

U(s, s′)ns↑Lns′↓. (14.55)

For illustration, below I adopt the on-site Hubbard interaction, when this
reduces to Lieb’s rule [37]

H [L] = [K↑L+ LKT
↓ ] + U

∑
s

n(↑)
s Ln(↓)

s . (14.56)

In the absence of magnetic fields, KT
↓ can be taken real and symmetric, hence

we drop the transposition sign. In particular in the Sz = 0 sector (M↑ = M↓)
and K↑ = K↓, n

(↑)
s = n

(↓)
s . The action of H is obtained in a spin-disentangled

way, in terms of operators acting in the spin subspaces. The generality of
the method is not spoiled by the fact that it is fastest in the Sz = 0 sector,
because it is useful provided that the spins are not totally lined up; on the
other hand, Sz = 0 can always be assumed, as long as the hamiltonian is
SU(2) invariant. For example, consider the Hubbard Model with 2 sites a
and b and 2 electrons (H2 molecule, Section 1.2.5). The intersite hopping
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is t and the on-site repulsion U . In the standard method, one sets up basis
vectors for the Sz = 0 sector

|v1 >= |a ↑ a ↓>, |v2 >= |a ↑ b ↓>,
|v3 >= |b ↑ a ↓>, |v4 >= |b ↑ b ↓> .

One then looks for eigenstates (three singlets and one triplet)

Ψ =
4∑

i=1

ψi|vi > (14.57)

using the Hamiltonian

H =

⎛
⎜⎜⎝
U t t 0
t 0 0 t
t 0 0 t
0 t t U

⎞
⎟⎟⎠ . (14.58)

We can do with 2 × 2 (rather than 4× 4) matrices by the spin-disentangled

method with L =
(
ψ1 ψ2

ψ3 ψ4

)
,K =

(
0 t
t 0

)
, na =

(
1 0
0 0

)
, nb =

(
0 0
0 1

)
.

By (14.56),

H |Ψ〉 =
a,b∑
α

a,b∑
β

(H [L])αβ|φα↑〉 ⊗ |φβ↓〉 (14.59)

with (H [L]) =
(
Uψ1 + t(ψ2 + ψ3) t(ψ1 + ψ4)
t(ψ1 + ψ4) Uψ4 + t(ψ2 + ψ3)

)
.

The reader can readily verify that this is the same as applying H in the form
(14.58) to the standard wave function (14.57) and then casting the result
in the form (14.51). Since we can apply H we can also diagonalize it. By
this device, we can work with matrices whose dimensions is the square root
of those of the Hilbert space:

√
NH ×

√
NH matrices solve the NH × NH

problem.

The Practical Numerical Recipe

Starting from a trial wave function of the form (14.51), preferably having the
proper symmetry, one can avoid computing the Hamiltonian matrix, since its
operation is given by Eq. (14.56). Each new application of the Hamiltonian
takes us to a new Lanczos site and we can proceed by generating a Lanczos
chain. To this end we need to orthogonalize to the previous sites by the scalar
product

〈Ψ1|Ψ2〉 = Tr(L†
1L2). (14.60)

In this way one can put the Hamiltonian matrix in a tri-diagonal form. This
method is better suited if one is mainly interested in the low-lying part of the
spectrum. A severe numerical instability sets in when the chain is longer than
a few tens of sites, i.e. well before the Lanczos method converges. On several
occasions, I found it preferable to use repeated two-site chains alternated
with moderate-size ones.
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14.3 Method of Excitation Amplitudes

In 1977 I found the exact solution [77] of a model introduced by Hewson and
Newns [79] to discuss photoemission spectroscopy from valence states3; the
same idea can solve exactly a class of models and later I published many
extensions and applications to photoemission and Auger spectroscopy[124]
and non-linear optics4. The simplest Hewson-Newns model is a Fano model
interacting with a boson degree of freedom. Consider a spin-less Fano model,
(Chapter 5),

hF =εrnr+

∑
k

εknk+
∑
k

{Vkrc
‡
kcr+h.c.},

where as usual nr is the occupation number operator of some resonant orbital,
while the index k runs over the electron continuum; let

Hv=ω0d
†
d, (14.61)

be some harmonic oscillator (vibration or or plasmon). The Hewson-Newns
[79] model Hamiltonian reads

H = hF +Hv +Hev, (14.62)

where a linear coupling is assumes between the oscillator and the resonant
state:

Hev= g(d + d†)nr. (14.63)

The electron can be captured by the resonance and excite the plasmons, but if
eventually the resonance decays, the interaction with the plasmons is turned
off, otherwise a permanent shift of the oscillator coordinate may result. The
interaction can be very strong if the boson frequency resonates with dressed
electronic excitations. The purpose of the method is to calculate exactly the
the excitation amplitudes

ψv (E) = 〈0| dvcr
1

E−H + iδ
c+
r |0〉 (14.64)

where |0〉 is the electron and plasmon vacuum. The amplitude of exciting v
plasmons is Av (E) = 1√

v!
ψv (E) . The identity (4.92)

3This approach should not be confused with other useful recursion methods,
which are completely different, despite the fact that they lead to continued frac-
tion solutions. Among the most important examples, I recall the Mori generalized
Langevin Equation Method [208] and the Lee solution technique [209]; for a review
see Ref. [210]. However, quite recently, I became aware of a related solution of a
boson-boson model had been put forth previously by Sumi[100] developing a theory
of exciton polaritons.

4For applications to many-photon effects, see Reference [78] and next Chapter.



14.3 Method of Excitation Amplitudes 327

1
E−H + iδ

=
1

E−h + iδ
+

1
E−h + iδ

Hev
1

E−H + iδ

yields

ψv (E) = 〈0|dvcr
1

E − h+ iδ
c†r |0〉+

〈0|dvcr
1

E − h+ iδ
Hev

1
E −H + iδ

c†r |0〉 =

δv0G
0
rr (E) + 〈0| dvcr

1
E − h+ iδ

Hev
1

E −H + iδ
c†r |0〉 (14.65)

where G0
rr (E) is the retarded Green’s function for g=0. In other terms, this

is the solution of the Fano problem,

G0
rr (E)=< 0|cr

1
E−h + iδ

c†
r |0 >. (14.66)

One verifies by induction that

dvhn = (h + vω0)
n dv (14.67)

with the consequence that

dv 1
E− h + iδ

=
1

E− h− vω0 + iδ
dv. (14.68)

Thus,

ψv (E) = δv0G0
rr (E) + 〈0| cr

1
E− h− vω0 + iδ

dvHev
1

E−H + iδ
c‡r |0〉 (14.69)

= δv0G0
rr (E) + 〈0| cr

1
E− h− vω0 + iδ

c
‡
rgdv

(
d + d‡) cr

1
E−H + iδ

c
‡
r |0〉 .
(14.70)

Now note that, by reading the matrix element from right to left, the electron
is created, annihilated, created and annihilated again, thus the first annihi-
lation produces the electron vacuum; moreover, on the left of dv the only
boson operators are those contained in h. Therefore, the matrix element gets
factored.

ψv (E) = δv0G0
rr (E) + g 〈0| cr

1
E− h− vω0 + iδ

c
‡
r |0〉

× 〈0|dv
(
d + d

‡)
cr

1
E−H + iδ

c
‡
r |0〉 . (14.71)

Since
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d
(
d+
)n = n

(
d+
)n−1 +

(
d+
)n
d, (14.72)

one gets
〈0|dνd† = ν〈0|dν−1 (14.73)

and finds the recursion relations

ψv (E) = δv0G0
rr (E) + gG(E− vω0) {ψv+1 (E) + vψv−1 (E)} . (14.74)

To solve this system, it is convenient to define

0-1 1 21

1

ρ(E)

E

Fig. 14.2. The interaction of a slightly broadened (δ = 0.01 ) rectangular level of
Equation (14.20)(dotted line, width=1 , arbitrary units) with a plasmon mode of
frequency ωp = 1.3 with coupling g=0.5, according to Equation(14.77). Note that
the local density of states is deformed by interaction with the plasmon mode, while
the plasmon satellites are not identical in shape to the main line. At strong coupling
(stronger g) localized resonances also arise.

φv (E) = gvψv (E) (14.75)

casting the r.r. in the form

φv (E) = δv0G0
rr (E) + G0 (E− vω0)

{
φv+1 (E) + vg2φv−1 (E)

}
. (14.76)

For v = 0, the solution is given by the continued fraction

φ0 (E) = G(E) ≡ G0(E)

1− g2G0(E)G0(E−ω0)

1− 2g2G0(E−ω0)G0(E−2ω0)

1− 3g2G0(E−2ω0)G0(E−3ω0)
1−.................................

(14.77)

from which, using the r.r. again, the other amplitudes with are easily de-
rived. The interacting density of states ρ(E) = − Im(φ)

π gets satellites and
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is deformed in a characteristic way (see Fig. 14.2). Note that G0
rr(E) is not

a simple energy denominator as in Haydock’s method and contains the full
band-theory information. This method has already been applied to a variety
of problems involving few electrons interacting with bosons, leading to exact
solutions in many cases. The present is a simple example, and more generally
the solution([124])[46]) is not given by a continued fraction.

14.4 Feenberg Method

Feenberg[97] long ago introduced a very general method for solving linear
problems, later reviewed by Swain[98] who aimed at applications in the field
of Nonlinear Optics. Let A denote a square matrix of order N and aij its
elements. By definition,

Det A =
∑
Q

(−)Q
aq(1)1aq(2)2...aq(N)N (14.78)

is the sum of all the products of N elements in the matrix, one for each line
and column; each product is multiplied by the sign of the permutation Q
of the first indices, when the product is ordered with the second indices in
ascending order 1 to N. Below I’ll write simply A for Det A. Everybody knows
the Laplace development; choosing an arbitrary row index i,

A =
∑

j

(−)(i+j)aijA
ij , (14.79)

where Arcis obtained from A by removing row r and column c. This is not the
only useful expansion, however. It often happens that the diagonal elements
are finite, that is, O(1), while the off-diagonal ones are O(V), where V is some
small parameter. In such cases, the Feenberg development is specially suited,
since besides being exact, it can serve as an expansion in powers of V.

Let Ai be the determinant obtained from A by removing the i-th row
and column; Aij the determinant of the matrix that one obtains from A by
removing rows and columns i and j; and so on. Chosen at will a diagonal
element aii, in each term of A it is multiplied by elements coming from rows
and columns 
= i; thus ∂A

∂aii
is an antisymmetrized product of all the elements

from other rows and columns, and this is just ∂A
∂aii

= Ai. Given a pair of
indices i and j and the product pij = aijaji,

∂A
∂pij

is an antisymmetrized
product of the elements from other rows and columns, so ∂A

∂pij
= −Aij ; one

can continue in this way, ending with A123...N ≡ 1. Thus, one obtains a closed
development:

A = aiiAi −
∑
j �=i

aijajiAij +
∑
k �=j,i

∑
j �=i

aijajkakiAijk −

∑
l�=k,j,i

∑
k �=j,i

∑
j �=i

aijajkaklaliAijkl + .... (14.80)
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A convenient notation is

A = aiiAi −
∑∗

j
aijajiAij +

∑∗
j

∑∗
k
aijajkakiAijk

−
∑∗

l

∑∗
k

∑∗
j
aijajkaklaliAijkl + .... (14.81)

where
∑∗

j means that the index j must be different from any other index
in the summand. Equating the Feenberg and the Laplace developments one
finds for i 
= j; summarizing,

Aij = Ai, i = j

= −(−)(i+j)[ajiAij −
∑∗

k
ajkakiAijk +∑∗

l

∑∗
k
ajkaklaliAijkl − · · ·], i 
= j. (14.82)

The sequences of different indices like those in ajkaklali are called by
Swain[98] irreducible processes. To write down a general term of such an
expansion one can start from enumerating all the irreducible processes that
occur at a given order. The elements of the inverse matrix are:

(A−1)ij = (−)(i+j) A
ji

A
(14.83)

and the diagonal ones read5

Gi ≡ (A−1)ii =
Ai

A
. (14.84)

Let us introduce:

Di = A
Ai
, Dij = A

Aij
, Dijk = A

Aijk
, · · ·

Di
j = Ai

Aij
, Di

jk = Ai

Aijk
, Dil

jk = Ail

Aijkl
, · · · (14.85)

where where each D brings lower and possibly upper indices; the upper ones
are those of the A above, while the A below bears the upper and the lower
indices. Directly from the Feenberg development,

Di = A
Ai

= aii −
∑∗

j
aijajiAij

Ai
+
∑∗

j

∑∗
k aijajkaki

Aijk

Ai

−
∑∗

l

∑∗
k

∑∗
j aijajkaklali

Aijkl

Ai
+ ....

= aii −
∑∗

j
aijaji

Di
j

+
∑∗

j

∑∗
k

aijajkaki

Di
jk

−
∑∗

l

∑∗
k

∑∗
j

aijajkaklali

Di
jkl

+ ....

(14.86)

and similarly

5one uses the notation Gi since if A = z−H these are resolvent matrix elements.
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Di
k =

Ai

Aik
= akk −

∑∗
j

akjajk

Dik
j

+
∑∗

jm

akjajmamk

Dik
jm

+ · · · (14.87)

where the summation indices cannot be equal to i.
We can expand the D ratios: from the formula for A one obtains for

instance

Auv = aiiAiuv −
∑∗

j aijajiAijuv +
∑∗

j

∑∗
k aijajkakiAijkuv

−
∑∗

l

∑∗
k

∑∗
j aijajkaklaliAijkluv + ....

(14.88)

hence we obtain a D with a single low index:

Duv
i = Auv

Auvi
= aii −

∑∗
j aijaji

Aijuv

Auvi
+
∑∗

j

∑∗
k aijajkaki

Aijkuv

Auvi

−
∑∗

l

∑∗
k

∑∗
j aijajkaklali

Aijkluv

Auvi
+ ....

(14.89)

that is,
Duv

i = aii −
∑∗

j
aijaji

Dμνi
j

+
∑∗

j

∑∗
k

aijajkaki

Dμνi
jk

−
∑∗

l

∑∗
k

∑∗
j

aijajkaklali

Dμνi
jkl

+ ....
(14.90)

D objects with several low indices can be written down as products of D
objects having fewer low indices:

Dij =
A

Aij
=
A

Ai

Ai

Aij
= DiD

i
j = DjD

j
i (14.91)

By raising indices one generates a recursive solution.

Example: (A−1)11 for a Three-Diagonal Matrix A.

(
A−1
)
11

=
A1

A
= G1 =

1
D1

(14.92)

where

D1 = a11 −
∑∗

j

a1jaj1

D1
j

+
∑∗

j

∑∗
k

a1jajkak1

D1
jk

− ...

we realize that a1j = 0 unless j = 2; then, in the second summation we must
read a12a2kak1 , where k 
= 1, k 
= 2. Then since ak1 = 0, only the first sum
remains, and

D1 = a11 −
a12a21

D1
2

. (14.93)

D1
2 =

A1

A12
= a22 −

∑∗
j

a2jaj2

D12
j

+
∑∗

jk

a2jajkak2

D12
jk

− .... (14.94)
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where j=1 is forbidden, and so j=3; then, no k is acceptable and we are left
with

D1
2 = a22 −

a23a32

D12
3

. (14.95)

So,

G1 =
1

a11 − a12a21
a22− a23a32

D12
3

(14.96)

In this way, one finds the recurrence relations

Ci = aii−
aii+1ai+1i

Ci+1
, (14.97)

Ci = D1,2,...i−1
i (14.98)

and the result is a continued fraction.

14.4.1 Solving Linear Systems

Given the linear non-homogeneous system∑
j

aijxj = bi (14.99)

Cramer’s formula yields the well-known solution

xi =
∑

j

(−)(i+j)Aji

A
bj (14.100)

and we can expand the numerator by (14.82)

xi = Aibi

A +
∑∗

j
bj(−)(i+j)

A (−)(−)(i+j)

×
[
ajiAij −

∑∗
k ajkakiAijk +

∑∗
l

∑∗
k ajkaklaliAijkl − ...

]
that is, since Aijl... are symmetric in the exchange of indices,

xi = Aibi

A −
∑∗

j
aijAijbj

A +∑∗
jk

aikakjAijkbj

A −
∑∗

jkl
aikaklaljAijklbj

A − ...

or

xi =
bi
Di
−
∑∗

j

aijbj
Dij

+
∑∗

jk

aijajkbk
Dijk

−
∑∗

jkl

aijajkaklbl
Dijkl

− ... (14.101)
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14.4.2 Homogeneous systems

Homogeneous linear systems are also of interest, for instance to find the
eigenvectors of a matrix H:∑

j

aijxj = 0, i = 1, ..., N. (14.102)

This case reduces to the previous one: provided r is such that the determinant
Ar does not vanish, one can assign an arbitrary value to xr and the reduced
system ∑

j �=r

aijxj = −airxr, i = 1, ..., N, i 
= r (14.103)

with bi = −airxr (excluding row and column r from all determinants) has a
unique solution

xi

xr
= −air

Dr
i

+
∑∗

j

aijajr

Dr
ij

−
∑∗

jk

aijajkakr

Dr
ijk

+ . . . (14.104)

Problems

14.1. Show that if we can calculate the local Green’s function, we can also
obtain any matrix element Gmn(E).

14.2. For the rectangular band model (14.20) n(ω) = θ(W 2−ω2)
2W , find the

continued fraction coefficients.

14.3. For the semiellyptic band model, find the continued fraction coeffi-
cients.

14.4. The 3×3 linear system Ax = b with a non-singular matrix

A =

⎛
⎝a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎠

is notoriously solved by x = A−1b, where

A−1 =
1

detA

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∣∣∣∣a22 a23

a32 a33

∣∣∣∣
∣∣∣∣a13 a12

a33 a32

∣∣∣∣
∣∣∣∣a12 a13

a22 a23

∣∣∣∣
∣∣∣∣a23 a21

a33 a31

∣∣∣∣
∣∣∣∣a11 a13

a31 a33

∣∣∣∣
∣∣∣∣a13 a11

a23 a21

∣∣∣∣
∣∣∣∣a21 a22

a31 a32

∣∣∣∣
∣∣∣∣a12 a11

a32 a31

∣∣∣∣
∣∣∣∣a11 a12

a21 a22

∣∣∣∣

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

But how does the solution work by Feenberg’s method? Try to find x1.



15 Aspects of Nonlinear Optics and

Many-Photon Effects

15.1 Diffusion of Radiation in Dipole Approximation

For strong electromagnetic fields, like those produced by a laser, the linear
response theory fails. Interesting processes leading to color changes become
important, and this has implications and applications. In this Chapter we
shall study the Raman effect, Second Harmonic Generation, the diffusion of
Coherent light and the Dynamical Stark effect.

By diffusion or scattering we mean those 2-photon processes where one
photon is annihilated and one is created. In the elastic (Rayleigh) diffusion
the frequency of the two photons is the same, in the inelastic (Raman) scat-
tering a shift of frequency brings further information about the scatterer.
The Quadratic Response formalism of Section 6.4 is well suited to describe
two-photon processes (not only the scattering processes, but also others, like
the decay of the H 2s level).

Classical Model of Diffusion by a Molecule

Classically, the elastic diffusion is caused by the induced currents. The in-
elastic diffusion is due to the following mechanism. An oscillating dipole of
frequency ω0 radiates a power

I =
2
3
ω4

0

c3
〈−→d 2〉. (15.1)

Now let an electromagnetic wave of pulsation ω induce in the molecule a
dipole −→

d = α̂
−→
E cos(ωt); (15.2)

the polarizability α̂ is a second-rank tensor. If ωm is the pulsation of the
molecular vibrations,

α̂ = α̂0 + α̂1 cos(ωmt+ β) (15.3)

where β is an arbitrary phase. Thus, one expects elastic radiation at ω and in-
elastic components at ω±ωm. The one at ω−ωm and ω+ωm are called Stokes
and anti-Stokes radiation, respectively. Classically, their intensity should be
the same, actually the Stokes light is more intense, but this requires Quantum
Theory to explain.
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Photon

We use the trasverse gauge, without scalar potential φ and vector potential

−→
A = N−→ε ei

−→
k ·−→r −iωt; (15.4)

for the normalization we ask that a unit volume V contains a photon energy,
that is,

1
4π

∫
V

[−→
E
−→
E

∗
+−→B−→B ∗]

d3r = h̄ω. (15.5)

From −→E = −∂
−→
A

∂t ,
−→
B = rot

−→
A, one finds −→E−→E ∗

= −→B−→B ∗
= N2ω2; putting into

(15.5), 2N2

4π ω
2V = h̄ω and

−→
A =

√
2πh̄
ωV
−→ε ei
−→
k ·−→r −iωt; (15.6)

We shall often work with V = 1 and h̄ = 1.

Dipole Approximation

In the semiclassical theory, the dipole moment e−→r = −→d is a time-independent
operator, while −→E (t) is an external field. The radiation-matter interaction
is introduced by adding to the Lagrangian −eφ − e−→A · −→v , where v is the
velocity. Here, φ = 0 and we are considering long wavelengths k → 0, when
−→
A →

√
2πh̄
ωV
−→ε e−iωt. Then, using −e

c

−→
A · d

dt
−→r = −e

c

[
d(
−→
A ·−→r )
dt −−→r · d

−→
A
dt

]
we

drop the total derivative ending up with the Hamiltonian

H ′(t) = −−→E · −→d = VAe
−iωt + VEe

iωt. (15.7)

Here,

VA = −i
√

2πh̄ω
V
−→ε · −→d , VE = V †

A, (15.8)

where VA and VE describe photon absorption and emission, respectively.

15.1.1 Second-Order Processes

Let |i〉 and |f〉 denote two stationary states of the unperturbed molecule. An
incident photon of pulsation ω1 can induce a |i〉 → |f〉 transition ending up
as a photon of pulsation ω2 in the solid angle dΩ2 leading to a detector. We
wish to obtain the differential cross section of this two-photon process. The
answer is contained in the second-order term of Equation (2.36) or in the
more intuitive, but equivalent argument below.

As a preliminary, simpler calculation we seek the probability amplitude
Aif (t) = 〈f |t〉 that the molecule makes the transition to 〈f | assuming 1) that
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both photons belong to sharply specified modes 2) that photon ω1 is absorbed
at time t1 and photon ω2 is emitted at time t2. There are two time orderings
and two contributions, represented by a) and b) in Figure 15.1. Quantum
theory also yields diagram b), contrary to the classical intuition, because the
effect (photon emission) precedes the cause. The quantum uncertainty also
affects time.

|i〉

|f〉

t=−∞

t=t1

t=t2

t=∞

ω1

ω2

a)

|i〉

|f〉

t=−∞

t=t2

t=t1

t=∞

ω1

ω2

b)

Fig. 15.1. A photon scattering second order process: in a) the photon is absorbed
and then re-emitted, in b) it is re-emitted and then absorbed.

The interaction picture state at time t corresponding to diagram a) is

|t〉 = [−iVE(ω2, t2)]I e
iω2t2 [−iVA(ω2, t2)]I e

iω1t1 |i〉. (15.9)

This would be the correct result if the times t1 and t2 were assigned by the
experiment. Since this is not the case, we must allow for the interference of
different values, by integrating over the intermediate times. A part ΔAif of
the amplitude comes from events in which t2 > t1 : the contribution to the
process is 〈f |t〉 where

|t〉 = −
∫ t

−∞
dt2

∫ t2

−∞
dt1 [VE(ω2, t2)]I [VA(ω1, t1)]I e

i(ω2t2−ω1t1), (15.10)

thus

ΔA
a)
if (t) = −

∫ t

−∞
dt2

∫ t2

−∞
dt1〈f | [VE(ω2, t2)]I [VA(ω1, t1)]I |i〉ei(ω2t2−ω1t1).

(15.11)
Expanding the interaction picture operators
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ΔA
a)
if (t) = −

∫ t

−∞
dt2

∫ t2

−∞
dt1

〈f |eiHt2VE(ω2)e−i(H−ω2)t2eiHt1VA(ω1)e−i(H−ω1)t1 |i〉 (15.12)

and working out the calculations, one finds

Aif (t) = −
∫ t

−∞
dt2

∫ t2

−∞
dt1

〈f |VE(ω2)e−i(H−Ef−ω2)t2ei(H−Ei−ω1)t1VA(ω1)|i〉. (15.13)

We do the t1 integral giving the integrand the usual adiabatic switch:∫ t2

−∞
dt1e

ixt1 =
eixt2

ix
. (15.14)

Thus,

A
a)
if (t) = −

∫ t

−∞
dt2〈f |VE(ω2)e−i(H−Ef−ω2)t2ei(H−Ei−ω1)t2 ×

−i
H − Ei − ω1 − i0

VA(ω1)|i〉

= −
∫ t

−∞
dt2e

−i(−Ef−ω2)t2+i(−Ei−ω1)t2 ×

〈f |VE(ω2)
−i

H − Ei − ω1 − i0
VA(ω1)|i〉 (15.15)

and finally

A
a)
if (t) = −ei(Ef+ω2−Ei−ω1)t

−i
Ef − Ei + ω2 − ω1 − i0

×

〈f |VE(ω2)
−i

H − Ei − ω1 − i0
VA(ω1|i〉. (15.16)

The contribution of diagram b) is

A
b)
if (t) = −ei(Ef+ω2−Ei−ω1)t

−i
Ef − Ei + ω2 − ω1 − i0

×

〈f |VA(ω1)
−i

H − Ei − ω2 − i0
VE(ω2|i〉, (15.17)

and the total amplitude is

Aif (t) = A
a)
if (t) +A

b)
if (t). (15.18)
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Energy Conservation

The ω1 photon is incoming, and must be switched on adiabatically; therefore
Aif (t) must have an infinitesimal exponential growth. Letting x = Ef −Ei +
ω2 − ω1,

Aif ∝
eηt

x− iη ⇒ |Aif |2 ∝
e2ηt

x2 + η2
, η → 0.

