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 Quantum mechanics is very impressive. But an inner voice

 tells me that it is not yet the real thing. The theory produces

 a great deal but hardly brings us closer to the secret of the

 Old One. I am at all events convinced that He does not

 play dice. 

—Einstein

 God not only plays dice. He also sometimes throws the dice

 where they cannot be seen! 

—Stephen Hawking
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Preface

The basic concepts of quantum mechanics constitute the central core around

which the whole of modern physics revolves. It is, therefore, natural that a large

number of excellent textbooks already exist on Quantum Mechanics. Most of

these books provide comprehensive coverage of the material appropriate for

the postgraduate courses. Even though these books begin from a basic

introduction to quantum theory, the range of topics covered by them is

generally broad and large, providing a much deeper coverage of the subject

matter. Hence their presentation tends to become complex, both from the

viewpoints of mathematical formulation and conceptual discussion. This title, 

on the other hand, offers a basic introduction to quantum mechanics for

students who are exposed to this subject for the first time at the undergraduate

level. The first encounter with quantum mechanics is a very thrilling and

bewildering experience in which the students realize that the  microscopic

world behaves in a manner which is drastically different from the  macroscopic

world in many ways which are completely beyond their imagination. They

learn entirely new concepts which do not conform to everyday experience and

to what they have learnt or observed so far. At this beginning stage the students

need a book which is easy to understand and takes them along gently through

the new concepts and ideas at a pace at which they feel comfortable and can

enjoy this marvellous subject. Still, the book should be thoroughly rigorous, 

giving all the necessary mathematical details so that it can serve as a textbook

for the undergraduate curriculum. The present book is written precisely to

fulfill this need of the beginner. It has grown out of my interaction (teaching

and discussion) with the undergraduate students for more than three decades. 

The book is written primarily as a textbook for the students of physics

and comprehensively covers the syllabi of all the Indian universities. However, 

it will also be useful for the students of engineering and chemistry. 

I have tried to develop the course in such a manner that the student gets

a reasonably good grasp of the fundamental principles and the basic

mathematical structure without being unduly frightened. No advanced topics

xiii

xiv
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have been discussed. I have confined the subject matter only to wave

mechanics because the other version of quantum mechanics—the matrix

mechanics—is not taught at the undergraduate level. It is my personal opinion, 

too, that matrix mechanics and the state-vector approach should be introduced

only after the student has got a reasonably thorough grounding in wave

mechanics and its applications to simple systems. It is easier to make a

 transition from the ‘classical world’ to the ‘quantum world’ through the more

familiar mathematics (differential equations) of wave mechanics than through

the abstract algebraic approach, however elegant it may be. 

The book is divided into 14 chapters. After a brief historical introduction

in Chapter 1, the origin of quantum theory is presented in Chapter 2. Here, it

is discussed how Planck explained the blackbody radiation by postulating the

quantization of radiant energy and then, how the photoelectric effect and the

Compton effect established the particle nature of radiation. Chapter 3

highlights how Bohr explained the structure and spectra of simplest atoms

using the quantum hypothesis—by postulating discrete stationary orbits and

quantum jumps. This chapter also discusses the Franck–Hertz experiment, 

which demonstrated directly that the energy is absorbed by atoms in discrete

quanta, and explains the correspondence principle, which served as a guiding

principle in the initial development of quantum mechanics. 

The basic framework of quantum mechanics is developed in Chapters 4, 

5 and 6. Beginning with De Broglie’s hypothesis, these chapters discuss

in detail the need for a wave function and its interpretation, the wave packets, 

the uncertainty principle, the Schrödinger equation, the operators, the

eigenfunctions and eigenvalues, the expectation values, etc. The application of

this framework to simple systems—potential wells, barriers and harmonic

oscillator—are explained in Chapters 7, 8 and 9. Chapter 10 presents the

formal structure of quantum mechanics as a set of seven postulates. In Chapter

11, the quantum mechanical treatment of orbital angular momentum and its

application to the rigid rotator are presented. 

In Chapters 12, 13, 14 the application of quantum mechanics to the

structure of atoms is discussed. Here the Schrödinger equation for a hydrogenic

atom is first solved. The concept of spin and its consequences, the Pauli

exclusion principle, the atomic shell structure, the coupling schemes and the

Zeeman effect are then discussed in detail. 

Each chapter contains a number of solved problems and exercises. These

are an essential part of the book and must be taken very seriously. A proper

understanding of quantum concepts is not possible without undergoing the

grilling in problem solving. A set of review questions is also given at the end

of each chapter. These are of the type that are generally asked in the

examinations. Students are advised to write their answers. This will help them

to comprehend the subject faster. Each chapter ends with a summary of all the

important key points discussed therein. 
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xv

Students are advised not to get disheartened if they feel confused while

reading certain concepts in the first instance. They should have the patience to

read the whole thing again. They can take heart from one of the greatest

scientists, R.P. Feynmann, who once remarked, “nobody understands quantum

mechanics!” Even if the readers find quantum mechanics conceptually

difficult, they will find it beautiful and enjoyable and with persistent effort, will

soon acquire a working knowledge appropriate at their level. 

I have made all efforts to see that the book is free of errors. However, 

some might have still remained. I shall be thankful to the students and teachers

alike if they point these out to me. Suggestions for the improvement of the

book are also welcome. 

I express my sincere thanks to the management and staff of Prentice-Hall

of India for publishing the book in an excellent form. In particular, I am

indebted to Shri Darshan Kumar, Shri Malay Ranjan Parida and Shri K.K. 

Chaturvedi for taking keen interest in this book and giving valuable

suggestions during the course of its production. 

Mahesh C. Jain
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C h a p t e r

Historical Introduction

1

Quantum  mechanics  provides  the  theoretical  framework  which  makes  it

possible to describe, with reasonably good accuracy, the behaviour of radiation

and  matter  at  microscopic  (atomic  and  subatomic)  levels.  The  creation  of

quantum mechanics is the most outstanding development of modern science. It

is like a revolution that has changed the old concepts of reality in many respects. 

As the great mathematician Henri Poincaré has said:

� It is hardly necessary to point out how much quantum theory deviates from

 everything that one has imagined until now; it is, without doubt, the greatest and

 deepest  revolution  to  which  natural  philosophy  has  been  subjected  since

 Newton�. 

Towards the end of the nineteenth century, physicists had started believing

that almost all the fundamental laws of nature have been discovered and as such, 

the main task of physics is over�. Various branches of physics were unified in

a general theoretical framework, now called classical physics, and it was felt

that all known or to be discovered physical phenomena can be explained in this

framework. 

The universe consists of two types of entities�matter and radiation. Matter

is  made  up  of  localized  particles.  The   classical  mechanics,  formulated  by

Newton  and  further  developed  by  Hamilton,  Lagrange  and  many  others, 

successfully  explained  the  motion  of  material  particles  subjected  to  various

types of forces. Maxwell developed the  electromagnetic theory in 1855 which

combined electricity, magnetism and optics into a single framework. He showed

that all radiations, including light, are electromagnetic waves. The existence of

such waves was confirmed experimentally by Hertz in 1887. All waves show

interference and diffraction phenomena which were well understood theoretically. 

During the end of the nineteenth century and the beginning of the twentieth, 

physicists  turned  their  attention  to  the  study  of  the  microscopic  structure  of

� In fact, when Max Planck entered into physics, he was advised not to study the subject

because all the problems had been solved. 

1
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matter, the nature of electromagnetic radiation and the interaction of radiation

with matter.  In  these  studies  a  number  of  experimental  results  were  obtained

which could not be explained on the basis of classical physics. These puzzling

results created a crisis in theoretical physics. Quantum theory had its origin in

the  attempts  made  to  explain  these  results.  Radically  new  concepts  were

required which were completely incompatible with classical physics. These new

concepts are:  the particle nature of radiation, the wave nature of matter and the

 quantization of physical quantities. 

The originator of the quantum idea was Max Planck. He introduced the

concept  of   quantization  of  radiant  energy  in  1900  to  explain  the  spectral

distribution of radiant energy emitted by a heated blackbody. Einstein took the

next  important  step  in  1905.  He  used  Planck�s  idea  to  explain  the  puzzling

features of the photoelectric effect. In 1923, Compton explained the change of

wavelength  of  X-rays  when  they  are  scattered  by  free  or  weakly  bound

electrons (Compton effect). The works of Einstein and Compton showed that

radiation  can  behave  as  particles,  thus  bringing  in   wave-particle  duality  of

 radiation. 

In 1913, Niels Bohr used Planck�s quantum hypothesis and gave the first

successful theory to explain the stability and observed spectrum of the hydrogen

atom. He introduced the  quantization of angular momentum and the concept of

 quantum  jumps. 

The next major step was taken by L. de Broglie in 1923. He suggested that

like radiation, matter also has dual nature, i.e., there is a wave associated with

every material particle. The wave nature of electrons was verified by Davisson

and  Germer  and  independently  by  G.P.  Thomson  in  1927.  In  1926, 

Schrödinger  discovered  the  equation  for  matter  waves  and  thus  formulated

 wave  mechanics,  which  is  one  form  of  quantum  mechanics.  Simultaneously, 

another  version,  called   matrix  mechanics,  was  developed  in  1925  by

Heisenberg, Born  and Jordan.  It  was  later  shown  that  the  two  versions  are equivalent. Wave mechanics is easier to understand intuitively and therefore, the

first  course  in  quantum  mechanics  always  starts  with  this  version. 

The wave-particle duality of matter led to a very important principle, called

the   uncertainty  principle.  It  was  discovered  by  Heisenberg  in  1927.  Much

mystery  and  controversy  surrounded  this  principle  from  the  beginning. 

However,  it  is  considered  to  be  a  fundamental  principal  of  nature  and  is

indispensable for a complete understanding of the microscopic world. 

In order to reconcile the quantum theory with the classical physics, Bohr

formulated  the   correspondence  principle  in  1923.  This  principle  serves  as  a

guide  in  the  development  of  quantum  theory.  It  requires  that  the  results  of

quantum  theory  must  become  identical  with  those  of  classical  physics  if  the

dimensions of the system under consideration tend to approach the dimensions

of  classical  systems. 
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3

Nobel  Awards  for  the  Development  of  Quantum  Theory

1918

Max Planck

Discovery  of  energy  quanta

1921

Albert Einstein

Discovery  of  the  law  of  photoelectric  effect

1922

Niels Bohr

Investigation of the structure of atoms, and of

the radiation emanating from them

1923

Robert A. Millikan

Work  on  the  photoelectric  effect

1925

James  Franck

Discovery of the laws governing the impact of

Gustav Hertz

an electron on an atom

1927

Arthur H. Compton

Discovery  of  the  effect  named  after  him

1929

Louis de Broglie

Discovery  of  the  wave  nature  of  electrons

1932

Werner Heisenberg

Creation of quantum mechanics

1933

Erwin  Schrödinger

Discovery  of  the  new  productive  forms  of

P.A.M. Dirac

atomic theory

1937

Clinton J. Davisson

Experimental  discovery  of  the  diffraction  of

George  P.  Thomson electrons  by  crystals

1945

Wolfgang Pauli

Discovery of the exclusion principle

1954

Max Born

Fundamental  research  in  quantum  mechanics, 

especially for the statistical interpretation of the

wave  function

" 
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C h a p t e r

Particle  Nature  of  Radiation:

The Origin of Quantum Theory

2

Chapter  Contents

2.1

Blackbody Radiation: Planck’s Quantum Hypothesis

2.2

The Photoelectric Effect

2.3

The Compton Effect

2.4

Dual Nature of Radiation

2.1

BLACKBODY RADIATION: PLANCK’S QUANTUM

HYPOTHESIS

The quantum theory had its origin in the search for an explanation of the spectral

distribution of radiant energy emitted by a blackbody. An ideal blackbody is

defined as one that absorbs all electromagnetic radiation incident upon it. It

follows from Kirchhoff’s law that such a body is also a better radiator of energy, 

of all frequencies, than any other body at the same temperature. An ideal

blackbody does not exist. The nearest approximation is a hollow enclosure

having blackened inner walls and a small hole. Any radiation entering the

enclosure through the hole will suffer reflections repeatedly and get absorbed

inside. There is very little chance of its coming out. If the enclosure is heated

to a certain temperature  T, it emits radiation. In thermal equilibrium, this

radiation depends only on  T. A very small fraction of the radiation will pass out

through the hole. Since the hole acts as a blackbody, this radiation is called the

 blackbody radiation at temperature  T. Figure 1.1 shows the wavelengthwise

distribution of the intensity ( Il) of this radiation. It is found that the radiated

energy is maximum at a particular wavelength  lm and is small for very short

and very long wavelengths. 

4
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#

 Il

 T

 lm

 l

Figure 2.1

Spectral distribution of blackbody radiation. 

Various attempts were made to explain the shape of this curve. Wien

obtained the following semiempirical formula, known as Wien’s law:

 ae- b/  T

 l

 I( l,  T) = 

(2.1)

 l 5

where  a and  b are adjustable parameters. This law fitted the experimental curve

fairly well except at long wavelengths. However, it is not satisfactory in the

sense that it is not derived from a model which would relate the emitted radiation

to physical processes taking place within the enclosure. 

A more complete theory was given by Rayleigh and Jeans, based on

classical electrodynamics and thermodynamics. They considered the radiating

body as a collection of a large number of charged particles performing linear

simple harmonic motions. These oscillating charges emit and absorb

electromagnetic radiation. At thermal equilibrium, the energy density of the

radiation inside the cavity will be equal to the energy density of the atomic

oscillators situated in the walls of the cavity. 

It can be shown that the number of oscillators per unit volume, of

frequency  n, called  Jeans’ number, is

8

2

 pn

 n( n) = 

(2.2)

3

 c

Further, according to the classical theory of equipartition of energy, the

average energy of an oscillator at temperature  T is  kT, where  k is Boltzmann’s constant. Thus, the energy density of the radiation of frequency  n in the cavity, 

at temperature  T, is

 p

8  n  2

 U( n,  T ) =

 kT

(2.3)

 c 3

This is the Rayleigh-Jeans Law. It can be stated in term of wavelength  l

if we note that

 n( l) dl =   n( n)  dn

 dn

or

 n( l) =   n( n)  dl

 d

 c

F

=   n( n ) 

H IK

 dl

 l

$
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 c

=   n( n)  l 2

8

2

 p  F  c

 c

=  3

2

2

 c  HG I

 l  KJ FH IK

 l

8 p

=  4

 l

Thus, 

 p

8

 U( l,  T) =

 kT

(2.4)

 l 4

The intensity  I( l,   T ) of the radiation emitted by the cavity hole is proportional to  U( l,  T). The exact relation is

 c

 I( l,  T) = 

 U ( l,  T)

4

where   c is the speed of light. Therefore, 

 p

8  c

 I ( l,  T ) =

 kT

(2.5)

4 l 4

It is found that the Rayleigh-Jeans law agrees with the experimental results

in the long wavelength region. However, it diverges as the wavelength tends to

zero. This failure of the Rayleigh-Jeans law is referred to as the “ultraviolet

 catastrophe”. Moreover, Equation (2.3) implies that the total energy emitted at

all temperatures except absolute zero is infinite:

•

8 p kT

•

 U( T) =  z  U( n,  T) dn = 

z  n 2 dn = •

3

0

 c

0

which is obviously impossible. 

Since the law was derived by applying the principles of classical physics

rigorously, it gave a serious below to classical physics and suggested that there

was something fundamentally wrong with it. 

Planck’s Radiation Law

Planck realized that some radical change was required to explain the experimen-

tally observed spectrum of blackbody radiation. After much trial, he arrived, in

1900, at the following postulate which is known as Planck’s quantum

hypothesis:

 The material oscillators (in the walls of the cavity) can have only discrete

 energy levels rather than a continuous range of energies as assumed in classical

 physics. If a particle is oscillating with frequency n, its energy can take only the

 values

 e =

 n, 

= 0, , 

1 , 

2 ... 

(2.6)

 n

 nh

 n
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%

 where h is a constant, later called the Planck’s constant. The quantity hn is

 called a quantum of energy. This implies that the particle can emit or absorb

 electromagnetic energy, not continuously in arbitrarily small amounts, but in

 multiples of the quantum   hn. 

The value of the constant  h was chosen to fit the experimental data. Planck

obtained the value 6.55 ¥ 10–34 Js, which is close to the presently accepted value

6.625  ¥ 10–34 Js. It is a fundamental constant of nature. 

Since the energies of the oscillators are restricted to integral multiples of  hn, 

the average value of their energies will be different from  kT, the value obtained

using the classical equipartition theorem. It can be calculated as follows:

Consider all the particles oscillating with frequency  n. At absolute zero, all

the oscillators will be in the lowest energy state. At higher temperatures, some

of the oscillators are excited to higher states. At temperature  T, in equilibrium, 

the number of oscillators with energy  en is given by the Maxwell-Boltzmann

function

 N( n) =  N 0 e– en/ kT

This shows that higher the energy state, less likely is it to be populated. As

 n Æ •,  N( n) Æ 0. Note that in classical theory, oscillators of all energies are excited with equal probability. 

The average energy per oscillator is

•

 N( n) e

Â

 n

 e =   n=0•

 N( n)

Â

 n=0

•

 N e- nhn / kT nh

Â

 n

0

=   n=0•

 N e- nhn / kT

Â 0

 n=0

Taking  x =  e– hn/ kT, this can be expanded as

F1+2 x+3 2 x +4 3 x+L

 e =  hnx HG

I

1

2

3

+  x +  x +  x + L KJ

(1 -  x)-2

 hn x

=   hnx

= 

(1 -  x)-1

1 -  x

 hn

=   ehv/ kT -1

Multiplying it by the Jeans’ number (Equation 2.2) the energy density of the

radiation inside the cavity becomes

& 
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 pn

8

2

 hn

 U( n,  T) =

(2.7)

 c 3

 ehn / kT - 1

This is Planck’s radiation law. In terms of the wavelength  l of the radiation, 

this becomes

 p

8  hc

1

 U( l,  T ) =

(2.8)

 l 5

 ehc/ lkT - 1

Planck’s law agrees very closely with the observed spectral distribution

curves for all values of  l and  T. It reduces to Wien’s law as  l  Æ 0 and

Rayleigh-Jeans’ law as  l Æ •. Further, it is found to be consistent with Wien’s

displacement law,  lmT  = constant, and Stefan’s law,  U  µ   T  4. Thus, it

incorporates all that is valid from the classical theory and yet, makes a

fundamental departure, which ultimately shook the foundations of classical

mechanics. Planck was awarded the 1918 Nobel Prize for the discovery of

energy quanta. 

PROBLEM 2.1

Show that Planck’s law reduces to Wien’s law in the short

wavelength limit and Rayleigh-Jeans’ law in the long wavelength limit. 

 Solution:

When   l is small,  ehc/ lkT >> 1. Therefore, 

8 p hc

 U( l,  T) ~ 

 e– hc/ lkT

 l 5

which is  Wien’s law (see Equation 2.1). 

When  l is large, 

 hc

 ehc/ lkT ~ 1 +   lkT

Therefore, 

8 p hc l kT

 U( l,  T) ~ 

5

 l

 hc

8 p kT

= 

4

 l

which is  Rayleigh-Jeans’ law (Equation 2.4). 

2.2

THE PHOTOELECTRIC EFFECT

When electromagnetic radiation of high enough frequency is incident on a metal

surface, electrons are emitted from the surface. This phenomenon is called

 photoelectric effect. The emitted electrons are generally called  photoelectrons. 

This effect was discovered by Heinrich Hertz in 1887. 
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Radiation

Emitting

Collecting

plate

plate

 e

Evacuated tube

 V

 A

Figure 2.2

Apparatus for the study of photoelectric effect. 

The apparatus used to study the photoelectric effect is shown in Figure 2.2. 

When the collecting plate is given sufficiently high positive potential  V, all the

emitted electrons reach the collecting plate and the photoelectric current

saturates. 

Saturation current

Photocurrent

– V

0

Collector voltage

0

Figure 2.3

Photocurrent vs. collector voltage. 

The following interesting results were obtained in the study:

(1) No electrons are emitted if the incident radiation has a frequency less

than a  threshold value  n 0. The value of  n 0 varies from metal to metal. 

(2) The kinetic energy of the emitted electrons varies from zero to a

maximum value. The maximum value of energy depends on the

frequency and not on the intensity of radiation. It varies linearly with the

frequency. 

(3) The number of photoelectrons emitted per second, or the photoelectric

current, is proportional to the intensity of radiation but is independent of

the frequency. 

(4) The photoelectric emission is an instantaneous process,  i.e. , there is

negligible time lag between the incidence of radiation and the emission of

electrons, regardless of how low the intensity of radiation is. 

Failure of Classical Physics

These results, except number three, cannot be explained if we consider radiation

to be wave-like, obeying classical electromagnetic theory. Classically, the
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maximum energy of the emitted electrons should increase with the intensity of

incident radiation. The frequency of radiation has nothing to do with it. The

reason is that the force exerted on the electrons in the metal should be

proportional to the magnitude of the electric field  E of the incident wave, and

the magnitude of  E increases when the intensity of the radiation is increased. 

Contrary to this, it is observed that the energy of the photoelectrons is

independent of the intensity of light but depends on the frequency. Further, 

classically, electromagnetic energy is absorbed by the electron gradually and the

electron can be ejected only when this energy becomes more than the  work

 function† of the metal. Therefore, there may be a time lag between the onset

of the radiation and the emission of the electron. The lag will be longer when

the intensity of radiation is decreased. No such time lags have ever been

observed, even with radiation of very low intensity. All observed time lags have

been less than or equal to 10–9 seconds. 

Einstein’s Theory—Photons

Einstein explained the photoelectric effect using Planck’s quantum hypothesis. 

In order to explain the spectral distribution of blackbody radiation, Planck had

assumed that the exchange of energy between the walls of a cavity and the

radiation of frequency  n takes place in quanta of magnitude  hn, where  h is called Planck’s constant. Einstein went one step further. He suggested that  the incident

 radiation itself acts like a stream of tiny bundles or quanta of energy hn. These

quanta later came to be known as  photons††. When a photon collides with an

electron in the metal surface, it can be absorbed, imparting all its energy to the

electron instantaneously. If the work function of the metal is  W, then this much

energy is expanded to remove the electron from the surface. Therefore, the

maximum kinetic energy  E max, and the corresponding velocity  v max, of the

emitted electron are given by

1

 E

=

 mv 2

=  hn -  W

(2.9)

max

max

2

This is called  Einstein’ s   photoelectric equation. It shows that  E max varies linearly with the frequency  n of the incident radiation. 

The   threshold frequency   n 0 corresponds to the situation when all of the

energy of the photon is used up to remove the electron from the metal and so

no energy is left to provide its kinetic energy. Thus,  n 0 is given by

 hn 0 =  W

 W

or

 n =

(2.10)

0

 h

†

 Work function of a material is the minimum amount of energy required to remove an

electron from its surface. 

†† Einstein did not introduce the name  photon. It was coined much later, in 1926, by

G.N. Lewis. 
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Substituting in (2.9), we obtain

 E

=  h( n -  n )

(2.11)

max

0

as another version of the photoelectric equation. Clearly, no emission is possible

if  n <  n 0. 

An increase in the intensity of raditation results in an increase in the number

of photons striking the metal per second but not in the energy of individual

photons. Therefore, the number of photoelectrons emitted per second, and

hence the photoelectric current, increases, but not the energy of photoelectrons. 

Lastly, since the electron emission is the result of a direct collision between

an electron and a photon, there is no time delay before emission starts. 

Stopping Potential

If the collector plate in the photoelectric apparatus of Fig. 2.2 is made negative, 

the electrons are repelled back. For a certain value  V 0 of this negative potential, 

the most energetic electrons are just turned back and therefore the photoelectric

current becomes zero. This potential is called the  stopping or  cut-off potential. 

It is clear that

 eV 0 =   E max

Substituting in 2.11, 

 eV 0 =  h( n  –   n 0)

 h

or

 V =

( n -  n )

(2.12)

0

 e

0

This shows that  V 0  µ   n. 

 V 0

 n 0

 n

Figure 2.4

The variation of stopping potential with the frequency of the incident

radiation is shown in Fig. 2.4. The graph is a straight line cutting the  n-axis at

the threshold frequency  n 0. The slope of this graph is  h/ e. Thus, the value of Planck’s constant can be determined by measuring the slope of this graph. This

was done by Millikan who found that the value of  h obtained from these

graphs is the same as that obtained by Planck from the blackbody radiation

experiments. This was a great achievement as it established the correctness of

the quantum concept and Einstein’s theory. Einstein was awarded the 1921

Nobel Prize and Millikan, the 1923 Nobel Prize. 
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PROBLEM 2.2

Find the number of photons emitted per second by a 40 W

source of monochromatic light of wavelength 6000 Å. 

 Solution:

Let the number of photons be  n. Then

 nhn =   E

 E

 El

or

 n = 

= 

 hn

 hc

40 ¥ 6000 ¥ 10 10

-

=  6 63 ¥10 34

-

. 

¥ 3 ¥ 108

=  12 06

1019

. 

¥

PROBLEM 2.3

The work function of a photosensitive surface is 3.2 eV. Will

photoemission occur if a photon of energy 3.8 eV is incident on the surface? 

If yes, find in joules the maximum kinetic energy of the photoelectron. 

 Solution:

Since the energy of the photon is more than the work function of

the surface, photoemission will occur. 

Kinetic energy of photoelectron

= 3.8 – 3.2 = 0.6 eV

= 0.6 ¥ 1.6 ¥ 10–19  J

=  9 6

10 20

. ¥

-

J

PROBLEM 2.4

The work function of a metal is 3.45 eV. What is the

maximum wavelength of a photon that can eject an electron from the metal? 

 Solution:

If   n 0 is the threshold frequency, then we have

 hn 0 =  W

 hc

or

=  W

 l  0

Thus, maximum wavelength is

 hc

6 6

. 3 ¥ 10 34

-

¥ 3 ¥ 108

 l 0 = 

= 

= 3.603 ¥ 10–7  m

 W

3.45 ¥ 1 6

. ¥ 10-19

=  3603 Å

PROBLEM 2.5

A metal of work function 3.0 eV is illuminated by light of

wavelength 3000 Å. Calculate (a) the threshold frequency, (b) the maximum

energy of photoelectrons, and (c) the stopping potential. 

 Solution:

(a) Threshold frequency
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 W

3 0

. ¥ 1 6

. ¥ 10-19

 n 0 = 

= 

 h

6 6

. 3 ¥ 10 34

-

=  0 72

1015

. 

¥

Hz

(b) Frequency of incident radiation

 c

3 ¥ 108

 n = 

= 

= 1 ¥ 1015 Hz

 l

3 ¥ 10 7

-

Maximum energy of photoelectrons  E max =  h( n  –   n 0)

= 6.63 ¥ 10–34 (1.0 – 0.72) ¥ 1015

= 1.86 ¥ 10–19  J

1 8

. 6 ¥ 10-19

= 

=  11

. 6 eV

1 6

. ¥ 10 19

-

 E

1 8

. 6 ¥ 10-19

(c) Stopping potential  V

max

0 = 

= 

 e

1 6

. ¥ 10 19

-

=  11

. 6 V

PROBLEM 2.6

Find the frequency of the light which ejects from a metal

surface electrons fully stopped by a retarding potential of 3 V. The

photoelectric effect begins in this metal at a frequency of 6 ¥ 1014  s–1. Find

the work function for this metal. 

 Solution:

Threshold frequency

 n 0 = 6 ¥ 1014  s–1

Work function

 W =  hn 0 = 6.63 ¥ 10–34  ¥ 6 ¥ 1014

= 39.78 ¥ 10–20  J

39.78 ¥ 10-20

= 

=  2.486 eV

1 6

. ¥ 10-19

Now, 

 eV 0 =  hn –  hn 0

 eV +  hv

Therefore, 

 n = 

0

0

 h

1 6

. ¥ 10-19 ¥ 3 + 39.78 ¥ 10 20

-

= 

6 6

. 3 ¥ 10-34

=  1 32

1015

. 

¥

s–1

PROBLEM 2.7

Work function of Na is 2.3 eV. Does sodium show

photoelectric emission for light of wavelength 6800 Å? ( h = 6.6 ¥ 10–34 Js). 

 Solution:

 l = 6800 Å = 6800 ¥ 10–10  m

 hc

Energy of incident photon =   l

" 
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6 6

. ¥ 10 34

-

¥ 3 ¥ 108

= 

J

6800 ¥ 10 10

-

6 6

. ¥ 3

10 18

-

= 

¥

eV

68

1 6

. ¥ 10 19

-

= 1.83 eV

Since the energy of incident photon is less than the work function of Na, 

 photoelectric emission is not possible with the given light. 

PROBLEM 2.8

Light of wavelength 3500 Å is incident on two metals  A and

 B. Which metal will yield photoelectrons if their work functions are 4.2 eV and

1.9 eV, respectively. 

 Solution:

 l = 3500 Å

 hc

Energy of incident photon  E =   l

6 6

. ¥ 10 34

-

¥ 3 ¥ 108

= 

eV

3500 ¥ 10-10 ¥ 1 6

. ¥ 10 19

-

= 3.53 eV

Since 1.9 eV <  E < 4.2 eV,  only metal B will yield photoelectrons. 

PROBLEM 2.9

Calculate the maximum kinetic energy of a photoelectron

(in eV) emitted on shining light of wavelength 6.2 ¥ 10–6 m on a metal surface. 

The work function of the metal is 0.1 eV. 

 Solution:

 l = 6.2 ¥ 10–6 m,  W = 0.1 eV

Maximum kinetic energy of a photoelectron is given by

 E max =  hn –  W

 hc

= 

–  W

 l

L 66.¥10 34-¥3¥108

= 

- 0 1

. eV

6 2

. ¥ 10 6

- ¥ 1 6

. ¥ 10 1

- 9

NM

OQP

L 66¥3

= 

- 0 1

. 

= 0.2 – 0.1 =  0.1 eV

62 ¥ 16

NM

OQP

PROBLEM 2.10

In an experiment on photoelectric effect, the slope of

the cut-off voltage versus frequency of incident light graph is found to be

4.12  ¥ 10–15 Vs. Given  e = 1.60 ¥ 10–19 C, estimate the value of Planck’s

constant. 

 Solution:

 eV 0 =  hn –  W
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 h

 W

or

 V 0 =   n  – 

 e

 e

 h

Therefore, slope of the  V 0  –   n curve =   e

or

 h = slope ¥   e

= 4.12 ¥ 10–15  ¥ 1.60 ¥ 10–19

=  6.59 ¥

-

10 34 Js

PROBLEM 2.11

What should be the frequency of incident radiation to eject

electrons of maximum speed 106 m/s from potassium metal? Work function

of potassium is 2.26 eV. 

 Solution:

 W = 2.26 eV = 2.26 ¥ 1.6 ¥ 10–19  J

= 3.61 ¥ 10–19  J

Now, 

1  mv 2max =  hn –  W

2

1

or

 hn = 

 mv 2max +  W

2

1

= 

¥ 9 ¥ 10–31  ¥ (106)2 + 3.61 ¥ 10–19

2

= 4.55 ¥ 10–19 + 3.61 ¥ 10–19 = 8.16 ¥ 10–19

8 1

. 6 ¥ 10 19

-

Therefore, 

 n = 

=  1 23 1015

. 

¥

Hz

6 6

. ¥ 10-34

PROBLEM 2.12

(a) A stopping potential of 0.82 V is required to stop the

emission of photoelectrons from the surface of a metal by light of wavelength

4000 Å. For light of wavelength 3000 Å, the stopping potential is 1.85 V. Find

the value of Planck’s constant. 

(b) At stopping potential, if the wavelength of the incident light is kept

fixed at 4000 Å but the intensity of light is increased two times, will

photoelectric current be obtained? Give reasons for your answer. 

 hc

 hc

 Solution:

(a) We have 

=  eV 1 +  W and 

=  eV 2 +  W. Subtraction gives

 l

 l

1

2

F 1 1

 hc

-

 l

 l

HG

IKJ =  e( V 2 –  V 1)

2

1

 e( V -  V )

or

 h = 

2

1

F 1 1

 c

-

HG

I

 l

 l  KJ

2

1

$
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1 6

. ¥ 10 19

-

1

( 85

. 

- 0 82

. 

)

= 

F8 1

1

3 ¥ 10

-

HG

I

3 ¥ 10-7

4 ¥ 10 7

- KJ

=  6 592

10 34

. 

¥

-

Js

(b)  No, because the stopping potential depends only on the wavelength of

light and not on its intensity. 

PROBLEM 2.13

Light of wavelength 4560 Å and power 1 mW is incident

on a caesium surface. Calculate the photoelectric current, assuming a quantum

efficiency of 0.5%. Work function of cesium = 1.93 eV;  h = 6.62 ¥ 10–34 Js. 

 hc

 Solution:

Energy of one photon =  hn =   l

6 6

. 2 ¥ 10 34

-

¥ 3 ¥ 108

= 

= 4.32 ¥ 10–19  J

4560 ¥ 10 10

-

Number of photons incident on the surface per second

1 ¥ 10 3

-

= 

= 2.32 ¥ 1015

4 32 ¥ 10 19

-

. 

Only 0.5% of the incident photons release electrons. Therefore, the number

of electrons released per second is

0 5

. 

 n = 2.32 ¥ 1015  ¥ 

= 1.16 ¥ 1013

100

The photoelectric current

=  ne

= 1.16 ¥ 1013  ¥ 1.6 ¥ 10–19

=  1 86

10 6

. 

¥

- A

2.3

THE COMPTON EFFECT

When a monochromatic beam of X-rays is scattered by an element of low

atomic weight (for example carbon), it is observed that the scattered X-rays, 

at all angles, have maximum intensities at two wavelengths, one at the original

wavelength and the other at a slightly longer wavelength. The wavelength shift

is independent of the wavelength of the incident beam and the scattering

material; it depends only on the scattering angle. This phenomenon is called the

 Compton effect. It was discovered by A.H. Compton in 1923, who also gave

an explanation of it in terms of quantum theory. 

Compton effect provides the most direct evidence for the particle nature of

radiation. Compton was awarded the 1927 Nobel Prize for the discovery and

explanation of this effect. 
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Experimental Arrangement

Figure 2.5 shows a schematic diagram of an experimental arrangement for

observing Compton scattering. A monochromatic beam of X-rays of known

wavelength is directed at a block of some scattering material, say graphite. The

scattered X-rays are received by a Bragg X-ray spectrometer to measure their

wavelength and intensity. The spectrometer can rotate about the scattering

target so that measurements can be made at different angles. 

X-ray

spectrometer

Scattered

X-rays

Source of

 q

monochromatic

X-rays

Scattering Unscattered

material

X-rays

Collimator

Figure 2.5

Experimental arrangement for observing Compton scattering. 

The results obtained by Compton for  q = 0°, 45°, 90° and 135° are shown

in Figure 2.6. It may be noted that at each non-zero angle, the scattered beam

consists of two peaks– one corresponding to the original wavelength ( l 0) and

the other due to the  modified wavelength ( l). The  wavelength shift  D l increases with the increase of scattering angle  q. 

Failure of Classical Physics

Let us try to understand this phenomenon on the basis of classical electromag-

netic theory. The X-ray beam, on entering the scattering material, interacts with

the atomic electrons. The “outer” electrons can be considered essentially free

because they are bound to the atoms with an energy which is much smaller than

the energy of the X-ray beam. The electric field associated with the X-ray exerts

a force on these electrons and makes them oscillate simple harmonically with the

frequency of the X-ray. The electrons, being accelerated, will emit electromag-

netic radiation. The initial frequency of this radiation will be equal to that of the

incident X-ray. 

The X-ray beam also imparts some momentum to the electron, which then

recoils in the direction of propagation of the beam. As the electron moves away

from the source of the X-ray, it “sees” a lower frequency due to Doppler effect. 

& 
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Original

wavelength

 q = 0°

Intensity

 l 0

Wavelength

 q = 45°

D l = 0.007 Å

Intensity

D l

 l 0

 l

Wavelength

 q = 90°

D l = 0.024 Å

Intensity

D l

 l 0

 l

Wavelength

 q = 135°

D l = 0.041 Å

Intensity

D l

 l 0

 l

Wavelength

Figure 2.6 Variation of the shifted line with scattering angle. The peak at  l 0 is due to the incident beam. 

The electron then emits radiation of this lower frequency. The frequency will

decrease continuously till the electron has attained its final speed after scattering

the entire beam. Thus, classically, the wavelengths of scattered X-rays should

have a continuous range of values, which is contrary to experimental observa-

tion. 

Compton’s Explantation

Compton was able to explain this phenomenon using the quantum theory of

radiation, developed by Planck and Einstein. He considered the incident X-rays
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as a stream of  photons, each of energy  hn and momentum  hn/ c, where  n is the frequency of radiation,  h is the Planck’s constant and  c is the speed of light. The scattering process is treated as an elastic collision between a photon and a “free” 

electron, which is initially at rest (Figure 2.7). In the collision, a part of the

photon energy is transferred to the electron which recoils. Therefore, the

scattered photon has a smaller energy and hence a lower frequency (higher

wavelength). 

Electron at rest

photon/ c

 m c 2

¢

0 ;0

Scattered

 hv

 hv¢; 

Incident photon

 q

 hv;  hv/ c

 f  Electron

 p c 2 2

after

+  m

recoil

2

0  c ;4  p

Figure 2.7

Collision of a photon with an electron initially at rest. 

