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Preface

As I come to realize, this book was uniquely inspired by Professor Krainov’s
course on qualitative methods in physical kinetics that I attended at the
Moscow Engineering Physics Institute (National Research Nuclear Univer-
sity MEPhI nowadays) thirty years ago. As we students learnt in a more
rigorous class to follow, in physical kinetics, even the most basic results re-
quire laborious multi-page derivations. But Krainov’s course and his book
published later by the American Institute of Physics taught us that if one
is not interested in the exact values of prefactors, then ten pages of calcu-
lations can be replaced by two short lines on the back of an envelope; in
some cases, even a postal stamp would suffice.

The book you are about to read is based on the problems assigned in
a graduate course in quantum mechanics that I have been teaching at the
University of Massachusetts Boston for many years. Similar to the physical
kinetics classes I attended at the MEPhI, the discussion on any new topic
in my class would invariably start from a series of qualitative problems.
When I realized I had more than fifty of them, I decided to assemble them
in a book.

In this book, I clearly distinguish between the dimensional and the order-
of-magnitude estimates. Dimensional analysis is a powerful method to an-
alyze new unexplored equations, but it fails when there are too many di-
mensionless parameters involved. In an order-of-magnitude estimate—a
calculation where all angles are 90◦, all numbers are unity, and all integrals
are just “height times width”—one needs to understand the physics behind
the process really well; as a reward, the method is nearly universal.

Approximately half of the book is devoted to the estimates based on
either semi-classical approximation or on perturbation theory expansions

vii
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in elementary quantum mechanics. Thanks to a reduced number of
independent dimensionful parameters in the domains of applicability of
these theories, both dimensional and order-of-magnitude approaches are
ideally suited there.

A sequence of variational problems is also included. The breadth and
elegance of variational reasoning makes it a valuable tool in a preliminary
analysis of a problem; determination of the parity of the ground state in a
well is a good example. Furthermore, even the quantitative results obtained
from simple one-parametric variational ansatzes still fit on an envelope.

Similarly, I could not resist including several powerful results produced
by applying the Hellmann-Feynman theorem to integrable many-body quan-
tum systems. Unlike other methods considered, it produces exact answers;
those can also be obtained in a few lines.

The integrable partial differential equations serve as an example of a field
where there are no innate measurement units, and yet dimensional analysis
can be deployed; the dependence of the size of a Korteweg-de Vries soliton
on its speed is a typical application of the method.

This book contains both solved problems and exercises. The order of the
solved problems is important: the sequence gradually prepares the reader
for the problems without solutions. Minimal theoretical background is pro-
vided as well. Several lesser known theoretical facts are attached to the re-
spective “Background” sections as “Problems linked to the ‘Background’ ”.
Various approximate and qualitative methods are compared in three case
studies: of a hybrid, harmonic-quartic oscillator, of a “halved” harmonic
oscillator, and of a gravitational well.

This book would not have been possible without input from all the
students I have taught in my quantum mechanics courses at UMass Boston
and at the University of Southern California before it. Special thanks to
Vladimir Pavlovich Krainov for introducing me to qualitative methods, first
as a professor and, later on, as my first research project adviser. Further
interactions with my mentors, Vladimir Minogin and Yvan Castin, inspired
many new problems for the book and shaped its structure.

A good half of this book was compiled during quiet Mediterranean
nights, profiting from the free internet in the lobby of the Galil Hotel in Ne-
tanya, Israel. Many thanks to its staff for the cookies they were incessantly
feeding me throughout those nights.

This is an appropriate place to thank my friends—Vincent Lorent, Lana
Jitomirskaya, Vanja Dunjko, Lena Dotsenko, and Paul Gron—for standing
by my side in good and in bad times.
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I am immensely grateful to Zaijong Hwang and Vanja Dunjko for a
thorough critical reading of the manuscript.

Finally, I would like to thank my wife Milena Gueorguieva for correcting
commas, articles, and awkward sentences and my son Mark Olchanyi for
producing the cover art.

Maxim Olshanii
Boston, Massachusetts

January 14, 2013
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Chapter 1

Ground State Energy of a Hybrid
Harmonic-Quartic Oscillator:

A Case Study

Introduction

Consider the Schrödinger equation for a one-dimensional particle moving in
a combination of harmonic potential of frequency ω and a quartic potential
of strength β:

− !2

2m

∂2

∂x2
ψ(x) +

mω2

2
x2ψ(x) + βx4ψ(x) = Eψ(x), (1.1)

where m is the particle’s mass. We will be mainly interested in determining
the ground state energy. The Eq. (1.1) does not allow for an exact solution.
However, the major features of the dependence of the ground state energy
on the system parameters can be determined via elementary methods, such
as dimensional analysis, order-of-magnitude estimates, and simple varia-
tional bounds. The goal of this chapter is to illustrate the application of
these methods using the ground state problem (1.1) as an example.

1.1 Solved problems

1.1.1 Dimensional analysis and why it fails in this case

The assignment is: perform dimensional analysis of the problem and show
that from a dimensional point of view the problem is underdetermined :
no estimate for the ground state energy can be produced. However, some
information about the structure of the expression for the ground state energy
can still be extracted, on purely dimensional grounds.

Solution: The dimensional procedure for finding the ground state energy
Eg.s. (or assessing the impossibility of a complete dimensional solution) is

1
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as follows:

— Begin by identifying the principal units of measurement for the problem,
i.e. the minimal set of units sufficient to describe all input parameters of
the problem. For stationary problems in quantum mechanics, the units
of length, [L], and energy, [E ], have been proven to provide a handy set;

— Identify the input parameters and units used to measure them;
— Determine the maximal set of independent dimensionless parameters:

the set will include only the parameters that are generally either much
greater or much less than unity. These include both the dimensionless
parameters present in the problem a priori (such as the quantum num-
ber n), and the dimensionless combinations of the dimensionful input
parameters. If the set is empty, the unknown quantities can be deter-
mined almost completely, i.e. up to a numerical prefactor of the order of
unity. If some dimensionless parameters are present, the class of possible
relationships between the unknowns and the input parameters can be
narrowed down, but the order of magnitude of the unknown quantities
can not be determined.

— For each of the principal units, choose a scale: a combination of the
input parameters measured using the unit in question;

— Express the unknown quantities as a multi-power-law of principal scales,
times an arbitrary function of all dimensionless parameters, if any. If no
dimensionless parameters are present, the arbitrary function is replaced
by an arbitrary constant, presumed to be of the order of unity.

In our case, the above procedure gives:

— The principal units—the units of length and the units of energy:

[L] , [E ] ;

— The input parameters and their units :

[η] = [L]2 [E ]

[Υ] = [L]−2 [E ]

[β] = [L]−4 [E ] ,

where η ≡ !2/m, and Υ ≡ mω2;
— The set of independent dimensionless parameters =

{
P1 ≡ !β

m2ω3

}
. (1.2)
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It is represented by a single element. Let us prove that. First, there are
no a priori dimensionless parameters in this problem. Assume now that
P is a dimensionless parameter that is derived from the dimensionful
input parameters. It must be represented as a multi-power law of the
input parameters:

P = const × ηξ1Υξ2βξ3 .

Units for P are given by

[P ] = [η]ξ1 [Υ]ξ2 [β]ξ3

=
(
[L]2 [E ]

)ξ1 (
[L]−2 [E ]

)ξ2 (
[L]−4 [E ]

)ξ3

= [L]2ξ1−2ξ2−4ξ3 [E ]ξ1+ξ2+ξ3 .

On the other hand, P is supposed to be dimensionless:

[P ] = [L]0 [E ]0 .

Thus, the powers ξ1, ξ2, ξ3 must obey the following system of linear
homogeneous algebraic equations:

M̂ ·

⎛

⎜⎜⎝

ξ1

ξ2

ξ3

⎞

⎟⎟⎠ =

(
0

0

)
, (1.3)

where

M̂ =

(
1 1 1

2 −2 −4

)
. (1.4)

The number of independent dimensionless parameters will be given by

(# of independent dimensionless parameters)

= (# of independent a-priori-dimensionless parameters)︸ ︷︷ ︸
0

+ (# of independent dimensionful parameters)︸ ︷︷ ︸
3

− rank(M̂)︸ ︷︷ ︸
2

= 1. (1.5)
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The dimensionless parameter P1 can be found by solving the sys-
tem (1.3). It gives

⎛

⎜⎜⎝

ξ1

ξ2

ξ3

⎞

⎟⎟⎠ = const ×

⎛

⎜⎜⎝

1
2

− 3
2

1

⎞

⎟⎟⎠ ,

leading to

P1 = const ×
β
√
η

Υ3/2

= const × β!
m2ω3

;

— The principal scales—the length scale and the energy scale, examples of :

L =
√

!
mω

E = !ω.

The principal scales above are defined as examples of observables mea-
sured in principal units, [L] and [E ] in our case. To derive the above
expression for the length scale, let us represent this scale as

L = const × ην1Υν2βν3 .

The corresponding units are related as

[L] = [η]ν1 [Υ]ν2 [β]ν3

=
(
[L]2 [E ]

)ν1 (
[L]−2 [E ]

)ν2 (
[L]−4 [E ]

)ν3

= [L]2ν1−2ν2−4ν3 [E ]ν1+ν2+ν3 .

The powers ν1, ν2, ν3 obviously obey a system of linear inhomogeneous
algebraic equations given by

M̂ ·

⎛

⎜⎜⎝

ν1

ν2

ν3

⎞

⎟⎟⎠ =

(
1

0

)
, (1.6)

where M is given by the expression (1.4). Any particular solution of
Eq. (1.6) (and in this particular case we have a one-dimensional family
of them) can be chosen to represent a length scale; this choice is a
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matter of convenience. We choose the scale associated uniquely with
the harmonic oscillator,

⎛

⎜⎜⎝

ν1

ν2

ν3

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

1
4

− 1
4

0

⎞

⎟⎟⎠ ,

or, for example,

L =
(
βη

Υ

)1/4

=

√
!

mω
.

The energy scale E , given by the expression (1.6), can be obtained the
same way. The only difference is the right hand side of equation (1.6):
it should read

( 0
1

)
;

— Solution for the unknown:

[Eg.s.] = [E ] ⇒ Eg.s. = Φ(P1) × E = Φ
(

!β
m2ω3

)
× !ω, (1.7)

where Φ(P ) is an arbitrary function.

To summarize,

Eg.s. = Φ
(

!β
m2ω3

)
× !ω

Φ(·) = any function

This solution does narrow the class of possible expressions for the ground
state energy, but does not allow one to determine it, not even its order of
magnitude.

If needed, analogous expressions for other observables can be readily
obtained. For the observables measured in combinations of principal units
only, one should combine the principal scales to form a scale for the observ-
able of interest. The full dimensional prediction for this observable will
be given, as before, as a product of an arbitrary function of all dimension-
less parameters and the scale. For example, the r.m.s. force acting on our
particle in the ground state will be given by

Fg.s. = Φ2(P1) × F = Φ2

(
!β

m2ω3

)
×
√

m!ω3,
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where

F ≡ E
L =

√
m!ω3

is the force scale, and Φ2(P ) is another arbitrary function.
For the observables measured in units that do not belong to the principal

set (the minimal set of units to describe all input parameters), other scales
must be invented if needed. For example, the inverse harmonic frequency,
1/ω, provides a useful time scale:

T =
1
ω

.

In mechanics problems, both classical and quantum, no more than three
independent scales are ever necessary. For example, the r.m.s. ground state
velocity is given by

vg.s. = Φ3(P1) × V = Φ3

(
!β

m2ω3

)
×
√

!ω/m,

with

V ≡ L
T =

√
!ω/m

being the velocity scale.

1.1.1.1 Side comment: dimensional analysis and approximations

Often, when an exact theory is replaced by an approximate one, the number
of independent dimensionful parameters decreases, thus shifting the count-
ing (1.5) in favor of accurate up-to-a-prefactor dimensinal predictions. In
what follows, we will encounter several examples of such reduction. For
example, in semi-classical theory, considered in Chapter 2, the Plank con-
stant ! and the level index n fuse into a single entity, the classical canonical
action !̃:

!
↘

!(n + 1/2) ≡ !̃
↗

n

This reduction is a consequence of the absence of the quantization of action
in classical mechanics. Another example is the Thomas-Fermi theory,
Chapter 9. There, the number of electrons Z and the electron charge |e|
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unite and form a total charge Q, never appearing separately:

Z

↘
Z|e| ≡ Q

↗
|e|

The physical reason for such a merger is that in mean-field theories—such as
the Thomas-Fermi theory—the number of electrons is no longer quantized,
and a continuous field of electron number density n(r⃗) is used instead of the
individual electron positions. A similar reduction happens when solutions of
a many-body Schrödinger equation for an ensemble of bosonic particles are
approximated using solutions of a one-body nonlinear Schrödinger equation
(See Problem 10.1.3).

Yet another example of a reduction of the number of input parameters
under an approximation is provided by perturbation theory (Chapter 4).
Here, in the n-th order of perturbation theory, the power of a dimensionful
prefactor in front of the perturbation is fixed to n, effectively removing
the prefactor from the list of independent parameters. See, specifically,
Problems 4.1.8 and 4.1.9.

1.1.1.2 Side comment: how to recast input equations in a
dimensionless form

Prior to involved analytical or numerical calculations, equations are often
expressed in a “dimensionless form”, the advantage being a reduced number
of parameters and an absence of numbers that are too large or too small.

The recipe is as follows:

— Several input parameters, as many as there are principal units, are
replaced by unity;

— The remaining input parameters retain their notations, but their numer-
ical dimensionful values are replaced by dimensionless numbers given by
the ratios between the original values of the parameters and the corre-
sponding “scales”;

— Likewise, in the end the numerical values of the answers are multiplied
by the corresponding scales.

A well-defined formal procedure is hidden behind. It consists of two ele-
ments. (a) The parameters to be set to unity are chosen as principal scales;
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(b) these scales and their multi-power combinations are used as new units
of measurement.

In our example, we can choose [η] and [Υ] as the “principal units” and
η and Υ themselves as the “principal scales”. Obviously, in this system
of units, η and Υ assume unit values. Also, for moderate values of the
remaining dimensionless parameters, all answers we get become of the order
of unity.

Conventionally, this system of units is denoted as

!2

m
= mω2 = 1,

or even more often

! = m = ω = 1. (1.8)

The appearance of three scales is not an accident. The recipe (1.8) (a) does
not lead to any ambiguities in time-independent problems; (b) allows one
to fix all the scales, not only the principal ones; (c) prepares ground for
time-dependent problems.

According to the recipe (1.8), the original Schrödinger equation (1.1)
becomes

−1
2
∂2

∂x2
ψ(x) +

1
2
x2 + βx4ψ(x) = Eψ(x). (1.9)

In short, according to this recipe, instead of the original Eq. (1.1) we deal
with its dimensionless form (1.9), ready for analytic or numerical work: the
way to obtain (1.9) is to replace each of the parameters !2/m and mω2 by
unity, and replace the parameter β by β!

m2ω3 ; the latter will further become
a number, say 2.74, if some numerical answers are required:

!2/m → 1

mω2 → 1

β → β!
m2ω3

in numerics→ 3.74! . . . .

Imagine that we solved numerically the Eq. (1.9) for some value of β and
obtained Eg.s. = 1.14 . . .. To return to the usual system of units, we have to
simply multiply this result by the energy scale !ω—i.e. the only parameter
with units of energy that can be constructed out of !, m, and ω:

. . .! Eg.s. = 1.14 . . . → Eg.s. = 1.14 . . .× !ω.

The true reason why the whole procedure looks mysterious at first is that
formally speaking it severely abuses notations: for example, Eg.s. = 1.14 . . .
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and Eg.s. = 1.14 . . .×!ω should be denoted by different symbols—but they
are not. The practical advantages of this convention, however, compensate
for the difficulties experienced at the learning stage.

1.1.2 Dimensional analysis: the harmonic oscillator alone

Now, let us try to produce a dimensional solution for the ground state energy
of the harmonic oscillator alone:

− !2

2m

∂2

∂x2
ψ(x) +

mω2

2
x2 = Eψ(x). (1.10)

Solution: The procedure goes as follows:

— The principal units—the units of length and the units of energy:

[L] , [E ] ;

— The input parameters and their units :

[η] = [L]2 [E ]

[Υ] = [L]−2 [E ] ,

where again η ≡ !2/m, and Υ ≡ mω2;
— The set of independent dimensionless parameters = ∅. Indeed, assume

there exists a dimensionless parameter P expressed as a product of
powers of principal scales:

P = const × ηξ1Υξ2 .

Its units are now

[P ] = [η]ξ1 [Υ]ξ2

=
(
[L]2 [E ]

)ξ1 (
[L]−2 [E ]

)ξ2

= [L]2ξ1−2ξ2 [E ]ξ1+ξ2 .

The analogue of Eq. (1.3) is

M̂ ·
(
ξ1

ξ2

)
=

(
0

0

)
, (1.11)

where

M̂ =

(
1 1

2 −2

)
. (1.12)
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Now, according to the rule (1.5), this problem has no dimensionless
parameters at all. This is exactly the situation where dimensional anal-
ysis produces the most complete solutions, accurate up to an unknown
numerical prefactor;

— The principal scales—the length scale and the energy scale, examples of :

L =
√

!
mω

E = !ω.

They are exactly the same as in the full harmonic-quartic problem;
— Solution for the unknown:

[Eg.s.] = [E ] ⇒ Eg.s. = const × E = const × !ω,

where const is a number of the order of unity. Its precise value is
inaccessible for dimensional methods. Recall that the exact value of
this constant is 1/2.

Finally,

Eg.s. ∼ !ω .

1.1.3 Order-of-magnitude estimate: full solution

1.1.3.1 Order-of-magnitude estimates vis-a-vis dimensional
analysis

The dimensional analysis exemplified above is a formal method. It requires
almost no understanding of the physics of the problem at hand. It has
the advantage of being potentially applicable when a poorly understood
physical phenomenon is studied; for example, in Chapter 10, we will deploy
the dimensional machinery to analyze properties of integrable partial dif-
ferential equations, under an explicit assumption that the reader either did
not have any prior experience with the Kortewg-de Vries and sine-Gordon
equations, or tries his or her best to pretend he or she didn’t. The drawback
of dimensional analysis is its limited scope of applicability. It applies only
to problems with a small enough number of not-of-the-order-unity input
parameters.

Conversely, order-of-magnitude estimates require a deep understanding
of the physics behind the problem. Two principal stages of the solution
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can be identified. At the first stage, the space of input parameters is split
into regions of approximate applicability of simpler models. Often, the
position of the boundary between the regimes becomes clear only after the
simpler models are solved. At the second stage, these models are solved
approximately: typically the geometry of the problem is rendered on a
rectangular grid (“every closed trajectory is a rectangle, every angle is 90◦,
and integrals are height times width”), and all numbers of the order of
unity are replaced by unity.

Our goal is to give an order of magnitude estimate of the ground state
energy of the harmonic-quartic system (1.1).

A detailed solution to this problem is presented on the next two pages.

1.1.3.2 Harmonic vs. quartic regimes

It is obvious that for sufficiently small values of the quartic potential
strength β, the ground state energy will be dominated by the harmonic
part. It is equally obvious that if the value of β is too large, the harmonic
contribution to the potential can be neglected. What is less obvious is that
the boundary βbetween domains of applicability between the domains of applica-
bility (“regimes”) of the harmonic and quartic theories must lie at a point
βcomparable predictions where these theories give comparable predictions:

βbetween domains of applicability ∼ βcomparable predictions.

To prove the latter assertion one should rely on the assumption that
the ground state energy is a continuous function of the quartic strength
β. Let us assume now that the boundary between regimes lies far
below the point of comparable predictions, βbetween domains of applicability ≪
βcomparable predictions, and let us try to arrive at a contradiction. Indeed
for β ! βbetween domains of applicability, the prediction of the harmonic the-
ory applies, and for β " βbetween domains of applicability, the quartic theory
applies. But since we are far from the point where the predictions of
the two theories are comparable, at around βbetween domains of applicability,
the ground state energy as a function of β will have a discontinuity,
that we disallowed. The identical reasoning applies for the case of
βbetween domains of applicability ≫ βcomparable predictions. Thus, we arrive at
a contradiction, Q.E.D.

The point of comparable predictions βcomparable predictions is still
unknown. But on both sides of this boundary, the models are much sim-
pler than the original one: there, the ground state energy can be easily



August 8, 2013 15:5 World Scientific Book - 9in x 6in B1662-ch01

12 Back-of-the-Envelope Quantum Mechanics

estimated. These estimates will be used to determine the boundary be-
tween regimes βbetween domains of applicability.

1.1.3.3 The harmonic oscillator alone

To estimate the ground state energy of the harmonic oscillator,

ĤHO =
p̂2

2m
+

mω2

2
x2, (1.13)

assume that the ground state has a spatial width ∆x. It is known that
in the ground state, the Heisenberg uncertainty inequality becomes an
approximate equality,

∆p ∼ !
∆x

, (1.14)

where ∆p is the momentum width. The ground state energy can then be
estimated as

Eg.s. ∼ A
!2

m(∆x)2
+ Bmω2(∆x)2 (1.15)

A ∼ B ∼ 1, (1.16)
where A and B are unknown entities of the order of unity. Now, it is
also known that the ground state energy minimizes the expectation value
of energy among all possible states. In particular, it should do so among
states that yield an approximate Heisenberg equality (1.14). Thus the
ground state energy is represented by the minimum of the energy (1.16)
considered as a function of the width ∆x. This minimum is given by

Eg.s.,HO ∼ !ω, (1.17)
and it is reached at

(∆x)g.s.,HO ∼
√

!
mω

.

1.1.3.4 The quartic oscillator alone

The analysis of the ground state of a quartic oscillator,

ĤQO =
p̂2

2m
+ βx4, (1.18)

is identical to the analysis of the harmonic one. The result is

Eg.s.,QO ∼
(

!2

m

)2/3

β1/3, (1.19)

at

(∆x)g.s.,QO ∼
(

!2

m

)1/6 1
β1/6

.
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1.1.3.5 The boundary between the regimes and the final result

Setting the ground state energy predictions, (1.17) and (1.19), equal,

Eg.s.,HO ∼ Eg.s.,QO,

we get

βbetween domains of applicability ∼ m2ω3

! .

The final prediction for the ground state energy of a harmonic-quartic
oscillator (1.1) reads

Eg.s. ∼

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

!ω for β ! m2ω3

!
(

!2

m

)2/3
β1/3 for β " m2ω3

!

1.1.4 An afterthought: boundary between regimes from
dimensional considerations

It turns out that if we knew a priori there was a boundary between two
regimes we would be able to get it on dimensional grounds. So the problem
is: find βbetween domains of applicability dimensionally.

Solution: The dimensionless parameter P1 (see (1.2)) is the only dimen-
sionless number that controls how deep into the harmonic or quartic regime
the system is. The transition between the regimes must happen at some
special value of this parameter. A priori, for a non-negative dimensionless
number, there exist only three special values: 0, 1, and +∞. We know that
the first corresponds to a deep harmonic regime, and the last corresponds to
the quartic one. Thus, the transition between regimes must happen when
the parameter P1 reaches a value of the order of unity:

P1|β∼βbetween domains of applicability ∼ !βbetween domains of applicability

m2ω3
∼ 1.

An estimate for the boundary between regimes immediately follows:

βbetween domains of applicability ∼ m2ω3

!
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It is necessary to stress that this estimate does not imply that a harmonic-
to-quartic transition exists. To show that, we have to go beyond dimen-
sional analysis.

1.1.5 A Gaussian variational solution

Variational methods, introduced in Chapter 5, provide another simple but
powerful tool that allows one to quickly estimate the result of a problem.
Unlike dimensional and order-of-magnitude arguments, variational methods
produce numerical answers, usually close to the exact result. The assign-
ment is: using a Gaussian variational ansatz, find the unknown function
Φ(P1) in Eq. (1.7).

Solution: The exact ground state ψg.s.,exact minimizes the energy functional

E [ψ(·)] =
∫

dx

{
!2

2m
|ψ′(x)|2 +

(
mω2

2
x2 + βx4

)
|ψ(x)|2

}

on the space of smooth functions normalized to unity. The minimum of
this functional on a one-parametric Gaussian manifold,

ψ(x,σ) ≡ 1
(2πσ2)1/4

e−x2/(4σ2)

constitutes a Gaussian variational estimate for the true ground state energy.
The variational solution to the ground state energy is given by

Eg.s.
variational= Φ(P1) × !ω ,

with

Φ(P1) =
6f(φ(P1))2 + f(φ(P1))3 + 1944P 2

1

432f(φ(P1))P1

f(φ) = φ+
1
φ
− 1

φ(P1) = (486P 2
1 + 18

√
729P 4

1 − 3P 2
1 − 1)1/3

P1 =
!β

m2ω3

This result, along with the purely harmonic and purely quartic predictions,
is presented in Fig. 1.1. As expected, for P1 ! 2, the variational value is
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P1 !