The transition probability per unit time is

dPif

dt
∝ 2ηe2ηt

x2 + η2
→ 2πδ(x), η → 0. (15.19)

In this way, the energy conserving δ(Ef − Ei + ω2 − ω1) factor arises much
more elegantly than in more elementary treatments.

Density of States for the Outgoing Photon

The experiment measures the energy h̄ω2 of the outgoing photon and its
direction within a solid angle dΩ2 : instead, Pif refers to a well determined
photon mode with given four-momentum h̄(−→k , ω). Therefore, we must sum
dPif

dt on the modes with ω2 = ω1 + Ei − Ef having −→k within dΩ2. The sum
is the density of states dρ(ω2) ≡

∑
−→
k ∈dΩ2

δ(ω2 − |k|), that is,

dρ(ω2) =
V dΩ2

2π)3

∫
d3kδ(ω2 − |k|) =

V dΩ2

(2π)3
ω2

2 . (15.20)

The incident photon is normalized to 1 in volume V ; the probability per unit
time to observe the outgoing photon is the differential cross section

dσif = 2π
∣∣∣∣〈f |VE(ω2)

−i
H − Ei − ω1 − i0

VA(ω1)|i〉+

〈f |VA(ω1)
−i

H − Ei − ω2 − i0
VE(ω2)|i〉

∣∣∣∣2 dρ(ω2). (15.21)

Recalling (15.8),

dσif = |M |2 ω1ω
3
2dΩ2

h̄2c4
, (15.22)

where

M = 〈f |−→ε2 ·
−→
d

−i
H − Ei − ω1 − i0

−→ε1 ·
−→
d |i〉+

〈f |−→ε1 ·
−→
d

−i
H − Ei − ω2 − i0

−→ε2 ·
−→
d |i〉. (15.23)
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In the second denominator, we introduce a complete set and since ω2 =
ω1 + Ei − Ef we obtain

M =
∑

n

⎡
⎣
(
−→ε2 ·
−→
dfn

)(
−→ε1 ·
−→
dni

)
ωni − ω1

+

(
−→ε1 ·
−→
dfn

)(
−→ε2 ·
−→
dni

)
ωnf + ω1

⎤
⎦ (15.24)

provided that no denominator vanishes (otherwise one speaks of resonant
Raman scattering which requires a separate treatment). Following Kramers
and Heisenberg, we may write

M =
∑
pq

Rpq(ε2)p(ε1)q, (15.25)

in terms of the Raman tensor

Rpq =
∑

n

[
〈f |−→d p|n〉〈n|

−→
d q|i〉

ωni − ω1
+
〈f |−→d q|n〉〈n|

−→
d p|i〉

ωnf − ω1

]
. (15.26)

In the elastic f = i case, the tensor describes the Rayleigh scattering. Oth-
erwise if ω1 > ω2 then Ef > Ei (Stokes transition); in the opposite case the
system gives energy to the photon (anti-Stokes transition).

Inversion Symmetry

We saw in Chapter 8 that in systems like the Benzene molecule possessing
inversion symmetry, Rpq = 0 unless |i〉 and |f〉 are of the same parity. Thus,
Raman-active modes are not seen in infrared absorption, and conversely in-
frared active modes yield no Raman scattering. infrared.

Low-frequency Scattering

For ω1 → 0, the Raman tensor has a finite limit. Hence, the cross-section
(15.22) goes like ω1ω

3
2 . The elastic scattering goes with ω4

1 . This explains
why the sky is blue and the advantage of radio-astronomy over infrared or
optical observations of objects that are beyond interstellar clouds.

High-frequency Scattering

When ω1 is large compared to the main absorption frequencies, we insert into
(15.26) the expansions

1
ωni − ω1

∼ − 1
ω1
− ωni

ω2
1

+ · · · ,

1
ωnf + ω1

∼ 1
ω1
− ωnf

ω2
1

+ · · · ,
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and find
Rpq = R(1)

pq +R(2)
pq + · · · (15.27)

with

R(1)
pq =

1
ω1

∑
n

[
−〈f |−→d p|n〉〈n|

−→
d q|i〉+ 〈f |

−→
d q|n〉〈n|

−→
d p|i〉

]
= 0 (15.28)

and

R(2)
pq =

−1
ω2

1

∑
n

[
ωni〈f |

−→
d p|n〉〈n|

−→
d q|i〉+ ωnf 〈f |

−→
d q|n〉〈n|

−→
d p|i〉

]
. (15.29)

Since
ωni〈n|

−→
d q|i〉 = 〈n|[H,

−→
d q]−|i〉 = −i〈n| d

dt

−→
d q|i〉,

ωnf 〈f |
−→
d q|n〉 = i〈f | d

dt

−→
d q|n〉,

(15.30)

keeping up to second-order terms,

Rpq =
i

ω2
1

∑
n

[
〈f |−→d p|n〉〈n|

d

dt

−→
d q|i〉 − 〈f |

d

dt

−→
d q|n〉〈n|

−→
d p|i〉

]

=
i

ω2
1

[
〈f |−→d p

d

dt

−→
d q −

(
d

dt

−→
d q

)
−→
d p|i〉

]
. (15.31)

For one electron, [−→d p,
(

d
dt

−→
d q

)
]− = ie2

m δpq.WithN electrons,−→d = e
∑N

k=1
−→r k

and

[−→d p,

(
d

dt

−→
d q

)
]− =

Nie2

m
δpq. (15.32)

Thus, for large ω1,

Rpq = −Ne
2

mω2
1

δifδpq. (15.33)

No Raman scattering occurs. For the elastic scattering, remarkably the cross-
section (15.22) becomes frequency independent:

dσ =
∣∣∣∣Ne2mω2

1

δpq (−→ε 2)p (−→ε 1)q

∣∣∣∣2 ω4
1dΩ2

c4
= N2

[
e2

mc2

]2
|−→ε 2 · −→ε 1|2 dΩ2

= N2r2e |−→ε 2 · −→ε 1|2 dΩ2, (15.34)

where re = e2

mc2 is the classical radius of the electron. If α is the angle between
−→ε 1 and −→ε 2,

|−→ε 2 · −→ε 1|2 = cos2(α).

The outgoing photon polarization −→e 2 must be orthogonal to −→k 2 but accord-
ing to (15.34), cannot be orthogonal to the incoming photon polarization−→ε 1.

Therefore −→ε 2 is in the −→k 2−−→ε 1 plane. Let θ be the −→ε 1−
−→
k 2 angle; we obtain

the classical Thomson formula

dσ = N2r2e sin2(θ)dΩ2. (15.35)
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15.2 Sum Frequency and Second-Harmonic Generation
(SHG)

|i〉

|f〉

t=−∞

t=∞

ω1

ω2

ω3

a)

|i〉

|f〉

ω1

ω2

ω3

b)

|i〉

|f〉

ω1

ω2
ω3

c)

|i〉

|f〉

ω2

ω1

ω3

d)

|i〉

|f〉

ω2

ω1

ω3

e)

|i〉

|f〉

ω2

ω1
ω3

f)

Fig. 15.2. The lowest-order second-harmonic generation diagrams.

As discussed in the last Section, the inelastic emission of radiation can be
treated by perturbation theory, unless of course the incident radiation fields
are comparable to those that exist in the unperturbed crystal and can reach
∼ 109 Volt/cm. Such fields can alter and even destroy the specimen1. So,
the method used above for the Raman scattering is useful again and yields
the probability of absorbing ω1 and ω2 photons and emitting ω3. Since there
are 3! orderings, 6 diagrams contribute in lowest order (figure 15.2) . The
amplitude is

B = X(ω1, ω2) +X(ω2, ω1) (15.36)

where in obvious notation, with fn ≡ f(εn) the Fermi distribution, and f̄ =
1− f,

X(ω1, ω2) =
6∑
i

∑
snr

fsf̄nξ(s, n, r, i, ω1, ω2), (15.37)

ξ(s, n, r, 1, ω1, ω2) = f̄r
[VE(ω3)]sn [VA(ω2)]nr [VA(ω1)]rs

(ωrs − ω1 − i0) (ωns − ω1 − ω2 − i0)
, (15.38)

1Blowing up the sample is not the best way to study it; however the next Section
deals with interesting cases that cannot be treated at low order because the field is
so strong that all the degrees of freedom are dressed and deeply affected by photons.



15.3 Diffusion of Coherent Light 343

ξ(s, n, r, 2, ω1, ω2) = f̄r
[VA(ω2)]sn [VE(ω3)]nr [VA(ω1)]rs

(ωrs − ω1 − i0) (ω3 − ω1 + ωns − i0)
, (15.39)

ξ(s, n, r, 3, ω1, ω2) = f̄r
[VA(ω2)]sn [VA(ω1)]nr [VE(ω3)]rs

(ω3 + ωrs − i0) (ω3 − ω1 + ωns − i0)
, (15.40)

ξ(s, n, r, 4, ω1, ω2) = −fr
[VE(ω3)]rn [VA(ω2)]sr [VA(ω1)]ns

(ωns − ω1 − i0) (ωnr − ω1 − ω2 − i0)
, (15.41)

ξ(s, n, r, 5, ω1, ω2) = −fr
[VA(ω2)]rn [VE(ω3)]sr [VA(ω1)]ns

(ωns − ω1 − i0) (ω3 − ω1 − ωrn − i0)
, (15.42)

and

ξ(s, n, r, 6, ω1, ω2) = −fr
[VA(ω2)]rn [VA(ω1)]sr [VE(ω3)]ns

(ω3 + ωns − i0) (ω3 − ω1 + ωrn − i0)
. (15.43)

The transition probability is proportional to

σ = δ(ω3 − ω1 − ω2)|B(VE ;VA)|2. (15.44)

This was my starting point for a calculation2 of SHG spectra from interfaces
[104], an unexplored subject at the time, in the European Esprit Project
EPIOPTICS. Experiments were planned to observe the SHG signal from
Si surfaces and interfaces. EPIOPTICS had the main motivation that SHG
may carry information from buried interfaces, without exposing them, which
is important for materials characterization. A photon is odd under inversion,
and it can be shown that to second order no SHG occurs from systems with
inversion symmetry such as Si. The surface breaks the inversion symmetry,
and with the available radiation sources a tiny fraction (even 10−15 or less)
of the incident power was predicted and observed to go into the SHG signal
????.

With a similar formalism one can study other nonlinear effects like the
two-photon decay of the 2s level of the H atom. In the following, we shall
deal with many photon effects that occur when the fields are so strong that
low order diagrams cannot work.

15.3 Diffusion of Coherent Light

15.3.1 Effective mode

When polarized monochromatic radiation (e.g. a laser beam) is shed over the
sample, one can often formulate the scattering problem to a good approxi-
mation as if the photons belonged to one effective mode. Suppose there are

2In atomic and molecular problems, when no medium affects the field prop-
agation, my formulation is an alternative to a more traditional one for bulk
materials[105], which was based on the second-order susceptibility χ(2).
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M modes of frequency ω and polarization −→ε in the beam; let He denote the
many-electron Hamiltonian and N → ∞ the dimensionality of the Hilbert
space. For each mode k with vector potential −→A (k)

and creation operator b†k,
treating the vector potential as a constant in the interaction region in the
spirit of the dipole approximation, the radiation-matter coupling reads

H ′
k =

∑
m,n,σ

M (k)
mna

†
mσanσ(bk + b†k) (15.45)

with
M (k)

mn =
e

mc
〈m|−→A · −→p |n〉 = e

mc
A(k)〈m|−→ε · −→p |n〉 (15.46)

where −→p is the momentum operator. Therefore,

H ′
k = A(k)L̂(bk + b†k), (15.47)

where L̂ operates on the electrons but not on the photons. The part of the
Hamiltonian that describes the field and its interaction is

H =
M∑
k

{
ωb†kbk +A(k)L̂(bk + b†k)

}
. (15.48)

By a real rotation αmk in the mode space, such that αmkαnk = δmn, I
introduce new operators d:∑

k

A(k)bk =
∑

k

A(k)
∑
m

αmkdm, (15.49)

the rotated vector with components
∑

k A
(k)αmk has the same length as the

original one,

||A|| =
√∑

k

(A(k))2.

We need not specify the rotation further provided that∑
k

A(k)αmk = ||A||δm1; (15.50)

then,
H = h̄ω

∑
m

d†mdm + ||A||L̂(d1 + d†1). (15.51)

Thus we can use a single mode with effective coupling ||A||.
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Mode Normalization

For a single mode, with −→A = c
√

2πh̄
V ω
−→ε ei
−→
k ·−→r −iωt, that is, A(k) = c

√
2πh̄
V ω ,

||A||2 =
2πh̄c2

V ω

∑
k

=
2πh̄c2

V ω

V

(2π)3
Δ(3)k, (15.52)

where Δ(3)k is the spread of the laser beam in k space. Actually, Δ(3)k
(2π)3 is

comparable to the inverse of the volume where the laser beam is coherent;
hence we can safely work with one effective mode if V is the coherence volume.

Coherent Light Scattering

The diffusion of laser radiation from a sample can be studied by a model
Hamiltonian of the form

H = He +Hph +HI +H ′
I , (15.53)

where He represents the electronic system, Hph the free photons, HI and
H ′

I the interactions of the electrons with the laser and scattered photons,
respectively. The free field may be described by the Hamiltonian

Hph = ω0d
†d+ ω′

0d
†
scattdscatt, (15.54)

where d annihilates photons ω0 from the laser while dscatt destroys scattered
photons. The interaction terms are:

HI = M̂(d+ d†) (15.55)

H ′
I = M̂ ′(dscatt + d†scatt), (15.56)

where M̂ and M̂ ′ are operators acting on the electronic degrees of freedom.
The laser photons belong to one mode and are in a coherent state such that

d|c〉 = γ|c〉 (15.57)

that is, s|c〉 = 0 with
s = d− γ. (15.58)

We take γ real for simplicity. We met a coherent state already in Section
6.1.4; in that case the shift was produced by the g coupling and γ could be
found by Equation (6.20), while now γ is a property of the laser. Equation
(6.28) n̄ = γ2, still holds, however. In the case of laser radiation, γ can vary in
a wide range: it can reach ∼ 104 in continuously operated lasers and largely
exceed ∼ 108 in pulsed lasers (pulses last a few tens of a nanosecond).

It is often convenient to perform a canonical transformation to the s
representation,
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H̃ = H̃e + H̃ph + H̃I +H ′
I , (15.59)

where

H̃e = He + ω0γ
2 + 2γM̂ (15.60)

H̃ph = ω0s
†s+ ω′

0d
†
scattdscatt, (15.61)

H̃I =
[
ω0γ + M̂

]
(s+ s†) = M̃(s+ s†) (15.62)

The initial state of the system is |g; 0〉 ≡ |g〉|0〉, where |g〉 stands for the
electronic ground state and |0〉 for the photon vacuum.

The scattered spectrum S(ω0) is proportional to the dscatt photon emis-
sion rate. Instead of deriving a general formal expression for te rate (see
Ref. [46]), here I consider a special case by a simple, physically motivated
treatment.

15.3.2 Dynamical Stark Effect

A photon impinging on a molecule or a solid can give raise to lots of processes,
but one can choose the symmetry of the system and the photon such that
just one transition is possible. Then the system-radiation interaction can be
understood by a two-level model. F Schuda, C R Stroud Jr and M Hercher
[106] using a dye laser and a beam of Na atoms realized this situation: the

laser was tuned at ν0 ∼ 5890
o

Angstrom in resonance with a dipole allowed
transition; this connects the F=2 hyperfine level arising from the 2S 1

2
ground

state and the F=3 hyperfine level arising from the 2P 3
2

state3. These two levels
form an ideal two-level system because by the ΔF = 0,±1 selection rules no
other levels can be reached by the exciting radiation. They discovered that if a

3 2P 3
2

F=3

F=2

3 2S 1
2

F=2

F=1

a)

3 2P 3
2

F=3

F=2

3 2S 1
2

F=2

F=1

b)

Fig. 15.3. Hyperfine levels of Na with a) the two-level system b) a three-level
system.

3Here, F is the total angular momentum resulting from the nuclear spin I = 3
2

of 21
11Na and the electronic

−→
J =

−→
L +

−→
S angular momentum.
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coherent field is in resonance with a two-level system, the scattered radiation
consists of a central quasi-elastic radiations with two symmetric satellites at
higher and lower frequencies, like in the Stark effect. The separation of the
side bands from the central lines is Δν ∼ 100 MHz, thus Δν

ν0
∼ 2× 10−10, a

very small effect which however is clearly seen (a typical situation in atomic
physics). The Hamiltonian4 which describes the two-level system interacting
with the laser field is:

H0 = He +Hph +HI

He = ε1n1 + ε2n2, Hph = ω0d
†d

HI = (a†1a2 + a†2a1)g(d+ d†).
(15.63)

Here, εm, am denote the unperturbed atomic levels and annihilation opera-
tors, nm = a†mam, g the electron-photon matrix elements, ω0 the laser fre-
quency. The scattered photons and their emission

H ′ = ω′d†scattdscatt +H ′
I

H ′
I = (a†1a2 + a†2a1)g(dscatt + d†scatt) (15.64)

will be introduced later and treated perturbatively.

Shifted Representation

We now shift the laser photon operators by d→ s+γ, with γ = g
ω0

obtaining
the following effects:

Hph → ω0s
†s+ γω0(s+ s†) + ω0γ

2,

HI → (a†1a2 + a†2a1)g(s+ s†) + 2gγ(a†1a2 + a†2a1).

We rearrange the terms of the transformed H0 as follows:

H̃0 = H̃e + H̃I + ω0s
†s, (15.65)

with

H̃e = ε1n1 + ε2n2 + ω0γ
2 + 2G

(
a†1a2 + a†2a1

)
, G = gγ (15.66)

H̃I =
[
ω0γ + g

(
a†1a2 + a†2a1

) (
s+ s†

)]
= M̃

(
s+ s†

)
. (15.67)

the initial state of the system is a†1|0〉, where |0〉 is the vacuum for s and
dscatt photons. Note that g enters as G = gγ in Equation(15.66) and as g
in in equation (15.67). The two entries have quite different consequences.

4For simplicity, we ignore the MF multiplicity and model this as a two-level
system for a spin-less effective particle.
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Without the g term in equation (15.67) there would be no dynamical Stark
effect. However, to understand the situation, we need to evaluate the relative
importance of the various couplings.

The atomic target has the characteristic length a0= 1 Bohr radius, with
a characteristic energy e2

a0
=1 Hartree. We can get reasonable estimates of the

coupling energy g and the number γ by the following arguments: 1) g must
be proportional to the fluctuating atomic dipole ea0 2) γ2 = n̄ is proportional
to the beam energy density n̄h̄ω

V in the coherence volume V ∼ 1cm3. This
reasoning leads to

(gγ)2 ∼ g2n̄ ∼ n̄h̄ω e
2

a0
× a3

0

V
. (15.68)

At optical or near ultraviolet frequencies such that h̄ω ∼ e2

a0
, for n̄ = 108

(γ = 104) we may have gγ ∼ 10−9h̄ω or even less. Then in Equation (15.67)
the g term is quite tiny compared to the one in γω0 and we can expand
around the limiting case5 g → 0, γ →∞ with constant G = gγ. For g = 0 we
diagonalize H̃e, that becomes

H̃e = ε̃1ñ1 + ε̃2ñ2 + ω0γ
2; (15.69)

the unperturbed (g → 0 ) Hamiltonian is:

H̃g→0 = ε̃1ñ1 + ε̃2ñ2 + ω0γ
2 + ω0(s+ s†). (15.70)

Back to the Unshifted Representation

Here ñ1 and ñ2 are conserved; there are eigenstates with ñ1 = 1, ñ2 = 0
and with ñ1 = 0, ñ2 = 1. At this point it is simplest to work in the old
representation setting d = s+γ and getting in the two cases the unperturbed
Hamiltonians

h0,i = ε̃iñi + ω0d
†d , i = 1, 2. (15.71)

In this round trip among the representations we did not simply take the
g → 0 limit, since we are keeping the corrections of order G that renormalize
the levels. The |̃i, n〉 eigenstates have eigenvalues ε̃i + nω0. In the resonant
case h̄ω0 = ε2 − ε1, |1̃, n+ 1〉 is almost degenerate with |2̃, n〉.

The perturbation is the term that we had neglected,

g(a†1a2 + a†2a1)(s+ s†) = g(a†1a2 + a†2a1)(d + d† − 2γ). (15.72)

Since G  ε2 − ε1, states are little affected by the tildes, and the matrix
element between almost degenerate states is6

〈1̃, n+1|g(a†1a2+a†2a1)(d+d†−2γ)|2̃, n〉 ∼ g〈n+1|d†|n〉 = g
√
n+ 1. (15.73)

5Note that the limit γ → ∞ alone would correspond to classical fields.
6Note that the most important n values are ∼ γ2, and in this sense a high degree

of coherence leads to stronger radiation-matter coupling.
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|1̃, 3〉 |2̃, 2〉

|1̃, 2〉 |2̃, 1〉

|1̃, 1〉 |2̃, 0〉

|1̃, 0〉

b)

|ε2〉
ω0

|ε1〉

a)

|Δ±(2)〉

|Δ±(1)〉

|Δ±(0)〉

|1̃, 0〉

c)

Fig. 15.4. Resonant radiation interacting with a two-level system. The energy
spectrum is represented a) according to a simple one-photon view b) in the many-
photon description, involving an infinite ladder of states, neglecting the g(a†

1a2 +
a†
2a1)(s + s†) term c) with the g(a†

1a2 + a†
2a1)(s + s†) term included.

First-order perturbation theory yields a very accurate description of the
effect of the tiny perturbation (15.72). The perturbed spectrum consists of the
|1̃, 0〉 ground state and an infinity of close doublets; the doublet |1̃,n+1〉±|2̃,n〉√

2

arises from |1̃, n+ 1〉 |2̃, n〉 and the splitting is 2g
√
n+ 1.

Scattered Light

Up to now we have dressed the atomic levels with photons from the laser ob-
taining an infinite double ladder of states, but the scattered photons still have
to be considered. The scattered light arises from the spontaneous emission
between the dressed states, according to A. Einstein’s A coefficient

Am→n =
4ω3

mn

3h̄c3
d2

mn, (15.74)

where d is the dipole operator.
d connects |2̃, n〉 with |1̃, n〉 with the same n, hence there are transitions

only between consecutive doublets, with ω ∼ ω0.The frequencies of the tran-
sitions in Figure 15.5 a) are given by the scheme:

transition ω
Δ+(n)→ Δ−(n− 1) ω0 + g(

√
n+ 1 +

√
n) ∼ ω0 + 2g

√
n

Δ+(n)→ Δ+(n− 1) ω0 + g(
√
n+ 1−

√
n) ∼ ω0

Δ−(n)→ Δ−(n− 1) ω0 + g(−
√
n+ 1 +

√
n) ∼ ω0

Δ−(n)→ Δ+(n− 1) ω0 +−g(
√
n+ 1 +

√
n ∼ ω0 − 2g

√
n)

(15.75)
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|Δ+(n)〉
|Δ−(n)〉

nω0

|Δ+(n − 1)〉
|Δ−(n − 1)〉

(n − 1)ω0

a)
ω

b)

Fig. 15.5. The contribution of two consecutive doublets to the scattered radiation.
a) the spontaneous emission lines b) the resulting spectral intensity versus ω.

Simple Explanation of the Dynamic Stark Triplet Spectrum

We wish to plot the spectral intensity S(x) versus x = ω−ω0
2g . Since the matrix

elements are equal, and the frequencies are so close that the variation of the
ω3 factor is negligible, the 4 transitions in (15.75) have practically the same
intensity. The width Δ of the central peak is of the order of the inverse
lifetime ∼ gγ of the excited state, and we represent it by a Lorentzian. The
system is prepared in a state that for g → 0 corresponds to the atom in ε1
and a coherent state of d photons. The doublet of states corresponding to
|1, n〉 is occupied with probability Pn = 1

2n!a
ne−a, where a = γ2. The most

important contributions arise from n ∼ √γ. Now note that

e−a

4

∞∑
n=0

an

n!
[
δ(ω − ω0 − 2g

√
n) + δ(ω − ω0 + 2g

√
n)
]

∼ |ω − ω0|e−a

2

∞∑
n=0

an

n!
δ((ω − ω0)2 − 4g2n). (15.76)

To obtain the shape of the side peaks, one can rewrite Equation (6.33) in
the form:

e−a
∞∑
n

an

n!
δ(z − nz0) ∼

e
− (z−az0)2

2g2

z0
√

2πa
, a� 1, (15.77)

with z = (ω−ω)2 and z0 = 4g2. Finally, the spectrum may be approximated
by

S(x) =
|x|

4g
√

2πa
exp[− (x2 − a)2

2a
] +

Δ

2π
1

Δ2 + (2x)2
. (15.78)
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The spectral maximum at ω = ω0 is due to the unresolved central transitions,
while half of the intensity belongs to the two satellites at ω = ω0± 2gγ. This
pattern agrees with experiments.