Let  n¢ be the frequency of the scattered photon,  m 0 be the rest mass of the

electron and  p be the recoil momentum of the electron. According to the theory

of relativity, the energy of the electron at rest is  m 0 c 2 and that after recoil is ( p 2 c 2 +  m  2

0  c 4)1/2. From the law of conservation of energy, 

 hn¢ + ( p 2 c 2 +  m 20 c 4)1/2 =  hn +  m 0 c 2

or

 p 2 c 2 +  m 20 c 4 = [ h( n  –  n ¢) +  m 0 c 2]2

or

 p 2 c 2 +  m 20 c 4 =  h 2( n  –  n¢)2 + 2 h( n  –  n¢) m 0 c 2 +  m 20 c 4

 p 2 c 2

2

2

 m c

or

= ( n  –   n¢)2 + 

0

( n  –   n¢)

(2.13)

 h 2

 h

Applying the law of conservation of momentum along and perpendicular to

the direction of the incident photon, 

 hn ¢

 hn

 p cos f + 

cos q = 

 c

 c

 hn ¢

and

 p sin f = 

sin q

 c

Rearranging these equations, 

 pc  cos f =  n –  n¢ cos q

(2.14)

 h

 pc

and

sin f =  n¢sin q

(2.15)

 h
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Squaring and adding (2.14) and (2.15), 

 p 2 c 2 = ( n –  n¢cos q)2 +  n¢2sin2 q

 h 2

=  n  2  –  2 nn¢cos q +  n¢2

= ( n  –   n ¢)2 + 2 nn¢  –  2 nn ¢ cos q

= ( n  –   n ¢)2 + 2 nn¢(1  – cos q)

(2.16)

Comparing (2.13) and (2.16), we get

2

2

 m c

0

( n  –  n¢) =  2 nn ¢(1  – cos q)

 h

 n -  n ¢

 h

or

= 

(1  – cos q)

 nn¢

 m c 2

0

1

1

 h

or

-

= 

(1  – cos q)

(2.17)

 n¢

 n

 m c 2

0

If  l and  l¢ are the wavelengths of the incident and scattered photons, then

 c

 c

 n¢ = 

and

 n = 

 l¢

 l

Therefore, (2.17) can be expressed as

 h

 l¢ -  l = D l =

1

( - cos q )

(2.18)

 m c

0

or, equivalently, 

2 h

 q

D l =

2

sin

(2.19)

 m c

2

0

The above equation shows that the Compton shift in wavelength is

independent of the wavelength (or energy) of the incident photon and depends

only on the angle of scattering–it increases with the angle. The quantity  h/ m 0 c is called the  Compton wavelength   of the   electron. Its value is 0.0242 Å. The name is rather misleading. This quantity is  not the wavelength of the electron; 

it is the shift in the wavelength of a photon scattered off an electron at 90° to

the initial direction. 

The presence of the “unmodified” peak at each angle was explained by

Compton as being due to the scattering of a photon by the atom as a whole. If

 m 0 is replaced by the mass of the atom, the change in the wavelength is

negligible because an atom is many thousands time more heavy than an electron. 

Relation between  q and  f

Dividing (2.14) by (2.15), 

 n -  n ¢ cos q

cot f = 

 n ¢ sin q
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1

 n

F

= 

- cos q

H

IK

(2.20)

sin q n ¢

From (2.17), 

 n = 1 +  a (1 – cos q)

(2.21)

 n ¢

where   a =  hn/ m 0 c 2. Substituting in (2.20), 

1

cot f = 

[1 +  a (1  – cos q)  – cos q ]

sin q

(1 +  a )(1 - cos q )

= 

sin q

 q

 a  F

(1

) 2 sin2

+

H

IK2

= 

 q

 q

2 sin

cos

2

2

 q

or

cot  f = (1 +  a ) tan

(2.22)

2

This is the required relation. 

Kinetic Energy of the Recoil Electron

The kinetic energy of the recoil electron is

 E =   hn  –  hn¢

From (2.21), 

 n

 n¢ =  1+  a  1(- cos q)

Therefore, 

L

1

 E =  hn  1 - 1 +  a  1( -

NM

O

cos q ) QP

 a(1 - cos q )

or

 E =  hn

(2.23)

1 +  a (1 - cos q )

The kinetic energy can also be expressed in terms of angle  f. Let us rewrite

(2.23) as

F 2 q

 a  2 sin

H

IK2

 E =   hn 

F 2  q

1 +  a  2 sin

H

IK2
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2 a

=   hn

(2.24)

2  q

cosec

+ 2 a

2

Now, from (2.22), 

 q

cot

= (1 +  a)tan f

2

 q

or

cot2

= (1 +  a)2tan2 f

2

 q

or

cosec2   – 1 = (1 + a)2(sec2 f  – 1)

2

= (1 +  a)2  sec2 f  – (1 +  a)2

= (1 +  a)2 sec2 f  – 1 –  2 a  –   a 2

 q

or

cosec2  + 2 a = (1 +  a)2 sec2 f  –   a 2

2

Substituting this in (2.24), 

2 a

 E =  hn  1

2

2

2

( +  a ) sec  f -  a

 a

2

2

cos  f

or

 E =  hn

(2.25)

1

( +  a  2

) -  a  2

2

cos  f

The correctness of (2.22) and (2.23) (or 2.25) have been verified experi-

mentally with great care several times. It has also been shown that the recoil of

the electron occurs simultaneously with the scattering of the photon. Thus

Compton’s theory has been thoroughly tested. Compton’s work established the

existence of photons as real particles having momentum as well as energy. 

PROBLEM 2.14

X-rays of wavelength 2.0 Å are scattered from a carbon

block. The scattered photons are observed at right angles to the direction of

the incident beam. 

Calculate (a) the wavelength of the scattered photon, (b) the energy of the

recoil electron, and (c) the angle at which the recoil electron appears. 

 Given:  Rest mass of an electron  m 0 = 9.1 ¥ 10–31 kg,  c = 3 ¥ 108 m/s, 

 h = 6.6 ¥ 10–34 Js. 

 Solution:

(a) If  l and  l¢ are the wavelengths of the incident and the scattered

photons, respectively, and  q is the scattering angle, then

 h

D l =  l¢  –   l = 

(1  – cos q)

 m c

0

6 6

. ¥ 10-34

= 

(1  – cos 90°)

9 1

. ¥ 10 31

-

¥ 3 ¥ 108

= 2.4 ¥ 10–12  m

= 0.024 Å
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Therefore, 

 l¢ =   l + D l =  2 024

. 

Å

(b) Neglecting the binding energy of the electron, its recoil energy is given

by

 E =   h( n  –   n¢)

1

1

F

=   hc

-

H

IK

 l

 l¢

 hc ( l¢ -  l)

= 

 ll¢

6 6

. ¥ 10 34

-

¥ 3 ¥ 108 ¥ 0 024

. 

¥ 10 10

-

= 

2 0

. ¥ 10 10

-

¥ 2 024

. 

¥ 10 10

-

=  117

10 17

. 

¥

-

J

(c) The angle  f at which the recoil electron appears is given by

1

 n

F

cot f = 

- cos q

H

IK

sin q

 n¢

1

 l¢

F

= 

- cos q

HG

IKJ

sin q

 l

1

2 024

. 

F

= 

- cos 90∞

H

IK

sin 90∞

2 0

. 

= 1.012

or

 f = cot–1 (1.012)

=  44∞40¢

PROBLEM 2.15

A photon of energy 0.9 MeV is scattered through 120° by

a free electron. Calculate the energy of the scattered photon. 

 Solution:

From (2.21), 

 n

 n¢ = 

 hn

1 +

1

( - cos q )

2

 m c

0

Energy of the scattered photon

 hn

 hn¢ = 

 hn

1 +

1

( - cos q )

 m c  2

0

 hn

= 

2 hn

2  q

1 +

sin

 m c 2

2

0

Here

 hn = 0.9 MeV, 

 " 
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 q = 120°, 

 m 0 c 2 = 0.51 MeV

Therefore, 

0 9

. 

 hn¢ = 

0 9

. 

3

F

1 + 2 ¥

H IK

0 5

. 1 4

=  0.247 MeV

PROBLEM 2.16

In a Compton scattering experiment, the incident radiation

has wavelength 2.000 Å while the wavelength of the radiation scattered

through 180° is 2.048 Å. Calculate (a) the wavelength of the radiation

scattered at an angle of 60° to the direction of incidence, and (b) the energy

of the recoil electron which scatters the radiation through 60°. 

 Solution:

We have

 h

 l¢  –   l = 

(1  – cos q )

 m c

0

When   q = 180°, this gives

 h

(2.048  – 2.000) ¥ 10–10 = 

(1  – cos180°)

 m c

0

 h

0 048 10 10

. 

¥

-

or

= 

= 0.024 ¥ 10–10  m

 m c

2

0

(a) When  q = 60°, 

 l¢ = 2.000 ¥ 10–10 + 0.024 ¥ 10–10[1  – cos60°]

= 2.012 ¥ 10–10 m =  2 012

. 

Å

(b) Energy of the recoil electron

=  hn  –  hn¢

1

1

F

 hc ( l¢ -  l)

=   hc

-

H

IK = 

 l

 l¢

 ll¢

6 6

. ¥ 10-34 ¥ 3 ¥ 108 (2 012

. 

- 2 000

. 

) ¥ 10-10

= 

2 000

. 

¥ 10 10

-

¥ 2 012

. 

¥ 10-10

=  5 91 10 18

. 

¥

-

J

PROBLEM 2.17

In a Compton scattering experiment, the X-ray photon is

scattered at an angle of 180° and the electron recoils with an energy of 4 keV. 

Calculate the wavelength of the incident photon. 

 Solution:

Kinetic energy of the recoil electron

 E = 4 ¥ 103  ¥ 1.6 ¥ 10–19
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= 6.4 ¥ 10–16  J

Momentum of the electron

 p = 

2 m E

0

= 

2

9 1 10 31

-

6 4

10 16

¥

¥

¥

¥

-

. 

. 

= 34.13 ¥ 10–24 kg m/s

Let  l be the wavelength of the incident photon and  l¢ that of the scattered

photon. Then conservation of energy gives

 hc

 hc

-

= 6.4 ¥ 10–16

(i)

 l

 l¢

It is given that  q = 180°. Therefore, using (2.22), we get  f = 0°. Thus, the

electron recoils in the direction of the incident photon. Applying the law of

conservation of momentum in the direction of the incident photon, 

 h

 h

= 

cos180° +  p cos 0°

 l

 l¢

 h

 h

or

+ 

= 34.13 ¥ 10–24

 l

 l¢

Multiplying both sides by  c, 

 hc

 hc

+

= 34.13 ¥ 10–24  ¥ 3 ¥ 108 = 102.39 ¥ 10–16

(ii)

 l

 l¢

Adding (i) and (ii), 

2 hc = 108.79 ¥ 10–16

 l

2 ¥ 6 3

. ¥ 10 34

-

¥ 3 ¥ 108

or

 l = 

108 79

. 

¥ 10 16

-

= 0.347 ¥ 10–10  m

=  0 3

. 5 Å

PROBLEM 2.18

(a) What is the maximum kinetic energy that can be imparted

to a free electron by a photon of initial frequency  n ? (b) Is it possible for the

photon to transfer all of its energy to the electron? 

 Solution:

(a) The kinetic energy of the recoil electron is (Equation 2.23)

 a (1 - cos q)

 E =  hn  1+  a(1- cos q)

The maximum value of  E corresponds to maximum Compton shift, which, 

according to (2.18), happens when  q = 180°. Thus, 

 a (1 - cos180∞ )

 E max =  hn 1 +  a(1- cos180∞)

 $
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F  a 2

=   hn  HG

I

1 +  a

2 KJ

(b) From the above expression it is obvious that

 E max <  hn

Thus, a photon  cannot transfer all of its energy to a free electron. 

PROBLEM 2.19

Gamma ray photons of energy 1.02 MeV are scattered from

electrons which are initially at rest. (a) Find the angle for symmetric scattering

(i.e.,  q =  f) at this energy. (b) What is the energy of the scattered photons for

this case? 

 Solution:

(a) We have

 q

cot f = (1 +  a) tan 2

Putting

 f =   q, 

cos q

sin ( q /2)

= (1 +  a)

sin q

cos ( q /2)

or

cos q = 2(1 +  a) sin2( q/2)

or

1  – 2 sin2( q/2) = 2(1 +  a) sin2( q/2)

 q

1

or

sin

= 

2

2 ( a + 2)

1

1

= 

= 

1.02

F

8

2

+ 2

H

IK

0 5

. 1

F

or

 q = 2 sin–1

1

8

HG IKJ  =  414.∞

(b) Energy of the scattered photon is

 hn

 hn¢ =  1+  a  1(- cos q)

1 0

. 2

=  1+ 2 1(- cos414.∞)

1 0

. 2

=  1+ 2 1( - 0 750

. 

)

=  0 6

. 8 MeV

2.4

DUAL NATURE OF RADIATION

In order to explain several phenomena like interference, diffraction and

polarization, it is necessary to assume that electromagnetic radiation has wave
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nature. The wave theory of radiation was firmly established by the end of the

nineteenth century. Maxwell provided the theoretical framework for it. 

On the other hand, as we have discussed above, to explain the observed

results connected with the interaction of radiation with matter, such as the

blackbody radiation, the photoelectric effect and the Compton effect, it

becomes necessary to assume that radiation has particle nature—it is emitted or

absorbed in the form of discrete quanta called photons. Thus, we have to accept

the paradoxical situation that radiation has dual nature. However, it does not

exhibit both characteristics in a single experiment. In a given experiment it

behaves either as a particle or as a wave. The wave and particle aspects of

radiation  complement each other. 

As we shall see later, this dual characterter is not confined to radiation alone

but is exhibited by material particles as well. 

Conceptual Difficulty

This dual behaviour of radiation—and also of material particles as we shall see

later—raises a serious conceptual difficulty. We shall discuss this in the context

of the famous Young’s double-slit experiment. Light from a source is passed

through two close, narrow slits and an interference pattern is observed on a

screen. We know that this pattern is completely explained by classical wave

theory. The pattern does not depend on the intensity of the beam. Now, we have

just seen that light consists of photons. At first, we might be naturally tempted

to assume that the interference takes place between different photons passing

through the two slits. Now, suppose the intensity of the beam is gradually

decreased until only one photon is released from the source at a time. It is found

that the interference pattern still appears, though after a sufficiently long time. 

If one of the slits is closed, the pattern disappears. This is strange. How is it

that a stream of photons, coming one at a time, each of which can go through

only one of the two slits, produces an interference pattern only when both the

slits are open. The only possible explanation is that each photon “knows” that

there are two slits and it  interferes with itself! 

Can we say that a photon splits itself into pieces? No, because all the

experimental evidences (e.g. Compton effect) are against this possibility. We are

forced to accept that classical physics cannot explain this phenomenon. The

search for an explanation of such conflicting and puzzling situations led to the

development of quantum mechanics, which is able to describe them well. 

SUMMARY

1. Classical physics failed to explain the spectral distribution of radiant

energy emitted by a blackbody. 

2. In order to explain this distribution, Planck proposed the  quantum

 hypothesis according to which a material oscillator of frequency  n can

 & 
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emit or absorb electromagnetic energy, not continuously in arbitrarily

small amounts, but in multiples of the quantum  hn. The constant  h, called

Planck’s constant, has the value 6.625 ¥ 10–34 Js. The energy density of

the radiation inside the enclosure which acts as a blackbody at

temperature  T, is

8

2

 pn

 hn

 U( n,  T) = 

3

 n

 c

 eh / kT - 1

3. Einstein extended Planck’s idea to explain the photoelectric effect. He

assumed that the incident radiation acts like a stream of tiny bundles or

quanta of energy  hn. These quanta, called  photons, behave like particles. 

When a photon collides with an electron in the metal, the electron is

emitted with maximum energy given by

 E max =  h( n  –   n 0)

where  n 0 is called the threshold frequency, which is related to the work

function   W of the metal as

 W

 n 0 =   h

4. Compton explained the shift in the wavelength of X-rays scattered by

free electrons by considering the scattering process as an elastic collision

between a photon and a free electron. Photons were considered to have

energy  hn and momentum  hn/ c. Compton effect provides the most direct

evidence for the particle nature of radiation. 

If a photon is scattered by an angle  q, then the wavelength shift is

given by

2 h

 q

D l = 

sin2

 m c

2

0

where   m 0 is the rest mass of the electron. 

5. It is now accepted that radiation has dual nature. In some situations it

behaves as a wave and in certain other situations it behaves as a particle. 

The wave and particle aspects of radiation are complementary. 

The wave-particle duality raises conceptual difficulty in explaining

certain phenomena, e.g., Young’s double-slit interference. The explanation

comes from modern quantum mechanics. 

QUESTIONS

1. Discuss how classical approaches failed to account for the spectral

distribution of energy density in the blackbody radiation. How did Planck

overcome the difficulty? Derive Planck’s radiation law. 

2. (a) What is photoelectric effect? Draw a labelled diagram of the appa-

ratus used to demonstrate it. 
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(b) What are the main features of photoelectric effect? 

(c) Derive Einstein’s photoelectric equation and explain how Einstein’s

theory accounts for the main features. 

3. List the essential findings of the photoelectric experiments. How did

Einstein explain the phenomenon? Why did Einstein’s explanation seem

so incredulous at that time, that Millikan experimented for ten years to

disprove the findings? 

4. Explain stopping potential and threshold frequency in photoelectric

emission. Give an appropriate graph showing the variation of the

stopping potential with the frequency of incident radiation. Explain how

the value of Planck’s constant can be determined using this graph. 

5. (a) What is Compton effect? Give a schematic sketch of an experimen-

tal arrangement for observing this effect. 

(b) Discuss why this effect cannot be explained on the basis of classical

electromagnetic theory. 

(c) What assumption did Compton make to explain this effect? 

6. Obtain an expression for the change in wavelength of a photon when it

is Compton scattered by a free electron through an angle  q with respect

to the original direction. 

7. Derive a relation between the angle of scattering of the photon and that

of the electron in Compton effect. 

8. A photon of frequency  n is scattered from a free electron at rest through

an angle  q. Show that the ratio of the kinetic energy of the recoil electron

to the energy of the incident photon is equal to

 a(1 - cos q)

1 +  a(1 - cos q )

where   a =  hn/ m 0 c 2,  m 0 being the rest mass of the electron. 

EXERCISES

1. Calculate the threshold frequency of photons for photoelectric emission

from a metal of work function 0.05 eV. ( h = 6.6 ¥ 10–34 Js). 

[ Ans. 

1.2  ¥ 1012 Hz]

2. The work function of a photosensitive material is 2.5 eV. What must be

the threshold wavelength of incident light to eject electrons from it? 

[ Ans. 

5.0  ¥ 10–7 m]

3. Light of wavelength 5000 Å falls on a metal surface of work function

1.9 eV. Find (a) the energy of a photon in eV, (b) the maximum kinetic

energy of photoelectrons, and (c) the stopping potential. 

[ Ans. 

(a) 2.5 eV, (b) 0.58 eV, (c) 0.58 V]

4. In an experiment, tungsten cathode, which has a photoelectric threshold

wavelength of 2300 Å, is irradiated by ultraviolet light of wavelength

!
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1800  Å. Calculate (a) the maximum energy of photoelectrons, and

(b) the work function of tungsten. [ Ans. 

(a) 1.485 eV, (b) 5.38 eV]

5. Is it possible to liberate electrons from a metal surface, having work

function 4.8 eV, with an incident radiation of wavelength (a) 2000 Å, 

(b) 5000 Å. 

[ Ans. 

(a) yes, (b) no]

6. A metal surface, when illuminated by light of frequency 0.90 ¥ 1015 Hz, 

emits electrons which can be stopped by a retarding potential of 0.60 V. 

When the same surface is illuminated by light of frequency 1.26 ¥ 1015

Hz, the required retarding potential is 2.1 V. Using these data calculate the

value of Planck’s constant and the work function of the metal. 

[ Ans. 

6.67  ¥ 10–34 Js, 3.15 eV]

7. The photoelectric threshold wavelength for a metal is 3000 Å. Find the

maximum kinetic energy of an electron ejected from it by radiation of

wavelength 1200 Å. 

[ Ans. 

6.2 eV]

8. The photoelectric threshold wavelength of sodium is 5420 Å. Calculate

the maximum velocity of photoelectrons ejected by photons of

wavelength 4000 Å. 

[ Ans. 

5.36  ¥ 105 m/s]

9. A retarding potential of 5 V just stops the fastest photoelectrons emitted

from cesium. Calculate the wavelength of the most energetic incident

photons? The work function of cesium is 1.8 eV. 

[ Ans. 

1840  Å]

10. A photon of energy 1.02 MeV is scattered through 90° by a free electron. 

Calculate the energies of the photon and the electron after interaction. 

[ Ans. 

0.34 MeV, 0.68 MeV]

11. In a Compton scattering experiment, an incoming X-ray wavelength

 l = 5.53 ¥ 10–2 nm is scattered and detected at an angle of 35°. Find the

fractional change in the wavelength of the scattered X-ray. Does the

wavelength increase or decrease? 

[ Ans. 

7.9  ¥ 10–3, increase]

12. X-rays of wavelength 1.82 Å are scattered from a thin aluminium foil. 

Scattered X-rays are observed at an angle of 60° from the incident beam. 

Calculate the wavelength of the scattered X-rays and the kinetic energy

of the recoil electron. 

[ Ans. 

1.832  Å, 7.15 ¥ 10–18 J]

13. An X-ray photon is found to have doubled its wavelength on being

Compton scattered by 90°. Find the wavelength and energy of the

incident photon. 

[ Ans. 

0.0242  Å, 0.51 MeV]

14. An X-ray photon of wavelength 1.0 Å is scattered at such an angle that

the recoil electron has maximum kinetic energy. Calculate the wavelength

of the scattered photon and the energy of the recoil electron. 

[ Ans. 

1.0486  Å, 575 eV]

15. For what wavelength of photon does Compton scattering result in a

photon whose energy is one-half that of the original photon at a

scattering angle of 45°. In which region of the electromagnetic spectrum

does such a photon lie? (Compton wavelength of electron = 0.0242 Å). 

[ Ans. 

7.085  ¥ 10–3  Å,  g -rays]
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 hn

[Hint. 

 hn¢ =  1+  a  1(- cos q)

1

1

fi

= 

2

1 +  a  1

( - 1/ 2 )

2

fi

 a = 

2 - 1

 hn

2

or

= 

 m c 2

2 - 1

0

F  h  1

2

or

= 

 m c

HG IKJ FH I l K

-

0

2

1

0.414

F

or

 l = (0.0242)H

IK

1.414

= 7.085 ¥ 10–3  Å]

16. In a Compton experiment, at what scattering angle will incident 100 keV

X-rays leave the target with an energy of 90 keV? 

[ Ans. 

63.6°]

 hn

100

[Hint. 

1 +  a(1  – cos q) = 

= 

 hn ¢

90

1

or

 a(1  – cos q) =  9

1

1

2

 m c

or

1  – cos q = 

= 

0

9 a

9

 hn

1 F

0 5

. 1

=  9 HG

I

100 ¥ 10 3

- KJ

fi

 q = cos–1(4/9)]

17. X-rays of wavelength 0.2400 nm are Compton scattered and the

scattered beam is observed at an angle of 60° relative to the incident

beam. Find (a) the wavelength of the scattered X-rays and (b) the

direction of the scattered electrons. 

[ Ans. 

(a) 0.2412 nm, (b) 60° relative to the incident beam]

18. What is the maximum percentage change in the wavelength of a

2.00  Å photon scattered by an electron? 

[ Ans. 

2.42%]

19. Photons of energy 0.1 MeV undergo Compton scattering. Find the

energy of a photon scattered at 60°, the recoil angle of the electron and

the recoil kinetic energy of the electron. 

[ Ans. 

0.091 MeV, 55.4°, 0.009 MeV]

! 
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C h a p t e r

Atoms and the Bohr Model
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3.1

INTRODUCTION

The concept of the atom was introduced by John Dalton in 1803 to explain the

chemical combination of elements to form compounds. The idea got further

confirmation when kinetic theory was developed to explain the behaviour of

gases. However, real understanding of the structure of the atom became possible

after the discovery of the electron by J.J. Thomson in 1897 and the realization

that all atoms contain electrons. The electron is a negatively-charged particle

having mass which is very small compared to the mass of an atom. Therefore, 

the atom must also contain positively-charged matter, having mass almost equal

to the mass of the whole atom. Thomson suggested the  plum-pudding model

of the atom, according to which the electrons are embedded in a uniform sphere

of positively-charged matter so that the atom as a whole is neutral. 

Alpha-Scattering Experiment

In order to test the Thomson model, Geiger and Marsden carried out the following

experiment in 1908 under the guidance of Rutherford. Alpha-particles from a
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radioactive source were collimated into a narrow beam and then allowed to fall

on thin metal foils. The  a-particles scattered in different directions were

detected. It was found that (a) most of the  a-particles passed through the gold

foil without appreciable deflection, and (b) some of the  a-particles suffered

fairly large deflections—in fact an unexpectedly large number even retraced

their path. 

The Rutherford Nuclear Model

It is obvious that the above results cannot be explained on the basis of

Thomson’s model. Observation (a) requires that most of the space in the metal

foil must be empty. Observation (b) requires that the positively-charged matter

in an atom cannot be uniformly distributed but must be concentrated in a small

volume. Based on these facts, Rutherford proposed a new model known as the

 nuclear model or the  planetary model. According to this model, the whole of

the positive charge, which carries almost the entire mass of the atom, is con-

centrated in a tiny central core called the  nucleus. The electrons revolve around

the nucleus in orbits, leaving most of the volume of the atom unoccupied. 

Difficulties with the Rutherford Model

The nuclear atom proposed by Rutherford could not be accepted due to the

following problems. An electron moving in a circle is continuously accelerated

towards the nucleus. According to classical electromagnetic theory, an

accelerated charge radiates electromagnetic energy. As such, the energy of the

electron would continuously decrease, its orbit would become smaller and

smaller and ultimately it would spiral into the nucleus. However, we know that

this does not happen and atoms are stable. Further, according to the classical

theory, the frequency of the radiation emitted by the electron is equal to the

frequency of revolution. Therefore, the spiralling electron would emit radiation

of continuously increasing frequency till it falls into the nucleus. However, 

atoms do not radiate unless excited, in which case they radiate discrete, rather

than continuous, frequencies. We discuss this in more detail below. 

3.2

ATOMIC SPECTRA

All elements in atomic state emit line spectra. A line spectrum consists of narrow

bright lines separated by dark intervals. It is characteristic of the atoms of the

element which emits it. This makes spectroscopy a very important tool of

chemical analysis because measurement of the wavelengths emitted by a

material allows us to identify the elements present in it, even in very small

amounts. 

Experimental spectroscopy developed rapidly during the latter half of the

nineteenth century. On studying the spectra carefully, it was found that the

wavelengths present in the atomic spectrum of an element fall into sets which

exhibit some definite pattern. Such a set is called a  spectral series. The

!" 
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wavelengths in each series can be expressed by an empirical formula and the

formulae for the various series of an element are very similar. Hydrogen, being

the simplest of all elements, was the first to be studied in detail. 

In 1885, Johann Balmer showed that the wavelengths of all the spectral lines

of the hydrogen atom known till then could be expressed by the formula

1

1

1

F

=   R

-

 n = 3, 4, 5, …

(3.1)

 l

HG

I

 n  KJ

22

2

The constant  R is known as the  Rydberg constant. Its value is 1.097 ¥ 107 m–1. 

This set of lines lies in the visible part of the electromagnetic spectrum and is

called the Balmer series.  The longest wavelength of the series, designated Ha

line, is 6563 Å and the shortest wavelength, called the  series limit, is 3646 Å. 

The longest wavelength corresponds to  n = 3 and the shortest wavelength to

 n = •. 

Subsequently, other series of lines were discovered for the hydrogen atom

in different regions of the electromagnetic spectrum. These are known, after

their discoverers, as the Lyman, the Paschen, the Brackett and the Pfund series. 

These are represented by the following formulae :

Lyman Series: Ultraviolet Region

1

1

1

F

=   R

-

 n = 2, 3, 4,…

(3.2)

 l

HG

I

 n  KJ

12

2

Paschen Series: Infrared Region

1

1

1

F

=   R

-

 n = 4, 5, 6,…

(3.3)

 l

HG

I

 n  KJ

32
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Brackett Series : Infrared Region

1

1

1

F

=   R

-

 n = 5, 6, 7,…

(3.4)

 l

HG

I

 n  KJ

42

2

Pfund Series : Infrared Region

1

1

1

F

=   R

-

 n = 6, 7, 8,…

(3.5)

 l

HG

I

 n  KJ

52

2

All the above formulae are special cases of the general formula

1

1

1

F

=  R

-

2

2

 l

 n

 n

HG

IKJ

(3.6)

1

2

where   n 1 and  n 2 are positive integers with  n 1 <  n 2 and  n 2 =  n 1 + 1,  n 1 + 2,…. 

This is known as the Rydberg-Ritz formula. 

It may be noted that the above formula expresses the wave number (1/ l)

of any line as the difference of two terms of the type

 R

 Tn = 

 n = 1, 2,…

(3.7)

 n 2
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It was pointed out by Ritz that the spectral lines of  all elements can be

obtained as the difference of two terms:

1 =  T -  T

(3.8)

 l

 i

 j

Each term is characteristic of the particular atom. This statement is called the

Ritz combination principle. However, for other atoms the terms  Ti,  Tj are

generally more complicated than those for the hydrogen atom. 

3.3

BOHR MODEL OF HYDROGENIC ATOMS

In 1913, a major step forward was taken by Niels Bohr. He suggested that the

classical electromagnetic theory is not applicable to the processes at the atomic

scale. He then combined Rutherford’s nuclear model with the quantum idea of

Planck and Einstein to develop a theory of hydrogenic atoms. The term

“hydrogenic” is used for all one-electron atoms, i.e., the hydrogen atom and

those ions which have only one electron, e.g., He+, Li++, Be+++ etc. These are

also called  hydrogen-like atoms. The theory was remarkably successful in

explaining the observed spectrum of hydrogen. 

Though Bohr’s theory is incorrect and has now been replaced by the

quantum mechanical treatment, it still remains an important milestone in the

development of atomic physics and it is essential for the student to understand

it before proceeding to the more correct theories. 

The Bohr model is based on the following postulates:

1. The electron can revolve around the nucleus only in certain allowed

circular orbits of definite energy and in these orbits it does not radiated. 

These orbits are called stationary orbits. 

2. The angular momentum of the electron in a stationary orbit is an integral

multiple of h(=  h/2 p),  h being Planck’s constant:

 l =  mvr =  n h

(3.9)

where  m is the mass of the electron,  v is its speed,  r is the radius of the orbit and  n is a positive integer. 

3. The electron can make a transition from one orbit to another. The

emission of radiation takes place as a single photon when an electron

“jumps” from a higher orbit to a lower orbit. The frequency of the

photon is

 E -  E

 n = 

2

1

(3.10)

 h

where  E 2 and  E 1 are the energies of the electron in the higher and lower

orbits, respectively. Conversely, an electron in the lower orbit can jump

to the higher orbit by absorbing a photon of this frequency. 

!$
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It may be noted that Bohr restricted to circular orbits for simplicity, even

though elliptic orbits are also possible. Postulate 2 defines the discrete stationary

orbits in terms of  quantization of angular momentum. As we shall see below, 

this leads to the quantization of energy. Postulate 3, called  Bohr frequency rule, 

takes care of the emission and absorption spectra of atoms. 

The above postulates determine the possible values for the radii of the

allowed circular orbits and the energies associated with these orbits. We do this

below under the assumption that the electron moves around a stationary

nucleus. This is a reasonable assumption because the nucleus, being very heavy

as compared to the electron, can be assumed to have infinite mass. The

correction due to the finite mass of the nuclues will be applied later. 

Let   Z be the atomic number of the nucleus. If  e is the electronic charge, 

then the charge of the nucleus is  Ze. The centripetal acceleration for circular

motion is provided by the Coulomb attraction between the electron and the

nucleus. Therefore, 

 mv 2

 k( Z e) e

= 

 r

 r  2

In SI system the constant  k has the value 9 ¥ 109 Nm2/C2. It is customary

to replace it by 1/4 p e 0, where  e 0 is the permittivity of vacuum, having value

8.85  ¥ 10–12  C2/Nm2. Thus, 

 mv 2

1


2

 Ze

= 

(3.11)

 r

4

2

 p e

 r

0

From (3.9) and (3.11) we obtain the expressions for the radius of the  n th

 Bohr orbit and the speed of the electron in this orbit, respectively, as

(4 p e ) 2

h  n 2

 r =

0

 n

(3.12)

 Ze 2  m

 Ze 2

and

 v =

(3.13)

 n

(4 p e )h n

0

The integer  n is called the  quantum number. Substituting the values of  e 0, h,  e, and  m, 

 n 2

 r = 0 5

. 3

Å

 n

(3.14)

 Z

 Z

and

 v = 2 18 106

. 

¥

m/s

(3.15)

 n

 n

For the first Bohr orbit, also called the  ground state, of hydrogen,  Z = 1, 

 n = 1. Therefore, the radius and the speed are 0.53 Å and 2.18 ¥ 106 m/s, 

respectively. The first Bohr radius of hydrogen is generally denoted by the

symbol  a 0:
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2

(4 p e )h

 a

0

=

(3.16)

0

 me 2

Energy of the Electron in the nth Bohr Orbit

The total energy  En of the electron is the sum of the kinetic and potential

energies:

1

 Ze 2

 En = 

 mv 2 n – 

2

(4 p e ) r

0

 n

2

F

2

F

 m

 Ze 2

1

 m

 Ze 2

1

=  2 2 4

 n 2

h

 p e

HG IKJ  –  h2

2

4 p e

HG IKJ

0

 n

0

2

 m  F  Ze 2

1

or

 E = -

(3.17)

 n

2 2

4

 n

HG I 2

h

 p e  0 KJ

Sometimes it is convenient to express the energy in terms of the  Bohr radius

 a 0. Using (3.16), 

h2  Z 2

 E = -

 n

(3.18)

 ma 2  n 2

2

0

Substituting the values of the constants, 

2

2

-18  Z

 Z

 E

- 2 2

. ¥ 10

-

 n =

J = 13 6

. 

eV

(3.19)

 n 2

 n 2

This shows that the energy of the ground state of hydrogen is –13.6 eV. The

negative sign indicates that the electron is bound. Energy will, therefore, be

required to remove the electron infinite distance away from the nucleus. The

minimum energy required to remove the electron from the ground state of

hydrogen atom is 13.6 eV. This energy is, therefore, called the  ionization energy

of the hydrogen atom. 

Frequency and Wavelength of the Radiation in the

Transition  n2  Æ  n1

Equation (3.10) gives the frequency of the radiation emitted when the electron

makes a transition from an orbit of higher energy with quantum number  n 2 to

one of lower energy with quantum number  n 1:

 E

-  E

 E

-  E

 n

 n

 n

 n

 n

= 

2

1  = 

2

1

 h

2 p  h

Using (3.17) this becomes

2

F

F

 m

 Ze 2

1

1

 n =  p

4

3

 p

4  e

 n 2

 n 2

h HG

IKJ -

HG

IKJ

(3.20)

0

1

2

!& 
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The inverse of the corresponding wavelength ( l), also called wave number

( n ), is given by

2

F

F

1

2

 m

 Ze

1

1

 n =

=

 l

 p

4

3

 c h

 p

4  e

2

2

HG IKJ -

HG

IKJ

(3.21)

0

1

 n

 n 2

This can be written as

F

1

1

1

 n =

=

2

 R Z

-

 l

•

2

2

 n

 n

HG

IKJ

(3.22)

1

2

F

2

 m

 e 2

where

 R• =

(3.23)

4 p c  3

h HG

I

4 p e  0 KJ

Equation (3.22) has the same form as the Rydberg-Ritz formula given in

Equation (3.6). The constant  R• is obviously the Rydberg constant. The

subscript “•” is put to indicate that this derivation uses the infinite nuclear mass

approximation. It now appears as a combination of fundamental constants. On

substituting the values of the fundamental constants in (3.23), the value comes

out to be very close to the empirical value 1.09737 ¥ 107 m–1. This agreement

provides a direct confirmation of the Bohr model. 

It is also clear that the “terms” in the Rydberg-Ritz formula are associated

with the energies of the stationary states, which can take only discrete values. 

3.4

EXPLANATION OF THE HYDROGEN SPECTRUM

In formula (3.22), if we put  Z = 1,  n 1 = 1 and  n 2 = 2, 3, 4,… •, we find that the values of  l so obtained agree with the experimentally observed wavelengths

in the Lyman series. Thus, the Lyman series arises when the electron jumps

from any of the higher orbits to the first orbit. Similarly,  n 1 = 2, 3, 4 and 5 give, 

respectively, the Balmer, the Paschen, the Brackett and the Pfund series. In all

the cases, the calculated values of  l agree with the corresponding experimental

values. 

Figure 3.1 shows the energy level diagram of hydrogen, also showing the

transitions for the various spectral series. Conventionally, the Balmer lines are

given the names H a, H b, H g , H d etc. 

An atom normally remains in its ground state ( n = 1). In order to make a

transition to one of the higher states, the atom must be given energy by some

external agency. The atom is then said to be in an excited state. The state with

 n = 2 is called the  first excited state, that with  n = 3 is called the  second excited state and so on. The atom can be excited by collisions with electrons, photons, 

other hydrogen atoms etc. However, the atom cannot remain in an excited state

for more than about 10–8 s. It falls back to a state of lower energy, emitting a

photon in the process. 
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 n

0

•

–0.28

7

–0.38

6

–0.54

5

PFUND

( n = 5)

1

–0.85

4

BRACKETT

( n = 4)

1

–1.51

3

PASCHEN

( n = 3)

1

–3.4

2

H a  H b  H g  H d

(eV)

BALMER

gy

( n = 2)

1

Ener

–13.6

1

LYMAN

( n = 1)

1

Figure 3.1

Energy level diagram for hydrogen. 

Hydrogenic Ions

If we take  Z = 2, 3, 4,… it is found that the Bohr model predicts correctly the

energy levels and spectral lines of all the ions containing one electron. The calcu-

lated wavelengths agree closely with the observed values upto about  Z = 20. 