! Β

m2 Ω3

0.5

1.0

1.5

2.0

Eg.s!!Ω"

Fig. 1.1 A Gaussian variational solution for the ground state energy of a hybrid
harmonic-quartic oscillator (1.1), as a function of the strength β of the quartic part of
the potential (solid line). P1 is the only dimensionless parameter of the problem. Exact
energy for a purely harmonic oscillator (short-dashed line), and a Gaussian energy for a
purely quartic oscillator (long-dashed line) are shown for comparisson.

fairly close to the quartic prediction. On the other hand, for P1 ! 0.25, the
ground state energy is close to the one for the harmonic oscillator.
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Chapter 2

Bohr-Sommerfeld Quantization

2.1 Solved problems

2.1.1 A semi-classical analysis of the spectrum of a har-
monic oscillator: the exact solution, an order-of-
magnitude estimate, and dimensional analysis

(a) Using the Bohr-Sommerfeld quantization rule,
∮

p(x|En) dx = 2π!(n + 1/2)

n = 0, 1, 2, . . . , (2.1)

where

p(x|E) ≡ ±
√

2m(E − V (x))
∮

p(x|E) dx ≡ 2
∫ xmax

xmin

|p(x|E)| dx,

determine the energy spectrum of a harmonic oscillator ;
Solution: The WKB integral

A =
∮ √

2m

(
E − mω2x2

2

)
dx

is nothing else but the area, A = πrxrp, of an ellipse with the half-axes
rx =

√
2E/(mω2) and rp =

√
2mE. Thus, this integral is given by A =

2πE/ω. Finally

En = !ω
(

n +
1
2

)

17
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(b) Pretending you do not know how to compute the integral in
Eq. (2.1), estimate En.

Solution: Replacing the ellipse by a rectangle, we get A ≈ rxrp ∼√
E/(mω2)

√
mE = E/ω. Finally, we get

En ∼ !ω(n + 1/2)

(c) Pretending you do not even know what an “integral” is—just that
its symbol “

∮
” is a dimensionless entity—estimate En using dimensional

analysis.
Solution: The Bohr-Sommerfeld quantization rule again reads

∮ √

2m

(
En − mω2x2

2

)
dx = 2π!(n + 1/2)

n = 0, 1, 2, . . . ; (2.2)

but this time around, we pretend that the integral is some obscure, poorly
understood mathematical operation, and all we know is units the partici-
pants of the Eq. (2.2) are measured in.

Notice however that the state index n enters (2.2) only as one of the
two factors of the product !(n + 1/2). This allows us to introduce a new
dimensionful parameter, !̃. Furthermore, we realize that only two indepen-
dent dimensionful parameters are needed: η̃ ≡ !̃2/m and Υ ≡ mω2. The
quantization rule now reads:

∮ √

2
(

En − Υx2

2

)
dx = 2π

√
η̃

n = 0, 1, 2, . . . .

Performing dimensional analysis we get

— The principal units—the units of length and the units of energy:

[L] , [E ] ;

— The input parameters and their units:

[η̃] = [L]2 [E ]

[Υ] = [L]−2 [E ] ;

— The set of independent dimensionless parameters = ∅;
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— The principal scales—the length scale and the energy scale, examples of :

L =

√
!

mω
E = !ω;

— Solution for the unknown:

En ∼
√
η̃Υ = !̃ω.

Finally,

En ∼ !ω(n + 1/2)

2.1.2 WKB treatment of a “straightened” harmonic
oscillator

Consider a “straightened” harmonic oscillator potential

V (x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

mω2(x + L/2)2

2
for x < −L/2

0 for −L/2 ≤ x < +L/2

mω2(x − L/2)2

2
for x ≥ +L/2

,

see Fig. 2.1.

E

(  )

L
x

ω ω

V  x

Fig. 2.1 Straightened harmonic oscillator.
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Derive a WKB expression for the energy levels En.
Useful integral: ∫ 1

0

√
1 − t2 dt =

π

4
.

Solution: The Bohr-Sommerfeld quantization rule reads:

S(En) = 2π!
(

n +
1
2

)

n = 0, 1, 2, . . . , (2.3)
where

S(E) = 2
∫ x2

x1

dx
√

2m(E − V (x))

is the so-called classical full-cycle abbreviated action. Here x1 and x2 are
the left and right classical turning points respectively.

In our case
S(E) = SHO(E) + Sfree(E),

where

SHO(E) = 2
∫ −L/2

−L/2−
√

2E/(mω2)
dx
√

2m(E − mω2(x + L/2)2/2)

+ 2
∫ +L/2+

√
2E/mω2

+L/2
dx
√

2m(E − mω2(x − L/2)2/2)

= 2
∫ +

√
2E/(mω2)

−
√

2E/(mω2)
dx
√

2m(E − mω2x2/2)

=
2πE

ω
and

Sfree(E) = 2
√

2mEL.

Substitution of the above to the quantization rule (2.3) leads to

En = EHO,n + 2
(
E −

√
E(EHO,n + E)

)

n = 0, 1, 2, . . . ,

where

EHO,n = !ω(n +
1
2
)

E =
1

2π2
mω2L2
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Interestingly, in the limit of the infinitely strong oscillator where ω → ∞,
the energy spectrum reduces to

En
ω→∞≈ !2

2m

(π
L

)2
(

n +
1
2

)2

n = 0, 1, 2, . . . ,

which is nothing else but the spectrum of a box with “soft walls”—sharp
boundaries where, at the same time, the spatial derivative of potential
remains finite. Compare with the hard-wall box result,

Ehard-wall box, n =
!2

2m

(π
L

)2
(n + 1)2

n = 0, 1, 2, . . . .

Note also, that when we remove the flat region of our potential (i.e. set L =
0) the spectrum reduces to the usual spectrum of the harmonic oscillator:

En
L=0= !ω

(
n +

1
2

)

n = 0, 1, 2, . . . ,

2.1.3 Ground state energy in power-law potentials

Consider the Schrödinger equation for a particle in a “2q-tic” potential:

− !2

2m

∂2

∂x2
ψ(x) + Kqx

2qψ(x) = Eψ(x)

q = 1, 2, 3, . . . .

(a) Using the Heisenberg uncertainty principle, estimate the ground
state energy;

Solution: The momentum and position uncertainties read

(∆p)2

m
∼ Eg.s. ⇒ ∆p ∼

√
mE

Kq(∆x)2q ∼ Eg.s. ⇒ ∆x ∼
(

E

Kq

) 1
2q

.

The ground state minimizes the Heisenberg uncertainty:

∆p ∆x ∼ !.
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Hence,

Eg.s. ∼
(

!2

m

) q
q+1

K
1

q+1
q

(b) The same as the above, but using dimensional analysis.
Solution: The input parameters are !2/m ≡ η and Kq. Their units

are given by [η] = EL2 and [Kq] = E/L2q. The units for the ground state
energy Eg.s. are [Eg.s.] = E . Thus,

Eg.s. ∼
(

!2

m

) q
q+1

K
1

q+1
q

2.1.4 Spectrum of power-law potentials

Consider the Schrödinger equation for a particle in a “2q-tic” potential:

− !2

2m

∂2

∂x2
ψ(x) + Kqx

2qψ(x) = Eψ(x).

(a) Give an order-of-magnitude estimate for the spectrum En; use the
WKB quantization rule as a starting point.

Solution: WKB quantization reads
∮

p(x|En) dx = 2π!
(

n +
1
2

)
.

Estimating the WKB integral as
∮

p(x|En) dx ∼
√

mEn︸ ︷︷ ︸
∆p

(En/Kq)
1
2q

︸ ︷︷ ︸
∆x

,

we get
√

mE
q+1
2q

n
1

K
1
2q
q

∼ !(n + 1/2),

or

En ∼
(

!2

m

) q
q+1

K
1

q+1
q (n + 1/2)

2q
q+1
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(b) Estimate the spectrum En using dimensional analysis applied to the
WKB quantization rule.

Solution: In this case, the method of solution is completely analogous
to the one used in Problem 2.1.1. Consider WKB quantization at large n:

∮ √
2m(En − Kqx2q) dx = 2π!(n + 1/2).

We can identify two input parameters: (!(n + 1/2))2/m ≡ η̃ and Kq, with
[η̃] = EL2 and [Kq] = E/L2q. Here, Kq plays a role of Υ for the harmonic
oscillator (Problem 2.1.1). The eigenenergies En, which have the dimension
of energy, are given by

En ∼
(

!2

m

) q
q+1

K
1

q+1
q (n + 1/2)

2q
q+1 (2.4)

Remark : A rigorous WKB quantization gives

En = Cq

(
!2

m

) q
q+1

K
1

q+1
q (n + 1/2)

2q
q+1 ,

where

Cq =
(π

2

) q
q+1

(
Γ[ 3q+1

2q ]

Γ[ 2q+1
2q ]

) 2q
q+1

, (2.5)

and Γ[z] is the gamma-function.

2.1.5 The number of bound states of a diatomic molecule.

Consider two atoms with masses m1 and m2, interacting via a “hard-core
Van der Waals potential”,

V (r) =

⎧
⎨

⎩
− C6

r6
, r ≥ R

+∞, r < R
. (2.6)

(a) Using dimensional analysis and the WKB approximation, estimate
the total number N of the s-wave bound states (l = 0) of a diatomic molecule
consisting of these two atoms.

Recall that the relative motion is the one of a single particle of the so-
called reduced mass µ = m1m2/(m1 + m2), moving in the potential (2.6).
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Solution: The only dimensionless combination one can form out of the
set !2/µ, C6, and R is

ξ ≡ !2R4

µC6
.

Therefore the (dimensionless) number N can only have the form

N = Φ
(

!2R4

µC6

)
, (2.7)

where Φ(ξ) is an unknown dimensionless function.
At the level of the Schrödinger equation, Eq. (2.7) constitutes the

absolute maximum of the information one can extract from the dimen-
sional analysis. However, at the WKB level, the level indices enter only as
a factor in the product !(n − 1/4) (, where n = 1, 2, 3, . . .)1, the physical
reason being that in the limit n ≫ 1, all the appearances of Planck’s con-
stant must be absorbed in the classical action, I =

∮
pdx = !(n− 1/4). On

the other hand, N is an upper bound for such indices, and therefore, any
relation it is involved in should only contain functions of !(N − 1/4) as a
whole. This limits Φ(ξ) to

Φ(ξ) = const × 1√
ξ

+ 1/4.

Thus, finally

N − 1/4 ∼
√

mC6
!R2

(b) Compute this number exactly, within WKB. Recall that for the
hard-wall/soft-wall combination the Bohr-Sommerfeld rule reads∮

p(x |En) dx = 2π!
(

n +
3
4

)
, n = 0, 1, 2, . . . . (2.8)

Solution: The upper bound nmax can be obtained from the Bohr-
Sommerfeld quantization rule (2.8) by setting En to zero. The integral
can then be easily computed, and it gives

N =
⌊

1√
2π

√
mC6

!R2
+

1
4

⌋

where ⌊. . .⌋ is the floor function.

1Here, we apply the quantization rule (2.17) corresponding to one “hard” and one “soft”
turning point.
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2.1.6 Coulomb problem at zero angular momentum

The zero-angular-momentum motion of an electron in the field of an atomic
nucleus is described by the one-dimensional Schrödinger equation

− !2

2m

∂2

∂r2
χ(r) − α

r
χ(r) = Eχ(r)

0 < x < ∞ (2.9)

χ(r → 0) = 0,

where α = Ze2, e is the electron charge, and Z is the number of protons in
the nucleus2.

−

V  r(  )

E

r

__α
r( )

Fig. 2.2 Coulomb problem at zero angular momentum.

(a) Find the ground state energy E1 in three ways:

(i) From the dimensional analysis;

2The effective one-dimensional wavefunction χ(r) is related to actual solutions

Ψ(r, Θ, φ) of the three-dimensional Coulomb problem − !2

2m δΨ(r, Θ, φ) − α
r Ψ(r, Θ, φ) =

EΨ(r, Θ, φ) as Ψ(r, Θ, φ) = r−1χl(r)Yl,m(Θ, φ), where l and m are the azimuthal and
magnetic quantum numbers respectively, and Yl,m are the spherical harmonics.
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Solution:

— The principal units—the units of length and the units of energy:

[L] , [E ] ;

— The input parameters and their units:
[
η̃ ≡ !2/m

]
= [L]2 [E ]

[α] = [L] [E ] ;

— The set of independent dimensionless parameters = ∅;
— The principal scales—the length scale and the energy scale, examples

of:

L =
!

mα

E =
mα2

! ;

— Solution for the unknown:

E1 ∼ E =
mα2

! .

We get finally

E1 ∼ mα2

!2

(ii) From the Heisenberg uncertainty principle:

(α) Estimate the spatial extent ∆r of the motion at a given energy E;
(β) Estimate the momentum spread ∆p using dimensional analysis3;
(γ) Obtain the ground state energy E1 using the fact that the Heisenberg

inequality ∆p ∆r ! ! becomes an (approximate) equality ∆p ∆r ∼ !
in the ground state.

3Estimating ∆p from the phase-space trajectory (as we do usually) is not straightfor-
ward, because the momentum diverges at r = 0.
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Solution:

(α) A classical estimate for the apogee gives
α

∆r
∼ E ⇒ ∆r ∼ α

E
.

(β) A classical dimensional analysis (no !, energy E instead) gives

∆p ∼
√

mE.

(γ) In the ground state, the Heisenberg inequality becomes close to an
equality:

∆p(E1)∆r(E1) ∼ ! .

Thus

E1 ∼ mα2

!2

(iii) From the Bohr-Sommerfeld rule4:
∮

p(r) dr = 2π!(n + δ) (2.10)

n = 0, 1, 2, 3, . . . .

4We deliberately leave δ undefined. The question of a proper WKB quantization of
a three-dimensional radially symmetric potential, including Coulomb problems at both
non-zero and zero angular momenta, has a long and convoluted history. A rigorous
analysis of the question is presented in a comprehensive book on WKB by Heading [M.
A. Heading, An Introduction to Phase-Integral Methods (John Wiley, New York (1962))].
The currently most accepted quantization recipe is based on the classic paper by Langer
[R. E. Langer, On the connection formulas and the solutions of the wave equation, Phys.
Rev. 51, 669 (1937)]. In short, Langer’s WKB prescription for a potential V (r) at
angular momentum l is as follows:

I
peff.(r) dr = 2π!(nr + 1/2)

nr = 0, 1, 2, 3, . . .

peff.(r) ≡
q

2m(Enr − Veff.(r))

Veff.(r) ≡ V (r) +
!2(l + 1/2)2

2mr2
;

notice the replacement l(l + 1) → (l + 1/2)2 (the so-called Langer correction). The rule
applies to both regular and singular potentials for any value of the angular momentum,
including l = 0.
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Useful integral: ∫ 1

0

√
1/t − 1 dt =

π

2
.

Solution:
∫ r2(E)

0
dr
√

2m(−|E| + α/r) =
√

2m|E| r2(E)
∫ 1

0

√
1/t− 1

=
√

2mα√
|E|

π

2
.

Here, r2(E) = α/|E| is the right turning point (the apogee point for the
Coulomb case). On the other hand∫ r2(En)

0

√
2m(−|En| + α/r) = π!(n + δ).

We get

En = − (mα2/!2)
2(n + δ)2

n = 0, 1, 2, 3, . . . .
For the ground state energy we have

E1 =
(
−1

2

)
mα2

!2

1
δ2

(b) Verify that

χ1(r) =
2

√
aZ

(r/aZ) exp(−r/aZ) (2.11)

obeys the Schrödinger equation (2.9). Here, aZ = aB/Z, and aB =
!2/(me2) is the Bohr radius. Find the corresponding energy E1. Since
(2.11) has the least number of the nodes allowed by the boundary conditions
in (2.9), it corresponds to the ground state, and thus the energy E1 you will
infer from (2.11) is the exact ground state energy. Compare the exact E1

you will get with the WKB prediction from sub-problem (a)-(iii).
Solution: Substitution of the state (2.11) into the Schrödinger equation

(2.9) makes the latter an equality for

E1 =
(
−1

2

)
mα2

!2
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2.1.7 Quantization of angular momentum from WKB

Consider a particle of mass m moving on a surface of a sphere of radius
R. The energy of the particle is determined by its azimuthal quantum
number l:

El,m =
!2l(l + 1)

2mR2
.

At large energies (thus at short de Broglie wavelengths), one may assume
that the particle’s wavefunction becomes less sensitive to the curvature of
the sphere, and the problem can be approximately replaced by a flat billiard
of the same area as the sphere. According to this interpretation,

P ≡ !l

R
becomes the magnitude of the linear momentum of the particle, and the
energy,

El,m

El,m≫!2/(mR2)
≈ (!l/R)2

2m
=

P 2

2m
,

becomes reinterpreted as the particle’s kinetic energy.
(a) Using the multi-dimensional WKB quantization rule (see Weyl law

in Sec. (2.3.2)), determine N̄ (E)—the number of eigenstates with energy
below or equal to some energy E;

Solution: For a given energy E, the phase space volume occupied by
points with energy less than or equal to E is

W (energy ≤ E) = 2D-Volume(surface of 3D-sphere, cooordinates)︸ ︷︷ ︸
4πR2

× 2D-Volume(2D-ball, momenta)︸ ︷︷ ︸
πP 2

= 4π2R2P 2.

Now, according to the Weyl law,

N̄ (E)
E≫!2/(mR2)

≈ W (energy ≤ E)
(2π!)2

.

We get:

N̄ (E)
E≫!2/(mR2)

≈ 2
E

!2/(mR2)
E≫!2/(mR2)

≈ l2

where E = (!l/R)2/2m
E≫!2/(mR2)

≈ El,m.
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(b) Using the exact quantization of the motion on a sphere, El,m =
!2l(l + 1)/(2mR2), l = 0, 1, . . . ; m = −l,−l + 1, . . . , +l, find an expression
for N̄l—the number of angular momentum eigenstates with the azimuthal
quantum number l′ less than or equal to l and compare it with your result
from part (a).

Solution:

N̄l =
l∑

l′=0

+l∑

m=−l

1,

or

N̄l = (l + 1)2

The agreement between (a) and (b) is quite remarkable.

2.1.8 From WKB quantization of 4D angular momentum
to quantization of the Coulomb problem

It is not well-known5 that there exists a map between the eigenstates
|n, l, m⟩ of the (three-dimensional) Coulomb problem Ĥ = p2/(2m) − α/r
and the eigenstates |l4D, l3D, m⟩ of a particle moving on a surface of a four-
dimensional sphere of radius R. In this map, the quantum number n is re-
lated to the four-dimensional azimuthal quantum number l4D as n = l4D+1.
Likewise, l = l3D. The energy on the 4D sphere is quantized as

El4D ,l3D,m =
!2l4D(l4D + 2)

2mR2
. (2.12)

Similarly to the three-dimensional case of Problem 2.1.7, we would as-
sume that high energies, the 3D “surface” of the 4D-sphere will look almost
flat, and the surface can be un-bent to a 3D Cartesian billiard. Again, anal-
ogously to the Problem 2.1.7 case,

P ≡ !l4D

R

5V. Fock, Zur Theorie des Wasserstoatoms, Z. Physik 98, 145 (1935) [English transla-
tion: V. Fock, On the theory of the hydrogen atom, in: Dynamical Groups and Spectrum
Generating Algebras, vol. 1, p. 411, A. Bohm, Y. Neeman, A. O. Barut (eds.) (World
Scientic, Singapore (1988)).
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should be interpreted as momentum, and

El4D ,l3D,m

El4D,l3D,m≫!2/(mR2)
≈ (!l4D/R)2

2m
=

P 2

2m
as kinetic energy.

(a) Using Weyl’s multi-dimensional WKB quantization rule (Sec.
2.3.2)), determine the number N̄ (E), which is the of number the eigen-
states of the four-dimensional sphere with energy below or equal some energy
E, reinterpret your result in terms of the Coulomb spectrum, and find the
number N̄C(EC) defined as the number of the eigenstates of the Coulomb
problem with energies not exceeding EC .

Useful information: in four dimensions, the 3D-surface of a sphere of
radius R is S3 = 2π2R3. The 4D-volume of a four-dimensional ball of
radius R is V4 = (π2/2)R4.

Solution: For a given energy E, the phase space volume occupied by the
points with energy less or equal E is

W (energy ≤ E)

= 3D-Volume(surface of 4D-sphere, cooordinates)︸ ︷︷ ︸
2π2R3

× 3D-Volume(3D-ball, momenta)︸ ︷︷ ︸
4
3πP 3

=
8π3

3
R3P 3.

Thus,

N̄ (E)
E≫!2/(mR2)

≈ W (energy ≤ E)
(2π!)3

E≫!2/(mR2)
≈ 2

3

(
E

!2/(mR2)

)3/2

E≫!2/(mR2)
≈ 1

3
l34D.

Now, observe that (a) the eigenenergies of the 4D-sphere, given by
Eq. (2.12), represent a monotonically increasing function of l4D; (b)
Coulomb eigenenergies,

EC;n,l,m = −mα2/!2

2n2
,

increase monotonically with n, and (c) according to Fock’s map described

above, n
l4D≫1≈ l4D. Thus,

N̄C(EC;n≈l4D ,l,m) ≈ N̄ (El4D ,l3D ,m).
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Finally,

N̄C(EC)
EC≫mα2/!2

≈ 1
3 × 23/2

(
mα2/!2

|EC |

)3/2

EC≫mα2/!2

≈ 1
3

n3

where EC = −(mα2/!2)/(2n2) = EC;n,l,m.
(b) Using the exact quantization of the Coulomb problem, En,l,m =

−(mα2/!2)/(2n2), {n = 1, 2, . . . ,∞; l = 0, 1, . . . , n − 1; m = −l,−l +
1, . . . , +l}, find an expression for a number N̄C;n that gives the number of
Coulomb eigenstates with the principal quantum number less than or equal
to n; compare this number with your 4D WKB prediction from (a).

Solution:

N̄C;n =
∑n

n′=1

∑n′−1
l=0

∑+l
m=−l 1

or

N̄C; n =
1
3
n(n + 1/2)(n + 1)

The agreement with the 4D WKB prediction from (a) is indeed very good.

2.2 Problems without provided solutions

2.2.1 Size of a neutral meson in Schwinger’s toy model of
quark confinement

Consider the one-dimensional analogue of a neutral meson in Schwinger’s
toy model of “color confinement”6: one-dimensional quark and anti-quark,
of mass m each, interacting via a one-dimensional analogue of the Coulomb
potential, i.e. linear potential:

V (x) = α|x|,

where x ≡ x1−x2 is the distance between the quarks. Using the Heisenberg
uncertainty relation, estimate the size of the meson in the ground state.

6Julian Schwinger, Gauge Invariance and Mass. II, Phys. Rev. 128, 2425 (1962).
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2.2.2 Bohr-Sommerfeld quantization for periodic boundary
conditions

Derive a Bohr-Sommerfeld quantization rule for a one-dimensional bounded
motion with periodic boundary conditions.

2.2.3 Ground state energy of multi-dimensional power-law
potentials

Show that the dimensional estimate for the ground state energy of power-law
potentials (see Problem 2.1.3) can be generalized to any number of spatial
dimensions.

2.2.4 Ground state energy of a logarithmic potential

Consider a one-dimensional particle moving in a logarithmic potential:

− !2

2m

∂2

∂x2
ψ(x) + 2ϵ ln(r/a)ψ(x) = Eψ(x). (2.13)

(a) Estimate the ground state energy using the Heisenberg uncertainty
principle.

(b) For this problem, a straightforward dimensional analysis fails to
predict the ground state energy. Nevertheless, give a dimensional estimate
for the ground state energy. Use the relationship between logarithmic po-
tentials of the same strength ϵ but different radii a to resolve the apparent
ambiguity in the dimensional prediction.

2.2.5 Spectrum of a logarithmic potential

(a) Assuming the validity of the Bohr-Sommerfeld rule, estimate the
spectrum of the logarithmic potential in (2.13). As in the case of the ground
state energy, use the transformation property of the Hamiltonian under
a → a′;

(b) Compute the WKB spectrum exactly. Leave the δ-correction (as in,
for example, Eq. 2.10) undetermined.

Useful integral:

∫ 1

0
dt
√

ln(1/t) =
√
π

2
.
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2.2.6 1D box as a limit of power-law potentials

Consider the one-dimensional motion of a mass m particle between two
hard walls at x = −L/2 and x = +L/2.

(a) Disregarding the fact that the exact spectrum is known, give a di-
mensional estimate for the spectrum of the box.

(b) Show that this estimate is consistent with the spectrum (2.4) of the
power-law potentials, in the limit of q → ∞, Kq = A/L2q):

En = Cq

(
!2

m

) q
q+1

K
1

q+1
q (n + 1/2)

2q
q+1 . (2.14)

Do not forget that this formula is only an n → ∞ limit of the exact spec-
trum.