-10 10 x0

S(x)

0.15

Fig. 15.6. The characteristic shape of S(x) versus x for a = 100 and Δ = g.

Problems

15.1. Prove Equation (13.136).



Part V

Selected Exact Results in Many-Body

Problems



16 Quantum Phases

16.0.3 Gauge Transformations

Without the gauge invariance, any theory is untenable. In classical theory,
the Hamiltonian of a charged particle is

H =
(p− eA

c )2

2m
+ eV (x) (16.1)

where p is the kinetic momentum and A the vector potential. Both are un-
observable; one could have started with new potentials A′, V ′ such that

A′ = A+∇χ, V ′ = V − 1
c

∂χ

∂t
(16.2)

where χ(x, t) is a completely arbitrary function. Only fields appear in the
classical equations of motion; quite the other way, the gauge transformed
Schrödinger equation in terms of the old potentials reads[

1
2m

(p− e

c
{A +∇χ})2) + e{V − 1

c

∂χ

∂t
}
]
Ψ ′ = ih̄

∂Ψ ′

∂t
. (16.3)

Thus, the changes are:

pΨ → (p− e

c
∇χ)Ψ ′, i

∂Ψ

∂t
→ (ih̄

∂

∂t
+
e

c

∂χ

∂t
)Ψ ′. (16.4)

One finds that the new wave function is related to the old by

Ψ ′(x, t) = Ψ(x, t) exp[
ieχ(x, t)
h̄c

], (16.5)

that is, substitution into (16.3) gives the correct equation for Ψ. The gauge
changes the phase at any point and at any time in an arbitrary way. The
matrix elements of the coordinates are trivially invariant, while those of the
canonical momentum are shifted by pmn → (p + e

c∇)mn; the Schrödinger
theory is invariant because what matters is the mechanical momentum p− e

cA
which remains unshifted. Thus, the theory is gauge invariant. Equation (16.5)
also holds in Klein-Gordon and Dirac theories.
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16.0.4 Spinor Rotations

Consider the Pauli equation

(σ ·B)ψ = ηψ (16.6)

for a spin in a magnetic field in a Cartesian reference K. Rotating by an angle
α counterclockwise about any axis one obtains a reference K’. Choosing the
z = z′ axis parallel to the rotation axis, x′ik = aikxk with

{aik} =

⎛
⎝ cos(α) sin(α) 0
− sin(α) cos(α) 0

0 0 1

⎞
⎠ (16.7)

and x′ appears like x rotated clockwise. How does (16.6 ) transform to K’?
Since the Pauli equations must hold in the rotated system,

(σ ·B′)ψ′ = ηψ′, (16.8)

with the same Pauli matrices as before. Let ψ′ = R†ψ where R† rotates ψ
clockwise; ψ′ 
= ψ and (σ ·B) is not a scalar. Writing (16.8) in K one obtains

(RσR† ·B′)ψ = ηψ;

this agrees with (16.6) if
RσiR

† = aikσk (16.9)

since then (RσR† ·B′) = (σ ·B). This is satisfied by R = e
−iασz

2 . Thus, R can
be considered as an operator phase, that imparts vector-like transformations
on the Pauli matrices, although they are not the components of any vector.
The same reasoning applies to Dirac’s γ matrices under rotations and boosts:
they are not four-vector components, yet Dirac’s equation is covariant.

16.0.5 Galilean Transformations

In order to simplify the writing, let us consider a one-dimensional problem
for a spinless particle in a potential U ,

− h̄
2

2m
∂2

∂x2
Ψ(x, t) + U(x, t)Ψ(x, t) = ih̄

∂

∂t
Ψ(x, t). (16.10)

We go from the reference K of coordinates (x, t) to a reference K ′ of co-
ordinates (x′, t) moving with speed v, via the Galilei transformation x′ =
x− vt, t′ = t. Galilean covariance requires that the problem in K ′ becomes

− h̄
2

2m
∂2

∂(x′)2
Ψ ′(x′, t) + U ′(x′, t)Ψ ′(x′, t) = ih̄

∂

∂t
Ψ ′(x′, t). (16.11)
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We need to specify how U transforms and we assume that it is a scalar, that
is,

U ′(x′, t) = U ′(x − vt, t) = U(x, t). (16.12)

We need to write (16.11) in K and in order to change variables we note that
for any f(x, t) it holds that

∂

∂t′
f(x, t) =

∂

∂t′
f(x′ + vt′, t′) =

∂

∂t
f(x, t) + v

∂

∂x
f(x, t).

Hence, the rule is: {
∂

∂t′ = ∂
∂t = v ∂

∂x
∂

∂x′ = ∂
∂x

(16.13)

and (16.11) becomes

[− h̄
2

2m
∂2

∂x2
+ U(x, t)]Ψ ′(x− vt, t) = [ih̄

∂

∂t
+ ih̄v

∂

∂x
]Ψ ′(x− vt, t). (16.14)

We get back (16.10) by introducing a phase factor:

Ψ ′(x′, t) = Ψ(x, t)e−iφ(x,t). (16.15)

φ(x, t) = 0 would mean that the wave function is a scalar, as in fact it is
in the relativistic Klein Gordon-theory1 ; in the present case, instead, the
invariance is obtained by

φ(x, t) =
mvx

h̄
− mv2t

2h̄
. (16.16)

The probability density is scalar although the wave function is not.

16.1 Topologic phases

Pancharatnam phase

The Indian physicist S. Pancharatnam in 1956 introduced[14] the concept of
a gemetrical phase. Let H(−→ξ ) be an Hamiltonian which depends from some
parameters, represented by −→ξ ; let |ψ(−→ξ )〉 be the ground state. We can define
the phase difference Δϕ12 between two ground states |ψ(−→ξ 1)〉 and |ψ(−→ξ 2)〉
(provided that they are not orthogonal):

1Klein-Gordon particles may be pseudoscalar (change sign under parity) as pions
do. In Dirac’s theory a Lorentz transformation (boost) corresponds to a rotation
by an imaginary angle in 4-dimensional space-time, and the 4-component spinor
undergoes such a rotation. Thus, the transformation law depends on the kind of
particle.
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〈ψ(−→ξ 1)|ψ(−→ξ 2)〉 = |〈ψ(−→ξ 1)|ψ(−→ξ 2)〉|eiΔϕ12 .

However, this is gauge dependent and cannot have any physical meaning.
Now consider 3 points ξ and compute the total phase γ in a closed circuit
ξ1 → ξ2 → ξ3 → ξ1; remarkably,

γ = Δϕ12 +Δϕ23 +Δϕ31 (16.17)

is gauge independent! Indeed, the phase of any ψ can be changed at will by
a gauge transformation, but such arbitrary changes cancel out in computing
γ. This clearly holds for any closed circuit with any number of ξ. Therefore
γ is entitled to have physical meaning. This revealed that there may
be observables that are not given by Hermitean operators. For in-
stance, consider a Linear Combination of Atomic Orbitals (LCAO) model for
a molecule or cluster (or a Hubbard Model[17]). Thus, th is the matrix element
of the one-body Hamiltonian between site orbitals. We want a rough estimate,
because in order to understand the essentials we are ready to neglect details.
Thus we neglect overlaps between different orbitals ; phase differences are
implied from (16.2). Therefore, the inter-atomic hopping terms are modified
by the vector potential according to the Peierls prescription

th → the
2πi
φ0

∫ b

a

−→
A ·d−→r

, (16.18)

where
φ0 =

hc

e
= 4× 10−7Gauss cm2 (16.19)

is the flux quantum or fluxon. In the case of H2 this can be gauged away,
but with three or more atoms the physical meaning is that a magnetic flux
φ is concatenated with the molecule; changing φ by a fluxon has no physical
meaning, however.

16.1.1 Parametric Hamiltonians and Berry Phase

Let H [R] be an Hamiltonian which depends on a set R of 3 parameters, as
for example the components of a vector 2. A basis of stationary eigenstates
is defined (up to the phases, which are arbitrary) by:

H [R]an[R] = En[R]an[R] (16.20)

Now suppose the system is prepared in an energy eigenstate of the Hamil-
tonian at time t = 0 but −→R = −→R (t) depends on the time. It is assumed that
H [R] has a discrete spectrum with no degeneracy and the evolution of the
Hamiltonian H [−→R(t)] adiabatic, i.e. it is very slow; the involved frequencies
are small compared to the resonance frequencies that a stationary copy of

2With more parameters the problem requires more complicated mathematics.
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the system at any time would have3. To be specific, let the motion start at
time 0 and end at time T ; therefore the duration T must be long enough to
meet the adiabatic assumptions. We wish to solve

ih̄
∂

∂t
ψn = H [R(t)]ψn (16.21)

with the initial condition

ψ(t = 0) ≡ ψn(t = 0) = an[R(0)]. (16.22)

We shall find that the integral of (16.21) bears a real Berry phase [65] γn(t),
which turns out to be due to the topology of H in parameter space. This phase
can then be dropped or altered by a gauge transformation at any t, but a
net phase acquired in a closed path cannot be gauged away. To calculate the
phase, let’s expand on the instantaneous basis:

ψn(t) = an[R(t)]cn(t) +
∑
m �=n

cmam[R(t)], cn(0) = 1. (16.23)

By the Kato adiabatic theorem4 under our assumptions (nondegenerate dis-
crete spectrum and slow enough evolution) only the first term remains: the
system does not move from the n-th eigenstate. The adiabatic solution has
|cn(t)| ≡ 1, and the only effect of the evolution is on the phase, namely,

cn(t) = ei(θn(t)+γn(t)); (16.24)

here

h̄θn(t) = −
∫ t

0

dt′En[R(t′)] (16.25)

is the familiar dynamic phase, which exists in stationary problems as well.
To compute ih̄ ∂

∂tψn(t) using (16.23,16.24) we need to keep in mind that
∂
∂tan = −̇→R ·∇Ran where −̇→R ·∇R is a scalar product in parameter space; hence

∂

∂t
ψn(t) = (

−i
h̄
En + iγ̇n + −̇→R · ∇R)ane

−i
h̄

∫ t

0
dt′[En[R(t′)]+iγn(t)

+
∑
m �=n

ċmam +
∑
m �=n

cmȧm. (16.26)

We drop the last term which is negligible, because the coefficients of the
m 
= n terms are small and the derivative is also small: these are second-
order terms. Using (16.24), 0 = (ih̄ ∂

∂t −H)ψn becomes

3The original paper by Berry is based on the adiabatic hypothesis which makes
the analysis easier, however the existence of the Berry phase does not depend on
this assumption.

4The proof is clearly discussed in Ref.[194].
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0 =
(
−h̄γ̇n + ih̄

−̇→
R · ∇R

)
ane

−i
h̄

∫
t

0
dt′[En[R(t′)]+iγn(t)] +

∑
m �=n

[ċm − Em]am

Now, a scalar product by an removes completely all states with m 
= n and
leaves us with an equation for the Berry phase:

γ̇n = i
−̇→
R · 〈an[R(t)]|∇R|an[R(t)]〉. (16.27)

The matrix element looks similar to a momentum average, but the gradient
is in parameter space. The overall phase change is a line integral

Δγn = i

∫ T

0

dt〈an|∇R|an〉 ·
−̇→
R = i

∫
〈an|∇R|an〉dR.

The phase difference between two an[R] at different R points ia arbitrary; so
the integrand is undefined and this result is quite un-physical, except that in
a closed circuit C, the Berry phase, given by

γn(C) = i

∫
C

〈an|∇R|an〉 · d
−→
R (16.28)

is a property of H. In trivial topologies when C can be contracted to a point
the phase vanishes. In multiply connected problems the phase does not vanish
in general and is a geometric property which characterizes the Hamiltonian
as a function of the parameter space. Discretizing a continuous path in pa-
rameter space, the Pancharatnam phase Δϕ picks contributions

eiΔϕ =
〈ψ(ξ)|ψ(ξ +Δξ)〉
|〈ψ(ξ)|ψ(ξ +Δξ)〉| (16.29)

at each step and we arrive at Berry’s phase as a limit.

Open-path Berry Phase

Let a (discrete or continuous) path in parameter space go from ξ1 to an
equivalent point ξN connected to ξ1 by a symmetry: H(ξN ) = U †H(ξ1)U ,
with unitary U ; adopting the natural choice ψ(ξN ) = U †ψ(ξ1) one makes the
phase difference along the path

γ =
N∑

i=1

Δφi,i+1

gauge invariant. This is an open path Berry phase; |〈ψ(ξ1)|U |ψ(ξ1)〉| = 1
because the spectrum is not degenerate. In the case of a symmetry connecting
ξ1 to itself, we speak of a single-point Berry phase ; by (16.29),

eiγ = 〈ψ|U |ψ〉 ⇔ γ = arg(〈ψ|U |ψ〉). (16.30)
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Vector Potential Analogy

One naturally writes

γn(C) =
∫

C

−→
An · d

−→
R (16.31)

introducing a sort of vector potential (which depends on n, however) −→An =
i〈an|∇R|an〉. The gauge invariance arises in the familiar way, that is, if we
modify the basis with

an[R]→ eiχ(R)an[R],

then −→An →
−→
An − ∇Rχ, and the extra term, being a gradient, does not

contribute to γn(C). The Berry phase is gauge independent and real since

〈an|an〉 = 1 =⇒ ∇R〈an|an〉 = 0

that is 〈∇Ran|an〉 + 〈an|∇Ran〉 = 0, or 〈an|∇Ran〉 + c.c. = 0; this implies
that 〈an|∇Ran〉 is imaginary. We can also grant the reality of

−→
An = i〈an[R]|∇Ran[R]〉 = Im〈an[R]|∇Ran[R]〉.

We prefer to work with a manifestly real and gauge independent integrand;
going on with the electromagnetic analogy, we introduce the field as well:

γn(C) =
∫

S

rot
−→
An · −→n dS ≡

∫
S

−→
Bn · −→n dS. (16.32)

Let us derive an explicit formula for B. We start by computing [∇∧ (a|∇a)]i =
εijk∂j(a|∂ka). When performing the derivative, the term in ∂j∂ka is sym-
metric in j and k and therefore vanishes when antisymmetrized. Hence,
[∇ ∧ (a|∇a)]i = εijk(∂ja|∂ka) = [(∇a| ∧ |∇a)]i . Next we insert a complete
set |am〉〈am| and obtain

−→
Bn = −Im〈∇Ran| ∧ |∇aRan〉 = −Im

∑
m

〈∇Ran|am〉 ∧ 〈am|∇aRan〉.

Note that
〈an|∇Ran[R]〉

is imaginary, (the terms with m 
= n have arbitrary phases). Thus under the
Im operator we may remove the real m=n term. If you think that saving one
term is not an achievement, wait a moment. We get:

−→
Bn = −Im

∑
m �=n

〈∇Ran|am〉 ∧ 〈am|∇aRan〉. (16.33)

To simplify (16.33), we apply ∇R to H [R]an[R] = En[R]an[R] :
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(∇RH [R])an[R] +H [R]∇Ran[R] = (∇REn[R])an[R] +En[R]∇Ran[R];

next we multiply by am[R], with m 
= n. We obtain:

〈am|∇R|an〉 =
〈am|∇RH |an〉
Em − En

. (16.34)

There are severe divergence problems if there are degeneracies along C,
and we wisely limited ourselves to discrete non-degenerate spectra.

Example

For example, consider a particle with any spin s in a magnetic field B (a
physical one, this time) with H = kh̄

−→
B · −→s , with k a constant. The energy

eigenvalues are
En(B) = nh̄kB, n ∈ (−s, s).

Initially the particle is in a stationary state. Let us shift the direction of−→
B adiabatically, sweeping a solid angle Ω(C). Berry has shown that the
geometric phase is γn(C) = −nΩ(C).

16.1.2 Polarization of Solids

The modern theory of polarization in solids is based on these ideas; for a
review, see [16]. Consider a periodic solid with Hamiltonian

H =
1

2m

N∑
i=1

p2i + V. (16.35)

The usual definition of the dipole moment of a system in terms of the density
ρ(r), which applies to molecules, is:

−→
d = e

∫
d−→r −→r ρ(−→r ) = e〈Ψ0|

−→
R |Ψ0〉 (16.36)

where |Ψ0〉 is the ground state and

e
−→
R = e

N∑
i=1

−→r i, (16.37)

summed over the N electrons,is the dipole operator. There are problems in
applying this to solids because: 1) in solids we should like to use periodic
boundary conditions, and the dipole operator is forbidden, since it takes
outside the Hilbert space of periodic functions 2) we should like to deal with
a bulk property, while (16.36) depends crucially on the surfaces 3) one never
measures anything like (16.36). What one can do is rather to measure the
current (which is proportional to d

dt (e
−→
R ) ) coming out from the crystal under

some time-dependent probe, like a mechanical stress; we suppose that the
experiment is done adiabatically.
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Adiabatic Current

One can define the current density 〈j〉 = Trρ̂j,

j =
−→
P

mL3
,
−→
P =

N∑
i=1

−→pi (16.38)

in terms of the total momentum −→P , the electron mass m and the super-cell
size L; the polarization change in the experiment is

ΔP =
∫
dt〈j(t)〉. (16.39)

The density matrix ρ(t) in the adiabatic limit was given by Niu and Thouless
[80] in terms of the eigenstates |n, t〉; the instantaneous density matrix

ρi = |0, t〉〈0, t| (16.40)

commutes with H(t); we write

ρ(t) = ρi(t) +Δρ(t). (16.41)

By the adiabatic theorem , the correction is small, and to a good approxima-
tion,

ρ = |0, t〉〈0, t|+
∑
n>0

(Δρ0n|0, t〉〈n, t|+Δρn0|n, t〉〈0, t|). (16.42)

Since ρ does not depend on time explicitly,

i
d

dt
[ρi +Δρ] = [H,Δρ]; (16.43)

in the adiabatic case d
dtΔρ is negligible (time derivatives are small, the cor-

rection is small). Hence, we are left with

i
d

dt
ρi = [H,Δρ]. (16.44)

For n > 0, since (16.40) implies 〈0, t|ρi|n, t〉 ≡ 0,

0 =
d

dt
〈0, t|ρi|n, t〉 = 〈0, t|

d

dt
ρi|n, t〉+〈

d

dt
0, t|ρi|n, t〉+〈0, t|ρi|

d

dt
n, t〉; (16.45)

but 〈 d
dt0, t|ρi|n, t〉 = 0 also vanishes (since 〈 d

dt0, t|0, t〉 = 0) and

〈0, t| d
dt
ρi|n, t〉 = −〈0, t|ρi|

d

dt
n, t〉 = −〈0, t| d

dt
n, t〉 = 〈 d

dt
0, t|n, t〉, (16.46)
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where the last equality follows from 〈0, t|n, t〉 = 0. Taking matrix elements of
(16.44) we obtain the desired correction

Δρ0n = i
〈0̇, t|n, t〉
E0 − En

. (16.47)

Taking into account Equations (16.38 ) and (16.42) the average current is

〈j〉 = − ieh̄

mL3

∑
n>0

〈Ψ̇0|Ψn〉〈Ψn|P |Ψ0〉
En − E0

+ c.c. (16.48)

Idealized Experiment

Rather than a mechanical stress, we can more simply (from the theorist’s
point of view) use ingenuity to introduce a tiny electric field without disturb-
ing the periodicity of the solid. Consider modifying the Hamiltonian (16.35)
to read

H =
1

2m

N∑
i=1

(pi − h̄k)2 + V. (16.49)

This device [81] corresponds to a constant vector potential (that will vary
slowly in time) and would represent a gauge change, were it not for the
periodic boundary conditions; running through the supercell of length L an
electron collects a magnetic flux. Indeed, this is called Hamiltonian with a
flux. In order to make this compatible with the periodicity, we must choose

k appropriately; we introduce vectors −→k (α)
with components

k
(α)
β =

2π
L
δαβ ; (16.50)

now if −→k is a combination with integer coefficients of−→k (α)
, the Resta operator

U(k) = ei
−→
k ·−→R , (16.51)

is allowed by the periodic boundary conditions. The vector potential requires
a phase factor which is the many-body version of (16.5); in this case this is just

U(−→k ): picking −→k = −→k (α)
, which makes U allowed, we satisfy the modified

Schrödinger equation and the periodic boundary conditions by writing the
ground state of (16.49)

|Φ0(
−→
k

(α)
)〉 = U(−→k (α)

)|Ψ0〉 (16.52)

Relation to Berry Phase

To see how this has to do with the Berry phase, the relevant quantity is
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z(α) = 〈Ψ0|U(−→k (α)
)|Ψ0〉 = |z(α)|eiγ (16.53)

where γ, that may depend on α, is a single-point Berry phase. Note that U
is unitary and replacing the ground state by a sum over the complete set,

|z(α)|2 ≤
∑

k

〈Ψ0|U(−→k
(α)

)†|Ψk〉〈Ψk|U(−→k
(α)

)|Ψ0〉;

however the r.h.s. is unity and we may conclude |z(α)|2 ≤ 1. We may note
that z(α) is a true and highly correlated many-body quantity, that unlike the
dipole (16.36) cannot be expressed in terms of the density.

We need to deal with this problem by perturbation theory, since then the
expressions of the current and of γ̇ turn out to be closely related. Using (16.49)
with the periodic boundary conditions we have k-dependent eigenvalues and
to first-order the modified ground state U |Ψ0〉 reads

|Φ0(k)(1)〉 ∼ |Ψ0〉+
∑
n>0

|Ψn〉〈Ψn| h̄k·P
m |Ψ0|〉

En − E0
. (16.54)

Normally in writing this first-order expansion one does not care about the
phase, but here we must keep track of (16.53); so we write using (16.50)

|Φ0(k)〉 = eiγ{|Ψ0〉+
2πh̄
mL

∑
n>0

|Ψn〉〈Ψn|Pα|Ψ0|〉
En − E0

}. (16.55)

Multiplying by 〈Ψ0| one finds

zα = eiγ , (16.56)

and multiplying by 〈Ψ̇0|, since 〈Ψ̇0|Ψ0〉 = 0,

〈Ψ̇0|U(k(α))|Ψ0〉 = eiγ{2πh̄
mL

∑
n>0

〈Ψ̇0|Ψn〉〈Ψn|Pα|Ψ0|〉
En − E0

}. (16.57)

From (16.56) one finds γ = Im log(zα); hence

γ̇ = Im[
〈Ψ̇0|U |Ψ0〉+ 〈Ψ0|U |Ψ̇0〉

〈Ψ0|U |Ψ0〉
]

and then (16.57,16.53) yield

dγ

dt
= −i 〈Ψ̇0|U(k(α)) |Ψ0〉

〈Ψ0|U(k(α)) |Ψ0〉
+ c.c. (16.58)

and eventually, comparing with (16.48),

〈j〉 = e

2πL2
γ̇. (16.59)
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The connection with the Berry phase is established, and the polarization
change ΔP is proportional to γ.

The actual calculation can be accomplished by expanding in determinants.
Indeed, if |Ψ0〉 = Det|ψ1 · · ·ψN | is a determinant,

U(k(α)) |Ψ0〉 = exp

[
ikα ·

∑
i

ri

]
Det|ψ1 · · ·ψN |

also is, with spin-orbital i multiplied by exp [ikα · ri] . The overlap (16.53) is
computed as a determinant of one-body overlaps.

Problems

16.1. Given the two reference systems of Section 16.0.5, if in K

ψ(x, t) = eikx−ih̄ k2t
2m

what does the transformed state look like in K’?



17 Pairing from repulsive interactions

Long ago, Kohn and Luttinger [174] proposed that a superconducting insta-
bility should occur in Jellium. They focussed on pairs of parallel spin electrons
of large relative angular momentum L. The large L and the triplet state keep
the electrons apart, so the Coulomb repulsion is particularly mild in such
pairs. At long distances, the screened interaction undergoes Friedel oscilla-
tions due to the singularity of the dielectric function at 2kF (See Section
12.1.1). This means a slight over-screening of the repulsion in some distance
ranges: one gets an effective attraction from the repulsion via a quantum
mechanical correlation effect. Attraction in some distance ranges does not
necessarily imply binding, but Kohn and Luttinger suggested that this ef-
fect could indeed produce pairing. While no such superconducting instability
appears to be relevant to ordinary metals, the paradoxical theoretical idea
that attraction could result from repulsion is fascinating and the discovery of
high-Tc superconductivity [175] has stimulated a hot discussion on the pos-
sibility that something similar is realized in the Cuprates (although the pairs
are singlets with L=2, so some important modification is needed). The fact
that TC can be above liquid N2 (rather than liquid He) temperatures, and the
evidence that this occurs in strongly correlated materials suggests to part of
the community that the mechanism must be different from the conventional
phonon-assisted BCS one[181]. Other Authors prefer a conventional, or an
enhanced[182] phonon-assisted mechanism. New superconductors including
doped Fullerenes and Carbon nanotubes[197] complicate the riddle.