PROBLEM 3.1

The energy of an excited hydrogen atom is –3.4 eV. 

Calculate the angular momentum of the electron according to Bohr theory. 

 Solution:

The energy of the electron in the  n th orbit is

13 6

. 

 En = –

eV

2

 n

"
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Therefore, 

-13 6

. 

-13 6

. 

 n 2 = 

= 

= 4

 E

- 3 4

. 

 n

or

 n = 2

 nh

Angular momentum =  2 p

2

6 63

. 

10-34

¥

¥

= 

2 ¥ 31

. 4

=  2 11 10 34

. 

¥

-

Js

PROBLEM 3.2

The energy of the ground state of hydrogen atom is –13.6 eV. 

Find the energy of the photon emitted in the transition from  n = 4 to  n = 2. 

1

1

L

 Solution:

 E 4Æ2 = 13.6

-

22

42

NM

OQP

1

1

L

= 13.6

-

. 

eV

4

16

NM

OQP =  255

PROBLEM 3.3

The H a line of Balmer series is obtained from the transition

 n = 3 (energy = – 1.5 eV) to  n = 2 (energy = – 3.4 eV). Calculate the wavelength

for this line. 

 hc

 Solution:

=   E

 l

3  –   E 2

 hc

or

 l =   E -  E

3

2

6 6

. ¥ 10-34 ¥ 3 ¥ 108

=  [-15.- (-34.)] ¥ 16. ¥ 10-19

6 6 ¥ 3 ¥ 10 7

. 

-

= 

1 9

. ¥ 1 6

. 

= 6.513 ¥ 10–7  m

=  6513 Å

PROBLEM 3.4

The first line of the Lyman series in the hydrogen spectrum

has wavelength 1200 Å. Calculate the wavelength of the second line. 

 Solution:

For the Lyman series

1

1

L

=  R  1 -

,  n = 2, 3, 4,…

 l

2

NM

O

 n  QP
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For the first line,  n = 2. Therefore, 

1

1

L

3 R

=   R  1 -

(1)

 l

4

NM OQP =  4

1

For the second line,  n = 3. Therefore, 

1

1

L

8 R

=   R  1 -

(2)

 l

9

NM OQP =  9

2

Dividing (1) by (2), 

 l  2

3

9

27

= 

¥ 

= 

 l

4

8

32

1

27

or

 l 2 = 

¥ 1200 =  1012 5

. Å

32

PROBLEM 3.5

Find the longest and the shortest wavelengths of the Lyman

series. Given, Rydberg constant = 1.097 ¥ 107  m–1. 

 Solution:

For the Lyman series. 

1

1

L

=   R  1 -

 l

2

NM

O

 n  QP

For the longest wavelength,  n = 2. Therefore, 

1

1

L

3 R

=   R  1 -

 l

4

NM OQP =  4

longest

4

or

 l longest =  3 1097

. 

107

¥

¥

= 1.215 ¥ 10–7 m =  1215 Å

For the shortest wavelength,  n = •. Therefore, 

1

=   R[1  – 0] =  R

 l  shortest

1

or

 l shortest = 

= 0.911 ¥ 10–7  m

1 097

107

. 

¥

=  911 Å

PROBLEM 3.6

A hydrogen-like atom has one electron revolving around a

stationary nucleus. The energy required to excite the electron from the second

orbit to the third orbit is 47.2 eV. What is the atomic number of the atom? 

1

L

 Solution:  47.2 = 13.6 Z 2 1 -

4

9

NM OQP

Solving, 

 Z = 5

" 
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PROBLEM 3.7

Which state of the triply ionized beryllium has the same

orbital radius as that of the ground state of hydrogen? Compare the energies

of the two states. 

 n 2

 Solution:

We have  rn µ  Z

For the ground state of hydrogen,  Z = 1,  n = 1

For Be+++,    Z = 4,  n = ? 

Since the two radii are equal, 

 n 2

F

 n 2

F

= 

 Z

HG IKJ

 Z

HG IKJ

+++

Be

H

 n 2

1

fi

Be+++

= 

4

1

or

 n

=  2

Be+++

 Z  2

Now

 En µ   n 2

 E (Be+++ )

42 /22

fi

2

= 

=  4

 E (H)

2

2

1

1 1

/

PROBLEM 3.8

Which state of doubly ionized lithium has the same energy

as the ground state energy of the hydrogen atom? Compare the orbital radii of

the two states. 

 Z  2

 Solution:

We have  En µ   n 2

For Li++,  Z = 3. Therefore,  the n = 3 state of Li++ has the same energy as

 the n = 1 state of hydrogen. 

 n 2

Now

 rn µ   Z

 r (Li+++)

32 /3

Therefore

3

= 

=  3

 r (H)

1/1

1

PROBLEM 3.9

Hydrogen atom in its ground state is excited by means of a

monochromatic radiation of wavelength 970.6 Å. How many different wave-

lengths are possible in the resulting emission spectrum? Find the longest

wavelength amongst these. 

 Solution:

Energy of the radiation quantum

 hc

6 6

. ¥ 10-34 ¥ 3 ¥ 108

 E =  hn = 

= 

= 12.75 eV

 l

970 6

. ¥ 10-10 ¥ 16

. ¥ 10 19

-

Atoms and the Bohr Model 

"! 

Energy of the excited state

 En =  –13.6 + 12.75 = – 0.85 eV

13 6

. 

Now, we know that

 En =  –

2

 n

13 6

. 

-13 6

. 

or

 n 2 = –

= 

= 16

 E

- 0 8

. 5

 n

or

 n =  4

The number of possible transition in going to the ground state, and hence

the number of different wavelengths in the spectrum, will be six as shown in

Figure. 3.2. 

 n

4

3

2

1

Fig. 3.2

Transitions from the excited state having n = 4. 

The longest wavelength corresponds to the minimum energy difference, 

 i.e. , to the transition 4 Æ 3. 

13 6

. 

Now

 E 3 = –

= – 1.51 eV

32

 hc

=   E

 l

4  –   E 3

max

6 6

. ¥ 10 34

-

¥ 3 ¥ 108

or

 l max =  1(51

. 

- 0 85

. ) ¥ 1 6

. ¥ 10-19

= 18.75 ¥ 10–7  m

=  18,750 Å

PROBLEM 3.10

In a singly-ionized helium atom the electron is in the third

orbit. A photon of energy 10.04 eV knocks out the electron. Calculate the

stopping potential of the electron. The ionization energy of hydrogen atom is

13.6 eV. 

 Solution:

For He+,  Z = 2. 

Therefore, ionization energy of He+  = (2)2  ¥ 13.6 = 54.4 eV

"" 
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Energy of the electron in the first orbit

 E 1 = –54.4 eV

Energy of the electron in the third orbit

 E

54 4

. 

 E

1

3 = 

= –

= – 6.04 eV

2

(3)

9

Energy of the incident photon = 10.04 eV

Therefore, the energy of the knocked out electron

= 10.04 – 6.04 = 4.0 eV

Hence, required stopping potential =  4 0

. V

PROBLEM 3.11

The ionization energy of a hydrogen-like atom is 4 rydberg. 

Find the wavelength of the radiation emitted when the electron jumps from the

first excited state to the ground state. 

1 rydberg = 2.2 ¥ 10–18 J;  h = 6.6 ¥ 10–34 Js. 

 Solution:

Ionization energy = 4 ¥ 2.2 ¥ 10–18

= 8.8 ¥ 10–18  J

Energy of the electron in the ground state ( n = 1)

 E 1 =  – 8.8 ¥ 10–18  J

Energy of the electron in the first excited state ( n = 2)

 E

 E

1

2 = 

= –2.2  ¥ 10–18  J

2

(2)

If  l is the wavelength of the radiation emitted in the transition  n = 2 Æ  n = 1, then

 hc =  E

 l

2  –   E 1

 hc

or

 l =   E -  E

2

1

6 6

. ¥ 10 34

-

¥ 3 ¥ 108

= 

8

( 8

. - 2 2

. ) ¥ 10 18

-

= 3.0 ¥ 10–8  m

=  300 Å

PROBLEM 3.12

A beam of electrons bombards a sample of hydrogen. 

Through what potential difference must the beam be accelerated if the second

line of Lyman series is to be emitted? 

 Solution:

The second line of Lyman series is emitted in the transition

 n = 3 Æ   n = 1. 
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Binding energy of the atom in the  n = 1 state

= 13.6 eV

Binding energy of the atom in the  n = 3 state

13 6

. 

= 

= 1.51 eV

(3 2

)

Energy required for the atomic electron to jump from the  n = 1 state to the

 n = 3 state

= 13.6 – 1.51 = 12.09 eV

The electron beam must, therefore, be accelerated through a potential

difference of 12.09 V. When an electron in the beam collides with the atom, 

it would raise the electron in the atom from the  n = 1 state to the  n = 3 state. 

When this electron returns back to the ground state, the second line of the

Lyman series would be emitted. 

3.5

CORRECTION FOR FINITE NUCLEAR MASS

So far we have assumed that the nucleus has infinite mass and, therefore, 

remains stationary. This is a reasonable assumption because the nuclear masses

are much larger than the electronic mass. However, there are certain finer details

of spectra which depend on the actual mass of the nucleus. Since the nucleus

has finite mass, both the electron and the nucleus move about their common

centre of mass with the same angular velocity. It can be shown, using

Newtonian mechanics, that the effect of nuclear motion can be taken care of

by replacing the electronic mass  m by the  reduced mass  m of the electron-nucleus system, given by

 mM

 m =

(3.24)

 m +  M

where   M is the mass of the nucleus. The  Rydberg constant for hydrogen will

then be

 M

 R

 R

H

=

 R =

•

(3.25)

H

•

 m +  M

1 +  m / M

H

H

The numerical value comes out to be 1.09678 ¥ 107  m–1 which is closer

to the empirical value 1.096776 ¥ 107  m–1 than  R•. 

In general, for atom X, 

 R

 R =

•

(3.26)

X

1 +  m/ M  X

where   M X is the mass of the nucleus of X. Thus, 

 R

1 +  m/  M

X

H

=

(3.27)

 R

1 +  m/  M

H

X

"$
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Although the ratio  R•/ R x is very nearly unity, the small difference has some

interesting spectroscopically observable consequences. We mention two of

these. 

First, consider He+. The wave number formula (3.22) which contains  R•

and hence is independent of the nuclear mass, predicts that, for given  n 1 and

 n 2, the wave number of the spectral line of singly ionized helium should be four

times as large as the wave number of the corresponding line of hydrogen. Actual

spectrum showed some disprepancy which was explained by Bohr by taking

into account the finite nuclear masses. 

Second, consider deuterium (H2), which is an isotope of hydrogen having

mass double that of hydrogen (H1). Equation (3.22) predicts that both H2 and H1

should have identical spectra. However, the spectral lines of H2 are slightly

shifted with respect to the corresponding lines of H1. The ratio of the frequen-

cies of the corresponding lines is 1.00027, which is small but detectable. The

existence of deuteron was proved by Urey and coworkers through this shift. 

PROBLEM 3.13

The Rydberg constant for hydrogen is 1.09678 ¥ 107 m–1

and that for singly ionized helium is 1.09722 ¥ 107 m–1. Given that the mass of

the helium nucleus is four times that of the hydrogen nucleus, calculate the ratio

of the electron mass to the proton mass. 

 Solution:

The hydrogen nucleus is proton. We have, using (3.27)

 R

1 + ( m/ M )

He

= 

H

 R

1 + ( m/ M

)

H

H e

1 + ( m/ M )

= 

H

1 + ( m/4 M )

H

 m

 m

or

 R He +  R He

=   R H +  R H

4  M

 M

H

H

 m

 R

-  R

or

= 

He

H

 M

 R - ( R

/4)

H

H

He

1 097

. 

22 - 1 096

. 

78

=  1096

. 

78 - 1

( 097

. 

22/4)

1

=  1869

3.6

LIMITATIONS OF THE BOHR MODEL. SOMMERFELD’S

ELLIPTIC ORBITS

In spite of the impressive success of Bohr’s theory in obtaining the correct

values of the Rydberg constant and the wavelengths of the spectral lines of

hydrogenic atoms, the model had serious limitations and shortcomings. 
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 First, it cannot be generalized to explain the structure and spectra of atoms

containing two or more electrons. 

 Second, it cannot explain the differences in the intensities of spectral lines. 

 Third, spectrometers of high resolving power show that some spectral lines

in fact consist of a group of closely spaced lines. Bohr theory cannot explain

this   fine structure of spectral lines. 

 Fourth, this model cannot be applied to unbound systems and scattering

problems. 

Bohr’s assumption of circular orbits was an oversimplication because ellip-

tic orbits are possible under the inverse-square Coulomb force. Wilson (1915)

and Sommerfeld (1916) replaced Bohr’s quantization of angular momentum by

a more general postulate and Sommerfeld used it to develop a more general

theory which included  elliptic orbits. The new postulate quantizes the  phase

 integral:

 p dq =  n h, 

 n =

z

, 

0 , 

1 2, º

 i

 i

 i

 i

(3.28)

where   pi is the momentum conjugate to the coordinate  qi. The integration is

taken over a complete period of the motion. 

For an electron moving in an elliptic orbit around the nucleus (Fig. 3.3), 

Equation (3.28) gives the two conditions

z  prdr=  nrh

(3.29a)

and

z  pfdf=  nfh

(3.29b)

 e

 r

 f

 Ze

Figure 3.3

Electron moving in an elliptic orbit. 

 pf is the angular momentum which is constant. Therefore, (3.29b) yields

 pf(2 p) =  nfh

or

 pf =  nfh

which is Bohr’s second postulate.  nf is called the  angular or  azimuthal quantum number and  nr the  radial quantum number. The sum

 n =  nr +  nf

(3.30)

is called the  principal quantum number. Sommerfeld found that Bohr’s energy

expression (3.17) holds for elliptic orbits, with  n being the principal quantum

"& 
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number. That is, the energy depends only on  n. Now, for a given  n there are

several orbits corresponding to those sets of values of  nr and  nf for which

 nr + nf =  n. Out of these orbits, there is one which is circular—that for which

 nr = 0 and  nf =  n. This explains why Bohr’s model, which considered only

circular orbits, was successful. 

If a number of quantum states have the same energy, they are said to be

 degenerate. Thus, here all the states with the same principal quantum number

are degenerate. Sommerfeld made an attempt to remove this degeneracy, and

hence explain the fine structure of spectral lines, by taking into account the

relativistic mass variation of the electron. However, it was soon realized that

Sommerfeld’s theory is not the correct explanation of the fine structure. We

now know that it is due to the fact that electron has intrinsic spin which gives

rise to spin-orbit interaction. 

Bohr-Sommerfeld theory is now known as the old quantum theory. It

could be applied only to some periodic systems. Very soon it was superseded

by quantum mechanics developed by Schrödinger, Heisenberg, Born and others

based on the discovery of the wave nature of matter by de Broglie. 

3.7

THE FRANCK-HERTZ EXPERIMENT

The Bohr theory predicted the existence of discrete energy levels in atoms. Soon

after Bohr’s work, in 1914, a direct experimental confirmation of this was

provided by Frank and Hertz. They demonstrated, in a rather simple and elegant

manner, that energy is absorbed by atoms in discrete quanta. Frank and Hertz

received the 1925 Nobel Prize in Physics. 

A schematic diagram of the apparatus used in the experiment is shown in

Figure 3.4. It consists of a tube fitted with a cathode  C, an accelerating grid  G

and a collecting plate  P. The cathode emits electrons when heated electrically. 

The grid is located near the plate. A variable voltage  V is applied between the

cathode and the grid, making the grid positive with respect to the cathode, so

that the electrons are accelerated towards the grid. The plate is given a small

retarding potential D V with respect to the grid. This prevents the electrons with

very small kinetic energy from reaching the plate, so that these electrons may

not contribute to the plate current. 

 C

 G

 P

 I A

 V

D V

Figure 3.4

Schematic diagram of the Franck-Hertz experiment. 
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The tube was filled with mercury vapour. The accelerating potential  V was

gradually increased from zero and the current  I was measured continuously. 

The graph between  I and  V is shown in Figure 3.5. As the accelerating voltage

 V was increased, the current also increased. However, at a certain voltage

 V 0 = 4.9 V, the current dropped sharply and started increasing again. This

behaviour is repeated at integral multiples of  V 0. 

300

200

 I(mA)

100

5

10

15

 V 0

 V (volts)

Figure 3.5

Variation of the current I as a function of the accelerating voltage V in

the Franck-Hertz experiment. 

The phenomenon can be explained as follows. As the voltage is increased

from zero, the speed of the electrons increases and, therefore, the current

increases. Of course, on their way to the plate, the electrons collide elastically

with the mercury atoms. But the atoms are relatively too heavy, and therefore, 

the electrons lose negligible kinetic energy in the collision. However, at a certain

potential   V 0, the kinetic energy of the electron becomes exactly equal to the

difference in energies between the ground state and the first excited state of

mercury. The electron then gives up all its energy to excite the atom and the

current falls sharply. The electron then moves to accelerate through the tube

again and the process gets repeated when it again acquires an energy of 4.9 eV. 

Now, as soon as an atom gets excited, it returns back to the ground state

by emitting a photon. In this case, the photon will have energy 4.9 eV, which

corresponds to a wavelength of 2536 Å. Franck and Hertz found that when the

accelerating potential was less than 4.9 V no lines were observed in the

spectrum of mercury. Above this potential, a strong emission line appeared, with

wavelength 2536 Å. Thus, the Franck-Hertz experiment confirmed the

existence of discrete energy levels in atoms. 

3.8

THE CORRESPONDENCE PRINCIPLE

Bohr formulated the correspondence principle in 1923 to serve as a guide in the

development of quantum theory. It states that  the quantum theory should agree

 with classical physics in the limit in which quantum effects become insignificant. 

#
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To formulate the principle mathematically, we note that the classical limit is

attained when the quantized variables are much larger then their minimum

quantum size. Consider the case of the hydrogen atom. In Bohr’s model, the

angular momentum  l of the electron is  n h, where  n is an integer. The minimum quantum size is h. Obviously, the classical limit means that  l >> h, which

effectively means that  n is large. 

Since the energy of a Bohr orbit is proportional to 1/ n 2, for large values of

 n the energy levels are so close together that they become indistinguishable and

can be considered to have a continuous range of values for all practical

purposes. Thus, the correspondence principle can be restated mathematically

as:  The quantum theory must approach classical theory in the limit n Æ • , where

 n is a quantum number. 

The correspondence principle inspired most of Bohr’s work and has played

an important role in the initial development of quantum theory. It even helped

and motivated Heisenberg in developing his version of quantum mechanics. 

An important application of the correspondence principle is in deriving the

selection rules, which are restricting on the type of transitions that the atom

can make. Consider the transition from the state with quantum number  n +  k

to the state with quantum number  n, in Bohr’s theory. The frequency of the

emitted photon is [Equation 3.20], 

2

 m

F  Ze 2 L 1

1

 n =  4 3

h

4

 n 2

( n

 k  2

 p

 p e

HG IKJ - +

NM

O

) QP

0

For large  n, that is for  n >>  k, we may write

1

1

ª 

2

( n +  k )

2 1

2

 n ( +  k / n)

1

2  k

= (1/ n 2)(1  –  2 k/ n) = 

– 

2

 n

3

 n

Therefore, 

2

 m  F  Ze 2

2 k

 n =  4 4

 n  3

 p

 p e

HG IKJ ( h)

0

Substituting  l =  n h, where  l is the angular momentum of the electron in the  n th state, we get

2

 m  F  Ze 2

 n =  2  l 3

 p

4 p e

HG IKJ  k

(3.31)

0

Now, according to classical electrodynamics, a revolving charged particle

emits radiation of frequency equal to the frequency of revolution. Thus, the

classical frequency of the radiation emitted by an electron revolving with speed

 v in a circular orbit of radius  r is given by

 v

 n cl =  2 pr
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Using Equation (3.12) and (3.13), this become

2

 m  F  Ze 2

 n cl =  2 pl 3 4 pe

HG IKJ

(3.32)

0

Comparing (3.31) and (3.32), we find that  n =  n cl provided  k = 1. Thus, 

for large  n, transitions are possible only between adjacent states. 

Using this as a guide, Bohr asserted that  all transitions, irrespectively of the

 value of n, are governed by the rule:  D n = 1. Thus, correspondence principle leads us to the proper selection rule. 

If we analyze the spectral series of hydrogen, we find that the transitions

are not restricted by this selection rule. However, if we look at the intensities

of the spectral lines, we find that the lines corresponding to the D n = 1

transitions are the most intense. Thus, the selection rule obtained using the

correspondence principle agrees with the experiment approximately. 

SUMMARY

1. In order to explain the results of the alpha-scattering experiment, 

Rutherford proposed the nuclear model of the atom. This model is not

stable according to classical electrodynamics. Moreover, it cannot

account for the characteristic line spectra of elements. 

2. Bohr postulated that an electron in an atom can revolve in certain

 stationary orbits without radiating. In these orbits the angular momentum

of the electron is an integral multiple of h. 

3. Bohr further postulated that a photon is emitted or absorbed by the atom

when an electron jumps from one orbit to another. The frequency of the

photon is D E/ h, where D E is the energy difference between the two

states. 

4. Using these postulates Bohr was able to predict the wavelengths of the

spectral lines of hydrogenic atoms reasonably well. 

5. Slight discrepancies in spectra were explained by taking into account the

finite mass of the nucleus. 

6. Bohr’s model had serious limitations. It could not explain the fine

structure and the differences in the intensities of spectral lines and could

not be extended to atoms containing more than one electron. 

7. Wilson and Sommerfeld attempted to developed a more general theory by

quantizing the phase integral:

z  pidqi =  nih,  ni = 0, 1, 2,…

where   pi is the momentum conjugate to the coordinate  qi. 

However, their theory, called the old quantum theory, could be applied

only to some periodic systems. It was soon superseded by a more

satisfactory  quantum mechanics. 
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8. Franck and Hertz demonstrated, by a simple and elegant experiment, that

energy is absorbed by atoms in discrete quanta. 

9. Bohr formulated the correspondence principle which states that the

quantum theory should agree with classical physics in the limit in which

quantum effects become insignificant, that is, in the limit  n  Æ •. This

principle served as a guide in the development of quantum mechanics. 

QUESTIONS

1. State the postulates of Bohr’s theory of hydrogenic atoms. Using these

postulates derive the expressions for (a) the radius of the  n th orbit, 

(b) the velocity of the electron in the  n th orbit, (c) the energy of the

electron in the  n th orbit, (d) the frequency and wavelength of the

radiation in the transition  n 2 Æ  n 1. 

2. Give an explanation of the spectrum of hydrogen on the basis of the Bohr

model. Express Rydberg constant in terms of fundamental constants. 

Draw the energy level diagram of hydrogen, indicating the energies of the

first few states in eV. 

3. Obtain the modified Bohr formula for the wavelength of a spectral line

taking into consideration the nuclear mass. Explain how this modification

helped in (a) explaining the spectrum of He+ and (b) the discovery of

deuterium. 

4. What are the limitations of Bohr’s theory? 

5. Describe the Franck-Hertz experiment. What conclusion was drawn

from it? 

6. State Bohr’s correspondence principle. Explain how does it guide in

obtaining the selection rule for atomic transitions. 

EXERCISES

1. The first line of the Balmer series has wavelength 6563 Å. Calculate the

wavelength of (a) the second line of the Balmer series, and (b) the first

line of the Lyman series. 

[ Ans. 

(a) 4861.5 Å, (b) 1215 Å]

2. Find the shortest and the longest wavelengths of the Balmer series. 

Rydberg constant = 1.097 ¥ 107  m–1. 

[ Ans. 

3645  Å, 6563 Å]

3. A photon incident upon a hydrogen atom ejects an electron with a kinetic

energy of 9.2 eV. If the ejected electron was in the first excited state, 

calculate the energy of the photon. 

[ Ans. 

12.6 eV]

4. A hydrogen atom in its ground state absorbs a photon of wavelength

180 nm. Will the electron be excited to another level, or will it be set free? 

Atoms and the Bohr Model 
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[Hint.  Energy of the photon = 6.9 eV; Energy required to excite the

electron to the next state = 10.2 eV. Since 6.9 < 10.2, the electron cannot

be excited.]

5. Find the ratio of the Rydberg constants for deuterium and hydrogen. 

Mass of proton

Given, 

= 1836. 

[ Ans. 

1.00027]

Mass of electron
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C h a p t e r

Wave Nature of Matter and

the Need for a Wave Function

4
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De Broglie’s Hypothesis
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Experimental Verification of De Broglie’s Hypothesis
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The Double-Slit Experiment with Particles

4.4

The Need for a Wave Function

4.5

Born’s Interpretation of the Wave Function

4.1

DE BROGLIE’S HYPOTHESIS

In Chapter 2 we studied that after the work of Planck, Einstein and Compton, 

it was established that radiation has dual nature. That is, it acts like a wave in

some situations and as a particle in some other situations. In 1924, Louis de

Broglie extended this wave-particle duality to material particles. He was guided

by the intuitive feeling that nature loves symmetry. Nature has two entities—

matter and radiation. Therefore, if radiation has particle-like properties, then

material particles (electron, proton, neutron etc.) should possess wave-like

properties. 

We have seen that a photon of frequency  n has energy

 E =  hn

and momentum

 E

 hn

 p = 

= 

 c

 c

In terms of wavelength this can be written as

 h

 p =   l
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De Broglie proposed that this relation applies to material particles as well as

photons. Thus, de Broglie postulated that  with every material particle a wave

 is associated, having wavelength

 h

 l =

(De Broglie wavelength)

(4.1)

 p

For a particle of mass  m, moving with a speed  v, this becomes

 h

 l =

(4.2)

 mv

For a relativistic particle,  m is the rest mass multiplied by [1 –  v 2/ c 2]–1/2. 

This is called de Broglie’s hypothesis and  l is called the  de Broglie

 wavelength. The associated wave is called  matter wave or  de Broglie wave or pilot wave. It is worth noting that, unlike Planck’s hypothesis, de Broglie’s

hypothesis, when proposed, had no supporting experimental evidence. Such

evidence came three years later in 1927. However, de Broglie was motivated by

the mystery that surrounded the Bohr postulate for stationary orbits. He

attempted  to explain the stationary Bohr orbits by fitting a standing wave around

the circumference of an orbit (Figure 4.1). If  l is the wavelength associated

with the  n th orbit and  r is its radius, then it must be required that

2 pr =   nl

Combining this with the Bohr postulate

 nh

 mvr =  2 p

we get

F  nh

 nl = 2 p  2

HG

I

 p mv  KJ

 h

or

 l =   mv

Figure 4.1

De Broglie wave for n = 4 Bohr orbit. 

#$

Quantum Mechanics: A Textbook for Undergraduates

De Broglie was also guided by the analogy of the least-action principle in

mechanics and Fermat’s principle in optics. We shall not go into the details of

this. 

We may write

 h

 p = 

= h k

 l

where   k = 2 p/ l. Thus, the two basic relations of quantum theory are

 E = h w

( . 

4 )

3

and

p = hk

( . 

4 4)

(Basic relations of quantum theory)

The vector k is called the  propagation vector. De Broglie could not provide

a proper interpretation to the concept of matter waves. Nor could Schrödinger, 

who developed the wave mechanics of particles based on de Broglie’s idea. 

What is believed to be the correct interpretation of the “wavyness” associated

with a particle was given by Max Born in 1927. This will be discussed in detail

later. 

Other Useful Expressions for the De Broglie Wavelength

Nonrelativistic

In terms of Kinetic Energy:

For a nonrelativistic particle of mass  m having kinetic energy  K, 

 p 2

 K =  2 m

or

 p = 

2 mK

Therefore, the de Broglie wavelength can be expressed as

 h

 l =

(4.5)

2 mK

In terms of Accelerating Potential:

If a particle of mass  m and charge  q is accelerated through a potential

difference  V, then

 K =   qV

Therefore, 

 h

 l =

(4.6)

2 mqV

For an electron this yields

F

6 625

. 

¥ 10 34

-

1

 l = 

2 ¥ 9 1

. ¥ 10-31 ¥ 16

. ¥ 10 19

HG

I

-

KJ  V
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12 3 10 10

. ¥

-

= 

    m

 V

12 3

. 

or

 l =

Å

(4.7)

 V

Relativistic

In terms of Kinetic Energy:

For a particle of rest mass  m 0, the total energy  E is given by

 E 2 =   p 2 c 2 +  m 20   c 4

1

or

 p = 

2

2 4

 E -  m c

0

 c

If   K is the kinetic energy of the particle, then

 E =  K +  m 0 c 2

Therefore, 

1

 p = 

2 2

2 4

( K +  m c ) -  m c

0

0

 c

1

= 

 K( K + 2

2

 m c )

0

 c

The de Broglie wavelength is

 h

 hc

 l =

=

(4.8)

 p

 K( K + 2 m c 2)

0

In terms of Accelerating Potential:

If a particle has charge  q and is accelerated through a potential difference

 V, then

 K =  qV

Substituting in Eq. (4.8), 

 hc

 l = 

 qV (  m

2

 c 2 +  qV )

0

 h

= 

F  qV

2 m qV  1 +

0

2 m c 2

HG

IKJ0

 h

 qV

or

 l =

,  a =

(4.9)

 a

 m c 2

F

2 m qV  1

0

+

0

H IK2
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For an electron this yields

12 3

. 

 l =

Å

(4.10)

 a

F V 1+

H IK2

PROBLEM 4.1

Find the de Broglie wavelength of electrons accelerated

through a potential difference of 100 volt. 

 Solution:

For electrons accelerated through a potential difference  V, the de

Broglie wavelength is given by

 h

1

12 3

. 

 l = 

◊

= 

Å

2 me

 V

 V

For

 V = 100 volt

12 3

. 

 l = 

=  1 2

. 3 Å

100

PROBLEM 4.2

Find the de Broglie wavelength of electrons moving with a

kinetic energy of 100 eV. 

 h

6 6

. 3 ¥ 10-34

 Solution:

 l = 

= 

2 mK

2 ¥ 9 1

. ¥ 10-31 ¥ 100 ¥ 1 6

. ¥ 10 19

-

=  1 2

10 10

. ¥

-

m

PROBLEM 4.3

What should be the kinetic energy of a neutron in eV so that

its associated de Broglie wavelength is 1.4 ¥ 10–10 m? Mass of neutron =

1.675  ¥ 10–27 kg. 

 h

 h 2

 Solution:

 l = 

or

 K = 

2 mK

 m  2

2  l

( . 

6 63 ¥ 10-34)2

=  2 ¥ .1675¥ 10-27 ¥ ( .14 ¥ 10-10)2

= 6.634 ¥ 10–21J

=  4 15

10 2

. 

¥

-

eV

PROBLEM 4.4

An electron, in a hydrogen-like atom, is in an excited state. 

It has a total energy of –3.4 eV. Calculate (a) the kinetic energy and (b) the

de Broglie wavelength of the electron. 

 Solution:

(a) We know that for an electron in orbit in a hydrogen-like atom

Kinetic energy  K =  – (Total energy  E)

Here

 E = –3.4 eV

Therefore, 

 K =  –(–3.4)

= 3.4 eV
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(b) de Broglie wavelength

 h

6 6

. 3 ¥ 10 34

-

 l = 

= 

2 mK

2 ¥ 9 1

. ¥ 10 31

-

¥ 3 4

. ¥ 16

. ¥ 10 19

-

= 6.663 ¥ 10–10 m =  6 663

. 

Å

PROBLEM 4.5

Find the kinetic energy of a neutron in electron-volt if its de

Broglie wavelength is 1.0 Å. Mass of neutron = 1.674 ¥ 10–27 kg;  h  =

6.60  ¥ 10–34 Js. 

 h

 Solution:

 l = 

2 mK

 h 2

or

 K =   m  2

2  l

( . 

6 6 ¥ 10-34)2

=  2 ¥ .1674 ¥10 27

-

¥ ( . 

1 0 ¥ 10 10

-

)2

= 13.01 ¥ 10–21  J

13 01

. 

¥ 10 21

-

= 

eV

1 6

. ¥ 10-19

=  8 13 10 2

. 

¥

-

eV

PROBLEM 4.6

A ball of mass 10 g is moving with a speed of 1m/s. 

Calculate the de Broglie wavelength associated with it. Can the effect of this

wavelength be observed experimentally? 

 h

 Solution:

 l =   mv

6 6

. 3 ¥ 10-34

=  10 ¥ 10-3 ¥ 1

=  6 63 10 32

. 

¥

-

m

This wavelength is negligible compared to the dimensions of the ball. There-

fore its effect  cannot be observed. 

PROBLEM 4.7

Calculate the de Broglie wavelength of thermal neutrons at

27°C. Given Boltzmann constant  k = 1.38 ¥ 10–23 J/K. 

 Solution:

We have

 h

 l = 

2 mK

 h

= 

2 mkT
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where  T is the absolute temperature. Substituting the values

34



l = 

6 6

. 3 � 10

2 � 167

. 

� 10 27



� 13

. 8 � 10 23

 � 300

= 1.78 ´ 10�10 m =  1 7

. 8 Å

PROBLEM  4.8 A  proton  and  a  deuteron  have  the  same  kinetic  energy. 

Which of the two has longer de Broglie wavelength? 

 Solution:  Let  m be the mass of the proton. Then the mass of the deuteron is 2 m. We have

lproton = 

 h

 mK

2

and

ldeuteron = 

 h

2(2 m)  K

Dividing, 

Oproton =  2

Odeuteron

PROBLEM 4.9 Show that the de Broglie wavelength of an electron is equal

to its Compton wavelength when its speed is  c/ 2 ,  c being the speed of light. 

 Solution:

l =   h

 mv

1

=   h

2

  v / c 2 2

1

4

9

 m v

0

1

2

2

   v

= 

 h

 c

1

 m

2

  c 



  v

0

 c

When  v =  c/ 2 , 

1

 

l = 

 h

1 2

1

2

  ( )

 m

  c  2

 

0

or

O

 h

=  m c 0

which is the Compton wavelength of the electron. 
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4.2 EXPERIMENTAL  VERIFICATION  OF  DE  BROGLIE�S

HYPOTHESIS

In Problem 4.1 we found that the de Broglie wavelength of electrons, acceler-

ated through a potential difference of 100 V, is 1.23 Å.  This is of the order of the

distance between atomic planes in crystals. This fact suggests that the existence

of matter waves may be demonstrated by using crystals as diffraction gratings

for electrons in a manner similar to X-ray diffraction by crystals. Such experi-

ments were performed in 1927 by Davisson and Germer, and independently by

G.P. Thomson. We discuss these below. 

Davisson-Germer  Experiment

The  experimental  arrangement  is  shown  in  Figure  4.2.  A  narrow  beam  of

electrons, accelerated through a potential difference  V, was directed normally

towards  the  surface  of  a  nickel  crystal.  The  electrons  were  scattered  in  all

directions by the atoms in the crystal. The intensity of the scattered electrons

was measured as a function of the latitude angle f measured from the axis of

the  incident  beam  for  different  accelerating  potentials.  Figure  4.3  shows  the

polar graph of the variation of the intensity with f for  V = 54 volts. At each angle, 

Figure  4.2 Schematic  diagram  of  the  Davisson-Germer  experiment. 

 f = 0°

 f = 50°

 f = 90°

Figure 4.3 Polar  plot  of  the  intensity  as  a  function  of  the  scattering  angle  for 54 eV electrons. 
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the intensity is given by the distance of the point from the origin. It is seen that

as  f  increases  from  zero,  the  intensity  first  decreases,  passes  through  a

minimum at about 35°  and then rises to a peak value at 50°. The occurrence

of this peak can be explained as being due to constructive interference of the

electron  waves  reflected  from  some  particular  set  of  �Bragg�  planes  in  the

crystal lattice as in the case of X-rays. This is shown in Figure 4.4. 

Figure 4.4 Diffraction of electron waves by a crystal. 

The Bragg condition for constructive interference is

 n l = 2 d sinq

where  d is the spacing between the adjacent Bragg planes and  n is an integer. 

The angle q is shown in the figure. We have

q + f + q = 180°

�

or

q =  180  I

2

= 90° � (f/2)

From  geometry, 

 d =  D sin I2

where  D  is  the  interatomic  spacing.  Therefore, 



 n l = 2 D sin  I  sin 

I

90� 

2



2

= 2 D sin  I  cos  I

2

2

=  D sin f
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For nickel  D = 2.15 Å. Assuming that the peak at  f = 50° corresponds to first

order diffraction, we take  n = 1. Therefore, 

 l = 2.15 ¥ sin 50°

= 1.65 Å

Now, according to de Broglie’s hypothesis, we have for electrons accelerated

though a potential difference  V (Equation 4.7), 

12 3

. 

 l = 

Å

 V

12 3

. 

= 

= 1.66 Å
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The agreement between the two values is remarkably close. 

The experiment was performed at various electron energies by varying the

voltage  V and in each case the two values of  l agreed. This also confirmed the

variation of  l with the momentum of the electron as given by the de Broglie

relation (4.1). Higher order diffraction maxima, corresponding to  n > 1, were also

observed and found to be in good agreement with de Broglie’s hypothesis. 

G.P. Thomson’s Experiment

In this experiment, a beam of highly-accelerated electrons was directed towards

a thin foil of some polycrystalline material. After passing through the foil, the

electrons were received on a photographic plate. It was found that a diffraction

pattern, consisting of a series of concentric rings, is formed on the plate

(Figure 4.5). This pattern was similar to Debye-Scherrer X-ray diffraction

pattern, confirming the wave nature of electrons. 

Photographic

Diffraction ring

plate

Thin foil

Incident electron

beam

Figure 4.5

G.P. Thomson’s experiment. 