(c) Now, write down the exact solution for the spectrum of the box,
and determine the q → ∞ limit of the prefactor C∞ ≡ limq→∞ Cq above.
Compare your result (which is exact) with the WKB prediction (2.5).

(d) Finally, using the exact solution for the harmonic oscillator, deter-
mine C1. Compare C1 and C∞.

2.2.7 Spin-1/2 in the field of a wire

Consider the Hamiltonian for a spin-1/2 three-dimensional particle of mass
M moving in the field of a straight current-carrying wire:

Ĥ = − !2

2M
∆ − ˆ⃗µ · B⃗,

where the magnetic moment is given by

µ⃗ = −gµ0
ˆ⃗S/!,

g is the Landé factor, µ0 is the Bohr magneton, the wire is directed along
the X-axis, and the magnetic field is given by

B⃗ =
2I

cr
[e⃗z cosΘ − e⃗y sinΘ].

Here I is the current, and r and Θ are cylindrical coordinates in the Y −Z
plane7.

Using dimensional analysis, show that the ground state energy of the
transverse motion can be estimated as

Eg.s. ∼
Mg2µ2

0I
2

!2c2
.

7This problem has been solved exactly, using supersymmetric methods: see L. V. Hau,
J. A. Golovchenko, and M. M. Burns, Supersymmetry and the Binding of a Magnetic
Atom to a Filamentary Current, Phys. Rev. Lett. 74, 3138 (1995).
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2.2.8 Dimensional analysis of the time-dependent
Schrödinger equation for a hybrid harmonic-quartic
oscillator

Consider a time-dependent version of the problem associated with the
Schrödinger equation (1.1):

i! ∂
∂t
ψ(x, t) = Ĥψ(x, t),

with

Ĥ = − !2

2m

∂2

∂x2
+

mω2

2
x2 + βx4.

The ground state solution reads

ψg.s.(x, t) = ψg.s.(x)e−iEg.s.t/!,

where ψg.s.(x) is a time-independent ground state of the Hamiltonian Ĥ .
Show that the appearance of a new input parameter in the problem, i.e.

!, does not increase the predictive power of the dimensional analysis of the
ground state energy, performed in Problem 1.1.1.

2.3 Background

2.3.1 Bohr-Sommerfeld quantization

All useful cases of Bohr-Sommerfeld quantization can be concisely expressed
in a single formula that reads
∮

dxp(x; Eñ) = 2π! [ñ + # soft points × ∆soft + # hard points × ∆hard]

with ñ = 0, 1, 2, 3, . . . , (2.15)

where

∆soft =
π

2
∆hard = π,

# soft points(# hard points) counts the number of the soft(hard) turning
points encountered by the classical trajectory during the cycle of motion
(see Fig. 2.3 for an example), and the phase ∆soft(∆hard) gives the phase
acquired by the wavefunction in each passage through a soft(hard) turning
point. The quantum number ñ counts the number of unremovable nodes
of the wavefunction. Here, the nodes inside the classically allowed region
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are unremovable since they do not dissapear for small modifications of the
trapping potential. On the other hand, a node at a location of a hard wall
can be removed by replacing the hard wall by a very high but finite wall.

The closed-loop integral in (2.15) is understood as the classical action
over a complete oscillation cycle:

∮
p(x|E)dx ≡

∫ T (E)

0
p(t|E)v(t|E) dt,

where p is the canonical momentum, v ≡ ẋ is the velocity, and T is the
period of the classical motion. For the case of two turning points, the action
reduces to

∮
p(x|E) dx = 2

∫ xmax

xmin

|p(x|E)| dx

p(x|E) = ±
√

2m(E − V (x)).

There is no consistent convention on what integer the quantum number
should start from. Traditionally, the following is used:

Two soft turning points:
∮

dx p(x; E) = 2π!(n + 1/2)

with n = 0, 1, 2, 3, . . . , (2.16)

One soft and one hard turning point:
∮

dx p(x; E) = 2π!(n − 1/4)

with n = 1, 2, 3, 4, . . . (2.17)

and

Two hard turning points:
∮

dx p(x; E) = 2π!n

with n = 1, 2, 3, 4, . . . . (2.18)

The first formula, (2.16), is very standard, and its derivation can be
found in literally any textbook on Quantum Mechanics8. Derivations for
the other two, (2.17) and (2.18), are harder to find. For that reason, we
reproduce them in Problems 2.4.1 and 2.4.2 respectively.

8See, for example, L. D. Landau and L. M. Lifshitz, Quantum Mechanics Non-
Relativistic Theory (Butterworth-Heinemann (1981)).
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2.3.2 Multi-dimensional WKB

Additionally, a multi-dimensional generalization of the WKB idea that each
eigenstate is allocated approximately !d of the phase-space volume9 allows
one to estimate the number of eigenstates, N̄ (E), whose energies are less
than or equal to some energy E. This number is then proportional to the
phase-space volume occupied by points whose energy is less than or equal
to E:

N̄ (E)
E→∞≈ 1

!d

∫
ddq ddp Θ[E − H(q⃗, p⃗)] ,

where d is the number of spatial dimensions, and q⃗ and p⃗ are canonical
coordinates and momenta respectively. This relationship is known as the
Weyl law10.

2.4 Problems linked to the “Background”

2.4.1 Bohr-Sommerfeld quantization for one soft turning
point and a hard wall

Derive the Bohr-Sommerfeld quantization rule for the case of one (left, to
be specific) turning point and one hard wall (right). On one hand, the soft
turning point fixes the wavefunction in the classically allowed domain to

ψ(x) =
Ca√

vc(x; E)
cos[

1
!σa(x; E) − π

4
].

On the other hand, the right turning point demands that

ψ(x) =
Cb√

vc(x; E)
sin[

1
!σb(x; E)].

Reconciliation of the two gives rise to the Bohr-Sommerfeld quantization,
∮

dx pc(x; E) = 2π!(n + δ).

9ibid.
10H. Weyl, Über die asymptotische Verteilung der Eigenwerte, Nachrichten der
Königlichen Gesellschaft der Wissenschaften zu Göttingen, 110 (1911).
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b

(  )

E

xa

V  x

Fig. 2.3 One soft and one hard turning point.

Here,

σq(x; E) ≡
∣∣∣∣
∫ x

q
dx pc(x; E)

∣∣∣∣

pc(x; E) ≡
√

2m(E − V (x))

vc(x; E) =
1
m

pc(x; E)
∮

dx pc(x; E) ≡ 2
∫ b

a
dx pc(x; E).

Conventionally, the quantum number n in the quantization rule (2.19) starts
from 0 for two soft walls, and from 1 if at least one hard wall is present. In
many respects this convention is inconsistent, but it is so standard that we
should not attempt to break it.

Solution:

ψ(x) =
Ca√

vc(x; E)
cos(

1
!σa(x; E) − π

4
)

=
Cb√

vc(x; E)
sin(

1
!σb(x; E))

The two actions are related as

σb(x; E) = !Θab − σa(x; E),

where

!Θab ≡
∫ b

a
dx pc(x; E).
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Hence

Ca cos(
1
!σa(x; E) − π

4
) = Cb sin(Θab −

1
!σa(x; E))

(
= Cb cos

(
1
!σa(x; E) − Θab +

π

2

))
.

Consider the following equation:

∀x : Ca cos(f(x)) = Cb cos(f(x) + η),

where f(x) is a continuous monotonic function of x. The only solutions are

Ca = Cb and η = 2πm

or

Ca = −Cb and η = 2πm + π,

where m is any integer.
The first group of solutions gives

Θab = 2πn′ +
3π
4

.

The second gives

Θab = 2πn′′ +
7π
4

.

Combining the two and using the fact that Θab is a non-negative number
we get

Θab = π

(
n − 1

4

)

with n = 1, 2, 3, . . . ,

or

∮
dx pc(x; E) = 2π!(n − 1

4
)

with n = 1, 2, 3, . . .
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b

(  )

E

xa

V  x

Fig. 2.4 Two hard walls.

2.4.2 Bohr-Sommerfeld quantization for two hard walls

The same as above but for two hard walls.
Solution: Likewise:

Ca sin
(

1
!σa(x; E)

)
= −Cb sin

(
1
!σa(x; E) − Θab

)
,

hence

Θab =

⎧
⎪⎨

⎪⎩

2πn′ for Ca = Cb

or
2πn′′ + π for Ca = −Cb

.

Combining the two and using the fact that Θab is a non-negative number
we get

Θab = πn

with n = 1, 2, 3, . . . ,

or

∮
dx pc(x; E) = 2π!n

with n = 1, 2, 3, . . .
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Note that we have excluded the n = 0 solution using yet another con-
sideration. The classical momentum pc(x; E) in the- definition of Θab is
a non-negative number. Therefore Θab = 0 would lead to pc(x; E) = 0
everywhere, and thus to σa(x; E) = 0 everywhere. On the other hand,
ψ(x) ∝ sin[ 1

!σa(x; E)], and thus ψ(x) = 0 everywhere. In this case, WKB
would predict an unnormalizable solution, which must be excluded.
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Chapter 3

“Halved” Harmonic Oscillator:
A Case Study

Introduction

Consider a potential for a particle in the field of a hard wall and a harmonic
force:

V (x) =

⎧
⎪⎨

⎪⎩

+∞ for x < 0

mω2x2

2
for x ≥ 0.

In what follows, we will study its spectrum, using the methods described
in previous chapters.

x

 ( 
 ) 

=    
    

   /
2

ω
2

2

V  x
    

  m
    

x  
  

en
er

gy

0

Fig. 3.1 A “halved” harmonic oscillator potential.

43
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3.1 Solved Problems

3.1.1 Dimensional analysis

Apply dimensional analysis to the Bohr-Sommerfeld quantization rule and
estimate the spectrum. Pay attention to the δ correction in 2π!(n + δ).

Solution: The Bohr-Sommerfeld rule reads∮
dx

√
2m(En − mω2x2/2) = 2π!(n − 1/4)

n = 1, 2, 3, . . . ,

where we have taken into account the fact that the left turning point is
represented by a hard wall. The quantization rule above is governed by
two parameters: η ≡ (!(n − 1/4))2/m and Υ ≡ mω2. The rest of the
derivation is identical to the one for the harmonic oscillator (Problem 2.1.1,
sub-problem). We get

En ∼ !ω(n − 1/4)

n = 1, 2, 3, . . .

3.1.2 Order-of-magnitude estimate

Make an order-of-magnitude estimate of the spectrum: use the Bohr-
Sommerfeld quantization rule and approximate the phase space trajectory
by a rectangle. Keep the δ correction.

Solution: The phase-space trajectory in the Bohr-Sommerfeld rule (3.1)
can be approximately replaced by the “circumscribed rectangle” of the
trajectory, see Fig. 3.2. The phase space integral then reads:∮

dx
√

2m(En − mω2x2/2) ∼
√

2En/(mω2)︸ ︷︷ ︸
xmax

√
2mEn︸ ︷︷ ︸
pmax

∼ En/ω.

Inserting this estimate into the Bohr-Sommerfeld rule (3.1) gives

En ∼ !ω(n − 1/4)

n = 1, 2, 3, . . .
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x

p
max

p

0

x max

Fig. 3.2 An order-of-magnitude estimate of the WKB integral.

3.1.3 Another order-of-magnitude estimate

Using the quantum-classical correspondence, show that the density of energy
levels of the “halved” oscillator is two times lower than the density of states
of the full one.

Solution: One of the manifestations of the quantum-classical correspon-
dence is the phenomenon that the distance between the energy levels is
approximately equal to the classical frequency ω(E) multiplied by !:

En+1 − En ≈ !ω((En+1 − En)/2).

HO

x

t

halved−HO

Fig. 3.3 Coordinate as a function of time, for a conventional (dashed line) and halved
(solid line) harmonic oscillators.
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When we insert a wall in the middle of a harmonic oscillator, its period
becomes two times shorter (see Fig. 3.3). Thus the distance between the
levels increases by a factor of two as compared to the original distance !ω.
Thus,

En+1 − En ≈ 2!ω

3.1.4 Straightforward WKB

Find the spectrum using the Bohr-Sommerfeld quantization rigorously.

Solution: The Bohr-Sommerfeld integral in (3.1) is the area of a half-
ellipse, with radii xmax and pmax respectively (see Problem 3.1.2). We get∮

dx
√

2m(En − mω2x2/2) =
π

2
xmaxpmax

=
π

2
√

2En/(mω2)
√

2mEn

= πEn/ω.
Then, the Bohr-Sommerfeld rule (3.1) gives

En = 2!ω(n − 1/4)

n = 1, 2, 3, . . .

3.1.5 Exact solution

Using your knowledge about the spectrum and the properties of the eigen-
states of the conventional (full) harmonic oscillator, find the spectrum of
the “halved” harmonic oscillator exactly.

Solution: Two statements need to be proven.

Statement 1. An antisymmetric continuation

ψ(x)full =

{
ψ(x)half for x ≥ 0

−ψ(−x)half for x < 0
of the solution of the “halved” problem is a correct solution, in-
cluding boundary conditions, of the full problem,

− !2

2m

∂2

∂x2
ψ +

mω2x2

2
ψ = Eψ. (3.1)
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Indeed:

(i) by considering a x → −x substitution, it is easy to show that the
differential equation (3.1) is obeyed not only for x > 0, but also for
x < 0;

(ii) the boundary condition at x → −∞ is satisfied;
(iii) the wave function and its first derivative are continuous at x = 0;

Thus, each eigenstate of the “halved” problem is an odd eigenstate of the
full one.

Statement 2. Every odd solution of the full problem (3.1) provides a
solution of the “halved” problem in the region x > 0.

Indeed:

(i) it obeys the “halved” problem Schrödinger equation for x > 0;
(ii) it obeys both the ψhalf(0) = 0 and ψhalf(+∞) = 0 boundary conditions;

Thus

En = Efull
n′ |n′=2n−1 = !ω(n′ + 1/2)|n′=2n−1,

or

En = 2!ω(n − 1/4)

n = 1, 2, 3, . . .
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Chapter 4

Semi-Classical Matrix
Elements of Observables
and Perturbation Theory

4.1 Solved problems

4.1.1 Quantum expectation value of x6 in a harmonic
oscillator

Consider a harmonic oscillator,

Ĥ =
p̂2

2m
+

mω2x2

2
.

(a) Compute the eigenstate expectation values of the sixth power of
coordinate using the WKB expressions for the matrix elements.

Useful information: For a harmonic oscillator of frequency ω:

— the energy spectrum reads En = !Ω(n + 1/2);
— the matrix elements of the coordinate read xn,n′ = x̃(

√
nδn,n′+1 +√

n′δn′,n+1), where x̃ =
√

!/(2mω).

Solution: Introduce a dimensionless coordinate ξ ≡ x/x̃, where x̃ ≡√
!/(2mω). The matrix elements of ξ̂ read ξn,n′ =

√
nδn,n′+1 +

√
n′δn′,n+1.

Then,

(ξ̂6)n,n =
∑

n1

∑

n2

∑

n3

∑

n4

∑

n5

(
√

nδn,n1+1 +
√

n1δn1,n+1)

× (
√

n1δn1,n2+1 +
√

n2δn2,n1+1)(
√

n2δn2,n3+1 +
√

n3δn3,n2+1)

× (
√

n3δn3,n4+1 +
√

n4δn4,n3+1)(
√

n4δn4,n5+1 +
√

n5δn5,n4+1)

× (
√

n5δn5,n+1 +
√

nδn,n5+1).

49



August 8, 2013 15:6 World Scientific Book - 9in x 6in B1662-ch04

50 Back-of-the-Envelope Quantum Mechanics

In a very long but straightforward calculation, the resulting twenty terms
can be summed up to give

(
x6
)
n, n

=
5
2

(
!

mω

)3(
n3 +

3
2
n2 + 2n +

3
4

)

(b) The same as in (a) but using the WKB expressions.

Solution: The classical trajectory reads

x(t) = x̄ cos(ωt),

where the energy-dependent amplitude x̄ is

x̄(E) =
√

2E

mω2
.

The time average of x6 is

[x6] =
1
T

∫ T

0
dt(x̄)6 cos6(2πt/T )

= (x̄)6
1
2π

∫ 2π

0
dΘ cos6(Θ)

=
5
16

(x̄)6.

Finally, substituting the classical energy E by its quantum counterpart
!ω(n + 1

2 ), we get

(
x6
)
n, n

=
5
2

(
!

mω

)3(
n3 +

3
2
n2 +

3
4
n +

1
8

)

As expected, the WKB expression reproduces correctly the leading and
subleading terms in the power-n expansion of these matrix elements.

4.1.2 Expectation value of r2 for a circular Coulomb orbit

Consider the “circular orbit” eigenstates of the Coulomb problem:

Ĥ = − !2

2m
∆ − α

r
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where ∆ is the three-dimensional Laplacian. For these states, the azimuthal
quantum number l reaches its maximal possible value, l = n − 1, where n
is the principal quantum number. Also, these states correspond to the zero
radial quantum number: nr = 0, where nr ≡ n − l − 1. The wavefunctions
of the “circular orbit” eigenstates read

χn,l=n−1(r) = a−1/2 2n+1/2

nn+1/2
√

(2n)!
(r/a)n exp[−r/(na)]

∫ ∞

0
dr|χn,l(r)|2 = 1,

where a = !2/(mα). Recall that the Hamiltonian is

Ĥ = − !2

2m
∆ − α

r
.

(a) For these states, compute the expectation value of r2 exactly.

Solution: A straightforward integration gives

⟨r2⟩quantim = n2(n + 1/2)(n + 1) a2

(b) For these states, compute the expectation value of r2 using the WKB
expressions. Hint: Figure 4.1 has all the information you need.

  l  l
nr=

0 r

en
er

gy

0
1

2
......

 (  +1)/2  2h l  l         mr
_ 2

−    /r  α

 (  +1)l  l       a

a α (  /  )/ 2  (  +1)

Fig. 4.1 Quantization of the radial motion in a Coulomb problem.
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Solution: For the circular orbits, r does not evolve at all, being fixed
at the bottom of the potential for the radial motion. Thus, ⟨r2⟩classical =
(l(l + 1)a)2. Finally

⟨r2⟩classical = (n − 1)2n2 a2

(c) Compare your result from (a) to the one from (b).

Solution: We get

⟨r2⟩quantim = n4

(
1 +

3
2

1
n

+ . . .

)
a2

⟨r2⟩classical = n4

(
1 − 2

n
+ . . .

)
a2.

Thus,

⟨r2⟩quantim = ⟨r2⟩classical
(
1 + O

(
1
n

))

4.1.3 WKB approximation for some integrals involving
spherical harmonics

Consider a particle sliding on the surface of a sphere. Its energy spectrum is

El,m =
!2l(l + 1)
2MR2

m = −l,−l + 1,−l + 2, . . . , +l,

where M is particle’s mass, and R is the radius of the sphere. Recall that !m
corresponds to the projection of the angular momentum onto the z-axis, L̂z;
!2l(l+1) gives the square of the total momentum, L̂2 = L̂2

x+L̂2
y +L̂2

z. Here,
l and m are the azimuthal and magnetic quantum numbers, respectively.
The eigenstates of the system are given by the spherical harmonics:

|l, m⟩ ≡ Yl,m(Θ,φ).
Using the WKB approximation for the matrix elements of operators,

calculate the matrix elements of cos(φ) between the “equatorial orbit” states,
|l, m = l⟩:

⟨l + ∆l, m = l + ∆l| cos(φ)|l, m = l⟩ = ?,

see Fig. 4.2.
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x

z

φ
y

Fig. 4.2 An equatorial orbit for a particle on a sphere.

Hint : Try to match the classical time dependence of cos(φ(t)) along an
equatorial orbit to its quantum time dependence:

⟨ψ(t)| cos(φ)|ψ(t)⟩

=
∑

l2

∑

l1

ψ⋆l2,m=l2ψl1,m=l1⟨l2, m = l2| cos(φ)|l1, m = l1⟩ exp[iωl2,l1t]

=
∑

l1

∑

∆l

ψ⋆l1+∆l,m=l1+∆lψl1,m=l1

×⟨l1 + ∆l, m = l1 + ∆l| cos(φ)|l1, m = l1⟩ exp[iωl1+∆l,l1t]

≈
∑

∆l

⟨l + ∆l, m = l + ∆l| cos(φ)|l, m = l⟩ exp[iω∆lt], (4.1)

where (again, as usual) we assume that the initial state,

ψ(0)⟩ =
∑

l

ψl|l, m = l⟩,

was a broad smooth wavepacket over the “equatorial” eigenstates, l is a
typical angular momentum in the packet, ωl2,l1 = (El2,m=l2 − El1,m=l1)/!,
and

ω =
dωl+∆l,l

d∆l

∣∣∣
∆l=0

≈ !l/(MR2) (4.2)

approximates a typical frequency between the neighboring states, ωl1,l.

Solution: For an equatorial orbit, the classical time dependence of φ is
φ(t) = (L/J)t ≈ ωt, where L is the angular momentum, J = MR2 is the
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moment of inertia, and ω is given by (4.2). Then

(cos(φ))(t) = cos(ωt) =
1
2

exp[+iωt] +
1
2

exp[−iωt].

Matching to (4.1) gives

⟨l + 1, m = l + 1| cos(φ)|l, m = l⟩

= ⟨l, m = l| cos(φ)|l + 1, m = l + 1⟩ =
1
2

⟨l + ∆l, m = l + ∆l| cos(φ)|l, m = l⟩ ∆l ̸=±1= 0

The exact result is

⟨l + 1, m = l + 1| cos(φ)|l, m = l⟩

= ⟨l, m = l| cos(φ)|l + 1, m = l + 1⟩

= −π2−3l−4
√

(2l + 1)!(2l + 3)!(2l + 1)!!
l!((l + 1)!)2

= −1
2

+
1

32l2
− 5

64l3
+ O

((
1
l

)4
)

⟨l + ∆l, m = l + ∆l| cos(φ)|l, m = l⟩ ∆l ̸=±1= 0.

Remark : Recall that the sign mismatch has no significance: in the quan-
tum case, the signs of the off-diagonal matrix elements of observables differ
due to different conventions for phase factors in front of the eigenstates.

4.1.4 Ground state wavefunction of a one-dimensional box

Consider an infinitely deep square well,

V (x) =

{
0 for |x| < L/2

+∞ for |x| ≥ L/2.

(a) Using dimensional analysis, estimate of the value of the ground state
wavefunction at the origin, ψ(x = 0).

Solution: The input parameters are !2/m ≡ η and L. The unknown is
ψ(x = 0). The corresponding units are [η] = [E ][L]2 and [L] = [L]. Since
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[ψ(x = 0)] = 1/[
√
L], we get

ψ(x = 0) ∼ 1/
√

L

(b) The same as in (a) but using an order-of-magnitude estimate. For
this purpose, approximate the ground state wavefunction by a piecewise lin-
ear wedge,

ψ(x) ≈ ψ(x = 0)(1 − 2|x|/L).

Solution: From the normalization we get,
∫ +L/2

−L/2
dx|ψ(x = 0)|2(1 − 2|x|/L)2 = 1,

or, up to a phase factor,

ψ(x = 0) ≈
√

3/L

≈ 1.73 . . . /
√

L

(c) Compare your results from (a) and (b) with an exact result.

Solution: Wave function for the ground state reads

ψ(x)
√

2/L cos(πx/L).

We get finally:

ψ(x = 0) ≈
√

2/L

≈ 1.41 . . . /
√

L

4.1.5 Eigenstates of the harmonic oscillator at the origin:
how a factor of two can restore a quantum-classical
correspondence

Consider a particle of mass m moving in a harmonic potential of fre-
quency ω.

(a) Find the asymptotic behavior of the probability density

ρn(x) ≡ |ψn(x)|2



August 8, 2013 15:6 World Scientific Book - 9in x 6in B1662-ch04

56 Back-of-the-Envelope Quantum Mechanics

at the origin for even eigenstates as n → ∞,

ρn=even≫1(0) = ?

Solution: The eigenfunctions at the origin read

ψn(0) =
Hn(0)

π1/4
√

2nn!
1

aHO

=

⎧
⎪⎨

⎪⎩

(−1)n/2

π1/4

2−n/2
√

n!
(n/2)!

1
aHO

for n = even

0 for n = odd,

where Hn(x) are Hermite polynomials, and aHO ≡
√

!/(mω) is the size of
the ground state. The following asymptotic can be obtained using Stirling’s
formula:

ψn(0)
n=even≫1≈ 21/4

√
πn1/4

1
aHO

.

This leads to

ρn=even≫1(0) =
√

2
π
√

n

1
a2
HO

(b) The same as in (a), but averaged over the quantum oscillations of
density:

ρn≫1(x ≈ 0)
x

= ?

Solution: In the WKB approximation, for even eigenstates, the density
in the vicinity of the origin reads

ρn=even≫1(x ≈ 0) = ρn=even≫1(0) cos(κ(En)x)2, (4.3)

where κ(E) ≡
√

2mE/! is the wavevector at the origin, and En ≈ !ωn
is the energy as a function of the quantum number. Averaging over these
quantum oscillations reduces the density by a factor of two:

ρn=even≫1(x ≈ 0)
x

=
1

π
√

2n

1
a2
HO

.