Anyhow, strong correlations and phonons are there, so they are likely to
be involved, with a complex trade between the various degrees of freedom;
some modeling is in order. Then, it looks natural to start by the repulsive
trivial Hubbard model (1.64), or some of its variants, in 2 dimensions, while
keeping in mind the claims that such a model cannot superconduct at all [168]
[169] or at least cannot have superconducting long-range order [170]. An ef-
fective attractive force comes from second-order effects, e.g., the exchange of
spin fluctuations, but it must overcome the strong direct Hubbard repulsion
to give pairing. Bickers and co-workers[162] explored the consequences of a
spin density wave instability within the RPA approximation using the trivial
Hubbard Hamiltonian. They found a spin density wave phase and a super-
conducting phase with pair-wavefunctions of dx2−y2 symmetry. These findings
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were confirmed by using the FLEX approximation[163] which treats the fluc-
tuations in the magnetic, density and pairing channels in a self-consistent
and conserving way. Renormalization Group (RG) methods[164] are a well
controlled alternative approach to deal with Fermi systems having compet-
ing singularities. The RG has been used by several authors[165],[166],[167] to
study the coupling flows at different particle densities. In agreement with the
previous findings, RG calculations show a d-wave superconducting instabil-
ity away from half filling driven by the exchange of spin- or charge-density
fluctuations.

States of different symmetry may be separated by tiny energies per elec-
tron, so it is very desirable to have exact data to rely on and observe pairing
or get clear-cut results. The 1d Hubbard model is solved[73] by Bethe Ansatz
techniques (Chapter 18) but does not show pairing. In 2d one can compute
the exact ground state of small clusters by Lanczos techniques (Section 14.1).
A pairing criterion that we shall discuss below was given by Richardson in
the context of nuclear physics[176]. Defining

Δ̃(N + 2) = E(N + 2) +E(N)− 2E(N + 1) (17.1)

where E(N) is the N -body ground state energy,

Δ̃(N + 2) < 0 (17.2)

signals a bound pair in the ground state with N + 2 particles and |Δ̃| is in-
terpreted as the binding energy of the pair.
The writer and Balzarotti[171][172] discovered how one can systematically

Δ̃ = N + N - N - N =

Fig. 17.1. Pictorial representation of Equation (17.1);the large circles stand for
the interacting N-body system, the black circles represents the added particle, and
the wiggly line is the interaction, which remains after the simplification.

build repulsive models that yield pairing and superconducting flux quantiza-
tion, and that the two properties have a strong mathematical connection to
each other. Both require special symmetric clusters ( it was known that pair-
ing occurs in the 4× 4 system[177] but the simpler examples like CuO4 and
the general case had not been discovered yet) and derived an analytic the-
ory of pairing interactions (W=0 pairing). We reported several detailed case
studies where the formulas are validated by comparison with the numerical
data. The results support general qualitative criteria for pairing induced by
the on-site repulsion only. Our approach successfully predicts the formation
of bound pairs, and explains why other ingredients like strong off-site interac-
tions are needed to force pairing in other geometries. The analytic approach
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is also needed to predict what happens for large systems and in the thermo-
dynamic limit. Understanding the implications of the small cluster results is
not trivial since the computed pair binding energies show a rapid decrease
with increasing the cluster size; so several authors on the basis of the numer-
ical data on 4×4 or even 6×6 clusters wrongly concluded that pairing in the
Hubbard model as a size effect. However, much larger cells (at least 30×30)
are needed to estimate the asymptotic behaviour and the analytic treatment
suggests that pairing with a reduced but substantial binding energy persists
in the full plane. Details may be fond in a recent review paper[173].

17.0.3 W = 0 Pairing in Cu-O Clusters

In this Section, we illustrate the concept of W = 0 pairs and the way they
become bound states, by using examples with a geometry relevant for the
Cuprates. Nevertheless, the simple square Hubbard plane and its symmetric
clusters like the 4× 4 cluster with periodic boundary conditions also present
W=0 pairing[189]. Moreover, Hubbard models with the geometry of Carbon

CuO4

Cu5O4

Cu5O16

Fig. 17.2. Allowed clusters that were used to show pairing and superconducting
flux quantization by exact diagonalization methods in Ref. [172]; the holes were 4,
and the number of configurations involved in the case of Cu5O16 is 44,100.

Nanotubes (CNT) [188] allow W=0 pairing away from half filling, opening the
possibility that even there the mechanism of superconductivity is basically
electronic [207]. Here we focus on the three-band Hubbard Hamiltonian

H = K +W +Woff−site (17.3)

where introducing the site energies εp and εd refering to Oxygen and Copper,
the kinetic term is
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K = t
∑
〈ij〉,σ

(p†jσdiσ +h.c.)+ tpp

∑
〈jj′〉,σ

p†jσpj′σ +εd

∑
i,σ

niσ +εp

∑
j,σ

njσ; (17.4)

here t’s are hopping parameters; pj (di) destroy holes at the Oxygen (Copper)
ions labeled j (i) and n are the number operators; 〈ij〉 refers to pairs of nearest
neighbors. The interaction terms are

W = Ud

∑
i

ni↑ni↓+Up

∑
j

nj↑nj↓, Woff−site = Upd

∑
〈ij〉,σσ′

niσnjσ′ . (17.5)

the positive U parameters represent repulsion, Ud and Up on-site and Upd

off-site on adiacent Cu and O sites. In line with literature estimates[183] we
assume the following values (in eV): εp − εd = 3.5, t = 1.3, tpp = −0.65,
Ud = 5.3, Up = 6 and, most probably, Upd < 1.2. Note that we are using
the same t for all Cu-O bonds, while some authors use more complicated
conventions. For instance, F. C. Zhang and T. M. Rice[184] use an alternating
sign prescription for t, which may be obtained by changing the sign of all the
O orbitals in the horizontal lines containing Cu ions. The two pictures are
related by a gauge transformation, under which the orbital symmetry labels
A1 and B1 are interchanged. Some of the symmetry related information is
gauge dependent and unobservable, while some is physical (e.g. degeneracies
are).

As Balzarotti and the writer[171][172] pointed out, highly symmetric clus-
ters possess 2-holes singlet eigenstates of H which do not feel the on-site
repulsion W ; such eigenstates were called W = 0 pairs and play a crucial
role for pairing. In order to have W = 0 solutions, the clusters must possess
the full C4v (square) symmetry, and must be centered around a Cu site1. In
particular, the geometries, examined by Hirsch et al.[179], and Balseiro et
al.[178] are forbidden from our viewpoint. The Cu4O4 geometry considered
by Ogata and Shiba[180] has the C4v symmetry, but lacks the central Cu,
and therefore it is forbidden, too [171].

The aufbau principle is strictly valid for non-interacting electrons, yet
here it is useful in a wide range of parameters to predict the symmetry of
the ground state in the allowed clusters. Concerning the many-body ground
state, an interesting situation arises when the ground state can be thought
of as consisting in W=0 pairs moving on a closed-shell background. W=0
pairs can arise when there are degenerate one-body levels, and a preliminary
analysis can be done assuming that the symmetry Group is C4v (below we
shall discuss more general groups). In the Character Table of the C4v Group
( Appendix 20) we see that there are 4 one-dimensional irreducible represen-
tations (irreps) A1, A2, B1, B2 and 1 two-dimensional irrep E. The smallest

1For large enough clusters, the local physics is well described by an infinite plane,
and the cluster shape is no longer important, but such large systems are outside the
scope of diagonalization methods. Yet, our approach emphasizes the importance of
the symmetry in the mechanism and predicts that any important distortion of the
lattice readily destroys pairing.
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square Cu-O cluster, CuO4, see Fig. 17.2, is also the simplest2 where W = 0
pairing occurs, and we shall use it as a prototype. The one-body levels and
their symmetry labels are reported in Table 17.1. Let us build a 4-hole state

εA1 εEx εEy εB1 εA′
1

τ −√
4 + τ 2 0 0 −2τ τ +

√
4 + τ 2

Table 17.1. One-body levels of the CuO4 cluster in units of t as a function of the
dimensionless parameter τ ≡ tpp/t.

in CuO4 (see Fig. 17.3 b)). The first two holes go into a bonding level of A1

symmetry; this is a totally symmetric (1A1) pair. For negative τ , the other
two holes go into a non-bonding level of E(x, y) symmetry, which contains 4
spin-orbital states. Labelling sites as in Figure 17.3 a), the creation operators
for the degenerate orbitals are E†

yσ = 1√
2

(
p†

2σ − p†
4σ

)
E†

xσ = 1√
2

(
p†
1σ − p†

3σ

)
Using the E orbitals according to the Pauli principle one obtains

(
4
2

)
= 6

different pair-states. The irrep multiplication table allows for labeling them
according with their space symmetry: E ⊗ E = A1

⊕
A2

⊕
B1

⊕
B2. Pro-

jecting according to usual rules we see that A2 is a spin-triplet, 3A2, while
the remaining irreps are spin-singlets, 1A1, 1B1 and 1B2. One can readily
verify that the B2 singlet operator

b†B2
=

1√
2

(
E†

x,↑E
†
y,↓ + E†

y,↑E
†
x,↓
)

(17.6)

is a W = 0 pair (no double occupation) 3. To first order in perturbation
theory, the 4-body singlet state of B2 symmetry is degenerate with the A2

triplet; Hund’s rule would have predicted a 3A2 ground state. However, the
true ground state turns out to be singlet. The numerical results on the CuO4

cluster show that Δ̃(4) is negative for 0 > τ > −0.5 and that its minimum
value occurs at τ = 0, when the non-bonding orbitals B1 and E become
degenerate: the paired interacting ground state is also degenerate in this
particular case.This accidental degeneracy is is due to the fact that any per-
mutation of the oxygens is a symmetry and the symmetry Group becomes
S4 ⊃ C4v; the existence of two different W=0 pairs has a deep influence on
the magnetic properties (Section 17.1 below). In Fig.17.3 c) we plot Δ̃(4)
for τ = 0, εp − εd = 0, Upd = 0 and Up = Ud = U .

Δ̃(4) has a minimum at U ≈ 5 t and it is negative when 0 < U < 34.77 t.

2One can obtain Δ̃ < 0 at half filling with 4 fermions in a 4-site cluster, omitting
the Cu site; we regard this as a limiting case with a strongly repulsive central site.

3Note that 1B2 is the symmetry label of the pair wave function in the gauge we
are using, and must not be confused with the symmetry of the order parameter.
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Fig. 17.3. a) The CuO4 unit. b) One-particle energy levels for τ < 0 with their
symmetry labels and their fillings in the 4-particle ground state according to the
aufbau principle. Two fermions belong to the doubly degenerate E(x, y) represen-
tation. For τ → 0, the Group becomes S4 ⊃ C4v and the B1(x

2 − y2) level merges
with E(x, y) giving raise to triple degeneracy. Note that among the irreps of C4v

(see the Character Table in Appendix II) A2 and B2 are not represented in this
scheme. Below we shall see that this observation is crucial for W=0 pairing theory.
c)Δ̃(4) versus U

t
for this cluster is negative in a wide range (it becomes positive

for U
t

> 34.77 ) and the maximum pairing occurs at U ∼ 5t; this is not a weak
coupling phenomenon.

I emphasize that Δ̃(4) becomes positive for large values of U/t and hence
pairing disappears in the strong coupling regime. In the present problem U
must exceed several tens of times t before the asymptotic strong coupling
regime sets in. A perturbation theory will strictly apply at weak coupling
where the second derivative of the curve is negative. However, qualitatively
a weak coupling approach is rewarding in all the physically interesting range
of parameters. The sign of Δ̃ depends on U and τ and its magnitude is
unlike any of the input parameters. Since the opening Chapters of this book,
dealing with Kondo physics, two-hole resonances, and plasmon effects, we
have appreciated that the occurrence of bound states giving raise to new
energy scales is the most intriguing signature of strong correlation; actually,
it could be its definition.

On the other hand, at positive τ ’s the B1 non-bonding level is pushed be-
low the degenerate one and Δ̃(4) becomes large and positive (at τ = +0.65,
Δ̃(4) = 0.53 eV). The dependence of Δ̃(4) on the input parameters has been
studied in detail; also, we have found that any lowering of the symmetry is
reflected by a corresponding increase of Δ̃(4)[171]. We have performed nu-
merical explorations in other fully symmetric clusters like Cu5O4 and Cu5O16

and we have found negative values of Δ̃(4), of the order of few meV, using
physical parameter values.
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17.0.4 Pairing Mechanism

In all the allowed clusters up to 21 atoms, the lowest one-hole level belongs to
A1 symmetry, and the next E level yields the W = 0 pair. The interactions
produce a non-degenerate 1B2 4-hole ground state having the same symmetry
as the W = 0 pair. The interested reader may see Refs.[186],[187] for the
details.

In symmetric clusters as well as in the full plane, Δ̃(4) < 0 arises[172] from
an effective attractive interaction between the holes of the W = 0 pair; the
same interaction is repulsive for triplet pairs. In the lowest approximation,
the attraction stems from the second-order exchange diagram.The effective

Fig. 17.4. The second-order exchange interaction that at weak coupling can be the
leading contribution to the effective attraction, depending on the lattice and on the
parameters (see Ref. [172]).

interaction can be found by a canonical transformation (basically a Schrieffer-
Wolff-type argument) which is long and not easily summarized, so I defer the
reader to the original paper [196]. The results reduce to those of perturbation
theory in the weak coupling case. Moreover, the analytical results compared
semi-quantitatively with those from exact diagonalization of several clusters
at various fillings including the 4× 4 Hubbard cluster[190]. Being predictive
in strongly correlated problems is the exception, rather than the rule, but
in this case simplicity has emerged from symmetry. Applying the formulas
to supercells of increasing size, it was possible to extrapolate the results to
the thermodynamic limit, showing that Δ̃ < 0 is not a size effect and could
well contribute a pair binding energy in the 10 meV range. The inclusion of
phonon effects in the W=0 scheme was envisaged in Ref. [70].

17.0.5 The W = 0 theorem

A general theorem puts useful restrictions on the many-body ground state
symmetry. Consider a Hubbard model4H = H0 +W on a lattice Λ, where

H0 =
∑
〈ij〉,σ

tijc
†
jσciσ (17.7)

4that is, a model with on-site, possibly site-dependent, interactions Ui.
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is the free part and
W =

∑
i∈Λ

Uini↑ni↓, (17.8)

with an irrep of G0. Let G0 be the optimal symmetry Group of H0, that is, a
Group containing enough symmetry operations that no degeneracy between
one-body eigenstates is accidental. In other terms, G0 must contain enough
operations to justify all such degeneracies by mixing all the degenerate sub-
spaces.

We can construct[185] all the W = 0 pair eigenstates by using projection
operators of G0. We start by using the irreps of G0 to label all the one-body
eigenstate of H0. In this way, we are splitting the irreps of G0 according to
the following definition.

Definition. An irrep η is represented in the one-
body spectrum ofH if at least one of the one-body
levels belongs to η.

Let E be the set of the irreps of G0 which are represented in the one-
body spectrum of H . Let |ψ〉 be a two-body eigenstate of the non-interacting
Hamiltonian with spin Sz = 0 and P (η) the projection operator on the irrep
η. We wish to prove the W = 0 Theorem:

η /∈ E ⇔ WP (η)|ψ〉 = 0. (17.9)

Let us first translate this into words:

- Any nonvanishing projection of |ψ〉 on an irrep
not contained in E , is an eigenstate of H with no
double occupancy. The singlet component of this
state is a W = 0 pair. Conversely, any pair belong-
ing to an irrep represented in the spectrum must
have non-vanishing W expectation value:

Proof : Let us consider a two-body state of opposite spins belonging to
the irrep η of G0:

|ψ(η)〉 =
∑
ij∈Λ

ψ(η)(i, j)c†i↑c
†
j↓|0〉.

Then we have

ni↑ni↓|ψ(η)〉 = ψ(η)(i, i)c†i↑c
†
i↓|0〉 ≡ ψ

(η)(i, i)|i ↑, i ↓〉.

Consider the projection operator P (η) on the irrep η : since

P (η)
∑
i∈Λ

ψ(η)(i, i)|i ↑, i ↓〉 =
∑
i∈Λ

ψ(η)(i, i)|i ↑, i ↓〉,
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if P (η)|i ↑, i ↓〉 = 0 ∀i ∈ Λ, then ψ(η)(i, i) = 0 ∀i ∈ Λ. It is worth to
note that this condition is satisfied if and only if P (η)|iσ〉 = 0 ∀i ∈ Λ,
where |iσ〉 = c†iσ|0〉. Now it is always possible to write |iσ〉 in the form
|iσ〉 =

∑
η∈E c

(η)(i)|ησ〉 where |ησ〉 is the one-body eigenstate of H with
spin σ belonging to the irrep η. Hence, if η′ /∈ E , P (η′)|iσ〉 = 0 and so
P (η′)|i ↑, i ↓〉 = 0. Therefore, if |ψ(η)〉 is a two-hole singlet eigenstate of the
kinetic term and η /∈ E , then it is also an eigenstate of W with vanishing
eigenvalue, that means a W = 0 pair.

Q.E.D.

Remark : Suppose we perform a gauge change in H such that G0 is pre-
served; clearly, a W = 0 pair goes to another W = 0 pair. Thus, the theorem
implies a distinction between symmetry types which is gauge-independent.

Remark :The complete characterization of the symmetry of W = 0 pairs
requires the knowledge of G0. A partial use of the theorem is possible if
one does not know G0 but knows a Subgroup G<

0 . It is then still granted
that any pair belonging to an irrep of G<

0 not represented in the spectrum
has the W = 0 property. On the other hand, accidental degeneracies occur
with a Subgroup of G0, and by mixing degenerate pairs belonging to irreps
represented in the spectrum one can find W = 0 pairs also there.

17.0.6 Examples

CuO4

The CuO4 cluster is a simple example of the W=0 theorem. If τ 
= 0,G0 = C4v;
of the W = 0 pair belongs to the irrep B2 which is not represented in the
spectrum (see Table 17.1). A2 is also not represented, but projecting any two-
body state one finds nothing. If τ = 0, a three-times degenerate one-body
level exists due to an accidental degeneracy between E(x, y) and B1 orbitals;
with 4 interacting fermions, pairing occurs in two ways, as A1 and B2 are
both degenerate ground states. The extra degeneracy cannot be explained
in terms of C4v, whose irreps have dimension 2 at most. For τ = 0 any
permutation of the four Oxygen sites is actually a symmetry and therefore
G0 is enlarged to S4 (the group of permutations of four objects). S4 has the
irreducible representations A1 (total-symmetric), B2 (total-antisymmetric),
E (self-dual), T1 and its dual T2, of dimensions 1, 1, 2, 3 and 3, respectively.
These irreps break in C4v as follows

A1 = A1, T1 = B1 ⊕ E, T2 = A2 ⊕ E, B2 = B2, E = A1 ⊕B2 .

Labelling the one-body levels with the irreps of S4, one finds that E is not
contained in the spectrum and thus yields W = 0 pairs:

1E = 1A1 ⊕ 1B2 . (17.10)
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The corresponding pair-creation operators reads:

b†A1
=

2√
3
B†

1↑B
†
1↓ +

1√
3

(
E†

x↑E
†
x↓ + E†

y↑E
†
y↓
)

(17.11)

for the total-symmetric pair and Eq. (17.6) for the B2 component.

The 4× 4 Hubbard cluster with periodic boundary conditions

Energy Irrep of G Degeneracy

4 B̃2 1

2 Λ4 4

0 Ω4 6

-2 Λ1 4

-4 A1 1

Table 17.2. One-body spectrum for t = −1. The irrep symbols will be explained
shortly.

The one-body spectrum of the model (see Table ( 17.0.6)) involves a 6
times degenerate shell, whereas the Space Group G does not have irreps with
dimensions bigger than 4 (see Ref.[156]). The optimal Group G0 is larger than
the Space Group and includes symmetries which are not isometries[190].

Consider the transformation d of the 4 × 4 lattice shown in Equation
(17.12):

d :

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

−→

5 1 4 8
6 2 3 7
10 14 15 11
9 13 16 12

(17.12)

Because of the periodic boundary conditions, the nearest neighbours of 1 are
2, 5, 4 and 13. The dynamical symmetry operation d can be obtained by
rotating the plaquettes 1,2,5,6 and 11,12,15,16 clockwise and the other two
counterclockwise by 90 degrees. This preserves nearest neighbours (and so,
each order of neighbours) but is no isometry ( for example, the distance be-
tween 1 and 3 changes). Thus, this symmetry operation d is a new, dynamical
symmetry. Including d and closing the multiplication table one obtains the
required Optimal Group G with 384 elements in 20 classes (like G) as shown
in Table .
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C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
I t22 C4σ

′[2] σx C2 σ′ C2d C2t22d C2σ
′[1] C3

4 t02d
C11 C12 C13 C14 C15 C16 C17 C18 C19 C20

C3
4 t20d C2t01 C2σx[1] C4 C2t01d C2t12d C2σx[1]d C4[1]d C2[1]d C4[1]

Table . Here, we report one operation for each of the 20 classes Ci; the others can

be obtained by conjugation. The operations are: the identity I, the translation tmn

of m steps along x and n along y axis; the other operations C2, C4, σ, σ′ are those of

the Group of the square and are referenced to the centre; however,C2[i], C4[i], σ[i],

and σ′[i] are centered on site i.

The complete Character Table of G is shown below.

G C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20
A1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Ã1 1 1 1 1 1 1 -1 -1 1 -1 -1 -1 -1 1 1 1 1 1 -1 -1
B2 1 1 -1 -1 1 1 1 1 1 -1 -1 1 -1 -1 1 1 -1 -1 1 -1
B̃2 1 1 -1 -1 1 1 -1 -1 1 1 1 -1 1 -1 1 1 -1 -1 -1 1
Γ1 2 2 -2 -2 2 2 0 0 2 0 0 0 0 -2 -1 -1 1 1 0 0
Γ2 2 2 2 2 2 2 0 0 2 0 0 0 0 2 -1 -1 -1 -1 0 0
Σ1 3 3 3 3 3 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 1 1
Σ2 3 3 3 3 3 -1 1 1 -1 1 1 1 1 -1 0 0 0 0 -1 -1
Σ3 3 3 -3 -3 3 -1 -1 -1 -1 1 1 -1 1 1 0 0 0 0 1 -1
Σ4 3 3 -3 -3 3 -1 1 1 -1 -1 -1 1 -1 1 0 0 0 0 -1 1
Λ1 4 -4 -2 2 0 0 -2 2 0 -2 2 0 0 0 -1 1 -1 1 0 0
Λ2 4 -4 -2 2 0 0 2 -2 0 2 -2 0 0 0 -1 1 -1 1 0 0
Λ3 4 -4 2 -2 0 0 -2 2 0 2 -2 0 0 0 -1 1 1 -1 0 0
Λ4 4 -4 2 -2 0 0 2 -2 0 -2 2 0 0 0 -1 1 1 -1 0 0
Ω1 6 6 0 0 -2 -2 -2 -2 2 0 0 2 0 0 0 0 0 0 0 0
Ω2 6 6 0 0 -2 -2 2 2 2 0 0 -2 0 0 0 0 0 0 0 0
Ω3 6 6 0 0 -2 2 0 0 -2 -2 -2 0 2 0 0 0 0 0 0 0
Ω4 6 6 0 0 -2 2 0 0 -2 2 2 0 -2 0 0 0 0 0 0 0
Π1 8 -8 -4 4 0 0 0 0 0 0 0 0 0 0 1 -1 1 -1 0 0
Π2 8 -8 4 -4 0 0 0 0 0 0 0 0 0 0 1 -1 -1 1 0 0

Character Table of the Optimal Group G of the 4 × 4 model.

As the notation suggests, the irreps A1 and Ã1 both reduce to A1, in C4v,
while B2 and B̃2 both reduce to B2. One can easily determine how the irreps
of G split in C4v (see problem17.1). We rightly called G the Optimal Group
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because no accidental degeneracy of orbitals occurs using G. All the W = 0
pairs can be found by projecting on the appropriate irreps, determined using
the W = 0 Theorem(see Problem 17.2).

17.1 Superconducting flux quantization and Josephson
effect

Magnetic flux can be trapped in the hole of a hollow superconducting cylinder
with thick walls compared to the penetration depth and persist in the ab-
sence of an applied field. As explained by Schrieffer[181] the flux quantum is
hc
e = 4×10−7gausscm2, (see 16.19) but the flux quantum in superconductors

is actually hc
2e . The Superconducting Flux Quantization (SFQ) is a signature

of superconductivity, since it clearly implies that the external magnetic field
excites diamagnetic currents in a system where the carriers have charge 2e.
The perturbation due to the field must be gentle enough, otherwise the su-
perconductor becomes normal; the field is screened by supercurrents at the
surface of the superconductor and its perturbation on the system cannot be
too strong otherwise the supercurrent exceeds the critical current.

The above models with on-site repulsive interactions and W=0 pairing
give this signature. The vector potential A enters through the Peierls pre-
scription (16.18)

tab → tabe
2πi
φ0

∫
b

a
A·dr

In small clusters, W=0 pairing requires full C4v symmetry; moreover, the flux
tubes must be inserted in such a way that the symmetry is not distorted. We
must arrange the thought experiment in such a way that the perturbation
due to the field is gentle, and does not destroy the pairing. In small clusters,
that we may stud more easily, the current carrying bonds must be so weak
that the current screening the field is not excessive and the change in the
ground state energy due to the field is of the order Δ̄ or less. When this is
done, the SFQ already obtains with a few pairs and even one pair yields a
well defined double-minimum pattern. This means that although in textbooks
SFQ is explained in terms of the order parameter, it is basically a single-pair
symmetry property. Going to the thermodynamic limit is necessary to achieve
macroscopically large barriers that localize the system in one of the minima.

