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Preface

Over the last two decades, there has been a dramatic increase in the study of physical
and biological systems at the nanoscale. In fact, this millenium has been referred to
as the “nanomillenium.” The fields of nanoscience and nanoengineering have been
fuelled by recent spectacular discoveries in mesoscopic physics, a new understanding
of DNA sequencing, the advent of the field of quantum computing, tremendous
progress in molecular biology, and other related fields. A fundamental understanding
of physical phenomena at the nanoscale level will require future generations of
engineers and scientists to grasp the intricacies of the quantum world and master the
fundamentals of quantum mechanics developed by many pioneers since the 1920s.
For electrical engineers, condensed matter physicists, and materials scientists who
are involved with electronic and optical device research, quantum mechanics will
assume a special significance. For instance, progress in the semiconductor industry
has tracked Gordon Moore’s prediction in 1965 regarding continued downscaling
of electronic devices on a chip [1]. The density of transistors in a semiconductor
chip has increased ever since in a geometric progression, roughly doubling every 18
months. In state-of-the-art semiconductor chips, the separation between the source
and drain in currently used fin field effect transistors (FinFETSs) is below 10 nm. All
future devices for semiconductor chip applications are likely to be strongly affected
by the laws of quantum mechanics, and an understanding of these laws and tenets
must be added to the repertoire of a device engineer and scientist [2].

Another challenge is to understand the quantum mechanical laws that will
govern device operation when the projected density of 10'? transistors per cm?,
anticipated by 2017, is finally reached. Density increase, however, comes with a
cost: if energy dissipation does not scale down concomitantly with device dimensions
there will be thermal runaway, resulting in chip meltdown. This doomsday scenario
has been dubbed the “red brick wall” by the International Technology Roadmap
for Semiconductors [3]. The foremost challenge is to find alternatives to the cur-
rent semiconductor technology that would lead to a drastic reduction in energy
dissipation during device operation. Such a technology, if and when it emerges, will
very likely draw heavily on quantum mechanics as opposed to classical physics.
Alternatives based on semiconductor heterostructures employing AlGaAs/GaAs
or other III-V or II-VI materials have been investigated for several decades and
have led to myriad quantum mechanical devices and architectures exploiting the

xi
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special properties of quantum wells, wires, and dots [4-7]. Future device engineers,
applied physicists, and material scientists will therefore need to be extremely adept
at quantum mechanics.

The need for reform in the teaching of quantum mechanics at both the under-
graduate and graduate levels is now evident [8], and has been discussed in many
articles over the last few years [9-16] and at dedicated conferences on the subject,
including many recent Gordon Research conferences. There are already some efforts
under way at academic institutions to better train undergraduate students in this
area. Many curricula have been modified to include more advanced classes in quan-
tum mechanics for students in the engineering disciplines [10, 11]. This initiative
has been catalyzed by the recent enthusiasm generated by the prospects of quantum
computing and quantum communication [17]. This is a discipline that embraces
knowledge in four different fields: electrical engineering, physics, materials science,
and computer science.

Many textbooks have been written on quantum mechanics [18-30]. Only a
few have dealt with practical aspects in the field suitable for a wide audience
comprised of device engineers, applied physicists, and materials scientists [31-44].
In fact, quantum mechanics is taught very differently by high energy physicists and
electrical engineers. In order for the subject to be entertaining and understandable
to either discipline, they must be taught by their own kind to avoid a culture
shock for the uninitiated students. Carr and McKagan have recently discussed the
significant problems with graduate quantum mechanics education [13]. Typically,
most textbooks are inadequate or devote too little time to exploring topics of current
exciting new research and development that would prepare graduate students for
the rapidly growing fields of nanoscience, nanoengineering and nanotechnology. As
pointed out by Carr and McKagan, from a purely theoretical point of view, the
history of quantum mechanics can be divided into four periods. In the first ten
years following the 1926 formulation of the famous equation by Schrédinger, the
early pioneers in the field developed the formalism taught in many undergraduate
classes, including wave mechanics, its matrix formulations, and an early version of
its interpretation with the work of Bohm and Bohr, among others. Then, until the
mid 1960s, new concepts were developed, mostly addressing many-body aspects,
with landmark achievements such as a formulation of density functional theory.
This was accompanied by quantum electrodynamics and a successful explanation of
low temperature superconductivity by Bardeen, Cooper, and Schrieffer. The third
period began in 1964 with the pioneering work of Bell. The question of interpretation
of quantum mechanics reached a deeper level with many theoretical advances, which
eventually led to the fourth period in the field starting with the pioneering work of
Aspect et al. in 1982 and the first successful experimental proof of Bell’s inequality.
Fundamental research in quantum mechanics now includes the fields of quantum
computing and quantum communication, which have progressed in large strides
helped by the rapid technological advances in non-linear optics, spintronic devices,
and other systems fabricated with sophisticated techniques such as molecular beam
epitaxy, metal organic chemical vapor deposition, atomic layer epitaxy, and various
self-assembly techniques. The tremendous progress in the field has also been accel-
erated with the development of new characterization techniques including scanning
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and tunneling electron microscopy, atomic force microscopy, near field scanning
optical microscopy, single photon detection, single electron detection, and others.

Many books dedicated to problems in quantum mechanics have appeared over
the years. Most of them concentrate on exercises to help readers master the princi-
ples and fundamentals of the theory. In contrast, this work is a collection of problems
for students, researchers, and practitioners interested in state-of-the-art material
and device applications. It is not a textbook filled with precepts. Since examples
are always better than precepts, this book is a collection of practical problems
in quantum mechanics with solutions. Every problem is relevant either to a new
device or a device concept, or to topics of current material relevant to the most
recent research and development in practical quantum mechanics that could lead
to new technological developments. The collection of problems covered in this book
addresses topics that are covered in quantum mechanics textbooks but whose prac-
tical applications are often limited to a few end-of-the-book problems, if even that.

The present book should therefore be an ideal companion to a graduate-level
textbook (or the instructor’s personal lecture notes) in an engineering, condensed
matter physics, or materials science curriculum. This book can not only be used by
graduate students preparing for qualifying exams but is an ideal resource for the
training of professional engineers in the fast-growing field of nanoscience. As such, it
is appealing to a wide audience comprised not only of future generations of engineers,
physicists, and material scientists but also of professionals in need of refocusing
their areas of expertise toward the rapidly burgeoning areas of nanotechnology in
our everyday life. The student is expected to have some elementary knowledge of
quantum mechanics gleaned from modern physics classes. This includes a basic
exposure to Planck’s pioneering work, Bohr’s concept of the atom, the meaning of
the de Broglie wavelength, a first exposure to Heisenberg’s uncertainty principle,
and an introduction to the Schrodinger equation, including its solution for simple
problems such as the particle in a box and the analysis of tunneling through a simple
rectangular barrier. The authors have either organized or served on panels of many
international conferences dedicated to the field of nanoscience and nanotechnology
over the last 25 years. They have given or organized many short courses in these
areas and given many invited talks in their field of expertise spanning nanoelec-
tronics, nano-optoelectronics, nanoscale device simulations, spintronics, and vacuum
nanoelectronics, among others. They also routinely teach graduate classes centered
on quantum mechanical precepts, and therefore have first-hand experience of stu-
dent needs and where their understanding can fall short.

The problems in this book are grouped by theme in 13 different chapters. At
the beginning of each chapter, we briefly describe the theme behind the set of
problems and refer the reader to specific sections of existing books that offer some
of the clearest exposures to the material needed to tackle the problems. The level
of difficulty of each problem is indicated by an increasing number of asterisks. Most
solutions are typically sketched with an outline of the major steps. Intermediate and
lengthy algebra steps are kept to a minimum to keep the size of the book reasonable.
Additional problems are suggested at the end of each chapter and are extensions of
or similar to those solved explicitly.
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Each chapter contains a section on further reading containing references to
articles where some of the problems treated in this book were used to investi-
gate specific practical applications. There are several appendices to complement
the set of problems. Appendix A reviews the postulates of quantum mechanics.
Appendix B reviews some basic properties of the one-dimensional harmonic oscilla-
tor. Appendix C reviews some basic definitions and properties of quantum mechan-
ical operators. Appendix D reviews the concept of Pauli matrices and their basic
properties. Appendix E is a derivation of an analytical expression for the threshold
voltage of a high electron mobility transistor. Appendix F is a derivation of Peierl’s
transformation, which is crucial to the study of the properties of a particle in an
external electromagnetic field. Finally, Appendix G contains some of the Matlab
code necessary to solve some of the problems and generate figures throughout the
book.

The problems in this book have been collected by the authors over a period of
25 years while teaching different classes dealing with the physics and engineering of
devices at the submicron and nanoscale levels. These problems were solved by the
authors as part of several classes taught at the undergraduate and graduate levels at
their respective institutions. For instance, some of the exercises have been assigned
as homework or exam questions as part of first-year graduate courses on High-Speed
Electronic Devices and Quantum Systems taught by M. Cahay at the University of
Cincinnati. Since 2003, M. Cahay has also taught a class on Introduction to Quan-
tum Computing with his colleagues in the Physics Department at the University of
Cincinnati. S. Bandyopadhyay has taught a multi-semester graduate level course in
Quantum Theory of Solid State Devices in three different institutions: University
of Notre Dame, University of Nebraska, and Virginia Commonwealth University.

Should this edition be a success, we intend to upgrade future editions of this
book with solutions to all the suggested problems. This book could not obviously
cover all aspects of current research. For instance, topics left out are quantization
of phonon modes, Coulomb and spin blockaded transport in nanoscale devices,
and carrier transport in carbon nanotubes and graphene, among others. Future
editions will include new sets of problems on these topics as well as others based
on suggestions by readers, keeping pace with the most recent topics which will,
without a doubt, bloom in the exciting fields of nanoscience, nanoengineering, and
nanotechnology.

The contents of this book are as follows:

Chapter 1: General Properties of the Schrodinger Equation This chap-
ter describes some general properties of the time-independent effective mass
Schrédinger equation (EMSE), which governs the steady-state behavior of an
electron in a solid with spatially varying potential profile. The solid may consist of
one or more materials (e.g., a heterostructure or superlattice); hence the effective
mass of the electron may vary in space. The EMSE is widely used in studying the
electronic and optical properties of solids. This chapter also discusses some general
properties of the EMSE, including the concepts of linearly independent solutions
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and their Wronskian. It is shown that in the presence of a spatially varying effective
mass, the Ben Daniel-Duke boundary conditions must be satisfied. The concept
of quantum mechanical wave impedance is introduced to point out the similarity
between solutions to the time-independent Schrodinger equation and transmission
line theory in classical electrodynamics and microwave theory.

Chapter 2: Operators All quantum mechanical operators describing physical
variables are Hermitian. This chapter derives several useful identities involving
operators. This includes derivations of the shift operator, the Glauber identity,
the Baker—-Hausdorff formula, the hypervirial theorem, Ehrenfest’s theorem, and
various quantum mechanical sum rules. The concept of unitary transformation is
also introduced and illustrated through a calculation of the polarizability of the
one-dimensional harmonic oscillator. Usage of the operator identities and theorems
derived in this chapter is illustrated in other chapters. Some general definitions and
properties of operators are reviewed in Appendix C, which the reader should consult
before trying out the problems in this chapter.

Chapter 3: Bound States The problems in this chapter deal with one-
dimensional bound state calculations, which can be performed analytically or
via the numerical solution of a transcendental equation. These problems give
some insight into more complicated three-dimensional bound state problems whose
solutions typically require numerically intensive approaches.

Chapter 4: Heisenberg Principle This chapter starts with three different
proofs of the generalized Heisenberg uncertainty relations followed by illustrations
of their application to the study of some bound state and scattering problems,
including diffraction from a slit in a screen and quantum mechanical tunneling
through a potential barrier.

Chapter 5: Current and Energy Flux Densities This set of problems intro-
duces the current density operator, which is applied to the study of various tunneling
problems, including the case of a general one-dimensional heterostructure under bias
(i.e., subjected to an electric field), the tunneling of an electron through an absorbing
one-dimensional delta scatterer and potential well, and the calculation of the dwell
time above a quantum well (QW). The dwell time is the time that an electron
traversing a QW potential, with energy above the well’s barrier, lingers within the
well region. This chapter also includes an introduction to a quantum mechanical
version of the energy conservation law based on the concept of quantum mechanical
energy flux derived from the Schrodinger equation. Some basic tunneling problems
are revisited using the conservation of energy flux principle.

Chapter 6: Density of States This chapter introduces the important concept
of density of states (DOS) going from bulk to quantum confined structures.
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Applications of DOS expressions are illustrated by studying the onset of degeneracy
in quantum confined structures, by calculating the intrinsic carrier concentration
in a two-dimensional electron gas, and by establishing the relation between the
three- and two-dimensional DOS. We also illustrate the use of the DOS concept to
calculate the electron density due to reflection from an infinite potential wall, the
electron charge concentration in a QW in the presence of carrier freeze-out, and
the threshold voltage, gate capacitance, and current—voltage characteristics of a
high electron mobility transistor. Finally, the DOS concept is applied to study the
properties of the blackbody radiation in three- and one-dimensional cavities.

Chapter 7: Transfer Matrix In this chapter, the use of the transfer matrix
approach to solving the time-independent Schrodinger equation is illustrated for
simple examples such as tunneling through a one-dimensional delta scatterer and
through a square potential barrier. Using the cascading rule for transfer matrices, a
general expression for the reflection and tunneling coefficient through an arbitrary
potential energy profile is then derived in the presence of an applied bias across
the structures. A derivation of the Floquet and Bloch theorems pertaining to an
infinite repeated structure is then given based on the transfer matrix technique. The
approach is also used to develop the Kroenig—Penney model for an infinite lattice
with an arbitrary unit cell potential. Properties of the tunneling coefficient through
finite repeated structures are then discussed, as well as their connection to the
energy band structure of the infinite periodic lattice. The chapter concludes with
the connection between the bound state and the tunneling problem for an arbitrary
one-dimensional potential energy profile and a calculation of the dwell time above
an arbitrary potential well.

Chapter 8: Scattering Matrix The concept of a scattering matrix to solve
tunneling problems is first described, including their cascading rule. Explicit ana-
lytical expression of the scattering matrix through a one-dimensional delta scatterer,
two delta scatterers in series separated by a distance L, a simple potential step, a
square barrier, and a double barrier resonant tunneling diode are then derived. The
connection between transfer and scattering matrices is then discussed, as well as
applications of these formalisms to the study of electron wave propagation through
an arbitrary one-dimensional energy profile.

Chapter 9: Perturbation Theory This chapter starts with a brief introduction
to first-order time-independent perturbation theory and applies it to the study of
an electro-optic modulator and calculation of band structure in a crystal. It then
introduces Fermi’s Golden Rule, which is a well-known result of time-dependent
perturbation theory, and applies it to calculate the scattering rate of electrons
interacting with impurities in a solid. Such rates determine the carrier mobility
in a solid at low temperatures when impurity scattering dominates over phonon
scattering. Fermi’s Golden Rule is also applied to calculate the electron—photon
interaction rate in a solid, and the absorption coefficient quantifying absorption of
light as a function of light frequency.
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Chapter 10: Variational Approach Another important approach to finding
approximate solutions to the Schrodinger equation is based on the Rayleigh—Ritz
variational principle. For a specific problem, if the wave function associated with
the ground or first excited states of a Hamiltonian cannot be calculated exactly,
a suitable guess for the general shape of the wave functions associated with these
states can be inferred using some symmetry properties of the system and the general
properties of the Schrédinger equation as studied in Chapter 1. In this chapter, we
first briefly describe the Rayleigh—Ritz variational procedure and apply it to the
calculation of the energy of the ground and first excited states of problems for
which an exact solution is known. Next, some general criteria for the existence of a
bound state in a one-dimensional potential with finite range are derived.

Chapter 11: Electron in a Magnetic Field Many important phenomena in
condensed matter physics, such as the quantum Hall effect, require an understanding
of the quantum mechanical behavior of electrons in a magnetic field. In this chapter,
we introduce the concept of a vector potential and gauge to incorporate magnetic
fields in the Hamiltonian of an electron. We then study quantum confined systems
and derive the eigenstates of an electron in such systems subjected to a magnetic
field, an example being the formation of Landau levels in a two-dimensional electron
gas with a magnetic field directed perpendicular to the plane of the electron gas.
The effect of a magnetic field (other than lifting spin degeneracy via the Zeeman
effect) is to modify the momentum operator through the introduction of a magnetic
vector potential. We study properties of the transformed momentum operator and
conclude by deriving the polarizability of a harmonic oscillator in a magnetic field.

Chapter 12: Electron in an Electromagnetic Field and Optical Properties
of Nanostructures This chapter deals with the interaction between an electron
and an electromagnetic field. We derive the electron—photon interaction Hamiltonian
and apply it to calculate absorption coefficients. Some problems dealing with emis-
sion of light are also examined, concluding with the derivation of the Schrédinger
equation for an electron in an intense laser field.

Chapter 13: Time-Dependent Schrédinger Equation This chapter exam-
ines several properties of one-dimensional Gaussian wave packets, including a cal-
culation of the spatio-temporal dependence of their probability current and energy
flux densities and a proof that their average kinetic energy is a constant of motion.
An algorithm to study the time evolution of wave packets based on the Crank—
Nicholson scheme is discussed for the cases of totally reflecting and absorbing
boundary conditions at the ends of the simulation domain.

This book should be of interest to any reader with a preliminary knowledge of
quantum mechanics as taught in a typical modern physics class in undergraduate
curricula. It should be a strong asset to professionals refocusing their expertise on
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many different areas of nanotechnology that affect our daily life. If successful, future
editions of the book will be geared toward practical aspects of quantum mechanics
useful to chemists, chemical engineers, and researchers and practitioners in the field
of nanobiotechnology.

This book will be an ideal companion to a graduate-level textbook (or the
instructor’s personal lecture notes) in an engineering, physics, or materials science
curriculum. It can not only be used by graduate students eager to better grasp
the field of quantum mechanics and its applications, but should also help faculty
develop teaching materials. Moreover, it will be an ideal resource for the training
of professional engineers in the fast-growing fields of nanoscience, nanoengineering,
and nanotechnology. As such it should be appealing to a wide audience of future
generations of engineers, physicists, and material scientists.
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Chapter 1: General Properties of the Schrodinger Equation

The following set of problems deals with the time-independent effective-mass
Schrddinger equation (EMSE), which governs the steady-state behavior of an
electron in a solid with spatially varying potential profile. The solid may consist of
one or more materials (e.g., a heterostructure or superlattice); hence, the effective
mass of the electron may vary in space. The EMSE is widely used in studying the
electronic and optical properties of solids. The reader should first consult textbooks
on EMSE if unfamiliar with the concept [1, 2]. The concept of quantum mechanical
wave impedance is introduced to point out the similarity between solutions to the
time-independent Schrédinger equation and transmission line theory in classical
electrodynamics [3] and microwave theory [4-6].

* Problem 1.1: The effective mass Schrodinger equation for arbitrary
spatially varying effective mass m*(z) and potential E.(z) profiles

(a) Consider an electron in a solid, which could be a semiconductor or an insulator.
We will exclude a metal since the potential inside a metal is usually spatially
mwvariant as a metal cannot sustain an electric field. The potential that an electron
sees inside a semiconductor or insulator is the conduction band profile. We will
assume that it is time independent and varies only along one direction, which we call
the z-direction (see Figure 1.1). The effective mass also varies along that direction.

Show that the stationary solutions of the Schrodinger equation obey the equation

h? 2 Rd[ 1 d

+ EC(ZW(%%Z) :Ew(xayvz)v (11)

where E.(z) is the conduction band edge and E is the total energy of the electron,
which is independent of z because the total energy is a good quantum number in the
absence of dissipation. In Equation (1.1),

E = Eyn(2) + Ec(2) and
2

2m}

C

Fuin(2) = (K2(2) + k), (1.2)

where k, and ky = (/k2 + k‘f, are the longitudinal and transverse components of the

electron’s wave vector, respectively, while m} = m*(0) is the effective mass in the
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t etkr (2~L)

e‘/bias

z=0 z=L

Figure 1.1: Illustration of electron impinging on the left on an arbitrary conduction
band energy profile under bias. Vjias is the potential difference between the two
contacts.

contacts. Since the potential varies only in the z-direction, ky is spatially invariant,
but k, varies with the z-coordinate.

(b) Because the potential does not vary in the x—y plane, the transverse com-
ponent of the wave function is a plane wave and we can write the wave function in
Equation (1.1) as

U@y, 2) = p(z)e™ 7. (1.3)
Show that the z-component of the wave function ¢(z) satisfies the following EMSE:

d [ ! d]¢><z>+2mz[(Ep+Et[1—v-1<z>]—Ec<z>>] oz) =0, (L4)

dz |y(z) dz n?
. 2,2 2,2
where v(z) = mm(*_z), Ey = an‘ , and E, = gn]fz

Solution: Taking into account a spatially varying effective mass along the z-
direction, the time-dependent Schrédinger equation describing an electron moving
in an arbitrary potential E.(z) is given by

h? d? d? R? d 1 d
—_— =t — |- == — E. U(x,y,z,t
{ 2m*(z) <daz2 + dyQ) 2 dz (m*(z) dz) + (Z)} (.9, 2%)
L dU(x,y, z,t)

=ih———~, 1.5
i It (1.5)
Since all quantities on the left-hand side are time independent by virtue of the fact
that the potential is time invariant, we can write the wave function in a product

form:

U(z,y,2,t) = P(x,y,2)§(t). (1.6)
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Substitution of this form in Equation (1.5) immediately yields that &(t) = e=*#t/",
and ¢(xz,y, z) obeys Equation (1.1).

Next, we note that in Equation (1.5) no quantity in the Hamiltonian on the
left-hand side (i.e., the terms within the square brackets) depends on more than
one coordinate (z, y, or z). Hence, the wave function v (z,y,z) can be written
as the product of an z-dependent term, a y-dependent term, and a z-dependent
term. Furthermore, no quantity depends on the x or y coordinate. Therefore, the
z-dependent and y-dependent terms must be plane waves. The z-dependent term
will not be a plane wave since both E.(z) and m*(z) depend on the z-coordinate.
Consequently, we write ¥ (z,y, z) as

U@,y 2) = g (z). (1.7)

Plugging this last expression into Equation (1.1) leads to the EMSE for the envelope
function ¢(z):

2 2
{ QmE(z) (k2 + k) + %% <m*1(z) jz)} ¢(z) = [E— Ec(2)] ¢(2).  (1.8)

Multiplying both sides of the equation by 221—2:, we obtain

{ szﬂ+i ( 1 d)} ¢(Z):2h£2:(E—Ec(Z))¢(z). (1.9)

SR A(z) T dz \y(2) dz

Hence,

d 1 d 2m} E;

— | E— - F =0 1.10

i)+ e [m- B - me|em -0 0o
where £ = Fy + Fy,, E, = Zi’f is the longitudinal kinetic energy (i.e., the kinetic

2 2 2

energy associated with the z-component of the motion), and Fy = % is the

transverse kinetic energy.

Problem 1.2: The Ben Daniel-Duke boundary condition

Starting with the one-dimensional EMSE derived in the previous problem, show
that in addition to the continuity of the wave function required by the postulates of
quantum mechanics (see Appendiz A), the following quantity must be continuous
when taking into account the spatial variation of the effective mass:

1 de(z)

m*(z) dz

(1.11)

The continuity of this quantity generalizes the continuity of the first derivative of the
wave function typically used in solving quantum mechanical problems. Together with
the continuity of the wave function, imposing continuity of this quantity is referred to
as the Ben Daniel-Duke boundary conditions [7]. The application of these boundary
conditions will be illustrated in several problems throughout the book.
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Solution: Our starting point is the time-independent effective one-dimensional
Schrédinger equation derived in the previous problem:

d[ 1 d 2m} E;
Bl c|p- —E. =0, 1.12
L]+ B - - m)| o) (112)
where E = Ey\+ E,,, E, = Zif; is the longitudinal kinetic energy, v(z) = m*(z)/m{,
¢ 201.2 2
where m} is the effective mass in the contacts, and E; = ﬁ(;%Ttky) is the transverse

kinetic energy.

Assuming that both v(z) and E.(z) are either continuous or have finite jumps
for all z, we integrate the last Schrédinger equation on both sides from 2z, = zp — €
to zar = 29 + €, where € is a small positive quantity. This leads to

1 dex)| 1 dé(e)
W& s | ) de |

(1.13)

1 d¢(2)

() ds 1s continuous

As ¢ — 0, this last equation shows that the quantity

everywhere [7].

When the effective mass varies in space, the correct boundary condition (involv-
ing the spatial derivative of the wave function) to use has been a hotly debated
topic. There is some controversy regarding the appropriate form of the Hamiltonian
to use in the case of spatially varying effective mass, and the reader is referred to
the literature on this topic [8-10].

Preliminary: Linearly independent solutions of the Schrédinger equation

We consider the three-dimensional time-independent Schrodinger equation associ-
ated with an electron moving in an arbitrary potential energy profile (such as the
conduction band of a semiconductor structure) E.(z) varying along the z-direction
only, as shown in Figure 1.1. If the effective mass of the electron is assumed to
be independent of z, the Schrodinger equation for the envelope function component
along the z-direction is given by (see Problem 1.1)

25 + Ee2)6(2) = Byol2), (114)

where ¢(z) stands for %(b(z), the second derivative with respect to z, and E, is
the longitudinal kinetic energy, i.e., the kinetic energy component associated with
motion in the z-direction.

The general solution of this second-order differential equation for ¢(z) can be
written as a linear combination of two linearly independent solutions [11]. Two
solutions ¢1(z) and ¢2(2) of a differential equation are linearly independent if the
equality c1¢1(z) + capp2(2) = 0 cannot be satisfied for all z for any choice of (c1,c2)
except for c; = ca = 0. If non-zero solutions (c1, c2) exist, then ¢1(z) and ¢2(z) are
said to be linearly dependent.
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Concept of Wronskian: If ¢; and ¢, are linearly dependent, then c;¢1(2) +
cada(z) =0 and ¢1¢1(2) + caga(z) = 0, where the dot stands for the first derivative
with respect to z. Hence, in matrix form, we have

25 28)(2)-[2
= . 1.15
{ $1(2) o2(2) | | 2 0 (1.15)
This means that the Wronskian W(z) = ¢1(2)¢2(z) — ¢1(2)¢a(z), which is the
determinant of the 2 x 2 matrix in the last equation, must be identically zero
since otherwise only the trivial solution ¢; = ¢ = 0 in the last equation would

be admissible. Stated differently, for two solutions to be linearly independent, their
Wronskian must be non-zero for all z.

_ Even if E.(2) has finite discontinuities, it is obvious from Equation (1.14) that
¢(2) exists throughout and, hence, ¢(z) and ¢(z) must be continuous.

Since ¢1(z), P2(z) satisty the Schrodinger equation in Equation (1.14), it is easy
to see that

B1(2)62(2) — a1 (2) =0, (1.16)
=B - haeinna)] = T =0, (1.17)

Thus, W(z) is a constant independent of z. It is obviously independent of z when
it is zero, but it is also independent of z when it is non-zero.

In summary, if the Wronskian W (z) = 0, then (¢1, ¢2) are linearly dependent,
and, if W(z) # 0, they are are linearly independent. If we can find these two linearly
independent solutions, their linear combination is the most general solution to the
Schrodinger equation. This general solution is

P(2) = c1¢1(2) + caga(2). (1.18)

Typically, two solutions ¢;(z) and ¢2(z) of the Schrédinger equation are found such
that they obey the boundary conditions

$1(0) =0, ¢1(0) =1, (1.19)

and
$2(0) =1, ¢2(0) =0. (1.20)

These solutions are indeed linearly independent since their Wronskian, which is
independent of z, is equal to

W(z) = W(0) = ¢1(0)p2(0) — ¢1(0)p2(0) = 1. (1.21)

In Chapter 7, we will show that the concept of Wronskian and linearly independent
solutions can be used to introduce the concept of a transfer matrix, which is a very
powerful approach to solving both bound state and tunneling problems in spatially
varying potentials.
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** Problem 1.3: General properties of the one-dimensional
time-independent Schrédinger equation

Suppose two wave functions ¢1(z) and ¢a(z) satisfy the following two EMSEs:

h2

— 5= 01(2) + Eer(2)61(2) = Bagn(2), (1.22)
and
B2 .
o $2(2) + Eea(2)02(2) = Expa(2), (1.23)
respectively.

First, multiply Equation (1.22) by ¢2(2z) and Equation (1.23) by ¢1(2), then
subtract one from the other, and finally integrate the difference from z1 to zo. This
will yield

[62(2)¢'1(2) — ¢1(2)¢5(2)]:

= [ Balo) - (8 - B 020

Starting with the last equation, prove the following statements [11]:

(a) If Es — Ecy(2) > E1 — Ec1(2), there is a node of ¢pa(z) between any two nodes
of #1(2).

(b) If Ecs(2) = Ec1(2) = Ec(2), E2 > By, and ¢12(F00) = ¢'; 5(F00) = 0, then ¢o
has more nodes than ¢, .

(c) If 1 and ¢o are solutions of Equations (1.22)—(1.23) with eigenvalues Ey and
Es, respectively, and are such that ¢1, ¢'1, ¢2, and ¢'o vanish at either +00 or —oo,
and ¢1 and ¢ are linearly independent, then FEy # Fs.

Solution:

(a) We prove these assertions indirectly. Let us assume that z; and zy are the
locations of two consecutive nodes of ¢ (z) and that ¢o(z) has no node in the interval
[21, 22]. Since the wave functions can have nodes, both ¢;(z) and ¢2(z) must be real
(since no solution of the Schrodinger equation that has an imaginary component
can vanish anywhere). Furthermore, let us assume (without loss of generality) that
¢1(z) and ¢2(z) are both positive within the interval [z1, 23] (the proofs for the cases
when one is positive and the other negative, or both are negative, are no different
from what follows and can be worked out by the reader following the derivation
that ensues). Since ¢1(21) = ¢1(2z2) = 0 by assumption, Equation (1.24) leads to

Pa(22)9'1(22) — pa(21)9'1 (21)

22

(B2 — Eca(2)) — (E1 — Ee1(2))] ¢1(2)¢2(2)dz. (1.25)

Z1

2m*
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Now, since ¢1(z) vanishes at z; and 2o, and in between these two locations is
positive, clearly ¢1(z1 4+ €) — ¢1(21) > 0 and ¢1(22) — ¢1(22 — €) < 0, where € is an
infinitesimally small positive quantity. Therefore the spatial derivatives ¢';(z1) and
@'1(z2) are, respectively, positive and negative. Consequently, the left-hand side
of the last equation will be negative while the right-hand side is positive, which
leads to a mathematical contradiction. Since our original assumption leads to this
contradiction, the statement (a) above is proved by reductio ad absurdum.

(b) The conditions ¢1(+o0) = 0 and ¢'; (£o0) imply that the particle is confined
to a finite region of the z-axis. The corresponding states are called bound states.
Letting Eeo(2) = E¢q(2) in Equation (1.25), we get

¢2(22)¢/1(22) = 2}%* (E2 - El) ‘/z2 ¢1(z)¢2(z)dz (126)

If 2y = —oco and 29 is the first node of ¢1(z) from the left, we can, without loss of
generality, take ¢1(z) > 0 in the interval | — 0o, 22]. Since ¢1(z2) = 0 (it is a node)
and ¢1(z2 —€) > 0 (e is an infinitesimally small positive quantity), obviously the
spatial derivate of ¢ at zy is negative, i.e., ¢’;(z2) < 0.

If ¢2(z) did not have a node in the interval | —oo, 22, then its sign will not change
within that interval, i.e. the sign will be constant. Since ¢; o(+00) = ¢'; 5(£00) =0
and ¢1(z2) = 0, we obtain

2m

¢2(Z2)¢/1(22) = TZ* (E2 — El) /_Z2 ¢1(2)¢2(2)d2 (127)

Let us assume that the constant sign of ¢2(z) in the interval is positive. Then,
since ¢';(z3) < 0, the left-hand side of the last equation becomes negative while
the right-hand side remains positive, leading to an absurdity. The reader can verify
that the same absurdity would have arisen if we had assumed that the constant sign
of ¢2(2) in the interval was negative, instead of positive. Therefore, the assumption
that ¢o(z) has a constant sign in the interval | — 0o, 23] is invalid. As a consequence,
the wave function ¢2(z) must have at least one node to the left of the first node of
¢1(z). According to part (a), there must be at least one node of ¢2(z) between any
two nodes of ¢1(z). In a similar fashion, it can be shown that there is at least one
node of ¢2(2) to the right of the last node of ¢1(z). Thus, ¢2(z) has at least one
more node than ¢(z), and part (b) is proved.

(c) Suppose E; = Ej. Then, since ¢;1(z) and ¢2(z) are solutions of the same
EMSE with the same energy F; = Es, we can define a Wronskian W. Furthermore,
since ¢1(z) and ¢ are linearly independent, their Wronskian, W (z) = ¢4 (2)pa(z) —
d1(2)d'5(2), is a constant different from zero. But W is independent of the z-
coordinate and, because either W (+o00) or W(—o0) vanishes, W must be exactly
zero. Once again, we have a contradiction, which tells us that our original assump-
tion must have been incorrect and therefore F; # E;. Two (or more) linearly
independent states having the same energy eigenvalues are said to be degenerate.
This last property shows that bound states of a particle in a one-dimensional
potential are always non-degenerate.
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* Problem 1.4: Bound states of a particle moving in a one-dimensional
potential of even parity

Show that the bound state solutions of the one-dimensional Schrodinger equation in
a one-dimensional potential of even parity have either odd or even parity.

Solution: If the one-dimensional potential energy profile has even parity, then it
is symmetric about z = 0, i.e., E¢(z) = E.(—%). In that case, if ¢(z) is solution of
the one-dimensional EMSE in Equation (1.14), then clearly so is ¢(—=z).

Any wave function ¢(z) can be written as a sum of a symmetric part ¢, (z) and
an antisymmetric part ¢_(—z):

1

B) = 510() + (=2 + 3[0() — S = 61(2) + 6 (=), (129)

For an even E.(z), since both ¢(z) and ¢(—z) are solutions of Equation (1.14), so
must be ¢4 (2) and ¢_(2) since they are linear combinations of ¢(z) and ¢(—z2).

From the results of Problem 1.3, the bound states of a general one-dimensional
E.(z) are non-degenerate. Hence, the bound states of a particle moving in an even
E.(z) must have a definite parity, i.e., must be either odd (antisymmetric) or even
(symmetric).

* Problem 1.5: Quantum measurement

The “particle in a one-dimensional box” problem is one of the simplest problems in
quantum mechanics. It refers to an electron confined within a one-dimensional box
with infinite barriers. The eigenstates (or allowed wave functions) of the electron
are given by (see Problem 3.5):

Pn(z) = \/gsin (%) , (1.29)

where n is an integer (n =1,2,3,...) and W is the width of the bozx. Each value of
n defines an eigenstate.

The corresponding energy eigenvalues are given by

h2m?
2m*W2’
and they are all distinct or non-degenerate, in keeping with what was proved in
Problem 1.2.

E,=n? (1.30)

For an electron injected into a quantum box of width W at time t = 0 in the
state

$(0) = A [l 2sin (3;/2) — sin (hvvz) + 2sin (%)} eikerthyy) (1.31)
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where the plane of the quantum well is the (x,y) plane:
(a) Find the value of A.
(b) Find the wave function at time t.

(¢) What is the expectation value of the electron’s energy?

Solution: ) Normalization of the wave function requires A2% 5 (2+1+4) =1,

hence A = \/7

(b) The wave function at time ¢ is

2 iBgt iBgt
o(t) = ror {2 2sin (31;2> eiﬁL — sin (77TW,Z> e%
9 iEgt .
+2sin (;IT/Z) eEﬁg} eihaathyy) (1.32)

where E, is given by Equation (1.30).

(c¢) The expectation value of the energy is independent of time and given by

2Fs + E7 + 4E,
==

h? 2 72 21 (T \?
= o [2x 3+ 7 440 ()

o (=)

** Problem 1.6: Concept of quantum mechanical wave impedance

Starting with Problem 1.1, show that the Schrédinger equation for a particle moving
in a general potential energy profile E.(z) (assuming constant effective mass)

2

T + () =0, (134
where

2m* h
2 _ 2 2
p* = 72 E—Ec(z) - m* (k:r + ky)

(1.35)

and (ky, ky) are the components of the transverse momentum, can be rewritten as
two first-order differential equations

dv(z) _

P —Zu(z) (1.36)
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and
du(z)
22— —vu(z) (137
if we introduce the two variables
u=¢(2) (1.38)
and
2h do
=— —_—. 1.
v m*i dz (1.39)

What are the expressions for Z and Y ¢

This is equivalent to defining a quantum mechanical wave impedance Z(z) as
follows [12]:

v _(2n) 5
70 =15 = () 3 (140)

e

Solution: Based on the definitions in Equations (1.38) and (1.39), we get

du d¢  m*

e 1.41
dz  dz 2k’ (1.41)
and
dv 2ih d?¢ 2ih3>
= - 1.42
dz m* dz? ( m* > “ (142)
which can be recast as
dv
— =7 1.43
s u (1.43)
and
du
.Y 1.44
P v (1.44)
by introducing the quantities
m*
Y = 1.45
2ih ( )
and
2ih3?
g = s (1.46)
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Equations (1.43) and (1.44) look similar to the transmission line equations in
electromagnetic field theory [3-5] if we use the transformations

V(z) — _ZT% (1.47)
and
I(z) = ¢(2). (1.48)

The Schrodinger Equation (1.34) is therefore equivalent to two first-order coupled
differential equations:

dz(;) = ZI(2), (1.49)
dgj) = —YV(2). (1.50)

This is equivalent to defining a quantum mechanical wave impedance Zqgm(z) as
follows [12]:

st - 2 02

The quantity Zqwm(z) does not have the unit of ohms (it has the unit of velocity), but
is a useful concept to solve some bound state and tunneling problems, as illustrated
in Chapter 7.

(1.51)

Suggested problems

e Consider a particle with the one-dimensional wave function

7]_/2 etp}gz

¢(z) = N (a® + 2°) (1.52)

)

where a, pg, and N are real constants.

(1) Find the normalization constant N.

(2) Determine the probability of finding the particle in the interval — (a/V/5)
<z < (a/V5).

(3) What is the expectation value of the momentum?

e Consider a particle in a box defined by the potential profile:
V(z)=0if |z| < W and V(z) = o0 if |2z| > W.

At time ¢ = 0 the wave function ¢(z) is an even function of z.

(1) What are the possible values resulting from a measurement of the kinetic
energy?

(2) How soon after ¢t = 0 will the particle return to its initial state if left
undisturbed? (If the particle is left undisturbed, it periodically visits the initial
state. This is known as Poincaré recurrence).
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e Consider a particle described by the one-dimensional harmonic oscillator
Hamiltonian (see Appendix B)

2
b L w22

= + = . 1.
o T M wWE (1.53)

At time ¢t = 0, the particle is described by the following wave function:

2

b(2) = N(1 + 30222)e 27" (1.54)

where o = m*w/ h!/? and N is the normalization constant.
(1) Find the value of N.

(2) What are the possible outcomes of the measurement of the total energy
of the particle and with what probabilities?