For the odd states, we have

ρn=odd≫1(x ≈ 0) = ρn=even≫1(0) sin(κ(En)x)2. (4.4)
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Averaging over space leads to the same result as for the even states. Com-
bining these two results together, we get

ρn≫1(x ≈ 0)
x

=
1

π
√

2n

1
a2
HO

(c) The same as in (a), but averaged over all states, even and odd :

ρn≫1(x ≈ 0)
n

= ?

Solution: Since the density at the origin is zero for the odd states,
averaging over quantum numbers reduces the center density by two, with
respect to the value for the even states alone:

ρn≫1(x = 0)
n

=
1

π
√

2n

1
a2
HO

.

The WKB expressions (4.3, 4.4) also allow one to construct the averaged
over n density distribution around the origin:

ρn≫1(x ≈ 0)
n

= ρn=even≫1(0)
cos(κ(En)x)2 + sin(κ(En)x)2

2

=
ρn=even≫1(0)

2
.

ρn≫1(x ≈ 0)
n

=
1

π
√

2n

1
a2
HO

Remark : In particular, this result guarantees that in a thermal equilib-
rium, the classical (see below) and the quantum densities will be close to
each other.

(d) Now find the classical expression for the probability density at the
origin as a function of energy, assuming that the particle coordinate is mea-
sured at a random time

ρCM,E(0) = ?
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Solution: Using the classical formula for probability density (4.32),
we get

ρCM, E(0) =
1

π
√

2E/(mω2)
(4.5)

(e) In your answer to sub-problem (d), replace energy by its approximate
quantum value En

n≫1≈ !ωn and compare your answer to the results you
obtained in (b) and (c):

ρCM,n(0) = ?

Solution: Replacing E by !ωn in the result of sub-problem (d) we get

ρCM, n(0) =
1

π
√

2n

1
a2
HO

Indeed the results of sub-problems (b), (c), and (e) coincide, producing yet
another manifestation of the classical-quantum correspondence.

4.1.6 Probability density distribution in a “straightened”
harmonic oscillator

Consider again a “straightened” harmonic oscillator, from Problem 2.1.2.
(a) Find the classical period of motion T .

Solution: Adding the propagation times for the harmonic and flat parts
together, we get:

T (E) = THO +
2L

v0(E)
,

where

THO =
2π
ω

is the period for the harmonic
oscillator, and

v0(E) =
√

2E/m

is the velocity in the “flat” re-
gion
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(b) For the classical motion at a given energy E find the density in
the “flat” region of the potential. Be inventive: recall that the probability
of finding the particle in a particular region of space is proportional to the
time spent in the region.

Solution: The probability of finding our particle in the region between
x and x + ∆x, at a random observation time is given by

P (x′ ∈ [x, x + ∆x])
∆x→0≈ ρCM(x′)∆x,

where ρCM(x) is the probability density, and “CM” stands for classical
mechanics. On the other hand,

P (x′ ∈ [x, x + ∆x])
∆x→0≈ ∆t

T
,

where ∆t is the time spent in the region [x, x +∆x], and T is the period of
motion. Combining all the above we get

ρCM(x) =
1

v(x)T
,

where v(x) is the absolute value of the classical velocity.
Finally

ρCM(x) = (v0(E)T (E))−1

Here, T (E) and v0(E) are the period and the velocity found in sub-
problem (a).

(c) In the flat region, estimate the wave function of an eigenstate of
energy E.

Solution: (i) While the quantum-mechanical interference patterns are
inaccessible classically, the spatially averaged quantum-mechanical and
classical-mechanical density distributions must agree at high energies. (ii)
In the flat region the wavefunction is represented by a standing wave with a
wavevector k0(E) ≡

√
2mE/!. (iii) The left-right symmetry of the poten-

tial ensures that the eigenstates are either even or odd. The wavefunction
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that satisfies all three requirements above reads

ρQM(x) = 2 ρCM(x = 0) ×
{

cos2(k0(E)x) for even states
sin2(k0(E)x) for odd states

,

where “QM” stands for quantum mechanics, T (E) and v0(E) are the period
and the velocity found in sub-problem (a), and ρCM(x) is the classical
density found in sub-problem (b).

4.1.7 Eigenstates of a quartic potential at the origin

Consider a one-dimensional particle of mass m in a

V (x) = βx4

potential. Its spectrum can be estimated using the result of Problem 2.1.4;
it reads

En ∼
(

!2

m

)2/3

β1/3.

(a) Give an estimate for the value of the n-th eigenstate at x = 0:
ψn(x = 0) =? Assume that n is even.

Solution: Recall that the classical density is given by ρc(x) = 2
T (E)v(x,E) ,

where T (E) is the period, and v(x, E) is the velocity. The value of the
wave function at its crest (and for the even states we do have a crest in the
middle) is of the order of the square root of the classical density1:

ψ(x) ∼
√
ρc(x).

On the other hand, the density can be well estimated as

ρc ∼ 1/∆x,

where

∆x ∼ (E/β)
1
4 .

1In fact, square root of twice the classical density, since |ψ(x)|2 ≈ ρc(x)2 cos2(2πx/λdB).
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Using the En dependence (4.6) we get

ψn(x=0) ∼
(

mβ

!2

)1/12

n−1/6

(b) Derive an expression (not just an order-of-magnitude estimate) that
relates the de-Broglie wavelength at the origin to the energy of the state:
λdB(x = 0, E) =?

Solution: By definition, the de-Broglie wavelength is

λdB(x, E) =
2π!

mv(x, E)
,

where v(x, E) =
√

2(E − V (x))/m is the classical velocity. On the other
hand

v(x = 0, E) =
√

2E/m,

since V (x = 0) = 0. Finally

λdB(x=0, E) =
√

2π!√
mE

4.1.8 Perturbation theory with exact and semi-classical
matrix elements for a harmonic oscillator perturbed
by a quartic correction or . . .

Consider a Hamiltonian for a harmonic oscillator perturbed by a quartic
correction:

− !2

2m

∂2

∂x2
ψ(x) +

mω2

2
x2ψ(x) + βx4ψ(x) = Eψ(x).

Find the first order perturbation theory shift of the spectrum, E(1)
n , using

three methods :
(a) dimensional analysis applied to the Bohr-Sommerfeld rule, . . .

Solution: In the first order of the perturbation theory, we get
E(1)

n = (V̂ )n,n = β(x̂4)n,n

= βL4

(
(!(n + 1/2))2

m
, mω2

)
Φ
(

(!(n + 1/2))2

m
, mω2

)
, (4.6)
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where L is a length scale, Φ is a dimensionless function of two dimensionful
parameters, and (!(n+1/2))2

m and mω2 are the only two independent dimen-
sionful parameters entering the Bohr-Sommerfeld quantization rule

∮
dx

√

2m

(
En − mω2

2
x2 − βx4

)
= 2π!

(
n +

1
2

)

besides β. Observe that β itself is excluded from the list of input param-
eters: it has already been used to determine the order of the perturbation
theory—first in this case—in Eq. (4.6). One can easily show that no di-
mensionless combinations can be formed out of the list, which means that
Φ ∼ 1. Also, the only parameter with the dimension of length that can be
assembled out of these two parameters is

L
(

(!(n + 1/2))2

m
, mω2

)
=
√

!
mω

√
n + 1/2. (4.7)

Thus,

E(1)
n ∼ β

(
!

mω

)2

(n +
1
2
)2

∼ β

(
!

mω

)2

(n2 + n +
1
4
)

. . . (b) the WKB approximation for the matrix elements of the perturbation,
and . . .

Solution: Consider now the classical trajectory

x(t) = x̄ cos(ωt),

with

x̄(E) =
√

2E

mω2
.

Then, the time average of x4 reads

[x4] =
1
T

∫ T

0
dt(x̄)4 cos4(2πt/T )

=
3
8
(x̄)4.
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Finally, replacing E by !ω(n + 1
2 ), we get

E(1)
n =

3
2
β

(
!

mω

)2(
n +

1
2

)2

=
3
2
β

(
!

mω

)2(
n2 + n +

1
4

)

. . . (c) the exact solution.

Solution: Introduce a dimensionless coordinate ξ ≡ x/x̃ with matrix
elements ξn,n′ =

√
nδn,n′+1 +

√
n′δn′,n+1; here, x̃ ≡

√
!/(2mω). Then,

(ξ̂4)n,n =
∑

n1

∑

n2

∑

n3

(
√

nδn,n1+1 +
√

n1δn1,n+1)

× (
√

n1δn1,n2+1 +
√

n2δn2,n1+1)

× (
√

n2δn2,n3+1 +
√

n3δn3,n2+1)

× (
√

n3δn3,n+1 +
√

nδn,n3+1)

= 6n2 + 6n + 3.

We get finally

E(1)
n =

3
2
β

(
!

mω

)2(
n2 + n +

1
2

)

4.1.9 . . . or by a cubic correction

Consider a Hamiltonian for a harmonic oscillator perturbed by a cubic
correction:

− !2

2m

∂2

∂x2
ψ(x) +

mω2

2
x2ψ(x) + αx3ψ(x) = Eψ(x).

Similarly to Problem 4.1.8, find the second order perturbation theory shift
of the spectrum, E(2)

n , in two ways:
(a) using dimensional analysis applied to the Bohr-Sommerfeld rule

and. . .
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Solution: The second order of the perturbation theory gives

E(2)
n =

∑

n′ ̸=n

|(V̂ )n′,n |2

E(0)
n − E(0)

n′

= α2
∑

n′ ̸=n

|(x̂3)n′,n |2

E(0)
n − E(0)

n′

= α2
L6

(
(!(n + 1/2))2

m
, mω2

)

E
(

(!(n + 1/2))2

m
, mω2

) Φ
(

(!(n + 1/2))2

m
, mω2

)
, (4.8)

where, again, as in Problem 4.1.8, L and E are a length scale and an energy
scale respectively, Φ is a dimensionless function, and (!(n+1/2))2

m and mω2

are the only two independent dimensionful parameters entering the Bohr-
Sommerfeld quantization rule

∮
dx

√
2m(En − mω2

2
x2 − αx3) = 2π!

(
n +

1
2

)
,

excluding the small parameter of the perturbation theory expansion, i.e.
α. Since, again, no dimensionless combinations can be formed out of the
former two parameters, the only available length scale is given by Eq. (4.7),
and the only energy scale possible is

E
(

(!(n + 1/2))2

m
, mω2

)
= !ω(n + 1/2),

the dimensional analysis unambiguously gives

E(2)
n ∼ α2

!ω

(
!

mω

)3(
n +

1
2

)2

∼ α2

!ω

(
!

mω

)3(
n2 + n +

1
4

)

. . . (b) exactly.

Solution: The matrix elements of the third power of the dimensionless
coordinate ξ ≡ x/x̃ (see Problems 4.1.1, 4.1.8, and alike) with x̃ defined as
x̃ ≡

√
!/(2mω) and with matrix elements ξn,n′ =

√
nδn,n′+1 +

√
n′δn′,n+1,
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read

(ξ̂3)n′,n =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

3
√

n3, for n′ = n − 1

3
√

(n′)3, for n′ = n + 1
√

n(n − 1)(n − 2), for n′ = n − 3
√

n′(n′ − 1)(n′ − 2), for n′ = n + 3

0 otherwise.

Substituting this result into the general expression (4.8), with E(0)
n =

!ω(n + 1/2), we get finally

E(2)
n = −15

4
α2

!ω

(
!

mω

)3(
n2 + n +

11
30

)

Observe that according to the known general result, the second order
perturbation theory shift of the ground state energy is non-positive:

E(2)
n=0 = −11

8
α2

!ω

(
!

mω

)3

≤ 0.

4.1.10 Shift of the energy of the first excited state

Consider a harmonic oscillator weakly perturbed by a field

V̂ = ϵD̂,

where the operator D̂ is given by

D̂ = p̂2/m− (mωx)2,

ϵ ≪ 1 is a small parameter, ω is the frequency of the oscillator, and m is
its mass.

Prove that under this perturbation, the energy shift of the first excited
state is always negative.

Solution: Using

xn,n′ = x̃(
√

nδn,n′+1 +
√

n′δn′,n+1)

pn,n′ = ip̃(
√

nδn,n′+1 −
√

n′δn′,n+1),

one obtains

Dn,n′ = −!ωm
(√

n′(n′ − 1)δn,n′−2 +
√

n(n − 1)δn′,n−2

)
.
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Here, x̃ =
√

!/(2mω), and p̃ = mωx̃. Notice that (a) D̂ does not have di-
agonal matrix elements, and (b) it does not have matrix elements between
the states of opposite parity. Both properties are expected semiclassically.
Property (a) follows from D̂ being proportional to the difference between
kinetic and potential energies; in turn, in a harmonic oscillator, the ex-
pectation value of the kinetic energy equals the expectation value of the
potential energy. (In particular, the latter follows from the virial theorem
introduced in Problem 8.1.4.) Property (b) follows from the fact that D̂ is
an even function of both momentum and coordinate.

Consider the reduced Hilbert space spanned by the odd eigenstates,
|odd, m̃⟩ ≡ |2m̃ + 1⟩, m̃ = 0, 1, 2, . . ., of the harmonic oscillator. The
operator D̂, if projected to the reduced space, manifests as a perturbation
that shifts the state index by one unit, up or down. It can only couple the
states characterized by the indices m̃ of opposite parity. Thus, odd powers
of D̂ will not have diagonal matrix elements. Therefore, the perturbation
V̂ constitutes, within the odd-reduced Hilbert space, a pertubation whose
effect is zero in the first order of perturbation theory. On the other hand,
the first excited state, |n = 1⟩, of the full oscillator is at the same time the
ground state |m̃ = 0⟩ of the “odd” oscillator. Then, the non-positivity of
the second order perturbation theory shift of the ground state applies to
the |n = 1⟩ state as well.

Q.E.D.

Remark : A generalization of the result above is as follows. Consider a
one-dimensional Hamiltonian

Ĥ0 =
p̂2

2m
+ V (x)

and a perturbation over it,

δV (x).

Assume that both V (x) and δV (x) are even:

V (−x) = V (x)

δV (−x) = δV (x)

Assume also that (as usual) the unperturbed ground state is even and the
unperturbed first excited state is odd:

ψ(0)
n=0(−x) = ψ(0)

n=0(x)

ψ(0)
n=1(−x) = −ψ(0)

n=1(x).
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Under these conditions, the second order perturbation theory correction
to the energy of the first excited state is always non-positive:

E(2)
n=1 ≤ 0.

4.1.11 Impossible potentials

Consider a single one-dimensional particle moving between two hard walls,
one of which is at the origin, separated by a distance L. Someone adds, next
to the origin, a localized perturbation that is unknown to you. The only
information you have is that the effect of the perturbation on the energy
levels can be well modeled by an unusual boundary condition at the origin.
The boundary condition reads:

ψ′(x = 0) = −ψ(x = 0)/a, (4.9)

where a is a known constant length. Note that if a is moved to zero,
the perturbation has no effect at all. Indeed, in this case, the boundary
condition above will be simply reduced to a condition ψ(x = 0) = 0 that
is the same as the one imposed by the hard wall, already present. It is
now tempting to conjecture that the length a is a prefactor in front of a
localized perturbation.

Nevertheless, prove that the perturbation can not be represented by a
potential independent of a with a as a prefactor in front of it:

Ĥ ̸= − !2

2m

∂2

∂x2
+

a

L
V (x), (4.10)

where 1/L is there for dimensional reasons.
Useful information: Note that the length a corresponds to the first node

of the wavefunction only approximately, in the small a limit. In Fig. 4.3,

?

~~ a

L0

Fig. 4.3 Unknown perturbation.
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we cannot distinguish between the node and the point a, due to the finite
line thickness.

Useful information: If you are on the right track, you will arrive at the
following transcendental equation:

tan(f(ϵ)) = Af(ϵ)ϵ+ Bϵ

f(ϵ) ϵ→0→ 0.

The Taylor expansion of its solution reads

f(ϵ) = Bϵ+ ABϵ2 + O(ϵ3).

Hint : One of the ways to solve the problem is to use the non-positivity
of the second order perturbation theory shift of the ground state energy.

Useful information: This problem comes from real life. The condi-
tion (4.9) is a very typical example of scattering data, from an unknown
scatterer.

Solution: Let k be the wavevector corresponding to the ground state
energy:

Eg.s.(a) =
!2[kg.s.(a)]2

2m
.

To satisfy the boundary condition at x = L we demand

ψg.s.(x) = const × sin[kg.s.(a)(x − L)]

for the ground state wavefunction ψg.s.(x). The condition (4.9) at x = 0
gives

tan[kg.s.(a)L] = kg.s.(a)a. (4.11)

The intermediate goal is to solve approximately the transcedental equation
above, in the vicinity of the unperturbed ground state wavevector

kg.s.(a = 0) =
π

L
.

Introduce a set of useful notations:

δ ≡ a

L

ξ(δ) ≡ (kg.s.(a) − kg.s.(0))L = kg.s.(a)L − π.

The Eq. (4.11) becomes

tan[ξ(δ)] = δ(ξ(δ) + π) (4.12)

ξ(δ) δ→0→ 0.
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Expand ξ(δ) into a Taylor series:

ξ(δ) = aδ + bδ2 + O(δ3),

where a and b are the unknown coefficients to be determined. The left hand
side of the Eq. (4.12) becomes

tan[ξ(δ)] = ξ(δ) +
1
3
ξ(δ)3 + O(ξ(δ)5)

= (aδ + bδ2 + O(δ3)) +
1
3
(aδ + bδ2 + O(δ3))3 + O(δ5)

= aδ + bδ2 + O(δ3).

The right hand side gives

δ(ξ(δ) + π) = δ((aδ + bδ2 + O(δ3)) + π)

= πδ + aδ2 + O(δ3).

We get

aδ + bδ2 + O(δ3) = πδ + aδ2 + O(δ3).

Solving the above we obtain

ξ(δ) = πδ + πδ2 + O(δ3),

or

kg.s.(a) =
π

L

(
1 +

a

L
+
( a

L

)2
+ O

(( a

L

)3
))

.

For the ground state energy we get

Eg.s.(a) =
!2

2m

(π
L

)2
(

1 + 2
( a

L

)
+ 3

( a

L

)2
+ O

(( a

L

)3
))

Notice that the alleged second order perturbation theory correction to the
energy is positive. This proves that the unknown perturbation does not
have the form given in the right hand side of the inequality (4.10).

Q.E.D.

An example of a perturbation that generates the boundary condition
(4.9) is a very narrow, very deep potential well next to the left wall whose
ground state energy is very close to zero. In this case the length a will be
proportional to this ground state energy. Another example of an object
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that produces the condition (4.9) is a short-range interaction between two
fermions in a transversally cold waveguide2.

4.1.12 Correction to the frequency of a harmonic oscillator
as a perturbation

Consider two harmonic oscillators

Ĥ0 =
p̂2

2m
+

mω2
0x

2

2

Ĥ =
p̂2

2m
+

m(1 + δ)ω2
0x

2

2

with frequences ω0 and
√

1 + δω0 respectively.
(a) Considering the difference between the Hamiltonians,

V̂ ≡ Ĥ − Ĥ0 = δ
mω2

0x
2

2
,

as a perturbation of Ĥ0, find the first and the second perturbation theory
corrections to the energy E(0)

n = !ω0(n + 1/2) of the n-th eigenstate.

Useful information: For a harmonic oscillator of frequency Ω

— the energy spectrum reads En = !Ω(n + 1/2);
— matrix elements of the coordinate read xn,n′ = x̃(

√
nδn,n′+1 +√

n′δn′,n+1), where x̃ =
√

!/(2mΩ).

Solution: The matrix elements of x̂2:

(x̂2)n,n′′/x̃2 =
∑

n′

(
√

nδn,n′+1 +
√

n′δn′,n+1)

× (
√

n′δn′,n′′+1 +
√

n′′δn′′,n′+1)

=
∑

n′

(
√

nδn,n′+1 +
√

n + 1δn′,n+1)

× (
√

n′′ + 1δn′,n′′+1 +
√

n′′δn′′,n′+1)

=
√

n
√

n′′ + 1δn,n′′+2 +
√

n + 1
√

n′′ + 1δn′′+1,n+1

+
√

n
√

n′′δn,n′′ +
√

n + 1
√

n′′δn′′−1,n+1

2Brian E. Granger and D. Blume, Tuning the Interactions of Spin-Polarized Fermions
Using Quasi-One-Dimensional Confinement, Phys. Rev. Lett. 92, 133202 (2004).
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2

m ω2x2

2
0

(1+   )

2

ω2
0x

x

V  x(  )

m δ

E

E n

n
(0)

Fig. 4.4 Correction to frequency as a perturbation.

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2n + 1 for n′′ = n√
n + 1

√
n + 2 for n′′ = n + 2√

n − 1
√

n for n′′ = n − 2
0 otherwise,

where x̃ =
√

!/(2mω0).
Then, for the first order correction we get:

E(1)
n = ⟨n|V̂ |n⟩

=
δmω2

0

2
(x̂2)n,n .

Finally:

E(1)
n =

n + 1
2

2
δ!ω0

For the second order:

E(2)
n =

|⟨n|V̂ |n − 2⟩|2

E(0)
n − E(0)

n−2

+
|⟨n|V̂ |n + 2⟩|2

E(0)
n − E(0)

n+2

=
(
δmω2

0

2

)2{
x̃2(n − 1)n

2!ω0
− x̃2(n + 1)(n + 2)

2!ω0

}
.

Finally:

E(2)
n = −

n + 1
2

8
δ2!ω0
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(b) Find the exact perturbed energy En. Compare your findings in sub-
problem (a) with the exact result. In other words, expand the exact energy
in powers of δ and compare it with the results of the perturbation theory.

Solution: The spectrum of Ĥ is

En = !ω
(

n +
1
2

)
,

where

ω =
√

1 + δω0 =
(

1 +
x

2
− x2

8
+ . . .

)
ω0.

The Taylor expansion (in powers of δ) of the exact eigenenergies En gives
the same result as the perturbation theory:

En = E(0)
n + E(1)

n + E(2)
n + . . .

= !ω0(n +
1
2
) +

n + 1
2

2
δ!ω0 −

n + 1
2

8
δ2!ω0 + . . .

4.1.13 Outer orbital of sodium atom

The sodium atom 11Na has eleven electrons (charge −|e|) interacting with
a nucleus (charge Z|e|) and between themselves. Ten inner electrons (two
on the 1s orbital, two on the 2s, six on the 2p) form a nearly spherically
symmetric bubble that screens the potential of the nucleus. The eleventh,
outer, electron is going to reside on one of the three orbitals: 3s, 3p, or 3d.
The question is: which of the three will it prefer?

To answer this question, the following crude model applies:

(a) close to the nucleus, we will neglect the screening completely;
(b) far away from the nucleus, we will assume full screening;
(c) we will make the transition between these two regimes sharp. It will

happen abruptly (Fig. 4.5), at a Thomas-Fermi “half-cloud” radius
from the nucleus:

V (r) =

⎧
⎪⎪⎨

⎪⎪⎩

−Ze2

r
, 0 < r < RTF

−e2

r
, RTF < r < ∞.

(4.13)
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−

Fig. 4.5 A crude model for the potential created by the nucleus and the inner electrons.

Here |e| is the absolute value of the electron charge, Z is the number of pro-
tons in the nucleus. The Thomas-Fermi “half-cloud” radius is the Thomas-
Fermi theory prediction (see Chapter 9) for a radius within which exactly
one half of the electrons are situated:

RTF = ηaB/Z1/3.

Here, aB = !2/(me2) is the Bohr radius, m is the electron mass, and
η = 1.33 . . ..

The assignment is: using the difference between the potential (4.13) and
the outer range potential −e2/r,

δV (r) =

⎧
⎨

⎩
− (Z − 1)e2

r
, 0 < r < RTF

0, RTF < r < ∞,

as a perturbation, estimate the correction to the energy caused by δV . Com-
pare three situations corresponding to the unperturbed state belonging to s
(n = 3, l = 0), p (n = 3, l = 1), or d (n = 3, l = 2) orbital. Note that all
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three have the same unperturbed energy EH;n=3 = (me2/!2)/18 (generally,
EH;n = (me2/!2)/(2n2)). The unperturbed eigenstates of −e2/r (plus the
corresponding centifugal potential !2l(l + 1)/2mr2) for the s, p, and d or-
bitals read :

χn=3,l(r) =
1

√
aB

fn=3,l(r/aB),

where

fn=3,l=0(x) =
2

3
√

3
x

(
1 − 2

3
x +

2
27

x2

)
e−x/3

fn=3,l=1(x) =
8

27
√

6
x2

(
1 − 1

6
x

)
e−x/3 (4.14)

fn=3,l=2(x) =
4

81
√

30
x3e−x/3.