The simplest case is CuO4 and the insertion of flux tubes is shown in
Figure 17.4 a). In order to preserve the symmetry, a flux φ is inserted in each
of the four Cu-O-O triangles or plaquettes of the cluster. The dotted bonds
must represent negative hopping integrals tpp of the order of 50 meV or less,
otherwise the pairing mechanism breaks down and paramagnetism prevails.
Figure 17.4 b) shows the ground state energy of the cluster versus φ. The
flux dependence was computed with εp − εd = 3.5, t = 1.3, Ud = 5.3, Up = 6.
This pattern is characteristic of SFQ. The system is diamagnetic at small φ
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Fig. 17.5. Correlation-induced flux quantization in the CuO4 cluster. a) The CuO4

unit with 4 inserted flux tubes φ. A flux φ is inserted in each of the four Cu-O-O
triangles or plaquettes of the cluster. b) Flux dependence of the ground state en-
ergy of the cluster with the standard parameter values εp − εd = 3.5, t = 1.3, Ud =
5.3, Up = 6 but tpp = −0.05eV. Note that the system is diamagnetic at small flux
and exhibits the characteristic minimum at half fluxon. c) Ground state energy of
the cluster with Ud = Up = 0. without correlation the cluster shows a normal,
paramagnetic behaviour. Similar phenomena have been observed in exact diagonal-
ization work with larger clusters (up to 21 atoms) in Ref. [172] and with rings of
clusters.

Fig. 17.6. Rings of clusters threaded by flux tubes allow to study the propagation
of bound W=0 pairs. The dotted line represents hopping between two consecutive
clusters that must be designed in such a way that the square symmetry of each
cluster is preserved.
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(its energy increases with flux) but reaches a maximum due to a level crossing
and goes trough a second minimum at φ = φ0

2 ;φ = φ0 is equivalent to φ = 0.
The two ground states at φ = 0 and φ = φ0

2 are of comparable depth and are
due to W=0 pairs of different symmetry.

Fig. 17.7. Inserting 4 flux tubes, each carrying a flux φ in a CuO4 unit in the plane,
the magnetic flux through any path in the plane must equal φ times the number
of tubes encircled by the path. This is achieved by choosing the vector potential
according to the above pattern, with

∫
A · dr = 0 along each bond without arrow,∫

→ A · dr = φ
2

along each oriented bond with the integration path parallel to the
arrow. For a generic flux φ in each tube any reflection σ of C4v reverses the arrows
(φ → −φ ) and thus C4v is broken and only the commutative Z4 Group of the
rotations survives. W=0 pairs are forbidden in the field and pairing is destroyed.
However, at φ = φ0

2
, one finds

∫
→ A ·dr = φ0

4
and the Peierls prescription is t → it

on any bond with arrow; now any reflection σ implies φ → −φ which is just a gauge
change, replacing it by −it. This is equivalent to a unitary transformation S that
changes the signs to all the Cu orbitals along the diagonals except the central one.
Since S reverses the arrows, σ × S is a symmetry.

Indeed, as we saw earlier, two W=0 irreps exist for tpp = 0. SFQ is a
correlation effect and disappears for Ud = Up = 0; without correlation the
cluster shows a normal, paramagnetic behaviour, shown in Figure 17.4 c)
Similar phenomena have been observed in exact diagonalization work with
larger clusters (up to 21 atoms) in Ref. [172] and with rings of clusters. Larger
systems can be obtained by joining several clusters in such a way that bound
pairs can propagate. Rings of clusters threaded by flux tubes also show SFQ,
and Figure 17.5) illustrates the general idea of how such systems can be
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built,in such a way that the square symmetry of each cluster is preserved.
The SFQ pattern is quite similar[18],[?] to the one discussed above; this time
the inter-cluster hopping must be a weak link in order to make the magnetic
perturbation gentle enough. By projecting on the low energy sector, we can
solve very large clusters in an essentially analytic way and show that the
superconducting behavior remains independent of size.

This suggests that the SFQ pattern must be a property of the Hubbard
model which extends to the thermodynamic limit and is essentially related
to the symmetry. The minimum at φ = 0 is clearly due to the W=0 pair,
yielding a nondegenerate ground state (when there s degeneracy, the ground
state must be paramagnetic, since the system interacts with the field by a
Zeeman mixing of the degenerate components and gains energy). The field
tends to destroy the pairs and does so by lowering the symmetry; indeed the
reflections are broken. The second minimum at φ = φ0

2 is due to the lattice
which for this particular flux recovers the flux symmetry. This is actually a
theorem, and the proof was obtained by a construction shown in figure 17.6
. One can see how one can choose the gauge for the vector potential when the
4 flux tubes are inserted like in figure 17.4 in a CuO4 unit belonging to a full
plane. From the construction in the Figure one sees that a general flux φ in the
flux tubes destroys the W=0 pairing by breaking the symmetry (C4v → Z4)
but at φ = φ0

2 the full symmetry is restored, because the reflections are
equivalent to a gauge transformation. The flux quantization pattern arises
from a level crossing between the ground states at φ = 0 and φ = φ0

2 .
Models systems capable of superconducting flux quantization such as rings

of CuO4 clusters can also be operated[192] as Josephson junctions. One needs
to include a barrier and introduce a mild violation of the symmmetry to
produce avoided crossings; Josephson and inverse-Josephson (Shapiro) effects
then appear as adiabatic responses to slowly changing flux φ(t).

Recently, exact studies on small Hubbard clusters at finite temperatures
by Fernando et al.[193] have given useful insight on phase separation and
pairing.

Problems

17.1. Find how the irreps of the optimal Group G split in C4v.

17.2. Using the W=0 theorem and the Optimal Group, find the irreps with
no double occupation in the 4× 4 lattice .



18 Algebraic Methods

18.1 Lieb Theorems on the Half Filled Hubbard Model

Consider a repulsive Hubbard model, defined on a d-dimensional lattice or
graph Λ of |Λ| sites, with nearest-neighbor hopping. No symmetry is assumed;
however we can use as an example a

√
|Λ| ×

√
|Λ| simple square Hubbard

Model with periodic boundary conditions and hopping between nearest neigh-
bors (n.n.):

H = T +W = t
∑

σ

n.n.∑
x,y∈Λ

c‡xσcyσ + U
∑
x∈Λ

nx↑nx↓; U > 0. (18.1)

Let us specialize at half filling with n ≡ N↑ = N↓ = |Λ|
2 electrons for each spin.

For each spin, there arem =
(
|Λ|
n

)
configurations, and the dimensionality of

the problem is m2. Here I present a simplified proof that the Hubbard Model
at half filling has a unique ground state; this could serve as an introduction to
Lieb’s paper [37] which contains the proofs of more general exact statements.

For the total spin, which is conserved, the second quantization operators
(1.57,1.58) become in the lattice case

Sz =
1
2

∑
x

(n↑(x) − n↓(x)) , S+ =
∑

x

c†↓(x)c↑(x), (18.2)

and one can work out

S2 = S2
z +

1
2
(S+S− + S−S+).

A symmetric determinantal configuration like

|ψsites〉 = |i ↑, j ↑, k ↑, . . . , i ↓, j ↓, k ↓, . . . | (18.3)

in the site representation has S=0 and is singlet. A two-site system is the
most trivial bipartite lattice; with two electrons it becomes the model system
that we met in Sect. 14.2; there, I used it for illustrating the form (14.51),
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|φ〉 =
∑
αβ

Lαβ |ψα↑〉 ⊗ |ψβ↓〉 (18.4)

of the many-electron the wave function. The eigenvector given by the matrix
L = i

σy√
2

represents the only triplet, and has nothing on the diagonal. Out

of the
(

4
2

)
= 6 states of the model, three are singlets. At half filling L is a

square m×m matrix. A glance to (18.4) suggests that there would be much
to gain in complex problems if L were diagonal, because fewer numbers would
represent |φ〉, and one knows that L can be diagonalized if it is Hermitean.
If L can be taken Hermitean, it remains Hermitean when changing the basis.
Thus it is natural to ask if this advantage is free or we must pay for it.

Hermitean L

There is no magnetic field, the Hamiltonian is real and we take the basis
functions ψα real as well. Then, if φ =

∑
α,β Lα,βψαψβ is an eigenstate of

H with eigenvalue ε, L∗ also belongs to ε; the transposed matrix LT has the
up and down spin amplitudes interchanged, and since this is a symmetry
operation it leaves the subspace of ε invariant. Hence, if L belongs to ε,
this applies to L† and for the Hermitean combinations L + L†, i(L − L†).
So we shall take L Hermitean1. Hermiticity implies that we may impose the
normalization condition (14.60) 〈φ|φ〉 = 1 by writing TrL2 = 1. If all the
eigenvalues of L are non-negative, we write L ≥ 0. Then, we must have
TrL > 0 strictly, because otherwise L = 0 and the state vanishes. One can
infer about the spin of the many-body state2 if L ≥ 0. In fact, some diagonal
elements must be positive, and this holds true on the site basis like in (18.3);
therefore, φ is singlet, or has some mixture with a singlet. In the two-site
two-electron example one can see that for large negative U the eigenvalues of
L are of the same sign, while for large positive U they are of opposite signs:
attraction favors singlets.

In his proof, Lieb used the Scrödinger Equation in the form (14.56):

H : L→ K↑L+ LKT
↓ + U

∑
s

ns↑Lns↓. (18.6)

He had obtained (14.54)(for the real Hamiltonian case) from the variational
principle starting from the energy

1As a two-electron example, writing x, y for sites or orbitals, we may use the
singlet

φ =
|x↑y↓| + |y↑x↓|√

2
⇔ L =

σx

2̂
; (18.5)

incidentally, this shows that the vanishing of the diagonal elements does not prevent
L from representing a singlet. However a singlet can give a non-zero contribution
to TrL while triplets and higher spins cannot.

2It is not the sign of the wave function that brings information, of course, but
a non-vanishing TrL.
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E = 2Tr(KLL) + U
∑

x

Tr(LnxLnx). (18.7)

Canonical Transformation and Pseudospin

Electron-electron repulsion is the same as electron-hole attraction; by a
canonical transformation starting from the model (18.1) we now get a Hamil-
tonian with electron-electron attraction. We need to change the up spin op-
erators only, according to

dx↑ = c†↑, (18.8)

whereby the transformed kinetic energy for up-spin electrons reads

K↑ → K̃↑ = t

n.n.∑
x,y∈Λ

dxd
†
y = −t

n.n.∑
x,y∈Λ

d†ydx.

Having t for down spins and −t for up spins is definitely ugly; so we change
signs to the ↑ orbitals in a sublattice (here the bipartite hypothesis enters)
replacing (18.8) by

dx↑ = sign(x)c†x↑. (18.9)

Now, the transformed Hamiltonian reads

H̃ = t
∑

σ

n.n.∑
x,y∈Λ

[
d‡x↑dy↑ + c‡x↓cy↓

]
−U
∑
x∈Λ

d‡x↑dx↑nx↓+UN↓; U > 0, (18.10)

where N↓ =
∑

x nx↓ is conserved. At half filling, we keep dealing with N↑ =
N↓ = |Λ|

2 Fermions for each spin, and the amplitudes Lαβ in a site picture are
the same, except that α is replaced by the configuration with the sites not
in α. For example, the repulsive H2 molecule model H(t, U) (14.58) has the
energy eigenvalues ε(U) = U−r

2 , 0, U, U−r
2 , r =

√
16t2 + U2; the eigenvalues

of

H̃ = H(t,−U) + U =

⎛
⎜⎜⎝

0 t t 0
t U 0 t
t 0 U t
0 t t 0

⎞
⎟⎟⎠ , U > 0 (18.11)

are the same as those of H(t, U).
With the above substitution of d for c, Sz of Equation (18.2) becomes

S̃z =
1
2

∑
x

([1− d†x↑dx↑ − nx↓]) =
1
2
[Λ−N↑ −N↓] (18.12)

and S+ reads
S̃+ =

∑
x

ε(x)dx↑cx↓. (18.13)

Both are still conserved of course although they do not mean spin any more
in the transformed problem and are therefore called pseudo-spin.
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Unique Ground State: Attractive Case

Let us assume H as in (18.1) but U < 0. If the Hermitean L matrix is a
ground state, then we can diagonalize L and write C†LC = diag(λi), where
C is an eigenvector matrix, and λi are the eigenvalues. Thus we can form a
positive semi-definite matrix |L| = diag(|λi|), which is granted to be singlet
or a linear combination including a singlet.

Now it is easy to show that |L| is also a ground state. To this end, we
calculate the energy according to (18.7) on a basis of eigenvectors of L. For
the kinetic energy TrKL2 =

∑
iKiiλ

2
i the result is the same for L and |L|.

For the potential energy the result for L is U
∑

x,i λiλj(nx)2i,j and for |L|
U
∑

x,i |λiλj |(nx)2i,j ; since U<0 the latter result cannot be larger than the
former, thus |L| is a ground state. In the two-electron case (18.5) one finds

C = 1√
2

(
−1 1
1 1

)
and gets C†LC = 1√

2

(
−1 0
0 1

)
, hence |L| = C 1√

2

(
1 0
0 1

)
=

C† = 1√
2

(
1 0
0 1

)
; this yields the ground state

φ =
|x↑x↓|+ |y↑y↓|√

2
, (18.14)

which is degenerate with (18.5) for U = 0 but is actually better for U < 0.
The question arises: is |L| really different from L? If it is, we get a new

ground state, namely the difference, which we write in terms of the eigenvec-
tors:

R = |L| − L =
∑

i

|λi〉 [|λi| − λi] 〈λi|. (18.15)

Being a ground state, R > 0, unless R = 0. We now show that this is the case,
that is, |λi| = λi ∀i. The latter equality must be true for some i, otherwise
L = −|L| and we obtain the same ground state with a uninteresting (-)
sign in front; thus, the kernel of R is not empty, that is, RV = 0 for some
m-component vector V . The Schrödinger equation (18.6) for R

K↑R+RKT
↓ + U

∑
s

ns↑Rns↓ = εR. (18.16)

averaged over V has no kinetic terms because RV = 0; it follows that∑
x

〈V |nxRnx|V 〉 = 0.

This implies that either nx|V 〉 = 0 or nx|V 〉 is also in the kernel of R. Since V
does not vanish, nx|V 〉 
= 0 for some x, then the kernel extends to nx|V 〉. The
proliferation of the kernel never stops; applying the Schrödinger equation to
V, [

KR+RK + U
∑

x

nxRnx

]
V = εRV. (18.17)
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Now since RV = 0 and RnxV = 0 we find RKV = 0, that is, every configu-
ration connected to V by K is in the kernel; but any two configuration can
be reached from each other in a finite number of steps, that is Kp has matrix
elements between them for some p. Finally the kernel has swallowed all the
Hilbert space! Thus, L = |L| (although, of course, we remain free to choose
L = −|L|. Thus there is a singlet component in the ground state and L ≥ 0.

This implies that the ground state is unique. If L1 and L2 were different
ground states any combination Lξ = L1 + ξL2 would be a ground state, but
we would be free to choose ξ such that TrLξ = 0; this is impossible since any
ground state must be positive semidefinite.

Repulsive Case

Now we assume H as in (18.1)with U > 0. The ground state is the transform
of the one with U < 0. (See Problem 18.1 for an example). This implies that
the eigenvalue is the same; the eigenvector is also the same, albeit it is written
in a reshuffled basis, and is therefore a unique singlet.

More generally, one can study bipartite lattices with sublattices A and B
with |A| and |B| sites per cell. Lieb showed that the ground state has spin
S = |B| − |A| per cell; thus, the trivial Hubbard model has a singlet ground
state, while the three-band Hubbard model has S = 1

2 per cell.

18.2 Bethe Ansatz for the Heisenberg Chain

For an electron in magnetic field in classical canonical ensemble,

Z =
∫
d3x

∫
d3p exp[−

(px − eHy/c)2 + p2y + p2z
2mKBT

] = V (2πmKBT )3/2

(18.18)
is actually independent of the field H , since the field dependence can be elim-
inated by a change of variable; this extends to any system. Thus the very ex-
istence of magnetism cannot be understood classically. The Heisenberg model
was one of the first quantum mechanical theories aimed at describing ferro-
magnetism. ConsiderN spins s = 1/2 arranged on a ring (SN+1 = S1); σn =↑
and σn =↓ are the two possible states at site n, and a configuration may be
specified by assigning |σ1, σ2, · · · , σN 〉; the Hilbert space has 2N dimensions.
The Heisenberg Hamiltonian is

HH = −J
N∑

n=1

Sn · Sn+1 = H0 +HXY , (18.19)

H0 = −J
N∑

n=1

Sz
nS

z
n+1 (18.20)
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while the so-called XY model hamiltonian, which has been studied by its own
sake, reads

HXY = −J
2

N∑
n=1

(
S+

n S
−
n+1 + S−

n S
+
n+1

)
. (18.21)

Let N↓ ≡ r be the number of ↓ spins; HH is invariant for translations along
the chain (which implies conservation of a momentum K) and for rotation
in spin space (conservation of the total spin S and of its z component, Sz =
N↑−N↓

2 , N↑ = N −N↓. For r = 0 the problem is trivial because

HH | ↑↑ . . . ↑〉 = E(N↓=0)| ↑↑ . . . ↑〉, E(N↓=0) = −J N
4

(18.22)

and this is the only state. Here I assume ferromagnetic coupling, i.e. J > 0
for definiteness. Note that

H0|σ1, σ2, · · · , σN 〉 = {E(N↓=0) +
(−J)

4
(−2)N↑↓}|σ1, σ2, · · · , σN 〉 (18.23)

whereN↑↓ is the number of reversed scalar products (number of times ↑↓ or ↓↑
nearest neighbors are encountered instead of ↑↑ or ↓↓); the (−2) factor enters
because the scalar products are counted as positive in E(N↓=0) and must be
reversed. We may think of HXY as moving ↓ spins to the left or to the right
provided that the neighboring spins are ↑; this important limitation causes
the interaction between excitations and makes the problem interesting. The
method invented by Bethe in 1931 [68] to solve the Schrödinger equation for
this model for anyN and r has been later applied with great success to several
many-body problems. Excellent reviews of recent work are available[72]; here
I show its principle.

One Magnon

For r ≡ N↓ = 1 a configuration can be written |n〉, where n is the only ↓
spin; since N↑↓ = 2, 〈n|H0 − E(N↓=0)|n〉 = J, 〈n|HXY |n± 1〉 = J

2 and

(HH − E(N↓=0))|n〉 = J |n〉 − J
2

(|n+ 1〉+ |n− 1〉). (18.24)

Taking the scalar product f(n) = 〈ψE |n〉 with the solution of H |ψE〉 =
E|ψE〉, one finds the recurrence relation

(E − E(N↓=0))f(n) = −J
[
f(n+ 1) + f(n− 1)

2
− f(n)

]
(18.25)

which is readily solved to give the magnon solution

ψE ≡ ψj =
1√
N

N∑
n=1

eikjn|n〉, E = E(N↓=0) + J [1− cos(kj)] (18.26)
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with the wave vector
kj =

2πj
N
, j integer (18.27)

reflecting the translation invariance of the problem. This represents a spin
wave excitation of a ferromagnet.

Two Magnons

For N↓ = r = 2 it is natural write a basis {|n1, n2〉}, n2 > n1 specifying the
positions of ↓ spins. If n2 > n1 + 1, N↑↓ = 4 and one finds:

(HH−E(N↓=0))|n1,n2〉
−J = −2|n1, n2〉

+ |n1+1,n2〉+|n1−1,n2〉+|n1,n2+1〉+|n1,n2−1〉
2 ;

(18.28)

let us take the scalar product f(n1, n2) = 〈ψE |n1, n2〉 with the solution of
H |ψE〉 = E|ψE〉, and write the recurrence formula:

(E − E(N↓=0))f(n1, n2)
−J = −2f(n1, n2)

+
f(n1 + 1, n2) + f(n1 − 1, n2) + f(n1, n2 + 1) + f(n1, n2 − 1)

2
.(18.29)

This is satisfied by f(n1, n2) = ei(k1n1+k2n2) with energy eigenvalue

E = E(N↓=0) + J(1− cos(k1) + 1− cos(k2)) (18.30)

that would be the same as the sum of two magnon energies and would rep-
resent the superposition of two magnons if the momenta ki were given by
(18.27). However, the periodic boundary conditions do not apply separately
to the two momenta. Instead, we must have

ei(k1+k2)N = 1, (18.31)

or also
eik1N = eiθ, eik2N = e−iθ. (18.32)

The interaction of the two magnons produces a relative phase shift, which
also changes the energy although the eigenvalue (18.30) is formally the sum
of two magnon energies. In terms of this (yet unknown) phase, we may write

Nk1 = θ + 2πλ1, Nk2 = −θ + 2πλ2. (18.33)

The Bethe quantum numbers λi are integers and range from 0 to N − 1.
However, one must pay more attention. First, there is a degenerate solu-

tion with the k1 and k2 exchanged and must be included for generality and
also to satisfy the boundary conditions, as I show in a moment; so one should
write

f(n1, n2) = Aei(k1n1+k2n2) +Bei(k2n1+k1n2), 0 < n1 < n2 < N. (18.34)

Note that:
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– the ordering 0 < n1 < n2 < N is needed otherwise the basis would be
over-complete.

– The two contributions must enter with the same probability, A and B
differ by a phase θ (I have the right to use the same symbol, as I show
shortly) and we rewrite (18.34) as

f(n1, n2) = ei(k1n1+k2n2+
θ
2 )+ei(k2n1+k1n2− θ

2 ), 0 < n1 < n2 < N (18.35)

This is not normalized but we do not care.
– θ may be identified with the same real phase θ as in (18.32) above. Indeed,

we must be free to decide that the numbering of spins runs in the range
(n2, · · ·n2 +N − 1) rather than (1, · · ·N); now n2 < n1 +N ; therefore

f(n1, n2) = f(n2, n1 +N)

= ei{k1n2+k2(n1+N)+ θ
2} + ei{k2n2+k1(n1+N)− θ

2},
n2 < n1 +N. (18.36)

This shift of the origin exchanges n1 and n2, and the two terms in (18.35)
are therefore exchanged; the second term of (18.35) becomes the first of
(18.36), but the phase −θ/2 changes sign and an extra Nk2 term ap-
pears in the exponent. These differences must cancel because the bound-
ary condition holds. Comparing with ( 18.35 ) we find the conditions
ei θ

2 eik2N = e−i θ
2 , e−i θ

2 eik1N = ei θ
2 , which are satisfied, according to

(18.32); θ is indeed the same.

It is time worry about configurations like
· · · ↑ ↑ ↓ ↓ ↑ ↑ · · ·
· · · n1 n2 · · · , when n2 =

n1 + 1 and the down spin in n1 cannot jump to the right and the one in n2

cannot jump to the left; Equation (18.29) must change because N↑↓ = 2 and
f(n, n) does not occur in the equation since |n, n〉 has no meaning, therefore

(E − E(N↓=0))f(n1, n1 + 1)
−J =

= −f(n1, n1 + 1) +
f(n1 − 1, n2) + f(n1, n1 + 2)

2
. (18.37)

However the ansatz is still (18.35); the ansatz allows f(n, n) 
= 0 and grants
that (18.29) continues to hold formally for n2 = n1 + 1 as well,

(E − E(N↓=0))f(n1, n1 + 1)
−J = −2f(n1, n1 + 1) +

f(n1 + 1, n1 + 1)
2

+
f(n1 − 1, n1 + 1) + f(n1, n1 + 2) + f(n1, n1)

2
. (18.38)

Comparing the last two equations we get the condition

f(n1, n1 + 1) =
1
2
[f(n1, n1) + f(n1 + 1, n1 + 1)]. (18.39)
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When we substitute the ansatz (18.35),we are free to set n1 = 0 to obtain
more readily the n1-independent condition

eiθ = −e
i(k1+k2) + 1− 2eik1

ei(k1+k2) + 1− 2eik2
≡ N

D
. (18.40)

One moment, is this is really a phase factor? To check that, one observes
that |N|2 = 6 + 2 cos(k1 + k2) − 6[cos(k1) + cos(k2)] is symmetric in k1 and
k2, hence |N| = |D|. Now the identity

cot(
θ

2
) = i

eiθ + 1
eiθ − 1

(18.41)

is very useful to cast (18.40) in real form:

2 cot(
θ

2
) = cot(

k1

2
) + cot(

k2

2
). (18.42)

The Bethe Ansatz equations (18.33 , 18.42), can be solved for k1, k2 and θ
by combined analytic and numerical techniques for N ∼ some tens[72]. Most
solutions are scattering states with real momenta and a finite θ; however when
one of the Bethe quantum numbers λ vanishes, the corresponding k and θ
also vanish, and there is no interaction. Other solutions with λ1 and λ2 close
to each other have complex momenta with k1 = k∗2 and represent magnon
bound states in which the two flipped spins propagate at a close distance.