(3) Write down the analytical expression of the wave function of the particle
at time t.

e When the mass of a particle varies with position, the mass and momentum
operators do not commute. The kinetic operator must be modified. Von Ross
proposed the following kinetic operator [10]:

1
T(z) = Z(mo‘pmﬁpm'y +mYpmPpm®), (1.55)

witha+08+4+~v=—1.

In this case, show that the Schrédinger equation becomes

d? m'(z) d
2 ) &)
1 m'? 2m(z)
+ |:2 (Tm” _ sz) + 2 (E — Ec(z)) qzﬁ(z) =0, (156)
where r = a+7, s = a(y+2)—y(a+2). Furthermore, m’ = 9 and m” = i@z.

e Starting with the results of the previous problem, show that the first derivative
of ¢(z) can be eliminated by making the transformation ¢(z) = y/m(z)y(z).
Show that the resulting effective Schrodinger equation for ¢(z) is given by

d2

- (B+3) L ame-ne} v -0 s
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Chapter 2: Operators

Some general definitions and properties of operators are reviewed in Appendix C,
which the reader should consult before trying out the following set of problems.

** Problem 2.1: Operator identities

If A and B are general operators (which do not necessarily commute), show that the
following identities hold:

(a) e=AB"et4 = (e=ABe)", where n is an integer.
(b) B-1eAB = B 'AB,

(c) fAF(B)e 84 = F(ef4Be™¢4), where F is any arbitrary function and € is
an arbitrary complexr number.

Solution: (a)
e AB"e” = (e 4 Be?)(e 4 Be?) - - - (e 4 Be) (e 4 Be?), (2.1)

because e~ e = I, where I is the identity operator.

Therefore
e~ AB"e! = (e"4Be?)". (2.2)
(b)
B™'AB _ — 1 -1 n_ — 1 -1 -1 -1
e = ;H(B AB)" = ;E(B AB)(B™'AB)---(B7'AB). (2.3)
Making use of the fact that BB~! = I, we obtain
! 1
B~ "AB -1 n -1 A
=B —A" | B=B B. 2.4
: (S} oo 24)

(c) If F(&) has an expression of the form ) f,£", then
F(ef4Be™%4) = Z fn (e84 Be™$4) (e84 Be™84) . .. (e84 Be¢4). (2.5)

Using the results of parts (a) and (b), we get

F(cf4Be64) = o84 <Z an”> et = et F(B)e A, (2.6)

Problem Solving in Quantum Mechanics: From Basics to Real-World Applications for Materials
Scientists, Applied Physicists, and Devices Engineers, First Edition.

Marc Cahay and Supriyo Bandyopadhyay.
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** Problem 2.2: More identities

If A and B both commute with the commutator [A, B], prove the following equalities
[1, 2]:
[A,F(B)] = [A, B]F'(B) (2.7)

and

[G(A), B] = [4, B|G/ (A). (2.8)
Solution: We first prove the following equality by induction:

[A, B"] = n[A, B|B" . (2.9)
Using the operator identity in Appendix B, we get

[A,B"] = [A,BB" '] = [A, B]B"' + B[A, B" 1]
= [A,B]B"! 4 (n — 1)B[A, B|B" 2. (2.10)

Hence,
[A,B"] = [A, B]B" ' + (n — 1)[A, B]B"~ ! = n[A, B|B"". (2.11)

Since, by Taylor series expansion, F(B) = F(0)+ L F'(0)B+ % F"(0)B>+- -,
we get

1
[A, F(B)] = [A, B]F'(0) + [A, BJF"(0)B + 5[A, B]F"(0)B? + - - (2.12)
Furthermore, since
1 1
F'(B) = F'(0) + ﬂF"(O)B + EF’“(O)BQ o (2.13)

we have

[A, F(B)] = [A, B|F'(B). (2.14)

Now, using this relation, we get

[G(A), Bl = —|B,G(A)] = —[|B, A]JG'(A) = [A, B]G'(A). (2.15)

** Problem 2.3: Glauber identity
If A and B both commute with [A, B], prove that the following relation is true [1]:

eAeB = AtTBezlAB] (2.16)

Solution: Defining
F(t) = eMePt (2.17)
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where t is a real variable, we have
— = AeeP! + e BeP! = (A+ M Be M) F(t). (2.18)

Since B commutes with the commutator [A, B] by assumption, and since

[G(A), B] = [A, BIG'(A), (2.19)
we have
[e?t, B] = t[A, Blet. (2.20)
Hence,
e B = Bet + t[A, Ble?. (2.21)
Multiplying both sides of the above equation by e~4*, we obtain
dF
T (A4 B +t[A, B]) F(t). (2.22)

Since A and B commute with [A, B] by assumption, we can integrate the last
differential equation as if these were numbers. This yields

F(t) = F(0)eA+BI+5 4Bl (2.23)
Setting ¢t = 0 in Equation (2.17) we get F'(0) = I, and hence
F(t) = eATBI+3[4Bl (2.24)

Finally, setting ¢t = 1, we get from Equations (2.17) and (2.24) Glauber’s identity
(2.16).

* Problem 2.4: Unitary operators

Prove that if H is Hermitian, U = €' is unitary, i.e., UTU = UUT = U7'U =
vl =1

Solution: By definition,

H H 1 5 T .3
v=et =14 UL S e (2.25)
Hence,
f_q_  _Llos 1
ut=1 2 3!H
i1H 1 . 1 . i
=14 = (i) + (i) = e (2.26)



18 Problem Solving in Quantum Mechanics

Therefore, -
UTU = e el (2.27)

and using Glauber’s identity (Problem 2.3), we get
Ut = e7 el — g=iH+iH _ T (2.28)

which proves that U is unitary.

* Problem 2.5: Useful identity to perform unitary transformations

Prove the following identity [1]:

2 3

ABe¢4 = BelA B+ S A[AB]+ S A4 4B+ (229)
This identity is very useful when performing unitary transformations on some
Hamiltonians to find their energy spectrum (see Problem 2.12).

Solution: By definition,

o0

i 1 n n
A =%" AT (2.30)
Hence,
1 1
EARL—EA _ ~engn L ek gk
ef4Be™ = [Z €A B Zk!§ AR (2.31)
n=0 k=0
Expanding, we get after regrouping the terms in increasing power of &,
2
e*4Be 4 = A'BA® + ¢(AB — BA) + %(AQB —2ABA+ BA*) + ... (2.32)
ie.,
2
et Be ™t = B+ ¢[A, B] + 57 (AlA, Bl +[B, AJA) + -
2
=B+¢[A,B]+ % [A[A,B]]+--- (2.33)

Higher-order terms can be worked out using lengthy but straightforward algebra
and shown to be of the generic form given in Equation (2.29).

* Problem 2.6: The shift operator

If z, p, are the position and the corresponding conjugate (momentum) operators for
motion of a particle along the z-direction, their commutator satisfies

[z,p:] = ih. (2.34)
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According to the result of the previous problem, the operator U = entp (with &
real) is unitary because p, is a Hermitian operator, and performing the operation
UF(2)U~Y on any operator F(z) is a “unitary transformation.” Show that

e%gsz(z)e_%&”z =F(z+¢). (2.35)

This is why the unitary operator e®sP= s called the shift operator.

Solution: Using the result of the previous problem, we get
eF€Pz Lo~ wEP: — 5 4 %[Pz, 24, (2.36)
where all higher-order terms are zero. Hence,
eRéPs e~ WP = 4 4 £ (2.37)
Using the results of Problem 2.1(c) leads to the desired result:

e%5PZF(Z)ei%£pZ =F (e%‘cpz Zei%gpz) = F(Z + 5) (238)

** Problem 2.7: Additional unitary operators

(a) Show that the operator U = e~Maz—al) g unitary, where X is real and a, and
al are annihilation and creation operators that are Hermitian conjugates of each
other. The dagger (1) stands for Hermitian conjugate.

(b) If A is an M x M matriz of the form A = iala], where « is a real parameter
and [a] is an M x M matriz with all its elements equal to unity, prove that U = e?
is unitary and is given by

[a], (2.39)

where I is the M x M identity matriz. This exercise will be used in Chapter 8 when
studying scattering from a two-dimensional delta scatterer in a quantum wave guide
formed in a two-dimensional electron gas.

Solution: (a) To prove that U = e~Ma=—al) i unitary, we just need to prove that
the operator in the exponent is of the form iH, where H is a Hermitian operator
(see Problem 2.4). We rewrite —\(a, — al) as iu(a, — al), where u = i) is purely
imaginary. Next, we show that the operator = H = pu(a, — al) is Hermitian.

The Hermitian adjoint of H is
H' = (pa.)" = (pal)' = p*al — p*a. = pa. — pal = H, (2.40)

where we used the fact that, u being purely imaginary, u* = —pu.
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This completes the proof that the operator U is unitary.
(b) We start with the following definition of e”:

A% A3
A _
€ _I+A+§+§+

For A = iala], we have

A" = (ia)"[a]" = (ia)"M"[d],

(2.41)

(2.42)

as can easily be shown by induction (remember that all the elements of [a] are 1).

So,
. 2
iofal _ ; M (ZO(M) M c..
e =1+ z(aM)M + TR + (2.43)
Hence,
elal = 1 4 | (ia) M + l(iaM)2 +o- la] (2.44)
2! M ’
Therefore,
) iaM 1
U = ool — 14 © 7 ) la] (2.45)
To prove that U is unitary, we must show that UTU = I.
—iaM __ 1
UT:I+£5—EF—QML (2.46)
SO ) .
(ﬂU:<I+(KmM—DMO(I+Aﬂ&M4—UMO (2.47)
Therefore,
UTU:I+ (eiaM =+ —iaM _2) [a]
1 —ia (1o
+ (e M —1) ("M —1) Ma], (2.48)
or
UM = T+ - (2cos(aM) — 2) [a] + — (1 — cos(aM)) [a] = I
M M ’
which proves the unitarity of U.
*** Problem 2.8: Virial theorem
Consider the Hamiltonian in one dimension
Pt
H= +V(2), (2.49)

2m*
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where
h d
P =S (2.50)
and
V(z) = A", (2.51)
where X\ is real and n is an integer.
First prove the following result:
.2
[H, zp,] = ih — [2 <2;1*> + )\nz"} , (2.52)

where H is the Hamiltonian abowve.

Starting with the results of the previous step, prove that if |¢) is an eigenstate
of H, the following is true:
2(T) = n(V), (2.53)

where (--+) stands for the expectation value in the state |¢) and T is the kinetic
energy operator expressed as
—h? a2
= ——. 2.54
2m* dz2 (2:54)

Equation (2.53) is known as the virial theorem.

Solution: Preliminary lemma: If |¢) is an eigenstate of H, then (¢ | [H, A] ¢)
= 0, for any quantum mechanical operator A.

The expectation value of any quantum mechanical operator represents the
average value of the corresponding physical variable which we expect to measure in
an experiment. Therefore, the expectation value of a quantum mechanical operator
must be real (we cannot measure an imaginary quantity). Since the expectation
value of any Hermitian operator is always real (see Appendix C), all legitimate
quantum mechanical operators are Hermitian.

Since |¢) is an eigenstate of H, the following relation holds: H|¢) = FE|¢), where
FE is the eigenenergy. Recalling that both H and A are Hermitian and that FE is
real, we obtain

(6 | [H, Alg) = / 7" (F)(H A — AH)$(7)
- / BF{[AHOP) 6(7) — 6 (7 AHH() )
—F / BF (" (MAG(T) — " (DANP)} =0.  (2.55)

This property will be used below.
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Starting with the operator identity (see Appendix C)
[A, BC] = [A, B]C + B|[A, C], (2.56)

we get
[H,zp.] = [H, z]p. + z[H, p.]. (2.57)

Substituting the Hamiltonian given in Equation (2.49) in the preceding equation
leads to

p.? p.?
[H, zp.] = K = +AZ") Z} p.+2 K - +AZ") ,pz}
2m* 2m*

2
Dz n Z 2 n
= {2771* , z] p. + A" 2] p. + o~ [p:2,p:] + 2 [A2",p.]. (2.58)

The second and third commutators are equal to zero. Furthermore,
[p.,2"] = —ilinz""1, (2.59)

and
[2,p.%] = 2ihp,. (2.60)

Using these results, we get

1
[H, zp,] = T (—2ihp. )p. + Az(ifinz" 1)

1
= %(—Qihpz)pz + iAhnz™

P 2
= ih {2 <2m> + )\nz”} : (2.61)

Since |¢) is an eigenstate of H, we can apply the preliminary lemma derived earlier
and get

([H,zp,]) = 0 =ik (=2(T) + n(V)). (2.62)

In other words,
2Ty =n(V). (2.63)

** Problem 2.9: Generalized version of the virial theorem

For an arbitrary V(z), show that

(T) = % <ch1‘:> 7 (2.64)

where the average is taken over an eigenstate |p) of the Hamiltonian H = T + V{(z).
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Solution: From the previous problem, we get

p:2

2m*

p:?
2m*

Hoopd = |2 4V )] [ 22 V00

= ol 2o 4 2V ()i, (2.65)

because z and V(z) commute, as do p? and p,. Making use of the identities (see
Appendix C)

[z,p.%] = 2ihp. (2.66)
and v
Z v - - .hi, 2.67
-, V()] = —iny (267)
we get
2
P= dv
H, zp,)=h|-2 —. 2.
o) =n -2 (2] +: ] (2.68)
Hence, since |¢) is an eigenstate of H,
([H, 2p:]) s’ av
— — ). 2.
h 2m* T\ dz (2.69)
Since the left-hand side is equal to zero, we finally get the desired result,
1/ dv
Ty == {250, :
(T) 5 <z P > (2.70)

* Problem 2.10: Sum rule

FEvaluate the commutator
[pza [ zZ H]] ’ (271)

where p, is the z-component of the momentum operator and H = % + V(F) is the
Hamiltonian of the system.

Use this result to prove the following sum rule:

h? 0V
2 P — [
E (B, — En) [(n|p.Im)|” = 5 <m‘ 5.2

n

m> ) (2.72)
where |n) and |m) are eigenvectors of H with eigenvalues E,, and E,,, respectively.

Solution: Starting with the relations

2
Hin) = {an* +V(F)] In) = En|n), (2.73)
[p-, H] = il (2.74)

ga
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and
e lpe 1) = 120 275)
we get
12 (i |G ) = = (o) ol )
~(ml[ps, H)m) nlp ). (2.70
But

(nllpz, H]|m) = (n|p-H — Hp.|m)
= (nlp-Em|m) — (n|Hp-|m)
= Ep (n|pz|m) — (Hn|pz|m)
= Em (n|pzIm) — By, (n|ps|m)
— (En — Bw){nlp:|m), (2.77)

where we made use of the Hermiticity of H in the third line.
Similarly,
(mllpz, H][n) = (Em — En)(m|p:|n). (2.78)
Because p, is a Hermitian operator,
(mlp:|n) = (p=m|n) = (n|pz|m)", (2.79)

where the asterisk denotes complex conjugate.

Using the last three relations in Equation (2.76), we get

S (Bu = Eu)|(nlp.m) 2 = % <m

n

d?v
d2z

m>. (2.80)

*** Problem 2.11: Generalized sum rule [3]
Prove the following sum rule for any Hermitian operator F:
1
> (B~ En)|(nlFlm)* = —5 (nl[F,[F. H]|ln) (2.81)

where [n) and |m) are eigenvectors of the operator H with eigenvalues E,, and E,,,
respectively.

Solution: We have

S (B — Ba) [l Flm)* = 3By — Ey) (] Flm) (n] Flm)”. (2.82)

m m
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Hence.

S (B~ Bl Flm)P = S (B, — B, (0| Flm) (m] F7n), (2.83)

m m

where FT is the Hermitian conjugate of F. This last equation can be rewritten as
follows (since H is always Hermitian, H|m) = E,,|m) and H|n) = E,|n)):

Y (Ewn— E){nlFlm)* =Y (n|[FH — HF]jm)(m|F'|n)

m m

=" (n|[F, H]|m)(m|FT|n). (2.84)

Using the normalization condition
> Im)m| =1, (2.85)

we finally get
> (Bw — En)[(n|F|m)|* = (n|[F, H]F'|n). (2.86)

m

If F is a Hermitian operator, then, by definition, (n|F|m)* = (m|F|n), and hence
the summation can be rewritten as

S (o — B0l Flm)P = 3By = B n| Flm)(m| Fln).  (2.87)

m m

Therefore,

> (Ew = E)|(n|Flm)* = = (n|F|m)(m|[FH — HF]In)

= = > _(n|F|m)(m|[F, H]|n)
= —(n|F[F, H]|n) = (n|F[H, F][n). (2.88)

Combining Equations (2.86) and (2.88), and noting that F'T = F' when F is Hermi-
tian, we obtain the following sum rule for any Hermitian operator F":

S (B~ E)l(nlFlm)? = ~ 3 (nl[F [F, H]]n. (289)

m

Since the inception of quantum mechanics, sum rules have been used extensively
in various branches of physics, including atomic, molecular, solid state, and particle
physics. To delve further into the subject, the reader should utilize the suggested
reading section at the end of the chapter.
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**¥%* Problem 2.12: Polarizability of one-dimensional harmonic oscillator

Using the concept of unitary transformation, show that the polarizability o of a

one-dimensional harmonic oscillator %m w322 in a uniform external electric field

e2

s given by o = P

Some of the basic properties of the one-dimensional harmonic oscillator are
listed in Appendiz B.

Solution: We first rewrite the Hamiltonian of a one-dimensional harmonic oscil-

lator,
2

Dz 1 .5 2
H 2.
0=5 = +5 (2.90)

by introducing the annihilation a, and creation af operators:

“=s (502 o pz> (2.91)

al = NG (ﬂoz - hgopz) ) (2.92)

(2.93)

and

where

It is left to the reader to show that operators a., al satisfy the commutation rule
[as,al] = 1. (2.94)

Using the operators a, and ai, Hjy can be rewritten as

1
Hy = huwo (Nz + 2) , (2.95)

where we have introduced the occupation number operator
N, =dla,. (2.96)

In the presence of an external (uniform) electric field, we must add the Stark
interaction to the Hamiltonian Hy. The total Hamiltonian can then be written
as

H = Hy—qF,. (2.97)

Next, we perform a unitary transform on H, using the unitary operator U = e°

with
S =—\a. —al), (2.98)

A being some real parameter to be determined later. Using this operator, we perform

the unitary transform
H =e Hype . (2.99)
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Making use of the identity (see Problem 2.5)

S . . A 2 . 3 .
4 Beft = B4+ ¢[A, B] + %[A, [A, B] + 37 (A, [A [A, B])) + -+ (2.100)
With £ =1, B = Hy, and A = S, the transformed Hamiltonian H becomes
1
e®Hope™ = Hy + [S, Ho] + o719 19 Holl + - (2.101)

First, we calculate [S,Ho]:
[S, Ho] = [-A(az — al), Ho). (2.102)
Making use of Equation (2.94), we obtain
[S, Ho) = —Mwo(as + al). (2.103)
Therefore,
[S, [S, Ho]] = 2)\?hwy (ala. — a.al) = 2\ %hwo [al, a.] = 2X*hwy, (2.104)
where we once again used Equation (2.94).

Since the last commutator is a constant, we conclude that all the terms after
the third one in the expansion (2.100) are identically zero.

Grouping the previous results, the transformed Hamiltonian is therefore
H = e Hoe™® = Hy — Mwy (az + al) + \iwy. (2.105)

SinCe 1
z=——(a, +al), 2.106

we deduce that the second term in Equation (2.105) is identical to the Stark shift
—qFEz if we choose A such that

A= ﬁ% (2.107)
Equation (2.105) can then be rewritten as
He - - gpe (2.108)
2m*w?
In other words, the eigenvalues of Hy — qFEz are the same as the eigenvalues of
H— 5% .

Calling |n) the eigenstates of Hy, the eigenstates of Hy—qEz are given by e”|n),
with the corresponding eigenvalues

2
q 2
E, =E° — E?, 2.109
" 2m*w(2) ( )
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E? being the eigenvalues of Hy, given by
0 1

By definition, the polarizability « of the harmonic oscillator in its ground state is
such that

1
Ey=E) — §aE2. (2.111)

By comparing Equations (2.109) and (2.111), the polarizability « is therefore
given by
e

5.
mwg

o=

(2.112)

* Problem 2.13: Decomposition of general 2x2 matrix in terms of Pauli
matrices

A trivial decomposition of any 2x2 matrix

M= ( e ) (2.113)
m21 MM22

is obviously

1 0 0 1 0 0 0 0
M:m11(0 O)+m12(0 0>+m21(1 O>+m22(0 1).(2.114)

The four matrices on the right-hand side form a complete basis for all 2x2 matrices.

A not so obvious decomposition of any 2x2 complex matrix M involves the
2x2 Pauli matrices defined in Appendix D. For a more detailed description of the
Pauli matrices, see Chapter 2 in Ref. [4].

Show that any 2x 2 matriz M can be expressed as follows:

M=agl +ad-a, (2.115)

where

1
ag = iTr(M), (2.116)
0 =00+ 0y§+0.2, (2.117)
and
1

a= §Tr(Mc7")7 (2.118)

where & = (04,0y,0,), and Tr stands for the trace of the matriz.
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Solution: Starting with the definitions of the Pauli matrices in Appendix D, we
can easily show that any 2x2 matrix can be written as

M= mi1 + mzzl n mi1 — m22az miz + mmam n Z.m12 — Ma1 o, (2.119)
2 2 2 2
which is equivalent to
M=ayl +d-5, (2.120)
where 1
ag = iTr(M) (2.121)
and )
i = 5 Tx(M?). (2.122)

In other words, the four matrices (I, 04, 0y,0,) form a complete set of bases in the
space of 2x2 complex matrices.

Clearly, M is Hermitian if ag and the three components of the vector @ are real.

The matrix decomposition (2.120) is very useful in studying the properties of
the operators associated with quantum gates operating on qubits [2, 4].

* Problem 2.14: Operator identity

Prove that if 0 is real and if the matriz A is such that A2 = I, the following identity
holds: _
e = cosOI +isinfA. (2.123)

This is the generalization to operators of the well-known Euler relation for complex
numbers: €® = cos ¢ + isin ¢.

Solution: From the Taylor series expansion
xr __ = €z
e’ =) a (2.124)

and the definition of the function of an operator, we get

(0)2A% | (i0)°4°  (i0)*A"

i0A _ -
et =T+ (i0)A+ 51 3l o + ,

(2.125)

or

) 92 94 92k
0A _ 7 z . _1\k
e = (1 P+ +(-1) (2k)!)I

. PR i 62k +1
+Z<9_.+._”'+(_1)(2k+1)! A, (2.126)
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which is indeed Equation (2.123) if we use the the Taylor expansions

sinz = i(—l)kx%“/@k +1)! (2.127)
k=0
and -
cost = Z(—l)kx%/(Qk)! (2.128)
k=0

This identity is very useful when studying the action of quantum gates on quantum
bits in the study of quantum computing [2, 4].

* Problem 2.15: Equality for Pauli spin matrices

Prove the following equality for the Pauli spin matrices:

-

(G-@)(G-b)=ic-(@xb)+a-bl, (2.129)

where I is the 2x 2 identity matriz and @ and b are any arbitrary three-dimensional
vectors in real space R3.

Solution:

i ejmor+ 051 (2.130)

(G-a@)(G-b) =Y 0jA0xBy = A;B,
gk gk l

where 6;; is the Kronecker delta and €y, is equal to zero if any two indices are equal,
and equal to +1 (—1) for a cyclic (non-cyclic) permutation of the indices (1,2,3).

Hence,

(&6)(&5) = iZJl ZejklAjBk JrZAijI

l 7.k J
—=iG- (@ xb)+a-bl. (2.131)

The next problem makes use of the identity (2.129) and is very useful for
the Bloch sphere concept, which is a fundamental tenet of the field of spin-based
quantum computing [2, 4].

Preliminary:

The well-known operator for an electron’s spin is

&, (2.132)
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whose three components (04, 0y,0,) are the Pauli spin matrices whose basic prop-
erties are described in Appendix D. A measurement of the spin component along
an arbitrary direction characterized by a unit vector n will yield results given by
the eigenvalues of the operator

S, (2.133)

and these eigenvalues are :I:%7 irrespective of the direction of the unit vector 7. This
last statement is easily proved by starting with the identity derived in the previous
problem.

If the vectors @ and b are equal to a unit vector 7, then the identity (2.129)
reduces to

(7-n)? =1, (2.134)

i.e., the square of any component of & is equal to the 2x2 identity matrix. Hence, the

eigenvalues of ¢.n are +1, and therefore the eigenvalues of the operator S.7 must

be +h/2, which proves the result we were after. In other words, the measurement

of the spin angular momentum along any arbitrary axis always yields the values
+h/2.

** Problem 2.16: Eigenvectors of the & - i operator

Derive the explicit analytical expressions for the eigenvectors of & - corresponding
to the eigenvalues +1 and —1 [2, 4].

Solution: Consider the operators
1
i(Ij:(_f-ﬁ), (2.135)

which are 2x2 matrices (I is the 2x2 identity matrix) acting on an arbitrary spinor
or qubit |x). A “spinor” is a 2x1 column vector describing the spin orientation of
a particle with spin. If we operate on that with the operator (& - n), we get

1

@) |52 )| = 3300 £ 5 @97

=+ B(Ii&%)b@} (2.136)

This means that, for any |x), 5(1£8 - 7)|x) are eigenvectors of &.7 with eigenvalues
+1. Making use of the identity

1 1 1 1
5(] td.n) = 3 [I to.n, £ §(U‘$ +i0y)(ny —iny) £ 5(093 —ioy)(ngy +iny)| ,

(2.137)
where ng, ny, and n, are the z-, y- and z-components of the vector #, and using
spherical coordinates with polar angle 8 and azimuthal angle ¢, so that

(ng,ny,n.) = (sinf cos ¢, sin f sin ¢, cos 0), (2.138)
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we get
n, +in, = sin fe* (2.139)
which leads to
[P Lo i
§(I:I: g-n)= B I+cosbo, £+ 5(811196 o4 £sinfe*?o_)|, (2.140)
where the operators o1 and o_ are given by o4 = 0, +i0y and o_ = 0, — 0y,
respectively.

Let us define two special spinors as follows:

=[]

1) = [ (1) ] : (2.141)

Acting with the operators in Equation (2.140) on the spinor |0), we get

1 0 0 0,

— T - N = — — in — ip

2([ + & -1)|0) = cos 5 {cos 5 |0) + sin 5¢ |1>} (2.142)
and

1 0 0 0 ,

— — - N — gin — imn — —_ — i

2([ g -n)|0) = sin 5 [Sln 2|O> cos e |1>] . (2.143)

The last two spinors can be easily normalized by dividing the first by cos g and the
second by sin g. This leads to the spinors

0 0,
&) = cos 710) +sin 5e1¢|1> (2.144)

and ; ,
|€,) = sin §|0> — cos Eei¢|1). (2.145)

Since we had proved that any spinor (1/2)(1+£4&-7)|x) is an eigenvector of & -7
with eigenvalues +1, it is obvious that the spinors |£) and |¢,,) are eigenspinors of
the operator (& - n) with eigenvalues +1 and —1, respectively.

* Problem 2.17: Quantum mechanical operators for charge density and
velocity

The quantum mechanical operators for charge density and velocity are gé(7) and
—%, respectively, where q is the charge of the electron and m* is its effective

mass. Show that these operators do not commute.
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f”;”nv:r , qé(f’)] operate on a wave function ¥ (7, t).

Solution: Let the commutator [
This will result in:

ihV, ihV,
qo(7) + o (") —

m* m

_ighV,8(7)

m*

P(7t) = P(F,t) #£ 0. (2.146)

Hence, the two operators do not commute.

Physical significance of this result: Classically, the current density is the
product of the velocity and the charge density. Therefore, one might assume that
the current density operator should be the product of the charge density operator
and the velocity operator, and that the order in which the product is taken is
immaterial. That is clearly not true. The order matters since the two operators do
not commute. Chapter 5 contains a set of problems on the properties of the current
density operator.

** Problem 2.18: Hermiticity of operators

ih d

a 1s Hermitian, but their
m* dz

Show that neither —--445(2) nor the operator qd(z)

: o mrdz
symmetric combination is.

That is why the current density operator (see Chapter 5) is writlten as the
symmetric combination of these two operators.

Solution: In the following, the prime denotes the first derivative. Without loss of
generality, we will consider a time-independent wave function.
th 4 45(2 — 2p) and check if it is Hermitian. There-

m* dz

First, consider the operator
fore, consider the integral

[ e [ ggasts —0)] vt

—0o0
7 iqh +oo

| dz®*(2) [6'(2 — 20)¥(2) + 6(2 — 20)¥'(2)] . (2.147)

Integrating the first term on the right-hand side (R.H.S.) by parts, we get

i oo oo
R.HS. = miif |:(I)*(Z)\I/(Z)(5(Z — 2p) - [ dz [®*(2)¥(2)]'d(2 — 20)
+/_+<><> dz2®*(2)¥'(2)6(z — 20) } . (2.148)

The first term on the right-hand side of the preceding equation must vanish since
the wave function is zero at +oo. Hence,
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R.HLS. = 7%1 Uj d2®* (2) V' (2)8(2 — z0)

+o0 +oo
—|—/ dz®"" (2)W(2)0(2 — 2) — / dz®*(2)V'(2)6(2 — 29)| -

B ) (2.149)
Simplifying, we get
iqh .« igh [ d _,
RHS. = _%qﬂ (20)®(20) = _n?b* [dzq> ] (20)¥(20). (2.150)
Next, consider the integral
teo Tih d :
/_Oo dz [m* £q5(z — zo)q)(z)} U(z)
igh e ’ * 1%
=—— dzd'(z — 20)@* (2)¥(2) + 3(z — 20) V" (2)@(2) | - (2.151)
m — 00

Once again, integrate the first term on the right-hand side by parts to yield

+oo
R.HS. = —;Z—h [@ (2)¥(2)d(z — 20)

— 00

+o0 Foo
+/ dz0(z — 20) [®*(2)¥(2)]" — / dzd(z — z@@”(z)‘l’(z)] :
(2.152)
Hence, proceeding as above,
igh . d
R.H.S. = :L*@ (20) [dzw] (20)- (2.153)
Comparing Equations (2.150) and (2.153), we see that
oo ih d
/ dz®*(2) [ T qé(z—zo)] U(z)
+°° h d -
;A/ [l 0oz - ZO)@(Z)} U(2). (2.154)
ih 4 g§(2) is not Hermitian.
Next, consider the operator ¢d(z — Zo)TT 1, and check if it is Hermitian. As

before, consider the integral

+o0 i
l‘ +OO / 7:
— miil dz®*(2)6(z — 20)¥ (2) = qiiq)*(z()) Li\ll} (z0), (2.155)

— 00
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and then consider the other integral

*

/ B [qa(z _ zo)::; i@(z)} w(2)

—00 - +o00 , B q
= _:Z* /_OO dz®*'(2)d(z — 20))¥(2) = —:Z*\Il(zo) [dzé*} (z0), (2.156)
where we used the fact that 6*(z — z9) = d(z — 2p). Clearly,
“+o0o h d
+oo i
7'é/ { i q5(Z—Zo)} U(2)"0(z), (2.157)

) d s not Hermitian either.
m* dz

so that the operator ¢é(z — 2o

Finally, focus on the symmetric combination and consider the integral

/:O dz®*(z) Unh(fqé(z — 20) + (2 = 20)— h ;Z} T(2)

_igh

.
[ A2 (2)[6 (2 — 20)U(2) + 20(= — 20) ' (2)]. (2.158)

m*

Integrate the first term on the right-hand side by parts to yield

i oo oo
R.HS. = mq—if [@*(z)\ll(z)é(z — 2p) — /7 dz[®*(2)¥(2)]'6(2 — 20)
“+oo
+/_ dz20*(2)V'(2)0(z — Zo):| : (2.159)
Hence,
R.H.S. = ;Zh [@*(20) 0 (20) — @ (20) ¥ (20)] - (2.160)

Next, consider the other integral

/+°o dz { [ DA 5 — 20) + ab(z - Z0) - - ddz:| (W)}* v

*
o md

T (- 2087 (2) + 262 — 20)07 (2))0(2) (2.161)

m*

— 00

Integrate the first term on the right-hand side by parts to yield

iqh oo
R.HS. = —m—fb*( 2)U(2)d(z — z0)
igh e * / igh e *
| dz [@*(2)U(2)]'0(z — 20) — W/, dz2®*(2)WU(2)d(z — 20),

(2.162)
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which reduces to

zqh [

R.H.S. = " (20) ¥’ (20) — " (20)¥(20)] - (2.163)

Therefore, from Equations (2.160) and (2.163), we infer that

/:o 428" (2) { ™ 06z~ 20) + 43z — z0)m O ] ()

_ /+°O dz { [ i (f 43(z = 20) + 4d(z = 20) i (f } @(z)}* U(z).  (2.164)

— 00

This equality, by definition, implies Hermiticity. Thus, the symmetric combination
is Hermitian.

* Problem 2.19: Sturm—Liouville equation

Any time-dependent wave function can be expanded in a complete orthonormal set
and written as a weighted sum of orthonormal functions in the following way:

Fot) = Ru(t)on (), (2.165)

where the ¢, (F) are orthonormal functions of space but not time. The weights or
coefficients of expansion R, (t) depend on time, but not space.

The so-called density matriz is defined as pnm (t) = R} (£) R (t) = (n]p|dm,)-

Show that the density matriz obeys the equation
590
ot

where H(7,t) is the time-dependent Hamiltonian describing an electron whose wave
function is U(7,t), and the square bracket denotes the commutator.

- [H(Fa t)vp(t)]a (2166)

For a more thorough introduction to the density matriz, see Chapter 5 of

Ref. [4].

Solution: Substituting the expansion for the wave function in the time-dependent
Schrédinger equation
L OU(rt)
i
ot

= H(7, t)U(F 1), (2.167)
we get

0) . R(
in % = H(7) Y Ry(06;(7), (2:168)

or

i (F) = Z R;( b (7), (2.169)
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where in deriving the last equality we used the fact that the Hamiltonian does not
operate on the coefficients R;(t).

Multiplying Equation (2.169) by the “bra” (¢,,| and integrating over all space,
we obtain

ih

1650 = > Ri(t)(¢m | H (7, 1)] 65) ZR 5(t),  (2.170)
J

where Hy, j = (¢m|H (7, 1)|0;).
Using the fact that (¢m|¢;) = 6m,;, we get
L ORp(t)
j=ih—g= = > R;(t)Hp (1) (2.171)

J

Taking the complex conjugate of both sides, we get
6R* . « "
- hz =Y Ri()H; ;(t) =Y _ R;(t)Hjn(t), (2.172)
J J

where we have used the Hermiticity of the Hamiltonian to derive the last equality,
e, Hy ;= Hj,. Next,

L ORL ()R ()] o ORm(E) AR (t)
th = ihR} (t) ot + ihRy, (¢) pn
= D RO R () Hom (1) = Ri O RO Hin (@], (2173)

where we have used Equations (2.171) and (2.172). Then, using the definition of the
density matrix, we get

) Ho 5 (0) ~ s (0 (0], (2.174)
n220 _ {(0p(1) — pl) (D) = [H (1), (1), (2.175)

which is the Sturm—Liouville equation describing the time evolution of the density
matrix.

* Problem 2.20: Ehrenfest’s theorem [5, 6]

Show that the expectation value of any time-dependent operator A(t) obeys the
equation

O(A(1))

ih B :<[A(t),H(t)]>+z‘h<agit)>. (2.176)



38 Problem Solving in Quantum Mechanics

Solution: The expectation value of an operator is, by definition,

(A) = (gl Alp)/(¢|9). (2.177)
Assuming that the wave function is normalized,

(A) = / 37 (7, t) Ag (7, t). (2.178)

Differentiating this last expression with respect to time and remembering that A is
time dependent, we get

LoA) [ [ 06" 00 OA
zhw = /d 7 |ih 2 Ap + ¢ Aih 5 + ihe 5 ?| - (2.179)
Using the Schrédinger equation
., 0¢
zha =H¢ (2.180)
and its complex conjugate
., 09*
—ih = Ho* 2.181
i = Ho (2.181)
in Equation (2.179), we get
m% = /d3F[(H¢)*A¢+ ¢*AHp + z‘h¢*%¢ . (2.182)
Since H is Hermitian, the following relation holds:
/ BF(HD)* Ap = / d*Fp* HAg. (2.183)
Using this result in Equation (2.182), we obtain
L 0(A) 3. LO0A] ., /0A

This last equation is referred to as Ehrenfest’s theorem.

* Problem 2.21: Application of Ehrenfest’s theorem: The one-dimensional
harmonic oscillator

The Hamiltonian of a particle of mass m* in a one-dimensional parabolic potential
(the so-called one-dimensional simple harmonic oscillator potential) is

R d?2 1
H=——— — + —m*w?7? 2.185
2m*d22—|—2mwz, ( )

where w is the curvature of the parabolic potential (see Appendiz C).
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Use Ehrenfest’s theorem to show explicitly that the velocity of the particle is
given by
d(z) _ (p)
v dt m* ( )

You do not need to know the electron’s wave function to solve this problem.

Solution: Ehrenfest’s theorem states that the time evolution of the expectation
value of any operator A obeys the relation

o(4)

th=o

= ([4, H]) +ih<%j>, (2.187)

where the angular brackets denote expectation value and the square bracket denotes
the commutator, i.e., [A, H| = AH — HA. Note that the second term on the right-
hand side vanishes if A is a time-independent operator.

We first have to find the commutator [z, H] = zH — Hz. Let this commutator
be A. Then, the following relation must be satisfied:

(zH — Hz)(2) = Ad(2). (2.188)

Using the Hamiltonian in Equation (2.185), the left-hand side (L.H.S.) of Equation
(2.188) becomes

n2 32 1 K2 d2 1
LHS. = |- g2 T3 *w?23 Y @z . Qm*w223} o(2)
_ R? d%¢(z) 2 d [ }
2m*  dz2 2m* dz
_ . R? d%¢(z) N R? d¢(z ) h? qu n? d?¢(z)
2m*  dz? 2m*  dz 2m* Qm* dz?
R do(2)
T om* dz
= Ao(2). (2.189)

Therefore, the commutator [z, H| = nrf i
pendent variables, i.e., the operator z is not time dependent, we have <8—§> = 0.

Therefore, using the last result in the Ehrenfest theorem, we get

m% = [z, H]) + 0 = <:: (,i>. (2.190)

Also note that since z and t are inde-

Hence,

0(z) _ d(z) % < h ‘9> _ {ihgg) _ ), (2.191)

m* 0z m* m*
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* Problem 2.22: Application of Ehrenfest’s theorem: Electron in a uni-
form electric field

The Hamiltonian for an electron in a uniform electric field is given by

h? 42

Use Ehrenfest’s theorem to find % and %.

Solution: Applying Ehrenfest’s theorem, we get

indE) g (2.193)
dt
and
d{p-
i <dpt ) pH — Hp). (2.194)
Now,
n? 42 ,  h? d?
[zH — Hz]p(z) = et et az?| ¢(z)
3 R d%¢(z) n h? d%¢(z) n R do(z)  B* dg(z)
 T2mx d2? “om* dz? m* dz  m* dz
(2.195)

This implies
(zH —Hz) _ —ih(g) _ (p:)

fr— = — 2.1
ih m* m* (2.196)
and
(dz) _ (p2)
= . 2.1
dt m* (2.197)

To calculate the expectation value of the momentum operator, you will, of course,
have to know the wave function of the electron in the electric field, but that is a
different matter.