Compare the results and choose the best candidate for the outer orbital of
the ground state of the sodium atom. The states (4.14) are normalized in
such a way that the matrix elements of a radially symmetric function A(r)
will read

⟨n, l|A(r)|n′, l′⟩ = δl,l′
∫ ∞

0
χ⋆n,lA(r)χn′,l.

Note that the δl,l′ comes from the orthogonality of the angular parts of the
eigenstates.

In your calculations, assume that the nuclear charge is very large, Z →
∞. Retain only the dominant (highest power of Z) term. Hint : in this
limit, the Thomas-Fermi radius RTF becomes much smaller than the spatial
extent aB of the wavefunctions, so that only the limiting behavior of the
wavefunction at zero is essential.

Solution: The dominant behavior of χn,l(r) at small distances is given
by

χn,l(r)
r→0∼ (aB)−1/2(r/aB)α(l),

where

α(l) = l + 1.
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The first order perturbation theory correction to the hydrogen energies
EH

n = (me2/!2)/(2n2) thus becomes
∆En,l = ⟨n, l|δV |n, l⟩

=
∫ ∞

0
δV (r)|χn,l(r)|2

∼ −Z(e2/aB)(aB)−2α(l)

∫ RTF

0
r2l+1dr

∼ − EH
1

Z
2l−1

3
,

where EH
1 is the absolute value of the ground state energy of the hydrogen

atom, also known as Rydberg. Also, 1Ry = 13.60569eV. In the large atom
limit, Z → ∞ the s-orbital (l = 0) has the lowest energy.

Finally,

∆En,l ∼ − EH
1

Z
2l−1

3

the ground state orbital for 11Na is 3s

Figure 4.6 shows the empirical sodium spectrum, in comparison with the
the hydrogen spectrum. We can see that indeed, the effect of “imperfect
screening” increases for low angular momenta l. On the other hand, starting
from l = 3, the sodium spectum is indistinct from the hydrogen one.

One can go further and extract the actual numerical values of the cor-
rections. Instead of referring to the particular formulas for the n = 3 case,
we will use a more general expression for the short-range behavior of χn,l:

χn,l(r)
r→0∼ (aB)−1/2 2l+1

nl+2(2l + 1)!

√
(n + l)!

(n − l − 1)!
(r/aB)l+1,

We get

∆En,l = −Cn,l
EH

1

Z
2l−1

3

Cn,l =
4l+1n−2(l+2)(n + l)!η2(l+1)

(l + 1)(2l + 1!)2(n − l − 1)!
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Fig. 4.6 This diagram compares the empirical energy levels of sodium with the ones
of hydrogen. For high values of the angular momentum l, the sodium levels are close
to the hydrogen ones. For low l, however, the effect of the unscreened nucleus becomes
prominent, and the hydrogen spectrum can no longer be used as a model for sodium
energy levels.

In particular, these formulas predict the sodium ground state energy to be
lower than that of hydrogen. The value of this shift is estimated to be
equal to

∆En=3,l=3 = −7.90 eV.

At the same time, the empirical value of this shift is
∆En=3,l=3 ≡ ENa;n=3,l=3 − EH;n=3,l=3 = −3.61 eV.

Even though the “imperfect screening” energy shift is by no means smaller
than the hydrogen energy EH;n=3,l=3 = −1.51 eV, our perturbative estimate
is only a factor of two off the exact value.

4.1.14 Relative contributions of the expectation values of
the unperturbed Hamiltonian and the perturbation
to the first and the second order perturbation theory
correction to energy

Consider a Hamiltonian
Ĥ = Ĥ0 + ϵV̂
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that consists of an unperturbed part Ĥ0 and a perturbation V̂ . Consider its
exact eigenenergy En. The coefficients E(m)

n in the perturbative expansion

En = E(0)
n + ϵE(1)

n + ϵ2E(2)
n + · · ·

of En are the “holy grail” of perturbation theory.
On the other hand, the eigenenergy En can be formally written as a sum

of two contributions: one coming from the unperturbed part and another
from the perturbation,

En = ⟨ψn|Ĥ |ψn⟩ = ⟨ψn|Ĥ0|ψn⟩ + ⟨ψn|V̂ |ψn⟩.
Each of the two contributions can be expanded onto a power series with
respect to ϵ:

⟨ψn|Ĥ0|ψn⟩ = ⟨ψn|Ĥ0|ψn⟩(0) + ϵ⟨ψn|Ĥ0|ψn⟩(1) + ϵ2⟨ψn|Ĥ0|ψn⟩(2) + · · ·

⟨ψn|V̂ |ψn⟩ = ϵ⟨ψn|V̂ |ψn⟩(1) + ϵ2⟨ψn|V̂ |ψn⟩(2) + · · · .

Finally, the corresponding orders in the expansion of En can be represented
as a sum of two terms, one originating from Ĥ0 and another from V̂ :

E(0)
n = ⟨ψn|Ĥ0|ψn⟩(0)

E(1)
n = ⟨ψn|Ĥ0|ψn⟩(1) + ϵ⟨ψn|V̂ |ψn⟩(1)

E(2)
n = ⟨ψn|Ĥ0|ψn⟩(2) + ϵ⟨ψn|V̂ |ψn⟩(2)

... .

Find the relative contributions of the unperturbed part Ĥ0 and perturbation
V̂ in the first and second perturbative orders of En.

Solution: To the first order, En reads

E(1)
n = ⟨ψ(0)

n |V̂ |ψ(0)
n ⟩. (4.15)

To the same order, the expectation value of the unperturbed part van-
ishes:

⟨ψn|Ĥ0|ψn⟩(1) = ⟨ψ(1)
n |Ĥ0|ψ(0)

n ⟩ + ⟨ψ(0)
n |Ĥ0|ψ(1)

n ⟩

= ⟨φ(1)
n |Ĥ0|φ(0)

n ⟩ + ⟨φ(0)
n |Ĥ0|φ(1)

n ⟩

= E(0)
n (⟨φ(1)

n |φ(0)
n ⟩ + ⟨φ(0)

n |φ(1)
n ⟩)

= 0. (4.16)

Here and below we use the known perturbation theory results and standard
definitions of the intermediate objects thereof (see Eqs. (4.35), (4.34), and
(4.36) below).
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The first order of the perturbation gives the following intuitively ex-
pected result:

⟨ψn|V̂ |ψn⟩(1) = ⟨ψ(0)
n |V̂ |ψ(0)

n ⟩

= E(1)
n . (4.17)

In summary we get

E(1)
n = ⟨ψn|Ĥ0|ψn⟩(1) + ⟨ψn|V̂ |ψn⟩(1) ,

where

⟨ψn|Ĥ0|ψn⟩(1) = 0
⟨ψn|V̂ |ψn⟩(1) = E(1)

n

In the second order, we have

E(2)
n =

∑

n′ ̸=n

|⟨ψ(0)
n′ |V̂ |ψ(0)

n ⟩|2

E(0)
n − E(0)

n′

.

The contribution from Ĥ0 is

⟨ψn|Ĥ0|ψn⟩(2) = ⟨ψ(2)
n |Ĥ0|ψ(0)

n ⟩ + ⟨ψ(1)
n |Ĥ0|ψ(1)

n ⟩ + ⟨ψ(0)
n |Ĥ0|ψ(2)

n ⟩

= 2A(2)
n ⟨φ(0)

n |Ĥ0|φ(0)
n ⟩ + ⟨ψ(1)

n |Ĥ0|ψ(1)
n ⟩

+⟨φ(2)
n |Ĥ0|φ(0)

n ⟩ + ⟨φ(2)
n |Ĥ0|φ(0)

n ⟩

= 2A(2)
n E(0)

n + ⟨ψ(1)
n |Ĥ0|ψ(1)

n ⟩

+E(0)
n

(
⟨φ(2)

n |φ(0)
n ⟩ + ⟨φ(0)

n |φ(2)
n ⟩
)

= 2A(2)
n E(0)

n + ⟨ψ(1)
n |Ĥ0|ψ(1)

n ⟩

· · ·

= −E(2)
n , (4.18)

where again we used the known results (from Eqs. (4.35), (4.34), and (4.36)
below). Interestingly, the second order perturbation theory correction to
the normalization factor An contributes to this relationship.

Likewise,

⟨ψn|V̂ |ψn⟩(2) = ⟨ψ(1)
n |V̂ |ψ(0)

n ⟩ + ⟨ψ(0)
n |V̂ |ψ(1)

n ⟩

= 2E(2)
n . (4.19)
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In the second order, we get

E(2)
n = ⟨ψn|Ĥ0|ψn⟩(2) + ⟨ψn|V̂ |ψn⟩(2) ,

where

⟨ψn|Ĥ0|ψn⟩(2) = −E(2)
n

⟨ψn|V̂ |ψn⟩(2) = 2E(2)
n

4.2 Problems without provided solutions

4.2.1 A perturbation theory estimate

Consider a one-dimensional quantum particle moving in an infinitely deep
square well of width L:

V (x) =

{
0 for |x| ≤ L/2

+∞ for |x| > L/2.
(4.20)

Add a small potential bump of width a in the middle:

δV (x) =

{
V0 for |x| ≤ a/2

0 for |x| > a/2.

Estimate the correction to the eigenenergies caused by the bump. Assume
that for the eigenstates considered, the particle momentum is high enough
to treat the bump using WKB:

|p| ≫ !/a.

4.2.2 Eigenstates of a two-dimensional harmonic oscillator
at the origin

Consider a Schrödinger equation for a particle of mass m moving in the
field of a two-dimensional harmonic potential:

−!2∆r⃗

2m
ψ(r⃗) +

mω2r2

2
ψ(r⃗) = Eψ(r⃗)

with a frequency ω, where r⃗ = (x, y) is a two-dimensional coordinate, and
∆r⃗ is the two-dimensional Laplacian. In what follows, we will be study-
ing the probability density in the center of the trap, for the zero angular
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momentum eigenstates ψnr ,m=0(r,φ) ≡ φnr (r). The exact quantum result
reads

|φnr (r = 0)|2 =
1

πa2
HO

: (4.21)

the density is the same for all cylindrically symmetric eigenstates. Here,

r =
√

x2 + y2

φ = arg(x, y)

are the cylindrical coordinates, and

aHO ≡
√

!
mω

is the size of the ground state, nr = 0, m = 0. The full spectrum of a 2D
oscillator reads

Enr ,m = !ω(2nr + |m| + 1)

nr = 0, 1, 2, . . .

m = 0,±1,±2, . . . ,

where nr is the radial quantum number, and m is the projection of the
angular momentum onto the Z-axis.

Observe that, superficially, the result (4.21) seems purely quantum:
there is a Plank’s constant in the denominator and no quantum numbers
to complete it to a classical canonical action. However . . .

. . . (a) Consider a collection of classical zero-angular-momentum
trajectories—each of which is simply a straight line segment drawn through
the origin—each at energy E (see Fig. 4.7). Assume that the angle between
the trajectory and the X-axis is chosen at random, according to a uniform
distribution. Assume further that the particle positions are later detected,
at a random time. Compute the classical probability density distribution.
Show that this distribution diverges at the origin;

(b) For a given energy E, estimate the de-Broglie wavelength, λdB(E);
(c) Assume that the quantum-mechanical density (4.21) remains ap-

proximately equal to its peak value (4.21) within a circle of radius λdB(E)
with a center at the origin. Observe that in this case, the average of the
density over this disk is also (trivially) comparable to the value (4.21);

(d) Average the classical density over the same disc (assume its radius
is much smaller than the classical amplitude of motion) and compare your
result with that from (c).
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y

E2 /mω2

x

Fig. 4.7 A bundle of classical trajectories associated with an energy E zero-angular-
momentum eigenstate of a two-dimensional harmonic oscillator.

4.2.3 Approximate WKB expressions for matrix elements
of observables in a harmonic oscillator

For a harmonic oscillator of frequency ω and mass M, find the magnitudes
of the matrix elements of

(a) p3;
(b) xp;
(c) x4,

in the WKB approximation. Use solution (4.31) as an example.

4.2.4 Off-diagonal matrix elements of the spatial
coordinate for a particle in a box

Consider again a one-dimensional quantum particle moving in an infinitely
deep square well of length L (see (4.20)). Find the semi-classical expres-
sions for the absolute values of the matrix elements of the spatial coordinate
between neighboring eigenstates:

|xn+1,n| = ?

This is a rare example where the semi-classical approximation is more com-
plicated than the exact solution.



August 8, 2013 15:6 World Scientific Book - 9in x 6in B1662-ch04

82 Back-of-the-Envelope Quantum Mechanics

4.2.5 Harmonic oscillator perturbed by a δ-potential, . . .

Using the semiclassical expressions for density (see (4.5)), compute the first
order perturbation theory correction to the eigenenergies of a harmonic os-
cillator perturbed by a potential V (x) = gδ(x).

4.2.6 . . . and by a uniform field

(a) Find an exact expression for the first order perturbation theory correc-
tion to the eigenenergies of a harmonic oscillator perturbed by a uniform
field V (x) = −Fx.
(b) Analyze the full Hamiltonian, including the perturbation. Observe
that even with the perturbation, the Hamiltonian still describes a harmonic
oscillator. Compute the energy shift exactly and compare it with your result
for the question (a).

4.2.7 Perturbative expansion of the expectation value of the
perturbation itself and the virial theorem

Consider again the Schrödinger equation for a particle in a “2q-tic” poten-
tial:

Ĥ = − !2

2m

∂2

∂x2
︸ ︷︷ ︸

T̂

+ Kqx
2q

︸ ︷︷ ︸
V̂

q = 1, 2, 3, . . . .

(a) Using dimensional analysis, and without resorting to the WKB
approximation, prove that the spectrum has the form

En =
(

!2

m

) q
q+1

K
1

q+1
q f(n), (4.22)

where f(n) is an unknown universal function;
(b) The quantum virial theorem (8.8) introduced in Chapter 8 would

predict that in our case the quantum expectation value of the potential
energy in eigenstates is proportional to their energies, with a coefficient of
proportionality of 1/(q + 1):

⟨ψn|V̂|ψn⟩ =
1

q + 1
En. (4.23)
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Let us now split, formally, the coupling constant Kq into a sum of a principal
part and a “perturbative” part,

Kq = (Kq)0 + ∆Kq,

and reinterpret the Hamiltonian accordingly:

Ĥ = − !2

2m

∂2

∂x2
+ (Kq)0x2q

︸ ︷︷ ︸
Ĥ0

+ ∆Kqx
2q

︸ ︷︷ ︸
V̂

.

Let us now apply perturbation theory, treating the correction V̂ as a per-
turbation. Show that the law

⟨ψn|V̂ |ψn⟩(2) = 2E(2)
n ,

proven in Problem 4.1.14, is consistent with the results (4.22) and (4.23).
Here, !(2) stands for a second order perturbation theory prediction.

4.2.8 A little theorem

Consider a Hamiltonian that consists of two terms,

Ĥ = Ŝ + αT̂ ,

where the second term enters with a variable prefactor α > 0, not necessar-
ily small. Assume that its spectrum is bounded from below, and imagine
that its ground state energy is proportional to αη:

E0 = const × αη.

Using the property that the second order perturbation theory shift of the
ground state energy is always non-positive, prove that η is bounded as 0 ≤
η ≤ 1.

Remark : For example, for a harmonic oscillator, α = ω2, and η = 1/2.

4.3 Background

4.3.1 Matrix elements of operators in the WKB
approximation

One of the dozens of incarnations of the quantum-classical correspondence
is the relationship between the quantum matrix elements and the classical
Fourier components of observables.
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The WKB approximation for the matrix elements of observables in one-
dimensional systems reads:

|An1,n2 | ≈ |A(CM)
n1−n2

(Ēn1,n2)|, (4.24)

where

A(CM)
m (E) ≡ 1

T (E)

∫ T (E)

0
dtA(t|E) exp[−imω(E)t] (4.25)

is the mth Fourier component of the classical evolution of A at an energy E,

Ēn1,n2 ≡ En1 + En2

2
(4.26)

is the average between the energies of the states involved, and T (E) and
ω(E) = 2π/T (E) are the classical period and the classical frequency at the
energy E, respectively.

Here, En is governed by the WKB rule:
∮

dxp(x; En) = 2π!(n + δ), (4.27)

where δ is determined by the boundary conditions.
For the diagonal matrix elements in particular, the phase of the matrix

elements can be fixed as well:

An,n ≈ 1
T (E)

∫ T (E)

0
dtA(t|E). (4.28)

In Eq. (4.26), selecting the arithmetic mean of En1 and En2 as the choice
for the classical energy Ēn1,n2 is completely arbitrary; any value in between
the two energies will provide the same accuracy. Note, however, that the
choice (4.26) (a) guarantees the “hermiticity” of the approximate matrix
elements and (b) is probably the most manageable from a technical point
of view.

In multi-dimensional quantum-ergodic systems, Eq. (4.28) becomes

An,n ≈ lim
T→∞

1
T

∫ T

0
dtA(t|E). (4.29)

Furthermore, the across-the-spectrum variance of both off-diagonal and di-
agonal matrix elements there can be related to the classical autocorrelation
function.3

3M. Feingold and A. Peres, Distribution of matrix elements of chaotic systems, Phys.
Rev. A34, 591, (1986).
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The relationship (4.24) follows from the requirement that at short times,
the time evolution of the quantum expectation values of observables must
reproduce the classical evolution:

⟨A(t)⟩ =
∑

n1,n2

ψ⋆n1
ψn2⟨n1|Â|n2⟩ exp[i(En1) − En2)t/!]

≈
∑

m

A(CM)
m (E) exp[+imωt].

To arrive at the expression (4.24) one (a) assumes that the initial state
is represented by a smooth real non-negative wavepacket and (b) uses the
semiclassical expression for the quantum energy differences En1 − En2 ≈
ω(Ēn1,n2)(n1 − n2).

The phases of the off-diagonal matrix elements in (4.24) remain unde-
termined. This is not a consequence of the deficiency of the method, but
a result of an absence of convention. Recall that both the initial phase of
the classical motion and the phases of the individual quantum states can
be chosen at will. Once fixed, the ambiguity in (4.24) can be resolved.

As an example, let us try to derive a WKB expression for the matrix
elements of the coordinate of a harmonic oscillator of frequency Ω and mass
M and compare it with the exact result. The exact result reads

xn,n′ =
√

!
2MΩ

{
√

nδn′,n−1 +
√

n + 1δn′,n+1}. (4.30)

Let us now look at the semiclassical recipe. The classical evolution of the
coordinate reads

x(t|E) = x0(E) cos(ω(E)t),

where x0(E) =
√

2E/(MΩ2) is the amplitude of the oscillation and
ω(E) = Ω is the frequency of the oscillation. (Note that the absence of
energy dependence of the frequency is a unique property of the harmonic
oscillator). The Fourier transform (4.25) of x(t|E) then gives

xm =
1
2
x0(E)(δm,+1 + δm,−1).

Substituting this result into the quantum-classical correspondence rule
(4.24) gives

|xn,n′ | n→∞≈
√

!
2MΩ

{
√

nδn′,n−1 +
√

n + 1δn′,n+1}. (4.31)
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Notice that we managed to reproduce the exact result in its entirety. Note
that while the correctness of the prediction for the leading and subleading
orders in n was expected, the good agreement for the subsequent orders of
the 1/n expansion is pure coincidence.

Among various observables, of particular interest is the probability den-
sity ρ(x0) ≡ |ψ(x0)|2 at a particular point x0; it can be formally regarded
as the expectation value of the operator δ(x− x0). The classical prediction
for the probability density reads

ρCM(x0) =
2

T (E)v(x0, E)
, (4.32)

where T (E) = 2
∫ xmax

xmin
dx/v(x, E) is the classical period, v(x, E) =√

2(E − V (x))/m is the classical velocity, and V (x) is the potential energy.
However the relationship between the classical and quantum densities is
not as straightforward as in the case of smooth functions of coordinates,
such as x, x2, etc; recall that δ(x− x0) is a sharp function of x, and it may
retain some sensitivity to the quantum oscillations of the density, even in
the limit of high excitation numbers. Indeed, the proper correspondence is

ρ(x0) = 2ρCM(x0) cos(k(x0, E)x0 + φ), (4.33)

where k(x, E) ≡
√

2m(E − V (x))/! is the semiclassical wave vector, re-
lated to the de-Broglie wave length as k = 2π/λdB, and E is the energy of
the state ψ(x); φ is a purely quantum phase that depends on the values of
the potential in the whole classically allowed range, and on the boundary
conditions. In the particular case of the left turning point a being a “soft
wall” (a conventional turning point), φ =

∫ x0

a dxk(x, E) − π
4 .

4.3.2 Perturbation theory: a brief summary

Basic setting. Consider an unperturbed Schrödinger equation

Ĥ0|ψ(0)
n ⟩ = E(0)

n |ψ(0)
n ⟩,

and its perturbed version

Ĥ |ψn⟩ = En|ψn⟩,

where the Hamiltonian H consists mostly of Ĥ0, which can be treated
exactly, and a small correction that renders exact solution impossible:

Ĥ = Ĥ0 + ϵV̂ .
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In what follows, both the eigenstates |ψ(0)
n ⟩ and the eigenstates |ψn⟩ are

assumed to be normalized to unity:
⟨ψ(0)

n |ψ(0)
n ⟩ = ⟨ψn|ψn⟩ = 1.

The perturbative expansion procedure. The procedure introduces,
at the intermediate stages, an auxiliary unnormalized eigenstate |φn⟩ of the
Hamiltonian Ĥ : this state is proportional to the properly normalized eigen-
state |ψn⟩, its zeroth-order part equals the properly noramalized eigenstate
of Ĥ(0), and each subsequent order is orthogonal to the zeroth-order part:

En = E(0)
n + ϵE(1)

n + ϵ2E(2)
n + . . .

|φn⟩ = |φ(0)
n ⟩︸ ︷︷ ︸

=|ψ(0)
n ⟩

+ϵ |φ(1)
n ⟩︸ ︷︷ ︸

⊥|φ(0)
n ⟩

+ϵ2 |φ(2)
n ⟩︸ ︷︷ ︸

⊥|φ(0)
n ⟩

+ . . .

|ψn⟩ = An|φn⟩

An =
1

⟨φn|φn⟩
= A(0)

n + ϵA(1)
n + ϵ2A(2)

n + . . .

|ψn⟩ = |ψ(0)
n ⟩ + ϵ|ψ(1)

n ⟩ + ϵ2|ψ(2)
n ⟩ + . . .

= A(0)
n |φ(0)

n ⟩ + ϵ(A(0)
n |φ(1)

n ⟩ + A(1)
n |φ(0)

n ⟩)

+ ϵ2(A(0)
n |φ(2)

n ⟩ + A(1)
n |φ(1)

n ⟩ + A(2)
n |φ(0)

n ⟩) + · · · . (4.34)

Some results. The first and second order expressions for the energy and
the first order for the eigenstate give

E(1)
n = ⟨ψ(0)

n |V̂ |ψ(0)
n ⟩

|ψ(1)
n ⟩ =

∑

n′ ̸=n

⟨ψ(0)
n′ |V̂ |ψ(0)

n ⟩
E(0)

n − E(0)
n′

|ψ(0)
n′ ⟩

E(2)
n =

∑

n′ ̸=n

|⟨ψ(0)
n′ |V̂ |ψ(0)

n ⟩|2

E(0)
n − E(0)

n′

. (4.35)

The zeroth, first and second orders for the normalization constant An,
which appears at the intermediate stages of the derivation (4.34), read

A(0)
n = 1

A(1)
n = 0

A(2)
n = −1

2

∑

n′ ̸=n

|⟨ψ(0)
n′ |V̂ |ψ(0)

n ⟩|2

(E(0)
n − E(0)

n′ )2
. (4.36)



August 8, 2013 15:6 World Scientific Book - 9in x 6in B1662-ch04

88 Back-of-the-Envelope Quantum Mechanics

4.3.3 Non-positivity of the second order perturbation theory
shift of the ground state energy

One particular property of the perturbation theory expansion for the
eigenenergies of the Hamiltonian has been found to be particularly use-
ful for discarding candidates for a ground state of a Hamiltonian, or even
discarding a particular perturbation as being produced by a regular poten-
tial. Consider the expression for the second order perturbation theory shift,
E(2)

n , of energy (see (4.35)). Set n = 0, i.e. assume that the state |ψ(0)
n ⟩ is

the ground state of the unperturbed Hamiltonian4:

E(0)
0 < E(0)

n′>0. (4.37)

The sign of the individual terms in the expression for E(2)
n is fully deter-

mined by the sign of the their respective denominators: their respective
numerators are strictly non-negative. For a ground state, all these denom-
inators are negative. Thus,

The second order perturbation theory shift of the ground sate energy
is always non-positive:

E(2)
0 ≤ 0.

A typical application of the above property is presented in Problem 4.1.11:
there, the non-positivity of the ground state energy allows one to unambigu-
ously conclude that a particular boundary condition—relevant to fermionic
atoms in cold waveguides—is not an approximation for any particular
realistic potential.