Thomson obtained the wavelength of the electrons from the de Broglie

formula (4.7) and then calculated the spacing  d between atomic planes using

Bragg’s equation. It was found that the value of  d is same as that obtained from

X-ray experiments. 
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Subsequently, various experiments were performed to obtain diffraction

patterns for neutrons and certain atoms and molecules, showing the universality

of matter waves and the de Broglie formula. Young’s type double-slit

interference patterns have also been obtained for electrons as discussed in the

next section. De Broglie was awarded the 1929 Nobel Prize in physics and

Davisson and Thomson shared the 1937 Nobel Prize*. 

PROBLEM 4.10

In a Davisson-Germer diffraction experiment electrons of

kinetic energy 100 eV are scattered from a crystal. The first maximum in

intensity occurs at  q = 10.0°. (a) What is the spacing between the crystal

planes? (b) How many peaks will there be in the interference pattern? 

 Solution:

(a) The Bragg condition for constructive interference is

 nl = 2 d sin  q

For first maximum,  n = 1. Therefore, the spacing between the crystal

planes is

 l

 d =  2sin q

The de Broglie wavelength  l is given by

12 3

. 

12 3

. 

 l = 

Å = 

Å = 1.23 Å

 V

100

Therefore, 

12

. 3

1 2

. 3

 d = 

= 

2 ¥ sin10∞

2 ¥ 0 174

. 

=  3 5

. 3 Å

(b) Let the number of peaks in the interference pattern be  n. Since the

maximum possible value of sin  q is 1, we have

 nl £  2 d

2 d

2 ¥ 3. 53

or

 n  £ 

= 

= 5.74

 l

1 2

. 3

Therefore, the largest possible value of  n is 5. 

Thus, the number of peaks =  5

PROBLEM 4.11

A narrow beam of electrons, accelerated through a poten-

tial difference of 30 kV, passes through a thin aluminium foil and produces a

diffraction pattern on a photographic plate on the opposite side of the foil. If

the first diffraction ring is obtained at an angle of 59¢ 36≤ from the incident

beam, calculate the grating space in the aluminium crystals. 

* G.P. Thomson was son of J.J. Thomson. It is interesting to note that J.J. Thomson was

given the Nobel Prize (in 1906) for showing that the electron has  particle nature while

G.P. Thomson was given the same prize for showing that the electron has  wave nature. 
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 Solution:

As is clear from Figure 4.6, the glancing angle  q is related to the

angle of deviation  a by

 a = 2 q

 a

59¢ 36≤

or

 q = 

= 

= 29¢48≤

2

2

For the first order ring ( n = 1), 

2 d sin  q =   l

 l

or

 d =  2sin q

For electrons accelerated through a potential  V volts

12 3

. 

 l = 

Å

 V

12 3

. 

Therefore, 

 d =  2 ¥ 30 000

, 

¥ sin 29¢ 48≤

12 3

. 

=  2 ¥ 1732. ¥ 0008

. 

7

=  4 0

. 8 Å

Incident

beam

beam

Reflected

 q

Crystal plane

 a

 q

Figure 4.6

4.3

THE DOUBLE-SLIT EXPERIMENT WITH PARTICLES

In section 2.4 we pointed to the conceptual difficulty that arises when we try to

analyze the double-slit interference experiment with a radiation source. We find

that both the wave and particle aspects of radiation are exhibited in the same

experiment. Thus, the double-slit experiment is an excellent way of demonstrat-

ing the  wave-particle duality of radiation. A similar experiment can be performed

using material particles instead of electromagnetic radiation. Such experiments

have been performed with electrons by Möllenstedt and Dücker (1956), by

Jönsson (1961) and more recently by Tonomura et al. (1989)†. 

† A. Tonomura et al.,  American Journal of Physics, 57, 117 (1989). 
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Let a monoenergetic beam of electrons, emitted from a source  S be incident

on two slits  A and  B (Figure 4.7). The  widths and spacing of the slits are

chosen to be of the same order of magnitude as the de Broglie wavelength of

the incident electrons. After passing through the slits, the electrons fall on the

screen  P. The screen incorporates an array of microscopic counters ( C) which

can record each electron striking the screen at any point. Or, the screen may

be a fluorescent one, which can be photographed. 

Figure 4.8 shows the intensity  I (number of electrons arriving at a point in

a given time) as a function of position  x on the screen. If slit  B is blocked, the pattern observed on the screen looks like that shown in Figure 4.8 (a). Similarly, 

if slit  A is blocked, the pattern looks like that in Figure 4.8 (b). If the electrons

behaved as classical particles, then, on opening both the slits, the expected

pattern would be as shown in Figure 4.8 (c). However, when both the slits are

open, the pattern is as shown in Figure 4.8 (d). This is clearly a double-slit

interference pattern, exhibiting the wave behaviour of electrons. 

 P

 C

 A

 x

 S

 B

Figure 4.7

Double-slit experiment with electrons. 

 x

 x

 x

 x

 IA

 IB

 IA + IB

 I

(a)

(b)

(c)

(d)

Figure 4.8

Variation of intensity (I ) with the position on the screen (x). 

We might at first be inclined to think that the pattern is due to the

interference between electrons passing through the two slits. That this is not

true was demonstrated by Tonomura et al. by reducing the incident electron

Wave Nature of Matter and the Need for a Wave Function

$%

intensity to such a low level that only one electron was fired at a time towards

the slits. The interference pattern was still produced after a large number of

electrons were fired. This compels us to conclude that interference does not

occur between different electrons, but is a property of a single electron. In other

words, each electron interacts with both the slits and, as such, it is meaningless

to ask which slit the electron passes through. 

If we employ a detector that can tell which slit an electron goes through, 

the   interference pattern disappears. Thus on detection, the electron exhibits

particle-like properties—it is localized and is recorded by only one detector at

a time. We see that both the wave and particle natures of electrons are exhibited

in this experiment. We shall discuss more about the measurement process when

we discuss Heisenberg’s uncertainty principle. 

4.4

THE NEED FOR A WAVE FUNCTION

The results of the double-slit experiment lead to the inevitable conclusion that

each particle  interferes with itself in some way. The crucial question that arises, 

therefore, is: How do we describe a particle interfering with itself and thus

reaching the screen so as to fall in a certain interference pattern? 

The clue comes from the classical theory of waves. We know that waves

are characterized by an amplitude function such that the intensity of the wave

at any point is determined by the square of the amplitude. Following this, it is

assume that associated with each particle is a wave function Y( x,  t) such that

the absolute square of this function gives the intensity  I:

 I = | Y ( x,  t) |2 = Y* ( x,  t)  Y ( x,  t)

(4.11)

where * denotes complex-conjugation. For simplicity, we have taken one-

dimensional wave function but the treatment can be easily generalized to three

dimensions. Absolute value of Y is taken because, as we shall see later, the wave

function is, in general, a complex quantity. The intensity, on the other hand, is

a real, positive quantity. 

Now, in Young’s double-slit experiment with light, the intensity at a point

on the screen is given by the square of the amplitude of the wave formed by

the superposition of the secondary waves arising from the two slits. In the case

of the double-slit experiment with particles, let Y1 be the wave function at some

point on the screen corresponding to the waves spreading from slit 1 and Y2

be the wave function at the same point corresponding to the waves spreading

from slit 2. The corresponding intensities on the screen when only one slit is

open are

 I 1 = | Y1|2 and  I 2 = | Y2 |2

(4.12)

When both the slits are open, the two amplitudes Y1 and Y2 superpose to

give the resultant amplitude:

Y = Y1 + Y2

(4.13)

$& 
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The resultant intensity is, therefore

 I = | Y |2 = | Y1 + Y2 |2

(4.14)

Let us write

Y1 = |Y1| eia 1 ,  Y2 = |Y2| eia 2

(4.15)

where |Y1|, |Y2| are the absolute values and  a 1,  a 2  are the phases of the two

wave functions, respectively. Then

|Y1|2 = Y1* Y1 and |Y2|2 = Y2*Y2

(4.16)

This gives

 I = (Y1 + Y2)* (Y1 + Y2)

= Y1*Y1 + Y2*Y1 + Y1*Y2 + Y2*Y2

= |Y1|2 + |Y2|2 + Y1*Y2 + Y2*Y1

= | Y1|2 + |Y2|2 + |Y1| |Y2| ( e– i( a 1 –  a 2) +  ei( a 1 –  a 2))

=   I 1 +  I 2 +  2  I I  cos( a

1 2

1  –   a 2)

(4.17)

This shows that  I π  I 1 +  I 2, in keeping with the observation of section 4.3

(see Figure 4.8). The last term in Equation (4.17) is the  interference term. It

depends on the relative phase ( a 1  –   a 2) of Y1 and Y2. As the two phases

 a 1 and  a 2 vary with position, an interference pattern is formed on the screen. 

We shall see in chapter 6 that the wave function satisfies a  linear equation

which is known as the  Schrödinger equation. The linearity implies that if Y1 and

Y2 are any two solutions of the equation, then Y1 + Y2 is also a solution. This

is necessary for the superposition principle (Equation 4.13) to be valid. 

4.5

BORN’S INTERPRETATION OF THE WAVE FUNCTION

It must be apparent to the reader that, unlike classical waves such as electro-

magnetic waves or sound waves, the quantum mechanical wave function

Y( x,  t) is an  abstract quantity. This was realized by Max Born, who in 1926, suggested that the wave function must be interpreted statistically. Born’s

postulate can be stated as follows:

If a particle is described by a wave function Y( x,  t), then the  probability

 P( x)  dx of finding the particle within an element  dx about the point  x at time  t is P( x)  dx = | (

Y  x,  t)|2  dx

(4.18)

The quantity

 P( x) = |Y( x,  t)|2 = Y *( x,  t)Y( x,  t) (4.19)

is, naturally, called the position probability density. 

Since the probability of finding the particle somewhere must be unity, the

wave function should be  normalized so that

•

z Y*Y dx=1

(4.20)

 - •

That is, the wave function should be  square integrable. 
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The probabilistic interpretation of the wave function has to be justified by

the success of the theory that is built on it. However, the interpretation seems

to be quite consistent with the earlier observation related to interference of

electrons in the double-slit experiment. The wave function Y produces the

interference pattern. At places where |Y |2 is large, the probability of a particle

arriving there is large. Therefore, the particles reaching the screen distribute

themselves in the pattern dictated by the probability density function |Y|2. 

The genius of Born was acknowledged by the scientific community very

late. He was awarded the Nobel prize in 1954 for the great work that the did

in 1926 for the development of quantum mechanics. 

SUMMARY

1. In 1924, de Broglie postulated that with every material particle a wave

is associated, having wavelength

 h

 l =   p

where   p is the momentum of the particle and  h is Planck’s constant. 

2. de Broglie’s hypothesis was experimentally verified in 1927 by Davisson

and Germer and independently by G.P. Thomson by demonstrating that

electrons were diffracted by crystals in a manner similar to X-rays. 

3. The double-slit experiments carried out using beams of material particles

(electrons, neutrons etc.) exhibit interference patterns similar to those

obtained with light. It was found that interference does not occur

between different particles but is a property of a single particle. That is, 

each particle interferes with itself. 

4. In order to explain the interference effects, it is assumed that with each

particle a wave function is associated. Born postulated that if a particle

is described by a wave function Y ( x,  t), then | Y( x,  t)|2   dx gives the probability of finding the particle within an element  dx about the point  x

at time  t. Since the probability of finding the particle somewhere must be

unity, the wave function must be normalized:

•

z Y*Y dx = 1

 - •

QUESTIONS

1. State de Broglie’s hypothesis. Derive the expressions for the de Broglie

wavelength of a particle in terms of (a) its kinetic energy, (b) accelerating

potential, both for the nonrelativistic and the relativistic cases. 

2. Describe the Davisson-Germer experiment for establishing the wave

nature of electrons. 

%
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3. Describe G.P. Thomson’s experiment for establishing the wave nature of

electrons. 

4. Briefly describe the results of the double-slit experiment with electrons. 

What conclusion is drawn from it? Discuss how the association of a

wave function with the electron explains the interference effects. 

5. What is Born’s interpretation of the wave function associated with a

particle? 

EXERCISES

1. Calculate the de Broglie wavelength associated with a proton moving

with a speed equal to one-twentieth of the speed of light. 

Mass of proton = 1.67 ¥ 10–27 kg,  h = 6.6 ¥ 10–34 Js. 

[ Ans. 

2.63  ¥ 10–14 m]

2. Calculate the de Broglie wavelength of a neutron having kinetic energy

28.8 eV. Given: mass of neutron = 1.67 ¥ 10–27 kg,  h = 6.62 ¥ 10–34 Js. 

[ Ans. 

4.2  Å]

3. What voltage must be applied to an electron microscope to produce

electrons of wavelength 0.50 Å? Mass of electron = 9.0 ¥ 10–31 kg. 

[ Ans. 

602.4 V]

4. Calculate the de Broglie wavelength of an alpha particle accelerated

through a potential difference of 2000 V. 

[ Ans. 

2.3  ¥ 10–3  Å]

5. A nonrelativistic electron has wavelength 2.0 Å. What is its energy? 

[ Ans. 

37.5 eV]

6. Find the velocity of an electron if its de Broglie wavelength is 1.2 Å. 

[ Ans. 

6.0  ¥ 106 m/s]

7. A narrow electron beam, accelerated through a potential difference of

10 kV, is passed through a thin film of a metal for which the spacing of

the atomic planes is 55 pm. What is the angle of deviation of the first

order diffraction maximum? 

[ Ans. 

12°44¢]

[Hint.  The angle of deviation is twice the glancing angle  q in Bragg’s

formula.]
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Uncertainty  Principle
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Chapter  Contents

5.1

Representation of a Particle by a Wave Packet

5.2

Heisenberg’s Uncertainty Principle

5.3

Illustrations of the Uncertainty Principle

5.4

Applications/Consequences of the Uncertainty Principle

5.1

REPRESENTATION OF A PARTICLE BY A WAVE

PACKET

In chapter 4, we found that material particles exhibit wave nature and, therefore, 

a wave function must be associated with each particle. The momentum  p of a

particle and the wavelength  l of the wave associated with it are connected by

the de Broglie relation

 h

 p = 

=  h k

(5.1)

 l

where  k = 2 p / l is called the  propagation constant or the  wave number. Further, the energy  E of the particle and the frequency  n of the associated wave are

connected by the Planck-Einstein relation

 E =   hn =  h w

(5.2)

where   w = 2 p n is the  angular frequency of the wave. 

As a first step towards constructing a wave function to be associated with

a particle, let us consider a plane, monochromatic wave

Y( x,  t) =  Aei( kx– wt)

(5.3)
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which represents a simple harmonic disturbance of wavelength  l = 2 p/ k and

frequency  n =  w /2 p, travelling towards the positive  x-direction with velocity w

 v ph = 

(5.4)

 k

The subscript “ph” indicates that this velocity is called  phase velocity. For

simplicity, we shall restrict the discussion to one dimension though it can be

easily generalized to three dimensions. 

The plane wave (5.3) represents a particle having a definite momentum

 p =  h  k. However, since its amplitude  A is constant, it corresponds to a complete lack of localization of the particle in space. Indeed, the  probability density (see

Equation 4.19)

 P = |Y ( x,  t)|2 =  A 2

(5.5)

is independent of position. Thus, the particle has equal probability of being found

anywhere from minus to plus infinity. Clearly, a single plane wave cannot

represent a localized particle. 

So, the question that arises is: how to construct a wave function that can

look like a particle? If a wave is to be associated with a particle, then its

amplitude should be sizeable in the neighborhood of the particle and negligible

elsewhere. This suggests that a particle can be represented by a wave packet. 

 A wave packet can be formed by superposing plane waves of different wave

 numbers in such a way that they interfere with each other destructively outside

 of a given region of space.  The mathematical technique for doing this is that of

Fourier integral and transforms, which is summarized in Appendix A. 

Let Y( x,  t) be a one-dimensional wave packet formed by superposition of

plane waves:

1

•

Y( x,  t) = 

z  A( k) ei( kx– wt) dk

(5.6)

2 p

- •

where the amplitude  A and the angular frequency  w depend on  k. It is clear that in order to represent a free particle by a wave packet, we must give up the

requirement that the particle should have a precisely defined momentum. The

factor 1/ 2 p  has been chosen for later convenience. 

The amplitude function  A( k) is obtained by taking the inverse Fourier

transform of Y ( x,  t):

1

•

 A( k) e– iwt = 

z Y( x,  t) e– ikxdx

2 p

- •

1

•

or

 A( k) = 

z Y( x,  t) e– i( kx– wt)  dx

(5.7)

2 p

- •

Since we want the wave packet to describe a particle, we must now  localize

it. For this, we assume that  A( k) is centred about some particular value  k =  k 0, 
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falling  rapidly  to  zero  outside  an  interval 

 k

' 

 k

' 

 k 

,  k 

,  where  D k  is

0

0





2

2 

small. Then, 

 k

' 

 k 

0

2

Y( x,  t)  =  1

I  A( k)  ei( kx�w t) dk

(5.8)

2S

 k

' 

 k 

0

2

We assume further that w varies slowly with  k, so that we may expand it

in a Taylor series about  k 0:



2

 Z

w( k)  =  w( k

Z

0)  +  ( k  �   k 0)   d

   +  1( k �  k 0)2  d

+  ... 

 dk

2

 

 k= k

2

 dk

0

 k= k 0

Neglecting second and higher order terms because we are considering values

of   k  close  to   k 0,  and  putting w( k 0) = w0,  we  obtain

 %

Z

Z

(

Y( x,  t) =  1 I  A( k) exp

 d

 i ( k

&  k ) x

 dk

0

  k x

0



 t

0  ( k   k

 t

)

0

)

2S

 dk

! 

" 

' 

*$#

'  k

=   f ( x,  t) ei( k 0 x�w0 t)

(5.9)

where

 

 f ( x,  t) =  1 I  A( k)exp

 d Z

 i x 

 t ( k

 k

! 

)" 



   dk

(5.10)

0

2S '  k

 dk

$#

Equation  (5.9)  shows  that  the  wave  function  Y( x,  t)  is  a  wave  of  wave-

length  2p/ k 0  and  frequency  w0/2p  modulated  by  the  envelope   f( x,  t).  The envelope  depends  upon   x  and   t  only  through  the  combination   x  �  ( d w/ dk)  t. 

Thus,  it  represents  a  wave  packet  which  moves  with  the   group  velocity

 v

 d Z

=

(5.11)

 g

 dk

Figure  5.1  shows  the  schematic  diagram  of  a  wave  packet  propagating

along the  x-axis. 

Figure 5.1 A wave packet propagating along the  x-axis. 
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Before proceeding further, we point out one interesting and important

general property of wave packets. If D x is the spatial extent of a wave packet

and  D k is its wave number range, then it always happens that

D x  D k ≥ 1

(5.12)

Thus, it is impossible to make both the “widths”  D x and D k small. The

smaller the spatial extent of a wave packet, the larger is the range of wave

numbers in its Fourier decomposition, and vice versa. This general feature of

wave packets has very deep implications in quantum mechanics in the form of

 Heisenberg’s uncertainty principle as we shall see in section 5.2. 

An example illustrating the reciprocity relation (5.12) is given in

Problem 5.1. 

Let us now use the relations (5.1) and (5.2) to link wave packets with

material particles. We write

 d (h w)

 dE

 vg = 

= 

(5.13)

 d (  k

h )

 dp

This is the familiar classical Hamiltonian expression for the velocity of a particle. 

For a nonrelativistic free particle of mass  m, 

 p 2

 E =  2 m

 dE

 p

 mv

Therefore, 

= 

= 

=  v

(5.14)

 dp

 m

 m

where   v is the velocity of the particle. 

In the relativistic case, 

 E 2 =   p 2 c 2 +  m 2 c 4

 dE

or

2 E 

= 2 pc 2

 dp

 dE

 pc 2

or

= 

 dp

 E

Now, 

 E =   g mc 2

and

 p =  g mv

where

 g =  1

1

2

2

-  v / c

 dE

 g mv c 2

Therefore, 

 vg = 

= 

=  v

(5.15)

 dp

 g mc 2

Thus, both for a relativistic and a nonrelativistic particle, the group velocity

of the associated wave packet is to be identified with the velocity of the particle. 

Let us look at the phase velocity in the two cases. For a nonrelativistic

particle, 

F

 w

h w

 E

 p 2

1

 p

 v

 v ph = 

= 

= 

= 

= 

(5.16)

 k

h k

 p

2 m

 p

HG IKJ  = 2 m  2
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On the other hand, for a relativistic particle

 E

 g mc 2

 c 2

 v ph = 

= 

= 

(5.17)

 p

 gmv

 v

Thus, in the first case  v ph is less than the speed of the particle and in the

second case it is more than the speed of light. Clearly, the phase velocity has

no physical significance. 

The wave function Y( x,  t) can now be written as

1

•

Y( x,  t) = 

z  f( p)  e( i/h)( px- Et)  dp (5.18)

2 p h -•

where  A( k) has been replaced by the  momentum amplitude function  f(  p). If we define

F(  p,  t) =   f (  p)  e- iEt/h

(5.19)

then (5.18) becomes

1

•

Y ( x,  t) = 

z F( p,  t) eipx/h dp (5.20)

2 p  h -•

and, taking the inverse Fourier transform of Y( x,  t)

1

•

F(  p,  t) = 

z Y( x,  t) e- ipx/h dx (5.21)

2 p  h -•

At time  t = 0, 

1

•

 y( x) = Y( x, 0) = 

z  f( p) eipx/h dx

(5.22)

2 p  h -•

and

1

•

 f(  p) = 

z  y( x) e- ipx/h dx

(5.23)

2 p  h -•

F (  p,  t) (or  f (  p)) is called the wave function in momentum space. 

It can be shown that

•

•

z |F( ,  pt)|2 dp  z |Y( x,  t)|2

=

 dx = constant

(5.24)

- •

- •

This result is called Parseval’s theorem.  It shows that if Y ( x,  t) is

normalized to unity then so is F (  p,  t). 

Wave Packets in Three Dimensions

The above discussion of one-dimensional wave packets can be easily extended

to three dimensions. The three-dimensional wave packet is

1

•

Y(r,  t) = 

z F(p,  t) eipr◊/h dp

(5.25)

2

3 2

(

) /

 p h

- •
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where   dp  =   dpx dpy   dpz  is  the  volume  element  in  momentum  space.  Taking inverse  transform, 

�

F(p,  t) = 

1

I Y(r,  t) e ip¹r/= dr (5.26)

2

3 2

(

) /

S=

�

where  dr =   dx dy dz is the volume element in coordinate space. 

Parseval�s theorem  is

I|Y(r,  t)|2 dr= I |F(p,  t)2 dp

(5.27)

PROBLEM 5.1 A wave packet has the amplitude function

%

 A( k)  =  1/ H , H /2 �  k � H /2

&0, | k|!H/2

' 

Find  the  wave  function  y( x)  and  hence  verify  the  reciprocity  relation

D x  D k  >  1. 

 Solution:  y( x) is obtained by taking the Fourier transform of  A( k):

�

y ( x) =  1 I  A( k)  eikx dk

2S �

H /2

=  1

1

I  eikx  dk

2

H /2

S

H

H /2

 ikx



=  1

 e

2S H

 ix

!  "$#H/2

 i H  x /2

 i H  x/2

=  1

2  e

  e

2SH  x

2 i

= 

2 sin(H  x /2)

S H

 x

The graphs of  A( k) and y ( x) are shown in Figure 5.2. The central peak of

y( x)  falls  to  zero  at  x =  ±2p/e.  Therefore,  the  width  of  y ( x)  is Figure 5.2 A function and its Fourier transform. 
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D x = 4 p/ e

The width of  A( k) is

D  k =   e

Therefore, 

D x  D k = 4 p

Thus, the reciprocity relation is verified. 

5.2 HEISENBERG’S UNCERTAINTY PRINCIPLE

In classical mechanics, the position and the momentum of a particle are

independent of each other and can be simultaneously measured precisely. In

quantum mechanics, a particle is represented by a wave packet. The particle

may be found anywhere within the region where the amplitude of the wave

function   y ( x) is nonzero. Thus, the position of the particle is indeterminate

within the width of the wave packet. Similarly, the momentum of the particle

is indeterminate within the region where the momentum wave function  f(  p)

is nonzero. An important question that arises is: How precisely we can determine

the position and the momentum of a particle simultaneously? In order to answer

this question, we recall the reciprocity relation (5.12) between the widths in the

 x-space and  k-space wave functions:

D x D k  ≥  1

Using the relation  h k =  p, we obtain

D  x  D p ≥ h

(5.28)

This is Heisenberg’s uncertainty relation for position and momentum. 

It states that  it is not possible to specify both the position and the momentum

 of a particle simultaneously with arbitrary precision; the product of the

 uncertainties in the position and the momentum is always greater than a quantity

 of order   h. 

In chapter 6, we shall obtain the exact statement of the uncertainty relation

as

D x D p  ≥  h /2

(5.28a)

The relation (5.28) can be easily generalized to three dimensions:

D x  D p ≥ h

 x

D y  D p ≥ h

 y

(5.29)

D z  D p ≥ h

 z

It is important to note that there is no uncertainty relation between one

cartesian component of the position vector of a particle and a different cartesian
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component of the momentum. The restrictions are only on the complementary

pairs: D x, D px; D y, D py and D z, D p z. 

It is also important to note that the uncertainty relation does not place any

restriction on the precision with which a position or a momentum measurement

of a particle can be made. But once the system is known to have one of these

quantities defined to within a precision e, then the measurements of the other

quantity subsequently will give values spread over a range ³  =/e. Thus, more

precisely one of the quantities is known, the greater is the range of values that

will be obtained in a series of measurements of the other quantity. 

Energy-Time  Uncertainty  Relation

The  position-momentum  uncertainty  relation  can  be  used  to  obtain  another

uncertainty relation�the one involving energy and time. The energy  E of a free

particle of mass  m  and  momentum  p is

2

 E =   p

2 m

If D p is the uncertainty in momentum then the uncertainty in energy is

D E  =  2  p   D p =   p   D p  =   v  D p

2 m

 m

where  v is the velocity of the particle. 

If the spatial width of the wave packet representing the particle is D x, then

the time required for the packet to pass a given point, and hence the uncertainty

in its localizability in time, is

D t =  '  x

 v

Multiplying the two, 



D E  D t = ( v D p) '  x

  v  = D x D p ³  =

or

D E D t ³  =

(5.30)

This  relation  may  also  be  deduced  directly  from  the  form  of  the  wave

packet (5.18) since  E and  t appear in the same reciprocal relation as  p and  x. 

A wave packet of duration D t  must  be  composed  of  plane-wave  components

whose energies extend over a range D E such that (5.30) is satisfied. Thus, this

relation  connects  the  uncertainty  D E  in  the  determination  of  the  energy  of  a

system with the time interval D t available for the energy determination. In the

context of quantum mechanics, it implies that a state of finite duration cannot

have a precisely defined energy. Thus, if an excited atomic or nuclear state has

a life time t, its energy is uncertain by an amount at least of order  =/t. For the

energy of a quantum state to be precisely defined, it must have infinite life time. 

 Wave Packets and the Uncertainty Principle

79

General  Statement  of  the  Uncertainty  Principle

The  uncertainty  relations  (5.29)  and  (5.30)  are  obtained  as  a  mathematical

property of wave packets. They are forced on us by the need to reconcile the

wave-particle duality of matter. These relations are particular examples of the

uncertainty principle, formulated by Heisenberg in 1927. He recognized it as a

basic principle that underlies the structure of quantum mechanics. The principle

can be stated as:

 The Uncertainty Principle

It  is  impossible  to  simultaneously  specify  the  precise  values  of  both

members  of  certain  pairs  of  dynamical  variables  of  a  system.  These

variables,  called   complementary  variables,  are  canonically  conjugate  to

each  other  in  the  classical  Hamiltonian  sense.  The  product  of  the

uncertainties  in  the  values  of  the  two  variables  is  at  least  of  the  order

of  h. 

The  most  common  examples  of  complementary  variable  are: A  cartesian

coordinate of a particle and the corresponding component of momentum ( x,  px; 

 y,  py;  z,  pz), a component of angular momentum of a particle and its angular position in a perpendicular plane (e.g.  Jz, f), the energy  E of a particle and the time   t  at  which  it  is  measured.  There  is  no  complementarity  between  one

cartesian  coordinate  of  a  particle  and  a  different  momentum  component

(e.g.  x and  py). 

It must be kept in mind that the limitations on measurement imposed by the

uncertainty principle have nothing to do with the experimental errors that occur

in actual measurements. Further, the smallness of h ensures that the uncertainty

principle is relevant only for systems of atomic dimensions. No results of classical

mechanics  are  affected  for  macroscopic  bodies. 

The  uncertainty  principle  is  valid  for  photons  as  well  as  for  material

particles. 

5.3 ILLUSTRATIONS  OF  THE  UNCERTAINTY  PRINCIPLE

We now describe some experiments which help up to understand more clearly

how the process of measurement creates uncertainties which are in accordance

with  Heisenberg�s  uncertainty  principle  and  are  forced  on  us  by  the  need  to

reconcile the wave and particle aspects of matter and radiation. 

Heisenberg�s  Gamma-ray  Microscope

This is an idealized �thought� ( gedanken) experiment devised by Heisenberg

himself. A thought experiment is an imaginary experiment which is consistent

with the laws of physics but is not possible to carry out in actual practice. Such

experiments  are  frequently  used  in  physics  to  clarify  difficult  concepts  in  a

simple manner. 
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photon

Scattered

Lens

 q

Incident photon

 x

Electron

Figure  5.3 Gamma-ray  microscope. 

This  experiment  attempts  to  determine  the  position  of  an  electron  by

observing it through a microscope (Figure 5.3). The initial momentum of the

electron is known precisely. For simplicity, we assume it to be at rest initially. In

order to observe the electron, it must be illuminated by radiation which is scat-

tered by the electron into the microscope. If l is the wavelength of the scattered

radiation, then the  x-component of the electron position cannot be determined to

a precision greater than the limit of resolution of the microscope, which is given

by

D x »  O

(5.31)

2 sinT

where q is the half-angle subtended by the lens at the electron position. This is

the uncertainty in the position of the electron. Clearly, smaller the wavelength

of the illuminating radiation, smaller will be the uncertainty in position measure-

ment. Therefore, one must employ light of shortest possible wavelength. Hence

the  name  g-ray  microscope,  because  g-rays  have  the  shortest  wavelengths. 

D x  can  also  be  decreased  by  increasing  q  (for  example,  by  making  the  lens

aperture  larger). 

Now,  in  order  that  the  electron  be  observed,  at  least  one  of  the  incident

photons must be scattered by the electron into the microscope. This Compton

scattering imparts to the electron a recoil momentum which is of the order of

magnitude of the photon momentum  h/l. However, the direction in which the

photon  is  scattered  cannot  be  known  exactly  because  it  can  be  scattered

anywhere within the aperture of the lens. From the figure, the  x-component of

the  momentum  of  the  scattered  photon  ranges  from  �  h   sin  q  to  +  h   sin q. 

O

O

Therefore, the uncertainty in the  x-component of the recoil momentum is



D px » 2   h  sinT





O



(5.32)
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Note that D px can be reduced by increasing  l and/or decreasing  q, but both these steps would increase D  x. Multiplying (5.31) and (5.32), we get

D x  D px  ª   h

which is in accordance with the uncertainty principle. Thus, our idealized

thought experiment does not allow us to escape the requirements of the

uncertainty principle. 

Single-Slit Diffraction Experiment

Suppose a beam of electrons (or some other particles including photons) is

moving along the  x-direction with a well-defined momentum  p. If this beam is

made to pass through a slit of width  a, as shown in the figure, then the  y

coordinate of the position of an electron passing through the slit is determined

to an accuracy

D y =  a

 y

 o

 x

 p

 p

Electron

 p

 y

 a

beam

 q

Diaphragm

Photographic plate

with slit

Figure 5.4

Single-slit diffraction. 

Smaller the width of the slit, greater is the accuracy in the knowledge of the  y

coordinate of the electron at the instant it passes through the slit. 

The electron has a wave associated with it, having de Broglie wavelength

 l =  h/ p. Therefore, a diffraction pattern is observed on the photographic plate placed on the other side of the slit. Due to diffraction, the beam diverges and, 

as a result, an electron acquires a momentum component parallel to the slit, i.e., 

in the  y-direction. Since the electron is most likely to be found within the central

peak of the diffraction pattern, the uncertainty in the knowledge of the  y

component of the momentum of the electron is

D  py ª   p sin  q

where  q is the angular deviation corresponding to the first minimum. 

& 
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Now, from the theory of diffraction, 

 l

sin  q =   a

 pl

Therefore, 

D  py  ª   p  sin  q =   a

Clearly, a better knowledge of the  y coordinate (that is, smaller  a) results

in lesser accuracy in the knowledge of the  y component of momentum. 

Combining the above equations, and putting  p =  h/ l, we get

 h

 l

F

D y D py ª  ( a) HG I

 l  KJ FHG IKJ

 a

or

D y D py ª   h

as required by the uncertainty principle. 

Double-Slit Interference Experiment

Let us now return to the double-slit experiment with electrons (or any other

particles including photons) discussed in section 4.3. It was mentioned therein

that if we employ a detector that can tell which slit an electron goes through, 

the interference pattern disappears. We shall now see that the uncertainty

principle ensures that this is exactly the case. 

Figure 5.5 shows a schematic diagram of the double-slit experiment. The

distance between the slits  A and  B is  d and the distance between the slits and the screen is  D. 

 y

 M

 A

Screen

 S

 d

 x

Source of

 B

electrons

 D

Figure 5.5

Double-slit experiment with a detector. 

The distance between successive maxima on the screen would be

 lD

 b = 

(5.33)

 d

where   l is the de Broglie wavelength of the electron, that is, 

 h

 l =   p

 p being the momentum of the electron. 
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The detector is placed just behind the slits. It is a microscope along with

a illumination device. In order that the microscope tells which slit the electron

came through, it should measure the  y-component of the electron’s position to

a precision better than half the distance between the slits. That is

 d

D y < 

(5.34)

2

In order to detect the electron, an illumination photon must bounce off the

electron into the microscope. This will impart to the electron a momentum in

the  y-direction and thereby introduce an uncertainty D py in the  y-component of the electron’s momentum. According to the uncertainty principle

h

D py ≥  D y

Using (5.34), 

2h

D py ≥   d

As a consequence, the direction of motion of the electron becomes uncertain

by an angle Dq given by

D p

2h

 l

D q

 y

ª 

≥ 

= 

 p

 d ( h/ l)

 pd

This angular uncertainty produces an uncertainty in the position of the electron

on the screen given by

 lD

D y =  D D q ≥   pd

This is comparable with  b, the distance between successive maxima of the

interference pattern (see Equation 5.33). Thus, the uncertainty principle leads

to the conclusion that if an attempt is made to determine through which slit the

electron passes, the interference pattern disappears. Since this is known to be

correct experimentally, the uncertainty principle must be true. 

5.4

APPLICATIONS/CONSEQUENCES OF

THE UNCERTAINTY PRINCIPLE

Since the Planck’s constant is very small (6.63 ¥ 10–34 Js), the uncertainty

principle has significant consequences only for the microscopic systems. There

are various phenomena in atomic and subatomic systems which can be

understood in terms of this principle. It can also be used to make rough

numerical estimates of various quantities connected with these systems. We

discuss a few cases below. 

&" 
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The Ground State Energy and the Radius of the Hydrogen

Atom

The position-momentum uncertainty relation can be used to obtain an estimate

of the energy and the radius of an atom in its ground state. Let us discuss the

simplest atom, hydrogen, which consists of a proton and an electron. If we

assume the proton to be infinitely heavy, and hence at rest, the total classical

energy of the electron is given by

 p 2

 e 2

 E = 

– 

2 m

4 p e r

0

where  r is the radius of the electronic orbit. Classically,  r can be made arbitrarily small and so there is no lower limit to the value of  E. The uncertainty principle

ensures that this is not possible in quantum mechanics. Since the linear size of

the atom is of order  r, the uncertainty in the position of the electron is

D r ª  r

According to the uncertainty principle, 

 p ª  D p  ª  h / r

Therefore, 

h2

 e 2

 E = 

– 

(5.35)

2

2 mr

4 p e r

0

The system will be in the state of lowest energy at the value of  r given by

 dE = 0

 dr

h2

 e 2


or

–

+ 

= 0

3

 mr

 r  2

4 p e  0

(4 p e ) 2

h

or

 r = 

0

2

 me

This is same as the expression obtained for the first Bohr radius  a 0 (see

Equation 3.16). Its value is

 r =   a 0 = 0.53 Å

Substituting in (5.35), the ground state energy of the hydrogen atom is

 me 4

h2

 E =  –

= –

2

2

2h (4 p e )

2

2

0

 ma 0

which is same as the Bohr’s expression (see Equation 3.18). Its value is

 E = – 13.6 eV
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It is interesting to note that a qualitative discussion using the uncertainty

principle leads to the correct ground-state energy and radius of the hydrogen

atom. The precise agreement should not be taken too seriously. The important

point to note is that the total energy of an atom has a minimum value which is

compatible with the uncertainty principle. It is also clear why atoms are stable

and  do  not  collapse.  To  quote  from  The  Feynman  Lectures  on  Physics�:

 So we now understand why we do not fall through the floor. As we walk, 

 our shoes with their mass of atoms push against the floor with its mass of atoms. 

 In order to squash the atoms close together, the electrons would be confined to

 a smaller space, and by the uncertainty principle, their momenta would have to

 be higher on the average, and that means high energy; the resistance to atomic

 compression is a quantum mechanical effect and not a classical effect. 

Nonexistence  of  Electrons  Inside  the  Nucleus

As  we  know,  the  size  of  a  nucleus  is  of  the  order  of  10�14 m. Therefore,  for

an electron to be confined within a nucleus, the uncertainty in its position should

not exceed this value. The corresponding uncertainty in the momentum of the

electron would be

34

D p  ³  = =  1054

. 