Also,
3 33 3 33
[p.H — Hp,|¢(z) = _i;;n* % — tha zhozzdi +i— f p— % + zhaz% #(2)
= —ihag(z). (2.198)
Therefore,

p.H— Hp, dp.
< p > = <dt> = —q. (2.199)
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* Problem 2.23: Ehrenfest’s theorem from the Sturm—Liouville equation

(a) Show that the average value of an operator M in a state ¢ can be calculated as
follows:
(M) = Tr(pM), (2.200)

where Tr stands for the trace operator.

(b) Using the previous result, the equation for the time evolution of the density
matrix in the Sturm—Liouville equation, and the time evolution of the expectation
value of an operator given by the Ehrenfest theorem, calculate the time evolution of
the expectation value of an operator M and rederive Ehrenfest’s theorem.

Solution: (a) Using ¥(7,t) = >, Rn(t)dn(7), we get

(1) = 33 R (OR (0 6m M[61), (2.201)

ie.,

(U[M|V) = men mmns (2.202)
which we rewrite as
(M) = 3l (Z |¢m><¢m|> M), (2.208)
Using the closure relation ) [¢n,)(¢m| = I, we finally get
(U|M|T) = Tr(pM). (2.204)
(b) Taking the time derivative of Tr(pM), we get

M) d
a o eM)

_ dp dM
=Tr (dt M) Tr (p i ) . (2.205)

Using the Sturm—Liouville equation, we get

dM) dM
A — e+ ()
= —%Tr[HpM — pHM] + <dé\t4>
_ %Tr [PMH — pHM] + <djf> . (2.206)
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Using the properties of the trace, we obtain Tr(AB) = Tr(BA),

WD s, ) + <d(‘i\f>, (2:207)
or (M) ; aM
—q =y (M H) + <dt> , (2:208)

which is Ehrenfest’s theorem proved in a different way.

* Problem 2.24: The Cayley approximation to a unitary operator

If the Hamiltonian of a system is time independent and its wave function at time
t = 0 is known, the solution to the time-dependent Schrédinger equation can be
calculated as follows:

G(F, 1) = UP(F,0) = e~ 54 (7,0). (2.209)
As shown in Problem 2.4, the operator U is unitary.

In a numerical approach to the Schrodinger equation, the wave function at later
times s typically calculated using small time steps 5t and the following iteration
procedure: _

V(7 + 0t) = Uh(7,t) = e~ #H0U) (7 1), (2.210)
Numerically, the following (Cayley) approzimation is used for the operator on the

right-hand side of Equation (2.210):

_goeH 10tH 10tH
e 'h —(1 o >/(1+ 277,). (2.211)

If 6t/h is selected to be a small quantity, show that the Cayley approzimation is
unitary to order (5t)2.

Solution: Performing a Taylor expansion of the operator 1/ (1 + i%tf ), the right-
hand side of Equation (2.211) becomes

R.H.S. = (1 - Z‘Zg)/ (1 - %&TH + <;>2 (62;[{2 _ ) . (2212)

Expanding this last equation up to order (§t)?, we get:

H 1(6t)*H?

This is identical to the Taylor expansion of e=*%" to order §2. Indeed,

27172
pitgp g OH L0

h 2 h

+ O[(6t)*]. (2.214)
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Application: The Cayley approximation described above is used to develop the
Crank—Nicholson scheme to solve the time-dependent Schrédinger equation. This
scheme ensures the conservation of probability over the simulation domain, i.e.,
the integration of the probability density associated over the time-varying wave
function stays constant as a function of time. In other words, the wave function stays
normalized as a function of time if it was properly normalized at time ¢ = 0. The
Crank—Nicholson scheme is studied in detail in Problem 13.6, where the algorithm
to solve the one-dimensional time-dependent Schrédinger equation is described in
full detail for the case of reflecting and absorbing boundary conditions at the ends
of the simulation domain.

Suggested problems

o Using the commutation relations [z,p;] = ik, [y,p,] = ik, and [z,p.] = ik,
show that [L;,L,] = ihL,, where L,, L,, and L, are the components of
the angular momentum L=rx p, the cross product of the position and
momentum of a particle.

e Prove that the exponential operator containing the first spatial derivative
plays the role of a displacement operator, i.e.:

3

(€*22)f(2) = f(z + a). (2.215)

e Let A be a Hermitian operator with a non-degenerate spectrum, i.e., Aln) =
ap|n) with all the a,, being distinct. Prove that any arbitrary function of the
operator can be expressed as

an/I - A
F(A) = ;F(an)ng/ Pra—— (2.216)
where [ is the unit operator. This expansion is called Sylvester’s formula.

e Apply Sylvester’s formula to calculate e® for the cases where the 2x2 matrix
A has the two distinct eigenvalues A1 and Ao, and b is a complex number.

e Apply the results of the previous problem to F(o,) = ¢’ and show that
Sylvester’s formula agrees with Equation (2.123).

e Using F = 7 in Problem 2.11 and the Hamiltonian H =
the Thomas—Reiche-Kuhn sum rule:

Y (Ew = Ew)l(n|fm)|

n

+ V(7), derive

p
2m*

) _ 30
2m*’

(2.217)

e Using F = e'*7 in Problem 2.11 and the Hamiltonian H = 2’7’::* +V(7), derive
the Bethe-Bloch sum rule:

> (Ew — Ew)l(nle™|m) 2

n

h2k>
= om

(2.218)
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e Show that any 2x2 Hermitian operator can be written as a linear combination
of the 2x2 unit matrix and the Pauli matrices.

e Prove that the two eigenspinors |) and [, ) are indeed orthogonal, i.e., in
Dirac’s notation,

(&) =o. (2.219)

o If |4(7)) = ¢1(7)]|0) + ¢2(7)|1) is a normalized state of a spin-1/2 particle,
calculate the probabilities that a measurement of (%/2)o,, will give +1/2F.

e If the wave function of a spin-1/2 electron is not completely known but it is
known to be the eigenstate |0) of o, with probability |c1|? and eigenstate |1)
of o, with probability |ca|?, (with |e1|? + |ca|? = 1), what are the probabilities
that a measurement of the spin component in the n direction will be +1 and
—1 (in units of //2). Check that the sum of these probabilities is unity.

e Using the fact that
(02, 04] = 2i0., (2.220)

calculate the commutator [R;(61), Ry(f2)] where the rotation matrices are
defined as follows: o

Ry(6;) =e "2 (2.221)

and .

s U2
Ry(2) =e7 2%, (2.222)
These operators are very useful to make rotations on the Bloch sphere [2, 4].

e If the state of a spin is given by the qubit
[®) = N[3/0) — i[1)], (2.223)
where |0) and |1) are the normalized eigenstates of the o, Pauli matrix (see
Appendix D), find the normalization constant N of the qubit.

For an ensemble of spins prepared in the qubit state above, calculate the

average value and standard deviation when measuring the component Sy =
n

20y

e For any analytical function f(x) with a Taylor expansion, prove that the
following equality holds:

f0 ) [fw) +2f(—9)} i [f<e> —2f<—e>] . 222

where I is the 2x2 identity matrix. This is a generalization of the identity
proven in Problem 2.14.

e Using the properties of the Pauli spin matrices given in Appendix D, calculate
e’ with 0, = Aoy + poy and A% + p? = 1, when a, A, and p are real.

e All that is known about a spin-1/2 particle is that it is in a state in which

S, = Lo, has the values £2 with probabilities |c1|? and |co|?, respectively,

with [e1|? + |c2|> = 1. What are the probabilities to measure % for the

components of S,, = 25 - 7i?

2
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e For a particle of mass m* subjected to a constant force F,
(1) Show that < p? > — < p >? is independent of time.

(2) Starting with the Schrodinger equation in momentumm space, find a
relation between 2|(pl¢(p))|? and 2| (p|(p))

(3) Integrate the equation obtained in the previous step. Give a physical
interpration to the result of this integration.
e Consider a free particle with mass m* in one dimension.

(1) By applying Ehrenfest’s theorem, show that (z)(t) is a linear function of
time when (p)(t) is a constant.

(2) Derive the equations of motion for (2?) and (zp, +p.2) and integrate them.
(3) Show that the following relation holds:

[Az(H)]? = [Az(t = 0)]* + 752 (Ap)2(t = 0). (2.225)
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Chapter 3: Bound States

The following set of problems deals with one-dimensional bound state calcula-
tions, which can be performed analytically or via the numerical solution of a
transcendental equation [1]. These problems give some insight into more compli-
cated three-dimensional bound state problems whose solutions typically require
numerically intensive approaches.

** Problem 3.1: Bound state in a one-dimensional attractive delta
scatterer

A “bound state” of a potential is, as the name suggests, a state such that if an
electron is in that state, then it is bound to the potential and does not stray too
far away from it. Classically, this would mean that the total energy of the particle
(kinetic + potential) is negative. A quantum mechanical definition of a bound state
is that the wave function associated with that state vanishes at infinite distance
from the potential so that the probability of finding an electron infinitely far from
the potential is zero.

Find the bound state energy and corresponding normalized eigenfunction in
a one-dimensional attractive delta potential (this potential is representative of a
strongly screened ionized impurity scatterer in a solid) expressed as

V(z) = —T4(2), (3.1)

with T' > 0.

Hint:

(a) First, integrate the Schrédinger equation in a small interval around z = 0
and show that the derivative of the eigenfunction ¢(z) has a discontinuity at z = 0.
Determine the value of the discontinuity in terms of T', m*, and ¢(0). Assume a
constant effective mass throughout.

(b) Eigenfunctions describing bound states of a localized potential, i.e., states
whose wave functions decay to zero at infinite distances from the potential, must be
of the form

¢(z) = A_e"* + B_e™™* (3.2)

for z <0 and
¢(Z) = A+e'{z + B+ef’{z (33)

for z > 0. The quantity k is a positive real constant. Ezpress it as a function of
the particle’s total energy E and m*. Remember that for a bound state E < 0 (the
classical definition of a bound state).

Problem Solving in Quantum Mechanics: From Basics to Real-World Applications for Materials
Scientists, Applied Physicists, and Devices Engineers, First Edition.
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What is the general expression for the transmission matriz M defined as follows:

(é)M(g )? (3.4)

Find the explicit expression for the matrix M that will ensure that the bound state
wave function is square integrable. Use this result to derive the expression for the
bound state energy and its corresponding eigenfunction.

(¢) Calculate the width Az (variance) of the wave function associated with the
bound state.

Solution:
(a) Starting with the one-dimensional Schrédinger equation

hZ
—5 9" (2) = T8(2)0(2) = Ey(2), (3:5)

where the superscript ” denotes the second derivative with respect to z, and inte-
grating it on both sides of the delta potential located at z = 0 from z = —e to
z = +e€ leads to:
h2 / / c
—5—[0'(e) = (] —To(0) =E [ ¢(z)dz, (3.6)

2m e

where the superscript / denotes the first derivative with respect to z.

We note from Equation (3.5) that, since ¢’/ (z) has a delta singularity at z = 0,
¢'(2) has a jump discontinuity at z = 0. Hence, ¢(z) is continuous. With £ — 0,
Equation (3.6) becomes
2m*T

7 9(0). (3.7)

¢'(+0) — ¢'(—0) = —

(b) For z # 0 and FE < 0, we rewrite the Schrodinger equation as

2mE
h2

om*E\ V/?
o () as)

where we have taken the positive root.

¢"(z) = - $(z) = —K*6(2), (3.8)

with

With solutions of the form
d(z) =A_e™ +B_e ™™, 2<0; ¢(2) =Are + Byre ™, 2 >0, (3.10)
the continuity of ¢(z) at z = 0 requires

A, + B, = A+ + B+ = ¢(0), (311)
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while Equation (3.7) leads to

K(Ay — By —A_ + B_) = ————(0). (3.12)

Defining the parameter
~ m'T
Rk

we obtain, from Equations (3.11) and (3.12),

(& )=("2" 3% (5) 319

Thus the transmission matrix M is given by:

M = ( 1XA 1;AA ) (3.15)

(3.13)

We search for bound states by insisting that the wave function ¢(z) given by
Equation (3.10) vanishes at z = £oo. This requires

B_=A, =0. (3.16)

This is possible only if 1 — A =0 and A_ = By. Thus

M—((l) _21 > (3.17)

Therefore, there is only one bound state since there is only one allowed value of A.

The corresponding wave function is given by (see Equation (3.10))

$o(z) = Vrge ", (3.18)

where g is found by setting A = 1 in Equation (3.13) and solving for k¢, which
yields

m*I
72

Ko = . (3.19)

The factor /Ko is needed in Equation (3.18) for normalization of the wave
function, i.e., for the probability density integrated over all space to be unity. Indeed,

/ $*(2)dz = Ko / e 2rolzldz = 2k /efz’ﬂozdz =1. (3.20)
AR “0 0
The energy of the bound state is given by
n? d? h2K2 m*I'?
E — —_ — = — 0 = —— .2].
0 <¢0(z) 2m* dz?2 %o (Z)> 2m* 2h2 (3.21)
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Note that the bound state energy is negative. Hence, the quantum mechanical
definition of a bound state, i.e., a state whose wave function vanishes at +oo, is
completely equivalent to the classical definition that it is a state with negative total
energy.

(c) By symmetry, (z) = 0. We obtain easily

(3.22)

Hence, Az = [(,22) _ <z>2}1/2 _ 1

** Problem 3.2: One-dimensional Schrédinger equation in momentum
representation

Derive the one-dimensional Schridinger equation for a particle moving in a one-
dimensional attractive delta scatterer —T'6(z), where T is positive. Solve the resulting
equation for the bound state and show that it agrees with the results of the previous
problem.

Solution: The wave function ¢(p) in momentum space is obtained from a Fourier
transform of the wave function ¢(z) in the spatial representation:

—+oo

o) = Cnt) 2 [ A

— 00

d(p) exp <W> dp. (3.23)

By definition, the one-dimensional delta function can be expressed as

§(z) = (2nh) ! /%o exp <”i’:) dp. (3.24)

— 00

Using the last two equations, we get (using the concept of “convolution”)
—-3/2 oo e ’7 ’ ipz
6(2)¢(z) = (27h) dp dp'é(p —p'exp (| — ). (3.25)
—oo —oo h

Using the preceding results, the one-dimensional Schrédinger equation becomes:

2]:2* $(2) —To(2)6(2) — B (2) (3.26)
= a7 [ :o dp [(;jn )i
*% :o dp'é(p - p’)] exp (”;;) = 0.
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For the last equality to hold, the integrand in the last equation, i.e., the quantity
within the square brackets, must be identically zero. This leads to the Schrodinger
equation in momentum space:

(L -5) 60 - 57 [ bp—sar =0 (3.27)

2m* Lo
The integral in Equation (3.27) can be written as
+oo +oo +oo
| do-piar == [ do-pe-p)=- [ deap=-c, (329)

where, obviously, C' is a constant independent of p since the integration is carried
out over the variable p.

Equation (3.27) therefore has the solution
- rc 1
o(p) = —ﬁi[ﬁ - E} :

2m*

(3.29)

The integral in Equation (3.28) converges only for bound states where ¢(p) goes to
zero at p = oo, i.e., for F < 0.

For F < 0, introducing py such that

P02

E=-— .
= (3.30)
we get O 1
— m
Bp) =~ oy s (3:31)

Using the last result in Equation (3.28), we get

+oo m*TC +oo dp
C= /m oy = =5 [m P*+ po?

rc >
=0 xtan_l(p)‘
hpo 20/ |_o

m*I'C
= — . 3.32
e (3.32)

The solution of the last equation is obviously pg = m*T'/k, leading to the following
energy for the bound state:
p02 m*FQ

Ey = — - 3.33
0= "o on2 (3.33)

which agrees with the result of Problem 3.1.
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**%** Problem 3.3: The one-dimensional double delta potential

Find the bound state energies of a particle of mass m* moving in the one-
dimensional potential with a double minimum potential energy profile approximated
as two attractive delta scatterers separated by a distance a:

V(z) = -T[6(z) +0(z —a)], T' > 0. (3.34)

Solution: The one-dimensional time-independent Schrodinger equation for this
problem is given by:

9" (2) + pé(2)p(2) + pd(z — a)p(z) = K*¢(2), (3.35)
where we have used the shorthand notation
2m*T
=200 (3.36)

and k2 = 72’;72]5 = ngz‘El, for E < 0. As before, a single prime denotes the first

derivative and a double prime denotes the second derivative.

The wave function ¢(z) must be continuous, and its spatial derivative at z =0
and z = a must satisfy the following conditions:

¢(0+) = ¢'(0_) = —6(0) (3.37)
and

¢'(ay) — ¢'(a_) = —pg(a). (3.38)
The solutions of the Schrédinger equation corresponding to bound states are of the
form:

¢(z) = Ae"™*, 2 <0, (3.39)
¢(z) =Be™ +Ce™ ™, 0< 2z < a, (3.40)

and
¢(z) = De™"™*, z > a. (3.41)

The requirements that ¢(z) be continuous at z = 0 and z = a, along with the
boundary conditions in Equations (3.37) and (3.38), lead to the following set of
four equations for the four unknowns A, B, C, and D:

A= B+ C = ¢(0),

Be™ + Ce " = De™ " = ¢(a),
R(B — C — A) = —u6(0),
—De " — Bre™ 4+ Cre™ ™ = —pud(a).

We rewrite these last equations as follows:

A-—B-C=0,
(W—r)A+ KB —rC =0,
Be® 4+ Ce™"* — De™ " =0,
—Bre"™ + Cre ™™ + (u — k) De™ " = 0.
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These four coupled equations can be written in a matrix form:

1 -1 -1 0 A

=K K —K 0 B |
O el»ia e—na _e—/{a C - 0 (350)
0 —kef ke " (u—K)eh® D

Non-trivial solutions for A, B, C, and D exist only if the following determinant is
equal to zero:

1 -1 -1 0
B—K K —K 0 .
det | M o g o = 0. (3.51)
0 —Kef KkeTR (u— K)e R

Writing out the determinant and setting it equal to zero leads to the following
relation:
2 —2ka 2
ue —(n—2K)" =0, (3.52)

which must be solved for k to find the energies of the bound states.

We rewrite Equation (3.52) as

et =+ (1 - 560) (3.53)

by introducing the new variables { = ra and & = & = m;,;gf. The allowed values
of £, and hence the energies of the bound state E, correspond to the intersections

of the exponential curve n = e~¢ and the straight lines

n=1+ (1 - é) . (3.54)

The two curves, n = e~ ¢ and n = —1 + %, will always have an intersection no
matter what the strength I' of the delta potentials is. We call the value of £ at the
intersection &s. The curve n = e~¢ intersects the straight line n = 1 — E% at £ = 0.
This intersection does not represent a bound state since then E = 0.

A second intersection is possible if and only if

d ¢ d_sy__1
2 £:0<d§ (1 ) % (3.55)

i.e., if & > 1. We designate this new solution £5. Next, we study in more detail the
bound states associated with £ and £5. We note that the straight lines intercept
the 1 axis at &. Therefore, since e~¢ > 0, we must have &g > & while &4 < &.

We first consider the solution associated with £g. Introducing the new variable
s= %, Equations (3.46)—(3.49) can be rewritten as

A-B-C=0, (3.56)

A(l-s)+s(B—-C) =0, (3.57)

Be®s +e7%(C - D) =0, (3.58)



54  Problem Solving in Quantum Mechanics

and
—Bse®s + Cse s + (1 — s)De™ s = 0. (3.59)

Once again, we can write the last four equations in a matrix form, set the deter-
minant equal to zero for non-trivial solutions of A, B, C, and D, and find that the
zero determinant condition mandates

e 8 = 1+ 2s. (3.60)
From Equations (3.58) and (3.59), we obtain
C — D = —Bse*s (3.61)

and
D + (C — D)s = Bse*s. (3.62)

Combining Equations (3.61) and (3.62) leads to
D = 25Be?s (3.63)

and
C = (25 — 1)Be*s = Be's. (3.64)

Substituting Equation (3.64) into Equation (3.56), we get
Al —s)+sB(1 —e) =0, (3.65)

or
Ae % —25B =0. (3.66)

Equations (3.63) and (3.66) imply
D = Ae®s. (3.67)

Equations (3.64) and (3.67) lead to the conclusion that the eigenfunction ¢s(z)
associated with &g is symmetric, i.e.,

#s(z) = ¢s(z —a). (3.68)

In fact, substituting Equations (3.64) and (3.67) in Equations (3.40)—(3.41) and

defining kg = %s, we find that the eigenfunctions in different domains of z are given
by:
¢(z) = Ae™rsl (= <0),
$(z) = Be"s* + Be"s(*=0) (0 < z < a), (3.69)
P(z) = Ae rs(z—a) (z > a).

The other bound state exists if & (: mgfr) > 1. For this solution, which we

called &4, we have
et =1-2¢, (3.70)



Bound States 55

where s’ = % In this case, we obtain equations similar to Equations (3.56)—(3.59)

with & and s replaced by £a and s, respectively. We now obtain
C = —Be» (3.71)

and
D = —Aer. (3.72)

These last two relations imply that the corresponding eigenfunction ¢a (z) is anti-
symmetric, i.e.,

oa(z) = —gala— 2). (3.73)
We note that there is always at least one symmetric bound state with energy
ﬁ2KJS2
Eg = — . 3.74
S 2m* ( )

The antisymmetric bound state, when it exists, is less bound than the symmetric
state because kg > KA.

Application: The results of the previous problem can serve as a simple theory of
the binding of two nuclei to form an ionized molecule containing a single electron,
such as Hy . The attraction due to the formation of the symmetric bound state is
opposed by the repulsion of the two ions. The energy associated with the latter is
given by %, where € is the dielectric constant of the medium. Hence, the energy
of the molecular ion Hy is given by

womW Rk mVy R (3.75)
2h2  4mea  2m 2h2  4mea  2ma?
Since &5 is the solution of e™¢ = —1 + g% and &y depends on a, so does &g.

The equilibrium distance a for HJ is obtained when W is a minimum and
binding occurs only if W < 0.

*** Problem 3.4: Bound state of a one-dimensional scatterer at
a heterointerface

We consider the problem of a one-dimensional delta scatterer located at the inter-
face between two dissimilar materials, as shown in Figure 3.1. Find an analytical
expression for the energy of the bound state E* of the delta scatterer and show that
this bound state disappears when the height of the potential step AFE. is equal to
four times the magnitude Ey of the energy of the bound state of the delta scatterer
corresponding to AE. = 0. In Problem 3.1, Ey was shown to be given by

m*I?

Bol= "
|0| 2h27

(3.76)
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Figure 3.1: Illustration of the bound state energy —FE* of a one-dimensional delta
scatterer located at a heterointerface. This energy depends on the magnitude of the
potential jump AFE..

where I is the strength of the delta scatterer. Assume a constant effective mass m*
throughout.

Solution: The Schrédinger equation for this problem is given by

h2
2m*

¢"(2) —T3(2)¢(2) + AEH(2)d(2) = Ed(z), (3.77)

where I is the strength of the delta scatterer and 6(z) is the unit step function (also
known as the Heaviside function).

We seek the bound state solution of this equation, i.e., a solution with negative
energy F.

For z < 0, we have

¢(z) = Ae™*, (3.78)
and for z > 0, )
¢(z) = Be "7, (3.79)
with 1 1
K= ﬁ\/Zm*|E| and k' = ﬁ\/2m*(\E|+AEC). (3.80)
At z = 0, the following conditions must be satisfied:
2m*T
¢'(0+) = ¢'(0-) = ———¢(0) (3.81)
and

¢(04) = ¢(0-). (3.82)
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This leads to the following two equations for the two unknowns A and B:
A=B (3.83)

and P
m

Using Equation (3.83), the latter equation becomes

2m*T
K + K// = 7 (385)

Substituting in the expressions for x and ', we get:

V2m|E| 4+ /2m(|E| + AE,) = ? (3.86)

The magnitude of the bound state energy corresponding to AFE. = 0 is given
* 2
by Eg = % and, squaring Equation (3.86) on both sides, we get

2|E| + AE. + 2¢/|E[(|E| + AE,) = 4E,. (3.87)

Solving for |E| gives the magnitude of the bound state energy E*:

AFE
E*=FE,|1-— °. .
0( 4E0> (3.88)

This last equation shows that the step potential reduces the magnitude of the bound
state energy of the delta scatterer. Furthermore, the bound state disappears when
AE. = 4F).

** Problem 3.5: One-dimensional particle in a box

This is the quintessential problem of bound states in a quantum confined struc-
ture. Consider a one-dimensional potential well with infinitely high barriers located
between z =0 and z = W, as shown in Figure 3.2. Find the allowed energies of an
electron confined within the well and their corresponding wave functions.

Solution: Since the potential is not changing with time, we will solve the time-
independent Schrodinger equation

R d?
2m* d2?

¢(2) + Ec(2)0(2) = E¢(2), (3.89)

where E.(z) is assumed to be constant within the interval [0, W]. Since potential
is always undefined to the extent of an arbitrary constant, we can, without loss of
generality, set the potential equal to zero.
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E.(2)

Figure 3.2: The one-dimensional particle in a box problem. E.(z) = 0 inside the
box in the range [0, W] and is oo otherwise.

The first point to note is that the electron can never penetrate an infinite barrier
and hence the probability of finding the electron outside the well is exactly zero.
Since the probability is the squared magnitude of the wave function, we can deduce
that ¢(z < 0) = ¢(z > W) = 0. Furthermore, since the wave function must be
continuous in space, we obtain the boundary conditions ¢(z = 0) = ¢(z = W) =0,
i.e., the wave function vanishes at the boundaries.

We can write Equation (3.89) as

§ 2

where k = v/2m*E/h. The solution of the above second-order differential equation
is

¢(z) = Acos(kz) + Bsin(kz). (3.91)
Since ¢(z = 0) =0, A = 0; hence, ¢(z) = Bsin(kz).
Now, since ¢(z = W) = 0, the following condition must be satisfied:
Bsin(kW) = 0. (3.92)

The above equation can be satisfied if and only if either B = 0 or kW = nm, where
n is an integer. Making B = 0 will make the wave function vanish everywhere, and
therefore that is not a non-trivial solution. Thus, we must have k = 37, and the
possible wave functions for the particle in a box are:

nmz

¢n(z) = Bsin (W) . (3.93)

We can find B from the normalization condition, i.e.,

w
/O 6 (2)p(x)dz = 1, (3.94)
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which yields B = \/% . Therefore, the particle in a box wave functions are

\/gsin (%) . (3.95)

The kinetic energy associated with each of the allowed wave functions (i.e. for
various values of the integer n) is found by evaluating the expectation value of the
kinetic energy operator with the corresponding wave function, but there is a much
simpler way. Since k = v2m*E/h and k = 7, we get directly that

Pn(2)

B , h2m?

* Problem 3.6: Lowest bound state energies of an impurity located in a
one-dimensional quantum well [2, 3].

We consider the problem of a one-dimensional attractive delta scatterer (i.e., a
scatterer with a negative potential) located in the middle of a one-dimensional box
of size W, as shown in Figure 3.3. It is assumed that E.(z) is 0 in the interval
0 < z < W and co outside the box. The effective mass m* of the electron is assumed
to be constant throughout.

Find the two lowest bound states of this problem, one with negative energy and
one with positive energy. The former can be considered as a modification of Prob-
lem 8.1 in which the energy of the delta scatterer is modified because the impurity is

E.(2)

c

—l"é(z—%/)

Figure 3.3: Bound state problem for a one-dimensional attractive delta scatterer in
the middle of a box of size W with infinite barriers, i.e., E.(z) = oo outside the
box.
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located in a finite box. The latter is obtained as a modification of the ground state
of a particle in a box due to the presence of the attractive delta scatterer.

Solution:
Case a: Bound state with positive energy: The solution of the Schrodinger
equation for a particle in a one-dimensional box is one of the simplest problems in
quantum mechanics. As shown in the previous problem, the wave functions of the
eigenstates are given by
2 nwz
z) =14/ —=sin|—), 3.97

énl2) = [ 7-sin (7 (3.97)
where n is an integer (n = 1,2,3,...) and W is the width of the box. The corre-
sponding eigenenergies are given by

h2m?

2
By=n’s . (3.98)

The presence of the delta scatterer will lower the energy of the ground state Fj
below the value given by Equation (3.96).

To find the new bound state with positive energy, we write the solutions of the
Schrédinger equation inside the box as follows:

¢1 = Asin(kz) for z < W/2, (3.99)

and
¢2 = Bsin[k(W — 2)] for z > W/2, (3.100)

where k = %\/2m*E, FE being the energy of the new bound state with positive
energy. Note that since E is positive, k is real.

At z = W/2, the wave function must be continuous. Hence, we must have
P1(W/2) = ¢2(W/2), leading to A = B.

Inside the well, the Schrodinger equation is given by

—:—md’(z) -T6 (z - V;) 6(2) = Eo(2). (3.101)

Integrating this equation from from W/2 — e to W/2 + ¢, with € — 0, we get

¢ <2/+> —¢ (V2V> - —%;gaﬁ <2/> . (3.102)

Using the expressions of the wave functions to the left and right of the delta scatterer
given above, this last equation becomes

2m*T

—kBcos(kW/2) — kA cos(kW/2) = —TA sin(kW/2). (3.103)
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Since A = B, we get

kW T kW
The bound state energies for E > 0 are therefore solutions of the transcendental
equation

kW EW
tan (2> = k02W’ (3105)
2
where we have introduced the quantity
m*T

The solutions of this transcendental equation must be obtained graphically (see
the list of suggested problems). Since the trigonometric function tan has multiple
branches, there are many bound states as long as the straight line given by the
right-hand side of Equation (3.105) intersects those branches. There is always an
intersection with the lowest branch for k = 0, which corresponds to a bound state
energy with zero energy. This special case is examined further in Problem 3.11.

Case b: Bound state with negative energy: We seek solutions to the bound
state problem with £ = —|E| < 0. In this case, since F is negative, k would be
imaginary and hence the wave functions are not described by sine functions.

For z < %, we must have
¢(z) = Ae™ 4 Be™ "%, (3.107)
For z > %, we must have
¢(z) = Ce™ + De™ "%, (3.108)

with £ = +./2m|E].

Continuity of ¢(z) at z = % requires

Ae™* + Be 7 =(Ce* 4+ De 7. (3.109)
Equation (3.102) implies
(/{Ce% —kDe ) — (HAG% — ﬁBe_;W>
_2 F K —K
- TZL (AeT + Be QW) . (3.110)
In addition, we must have
$p(z=0=A+B=0 (3.111)
and
o(z=W) = Ce"™ + De "W = 0. (3.112)

These last four equations give us four equations with four unknowns (A, B, C, D).
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We eliminate B and C by rewriting Equations (3.111) and (3.112) as follows:

B=-A (3.113)
and
D = —Ce*W. (3.114)
Plugging these last relations into Equation (3.109) leads to
1—eW
A=C|— 3.115
<1 _ enW) ’ ( )
and Equation (3.110) becomes
W 3rW. W —kW er KW —kW
kCe 2 +rCe 2 =A /1((32 +e 2 )— 2 (e2 —e 2 ) . (3.116)

Finally, using Equation (3.115), we get

_ kW 3
K/e%c (1 + eKW) = C (:ll_(iﬁvv) e%

X {n (14+e"") — 22? (1- e“W)] : (3.117)
which simplifies to
k(14+e™) = (e —1) <n - 2;:;) : (3.118)

A few extra steps finally lead to the transcendental equation for the bound state
with negative energy:

k[1+

3.119
tanh (%) h? ( )

1 ] _2m'T

For large values of W, the solution of this equation is k = mh—?, implying that the
magnitude of the energy of an attractive delta scatterer is equal to %1;2, as derived

in Problem 3.1.

An explicit solution of the transcendental Equation (3.119) is considered in a
suggested problem at the end of the chapter.

** Problem 3.7: Bound states of a finite quantum well or
a one-dimensional square well potential of finite depth [4—7]

This problem is frequently dealt with in most entry-level classes in quantum mechan-
ics and is covered here for the sake of a comparison with a solution to the same
problem obtained using the transfer matriz technique to be discussed in Chapter 7.
The purpose is to show that the transfer matriz approach leads to a less cumbersome
derivation of the final results.
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E.(2)

Figure 3.4: A one-dimensional potential well with E.(z) equal to zero in the interval
[0, W] and AE, outside.

Find the bound state energies of the one-dimensional potential well of depth
AFE. and width W as shown in Figure 3.4. Use the bottom of the well as the zero of
energy. Assume a constant effective mass m* of the electron throughout.

Solution: We seek solutions of the Schrodinger equation for all z with E < AE..
The solution of the Schrodinger equation in region I (2 < 0) which vanishes at —co
(i.e., corresponds to a bound state) is given by

o1(z) = Ae™ ", (3.120)
with & = +1/2m*(AE. — E). In region II (z < W), it is
¢11(z) = Bsin(koz) 4+ C cos(koz), (3.121)
with ko = +v2m*E, and, in region III, it is
¢mi(z) = De™ ™. (3.122)

Matching ¢ and % at z =0 and z = W, we obtain the four equations

A=C,
Arx = koB,
Bssin (kgW) + C cos (kgW) = De "W |
Bk cos (kgW) — koC'sin (koW) = —Dre™ "W (3.123)
Using the last two equations, we get
Bsin (kW) + C cos (koW) = —B% cos (koW') + k—le’sin (koW). (3.124)

Expressing C' as a function of B using the preceding equations, we get

Bsin (koW) + 2 (’i?) B cos (kgW) = (’?)zsm(koW) B. (3.125)
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Multiplying both sides by kOLB, we finally obtain

2 cos (koW) + {: — ko] sin (kW) = 0, (3.126)
0 K
or .
K
2 cot (koW) = (; - k()) . (3.127)

This is a transcendental equation that must be solved numerically for E. The bound
state energies are the solutions of this equation which satisfy the condition £ < AFE..
The problem of finding the bound state of a symmetric square well is often solved by
considering solutions which are either odd or even with respect to the center of the
well, since, according to the results of Problem 3.5, this problem has non-degenerate
solutions with even and odd parity. The transcendental Equation (3.127) covers
both types of solution. The equivalence of the two approaches has been analyzed
extensively in the literature (see list of references).

** Problem 3.8: Approximate solution for the lowest bound state of
a finite one-dimensional quantum well, i.e., a well with finite barrier
heights [8]

In the previous problem, we showed that finding the bound state energy levels in
a one-dimensional square well potential of finite depth requires the solution of a
transcendental equation. Hereafter, a simple physical argument is given to obtain
the approzrimate ground state energy of a finite square well starting with the well-
known results for the one-dimensional particle in a boz.

First, calculate the penetration depth of the wave function in one of the barriers
on the side of the well as follows:

5= N? / dzze 2r% (3.128)
0

where N s the normalization factor required to normalize the wave function. Cal-
culate N assuming that the well width is negligible and use this result to find §. The
latter is an estimate of the penetration depth of the wave function in the regions
outside the well.

Next, calculate the energy of the ground state by using the particle in a box
result and replacing the well width W by W + 2§, where 2§ accounts for the decay
of the wave function on either side of the well.

Solution: Neglecting the thickness of the quantum well, the normalization coef-
ficient is found from
2

0 ) oo
N
1:N2/ ezmdz+N2/ e’2’“’dz:2N2/ e 2 dy = — (3.129)
0 0

oo

leading to N? = k, with & = +/2m*(AE, — E). This leads to § = % =L,
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Using the expressions for the energy levels of a particle in a box, the energy
levels in the well with finite barrier heights are approximated as

B n?h2n? B n?h2n?
T2mE (W4 20)2 g (W + i)Q’

(3.130)

with £ = }1/2m*(AE. — E}). The last equation is an equation for E;; that must
be solved iteratively.

* Problem 3.9: Features of the wave function of an eigenstate in a finite
one-dimensional quantum well

Someone solved the Schridinger equation in the one-dimensional potential well
shown in Figure 3.5 and plotted the wave function of the fifth excited state (which
is the sizth eigenstate) as shown. Explain why this solution cannot be correct even
qualitatively. Think of as many reasons as you can.

Solution: There are many errors:

e The amplitude of the wave function is larger to the right, implying that there
is a higher probability of finding the electron to the right than to the left.
However, the potential is deeper to the left and hence the electron will tend
to be localized to the left and the amplitude should decrease as we go from
left to right.

e The wave function has more wiggles (or higher-frequency oscillations) to the
right. This means that the second derivative of the wave function is larger on
the right. Since the kinetic energy is proportional to the second derivative,
it appears that the electron will have higher kinetic energy (and hence lower
potential energy) on the right since the total energy (kinetic + potential) is

Figure 3.5: Erroneously calculated spatial variation of the wave function of an
excited state in a one-dimensional heterostructure.
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constant in an eigenstate. However, the potential energy is higher on the right.
Hence the wave function should have had more wiggles on the left and fewer
on the right.

e The penetration of the wave function into the left barrier is more than that
into the right barrier. This is not possible given that the left barrier is taller
than the right barrier.

e The first derivative of the wave function is discontinuous at the right, which
is not permitted.

e The wave function has seven nodes. The number of nodes of the nth eigenstate
should be n — 1, which means that the wave function of the sixth eigenstate
should have five nodes and not seven.

** Problem 3.10: Zero-energy bound states in a quantum well [9]

Show that the Schrodinger equation for a particle in a box of width W containing
a repulsive delta scatterer T'6(z — zg) allows a bound state with zero energy. Derive
the relation between the parameters I', W, and zo for that bound state to exist.
Determine the expression of the normalized wave function associated with this bound
state.

Solution: A zero-energy state corresponds to a wave function satisfying the
Schrodinger equation

h2
—%qb”(z) —T6(z — 20)9(z) = 0. (3.131)
A solution of that zero energy state corresponds to a wave function of the form
¢(z) = az for z < zg (3.132)

and
d(z) = (W — z) for z > zo, (3.133)

where a and 8 can both be taken positive.

At z = zp, the wave function must be continuous, and integrating Equa-
tion (3.131) from z = zp — € to z = zp + € (e — 0) leads to

h? _
o [9/(20%) — ¢ (207)] = ~2kod () (3.134)
where we have introduced the quantity kg = "};F .

This last relation, together with the continuity of the wave function at zg, leads
to the following equations for o and 3:

azg— (W —29) =0 (3.135)
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and
a(l —2kozo) + 3 =0. (3.136)

We write these coupled equations in matrix form:

20 20— W o |
1 — 2oz 1 ] [ 3 ] =0. (3.137)

For non-trivial solutions of a and 3, the determinant of the 2x2 matrix above should
vanish, which leads to the following solution for kg:

W
ko 22’0(W - Zo) (3 38)

This establishes the relation between the strength I' of the delta scatterer and the
parameters zg and W for the existence of the zero-energy bound state.

The normalization of the associated wave function requires

zZ0 w
/ o?22dz + / B(W — 2)%dz = 1. (3.139)
0 20

Using Equation (3.135) to relate 8 to « in the above equation, we get

zZ0 w
a? V z2dz+z§/ dz] =1, (3.140)
0 zZ0

31
WZO

B= fW_ZO (3.141)

The results of this last problem can be used to establish a correspondence
between Poisson and Schrodinger equations [10].

which yields

*** Problem 3.11: Bound states of a quantum well in a semi-infinite
space

A particle of mass m* mowves in the one-dimensional conduction band energy profile
shown in Figure 3.6. Find the energy of the bound states and their corresponding
wave functions. Compare your results to those for a potential well of the form

Eo(2) = —AE, (3.142)

for z < [W| and E.(z) = 0 otherwise. Determine the number of bound states as a
function of the well parameters AE. and W.
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E. (2)

-AE,

Figure 3.6: A one-dimensional potential well in a semi-infinite space.