4In the case of a degenerate ground state, degenerate perturbation theory (not con-
sidered here) will apply: it will automatically exclude cases where the inequality below
becomes an equality.
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Chapter 5

Variational Problems

5.1 Solved problems

5.1.1 Inserting a wall

Using variational reasoning, prove that adding an infinitely hight wall,

Û =

{
+∞ x ≤ x0

0 x > x0,

to a regular potential V (x) can only increase the ground state energy (see
Fig. 5.1).

Solution: The ground state wavefunction, ψ0(x) minimizes the energy
functional

E [ψ(·)] =
∫

dx

{
!2

2m
|ψ′(x)|2 + V (x)|ψ(x)|2

}

0
x x

V x( )

en
er

gy

Fig. 5.1 Inserting a wall can only increase the ground state energy.

89
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within a variational space of all normalized to unity continuous functions
with piece-wise-continuous first derivative, V. In the presence of a wall,
the ground state ψ̃0(x) minimizes the same functional within the space Ṽ

of all normalized to unity continuous functions with piece-wise-continuous
first derivative that are equal to zero for x ≤ x0. Since Ṽ is a subset of V,
then the minimum of E[ψ(·)] among the members of Ṽ can never be lower
than the minimum of E[ψ(·)] among the members of V.

Q.E.D.

5.1.2 Parity of the eigenstates

Can the ground state ψ0(x) of the sextic potential V (x) = αx6 be odd, i.e.
can it be that ψ0(−x) = −ψ0(x)? Explain your answer.

Solution:

The ground state has no nodes ⇒ it can not be odd

(See Sec. 5.1.5 below.)

5.1.3 Simple variational estimate for the ground state en-
ergy of a harmonic oscillator

Give a variational estimate for the ground state energy of a harmonic os-
cillator,

Ĥ = − !2

2m

∂2

∂x2
+

mω2

2
x2,

using the following variational ansatz:

ψa(x) =
√

3
2a
×

⎧
⎪⎨

⎪⎩

1− |x|
a

, |x| ≤ a

0, |x| > a.

(5.1)

Solution: The ground state constitutes a point of minimum of the vari-
ational functional

E [ψ(·)] =
∫

dx

{
!2

2m
(ψ′(x))2 +

mω2

2
x2(ψ(x))2

}

over the space of all continuous, piecewise differentiable real functions nor-
malized to unity:

∫ +∞

−∞
dx(ψ(x))2 = 1.
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Observe that the ansatz (5.1) does belong to this space. The minimum
value of the functional equals the ground state energy.

Over the functions in the one-dimensional variational space (5.1), the
energy functional (5.2) attains a value

E [ψa(·)] =
3
2

!2

ma2
+

1
20

mω2a2.

Finally, minimizing this energy over possible values of the width a, we get

Emin =
√

3
10

!ω = 0.547 . . .× !ω.

The variational ground state energy is only 10% higher than the exact value
of 0.5!ω. This is a good result given how simple the variational ansatz was.

5.1.4 A property of variational estimates

Consider the motion of a single one-dimensional particle in a generic po-
tential well V (x) (see Fig. 5.2). Consider two variational estimates for the
ground state energy, E0,1-param. and E0,2-param. obtained using the ansatz

ψ0,1-param.(x) = const×

⎧
⎨

⎩
1− x

a
, |x| < a

0, |x| > a

and the ansatz

ψ0,2-param.(x) = const×

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1− b

c
, |x| < b

1− x

c
, b < |x| < c

0, |x| > c

−b

0, exact

(  )xψV  x(  ),

E 0, variational 1−parametric

E 0, variational 2−parametric

x

a

b c

−a

−c

E

Fig. 5.2 One-parametric and two-parametric variational piecewise linear ansatzes for a
generic symmetric one-dimensional potential.
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respectively.
Prove that the one-parametric estimate can never be lower than the two-

parametric one:

E0,1-param. ≥ E0,2-param.

Hint : Go through our derivation of the fact that the true ground state
energy is less than (or equal to) any of its variational approximations and
try to mimic it.

Solution: Figure 5.3 illustrates the proof. The line of reasoning goes as
follows:

— The 2-parametric variational space V(2) includes the 1-parametric one,
V(1):

V(1) ⊂ V(2)

Linear function in between.

− true ground state

− 1−parametric variational approximant

− 2−parametric variational approximant

Full variational space
Any number of disconti−
nuities in the derivative.
Any function in between.

equi−energy lines

energy
decreases

2−parametric variational space
4 or fewer discontinuities in the derivative
Linear function in between.

1−parametric variational space
3 or fewer discontinuities in the derivative.

Fig. 5.3 An illustration to the solution to Problem 5.1.4.
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— Thus, the 1-parametric variational approximation (for the ground
state), |ψ(1)

g.s.⟩ belongs to V(2) as well:

|ψ(1)
g.s.⟩ ∈ V(2)

— By construction, the energy of the 2-parametric variational approxima-
tion is less than or equal to the energy of any state in V(2):

E[|ψ(2)
g.s.⟩] ≤ E[|ψ⟩ ∈ V2]

— In particular, this should hold for |ψ(1)
g.s.⟩:

E[|ψ(2)
g.s.⟩] ≤ E[|ψ(1)

g.s.⟩]

— Q.E.D.

5.1.5 Absence of nodes in the ground state

Consider a Hamiltonian

Ĥ = − !2

2m

∂2

∂x2
+ V (x).

Prove variationally that its ground state wavefunction Ψ0(x) does not have
nodes.

Solution: Both real and imaginary parts of the ground state wavefunc-
tion Ψ0(x) are minimal points of an energy functional

Er2[ψ(·)] ≡
!2

2m

∫ +∞
−∞ dx(ψ′(x))2 +

∫ +∞
−∞ dxV (x)ψ2(x)

∫ +∞
−∞ dxψ2(x)

acting on real wavefunctions. In what follows ψ0(x) stands for either real or
imaginary part of the wavefunction Ψ0(x), and we will prove that neither
of them can have nodes.

Proof by reductio ad absurdum. To prove the absence of nodes, we are
going to show that if a node is present, then it is possible to construct a
state ψ̃(x) whose energy, Er2[ψ̃(·)], is lower than the ground state energy
Er2[ψ0(·)].

The construction of the state ψ̃(x) proceeds as follows. Assume that
ψ0(x) has a node at a point x0. Consider an intermediate state

˜̃ψ(x) =

{
−ψ0(x) for x ≤ x0

+ψ0(x) for x ≥ x0

(see Fig. 5.4). The energy of this state is the same as the energy of ψ0(x):

Er2[
˜̃ψ(·)] = Er2[ψ0(·)]. (5.2)
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x

ψ~ ψ~

x
0

a a

0

~

ψ

E  < E  = E

0

~ ~~

Fig. 5.4 An illustration to the proof of the absence of nodes in the ground state. (See
explanations in text.)

Next, we construct a state

ψ̃(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2
( ˜̃ψ(x0 + a) + ˜̃ψ(x0 − a)) +

x− xd

2a
( ˜̃ψ(x0 + a)− ˜̃ψ(x0 − a))

for x0 − a ≤ x ≤ x0 + a,

˜̃ψ(x), otherwise,

for some interval of size a. For a sufficiently small a, the energy of the state
ψ̃(x),

Er2[ψ̃(·)] = Er2[
˜̃ψ(·)]− !2

m
(ψ′

0(x0))2a + O(a3),

becomes lower than the energy of ˜̃ψ(x):

Er2[ψ̃(·)] < Er2[
˜̃ψ(·)]. (5.3)

Combining the relationships (5.2) and (5.3) we arrive at a contradiction to
the assumption that ψ0(x) minimizes the energy:

Er2[ψ̃(·)] < Er2[ψ0(·)].
Recall that ψ0(x) stands for either real or imaginary part of the ground

state wavefunction Ψ0(x).

Q.E.D.

Remark : The discontinuity in the derivative of ˜̃ψ(x) also contradicts a
more general statement on the continuity of derivatives in states minimizing
the energy functional Er2 (see Problem 5.4.2).
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5.1.6 Absence of degeneracy of the ground state energy
level

Consider a Hamiltonian

Ĥ = − !2

2m

∂2

∂x2
+ V (x).

Using the conclusion of Problem 5.1.5, prove that the ground state of this
Hamiltonian is not degenerate.

Solution: Proof by reductio ad absurdum. Assume that there are two
distinct eigenstates, Ψ0,I(x) and Ψ0,II(x), that correspond to the ground
state energy E0. Let us construct another ground state,

˜̃Ψ0(x) ≡ Ψ0,II(x0)Ψ0,I(x) −Ψ0,I(x0)Ψ0,II(x),

for some spatial point x0. This state will have a node at x = x0. Thus,
according to the statement proven in Problem 5.1.5, this state can not be
a ground state, and we arrive at a contradiction.

Q.E.D.

5.2 Problems without provided solutions

5.2.1 Do stronger potentials always lead to higher ground
state energies?

Prove variationally that if

V2(x) ≥ V1(x)

everywhere, then the ground state energy of a Hamiltonian Ĥ2 is always
greater than or equal to the one for a Hamiltonian Ĥ1:

Eg.s.,2 ≥ Eg.s.,1.

Here

Ĥα ≡ −
1
2
∂2

∂x2
+ Vα(x).

5.2.2 Variational analysis meets perturbation theory

Prove variationally that the first order perturbation theory correction to the
ground state energy is given by the expectation value of the perturbation in
an unperturbed ground state:

E(1)
n = ⟨ψ(0)

n |V̂ |ψ(0)
n ⟩.
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5.2.3 Another variational estimate for the ground state
energy of a harmonic oscillator . . .

Give a variational estimate for the ground state energy of a harmonic
oscillator,

Ĥ = − !2

2m

∂2

∂x2
+

mω2

2
x2,

using the following variational ansatz:
ψa(x) = const× e−|x|/a.

Do not forget to normalize it first.

5.2.4 . . . and yet another

Now use the Gaussian variational anzats:
ψa(x) = const× e−x2/a2

.

Show that it predicts the exact value for the ground state energy.

5.2.5 Gaussian- and wedge- variational ground state energy
of a quartic oscillator

(a) Show that the Gaussian variational prediction for the ground state en-
ergy of a quartic oscillator,

− !2

2m

∂2

∂x2
ψ(x) + βx4ψ(x) = Eψ(x),

is

Eg.s. =
3 · 31/3

422/3

(
β!

m2ω3

)1/3

.

(b) Now, use the “wedge” ansatz (5.1) to estimate Eg.s..
(c) Determine which of the two answers, (a) or (b), is closer to the exact

ground state energy.

5.3 Background

5.3.1 Variational analysis

The ground state |Ψ0⟩ of a Hamiltonian Ĥ constitutes a global minimum
point of a variational functional

E [|Ψ⟩] ≡ ⟨Ψ|Ĥ|Ψ⟩
⟨Ψ|Ψ⟩ , (5.4)
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over a variational space formed by all members of the Hilbert space. The
ground state energy E0, as in Ĥ |Ψ⟩ = E0|Ψ⟩, constitutes a global minimum
of the functional (5.4).

For a one-dimensional Hamiltonian

Ĥ = − !2

2m

∂2

∂x2
+ V (x); (5.5)

the above roles are distributed as follows:

Variational functional:

E [Ψ(·)] ≡
− !2

2m

∫ +∞
−∞ dxΨ⋆(x)Ψ′′(x) +

∫ +∞
−∞ dx|Ψ|2(x)V (x)

∫ +∞
−∞ dx|Ψ|2(x)

; (5.6)

Variational space V: space of all complex-valued functions Ψ(x) with
continuous first derivative.

Problem 5.4.1 below illustrates that the real and imaginary parts of
each1 of the global minimum points Ψ0 corresponding to a global minimum
E0 of the functional E [Ψ(·)] (5.6) are global minima of a

Variational functional

Er[ψ(·)] ≡
− !2

2m

∫ +∞
−∞ dxψ(x)ψ′′(x) +

∫ +∞
−∞ dxV (x)ψ2(x)

∫ +∞
−∞ dxψ2(x)

, (5.7)

over a

Variational space Vr: space of all real-valued functions ψ(x) with con-
tinuous first derivative.

At both the real and imaginary parts of Ψ0, the real functional (5.7) is
equal to E0.

Within the variational space Vr, the values of the functional (5.7) co-
incide with the ones for the . . .

Variational functional

Er2[ψ(·)] ≡
!2

2m

∫ +∞
−∞ dx (ψ′(x))2 +

∫ +∞
−∞ dxV (x)ψ2(x)

∫ +∞
−∞ dxψ2(x)

, (5.8)

1It can be shown variationally (see for example Problem 5.1.6) that in reality, the
ground state of the Hamiltonian (5.5) is never degenerate, and thus, the minima of the
functional (5.6) are different from each other by a trivial multiplicative factor. However,
the result proven in Problem 5.4.1 can be extended to any real Hamiltonian. On the
other hand, the absence of degeneracy is a property specific to Hamiltonians with a
kinetic energy density τ(ψ′(x)) that have a non-negative second derivative d2τ(ξ)/dξ2

for all real ξ.
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provided the wavefunction decays to zero at ±∞. It is tempting to extend
the variational space to a broader

Variational space Vr2: space of all real-valued continuous functions
ψ(x).

The Vr2 extension has at least two advantages over the standard space Vr:
(i) the technically more manageable piecewise linear continuous func-

tions can be used as variational ansatzes; (ii) several general theorems can
be proved using the space Vr2 (see Problems 5.1.5 and 5.1.6).

It is yet to be proven, however, that the global minimum point of Er[ψ(·)]
is also a global minimum point of the extended functional Er2[ψ(·)]. Other-
wise, it may so happen that a particular ansatz belongs to a well around an
unphysical minimum, and thus predicts an energy that has nothing to do
with the “true” ground state energy. Problem 5.4.2 is devoted to a proof
that all minimum points of Er2[ψ(·)] have continuous first derivatives, and
thus the functional Er2[ψ(·)] can indeed be used to identify the minima of
the functional Er[ψ(·)].

5.4 Problems linked to the “Background”

5.4.1 Complex vs. real variational spaces

Prove that the real and imaginary parts of each of the global minimum points
Ψ0 corresponding to a global minimum E0 of the functional E [Ψ(·)] (5.6)
are global minimum points of the functional Er[ψ(·)] (5.7); at these points,
the functional Er equals E0.

Solution: (1) Represent Ψ0(x) as Ψ0(x) = u0(x) + iv0(x) (u0(x) ≡
ℜ(Ψ0(x)), v0(x) ≡ ℑ(Ψ0(x))).

(2) Observe that for functions Ψ(x) that decay to zero as x→ ±∞, the
functionals E [Ψ(·)] and Er[ψ(·)] can be represented as

E [Ψ(·)] ≡
!2

2m

∫ +∞
−∞ dx |Ψ′(x)|2 +

∫ +∞
−∞ dxV (x)|Ψ|2(x)

∫ +∞
−∞ dx |Ψ|2(x)

,

Er[ψ(·)] ≡
!2

2m

∫ +∞
−∞ dx (ψ′(x))2 +

∫ +∞
−∞ dxV (x)ψ2(x)

∫ +∞
−∞ dxψ2(x)

.

This can easily be proven using integration by parts.
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(3) Since Ψ0 is a global minimum point, then

E [Ψ(·)] ≥ E [Ψ0(·)]
for any state Ψ(x).

(4) Consider first Ψ(x) of a form

Ψ(x) = ũ(x) + i v0(x),

where ũ(x) is any real function normalized the same way as u0(x):
∫ +∞

−∞
dx ũ2(x) =

∫ +∞

−∞
dxu2

0(x).

(5) Then the following chain applies:
!2

2m

∫ +∞
−∞ dx((ũ′(x))2 + (v′0(x))2) +

∫ +∞
−∞ dxV (x)(ũ2(x) + v2

0(x))
∫ +∞
−∞ dx(ũ2(x) + v2

0(x))

(3)
≥

!2

2m

∫ +∞
−∞ dx((u′

0(x))2 + (v′0(x))2) +
∫ +∞
−∞ dxV (x)(u2

0(x) + v2
0(x))

∫ +∞
−∞ dx (u2

0(x) + v2
0(x))

⇓← (4)

!2

2m

∫ +∞

−∞
dx (ũ′(x))2 +

∫ +∞

−∞
dxV (x)ũ2(x)

≥ !2

2m

∫ +∞

−∞
dx (u′

0(x))2 +
∫ +∞

−∞
dxV (x)u2

0(x)

⇓

Er[ũ(·)] ≥ Er[u0(·)].
(6) Let us now prove that

Er[u0(·)] = E [Ψ0(·)].
This can be proved by demonstrating that u0(x) is a global minimum of E .
The proof goes as follows:

E [Ψ(·)]

Ψ≡u+iv=
!2

2m

∫ +∞
−∞ dx((u′(x))2 + (v′(x))2) +

∫ +∞
−∞ dxV (x)(u2(x) + v2(x))

∫ +∞
−∞ dx(u2(x) + v2(x))

=
Er[u(·)]

∫ +∞
−∞ dxu2(x) + Er[v(·)]

∫ +∞
−∞ dx v2(x)

∫ +∞
−∞ dxu2(x) +

∫ +∞
−∞ dx v2(x)
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Er[u(·)]≥Er[u0(·)]
≥

Er[u0(·)]
∫ +∞
−∞ dxu2(x) + Er[v(·)]

∫ +∞
−∞ dx v2(x)

∫ +∞
−∞ dxu2(x) +

∫ +∞
−∞ dx v2(x)

Er[v(·)]≥Er[u0(·)]
≥

Er[u0(·)]
∫ +∞
−∞ dxu2(x) + Er[u0(·)]

∫ +∞
−∞ dx v2(x)

∫ +∞
−∞ dxu2(x) +

∫ +∞
−∞ dx v2(x)

= Er[u0(·)].

(7) For an arbitrary real part u(x) of the wavefunction Ψ(x), one may
consider its normalized counterpart

ũ(x) ≡

√√√√
∫ +∞
−∞ dxu2

0(x)
∫ +∞
−∞ dxu2(x)

u(x).

The value of Er at u(x) is the same as at ũ(x). Thus

Er[u(·)] = Er[ũ(·)] ≥ Er[u0(·)]
∀u(x).

For the imaginary part, the proof is completely analogous.

5.4.2 A proof that the (ψ′)2 energy functional does not have
minima with discontinuous derivatives

Prove that the minimum points of the functional Er2 (5.8) correspond to
functions with continuous first derivatives.

Solution: Proof by reductio ad absurdum. The idea of the proof is to
show that for would-be minima with discontinuous derivatives, one can
always find a small deviation that leads to a further decrease in the value
of the energy functional.

Assume that the function ψ0(x) is a local minimum of the functional

Er2[ψ(·)] ≡
!2

2m

∫ +∞
−∞ dx (ψ′(x))2 +

∫ +∞
−∞ dxV (x)ψ2(x)

∫ +∞
−∞ dxψ2(x)

,

and that it has a discontinuous derivative at a point xd. Assume, without
loss of generality, that ψ0 is normalized to unity:

∫ +∞

−∞
dxψ2

0(x) = 1.
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ψ
0

ψ~

a

x

a

x
d

E  < E~
0

Fig. 5.5 An illustration to the proof of the absence of discontinuities of derivative in a
local minimum of the energy functional Er2[ψ(·)]. (See explanations in text.)

Consider the following state:

ψ̃(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2
(ψ0(xd + a) + ψ0(xd − a)) +

x− xd

2a
(ψ0(xd + a)− ψ0(xd − a)),

for xd − a ≤ x ≤ xd + a

ψ0(x), otherwise,

where a ≥ 0 (see Fig. 5.5). The value of the energy functional at ψ(x) is

Er2[ψ̃(·)] = Er2[ψ0(·)]−
!2

4m
(ψ′

0(xd+)− ψ′
0(xd−))2a

+ (ψ′
0(xd+)− ψ′

0(xd−))

×
(
− !2

2m
(ψ′′

0 (xd+) + ψ′′
0 (xd−)) + V (xd)− Er2[ψ0(·)]

)
a2

+O(a3). (5.9)

Observe that the prefactor in front of a is strictly non-positive, and it
reaches zero only if the first derivative were continuous at xd. Contrary to
the assumption that the energy functional Er2 reaches a minimum at ψ0(x),
one can always find a small but finite interval of size a such that the value
of Er2 at ψ̃(x) is lower than that at ψ0(x). The only way to resolve this
contradiction is for the first derivative to be continuous.

Q.E.D.
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Remark 1 : Observe an interesting trend. The function ψ̃(x) can be
regarded as an attempt to “smooth” the discontinuity in the derivative.
The non-positivity of the leading term in the expansion (5.9) indicates that
“curing” the discontinuities will allow a lower energy, and that the global
minimum of energy is attained at a state with continuous first derivative.

Remark 2 : It can be shown that in the case of continuous first derivative,
the deviation between Er2[ψ̃(·)] and Er2[ψ0(·)] starts as late as order of a3.
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Chapter 6

Gravitational Well: A Case Study

Introduction

Consider a Schrödinger equation for a particle of mass m jumping on a floor
in a gravitational field (Fig. 6.1):

− !2

2m

∂2

∂x2
ψ(x) + U(x)ψ(x) = Eψ(x)

U(x) =

{
+∞ for x < 0

αx for x ≥ 0,
(6.1)

α

E2

E3

E4

...

E5

E1

en
er

gy

x

(  
) =

0U  x
    

    
 x

Fig. 6.1 A gravitational well.
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where α = mg is the coupling constant, g is the local gravitational con-
stant, and x is the elevation. In what follows, we will study the spectrum
of the system and the response of this spectrum to a small change in the
coupling constant. The exact diagonalization of the problem is relatively
complicated: in particular, it involves the Airy function and its zeros. In-
stead of the exact values, we will be looking for approximate values of the
observables in question; to this end, we will be employing both the WKB
approximation and perturbation theory.

6.1 Solved problems

6.1.1 Bohr-Sommerfeld quantization

Using the Bohr-Sommerfeld quantization rule, determine the spectrum of
the system, En.

Solution: There is one hard and one soft turning point. Thus
∮

p(x|En)dx = 2π!(n − 1/4) (6.2)

n = 1, 2, 3, . . . .

The l.h.s. integral in (6.2) gives
∮

p dx = 2
∫ En/α

0

√
2m(En − αx)

=
4
√

2
3

√
m

α
E3/2

n .

We get finally

En =
(3π)2/3

2

(
!2α2

m

)1/3

(n − 1/4)2/3

(6.3)

6.1.2 A WKB-based order-of-magnitude estimate
for the spectrum

By replacing the phase-space trajectory with a rectangle, estimate the
spectrum.
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Solution: The l.h.s. integral in (6.2) gives
∮

p dx ∼ 2∆p ∆x

∼
√

m

α
E3/2

n ,

where ∆p ∼
√

mEn and ∆x ∼ En/α, both estimates being derived from
energy conservation.

We get finally

En ∼
(

!2α2

m

)1/3

(n − 1/4)2/3

6.1.3 A WKB-based dimensional estimate for the spectrum

Starting from the Bohr-Sommerfeld rule, use dimensional analysis to esti-
mate the spectrum.

Solution: Introduce η̃ ≡ (!(n − 1/4))2/2m. η̃ and α are the only two
input parameters entering the quantization rule (6.2). The unknown is En.

— The principal units—the units of length and the units of energy:

[L], [E ];

— The input parameters and their units :

[η̃] = [L]2[E ]

[α] = [(1/L)][E ];

— The set of independent dimensionless parameters = ∅;
— The principal scales—the length scale and the energy scale, examples of :

L =
(

!2

mα

)1/3

E =
(

!2α2

m

)1/3

;

— Solution for the unknown:

[En] = [E ] ⇒ En ∼ E =
(

!2α2

m

)1/3

.
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Thus,

En ∼
(

!2α2

m

)1/3

(n − 1/4)2/3

6.1.4 A perturbative calculation of the shift of the energy
levels under a small change in the coupling constant.
The first order

Split the coupling constant α as

α = α0 + ∆α,

and reinterpret the problem (6.1) as
(
− !2

2m

∂2

∂x2
+ U0(x)

)

︸ ︷︷ ︸
principal part,Ĥ0

ψ(x) + V (x)︸ ︷︷ ︸
perturbation,V̂

ψ(x) = Eψ(x), (6.4)

where

U0(x) =

{
+∞ for x < 0

α0 x for x ≥ 0,

V (x) =

{
+∞ for x < 0

∆αx for x ≥ 0,
(6.5)

and we assume that ∆α is small: ∆α ≪ α0. Its unperturbed spectrum
obviously reads

E(0)
n =

(3π)2/3

2

(
!2α2

0

m

)1/3

(n − 1/4)2/3.

Using perturbation theory, calculate the first order correction to the
spectrum, E(1)

n . Regard V (x) as a small perturbation. Use the WKB ex-
pressions for the matrix elements of the relevant observables.