� 10

'  x

1014

= 1.1 ´ 10�20  kg  m/s

The momentum  p must be at least equal to D p. An electron having such a large

momentum has kinetic energy  K much greater than its rest-mass energy  m 0 c 2. 

As such we may use the relativistic formula

 K »  pc

= 1.1 ´ 10�20 ´ 3 ´ 108

=  3.3  ´  10�12 J

12



=  3 3

. � 10

MeV

1 6

. � 1013

= 20.6 MeV

Experiments show that the electrons emitted from nuclei in b-decay have

mostly energies between 2�3 MeV. From this we conclude that electrons cannot

be basic constituents of nuclei. In fact, b-decay occurs when a neutron inside

the nucleus transforms into a proton, an electron and a neutrino. The electron

and the neutrino are immediately ejected out of the nucleus. 

Let  us  see  how  much  energy  an  electron  must  possess  to  be  confined  in

an atom, say hydrogen. We  have

D x » 5 ´ 10�11 m

� R.P. Feynman, R.B. Leighton and M. Sands, The Feynman Lectures on Physics, Vol III, 

Addison Wesley Publishing Co., 1965. 

&$
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Therefore, 

h

1 054

. 

¥ 10-34

 p ª  D p  ª 

= 

D x

5 ¥ 10-11

= 2.11 ¥ 10–24 kg m/s

An electron having momentum of this order is nonrelativistic in behaviour. 

Therefore, 

 p 2

 K =  2 m

( . 

2 11 ¥ 10-24)2

=  2 ¥ .91¥10-31

= 2.446 ¥ 10–18 J

= 15.3 eV

This value is reasonable. 

Zero-Point Energy of a Harmonic Oscillator

We are familiar with the classical expression for the energy of a harmonic

oscillator:

 p 2

1

 E = 

+ 

 mw 2 x 2

2 m

2

where  w is the angular frequency of oscillation. Classically, the minimum value

of   E is zero, which occurs when the particle is at rest (  p = 0) at the mean

position ( x = 0). In quantum mechanics, the uncertainty principle does not allow

this situation because then both position and momentum would be precisely

known. 

Let us assume that the particle is confined to a region of size  a. Then

 x  ª  D x  ª   a

Using the exact statement of the uncertainty relation, 

h

D x D p  ≥  2

we get

h

 p  ª  D p  ª  2 a

The energy is then given by

h2

1

 E = 

+ 

 mw 2   a 2

(5.36)

2

8 ma

2

For   E to be minimum

 dE  = 0

 da
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which gives

 a = [[/2 mw]1/2

Substituting in (5.36), the minimum value of  E is

h w

 E min = 

(5.37)

2

We shall see later, in a detailed study of the harmonic oscillator in chapter 9, that

this is indeed the ground state energy of the harmonic oscillator. We used the

exact statement of the uncertainty principle to get the right result. 

This minimum energy is called the zero-point energy. It is clear that

according to the uncertainty principle, no physical system can be completely at

rest, even at absolute zero temperature. One important consequence of zero-

point energy is that helium does not solidify even at very low temperatures, 

whereas normally a substance solidifies to form a crystal at low temperatures. 

Helium has a relatively shallow potential energy minimum. Moreover, being a

light element, its kinetic energy is large. Therefore, it has large zero-point energy

so that it remains in liquid form even at very low temperatures. 

Broadening of Spectral Lines

Let us now consider an important example of the energy-time uncertainty

relation (5.30). As mentioned earlier, this relation implies that a state of finite

duration cannot have a precisely defined energy. Consider an atom in an excited

state. We know that it de-exites in a very short span of time by emitting a

photon. The statistical average time that elapses before the state de-exites is

called the  lifetime of that state. Let  t be the lifetime of the given excited state. 

From the uncertainty principle, the energy of this state is not sharply defined but

is uncertain at least by an amount

h

D  E =   t

This is known as the  natural energy width of the state. Clearly, shorter the

lifetime of an excited state, larger is the natural energy width of that state. The

ground state energy is sharply defined, that is it has zero energy width, because

its lifetime is infinite. 

Suppose the atom de-exites to the ground state. Due to the energy width of

the excited state, the frequency of the emitted radiation will be spread by an

amount

D E

h/ t

1

D n = 

= 

= 

 h

 h

2 pt

Consequently, the spectral line is  broadened (Figure 5.6). If the transition occurs

between two excited states, then the broadening will be more pronounced

because both the states have nonzero energy widths. The quantity D n is called

the  natural linewidth of the spectral line. We emphasize that this broading is a

quantum mechanical phenomenon and cannot be explained classically. It is a

consequence of the uncertainty principle. 

&& 
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The above discussion is not confined to atoms, but is equally applicable to

other systems such as nuclei, molecules etc. 

 I

D n

 n

Figure 5.6

Broadening of a spectral line. 

To get an idea of the numerical values, the lifetime of an atomic state is of

order 10–8 s. Thus, 

h

1 054

. 

¥ 10 34

-

D  E = 

= 

 t

10 8

-

= 1.054 ¥ 10–26  J

The width of the spectral line when the atom de-exites to the ground state is

D E

D n =   h

1 054

. 

¥ 10 26

-

=  63.¥ 10 34

-

= 1.67 ¥ 107 Hz

This is the limit to the accuracy with which the frequency of the radiation

emitted by an atom can be determined. 

Mass of  p-Meson

In 1935 Yukawa proposed that the nuclear force arises through the emission of

a particle by one of the nucleons and its absorption by the other. This particle

is now called  p -meson or pion. If the mass of the pion is  m, then its emission

introduces an energy imbalance

D  E ª  mc 2

According to the uncertainty principle, this can take place only for a time

h

h

D t ª 

ª 

D E

 mc 2

The range covered by the pion before being absorbed is, therefore, of order

h

 r 0 ª   c  D t  ª   mc
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This yields

h

 m ª   r c 0

 m

1

F  h

or

= 

 m

2 p r

 m c

HG IKJ

0

0

0

where   m 0 is the mass of the electron. This gives

 m

 l

ª 

0

 m

 p

2  r

0

0

where  l 0 =  h/ m 0 c is the Compton wavelength of the electron (see section 2.3). 

Its value is 0.0242 Å. Substituting the values, 

 m ª 275  m 0

This estimated value is remarkably close to the actual value. 

PROBLEM 5.2

Calculate the uncertainty in the momentum of a proton

confined in a nucleus of radius 10–14 m. From this result, estimate the kinetic

energy of the proton. 

 Solution:

If the proton is confined within a nucleus of radius  r 0, then the

uncertainty in its momentum is

h

1 054

. 

¥ 10 34

-

D p  ª 

= 

=  1 054

10 20

. 

¥

-

kg m/s

 r

14

-

0

10

Taking the momentum  p to be of order D p, the kinetic energy of the proton

is given by

 p 2

h2

 E = 

ª 

2 m

2

2 mr 0

where   m is the mass of the proton. Substituting the values, 

( . 

1 054 ¥ 10-34)2

 E ª  2 ¥ .167 ¥ 10-27 ¥ (10 14

-

)2

= 0.3326 ¥ 10–13 J

0 3326

. 

¥ 10 13

-

= 

MeV

1 6

. ¥ 10-13

=  0 2

. 1 MeV

PROBLEM 5.3

An electron of energy 100 eV is passed through a slit of

width 10–6 m. Estimate the uncertainty introduced in the angle of emergence. 

 Solution:

The momentum of the electron is

 p =  2 mE

'
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= 

2

9 1 10 31

-

100

1 6

10 19

¥

¥

¥

¥

¥

-

. 

. 

= 5.4 ¥ 10–24 kg m/s

Uncertainty in momentum

h

1 054

. 

¥ 10 34

-

D  p ª 

= 

D x

1 ¥ 10 6

-

= 1.054 ¥ 10–28 kg m/s

Uncertainty in the angle of emergence

D p

D q ª   p

1 054

. 

¥ 10 28

-

= 

= 0.2 ¥ 10–4 radians

5 4

. ¥ 10 24

-

ª  4 seconds of arc

PROBLEM 5.4

Repeat Problem 5.3 for a lead ball of mass 0.2 g thrown with

a speed of 10 m/s through a slit of radius 1.0 cm. 

 Solution:

 p = 0.2 ¥ 10–3  ¥ 10 = 2 ¥ 10–3 kg m/s

h

1 054

. 

¥ 10 34

-

D p ª 

= 

D x

1 0

. ¥ 10 2

-

= 1.054 ¥ 10–32 kg m/s

D p

1 054

. 

¥ 10 32

-

D q ª 

= 

 p

2 ¥ 10-3

= 5.3 ¥  10–30 radians

=  11 10 24

. ¥

-

seconds of arc

PROBLEM 5.5

The speed of a bullet of mass 50 g is measured to be 300 m/s

with an accuracy of 0.01%. With what accuracy can we locate the position of

the bullet? 

 Solution:

D p =  D ( mv) =  m  D v

50

300 ¥ 0 01

. 

= 

¥ 

1000

100

= 1.5 ¥ 10–3 kg m/s

h

1 054

. 

¥ 10 34

-

D x  ª 

= 

=  7

10 32

¥

-

m

D p

1 5

. ¥ 10 3

-
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PROBLEM 5.6

The lifetime of a nucleus in an excited state is 10–12 s. 

Calculate the probable uncertainty in the energy and frequency of a  g -ray

photon emitted by it. 

 Solution:

The energy-time uncertainty relation is

D E  D t  ª  [

Therefore, the uncertainty in energy is

h

1 054

. 

¥ 10 34

-

D E  ª 

= 

=  1 054

10 22

. 

¥

-

J

D t

10 12

-

The uncertainty in frequency is

D E

1 054

. 

¥ 10-22

D n = 

= 

=  1 59

1011

. 

¥

Hz

 h

6 625

. 

¥ 10-34

PROBLEM 5.7

Using the uncertainty principle, show that an alpha particle

can exist inside a nucleus. 

 Solution:

The radius of a typical nucleus is of the order of 10–14 m. If a

particle is to exist within the nucleus, then the uncertainty in its position must

be of this order:

D x  ª 10–14 m

Therefore, the uncertainty in the momentum of the particle must be

h

1 054

. 

¥ 10 34

-

D p ª 

= 

D x

10 14

-

= 1.054 ¥ 10–20 kg m/s

The momentum of the particle is at least of this order. 

The rest mass of an  a-particle is approximately four times the mass of a

proton:

 m = 4 ¥ 1.67 ¥ 10–27 kg

The speed of the  a-particle would be

1 054

. 

¥ 10-20

 v = 

= 1.58 ¥ 106 m/s

4 ¥ 1 67

. 

¥ 10-27

With this speed the motion can be considered nonrelativistic. Therefore, the

kinetic energy of the particle is at least

 p 2

( . 

1 054 ¥ 10 20

-

)2

 K = 

= 

2 m

2 ¥ 4 ¥ . 

1 67 ¥ 10 27

-

= 8.3 ¥ 10–15 J

=  52 keV

' 
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Energy carried by  a-particles emitted by nuclei is much more than this

value. Thus,  a-particles can exist inside a nucleus. 

PROBLEM 5.8

A nucleon (neutron or proton) is confined to a nucleus of

radius 5 ¥ 10–15 m. Calculate the minimum possible values of the momentum

and the kinetic energy of the nucleon. 

 Solution:

The maximum uncertainty in the position of the nucleon is

(D x)max = 2 ¥ 5 ¥ 10–15 = 10–14 m

According to the uncertainty principle, the minimum uncertainty in the

momentum of the particle is

h

1 0

. 5 ¥ 10-34

(D p)min ª 

= 

(D x)

14

-

max

10

= 1.05 ¥ 10–20 kg m/s

The momentum cannot be less than this value. Thus, 

 p min = (D p)min =  1 05 10 20

. 

¥

-

kg m/s

The minimum kinetic energy is, therefore, 

 p 2

( . 

1 05 ¥ 10-20)2

 K

min

min = 

= 

MeV

2 m

2 ¥ . 

1 67 ¥ 10 27

-

¥ . 

1 6 ¥ 10 13

-

=  0 2

. MeV

PROBLEM 5.9

If the angular momentum of the electron in a hydrogen atom

is known to be 2h within 5% accuracy, show that its angular position in a

perpendicular plane cannot be specified at all. 

 Solution:

According to the uncertainty principle, 

D L D q ª  h

5

h

Here

D  L = 

(2 h ) = 

100

10

h

Therefore, 

D q = 

= 10 radians

D L

Since the angle in a plane cannot be greater than 2 p, it is clear that the angular

position of the electron cannot be specified. 

PROBLEM 5.10

The average lifetime of an excited atomic state is 10–8 s. 

If the wavelength of the spectral line associated with the transition from this

state to the ground state is 6000 Å, estimate the width of this line. 

 Solution:

We have

 hc

 E =   hn =   l
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 hc

or

D  E = 

D  l

 l 2

According to the uncertainty principle, 

D E  D t ª  h

 hc

or

D  l D t ª  h

 l 2

 l 2

or

D  l =   p

2  c t

D

(6 ¥ 10 7

- )2

=  2 ¥ .314 ¥ 3¥ 108 ¥ 10-8

=  1 9

10 14

. ¥

-

m

PROBLEM 5.11

Using the uncertainty principle, estimate the ground state

energy of the helium atom. 

 Solution:

Helium atom has two electrons. Let the regions of localization of the

two electrons have dimensions  r 1 and  r 2. Then the spread in momenta, and

therefore, the minimum momenta, of the two electrons would be

h

h

 p 1 ª 

,  p 2  ª 

 r

 r

1

2

The kinetic energy of the system is

h2 F 1

1

ª 

+

2

2

2 m r

 r

HG

IKJ

1

2

where  m is the mass of the electron. The potential energy of the interaction of

F 1 1

the electrons with the nucleus of charge 2 e is ª –2 e 2 

+

 r

 r

HG

IKJ. Finally, since

1

2

the separation between the electrons is of order ( r 1 +  r 2), the interaction energy between the electrons is ª   e 2/( r 1 +  r 2). The total energy of the system is, therefore, 

h2 F 1

1

F

 e 2

 E  ª 

+

+

2

2

2 m r

 r

HG

IKJ –2 e 2 1 1

 r

 r

HG

IKJ +  r+ r

1

2

1

2

1

2

In the ground state  E is minimum. Therefore, 

 dE

h2

2 2

 e

 e 2

=  –

+ 

– 

= 0

 dr

3

2

2

1

 mr

 r

( r +  r )

1

1

1

2

 dE

h2

2 2

 e

 e 2

and

=  –

+ 

– 

= 0

 dr

3

2

2

2

( +

)

2

 mr

 r

 r

 r

2

1

2

'" 
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Solving these equations, we get

4

2

h

 r 1 =  r 2 =  7 2

 me

Substituting in the expression for  E and simplifying, the total energy in the

ground state is

49

4

 me

 E ª  – 16 2

h

F

49

9 1

. ¥ 10 31

-

¥ 1

( 6

. ¥ 10 19

-

4

)

= –

eV

16

10

( . 5 ¥ 10 34

-

2

) ¥ 1 6

. ¥ 10-19

HG

IKJ

=  -10.35 eV

SUMMARY

1. If a wave is to be associated with a particle, then its amplitude should

be sizeable only in the neighborhood of the particle. Therefore, a particle

can be represented by a wave packet. A wave packet is formed by

superposing plane waves of different wave numbers, and hence

momenta, in such a way that they interfere with each other destructively

outside of a given region of space. A wave packet in one dimension is

written as

1

•

Y ( x,  t) = 

z  f( p) e( i/h)( px- Et) dp

2 p  h -•

where  f (  p) is negligible outside a small momentum range. If we define

F(  p,  t) =   f(  p)  e- iE t/h

then

1

•

F(  p,  t) = 

z Y( x,  t) e- ipx/h dx

2 p h -•

Y( x,  t) and F(  p,  t), which are Fourier transforms of each other, are known as the  wave functions in coordinate space and momentum space, 

respectively. They satisfy

•

z

•

|Y ( x,  t)|2  dx =  z |F( p,  t)|2  dp = 1

- •

- •

2. The group velocity of a wave packet is equal to the velocity of the

particle, both in the nonrelativistic and relativistic cases. 

3. It follows from the properties of a wave packet that

D  x D p ≥  h
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This  is  Heisenberg�s  uncertainty  relation  for  position  and  momentum. 

Heisenberg recognized the uncertainty principle as a general principle that

underlies  the  structure  of  quantum  mechanics.  The  statement  is:

 It is impossible to simultaneously specify the precise values of both

 members of certain pairs of dynamical variables of a system. These vari-

 ables,  called  complementary  variables,  are  canonically  conjugate  to

 each other, e.g., position-momentum, energy-time etc.  The product of the

uncertainties in the values of the two variables is at least of the order of =. 

4. Single  and  double-slit  diffraction  experiments  with  particles  and

Heisenberg�s  gamma-ray  microscope,  which  is  a  thought  experiment, 

provide illustrations of the uncertainty principle. 

5. Some  important  application/consequences  of  the  uncertainty  principle

are:

(a) Estimation of the ground state energy and radius of the hydrogen

atom; 

(b) Nonexistence of electrons inside the nucleus; 

(c) Existence of zero-point energy of a harmonic oscillator; 

(d) Broadening of spectral lines; 

(e) Estimation  of  the  mass  of p-meson. 

QUESTIONS

1. What is a wave packet? Discuss the representation of a material particle

by  a  wave  packet. 

2. What is meant by the phase velocity and the group velocity of a wave

packet? Show that the phase velocity has no physical significance and

the group velocity is identical with the velocity of the particle both in the

nonrelativistic and relativistic cases. 

3. (a) State Heisenberg�s uncertainty relation for position and momentum. 

(b) Illustrate  the  uncertainty  principle  by  Heisenberg�s  gamma-ray

microscope. 

4. Describe  how  the  single-slit  diffraction  experiment  using  an  electron

beam illustrates the uncertainty principle. 

5. Describe the double-slit experiment using an electron beam. Show that

the results of this experiment can be explained only if the uncertainty

principle is assumed to be valid. 

6. State the energy-time uncertainty relation. Explain how the broadening of

spectral lines can be explained using this relation. 

7. Explain the uncertainty principle. Give its general statement. 

8. Use the uncertainty principle to show that electrons cannot exist inside

a nucleus. 

'$
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9. Estimate the ground state energy and the radius of the hydrogen atom

using uncertainty principle. 

10. Show that the zero-point energy of a harmonic oscillator is a

consequence of the uncertainty principle. 

11. Use the energy-time uncertainty relation to estimate the mass of the  p-

meson (pion). 

EXERCISES

1. An electron is confined to a box of length 10–8 m. Estimate the

uncertainty in the measurement of its speed. Mass of electron =

9.0  ¥ 10–31 kg. 

[ Ans.   1.17 ¥ 10–4 m/s]

2. An electron in the  n = 2 state of a hydrogen atom remains there on an

average for about 10–8 s before making a transition to the ground state. 

(a) Estimate the uncertainty in the energy of the  n = 2 state. 

(b) What fraction of the transition energy is this? 

(c) What is the width of the spectral line emitted in the transition? 

[ Ans.   (a) 4.14 ¥ 10–7 eV, (b) 4.06 ¥ 10–8, (c) 4.95 ¥ 10–5 Å]

3. A bullet of mass 0.03 kg is moving with a speed of 500 m/s. The speed

is measured with an accuracy of 0.02%. Using the uncertainty principle, 

estimate the uncertainty in the measurement of its position. 

[ Ans.   2.2 ¥ 10–31 m]

4. Compare the uncertainties in the velocities of an electron and a proton

when restricted to a 10 F box. Their masses are 9.1 ¥ 10–31 kg and

1.67  ¥ 10–27 kg, respectively. 

L

O

(D v)

 m

 Ans

proton

. 

electron =

= 1835

(D v)

 m

proton

electron

NMM

QPP

5. From considerations of the uncertainty principle, find the ground state

energy of a particle of mass  m trapped in a one-dimensional box of

length  L. 

[ Ans. 

h2/2 mL 2]
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The Schrödinger Equation
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The Free Particle

6.1 THE NECESSITY FOR A WAVE EQUATION AND

CONDITIONS IMPOSED ON IT

In chapter 4 we introduced the concept of the wave function Y(r,  t), which

is assumed to describe the dynamical state of a particle (or a physical system)

completely. In chapter 5 we saw that a particle can be represented by a wave

packet which is formed by superposing plane waves of different wave

numbers. However, it is clear that in order to make further progress, we must

have a method of determining wave functions in a systematic manner. For this, 

we need a wave equation, solving which we may obtain the wave function at

any point (r,  t) in space and time, given suitable initial and boundary conditions. 

It is obvious that such an equation cannot be derived. Like all fundamental

equations of physics, it must be  guessed or arrived at in a  heuristic  manner. It

must then be adopted as a  postulate, the justification for which lies in the

closeness of its predictions to the experimental results. 
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The equation must satisfy the following restrictions:

1. It must be  linear and  homogeneous so that the  superposition principle holds.  That  is,  if  Y1  and  Y2  are  solutions  of  the  equation,  any  linear

combination  a 1Y1 +  a 2Y2 must also be a solution. 

2. It must be a differential equation of the first order with respect to time, 

so that the evolution of the system is completely determined if the wave

function is known at a given initial time. 

3. It  must  be  consistent  with  the  Planck-Einstein  relation   E  =  =w,  the

de Broglie relation p =  =k, and the correspondence principle. 

The equation was discovered by Erwin Schrödinger in 1926 and is called

the  Schrödinger equation. Without going into the details of how Schrödinger

discovered it, we shall arrive at this equation starting from a plane wave/wave

packet. 

6.2 THE  TIME-DEPENDENT  SCHRÖDINGER  EQUATION

To  begin  with,  we  consider  the  one-dimensional  motion  of  a  free  particle  of

mass  m, moving in the positive  x  direction  with  momentum  p and energy  E. 

Such a particle can be described by the monochromatic plane wave

Y( x,  t) =   A ei( px Et)/=

(6.1)

where  A  is  a  constant.  Differentiating  with  respect  to  t,  we  have

�< = �  iE  Y

� t

=

�< 

or

 i=

=   E Y

(6.2)

 t

�

Differentiating twice with respect to  x, we have

�< 

� i=

=  p Y

(6.3)

 x

�

2

and

� = � < 

2

=  p 2Y

2

� x

2

or

� =2 2

� < =   p  Y

(6.4)

2

2 m

 x

�

2 m

Now, for a nonrelativistic free particle

2

 E =   p

(6.5)

2 m

Therefore,  (6.2),  (6.4)  and  (6.5)  give

�<( x,  t)

2

2 <( x,  t)

 i=

=

= 

�

(6.6)

 t

�

 m

� x 2

2
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This is the  one-dimensional time-dependent Schrödinger equation for a free

 particle. 

Since (6.6) is linear and homogeneous, it will also be satisfied by the wave

packet

1

Y( x,  t) = 

z f( p) ei( px- Et)/h dp

(6.7)

2 p h

which is a linear superposition of plane waves and is associated with a

‘localised’ free particle. We have

( x,  t)

1

 i h ∂Y

= 

z  Ef( p) ei( px- Et)/h dp

 t

∂

2 p  h

and

h2 2

∂ Y( x,  t)

1

2

 p

–

= 

z  f( p)  ei( px- Et)/h dp

2

2 m

∂ x

2 p  h

2 m

Using (6.5), the right hand sides of the above two equations are equal, and hence

we obtain (6.6). 

It is clear that the Schrödinger equation for a free particle satisfies the three

restrictions that we mentioned in section 6.1. To see how it satisfies the

correspondence principle, we note that this equation is, in a sense, the quantum

mechanical ‘translation’ of the classical equation (6.5), where the energy  E, and

the momentum  p are represented by differential operators†

$

∂

 E =  i h

( . 

6 8)

and

∂ t

$

∂

 p = -  i h

( . 

6 9)

∂ x

respectively, acting on the wave function:

$

$ p 2

 E  Y( x,  t) = 

Y( x,  t)

(6.10)

2 m

As we shall see later, it is a  postulate of quantum mechanics that even when

the particle is not free,  E and  p are still represented by the operators in (6.8)

and (6.9), respectively. 

The above treatment can be easily extended to three dimensions. Instead of

(6.1), the expression for the plane wave is

Y(r,  t) =   Aei(p r◊- Et)/h

(6.11)

The  operator representation of p would be

$p = - i —

h

(6.12)

† It is customary to represent a variable and its operator by the same symbol. Wherever

$

there is confusion, a hat is put on the symbol to represent the operator, e.g.,  E ,  $

 p . 
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which is equivalent to

$

∂

 p = -  i h

 x

∂ x

$

∂

 p = -  i h

 y

(6.13)

∂ y

$

∂

 p = -  i h

 z

 z

∂

Therefore, the Schrödinger equation becomes

∂Y( , 

r  t)

2

 i h

h

= -

—2Y( , 

r  t)

(6.14)

 t

∂

2 m

∂2

∂2

∂2

where

—2 = 

+ 

+ 

∂ 2

 x

∂ 2

 y

∂ 2

 z

Particle in a Force-field

Let us now generalize the free-particle Schrödinger equation (6.14) to the case

of a particle acted upon by a force which is derivable from a potential  V(r,  t). 

According to classical mechanics, the total energy of the particle would be given

by

 p 2

 E = 

+  V(r,  t)

(6.15)

2 m

Since  V does not depend on  E or p, the above discussion for the free particle suggests that the wave function should satisfy

F

$

$ p 2

 E  Y = 

+  V

2 m

HG

IKJY

so that, the Schrödinger equation generalizes to

∂

F 2—2

 i h

h

Y( , 

r  t) = -

+  V( , 

r  t) Y( , 

r  t)

 t

∂

2 m

HG

IKJ

(6.16)

(Time-dependent Schrödinger equation)

The operator on the right-hand side is called the  Hamiltonian operator and

is denoted by the symbol  H:

h2—2

 H = -

+  V( , 

r  t)

2 m

(6.17)

(Hamiltonian operator)

The name follows from the fact that in classical mechanics the sum of the

kinetic and the potential energies of a particle is called its  Hamiltonian. 

The Schrödinger Equation (6.16), is the  basic equation of nonrelativistic

quantum mechanics. It must be emphasized that we have  not derived it. Like

The  Schrödinger  Equation



any basic law, this equation cannot be proved to be true. Its justification comes

from successful comparison of the predictions based on it with experimental

results in a large number of situations. 

6.3

STATISTICAL INTERPRETATION OF THE WAVE

FUNCTION AND CONSERVATION OF PROBABILITY

As we have already discussed in section 4.5, the wave function associated with

a particle has a statistical interpretation, first given by Max Born. The interpretation

is as follows: If a particle is described by a wave function Y (r,  t), then the

probability of finding the particle, at time  t, within the volume element

 dr =  dxdydz about the point r ∫ ( x,  y,  z) is P(r,  t)   dr = |Y (r,  t)|2   dr = Y *(r,  t)Y (r,  t)  dr (6.18)

The quantity

 P(r,  t) =  |Y (r,  t)|2 = Y *(r,  t) Y(r,  t) (6.19)

is obviously called the position probability density. Since the probability of

finding the particle somewhere at time  t is unity, the wave function is chosen

to satisfy the normalization condition

|Y ( , 

r  t)|2  dr = 1

z

(6.20)

where the integral extends over all space. The wave functions for which the

above integral exists are said to be  square integrable. It may be noted here that

some wave functions, for example the plane wave (6.11), are not square

integrable. A plane wave represents a free particle which has a well-defined

momentum and is, therefore, completely ‘delocalized’ according to the

uncertainty principle. However, we have seen that this difficulty can be

overcome if the requirement that a particle should have a well-defined

momentum is given up. We then obtain a ‘localized’ wave packet, which can

be normalized to unity. In this book we shall be mainly concerned with square

integrable wave functions. However, plane waves provide useful representation

of particles in certain situations. We shall briefly discuss methods of normalizing

such functions in section 6.9. 

Let us now see what happens as time changes. It is clear that the probability

of finding the particle somewhere must remain  conserved. That is, the

normalization integral in (6.20) must be independent of time:

∂

∂

 P(r,  t) dr = 

Y*(r,  t) Y(r,  t) dr = 0

(6.21)

 t  z

 t  z

∂

∂

where the integral extends over all space. 

In order to prove this, we use the Schrödinger equation

h2

 i h ∂Y =  –

— 2Y +  V  Y

(6.22)

 t

∂

2 m
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and its complex conjugate

*

h2

– i h ∂Y

=  –

—2Y* +  V  Y *

(6.23)

∂ t

2 m

where   V(r,  t) is assumed to be real. 

Multiplying (6.22) by Y* and (6.23) by Y on the left and then subtracting, 

we get

∂Y

∂Y*

L

h2

 i h Y *

+ Y

=  –

[Y*—2Y  –  Y—2Y *]

(6.24)

∂ t

∂

NM

O

 t  QP

2 m

Now, consider the time derivative of the integral of Y*Y over a finite

volume  V. We have, 

∂

L ∂Y ∂Y*

F

Y*Y dr = 

Y *

+ Y

z

 dr

 V  HG

I

NM

O

 t

 t  KJ

 t  z

∂

 V

∂

∂

QP

 i h

= 

z [(Y*—2Y – Y—2Y*)] dr (using 6.24)

2 m V

 i h

= 

z ——◊(Y*—Y – Y——Y*) dr

(6.25)

2 m V

Let us define a vector

j(r,  t) = h (Y * —Y

—

- Y — *

—Y )

2 im

(6.26)

Substituting in (6.25), 

∂

 P(r,  t)   dr =  – z ——◊j  dr

(6.27)

 t  z

∂

 V

 V

Using Green’s theorem (also called Gauss’ divergence theorem) we can convert

the volume integral on the right into an integral over the surface  S bounding the

volume  V:

∂

 P(r,  t) dr =  –

j

z ◊ dS

(6.28)

 t  z

∂

 V

 S

where the vector  dS has magnitude equal to an element  dS of the surface  S and is directed along the outward normal to  dS. 

When  V is the entire space, as is the case in the normalization integral, the

surface  S in (6.28) recedes to infinity. Since a square integrable wave function

vanishes at large distances, the surface integral becomes zero and hence (6.21)

is proved. 

Probability Conservation and the Hermiticity of the

Hamiltonian

We shall now show that the conservation of probability implies that the

Hamiltonian operator  H appearing in the Schrödinger equation is Hermitian. 

The  Schrödinger  Equation

! 

In terms of  H, the Schrödinger equation can be written as

 i h ∂Y =  H Y

(6.29)

∂ t

The complex conjugate of this equation is

*

– i h ∂Y

= ( H Y )*

(6.30)

∂ t

Using these equations, we can write

∂

∂Y

∂Y*

F

Y*Y dr = 

Y*

+ Y

zHG

I dr

 t

 t  KJ

 t  z

∂

∂

∂

= ( i h)–1 z [Y*( H Y) – Y( H Y)*] dr

Since the left-hand side is zero, we obtain

Y*( H  Y) dr = ( H  Y)* Y  dr

z

z

(6.31)

Operators which satisfy this condition are called Hermitian operators. Thus, 

 H is an Hermitian operator. The significance of Hermitian operators in quantum

mechanics will become clear in chapter 10. 

Probability Current Density

Let us now look at (6.28) again. It says that the rate of change of the probability

of finding the particle in a volume  V is equal to the probability flux passing

through the surface  S bounding  V. It is reasonable, therefore, to interpret the

vector j(r,  t) as  probability current  density (or simply  probability current as some books do). This is further clear from (6.27). Since this equation is true for any

arbitrary volume, we have

∂  P( , r  t) + —◊

— j( , 

r  t) = 0

(6.32)

∂ t

This equation has the familiar form associated with the conservation of

matter in a fluid of density  P and current density j in a medium in which there

are no sources or sinks. This is called the equation of continuity. 

If — ◊j is zero in a state, then for that state the probability density is constant

in time. Such states are called stationary states. 

The probability current density (6.26) may also be written as

L h

j(r,  t) = Re Y*

—Y

NM

— O

 im

QP

(6.33)

where  ‘Re’ indicates ‘real part of’. 

It may be noted that the operator (h / im)— represents p/ m, that is, the

velocity v of the particle. Thus, j corresponds to the product of the probability

density  P and the velocity v:

j =  Pv

Thus, it is appropriate to interpret j as a probability current density. 
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It may further be noted that j vanishes if Y is real. Therefore, for describing

situations  in  which  the  probability  current  is  nonzero,  it  is  necessary  to  use

complex  wave  functions. 

6.4 EXPECTATION  VALUES  OF  DYNAMICAL  VARIABLES

We have seen that in quantum mechanics a particle is represented by a wave

function  which  can  be  obtained  by  solving  the  Schrödinger  equation  and

contains all the available information about the particle. We shall now see how

information concerning the dynamical variables of the particle can be extracted

from the wave function Y. Since Y has a probabilistic interpretation, it turns out

that exact information about the variables cannot be obtained. Instead, we obtain

only  the   expectation  value  of  a  quantity,  which  is  the  average  value  of  the

measurements of the quantity performed on a very large number of independent

identical systems represented by the wave function Y. Or, equivalently, it is the

average  of  a  large  number  of  measurements  on  the  same  system. 

First, let us consider the measurement of the position of the particle. Since

 P(r,  t) = Y * (r,  t) Y(r,  t) is interpreted as the position probability density at the point r at the time  t, the  expectation value of the position vector r is given by r =  I r  P(r,  t) dr

=  I Y*(r,  t) r Y(r,  t) dr

(6.34)

where Y(r,  t) is normalized. This equation is equivalent to the three equations

 x

=  I Y*  x Y  dr

(6.35a)

 y =  I Y*  y Y  dr

(6.35b)

 z =  I Y*  z  Y  dr

(6.35c)

The  expectation  value  is  a  function  only  of  the  time  because  the  space

coordinates  have  been  integrated  out.  Further,  the  expectation  value  of  a

physical quantity is always real. Note the order of the factors in the integrand�

the vector r (or each of  x,  y,  z) has been sandwitched between Y* on the left and Y  on the right. This is immaterial at this stage but is chosen for reason

which will be clear shortly. 

The  expectation value of any quantity which is a function of r and  t would

be

 f ( , 

r  t) = <*( , 

r  t)  f ( , 

r  t) <( , 

r  t)  dr

I

(6.36)

The  Schrödinger  Equation

#

As an example, the expectation value of the potential energy is

 V ( , 

r  t)

=  z Y* (r,  t)  V(r,  t) Y(r,  t) dr

(6.37)

Let us now see how to obtain the expectation values for quantities which

are functions of momentum or of both position and momentum. The most

important example of the latter category is the energy. We assume that for this

purpose it is possible to use the operator representations:

$p = – i h  —

 p 2 =  – h2   —2

$ E =   i h ∂∂ t

The question that arises is: How these differential operators are to be

combined with the position probability density Y*  Y  to obtain the desired

expressions? This question is answered by using the classical expression for the

energy

 p 2

 E = 

+  V

2 m

and requiring, in accordance with the correspondence principle, that the

expectation values satisfy

 p 2

 E

= 

+   V

2 m

Replacing   E and  p 2 by the corresponding operators, we get

h2

 i h ∂

=  -

—2  +   V

(6.38)

 t

∂

2 m

This equation must be consistent with the Schrödinger equation

h2 —2

 i h ∂Y =  -

Y  +  V  Y

∂ t

2 m

Multiplying by Y* on the left and integrating, we get

z F

F h2—2

Y*  i h ∂

HG I

Y dr +  z Y* V Y dr (6.39)

∂ KJ Y dr =  z Y* -

 t

HG

I

2 m  KJ

The last term on the right-hand side is simply   V . Therefore, (6.38) and (6.39)

would be consistent provided the  expectation value is defined in the general

 case with the operator acting on  Y ,   and multiplied by  Y * on the left.  We then have

∂Y

 E

=  z Y*  i h   dr

(6.40)

∂ t

p

=  z Y* (– i h) —Y dr

(6.41)

$
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The last equation is equivalent to

∂Y

 px  = –  i h   z Y*    dr

(6.42a)

∂ x

∂Y

 py  = – i h  z Y*    dr

(6.42b)

∂ y

∂Y

 pz  = – i h   z Y*    dr

(6.42c)

∂ z

Generalizing the above results, we are led to the following  postulate:

Suppose, the dynamical state of a particle is described by the normalized wave

function Y (r,  t). Let  A(r, p,  t) be a dynamical variable representing a physical quantity associated with the particle. We obtain the operator  $

 A (r, – i h —,  t) by

performing the substitution p Æ – i h —, and then calculate the expectation value

of  A from the expression

 A = Y*( , 

r  t)  A$( , 

r -  i

, 

—  t) Y( , 

r  t)  d r

z

h—

(6.43)

Since the expectation value of a physical quantity is always  real, i.e., 

 A * =   A , it follows that the operator  $

 A  must satisfy

Y* $

 A  Y  dr =

( $

 A Y)* Y

z

z  dr

(6.44)

Thus, the operator associated with a dynamical quantity must be  Hermitian. 

6.5

MOTION OF WAVE PACKETS: EHRENFEST’S THEOREM

According to the correspondence principle, it is reasonable to expect that the

average motion of a wave packet should agree with the motion of a classical

particle. In 1927, P. Ehrenfest showed that this is actually the case. According

to Ehrenfest’s theorem,  the equations of motion of the expectation values of the

 position and momentum vectors for a wave packet are formally identical to

 Newton’s equations of classical mechanics. That is, 

 d

p

r =

 dt

 m

( . 

6 4 )

5

 d

and

p = -

 V

—

 dt

( . 