Solution: The Schrédinger equation for this problem is

¢"(2) = —a2¢(z) for 0 < z < W, (3.143)
¢"(2) = B*¢(2) for z > W, and (3.144)
¢(z) =0 for z <0, (3.145)

where the following quantities were introduced:

2m* 1/2
o= [ 2 (E+ AEC)} , (3.146)
om*E\ /2
INETN o1em

which are both real for bound states.
Since ¢(z = 0) = 0, bound state solutions with —AE. < E < 0 are of the form
¢(z) = Asin(az) for 0 < z < W (3.148)
and

#(z) = Be P for z > W. (3.149)

Enforcing the continuity of ¢(z) and ¢'(z) at z = W, we get the following two
equations:
B = A’ sin(aW) (3.150)

and
BB = — AW o cos(aW). (3.151)
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Introducing the variables £ = aW and n = W, we can combine and write the last

two equations as
e’sin{ -1 Al
[ e 177472 o150

The requirement that non-trivial solutions exist for A and B dictates that the
determinant of the 2x2 matrix vanishes, which results in the following relation:

Ecoté = —n. (3.153)

In addition, using Equations (3.146) and (3.147), it is found that the two variables
& and 1 must also satisfy the relation

& +n? =2m*W?AE,/h?. (3.154)

The bound state solutions can be obtained by solving the last two equations simul-
taneously for 7 and £. One approach for accomplishing this is to plot the last two
equations in the (£, 7) plane.

The intersection(s) of the circle given by Equation (3.154) and the different
branches associated with Equation (3.153) correspond to the bound state solutions.
The larger the value of W2AE,, the larger will be the radius of the circle, leading
to more possible bound states.

If AE. < there is no bound state.

8m W2’

If - *WQ < AE. < there will be one bound state only.

2m VV27

It is easy to show that the number of bound states is the largest integer less
than

2 [om*W2AE\"?
(mW) (3.155)

T h2
The solutions discussed above are identical to the odd solutions of the potential
energy profile given by E.(z) = —AFE, for —W < z < W and E.(z) = 0 otherwise.
Indeed, for this problem, the odd solutions satisfy the same equations as in this
problem for z > 0 with ¢(0) =

* Problem 3.12: Coupled finite wells

Consider two identical square wells of finite depth separated by a distance 2z, as
shown in Figure 3.7. The wells are well separated, but still allow some overlap
between the wave functions of the ground states in each well. These are called
“coupled wells.” The depth of each well is Vi, and the width of each well is W.
Let the ground state in each isolated well have an energy Ey. Find the energies of
the ground and first excited states in the coupled well system.
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Figure 3.7: Two coupled finite square wells, each of width W.

Solution: The time-independent Schriodinger equation describing the coupled
well system is
R d2y(z)
2m  dz?

+ V(2)Y(z) = EY(2). (3.156)

The potential V' (z) can be written as the sum of the potentials associated with

each well:
V(z) = Vi(2) + Va(2). (3.157)

Since the wells are well separated, the coupling is weak and the wave function
of the lowest energy state can be written as a linear superposition of the ground
state wave functions in each isolated well:

P(z) = C161(2) + Caga(2), (3.158)
where the ¢; are the ground state wave functions in isolated wells 1 and 2.
Substituting Equation (3.158) in Equation (3.156), we get
12 d2:(2)
2m  dz?
h? d%¢q(z

e SR OO BEAACIN®
= E[C191(2) + Cag2(2)] - (3.159)

q[ +m@muﬂ+@ww@@

Note that the term within the first square bracket on the left-hand side is
nothing but E;¢1(z), while the term within the second square bracket is Eopo(2),
where E; and F, are the ground states in the two isolated wells.

Therefore, the last equation can be written as

C1E1¢1(2) + CoVa(2)d2(2) + CoEaga(2) + C1Vi(2)d1(2)
=F [Clq’)l(z) + Cg(bz(z)] . (3160)

If we multiply the last equation throughout by ¢7(z) and integrate over all z
from —oo to o0, we will get

ChE1 +C1A+CyE;B + CeD = ECt + ECQB, (3161)
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where we used the fact that the wave function in normalized, i.e., ffooo o7 (2)
¢1(z)dz =1, and

a= | " 1) Va(2)bn (o),
5- [ " G1(2)(2)dz,

D= /jo ¢1(2)V1(2)p2(z)dz. (3.162)

It is easy to see that if we multiply Equation (3.160) throughout by ¢3(2)
instead of ¢(z) and integrate over all z from —oco to 400, we will get

CyE5 + 0214/ + ClElB, + ClD/ = FECy + EClB,, (3163)

where

a= " 3 ()Vh(2)ba()dz,
= [ s

D' = /jo 05(2)Va(2)1(2)dz. (3.164)

Since the two wells are identical, A = A’, B = B’, and D = D’. Furthermore,
By = Ey = Ey.

We can rewrite Equations (3.161) and (3.163) in matrix form:

Eo—-E+A BE,—E)+D 1[0 ]
{B@b—E+D Fo-E+ A o | =0 (3.165)

For non-trivial solutions of C'; and C5, the determinant of the 2x2 matrix must
vanish; hence, we obtain

[Eo — E+ A)® = [B(E — Ey) + D]?, (3.166)
or

Eo+ 4=L  (ground state)
E::{ =5 (3.167)

Ey + ’;‘:—g (first excited state).
We can calculate the quantities A, B, and D. The wave functions in the isolated
wells can be written as (check that they are normalized)

br(z) = § 2VEETH) (2 < —z)
7 2y/memET20) (2> —z)

2\/ReFE20) (2 < 2)

¢ﬂz%:{ om0 (2> z0). (3.168)
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The quantity x can be approximately related to Ey (see Problem 3.9) as

7h

W+ k)2 = .
i/ 2mEq

(3.169)

With these wave functions, the integrals in Equation (3.162) can be evaluated;
this is left as an exercise for the reader.

* Problem 3.13: Solution to the Schrodinger equation in a triangular well

Calculate the energy levels of an electron in a one-dimensional triangular well due to
a constant electric field present for z > 0 (see Figure 3.8). Assume that E.(z) = 0o
for z <0.

Solution: We start with the one-dimensional Schréodinger equation

sz* 6(2) + Ec(2)6(2) = E¢(2), (3.170)

with E.(z) = qEez, where Eq is the constant electric field for z > 0 and ¢ is the
magnitude of the charge of the electron.

We first rewrite the Schrodinger equation as

2m*

5(2) = 22 (qBaz — E)é(z) = 0. (3.171)
Next, we introduce the new variable ¢ such that
2m*
Cé- = F(qulz — E), (3172)
E. (2)
o E, q B,z
El
z
0

Figure 3.8: A triangular quantum well formed by a constant electric field Eg in the
region z > 0. E.(z) = oo for negative z. The quantity ¢ is the magnitude of the
charge of the electron.
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where C' is an undetermined constant. Making use of this substitution, the
Schrodinger equation becomes

d? 2m*qEa\
ee-c <h§1> £6(¢) = 0. (3.173)
If we select 23
¢ = (thgEl> ; (3.174)
the Schrodinger equation reduces to
d2
— (&) —&§9(§) = 0. (3.175)

dg

The solution of this equation which does not blow up at infinity is proportional to the
Airy function Ai(—¢) [11]. If we further require that the wave function must be zero
at z = 0, then a solution to the Schrédinger equation exists only if Ai(¢(z = 0)) = 0.
Because of our choice of C, we have

2m*qFEe 1/3 E
= — — . 1
£ ( = ) z o (3.176)

The first zero of Ai(—¢) is for —§ = —2.41, which leads to the following relation for
the energy of the ground state in the triangular well:

h2q2E612 > Y3

E, =234
! 3( 2m*

(3.177)

The next two energy levels are found using the next two zeroes of the Airy function:

h2 2Ee 2y 1/3
By = 4.09 (gm1> (3.178)
and 18
hq*Eq’
B3 = 5.52 (gml> (3.179)

Matlab code to generate the lowest energy levels in the triangular well is given in
Appendix G.

* Problem 3.14: Degeneracy in a two-dimensional electron gas

Consider a rectangular two-dimensional electron gas as shown in Figure 3.9. What
should be the relation between L, and and L, to guarantee that no two energy
eigenvalues are degenerate? Assume hard-wall boundary conditions, i.e., the poten-

tial barriers confining the two-dimensional electron gas on all sides are infinitely
high.
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< Ly —m—

Figure 3.9: The two-dimensional particle in a box. FE.(z,y) = 0 in a box of size
L, x L, and equal to oo outside the box.

2 2
Solution: The energy eigenstates are E,, , = B2 [(?) + (%) ] . Therefore,
x y

2m*

degeneracies occur when

(E) ) -2 () e

We recast the last equation as follows:

L, [m+m)(m-m') [MM
LT;‘% =) VNN (3151

ie., L,?/L,* = P/Q, where P and Q are integers.

Therefore, to eliminate all degeneracies, we have to ensure that the ratio
L,? /Ly2 cannot be expressed as a rational number. For instance, one can choose
L,?/L,* = v/2 (which is an irrational number), leading to L, /L, = 2'/4.

** Problem 3.15: Subband population in a cylindrical quantum wire

Consider a cylindrical InSb nanowire (or quantum wire) of diameter 50 nm. The
effective mass of electrons in InSb (m*) is 0.0145 times the free electron mass of
9.1 x 103! kg. Find the energies of the three lowest eigenstates (also known as
subbands) in the conduction band of the nanowire. What fraction of the electrons
in the wire occupies the lowest subband at room temperature if the Fermi level is
100 peV above the lowest subband?
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Solution: We have to first solve the time-independent Schrédinger equation in
cylindrical coordinates:

R LO (20002 | 1P00.2) | 000.2)
2m* | r Or " or 72 002 022

where ¥(r,0,z) is the wave function, r is the radial coordinate, 6 is the polar
coordinate, and z is the axial coordinate (along the nanowire axis).

The solution of this equation subject to the condition V (r,0,z) = 0 for r < D/2
and V(r,0,z) = oo for r > D/2 (D is the wire diameter) is [12]

Yok, (1,0,2) = NJp, (kjmmr)eimeeikz'z, (3.183)

where J,,, is the Bessel function of the mth order, N is a normalization constant,
and k, is the wave vector along the nanowire axis. The energy eigenstates are
given by

h2
2m*
The boundary condition dictates that the wave function vanishes at r = D/2. This
means that we will have to set ko, D/2 equal to the zeros of the Bessel function for
m = 0 to find the allowed values of kg ,,. For D = 50 nm, we get

Epp = (kmn” + k7). (3.184)

ko1 =9.6x10"m™, (3.185)

koo =2.2x10%m™*, (3.186)
and

koz =3.5x108m™'. (3.187)

The subband energy bottoms are found by setting k, = 0 in Equation (3.184).
This yields the energies of the three lowest subbands as

72k 12
Eo1 = =2 — 0.9ksT, (3.188)
2m*
h2kg o>
Epo = =02 _ 48kpT, (3.189)
2m*
and ) )
K2k
Eos = ——2 = 12.1kgT, (3.190)
2m*

where kT is the thermal energy at room temperature, i.e., 4.186 x 10~2! joules.

The probability of an electron occupying any energy state (at equilibrium) is
given by the Fermi-Dirac occupation probability 1/[e(F=Fr)/kT 1 1] where Ey is
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the Fermi energy, which is 100 ueV or 3.8 x 1072 kgT above the lowest subband
energy.

The probabilities of finding electrons in the first three energy levels are deter-
mined by the Fermi level placement, which yields

Eo1 — Erp = —3.8 x 1072 kpT, (3.191)
Eo2 — Er = 3.8962 kpT, (3.192)

and
Eo3 — Ep = 11.1962 kpT. (3.193)

The corresponding occupation probabilities are given by

1

1
and )
— — -5
p(Eo3) = ey~ LT X 107 (3.196)

We are interested only in the electrons in the conduction band and seek to find the
relative subband populations in the conduction band alone. Therefore, the fraction
of electrons in the lowest subband is given by (neglecting the contributions of the
fourth and higher subbands):

p(Eo.1)
(Eo,1) +p(Eo2) + p(Eo,3)

Therefore, 96% of the electrons in the InSb nanowire occupy the lowest subband at
room temperature.

F(Eoy) = . = 0.96. (3.197)

Suggested problems

e Consider an electron of effective mass m* trapped in an infinite one-
dimensional potential well, i.e., E.(z) = oo for |z| > W and E.(z) = 0
for |z| < W.

(1) Derive the expressions for the energy eigenstates in momentum space.
Consider the cases of even and odd solutions separately.

(2) Using the previous results, derive analytical expressions for the momentum
probability distributions for both even and odd eigenstates. Make sure these
expressions are normalized.

(3) Determine the location of the maxima in the momentum probability
distribution functions of the even and odd eigenstates. Show that the values
of the momenta associated with these maxima are solutions of transcendental
equations. Write the transcendental equations for both even and odd eigen-
states.
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Using the results of Problem 3.5, find the lowest bound state with positive
energy inside a quantum well of width 100 A containing an attractive delta
scatterer in its center whose strength is such that k°2W = ngF = /2. How
does that energy compare with the ground state energy of the well without
the delta scatterer? Plot the probability densities of the ground state of the

particle in a box, with and without the delta scatterer.

Starting with the results of Problem 3.5, show that the lowest symmetric

bound state, i.e., with no node in the wave function, with non-zero positive

I' exists only if the following condition is satisfied for the strength of the
attractive delta scatterer:

m*I'? 8

R

where Fj is the ground state energy of the particle in a box problem.

Ex, (3.198)

Write Matlab code to calculate the lowest positive bound state energy level
of a box containing an attractive one-dimensional delta scatterer of strength
I' = 5eV-A located in the middle of a well as a function of the well width W,
for W varying from 50 to 200 A.

Repeat Problem 3.5 if the attractive delta scatterer is located at an arbitrary
zp value between 0 and W. Derive the transcendental equation that must be
solved to find the lowest bound states with negative and positive energy.

Consider a repulsive one-dimensional delta scatterer with (positive) strength
[ located at a distance L from an attractive scatterer —I'16(z) (positive I'y).
Study how the bound state energy of the attractive scatterer is affected by
the presence of the repulsive scatterer. Write Matlab code to study the bound
state energy dependence on the distance L and the strength I'; of the repulsive
scatterer. Does a bound state exist for I'y = —I'y independent of the length
L?

Use the results of Problem 3.7 to calculate the energies of the two lowest
bound states in a quantum well of depth 0.3eV and width 50 A. Assume a
constant effective mass m* = 0.067mg throughout. Compare the values with
the result obtained by solving the transcendental Equation (3.130) derived in
Problem 3.9.

Consider the particle in a box problem shown in Figure 3.10 and assume that
the electron has a constant effective mass.

(1) Write the Schrédinger equation in regions I and II. Consider the case where
the total energy of the electron is either below or above the height of the step
AE,.

(2) What boundary conditions must be satified at z =0, z = L/2, and z = L?

(3) Using the above results, write down the set of simultaneous equations
that must be solved to find the coefficients in the solutions to the Schrédinger
equation (i.e. the expressions for the wave functions) in regions I and II.
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Figure 3.10: The bound state energy —E™* of a one-dimensional delta scatter located
at a heterointerface depends on the magnitude of the potential jump AFE..
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Chapter 4: Heisenberg Principle

This chapter starts with three different proofs of the generalized Heisenberg uncer-
tainty relations, followed by illustrations of their application to the study of some
bound state and scattering problems, including diffraction from a slit in a screen
and quantum mechanical tunneling through a potential barrier.

** Problem 4.1: The Heisenberg uncertainty principle

For any two Hermitian operators that do mot commute, the standard deviations
of the observables A and B obey the following generalized Heisenberg uncertainty
relation:

AAAB 2 (4, B]), (11)

where AA = /(A2) — (A)?2 and AB = \/(B?) — (B)? are the standard deviations

of A and B, respectively; the averages (or expectation values) are taken over the
state |@) of the system, and [A,B] is the commutator of the two operators A and B.

Solution: We give three separate proofs of the inequality in (4.1).

(a) First proof [1]

This proof is based on the following lemma:
Preliminary: Show that for any operator A, (ATA) > 0.
Indeed, (ATA) = [ ¢*ATA@d37 = [(Ag)* Apd3F = [ |Ag|?d®7 > 0.

Next, consider the operator A + i\B, where A is a real number. Based on the
previous result, we can conclude that the function

fO) = (A4 iAB)T (A4 iAB))
= (ATA) +iN(ATB) —i\(BTA) + \2(B'B)
> 0. (4.2)
Since A and B are Hermitian operators, AT = A and B = B. Hence,
FON) = (42) + X2(B2) + iA([A, B)) > 0. (4.3)

By differentiating the above function with respect to A and setting the result equal
to zero, we can show that the minimum of f(\) occurs for
i {[A, B])

Amin = _5 <B2> . (44)

Problem Solving in Quantum Mechanics: From Basics to Real-World Applications for Materials
Scientists, Applied Physicists, and Devices Engineers, First Edition.

Marc Cahay and Supriyo Bandyopadhyay.

©) 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd. 80
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Note that the expectation value of the commutator of Hermitian operators, such as
([A, B]), is typically imaginary, and hence Ay, is real.

Substituting this value into Equation (4.3) leads to

2 2
b = a7y LUATD A CAPDY w5
Hence,
(4%)(B%) > —{[4, B])* (16)

Note again that the right-hand side of the above inequality is a positive quantity
since ([A, B]) is imaginary.

Next, we define the new Hermitian operators
0A=A—(A)I (4.7)
and
0B=B—(B)I, (4.8)

where [ is the identity operator. Then, since the average or expectation value of an
operator is a number and its product with the identity matrix commutes with any
operator, we get that

[5A,6B] = AB — BA = [A, B]. (4.9)

Hence,
([04,6B]) = ([A, B]). (4.10)

From Equation (4.6), we get
(FAP)(GB)?) > — (54, 6B)) (411)
It is easy to show that ((§A4)%) = (AA)? and ((6B)?) = (AB)?. As a result,

(AA(AB)? > —i([AB])Q. (4.12)

Finally, since (A, B) is imaginary, its square is a negative quantity and hence
we get

(AAZ(AB)? > 2

> 4, B, (413)

or

AAAB > % (A, B])|. (4.14)
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(b) Second proof [2]

For any two Hermitian operators A, B associated with physical observables, the
average value of the product AB in a quantum state |¢) will be some complex
number (p|AB|¢p) = x + iy, where z, y are real.

Since AB is Hermitian, (¢|BA|¢) = — iy and the following equalities hold:
(¢l[A, Bl|¢) = (¢|AB|¢) — (¢|BA|¢) = (x + iy) — (z — iy) = 2iy (4.15)
and
(¢{A, B}|¢]) = (¢|AB|¢) + (#| BA|p) = (z + iy) + (x — 1y) = 2z, (4.16)

where the square brackets denote commutator and the curly brackets denote anti-
commutator.

Hence,

(6][A, Bllo))? + |{6[{A, BYo)|* = 4(2® + 4?)
= 4[(¢|AB|¢)|* = 4](s| BA|p)|*, (4.17)

where we have used the fact that (¢|AB|¢) = x + iy and (¢|BA|¢) = x — iy.
Using the Cauchy—Schwartz inequality
[(v]w)|* < (v|v) {w|w), (4.18)
with |v) = Al¢) and |w) = B|¢), we get

(GlABI9)* < (9|4°10) (6] B%|9), (4.19)
which leads (using Equation (4.17)) to
(GI[A, Bllo)|” < 4(6lA%|0) (4| B2|6). (4.20)

Using the definition of the standard deviation associated with the measurement
of an observable M, and defining two new operators C' and D such that

C=A-(4), D=B-(B), (4.21)
we get
(C) =0, AC =/(C?) =/ (A2) — (A)? (4.22)
and
(D) =0, AD = +/(B?) = AB =+/(B?) — (B)?. (4.23)
Furthermore, [A, B] = [C, D] and therefore the inequality (4.20) can be rewritten as
scaps LAIC.DlB1 o

This is the generalized form of the Heisenberg uncertainty principle.
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(¢) Third proof

The next derivation is based on the following lemma [3].

Preliminary: For any Hermitian operator A and any quantum state |¢), the
following identity holds:
Alg) = (A)[¢) + AA|gL), (4.25)

where |¢), |¢1) are normalized vectors, <¢L|¢>) =0, i.e., |¢p1) is orthogonal to |®).

Also, (A) = (¢|Alp) and AA = /({A?)

It is always possible to make a decomposition A|¢) = a|¢) + B|dL).

Then (9|Alg) = (¢](al¢) + Bl¢1))), leading to a = (A) and (p|ATAl¢) =
(A9]Ad) = ((a(o] + B{oL])I(ald) + Bl¢L))), leading to § = AA.

This last relation can now be used to give an alternate derivation of the Heisen-
berg uncertainty relations. Consider two Hermitian operators A and B; then the
following relations hold:

Alg) = (A)|d) + AAlpL a) (4.26)

and
Bl¢) = (B)|¢) + AB|¢1,B), (4.27)

where (¢, a|¢) =0 and (¢, p|$) = 0 because of the orthogonality.

Multiplying the Hermitian conjugate of Equation (4.27) by Equation (4.26),
and using the Hermiticity of B, we get

(¢|BA|¢) = (B)(A) + ABAA(¢L Bl¢L a)- (4.28)
Similarly,
(p|AB|¢) = (A)(B) + AAAB( B)- (4.29)
Substracting Equation (4.28) from Equation (4.29) leads to
([A, B]) = 21AAABIm((¢1,B|¢1,4)), (4.30)

where Im stands for the imaginary part.

Since the two vectors are normalized, a simple application of the Cauchy—
Schwartz inequality leads to

Im(é 1 al¢L,B)| < 1. (4.31)

Together with Equation (4.30), this leads to

AAAB > - |<[A B, (4.32)

which is the standard form of the generalized Heisenberg uncertainty principle.
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Interpretation of the Heisenberg uncertainty principle: From a practical
standpoint, the meaning of the inequality (4.32) is the following:

(a) We must first prepare a physical system a large number of times (or ensem-
ble) in state |¢).

(b) Then, perform measurements of the observable A on a fraction of the
ensemble and of the observable B on the rest of the ensemble.

(¢) When a meaningful number of measurements have been performed so that
a standard deviation of these measurements can be calculated, the experimental
results for the standard deviation AA of the measurements of the observable A and
the standard deviation AB of the measurements of the observable B will satisfy the
inequality

aas » [GIABIO]

(4.33)

* Problem 4.2: Heisenberg uncertainty principle and diffraction patterns

Consider a beam of particles of momentum p incident normally on a screen with a
slit of width a, as shown in Figure 4.1. The particles are detected on a second screen
parallel to the first one at a distance D from it. For what value of the slit width a
will the width of the most intense fringe in the pattern observed on the second screen
be minimum?

Solution: A diffraction pattern is observed on the screen, as shown in Figure 4.1.
Because of the width of the slit, we have an uncertainty Ay = a on the position of
the electrons passing through the slit. Using Heisenberg’s uncertainty relation, this
gives rise to an uncertainty Ap, in the y-component of the linear momentum after
having passed the slit. From Figure 4.1, we have Ap, /p = tan#.

The position of the minima in the diffraction pattern are given by Bragg’s
diffraction law:

asing = (2n + 1)%, (4.34)

where A = h/p from de Broglie’s relation.

Setting n = 0 in the previous equation gives the position of the first minimum
in the diffraction pattern. Referring back to Figure 4.1, the total width of the
first maximum is therefore given by W = 2d + a. But tanf = d/D, hence W =
a + 2Dtan#f. Since 6 is small, tanf ~ sinf, hence W = a + QDﬁ =a+ %.
Therefore, W is minimum when a = v/ DA, i.e., when the slit opening is equal to
the geometrical mean of the wavelength of the incident particle and the distance
between the two screens.
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..

Figure 4.1: Diffraction pattern observed on a screen at a distance D from a parallel
screen with an opening a due to a particle incident from the left with momentum p’
perpendicular to the plane of both screens.

** Problem 4.3: Heisenberg uncertainty principle for the one-dimensional
particle in a box

Starting with the eigenstates and corresponding eigenvalues for the simple problem
of a particle in a one-dimensional quantum boz of size W (see Problem 3.5),

(a) Calculate the average values (z) and (p) (where p is the momentum in the
z-direction) for an electron prepared in each of the eigenstates of the particle in a
bozx.

(b) Calculate the standard deviations Az, Ap for an electron prepared in each
of the eigenstates of the particle in a box.

(c) Show that for large values of the quantum number n characterizing the
eigenstates, the standard deviation Az reduces to its classical value.

(d) Calculate AzAp for each of the eigenstates found in part (a) and show that
the Heisenberg uncertainty relation is satisfied.

Solution: The solution to the Schrédinger equation for a particle in a one-
dimensional box is one of the simplest problems in quantum mechanics (see
Problem 3.5). The eigenfunctions are

Pn(z) = \/gsin (%) , (4.35)
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where n is an integer (n = 1,2,3,...) and W is the width of the box. The corre-
sponding eigenvalues are given by

h2m?
E, =n? ST (4.36)
(a) Using these results, the following average values are found:
w
w
() :/ clon(z)Pde = 7 (4.37)
0

This is to be expected since all eigenstates produce symmetrical probability distri-
butions |¢,|? with respect to the center of the box.

Furthermore,
<p> = / dzo (z)f—qﬁ (Z) =0 (4 38)

This is also expected since a particle traveling back and forth between the two walls
of the box will have the same magnitude of its momentum but opposite signs when
traveling from left to right and right to left. Therefore, the average momentum of the
particle trapped inside the box will be zero. Alternately, one can view the electron
wave inside the box as a standing wave because of the infinite potential barriers at
the boundaries of the box, and a standing wave has zero momentum.

(b) The standard deviations are given by

w 2
(Az)? = (2%) — (2)? = /0 dzz2¢2 (2) — {V;] . (4.39)
So w ,
2 . o (NTZ W
(an?= = /O dz2?sin (W) - (4.40)
Therefore,
(Az)? = % {1 - (n?r)Q} . (4.41)
Similarly,
(Ap)* = () — (0)* = (¥*). (4.42)
Hence,
w
(Ap)? = /0 dzd, (2)p*Pn(2)dz. (4.43)

But p?¢, = 2m*E, ¢, (), so

(4.44)

w 2,22 2,22
h h
<Ap)2:2m*En/ dz|¢n2=2m*< nr ): n
0

2m*W?2 w2
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(¢) As n increases, we have, from part (b),

2
lim (Az)? = w

n—o0 12

(4.45)

We compare this to its classical limit, which is equal to

I AW w2
2 _ - - [
Az = /0 (z 3 ) dz TR (4.46)

So, the quantum mechanical result does indeed converge to its classical value for
eigenstates with large quantum numbers.

(d) Using the previous results, we get

h n 6 ]2

Hence, the value of AzAp (in units of %) is equal to 1.136, 2.271, 5.254, for n =
1, 2, and 3, respectively. All these values are larger than 1, in agreement with the
Heisenberg uncertainty principle for position and momentum. Matlab code giving
the values of the product AzAp as a function of the quantum number 7 is given in
Appendix G.

*** Problem 4.4: The Heisenberg uncertainty principle for an approxi-
mate ground state wave function of the particle in a box

Suppose that a particle in a one-dimensional well (with infinitely high potential
barriers) of width L has a wave function of the form

$(z) = N(2* — Lz). (4.48)
(a) What is the value of the normalization constant?

(b) What are the expectation values of the position, momentum, and kinetic
energy of the particle?

(c) What is the uncertainty in the position and momentum of the particle?

(d) Using the results of the two previous steps, calculate the product AzAp and
compare your result to the one obtained for the exact ground state of the particle in
a box, as derived in Problem 4.5.

Solution:

(a) Because the wave function 1 (z) = N (2% — Lz) has no nodes except at z = 0
and z = L, it is an approximation to the ground state wave function in a well with
infinite barriers. For the latter to be normalized, the normalization coefficient must
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be determined starting with the condition

L L
/ PV (2)Y(2)dz = / |¢(2)]?dz = 1. (4.49)
0 0
This leads to the equation
L 2 1 1 1
N2/ (22 — Lz)"dz = N? <5L5 — 5L5 + 3L5> =1. (4.50)
0

Hence,
/30
N = 5 (4.51)

(b) The expectation value of the position is given by:

L L
(z) = / 2|y (2)2dz = N2/ 2(2% — Lz)*dz. (4.52)
0 0
This leads to
1 2 1 30 1 1
_n2(iye_z76  tre) _ 9V L _ 1
(z) =N <6L SIS+ 1L > = x L= L. (4.53)

This last result is to be expected since the wave function in Equation (4.48) is
symmetric with respect to z = L/2.

The expection value of the momentum is given by
L 2 L
hd hN
(p) = / * <_w(z)) dz = —/ (2% — Lz)(2z — L)dz. (4.54)
0 i dz i Jo

Carrying out the integration leads to

AN<- (1 1

This is to be expected since the integrand in Equation (4.54) is antisymmetric with
respect to the center of the well.

The expectation value of the kinetic energy of the particle is given by:
2mdz?

= [ Lw*<z>< ) v (456)

This gives

m2N2 [E R2NZ2 [ 1 5h2
(E) = — /0 (22 — Lz)dz = — - (—6L3> = T3 (4.57)
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(c¢) The uncertainty Az in the position of the particle is given by
Az =+/(z2) — (2)2. (4.58)

We first calculate
~ L L
22 = / 22(2)|?dz = N2/ (2° = 22°L + 2*L?)d=. (4.59)
0 0

This leads to I 7 2
30 2
N NZx = = 2 4.60
() 105 " 15 “ 105 7 (4.60)

Hence,

Az=/(z%) — (2)2 = g - (1L>2 = 0.1898L. (4.61)

2

Similarly, the uncertainty in the momentum of the particle Ap is given by

Ap = (%) - (0)? = V(p?) = V2m(E). (4.62)

Using Equation (4.57), we get

(v?) = 2m(E) = % (4.63)
Hence,
10Ah2 h
= 2\ — 4 — = -
Ap = /(p?) 7o = 3167 (4.64)
(d) Using the above result, the uncertainty product AzAp is given by
h
AzAp = 1.25, (4.65)

which is greater than g,

position and momentum.

in agreement with Heisenberg’s uncertainty relations for

We also note that the product AzAp in Equation (4.65) is larger than its value
for the exact ground state of the particle in a box, equal to 1.136 %, as shown in
Problem 4.3.

* Problem 4.5: The Heisenberg uncertainty principle for the one-
dimensional attractive delta scatterer

Starting with the results of Problem 3.2,

(a) Find the probability density of the momentum in the bound state. Determine
the value of p for which the probability density in momentum space is mazimum.
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Calculate the variance Ap, then the product AzAp, and show that it is in agreement
with Heisenberg’s uncertainty principle.

(b) Starting with the wave function of the bound state in momentum space (see
Problem 3.2), calculate the variance Az and Ap and show that the product of these
two quantities agrees with the results of part (a).

Solution: Using the results of Problem 3.2, the probability distribution is
obtained via a Fourier transform:

ipz

" dz, (4.66)

o(p) = (2nh) /2 / d(z)e

which results in

v(p) = < 2 )1/2 LS/Q. (4.67)

mh) - we? ()
The probability density for the momentum to be between p and p + dp is therefore
2 hro)3dp
lo(p)2dp = 2 - %0) (4.68)

7 [(hro)2 + p2)2”

2

The maximum of |v(p)|* occurs when p = 0 and, by symmetry, (p) = 0.

Also, (p?) is given by

r 2 T wldu
2\ _ 2,27 _ 2 _ 2
Since [ (ff% = 7/2, we get
Ap = hryo. (4.70)

Therefore, ApAz = % > g, in agreement with that the Heisenberg uncertainty
principle.

**** Problem 4.6: The one-dimensional ionized hydrogen molecule

Determine the probability density in momentum space for the even (symmetric) and
odd (antisymmetric) bound states of the one-dimensional ionized hydrogen molecule
considered in Problem 3.35.

Calculate the standard deviations Az and Ap for the symmetric bound state.
Derive the analytical expression for the product AzAp [4, 5].

Solution: First, we present an alternative approach to derive the analyti-
cal expressions for the wave functions associated with the bound state of the
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one-dimensional ionized hydrogen molecule (see Problem 3.3) described by the
Hamiltonian

—h? d*¢(2)

Ho(z) = - - S0 1V (2)8(2) = Bo(2) (471)
where the atomic potential V'(z) is composed of two delta functions of equal strength
—I" (the minus sign for an attractive potential), one located at z = —a and the other
at z = a:

V(z) =-T6(z —a) —T6(z + a). (4.72)
Solutions to Equation (4.71) are of the form
¢1(z) = Be™ for z < —a, (4.73)

o1(z) = Ce™ + De™ ™ for —a <z <a, (4.74)

and
oi(z) = Fe™  for z > a, (4.75)

where xk = %\/ —2m*E, with E being the (negative) energy of the bound states.

According to the results of Problem 1.4, since V' (z) is symmetric, the Schrodinger
equation admits symmetric (even) and antisymmetric (odd) solutions. Therefore,
in the general solution given by Equations (4.73)—(4.75), the following constraints
must apply to the parameters (B,C, D, F):

B=F and C=D (even solution),
B=-F and C=-D (odd solution).

To determine the parameters B and C' we must impose the continuity of the wave
functions at z = 4a, and the following conditions must also hold:

do(ta+¢€) do(fa—e)
dz B dz

— —20¢(+a), (4.76)

where ¢ — 0 and a = m*T'/h?.

Energy eigenvalues for odd solutions: For the odd solution, continuity of ¢
at z = +a and Equation (4.76) lead to the following four equations:

Be ™" = C(e™ " — ™), (4.77)
KC(e™"" +e") — kBe " = —2aBe™ ", (4.78)
Be ™" = C(e™"* — "), (4.79)
and
—kC(e™" + e"%) = 2aBe™ ", (4.80)

Equations (4.79)—(4.80) are the same as Equations (4.77)—(4.78). We are therefore
left with two equations for the two unknowns B and C. Solving for C' in Equation
(4.77) and plugging the result into Equation (4.78) leads to the transcendental
equation

kcoth(ka) + Kk = 2a.. (4.81)



92 Problem Solving in Quantum Mechanics

Multiplying both sides by a and defining v = xa, we obtain the following transcen-
dental equation to determine the energy of the odd bound state:

B =~I[1+ coth(v)] = 2aa. (4.82)

A similar derivation leads to the following transcendental equation for the solution
of the even bound state:

8 =~ (1+ tanh(v)) = 2aa. (4.83)

Finding the eigenfunctions and their normalization coefficients: For the
odd bound state to be normalized, the following equality must hold:

—a . a 2 o] 2y

1:/ BZe%Zdz+/ o2 (e%te*%) dz+/ (—B)%e~%%dz. (4.84)

Performing the integration leads to

_ C%a
v

1 [ — ¢™27] —4C2a + 2 B% 7, (4.85)
Y

With the use of Equation (4.79), this last equality leads to the following explicit
expressions for the parameters B and C'

1/2 _
B= (Qla) (e —2y—1) 1z (e77 —e")e” (4.86)
and 1o
C = (%) (€27 — 2y — 1)~1/2, (4.87)

Plugging the values of B and C' into Equations (4.73)—(4.75) leads to the following
explicit expression for the wave function associated with the odd bound state:

|z]

1/2 7(1
¢wpnw<?) (" — 2y = 1) sinh(1)e " (55) (2] >0)  (4.88)

= (%‘7) v (e*7 — 2y — 1)_1/2 sinh (%) (2] < a), (4.89)

where €(z) = —1 for z < 0 and +1 for z > 0.

A similar procedure leads to the following expression for the wave function
associated with the even bound state:

1/2
%m(?> (@ +2y+1) Peosh()e (5T (2 >a)  (4.90)

1/2
- (27> (€27 + 27+ 1)"/2 cosh (ﬁ) (2] < a). (4.91)
a a
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Momentum probability distributions: The momentum probability ampli-
tudes associated with the bound state solutions described above are found by
performing a Fourier transform on the Schrodinger Equation (4.71), following the
derivation in Problem 4.2.

For the odd and even bound states, this leads to the following equations:

[~ ] o = TR (g (1.92)
and
2 a) cos (B
[;:n ! E} (p) = W (even). (4.93)

The momentum probability ¢(p) associated with the bound states is therefore
given by

[N

2 a
b(p) = 2T (f) sinh(y) sin (ph ) (odd) (4.94)
(2m* E) 2wh/e2Y — 2y — 1
and )
29\ % . (pa
o(p) = 22F ()" cosh(y) cos () (even), (4.95)
(2= - B) Varhy/e + 2y + 1
where , )
_=mTE 2y
b () oo

and [, v satisfy Equations (4.82) and (4.83) for the odd and even bound states,
respectively.

Calculation of Az and Ap: For the even bound state (4.93), using the short-
hand notation

2y 1/2 9 —-1/2
a= |2 (e +2y+1) ) (4.97)
a
we obtain the following result:
(A2)? = (2% — (2)? = (22) = (I} + 2e¥ cosh? 71,), (4.98)
where
+a vz
L= dz2?cosh? (7) (4.99)
—a a
and
+a 2vz
I, =2 / dzz?e” @ . (4.100)
0

Performing the integration leads to

I, =05 (:)3 {(72 +0.5) sinh(27) —  cosh(27) + 272] (4.101)
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and ) ) )
27 €27 cosh 1
L=y Hy L) (4.102)
o P 2y 1]

Similarly,

—h2y? v T cosh? v
2m*a? a(e+2y+1)]°

(Ap)* = () — (0)* = (p*) = 2m* (4.103)
Using the last result, one easily gets the product AzAp, which can be shown to
satisfy the Heisenberg uncertainty relation. A similar derivation gives the value of
this product for the odd bound state (see suggested problems).

** Problem 4.7: Estimate of the ground state energy near the local
minimum of a one-dimensional potential

Consider a particle in a one-dimensional continuous symmetric potential, i.e.,
V(z) = V(—=2), with a global minimum at z = 0. Starting with the generalized
Heisenberg uncertainty relations (Problem 4.1), show that a lower bound of the
d’v

where o = P

energy of the ground state is given by Vp + g

o
m*’

2=0
Solution: If V(z) is continuous and symmetric with a local minimum at z = 0,
a Taylor series expansion near the minimum gives
Lo 2
(V) =W+ ioz(z R (4.104)

where (-) stands for the average (or expectation) value calculated with the ground
state wave function.

Futhermore, we have
1

5 () +{V) = E, (4.105)

where E is the energy of the ground state.