Many Magnons

It is stunning that the Bethe ansatz works for any system size, and is gen-
eralized for any r. Again one chooses the origin and orders the spins with
ni < ni+1; a basis is {|n1, n2 . . . nr〉}, specifying the positions of ↓ spins. We
first seek a possible H eigenstate as a product of r magnon wave functions of
momenta kj . As the natural extension of (18.32) we allow each k to pick up
a phase from each of the others;

eikiN = e
i
∑

j �=i
θij , θij = −θji. (18.43)

Equation (18.33) becomes

Nki =
∑
j �=i

θij + 2πλi (18.44)

and the integers λi ranging from 0 to N-1 are Bethe quantum numbers. The
r! permutations P of the momenta yield degenerate r-magnon plane waves
that must be summed,so the Bethe Ansatz reads

f(n1, . . . , nr) =
∑
P
e

(
i
∑

r

j=1
kPjnj+

i
2

∑
i<j

θPiPj

)
(18.45)
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Again, we must consider two cases: 1) the reversed spins are all far away
2) there are neighboring reversed spins. In case 1) Schrödinger equation is
satisfied identically and yields the direct extension of (18.30) for the energy
eigenvalue:

E − E0 = J

r∑
j=1

(1 − cos kj). (18.46)

We can count our spins starting anywhere without changing the amplitude,
so we impose

f(n1, · · · , nr) = f(n2, · · · , nr, n1 +N).

This causes a permutation of the terms of the sum, and in each exponent the
θ term changes sign and an extra contribution proportional to N appears.
Exactly as in the two-magnon case, these changes are fixed by (18.44) and
we may conclude that the θ phases are the same in (18.44) and (18.45).

Some changes occur in the Schrödinger equation when there are neighbor-
ing reversed spins because N↑↓ is reduced and some hoppings do not exist; the
same reasoning that took us to (18.40) can be extended directly and yields

eiθij = − e
i(ki+kj) + 1− 2eiki

ei(ki+kj) + 1− 2eikj
. (18.47)

which in real form can be written, as above,

2 cot
θij

2
= cot

ki

2
− cot

kj

2
, i, j = 1, . . . , r. (18.48)

The Bethe equations (18.44,18.48) are hard to solve for many flipped
spins in large systems. In recent years solutions have been obtained which
are far from trivial; among others, bound states of several magnons have
been reported.

The Bethe Ansatz is a rare example of exact solution of an interacting
many-body problem; it keeps the same form independent of the size of the
system. The root of the (relative) simplicity that allows this solution is one-
dimensionality: the evolution does not allow overtakings, and spins always
keep a fixed order. However, without the ingenuity of Hans Bethe, the solution
could have remained undetected; who knows how many important model
problems are solvable, but still unsolved.

18.3 Bethe Ansatz for Interacting Fermions 1 Dimension

18.3.1 δ-Function Interaction

Let N electrons in 1 dimension on a line of length L whose ends are identified
interact with short-range repulsion. We seek the space wave function belong-
ing to a given irrep of SN , having separated the spin variables according to
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Sect. 9.8. The Hamiltonian, which can be shown [142] to be related to the
Kondo Hamiltonian, is:

H = −
N∑

i=1

∂2

∂x2
i

+ 2c
∑
i<j

δ(xi − xj), c > 0. (18.49)

Here x1 . . . xi . . . xN are the electron coordinates, in short {xi}. Indeed, as in
Section 1.1, one pretends that first of all the electrons receive a priori labels
1, 2, · · ·N ; one runs though the line and notes down where one meets electrons
and in what order. The order defines a permutation Q ∈ SN ; the i-th electron
along the line is the one bearing the a priori label Qi, we label its position
xQi , and say that we are in in sector Q. The Bethe ansatz solution[74] yields
the many-electron wave function in the sector, which is just the ordering

sector Q : 0 < xQ1 < . . . < xQN (18.50)

It is:

ψ(x1 . . . xi . . . xN ) = ψQ(x1 . . . xi . . . xN ), 0 < xQ1 < . . . < xQN ,
ψQ(x1 . . . xi . . . xN ) =

∑
P ψQ,P (x1 . . . xi . . . xN ),

ψQ,P (x1 . . . xi . . . xN ) = [Q,P ]ei
∑

i
kPi

xQi .

(18.51)

Here, P ∈ SN while k1 . . . kN denote different numbers, and [Q,P ] are am-
plitudes to be determined.

Thus each electron has 2 labels, the physical one is i, which is the order
along the line, whileQi depends on a fictitious (for indistinguishable particles)
and unobservable order, that is on the sector. However, if we remain in a
sector Q, we cannot describe any overtaking: when an electron i overtakes
the one on its right, the description automatically switches to a new sector.

i

Qi

i + 1

Qi+1

i − 1

Qi−1

i

Qi

i + 1

Qi+1

i − 1

Qi−1

Fig. 18.1. If a classical electron (triangle) overtakes another one they exchange
their physical labels and keep their sector labels. Since actual electrons are in-
distinguishable, one ends up in a neighbor sector Q′ = P(i↔i+1)Q, where P is a
transposition.

Now we study under what conditions

Hψ =
N∑

i=1

k2
i ψ (18.52)

and how one can determine the momenta ki.
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Thus, ψQ =
∑

P ψQ,P , where ψQP is [Q,P ] times a plane-wave state
where the ordering of electrons sector labels Q and the ordering of momenta
are fixed. We are in a given sector Q as long as xQi increases as i increases,
but if two electrons with consecutive physical labels sit at the same x, we
are also in the sector Q′ = P(i↔i+1)Q, in which the images of i and i+1
are exchanged. This fact allows to impose sector boundary conditions: at the
boundary each plane wave must have the same amplitude in both neighboring
sectors. For example, in the Q sector the contribution to ψQ proportional to
[Q,P ] when xQ3 = xQ4 is

ψQ,P = [Q,P ]ei(kP3+kP4 )xQ3+i
∑

i�=3,4
pPi

xQi ; (18.53)

both in ψQ and in ψQ′ the contribution of P is summed to the contribution
of the permutation P ′ = P(3↔4)P bringing the same exponential:

ψQ,P + ψQ,P ′ = ([Q,P ] + [Q,P ′])ei(kP3+kP4 )xQ3+i
∑

i�=3,4
pPi

xQi . (18.54)

This amplitude must be the same as

ψQ′,P + ψQ′,P ′ = ([Q′, P ] + [Q′, P ′])ei(kP3+kP4 )xQ3+i
∑

i�=3,4
pPi

xQi

and the continuity condition is

[Q,P ] + [Q,P ′] = [Q′, P ] + [Q′, P ′]. (18.55)

Next, we integrate the Schrödinger equation for ψ over xQ3 at the sector
boundary, recalling that xQ3 ≤ xQ4 by definition:∫ xQ4

xQ4−ε

dxQ3Hψ({xQi}) = E

∫ xQ4

xQ4−ε

dxQ3ψ. (18.56)

Since this is O(ε) and goes to 0,

∫ xQ4

xQ4−ε

dxQ3

(
− ∂2

∂x2
Q3

+ 2cδ(xQ3 − xQ4)

)
ψ({xQi}) = 0,

and using ∫ 0

−∞
dxδ(x) =

1
2

one finds a discontinuity in the derivative of the full amplitude ψ of (18.51):

[
∂

∂xQ3

ψ]xQ3=xQ4
− [

∂

∂xQ3

ψ]xQ3=xQ4−ε = cψ({xQi , xQ3 = xQ4}). (18.57)

Identifying the solution in each sector with ψQ we can specify
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[
∂

∂xQ3

ψQ′ ]xQ3=xQ4
− [

∂

∂xQ3

ψQ]xQ3=xQ4−ε = cψQ({xQi , xQQ3
= xQ4}).

(18.58)
We need to write this in terms of the [P,Q] unknowns. In sectorQ, xQ3 ≤ xQ4 ,
from (18.54)

cψ({xi, x3 = x4}) = c([Q,P ] + [Q,P ′])ei(kP3+kP4 )xQ3+i
∑

i�=3,4
pPi

xQi ;
(18.59)

the contribution to [ ∂
∂xQ3

ψ]xQ3=xQ4−ε proportional to [Q,P ] is

ψ′
Q,P = ikP3 [Q,P ]eikP3xQ3+i

∑
i�=3,4

kPi
xQi ; (18.60)

still in sector Q we must include the contribution of the permutation P ′ =
P(3↔4)P bringing the same plane wave:

ψ′
QP + ψ′

QP ′ = i(kP3 [Q,P ] + kP ′
3
[Q,P ′])ei(kP3+kP4 )xQ3+i

∑
i�=3,4

kPi
xQi

= i(kP3 [Q,P ] + kP4 [Q,P
′])ei(kP3+kP4 )xQ3+i

∑
i�=3,4

pPi
xQi .(18.61)

On the other hand, in the neighboring sector Q′ = P(3↔4)Q, we have

ψQ′,P + ψQ′,P ′ = [Q′, P ]e
ikP3xQ′

3
+ikP4 xQ′

4
+i
∑

i�=3,4
kPi

xQi

+[Q′, P ′]e
ikP ′

3
xQ′

3
+ikP ′

4
xQ′

4
+i
∑

i�=3,4
kPi

xQi . (18.62)

We need to write this in the xQi variables,

ψQ′,P + ψQ′,P ′ = [Q′, P ]eikP3xQ4+ikP4 xQ3+i
∑

i�=3,4
kPi

xQi

+[Q′, P ′]eikP4xQ4+ikP3 xQ3+i
∑

i�=3,4
kPi

xQi . (18.63)

Evaluating [ ∂
∂xQ3

ψ]xQ3=xQ4
one finds

ψ′
Q′P + ψ′

Q′P ′ = i(kP4 [Q
′, P ] + kP3 [Q

′, P ′])ei(kP3+kP4 )xQ3+i
∑

i�=3,4
kPi

xQi .
(18.64)

Thus (18.58) gives

kP4 [Q
′, P ] + kP3 [Q

′, P ′]− kP3 [Q,P ]− kP4 [Q,P
′])

= −ic([Q,P ] + [Q,P ′]). (18.65)

We eliminate [Q′, P ′] from (18.65,18.55) and get:

[Q,P ′] = (kP4−kP3 )[Q′P ]+ic[QP ]

kP4−kP3−ic . (18.66)

Besides, we must add periodic boundary conditions,
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ψ(x1 . . . xi . . . xN ) = ψ(x1 . . . xi + L . . . xN ), i = 1, 2, · · ·N (18.67)

which, like in the c = 0 case, determine the spectrum. However, unlike the
non-interacting problem, the N momenta are not independent. Before tack-
ling this problem I show that the 1d Hubbard Model leads to similar equa-
tions.

18.3.2 The Hubbard Model in 1d

Consider N Fermions moving on a linear Hubbard chain of Ns sites

H = T
∑
<ij>

∑
σ

c†iσcjσ + U
∑

i

ni↑ni↓, (18.68)

with nearest-neighbor hopping T = −1 and periodic boundary conditions.
This problem was solved by Lieb and Wu [73] by a Bethe Ansatz and is a
discrete variant of the one of the previous Section. For N = 1,

〈y|
∑

i

c†i+1ci
∑

x

f(x)|x〉 = 〈y|
∑

i

f(i)|i+ 1〉

=
∑

i

f(i)〈y|i+ 1〉 =
∑

i

f(i)δ(i, y − 1) = f(y − 1); (18.69)

then the elementary Schrödinger equation

−[f(x+ 1)− f(x− 1)] = Ef(x) (18.70)

is solved by f(x) = eikx, eikNs = 1, E = −2 cos(x). For N Fermions, let us
denote an eigenfunction of H explicitly by

|M ↓,M ′ ↑〉 =
Ns∑

x1=1

. . .

Ns∑
xi=1

. . .

Ns∑
xN=1

f(x1 . . . xN )|x1 . . . xM︸ ︷︷ ︸
↓

xM+1 . . . xN︸ ︷︷ ︸
↑

〉,

(18.71)
where xi is the site of electron i; more simply, we shall also write

|x1 . . . xMxM+1 . . . xN 〉 ≡ |x1 . . . xM︸ ︷︷ ︸
↓

xM+1 . . . xN︸ ︷︷ ︸
↑

〉.

The first-quantized schrödinger equation reads:

−
N∑

i=1

[f(x1, . . . , xi + 1, . . . xN ) + f(x1, . . . , xi − 1, . . . xN )]

+U
i∈(1,M),j∈(M+1,N)∑

(xi,xj)

δ(xi, xj)f(x1, . . . , xi, . . . xj . . . xN )

= Ef(x1, . . . , xi, . . . xN ). (18.72)
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where the spin in xi± 1 is the same as in xi. In configuration space there are
sectors

RQ = {X : 1 ≤ xQ1 ≤ xQ2 . . . ≤ xQN . . . ≤ Ns} (18.73)

where Q is a permutation. The ≤ inequalities imply a partial superposition:
for instance both RQ and P(1↔2)RQ = {X ′ : 1 ≤ xQ2 ≤ xQ1 . . . ≤ xQN . . . ≤
Ns} include the configurations with {1 ≤ xQ1 = xQ2 . . . ≤ xQN . . . ≤ Ns}.
Each electron carries two labels; label i marks the electron position along the
chain, while Qi keeps track of its place in the fundamental sequence 1 · · ·N
and of its spin, which is ↑ for n ≥M + 1.

For U = 0 momenta would arise because of the need of each one-body
orbital to be periodic. In the interacting case things are less simple, but in
the Bethe Ansatz we consider the electron momenta

k1 < k2 < . . . kN ,

with their permutations

P : {k1, k2 . . . kN} → {kP1 , kP2 . . . kPN }.

The Bethe Ansatz for the wave function is the same as in Equation (18.51):

fQ(x1 . . . xN ) =
∑
P

[QP ]ei
∑

i
kPi

xQi . (18.74)

fQ is the amplitude in the sector RQ in terms of N !2 coefficients [QP ]. The
ki and fQ are unknown, but we know that if Q and Q′ differ by the exchange
of two electrons of the same spin, fQ = −fQ′ .

For example, in the 2-body case, let k1 < k2; the possible permutations
are Q = P = (1, 2) and Q′ = P ′ = (2, 1), the only sectors are RQ = {X :
1 ≤ x1 ≤ x2 ≤ Ns}, RQ′ = {X ′ : 1 ≤ x2 ≤ x1 ≤ Ns}, and the Bethe ansatz
reads

amplitude sector
fQ(x1, x2) = [QP ]ei(k1x1+k2x2) + [QP ′]ei(k2x1+k1x2) Q : x1 ≤ x2

fQ′(x1, x2) = [Q′P ]ei(k1x2+k2x1) + [Q′P ′]ei(k2x2+k1x1) Q′ : x1 ≥ x2

(18.75)

If the spins are parallel, U does not act, and the two sectors are disjoint.
The Schrödinger equation Equation (18.72) links the amplitude f(X) of

a given configuration X = (x1, . . . , xi, . . . xj . . . xN ) to those that can be
reached from X in one step, that is, applying H once. If X ∈ RQ, applying
H we remain in RQ, if X is an interior point, that is |xi − xj | > 1, ∀i 
= j;
otherwise X is a frontier point. We get different conditions from in the two
cases.
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X is an Interior Point

Let fQ(x1 . . . xN ) =
∑

P [QP ]ei
∑

n
kPn xQn ; consider the contribution from a

particular P to the i = r term in the i sum of Equation (18.72): we obtain
the kinetic term

− [fQ(x1 . . . xr + 1, . . . xN ) + fQ(x1 . . . xr − 1, . . . xN )]

= −(eikPr + e−ikPr )[QP ]ei
∑

n
kPn xQn ; (18.76)

summing over i we get, independently of P ,

E = −2
N∑

j=1

cos(kj). (18.77)

Note that U enters indirectly, by modifying the k values. There are no in-
terior points if the filling is too high, because then double occupations are
unavoidable; however (18.77) holds in general.

X is a Frontier Point

Consider any configuration in (18.74) with at least a double occupation on
a site that must be among the first M and among the last M ′. For a given
Q, in (18.73) for some i, xQi = xQi+1 ; then, in Equation (18.74) for given
Q,P one finds at the exponent a contribution (kPi + kPi+1)xQi . However,
if P ′ is the permutation obtained from P by exchanging i and i + 1, the
resulting exponential is the same. For X ∈ Q, the permutations P and P’
both contribute to fQ with the same exponential factor,

([Q,P ] + [Q,P ′])ei(kPi
+kPi+1 )xQi e

i
∑

m �=i,i+1
kPm xQm .

The same exponential also arises from the permutation Q′ obtained from Q
by exchanging i, i+ 1. Indeed, the contribution to fQ′ from P and P’ is

([Q′, P ] + [Q′, P ′])ei(kPi
+kPi+1 )xQi e

i
∑

m �=i,i+1
kPm xQm .

We must ensure that f is single-valued, that is, {X ∈ RQ, X ∈ RQ′} =⇒
fQ(X) = fQ′(X). This reproduces the condition (18.55)

[QP ] + [QP ′] = [Q′P ] + [Q′P ′]. (18.78)

Nesting of a Two-Body Problem in the Many-Body One

From the above, we may conclude that 1) any double occupancy arises as an
equality xi = xi+1 2) configurations with double occupancies are at the border
between sectors and belong to neighboring ones, defined by xQi ≤ xQi+1 , and
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by xQi ≥ xQi+1 . 3) (18.77) must hold in both sectors. Let site i be the
same as i + 1 (double occupation). In sector Q defined by xQi ≤ xQi+1 ,
the two electrons are those labelled Qi, Qi+1; there is superposition with the
sector Q′ = P(i↔i+1)Q where the permutations differ by Qi ↔ Qi+1 (P
is a transposition). The contribution to the Bethe function arising from a
permutation P of momenta is

[QP ]ei(kPi
xQi

+kPi+1xQi+1)ei
∑

m �=i,i+1
kPm xQm ,

however in the case xQi = xQi+1 , also belonging to the sector there is mixing
of the permutations P, P ′ that differ by i ↔ i + 1; the exponential is the

same, ei
∑

m �=,i,i+1
kPm xQm . To proceed, we introduce the amplitude

ϕPP ′
Q (xQi , xQi+1) ≡ [QP ]ei(kPi

xQi
+kPi+1xQi+1)

+ [QP ′]e
i

(
kP ′

i
xQi

+kP ′
i+1

xQi+1

)
= [QP ]ei(kPi

xQi
+kPi+1xQi+1) + [QP ′]ei(kPi+1xQi

+kPi
xQi+1), (18.79)

such that the contribution to fQ arising from P and P ′ is:

ψPP ′
Q = ϕPP ′

Q e
i
∑

m �=,i,i+1
kPm xQm , xQi ≤ xQi+1 . (18.80)

The sector Q′ defined by xQ′
i
≤ xQ′

i+1
, gets from permutations P, P ′ the

amplitude

ψPP ′
Q′ = ϕPP ′

Q′ e
i
∑

m �=,i,i+1
kPm xQm , xQi ≥ xQi+1 (18.81)

(same exponential as in (18.80) ) and

ϕPP ′
Q′ = [Q′P ]e

i

(
kPi

xQ′
i
+kPi+1xQ′

i+1

)
+ [Q′P ′]e

i

(
kP ′

i
xQ′

i
+kP ′

i+1
xQ′

i+1

)

= [Q′P ]ei(kPi
xQi+1+kPi+1xQi) + [Q′P ′]e

i

(
kPi+1xQi+1+kPi

xQ′
i

)
.(18.82)

There is superposition of sectors, so in order to write (18.72) and obtain
relations among the coefficients we must consider

ψPP ′
QQ′ = ϕPP ′

QQ′e
i
∑

m �=,i,i+1
kPm xQm , (18.83)

where one understands that

ϕPP ′
QQ′ =

{
ϕPP ′

Q xQi ≤ xQi+1

ϕPP ′
Q′ xQi > xQi+1 .

(18.84)

We define the set of the indices that in a given sector correspond to elec-
trons that do not participate to double occupations: SQ := {i : xQi 
=



400 18 Algebraic Methods

xQri−1 , xQri+1} Now, the first member of (18.72) involves one sum on elec-
trons; the contribution of those that do not participate to double occupations
is the correspondent piece of the energy eigenvalue (18.77):

N∑
r,r∈SQ

[
ψPP ′

QQ′ (x1 . . . , xQr
+ 1, . . . xN ) + ψPP ′

QQ′ (x1, . . . , xQr − 1, . . . , xN )
]

= −2
N∑

r,r∈SQ

cos(kPr )ψPP ′
QQ′ . (18.85)

Since the eigenvalue is (18.77), the two-body function ϕPP ′
QQ′ must contribute,

and obeys in xQi = xQi+1 = x to (18.72) with eigenvalue −2 cos(kPi) −
2 cos(kPi+1). Equation (18.72) grants that

−[ϕPP ′
QQ′ (x+ 1, x) + ϕPP ′

QQ′ (x− 1, x) + ϕPP ′
QQ′(x, x + 1)

+ϕPP ′
QQ′(x, x − 1)] + UϕPP ′

QQ′(x, x)

= −2(cos(kPi) + cos(kPi+1))ϕ
PP ′
QQ′ (x, x). (18.86)

The 2 body problem is nested into the N body one in such the way that
everything generalizes. In view of (18.84), Equation (18.86) means

−[ϕPP ′
Q′ (x + 1, x) + ϕPP ′

Q (x− 1, x)

+ϕPP ′
Q (x, x + 1) + ϕPP ′

Q′ (x, x − 1)] + UϕPP ′
Q (x, x)

= −2(cos(kPi) + cos(kPi+1))ϕ
PP ′
Q (x, x). (18.87)

Substituting (18.79,18.82), eliminating the common factor ei(kPi
+kPi+1)x and

making the substitutions:

ϕPP ′
Q′ (x + 1, x)→ [Q′P ]eikPi+1 + [Q′P ′]eikPi

ϕPP ′
Q (x − 1, x)→ [QP ]e−ikPi + [QP ′]e−ikPi+1

ϕPP ′
Q (x, x + 1)→ [QP ]eikPi+1 + [QP ′]eikPi

ϕPP ′
Q′ (x, x − 1)→ [Q′P ]e−ikPi + [Q′P ′]e−ikPi+1

ϕPP ′
Q′ (x, x)→ [QP ] + [QP ′]

(18.88)

we obtain

[QP ](eikPi + e−ikPi+1 + U) + [QP ′](e−ikPi + eikPi+1 + U)
= [Q′P ](eikPi+1 + e−ikPi ) + [Q′P ′](eikPi + e−ikPi+1 ). (18.89)

We eliminate [Q′P ] using (18.78), and find
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[QP ] =
− U

2i [QP ′]+(sin(kPi
)−sin(kPi+1 ))[Q′P ′]

sin(kPi )−sin(kPi+1)+ U
2i

. (18.90)

This looks like a slightly modified version of Equation (18.66). It is instructive
to work out the explicit solution of the problem with 2 electrons, see Problem
18.2; it is somewhat harder than one could expect.

18.3.3 The Periodic Boundary Conditions

The problems of the last two Subsections are closely related and can be
carried out by similar means; we choose to refer to the continuous case in
the following. We need to find efficient ways to impose the periodic boundary
conditions (18.67). Following Yang[74], we arrange the [Q,P ] amplitudes as
a N !×N ! matrix and consider the column with some particular P :

ξP =

⎛
⎜⎜⎝

[1, 2, 3, . . .N, P ]
[Q2, P ]
. . .

[QN !, P ]

⎞
⎟⎟⎠ (18.91)

Let ξ0 denote the column corresponding to the fundamental (or identity)
permutation I = {1, 2, 3, . . .N}. We cast the equations (18.66) in a more
convenient form,

[QP ′] =
[Q′P ]− λij [QP ]

1 + λij
, λij =

ic

ki − kj
. (18.92)

This is a relation involving two columns, in shorthand3:

ξP ′ = Y i,j
ij ξP , P

′ = P(i↔j)P, ; j = i+ 1. (18.93)

To write down the column-switching operator Y a,b
ij which performs a trans-

position of consecutive indices, we also need to introduce a row-switching
operator P̃b↔a

Q→Q′ which acts on the Qi and exchanges a and b. Indeed,

Y a,b
ij =

−λij + P̃b↔a
Q→Q′

1 + λij
≡ aij + bijP

ab, b = a+ 1. (18.94)

The upper indices of Y a,b
ij give the position of the consecutive electron pair in

the list, the lower indices the identity of the elements; for example, for N=4,
Y 3,4

24 exchanges the third and fourth elements in the list, provided that they

3When it is clear from the context which are the i and j indices we are referring
to, we shall also continue to use the shorthand notation P ′ for the permutation
of momenta obtained from P by exchanging ki and kj , and shall use ξP ′ for the
column corresponding to it.
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are 2 and 4, giving Y 3,4
24 ξ3124 = ξ3142; moreover, Y 2,3

14 Y
3,4
24 ξ3124 = ξ3412, and

so on; any ξP can be obtained from ξ0 by applying products of Y operators.
The action of Y a,b

ij is the same as the action of Pij on any permutation
P. From this very fact one that can prove some identities, that can of course
be checked starting from the definition of Y . Since PijPji = 1,

Y a,b
ij Y a,b

ji = 1 (18.95)

and since PijPkl = PklPij ,

Y ab
ij Y

cd
kl = Y cd

kl Y
ab
ij . (18.96)

Moreover, one can check that P12P13P23 = P23P13P12; in this way one finds
that

Y a,b
jk Y b,c

ik Y a,b
ij = Y b,c

ij Y a,b
ik Y b,c

jk . (18.97)

Here is the operator that exchanges both rows and columns:

Xij = P̃ i↔j
Q→Q′Y

i,j
ij =

1− P̃ i↔j
Q→Q′λij

1 + λij
, j = i+ 1. (18.98)

This operator lets the electron i to overtake the electron j=i+1 (recall that
the phase factors have already been dealt with). For example if N = 3,

ξ0 =

⎛
⎜⎜⎜⎜⎜⎜⎝

[{1, 2, 3}, {1, 2, 3}]
[{2, 1, 3}, {1, 2, 3}]
[{1, 3, 2}, {1, 2, 3}]
[{3, 2, 1}, {1, 2, 3}]
[{2, 3, 1}, {1, 2, 3}]
[{3, 1, 2}, {1, 2, 3}].