Solution: The first order of perturbation theory expansion for the energy
reads

E(1)
n = ⟨ψ(0)

n |V̂ |ψ(0)
n ⟩

= ∆αψ(0)
n |x|ψ(0)

n

≈ 1

T (E(0)
n )

∮

T (E(0)
n

dt x(t|E(0)
n ),
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where, following the quantum-classical correspondence, the (quantum) di-
agonal matrix element of the coordinate x is substituted by its classical
temporal average. Here, the integral

∮
covers one full cycle of motion.

The classical trajectory x(t|E) is taken at the unperturbed energy E(0)
n ,

calculated in turn using the WKB approximation.
The classical average gives,

1

T (E(0)
n )

∮

T (E(0)
n )

dt x(t|E(0)
n )

=

(
2mv0(E

(0)
n )

α0

)−1

︸ ︷︷ ︸
1/T (E

(0)
n )

∫ 2mv0(E(0)
n )

α0

0
dt (v0(E(0)

n )t − 1
2
α0

m
t2)

︸ ︷︷ ︸
x(t|E(0)

n )

=
2
3

(
∆α
α0

)
E(0)

n ,

where v0(E) =
√

2E/m is the initial velocity. Notice that this result is
consistent with the previously derived scaling of the spectrum En with the
coupling constant α, En ∝ α2/3. Indeed, replacing α with α0 + ∆α, we get

En

∣∣
α0+∆α

=
(
α0 + ∆α

α0

)2/3

En

∣∣
α0

= (1 +
2
3

(
∆α
α0

)
− 2

9

(
∆α
α0

)2

+ . . .)En

∣∣
α0

= En

∣∣
α0︸ ︷︷ ︸

E(0)
n

+
2
3

(
∆α
α0

)
En

∣∣
α0

︸ ︷︷ ︸
E(1)

n

− 2
9

(
∆α
α0

)2

En

∣∣
α0

︸ ︷︷ ︸
E(2)

n

+ · · · .

Finally, using our result (6.3) for the WKB spectrum, we get

E(1)
n =

π2/3

31/3

(
∆α
α0

)(
!2α2

0

m

)1/3

(n − 1/4)2/3

6.1.5 A dimensional estimate for the perturbative
correction to the spectrum

Starting from the Bohr-Sommerfeld rule, use dimensional analysis to esti-
mate the first order correction to the spectrum, E(1)

n .
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Solution: In the first order of the perturbation theory, we get

E(1)
n = ∆αΦn,

where Φn does not depend on ∆α. If the Schrödinger equation (6.4) can be
solved using the WKB approximation, the spectrum would be a function
of three parameters: η̃ ≡ (!(n − 1/4))2/2m, α0, and ∆α. However, if one
wishes to determine Φn, the latter must be excluded. We get

— The principal units—the units of length and the units of energy:

[L], [E ];

— The input parameters and their units :

[η̃] = [L2][E ]

[α0] = [(1/L)][E ];

— The set of independent dimensionless parameters = ∅;
— The principal scales—the length scale and the energy scale, examples of :

L =
(

!2

mα0

)1/3

E =
(

!2α2
0

m

)1/3

;

— Solution for the unknown:

[Φn] = [L] ⇒ Φn ∼ L =
(

!2

mα0

)1/3

.

Thus,

E(1)
n ∼

(
∆α
α0

)(
!2α2

0

m

)1/3

(n − 1/4)2/3

6.1.6 A perturbative calculation of the shift of the energy
levels under a small change in the coupling constant.
The second order

(a) Find the second order (in ∆α) perturbation theory correction, E(2)
n ,

in the spectrum of the gravitational problem (6.4) due to the correction
(6.5). Use the WKB expressions for the matrix elements of the relevant
observables.
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Solution: The Fourier components of the coordinate read

x(CM)
m̃ (E) =

1
T (E)

∫ T (E)

0
dt(v0(E)t − 1

2
(α0/m)t2) exp[−i2πm̃t/T (E)]

= − 2E

π2m̃2
,

where v0(E) =
√

2E/m is the initial velocity, and T (E) = 2mv0(E)/α0.
Now, the second order perturbation theory correction is

E(2)
n =

∑

n′ ̸=n

(E(2)
n )n′ ,

where an individual term of the series reads1

(E(2)
n )n′

WKB≈ ∆α2 (1
2x(CM)

n′−n (En′) + 1
2x(CM)

n′−n (En))2

En − En′

=
(

∆α
α0

)2(!2α2
0

m

)1/3 32/3
(
(4n′ − 1)2/3 + (4n − 1)2/3

)2

4 3
√

2π10/3(n′ − n)4
(
(4n − 1)2/3 − (4n′ − 1)2/3

)

=
(

∆α
α0

)2(!2α2
0

m

)1/3
{
−

3
(
32/3(4n − 1)5/3

)

8
(

3
√

2π10/3
)
∆n5

− 5(12n− 3)2/3

4
(

3
√

2π10/3
)
∆n4 − 7

6∆n3
(
π10/3 3

√
24n− 6

) + O
(

1
∆n2

)}
.

Counterintuitively, it is the second 1/∆n4 term that gives the dominant
contribution to the sum:

E(2)
n = − π2/3

2 × 34/3

(
∆α
α0

)2(!2α2
0

m

)1/3

(n − 1/4)2/3

1Here, the convention for converting classical Fourier components to the quantum
matrix elements is slightly different from the one suggested by the formulas (4.24)–
(4.26). There, the classical Fourier componenets are taken at the mean energy Ēn′,n =
(En′ +En)/2 between the two energies—En′ and En—involved in the n′ ↔ n transition;
in the Problem 6.1.6 above, we are instead averaging the Fourier components themselves
between their values at En′ and En. The difference between the two conventions is
below the accuracy of the WKB estimates; however, the convention used here is slightly
easier to handle.
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The contribution of the first 1/∆n5 term,

δ(E(2)
n ) = −

(
∆α
α0

)2(!2α2
0

m

)1/3 3 32/3
(

1
n

)7/3

4π10/3
+ O

((
1
n

)10/3
)

,

is heavily impeded by the sign alternation across the sum.
(b) Use the result of (6.3) to find E(2)

n .
Solution: Let us make a replacement α → α0 + ∆α and expand En in

powers of ∆α:

En =
(3π)2/3

2

(
!2(α0 + ∆α)2

m

)1/3

(n − 1/4)2/3

=
(

1 +
∆α
α0

)2/3 (3π)2/3

2

(
!2α2

0

m

)1/3

(n − 1/4)2/3

=

(
1 +

2
3

(
∆α
α0

)
− 1

9

(
∆α
α0

)2

+ . . .

)
(3π)2/3

2

(
!2α2

0

m

)1/3

(n − 1/4)2/3

= E(0)
n +

2
3

(
∆α
α0

)
E(0)

n − 1
9

(
∆α
α0

)2

E(0)
n + · · · .

On the other hand

En = E(0)
n + E(1)

n + E(2)
n + · · · .

Thus

E(2)
n = −1

9

(
∆α
α0

)2

E(0)
n

= − π2/3

2 × 34/3

(
∆α
α0

)2(!2α2
0

m

)1/3

(n − 1/4)2/3
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6.1.7 A simple variational treatment of the ground state of
a gravitational well

Consider the motion of a mass m particle in a gravitational field plus a
hard floor:

Ĥ = − !2

2m

∂2

∂x2
+ αx,

or, in the dimensionless form

Ĥ = −1
2
∂2

∂x2
+ x.

Here, we have chosen a system of units where ! = m = α = 1.

(  ),

0, exact

x

E 0, variational

αx

a 2a

(  )xψV  x

E

Fig. 6.2 A variational estimate for the ground state of the gravitational problem.

Find an approximate value for the ground state energy E0 using the
following variational ansatz:

ψ0(x) = const ×

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x

a
, 0 < x < a

2 − x

a
, a < x < 2a

0, 2a < x.

(6.6)

Compare with the exact value E0 = 1.8557. Here, a is the only variational
parameter (after normalization).
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Solution: First of all, let us normalize ψ0 using
∫ +∞
0 dx |ψ0(x)|2 = 1:

ψ0(x) =
√

3
2a

×

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x

a
, 0 < x < a

2 − x

a
, a < x < 2a

0, 2a < x.

The kinetic energy functional gives

T (a) =
∫ +∞

0
dx

1
2

∣∣∣∣
∂ψ0

∂x

∣∣∣∣
2

=
3

2a2
.

The potential energy gives

V(a) =
∫ +∞

0
dxx|ψ0|2 = a.

The minimum of the total energy

E(a) = T (a) + V (a)

occurs at

amin = 31/3,

where the energy is given by

E0 ≈ E(amin) =
34/3

2
= 2.163 . . .

Note that this result corresponds to a relative error of 17%.
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Miscellaneous

7.1 Solved problems

7.1.1 A dimensional approach to the question of the
number of bound states in δ-potential well . . .

Consider the Schrödinger equation for a particle in a δ-well:

− !2

2m

∂2

∂x2
ψ(x) − gδ(x)ψ(x) = Eψ(x)

g > 0.

Using dimensional analysis, show that the number of bound states is the
same for any g > 0.

Solution: Assume that at some g = gN , the number of bound states
changes from N to N + 1. Let’s attempt to estimate gN using dimensional
analysis:

— The principal units—the units of length and the units of energy:

[L], [E ];

— The only input parameter and its units:

[η ≡ !2/m] = [L2][E ];

— The set of independent dimensionless parameters = ∅;
— The only principal scale, example of :

H =
!2

m
;

— No solution for the unknown:

[gN ] = [E ][L] ⇒ " gN .

113
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The problem is overdetermined, and thus such gN does not exist. Hence,
the number of bound states remains the same for all g > 0.

Q.E.D.

Remark : In reality, for g > 0, there is always one and only one bound
state; its energy is Eg.s. = −mg2/(2!2).

7.1.2 . . . and in a Pöschl-Teller potential

Consider a Schrödinger equation for a particle in a sech2 potential well:

− !2

2m

∂2

∂x2
ψ(x) − α

cosh2(κx)
ψ(x) = Eψ(x).

It is a general property of one-dimensional quantum mechanics, that any,
no matter how shallow, potential well is able to support at least one bound
state. In particular, if α in Eq. (7.1) is small, there is only one bound state.
As one increases α to a certain threshold value α1, another (second) bound
state emerges.

Using dimensional analysis, estimate α1.
Solution: The independent input parameters are !2/m ≡ η, α, and κ.

Introduce a dimensionless parameter ν, such that ⌈ν⌉ equals the number of
bound states. Here, ⌈ξ⌉ is the ceiling function, the smallest integer not less
than ξ. Units of the parameters of the problem are given by [η] = [E ][L]2,
[α] = [E ], and [κ] = [1/L]. It follows that

ν ∼ Φ(α/(ηκ2)),

where Φ(ξ) is a dimensionless function of a dimensionless argument that,
for an argument ξ of the order of unity, assumes values of the order of unity.

The second bound state appears as soon as ν exceeds 1, where
Φ(α/(ηκ2)) ∼ 1. Thus, at this point, α/(ηκ2) ∼ 1. Hence

α1 ∼ !2κ2

m

Remark : The estimate above reproduces, entirely by accident, the exact
result,

α1 =
!2κ2

m
.
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7.1.3 Existence of lossless eigenstates in the 1/x2-potential

Consider the Schrödinger equation for a particle in a 1/x2 potential:

− !2

2m

∂2

∂x2
ψ(x) − α

x2
ψ(x) = Eψ(x)

x ≥ 0.

It is known that there exists a critical value of the potential strength α,
denoted as α⋆, such that for α > α⋆, there is no “physical” solution of the
Schrödinger equation above, regardless of the energy E. Here, the “physi-
cality” refers to the absence of any particle loss through the x = 0 boundary.
More rigorously, for the physically relevant solutions, the probability cur-
rent, −j(x = 0) from the “physical region” x ≥ 0 to the “unphysical region”
x < 0 is zero: −j(x = 0) = 0, where

j(x) ≡ !
2mi

(
ψ⋆(x)

∂

∂x
ψ(x) − ψ(x)

∂

∂x
ψ⋆(x)

)
(7.1)

is the probability current in the positive direction at point x.
Physically, the above transition corresponds to the opening of a loss

channel, where particles start falling onto the center of the potential,
with no return. Classically, this happens for any α > 0. The quantum-
mechanical falling-on-center threshold, α⋆, is greater than zero however: in
quantum mechanics, an attractive but sufficiently weak 1/x2-potential can
still support “lossless” solutions.

(a) Consider an eigenstate ψ(x), corresponding to an energy E. Assume
that at short distances, the behavior of ψ(x) is governed by a power law,

ψ(x) x→0+= const × xν + o(xν),

where the exponent ν is unknown. As usual, o(xν) is a function f(x) such
that limx→0+ f(x)/xν = 0. Keeping only the dominant (at x → 0+) terms
in Eq. (7.1), determine ν. Then analyze the probability current and find
α⋆;

Solution: The dominant behavior at x → 0+ is governed by the xν−2

terms. Assuming they cancel, we get

− !2

2m
ν(ν − 1)xν−2 − αxν−2 + o(xν−2) = o(xν−2),

or

ν1 =
1
2
(1 +

√
1 − 8α/η)

ν2 =
1
2
(1 −

√
1 − 8α/η),
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where η = !2/m. For α > (1/8)η, both solutions lead to a non-zero, finite
flux, j ∝ const., that is able to transport particles between the physical
(x > 0) and unphysical (x < 0) regions:

ψ1,2 ∝
√

xe±iβ ln(x),

where β =
√

8α/η − 1. For α < (1/8)η the second solution gives a di-
verging flux, j ∝ 1/x

√
1−8α/η. The first however gives a vanishing flux:

j ∝ x
√

1−8α/η. Hence, α⋆ = (1/8)η, or

α⋆ =
!2

8m

(b) Estimate α⋆ using dimensional analysis.
Solution: The only dimensionful parameter in the problem is η ≡ !2/m.

Its units are [η] = [E ][L]2. α⋆ is measured in the same units. Therefore:

α⋆ ∼ !2

m

7.1.4 On the absence of the unitary limit in two dimensions

Consider the Schrödinger equations for the radially symmetric eigenstates
in one, two, and three dimensions respectively,

− !2

2m

∂2

∂r2
ψ(r) = Eψ(r) 1D

− !2

2m

1
r

∂

∂r

(
r
∂

∂r

)
ψ(r) = Eψ(r) 2D

− !2

2m

1
r2

∂

∂r

(
r2 ∂

∂r

)
ψ(r) = Eψ(r) 3D,

where r = |x|, r =
√

x2 + y2, and r =
√

x2 + y2 + z2, in 1D, 2D, and
3D respectively. In 1D, even states, ψ(−x) = ψ(x), play a role of the
radially symmetric states. We will further assume a presence of a zero-
range scatterer at the origin; the influence of the scatterer will be encoded
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in some nontrivial boundary conditions r = 0+:

ψ(r) = α+ βr + O(x2) 1D

ψ(r) = α ln(r) + β + O(r ln(r)) 2D (7.2)

ψ(r) =
α

r
+ β + O(r) 3D.

A trivial boundary condition (the so-called “free-space” boundary condi-
tion) corresponding to no external potential at all, reads

ψ(r) = α+ O(r2) 1D

ψ(r) = β + O(r ln(r)) 2D (7.3)

ψ(r) = β + O(r) 3D.

Note that in 1D, the r-term corresponds to a |x| singularity, and thus could
not be present if no potential is there.

(a) In 1D and 3D, one can identify another type of boundary condition
(the so-called “unitary limit” boundary condition) that is different from
(7.3), but similar to (7.3), in that a parameter of units of length will not be
introduced. Find the “unitary limit” boundary condition in 1D and 3D and
prove that any pair of α and β different from the “free-space” or “unitary
limit” one will generate a length scale.

Solution: The “unitary limit” boundary conditions read

ψ(r) = βr + O(r2) 1D

ψ(r) =
α

r
+ O(r) 3D

If both α and β are finite, then a length scale (the so-called scattering
length) can be constructed: a1D = −α/β and a3D = −α/β in both cases.
Conventionally, the scattering length is defined as a position of the node of
the wavefunction (7.2) if one assumes that the O(·) terms can be neglected.
Physically, this length corresponds to the node of an E = 0 eigenstate.

Q.E.D.

Remark : In 2D, a2D = exp[−β/α].
(b) Using dimensional reasoning, show that the “unitary limit” bound-

ary condition would not be possible in 2D.
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Solution: The natural candidate for a unitary limit would be

ψ(r) ?= α ln(r) + O(r ln(r)) 2D.

However, in this case, we would not be able to cancel the units of length
under the “ln(. . .)” sign.

Q.E.D.
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Chapter 8

The Hellmann-Feynman Theorem

8.1 Solved problems

8.1.1 Lieb-Liniger model

Consider the Lieb-Liniger model1 for a gas of one-dimensional δ-interacting
bosons on a ring:

Ĥ =
N∑

i=1

− !2

2m

∂2

∂x2
i

+
1
2
g

N∑

i=1

N∑

j=1
j ̸=i

δ(xi − xj). (8.1)

The wave function of the system, Ψ(x1, x2, . . . , xN ), obeys the periodic
boundary condition:

Ψ(. . . , xi + L, . . .) = Ψ(. . . , xi, . . .).

Here, N is the number of particles, L is the circumference of the ring, m is
the mass of the particles, and g is the coupling constant.

(a) Using dimensional analysis, estimate the ground state energy, Eg.s.

in the first order of perturbation theory in powers of g; assume the ther-
modynamic limit : N → ∞, L → ∞, N/L = n, where n is the particle
density;

Solution: To first-order perturbation theory, the ground state energy
per particle, e ≡ Eg.s./N , must have the form e = g Ξ, where Ξ does not
depend on g. The units of Ξ are [Ξ] = 1/[L]. On the other hand, in the
thermodynamic limit, 1/n remains the only parameter that is measured in

1E. H. Lieb and W. Liniger, Exact analysis of an interacting Bose gas. The general
solution and the ground state, Phys. Rev. 130, 1605, (1963).

119
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= 1
8

7
3

4
210

6

9

5 L
= 10N

i
Fig. 8.1 Geometry of the Lieb-Liniger model with periodic boundary conditions.

units of length. Thus,

Eg.s. ∼ gnN

The exact answer is

Eg.s. ≈
1
2
gnN

(
1 − 4

√
2

3π
1

n|a1D| + · · ·
)

,

where a1D = −2!2/mg is the so-called one-dimensional scattering length.
(b) Using the Hellmann-Feynman theorem (see Sec. 8.3), prove that the

ground state kinetic energy vanishes in the weak interaction limit. Use the
result of sub-problem (a). Assume the thermodynamic limit.

Solution: Introduce η ≡ !2/m. The derivative of the Hamiltonian (8.1)
with respect to η gives

∂

∂η
Ĥ =

1
η
T̂ ,

where T̂ ≡
∑

i p̂2
i /(2m) is the kinetic energy. On the other hand,

∂

∂η
Eg.s. = 0,

Thus

⟨g.s.|T̂ |g.s.⟩ g→0→ 0.
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(c) In the thermodynamic limit with strong interactions, the ground state
energy becomes Eg.s. = (π2/6)(!2/m)nN . Using the Hellmann-Feynman
theorem, estimate the kinetic energy in this limit.

Solution: Here,
∂

∂η
Eg.s. = (π2/6)nN.

Thus

⟨g.s.|T̂ |g.s.⟩ = Eg.s. = (π2/6)(!2/m)nN

Remark : Alternatively, this result could have been obtained using the
Hellmann-Feynman theorem with the coupling constant g—the prefactor in
front of the interaction energy in the Hamiltonian (8.1)—as a parameter.
Since the g → ∞ ground state energy Eg.s. = (π2/6)(!2/m)nN does not
contain the coupling constant g at all, the interaction energy should vanish
in this limit, and the kinetic energy becomes equal to the total.

8.1.2 Expectation values of 1/r2 and 1/r in the Coulomb
problem, using the Hellmann-Feynman theorem

The Hamiltonian for the Coulomb problem is

Ĥ = − !2

2m
∆3 −

α

r
. (8.2)

The corresponding Hamiltonian for the radial motion reads

Ĥr =
p̂2

r

2m
− α

r
+

!2l(l + 1)
2mr2

, (8.3)

where p̂r ≡ −i!∂/∂r (in the radial motion representation, χ = Ψ/r). The
spectrum is given by

En,l,m = −α/a

2n2
= − α/a

2(nr + l + 1)2

n = 1, 2, 3, . . .

l = 0, 1, 2, . . . n − 1

nr = n − l − 1,

where a = !2/(mα) is the Bohr radius.
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Assignment : by applying the Hellmann-Feynman theorem to the Hamil-
tonian (8.3) and its spectrum

Enr = − α/a(α)
2(nr + l + 1)2

(8.4)

nr = 0, 1, 2, . . . ,

(and regarding l and α as parameters) determine the expectation value of
1/r2 and 1/r for all values of nr and l.

Solution: Hellmann-Feynman theorem:
〈

nr, l

∣∣∣∣∣
∂Ĥr

∂l

∣∣∣∣∣nr, l

〉
=
∂Enr

∂l
.

The left hand side gives
〈

nr, l

∣∣∣∣∣
∂Ĥr

∂l

∣∣∣∣∣nr, l

〉
=
〈

nr, l

∣∣∣∣
!2(2l + 1)

2mr2

∣∣∣∣nr, l

〉

=
!2(2l + 1)

2m

〈
nr, l

∣∣∣∣
1
r2

∣∣∣∣nr, l

〉
.

In turn, the right hand side is
∂Enr

∂l
=

α/a

(nr + l + 1)3
.

Combining the two we get

〈
nr, l| 1

r2
|nr, l

〉
=

1
(nr + l + 1)3(l + 1

2 )
1
a2

In the case of nr = 0 and l = 0, the above relationship gives

〈
n = 1, l = 0, m = 0| 1

r2
|n = 1, l = 0, m = 0

〉
=

2
a2

Likewise, for 1/r we get
〈

nr, l

∣∣∣∣∣
∂Ĥr

∂α

∣∣∣∣∣nr, l

〉
=
∂Enr

∂α
.

The left hand side:〈
nr, l

∣∣∣∣∣
∂Ĥr

∂α

∣∣∣∣∣nr, l

〉
= −

〈
nr, l

∣∣∣∣
1
r

∣∣∣∣nr, l

〉
.
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The right hand side:

∂Enr

∂α
= − 1/a

(nr + l + 1)2
.

Combining the two we get

〈
nr, l|1

r
|nr, l

〉
=

1
(nr + l + 1)2

1
a

8.1.3 Expectation value of the trapping energy in the
ground state of the Calogero system

Consider the Hamiltonian for the Calogero system—N harmonically
trapped bosonic particles interacting via a 1/x2 potential2:

Ĥ = T̂ + V̂trap + Ûinteraction,

where

T̂ = − !2

2m

N∑

i=1

∂2

∂x2
i

V̂trap =
mω2

2

N∑

i=1

x2
i

Ûinteraction =
!2ν(ν − 1)

2m

N∑

i=1

N∑

j=1
j ̸=i

1
(xi − xj)2

.

The ground state energy reads

E0 = !ω
(

N

2
+
νN(N − 1)

2

)
.

Using the Hellmann-Feynman theorem, find the expectation value of the
trapping energy, V̂trap, in the ground state.

Solution: The Hellmann-Feynman theorem gives:
〈

Ψ0

∣∣∣∣∣
∂Ĥ

∂ω

∣∣∣∣∣Ψ0

〉
=

∂

∂ω
E0,

2F. Calogero, Ground state of one-dimensional N-body system, J. Math. Phys., 10,
2197 (1969).
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where |Ψ0⟩ is the ground state wavefunction. The left hand side reads〈
Ψ0

∣∣∣∣∣
∂Ĥ

∂ω

∣∣∣∣∣Ψ0

〉
=

2
ω
⟨Ψ0|V̂trap|Ψ0⟩.

In turn, the right hand side reads
∂E0

∂ω
=

1
ω

E0.

Combining the two we get

⟨Ψ0|V̂trap|Ψ0⟩ =
1
2
E0

8.1.4 Virial theorem from the Hellmann-Feynman theorem

Let us formulate a quantum version of the

Virial theorem:
Let

Ĥ = −!2∆r⃗

2m
+ V (r⃗)

be a (generally multi-dimensional) Hamiltonian and assume that
its potential is scale-invariant: there exists a parameter κ such that
for any scale parameter λ the following relationship holds:

V (λr⃗) = λκV (r⃗). (8.5)
Here

∆r⃗ ≡
d∑

i=1

∂2

∂x2
i

is the Laplacian with respect to d coordinates r⃗ = (x, y, . . .) =
(x1, x2, . . .), and d is the number of spatial dimensions.
Let |ψ(r⃗)⟩ be a bound state of this Hamiltonian, of an energy E:

Ĥ |ψ⟩ = E|ψ⟩ (8.6)

⟨ψ|ψ⟩ ≡
∫

ddr⃗ |ψ(r⃗)|2 = 1. (8.7)

Then the expectation values of the kinetic and potential energies
in the state ψ(r⃗),

T̂ ≡ −!2∆
2m

V̂ ≡ V (r⃗),
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are related by

2⟨ψ|T̂ |ψ⟩ = κ⟨ψ|V̂ |ψ⟩. (8.8)

In particular, for one-dimensional power-law potentials,

Ĥ = − !2

2m

∂2

∂x2
+ Kqx

2q

q = 1, 2, 3, . . . ,

we have

κ = 2q,

and thus

⟨ψ|T̂ |ψ⟩ = q⟨ψ|V̂ |ψ⟩.