Hence,
(p?) = 2m*(E — (V). (4.106)

Plugging the last relation in the Heisenberg uncertainty relation for position and
momentum, and using the fact that (p) = 0 in the ground state, we get

ApAz =/ (p?)/(2?) > g (4.107)

Using Equation (4.106), this leads to

h
Vam*JE = (V) > Nk (4.108)
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Hence,
B> Vp+ (z%) + i (4.109)
—az —. .
=0T 8m*(22)
The right-hand side of this inequality is minimum when
h 1
2
25) = ——. 4.110
=S e (4110
Therefore, a lower bound F}, of the ground state energy is given by
h |«
EBy=Vy+ = . 4.111
b o+ 2\ ( )

In the case of the one-dimensional harmonic oscillator described by the potential
Vi(z) =W+ %m*szQ, the lower bound for the energy of the ground state is Vo + %’J,
which is the exact value.

**%* Problem 4.8: A simple treatment of potential barrier penetration

Show that the penetration of a particle through a potential barrier can be interpreted
as a climb over the barrier as a result of energy fluctuations expected from the
Heisenberg uncertainty principle, rather than due to tunneling through the barrier.

Solution: The following argument was first given by Cohen [6]. Potential barrier
penetration is an extremely difficult phenomenon to explain or even understand.
The widely accepted view of this phenomenon is tunneling, which goes against our
intuitive understanding of physics since it requires us to admit the notion of negative
kinetic energy, which seems to be entirely unphysical.

There is an alternate view of barrier penetration which does not require us to
admit the notion of negative kinetic energy and therefore is more palatable. This
involves the uncertainty principle

AEAt ~ h. (4.112)

One of the benefits of using the uncertainty principle is that it does not immediately
assail our intuitive understanding of physics. Equation (4.112) tells us that the
energy of a particle is subjected to short periods of fluctuations. Therefore, a particle
confined by a potential barrier may momentarily gain enough energy to climb over
the barrier. It is possible that the fluctuation may last long enough for the particle
to pass over the entire length of the barrier, thereby completely penetrating the
barrier.

The quantity AF in Equation (4.112) stands for the total fluctuation on either
side of the energy E. The particle can gain some excess energy e over the mean
energy E over a timescale 7, which can be estimated as follows:

~ 4113
e — (4.113)
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It can be expected that the particle energy can fall below E as well, but those
situations are not relevant to the discussion.

To refine the argument, we can define a “probability” P for the particle to have
excess energy € over a time interval 7 as

2eT

P~e m .

(4.114)

Equation (4.114) is completely heuristic and ad hoc, but it is nonetheless able to
provide a simple physical understanding of what follows.

To study barrier penetration, let us consider a potential profile V(z) that
contains a region demarcated by the end points zg (the starting point) and z,
(the ending point), where the value of V(z) is greater than F. Taking into account
the fluctuation in energy, the kinetic energy of the particle in this region will be
E + ¢(z) — V(z), and the particle velocity v(z) will therefore be given by

u(z) = \/i(E+e(z) —V(2)). (4.115)

The particle travels an infinitesimal distance dz, from zy to z1, during the time
interval dz/v(z), where dz = 21 — z9. Hence, the probability of this event (see
Equation (4.114)) is given by

P~ emF), (4.116)

We can easily find the probability of travel from z; to z, by multiplying the
probabilities of travel from zg to z1, z1 to za, ..., zp_1 to z,. Each sojourn is
treated as an independent event. This gives us the overall probability to “cross” the
barrier as

P~ ﬁe(_2;i o) = e(_ = d”z) (4.117)
i=1

In the limit dz — 0, the last equation reduces to

P e I3 Y, (4.118)
If we use Equation (4.115) in Equation (4.118), we obtain
P~ o(-V2mi), (4.119)
where
j / " ) (E + e(2) — V(). (4.120)
z0

The function €(z) needs to be on the order of the barrier height so that we are able
to minimize I and maximize the probability. If we set the partial derivative of the
integrand in Equation (4.120) with respect to € equal to zero in order to minimize I,
this leads to

€(2)

- B ex) - V)

Wl
o

[E+e(z) = V(z)]” =0, (4.121)
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E+e€(z)—-V(z) — @ =0, (4.122)
yielding
e(z) =2[V(z) — E]. (4.123)

If we subsitute Equation (4.123) in Equation (4.120), we finally get

Lin = 2 / " V() - B de. (4.124)

20

If we substitute Equation (4.124) into Equation (4.119), we obtain

Nl

Pro? Iin (32 (v(2)-E)) dz

(4.125)

The minimization can be omitted and any simple function €(z) can be used,
leading to less complicated mathematics. The minimum of [ is actually very
broad, because if V(z) is linear in z, and € is a constant of any reasonable value
different from the one in Equation (4.119), the integral I will differ in value by only
about 20%.

This approach yields the same probability for traversing a barrier as the
Wentzel-Kramers—Brillouin approach based on quantum tunneling (see Equa-
tion (4.125)) [7]. A particle climbing over a barrier during an energy fluctuation is
intuitively more appealing than the strange notion of tunneling through the barrier.

Suggested problems

e Starting with the wave function of the bound state derived in Problem 3.4,
calculate the value of AzAp, as a function of the height of the step potential
AE.. How does this product vary as AFE. is varied from 0 to four times
Ey = ";Tlf (the magnitude of the bound state energy of the one-dimensional
delta scatterer) when AE. = 07

e Estimate the value of the product AzAp, for the zero-energy bound state of
a particle in a box in the presence of an attractive delta scatterer as discussed
in Problem 3.11. Show that it is in agreement with the Heisenberg uncertainty
principle. For what value of the position zy of the scatterer in the well is this
product minimum?

e Following the derivation in Problem 4.6, prove that the normalized wave
function for the even bound state of the one-dimensional ionized hydrogen
molecule is given by Equation (4.91).

e Starting with the results of Problem 4.3, calculate the standard deviations Az,
Ap for the odd bound state of the one-dimensional ionized hydrogen molecule.
Using these results, derive the analytical expression for the product AzAp.
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e Using the results of the previous problem, plot AzAp versus the distance
2a between the two delta scatterers of the one-dimensional ionized hydrogen
molecule. Use I' = 5eV-A for the strength of the two delta scatterers. Show
that the product AzAp for both the even and odd bound states reaches a
minimum as a function of the distance 2a between the two delta scatterers.
Determine numerically the values of 2a at which the minimum of AzAp is
reached, the value of that minimum, and show that it is in agreement with
the Heisenberg uncertainty principle.

e Starting with the generalized virial theorem (Problem 2.9), show that for a

system described by the Hamiltonian H = 217’: -+V(2), the following inequality
holds:

dVv h?
—_— > 4.126
<z dz > = dm*(22)’ ( )
where the average is taken over an eigenstate of the Hamiltonian H.

e Consider a particle in the ground state of the half-harmonic potential, i.e.,
V(z) = $m*w? for z > 0 and V(z) = oo for z < 0. What is the normalized
wave function associated with the ground state in this potential? Use this
normalized wave function to calculate the standard deviations Az and Ap

and show that their product obeys the Heisenberg uncertainty principle.

e The wave function of a free particle of mass m* moving in one dimension is
given by

oo 0, LKl
d(z,t=0) = N/ dke™ ko | (4.127)
where N and kq are positive constants.

(1) What is the probability W (p, 0) that a measurement of the momentum at
time ¢t = 0 will give a value in the range —P < p < +P?

(2) Find an analytical expression for W(p,t).

(3) Calculate the standard deviations Az(t), Ap(t) and the wavepacket ¢(z,t).
Comment on the time evolution of the wavepacket.

(4) Calculate the uncertainty product Az Ap and show that it satisfies the

Heisenberg uncertainty principle.

e Repeat Problem 4.4 using the following approximate expression for the wave
function of the first excited state of a particle in a box:

Y(z) =Nz (z - %) (z —w). (4.128)
This trial wave function is a good approximation for the first excited state

because is has three nodes, one at each end of the box and one in center. It is
antisymmetric (odd) with respect to the center of the box.
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Chapter 5: Current and Energy Flux Densities

This set of problems introduces the current density operator [1-5], which is applied
to the study of various tunneling problems, including the case of a general one-
dimensional heterostructure under bias (i.e., subjected to an electric field), the
tunneling of an electron through an absorbing one-dimensional delta scatterer and
potential well, and the calculation of the dwell time above a quantum well (QW).
The dwell time is the time that an electron traversing a QW potential, with energy
above the well’s barrier, lingers within the well region. This chapter also includes an
introduction to a quantum mechanical version of the energy conservation law based
on the concept of quantum mechanical energy flux derived from the Schrédinger
equation. Some basic tunneling problems are revisited using the conservation of
energy flux principle.

* Problem 5.1: Current continuity equation in an open quantum system

Starting with the one-dimensional time-dependent Schrodinger equation and assum-
ing that the potential energy has an imaginary part which makes the Hamiltonian
non-Hermitian, i.e.,

V(z) + €W (z), (5.1)

where V(z), W(z), and & are real, show that the probability current density J,(z,t)
satisfies the continuity equation

ST 0) + 5 plest) = SW(p(a,t), 6:2)

where p is the probability charge density. Assume a constant effective mass.

The fact that the right-hand side of the above equation is non-zero suggests
violation of charge conservation. This is a consequence of using a non-Hermitian
Hamiltonian, which allows for exchange of charge with the environment and is symp-
tomatic of an open quantum system. Non-Hermitian Hamiltonians are sometimes
used to model dissipative and irreversible processes.

Solution: Start with the time-dependent one-dimensional Schrédinger equation

_ 9
where
hn? 02 )
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and its complex conjugate

L OY*
H*Y* = — . .
(0 ih y (5.5)
We multiply Equation (5.3) on the left by * to yield
L0
PG = i (56)
and Equation (5.5) on the left by 9 to yield
GH Y = —iw%i . (5.7)

Using the explicit expression for the Hamiltonian H given in Equation (5.4), we get
from Equation (5.3) that

h? 0? 0
T W iew @] v = i 2 55)
and from Equation (5.5) we get
R 9 ‘ . Yt
o T V() — W ()] 4t = it (59)

Substracting Equation (5.9) from Equation (5.8) leads to

2 2, /%
—m( n ) { OO ] T+ 2EW () ) = m%(w*w). (5.10)

2m*i 022 022

Using the definitions of the probability current density,

_ b O 9P*(z,1)
1) = gz [0 P -y 22, (5.11)
and the probability charge density,
p(z,t) = W(%Uﬂ’(%t)a (512)
Equation (5.10) can be rewritten as
i in ) = ~2iew (vt (5.13)
the Jz —iho = -2 z . .
So, finally,
0J:(2,t)  Op(z,t) 28
P T W(z)p(z,1). (5.14)

Clearly, a non-Hermitian Hamiltonian violates current continuity since the right-
hand side of the above equation is non-zero. Equations (5.11)—(5.12) must be multi-
plied by g, the electronic charge, to get the current and charge densities, respectively.
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Physical significance of this result: It is common practice to model dissipation
in a quantum mechanical system by invoking a non-Hermitian Hamiltonian. This
is unacceptable unless there is an underlying model for the system to exchange
charge with the surroundings (such a system is called an open quantum system)
which would conserve charge in the “universe” consisting of the system and the
surroundings, but not in the system alone. It is always imperative to physically
justify a non-Hermitian Hamiltonian before invoking it.

* Problem 5.2: Properties of the reflected wave in a scattering problem

Consider the steady-state tunneling problem shown in Figure 1.1 for the case of
zero bias. Assume the wave function in the left contact is given by the coherent
superposition of an incident and a reflected wave,

o(z) =€ +re”V*, (5.15)

where r is the complex reflection coefficient and v is the complex propagation con-
stant given by
v =k +ik. (5.16)

(a) Find the expressions for the expectation values of the charge and current
density in this region of space (i.e., the left contact).

(b) Assume that k = 0, i.e. the wave is not evanescent. In this case, show that
in the absence of the reflected wave (r = 0), the charge density in the left contact
region is spatially uniform. Show that in the presence of the reflected wave, it is
non-uniform. Ezplain the significance of this result.

(c¢) Show that if there is no evanescent component to the wave function, then the
current density in the left contact is the difference between the incident and reflected
current densities.

(d) If the wave is purely evanescent (as in the case of tunneling through a
potential barrier, i.e., k = 0), show that the current density will be zero if the
reflection coefficient is purely real. Therefore, a non-zero tunneling current requires
an imaginary or complex reflection coefficient.

Solution:
(a) The charge density in the left contact region is given by

p(z) = Q|¢(Z)|2 =g (euz + ,refuz)* (eyz + ,refuz) ’ (517)
where ¢ is the electronic charge.
Expanding, we get

p(2) = q [e* + |r[?e ™% + 2Re(re”2""*)] . (5.18)
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Note that the expectation value of the charge density is purely real, as expectation
value of any physical quantity ought to be.

The current density associated with the wave function (5.15) is

L) - gff o) dﬁ(j) _ W)Ok%z@)
QZgi [(e"% +re™"?)(ve"* —vre™"*)" —c.c.)], (5.19)

where c.c. stands for complex conjugate. Expanding the last expression,

_ahk

m*

2qhk

m*

J.(2) [€%%% — |r[?e™2"%] — Im (re=2%*%) (5.20)

where Im stands for the imaginary part.

(b) With k = 0, we see from Equation (5.18) that

p(2) = q[L+|r|* + 2Re(re2*=)] . (5.21)

The spatially varying term (i.e., the term which depends on the coordinate z)
vanishes if » = 0, i.e., when there is no reflected wave. In that case, the charge
density is spatially uniform. However, if there is a reflected wave, then the incident
and reflected waves interfere to cause spatial modulation of the charge density in
the region, as seen from Equation (5.20). Without the reflected wave, there is no
interference and hence no spatial modulation. The spatial modulation is therefore
a consequence of interference between two waves.

(¢) If k = 0, then from Equation (5.20) we get

_ qhk

m*

J-

(1—|r). (5.22)

Therefore the total current is the difference of the forward-traveling component and
the backward-traveling (reflected) component. It is also spatially invariant, as it
must be in steady-state transport.

(d) If the wave is purely evanescent and k = 0, then

2qhk
m*

J, =

Im(r) =0 (5.23)

if v is purely real.

Physical significance of this result: No tunneling can occur if the reflection
coeflicient is purely real.
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* Problem 5.3: Conservation of current density and the general scattering
problem

Start with the definition of the quantum mechanical steady-state current density
derived in Problem 5.1:

do

5@ — )

dz

qh
Ja(2) = 2m*q

(5.24)
and the time-independent Schridinger equation derived in Problem 1.1. Assume a
constant effective mass and a conduction band energy profile depending only on the
z-coordinate.

Show that %Z(Z) =0, i.e., J, is independent of position.

For the tunneling problem with a left incident electron, as shown in Figure 1.1,
use E.(0) = 0 to express kg and ky, in terms of the total energy E of the incident
electron in the left contact. The quantity ko is the component of the incident wave’s
wavevector in the z-direction (in the left contact) and the quantity ki, is the compo-
nent of the transmitted wave’s wavevector in the z-direction (in the right contact).

The tunneling probability is defined as the ratio of the outgoing (i.e., in the
right contact) current density to the incoming current density. Express the tunneling
probability in terms of ko, ki, and t, the transmission amplitude.

The reflection probability is defined as the ratio of the reflected current density
to the incoming current density. What is the expression for the reflection probability
in terms of ko, kr, and r, the reflection amplitude?

Solution: Starting with the results of Problem 1.1, ¢(z) satisfies
dj 1t d
dz |v(z2) dz

801+ 522 (B L= - B} 0 =0, 6.25)

Since the effective mass is spatially invariant, m*(z) = m*, and hence v(z) = 1. As
a result, the Schrodinger equation becomes

2
60 + (2)o(z) =, (5.26)
with o
B(2) = 557 (Bp — Be(2)). (5.27)
Therefore,

dJ. (=) gh [d¢* do L,d%¢  d¢ de* d2¢*

dz  2m*i | dz dz dz2 dz dz dz2

qh

= 5.7 [#7(2)(=8%6(2)) — &(2)(—6"¢"(2))] (5.28)
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Since 32 = 3*2, 4= = 0 and J, is a constant. In the left contact, the total energy
FE is the sum of the transverse plus longitudinal energy £,

h2k2
E=FE,+_ — T (5.29)

where k; is the transverse component of the electron’s wavevector. Therefore,

R _ o WK

= =EF-FE =FE, .
2m* 2m* v (5.30)
and 1
ko = ﬁ\/Qm*Ep. (5.31)
In the right contact,
R*k?  h?k?
E=_FL E.(L 5.32
2m* 2m* + Be(L), ( )
ie.,
h2k?
ore T Bt — eVbias = B = Ey + Ep, (5.33)
o h2k? h2k2
L_F Voias = —2 + eViias. 5.34
2m* pTevh 2m* tebh ( )
Therefore,
1 *
L= ﬁ\/Qm (Ep + Vhias)- (5.35)
So, for z > L, where the wave function is te?*z(=L)

JZ(Z) = qh |:Zk’ te‘HkL(Z L)t* —ikr (z—L)

2m*s
te“"L(z_L)t*(—ikL)e_““L(Z_L)} : (5.36)
and therefore, at z = L,
qhky,
J.(z=1L)= 2m [2 ikr |t ] s 2R (5.37)
Similarly, at z = 0,
inc qhko
JC =, (5.38)
and the reflected current density at z = 0 is given by
hk
et = 20,2, (5.39)
The transmission probability is, by definition,
Jtrans kL kL
T="%2—= 2= Z|p(z = L) 5.40
Jine oo 7= 100z = DI, (5.40)
and the reflection probability is given by
Jreﬂ
R="2— =] (5.41)
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In the case of coherent ballistic transport, the incident current density must be
either reflected or transmitted and therefore the following equality must hold:

k
1=T+R= k—L|t|2+|r\2. (5.42)
0

* Problem 5.4: Definition of current amplitude

In a region of constant potential energy E., the solution to the one-dimensional
Schrodinger equation can be written as

P(z) = ATe™ + A=e k= (5.43)

where k = %\/2m*(E — E.). The coefficients AT and A~ are the amplitudes of the
right- and left-propagating solutions, respectively.

We have seen that under steady-state conditions, the current density is spatially
invariant and is given by

h2
J, =1

d¢ do*
=5 1 (5.44)

[qs*(z)dz - 0(2)

The goal of this problem is to calculate the current density amplitudes associated
with the left- and right-propagating plane waves in Equation (5.43). Defining the

quantities
1 [qhk 1d
() = 51| [qs(z) ‘o ‘Z”] (5.45)

.1 Jqhk 1 do(z)
()= 51/ 2 quz) o ] (5.46)
show that the current density associated with ¢(z) can be calculated as follows:
Jo(2) = (¢7(2))"¢ 7 (2) — (¢7(2))"¢" (2), (5.47)

where ¢, ¢~ are referred to as the left-propagating and right-propagating current
density amplitudes.

and

For the wave function given in Equation (5.43), calculate the explicit expressions

for

Jr=(6")"e", (5.48)
the right-propagating current density amplitude, and

JT =), (5.49)

the left-propagating current density amplitude.

Solution: Starting with Equations (5.45) and (5.46), we get

6(:) = | B [0 () +07 ()] (5.50)
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and
do(z) . |m*k _
Pk o [qb*(z)—gb (z)] (5.51)
Hence,
T = fo[ (09 g >d‘§f>]
_ qh m’ . ik m* -
- 5 [ PN+ @iy T 9 - 0]
— Bt 4 o) B [ = 0] ]

B % l(qﬁ*)*aﬁ* —(¢T) T+ (67)6T —(07)"0"

+ 0T (¢7) =T (@) + o7 (") ¢_(¢_)*]

= (7)o" —(s7)7 0™ (5.52)
Plugging in the wave function (5.43) into Equations (5.45) and (5.46), we obtain

ot (2) = \/%“Ne“ﬁz (5.53)

and
- qhk ik
= A"e .54
0=(x) =/ ToAe (5.54)
Hence,

Jt = ‘%m*ﬁ (5.55)

and
J = (ngm—\?, (5.56)

which are the values of the current densities associated with the right- and left-
moving portions of the wave functions in Equation (5.43), respectively.

The concept of current density amplitude is used in a set of problems on the
scattering matrix in Chapter 8.

* Problem 5.5: Reflection and transmission probabilities across a poten-
tial step

Consider a potential step as shown in Figure 5.1. The effective mass on the left and
right side of the step is equal to m and m}, respectively. The step height is AE..
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t eik2 z

z=0 z

Figure 5.1: Illustration of electron impinging from the left on a potential step with
height AE.. The effective mass is assumed to be mj and m3 on the left and right
side of the step, respectively.

Start with the general time-independent Schridinger equation for an electron
moving in an arbitrary potential energy profile E.(z) and with a spatially varying
effective mass m*(z) derived in Problem 1.1.

Write down the Schrodinger equation for the z-component of the wave function

d(2) on the left and right sides of the potential step assuming that the electron is

incident from the left contact with a transverse kinetic energy Ey = h;fliz.
1

Assume a plane wave is incident from the left and that the total energy of the
incident electron is large enough so that it is transmitted on the other side. Write
down the analytical form of the solution to the Schrodinger equation on either side
of the junction.

By matching the wave function ¢(z) at z = 0 and also m}(z) d‘g(zz) at z = 0,
calculate the reflection and transmission amplitudes of the incident wave.

Calculate the reflection and transmission probabilities across the step starting
with the the quantum mechanical expression for the current densities of the incident,
reflected, and transmitted beams.

Prove that the sum of the reflection and transmission probabilities is equal to
unaty.

Solution: Starting with the results of Problem 1.1 and using mj as the effective
mass in the contact, the Schrédinger equation for z < 0 is

() | 2mi
dz2 h?

where E, E; are the total and transverse energy of the electron, respectively.

(B — Ey) ¢(z) =0, (5.57)
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For z > 0, we have

dzi(;) . 2;;3 (E ~ % _ AEC> 6(2) = 0, (5.58)

_ * *
where v = m3/mj.

For a plane wave incident from the left to be transmitted across the step, we
must have

E
E>— +AE.. (5.59)
Y
For z < 0, the solution to the Schrédinger equation is
¢I _ eiklz + refiklz7 (560)

with

1 *
k= 5\/2mi(E ~ B). (5.61)

For z > 0, the solution to the Schrédinger equation is

g = te'*2?, (5.62)

1 E
ky = h\/2m§ <E - Tt - AEC>. (5.63)

Continuity of the wave function at z = 0 gives

with

l+r=t (5.64)
Continuity of m,}(z) % at z = 0 requires
ik kot
S =22 (5.65)
my my
which can be rewritten as )
mi
l—r= (2=t 5.66
r=(pm) (5.66)
Using Equations (5.64) and (5.66), we get
2
t= - - (5.67)
ko my
[+ (&) ()
and §
ko ™M
1— 2

*
k1 m3

The proof that |r|? + k—z%\tﬁ = 1, obtained by equating the incident current
2

k1
density to the sum of the reflected and transmitted current densities, is left as
an exercise. The quantities |r|?> and %Zl t|? are the reflection and transmission
2

probabilities across the potential step, respectively.
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** Problem 5.6: Tunneling across an absorbing delta scatterer

The Schrodinger equation describing propagation of an electron through a region
containing an absorbing one-dimensional §-scatterer is given by

2
6+ V3 (2) — Wb (2)]6 = F, (569

2

where, once again, we adopt the convention that single prime represents a first
derivative with respect to position and double prime represents the second derivative.
Here, Wy is the strength of the imaginary portion (absorbing) of the §-scatterer.

Consider an electron incident from the left on the absorbing potential and show
that the reflection () and transmission (t) amplitudes satisfy the relation

P2+ t2+ A =1, (5.70)
where the absorbing probability is given by

A= 2m*W0 1
T
3 0

, (5.71)

with ko = +vV2m*E.

Solution: As was done in several previous problems, we integrate the Schrodinger
Equation (5.69) on a small interval around z = 0. This leads to

*

2m

¢'(07) = ¢'(0-) = == [Vo = iWo] 6(0). (5.72)
For an electron incident from the left, continuity of the wave function across the
d-scatterer leads to

1+r=t (5.73)

Multiplying the last equation on both sides by iky gives
ikot — ikor = iko. (5.74)
Furthermore, a second relation between the r and ¢ amplitudes is obtained from

Equation (5.72),

2m*

ikiot — iko(l — 7“) = 72 (Vb — iWO)t, (575)
which can be rewritten as
2 *
iko — 2 (Vo — iWo) | t + ikor = iko. (5.76)

h2
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Solving Equations (5.74) and (5.76) for r and ¢, we get the transmission probability

k‘2
T= |t‘2 = 22 . 3 (577)
mh4V0 + (ko + mhgvo)
and the reflection probability
m*ZVOZ m*2W02
4 4
R=|r]® = = L (5.78)

ot (kO + m*ngVO)Q.

Substituting Equations (5.77) and (5.78) into Equation (5.70) leads to the following
result for the absorption probability:

2m*Woko/h? 2m* W, 1
A= m*2v02m ko O/m*WO 2= 7;—:2,{00 ve 5T (5.79)
g+ (ko + ™) {";4,63" (1+ n;%zgo) ]

Plots of T, R, and A versus incident electron energy for a repulsive delta
scatterer with strength Vg equal to 0.1eV-A for different values of W, are shown
in Figures 5.2 and 5.3. The Matlab code to generate these figures is given in
Appendix G.

0.9
0.8
0.7
0.6
0.5
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Energy (meV)

Figure 5.2: Plot of the transmission probability 7', reflection probability R, and
absorption probability A as a function of electron incident kinetic energy for a
repulsive delta scatterer with strength Vj equal to 0.1eV-A and W equal to 0 (no
absorption). The effective mass is assumed to be m* = 0.067my.
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Figure 5.3: Plot of the transmission probability 7', reflection probability R, and
absorption probability A as a function of electron incident kinetic energy for a delta

scatterer with strength Vj equal to 0.1eV-A and W, equal to 0.2eV-A. The effective
mass is assumed to be m* = 0.067my.

*** Problem 5.7: Tunneling across an absorbing barrier

Consider the problem of an electron incident from the left on the absorbing well
shown in Figure 5.4. In the barrier, the potential energy has a real and an imaginary
part, i.e., V(z) = Vo — iWy, where Wy is real and positive. The quantity Vg is real
and negative for a potential well.

Starting with the one-dimensional time-independent Schrodinger equation and
assuming a constant effective mass, show that the reflection (r) and transmission
(t) amplitudes satisfy the relation

[r)? 4+ t2 + A =1, (5.80)
where A is the absorbing coefficient in the well and is given by
2m*W
ok - / on(2)pn"(2)dz, (5.81)

where ¢11(2) is the solution to the Schridinger equation in the well region.

Solution: The solution to the one-dimensional time-independent Schrédinger
equation
n? d%¢
2m* dz2

(2)¢ = E¢ (5.82)



114 Problem Solving in Quantum Mechanics

E.(2)
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Figure 5.4: Illustration of an electron impinging from the left on an absorbing well.
The effective mass is assumed to be the same throughout.

corresponding to an electron incident from the left is given by
b1 = e** fremth2 (5.83)
for z < 0 and ‘
() = te™ (5.84)

for z > W, where

1
k= Vam'E, (5.85)

E being the kinetic energy of the incident electron. In the well region, the solution
to the Schrodinger equation is given by

é11 = Ce'* 4 De™ "% (5.86)
where « is a complex number such that

2m .
o = ﬁ(E — Vo +iWp). (5.87)

The selection of the appropriate signs for the real and imaginary parts of a will be
discussed later.

Imposing the continuity of the wave function and its derivative at z = 0, we
obtain the following two equations:

1+7r=C+D, (5.88)

2(1 ) =C—D. (5.89)
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Similarly, the continuity of the wave function and its derivative at z = W results in
the additional relations:

CeW 4 Dem oW = e’V (5.90)
(O — Demiel) — gt (5.91)

Subtraction of Equation (5.89) from Equation (5.88) gives
k
(1+7)— ~(1—7r)=2D. (5.92)
a

Subtraction of Equation (5.91) from Equation (5.90) and then multiplication of
both sides by e~**W gives

c(1- %) + De W (14 %) —0. (5.93)

Multiplication of Equation (5.88) by (1 — ¢) yields

-

(1+1")< k):(cwy)(&%). (5.94)

Substitution of the value of C (1 — %) from Equation (5.92) in Equation (5.93)
leads to

(+7) (1= 7) =D[(1—eW) = Z (14 e72W)] (5.95)
Substituting the value of D from this last equation into Equation (5.92) and solving

for r leads to
[(1—-(3)%) (1 —e "))

r= : (5.96)
(1) ez — (1= &)’
Equation (5.91) can be rewritten as
iaW —iaW k ikW
(Ce*™™ — De )= ~te™ (5.97)
Subtraction of Equation (5.97) from Equation (5.90) yields
—iaW ikW k
2De =te 1——]. (5.98)
a

Substituting the value of 2D from Equation (5.92) in this last equation, we obtain

(1+7) i (1— 7’)} e taW — feikW <1 - k) . (5.99)

(0% «
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Finally, substitution of the value of r from Equation (5.96) in this last equation
gives the transmission amplitude ¢ as

4k
t= & . 5.100
[+ &) ertmomw — (1= ) et ] o

In the well region, the Schrédinger equation is

d?orp
dz2 h2 (

E — Vo +iWy) ¢ = 0. (5.101)

Taking the complex conjugate of this last equation, we get

d2 *
deH 2 (E Vo —iWo) ¢u” = 0. (5.102)
Now,
w w 2
Pndqbn —Gf)n*dfn} =/ (¢Hd ou” —éu” &L (éH)dz. (5.103)
VA 0 0 Z

Substituting for djfgl and

in the last equation, we obtaln

{d¢n dén } W

d? ¢11

from Equations (5.101) and (5.102), respectively,

am*iWw, [V,
o1 — 7¢ = TO/ o ¢ndz. (5.104)
0

0

Using the expressions for the wave function on both sides of the interface, the left-
hand side of Equation (5.104) becomes

[qﬁn déu” _ qﬁn*dfﬂ :V = 2ik (1 - |r[2 = [t]2) . (5.105)
Substitution of this result in Equation (5.104) leads to
2+t +A=1, (5.106)
with
_ 2”;%% / é11(2)eur* (2)d. (5.107)

The explicit form of the absorption coefficient can be found by performing the
integral in the last equation using Equation (5.86). This leads to

—2a;W—-1 e2aiW—1
} + DD* [}
20(1
—2io¢,.W—1:|

w e
/ ¢ pudz = CC* {2
0 —aky

N CD* |:620er—1:|

5.108
210, ( )

+C*D [e .
—2i00,
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Figure 5.5: Plot of the transmission probability 7', reflection probability R, and
absorption probability A as a function of the electron incident kinetic energy for a
potential well of width of 50 A, depth V equal to —0.3 eV, and absorbing potential
Wo equal to 0.1eV. The effective mass is assumed to be m* = 0.067my.

where o, and o are the real and imaginary parts of «, respectively, and the following
shorthand notations were used:

1 ) .
D= 3 (1 — k) tetklgiaW, (5.109)
(6%
1 E\ . ,
C=3 <1 + ) tethle=iaW (5.110)
«

Figure 5.5 is a plot of the transmission probability T, reflection probability R,
and absorption probability A as functions of the electron incident kinetic energy for
a potential well of width of 50 A, depth V{ equal to —0.3 €V, and absorbing potential
Wy equal to 0.1eV. The effective mass is assumed to be m* = 0.067mg. The sum
T+ R+ A =1 was checked numerically.

* Problem 5.8: Energy conservation law

Preliminary: We start with the time-independent Schrodinger equation

hz 2 _
VA V(I = BY, (5.111)
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where 1 is subject to the condition

/df'gw*z/) =1. (5.112)

Multiplying the Schrodinger equation on both sides by ¢* and integrating over all
space, we get

hQ
= /d3Fw* {v2¢+vmw] : (5.113)
2m*
We can integrate the first term by parts and use Green’s theorem to get
/dgﬁy*v% = / dsy* Vi — /df?’w;* V. (5.114)
s
The normalization integral exists if and only if, at large 7,
TRNT (5.115)

where € > 0. The surface integral then vanishes if S — oco and the energy becomes
h? = =
E = /dSF{Qm*Vz/J* -V + w*V(T)w} . (5.116)

Starting with the concept of energy density defined above and the time-dependent
Schridinger equation, prove the following law of conservation of energy:

ow =
— S = 5.117
5 TV =0, (5.117)

where the energy flur density w is
- -

and S is the energy flux vector

S=— e <3¢*vw+ W vy > (5.119)
2m*

Solution: Taking the time derivative of w in Equation (5.118), we get

(e o) v () (2)]

ot 2m* ot
(5.120)
Since d o du
Vi . Vi — Vi . Vi — 2
\V/ 5 Vi =V ( 5 W)) 5 V2 (5.121)
and 5 5 St
Vip* - ﬁai” =V- (afw ) 2 WQ (5.122)
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we can rewrite ‘Z;f as
o o h? [ Oy* o h? [ Oy* 9
5= T (5 e () T
712 oY 9 oY
(G v (G v (5 v, Gaz

The last four terms add up to zero if we use the time-dependent Schrédinger
equation and its complex conjugate. Hence,

ow =
E—FV S=o, (5.124)

with w and S defined above. This is the quantum mechanical expression of the
energy conservation law.

For the time-independent problem, this last equation leads to V.S =o.
For a one-dimensional scattering problem, that means that the energy flux S, is
independent of position.

* Problem 5.9: Energy flux of a plane wave

For a free particle solution of the one-dimensional Schrodinger equation, show that
the energy fluzr

B B2 (OY*dy O dip*
5= Com* ( ot dz ' Ot dz ) (5.125)
can be rewritten as
% d%y dy*
o () (2], 20

where Im stands for imaginary part.

Show that for a plane wave e™**, S, is given by ( ) hk, i.e., the product of

2m*

the kinetic energy of the particle and its momentum.

Solution: Using the time-dependent Schrodinger equation Hy = —%%—f and its

complex conjugate Hy* = %%i:, the energy flux density becomes

R 2 AN dy*
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n? d?
T 2m* d22°

s a2\ [/ dy* a2\ [ dy
o l(8)(8) (S () o

which can be rewritten as

For a free particle, the Hamiltonian is given by H = Therefore, we obtain

h3 d2y dy*
For a plane wave, 1) = e'**,
d2'(/) 2 ikz
and 2o
df = —ike k=, (5.131)
Hence,
h2E2\ hk
S, = (2m*) — (5.132)

* Problem 5.10: Relation between energy flux vector and probability
current density for the time-independent Schrodinger equation

If ¥ is a solution of the time-independent three-dimensional Schrodinger equation
with energy E, prove that the energy fluz vector is E times the probability current
density vector J. Assume a constant effective mass throughout.

Solution: As shown in Problem 5.8, the energy flux vector is given by

K2 [aw* 0P = ]

S=- o Vi VY (5.133)

Using the time-dependent Schrodinger equation and its complex conjugate Hiy =
—h9Y and Hy* = LOvT e get

7 Ot i Ot
s-_ " lig v, = Hyvy 5.134
— o |G HO Y+ (T) HoVe (5.134)
or h
§= 5 [H¢*V¢ - wa*} : (5.135)

For stationary states %—Jf =0, HyY = Ev and therefore

S=F

2;;@, [;p*w - Ww*} (5.136)

and S = Ef, i.e., the energy flux vector S is E times the probability current
density J.
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* Problem 5.11: Relation between the energy flux density and quantum
mechanical wave impedance

Rewrite the expression of the energy flux vector defined in Problem 5.8 in terms
of the quantum mechanical wave impedance Zqm(z) for solutions of the time-
independent Schrédinger equation with a potential energy profile E.(z) varying
along the z-axis only.

Solution: For the time-independent Schrédinger equation with a spatially varying
E.(z), it was shown in the previous problem that the energy flux density can be
written as

Sz - EJza (5137)
where J, is the probability current density,
h do do*
= R . 1
Iz 2m*q {(é dz ¢ dz ] (5.138)
Since the quantum mechanical wave impedance is defined as (see Problem 1.5)
2h 1d¢
Z = —— 1
qu(s) = = (5.139)
we get
1 * *
5. = B [Zaw(=) + Zina(2)] ¢ (2)0(2) = ERe(Zau() pl(=),  (5.140)

where Re (Zqm(z)) is the real part of the quantum mechanical wave impedance and
p(z) is the probability density, ¢*(z)p(z).

* Problem 5.12: Continuity of the energy flux across a potential step

Consider an electron incident from the left on a potential step of height AE. as
shown in Figure 5.3. Assume the electron’s effective mass is constant throughout
and that the kinetic energy component associated with motion in the z-direction is
larger than AE.. Express the continuity of the energy flur at z = 0. Discuss the
resulting equation.

Solution: Since the energy flux S, is independent of z (as shown in Problem 5.8),
we calculate its value on either side of z = 0 using the wave functions associated
with the scattering problem shown in Figure 5.3.

For z > 0, the energy flux density is given by

s.= 5 hzdzw)w*‘”’ ( I? d2+A)wdw*] (5.141)

~ 2m*i |\ 2m dz2 dz \ 2m*d:? dz
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Since @ = te'*2* for z > 0, where t is the transmission amplitude and
ke = +1/2m*(E, — AE,), where E,, is the kinetic energy of the incident electron,
we get
hk h?
S, = 2|2 [ ko? + A} : (5.142)
m* 2m*
For z < 0, we find
hk +1 NS
S, = 1-— . 5.143
) (5.14)

Equating the two expressions for S, for z < 0 and z > 0 at z = 0, we find

h2k?
2m*

Tiky?
ko |t]? ( > +A) =k (1—tP) (5.144)

2m*
Conservation of the total energy (kinetic and potential) across the step requires

h2ky” A Rk,

. 5.145
2m* 2m* ( )
Hence, Equation (5.144) is equivalent to
2 k20
| +k—|t| =1, (5.146)
1

which is the same as the equation expressing the conservation of the current
density across a step, i.e., the fraction of reflected particles |r|?> and trans-
mitted particles Z—ﬂt\z must add up to unity in the case of coherent transport
(see Problem 5.2).

** Problem 5.13: General tunneling problem using the concept of energy
flux

For the tunneling problem in the general one-dimensional conduction band energy
profile E.(z) (see Figure 5.2) with an applied bias Viias across the structure, use the
concept of energy flur conservation discussed in Problem 5.8 and show the general
result

k
rf? + = =1 (5.147)
ko

between the reflection v and transmission t amplitudes for an electron with incident
energy E, where

1 —

and )
kp = 7 V2m*(E + eViias), (5.149)

E being the total energy of the incident electron.
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Solution: We use the fact that for a steady-state tunneling problem, the energy
flux density S, is spatially invariant (see Problem 5.8) and write

S.(0) = S.(L). (5.150)

Furthermore, we use the results of Problem 5.11 in which it was shown that

S, = ERe (Zgm(2)) p(2), (5.151)
where Zqm(2) i " q%) (see Problem 1.5)

and p(z) is the probability density.

Therefore,
hk
S.(L) = E—= (5.152)
and - ( 21|
1 t
S.(0)=E(—=)4= 2 5.153
© (m*){21+2Re +|7~|2}{' T (5153)
where the first curly bracket is Re (Z(0)) and the second is p(0).
Using the above results, Equation (5.150) leads to
2 kg 2
I+ —|t|* =1, (5.154)
ko

an equality typically derived by utilizing the fact that the magnitude of the incident
current density must equal the sum of the current densities of the reflected and
transmitted beams (see Problem 5.3).