6 4 )

6

Proof of (6.45)

In order to prove (6.45), let us first consider the expectation value of the

 x-component of the position vector r. Assuming that the wave function Y

representing the wave packet is normalized to unity, we have

 x  =  z Y* x Y  dr

The  Schrödinger  Equation
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The time rate of change of   x  is

 d

 d

 x

= 

zY* x Y  dr

 dt

 dt

∂Y

∂Y

=  z Y* x dr + z * x Y dr

∂ t

∂ t

The right-hand side can be transformed by using the Schrödinger equation

(6.22) and its complex conjugate (6.23). We obtain

L

F

F

 d

1

2

2

h

h

 x  = 

2

2

Y*  x -

— Y +  V  Y  d

Y*

 V  Y*  x Y  d

z

r

z

r

 dt

 i h

2 m

2 m

NMM

HG

IKJ - - — +

HG

IKJ

 i h

= 

z[Y* x (—2Y) – (—2Y*) x Y]  dr

(6.47)

2 m

Let us consider the second part of the integral. Using Green’s first identity†, 

we obtain z(—2Y*) x Y dr = z  x Y(——Y*)◊ dS – z(——Y*)◊—( x Y) dr S

Since the volume under consideration is the entire space, the surface  S in the

first integral on the right is at infinity. Hence, this integral is zero because the

wave function vanishes at large distances. Therefore, 

z(—2Y*) x Y dr= –z(—Y*)◊—( x Y)  dr

Using Green’s first identity again, we get

– z (—Y*)◊—( x Y) dr = –z Y*—( x Y)◊ dS + z Y* —2( x Y)  dr S

The surface integral again vanishes. Thus, 

z(—2Y*) x Y dr= zY* —2( x Y)  dr

Substituting this back into (6.47), we obtain

 d

 i h

 x

= 

zY*[ x—2Y – —2( x Y)] dr

 dt

2 m

It can be easily shown that

∂Y

—2( x Y ) =   x—2Y  + 2 ∂ x

† Green’s first identity: If  f and  g are scalar functions of position, then

z

z

[  f  —2 g + (— f)◊(— g)] dr = 

 f(— g)◊ dS

 V

 S

where   V is the volume bounded by the closed surface  S. For our case, take  f =  x Y  and g = Y*. 

& 
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Therefore, 

 d

 i h

∂Y

 x = –

zY*    dr

 dt

 m

∂ x

1

∂

F

= 

zY*  -HG i h IY  dr

 m

∂ x KJ

 p

= 

 x

 m

Similarly, we can prove that

 d

 py

 d

 p

 y = 

, 

 z  = 

 z

 dt

 m

 dt

 m

These three equations are the three components of Equation (6.45), which

was to be proved. 

Proof of (6.46)

Let us calculate the time rate of change of the expectation value of the

 x-component of the momentum of the particle. We have

 d

 d

∂Y

 p

zY

 x

=  – i h 

* 

 dr

 dt

 dt

∂ t

∂ ∂Y

∂Y* ∂Y

L

= –  i h

Y*

 dr +

z

 dr

 x

 t

z

∂

∂

∂ t

∂

NM

O

 x

QP

Using the Schrödinger equation (6.22) and its complex conjugate (6.23) to

replace   ∂  Y / ∂t and  ∂  Y */ ∂ t, respectively, we get

F

F

 d

∂

h2

h2

 p

-

—2Y + Y

2 Y*

Y*

 x

= – z Y* 

 V

 dr +  z - — + V

 dr

 dt

∂ x  HG

I

2 m

KJ

HG

I

2 m

KJ ∂Y∂ x

h2 L

∂Y

F

∂Y

∂

∂Y

L

= 

2

2

Y* —

(

Y*)

zNM

O

HG

IKJ- —

 dr  – Y*

( V  Y) -

z

 V

 dr

2 m

∂ x

 x

∂ QP

∂ x

∂

NM

O x QP

Using Green’s second identity† the first integral on the right is zero because Y

and  ∂  Y / ∂ x vanish at large distances. The second integral gets simplified as

∂

∂Y

L

∂

– Y*

( V  Y) -

z

 V

 dr =  – Y*

z  V Y  dr

∂ x

∂

NM

O x QP

∂ x

∂ V

=  –

∂ x

† Green’s second identity: If  f and  g are scalar functions of position, then

z

z

[  f  —2 g –  g  —2 f ]  dr = 

[  f  — g –  g  — f ]◊ dS

 V

 S

where  V is the volume bounded by the closed surface  S. 
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Thus, 

 d

∂ V

 px =  –

 dt

∂ x

Similarly we can prove that

 d

∂ V

 d

∂ V

 py =  –

, 

 pz  = –

 dt

∂ y

 dt

∂ z

These three equations are the three components of Equation (6.46). Thus, the

proof of Ehrenfest’s theorem is complete. 

6.6

EXACT STATEMENT AND PROOF OF THE

POSITION-MOMENTUM UNCERTAINTY RELATION

In order to have an exact statement and a mathematical proof of the uncertainty

relation, we must first have a precise definition of uncertainty. It is simplest and

most convenient to define  uncertainty as the  root-mean-square deviation (also

 called the standard deviation) from the mean (i.e. the expectation) value. 

Considering a wave packet moving along the  x direction, we have

/

/

D x =  ( x -  x )2 1 2 ,  D p =  (  p -  p )2 1 2

(6.48)

Let us put

 A =  x -  x

U

and

 d

 d

hL

V|

(6.49)

 B =  p -  p =  i

-

 dx

 dx

NM

OQPW|

Then

•

•

(D  x)2  (D p)2 =  z Y*  A 2 Y dx  z Y*  B 2Y  dx

- •

- •

•

•

=  z ( A*Y*) ( A Y)  dx  z ( B* Y*) ( B Y) dx (6.50)

- •

- •

The last step follows from the fact that  A and  B are Hermitian operators

(see Equation 6.44). It can also be verified directly by partial integration and

remembering that Y  vanishes at infinity. 

We shall use the  Schwarz inequality

z| f|2  dx z| g|2  dx ≥   f* gdx

z 2

(6.51)

where   f and  g are arbitrary functions and the equality is valid only if  f =  ag, where   a is a constant. 
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Taking   f =  A Y  and  g =  B Y , Equation (6.50) becomes

(D  x)2(D p)2  ≥ 

(  A * Y*) ( B Y)  dx

z

2

=  Y*  AB Y  dx

z

2

(6.52)

The expression on the right-hand side can be written as

L

2

1

1

Y*

( AB

)

 BA

(  AB

)

 BA

Y

z

-

+

+

NM

O  dx

2

2

QP

1

2

1

2

= 

Y*( AB -  BA)Y  dx

z

+ 

Y*( AB +

)

 BA  Y  dx

z

(6.53)

4

4

Here we have omitted the cross terms which can be shown to vanish by using

the relation

*

Y*  AB Y  dx

z

=  z Y A*  B* Y*  dx

=  z  B*Y* A Y  dx

=  z Y*  BA Y  dx

Now from (6.49)

 d  Y

 d

L

( AB  –   BA)Y = – i h  x

-

( x Y)

 dx

 dx

NM

OQP

 d  Y

 d  Y

L

= – i h  x

- Y -  x

 dx

 dx

NM

OQP

=  i h Y

Therefore, 

zY*( AB –  BA)Y  dx=  i hzY* Y dx

=  i h

(6.54)

as Y  is normalized. 

From (6.52), (6.53) and (6.54) we obtain

(D  x)2(D  p)2 ≥  h2/4

or

D x  D p ≥ h/2

(6.55)

The equality can hold only if the second term on the right side of (6.53) is zero. 

Equation (6.55) is the exact statement of the position-momentum uncertainty

relation, where the uncertainties in  x and  p are defined as root-mean-square

deviations from the expectation values   x  and   p , respectively. 

6.7 WAVE PACKET HAVING MINIMUM UNCERTAINTY

PRODUCT

From the above derivation it is clear that the uncertainty product is minimum

when the following two conditions are satisfied:

 A Y  =  a B Y

(6.56)

The  Schrödinger  Equation



and

zY*( AB +  BA)Y dx = 0

(6.57)

Using Equation (6.49), Equation (6.56) gives

L  d

( x  –   x )Y =   a -  i h Y -

NM

 p  YO

 dx

QP

Rearranging, we get the differential equation

 d Y

 i

 i

L

= 

 x -  x

+

 p

c

h

Y

 d x

NM

O

 a h

h

QP

which on integration gives

L  i

2

 i p x

Y ( x) =   N exp

 x -  x

+

c

h

(6.58)

2 a h

h

NM

OQP

where   N is an arbitrary constant. 

Equation (6.57) gives

zY* AB Y dx + z B*Y* A Y dx = 0

Using (6.56), this becomes

1

1

F +

HG

I Y*  A 2Y  dx = 0

 a

 a * KJ z

Since the integral is not zero, this yields

1

1

+ 

= 0

 a

 a *

which requires that  a be purely imaginary. Further, since the integral of |Y |2

should converge,  a must be negative imaginary. In order to determine  a, we

require

z  x-  x

c

h2 |Y|2  dx = (D x)2

Evaluating the integral and substituting the value of  a in (6.58), we obtain

L  x x

c

h2  i p x O

-

Y( x) =  N exp -

+

NMM

(6.59)

D x  2

4 (

)

h QPP

which is a gaussian function. Thus we find that  the wave packet having the

 minimum uncertainty product has a gaussian shape. 

6.8

THE TIME-INDEPENDENT SCHRÖDINGER EQUATION. 

STATIONARY STATES

There are many physically interesting problems in which the potential energy of

the particle does not depend on the time, that is,  V =  V(r). In such cases the
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solution of the Schrödinger equation (6.16) gets considerably simplified

because it is then possible to use the method of separation of variables. This

method consists of assuming that the wave function Y (r,  t) can be written as

a product of two functions—a function of position only,  y (r), and a function

of time only,  f ( t):

Y(r,  t) =   y(r)   f ( t)

(6.60)

Then the Schrödinger Equation (6.16) becomes

L

 df ( t)

h2

 i h  y(r)

=   f ( t) -

—2 +  V (r)  y(r)

 dt

NM

O

2 m

QP

Dividing both sides by  y (r)   f ( t), we get

L

 df( t)

1

2

h

 i h 1

= 

2

-

— +  V (r)  y(r)

 f( t)

 dt

 y (r)

2

NM

O

 m

QP

Note that the left-hand side depends only on  t and right-hand side only on

r. Therefore, both sides must be equal to a constant. We shall denote this

constant by  E because, as we shall see shortly, this constant is equal to the

energy of the particle, we thus obtain the two equations

 d f ( t)

 i h

=  E f( t)

( . 

6 6 )

1

 dt

and

L h2

-

—2 +  V(r)  y (r) =  Ey (r)

( . 

6 62)

2 m

NM

OQP

The first of these equations depends only on the time  t. It can be

immediately integrated to give

F  iEt

 f ( t) = exp -

HG I

(6.63)

h KJ

The second equation depends only on the space coordinates. It is called the

time-independent Schrödinger equation. The solution of this equation

depends on the particular form of the potential  V(r). Once this is done, the full

solution of the time-dependent Schrödinger equation (6.16) can be written as

Y( , 

r  t) =  y (r) exp(–  i Et /h)

(6.64)

In the remaining part of this book, we shall be mainly concerned with the

solution of the time-independent Schrödinger equation for simple systems. 

Therefore, let us look at this equation and some of its properties more deeply. 

We may write this equation as

 H y (r) =  E y (r)

(6.65)

The  Schrödinger  Equation
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where  H is the Hamiltonian operator

h2 2

—

 H = –

+  V(r)

(6.66)

2 m

defined earlier in Equation (6.17). 

Equation (6.65) has the following special property: The operator  H acting

on the function  y(r) gives back the function multiplied by the constant  E. Such an equation is called an eigenvalue equation. The function  y is called an

eigenfunction of the operator  H and  E is the corresponding eigenvalue. In general many eigenfunctions and eigenvalues may correspond to a given  H. The

set of all the eigenvalues is called the  eigenvalue spectrum of  H. Since  H is the Hamiltonian, the eigenvalues  E are called the  energy eigenvalues because these

are the possible energies of the system. To indicate that an eigenfunction

corresponds to a particular eigenvalue  En, we put a subscript  n with  y(r), that is, we write it as  yn (r). The problem of solving the Schrödinger equation thus

reduces to finding the eigenvalues and eigenfunctions of the Hamiltonian  H. 

Degeneracy

Sometimes it happens that more than one linearly independent eigenfunctions

correspond to the same eigenvalue. The eigenvalue is then said to be  degenerate. 

If there are  k linearly independent eigenfunctions corresponding to the same

eigenvalue, then this eigenvalue is said to be  k-fold degenerate. It can be easily

shown that  any linear combination of the degenerate eigenfunctions is also an

 eigenfunction corresponding to the same eigenvalue. Thus, if  y 1,  y 2, …,  yk are linearly independent eigenfunctions corresponding to an eigenvalue  E, then

 y =  c 1 y 1 +  c 2 y 2 + … +  ckyk

is also an eigenfunction corresponding to  E. 

Reality of Eigenvalues

We shall now prove that all the energy eigenvalues are real and mention its

consequences. Let  E be the eigenvalue corresponding to the eigenfunction  y. 

Then

 Hy =   Ey

Since the Hamiltonian  H is a Hermitian operator, we have from Equation (6.31), 

z y* Hy dr= z( Hy)* y dr

These equations give

z y* Eydr= z E* y* ydr

or

( E  –   E*) z  y* ydr = 0

" 
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Since the probability integral  z  y* ydr is necessarily positive, it follows that E =  E*

Hence the eigenvalues of  H are  real. 

Stationary States

An important consequence of the reality of eigenvalues is that the position

probability density corresponding to the states represented by ‘separable’ wave

functions (6.64) is independent of time:

 P(r,  t) =  Y*(r,  t)  Y(r,  t)

=   y *(r)  eiEt/h    y (r)  e- iEt /h

=   y *(r) y (r)

Therefore, these states are called  stationary states. This name is further justified

by the fact that the expectation value of the total energy operator in a state

described by the wave function (6.64) is equal to the energy eigenvalue of that

state for all time if the wave function is normalized:

zY*(r,  t) H Y(r,  t) dr

=  z  y*(r) eiEt/h Hy(r) e- iEt/h dr

=  z  y*(r) Ey(r)  dr

=   E  z y*(r) y(r)  dr

=   E

Orthogonality of Eigenfunctions

Another very important result is that the eigenfunctions corresponding to

 distinct eigenvalues are orthogonal. We prove it below. 

Let   yk and  yn be the eigenfunctions corresponding to the eigenvalues

 Ek and  En, respectively. Then

 Hyk =   Ekyk

(6.67)

and

 Hyn =   Enyn

(6.68)

Taking complex-conjugate of (6.68) and remembering that  En is real, 

( Hy

*

 n)* =   Enyn

(6.69)

Premultiplying (6.67) by  y * n and postmultiplying (6.69) by  yk, we obtain

 y*

*

 n ( Hyk) =   Ekyn   yk

(6.70)

and

( Hy

*

 n)* yk =   Enyn yk

(6.71)
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Subtracting (6.71) from (6.78) and integrating, we obtain

( Ek  –   En) z  y* n  yk  dr = z [ y* n( Hyk) – ( Hyn)* yk] dr Since  H is Hermitian, the integral on the right-hand side is zero. Therefore, 

( E

*

 k  –   En) z  yn ykdr = 0

Since   Ek π   En, this gives

z y* k  yn  dr = 0

This shows that the eigenfunctions are orthogonal. 

If an eigenvalue is degenerate, then the corresponding eigenfunctions are

not necessarily orthogonal. However, it is always possible to construct a new

set of mutually orthogonal eigenfunction using the  Schmidt orthogonalization

 procedure. We shall not go into the details of this.†

If the eigenfunctions are normalized, then combining the normalization

condition with the orthogonality condition, we have

 y *  y dr =  d

z

(6.72)

 k

 n

 kn

This equation is known as the orthonormality condition. 

Parity

Before proceeding further, it is necessary to introduce the reader to the important

concept of  parity. For simplicity we shall discuss the one-dimensional case. 

Suppose the potential function is symmetric about the origin, i.e., it is an

even function:

 V( x) =  V(–  x)

(6.73)

Let us study the behaviour of the Schrödinger equation under the operation of

reflection through the origin,  x  Æ  –  x. This operation is called the  parity

 operation. The Schrödinger equation is

h2 2

 d y ( x)

–

+  V( x) y( x) =   E y( x)

(6.74)

2

2 m

 dx

Replacing  x by – x, we get

h2 2

 d y (-  x)

–

+  V( x) y(–  x) =   E   y(–  x)

(6.75)

2

2 m

 dx

where we have used (6.73). Comparing these equations we note that  y ( x) and

 y(– x) are eigenfunctions corresponding to the same eigenvalue  E. There are two possible cases:

† For a discussion of this procedure, the student may consult Quantum Mechanics by

E. Merzbacher, John Wiley, New York (1970). 

$
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Case 1: If the eigenvalue is nondegenerate then  y ( x) and  y(–  x) can differ only by a multiplicative constant:

 y (–  x) =   cy ( x)

Changing the sign of  x in this equation, we get

 y( x) =   cy(–  x)

Combining these two equations, 

 y( x) =   c 2 y( x)

so that

 c 2 = 1

or

 c =  ±1

Therefore, 

 y(– x) =  ±   y( x)

(6.76)

This shows that the eigenfunctions can be divided into two classes. The one

for which

 y(–  x) =   y( x)

(6.77)

are said to have even parity. The other, for which

 y(–  x) =  – y( x)

(6.78)

are said to have odd parity. 

Case 2: If the eigenvalue is degenerate then  y(–  x) need not be a multiple of y( x). In that case,  y( x) and  y(– x) are two linearly independent solutions corresponding to the same eigenvalue. Therefore, any linear combination of

 y( x) and  y(– x) is also a possible eigenfunction. We can choose two linear combinations as

 y+( x) =   y( x) +  y(– x)

and

 y–( x) =   y( x)  –   y(–  x)

Clearly  y+( x) has even parity while  y–( x) has odd parity. 

Thus, we have proved that  for a symmetric potential, the eigenfunctions of

 the one-dimensional Schrödinger equation can always be chosen to have

 definite (even or odd) parity. This fact often simplifies the calculation because

we only have to find these eigenfunctions for positive values of  x. Further, we

know that even functions must have zero slope at the origin and odd functions

vanish there. We shall illustrate these properties in our discussions of the square

well and the harmonic oscillator. 

Continuity and Boundary Conditions

In the next few chapters we shall be concerned with the solution of the

Schrödinger equation to find the wave functions for various simple potentials. 

In order for a wave function to be physical acceptable, it must satisfy certain

continuity and boundary conditions. We mention these below:

The  Schrödinger  Equation
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1. The Schrödinger equation (6.62) is a second-order differential equation. 

Therefore, if the potential energy  V(r) is finite, whether or not it is

continuous, a knowledge of the wave function and its gradient along a

surface is sufficient to solve the equation to obtain the wave function at

any point. Thus, we impose the requirements that  the wave function and

 its gradient be single-valued, finite and continuous at every point in

 space. These requirements ensure that a physical situation is represented

uniquely by a wave function, and that the position probability density

 P(r) and the probability current density j(r) are finite and continuous everywhere. 

2. The wave functions are bounded at large distances in all directions. 

3. If there is an infinite potential step at a surface, then the wave function

at the surface is  zero and the component of the gradient of the wave

function normal to the surface is not determined. 

In order to see why the wave function should be zero at an infinite potential

step, let us solve the one-dimensional Schrödinger equation

h2 2

 d y

–

+  V( x) y =  Ey

2

2 m dx

where  V( x) = 0 for  x < 0 and  V( x) =  V 0 for  x > 0. We shall then pass to the limit V 0 Æ •. Assuming that  V 0 >  E ≥   0, the general solution of the above equation are:

1 2

2 mE

L

For   x < 0:

 y( x)=   A sin kx +  B  cos kx, 

 k = 

2

NM O

h QP /

1/2

2 m

L

For   x > 0:

 y( x)=   Ce– Kx +  DeKx, 

 K = 

 V

(

-  E)

2

0

NM

O

h

QP

The boundary condition that  y be bounded at large distance requires that  D =

0. Then the continuity of  y at  x = 0 gives

 B =  C

and the continuity of  dy/ dx gives

 k A = –  KC

Now  K becomes infinite when  V 0 does but the solution for  x < 0 must be finite. 

Therefore, the second relation requires that  C must become zero as

 V 0  Æ  •. Thus, when  V 0  Æ  •, the wave function for  x  ≥ 0 vanishes. 

6.9

THE FREE PARTICLE

In section 6.2 we obtained the Schrödinger equation by assuming that a free

particle can be represented by a plane wave. We shall now reverse the process

and solve the Schrödinger equation for a free particle. For simplicity we shall

consider one-dimensional case. The extension to three dimensions is

straightforward. 
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The time-independent Schrödinger equation for a free particle is

=2 2\

�

 d

( x) =   E y( x)

2

2 m

 dx

2

or

 d \  +  2 mE  y = 0

 dx 2

2

=

2

1 2



or

 d \  +  k 2y = 0;  k =  2 mE

  /

(6.79)

 dx 2

2

=

This  equation  has  two  linearly  independent  solutions,  exp( ikx)  and

exp(�  ikx). Therefore the general solution is

y( x) =  Aeikx +  Be� ikx

(6.80)

where  A and  B are arbitrary constants. Clearly, for a solution to be physically

acceptable,  k must be real; otherwise y( x) would become unbounded at one of

the limits  x = ¥ or  x = �¥. Therefore, we must have  E ³ 0, that is, any non-negative value of energy is allowed. The energy spectrum is thus  continuous. 

The energy eigenvalues are given by

 E =  =2 2

 k

(6.81)

2 m

Each  eigenvalue  is  doubly  degenerate  because  two  linearly  independent

eigenfunctions  exp  ( ikx)  and  exp  (�  ikx)  correspond  to  it. 

Momentum  Eigenfunctions

Let us now operate on the eigenfunctions exp ( ikx) and exp (�  ikx) with the

momentum  operator

 p = � i=  d

 dx

We have

� i=  d ( eikx) =  = k( eikx)

(6.82)

 dx

and

� i=  d ( e� ikx) = � = k ( e� ikx)

(6.83)

 dx

We find that the functions exp ( ikx) and exp (�  ikx) are eigenfunctions of the

momentum operator with the eigenvalues h k and � h k, respectively. Thus, these

functions are not only energy eigenfunctions, but also  momentum eigenfunctions. 

Physical  Interpretation  of  the  Wave  Functions

Following  Equation  (6.64),  the  full  wave  function  for  a  free  particle  can  be

written  as

Y( x,  t) = ( Aeikx +  Be� ikx)  e iEt/=

=  Aei( kx�w t) +  Be� i( kx+w t)

(6.84)
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where   w =  E/h  is the angular frequency. Let us now consider the case when

 B = 0. The resulting wave function is

Y( x,  t) =   Aei( kx – wt)

(6.85)

This is a plane wave travelling in the positive  x-direction. Therefore, it must

be associated with a free particle of mass  m moving along the  x-axis in the

positive direction with momentum  p = [ k and energy  E = [2 k 2/2 m. 

The  position probability density corresponding to the wave (6.85) is

 P = |Y ( x,  t)|2 = | A|2

(6.86)

We find that  P is independent of time  t as well as the position  x of the particle. 

Thus the position of a particle represented by a plane wave is completely

unknown. This is in accordance with the uncertainty relation (5.28) because if

a particle has precisely defined momentum, then D p = 0 and therefore, D x = •. 

Therefore,  a plane wave may be physically interpreted as representing a particle

 of well-defined momentum moving in a beam of unlimited length. 

The probability current density corresponding to the wave (6.85) is given

by (see Equation 6.33)

L h  y∂

 j = Re  y *  im ∂ x

NM

OQP

L

F h

= Re  A e- ikx

 ik Aeikx

*

( )

NM

O

HG IKJ

 im

QP

h k

 p

= 

| A|2 = 

| A|2 =  vP

(6.87)

 m

 m

This is independent of  t and  x, as expected for stationary states. The relation

 j =  vP is analogous to the well known relation between flux, velocity and density

in hydrodynamics. 

In (6.84), if we set  A = 0, the resulting wave function would be

Y ( x,  t) =   Be– i( k x + wt)

(6.88)

This represents a plane wave travelling in the negative  x-direction. The

corresponding position probability density and probability current density are, 

respectively, 

 P = | B|2

(6.89)

and

 j = –  v| B|2 =  – vP

(6.90)

Normalization of Momentum Eigenfunctions

Let us consider the momentum eigenfunction

 yk( x) =  Aeikx

(6.91)
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It is easy to see that  y( x) cannot be normalized in the usual sense because the

•

integral  z | yk( x)|2  dx is infinite. Therefore, if these wave functions are to be

- •

used in practical situations, it is necessary to have alternative ways of

normalizing them. There are two methods of normalizing these functions, which

are briefly described below. 

Box Normalization

It is assumed that the particle is enclosed in a large one-dimensional box of

length   L, at the walls of which the wave functions satisfy periodic boundary

condition

 yk ( x +  L) =   yk( x)

or

 eik( x+ L) =  eikx

or

 eikL = 1

This restricts  k to the discrete values

2 p n

 k = 

, 

 n = 0, ± 1,  ±2,…

(6.92)

 L

Therefore, the energy levels also become discrete:

2 2 2 2

 p  h  n

 En = 

(6.93)

2

 mL

As  L increases, the spacings of the energy levels decreases. So for a very large

box, the energy level spectrum is practically continuous. The normalization of

 yk ( x) is achieved by requiring that

z L/2 | yk( x)|2  dx = 1

(6.94)

-  L/2

which gives | A|2 = 1/ L. Taking the phase of the constant  A to be zero, we have A =  L–1/2. Therefore, the  normalized momentum eigenfunctions are given by

1

 y

 ikx

( ) =

(6.95)

 k x

 e

 L

The eigenfunctions are, in fact, orthonormal:

z L/2

1

 L/2

 y *

z

 k ¢ ( x) y k( x) dx = 

 ei( k– k¢) x  dx =  dkk¢

(6.96)

-  L/2

 L -  L/2

Delta-function Normalization

The box normalization has the shortcoming that it converts the continuous set

of momentum eigenfunctions into a discrete set. Another method of normaliza-

tion, which avoids this difficulty, is by using the Dirac delta-function, defined

in Appendix B. Using Equation (B.11), we have
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�

I  ei( k� k¢) x dx= 2pd( k� k¢)

(6.97)

�

Thus, the  normalized momentum eigenfunctions can be written as

\

1

 ikx

( x) =

 e

(6.98)

 k

S

2

These  functions  satisfy  the  orthonormality  condition

�

I y* k¢( x) y k( x) dx= d( k �  k¢)

(6.99)

 �

SUMMARY

1. The wave function Y(r,  t) for a physical system at any point (r,  t) in space and time satisfies the time-dependent Schrödinger equation



 i �

=2

=

Y(r,  t) =  

³2   V (r,  t) Y(r,  t)

� t





2 m



where  V(r,  t) is the potential energy of the particle. The operator on the

right is called the Hamiltonian operator and is denoted by the symbol  H:

 H = � =2 Ñ2 +  V(r,  t)

2 m

The Schrödinger equation is linear and homogeneous, so that the super-

position  principal  holds.  It  is  consistent  with  the  relations   E  =  =w

and p =  =k. 

2. The  Schrödinger  equation  is,  in  a  sense,  the  quantum  mechanical

�translation� of the classical equation  E =  p 2/2 m, where the energy  E and the momentum p are represented by differential operators



�

 E =  i= � t

and

p = � i=Ñ

respectively,  acting  on  the  wave  function Y(r,  t). 

3. The  wave  function  has  a  statistical  interpretation:  If  a  particle  is

described by a wave function Y(r,  t), then the quantity

 P(r,  t) = Y *Y  = |Y |2

is called the position probability density. Since the probability of finding

the particle somewhere at time  t is unity, the wave function is chosen to

satisfy the normalization condition

IY*Y dr = 1

where the integral extends over all space. 
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4. The vector

h

L

j(r,  t) = 

(Y*— Y  –  Y—

—Y*) = Re Y* h —Y

NM

— OQP

2 im

 im

is called the probability current density.  P and j are related through the

equation of continuity

∂ P  + ——◊j = 0

∂ t

If  —

—◊j is zero in a state, then for that state the probability density is

constant in time. Such states are called stationary states. 

If  v is the velocity of the particle, then

j =  Pv

5. The expectation value of a dynamical quantity  A(r, p,  t), associated with a particle in a state Y (r,  t), is given by

 A  =  z Y*(r,  t)  $ A(r, – i[—,  t) Y(r,  t)  dr 6. The operator  $

 A  associated with a physical quantity  A is always

Hermitian, i.e., 

zY*$ A Y dr = z($ A Y)*Y dr

This ensures that the expectation value of  A is real. 

7. According to Ehrenfest’s theorem, the equations of motion of the

expectation values of the position and momentum vectors for a wave

packet are formally identical to Newton’s equations:

 d

p

r  = 

 dt

 m

 d

and

p  = –  — V

—

 dt

8. In order to have an exact statement of the position-momentum

uncertainty relation, it is convenient to define the uncertainty as the root-

mean-square deviation from the expectation value. Considering a wave

packet moving in the  x-direction, 

D x = ·( x  –   x )2Ò1/2,  D p = ·(  p  –   p )2Ò1/2

The uncertainty relation then becomes

D x D p  ≥  [/2

9. The wave packet having the minimum uncertainty product has a

gaussian shape. 

10. If the potential energy of the particle does not depend on the time, then

the wave function can be written as

Y (r,  t) =  y(r)   f ( t)
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The  function  f( t)  is  given  by



 f( t)  =  exp  

  iEt

= 

The  function  y(r)  depends  on  the  potential   V(r)  and  is  obtained  by solving the time-independent Schrödinger equation

 =2 ³2

! 

" 

 V (r) y(r)  =   E y(r)

2 m

$#

Such  an  equation  is  called  an  eigenvalue  equation.  The  function  y  is

called  an  eigenfunction  and   E  is  the  corresponding  eigenvalue  of  the

Hamiltonian

 H  = � =2 Ñ2  +   V(r)

2 m

In general, many eigenfunctions and eigenvalues correspond to a given

 H. The eigenvalues are the possible energies of the system. 

11. If there are  k linearly independent eigenfunctions corresponding to the

same eigenvalue, then this eigenvalue is said to be  k-fold degenerate. Any

linear  combination  of  the  degenerate  eigenfunctions  is  also  an  eigen-

function corresponding to the same eigenvalue. 

12. The energy eigenvalues are real. An important consequence of this fact

is that the position probability density of a state is independent of time. 

Therefore,  these  states  are  called  stationary  states. 

13. The eigenfunctions corresponding to distinct eigenvalues are orthogonal. 

If the eigenvalues are not distinct, then also it is possible to construct a

set  of  orthogonal  eigenfunctions  using  the  Schmidt  orthogonalization

procedure. Thus, the eigenfunctions can always be chosen to satisfy the

orthonormality conditionIy* k y n  dr = d kn

14. If the potential function is symmetric about the origin, the eigenfunctions

can always be chosen to have definite (even or odd) parity. 

15. A physically acceptable wave function and its gradient must be single-

valued, finite and continuous at every point and must be bounded at large

distances. Further, the wave function must vanish at an infinite potential

step. 

16. The  time-independent  Schrödinger  equation  for  a  free  particle  in  one

dimension is

1 2

 d  2\



+  k 2y = 0;  k =  2 mE

  /

 dx 2

2

=

Its  solutions  exp  (±  ikx)  are  not  only  energy  eigenfunctions  but  also

momentum  eigenfunctions. 

 " 
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17. The momentum eigenfunctions may be normalized either by using box

normalization or by using the Dirac delta-function. 

18. A plane wave

Y( x,  t) =  Aei( kx– wt)

may be physically interpreted as representing a particle of well-defined

momentum moving in a beam of unlimited length. 

QUESTIONS

1. Write the time-dependent Schrödinger equation for a particle of mass  m

moving under a force which is derivable from a potential  V(r,  t). What

is the physical interpretation of the wave function? Why should the wave

function be normalized? 

2. Show that the normalization integral is independent of time. 

3. What is the Hamiltonian operator? Show that the conservation of

probability implies that the Hamiltonian is an Hermitian operator. 

4. Define the position probability density and the probability current density

in the context of a quantum mechanical wave function. Obtain the

equation connecting these quantities and give the physical interpretation

of this equation. 

5. If the functions Y1 and Y2 are solutions of the Schrödinger equation for

a particle, then show that  a 1Y1 +  a 2Y2, where  a 1 and  a 2 are arbitrary constants, is also a solution of the same equation. 

6. (a) What is meant by the expectation value of a dynamical variable? 

How is it obtained mathematically? 

(b) Show that the expectation value of a physical quantity can be real

only if the corresponding operator is Hermitian. 

(c) Show by actual integration that   px  is real. 

7. State and prove Ehrenfest’s theorem. 

8. Defining uncertainty in a suitable manner, give the exact statement and

proof of the position-momentum uncertainty relation. 

9. Show that the wave packet having the minimum uncertainty product has

a gaussian shape. 

10. Consider a particle moving in a potential which is independent of time. 

Assuming that its wave function can be written as Y(r,  t) =  y(r)   f ( t), obtain the equations satisfied by  y(r) and  f ( t). Which of these equations is called the time-independent Schrödinger equation? 

11. Show that the eigenvalues of the time-independent Schrödinger equation

 Hy =  Ey  are real. 

12. What are stationary states? Show that the probability current density is

divergenceless for such states. 

The  Schrödinger  Equation

 #

13. Show that the eigenfunctions corresponding to distinct eigenvalues of

the Hamiltonian are orthogonal. 

14. Show that for a symmetric potential, the eigenfunctions of the time-

independent Schrödinger equation can be chosen to have definite parity. 

15. What are the continuity and boundary conditions that must be satisfied

for a wave function to be physically acceptable? 

16. What are momentum eigenfunctions? Discuss the methods of normaliz-

ing these functions. 

 $
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C h a p t e r

Particle  in  a  Potential  Well

7

Chapter  Contents

7.1

One-Dimensional Infinite Square Well

7.2

Three-Dimensional Infinite Square Well

7.3

One-Dimensional Finite Square Well (First Type)

7.4

One-Dimensional Finite Square Well (Second Type)

In section 6.9 we solved the Schrödinger equation for a free particle. As

expected, the eigenfunctions are plane waves and the energy spectrum is

continuous, ranging from  E = 0 to  E = +•. We shall now study the motion of

a particle which is confined in a region of constant potential energy (which is

taken to be zero). There are two possibilities: (i) the region may be bounded by

perfectly rigid walls which corresponds to infinite potential, and (ii) the region

may be bounded by finite potential steps. 

Because of their appearance, the systems are generally called  square  (or

 rectangular)  wells. A square well is the simplest type of bound system. With

modern techniques involving semiconductors, potentials very close to this

simple version can be produced. 

For the infinite well we shall discuss both the one-dimensional and three-

dimensional cases while for the finite well only the one-dimensional case will be

discussed. 

We shall see that the confinement of a particle in a limited region leads to

 quantization of energy. 

7.1

ONE-DIMENSIONAL INFINITE SQUARE WELL

Let us consider a particle of mass  m confined in a region of width 2 a from

 x = –  a to  x = +  a by impenetrable walls. Such a system is also called a one-126
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 %

dimensional box. Inside the box the particle is free but experiences a sudden

large force directed towards the origin as it reaches the points  x = ± a. Therefore, the potential energy for this problem is, 

0

|  x | <  a

R

 V( x) =  S• | x| >  a

T

(7.1)

The potential is shown in Figure 7.1. 

•

 V x

( )

•

 x

– a

0

+ a

Figure 7.1

The one-dimensional infinite square well potential. 

In order to find the eigenfunctions and energy eigenvalues for this system, 

we have to solve the time-independent Schrödinger equation

h2 2

 d y ( x)

–

+  V( x) y( x) =  E y( x)

(7.2)

2

2 m

 dx

Since the potential energy is infinite at  x = ±  a,  the probability of finding the particle outside the well is zero. Therefore the wave function  y ( x) must vanish

for |  x| >  a. Further, since the wave function must be continuous, it must vanish at the walls:

 y ( x) = 0

at

 x = ±   a

(7.3)

For |  x| <  a, the Schrödinger equation (7.2) reduces to

h2 2

 d y

– 

=  Ey

2

2 m dx

 d  2 y

2 mE

or

+  k 2 y = 0; 

 k 2 = 

(7.4)

 dx  2

2

h

The general solution† of this equation is

 y ( x) =   A sin  kx +  B cos  kx

(7.5)

Applying the boundary condition (7.3), we obtain at  x =  a, 

 A sin  ka + B  cos   ka = 0

and at  x = – a, 

–   A sin  ka +  B cos  ka = 0

These equations give

 A sin  ka = 0, 

 B cos  ka  = 0

(7.6)

† The general solution can also be written in the complex form:  y =  A  exp( i k x) +

 B  exp(– i k x). However, in the present problem it is more convenient to use the real form (7.5). 
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Now we cannot allow both  A and  B to be zero because this would give the

physically uninteresting trivial solution y ( x) = 0 for all  x. Also, we cannot make both sin  ka and cos  ka zero for a given value of  k. Hence, there are  two possible classes of solutions:

For  the   first  class, 

 A = 0

and

cos   ka = 0

and for the  second class, 

 B = 0

and

sin  ka = 0

These conditions are satisfied if

 ka =   n S

(7.7)

2

where  n is an  odd  integer for the first class and an  even integer for the second class.  Thus,  the  eigenfunctions  for  the  two  classes  are,  respectively, 

\

 n S  x

( x) =  B  cos

, 

 n = 1,3,5,... 

 n

2 a

and


\

 n S  x

( x) =  A  sin

, 

 n = ,4,6, 

2

... 

 n

2 a

In order to normalize   the eigenfunctions, we apply the condition

I a y* n( x) y n( x) dx =   1

 a

This gives

 a

 n S  x

 a

 n S  x

 A 2

2

sin

I

 dx =   B 2

2

cos

I

 dx = 1

 a

2 a

 a

2 a

Solving these integrals we obtain

 A =  B = 1/  a

(7.8)

Thus,  the  normalized  eigenfunctions  for  the  two  classes  are,  respectively, 

\

1

 n S  x

( x) =

cos

, 

 n = 1,3,5,... 