Show that the virial theorem follows from the Hellmann-Feynman theo-
rem.

Solution: Let us rewrite the Schrödinger equation (8.6) in a coordinate
form:

−!2∆
2m

ψ(r⃗) + V (r⃗ )ψ(r⃗ ) = Eψ(r⃗ ). (8.9)

Consider a replacement of variables:

r⃗ = λr⃗ ′.

The Schrödinger equation (8.9) becomes

− 1
λ2

!2∆r⃗ ′

2m
ψ(λr⃗ ′) + V (λr⃗ ′)ψ(λr⃗ ′) = Eψ(λr⃗ ′)

or

− 1
λ2

!2∆r⃗ ′

2m
ψ(λr⃗ ′) + λκV (r⃗ ′)ψ(λr⃗ ′) = Eψ(λr⃗ ′), (8.10)

where we used the scaling property (8.5). Here, ∆r⃗ ′ is the Laplacian with
respect to the coordinates r⃗ ′. Introduce the function

ψλ(r⃗ ′) ≡
√
λd ψ(λr⃗ ′).

Observe that according to Eq. (8.10), the state |ψλ⟩ is an eigenstate of the
Hamiltonian

Ĥλ = − 1
λ2

!2∆r⃗ ′

2m
+ λκV (r⃗ ′), (8.11)

corresponding to the eigenvalue E. This state is normalized to unity. Ob-
serve also that the eigenenergy E does not depend on the parameter λ.
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At λ = 0, the Hamiltonian Ĥλ and its eigenstate ψλ(r⃗ ′) reduce to the
Hamiltonian-eigenstate pair of the original problem.

According to the Hellmann-Feynman theorem,
〈
ψλ

∣∣∣∣∣
dĤ(λ)

dλ

∣∣∣∣∣ψλ

〉
=

dEn⃗(λ)
dλ

,

and in particular
〈
ψλ

∣∣∣∣∣
dĤλ

dλ

∣∣∣∣∣ψλ

〉∣∣∣∣λ = 0 =
dEn⃗(λ)

dλ

∣∣∣∣λ = 0.

This leads to
〈
ψλ

∣∣∣∣(−2)
{
−!2∆

2m

}
+ κV (r⃗)

∣∣∣∣ψλ

〉
= 0.

Q.E.D.

8.2 Problems without provided solutions

8.2.1 Virial theorem for the logarithmic potential and its
corollaries

Consider a logarithmic potential again:

− !2

2m

∂2

∂x2
ψ(x) + 2ϵ ln(r/a)ψ(x) = Eψ(x). (8.12)

(a) Using the Hellmann-Feynman theorem, derive a quantum virial the-
orem for this potential.

(b) Starting from your result in (a) and using the Hellmann-Feynman
theorem once again, prove that the distances between the energy levels of
(8.12) do not depend on the particle’s mass3:

∂

∂m
(En′ − En) = 0

for any n, n′.

3See “Surprises with Logarithm Potential” by Debnarayan Jana, http://physics.
unipune.ernet.in/∼phyed/27.3/1379(27.3).pdf. Derivation there is very brief; a more
detailed proof is required.
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8.3 Background

8.3.1 The Hellmann-Feynman theorem

Hellmann-Feynman theorem (Hellmann (1937); Feynman (1939)) states: let
a Hamiltonian Ĥ(λ) (and, consequently, its eigenvalues En⃗(λ) and eigen-
states |ψn⃗(λ)⟩) depend on a parameter λ. Then

〈
ψn⃗(λ)

∣∣∣∣∣
dĤ(λ)

dλ

∣∣∣∣∣ψn⃗(λ)

〉
=

dEn⃗(λ)
dλ

. (8.13)

Here, n⃗ is a set of quantum numbers that determine the eigenstate |ψn⃗(λ)⟩.
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Chapter 9

Local Density Approximation
Theories

9.1 Solved problems

9.1.1 A Thomas-Fermi estimate for the atom size and total
ionization energy

Minimization of the Thomas-Fermi energy functional for a neutral atom,

E [n(·)] ≡
∫

d3r⃗

⎧
⎪⎪⎨

⎪⎪⎩

∫ p≤pF (n(r⃗))
0 d3p⃗

{
p2

2m

}

∫ p≤pF (n(r⃗))
0 d3p⃗ 1

− Ze2

r

⎫
⎪⎪⎬

⎪⎪⎭
n(r⃗)

+
∫

d3r⃗d3r⃗ ′ e2

|r⃗ − r⃗ ′|n(r⃗)n(r⃗ ′), (9.1)

subject to an electron number constraint

N [n(·)] ≡
∫

d3r⃗ n(r⃗) = Z, (9.2)

with the density distribution n(r⃗) as the variational field, leads to the fol-
lowing equation for the electron density:

p2
F (r⃗)
2m

− Ze2

r
+

∫
d3r⃗

e2

|r⃗ − r⃗ ′|n(r⃗ ′) = 0, (9.3)

where pF (n) ≡ (3π2)1/3!n1/3 is the local Fermi momentum, n(r⃗) is the
electron density, e < 0 is the electron charge, m is the electron mass, and
Z is the atomic number (number of protons and—equal to it—number
of electrons). The Fermi momentum chosen this way guarantees that the
phase space density σ(r⃗, p⃗) in all points of phase space occupied by electrons
will be equal to σ(r⃗, p⃗) = 2/(2π!)3.

129
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Using dimensional analysis, estimate the typical distance from the nu-
cleus that electrons reside at (say the radius of a sphere containing half of
all electrons) and the total ionization energy (the minimal energy needed to
release all the electrons from the atom). As usual, try to incorporate the
dimensionless parameter Z into some dimensionful parameters.

No prior knowledge of the Thomas-Fermi theory is assumed.
Solution: Introduce the probability density for an individual electron,

w(r⃗) ≡ n(r⃗)
Z

.

Then, Eq. (9.3) becomes

(3π2)2/3

2
Rw(r⃗)2/3 − 1

r
+

∫
d3r⃗

1
|r⃗ − r⃗ ′|w(r⃗ ′) = 0,

R =
1

Z1/3

!2

me2

Since it is the only length scale in the problem, it indeed determines the
typical distance between an electron and the nucleus.

The total ionization energy we estimate as the electron-nucleus energy
Eionization ∼ Z × Ze2/R:

Eionization ∼ Z7/3 me4

!2

9.1.2 The size of an ion

Neglecting the interaction between electrons, estimate the size of a positive
ion that is obtained by stripping M elecrons from a neutral atom of atomic
number Z.

Hint: Recall which length was giving the length scale for the size of a
neutral atom: use the same logic here.

Solution: The size of an ion will be given by the radius of the outer
orbit:

Rion ∼ ⟨r⟩outer.
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Fig. 9.1 Total ionization energy: real atoms vs. Thomas-Fermi theory.

On the other hand, the radius of any orbit is given by

⟨r⟩n,l,m ∼ n2

Z
aB,

and in particular

⟨r⟩outer ∼
(nouter)2

Z
aB.

Also, the principal quantum number n scales as the cube root of the number
of states below n. For the ground state of ion the latter is just the number
of electrons, Z − M :

nouter ∼ (Z − M)
1
3 .

Combining all of the above, we get

Rion ∼ (Z − M) 2
3

Z
aB
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9.1.3 Time-dependent Thomas-Fermi model for cold bosons

Consider the time-dependent Thomas-Fermi model for three-dimensional
harmonically trapped short-range-interacting bosons:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
n + ∇⃗(nv⃗) = 0

∂

∂t
v⃗ + (v⃗ · ∇⃗)v⃗ = − 1

m
g∇⃗n − ω2r⃗

∫
d3r⃗n = N,

where r⃗ = (x, y, z) is a three-dimensional coordinate, n = n(r⃗) is atomic
density, v⃗ = v⃗(r⃗) is the local mean velocity of atoms, ω is the trapping
frequency, g is the interatomic interaction strength, and m is the atomic
mass. The first equation above ensures the continuity of the atomic flow.
The second equation, the so-called Euler equation, constitutes Newton’s
second law for an individual atom, subject to a pressure force from the
other atoms, f⃗press. = −g∇⃗n, and a trapping force, f⃗trap = −ω2r⃗. The
third relationship fixes the number of atoms to N .

Using dimensional analysis, estimate the size of the atomic cloud in the
ground state of the system, R, and the frequency of the lowest breathing
excitation, Ω (see Figure 9.2).

R

Ω

Fig. 9.2 A cloud of cold bosons and its breathing excitation.
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Solution: Introducing the one-body probability density, w ≡ n/N , we
get ⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
w + ∇⃗(wv⃗) = 0

∂

∂t
v⃗ + (v⃗ · ∇⃗)v⃗ = −Υ∇⃗w − ω2r⃗

∫
d3r⃗w = 1,

where Λ ≡ gN/m. Then

— The principal units—the units of length and the units of energy:
[L], [T ];

— The input parameters and their units :
[ω] = 1/[T ]

[Λ] = [L]5/[T ]2;
— The set of independent dimensionless parameters = ∅;
— The principal scales—the length scale and the energy scale, examples of :

L =
(

Λ
ω2

)1/5

=
(

gN

mω2

)1/5

T =
1
ω

;

— Solution for the unknowns :
[R] = [L] ⇒ R ∼ L

[Ω] = 1/[T ] ⇒ Ω ∼ 1/T .

Therefore,

R ∼
(

gN

mω2

)1/5

Ω ∼ ω

Remark : The exact result is

R =
(

15
4π

gN

mω2

)1/5

Ω =
√

5ω.
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9.2 Problems without provided solutions

9.2.1 The quantum dot

Consider Z non-interacting electrons of mass m each in a quantum dot.
The corresponding energy-vs-density functional reads

E [n(·)] = T [n(·)] + V [n(·)],

where

T [n(·)] =
3
10

(3π2)2/3 !2

m

∫
d3r⃗(n(r⃗))5/3

is the kinetic energy (the same as in the atomic problem), and

V [n(·)] =
mω2

2

∫
d3r⃗ r2n(r⃗)

is the confinement energy. Using dimensional reasoning, estimate the size
of the electron cloud in the ground state of the dot.

9.2.2 Dimensional analysis of an atom beyond
the Thomas-Fermi model

Consider the exact Schrödinger equation for electrons in an atom:

ĤΨ = EΨ,

where

Ψ = Ψ(r⃗1, r⃗2, . . . , r⃗Z),

is the wavefunction for Z three-dimensional electrons, and

Ĥ ≡
Z∑

i=1

− !2

2m
∆r⃗i −

Z∑

i=1

Ze2

ri
+

Z−1∑

i=1

Z∑

j=i+1

e2

|r⃗i − r⃗j |
,

where m is the electron mass and −|e| is the electron charge.
Show that at the level of the exact equations, an up-to-a-factor dimen-

sional estimate of the ionization energy is not possible. Use the counting
scheme (1.5).
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Chapter 10

Integrable Partial Differential
Equations

10.1 Solved problems

10.1.1 Solitons of the Korteweg-de Vries equation

Consider the Korteweg-de Vries (KdV) equation,

∂

∂t
u + 6u

∂

∂x
u +

∂3

∂x3
u = 0, (10.1)

where u = u(x, t) is a function of coordinate and time. The KdV equation
is known to possess solitonic solutions1,

u(x, t) = u0 sech2[(x − vt)/∆x],

where v is the soliton velocity, x0 is its initial position, u0 is its amplitude,
and ∆x is its width.

Using dimensional analysis only, estimate the width and the amplitude
of the soliton.

Solution: Assume that x has units of length, and t has units of time.
Regardless of what we chose for the units of u, in Eq. (10.1) the first and
last terms on the left hand side are not mutually consistent. However, let
us temporarily introduce a constant η in front of the third derivative:

∂

∂t
u + 6u

∂

∂x
u + η

∂3

∂x3
u = 0. (10.2)

1In fact, these are the first solitons ever discovered, see J. Scott Russell 1844, Report
on waves, Rep. 14th meeting Brit. Assoc. Adv. Sci., J. Murray London, 311–390
(1844); D. J. Korteweg & G. de Vries, On the Change of Form of Long Waves Advancing
in a Rectangular Canal, and on a New Type of Long Stationary Waves, Philosophical
Magazine 39, 422443 (1895).
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The units of measurement for η must be given by [L]3/[T ], where [L] and [T ]
are units of length and time respectively. According to the same equation,
the units for the unknown field u(x, t) are the ones for velocity: [u] =
[L]/[T ]. Obviously, the soliton velocity v is measured in the same units.

Now, the problem is reduced to the traditional form of physics problems.
The analysis that follows is straightforward.

— The principal units—the units of length and the units of energy:

[L], [T ];

— The input parameters and their units :

[η] = [L]3/[T ]

[v] = [L]/[T ];

— The set of independent dimensionless parameters = ∅;
— The principal scales—the length scale and the energy scale, examples of :

L =
(η

v

)1/2

T =
( η

v3

)1/2
;

— Solution for the unknowns :

[∆x] = [L] ⇒ ∆x ∼ L =
(η

v

)1/2

[u0] = [L]/[T ] ⇒ u0 ∼ L/T = v.

Now we can retreat to the dimensionless form (10.1) of the KdV equation
and set η to unity. We get

∆x ∼ 1√
v

u0 ∼ v

Remark : The exact values are

∆x =
2√
v

u0 =
v

2
.
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10.1.2 Breathers of the nonlinear Schrödinger equation

Consider a dimensionless form of the nonlinear Schrödinger equation
(NLSE):

i
∂

∂t
u = − ∂2

∂x2
u − 2|u|2u. (10.3)

It is known to possess a family of so-called “breathers”2 solutions (localized
time-periodic excitations):

uL(x, t) = u0(L)f(x/L, t/T (L))

uL(x, t + T (L)) = uL(x, t).

Members of the family are parametrized by their size L.
Show that the “breathing” period is proportional to the square of the size:

T (L) ∝ L2.

Solution: Introduce temporarily a constant η:

i
∂

∂t
u = −η ∂

2

∂x2
u − 2|u|2u.

Let us measure x and t in units of length and time respectively. Then, the
units for η become [η] = [L2]/[T ]. The only other dimensionful parameter
of the problem is the size of the breather L. Thus, the period T becomes

T ∼ L2

η
.

Now we can return η to its unit value, η → 1: we finally get

T ∝ L2

Remark : The actual breathers have a form

u(x, t) = A′ × 4eit′(cosh(3x′) + 3e8it′ cosh(x′))
3 cos(8t′) + 4 cosh(2x′) + cosh(4x′)

,

where A′ = ξ, x′ = ξx, and t = ξ2t3.

2Rigorously speaking, the nonlinear Schrödinger breathers—unlike the paradigmatic
breathers of the sine-Gordon equation—are not stable, and given a small perturbation,
decay into several solitons. Nevertheless, if perturbation of the initial state is sufficiently
small or absent, then the breathing behavior will be visible for at least a few periods.
3D. Schrader, Explicit Calculation of N-Soliton Solutions of the Nonlinear Schroedinger

Equation, IEEE J. Quantum Electron. 31, 2221 (1995).
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10.1.3 Healing length

Consider a one-dimensional nonlinear Schrödinger equation

− !2

2m

∂2

∂x2
ψ(x) + g|ψ(x)2|ψ(x) = µψ(x),

where m is the atomic mass and g > 0 is the coupling constant. This equa-
tion describes the motion of interacting quantum Bose gases, the dynamics
of the superfluid Helium-4, and the propagation of light through nonlin-
ear fibers. We will also assume that the x < 0 half-space is filled by an
impenetrable wall:

ψ(x) = 0, for x < 0.

Unlike the other problems in this chapter, we will retain physical units in the
equation we are analyzing for this problem; the healing length is a concept
of broad physical significance, whose usefulness extends far beyond the
integrable one-dimensional case: in particular the healing length provides
an estimate for the size of the core of a superfluid vortex.

Consider a solution that produces a constant density n0 far away from
the wall:

ψ(x) ≈ √
n0 = const., for x → +∞. (10.4)

Using dimensional analysis, estimate the healing length ξ, such that for
x ! ξ, the density n(x) ≡ |ψ(x)|2 already approaches its limiting value n0.

Solution: Using the boundary condition (10.4), the chemical potential
assumes a value of µ = gn0. Thus, the independent input parameters are
!2/m ≡ η, g, and n0. The dimensional estimate for ξ is as follows.

— The principal units—the units of length and the units of energy:

[L], [E ];

— The input parameters and their units :

[η] = [E ][L]2

[g] = [E ][L]

[n0] = 1/[L];

— The set of independent dimensionless parameters =

{P1 ≡ ηn0/g};
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— The principal scales—the length scale and the energy scale, examples of :

L = 1/n0

E = g2/η;

— Solution for the unknown:

[ξ] = [L] ⇒ ξ = Φ(P1) × L = Φ(ηn0/g) × (1/n0),

where Φ(P ) is an arbitrary function of one variable.

So far, it looks like an underdetermined problem. However, if we intro-
duce a field φ(x), such that

φ(x) ≡ ψ(x)/
√

n0.

It obeys

− !2

2m

∂2

∂x2
φ(x) + gn0|φ(x)2|φ(x) = gn0φ(x)

φ(x) = 0, for x < 0

φ(x) ≈ 1, for x → +∞.

Note that φ(x) will have the same healing length ξ.
Now, the set of independent parameters has only two members: !2/m ≡

η and gn0 ≡ G. The healing length ξ can thus be found as follows:

— The principal units—the units of length and the units of energy:

[L], [E ];

— The input parameters and their units :

[η] = [E ][L]2

[G] = [E ];

— The set of independent dimensionless parameters = ∅;
— The principal scales—the length scale and the energy scale, examples of :

L =
√
η/G = !/

√
mgn0

E = G = gn0;

— Solution for the unknown:

[ξ] = [L] ⇒ ξ ∼ L = !/
√

mgn0.
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Thus

ξ ∼ !
√

mgn0

Remark : the exact solution reads

ψ(x) =

{
0, for x < 0
√

n0 tanh(x/ξ), for x ≥ 0,

with

ξ =
!

√
mgn0

.

10.1.4 Dimensional analysis of the projectile problem as
a prelude to a discussion on the Kadomtsev-
Petviashvili solitons

Consider Newton’s equations for a projectile,

ẍ = 0

ÿ = −g (10.5)

x
∣∣
t=0

= 0 ẋ
∣∣
t=0

= vx,0

y
∣∣
t=0

= 0 ẏ
∣∣
t=0

= vy,0.

(a) Using straightforward dimensional analysis, try to determine the
horizontal distance Lx traveled by the projectile before it falls to the ground
(y = 0). Naively, the problem would seem underdetermined: no answer will
ensue.

Solution:

— The principal units—the units of length and the units of energy:

[L], [T ];

— The input parameters and their units :

[vx,0] = [L]/[T ]

[vy,0] = [L]/[T ]

[g] = [L]/[T ]2;
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— The set of independent dimensionless parameters =

{vy,0/vx,0};

— The principal scales—the length scale and the energy scale, examples of :

L = v2
y,0/g

T = vy,0/g;

— Solution for the unknowns :

[Lx] = [L] ⇒ Lx ∼ (v2
y,0/g) × Φ(vy,0/vx,0).

The problem is overdetermined:

Lx ∼ (v2
y,0/g) × Φ(vy,0/vx,0)

where Φ(ξ) is any dimensionless function.
(b) Now, assume that x and y are measured in different units and solve

the problem.
Solution:

— The principal units—the units of horizontal length, the units of vertical
length, and the units of time:

[Lx], [Lx], [T ];

— The input parameters and their units :

[vx,0] = [Lx]/[T ]

[vy,0] = [Ly]/[T ]

[g] = [Ly]/[T ]2;

— The set of independent dimensionless parameters = ∅
— The principal scales— the horizontal length scale, the vertical length

scale, and the time scale, examples of :

Lx = vx,0vy,0/g

Ly = v2
y,0/g

T = vy,0/g;

— Solution for the unknowns :

[Lx] = [Lx] ⇒ Lx ∼ vx,0vy,0/g.
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Finally,

Lx ∼ vx,0vy,0/g

10.1.5 Kadomtsev-Petviashvili equation

Consider the Kadomtsev-Petviashvili equation,

∂

∂x

(
∂

∂t
u +

(
∂3

∂x3
u + 6u

∂

∂x
u

))
=

∂2

∂y2
u, (10.6)

where u = u(x, y, t). It is known to admit solitonic solutions,

u(x, y, t) = ũ((x − vt)/∆x, y/∆y).

Using dimensional analysis, prove that the solitons form families where the
x− and y− widths scale inversely proportionally to the square root of the
velocity and inversely proportionally to the velocity itself, respectively:

∆x ∝ 1√
v

∆y ∝ 1
v
.

Show also that the height of a soliton is proportional to its velocity:

ũ(0, 0) ∝ v.

Solution: Introduce a constant η such that

∂

∂x

(
∂

∂t
u + 6u

∂

∂x
u + η

∂3

∂x3
u

)
=

∂2

∂y2
u,

— The principal units—the units of horizontal (i.e. along X) length and
the units of time:

[Lx], [T ].

As we will see below

(a) the vertical coordinate (along Y ) will be measured in units different
from the ones used to measure x. The projectile Problem 10.1.4
shows that in some cases, such separation may reduce the number
of independent dimensionless parameters;

(b) unlike in Problem 10.1.4, in our case, the units for the vertical
coordinate are going to be derived units;
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— The input parameters and their units :
[η] = [Lx]3/[T ]

[v] = [Lx]/[T ];
— The set of independent dimensionless parameters = ∅;
— The principal scales—the horizontal length scale and the time scale, ex-

amples of :

Lx =
(η

v

)1/2

T =
( η

v3

)1/2
;

— A derived scale—the vertical length scale, example of :

Ly = L3
x/T =

√
η

v
.

Accordingly, the vertical coordinate y is measured in the units of
[Lx]3/[T ];

— Solution for the unknowns :

[∆x] = [Lx] ⇒ ∆x ∼ Lx =
(η

v

)1/2

[∆y] = [Ly] = L3
x/T ⇒ ∆y ∼ Ly =

√
η

v

[ũ(0, 0)] = [L]/[T ] ⇒ ũ(0, 0) ∼ L/T = v.

We can now return to the original dimensionless form of the Eq. (10.6);
setting η → 1 we get

∆x ∝ 1√
v

∆y ∝ 1
v

ũ(0, 0) ∝ v

Remark : The exact Kadomtsev-Petviashvili soliton reads

u(x, y, t) = 4A(v)
−
(

x − vt

∆x(v)

)2

+ 2
(

y

∆y(v)

)2

+
3
2

((
x − vt

∆x(v)

)2

+ 2
(

y

∆y(v)

)2

+
3
2

)2 ,

where A(v) = v/2, ∆x(v) =
√

2/v, and ∆y(v) = 2/v.
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10.2 Problems without provided solutions

10.2.1 Stationary solitons of the nonlinear Schrödinger
equation

Consider the nonlinear Schrödinger equation (10.3) again:

i
∂

∂t
u = − ∂2

∂x2
u − 2|u|2u

∫ +∞

−∞
dx|u|2 = N ;

but this time, we are going to use the population of the soliton, N , as
an input parameter. It is known that NLSE possesses stationary solitonic
solutions (along with the moving solitons that we do not consider here):

u(x, t) =
u0

cosh(x/∆x)
e−iµt,

where the soliton is positioned at x = 0, u0 is the amplitude of the soliton,
µ is its chemical potential, and ∆x is its width.

The assignment is: using dimensional analysis only, estimate the width
and the chemical potential of the soliton, ∆x and µ, as functions of its
population N .

Remark : Again, as in several problems earlier, you have to invent suit-
able units, perform dimensional analysis, and return to the dimensionless
form of the equation in the end.

10.2.2 Solitons of the sine-Gordon equation

Consider the sine-Gordon equation
∂2

∂ζ∂η
u(ζ, η) = sin(u(ζ, η)). (10.7)

In particular, it describes the dynamics of an elongated superconducting
Josephson junction.

By inventing proper units for the constituents involved and by inserting
some dimensionful constants into the equation if necessary, prove that if
Eq. (10.7) admits solitonic solutions

u(ζ, η) = f((ζ + vη)/ℓ),

then the soliton size L is proportional to the square root of its speed v:

L ∝
√

v.
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