** Problem 5.14: Dwell time above a potential well

The dwell time of a particle across a region of width W is given by

w 2d
Ty = Jo_ 191°dz J|.¢| c (5.155)
mc

where Jine = Z’L"E

is the probability current density associated with a beam of electrons

incident from the left contact, where the effective mass is assumed to be m7, as shown
in Figure 5.6.

Calculate the dwell time as a function of the energy of the incident electron
for a particle impinging on a square well of depth —V, if the effective mass in the
barrier region mj is different from the one in the contacts mj.

Solution: As shown in Problem 1.2, in the presence of a varying effective mass
we must enforce the continuity of

6(2) (5.156)
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Figure 5.6: Illustration of an electron impinging from the left on a potential well.
The effective mass is assumed to be the same throughout.

and
L ao
v(z) dz’

(5.157)

For the scattering problem depicted in Figure 5.6, continuity of (5.156) and (5.157)
at 2 = 0 and z = W leads to four equations for the parameters A*, A=, r, and ¢:

l+r=AT+ A", (5.158)
k m7

1op=— "1 (At _ A 5.159
T ko m; ( ) ) ( )
AW 4 A== kW _ ik W (5.160)

and .
AtethW _ pg——ikW _ @@teikow_ (5.161)

kE mj

Using the last two equations we can express AT and A~ in terms of the transmission
amplitude ¢ as

k‘o ma t .

At = (1 + i) —elko=RW (5.162)
kmy) 2
k}() m} t .

A = (1 - j) —eilhotR)W, (5.163)
kmy) 2

The square of the magnitude of the wave function inside the well region is given by

_ [ B BB
|q>2_[4+4+ 5

cos 2k(W — z)} It|?, (5.164)
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where the following shorthand notations were used:

m§ kio

=1 5.165
BJr + mT k ’ ( )
m§ k?o
_=1- —. 5.166
po—1- T2 (5.166)
Evaluating the integral in Equation (5.155), we get
mj sin(2kW)
= A AW———+~ 1
T4 ko |: oW + AW W , (5 67)
where
2 2
Ay = (W) It (5.168)
Ay = <5+25> It]°. (5.169)

Plugging back Equations (5.161)—(5.162) into Equations (5.158)—(5.159) and solving
for ¢t and r, we obtain

B2 — B 2e2ikW 7
2if4 f_ sin(kW)
Byl W — B 2eikW

t= (5.170)

(5.171)

Suggested problems

o If J is the probability current density for a particle of mass m* in a potential
field, show that the expectation value of its angular momentum L = 7 X p'is
given by

L=("xp) :m*/d3F(Fx J)

e For a particle of spin 1/2, show that the expectation value of the spin operator,

(5.172)

(S) = g/cﬁmfcﬁp, (5.173)
can be written as
(8) = m* /dBF (Fx fs) , (5.174)
where the spin probability current density is given by
Js =V x Vs (5.175)
with ) .
Vs = TW\I/*&\IJ. (5.176)

‘75 is referred to as the vector potential of the spin probability current density
Js.
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Write Matlab code to compute the reflection, transmission, and absorption
coefficients for a quantum well of width 50 A and depth Vy = —0.3eV. Assume
Wy = 0.1eV and the effective mass is the same everywhere (m* = 0.067my).
Compute |r|?, |t|?, and A as a function of the incident energy and show that
Equation (5.80) is satisfied.

Starting with the results of Problem 5.5, prove that |r|> + %Zl t? =1
v 2
by equating the incident current density to the sum of the reflected and

transmitted current densities.

Derive an analytical expression for the quantum mechanical impedance asso-
ciated with a plane wave moving from left to right in a region where E.(z) is
constant. Assume a constant effective mass throughout.

Write Matlab code to compute the dwell time above a quantum well as a
function of the kinetic energy of the electron incident from the left contact
(see Figure 5.4). Allow for the effective masses in the contact and well region
and the depth and width of the well to be adjustable parameters. For some
parameters of your choice, compare the dwell time above the quantum well to

hkw), where hk,, /m} is the velocity

*
m,2

its classical counterpart, i.e., 7, = W/ (

of the electron in the well region. Comment on the difference between the
quantum mechanical expression for 7 and its classical counterpart.

Repeat Problem 5.14 with the addition of repulsive delta scatterers at z =0
and z = W. By varying the strength of the repulsive delta scatterers, study
how the dwell time through the rectangular barrier changes.

Suppose an electron is incident on an infinite potential barrier defined as
follows:

Ee(z) =0 for z < 0, (5.177)

E.(z) = oo for z > 0. (5.178)

What is the value of the quantum mechanical wave impedance Z(0) (see
Problem 5.1)? Interpret the result physically.

References

1]

2]

Levi, A. F. J. (2006) Applied Quantum Mechanics, 2nd edition, Section 3.5,
Cambridge University Press, Cambridge.

Cohen-Tannoudji, C., Diu, B., and Laloe, F. (2000) Quantum Mechanics,
Chapter 3, Section D, Hermann, Paris.

Landau, L. D. and Lifshitz, E. M. (1965) Quantum Mechanics, 2nd edition,
pp- 435-437, Pergamon, Oxford.



Current and Energy Flux Densities 127

[4] Greiner, W. (1989) Quantum Mechanics, pp. 241-242, Springer-Verlag, Berlin.

[5] Lévy-Leblond, J. M. (1987) The total probability current and the quantum
period. American Journal of Physics 55, pp. 146-149.

Suggested Reading

Draper, J. E. (1979) Use of |¢|? and flux to simplify analysis of transmission
past rectangular barriers and wells. American Journal of Physics 47, pp. 525—
530.

Uma Maheswari, A., Mahadevan, S., Prema, P., Shastry, C. S., and Agarwalla,
S. K. (2007) Transmission and scattering by an absorptive potential. American
Journal of Physics 75, pp. 245-253.

Kaiser, H., Neidhardt, H., and Rehberg, J. (2002) Density and current of a
dissipative Schrodinger operator. J. Math. Phys. 43, p. 5325.

Manolopoulos, D. E. (2002) Derivation and reflection properties of a
transmission-free absorbing potential. J. Chem. Phys. 117, p. 9552.

Mita, K. (2000) Virtual probability current associated with the spin. American
Journal of Physics 68, pp. 259-264.



Chapter 6: Density of States

The concept of density of states (DOS), or the number of energy states available
for a particle to occupy within the energy range £ and F + dFE, is one of the most
important concepts in statistical mechanics [1]. The DOS is needed to compute
the average value of various physical quantities at equilibrium, and it also appears
in the calculation of scattering rates associated with an electron scattering due to
microscopic interactions with different entities in a medium. Among many other
things, it is also needed to compute the current density due to electrons flowing
through a device under bias.

The next set of problems illustrates the calculation of the DOS for systems
of fermions and bosons either under equilibrium or under steady-state (non-
equilibrium) conditions arising from the presence of a finite bias across a device.
These problems include a study of the dependence of the DOS on the spatial
dimensions of confined systems containing either electron or photon gases.

*** Problem 6.1: Density of states in quantum confined structures (from
three to zero dimensions)

Consider the quantum confined geometries shown in Figure 6.1; 2D: two-
dimensional electron gas (2DEG) or “quantum well” (QW); 1D: one-dimensional
electron gas (1DEG) or “quantum wire”; 0D: zero-dimensional electron gas
(“quantum dot” or “quantum box”). Calculate the energy dependence of the DOS
in these structures at equilibrium and compare them to the three-dimensional bulk
sample shown in the upper left corner of Figure 6.1. Assume 2(12p(17"al)olz'c energy

A2k

dispersion relation in the lowest conduction band, i.e., E(E) = 5.5, where k 1s the

magnitude of the electron wave vector and m* is the electron’s effective mass.

Solution: (a) 3D: Consider a uniform homogeneous semiconductor at equilib-
rium with the bottom of the conduction band denoted by F.y and with a parabolic

-,

E(k) dispersion relation (see Figure 6.2), given by

h2k?
The solutions of the three-dimensional effective mass Schrédinger equation (i.e., the
electron wave functions in the semiconductor) are plane waves expressed as

1 ir
—e'T 6.2
va (62
normalized over a volume = L3, where L is the side of a cube large compared to
the lattice unit cell of the semiconductor.

or(7) =

Problem Solving in Quantum Mechanics: From Basics to Real-World Applications for Materials
Scientists, Applied Physicists, and Devices Engineers, First Edition.

Marc Cahay and Supriyo Bandyopadhyay.

©) 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd. 128



Density of States 129

3D 2D

oD

/

4

[o0]

Figure 6.1: Illustration of the formation of a quantum dot (bottom right) through
the gradual squeezing of a bulk piece of semiconductor (upper left). When the
dimension of the bulk structure is reduced in one direction to a size comparable
to the de Broglie wavelength, the resulting electron gas is referred to as a two-
dimensional electron gas (2DEG) because the carriers are free to move in two
directions only. If quantum confinement occurs in two directions, as illustrated in
the bottom left figure, the resulting electron gas is referred to as a one-dimensional
electron gas (1IDEG) since an electron in this structure is free to move in one
direction only. If confinement is imposed in all three directions (bottom right frame),
we get a quantum dot (0DEG).

(b) 2D: In a QW, quantum confinement in one direction (z-direction) leads
to the formation of subbands whose energy dispersion relations are given by

h2 9 9 ﬁthQ
5 (k2 +k2) = em + S

Emky k. = Emk, = €m + (6.3)

for the mth subband whose subband bottom energy is €,,. Here, k; = (ky, kz).

The solutions of the two-dimensional effective mass Schrodinger equation are
1

KeBe (o
ﬁe Em (), (6.4)

= 1 7 ik, z
¢m,kt (p,IE) = (rbm,kyykz (xa Y, Z) = ﬁe kyye s fm(x) =

normalized over an area A = L2,

(c) 1D: In a quantum wire, quantum confinement in two transverse (y, z)
directions leads to the formation of subbands, each of which is labeled by two



130 Problem Solving in Quantum Mechanics

E, 4 E, A

Qm 2:;* \ Ey, - Ey
buo

Ec() ===

v

>
>

k D3P(Ey)

Figure 6.2: (Left) Parabolic energy dispersion relation close to the bottom of the
conduction band (E.o) of a typical semiconductor. (Right) Corresponding energy
dependence of the three-dimensional DOS in a bulk semiconductor.

indices p, g because of the confinement in two transverse directions. Their energy
dispersion relations are given by

Ep gk, =€pq+ . (6.5)
where €, ; is the energy at the bottom of the corresponding subband.

The solutions of the one-dimensional effective mass Schrodinger equation are

PPtk (2,y, 2) = %eik”Xp(y)Cq(Z)a (6.6)

normalized over a length L. Here, x,(y) is the envelope wave function in the (p, ¢)th
subband in the y-direction and (,(z) is that in the z-direction.

In 3D, assuming periodic boundary conditions for ¢ (7), i.e.,

the allowed values of k = (k,, ky, k.) are given by
2m
by = np—. 6.8
n (©8)
2m
and 9
™
k, = 277 1
neT (6.10)

where n,, ny,n, are positive or negative integers.

Therefore adjacent k states are separated by 27 /L in any of the three coordinate
directions. In the wavevector magnitude range k to k + dk, the number of available
k-states will therefore be 27(1"1]/{:[/ = Ldk/(2m).
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In 3D, this will be d3kL3/(27)3 = d*kQ/(27)3, where ) is the volume in real
space and d3k is the volume in k& space (spherical coordinates), i.e., Bk = Ank2dk.
In 2D, it will be d2k,L2/(27)2 = d?k,A/(27)2, where A is the area in real space and
dQEt is the area in k; space (circular coordinates), i.e., dQEt = 27k;dk;. By the same
token, the number of available states in 1D will be dk,L/(27), but this would be
wrong because of a subtlety. In 1D we have to account for the direction of &, since
there can be two directions, corresponding to +k,. Therefore, we should multiply
the number of states by a factor of two and hence the number of available states is

dk.L/ (7).

In each k state, one can accommodate a maximum of two electrons of opposite
spins owing to the Pauli exclusion principle. Hence the number of electron states
available in the k-space volume d2k, or the k-space area d?k;, or the k-space length
dk,, is

3k
473
d2k, A
272
2L
dk, 2L (1D). (6.11)

™

(3D),

(2D),

By definition, these numbers are, respectively, D3P (k)d3k, D2P(k,)d?k;, and
D' (k,)dk,, where D3P (k), D*(k;), and D'P(k,) are the density of states in
k space for three, two, and one dimensions, respectively. Therefore,

Q
D*P(k) = ot
A
D?P (k) = Py
2L
D'P(k,) = =. (6.12)
™

Note that these quantities are all independent of wavevector.

In equilibrium, the probability of a k state being occupied by an electron is
given by the Fermi-Dirac factor f(Ey) = [exp ((Ex — Er)/kT) + 1] ". Therefore, if
we wish to find the number of electrons N (k)dk in the wavevector range k to k -+ dk,
that number will be (in the 2D and 1D cases, we assume only any one subband)

- 3"
FEIDPEE = (E) (D),
— 2_'
£ D (k)R = f(E) T (o),
F(BR)D™ k)b, = f(E) 22 () (613)

™
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Now, let the wavevector range k to k 4+ dk correspond to the energy range
Ei to Ei + dEy,. We will define the energy-dependent density of states D(Ey)
such that the number of electrons N(Ey)dEy occupying the energy range Fj to
Ey + dEy is D(Ey)f(Fx)dE). Since electron number is conserved, we must have
N(k)dk = N(Eg)dE}), and hence

BEQ
J(Ek) 13 = D°"(Ey)f(Er)dE,  (3D),
d?k, A
f(Ek) o —— = D*™(Ey,) f(Ey)dEy, (2D),
dkz2L
f(Br)—— - = D' (Ey,)f(Ex)dE, (1D), (6.14)
which translates to
. Ark2dkQ
3D _
D™ (Er)dEy = — 35—,
2wkidk A
2D . ARt
D (Ekt)dEkt - 27T2 )
2dk,L
D'P(Ey,)dE)., = — (6.15)

This allows us to write (for any one subband in the 2D and 1D cases)

‘ dE,  47k*Q
D (By)—= = ———
( k) dk 47'('3 )
dE,, 27k A
D2D E to_
( kt) dkt 27'['2 ’
dE 2L
D'P(Ey, )=t = 22 (6.16)
dk, T

We now invoke the dispersion relation in Equations (6.1), (6.3), and (6.5) to cal-
culate the derivatives and express k, ki, or k, in terms of Ej, Fy,, or Ei, (again
assuming a specific subband for the 2D and 1D cases). The derivative is 4B _

dk
h2 = MM B, 2m Er for the 3D case, and the reader can easily repeat for the 2D and

1D cases. Thus we get

m*v2m*2
D3D(Ek) = W Ek - EC07
m*A
DP(E) = o
2m*L 1
DV (E,) = —" (6.17)

mh2v/2m* \/ p,q,k 6p7q.

Note that the energy-dependent DOS is proportional to v/Er — E.o in 3D, inde-
pendent of energy in 2D, and inversely proportional to \/Ej %, — €pq in 1D.



Density of States 133
The energy-dependent three-dimensional DOS is plotted as a function of energy
in Figure 6.2.

If we wish to calculate the electron density in 3D, 2D, or 1D, then we will find
that since the total number of electrons N = [ N(E)dE,

[, D*P(Ex) f(Ey)dE},

P=N/Q= Q ,
D _ N/A = S Jos DP( jk )f(Ek?)dEkt7
D _ N/p— >pq o D'V (Bx, )f(Ekz)dEkm. (6.18)

L

3D: Using Equation (6.17) in Equation (6.18) and using the Fermi-Dirac function
for f(Ek), we get that, for the 3D case,

2
n®P = —=NcFi(€ 6.19
NG (&), (6.19)
where
2m*kBT
N, 4h3 ) (6.20)
and (Ey — E.)
c0
= 21
§= (6.21)

where kg is the Boltzmann constant and T is the absolute temperature.

In Equation (6.19), F'

1
2

(€) is given by

/ T apYE P (6.22)

F
Eco 1+ e kBT

Fi(§) =

2

2D: For the 2D case, we find the sheet carrier concentration as

fem DQD Ekt f(Ekt)dEk:t

nZD 1
-y / F(Ep,)dEy,
- Z/O O(E — e)f(E)dE, (6.23)

where © is the Heaviside (or unit step) function. The last integral can be evaluated
analytically since f(F) is the Fermi—Dirac function. This yields that the sheet carrier
concentration due to M occupied subbands is

m=M cm—Ep
11 (1+e‘ *BT ) : (6.24)

m=1

n?P = h2 " kTl
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where IT denotes product. This analytical expression for n?P (sheet carrier concen-
tration) is valid for any shape of the confining potential in the z-direction. Only the
numerical values of €, must be determined through a solution of the Schrédinger
equation

h? d2%¢,,(z)

- 2m* W + Ec(x)gm(x) = Emfm(l‘)- (6.25)

1D: In the 1D case, we find the linear carrier concentration as

 Ypaqla, DY (Ek,)f(Ex,)dEy,
o L

*©  2m* 1
= F(Ep gk ) (Ep gk, — €p,q)
;/e Th?v/2m* \/Embkm — €pyq

p,q

nlD

< 2m* 1
= M F(E+ey,)dE. 6.26
Z/  —I(E+ ) (6.26)

The integral here is an improper integral since the integrand diverges for £ = 0.
These points are called van Hove singularites, and the 1D DOS diverges at the
singularities that occur when Ej 1, = €p 4.

0D: In this case, we are dealing with a quantum box with quantum confinement
in all three directions (see lower right frame in Figure 6.1). The electron energy is
completely discretized. Each discrete level is labeled by three indices [, m, and n,
corresponding to confinement in the z-, y-, and z-directions.

The electron density in any subband is given by
W = [ AED™(E)E). (6.27)
where the zero-dimensional DOS is simply
D®(E) =2 6(E — €1mn), (6.28)
l,m,n

where § is the Dirac delta function and the factor 2 has been included since each
€n,m,l energy level can be occupied by two electrons with opposite spin.

** Problem 6.2: Onset of degeneracy in confined systems [2]

In a semiconductor bulk sample at equilibrium, the statistics of electrons is well
described by the Mazwell-Boltzmann distribution if the Fermi level is at least 3kgT
below the bottom of the conduction band. Such a semiconductor is said to be “non-
degenerate.” On the other hand, if the Fermi level is less than 3kgT below the con-
duction band, the semiconductor is “degenerate” and the Fermi—Dirac distribution
must be used to describe the statistics of electrons. In a quantum-confined system
(2D, 1D, or 0D), which is different from bulk, we will use as a criterion for the onset
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of degeneracy (transition from a Mazwell-Boltzmann to a Fermi-Dirac distribution
of carriers) the condition that the Fermi level coincides with the lowest energy level
for the appearance of free propagating states in a sample. We will then extend this
criterion to bulk systems and modify the criterion for the onset of degeneracy to the
condition that the Fermi level coincides with the conduction band edge (instead of
being less than 3kgT below the conduction band edge. The Fermi level placement in
the energy band diagram is determined by the carrier concentration; so, there is a
critical carrier concentration for the onset of degeneracy.

The goal of this problem is to show that the critical carrier concentration for
the onset of degeneracy increases with stronger confinement. More specifically, the
followingstatements will be proved:

(a) The ratio of the critical electron concentration in a quantum well to that
in the bulk for the onset of degeneracy is proportional to Ap /W, where Ap is the
thermal de Broglie wavelength ()\D = h/\/2m*kBT) and W is the thickness of the
QW.

(b) In a quasi one-dimensional structure (quantum wire) of cross-sectional area
A, the critical concentration for the onset of degeneracy is proportional to )\DZ/A.

Solution: (a) In a 3D sample, using the results of the previous problem, the
critical concentration for the onset of degeneracy is found by using F. = 0 and
setting Fr = 0 in Equation (6.19):

(2m*kgT)3/?
n:C))Bt = 27T2h3 F1/27 (629)

where

Rl avaY
F = dz. .
1/2(0) /0 T (6.30)

3D

The quantity n;, can be expressed in terms of the thermal de Broglie wavelength:

ndh = F12(0)/ (272 \p). (6.31)

In a QW whose lowest energy level is located at an energy F; above the bottom of
the conduction band, if we assume that only one subband is occupied, the electron
sheet concentration in the well is given by (see previous problem)

*kgT Ep—Fy
ng = mwhg In (1 +e EBT1> . (6.32)

Neglecting the upper subbands is a good approximation since the criterion for the
onset of degeneracy in the QW is found by setting Er = Fj, the lowest energy for
the existence of free propagating states in the QW. Hence, in a QW the critical
sheet carrier concentration for the onset of degeneracy is given by

*
ncrit _ m*kgT
s mh?

In2. (6.33)
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The critical electron density per unit volume in a QW of width W is related to ng™t

as follows:
m* kBT In2

Th? W'
Hence, the ratio of the critical concentration for the onset of degeneracy in a bulk
and QW is given as

ncrit(VVa T) = ngrit/W = (634)

mln2 (Ap) AD
ncrlt(W T)/ncrlt Fl/Q(O) <W> 3. 21W (635)

(b) In a quantum wire, the 1D DOS in the lowest energy subband with energy
bottom located at Fq; is given by

V2m* 1
7h \/E_Ell.

The contribution to the electron concentration per unit length of the quantum wire
is therefore given by (see previous problem)

=Y 2’" T ! . (6.37)

/ (E-F11)-Fp
Eqq E— Ell 1 +e kT

Setting Er = 0 and making a variable substitution with x = (E — FE11)/kgT, the
onset of degeneracy in a quantum wire occurs at a critical density per unit length

D'P(E) = (6.36)

ny

equal to
ri V 2m*
™t = Sl a(0), (6.38)
where
+oo $—1/2
F_ 0) = d . 6.39
1/2(0) /0 7 e ( )
Using Equations (6.31) and (6.38), we finally get
ncrit/A )\2
1n3Dt = 2m(F_1/2(0)/F1/2(0))Aa®/A X' (6.40)
Cri1

* Problem 6.3: Sheet carrier concentration in a two-dimensional electron
gas with a few subbands occupied [1]

(a) Show that the sheet carrier concentration ns in a 2DEG of a high electron
mobility transistor (HEMT) is given by

m* Ep—E; Ep—Eo
ng = hszTln {(1—1—6 kT ) <1+e kBT )} , (6.41)

when only two subbands are occupied in the 2DEG. Here, F1 and Eo are the energy
bottoms of the two lowest subbands. First, read the brief introduction to the HEMT
device in Appendiz E.
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(b) Starting with the result of part (a), show that at low temperature

*

m
mh2

(Er — Ey) (6.42)

s

when the second subband is unoccupied, and

* *

m m

Ne =
mh?

when both subbands are occupied.
Solution: (a) From Equation (6.24), we immediately get the stated result.
(b) If only one subband in the 2DEG is occupied,
Ep—Ey
ns = kT In (1 +e FBT ) . (6.44)

If kgT < Er — Ej, then using the result In(1 + x) &~ z when = < 1, we get

m*

~ Th?

(Er — E). (6.45)

Ny

When the second subband is occupied (but the third one is unoccupied), we get,
from Equation (6.24),

m* Ep—B, Ep—B,
ns = —skpT |In{14+e *T | +In|1+e *s7 . (6.46)
Th
If kgT < Ep — Ey, Ep — E5 (i.e., at low enough temperature), then
Bp—By Er — By
In(1 BT | = —————= 6.47
n < +e *B ) e T ( )
and 5 5
Ep—E —
hl (1 +e EBTz) = % (648)
B
Hence,
m* m* m*
Nng = W(EF - E1) + TfiQ(EF - EQ) = s (QEF —F; — EQ)
m* m*
=T (B2 — Ey) + QW(EF — E»). (6.49)

* Problem 6.4: Fraction of ionized impurities in a QW

The electrons contributing to the sheet carrier concentration in a HEMT come from
ionized donor impurities (dopant atoms) in the gate insulator (see Appendiz E). Not
all the impurities may ionize at low temperatures so that the electrons generated by
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the dopants may be fewer in number than the impurities. This is sometimes called
carrier freeze-out. We study this phenomenon in this problem.

Assuming that only one subband is occupied in a 100 A-wide GaAs QW uni-
formly doped with donors at a concentration Np = 1017 em™2, what is the fraction o
of ionized impurities if the Fermi level is 8kgT below the ground state energy level?
Assume T = 4.2 K. Model the QW as a box with infinite walls (see Problem 3.5).
The effective mass of electrons in GaAs is 0.067 times the free electron mass of
9.1x1073 kg.

Solution: As shown in Problem 6.3, with only one subband occupied the electron
sheet concentration is given by

* Ep—E
ne = %kBTln [(1 e T ﬂ . (6.50)

If a fraction « of the impurities is ionized and all the resulting electrons transfer to
the two-dimensional electron gas in the HEMT, then the sheet concentration ng is
given by

ns = Np W = aNpW. (6.51)
Using the last two equations and solving for «,
m* Ep—FE,
o = W!’CBTln |:1 + e kBT :| . (652)

For By — Er = 3kgT, a = 0.5%.

** Problem 6.5: Intrinsic carrier concentration in a two-dimensional
electron gas [1]

Consider Figure 6.3, which shows the energy dependence of the two-dimensional
DOS of electrons and holes in a 2D semiconductor single layer, where only the
first subband for both electrons and holes is assumed to be occupied. The quantities
a = me/(mh?) and b = my,/(7h?), where me and my, are the effective masses of
electrons and holes, respectively.

(a) Assuming the well is undoped, obtain an expression for the Fermi level Ex at
room temperature in terms of a, b, and the temperature T'. Assume Boltzmann statis-
tics to be valid. When is FEg exactly equal to the midgap energy, w 2

(b) Obtain the expression for n;, the intrinsic carrier concentration, in terms
of a, b, kgT, and the effective bandgap energy E; = E. + Ao — Ey — Ay,.

Hint: Start with the approximate expressions for the electron (n) and hole (p)
concentrations in terms of g.(E) and g,(F), where g.(E) is the energy-dependent
two-dimensional density of states for electrons and g, (F) is that for holes (subscripts
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hole

electron

~Ey-An-Ey  Energy () E. Ec+Ae

Figure 6.3: Density of states of electrons and holes as a function of energy in a two-
dimensional electron and hole gas. Here, A, is the first subband energy for electrons
and Ay is that for holes.

¢ and v denote conduction and valence bands). Also, assume Boltzmann statistics

of carriers, i.e.,
Ep—E

f(E)=e#sT . (6.53)

Solution: (a) The electron and hole concentrations are given by

n= [ B, (6.54)
E,
= aBlL- fENE. (6.55)

(Bp—B)
Using Boltzmann’s approximation, f(E) = e ipT , gc(E) = aO(FE — E.—A,), and
gv(E) = bO(Ey + Ay — E), where O(n) is the unit step (Heaviside) function, leads
to

o (Ep—E) Ep—Ec—Ae
n= / ae *8T dE = akgTe *T . (6.56)
Ec+Ae
Similarly,
Ev+Ay (E—ER) Ev+Ap—FEp
p= / be FT dE = bkgTe  F*BT . (6.57)
If the sample is intrinsic, then n = p = n;. Therefore,
(%7) (%57)
akgTe\ *8T J = bkgTe\ *BT /| (6.58)

from which we derive

Ep (6.59)

Ee+Ac+ Ey + Ay | kgT b
2 2 a
Hence, Frp = % whenever a = b, i.e., the Fermi level is exactly half way
through the effective bandgap when the electron and hole effective masses are the
same.
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(b) The intrinsic carrier concentration is given by n; = ,/np. Hence, using
Equations (6.56) and (6.57), we obtain

(Bc+Ae—Ey—Ap) Bg+Ac+Ay

ny = kgTVabe 257 =kgTVabe ~ T (6.60)

where F, is the bulk bandgap E. — E..

** Problem 6.6: Charge density, electric field, and electrostatic potential
energy profile in a QW with infinite barriers at equilibrium

Consider a QW of width W. Assume that the QW is uniformly doped with donors
whose concentration (i.e., volume density) is Np. Also assume it is at room tem-
perature and all impurities are ionized.

Consider the situation when only one subband is occupied in the QW. Derive
analytical expressions for the total charge concentration p(z), the electric field E(z),
and the electrostatic potential V(z) across the well. Assume the boundary conditions
E(0) = E(W) =0, and V(0) = V(W) = 0. According to Gauss’s law, this is

equivalent to assuming that the QW is electrically neutral.

Plot p(z), E(2), and V(2) as a function of z for T = 300 K, m* = 0.067m,
W =100 4, and Np = 10'7 em=3.

Solution: Because the wave function varies across the width of the QW, the
volume carrier density is not constant, but varies with the coordinate z (the sheet
carrier concentration is still constant). Consequently, the electron volume concen-
tration will be given by (see Equation (6.24))

n(z) =Y omlém(2)), (6.61)

where &,,,(2) is the wave function in the mth subband and

m*

Om =
wh?2

em —E
kT In {1 + e‘kBTF] . (6.62)

If only one subband is occupied, the spatial variation of the electron volume
concentration will be given by

n(z) = o1l€1(2) (6.63)

where, because of the infinite square well potential,

&i(z) = \/gsin (%) : (6.64)

In writing down the last equation, we assumed (as a first approximation) that the
potential inside the QW is spatially invariant.
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Therefore, the electron volume concentration in the first subband is

2
M@:p&ﬂqZ%%ﬁﬁ(%g. (6.65)
The total charge concentration in the QW is

p(2) = 4[N — n(2)]. (6.66)

Since the QW is electrically neutral and all the impurities are ionized, we must
have

+o00 +oo +o0
ns = 1/ p(z)dz = / n(z)dz = 01/ |€1(2)[2dz = NpW. (6.67)

q — 00 — 00 —

Since the wave function is normalized, the integral in the above equation is equal
to unity. Hence, using the last equation, we find 03 = NpW. As a result, the
spatial dependence of the total charge concentration in the QW is given, from
Equations (6.65) and (6.66), by

p(2) = q [1017 — 2 % 107 sin? (%)} . (6.68)
Hence,
p(z) = 10" q cos (27TM/2’> em ™3, (6.69)
From Poisson’s equation,
dEdiz) = @, (6.70)

where € is the dielectric constant in the QW. Therefore, E(z) = foz @dz + E(0)
and, since E(0) = 0, the spatial dependence of the electric field inside the QW is

given by
gNpW . ( 21z >
sin .

E(z) = (6.71)

2me W

It is easy to verify from the above expression that EF(W) = 0, which means that
the QW is electrically neutral.

The electrostatic potential energy is found from the relation

dV(z)
dz

= —E(2). (6.72)

A simple integration (taking into account that V(0) = 0) leads to

Vi(z) = e(];?)v;/: [cos <2V7IT/Z> - 1] : (6.73)

which satisfies the boundary condition V(W) = 0.
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Figure 6.4: Spatial dependence of the total charge concentration, p(z) (in C/m3),
in the QW (see Equation (6.69)).

Using the above results, Figures 6.4-6.6 show plots of p(z), E(z), and V(z)
across a QW for the following set of parameters: 7' = 300K, m* = 0.067m,
W =100 A, and Np = 107 cm 3.

In this problem, we started with an initially flat conduction band energy profile.
The solution above shows that there is in fact a spatial variation of the electrostatic
potential energy across the QW. This leads to a modification of the conduction
band energy profile E.(z) inside the QW which is given by E.(z) = x — ¢V (2),
where x is the electron affinity in the QW. The new E.(z) must be used to re-
solve the Schrodinger equation to recalculate its new eigenvalues and associated
eigenfunctions. The electric field and the electrostatic potential energy must then
be calculated again and the iterative procedure continued until a self-consistent
solution is found. The set of equations to be solved self-consistently is given in
detail in Problem 6.8.

** Problem 6.7: Gate capacitance of a HEMT

For a HEMT device, the gate capacitance per unit area is defined as

C  d(gns)
ZLy  dVy '

(6.74)

where Ly and Z are the length and width of the gate, respectively (see Appendiz E).
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Figure 6.5: Spatial dependence of the electric field E(z) (in V/m) across the QW
(see Equation (6.71)). The dielectric constant of GaAs was set equal to 12.9¢.
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Figure 6.6: Spatial dependence of the electrostatic potential V(z) (in mV) across
the QW (see Equation (6.73)). The dielectric constant of GaAs was set equal to
12.9¢.
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Show that

al

C
= , 6.75

T () v
where q is the magnitude of the charge of the electron, € is the dielectric constant of
the AlGaAs layer, and Ey is the Fermi energy in the 2DEG at the AlGaAs/GaAs
interface. The latter is the Fermi level far into the substrate if we assume no leakage
current, i.e., mo current flow in the z-direction; d is the thickness of the AlGaAs
layer (see Appendiz E).

Solution: We start with the results of Appendix E where the electron sheet
concentration in the 2DEG was found to be given by

€s
ns = — (Vo —Vr), (6.76)
where Vg is the gate voltage, and the threshold voltage Vr is given explicitly by

L (B — AB) - Vi, (6.77)

VT - (Z)m + -
q

where the various quantities on the right-hand side are defined in Appendix E.

Using Equations (6.74) and (6.76), we get

C d(gns) € d
— = —_— — V —_ .
7L, = dvg ~ dav,"e V) (6.78)

o C dV-
€s T
= (1-=—=. 6.79
ZLs d ( dVG) ( )
But,
dvp _ 1dEp dVq _ 1dEp dn (6.80)
dVG N q dVG dVG h q dns dVG '
Rearranging, we finally get
c %
= . (6.81)
et ()

Therefore, the capacitance per unit square area is not just €;/d, i.e., the parallel plate
capacitance per unit area associated with the AlGaAs layer. There is a correction
in the denominator proportional to

€g 1 dEF
- — . .82
dqQ(dns) (6:82)

This correction is purely quantum mechanical in origin. It is due to the finite
extent of the different wave functions associated with the lowest energy subbands
participating in the population of the 2DEG. The average location of the electron



Density of States 145

Ve | !
¢Va I i AE, H E(Substrate)
............................ desssmsnenenmnnm. ..!...... -

Z=-W Z=-d

Figure 6.7: Energy band profile under the gate of a HEMT device consisting of an
AlGaAs/GaAs heterostructure. The substrate is held at ground and a voltage Vg
is applied to the gate.

charge density in the 2DEG is located away from the AlGaAs/GaAs interface. The

capacitance per unit area can be rewritten as

C _&
ZL,  d"’

(6.83)

with d’' = d[l + %Sq% (ddgF )} , which is larger than d. An estimate of the correction
dEp

requires a calculation of the quantity >*, which must be obtained numerically
using the self-consistent procedure outlined in the next problem.

*** Problem 6.8: Self-consistent calculations for a HEMT device

Write down the set of equations which must be solved simultaneously and self-
consistently to calculate the carrier sheet concentration ns versus the applied gate
voltage for the HEMT structure whose energy band diagram (in the direction per-
pendicular to the hetero-interfaces) is shown in Figure 6.7. The AlGaAs layer
contains some ionized donors of (spatially varying) concentration Np™t(z) due to
modulation doping of the device, and the substrate is assumed to be doped with
acceptor concentration Na(z) (typically uniform).

Solution: If we take into account the difference between the dielectric constants of
the AlGaAs and the GaAs layers, the Poisson equation describing the electrostatic
potential variation between the gate and back of the substrate is given by

& [ ] = L6 - 576 - na2). (6.5

where ¢ is the magnitude of the charge of the electron and ne(2) is the electron
concentration in the channel given by
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nel(2) = Z Un|£n(z)|2» (6.85)

where
m* kBT
o =
mh?

EFsub — Em
)

In [1 +e  FBT (6.86)

where Ep®®® is the Fermi level in the substrate, which is spatially invariant because
of the lack of current flow through the substrate.

The wave functions &,(z) are the solutions to the Schrédinger equation in the
channel of the HEMT. Taking into account the variation of the effective mass across
the AlGaAs/GaAs interface, the following Schrodinger equation must be solved:

d 1 d
_p2 dcen _
" [Zm*(z) dz} + Ec(2)6n(2) = Enén(2), (6.87)
where the conduction band edge is given by
E.(z) = Eo — x(2) — eV(2). (6.88)

Here, x(z) is the spatially varying electron affinity (different in the AlGaAs and
GaAs layers) and Ej is a reference level in the energy band diagram. At the
AlGaAs/GaAs interface, the conduction band discontinuity must be taken into
account:

E(d_) = Eo(dy) + AE.. (6.89)

The set of equations above must be solved simultaneously. The Poisson equation
must be solved taking into account the fact that at the gate contact, V = V4.
Typically, V' is set equal to zero far into the bulk.

A good approximation for the shape of the energy potential E.(z) near the
AlGaAs/GaAs interface is a triangular well. The wave functions corresponding to
the first few bound states in the triangular well can then be calculated using Airy
functions if the AlGaAs barrier is considered as infinite (see Problem 3.12) or using
a variational procedure (see Chapter 10). A more accurate treatment requires a
numerical solution of the Schrodinger equation.

The set of equations given above must be solved simultaneously to take into
account the effects of space-charge in the device. Typically, the set of equations
is solved iteratively starting with an initial guess for the electrostatic potential,
using the analytical treatment presented in Appendix E. Examples of self-consistent
calculations of the conduction band energy profile and electron sheet concentration
as a function of the applied gate bias can be found in Refs. [3, 4].

*** Problem 6.9: Electron charge density profile in a current-carrying
nanoscale device

Derive a general expression for the electron charge density profile in a current-
carrying nanoscale device taking into account the spatial variation of the effective
mass along the direction of current flow (see Figure 5.1).
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Solution: Assuming ballistic transport and that the conduction band and effec-
tive mass vary along the z-direction only (direction of current flow), the Schrédinger
equation inside the device is given by (see Problem 1.1)

d 1 2mg B . o
dz {() (2 )} B2 {E ~(2) Ec(2)| ¢(z) =0, (6.90)
m”(z)

where ’y( ) = ==, m} being the effective mass in the contacts, £ = E; + E,,
E =

ko is the electron wave vector in the direction of current flow (z-axis) in
R2 (k2+k)

>
2m}

2m* ?

the contacts, and Fy = is the transverse kinetic energy in the contacts.

To calculate the total charge density in a nanoscale device due to electrons
incident from the left contact, we perform the following integration assuming that
the conduction band energy profile and effective mass vary along the z-direction
only:

N 1
W) = g [ SRR, (6.91)

—Er) |
where f(E}) = {1 te kT } , By = Ec(0) + 25 and k2 = (k2 + k2) + k2 =

* 9
2m}

k2 + k2. The label 1-1 is used to indicate that the electrons are incident from the
left contact and are traveling to the right (left-to-right current component).