(7.9)

 n

and

 a

2 a

\

1

 n S  x

( x) =

sin

, 

 n = 2,4,6,... 

 n

(7.10)

 a

2 a

It may be noted that it is unnecessary to consider negative values of  n because

the resulting solutions will not be linearly independent of those corresponding

to positive values of  n. 

From (7.7), the only allowed values of  k are

 k

S

 n =   n , 

 n  =  1,2,3,... 

(7.11)

2 a
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Using  (7.4)  and  (7.11)  the  energy  eigenvalues  for  both  the  classes  are

given by

=2 k 2

 n 2 2

S =2

 E

 n

=

=

, 

 n = 1,2,3,... 

(7.12)

 n

 m

 ma 2

2

8

Thus, the energy is  quantized. The integer  n is called a  quantum number. 

There  is  an   infinite   sequence  of   discrete  energy  levels.  There  is  only  one eigenfunction for each level, so the energy levels are  nondegenerate. 

It can be easily shown that the eigenfunctions y m( x) and y n( x) corresponding to different eigenvalues are orthogonal:

 a \ *

I

 dx = 0,  m ¹  n

 m (  x)\  n (  x)

 a

Combining  orthogonality  and  normalization,  we  have  the   orthonormality

condition:

 a \ *

I

 dx = d mn

(7.13)

 m (  x)\  n (  x)

 a

The  first  four  energy  levels,  eigenfunctions  and  position  probability

densities are shown in Figures 7.2, 7.3 and 7.4, respectively. 

Figure 7.2 Energy-level diagram. 

Connection  with  the  De  Broglie  Hypothesis

It is interesting to note the connection between the eigenfunctions of the infinite

square well and the de Broglie hypothesis. The de Broglie wavelength for the  n th

quantum  state  is

l  n =  2S  =  2 (2 a)

 k

 n

 n

This gives

2 a =   n  l n

2

!
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 y 2

| 2

 y |

2

 y 1

| 2

 y |

 x

1

– a

0

 a

– a

 x

0

 a

Figure 7.3

Wave functions. 

Figure 7.4

Probability densities. 

This shows that  the n th  quantum state is obtained when n/2  de Broglie

 wavelengths can fit into the box. 

Also note that the  n th eigenfunction has ( n – 1) nodes within the box. This

follows from (7.9) and (7.10). 

Zero-point Energy

It is important to note that the lowest possible energy, also called the  zero-point

 energy, is not zero. This fact is in agreement with the  uncertainty principle. By

trapping the particle in a limited region, we acquire information about its

position. Therefore, its momentum cannot be known with complete precision. 

This prevents any possibility of the particle being at rest. Hence the lowest

energy cannot be zero. 

The position uncertainty is roughly given by D x ª  a. Therefore the minimum

momentum uncertainty is D  p ª  h/ a. This leads to a minimum kinetic energy of

order  h2/ ma 2. Equation (7.12) tells us that this agrees, qualitatively, with the

value of  E 1. 

Parity

The two classes of eigenfunctions that we have obtained have one important

difference. The eigenfunctions (7.9) belonging to the  first class  are even

functions of  x:

 y n(–  x) =  y n( x)

Particle in a Potential Well
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These functions are said to have  even   parity. On the other hand, the

eigenfunctions (7.10) belonging to the  second class are odd functions of  x:

 yn(– x) = –   y n( x)

These functions are said to have  odd parity. As discussed in section 6.8, this

division of the eigenfunctions into even and odd types is a consequence of the

fact that the potential is symmetric about the origin:  V (– x) =  V ( x). 

PROBLEM 7.1

Calculate ( a)  x , ( b)   p , (c)   x 2  and ( d )   p 2  for a particle in a one-dimensional box shown in Figure 7.1. 

 Solution:

We shall consider the even parity wave functions

1

 np

 yn( x) = 

cos  k x, 

 k = 

, 

 n = 1, 3, 5,…

 a

2 a

The same results are obtained if we consider the odd parity wave functions. 

•

(a)

 x

= 

 y *

z  x  ynn dx

- •

1

 a

= 

z  x cos2  kx dx

 a - a

= 0, since the integrand is odd. 

This result is as expected; the probability density  y * y is symmetric about

 x = 0, indicating that the particle spends as much time to the left of the centre

as to the right. 

•

∂

F

(b)

 p

= 

 y *

z -h  y

 n

 i

HG

IKJ  n dx

- •

 x

∂

 i

 a

h

=  -

cos   kx  (–  k sin  kx) dx

 a  z- a

 i h k a

= 

z cos  kx sin  kx dx

 a

- a

= 0, since the integrand is odd. 

Again, the result is as expected. The particle moves back and forth, 

spending half its time moving towards the left and half its time moving towards

the right. Thus the average momentum must be zero. 

•

(c)

 x 2

=  z  yn*  x 2  yn dx

- •

1

 a

= 

z  x 2cos2  kx  dx

 a - a

2

 a

= 

z   x 2(1 + cos 2 kx) dx

2 a  0

 a

1

3

 x

1  a

L

=   a  3

 a  0

NM OQP + z   x 2 cos (2 kx) dx

0

! 
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 a 2

 a

1

= 

+

z   x 2 cos (2 kx)  dx

3

 a  0

Integrating by parts

 a

z

1

 a

1  a

 x 2 cos (2  kx)   dx = 

 x  2 sin 2 kx

– 

z   x sin (2 kx)  dx

0

2 k

0

 k  0

The first term vanishes since 2  ka  =   np and sin  np  =  0. The integral in the second term gives

 a

z

1

 a

1

 a

 x sin (2  kx)  dx =  – 

 x  cos 2 kx  + 

z cos(2 kx)  dx

0

0

2 k

2 k  0

 a

1

 a

 a

= 

+

sin 2 kx  = 

2 k

4 k  2

0

2 k

The first term has been evaluated using cos  n p = –1 as  n is odd. Thus, we obtain

 a 2

1

1

 a

F F

 x 2

= 

+ H IK -

H IK FH IK

3

 a

 k

2 k

 a 2

1

= 

- 2 k 2

3

 a 2

1

2 a  2

F

= 

-

H I p K

3

2  n

 a 2

2 a 2

= 

-  n 2 2

3

 p

1

2

F

=   a 2

-

H

I

 n p  K

3

2

2

•

(d)

 p 2

=  z  yn*p 2 yn dx

-•

F

1

 a

2

 d

= 

z  cos( kx) -h2  cos ( kx)  dx

 a -

2

 a

HG

I

 d x  KJ

h2 2

 k

 a

= 

z cos2  kx  dx

 a

- a

2 2 2

h  k

 a

= 

z (1 + cos(2 kx))  dx

2 a

0

2 2 2

h  k

 a

L

= 

[ x a

] +

cos (2 k x)  dx

z

2

0

 a

NM

OQP

0

 n 2 2 2

 p  h

=  h2  k 2 = 

 a 2

4

Particle in a Potential Well

!! 

PROBLEM 7.2

Show that the uncertainty relation D x  D  p ≥    h/2   is satisfied

in the case of a particle in a one-dimensional box. 

 Solution:

From section 6.6, the uncertainty D x in  x is defined as

(D x)2 =  ·( x  –   x )2Ò

=  · x 2  –  2 x   x   +   x  2Ò

=   x 2   –   x  2

Similarly, the uncertainty D p in  p is defined as

(D  p)2 =   p 2   –   p  2

Using Problem 7.1, 

2

F

(D  x)2 =   a 2 1 -

H

I

 n p  K

3

2

2

 n 2 2 2

 p  h

and

(D  p)2 = 

 a 2

4

1

1

F

Therefore, 

(D  x)2(D  p)2 =   n 2 2 2

 p  h

-

2

H

IK

12

2 p n 2

F  n  1

or

D x   D p =  h  p  2 2

1 2

-

12

2

HG

IKJ /

The smallest value of this uncertainty product is for the ground state

( n = 1). We get on simplifying

(D x  D p) n=1 =  0.567h

This is in agreement with

D x D p ≥  h/2

PROBLEM 7.3

Consider a particle of mass  m, moving in a one-dimensional

infinite square well of width  L, such that the left corner of the well is at the

origin. Obtain the energy eigenvalues and the corresponding normalized

eigenfunctions of the particle. 

 Solution:

This is an alternate version of the infinite square well problem. 

The students must learn to solve it and compare the eigenvalues and

eigenfunctions with those obtained in section 7.1. 

The potential energy is

0

0 <  x < 

R

 L

 V( x) =  S

(7.14)

•

 x < 0

and

 x > 

T

 L

Thus, we have to solve the Schrödinger equation (7.4) subject to the boundary

conditions

 y (0) =   y ( L) = 0

(7.15)

!" 
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The general solution is again given by (7.5). The boundary condition at  x = 0

requires that  B = 0. The boundary condition at  x =  L requires that

 kL =   np, 

 n = 1, 2, 3…

Thus the eigenvalues are

h2 k 2

 n 2 2

 p  h2

 E

, 

 n

 n =

=

= 1,2,3,... 

(7.16)

 m

 mL 2

2

2

and the corresponding eigenfunctions are

 npx

F

 y( x) =   A sinH IK ,  n = 1,2,3, 

 L

The normalization condition requires

2

 A =

 L

Therefore, the normalized eigenfunctions are

2

 np x

F

 y ( ) =

sin

, 

= 1,2,3,... 

 n x

 n

H IK

(7.17)

 L

 L

Note that the energies of the particle are same as in Equation (7.12) because

 L = 2 a. 

PROBLEM 7.4

Calculate the three lowest energy levels (in eV) for an electron

inside a one-dimensional infinite potential well of width 2Å. Also determine the

corresponding normalized eigenfunctions. Given mass of electron

 m = 9.1 ¥ 10–31 kg,  h = 1.05 ¥ 10–34Js, 1 eV = 1.6 ¥ 10–19 J. 

 Solution:

Energies

If the width of the well is 2 a from –  a <  x <  a, then the energy of the  n th level is given by

 n 2 2 2

 p  h

 En = 

 ma 2

8

Here   a = 1Å = 10–10m .  The three lowest levels correspond to  n = 1, 2, 3. 

We have

( . 

314)2 ¥ ( . 

1 05 ¥ 10 3

- 4 )2

 E 1 =  8 ¥ .91¥10 31

-

¥ (10-10 )2

= 14.93 ¥  10–19  J

=  9.3 eV

 E 2 = 4 E 1 =  37.2 eV

 E 3 = 9 E 1 =  83.7 eV

Particle in a Potential Well
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Eigenfunctions

1

 p x

 y 1( x) = 

cos

 a

2 a

1

F  px

= 

cos

10 5

-

HG

I

2 ¥ 10 1

- 0 KJ

1

F 2 px

 y 2( x) = 

sin

10-5

HG

I

2 ¥ 10-10 KJ

1

 p x

sin F

= 

H IK

10 5

-

10 1

- 0

1

F 3 px

 y 3( x) = 

cos

10 5

-

HG

I

2 ¥ 10 1

- 0 KJ

PROBLEM 7.5

Can we measure the energy levels of a ball of mass 10 g

moving in a one-dimensional box of length 10 cm? 

 Solution:

The energy levels of a particle of mass  m in a box of length  L is

given by

 p  2 2 2

h  n

 En = 

2

2 mL

Substituting the values

( . 

3

)

14 2 ( . 

1 054 ¥ 10 3

- 4 )2 2

 n

 En =  2 ¥ (10 ¥10 3-) (10 ¥10 2-)2

= 5.2 ¥  10–64   n 2 J

= 3.25 ¥ 10–45  n 2 eV

Taking

 n = 1, 2, 3,…

 E 1 = 3.25 ¥ 10–45 eV

 E 2 = 13 ¥ 10–45 e V

 E 3 = 29.25 ¥ 10–45 eV

etc. These energies are extremely small and close together and hence cannot

be measured. 

PROBLEM 7.6

Obtain an expression for the wavelength of the photon

emitted when a particle of mass  m in an infinite well of width 2 a makes a

transition from a higher state of quantum number  n 2 to a lower state of

quantum number  n 1. 

 Solution:

The frequency of the emitted photon is

 E -  E

 n 

 n

 n

=  

2

1

(7.18)

 h

!$
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Therefore, the wavelength of the photon is

 c

 ch

2 p c h

 l = 

= 

= 

(7.19)

 n

 E -  E

 E -  E

 n

 n

 n

 n

2

1

2

1

Now

 n 2 2 2

 p  h

 E

2

 n

= 

2

 ma 2

8

 n 2 2 2

 p  h

and

 E

1

 n

= 

1

 ma 2

8

Therefore

( n 2 -  n 2 ) 2 2

 p  h

 E

2

1

 n   –   E

= 

(7.20)

2

 n 1

 ma 2

8

Substituting in (7.19)

(2 pc )

h (8 2

 ma )

 l =  ( 2 2

 n -  n ) 2 2

 p  h

2

1

16

2

 cma

or

 l = 

(7.21)

2

2

( n -  n ) p  h

2

1

Note: For a well of width  L, we have

4

2

 cmL

 l = 

(7.22)

2

2

( n -  n ) p  h

2

1

PROBLEM 7.7

A beam of photons in a range of wavelengths  l = 9.0 ±

1.0 nm strikes an electron in an infinite well of width 1.0 nm. The electron is in

the ground state. To what higher states can the electron be excited? 

 Solution:

If the electron is excited to the  n th state, then using Equation (7.22), 

4

2

 cmL

 n 2 –  1 = 

 lp  h

4 ¥ 3 ¥ 108 ¥ 9 1

. ¥ 10-31 ¥ 10 9

-

2

(

)

=  (9 0. ± 10.) ¥10 9- ¥ 314

. 

¥ 1 054

. 

¥ 10 3

- 4

Solving this equation, we find that  n  ª   20 when plus sign is taken in the

denominator and  n ª 18 when minus sign is taken. Thus, the possible values of

 n are 18, 19 and 20. 

PROBLEM 7.8

Calculate the probability that a particle in a one-dimensional

box of length  L can be found between 0.4  L to 0.6  L for the (a) ground state, (b) first excited state, (c) second excited state. 

Particle in a Potential Well

!%

 Solution:

The wave function for a particle in the  n th state is given by

Equation (7.17):

2 1/2

 npx

F

 y n( x) =  H IK sin

 L

 L

The probability of finding the particle in an interval of width  d x about a point

 x is

 Pn( x) dx =   yn*( x) yn( x) dx

2

 np x

F

= 

2

sin

 dx

H IK

 L

 L

Here

 dx = (0.6 – 0.4) L = 0.2 L

0.4 + 0 6

. 

F

 L

and

 x =  H

IK L = 

2

2

For the ground state,  n = 1. Therefore, 

2

 p L

F

 P 1 dx = 

sin2

◊

H I ¥ 0.2 L =  04. 

2 K

 L

 L

For the first excited state,  n = 2. Therefore, 

2

2 p

 L

F

 P 2 dx = 

sin2

◊

H

IK ¥ 0.2 L =  0

 L

 L

2

For the second excited state,  n = 3. Therefore, 

2

3 p

 L

F

 P 3 dx = 

sin2

◊

H

IK ¥ 0.2 L =  04. 

 L

 L

2

7.2

THREE-DIMENSIONAL INFINITE SQUARE WELL

The discussions of section 7.1 and problem 7.3 can be easily generalized to the

case of a particle in a three-dimensional box. This problem is more closely

related to actual physical systems. 

Let us consider a particle of mass  m constrained to move in a rectangular

box shown in Figure 7.5. The origin  O is at one corner of the box and the lengths

of the box along  x  –,  y  – and  z  – axes are  a,  b and  c, respectively. Inside the box the potential energy is zero and outside it is infinite. 

The time-independent Schrödinger equation inside the box is

h2

– 

—2 y( x,  y,  z) =   Ey( x,  y,  z)

2 m

∂2 y

∂2 y

∂2 y

2 mE

or

+

+

+

 y = 0

(7.23)

∂ 2

 x

∂ 2

 y

∂ 2

2

 z

h

which is to be solved subject to the condition that  y ( x,  y,  z) = 0 at the walls of the box. 

!& 
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 z

 c

 O

 b

 y

 a

 x

Figure 7.5

Three-dimensional box. 

This partial differential equation can be solved by the technique of

separation of variables. We assume that the function  y ( x,  y,  z) can be written as a product of three functions each of which depends on only one of the

coordinates:

 y  ( x,  y,  z) =  X( x)   Y( y)   Z( z) (7.24)

Substituting into Equation (7.23) and dividing by  XYZ, we get

1

2

 d X

1

2

 d Y

1

2

 d Z

2 mE

+

+

+

= 0

(7.25)

2

2

2

2

 X dx

 Y dy

 Z dz

h

Note that each term of this equation is a function of only one of the independent

variables  x,  y,  z and the last term is a constant. Therefore, this equation can be valid only if each term is a constant. We write

1

2

 d X = – k 2

2

 x

(7.26)

 X dx

1

2

 d Y = – k 2

2

 y

(7.27)

 Y dy

1

2

 d Z = – k 2

2

 z

(7.28)

 Z dz

where   kx,  ky,  kz are constants. Equation (7.25) reduces to

2 mE

 k 2 



 x  +  k  2

 y  +  k  2

 z = 

(7.29)

2

h

Each of the three Equations (7.26), (7.27) and (7.28) depends on only one

of the variables and, therefore, can be solved easily. Equation (7.26) can be

rewritten as

 d X

2

+  k 2 

 x X = 0

(7.30)

 dx 2

Particle in a Potential Well

!' 

The general solution of this equation is

 X( x) =  A   sin   kx x +  B cos  kx x

The boundary condition  X(0) = 0 makes  B = 0. The boundary condition

 X( a) = 0 gives

 kxa =  nxp

 n p

or

 k

 x

 x =  

, 

 nx = 1, 2, 3…

(7.31)

 a

Thus the normalized solution to (7.30) is

2

 n p x

 X ( x) = 

sin   x

, 

 n x = 1, 2, 3…

(7.32)

 a

 a

Similarly, for  Y( y) and  Z( z) we have, 

 n p

 y

 k y = 

, 

 ny =    1, 2, 3,…

(7.33)

 b

2

 n p y

 y

 Y( y) = 

sin 

, 

 ny = 1, 2, 3,…

(7.34)

 b

 b

 n p

 k

 z

 z = 

, 

 nz = 1, 2, 3,…

(7.35)

 c

2

 n p z

 Z( z) = 

sin   z

, 

 nz = 1, 2, 3,…

(7.36)

 c

 c

Combining (7.32), (7.34) and (7.36), we obtain the normalized eigen-

functions:

/

8

1 2

 n p x

 n p y

 n p z

F

 y

 x

 y

 z

( x,  y,  z) =

sin

sin

sin

 n ,  n ,  n

H IK

(7.37)

 x

 y

 z

 abc

 a

 b

 c

where   nx,  ny,  nz = 1,2,3... 

Now, substituting (7.31), (7.33) and (7.35) into (7.29) and rearranging, 

we get the expression for the energy   E as

F

 p  2 2

2

h

 n 2

 n

 n 2

 E

 x

 y

 z

=

+

+

 n ,  n ,  n

 x

 y

 z

 m

 a 2

 b 2

 c 2

2

HG

IKJ

(7.38)

Note that there are three quantum numbers that are necessary to describe

each quantum state. This is a general property of all three-dimensional systems. 

For the ground state  n x =  ny =  nz = 1. However, the set of quantum numbers which defines the first and the higher states depends on the relative magnitudes

of   a,  b, and  c. 

Let us consider the simplest case of a cubical box. Then  a =  b =  c and the energy eigenvalues become

 p  2 2

h

 E

=

( n 2 +  n 2 +  n 2 )

 n ,  n ,  n

(7.39)

2

 x

 y

 z

 x

 y

 z

2 ma

"
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The corresponding eigenfunctions are

1/

8

2

 n p x

 n p y

 n p z

F

 y

 x

 y

 z

( , , ) =

sin

sin

sin

 n ,  n ,  n

 x y z

H IK

FH IK F

 x

 y

 z

 a 3

 a

HG I

 a

KJ FH IK (7.40)

 a

Taking   nx =  ny =  nz = 1, the ground state energy is

3 2 2

 p  h

 E 1,1,1 = 

(7.41)

2

2

 ma

This state is  nondegenerate. The next higher energy, which is twice of this, can

be obtained in three different ways:

 nx

 ny

 nz

2

1

1

1

2

1

1

1

2

This shows that the first excited state is  three-fold degenerate. It can be easily

seen that most of the higher states are degenerate. The degeneracy occurs

because the energy depends on the quantum numbers  n x,  ny and  nz  only through the combination  n 2 =  n  2

2

2

 x  +  n y  +  n z , and the same value of  n can be obtained for

different sets of values of  nx,  ny and  nz. Note that this is not true for the energy levels (7.38) of a rectangular box. The existence of degeneracies is thus related

to the  symmetry of the potential. This is one important way in which a

multi-dimensional system differs from a one-dimensional system. 

PROBLEM 7.9

Think of the nucleus as a cubical box of length 10–14 m. 

Compute the minimum energy of a nucleon confined to the nucleus. Given:

mass of a nucleon = 1.6 ¥ 10–27 kg. 

 Solution:

From Equation (7.41) the ground state energy of a particle of mass

 m in a cubical box of length  a is given by

3 2 2

 p  h

 E =  2 2

 ma

Therefore, the minimum energy of the nucleon is

3 ¥ (314 2

. 

) ¥ 1

( 054

. 

¥ 10-34 2

)

 E min =  2 ¥16. ¥10-27 ¥ 1(0-14 2)

= 9.75 ¥ 10–13  J

=  6.1 MeV

7.3

ONE-DIMENSIONAL FINITE SQUARE WELL

(FIRST TYPE)

The finite square well can be of two types. The first type is as shown in

Figure 7.6 and will be discussed in this section. The second type is shown in

Figure 7.8 and will be discussed in the next section. 

Particle in a Potential Well

"

 V x

( )

 V 0

 x

– a

0

 a

Figure 7.6

Finite square well (first type). 

The square well potential shown in Figure 7.6 is given by

0

|  x | <  a

R

 V( x) =  S  V | x| >  a

T

(7.42)

0

Consider a particle of mass  m moving in this potential with energy  E. We

shall consider the case when  E <  V0. The particle is then confined in a  bound state. In the other case, when  E >  V 0 the particle is unconfined. This situation is relevant in the scattering of a particle by a potential. Such problems will be

discussed in the next chapter. 

Inside the well the time-independent Schrödinger equation is

h2

2

 d y

– 

=   Ey, 

| x| <  a

2

2  m d x

 d  2 y

2  m E

or

+  k 2 y = 0, 

 k 2 = 

(7.43)

 d x  2

2

h

The general solution of this equation is

 y( x) =  A sin  k x +  B cos  kx

(7.44)

Outside the well the equation is

h2

2

 d y

–

+  V

2

0 y =   Ey, 

| x| >  a

2  m d x

 d  2 y

2  m ( V -  E)

or

–   K 2 y = 0, 

 K 2  = 

0

(7.45)

 d x  2

2

h

Since  V 0 >  E, the quantity  K 2 is positive. Therefore, the general solution of this equation is

 y ( x) =  Ce–Kx + D  eKx

(7.46)

Now, the wave function should not become infinite as  x Æ ± •. Therefore, 

we must take  C = 0 for  x < –   a and  D = 0 for  x >  a. So, the wave function can be written as

R DeKx

 x < -  a

 y ( x) =   A  sin  kx +  B  cos  kx -  a <  x <  a S|

(7.47)

 Ce Kx

 x >  a

T| -

" 
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The requirement that  y ( x) and  dy / dx be continuous at  x = –   a gives

–   A   sin   ka +  B cos  ka =   D e– Ka

(7.48)

and

 kA  cos   ka + kB  sin   ka =  KDe– Ka

(7.49)

Similarly, the continuity of  y ( x) and  dy / d x at  x =  a gives A sin  ka  +   B cos  ka =   Ce– Ka

(7.50)

and

 kA cos  k a  –   kB   sin   ka = –  KCe– Ka

(7.51)

Equations (7.48) and (7.50) give

2 A sin  ka = ( C  –   D)  e– Ka

(7.52)

2 B cos  ka = ( C +  D)  e– Ka

(7.53)

Equations (7.49) and (7.51) give

2 kA cos  ka =  –  K  ( C  –   D)   e– Ka

(7.54)

2 kB sin  ka =   K  ( C +  D)   e– Ka

(7.55)

Equations (7.52) and (7.54) yield

 k cot  k a =  –   K

(7.56)

unless  A = 0 and  C =  D. Similarly, Equations (7.53) and (7.55) yield

 k tan  k a =  K

(7.57)

unless   B = 0 and  C = –   D. 

Eliminating   K from (7.56) and (7.57) leads to tan2   ka = – 1 which is not

possible because both  k and  a are real. Therefore, these two equations cannot

be valid simultaneously. Thus, we have two classes of solutions:

For the  first class

 A = 0,  C =  D

and

 k tan  k a =  K

(7.58)

and for the  second class

 B = 0,  C = –   D

and

 k cot  ka = –   K

(7.59)

Eigenfunctions

The   eigenfunctions of the  first class  are given by

R CeKx x <- a

 y ( x) =   B  cos  k x

-  a <  x <  a

S|

(7.60)

 Ce Kx

 x >  a

T| -

The  eigenfunctions of the  second class  are given by

R CeKx x <- a

 y ( x) =   A  sin  k x

-  a <  x <  a

S|

(7.61)

-  Ce K x

 x >  a

T| -

It is interesting to note that the eigenfunctions extend into the classically

forbidden region |  x| >  a.  The distance through which they extend is roughly

 K –1 =  h/[2 m( V 0 –  E)]1/2, which increases as the energy  E of the particle increases. 

Particle in a Potential Well

"! 

Parity

It may be noted, as in the case of the infinite square well, that the eigenfunctions

of the first class have  even   parity, satisfying

 y(– x) =   y( x)

and the eigenfunctions of the second class have  odd parity, satisfying

 y(– x) =  – y( x)

This division of eigenfunctions into even and odd types is due to the fact that

the potential energy is symmetric about the origin, that is,  V (– x) =  V( x). 

Energy Levels

The energy levels can be found by solving the Equations (7.56) and (7.57)

numerically or graphically. We shall describe a simple graphical procedure. Let

us put  x =  ka and  h =  Ka, so that Equations (7.57) and (7.56) become, respectively

 x tan  x =  h

(7.62)

 x cot  x = – h

(7.63)

These equations are to be solved along with

2

2

 m V a

 x 2 +  h 2 = ( k 2 +  K 2) a 2 = 

0

=  g  2

(7.64)

2

h

where  g  = (2 mV 0  a 2/h2 )1/2. Since  x and  h are positive, the energy levels may be obtained by determining the points of intersection in the first quadrant of the

circle (7.64) with the curve (7.62) for even states or with the curve (7.63) for

odd states. This is illustrated in Figure 7.7 for three values of  g ( = 1, 2 and

12 ). For a given mass  m of the particle,  g depends on the parameters of the

square well through the combination  V 0 a 2. Thus it is a measure of the strength

of the potential. It is found that for  g = 1, there is one even   bound state and no odd    bound state. For  g = 2, there is one even state and one odd state. For

 g  =  12 , there are two even states and one odd state. Thus the three increasing

values of  g give a total of one, two, and three energy levels, respectively. 

The following conclusions are easily drawn:

(i) The energy levels are  nondegenerate. This is expected because the

potential is one-dimensional. 

(ii) The number of energy levels is  finite   and depends on the strength

parameter  g  and hence on  V 0 a 2. If ( N – 1)  p /2 <  g  £  Np /2, then the total number of states is equal to  N. 

(iii) As  g increases, energy levels corresponding respectively to even and odd

parity appear successively. The ground state is even, the next state is odd

and so on. 

"" 
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 h

4

 g = 12

tan

 x

 xx

 x

=

cot

tan

3

 h

 x–

 x

=

= h

 h

2

 g = 2

1

 g = 1

1

 x

 p

2

3  p

4

3 p

2

2

Figure 7.7

Graphical determination of the energy levels for a square well potential. 

In the limiting case of infinite square well,  V 0 Æ •. In that case  h Æ •. 

The roots of Equations (7.62) and (7.63) will then be

 n p

 x = 

, 

 n = 1, 2,…

2

Since

 x =   ka  = (2 mE/h2)1/2   a, we get

2

2

 mEa

 n 2 2

 p

= 

2

h

4

 n 2 2 2

 p  h

or

 E = 

 ma 2

8

which is same as the earlier result (7.13). Further,  K  Æ  • when  V 0  Æ  •. 

Therefore, the eigenfunctions (7.60) and (7.61) will vanish for |  x| >  a as is the case for the infinte square well (section 7.1). 

7.4

ONE-DIMENSIONAL FINITE SQUARE WELL

(SECOND TYPE)

The finite square well of the second type is shown in Figure. 7.8. The potential

is given by

-  V

|  x | < 

R

 a

0

 V  ( x) =  S

(7.65)

0

|  x | > 

T

 a

It should be noted that the potentials in Figures 7.6 and 7.8 differ only in

the origin of the energy scale and are, therefore, physically equivalent. 

Particle in a Potential Well

"#

 V x

( )

– a

0

 a

 x

– V 0

Figure 7.8

Finite square well (second type). 

We shall discuss the case  E < 0  which gives rise to bound states. Inside the

well the time-independent Schrödinger equation is

h2

2

 d y

–

–   V

2

0 y =   Ey = –  |  E | y, 

| x| <  a

2  m d x

 d  2 y

2  m V

(

- |  E|)

or

+  a 2 y = 0, 

 a 2 = 

0

(7.66)

 d x  2

2

h

Here |  E | = –   E is the binding energy of the particle in the well. Since

 V 0 > | E|, the quantity  a 2 is positive. Therefore, the general solution of this equation is

 y ( x) =  A sin  a x + B  cos   a x

(7.67)

Outside the well the equation is

h2

2

 d y

–

=   Ey = –  |  E| y, 

| x| >  a

2

2  m d x

 d  2 y

2  m |  E |

or

– b  2 y =    0, 

 b 2 = 

(7.68)

 d x 2

2

h

The general solution of this equation is

 y ( x) =  Ce– bx +  Debx

(7.69)

Now, the wave function should not become infinite as  x Æ ± •. Therefore, 

we must take  C = 0 for  x < –  a and  D = 0 for  x >  a. So the wave function can be written as

R De xb

 x < -  a

 y ( x) =   A

S| sin ax+  B cos ax - a<  x<  a

(7.70)

 Ce bx

 x >  a

T| -

Imposing the requirements that  y ( x) and  dy/dx be continuous at  x = ±  a and carrying out the same manipulations as in the previous section, we obtain

two classes of solutions. 
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The  eigenfunctions  of the   first class  are given by

R Cebx x <- a

 y ( x) =   B

S| cos ax - a<  x <  a

(7.71)

 Ce bx

 x >  a

T| -

The  eigenfunctions    of the  second class  are given by

R Cebx x <- a

 y ( x) =   A

S| sin ax - a<  x <  a

(7.72)

-  Ce bx

 x >  a

T| -

The  energy levels can be found by solving the equations

 x   tan   x =  h

 x   cot   x = – h

where  x =  aa  and  h =  ba. These equations can be solved to obtain the energy levels following the same procedure as in the previous section. 

SUMMARY

1. In this chapter we solve the time-independent Schrödinger equation for

a particle constrained to move in a limited region. It is found that this

confinement leads to quantization of energy. Three simple systems are

discussed—the infinite square well in one and three dimensions and the

finite square well in one dimension. 

2. For a one-dimensional infinite square well, the potential energy is

0

|  x | <  a

R

 V( x) =  S • | x| >  a

T

The normalized eigenfunctions are found to be

R 1  npx

cos

, 

 n = 1,3, 5,º

 a

2 a

 y

S||

 n( x) = 

1

 np x

| sin ,  n=2,4,6,º

|  a  2 a

T

Thus, the eigenfunctions are grouped into two classes—the first class

consists of functions which have even parity and the second class

consists of functions having odd parity. This division is a consequence

of the symmetry of the potential:  V(–  x) =  V( x). 

The energy eigenvalues are

 n 2 2 2

 p  h

 En  = 

, 

 n = 1, 2, 3,  …

 ma 2

8
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The energy levels are nondegenerate. The lowest possible energy is not

zero, in agreement with the uncertainty principle. 

3. For a three-dimensional box having the origin at one corner and having

lengths  a,  b and  c along the  x-,  y- and  z-axis, respectively, the normalized eigenfunctions are

8

1/2

 n p x

 n p y

 n pz

F

 y

 x

 y

 z

 n

( x,  y,  z)= 

sin

sin

sin

 x,  ny,  nz

H IK

 abc

 a

 b

 c

 nx,  ny,  nz = 1, 2, 3,…

The energy eigenvalues are F

 p  2 2

2

2

2

h

 n

 n

 n

 E

 x

 y

 z

+

+

 n

= 

 x,  ny,  nz

2

2

2

2 m

 a

 b

 c

HG

IKJ

The energy levels are, in general, nondegenerate. However, if  a =  b =  c, 

that is for a cubical box, the energy eigenvalues are given by

 p  2 2

h

 E

2

2

2

 n

= 

( n  +  n  +  n )

 x,  ny,  nz

2

 x

 y

 z

2 ma

In this case most of the energy levels are degenerate. The ground state

( nx =  ny =  nz  = 1) is, however, nondegenerate. The degeneracies are a

consequence of the symmetry of the cubical potential. 

4. For a one-dimensional finite square well, the potential energy is

0

|  x | <  a

R

 V( x) = S  V | x| >  a

T 0

for a bound system the energy  E <  V 0. There are two classes of

eigenfunctions. For the first class

R CeKx x <- a

 y ( x) =   B  cos  kx -  a <  x <  a

S|

 Ce Kx

 x >  a

T| -

2

1/ 2

 mE

F

2

1 2

 m V

(

 E)

/

-

F

where

 k = 

,  K  = 

0

2

H I

h K

2

H

I

h

K

For the second class

R CeKx x <-  a

 y ( x) =   A  sin  kx

-  a <  x <  a

S|- Ce Kx x>  a

T| -

The eigenfunctions extend into the classically forbidden region. 

The energy levels can be found by graphical methods as discussed in

the text. The energy levels are nondegenerate and the number of levels

is finite. 
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QUESTIONS

1. Obtain the energy eigenvalues and the normalized eigenfunctions for a

particle in a one-dimensional infinite square well. Draw the eigen-

functions and their absolute squares for the lowest four states. 

2. Justify that the existence of a non-zero ground state energy for an infinite

square well potential is in accordance with the uncertainty principle. 

3. Consider a particle moving in an infinite potential well defined by

0 for 0 <  x <  a, 0 <  y <  b, 0 <  z < 

R

 c

 V  ( x,  y,  z) =  S • everywhere else

T

Solve the time-independent Schrödinger equation for this system and

obtain the energy eigenvalues and normalized eigenfunctions. 

4. Consider a particle moving in a three-dimesional infinite square well

defined by

0 for 0 <  x <  a, 0 <  y <  a, 0 <  z < 

R

 a

 V( x,    y,    z) =  S • everywhere else

T

Solve the time-independent Schrödinger equation for this system and

obtain the energy eigenvalues and the normalized eigenfunctions. Show

that the ground state is nondegenerate whereas the first excited state is

three-fold degenerate. 

5. Consider a particle moving in a one-dimensional finite square well defined

by

0

|  x | <  a

R

 V( x) =  S  V | x| >  a

T 0

Solve the time-independent Schrödinger equation for  E <  V 0, where  E is the energy of the particle. Obtain the energy eigenfunctions and classify

them according to parity. Discuss how the energy levels can be obtained

graphically. 

6. Consider a particle moving in a one-dimensional finite square well defined

by

-  V

|  x | < 

R

 a

0

 V( x) =  S 0 | x| > 

T

 a

Solve the time-independent Schrödinger equation for the system and

obtain the bound state energy eigenfunctions. Discuss how the energy

levels can be obtained graphically. 

EXERCISES

1. Consider an electron in an infinite well of width 0.5 Å. Calculate the

energy of the electron in the (a) ground state, (b) first excited state. Mass

of electron = 9.0 ¥ 10–31kg. 

[ Ans. 

(a) 1.5 ¥ 102 eV, (b) 6.0 ¥  102 eV]

Particle in a Potential Well
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2. An electron is trapped in an infinite well of width 1 cm. For what value

of  n will the electron have an energy of 1 eV? 

[ Ans. 

1.5  ¥ 107]

3. The lowest energy possible for a particle entrapped in a box is 40 eV. 

What are the next three higher energies the particle can have? 

[ Ans. 

160 eV, 360 eV, 640 eV]

4. Calculate the first three energy levels of an electron enclosed in a box of

width 10 Å. Compare these energies with those of a glass marble of mass

1 g contained in a box of width 20 cm. Can these energies of the marble

be measured experimentally? 

[ Ans. 

For  electron: 0.377 eV, 1.508 eV, 3.393 eV; for  marble: 0.858 ¥

10–44  eV, 3.432 ¥ 10–44  eV, 7.722 ¥ 10–44  eV. These energies of the

marble cannot be measured experimentally as these are very-very small

(almost zero).]

5. An electron is trapped in a one-dimensional infinite potential well of

width 1.0 Å. Calculate the wavelength of the photon emitted when the

electron makes a transition from the first excited state to the ground

state. In which region of the electromagnetic spectrum does this

wavelength lie? 

[ Ans. 

1.1  ¥ 10–8 m, ultraviolet]

6. An electron of energy 342 eV is confined in a one-dimensional box of

length 1.0 Å. Calculate (a) the quantum number  n of the energy level of

the electron and (b) the energy required to take the electron to the next

higher level. 

[ Ans. 