⎞
⎟⎟⎟⎟⎟⎟⎠ (18.99)

and one finds

X1,3ξ0 =

⎛
⎜⎜⎜⎜⎜⎜⎝

[{3, 2, 1}, {3, 2, 1}]
[{2, 3, 1}, {3, 2, 1}]
[{3, 1, 2}, {3, 2, 1}]
[{1, 2, 3}, {3, 2, 1}]
[{2, 1, 3}, {3, 2, 1}]
[{1, 3, 2}, {3, 2, 1}]

⎞
⎟⎟⎟⎟⎟⎟⎠ , X2,1X1,3ξ0 =

⎛
⎜⎜⎜⎜⎜⎜⎝

[{3, 1, 2}, {3, 1, 2}]
[{1, 3, 2}, {3, 1, 2}]
[{3, 2, 1}, {3, 1, 2}]
[{2, 1, 3}, {3, 1, 2}]
[{1, 2, 3}, {3, 1, 2}]
[{2, 3, 1}, {3, 1, 2}]

⎞
⎟⎟⎟⎟⎟⎟⎠

(18.100)
Now if we consider the amplitude

[Q,P ]ei
∑

i
kPi

xQi

in sector Q ( xQi ≤ xQi+1 , ) and consider the transformation

xQ1 → xQ1 + L,
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we land in the sector Q̃ : xQ2 ≤ xQ3 ≤ . . . xQ1 with P̃ : kP2 , kP3 , . . . kP1 with
an amplitude

eikP1L [Q̃, P̃ ]ei
∑

i
kPi

xQi .

Since the wave function must be single valued, this implies

[Q,P ] = eikP1 L [Q̃, P̃ ]. (18.101)

Consider for instance the last but one component [{2, 3, 1}, {1, 2, 3}] of ξ0
in (18.99) and its evolution in (18.100): the boundary condition is

[{1, 2, 3}, {3, 1, 2}] = eik1L[{2, 3, 1}, {1, 2, 3}]. (18.102)

In general, by the same reasoning,

eikjLξ0 = Xj+1,jXj+2,j · · ·XN,jX1,jX2,j · · ·Xj−1,jξ0. (18.103)

Thus, ξ0 is a simultaneous eigenfunction of N operators; these however may
be shown to commute, so we can limit ourselves to consider one of them, e.g.
letting j = N.

18.3.4 Spin Chain Analogy

Usually a problem is practically solved when reduced to a linear system, but
this is not the case here. Since there are N !2 amplitudes [P,Q] and for each
amplitude there are N-1 consecutive i, i+1 pairs, this is a large homogeneous
system and cannot practically be solved by the usual methods, unless N is
rather small. Yang achieved a solution by the use of the symmetry, a very
smart and profound one.

If all the electrons have parallel spins, P̃ i↔j
Q→Q′ = −1,⇒ Xij ≡ 1 and

(18.103) yields eikjL = 1. This is nothing but the condition of the non-
interacting theory, as one should expect, since parallel spin electrons cannot
be at the same position. Recalling Sect.(9.8), more generally ξ0 is associated
with a Yang diagram with one or two columns, and the spin function Φ then
belongs to the conjugate representation. We go to the conjugate representa-
tion by change P̃b↔a

Q→Q′ → −P̃b↔a
Q→Q′ , and to this end we introduce

X ′
ij =

1 + P̃ i↔j
Q→Q′λij

1 + λij
(18.104)

where P̃ now operates on the spin variables. The eigenvalue equation is

ZjΦ ≡ X ′
j+1,jX

′
j+2,j · · ·X ′

N,jX
′
1,jX

′
2,j · · ·X ′

j−1,jΦ = μjΦ, (18.105)

but, since since we are looking for the spin part of the same wave function,



404 18 Algebraic Methods

μj = eikjL. (18.106)

These are N equations, but each yields all the eigenvalues since they can be
shown to commute; so we can limit ourselves to solve

ZNΦ = μNΦ, ZN = X ′
1NX

′
2N ·X ′

N−1,N . (18.107)

One can interpret Φ as the wave function of N spins on a ring, Φ =
Φ(y1, y2, · · · , ym; z1, z2, · · · zN−M ) where the integers y1, y2, · · · , ym denote the
positions along the chain of the M reversed spins, and the z’s those of the
N-M up spins. This may be taken to be be symmetric in the interchange
of y’s and separately in the interchange of z’s while any attempt to sym-
metrize simultaneously in variables belonging to the two sets must give 0.
The same information is contained in a reduced wave function that we de-
note by Φ ≡ Φ(y1, y2, · · · , yM ), with the y’s in increasing order, which depends
on M variables only; for N −M spins up and M spins down the components

are just
(
N
M

)
, that is, the size of the problem is substantially reduced.

Three Spins,↑, ↑, ↓

Since for parallel spins the problem is trivial, let us start considering M =
1 reversed spin. For example if N = 3, we may replace the unknown 6-
component amplitude (18.99) by the 3-component reduced wave function

Φ =

⎛
⎝Φ(1)
Φ(2)
Φ(3)

⎞
⎠ , (18.108)

where the components can be interpreted as the amplitude that the over-
turned spin comes first, second and third, respectively. In terms of the full
wave function for the three spins, Φ(1) stands for [{↓, 2, 3}, {1, 2, 3}] = [{↓
, 3, 2}, {1, 2, 3}]; F (2) is the amplitude that spin 2 is down and is symmetric
in 1 and 3, and so on. The full ξ0 can be obtained from the reduced Φ. Let
us work out4 the eigenvalue equation (18.107)

Z3Φ = μ3Φ,Z3 = X ′
13X

′
23. (18.109)

Recalling (18.104), and setting

aij =
1

1 + λ23
bij =

λ23

1 + λ23
(18.110)

we see that aij + bij = 1 and X ′
ij = aij + bijP̃ i↔j

Q→Q′ ; X ′
23Φ(1) = Φ(1), but

X ′
23 mixes the other components:

4Here and below this section involves some algebra which is quite elementary
but somewhat tedious; using a computer code is a good idea.
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a23 b23
b23 a23

)(
Φ(2)
Φ(3)

)
=

(
Φ(2)[a23 + b23

Φ(3)
Φ(2) ]

Φ(3)[a23 + b23
Φ(2)
Φ(3) ]

)
. (18.111)

The solution is gained by the following inspired ansatz,with some real Λ:

Φ(3)
Φ(2)

=
k2 − Λ+ ic

2

k3 − Λ− ic
2

which means, the ratio of two consecutive components is obtained as the ratio
of two linear functions. Indeed, now we show that we can solve the boundary
condition eigenvalue problem by writing

Φ =

⎛
⎜⎝ 1

k1−Λ+ic/2
k2−Λ−ic/2

k1−Λ+ic/2
k2−Λ−ic/2

k2−Λ+ic/2
k3−Λ−ic/2

⎞
⎟⎠ . (18.112)

It holds: (
a23 b23
b23 a23

)(
Φ(2)
Φ(3)

)
=

(
μ′3Φ(2)

Φ(3)
μ′

2

)
, (18.113)

where I have introduced

μ′j =
kj − Λ+ ic/2
kj − Λ− ic/2

; (18.114)

a simplify command yields immediately

μ′j − aij

bij
=
ki − Λ+ ic/2
kj − Λ− ic/2

. (18.115)

Next, to apply X ′
13 to the result, we compute(

a13 b13
b13 a13

)(
Φ(1)
Φ(3)
μ′

2

)
=

(
μ′3Φ(1)

Φ(3)
μ′

2μ′
1

)
. (18.116)

Thus,

Z3Φ = μ′3

⎛
⎝ 1

Φ(2)
Φ(3)

μ′
3μ′

2μ′
1

⎞
⎠ . (18.117)

Now we can solve the eigenvalue equation by requiring that μ′j = μj and that

μ1μ2μ3 = 1; (18.118)

this means that a translation by L of the whole system has no effect. Putting
together (18.106) and (18.114) one gets

eikjL =
kj − Λ+ ic/2
kj − Λ− ic/2

(18.119)

and with (18.118) one can determine Λ and the momenta. The beauty of this
approach is that it can be fully extended.
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N Spins,1 Overturned

The above results extend immediately to arbitrary N ; thus,

Φ(Λ, y) =
y−1∏
j=1

(
kj − Λ+ ic/2
kj+1 − Λ− ic/2

)
, (18.120)

where the integer y specifies the position of the overturned spin along the
chain.

General Case

The above solution extends to any N and M via the following generalized
Bethe ansatz involving M different Λ parameters:

Φ =
∏

P∈SM

a(P )Φ(ΛP1 , y1)Φ(ΛP2 , y2) · · ·Φ(ΛPM , yM ), (18.121)

with the same Φ as before; here given two permutations P and P ′ that differ
by the exchange of elements γ and γ + 1 the coefficients obey[142]

a(P ′) = a(P )
ΛPγ − ΛP (γ+1) + ic

ΛPγ − ΛP (γ+1) − ic
. (18.122)

The extension of (18.119) is

eikjL =
∏
β

kj − Λβ + ic/2
kj − Λβ − ic/2

. (18.123)

The general proof that the solution has the [N − M,M ] permutation
symmetry may be found in [142]. Note that the ansatz (18.121) describes
one kind of particles, the down-spin electrons, while the up-spin electrons
are reduced to sites in an effective chain; Yang’s procedure reduced by 1 the
number of particle species.

Problems

18.1. Work out the L matrix (Section 18.6) for the ground state of the repul-
sive H2 molecular model H(t, U) (14.58) and for the canonically transformed,
attractive model (21.32) and compare the results for U

t = 7.

18.2. Work out the detailed solution for the Hubbard chain with N = 2
electrons. Verify the solution by writing down explicit energy eigenvalues for
Ns = 3.
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19 Appendix 1: Zero-point Energy in a Pillbox

Setting b
L = qx,

c
L = qy, d2q =

(
a
s

)2
d2k, (1.29) yields:

U(s) = h̄cπL2
∑

a

(a
s

)3
∫

kx,ky>0

d2k
√

1 + k2e−α( a
s )

√
1+k2

. (19.1)

The angle integral from 0 to π
2 yields

U(s) =
h̄cπ2L2

4s3
∑

a

a3

∞∫
0

dz
√

1 + z e−α(n
s )

√
1+z

= − h̄cπ
2L2

4s3

(
d

dα

)3∑
a

∞∫
0

dz

1 + z
e−α( a

s )
√

1+z; (19.2)

the summation is performed by
∞∑
1
e−nγ = 1

1−e−γ − 1 = 1
eγ−1 ; thus

U(s) = − h̄cπ
2L2

4

(
d

dα

)3
∞∫
0

dz

1 + z

1
e

α
s

√
1+z − 1

. (19.3)

By the substitution u =
√

1 + z, and doing one of the derivatives one gets

U(s) = − h̄cπ
2L2

2

(
d

dα

)2
⎡
⎣−1

s

∞∫
1

du
e

α
s u(

e
α
s u − 1

)2
⎤
⎦ ; (19.4)

and putting
∞∫
1

du
e

α
s u(

e
α
s u − 1

)2 =
1
α

∞∫
e

α
s

dx
1

(x− 1)2
=

1
α

1
e

α
s − 1

. (19.5)

Finally,

U(s) =
h̄cπ2L2

2

(
d

dα

)2( 1
α

1
e

α
s − 1

)
. (19.6)



20 Appendix II-Character Tables

C3 = Z3 I C3 C2
3 ε = e

2iπ
3

A1 1 1 1 z

E

{
1
1

{
ε
ε∗

{
ε∗

ε
(x, y)

C2v I C2 σv σ′
v g = 4

A1 1 1 1 1 z
A2 1 1 −1 −1 xy,Rz

B1 1 −1 1 −1 x, Ry

B2 1 −1 −1 1 y, Rx

C3v I 2C3 3σv g = 6

A1 1 1 1 z
A2 1 1 −1 Rz

E 2 −1 0 (x, y)

C4v I C2 2C4 2σv 2σd g = 8

A1 1 1 1 1 1 z
A2 1 1 1 −1 −1 Rz

B1 1 1 −1 1 −1 x2 − y2

B2 1 1 −1 −1 1 xy
E 2 −2 0 0 0 (x, y)

C5v I 2C5 2C2
5 5σv g = 10, θ = 2π

5

A1 1 1 1 1 z
A2 1 1 1 −1 Rz

E1 2 2 cos θ 2 cos 2θ 0 (x, y)

E2 2 2 cos 2θ 2 cos θ 0
(
xy, x2 − y2

)
C6v I C2 2C3 2C6 3σd 3σv g = 12

A1 1 1 1 1 1 1 z
A2 1 1 1 1 −1 −1 Rz

B1 1 −1 1 −1 −1 1
B2 1 −1 1 −1 1 −1
E1 2 −2 −1 1 0 0 (x, y), (Rx, Ry)

E2 2 2 −1 −1 0 0
(
xy, x2 − y2

)
C∞v I C2 2Cω σv g = ∞

A1

(
Σ+
)

1 1 1 1 z

A2

(
Σ−) 1 1 1 −1 Rz

E1 (Π) 2 −2 2 cos ω 0 (x, y)

E2 (Δ) 2 2 2 cos 2ω 0
(
xy, x2 − y2

)
D2 I Cz

2 Cy
2 Cx

2 g = 4

A1 1 1 1 1 x2, y2, z2

B1 1 1 −1 −1 z, xy,Rz

B2 1 −1 1 −1 y, xz,Ry

B3 1 −1 −1 1 x, yz, Rx
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D3 I 2C3 2C′
2 g = 6

A1 1 1 1 z2, x2 + y2

A2 1 1 −1 z, Rz

E 2 −1 0 (x, y) , (Rx, Ry)

D4 I C2 2C4 C′
2 2C′′

2 g = 8

A1 1 1 1 1 1 z2, x2 + y2

A2 1 1 1 −1 −1 z
B1 1 1 −1 1 −1 x2 − y2

B2 1 1 −1 −1 1 xy
E 2 −2 0 0 0 (x, y) , (Rx, Ry)

D3h I σh 2C3 2S3 3C′
2 3σv g = 12

A1 1 1 1 1 1 1 z2

A2 1 1 1 1 −1 −1 Rz

A′
1 1 −1 1 −1 1 −1

A′
2 1 −1 1 −1 −1 1 z

E 2 2 −1 −1 0 0 (x, y) ,
(
xy, x2 − y2

)
E′ 2 −2 −1 1 0 0 (xz, yz) , (Rx, Ry)

D6h E 2C6 2C3 C2 3C′
2 3C′′

2 i 2S3 2S6 σh 3σd 3σv g = 24

A1g 1 1 1 1 1 1 1 1 1 1 1 1
A2g 1 1 1 1 −1 −1 1 1 1 1 −1 −1 Rz

B1g 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1
B2g 1 −1 1 −1 −1 1 1 −1 1 −1 −1 1
E1g 2 1 −1 −2 0 0 2 1 −1 −2 0 0 (Rx, Ry)

E2g 2 −1 −1 2 0 0 2 −1 −1 2 0 0
(
x2 − y2, xy

)
A1u 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1
A2u 1 1 1 1 −1 −1 −1 −1 −1 −1 1 1 z
B1u 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1
B2u 1 −1 1 −1 −1 1 −1 1 −1 1 1 −1
E1u 2 1 −1 −2 0 0 −2 −1 1 2 0 0 (x, y)
E2u 2 −1 −1 2 0 0 −2 1 1 −2 0 0

Double Groups

C′
3v E Ē

C3

C2
3 Ē

C2
3

C3Ē
3σv 3σvĒ

A1 1 1 1 1 1 1
A2 1 1 1 1 −1 −1
E 2 2 −1 −1 0 0

E1/2 2 −2 1 −1 0 0
Γ 5 1 −1 −1 1 i −i
Γ 6 1 −1 −1 1 −i i

C′
4v E Ē

C4

C3
4 Ē

C3
4

C4Ē
C2

C2Ē
2C′

2

2C′
2Ē

2C′′
2

2C′′
2 Ē

A′
1 1 1 1 1 1 1 1

A′
2 1 1 1 1 1 −1 −1

B′
1 1 1 −1 −1 1 1 −1

B′
2 1 1 −1 −1 1 −1 1

E′
1 2 2 0 0 −2 0 0

E′
2 2 −2

√
2 −√

2 0 0 0

E′
3 2 −2 −√

2
√

2 0 0 0



21 Proof of the Wigner-Eckart Theorem

Here I reinforce the intuitive discussion given in Chapter 9 by a proof of the
Wigner-Eckart theorem :

〈αi|T (γ)
q |βk〉 = 〈α‖T (γ)‖β〉〈αi|γpβk〉,

where the reduced matrix element < α‖T (γ)‖β > does not depend on the
components;〈αi|γpβk〉 is the Clebsh-Gordan coefficient.

Here, |αi > and |βj > denote the components of bases of irreps Γα and
Γ β (that could also coincide) and T

(γ)
p the p component of an irreducible

tensor
RT (γ)

p R−1 =
∑

q

T (γ)
q D(γ)

qp (R). (21.1)

As the components i,p and k vary, one finds a number of matrix elements
< αi|T (γ)

p |βk > that are all connected by the theorem.

Proof

∀R ∈ G,R† = R−1 implies

〈αi|T (γ)
q |βk〉 = 〈αi|R†RT (γ)

q R†R|βk〉 =

〈αi|R† ∑
q

T (γ)
q D(γ)

qp (R) R|βk〉 =

=
∑
qjr

〈αj|T (γ)
q |βr > D

(α)
ji (R)∗〉Dqp(γ)(R)Drk(β)(R). (21.2)

In order to use the GOT, we write the product of two D matrices as one
D. Actually,D(γ)

qp (R)D(β)
rk (R) is the direct product of two irreps,

D(γ)
qp (R)D(β)

rk (R) =
∑
δst

〈γqβr|δs〉D(δ)
st 〈δt|γpβk〉,

where we have used Clebsch-Gordan coefficients, and inserting in (21.2 ),

〈αi|T (γ)
p |βk >=

∑
qjr

〈αj|T (γ)
q |βr > D

(α)
ji (R)∗

∑
δst

〈γqβr|δs > D
(δ)
st 〈δt|γpβk > .

(21.3)
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Here R is arbitrary; summing over R, in the l.h.s. we get a factor NG

(=Group order);in the r.h.s. the GOT yields

∑
R

D
(α)
ji (R)∗D(δ)

st (R) =
Ng

mα
δαδδjsδit,

and finally we obtain

NG〈αi|T (γ)
p |βk >=

∑
qjr

= 〈αj|T (γ)
q |βr〉

∑
δst

〈γqβr|δs〉〈δt|γpβk〉NG

mα
δαδδjsδit,

that is

〈αi|T (γ)
q |βk〉 = 〈α‖T (γ)‖β〉〈αi|γpβk〉, (21.4)

where the reduced matrix element

〈α‖T (γ)‖β〉 = 1
mα

∑
qjr

〈αj|T (γ)
q |βr > 〈γqβr|αj〉

does not depend on the components.
q.e.d.



Solutions

Problems of Chapter 2

2.1 〈np〉 = 1
Z Tr(npρ) has a denominator Z =

∏
k(1 + e−β(εk−μ)) and a

numerator
∏

k �=p(1 + e−β(εk−μ))e−β(εp−μ), since p is filled in all states that
contribute.

2.2 One readily verifies by computing the time derivative that

U(t, t′) = U0(t, t′)−
i

h̄

∫ t

t′
U(t, τ)H1(τ)U(τ, t′)

is equivalent to the Schrödinger equation.

2.3 From the definition one can easily verify that

d

dt
T {A1(t1)A2(t2)ρ(t)} = T {A1(t1)A2(t2)ρ̇(t)} +

δ(t− t1)T {[ρ(t), A1(t1)]−A2(t2)}
+δ(t− t2)T {A1(t1)[ρ(t), A2(t2)]−} (21.5)

where the δ functions arise from θ(t− ti) factors (for ρ(t) standing on the left
of Ai(ti) and from θ(ti − t) factors (for ρ(t) standing on the right of Ai(ti);
hence one gets the commutators. The argument extends immediately to any
n yielding the term in ρ̇ and an extra term

n∑
q=1

δ(t− tq)T {A1(t1) · · · [ρ(t), Aq(tq)]− · · ·An(tn)}. (21.6)

2.4 One can think of the (t, t′) interval divided into N � 1 intervals and
write e−iHλ(t′−t) =

∏
n e

−iHλ(tn−tn−1); after differentiating, one lets N →∞.

Problems of Chapter 3

3.1 The ground configuration 1s22s22p3 has
(

6
3

)
= 20 states. The largest

ML is reached by (1+, 1−, 0±) thus ML = 2,MS = ± 1
2 . The resulting
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2D occupies 10 states. There are 4 determinants with ML = 1, namely,
(1, 1−,−1), (1, 0+, 0,−).

p3 →4 S,2 P,2D.

3.2 The ground configuration of Ti is 1s22s22p63d2. There are
(

10
2

)
= 45

states. The largest ML is 4. One finds:

d2 →1 S,3 P,1D,3 F,1G.

3.3 The tables of Clebsh-Gordan coefficients yield

〈|1
2
ms1

1
2
ms2 |S = 1,MS = 0〉 = δ(ms1 ,−ms2)√

2

and for 〈|l1 = 2m1l2 = 2m2|L = 1,ML = 0〉 the following values:

m2 = 2 −
√

2
5

m2 = 1
√

1
10

m2 = 0 0

m2 = −1 -
√

1
10

m2 = −2
√

2
5

hence normalizing again (which is generally necessary when using Clebsh-
Gordan coefficients)
|3PML = 0,MS = 0〉 = 1√

10
{2|2+,−2−| + 2|2−,−2+| − |1+,−1−| −

|1−,−1+|}.
3.4 For two-electron states, L± = L±

1 +L±
2 . For L=1 one learns from (6.1.1)

that L+|0〉 =
√

2|1〉, L−|0〉 =
√

2| − 1〉.
So,

|3PML = 1,MS = 0〉 = 1√
2
L+|3PML = 0,MS = 0〉 =

=
L+

1 + L+
2√

2
1√
10
{2|2+,−2−|+ 2|2−,−2+| − |1+,−1−| − |1−,−1+|}.

Bringing the one-body operators to act on the respective states,using (6.1.1)
and the spin shift operators one finds

|3PML = 0,MS = 1〉 = 1√
5
{2|2+,−2+| − |1+,−1+|}.

Moreover,

|3PML = 1,MS = 1〉 = 1√
10
{2|2+,−1+| −

√
6|1+, 0+|},
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|3PML = 1,MS = −1〉 = 1√
10
{2|2−,−1−| −

√
6|1−, 0−|},

|3PML = 0,MS = 0〉 = 1√
10
{2|2+,−2−|+2|2−,−2+|−|1+,−1−|−|1−,−1+|},

|3PML = 0,MS = −1〉 = 1√
5
{2|2−,−2−| − |1−,−1−|},

|3PML = −1,MS = 1〉 = 1√
10
{2|1+,−2+| −

√
6|0+,−1+|},

|3PML = −1,MS = −1〉 = 1√
10
{2|1−,−2−| −

√
6|0−,−1−|},

3.5 We found

|3PML = 0,MS = 1〉 = 1√
5
{2|2+,−2+| − |1+,−1+|}.

Il is clearly a triplet since the spin configuration is αα, anfML = m1+m2 = 0.
In order to verify that it is a P state, we use

L2 = L2
1 + L2

2 + 2L1zL2z + L+
1 L

−
2 + L−

1 L
+
2

where L2
1 = L2

2 = 2×3 Now, 22L1zL2z{2|2+,−2+|− |1+,−1+|} = 2×2×2×
(−2)|2+,−2+|−2×1×(−1)|1+,−1+|; L+

1 L
−
2 |2+,−2+| = 0, L+

1 L
−
2 |1+,−1+| =

(−2)× 2|1+,−1+|, and in this way the check is readily completed.

Problems of Chapter 4

4.1 Integrate d
dβ

(
eβH [A, e−βH ]−

)
= eβH [H,A]−e−βH .