Using cylindrical coordinates in k space, we obtain

oo dk o dkyk

l-r z thvt
= — F(k,, k 6.92
n "(z) /0 o J, - (k2 ke), (6.92)

where
—1

Eo(0) — Ep + S (k2 + k2)

F(kzke) = |exp kB;’" 1 TEE (6.99)

The quantity |w}€’r|2 depends on both k, and k¢ since it is the solution of Equa-
tion (6.90). As an approximation, if we replace Fy by kpT, the average kinetic
energy in the transverse direction, the charge density associated with electrons
incident from the left contact is given by

nlfr 2) = e dk 20_17r
(2) = / (2) 20" (k), (6.94)

where ¢ ") (2) is the solution to the Schrodinger equation with E; replaced by
kT, and

-1

Jlfr(kz) =

1l . (695
| exp T + (6.95)

/+oo dkky E.(0) — Ep + 2m* (]g2 + k2)
0
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This integral can be evaluated exactly by making the following change of variables:

2
U= <EC(O) - k2> /ksT, (6.96)
C
V = h%k?/2m* kg T. (6.97)
This leads to
h2 —kdk 6.98
dU = .
v m*kgT e ( )
and N
l-r _ 7n*kBT‘ > U+Vv —1
o' (k) = — /0 v [TV +1] . (6.99)
Next, we use the fact that
d (14 el+Y i 6.100
ag M) = Ty (6.100)
Hence,
l-r _ m*kBT —-U
o " (ky) = g In(1+e77), (6.101)
ie.,
tegy = MR T L e | (B — Bu(0) — il JksT (6.102)
ag = n X — .
z Th2 P F c 2m B

The contribution to the total charge density in the device coming from electrons
incident from the right contact is given by n*!(z), which is obtained from n'*(x)
by making the following substitutions in Equation (6.91):

e € | e [ P € (6.103)
o' (k) — o' (k). (6.104)

o' 1(k,) is identical to o' *(k,) with E.(0) replaced by E.(L), the bottom of the
conduction band in the right contact.

The current density associated with electrons incident from the left contact is
obtained by making the following substitution in Equation (6.94):

qﬁk .
|1/sz,kBT( Z)” — - T (kg k), (6.105)
C
where
l-r L 2
T (ko ke) = O ‘ﬂ’k (0) kt L) , (6.106)

as shown in Problem 5.3.

In this last equation, k.(0) [k,(L)] is the z component of the electron wave
vector in the left (right) contact, respectively. The quantity w,l;r(o)A k, (L) 1s the wave
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function amplitude at z = L for an electron incident from the left contact with wave
vector k,(0) and transverse momentum k¢. This amplitude is obtained by solving
the Schrodinger Equation (6.90) for an electron incident from the left contact.

Therefore, the current density J' associated with the flux of electrons incident
from the left contact is given by

_ +o0 +o0
g = —ah / dk. / dl;tktTl’r(kZ,kt) f(E, (6.107)
0 0

z
m* 2 T

where the second integral must be performed numerically since TV *(k,, k) is a
function of both the k. and k; components of the electrons incident from the contact.
Once again, if we replace the transverse energy by its average value kg7, T" " (k., E;)
can be pulled out of the second integral in Equation (6.107) and the current density
associated with the electron incident from the left contact becomes

. —qh [T®dk, . /+°° dkky
Jhr = kT (k,, By = kgT Ey). 6.108
| et e B k) [ S B, (6a08)

The integral over the transverse momentum can be performed exactly as we have
shown earlier, leading to

— +oo
Jlfr — qh / dkz ijTlir(k’z, Et — ijT)Ulir(]fz), (6109)
0

me* 2
where o' 7(k.) is given by Equation (6.104).

By analogy, for the electrons incident from the right contact,

me* 27

—qh [T dk,
L —— / ko T (k) o™ (k) (6.110)
0

where the transmission probability for electrons incident from the right contact is
given by

kz (O) r— 2

ED PO (6.111)

Since the wave functions in the left and right contacts are mutually incoherent, the
total current density flowing through the device is then the difference of the two
oppositely flowing current densities,

Joor = ST = J L (6.112)

Tril(’ﬁ) =

** Problem 6.10: Self-consistent calculation of the current—voltage

characteristics of a nansocale device under the assumption of ballistic
transport

Write down the set of equations to be solved to calculate the current—voltage char-
acteristics of a manoscale device under the assumption of ballistic transport and
assuming that the contacts are heavily doped with donors (neglect the hole carrier
concentration).
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Solution:

Calculation of the total electron carrier concentration and current
density: In order to calculate the spatially dependent electron concentration
throughout the device, we must add the electron concentrations associated with
electrons incident from the left and right contacts since the wave functions in the
two contacts are mutually incoherent. Hence,

n(z) =n""(2) +n"(2), (6.113)

where either term on the right-hand side can be evaluated using the expression
derived in the previous problem. Similarly, the total current density is obtained by
subtracting the current densities associated with the fluxes incident from the two
contacts, using the results of the previous problem.

Solution of the Poisson equation: The total electron concentration n(z) given
above modifies the electrostatic potential V' (z) between the two contacts. Neglecting
the contribution from holes, we must solve the Poisson equation

d d

e [e(z)dZV(z)] = —q[Npt(2) — n(2)], (6.114)
while imposing continuity of V'(z) and €(z) <L, and using the values of the potential
in the contacts as boundary conditions. Typically, one contact is assumed to be at

ground and the bias across the device is applied to the other contact.

To find the self-consistent solution to the set of equations given above, the
iterative scheme shown in Figure 6.8 can be used.

The total electron density is first calculated for a specific conduction band
energy profile. A good initial guess is to use the conduction band energy profile
neglecting the effects of space charge and assuming a linear drop of the electrostatic
potential between the two contacts.

The Poisson equation is then solved numerically and the resulting electrostatic
potential energy profile is added to the electron affinity (which can be spatially
varying) to get the new conduction band energy profile. The total electron density
in the device is then recalculated from a solution of the Schrédinger equation and
the procedure is repeated until a self-consistent solution is obtained. The number
of iterations depends on the requested accuracy for any quantity of interest. Since
the main focus is on the current—voltage characteristics, the iterative procedure is
typically carried out until the current is obtained with a predetermined accuracy.
This requires a calculation of the current density at each step of the iteration process,
as indicated in Figure 6.8.

* Problem 6.11: Electron density near a perfectly reflecting potential
wall

Consider a one-dimensional electron gas obeying Maxwell-Boltzmann statistics and
impinging from the left on a perfectly reflecting wall located at z = 0, as shown in
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Figure 6.8: Self-consistent scheme to calculate the current—voltage characteristics in
a nanoscale device under the approximation of ballistic transport.

Figure 6.9. Calculate the spatial dependence of the electron density as a function of
z, for z < 0. Assume a constant effective mass m*.

Solution: The spatial dependence of the (linear) electron density is given by

m(z) =Y 1ok (2)*f(Br.), (6.115)
k2
where o
F(Bi)=e BT (6.116)

is the Maxwell Boltzmann factor and E(k.) = h?k,?/2m* is the kinetic energy of
an incident electron. Furthermore, the wave function of an incident electron is given
by

br. (2) = e*=*  pe=th==, (6.117)

Since the electron is incident on a perfectly reflecting wall, ¢y_(0) = 0 for all k.
and therefore » = —1 for all k..

Converting the sum into an integral in Equation (6.115) using the one-
dimensional density of states, we get

m(e) =25 [ dbulon (P (BL). (6.118)
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Figure 6.9: Reflection from a infinite potential wall. If E. = oo for z > 0, the
reflection coefficient r = —1 for all values of kg, the wavevector of the electron
incident from the left.

The linear electron density (number of electrons per unit length) is therefore
given by

n(z) = ngjz) = ;_/Ooo dk.|e?*=* — 7712 f(Ey, )
:%A(mu—mwmmﬂmg (6.119)

This integral can be performed exactly using the following results:

oo

/ ey = VT (6.120)

0 2r

o0 777,2

/ Cos(mz)e_azzzdz = ﬁe_ a7, (6.121)

0 2a

This leads to the final result
1 22 Ep

—— (1 —e 3)eksT, (6.122)

where \ = \/#w is the thermal de Broglie wavelength. This quantity charac-
terizes the length scale over which the electron density changes from its value far

Egp_
from the interface, *sT = as a result of the quantum mechanical reflection at

1
TA €
the interface.

X
peratures is shown in Figure 6.10, assuming that the electron’s effective mass is

m* = 0.067m. Because the thermal de Broglie wavelength is inversely proportional
to the square root of the temperature, the effects of the quantum mechanical
reflection from the potential wall are felt farther into the bulk of the one-dimensional
electron gas at lower temperatures.

E
A plot of the normalized electron density n(z)/( \1/;6@%) for different tem-
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Figure 6.10: Plot of the normalized electron density n(z)/ (A\lﬁe’“BFT> for three

different temperatures for an electron with an effective mass m* = 0.067my. From
bottom to top, the temperature is set equal to 4.2K, 77 K, and 300 K, respectively.

** Problem 6.12: Richardson—Dushman equation in 3D

Calculate the current density flowing across a metal /vacuum interface modeled using
the conduction band diagram shown in Figure 6.11. Assume that the transmission
probability of electrons impinging on the interface is unity if their electron kinetic
energy is above Ep + @, and zero otherwise. The quantities Er and ® are the Fermi
energy and work function of the metal, respectively.

Solution: For electrons impinging from the contact, the current density flowing
into vacuum is given by (see Problem 6.9)

T = a3 2 E), (6.123)
k=

m

where |T'(k,)|? is the transmission probability of the electron impinging with wave
vector component k, in the direction perpendicular to the interface. Since the elec-
trons have the same effective mass mg inside and outside the metal, the transmission
probability is independent of the electron’s transverse wave vector k.

Because the work function is typically a few eV, the Fermi-Dirac occupation
probability f(E) can be approximated by the Maxwell-Boltzmann distribution,
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Figure 6.11: Richardson-Dushman thermionic current across a metal/vacuum
interface modeled as a potential step of height Fr + ®. Fr and ® are the Fermi
energy and work function of the metal, respectively.

_E-FEp
f(E)=e #T | (6.124)
where E is the total kinetic energy of the electron, i.e.,

h2k.2 K2k
E: z + t

. 6.125
2m0 2m0 ( )

Converting the sum into an integral in Equation (6.123) (see Problem 6.1), we get

J. = —q(;r)g /d?’/?i::f I T(k)|?f(E). (6.126)

Next, changing to cylindrical coordinates from spherical coordinates (cylinder axis
along k, direction), Equation (6.126) becomes

2 2 “+o00 “+o00 hkz
J, = —q(2ﬁ)3/0 d¢/0 dktkt/ dk. = f(B), (6.127)

k2, min

where )
kz,min = ﬁ 2m(EF + (I)) (6128)

Since |T'(k,)|? is independent of k; and assumed to be unity for electrons with
k. above k. min, Wwe can separate the integrals over k, and k; in Equation (6.127)
leading to

2 o Ep [T I PO LI
J, = —q ekBT/ dkikie 2’”*’“BT/ dk,k,e 2 kBT (6.129)
(2m)? 0

k=, min
The two integrations can be performed exactly, leading to the final result
J. = Jrp = A*T2%e "7, (6.130)

where A* = ﬂ]ﬁm*kgg This last result is referred to as the Richardson—Dushman
equation.
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** Problem 6.13: Richardson—-Dushman equation in 1D

Repeat the previous problem in 1D, i.e., assuming that the electrons have only a k,
component.

Solution: In this case, the thermionic current must be calculated using the
expression

T = =0 Y0 S T () s (), (6131)
k-

E,—E
where fup(E,) =€ "7 is the Maxwell-Boltzmann factor and E, = Rk is the

2m*
kinetic energy along the z-axis.

Converting the sum into an integral, since |T(k.)|*> = 1 for k, > k, min, with

kz,min = %L 2777/(E1F + (I)), we get

q P +oo A2k,
J, = ——e¥*sT / dk.k,e 2m kBT, (6.132)
T kz,min

Performing the integration leads to the one-dimensional version of the Richardson—

Dushman equation:

2qkpT _ 2
= —=e

J, P - FBT (6.133)

Notice that the temperature dependence in front of the exponential has changed
from T2 to T going from 3D to 1D. This expression can be used to calculate
the thermionic current emitted from metallic carbon nanotubes, which can be
approximated as one-dimensional wires.

** Problem 6.14: Heat conduction across a metal/vacuum interface

In Chapter 3, the concept of energy flur was introduced and applied to the study
of several tunneling problems. The goal of this problem is to calculate the heat flux
across a metal/vacuum interface as shown in Figure 6.11. The latter is defined as
follows:

k. ,
Jo =2t [ (B = BT fun () (6.134)

where E is the total kinetic energy of the incident electron on the metal/vacuum
interface, Er is the Fermi energy of the metal, |T(k,)|? is the transmission proba-
bility across the interface, and fyp is the Mazwell-Boltzmann factor.

Show that Jq is given by

JQ = JRD(¢ + Qk‘BT), (6135)
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where Jrp is the Richardson—Dushman result given in Equation (6.130), ¢ is the
work function of the metal, kg is Boltzmann’s constant, and T is the temperature
of the metal.

Solution: We first rewrite the heat flux in Equation (6.134) as

Jq = JQ' — ErJrp, (6.136)
where
q —hk, W2k, 2
JQ/ - _2(27r)3/ mo ( =t 2mt |7 (k )‘ZfMB(E)’ (6.137)

where E, is the kinetic energy associated with longitudinal (or z-component) of

motion and h kt is the kinetic energy associated with the transverse component of
motion. We then separate the above result into two integrals as follows:

_ ik,
Joa' = _2(;)3 /dk 2 BT (k)2 fus (B), (6.138)
, q ik, B2k ,
Joo = —2—L_ [ dk T(k. E). 6.139
ar' =2t [ARTE T () (6.139)

Taking into account the fact that the transmission probability |T'(k.)|? is inde-
pendent of k; and assumed to be unity for electrons with k., above k, nin =

2mo(Er + ®) (see Problem 6.12), we can separate the integrals over k., and
kt in Equations (6.138) and (6.139) leading to

2 Ep_ +oo n2k, 2 +oo _ h2k,2
JQJ/:—QWG’“BT/ dkkee™ Tow/ dk,k.e” ZmoksT | (6.140)
0 k

z,min

2 mp [FO° B2k% _ _n?e
Joso' = — e T dk. k TghaT
Q2 = T2t /0 P ome
+oo 2, 2
/ dk, PK: o~ sy (6.141)
kz,min mo
Zk 2 thZQ

Changing variables from k; to Fy = F;mto and k, to %=, the integrations in the
expressions for Jqg 1" and Jq o' can be performed exactly, leading to

Jo1' = Jrp(Er + ¢ + kgT), (6.142)
Jq.2' = JrpksT. (6.143)

Regrouping the results (6.136), (6.142), and (6.143), we finally get the expression
for the heat flux across the metal/vacuum interface:

JQ = JRD(¢ + QkBT). (6.144)

This equation has been used extensively in the design of thermionic converters and
refrigerators [5].
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*** Problem 6.15: Blackbody radiation in 3D

The birth of quantum mechanics occurred in 1900 with Maz Planck’s derivation of
the correct expression for the experimentally measured energy per unit volume per
frequency interval (or energy spectral distribution) of the blackbody radiation,

- 8rhv? 1

u(v) (6.145)

where h is Planck’s constant, v is the frequency of the electromagnetic radiation in
the cavity, c is the speed of light in vacuum, kg is Boltzmann’s constant, and T is the
temperature inside the cavity in Kelvin. Planck was able to derive this important
relation by assuming that the energy exchange between the electromagnetic waves
inside a cavity and its walls occurs via emission and absorption of discrete quanta
of energy. As a result, the energy of the electromagnetic radiation with frequency v
inside the blackbody cavity exists only in multiples of hv.

Using the concept of DOS for the photons trapped inside the cavity, derive
the expression for the energy spectral density in FEquation (6.145). Next, derive
the analytical expression of the energy density per unit wavelength of the blackbody
radiation and plot it for cavity temperatures of T = 300 K, 1000 K, and 5000 K.

Show that the mazimum of the energy spectral density u in Equation (6.145)
occurs when

3 —3exp(—z) ==, (6.146)
where x = hv/kgT.

Solve this equation numerically and show that the mazximum occurs for x around
2.82, i.e., at a frequency Vmax given by

AUmax/kpT ~ 2.82. (6.147)

This last relation is referred to as Wien’s displacement law.

Solution: In the blackbody, the photons form standing waves in the cavity and
are in thermal equilibrium with the walls, which continuously absorb and emit the
photons. By piercing a small hole in one side of the blackbody outer shell, we can
determine the spectral distribution of the blackbody radiation, i.e., the fraction of
total radiated energy with frequency between v and v + dv.

Assuming the photons form standing waves within the cavity, and that the latter
are not much disturbed by the small hole created to observe the photon spectrum,
one can show that the wavevector component of the photons in the rectangular
cavity must obey the relations kI = n,7, k,l = nym, and k.l = n,m, where ng, n,,
and n, are positive integers and [ is the linear dimension of the cavity. These values
(or quantization of photon wavevectors) ensure the presence of a standing wave with
integer multiples of half wavelength in all directions inside the cavity. Each triplet
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ny

N+ dN

Uz

Figure 6.12: Only one-eighth of the spherical shell between the two spheres of radii
N and N + dN must be taken into account to calculate the density of distinct
phonon modes present in the blackbody cavity within the corresponding energy
range.

(ng, ny, and n;) represents an electromagnetic mode of oscillation. These modes

are photon states and are doubly degenerate since for each k= (kz, ky, k.) there
are two independent polarization directions possible for the standing waves.

For each node, the relation between the frequency and the photon wavevector
is given by
—
c ¢k k]
o= _ . 6.148
A 27 27 ( )

With the components of the photon wavevectors given above, we get

v = DN, with N = /n2 +n +n2. (6.149)

We must now count the number of photon modes within the two spheres of radii N
and N + dN.

Since both positive and negative values of the photon k components belong to
the same photon standing wave, we must count as distinct only the photon modes
present in one-eighth of the spherical shell shown in Figure 6.12. The volume of that
portion of the shell between the two spheres of radii N and N + dN is given by

N2

1
dM = S4r N*dN = To—dN. (6.150)
From Equation (6.149), we get

v="r - N="2, (6.151)
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Therefore,
dN = %dy,
c
20\ * 21 Axl3
aM =" (22} Zay = T2, (6.152)
2\ ¢ c c?

Taking into account the two independent polarization directions for each node, we
must multiply dM by 2. So the number of photon states in the shell is

dS = 2dM = ﬂyzdy = g(v)dv, (6.153)
C

where V = [? is the volume of the cavity and g(v) is the photon DOS in the

frequency interval dv:
8TV

3 v (6.154)

g(v) =

The occupation probability of photons must obey Bose—Einstein statistics
because photons are bosons. Hence, this probability is

1
feE(E) = BT _1° (6.155)

Consequently, the number of photons, dn,,, with frequencies between v and v + dv
is

dn, = fge(hv)g(v)dv = ——— vadv. (6.156)

The amount of energy carried by those dn, photons is found by multiplying the
previous result with the photon energy hv, yielding

Vh o P
dE, = hvdn, = o7 ) (6.157)
c? ekBT — 1]

which we rewrite in the more condensed form

dE, = F(v)dv, (6.158)
where vh 5
Fy=Yh_ v (6.159)

is the spectral energy distribution we were looking for. This expression was first
derived by Max Planck.

To derive the spectral energy distribution as a function of wavelength A, we
must find the function G(\) such that the total electromagnetic energy inside the

black box is given by
“+o0
E= G(N)dA. (6.160)
0
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Figure 6.13: Plot of the normalized spectral energy distribution G(\)/(87Vhc)
versus wavelength in Equation (6.161) for three different temperatures. From left
to right, the curves correspond to 7' = 5000, 1000, and 300 K.

Starting with Equations (6.158)—(6.159) and performing a change of variable using
the relation v = ¢/, we get

h
Gy = —SmVhe (6.161)
S |:ek-BT>\ _ 1:|

Figure 6.13 is a plot of the normalized spectral energy distribution, i.e., G(\)/
(87Vhe) for T = 300, 1000, and 5000 K.

Using the results above, the total electromagnetic energy inside the black box
cavity whose walls are maintained at a temperature T is given by

o h [* 3 VEkg*T* [~ ¢
E= / ag, = 7V / =T / T _dq, (6.162)
0 ¢ Jo eFsT — 1 ch o el—1

where ¢ = hv/(kgT'). Using the result

/OO g =T(p+1)c(p+1), (6.163)
o €1—1

where I is the Euler gamma function and ( is the zeta function of Riemann, we get
E/V =oT?, (6.164)

where 0 = 4.71keV/K?*m3. This last equation is referred to as the Stefan—
Boltzmann law.
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Starting with the expression of the spectral energy distribution in
Equation (6.159), we calculate the frequency at which it reaches a maximum:

dl;(yy) —0— % [87;? eZTI/:] —0. (6.165)
This leads to the following transcendental equation:
21,2 hv
Szgh v [ek;g __’ﬁ;) —3 _o. (6.166)
Hence, the maximum is reached when
e’(3—y)—3=0, (6.167)
where .
Y= kr;fx (6.168)

Matlab code to solve Equation (6.167) is given in Appendix G. The maximum in
the spectral energy distribution occurs at a frequency given by

Amax — AVmax ~ 2.82 kpT. (6.169)

This last relation is referred to as Wien’s displacement law.

** Problem 6.16: Blackbody radiation in 1D

In this problem, we repeat the study of the blackbody radiation assuming a one-
dimensional world, i.e., a cavity extending along the z-axis only and photons travel-
ing back and forth along that direction while being in equilibrium with the two walls
at the end of the cavity held at a temperature T.

Use the one-dimensional DOS for photons trapped inside the cavity and derive
the expression for the energy spectral density for this 1D case.

Show that the mazximum of the energy spectral density occurs when
5—5exp(—y) =v, (6.170)
where y = hv/kgT.

Solve this equation and find for what value of y the maximum occurs. Use this
result to write the one-dimensional version of Wien’s displacement law.

Solution: Assuming that the photons form standing waves in the direction of
the one-dimensional box, the wavevector component of the photons must obey the
relation k,l= n,m, where n, is a positive integer. These values ensure the presence



162 Problem Solving in Quantum Mechanics

of standing waves whose wavelengths A, are integral submultiples of twice the cavity
length in the z-direction, i.e. \,,, = 2l/n,. Each n, represents an electromagnetic
mode of oscillation. These modes are doubly degenerate since for each k, there are
two independent polarization directions possible for the standing waves.

For each node, the relation between its frequency and the photon wavevector is
given by
c  cky c
= —_-—= — = — "o 6.171
YT T2 Tt (6.171)
Hence, the number of photon modes between v and v + dv is given by

N, = Zav. (6.172)
&

Multiplying by a factor of 2 to take into account the two independent polarizations,
we finally obtain the number of modes within the frequencies v and v + dv as

dM = 2dN, = g(v)dv, (6.173)
where g(v) is the one-dimensional photon DOS.

Each mode is occupied by a photon with probability given by Bose—Einstein
statistics. Using Bose—Einstein statistics, the amount of energy per frequency inter-
val is therefore given by

Al h
dE, = hvdn, = — ——~dv. (6.174)

C e®sT _ ]

The total electromagnetic energy per unit length inside the one-dimensional black
box cavity whose walls are maintained at a temperature 1" is therefore given by

1 [ 4 [~ h 4kp®T? [
E/l = 7/ dE, = 7/ S / L _dz,  (6.175)
U Jo clo e ch o e —1

T — |

where x = hv/(kgT). Hence,
B/l o T?, (6.176)

which is the one-dimensional version of the Stefan—Boltzmann law.

Proceeding as in Problem 6.15, we next calculate the location of the maximum
of the energy spectral density in the 1D case by setting the derivative of the integral
in Equation (6.175) to zero. This leads to the following transcendental equation:

5—5exp(—y) =y, (6.177)

where y = hv/kgT. Matlab code using an iterative solution of Equation (6.177) is
given in Appendix G, leading to ymax = 4.965.

In this case, the maximum of the spectral energy distribution occurs at a
frequency given by
hVpax = 4.965 kgT. (6.178)
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This is Wien’s displacement law for the 1D case. This result can be used to study
the importance of radiative loss at the tip of single-walled carbon nanotubes during
field emission.

Suggested problems

e You will need the following results: Fj /5(0) = 0.678 and F_; 5(0) = 1.072,

(1) Using the results of Problem 6.2, compute the critical concentration for the
onset of degeneracy in a bulk sample at T'= 300K and T'= 1K for m* = my,
the free electron mass.

(2) For a metallic thin film of width 100 A, use Equation (6.35) and compute
the ratio neyt(W,T)/n3D, for T = 300K. Use m* = my, the free electron
mass.

(3) For a metallic wire with cross section A = 1072 cm?, use Equation (6.40)
crit
and compute the ratio "ln?,iD/A at T = 1K. Use m* = mg, the free electron

crit
1mass.

e Repeat the problem above if Np = 10'° cm ™2, and determine the fraction of
ionized impurities in the QW if the Fermi level is 3 kg7 above the bottom of
the second subband in the QW and T = 300 K.

e Starting with the results of Problem 6.5, assume that an electrostatic potential
is applied to the 2D semiconductor single layer V¢, through the application of
a gate potential. Assume the device is operated at high enough temperature
that n = p = ny;. In the presence of V., the expression for n and p derived
in Problem 6.5 can be obtained via the substitution Fy — FEg — ¢V, and
Ey — Ey + ¢Ven, for n and p, respectively (where ¢ is the charge of the
electron).

Derive an analytical expression for the 2D channel quantum capacitance

— 9Q
Cq = B

e Using the results of Problem 6.1, the electron concentration in a heavily doped
n-type bulk material is given by

2N,
n= ﬁFl/Z(f)v (6.179)
where £ = 7E}2E:f°

If £ > 5, Fy (&) can be well approximated by 2£3/2.

If the n-type region of Si, Ge, and GaAs samples is doped heavily with
donors with an ionization energy of 15meV, find the value of Np (doping
concentration in cm~?) such that the Fermi level will be exactly 5 kT above
the conduction band at room temperature.

Use the following values: N.(Si) = 3.22 x 10 em~3, N.(Ge) = 1.03 x
10¥ em =3, and N.(GaAs) = 4.21 x 107 cm 3.
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Repeat Problem 6.11 assuming electrons from a three-dimensional electron gas
impinging from the left on the infinite potential wall at z = 0. The electrons
obey Maxwell-Boltzmann statistics. Assume a constant effective mass m*.

Repeat Problem 6.4 assuming that the two lowest subbands are occupied.
Give analytical expressions for the total charge concentration p(z), the electric
field E(z), and the electrostatic potential V' (z) across the well. Assume the
boundary conditions are E(0) =0 and V(0) = 0.

According to Problem 6.15, the peak in the energy spectral distribution curve
shifts upward in frequency as the temperature increases. What is the equilib-
rium temperature inside a blackbody cavity when the maximum in the energy
spectral distribution is to be located at wavelengths 1000 A, 5000 A, and
10 pm, which correspond to the ultraviolet, visible, and mid-infrared region of
the electromagnetic spectrum, respectively?

Following the solution of Problems 6.15 and 6.16, repeat the study of the
blackbody radiation in a two-dimensional space, i.e., a square cavity extending
along the z and y axes only (i.e., in the z = 0 plane) where the photons are in
equilibrium with the two walls at the end of the cavity held at a temperature 7.

Use the two-dimensional DOS for photons trapped inside the cavity and
derive the expression for the energy spectral density for this 2D case. Plot
your results for cavity temperatures of 7" = 1000, 3000, and 5000 K.

Find the frequency associated with the maximum of the energy spectral
density and write the two-dimensional version of Wien’s displacement law.

Following the derivation in Problem 6.12, derive an expression for the current
associated with heat conduction through a metal/vacuum interface assuming
the electrons impinging on the surface are confined to move only along the
axis perpendicular to the interface, i.e., derive the heat conduction current in
1D. This problem is less academic than it seems since it can describe the heat
current associated with thermionic emission from carbon nanotubes or other
one-dimensional structures (e.g., ZnO nanowires) where carrier transport can
be assumed to be along the direction of current flow along the main axis of
the 1D structure.
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Chapter 7: Transfer Matrix

In this chapter, the transfer matrix formalism is introduced as a general approach for
treating both bound state and tunneling problems [1-7]. It has been used extensively
in the past to study bound states of quantum wells of arbitrary shape [8] and finite
periodic potentials [9], and tunneling through finite repeated structures [10-12],
among others.

The transfer matrix formalism can be used to show that the problem of finding
the bound states of an arbitrary confined one-dimensional potential energy profile
E.(z) can be reformulated as a tunneling problem (see Problem 7.12) [13]. The
following theorem is proved:

For an electron confined to a quantum well of width W with an arbitrary
potential profile E.(z) within the well and a constant potential Vj outside the well,
the bound state energies (E1, Eo, F3,...) can be found by adding two barriers of
width d and height Vj on either side of the well and calculating the energies at
which the transmission probability T'(E) through the resonant tunneling structure
so formed reaches unity. The energies at which the transmission coefficient reaches
unity converge toward the bound state energy levels when the thickness d tends to
infinity.

The theorem is proved for the case of a spatially independent effective mass,
but can be easily extended to the case of a spatially varying effective mass.

Preliminary: Concept of transfer matrix

The definition of the transfer matriz is based on the concepts of linearly independent
solutions of the Schridinger equation and the Wronskian introduced in Chapter 1.
If we can find two linearly independent solutions, their linear combination is the
general solution to the Schridinger equation

P(2) = c1¢1(2) + c22(2). (7.1)

Suppose we seek two solutions ¢1(z) and ¢2(z) of the Schrodinger equation such
that

$1(0) =0, ¢1(0)=1, (7.2)

$2(0) =1, $2(0) =0. (7.3)

Here, the dot symbol denotes the first derivative in space. In this book, we have inten-
tionally used various notations—prime and dot, for ezample—to denote the spatial
derivative since the literature in this field uses both conventions (plus, perhaps, a
few others) and it is important that the reader is comfortable with all notations and
conventions.

Problem Solving in Quantum Mechanics: From Basics to Real-World Applications for Materials
Scientists, Applied Physicists, and Devices Engineers, First Edition.

Marc Cahay and Supriyo Bandyopadhyay.

©) 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd. 166
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The two solutions ¢1(z) and ¢2(2) are indeed linearly independent since their
Wronskian, which is independent of z (see Chapter 1), is equal to

W(z) = W(0) = ¢1(0)¢2(0) — ¢1(0)¢(0) = 1. (7.4)
Since ¢1(z) and Ppa(z) satisfy the conditions (7.2) and (7.3), we have

1 = 9(0), (7.5)

c2 = ¢(0). (7.6)

Hence, from Equation (7.1) and its first derivative with respect to z, we get

¢(L) = $(0)p1(L) + ¢(0)p2(L), (7.7)

O(L) = $(0)$1(L) + ¢(0)¢2(L). (7.8)

These last two equations can be rewritten in a matrix form:

Lo em e 9

The 2x2 matriz appearing on the right-hand side is called the transfer matriz
because it relates the column vector (¢(z), ¢(2))T (where the T stands for the trans-
pose operation) at location z = L to its value at location z = 0.

Cascading rule for transfer matrices: An arbitrary spatially varying potential
energy profile E.(z) can always be approximated by a series of steps where the
potential energy in each step is replaced by its average value over that interval.
The accuracy of this approximation increases with decreasing interval size. Since the
potential within each section is constant, the transfer matrix of each small section
can be derived exactly (see Problem 7.2). Once the individual transfer matrix for
each small segment is known, the overall transfer matrix Wpor needed to relate
the wave function on the right to the wave function on the left of the potential
(i.e., describe the tunneling process of a particle incident from the left contact) is the
product of the individual transfer matrices associated with each small segment, i.e.,

Wror = WNWN—1--- WaW, (7.10)

where W; is the transfer matrix associated with the ith segment counted from the
left contact.

In Equation (7.10), it is important to mutiply the individual matrices from right
to left (and not the other way around) to obtain the overall transfer matrix since
the individual matrices do not commute in general.
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* Problem 7.1: Transmission and reflection probabilities across an arbi-
trary potential energy profile

Consider a semiconductor device with arbitrary conduction band energy profile vary-
ing along the z-direction only, E.(z), sandwiched between two contacts (regions of
constant or zero potential) at z =0 and z = L (see Figure 7.1). Consider the case
of zero bias applied between the two contacts and assume a constant effective mass
throughout. Derive an expression for the transmission amplitude t and transmission
probability T(E) = |t(E)|? across the device as a function of the incident wavevector
of the electron, kg, and the elements of the overall transfer matriz across the region
[0, L].

Solution: The overall transfer matrix Wror relates the wave functions and their
first derivatives at the left and right contacts (assumed to be at the same potential)
according to

[ fg((LL:)) } - WTOT[ %E(E)O)) } : (7.11)

For an electron incident from the left, the electronic states in the left and right
contacts are given by

¢(Z) _ eikoz + ,,,efikoz (Z < O)

¢(z) = teko=—L) (z> L), (7.12)
where kg = %, /2m? E, is the z-component of the electron’s wavevector in the contact
and r and t are the reflection and transmission amplitudes through the region [0, L],

respectively. The quantity E;, is the electron’s kinetic energy component in the left
contact associated with z-directed motion.

Contact i Contact

0 Zp-1 Zn ZN

Figure 7.1: Approximation of an arbitrary conduction band energy profile F.(z) as
a series of steps. The effective mass may be assumed to be different in each interval.
There is no bias applied between the two contacts, i.e., E.(0) = E.(zn).
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Using these scattering states for the wave functions at z = 0~ and 2 = L™,
Equation (7.11) becomes

[ o] <o [ M ] 019

This is a system of two equations for the two unknowns ¢ and r. We can solve these
equations to find t and r. The explicit form of the transmission amplitude ¢ in terms
of the matrix elements of the total transfer matrix is given by

2iko [WTOTWTOT WTOTW21 ]

t = - .
iko Wior + Wiprl + [Wibrks — Wide)

(7.14)

Since the Wronskian is independent of z, Wror is a unimodular matrix, i.e.,
det(Wror) = 1. Hence, the term within the square brackets in the numerator of
Equation (7.14) is unity. In addition, by approximating E.(z) by a series of steps,
the Wiy are always purely real, and the transmission probability through the
structure is given by

4k2
kQ[W%OT + W’%‘QOTP + [W’%‘%)Tkg - W%‘%)TP.

T(E)=t]? = (7.15)

This last equation shows that the transmission probability reaches unity when
the following conditions are satisfied:

Wior + Wihr = £2, Wipr = Wighr = (7.16)

* Problem 7.2: Transmission probability across a square barrier

Derive the analytical expressions for the four elements of the transfer matriz through
a region with constant E. and effective mass m*.

Solution: Let E, be the electron’s total energy. If E,, > E. (so that the electron
wave is a traveling wave and not an evanescent wave), then the two linearly indepen-
dent solutions satisfying Equations (7.2) and (7.3) are given by (for a first-principles
proof, see Chapter 3 of Ref. [14])

61(2) = Sing“), (7.17)
¢2(2) = cos(kz), (7.18)

where k = %\/2m* (Ep — E¢). Therefore the explicit form of the transfer matrix
across a region of width W is given by

(7.19)

W(E, > E.) = ( cos(kW)  —ksin(kW) )

T sin(kW)  cos(kW)
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On the other hand, if E, < E. (i.e., the electron wave in the region of interest is
evanescent), then the two linearly independent solutions satisfying Equations (7.2)
and (7.3) are given by (for a first-principles proof, see Chapter 3 of Ref. [14])

$1(z) = % (7.20)
¢2(2z) = cosh(kz), (7.21)

where k = §1/2m*(E. — E).
In this case, the explicit form of the transfer matrix is given by

cosh(kW)  rsinh(kW) )

% sinh(kW)  cosh(kW) (7.22)

W(E, < E.) = (

When the potential energy profile is approximated by a series of steps, the

overall transfer matrix Wror is the product of matrices of the form (7.19) or (7.22),
and therefore its matrix elements are real, as stated earlier.

* Problem 7.3: Transfer matrix across a region with varying FE.(z) and
m*(z).

Consider an electron with a total energy E moving in a region where the potential
energy E.(z) and the effective mass m*(z) vary only in the z-direction.

Assume that both E.(z) and m*(z) profiles are segmented into sections, and
that within each section the values of E. and m* are constant. Starting with results
of Problem 1.1, write down the Schrodinger equation for the envelope of the wave
function ¢(z) in any of the steps.

Using the results of the previous step, find the analytical expression for the
transfer matriz across a region where E.(z) and m*(z) are assumed to be constant.
Across a region of length L (i.e., for 0 < z < L), the transfer matriz is defined as
follows:

oL -0 b0+e | (7.23)

where v = m*/m%, and m? is the effective mass in the immediate left of the region.

(Lo ] :W[ 2(0+¢)

Calculate the explicit forms of the transfer matriz for the case where: (a) E >
Ei/v+ E. and (b) E < E¢/v + E., where E; is the transverse component of the
kinetic energy (see Problem 1.1).

Solution: In a region where both E, and v are constant (spatially invariant), the
Schrodinger equation becomes (see Problem 1.1)

d [1de 2m} E -

where ¢(z) is the z-component of the wave function.
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To derive the transfer matrix through a section of length L where both E. and
v are constant, we look for solutions ¢(z) of Equation (7.24) in the region [0, L]
which satisfy the boundary conditions (7.1) and (7.2).

Since the solutions ¢; 2(2) are linearly independent solutions (their Wronskian
is unity), a general solution of Equation (7.24) can be written as

P(2) = A1¢1(2) + Aag2(2). (7.25)

Using this last result and Equation (7.23), which defines the transfer matrix, we
obtain

[ L) 1e/(L)
W= Y$1(L) 7¢2(L) (7:26)
The explicit forms for ¢; 2(2) are:
(a) If B> £ + B,
¢1(2) = sin(f Z)7 (7.27)
B
$2(z) = cos(fz), (7.28)
where
2m* E
2= [E - E] . (7.29)
(b) If E < £+ + E,
b1() = ), (7.30)
@2(z) = cosh(kz), (7.31)
where
K2 = 2% ﬁt VB, - E] . (7.32)

** Problem 7.4: Tunneling probability through a region with an arbitrary
spatially varying conduction band energy profile E.(z) and effective mass
m*(z)

Derive an expression for the transmission probability of an electron tunneling
through a region of finite spatial extent located in the interval [0, L]. The region is
interposed between two contacts described by a constant potential energy E. = 0.
Within the region, the potential energy E.(z) and the effective mass m*(z) vary
only in the z-direction. The electron’s effective mass in the two contacts (z < 0 and
z > L) are the same, spatially invariant, and equal to m?.
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Solution: The time-independent Schrédinger equation describing the steady-
state (ballistic) motion of an electron through the potential energy profile described
above is given by (see Problem 1.1)

e w0 o[ 1 o
m*(z) 022  2m*(z) 0y? 2 Iz |[m*(z) Oz
Here, F is the total kinetic energy in the contact, where the bottom of the conduction
band is taken as the zero of energy.

Eo(2) = By, (7.33)

Because the Hamiltonian in Equation (7.33) is invariant in the z- and y-
directions, the transverse wavevector Et is a good quantum number. Furthermore,
since the z-component of the electron’s motion is decoupled from the transverse
motion in the x—y plane, the wave function 1 can be written as

() = p)e 7, (7.34)

where & = (ky, k) and p' = (y, z). Plugging the result (7.34) in Equation (7.33),

we get the effective Schrodinger equation for the z-component of the wave function
o(2):

d 1 do

dz [ (2) dz

where m} is the effective mass of the electrons in the contacts sandwiching the
region of interest (m? is spatially invariant within the contacts and isotropic), v(z)

} t e [E + B (1= 7(2)7") = Be(2)] 6(2) = 0, (7.35)

C

= m;(f) By = n k* , and FE}, is the kinetic energy associated with the z-component
N e 27,2
of the motion in the contacts, E, = gnfz

Equation (7.35) cannot be solved exactly for an arbitrary potential E.(z).
However, an approximate solution can be found by approximating the potential
profile by a series of potential steps (see Figure 7.1), or by using a piecewise linear
approximation for the potential. Within each interval the potential and the effective
mass are assumed to be constant. In that case, the wave function and its first
derivative at the left and right edges of any interval are related by the transfer
matrix, whose elements can be determined analytically (see Problem 7.3).