4.2 Let
fmn(x,x′, ω) =

∑
mn

e−βKnRmn(x, x′)δ(ω − ωmn),

which incidentally is just the spectral density (4.139) without the 1− s e−βω

factor. Equation (4.138) implies

ZReG(x,x′, ω) = P

∫
dω′

ω − ω′ (1 + s e−βω′
)fmn(x,x′, ω′),

−ZImG(x,x′, ω) = π(1− s e−βω)fmn(x,x′, ω), (21.7)

and the results follows by substitution.
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4.3 In the continuous case, equation (4.44) reads

(z +
h̄2

2m
d2

dx2
)g(x′, x, z) = δ(x− x′) (21.8)

and is solved by

g(x′, x, z) =

√
2m
h̄2

e
i
√

2mz

h̄2 |x−x′|

i
√
z

; (21.9)

[note that d|x−x′|
dx = sign(x−x′) ] and the band-edge singularity is similar to

the discrete case (with one band edge, however).

4.4 In the continuous case, for 3d, the solution of (4.44), namely,

(z +
h̄2

2m
∇2)g(r′, r, z) = δ(r − r′) (21.10)

is readily verified to be

g(r′, r, z) = − m

2πh̄2

e
i
√

2mz

h̄2 |r−r′|

|r − r′| . (21.11)

Therefore, −1
π Im limr′→r g(r, r′, z) yields the well known

√
z singularity.

4.5 U(r) = 1
2∇φ·n+

∫
S d

2r′(g−1(r, r′, ε)+(ε−E) ∂
∂εg

−1(r, r′, ε))φ(r′), where
ε and E are the unperturbed and perturbed energy eigenvalues, respectively.

Problems of Chapter 5

5.3 We found already that

Gk0(ω) =
Vk0

ω − εk
G00(ω). (21.12)

The off-diagonal element of the last of 5.21 yields

Gkk′ (ω) =
Vk0

ω − εk
G0k′ (ω), k 
= k′, (21.13)

and by substituting into the third of (5.21) we obtain

G0k(ω) =
V0kGkk

ω − ε0 −Σ(ω)
. (21.14)

Combining with the -diagonal element of the last of (5.21) we obtain

Gkk(ω) =
1

ω − εk − |V0k|2
ω−ε0−Σ(ω)

, (21.15)
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G0k(ω) =
V0k

(ω − εk)(ω − ε0 −Σ(ω))− |V0k|2
, (21.16)

and finally

Gkk′ (ω) =
Vk0

ω − εk
V0k′

(ω − εk′)(ω − ε0 −Σ(ω))− |V0k′ |2 . (21.17)

5.4 The Sz factor implies that 1) the scattering conduction spin direction is
the quantization axis for the impurity spin, 2) the singular scattering does not
flip the impurity spin 3) for S > 1

2 the scattering probability grows with the
square of the spin component mS 4) opposite mS gives opposite amplitude
5) The resistivity goes with TrU (2)†

if U
(2)
if .

Problems of Chapter 6

6.1 Averaging over a one-electron wave function,

〈ĵ(x)〉 =
e

2m

∫
d3x′ψ(x′)∗ [px′δ(x− x′) + δ(x− x′)px′ ]ψ(x′),

but the first term in the integrand can be rewritten (px′ψ(x′))∗δ(x −
x′)ψ(x′) = ih̄∇x′ψ(x′)∗δ(x− x′)ψ(x′) and the expectation value is the cur-
rent. Then

H ′ = −1
c
2mc

N∑
i

∫
d3xA(xi) · ĵ(xi)

=
−e
2mc

∫
d3x [A(x) · px′δ(x− x′) + A(x)δ(x− x′)px′ ] (21.18)

where A(x) and px′ commute. Let us take the matrix element H ′
mn. The

first term contributes
−e
2mc

∫
d3x′ψ∗

m(x′)
∫
d3xpx′A(x)δ(x − x′)ψn(x′).

Caution is needed when integrating with the δ functions if there are operators.∫
d3xδ(x − x′)φ(x′) = φ(x) holds even if φ contains operators, but δ must

stand on the left. So we cannot integrate over d3x′ directly, but we can over
d3x and we find

−e
2mc

∫
d3x′ψ∗

m(x′)px′A(x′)ψn(x′).

The second contribution
−e
2mc

∫
d3x′ψ∗

m(x′)
∫
d3xA(x)δ(x − x′)px′ψn(x′)

is (integrating in either way)

−e
2mc

∫
d3xψ∗

m(x′)A(x)pxψn(x).

Therefore the two formulations are equivalent.
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Problems of Chapter 8

8.1
1) The characters of the representation Γ (1) with one electron are

χ(E) = 5, χ(C2) = 1, χ(2C4) = 1, χ(2σv) = 3, χ(2σd = 1. Applying the
LOT one finds Γ (1) = 2A1 ⊕ E ⊕B1.

2) We choose a basis whose elements are determinants (i, j, k,m) ≡ |i ↑
j ↑ k ↓ m ↓ | with, say, i > j, k > m, numbering the sites as in Figure 8.5.

The number of configurations is
(

5
2

)2

= 100.One must determine how many

remain invariant or change sign under the operations of the Group. Under C2,
the only contributions come from (4, 2, 4, 2), (4, 2, 5, 3), (5, 3, 4, 2), (5, 3, 5, 3),
which remain invariant. Under σx, one finds invariant configurations

(2, 1, 2, 1), (2, 1, 4, 1), (2, 1, 4, 2), (4, 1, 2, 1), (4, 1, 4, 1), (4, 1, 4, 2), (4, 2, 2, 1),
(4, 2, 4, 1), (4, 2, 4, 2), (5, 3, 5, 3) while the configuration that change sign are

(2, 1, 5, 3), (4, 1, 5, 3), (4, 2, 5, 3), (5, 3, 2, 1), (5, 3, 4, 1), (5, 3, 4, 2). The con-
figurations (5, 2, 5, 2), (5, 2, 4, 3), (4, 3, 5, 2), (4, 3, 4, 3) remain invariant under
one of the σd reflections. Proceeding in this way, one finds the characters of
the reducible representation Γ (4) for 4 particles:

C4v I C2 2C4 2σv 2σd g = 8
A1 1 1 1 1 1 z
A2 1 1 1 −1 −1 Rz

B1 1 1 −1 1 −1 x2 − y2

B2 1 1 −1 −1 1 xy
E 2 −2 0 0 0 (x, y)
Γ (4) 100 4 0 4 4

Applying the LOT one finds Γ (4) = 15A1 ⊕ 11A2 ⊕ 24E ⊕ 13B1 ⊕ 13B2.

8.2 The characters of Γ (4) are 1296, 16, 0, 64, 16; hence, Γ (4) = 184A1 ⊕
144A2 ⊕ 320E ⊕ 176B1 ⊕ 152B2.

Problems of Chapter 9

9.1
In E ⊗ E = A1 ⊕ A2 ⊕ E all the irreps are contained. Using the set of

matrices (7.44),

E C3 C2
3 σa σb σc(

1 0
0 1

) (
− 1

2 −
√

3
2√

3
2 − 1

2

) (
− 1

2

√
3

2

−
√

3
2 −

1
2

) (
−1 0
0 1

) (
1
2

√
3

2√
3

2 −
1
2

) (
1
2

−√
3

2
−√

3
2 − 1

2

)
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from the one-electron basis (x, y) we form the direct-product basis

(x1x2, x1y2, y1x2, y1y2).

Using C3x = −x+y
√

3
2 , C3y = −y+x

√
3

2 , C2
3x = −x+y

√
3

2 , C2
3y = − y+x

√
3

2 , σ1x =

−x, σ1y = y, σ2x = x+y
√

3
2 , σ2y = −y+x

√
3

2 , σ3x = x+y
√

3
2 , σ3y = −y+x

√
3

2 and
the projection operator P (A1) =

∑
R∈GR, one finds

PA1x1x2= x1x2 + (−x1+y1
√

3
2 )(−x2+y2

√
3

2 ) + (−x1+y1
√

3
2 )(−x2+y2

√
3

2 )
+x1x2 + (−x1+y1

√
3

2 )(−x2+y2
√

3
2 ) + (x1−y1

√
3

2 )(x2−y2
√

3
2 )

= 3 (x1x2 + y1y2) .

This is the wave function, which is even in the exchange on 1 and 2, so it is
singlet. Normalizing,

1A1 =
x1x2 + y1y2√

2
. (21.19)

9.2

|1A2〉 =
|x1y2〉 − y1x2〉√

2
, (21.20)

to be multiplied for the singlet spin function. Therefore the non-vanishing
coefficients are: 〈1A1|Ex1Ey1〉 = 〈1A1|Ey1Ey1〉 = 1√

2
.

9.3 Using the set of matrices (7.44),

E C3 C2
3 σa σb σc(

1 0
0 1

) (
− 1

2 −
√

3
2√

3
2 − 1

2

) (
− 1

2

√
3

2

−
√

3
2 −

1
2

) (
−1 0
0 1

) (
1
2

√
3

2√
3

2 −
1
2

) (
1
2

−√
3

2
−√

3
2 − 1

2

)

we find that the contribution of the reflections is the same as that of the
rotations for P(E,y) and opposite for P(E,x). Consequently,

P(E,y)x1x2= x1x2 − 1
2 (x1+y1

√
3

2 )(x2+y2
√

3
2 )

− 1
2 (−x1+y1

√
3

2 )(−x2+y2
√

3
2 )

+x1x2 − 1
2 (x1+y1

√
3

2 )(x2+y2
√

3
2 )− 1

2 (x1−y1
√

3
2 )(x2−y2

√
3

2 )
= 3

2 (x1x2 − y1y2) ;

P(E,x)x1x2 = 0. Hence,

|1Y 〉 = |x1x2〉 − |y1y2〉√
2

.

Thus,

〈
1X
∣∣ E1x1E2x2〉 = −

〈
1X
∣∣ E1y1E2y2〉 =

1√
2
.
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9.4 One can check the results with Appendix II.

9.5 To find the characters of the Γ 3/2 and Γ 5/2 representations in C′
4v, or

similarly in D′
4, under rotations by an angle ω we choose to rotate around

the z axis; then |LSJM〉 → |LSJM〉eiMω. So, the D matrix is diagonal and
the character is given by the formula

χ(J)(φ) =
sin[(J + 1

2 )φ]

sin(φ
2 )

(21.21)

which which generalizes (9.20) above and results from using the identity

J∑
m=−J

cos(mx) = csc(
x

2
) sin[(J +

1
2
)x].

One finds

χ(3/2)(ω) =
sin(2ω)
sin(ω

2 )
= 4 cos(ω)) cos(

ω

2
). (21.22)

The reflections and all the improper rotations can be written like products
îRω. Proceeding in this way,

D′
4 E Ē

C4

C3
4Ē

C3
4

C4Ē
C2

C2Ē
2C′

2

2C′
2Ē

2C”2

2C”2Ē
A′

1 1 1 1 1 1 1 1
A′

2 1 1 1 1 1 −1 −1
B′

1 1 1 −1 −1 1 1 −1
B′

2 1 1 −1 −1 1 −1 1
E′

1 2 2 0 0 −2 0 0
E′

2 2 −2
√

2 −
√

2 0 0 0
E′

3 2 −2 −
√

2
√

2 0 0 0
Γ 3/2 4 −4 0 0 0 0 0
Γ 5/2 6 −6 −2 2 0 0 0

and Γ 3/2 = E′
2 ⊕ E′

3, Γ
5/2 = E′

2 ⊕ 2E′
3.

Problems of Chapter 10

10.1 This result is most easily obtained in the time representation, keeping
in mind that for t′ > t G(t, t′) =

∑
m ψ∗

m(x′)ψm(x)e−iεm(t−t′), where ψm(x)
are the energy eigenfunctions. Thus, each term yields half of the answer.

10.3 One easily recovers the results of Sect. 4.3.1.

10.4 As outlined in Ref. [205], one finds:
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[
∂

∂τ
+ iεk]Fkk′ (τ, τ ′, t, t′) = δkk′δ(τ − τ ′)g(t− t′)

−i
∑

q

VkqFqk′ (τ, τ ′, t, t′)χ(τ ; t, t′), (21.23)

were χ(τ ; t, t′) = 1 for t′ > τ > t and vanishes otherwise.

Problems of Chapter 11

11.1

R(d) =
∑
iklj

(−i)U(ilkj)(−i)U(kjil)
∫ t

0

dt1

∫ t1

0

dt2

×igi(t2 − t1)igk(t1 − t2)igl(t2 − t1)igj(t1 − t2). (21.24)

The integral yields (dropping an exponential term which goes to zero as
t→∞(1− iη)) R(d)(t) = it

∑
iklj

U(ilkj)2

εk+εj−εi−εl
.

11.2 From
∗
Σ= Σ +ΣG0Σ +ΣG0ΣG0Σ + · · · one finds

∗
Σ=

1
1−ΣG0

Σ. (21.25)

11.3 b)is the only skeleton.

11.4 Putting the Hartree potential and ϕ in the one-body term,G(0)−1(1, 2) =
i ∂

∂t −H0−Veff (1))δ(1, 2) and we may rewrite (11.81) as G(0)−1 = G−1 +Σ,
that is,

G−1(1, 2) = (i
∂

∂t
−H0 − Veff (1))δ(1, 2)−Σ(1, 2). (21.26)

Problems of Chapter 12

12.1 One gets δẼ
δn = (3π2)

2
3

2 n
2
3 , and inserting into (12.95) one finds n =

2
2
3

3π2 (μ − φ(x))
2
3 , that is, one is left with the semi-classical Thomas-Fermi

method.

12.2

− (−iU)4

28

∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3

∫ t3

0

dt4(e−2iV (t1+t2−t3−t4))2

=
−1
32

(
U

V
)4
[
5− e−4iV t − 4e−2iV t

512
− iV t1 + 2e−2iV t

128

]
. (21.27)
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Problems of Chapter 13

13.1 Symbolically, one writes Equation (13.135)

J = Γ (L)f (L) (gr − ga) + γ(L)g<

but for the other electrode one writes

J = −γ(R)f (R) (gr − ga)− γ(R)g<;

the solution arrives eliminating g< algebraically; this is legitimate for every
infinitesimal energy interval dε.

Problems of Chapter 14

14.1 Defining the combinations

p = um + us, p = um − us, r = um + ius, s = um − ius,

one obtains

Gmn(E) =
Gpp −Gqq − i [Grr −Gss]

4
.

prob1

14.2 One gets the moments and finds an = 0 and

b2n = W 2 n2

4n2 − 1
. (21.28)

14.3 One gets the moments and finds an = 0 and

b2n =
W 2

4
. (21.29)

14.4 From Equation (14.101),

x1 =
A1b1
A
− a12A12b2 + a13A13b3

A
+
a12a23A123b3 + a13a32A123b2

A

=
b1
D1
− a12b2 + a13b3

D12
+
a12a23b3 + a13a32b2

D123
.(21.30)

We may proceed by noting that D123 = D12D
12
3 , D

12
3 = a33 D12 = D1D

1
2,

D1
2 = a22 − a23a32/D

12
3 , and we have all the ingredients to apply 14.86 and

carry on the calculation.
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Problems of Chapter 16

16.1 Using (16.15),(16.16), the exponent transforms to

i[(k − mvx

h̄
)x+ t(− h̄k

2

2m
+
mv2

2h̄
]

but this must be written in terms of x′. Thus one obtains

ψ′(x′, t) = eik′x′−ih̄
(k′)2t
2m

with h̄k′ = h̄k−mv. Thus the plane-wave becomes a plane-wave with Galilean
transformation of the momentum.

Problems of Chapter 17

17.1 Table III shows how the irreps of G split in C4v.

G C4v

A1 A1

Ã1 A1

B2 B2

B̃2 B2

Γ1 2B2

Γ2 2A1

Σ1 A1 + 2B1

Σ2 A1 + 2B1

Σ3 2A2 +B2

Σ4 2A2 +B2

Λ1 A1 +B1 + E
Λ2 A1 +B1 + E
Λ3 A2 +B2 + E
Λ4 A2 +B2 + E
Ω1 A2 +B1 + 2E
Ω2 A2 +B1 + 2E
Ω3 A1 +B2 + 2E
Ω4 A1 +B2 + 2E
Π1 2A1 + 2B1 + 2E
Π2 2A2 + 2B2 + 2E

Table III. Reduction of the irreps of Optimal Group G of the 4 × 4 model in the

point Group.

17.2 The W = 0 Theorem ensures that no double occupancy is possible for
pairs in the irreps Ã1, B2, Γ1, Γ2, Σ1, Σ2, Σ3, Σ4, Λ2, Λ3, Ω1, Ω2, Ω3, Π1 and
Π2.
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Problems of Chapter 18

18.1 In the repulsive case, the Hamiltonian (14.58) reads

H =

⎛
⎜⎜⎝
U t t 0
t 0 0 t
t 0 0 t
0 t t U

⎞
⎟⎟⎠ . (21.31)

on the basis (a ↑ a ↓, a ↑ b ↓, b ↑ a ↓, b ↑ b ↓)) where a and b are the two sites.
For U > 0, the ground state eigenvalue is ε = 1

2 (U −
√

16 + U2) (we measure
energies in t units);

L = Q

(
2 q
q 2

)
with Q = 1√

16+U2+U
√

16+U2
, q = −(U +

√
16 + U2). For U = 7, ε =

−0.531129, L =
(

0.181492 −0.683418
−0.683418 0.181492

)
.

In the attractive case (21.32)

H̃ = H(t,−U) + U =

⎛
⎜⎜⎝

0 t t 0
t U 0 t
t 0 U t
0 t t 0

⎞
⎟⎟⎠ , U > 0 (21.32)

on the basis (α ↑ a ↓, α ↑ b ↓, β ↑ a ↓, β ↑ b ↓)) where α = b and β = a for the
new Fermions. The transformed matrix is

L̃ = Q̃

(
2 q̃
q̃ 2

)
with Q̃ = 1√

16+U2−U
√

16+U2
, q̃ = −(−U +

√
16 + U2). For U = 7, ε =

−0.531129, L̃ =
(

0.683418 −0.181492
−0.181492 0.683418

)
.

18.2 With 2 fermions, Q = P = {1, 2}, Q′ = P ′ = {2, 1}, let k1 < k2 denote
the momenta, and we may write{

fQ(x1, x2) = [QP ]ei(k1x1+k2x2) + [QP ′]ei(k2x1+k1x2) x1 ≤ x2

fQ′(x1, x2) = [Q′P ]ei(k1x2+k2x1) + [Q′P ′]ei(k2x2+k1x1) x1 ≥ x2

con

[QP ] =
−U

2i [QP
′] + {sin(k1)− sin(k2)} [Q′P ′]
sin(k1)− sin(k2) + U

2i

, (21.33)

and so on. For parallel spins U cannot act, sectors Q and Q’ are disjoint and
the coefficients are all determined by [QP ] = [Q′P ′] = −[Q′P ] = −[QP ′] and
normalization.
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For antiparallel spins, the periodicity conditions are also needed. In sector
Q, with 1 ≤ x1 ≤ x2 ≤ Ns let the amplitude be fQ(x1, x2). Let the electron
1 sit at be site x1; if we decide to relabel x1 + Ns that site, the amplitude
does not change, but we are now in sector Q′. So,

fQ(x1, x2) = fQ′(x1 +Ns, x2). (21.34)

Now,

[QP ]ei(k1x1+k2x2) + [QP ′]ei(k2x1+k1x2)

= [Q′P ]ei(k1x2+k2(x1+Ns)) + [Q′P ′]ei(k2x2+k1(x1+Ns)) (21.35)

implies {
[QP ] = [Q′P ′]eik1Ns

[QP ′] = [Q′P ]eik2Ns .
(21.36)

We eliminate [Q′P ] by (18.78) and get

[QP ′] = ([QP ] + [QP ′]− [Q′P ′])eik2Ns ,

which yields:

[ QP ′](1− eik2Ns) = ([QP ]− [Q′P ′])eik2Ns

= ([Q′P ′]eik1Ns − [Q′P ′])eik2Ns . (21.37)

Total momentum is conserved; hence

ei[k1+k2]Ns = 1 (21.38)

and so
[Q′P ′] = [QP ′].

Introduce the phase
θ ∈ (0, 2π),

and since k1 < k2,, let{
eik1Ns = e−iθ, Nsk1 = 2πλ1 − θ, λ1 ∈ Z
eik2Ns = eiθ, Nsk2 = 2πλ2 + θ, λ2 ∈ Z.

(21.39)

Integers λ1λ2 are Bethe quantum numbers that label the state with

[QP ] = [QP ′]e−iθ. (21.40)

In sector Q′ one finds:

[Q′P ]ei(k1x2+k2x1) + [Q′P ′]ei(k1x1+k2x2)

= [Q′P ]ei(k1x1+k2x2+k2Ns) + [Q′P ′]ei(k1x2+k2x1+k1Ns). (21.41)
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This yields {
[Q′P ] = [Q′P ′]e−iθ

[Q′P ′] = [Q′P ]eiθ.
(21.42)

Using (21.40,21.42, 18.78 ) one gets

[QP ] = [Q′P ], [QP ′] = [Q′P ′] = [QP ]eiθ. (21.43)

Then, (21.33) becomes

eiθ =
sin(k2)− sin(k1)− U

2i

sin(k2)− sin(k1) + U
2i

(21.44)

and the (un-normalized) wave function reads{
fQ(x1, x2) = ei(k1x1+k2x2) + ei(k2x1+k1x2+θ) x1 ≤ x2

fQ′(x1, x2) = ei(k1x2+k2x1) + ei(k2x2+k1x1+θ) x1 ≥ x2
.

This may be taken real if λ’s are opposite; then we may write

−k1 = k2 = k > 0;

besides,

eiθ =
i sin(k)− U

4

i sin(k) + U
4

(21.45)

We can simplify by an algebraic transformation based on

cot
(
θ

2

)
= i

eiθ + 1
eiθ − 1

. (21.46)

This leads to
U cot(

θ

2
) = 4 sin(k). (21.47)

For odd n we may also write

− tan(
θ

2
− nπ

2
) =

4
U

sin(k). (21.48)

Introducing

ϑ0(p) = −2 arctan(
2p
U

), (21.49)

we get
θ = nπ + ϑ0(2sin(k)).

One can verify the above results forNs = 3, in the singlet sector. Direct di-
agonalization yields the eigenvalues 1+U−√

9−2U+U2

2 (2 times), 1+U+
√

9−2U+U2

2

(2 times), −2+U+
√

36+4U+U2

2 and for the ground state −2+U−√
36+4U+U2

2 .



Solutions 429

These results are reproduced by the Bethe ansatz with Equation (18.77).
From λ = 0, that is k = θ

3 the solution of (21.47)

θ = 6 arccos[

√
5
8
− U

16
+
√

36 + 4U + U2

16
]

leads to the ground state and to the last but one. The other states arise from
λ = 1 and λ = 2, and each choice yields both eigenvalues.



References

1. Charles P. Enz,A Course on Many-Body Theory Applied to Solid-State Physics,
World Scientific (1992)

2. A.L. Fetter and J. D. Walecka, Quantum theory of Many-particle systems,
McGraw Hill, New York (1971)

3. Evgenij M. Lif
v
sits and Lev P. Pitaevskij, Teoria dello Stato Condensato, Ed.

Mir, Moskow (1981)
4. L S Cederbaum 1975 J. Phys. B: At. Mol. Phys. 8 290-303
5. G. Grosso e G. Pastori Parravicini “Solid State Physics”, academic Press Cam-

bridge (2000)
6. H.B.G. Casimir, Proc. Kon. Ned. Akad. Wetensch. B51, 793 (1948)
7. S. Lamoreaux, Phys Rev Lett, 78, p5 (1996)
8. J. Schwinger, U.S. Atomic Energy Commission Rept. NYO-3071 (1952)
9. P. W. Anderson, Phys. Rev. 124, 41 (1961)

10. D.M. Newns, Phys. Rev. 179, 1123 (1969)
11. P. Coleman, cond-mat/0206003
12. M.L. Knotek and P.J. feibelman, Phys. Rev.Lett. 40, 964 (1978)
13. Michele Cini, Phys. Rev. B32,1945 (1985)
14. S. Pancharatnam, Proc. Indian Acad. Sci. A 44, 247 (1956)
15. D. Jaksch, C. Bruder, J.I. Cirac, C. W. Gardiner and P. Zoller, Phys.Rev

Letters 81, 3108 (1998).
16. R.Resta, J. Phys.: Condens. Matter 12 R107 (2000)
17. J. Hubbard, Proc, R. Soc. Lond. A276, 238 (1963)
18. Michele Cini, Gianluca Stefanucci, Enrico Perfetto and Agnese Callegari, J.

Phys.: Condens Matter 14, L709 (2002).
19. P. Coleman, cond-mat/0206003
20. A.C. Hewson,The Kondo problem to Heavy fermions ,Cambridge University

Press (1997)
21. C. Lacroix, J. Phys. F: Metal Phys. 11(1981) 2389
22. O. Gunnarsson and K. Schönhammer, Phys. Rev. B22, 3710 (1980)
23. Brian L. Silver, Irreducible Tensor Methods, Academic Press New York (1976)
24. W. Borchardt-Ott,Crystallography, Springer -VerlagBerlin (1995)
25. Leonard I. Schiff, Quantum Mechanics,McGraw-Hill New York
26. O. Gunnarsson,K. Schönhammer, J.C. Fuggle and R. Lässer, Phys. Rev. B23,
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