The transfer matrix for the nth interval [z,_1, 2,,] is defined according to
1 d¢/.— n n 1 do ( +
TG Wl;i; legli Ty as Gnt) | (7.36)
é(z,) Wyt Wy oz 1)

where W( ") are the elements of the transfer matrix, and 2! | and 2, stand for
Zn_1+E€ and zn — € respectively, with € being a vanishingly small positive quantity.

Assuming continuity of ¢(z) and —) 3—32 everywhere in the structure, the overall

transfer matrix Wror describing the entire region [0, L] is then found by cascading
(multiplying) the individual transfer matrices for the individual intervals:

Wror = W) ... ww®), (7.37)
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where W) is the transfer matrix for the nth interval, as given by Equa-
tion (7.36).

The overall transfer matrix Wrot relates the wave functions and their first
derivatives at the left and right contacts:

[ 7(23(%%()L+) } = WTOT[ W(éqs)(gi()o_) ] (7.38)

In Equation (7.38), ¢(0~) and ¢(L™) are the electronic states inside the left and
right contacts. For an electron incident from the left contact, we have

B(z) = etkoz ez (5 <)
B(z) = teto==L) (2> 1), (7.39)

where ko (= %\/2m’§EP) is the z-component of the electron’s wave vector in the
contacts, and r and t are the overall reflection and transmission amplitudes through
the region [0, L], respectively. Using these scattering states for the wave functions at
2 =07 and z = L™ and noting that, by definition, v(LT) = v(0~) = 1, we obtain,
from Equation (7.38),

t[ “;0 } = Wror [ ikol(i_rr) } ’ (7-40)

which are two equations for the two unknowns ¢ and r. Eliminating r leads to

2iko [WibrWior — WidrWibr)

t= - R
iko [W%%)T + W%?OT} + [W%loTk(% - W"11“2OT]

(7.41)

where W{?—OT are the elements of the matrix Wrpor that are found from
Equation (7.37).

Since Wror is a unimodular matrix, the term within the square brackets in
the numerator is unity. In addition, the Wiy are purely real (see Problem 7.3).
Therefore, the general expression for the transmission probability is given by

482

|42 —
T="= W2l g2 _ pyi2 2
+ [Wiorks ToT)

2 11 22 12 (7'42)
ks [Wror + WioT]

* Problem 7.5: Reflection and transmission probabilities across a poten-
tial step

Consider a potential step as shown in Figure 7.2. The effective masses on the left
and right side of the step are equal to m1* and msy™*, respectively. The step height is
AFE. in eV.

Starting with the general time-independent Schrodinger equation for an electron
moving in an arbitrary potential energy profile E.(z) and with a spatially varying
effective mass m*(z) (see Equation (7.35) and Problem 1.1):
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B, (2) |
t elko z

eiko z

z=0 z

Figure 7.2: Scattering problem for an electron incident from the left on a potential
energy step of height AFE.. The electron effective mass is assumed to be different
on both sides of the step.

(a) Write down the Schrédinger equation for the z-component of the wave
unction ¢(z) on the left and right sides of the potential step, assuming that the
ti the 1 d right sid th tential st ing that th

electron is incident from the left with a transverse kinetic energy Ey = 2;51‘2

(b) Assume a plane wave is incident from the left and that the total energy of
the incident electron is large enough so that it is transmitted on the other side. Write
down the analytical form of the solution of the Schrédinger equation on either side
of the potential step.

(¢) By matching the wave function ¢(z) at z =0 and also m,}(z) dqs(zz)
calculate the reflection and transmission amplitudes of the incident wave.

at z =0,

(d) Calculate the reflection and transmission probabilities across the step start-
ing with the quantum mechanical expression for the current densities of the incident,
reflected, and transmitted beams (see Chapter 5).

(e) Prove that the sum of the reflection and transmission probabilities is equal
to unity.

Solution:

(a) Starting with the results of Problem 7.3 and using m7 as the effective mass in

the region to the left of the potential step, the Schrédinger equation in the region
z < 0 becomes

d?¢(2) | 2m}

dz2 h2

(E — Et)o(z) =0, (7.43)

where E, E; are the total and transverse components of the energy of the electron,
respectively.
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For the region z > 0, we have

d?¢(z) n 2my (E _ % _ AEC) #(z) =0, (7.44)

dz2 h2

*

where v = 22,

*
'ITLl

(b) For a plane wave incident from the left to be transmitted, we must have
E
E> = +AE.. (7.45)
Y

For z < 0, the solution of the Schréodinger equation is

o1 = eM® etz (7.46)

1 *
k=5 \/2mi(E ~ By). (7.47)

For z > 0, the solution of the Schréodinger equation is

with

orr = te'*??, (7.48)

1 E
@:h¢mﬂé—;—A@) (7.49)

(¢) Continuity of the wave function at z = 0 mandates

with

1+r=t. (7.50)
Continuity of m%(z)% requires
ik kot
Moy = 22 (7.51)
my my
which can be rewritten as L
2 My
l—r=——]|1t. 7.52
= (o) (7.52)
Adding Equations (7.50) and (7.52), we get
2
t= ——m. (7.53)

[1+ () h)]
Substitution of this result in Equation (7.50) gives the reflection amplitude

_ ke

*
k‘l m2
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(d,e) The proof that |r|?+ %2 my [t|> = 1 by equating the incident current density

k?l m2
to the sum of the reflected and transmitted current densities is left as an exercise.

The quantities |r|> and Z—f e t|? are the reflection transmission probabilities across
2

the potential step, respectively. Note the importance of the prefactor :—f:ﬁ in
2

calculating the transmission probability.

* Problem 7.6: Tunneling probability across an arbitrary conduction
band energy profile under bias

If a bias is applied across the two contacts sandwiching a device region with an
arbitrary potential energy profile E.(z) (see Figure 7.1), derive the new general
expression for the transmission probability of an electron incident from the left
contact.

Solution: Following the approach used in Problem 7.4, the conduction band
energy profile E.(z) in the interval [0, L] (device region) is approximated as a series
of steps in which both E.(z) and the electron effective mass are assumed to be
constant. The transfer matrix across each individual section can then be determined
and the overall transfer matrix Wror is found by multiplying the transfer matrices
of the individual sections between the two contacts.

Following the approach described in Problem 7.4, the reflection and transmis-
sion amplitudes associated with an electron incident from the left contact are found
to be solutions of the two equations

( ikt ) _ { Wior Wrbr } ( tkL(1—7) ) (7.55)

t Wi Wiir 1+7r

where the W{%T are the matrix elements of the total transfer matrix, k (=

%\ /2miE,) and kg (= %« /2m(Ep 4+ qViias) are the z-components of the electron’s

wave vector in the left and right contact, respectively. The quantity Vi is the
applied bias between the two contacts and ¢ is the magnitude of the charge of the
electron.

Starting with Equation (7.55), the reflection r and transmission ¢ amplitudes
must satisfy the following two equations:

ikrt = iky(1 — 7)Wior + Wigp(l+7), (7.56)

t =ik (1 — r)Wibp + W2 (1 + 7). (7.57)

The last two equations are rewritten as
ikrt + (ikt Wby — Widp)r = ikt Wby + Widr, (7.58)

t+ (ikp Wby — WS 0)r = ik, WELp + Wi . (7.59)
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Solving for t, we get

—2iky, (Wll“loTW%QOT - W%ZOTWI%loT)
(W%on - kLkRle“loT) +1 (kRW%%T + kLW"ll“%)T).

‘— (7.60)

Since Wit Wi — Wit 1 W2Lr = 1 and the elements of the total transfer matrix
are real, we get the transmission probability as

4k?
‘t|2 - 11 12 11 21L 2 22 11 \2° (7.61)
WiorWior — kLkrWiorWior)” + (kWi + kL Wior)

As shown in Problem 5.3, the transmission probability associated with tunneling
through an arbitrary potential under bias is given by T = ]Z—EMQ, ie.,

_ 4krkr,
T= (Wll W2 b kn WAL 121 )2+(k W22+ ke WAL )2' (7.62)
TOT"V TOT LRV TOTY TOT RYWTOT LYYToT

** Problem 7.7: Tunneling and reflection probabilities through a one-
dimensional delta scatterer

Derive an analytical expression for the transfer matriz through a one-dimensional
delta scatterer located at z = 0, for which the scattering potential is given by
[6(z) (the units of T are typically specified in eV-A). Calculate the tunneling and
reflection probabilities through the delta scatterer. Plot the tunneling and reflection
probabilities as a function of the incident energy of the electron with effective mass
m* = 0.067myg incident on a repulsive delta scatterer of strength T =5 eV-A.

Solution: The Schrodinger equation describing propagation of an electron
through a delta scatterer of strength I" located at z =0 is

So-(2) + TO()6(2) = Byo(2) (7.63)

where £, is the longitudinal component of the kinetic energy of the electron and
E.(z) is assumed to be zero for both z < 0 and z > 0. Once again, the double
dot superscript will represent the second derivative in space, and the single dot
superscript will represent the first derivative.

Integrating the Schrédinger equation on both sides from z = 0_ to z = 0, we

get 2o .
g [$(04) = 9(0-)] +Te(0) =0, (7.64)
which leads to 9T
0(04) = 9(0-) + = 0(04). (7.65)

Since the wave function is assumed to be continuous across the delta scatterer,

$(04) = ¢(0-). (7.66)
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By regrouping the previous two equations in matrix form, we get

{ $(04) ] { 12t ] [ $(0-) ], (7.67)

¢(04) 0 1 ¢(0-)
Therefore, the transfer matrix across a delta scatterer is given by
|1 2k
Ws = { 0 1 } , (7.68)
where we have introduced the quantity ks = "g;

The tunneling probability through the delta scatterer can be easily obtained
from the general expression derived earlier:
ak2

T =t =
[K§WEbr — Wl%T]z + kg Wi + Widt

55 (7.69)
]

where kg = %, /2m* E}, is the wave vector of the incident electron and the W;; are
the elements of the transfer matrix.

Using Equation (7.68), the tunneling probability through the delta scatterer is
found to be

ki
=0 7.70
ks® + k3 (7.70)
The reflection probability is given by
Jor2
R=1-T=—"_. (7.71)
ks™ + k§

Figure 7.3 is a plot of T' and R versus the reduced wavevector k/ks. The Matlab
code to generate this plot is given in Appendix G.

**** Problem 7.8: Floquet’s theorem

Floguet’s theorem states that the solution ¥(z) of a homogeneous linear differential
equation with periodic coefficients of period L can be written as

P(z) = e7%¢(2), (7.72)
where ¢(z) is a periodic function of z, i.e.,
6(2) = d(z + L). (7.73)

Prove this theorem for the case of the time-independent Schridinger equation when
the potential energy profile is periodic. Then, apply the results to the description of
energy bands in one-dimensional infinite crystal considered as the infinite repetition
of a unit cell. When generalized to the case of three-dimensional crystals, Floquet’s
theorem is referred to as Bloch’s theorem.
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0.8} /7 —R i

0.7 / i
0.6 / B

0.5} / .

03F | ]
02t | .

01/ 4

Figure 7.3: Plot of the transmission (7) and reflection (R) probabilities given by
Equations (7.70) and (7.71), respectively, as a function of the reduced wavevector
k/ks. Notice that R =T = 0.5 when k/ks = 1.

Solution: The following proof is based on the transfer matrix formalism intro-
duced earlier.

A general homogeneous linear differential equation of order n can be written as

> fn(Z)(%zb(Z) =0. (7.74)

If f,.(z) is constant, it is well known that the solution of Equation (7.74) can be
found by using the ansatz

P(z) = €% (7.75)
and solving the resulting characteristic equation for the n o-roots of the polynomial
obtained by substituting Equation (7.75) into Equation (7.74). Floquet’s theorem
states that, if the functions f,(z) are periodic with period L, then the solutions
given in Equation (7.74) are modulated by a periodic function of L. Our starting
point is the one-dimensional effective mass Schrodinger equation for an electron
moving in a periodic potential energy profile, i.e.,

() + BEW(E) = By, (7.76)

where E.(z) = E.(z + L) and E, is the longitudinal component of the electron
energy due to motion in the z-direction.
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This last equation is of the general form given in Equation (7.74), where func-
tions f,,(z) are given by

fa(z) = —%, (7.77)
f1(2) =0, (7.78)
fo(z) = Ec(2) — Ep. (7.79)

Both f5(z) and fi(z) are constant and therefore they also automatically satisfy the
periodic condition; i.e., fi(z) = fi(z 4+ L) and f2(z) = fa(z + L). Moreover, since
E.(z) is periodic, so is fo(z).

Suppose that 1 (z) and 3(z) are two linearly independent solutions of Equa-
tion (7.76). Then, a general solution of this equation can be written as a linear
superposition of these two solutions:

¥(2) = A1 (2) + Agiha(2). (7.80)

Because the coefficients f,,(z) for n = 0,1,2 are periodic, the functions v (z + L)
and 19 (z + L) are also solutions of Equation (7.76). Hence, they can be written as
linear combinations of the functions ¥ (z) and y(2), i.e.,

Y1(z + L) = a1 (2) + Bia(2), (7.81)
Vo(z+ L) = v1(2) + 0¢2(2). (7.82)

Next, we show that we can write
P(z + L) = A (2) + Ajta(2), (7.83)
where the coefficients A} and A} are determined later.

Since 1(z+ L) is also a solution of Equation (7.76), it can be written as a linear
combination of 11 (z) and 2(z) as well. Indeed, using Equations (7.80)—(7.82), we
get that

Y(z+ L) = Ay (2 + L) + Agiho(z + L) = Ay (fwl(z) + sz(z))
+ A, (71/}1(2) + 5¢2(z)). (7.84)
Hence,
V(2 + L) = (Ara + Agy)pr(2) + (A18 + Agd)ha(2) = Aihi (2) + Abiba(2), (7.85)
with A} = Aja + Ayy and A} = A1 B + Asd.

If a value of k can be found such that A} = kA; and A, = kAs, then the
following two equations must be satisfied by k:
Aloz + AQ’)/ = kAl, (786)
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These can be written in matrix form:

[ggHi;}:k[ﬁ” (7.88)

which shows that the k are the eigenvalues of the matrix

A:[g ’H (7.89)

As shown below, the k eigenvalues of this matrix exist, which means that the matrix
A must have a non-zero determinant. Because the k eigenvalues exist, we can write
Equation (7.85) as

¥(z+ L) = kA1 (2) + kAo (z) = kip(z). (7.90)

If we assume that the solution of the Schrédinger Equation (7.76) can be written
in the form

P(z) =e77¢(2), (7.91)
then using Equation (7.90), we get

Y(z+ L) =GR G(z + L) = kip(z) = ke (). (7.92)

If we select o such that
k=e’L, (7.93)

then from Equation (7.92), we obtain
Y(z 4+ L) = " p(2) = e7%eLp(2) = “FTH (2 + L), (7.94)
which implies that the following equality must be satisfied:
¢(2) = ¢(z + L). (7.95)
This completes the proof of Floquet’s theorem.

To show that the matrix A in Equation (7.89) has a non-zero determinant, we
use the fact that

Y1(z+4 L) = a1 (z) + Bia(2), (7.96)
Yoz 4 L) = yip1(2) + 6v2(2). (7.97)

Since 11 (z) and 19(z) are linearly independent, so are ¢ (z + L) and 12(z + L).
Therefore, the only values of o’ and ' that satisfy the condition

o/1(z+ L) + Bz + L) = 0 (7.98)
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are o/ = (' = 0. Hence,
on (2 + L) + B (s + L) = o (0 (2) + Bn(2)
+ 8 (11(2) + 69 (2)) = (@a+ 57 (2)

+ (/B4 B'8)3p2(2) = 0. (7.99)
Since 171 and 1), are linearly independent, we must have
da+pv=0, (7.100)
op+35=0. (7.101)
These last two equations can be written in matrix form:
a v o | 0
o 1][%]=+[ 0] am

This system admits the (0,0) solution only if the determinant of the matrix on the
left-hand side is non-zero. Hence, the matrix A in Equation (7.96) has a non-zero
determinant.

**%* Problem 7.9: Tunneling probability through N identical barriers

Starting with the one-dimensional time-independent Schridinger equation, derive
an expression for the tunneling probability Ty through a structure which consists of
N repetitions of a unit cell, as shown in Figure 7.4. Determine the kinetic energy
of the incident electron E,, for which Tn reaches unity [15].

Solution: In the first unit ( 0 < z < L), we write the solution of the Schrédinger
equation

2m* dz?

Pﬁd%+&@ﬂ:%w

ty etko (=-NL)

A AN

ks | 12 N-1: N

z=0 z=(N-1)L z=NL 5

Figure 7.4: Scattering problem for an electron incident from the left on a periodic
potential energy profile composed of N identical unit cells.
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as a linear combination, A111(2z) + Astae(z), of two linearly independent solutions
¥1(2) and 95(z) satisfying the boundary conditions

P1(0) =0  2(0) =1,
WO =1 br(0) =0 (7.103

These solutions are indeed independent since their Wronskian is unity.

The most general solution of the Schrédinger equation in the nth barrier can
then be written as

Yn(2) = Aptp1(z — (n — 1)L) + Bpipa(z — (n — 1)L). (7.104)

Matching the wave functions at the boundary between the nth and (n + 1)th cells
leads to

An’(/)l (L) + Bnl/)Q(L) = A,H_l’(/)l (0) + Bn_ng(O) = Bn+1. (7105)

Furthermore, matching the wave function derivatives at the same boundary leads
to

Apihi' (L) + Bptpa (L) = Any191'(0) 4+ Bpyatha'(0) = Ay (7.106)

Equations (7.105) and (7.106) can be written in matrix form:
Ant1 \ _ ( 0'(L) 2/ (L) An ) _ (W W An (7.107)
Brta Y1(L)  a(L) By War Wa B, )7

where
wo [ (L) (L)
_< Y1(L) (L) ) (7.108)

is the transfer matrix for each unit cell.
As shown in Figure 7.4, for an electron incident from the left, we have
P(z) = % 4 rye o for 2 < 0 (7.109)

and ,
U(z) = tyetfoE=NL) for » > NI, (7.110)

where kg = ./2m*E,, is the wave vector of the incident electron and Ej, its kinetic
energy.

Enforcing the continuity of the wave function and its first derivative at z = 0
leads to:
14+ ry = By, (7.111)

’L'k‘o(l — ’I“N) = Al. (7.112)
Similarly, at z = NL, we get
ty = Anv1(L) + Byyo(L), (7.113)

ikoty = ANwll(L) + BNQ/JQ/(L). (7114)
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Furthermore, by induction,

(&)=-"(5)
(&)-"(z)-"(5)
(& )=m(&)=-"(5)
(7.115)
Hence,
<gz ) =Nt < gi ) (7.116)

Equations (7.111)—(7.115) form a system of six equations for the six unknowns ry,
tn, A1, Bi, An, and By.

Equations (7.113)—(7.115) can then be rewritten as

tN<“;0>:W(gZ):WN(gi>. (7.117)

Using the shorthand notation W = D for the transfer matrix through the N unit
cells, Equations (7.111), (7.112), and (7.116) can be rewritten as

tkoty — D11 A1 — D19B1 +0-ry =0,
tn — Doy Ay — DaoB1 + 075 =0,
0-tn+0-A1+B1—ry =1,

0-t+ A1 +0- B +ikory = iko. (7.118)

Eliminating A; and B; from these equations leads to two equations for the two
unknowns ry and ty:

ikotn + TN(ikoDll — Dlg) = D15 +ikoD1y, (7.119)

ty + TN(ikQDgl - D22) = Doy + tkoD521. (7120)

Multiplying Equation (7.119) by (ikoD21 — D22) and Equation (7.120) by (iko D11 —
D15) and subtracting the resulting equations leads to the transmission amplitude ¢y,

2iko(D11D29 — D12D9:1)
ikoD11 — D12) — iko(ikoDa1 — Dag)’

N =1 (7.121)

which can be further simplified since D11 Do — D12Do; = det D = det WV =
[det W] = 1, giving the final expression:

2ikg
ikoD11 — D12) — iko(ikoDa1 — Daa)’

ty = ( (7.122)
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Since the W;; are real, so are the D;;. The transmission probability Ty = [t N|2 is
therefore given by

482

Tn = |tn]? = .
(k3 Doy — D12]2 + k3 [D11 + DQz]2

(7.123)

Next, we determine at which values of the incident kinetic energy T reaches
unity. To do so, we rewrite Ty in Equation (7.123) as follows:
_ 4k
ko D3y + kg [(D11 + Dag)? — 2D19 Doy | + D3,

Tw (7.124)

Since the numerator is a polynomial in k3, T will reach unity when the D; ; satisfy
the following conditions:
Dy = D12 =0, (7.125)

(D11 + Do3)? —2D19 Dy = 4. (7.126)

Since D12 = Do = 0, the last equation amounts to
(D11 + Dg3)? = 4. (7.127)

If we call the eigenvalues of the matrix W A(!) and A, then the eigenvalues of the
matrix D = WV are AWV and \®N | Furthermore, we have

D11 + Day = Tr(D) = XN 4 NN (7.128)

Since det W = 1, we have A\(?) = ﬁ and A(Y) must satisfy

1 2
()N _
(/\ + A(1)N) = 4. (7.129)
This last equation can be simplified to
4 2 2
PON 2 O 10 o (AW 1) =, (7.130)
and therefore
2N
[)\(1)} —1, (7.131)
2N
{A@)} =1 (7.132)

So the A(Y) are the 2N square roots of unity, i.e.,
. 1
AW = (e27F)2N - g =0,1,2,...,2N — 1. (7.133)
The distinct solutions for A(") and A\(?) are given by (see suggested problems):

AD = i

(7.134)

pik

A(2):efiN’ k:l,Q,,N_l
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Therefore, the energies at which Ty is unity are the energies for which the following
relation is satisfied:

el

s

TrW =e'™ +e "N =2cos <) . (7.135)

** Problem 7.10: Relation between the band structure of an infinite
periodic lattice and the transmission of an electron through a finite
repeated structure

Prove the following theorem: The transmission coefficient of an electron through a
periodic structure, formed by N repetitions of a basic subunit, as shown in Figure 7.4,
reaches unity at the following energies: (a) energies at which the transmission
through the basic subunit is unity, and (b) N — 1 energies in each energy band
of the lattice formed by infinite periodic repetition of the basic subunit, where these
N —1 energies are given by E = Ej(k = +47) (n=1,2,3,...,N —1) and L is the
length of a subunit. Here, E;(k) is the energy—wavevector relationship (or dispersion
relation) for the ith band of the infinite lattice [15].

Solution: In Equation (7.133), we reject the case k =0,k = N. In this case,
AL =A@ =1 are real and Tr(W) = 2 for k=0
AL =A@ = _1 are real and Tr(W) = —2 for k= N.

Next, we show that these two cases correspond to the energies at the edges of the
energy bands of the lattice obtained by infinite repetition of the unit cell.

We first derive the general expression for the eigenvalues of W associated with
a subunit of the periodic lattice in terms of its matrix elements, starting with the

relation
Wi — A Wiz .
det( W Wag — )—O,

whose solutions give the eigenvalues

AL n

Tr(2W) <TY(2W))2 N 1] ' . (7.136)

This last equation shows that, if |Tr(W)| > 2, the eigenvalues of W are real. The
values of the energies for which it occurs are in the stop bands of the infinite
superlattice, as we will show next. The values of the energy for which |Tr(W)| = 2
then give the lower and upper limits of the energy of the pass band. If |Tr(W)| < 2,
the magnitudes of the eigenvalues A(1):(2) are equal to unity.

For an infinite number of unit cells, we know from Bloch’s theorem, proved in
Problem 7.8, that the solution of the Schrodinger equation can be written as

U(2) =% p(2), (7.137)
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where ¢(z) is a periodic function with the same period as the potential of the
infinite superlattice, i.e., ¢(z + L) = ¢(z), and & is purely real and is referred to as
the electron Bloch wave vector of the infinite superlattice.

So we can rewrite Equation (7.107) as

An+1 _ Wll W12 An _ €L An _ An
< By ) - ( War W ) < B, ) =\ s )7 B, ) T
Using the periodicity of ¢, we can write ¥(z 4 L) = Gt ¢(2 + L) = LT (2).

Equation (7.138) can be rewritten as

An1 o Wi Who A, B €L 0 A,
( Bn+1 ) o < W21 W22 > < Bn ) - ( 0 eifL Bn 5 (7139)

which shows that £ satisfies the equation
det (W —eF6;;) = 0. (7.140)

The eigenvalues of this last equation are AV, \(2) = e+€L We have a propagating
wave in the infinite superlattice only if £ is real, i.e., if the A\ are complex.

If X is real (€ complex), then the wave function is either growing (if A is positive)
or decaying (if A is negative). These correspond to forbidden energy bands (or stop
bands) for the infinite superlattice.

The above analysis shows that the eigenvalues A() and A\(®) satisfy the relation
AW £ A®) = Tr(W) = 2cos(¢L). (7.141)

One must solve this equation for a given energy to find the corresponding value of
&. If that value turns out to be real, then the energy is in the pass band. On the
other hand, if the value of £ turns out to be complex, then the energy is in the
gap between two pass bands, i.e., it is in the stop band. If £ is real, then obviously
[t|> = 1 in the infinite superlattice since this corresponds to the pass band.

In the previous problem, we found that the values of the energies E for which
[tn|? = 1 for a system of N barriers obey the relation

Tr(W) = 2cos <7l-k<NE)L) fork=1,...,N — 1. (7.142)

This equation is formally identical to Equation (7.141) if we put {L = 5F.

So, we arrive at the important conclusion that for a system of N barriers, the
transmission coefficient is exactly equal to 1 whenever £ = % in the infinite model.

Stated otherwise, in a system of N barriers, |tx|? = 1 at energies corresponding
to different Bloch wave vectors
km

¢=7 fork=1...N-L (7.143)
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** Problem 7.11: The Kronig—Penney problem: energy dispersion
relation of an infinitely repeated structure

Solve the one-dimensional time-independent Schrédinger equation (assuming con-
stant effective mass) and derive the analytical expression for the energy dispersion
(E versus k) relation in the structure formed by infinite repetition of the unit cell
shown in Figure 7.5.

Solution: As shown in the previous problem, the energy dispersion relations in
the various energy bands of a periodic potential are given by
Tr Wror = 2cos(EL), (7.144)

where £ is the electron wave number and Wror is the transfer matrix of the unit
cell.

Referring to Figure 7.5, we write the transfer matrix across a unit cell as
Wror = Wi x Ws x Wi, (7.145)

where W7 and Wiy are the transfer matrices associated with the free propagation
regions on the left and right sides of the delta scatterer, respectively.

The transfer matrix across a delta scatterer was derived in Problem 7.7:

1 2nh12*F
Wy = [ o } (7.146)

To determine the transfer matrices in the free propagation regions I and II
we use the results of Problem 7.2, where the transfer matrix through a region of

E; (2)

'S (z-a)
N

Figure 7.5: Basic unit cell used to calculate the energy dispersion relation of an
infinite periodic lattice. The effective mass is assumed to be the same throughout.
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width L, with constant potential E., was found to be
_ cos(kL) —ksin(kL)
W(Bp 2 Be) = ( sin(kL)/k  cos(kL) ’ (7.147)

where

1
k= 5y/2m (B, — Eo) (7.148)

and FE}, is the longitudinal component of the kinetic energy of the incident electron,
i.e., the energy measured above F..

The transfer matrices through the free propagation regions have the form of
Equation (7.147) with E. equal to zero. We call kg the corresponding wave vector
inside that region.

The overall transfer matrix Wror associated with the unit cell of the device
composed of the two delta scatterers is

W — cos(kob)  —kgsin(kob) e 2m*T /h?
TOT = | sin(kob)/ko  cos(kob) 0 1
cos(koa) —ko sin(koa)
{ sin(koa)/k  cos(koa) | (7.149)
Performing the matrix multiplications, the following expressions for the matrix
elements Wit and W22 are found:

2
Wit = cos(kob) {cos(kob) + kioé sin(koa) — sin(kga) sin(k‘ob)] , (7.150)

sin(kob)

22 _
Wior =
ko

[—ko sin(koa) + 2k; cos(koa)] + cos(koa) cos(kob), (7.151)

where ks = m*T'/h?.

Therefore, Equation (7.144) leads to

2k
2cos(¢L) = Tr Wror = 2cos(koL) + k—é sin(koL). (7.152)
0

The energy dispersion relation for the infinite superlattice with the unit cell shown
in Figure 7.5 is therefore given by

cos(éL) = cos(koL) + Z—ésin(koL). (7.153)
0
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*¥*%* Problem 7.12: Connection between bound state and tunneling
problems

In this problem, the transfer matrix formalism is used to show that the problem of
finding the bound states of an arbitrary confined one-dimensional potential energy
profile E.(z) can be reformulated as a tunneling problem. More specifically, the
following theorem is proved: For an electron confined to a region of width W with
an arbitrary conduction band energy profile E.(z) [E.(z) = Vy for z outside the
welll, as shown in Figure 7.6, the bound state energies (Ey,Es, Es,...) can be
found by adding two barriers of width d and height Vi on two sides of the region
and calculating the energies at which the transmission probability T(E) through
the quantum well structure so formed reaches unity. The energies at which the
transmission coefficient reaches unity converge toward the bound state energy levels
when the barrier thickness d tends to infinity. The theorem is proved for the case
of a spatially independent effective mass but can be easily extended to the case of a
spatially varying effective mass [15].

Solution: We first consider the tunneling through the quantum well structure
shown in Figure 7.6 using the bottom of the quantum well as the zero of energy.
Calling V the maximum depth of the quantum well, the transfer matrix for each
barrier on either side of the quantum well for E <V} is given by (see Problem 7.2)

[ cosh(kd)  ksinh(kd)
Wg = < sinh(kd)/k  cosh(kd) > ) (7.154)

———————— H-_————--———-

5 NN~

. — - -
~
)
’
-
-
~
Al
y
P I

0 z=W z=W+d

Figure 7.6: Schematic of a quantum well (dashed line) of width L with an arbitrary
conduction band energy profile and maximum depth V. The zero of energy is
selected to coincide with the bottom of the well. Also shown are the locations of the
two lowest bound states £ and Fs in the well. The latter coincide with the energies
for unit transmission probability for an electron incident from the left barrier region.
The quantities r and ¢ are the reflection and transmission amplitudes, respectively,
of the incident electron [13].
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where k = % 2m* (Vo — E) and m* is the effective mass of the electron, assumed
to be constant throughout.

The overall transfer matrix is given by the product of the following three
matrices:

WTOT = WB X Wwell X WB, (7155)
where o1'(L)  ¢2'(L)
_ 1 2
Wwell - ( (bl (L) ¢2 (L) ) (7156)

is the transfer matrix associated with the well region, the functions ¢;(z) and ¢2(2)
being two linearly independent solutions of the Schrédinger equation satisfying the
boundary conditions ¢1’(0) = 1, ¢1(0) = 0, ¢2’(0) = 0, and ¢2(0) = 1.

Performing the matrix multiplication, we obtain

Wror = cosh?(kd) [ L r tanh(rd) ]

tanh(kd/k) 1
[ frpDableals Dbl + D

$1(L) + ¢2(L) tanh(kd)/k  k¢1(L) tanh(kd) + ¢2(L) ] . (7.157)

In the limit d — oo, we have

oty [ 18 ][ 00 wor'(L) +05(L)
wior =eote)| 1 || DTN D T0G ] e

K
Multiplying the two matrices on the right-hand side, we get the elements of the
matrix Wror:

Wior = cosh?(kd) [¢1/ (L) + ¢2'(L)/k + k1 (L) + ¢2(L)], (7.159)
W%%)T = W&)Tv (7-160)
Wigyr = cosh®(kd) [ké1 (L) + ¢o' (L) + k*¢1 (L) + kea(L)] (7.161)
WL = cosh?(kd) [¢1/(L)/k 4 ¢o' (L) /K + ¢1(L) + ¢o(L) /K] . (7.162)

The transmission probability through the quantum well region depends on the
elements of the transfer matrix, and reaches unity when the following two conditions
are satisfied, as shown in Problem 7.1:

WHOT = W loT = o, (7.163)

WEOT + WOt = +2. (7.164)

Using Equations (7.159)—(7.162), these last two conditions amount to the following
requirement:
ko1 (L) + ¢2' (L) + K*¢1(L) + kpo(L) = 0. (7.165)

Bound state problem: Next, we prove that Equation (7.165) is also the condi-
tion that must be satisfied to find the bound states in the well. With the zero of
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energy at the bottom of the well, the solutions of the Schrodinger equation for the
bound state problem are given by: in region I (z < 0):

Y1 = A1e"* + Bie” " (7.166)
in region IT (0 < z < L):
Y = A (2) + Baga(2); (7.167)
and in region IIT (z > L):
Y = Aze®*7E) 4 Byemr (=L (7.168)

where & = ++/2m* (Vo — |E]).

Matching the wave function and its derivative at z = 0, we get the following
relations between the coefficients (A1, B1) and (Az, By):

(e =050 wo)s] om
Similarly, at z = W we get
(o & ) ]=(G0 D)lm] om

The coefficient B;1 = 0 must be zero for the wave function to be well behaved for
z < 0.

Since ¢1'(0) = 1, ¢1(0) = 0, ¢2'(0) = 0, and ¢5(0) = 1, Equation (7.169) leads
to the following requirements:

Ag = IiAl, (7171)
By = A;. (7.172)
Equation (7.170) can be expanded as follows:
A2¢1/(L) + ngbz/(L) = H,Ag — /{Bg, (7173)
Multiplying the last equation by & and adding it to Equation (7.173), we obtain
1
Az = o [As (kp1(L) + ¢1' (L)) + Bz (k2 (L) + ¢’ (L))] - (7.175)

Taking into account Equations (7.171)—(7.172), this last equation becomes

A

A
3 2K

[2p1(L) + k1 (L) + k(L) + 2’ (L)] - (7.176)

For the wave function to be well behaved for z > W, we must have A3 = 0. Since
A # 0, this leads to

9(E) = k*¢1(L) + k1 (L) + k(L) + ¢2' (L) = 0, (7.177)
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which is the same as Equation (7.165) derived earlier for unity transmission through
the tunneling structure as the width d of the two barriers on either side of the well
approaches infinity. The left-hand side of Equation (7.177) is a function of energy
g(E) whose zeros correspond to the bound state energies of the quantum well.
Numerical examples of the calculations of bound state energies for various quantum
wells with different E.(z) using the results proven in this problem are given in
Ref. [13].

** Problem 7.13: Quantum mechanical wave impedance in terms of
elements of the transfer matrix

For the general conduction band energy profile shown in Figure 7.1 (with zy = L),
assuming a constant effective mass throughout, show that the quantum mechanical
wave impedance Z(0) is related to Zgm(L) by the general expression

_ Zaom(L)ga(L) — Coo/ (L)
Zaoum(0) = CC(;:[’(L) — Zom(L)¢1 (L)’

where C' = 2h/(m™*i) and the ¢1, ¢2 functions are two linearly independent solutions
of the Schrédinger equation in the interval [0, L].

(7.178)

Solution: By definition, the quantum mechanical wave impedance [16, 17] is (see
Chapter 1)

Zqu(z) = C(d¢/dz) /o, (7.179)
where ¢(z) is a solution of the time-independent Schrodinger equation
B2 .
— 5, 9(2) + Ee(2)(2) = Epo(2), (7.180)

where all the quantities have their usual meaning.

The general solution of this second-order differential equation for ¢(z) can
be written as a linear combination of two linearly independent solutions ¢(z) =
A1¢1(%) + Aagpa(z) (see Chapter 1).

The quantum mechanical wave impedance can therefore be written as

_ A [A191(2) + Axgo'(2)
Introducing the quantity 8 = %, we get
e (2) + 5%/(2)}

Writing this equation at z = L and solving for 8 from the above equation leads to

| Co(D) -~ Zou(D)r(D)
Zam(L)pa(L) — Cy' (L)

(7.183)
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Plugging this value of 8 back into Equation (7.179) evaluated at z = 0+, we obtain

Zom(L)p2(L) — Coo'(L)
Con'(L) — Zou(L)p1(L) ]

If we consider a tunneling problem with an electron incident from the left, Zqnm (L)
is the characteristic load impedance of the right contact,

ZQM(O+) =C (7.184)

2h

m*i

Zou(L) = ——kr, (7.185)

where kp is the electron wave vector in the right contact.

Equation (7.184) is the quantum mechanical equivalent of the well-known
formula for computing the impedance of a transmission line starting from the
impedance of the load [18-21].

In the next problem, we show how to compute the reflection coefficient from
an arbitrary conduction band energy profile using the quantum mechanical wave
impedance concept.

* Problem 7.14: Reflection coefficient in terms of quantum mechanical
wave impedance

For an electron incident from the left on an arbitrary conduction band energy profile
E.(z) in the domain [0, L], derive an expression for the reflection probability in terms
of the quantum mechanical impedance at z = 0+ and the characteristic quantum
mechanical impedance Zy of the contact (z < 0).

Solution: The quantum mechanical wave impedance at z = 0+ can be calculated
from the load impedance in the right contact using the approach described in the
previous problem. Because the wave function and its derivative are continuous, so
is the quantum mechanical wave impedance. For an electron incident from the left,
é(2) = eFo% fre~"0= where r is the reflection amplitude and kg is the z-component
of its wave vector. As a result,

_ 2hko (1—7) 1—r
Zom(0-) = —= Ty —Zo<1+T>, (7.186)

where Zy = Zzﬁ is the characteristic quantum mechanical wave impedance in the

*

left contact. Since Zqum(0+) = Zgm(0—), we get
(14+7r)Zgm(0+) = (1 —r)Zy, (7.187)
leading to the following expression for the reflection amplitude:

 Zo— Zaom(04)

- == 7 7.188
"= 0T Zau(0F) (7.188)
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This is the analog of the reflection amplitude formula in transmission line theory
[19-21]. The reflection probability is therefore given by
2
Zy — Zqm(04)

R=1r?2=
‘7"| ZQ+ZQM(0+)

(7.189)

**** Problem 7.15: Quantum mechanical wave impedance approach to
tunneling through a square barrier

Using the concept of quantum mechanical wave impedance, derive the energy depen-
dence of the transmission probability through a square barrier of height Vy and width
W. Assume that the electron is impinging from the left and the effective mass is
constant throughout.

Solution: In the barrier region, if £ > V{, the solution of the one-dimensional
Schrodinger Equation (7.180) is

¢ = Atethz 4 Amemthz, (7.190)
1/2m*(E7V0)

where k = = .

The quantum mechanical wave impedance in the barrier region is therefore
given by

o2h ¢ 2hk [ AtetRr — Ameik2
ZQM(Z) - im* E - m* (A-l—eik:z + A—e—ikz> ’ (7191)
which can be rewritten as
ohk [ A+eikW gik(z=W) _ p—o—ikW o—ik(z—W)
Zau(z) = = {A-ﬁ-eikWeik(z—W) I A—e—ikWe—ik(z—W):l : (7.192)
Introducing 8T = ATe?*W and 3~ = A=e W we obtain
2hk 6+eik(z7W) 