(a)   n = 3, (b) 266 eV]

7. A particle is moving in a one-dimensional box of width 10 Å. Calculate

the probability of finding the particle within an interval of 2 Å at the

centre of the box when it is in the state of least energy. 

[ Ans. 

0.4]

8. An electron is confined in a cubical box of each side 1 Å. Calculate the

energies of the electron in the ground state and the first excited state. 

[ Ans. 

113 eV, 226 eV]

9. Show that the de Broglie wavelength of a particle in a one-dimensional

box in the first excited state is equal to the length of the box. 
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C h a p t e r

Scattering  of  Particles  by  Barriers

and Wells

8

Chapter  Contents

8.1

The Potential Step

8.2

The Square Potential Barrier

8.3

Explanation of Alpha Decay

8.4

The Square Potential Well

In this chapter we shall discuss what happens when a beam of particles of fixed

energy is incident on a potential barrier or well. Three simple systems are con-

sidered—the potential step, the square barrier and the square well. We shall see

that in each case a certain fraction of the incident particles is transmitted, while

the remaining fraction is reflected. This is in contrast to what is expected on the

basis of classical mechanics. Classically, there must be total transmission if the

energy of the incident particle is more than the height of the barrier, and total

reflection if the energy of the incident particle is less than the height of the barrier. 

The transmission of particles even when the particle energy is less than the

barrier height is a unique quantum phenomenon and is known as  tunneling. The

tunnel effect has important consequences and applications, for example, 

radioactive alpha decay, tunnel diode, scanning tunneling microscope etc. We

shall discuss the mechanism of alpha decay in detail. 

8.1

THE POTENTIAL STEP

Let us consider the potential step shown in Figure 8.1. It is an infinite-width

potential barrier given by

0

 x < 0

R

 V( x) =  S V x > 0

T

(8.1)

0

150
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 V x

( )

Region I

Region II

Incident

 V 0

particle

 x

0

Figure 8.1

The potential step. 

Suppose, a particle of mass  m is incident on the step from the left with

energy  E. According to classical mechanics, if  E <  V 0, then the particle would be reflected back at  x = 0 because it does not have sufficient energy to climb

the barrier. On the other hand, if  E >  V 0, then the particle would not be reflected; it would keep moving towards the right with reduced energy. 

We shall now study this system using quantum mechanics. Since the

potential does not depend on time, the motion of the particle is described by the

wave function Y( x,  t) =  y ( x) exp (– iEt/[), where  y( x) satisfies the time-independent Schrödinger equation

h2 2

 d y( x)

–

+  V( x) y( x) =  Ey( x)

(8.2)

2

2 m

 dx

We shall discuss the solution of this equation separately for the two cases, 

 E >  V 0 and  E <  V 0. 

Case 1: E > V0

In  region I ( x < 0) the time-independent Schrödinger equation is

h2 2

 d y( x)

–

=  Ey( x)

2

2 m

 dx

 d  2 y( x)

2 mE

or

+  k 2 y( x) = 0, 

 k 2 = 

(8.3)

 dx 2

2

h

The general solution of this equation is

 y( x) =  Aeikx +  Be–ikx

where   A and  B are arbitrary constants. We know that physically the

functions exp ( ikx) and exp ( –ikx), multiplied by the time-dependent function

exp(– iEt/ h), represent plane waves moving towards the right and towards the

left, respectively. Therefore, the first term  A exp( ikx) of  y( x) in region I corresponds to a plane wave of amplitude  A incident on the potential step from

the left and the second term  B exp( –ikx) corresponds to a plane wave of

amplitude   B reflected from the step. Thus, according to quantum mechanics, 
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the particle may be reflected back at  x = 0 even though  E >  V 0. This is not possible classically. 

In  region II  ( x > 0) the Schrödinger equation is

h2 2

 d y( x)

–

+  V

2

0 y =  Ey

2 m

 dx

 d  2 y

2 m( E -  V )

or

+  k¢2 y( x) =  0, 

 k¢2 = 

0

(8.4)

 dx 2

2

h

Since  E >  V 0, the quantity  k ¢2 is positive. Therefore, the general solution of this equation is

 y( x) =  Ceik¢ x +  D e– ik¢ x

Since we are considering a particle incident on the barrier from the left, we

must discard the term  D exp (– ik¢ x) which corresponds to a reflected wave in region II and there is nothing in this region which can cause such a reflection. 

Therefore, we must put  D = 0. Thus the complete eigenfunction is given by

R Aeikx+  Be- ikx x <0

 y( x) =  S

(8.5)

 Ceik x

¢

 x > 

T

0

The eigenfunction consists of an  incident  wave of amplitude  A and a  reflected wave of amplitude  B in region I, and a  transmitted wave of amplitude  C in region II. The wave number in region I is  k and that in region II is  k¢. 

Continuity of  y and  dy/ dx at  x = 0 gives

 A +  B =  C

and

 k( A  –   B) =   k¢ C

from which we obtain

 B

 k -  k ¢

= 

(8.6)

 A

 k +  k ¢

 C

2 k

and

= 

(8.7)

 A

 k +  k¢

Let us now obtain the probability current densities associated with the

incident, the reflected and the transmitted waves. From Equation (6.33) we have

L h ∂ y

 j = Re  y *  im ∂ x

NM

OQP

If  j in,  j re and  j tr represent the magnitudes of the probability current densities associated with the incident, the reflected and the transmitted waves, 

respectively, then we readily obtain

h k

 j in = 

| A|2

(8.8)

 m
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h k

 j re = 

| B|2

(8.9)

 m

h k¢

and

 j tr = 

| C |2

(8.10)

 m

A particle incident on the step will either be reflected or transmitted. The

probability of reflection is given by the reflection coefficient   R:

 j

 B  2

2

F k - k¢

 R = re =

=

 j

 A

HG

I

 k +  k¢ KJ

(8.11)

in

Substituting the values of  k and  k¢ and simplifying this becomes

2

L1- 1(- V / E  1/2)

 R =

0

, 

 E

 V

(8.12)

/

0

1 + 1

( -  V /  E  1 2

NM

O

)

QP

> 

0

The probability of transmission is given by the transmission coefficient

 T:

 j

 k¢  C  2

4 kk¢

 T = tr =

=

(8.13)

 j

 k

 A

( k +  k¢ 2

in

)

Substituting the values of  k and  k¢, 

4 1

( -  V /  E  1/2

)

 T =

0

, 

 E >  V

(8.14)

1

[ + 1

( -  V /  E  1/2 2

0

)

]

0

Note that  R and  T depend only on the ratio  V 0/ E. Note also that  R +  T = 1, as it must be, because the probability is conserved. 

It can be easily shown that

 k(| A|2  –  | B|2) =  k¢ | C|2

(8.15)

This shows that the net current incident on the step from the left is equal to the

transmitted current. 

Case 2: E < V0

In region I the Schrödinger equation, its solution and interpretation remain the

same as in case 1 ( E >  V 0). In region II the equation becomes

 d  2 y( x)

2 m V

(

-  E)

–   K 2 y( x) =  0, 

 K 2 = 

0

(8.16)

 dx 2

2

h

Since  V 0 >  E, the quantity  K 2 is positive. Therefore, the general solution of this equation is

 y( x) =  Ce– Kx +  DeKx
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Now, the wave function should not become infinite at  x  Æ  •. Since

exp( Kx) diverges in that limit, we must choose  D = 0. Thus the complete

eigenfunction is given by

R  Aeikx+  Be- ikx x<0

 y( x) =  S

(8.17)

 Ce- Kx

 x > 

T

0

We note that the wave function is not zero in the classically forbidden

region II, although it decreases rapidly as  x increases. Thus there is a finite, 

though small, probability of finding the particle in region II. This phenomenon

is called barrier penetration and is observed experimentally in various atomic

and nuclear systems. It illustrates a fundamental difference between classical

and quantum physics. 

Note that  k¢ =  iK. Therefore the reflection coefficient can be immediately

written as (using (8.11)):

2

 k -  iK

 R = 

= 1

(8.18)

 k +  iK

Since the eigenfunction is now real in region II, the transmitted probability

current is zero according to Equation (6.33). Therefore, the transmission

coefficient is zero:

 T = 0

(8.19)

These results show that although there is a finite probability of finding the

particle in the classically-forbidden region II, there is no permanent penetration. 

It means that there is continuous reflection in region II until all the incident

particles are ultimately returned to region I. 

Figure 8.2 illustrates schematically the eigenfunctions for the step potential

for the two cases,  E >  V 0 and  E <  V 0. Note that for  E >  V 0, the amplitude of the wave is larger in region II. The reason is that the velocity of the particle is

≠

 E

 E >  V 0

 V 0

 E <  V 0

 x

 x = 0

Figure 8.2

Eigenfunctions for the step potential. 
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smaller in this region and, therefore, it spends more time there. The wavelength

is also larger in region II because the kinetic energy is lower in this region. For

 E <  V 0, the eigenfunction is exponentially decaying but nonzero in region II. 

Figure 8.3 shows the variation of reflection and transmission coefficients

with   E/ V 0. 

1.0

 T

0.8

0.6

0.4

0.2

 R

0 0 0.5 1 1.5 2

 E V

/ 0

Figure 8.3

Variation of reflection and transmission coefficients with E/V0. 

PROBLEM 8.1

For a particle scattered by a potential step show that the sum

of the reflection and transmission coefficients is one. 

 Solution:

For

 E >  V 0, 

( k -  k )

¢ 2

4 kk ¢

( k +  k )

¢ 2

 R +  T = 

+ 

= 

= 1

2

( k +  k )

¢ 2

2

( k +  k ¢)

( k +  k )

¢

For   E <  V 0, 

 R +  T = 1 + 0 = 1

PROBLEM 8.2

A particle of energy  E is incident on a potential step of height

 V 0. What should be the ratio  E/ V 0 so that the probability of transmission is 50%? 

 Solution:

Using (8.13), 

4 kk ¢

1

 T = 

= 

2

( k +  k ¢)

2

or

 k 2 +  k¢2 = 6 kk¢

2 mE

2 m ( E -  V )

6 ( 2 mE ) ( 2 m(  E -  V ) )

or

+ 

0

= 

0

2

h

2

h

2

h

or

 E +  E  –   V 0 = 6  E ( E -  V )

0
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Squaring both sides, 

4 E 2  –  4 EV

2

0 +  V  0 = 36 E 2  – 36 EV 0

or

32 E 2  – 32 EV

2

0  –   V  0  = 0

2

F

F

 E

 E

or

32  V

HG IKJ  – 32  V HG IKJ – 1 = 0

0

0

Solving this we get

 E

32

322

±

+ 128



= 

 V

64

0

1 ±

9/8

1 ± 1 0

. 6

= 

= 

2

2

= 1.03 or – 0.03

Since negative value is not possible, 

 E =  10.3

 V 0

PROBLEM 8.3

A particle of kinetic energy 9 eV is incident on a potential

step of height 5 eV. Calculate the reflection coefficient. 

F k - k¢

 Solution:

 R =   k +  k¢

HG

IKJ2

2 m

 k  –   k ¢ = 

(  E   – 

 E -  V )

h

0

2 m

 k +  k ¢ = 

(  E  +   E -  V )

h

0

 k -  k ¢

 E -

 E -  V

9 - 9 - 5

1

So

= 

0  = 

= 

 k +  k ¢

 E +

 E -  V

9 + 9 - 5

5

0

2

1

F

1

fi

 R =  HG IKJ  =   =  0.04

5

25

PROBLEM 8.4

An electron of energy  E is incident on a potential step of

height  V 0 = 10 eV. Calculate the reflection coefficient  R and the transmission

coefficient   T when (a)  E = 5 eV, (b)  E = 15 eV, and (c)  E = 10 eV. 

 Solution:

(a) Here  E <  V 0. Therefore

 R =  1 ,  T =  0

Scattering of Particles by Barriers and Wells
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L

2

2

L

O

15 - 15 - 10

0 O

 E -

 E -  V

(b)

 R = 

= 

 E +

 E -  V

NMM

15 + 15 - 10

NMM

QPP

0 QPP

2

L

O

15 - 5

= 

15 + 5

NMM

QPP 2

F3873

. 

- 2 236

. 

=  3873

. 

+ 2 236

. 

HG

IKJ

2

1 637

. 

F

=  HG

I

. 

6 109

. 

KJ  =  0072

 T = 1 –   R = 1 – 0.072 =  0 928

. 

(c) Here  E =  V 0. Therefore, 

 R =  1 , 

 T =  0

8.2

THE SQUARE POTENTIAL BARRIER

We now consider a one-dimensional potential barrier of finite width and height

given by

0

 x

R

< 0

 V( x) =   V

0 <  x <  a

S| 00  x>  a

T|

(8.20)

 V x

( )

Region I

Region II

Region III

 V 0

 Aeikx

 Feikx

 Be ikx

 –

 x

0

 a

Figure 8.4

The square potential barrier. 

Such a barrier is called a  square or a  rectangular barrier and is shown in

Figure 8.4. Although the potential barriers in the real world do not have such

simple shapes, this idealized treatment forms the basis for the understanding of

more complicated systems and often provides a fairly good order-of-magnitude

estimate. 

As in the previous section, we consider a particle of mass  m incident on the

barrier from the left with energy  E. As mentioned therein, according to classical
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mechanics, the particle would always be reflected back if  E <  V 0 and would

always be transmitted if  E >  V 0. We shall show that, quantum mechanically, 

both reflection and transmission occur with finite probability for all values of  E

except in some special cases. 

We shall discuss the two cases,  E >  V 0 and  E <  V 0, separately. 

Case 1: E > V0

Let us divide the whole space into three regions: Region I ( x < 0), Region II

(0 <  x <  a) and Region III ( x >  a). In regions I and III the particle is free and so the time-independent Schrödinger equation is

h2 2

 d y( x)

–

=  E   y( x)

2

2 m

 dx

 d  2 y( x)

2 mE

or

+  k 2 y( x) = 0, 

 k 2 = 

(8.21)

 dx 2

2

h

The general solution of this equation is

R  Aeikx+  Be- ikx x<0

 y( x) =  S  Feikx +  Ge- ikx x >  a

T

where   A,  B,  F,  G are arbitrary constants. For  x < 0, the term  A exp( ikx) corresponds to a plane wave of amplitude  A incident on the barrier from the left

and the term  B exp (– ikx) corresponds to a plane wave of amplitude  B reflected from the barrier. For  x >  a, the term  F exp ( ikx) corresponds to a transmitted wave of amplitude  F. Since no reflected wave is possible in this region we must

set   G = 0. 

In region II the Schrödinger equation is

h2 2

 d y( x)

–

+  V

2

0 y =   Ey

2 m

 dx

 d  2 y

2 m( E -  V )

or

+  k¢2 y( x) = 0, 

 k¢2 = 

0

(8.22)

 dx 2

2

h

Since  E >  V 0, the quantity  k¢2 is positive. Therefore, the general solution of this equation is

 y( x) =  Ceik¢ x +  De– ik¢ x

0 <  x <  a

The complete eigenfunction is given by

R Aeikx+  Be- ikx x<0

 y( x) =   Ceik x¢ +  De- ik¢ x

0 <  x <  a

S|

(8.23)

 Feikx

 x >  a

T|
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The real part of the barrier eigenfunction for  E >  V 0 is shown schematically

in Figure 8.5(a). 

 E >  V 0

(a)

 E <  V 0

(b)

 x

 x = 0

 x =  a

Figure 8.5

Schematic plots of the real parts of the barrier eigenfunctions for

(a) E > V0 and (b) E < V0. 

Continuity of  y( x) and  dy( x)/ dx at  x = 0 and  x =  a gives A +  B =  C +  D

(8.24)

 ik  ( A  –   B) =   ik¢  ( C  –   D)

(8.25)

 Ceik¢ a +  De– ik¢ a =   Feika

(8.26)

 ik¢ ( Ceik¢ a –  De– ik¢ a) =   ikFeika

(8.27)

From (8.24) and (8.25) we obtain

1

 A = 

[ C( k +  k¢) +  D ( k  –   k¢)]

(8.28)

2 k

1

 B = 

[ C( k  –   k¢) +  D( k +  k¢)]

(8.29)

2 k

From (8.26) and (8.27) we obtain

1

 C = 

 F( k¢ +  k)   ei( k –  k¢) a

(8.30)

2 k ¢

1

 D = 

 F( k¢  –   k)   ei( k +  k¢) a

(8.31)

2 k ¢

Dividing (8.31) by (8.30)

 D

 k ¢ -  k

= 

 e 2 ik¢ a

(8.32)

 C

 k ¢ +  k

$
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Dividing (8.29) by (8.28)

 D

F

( k -  k )

¢ +

( k

 k )

 B

HG IKJ + ¢

 C

= 

 A

 D

F

( k +  k )

¢ +

( k

 k )

HG IKJ - ¢

 C

On substitution for  D/ C from (8.32), this becomes

 B

( k 2 -  k  2

¢ ) (1 -  e 2 ik a¢ )

= 

(8.33)

 A

( k +  k )2

¢ - ( k -  k )2

¢  e 2 ik a¢

We need a similar expression for  F/ A. Equations (8.24) and (8.25) yield

1

 C = 

[ A( k +  k¢)  –   B( k  –   k¢)]

2 k ¢

Substituting in (8.30)

 A( k +  k¢)  –   B ( k  –   k¢) =   F( k +  k¢) ei( k –  k¢) a F

 B

or

( k +  k¢) e i( k –  k¢) a = ( k +  k¢)  – 

( k  –   k¢)

 A

 A

L ( k 2- k  2¢)(1- e 2 ika¢)

= ( k +  k¢)  – 

( k  –   k¢)

( k +  k )2

¢ - ( k -  k )2

¢  e 2 ik a

NM

O¢QP

Simplifying, we obtain

 F

4 kk¢  ei( k¢- k) a

= 

(8.34)

 A

2

2

2

( k +  k¢) - ( k -  k¢)  e ik a

¢

The  reflection and transmission coefficients are, respectively, 

1

-

-1

L

 B  2

L

4 k  2 k  2

¢

4 E( E -  V )

 R =

= 1 +

=

0

1

( . 

8 3 )

5

 A

( k 2 -  k  2 2

2

¢ ) sin  k a

¢

 V  2

2

sin  k a

NM

OQP + ¢

NM

OQP

and

0

1

-

-1

(

) sin

L

 F  2

L  k 2- k  2 2 2

¢

 k a

¢

 V  2

2

sin  k a

¢

 T =

= 1 +

=

0

1

( . 

8 36)

 A

4 k  2 k  2

¢

4 E ( E -  V

NM

OQP +NM

O

) QP

0

It can be easily shown that, as expected, 

 R +  T = 1

Note that  T is in general less than unity. This is in contradiction to the

classical result that the particle always crosses the barrier when  E >  V 0. Here T = 1 only when  k¢ a =  p, 2 p, 3 p, ... . Now, if  l¢ is the de Broglie wavelength of the particle when it is passing through the barrier, then

2 p

 k¢ =   l¢
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Therefore   T = 1 when

 l¢

F

 a =  n  HG IKJ ,  n = 1, 2, 3, ... 

2

Thus, there is  perfect transmission only when the thickness of the barrier is

equal to an integral multiple of half the de Broglie wavelength in the internal

region. This is analogous to the interference phenomena in the transmission of

light through thin refracting layers. 

Equation (8.36) shows that

1

2

L

 T  Æ  1

0

+

as  E  Æ   V 0 (from above)

(8.37)

2 2

NM

OQP-

 mV a

h

As  E increases,  T oscillates between a steadily increasing lower envelope and

unity, as shown in Figure 8.6. The dimensionless parameter  mV 0 a 2/h2 is

considered as a measure of the ‘opacity’ of the barrier. 

 T

1.0

0.8

0.6

0.4

0.2

0

 E V

/

0

1

2

3

4

5

0

Figure 8.6

Variation of transmission coefficient for a square potential barrier as

a function of E/V0 for mV0a2/h2 = 10. 

Case 2: E < V0

In region I ( x < 0) and III ( x >  a), the Schrödinger equation and its solution remain the same as in case 1. In region II (0 <  x <  a) the Schrödinger equation is

 d  2 y

2 m V

(

-  E)

–   K 2 y( x) = 0, 

 K 2 = 

0

(8.38)

 dx 2

2

h

Therefore, the eigenfunction in region II is

 y( x) =  Ce– Kx +  DeKx

0 <  x <  a

(8.39)

The real part of the complete eigenfunction for  E <  V 0 is shown schematically

in Figure 8.5(b). 

The reflection and transmission coefficients can be immediately obtained

if we replace  k¢ by  iK in (8.35) and (8.36). Remembering that sin ix =  i sinh x, we obtain

$ 
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1

-

1

L

L

-

4 k  2  K  2

4 E ( V -  E)

 R = 1 +

= 1

0

( . 

8 40)

( k  2 +  K  2 2

2

) sinh ( Ka)

 V  2

2

sinh ( Ka

NM

OQP +NM

O

) QP

and

0

-1

1

L (

) sinh (

)

L

-

 k  2 +  K  2 2

2  Ka

 V  2

2

sinh ( Ka)

 T = 1 +

= 1

0

( . 

8 4 )

1

4 k  2  K  2

4 E ( V

 E

NM

OQP + -

NM

O

) QP

0

It is again readily verified that  R +  T = 1. We note that  T Æ 0 in the limit E Æ 0. Further,  T is a monotonically increasing function of  E and approaches 1

2

L1 0

+

as  E  Æ   V 0 (from below)

(8.42)

2 2

NM

OQP-

 mV a

h

Thus   T joins smoothly to the value given in (8.37) for the case  E  Æ  V 0 from above (see Figure 8.6). 

For a broad high barrier,  Ka >> 1. This is true for most cases of practical

interest. We may take sinh  Ka  ª exp( Ka)/2. In that case, 

2

F 4 kK

16 E V

(

-  E )

 T  ª 

0

 e–2 Ka

(8.43)

2

2

 k +  K

HG

IKJ   e–2 Ka =  2 V 0

and is very small. 

Further, the factor 16 E ( V

2

0  –   E)/ V  0 varies slowly with  V 0 and  E and is of

order unity in most cases. The exponential factor is the dominant one and varies

rapidly with  V 0 and  E. Therefore, for order of magnitude calculation, we can

take

 T  ª   e–2 Ka

(8.44)

Variable Potential Barrier

In actual physical systems the potential barrier is not simple square type—the

potential energy is variable (see for example, Figure 8.7). It is possible to have

an estimate of the transmission coefficient in the case of such potentials by

noticing that the quantity  Ka is geometrically an area. If  K varies with  x, then x 2

this expression can be generalized to  z  K( x)  dx, where

 x 1

2 m V

( ( x) -  E)

 K( x) = 

h

We therefore have

L 2  x 2

 T ª exp -

2 m V

( ( x) -

NM

 E )  dx O

(8.45)

h z x 1

QP

 x 1 and  x 2 are the classical turning points, i.e., the points at which  V( x) =  E. 

The most important and striking thing to note is that the particle has a

nonzero probability of passing through a potential barrier which is completely
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 V x

( )

 E

 x

 x

 x

1

2

Figure 8.7

Variable potential barrier. 

opaque classically. This phenomenon is known as barrier penetration or

tunnel effect and illustrates a fundamental difference between classical and

quantum mechanics. It is used in explaining various phenomena in atomic, 

nuclear and solid state physics. In the next section we discuss how tunnel effect

can be used in explaining the emission of alpha particles by radioactive nuclei. 

PROBLEM 8.5

Obtain Equation (8.43) from Equation (8.41). 

 Solution:

If   Ka >> 1, then sinh2( Ka) >> 1. Therefore, Equation (8.41)

reduces to

4 2 2

 k K

4 E V

(

-  E )

 T ª 

= 

0

2

2 2

2

( k +  K ) sinh ( Ka)

2

2

 V  sinh (  Ka)

0

Now, 

-  Ka

2  Ka

b gb g

 eKa

 e Ka

- -

 e- Ka

 e

 e

sinh( Ka) = 

= 

c e 2 Ka-1h ª 

2

2

2

 eKa

=  2

Substituting in the above equation

2

2

4 2 2

 k K

2

F

4 E V

(

-  E)

2

F

 T = 

0

2

2 2 HG

IKJ = 

HG IKJ

 k +  K

 e Ka

(

)

2

 V

 eKa

0

2

4 kK

F

16 E V

(

-  E )

or

 T = 

0

 e–2 Ka

2

2

 k +  K

HG

IKJ  e–2 Ka=  2 V 0

PROBLEM 8.6

Electrons of energy 2.0 eV are incident on a barrier 3.0 eV

high and 0.4 nm wide. Calculate the transmission probability. 

1

2

2

L

sinh (

)

 Solution:

Transmission probability  T =  1

0

+ 4 ( -

NM

O

) QP-

 V

 Ka

 E V

 E

0

Here

 V 0  –   E = (3.0 – 2.0) = 1 eV = 1.6 ¥ 10–19  J

$" 
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[


(

-

)]1/

2

2

 m V

 E

 Ka = 

0

 a

h

[

-31

¥ ¥

¥ . 

-19

¥

] /

2

9

10

1 6

10

1 2

= 

¥ 4 ¥ 10–10

. 

1 05 ¥ 10 34

-

= 2.045

sinh (2.045) = 3.805

 V  2

( . 

3 )

0 2

0

9

= 

= 

= 1.125

4 E V

(

-  E)

4 ¥ . 

2 0 ¥ . 

1 0

8

0

 T = [1 + 1.125 ¥ (3.805)2]–1

=  0 058

. 

PROBLEM 8.7

In problem 8.6, what would be the transmission probability

if the width of the barrier changes to 0.1 nm? 

 Solution:

In this case

 Ka = 0.511

sinh(0.511) = 0.5335

 T = [1 + 1.125 ¥ (0.5335)]–1

=  0.757

 Note  that the transmission probability changes drastically from 5.8% to 75.7%

when the width of the barrier is reduced to one-fourth of the original value. 

Thus,    T is a very sensitive function of the barrier width  a. 

PROBLEM 8.8

An  a-particle having energy 10 MeV approaches a square

potential barrier of height 30 MeV. Determine the width of the barrier if the

transmission coefficient is 2 ¥ 10–3. Given: mass of an  a-particle = 6.68 ¥

10–27 kg, h = 1.054 ¥ 10–34 Js. 

 Solution:

We shall use the approximate formula (8.43):

F  E  F  E

 T = 16

1

 V

 V

HG IKJ -

HG IKJ  e–2 Ka

0

0

2 m V

(

-  E)

where

 K = 

0

h

This, gives

F F

16

 E

 E

 e 2 Ka = 

1

 T

 V

 V

HG IKJ -

HG

IKJ

0

0

L

R

UO

1

16 F  E  F

 E

or

 a = 

2 303

. 

log

1

S|

V|

10

2 K

 T

 V

 V

NMM

T| HG IKJ -

HG

IKJ

0

0

W|QPP
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Now, 

2 ¥ 6 68

. 

¥ 10-27 ¥ (30 - 10) ¥ 106 ¥ 1 6

. ¥ 10 19

-

 K = 

1 054

. 

¥ 10 34

-

= 19.62 ¥  1014

L

FR

UO

10 14

-

16

1

2

Therefore

 a = 

M2303

. 

log

. 

S|

V|P

2

19 62

10

2

10 3

-

¥

NM

HG

I

¥

3

3

T|

KJ FHG IKJ FHG IKJW|QP

Simplifying we obtain

 a =  1 91 10 15

. 

¥

-

m

8.3

EXPLANATION OF ALPHA DECAY

The decay of a nucleus by alpha particle emission was first successfully

explained in 1928 by Gamow and independently by Gurney and Condon on the

basis of quantum tunneling. An alpha particle consists of two protons and two

neutrons. The nature of the nuclear force is such that this combination has large

binding energy and hence forms a stable structure. Therefore, it is reasonable

to assume that alpha particles exist inside the nucleus, at least for a short time

before emission. The forces acting on the alpha particle are the strongly

attractive nuclear forces due to the other nucleons and the repulsive coulomb

forces due to the other protons. Inside the nucleus the nuclear forces dominate

but outside the nucleus these forces are negligible because of their short range. 

The potential energy of an alpha particle may, therefore, be represented

schematically by the curve shown in Figure 8.8. Inside the nucleus ( r <  R 0), the V r

( )

 H

 E

0

 r

 R

 R

0

– V 0

Figure 8.8

Potential energy of an alpha particle as a function of the distance r

from the centre of a nucleus of radius R0. 

$$
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potential  V( r) can be taken to be a square well of depth  V 0. Outside the nucleus, the potential is simply due to the Coulomb repulsion and is given by

2

2

 Ze

 V( r) = 

 r >  R 0

(8.46)

4 p e r

0

Here  Ze is the charge on the daughter nucleus and 2 e is that on the alpha particle. 

Figure 8.8 also shows the total energy  E of the particle. This is also the

kinetic energy with which the alpha particle emerges at a large distance from the

nucleus because the Coulomb repulsion becomes vanishingly small at large  r. 

In turns out that the height  H of the potential barrier is much larger than  E. 

For example, in the case of 238U,  H ª 30 MeV. On the other hand  E ª 5 – 6 MeV

in most cases. Therefore the emission of alpha particles is not possible

classically. In order to escape from the nucleus the alpha particle has to tunnel

through the potential barrier in the region from  R 0 to  R, where  R is the classical turning point given by

 V( R) =   E

2

2

 Ze

or

=   E

4 p e R

0

2

2

 Ze

or

 R = 

(8.47)

4 p e E

0

It is found that generally  R >>  R

204

0. For example, in the  a-decay of 

Po

84

, 

 E = 5.4 MeV. Using (8.47), we find  R = 43 fm. On the other hand  R 0 = 6.5 fm. 

Thus, the barrier is very thick and the ratio  R 0/ R << 1. 

The transmission coefficient for tunneling through the barrier can be

obtained using Equation (8.45). We write

 T =  e– G

(8.48)

where

1/2

1/2

L

2 m

 R

2

2

 Ze

F

 G = 2

 E

z

 dr

(8.49)

2

HG IKJ

-

 R

h

 p e r

NM

OQP

0

4

0

Using (8.47) we can rewrite this as

1/2

1/2

F 4 2

 m Ze

 R

1

1

F

 G = 2

z HG IKJ  dr

4

2

 R

 p e

HG

I

h

 r

 R

KJ

-

0

0

Solving the integral we get

1/2 L

/

/

-

O

1 2

1 2

F

F

4

2

2

 m Ze R

 R

 R

 R

Mcos

P

 G = 2

1

0

0

0

(8.50)

4

2

2

HG

I

 p e  h

M

 R

 R

 R

KJ

FHG IKJ - -

HG

IKJ P

0

N

Q
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We have seen above that  R 0/ R << 1. Using the fact that, for small  x, cos–1  x ª ( p/2) –  x, (8.50) reduces to

1/2

1/2

F

L

O

4

2

 m Ze R

 p

 R

F

 G ª  2

2

0

HG IKJ

4

2

 p e

HG

I

h

2

 R

KJ

-

NMM

QPP

0

Substituting in (8.48) and using (8.47), we obtain

LM

1/2

1/2

2

2

 p Ze  F 2 m

8 F

2

 Ze

O

 MR

P

 T ª exp -

M

(8.51)

4 p e  h

 E

h

 p e

0

HG IKJ + HG

I

4

0

KJ

N

QP

Inside the nucleus the alpha particle keeps bouncing back and forth and

strikes the barrier wall periodically till emission occurs. The transmission

coefficient gives the probability of emission in each encounter. It  v is the

average velocity of the alpha particle, then the number of encounters per unit

time is  v/2 R. Therefore, the probability of emission per unit time, that is, the

decay constant  l is

 v

 l = 

 T

2 R

We can take  v = (2 E/ m)1/2, which is same as the velocity of the alpha particle outside the nucleus. 

The lifetime of the alpha particle in the nucleus is given by

1

1/ 2

2 R

1

F

 m

1

F

 t = 

= 

H IK

 l

HG I v KJ  = 2 R

 T

2 E

 T

Substituting the expression (8.51) for  T and taking log of both sides, we

obtain

1/2

L

O

 m

F

 C

log  t = log 2  R  HG IKJ  + 

–   D

(8.52)

2  E

NMM

QPP  E

where  C and  D are constants. Although the first term on the right also depends

on  E, this dependence is logarithmic and hence very weak. As such,  t depends

on energy mainly according to the second term  C/  E , which in turn depends

on the tunneling through the barrier. Thus, to a fairly good approximation

 C

log  t =

1

-  C

(8.53)

2

 E

where  C 1 and  C 2 are constants. This formula gives a good fit to the experimental data of a large number of alpha emitters. 

$& 
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8.4

THE SQUARE POTENTIAL WELL

In section 7.4 we discussed the case of a particle of energy  E < 0 confined in

a square well of depth  V 0. It was found that in this case the particle remains in

a bound state and has discrete energy levels. Let us now discuss the scattering

of a particle of energy  E > 0 from a square potential well. We shall consider the

well shown in Figure 8.9. It is given by

0

 x

R

< 0

 V( x) =  - V

0 <  x <  a

S| 00  x>  a

T|

(8.54)

 V x

( )

Region I

Region II

Region III

 a

 x

0

– V 0

Figure 8.9

One-dimensional square well of depth V0 and range a. 

This potential has depth  V 0 and range  a. Suppose that the particle is incident

upon the well from the left. Let us divide the whole space into three regions:

Region I ( x < 0), Region II (0 <  x <  a) and Region III ( x >  a). In the external regions I and III the particle is free and so the time independent Schrödinger

equation is

h2 2

 d y( x)

–

=   Ey

2

2 m

 dx

 d  2 y( x)

2 mE

or

+  k 2 y( x) = 0, 

 k 2 = 

(8.55)

 dx 2

2

h

In the interior region II, the Schrödinger equation is

h2 2

 d y( x)

–

–   V

2

0 y =   Ey

2 m

 dx

 d  2 y( x)

2 m( E +  V )

or

+  b 2 y( x) = 0, 

 b 2 = 

0

(8.56)

 dx 2

2

h

Solving Equations (8.55) and (8.56), we obtain the physically acceptable

wave function

R Aeikx+  Be- ikx x <0

 y( x) =   Ceibx +  De- ibx

0 <  x <  a

S|

(8.57)

 Feikx

 x >  a

T|
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In region I( x < 0) the wave function consists of an incident wave of

amplitude   A and a reflected wave of amplitude  B. In region III ( x >  a), there is only a transmitted wave of amplitude  F; no reflected wave exists in this

region. 

In order to obtain the reflection and transmission coefficients, we note that

the present problem of scattering by a potential well is mathematically similar

to the scattering by a potential barrier. Therefore, without going into the details, 

we can straightaway write the expressions for the reflection coefficient  R and

the transmission coefficient  T by making the substitution  V 0 Æ – V 0 and  k¢ Æ

 b in Equations (8.35) and (8.36). We obtain

-1

-1

L

 b

L

4 k  2 2

4 E ( E +  V )

 R = 1 +

= 1

0

(8.58)

( k  2

2 2

2

-  b ) sin (  a

 b )

 V  2

2

sin (  a

NM

OQP +NM

O

 b ) QP

0

and

1

-

-1

L (  b ) sin ( b ) L

 k  2

2 2

2

-

 a

 V  2

2

sin (  a

 b )

 T = 1 +

= 1

0

(8.59)

4 k  2 2

 b

4 E ( E

 V

NM

OQP + +

NM

O

) QP

0

It can be easily shown that, as expected

 R +  T = 1

It may be noted that  T is in general less than unity. This is in contradiction

to the classical result that the particle should always be transmitted. In order to

see the behaviour of  T as a function of the particle energy  E, we note from

Equation (8.59) that  T = 0 when  E = 0. As  E increases,  T oscillates between its maximum value unity and a steadily increasing lower envelope (Figure 8.10). 

The maxima are obtained when  ba =  np  ( n = 1,2,....) and minima when

 ba = (2 n + 1) p/2. 

As in the case of the potential barrier, perfect transmission takes place when

the thickness  a of the well is equal to an integral multiple of half the de Broglie

wavelength (2 p/ b) in the internal region. 

 T

1.0

0.8

0.6

0.4

0.2

0.25 0.50 0.75

1.0

1.25 1.50 1.75

 E V

/ 0

Figure 8.10

Variation of transmission coefficient for a square well as a function

of E/V0 for (mV0 a2/2h2)1/2 = 10. 
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SUMMARY

1. In this chapter we have studied the scattering of a beam of particles of

fixed energy  E by three simple one-dimensional systems: (a) the potential

step, (b) the square barrier, and (c) the square well. 

2. The potential step is defined by

0

 x < 0

R

 V( x) =  S V x > 0

T 0

 Case 1:  E >  V0

If the beam is incident from the left then the complete eigenfunction is

R

1/ 2

-

2

, 

= F

 ikx

 ikx

 mE

 Ae

+  Be

 k

 x

||

0

2

(Incident) (Reflected)

H I

h K

< 

 y( x) =  S

2 m ( E -  V

|

1/2

¢

)

, 

= F

 Ceik x

 k¢

0

 x

T|

0

2

(Transmitted)

H

I

h

K

> 

The incident beam is partly reflected from the step and partly transmitted

to the other side. The reflection and transmission coefficients are, 

respectively, 

2

L1- 1

1/2

( -  V /  E)

 R = 

0

1 + 1

1/2

( -

NM

O

 V /  E)

QP

0

and

4 1

1/2

( -  V /  E )

 T = 

0

1

[ + 1

1/2 2

( -  V /  E )

]

0

Also, 

 k (|  A|2  –  | B|2) =  k¢| C|2

that is, the net current incident from the left is equal to the transmitted

current. 

 Case 2:  E <  V0

The complete eigenfunction is

R Aeikx+  Be- ikx

 x < 0

 y( x) = S|

1 2

-

(

) /

, 

= F

 Kx

2 m V -  E

 Ce

 K

0

 x

T|

H

I

2

h

K

> 0

This shows the wave function is not zero in the region  x > 0 although

it decreases rapidly. Thus, there is nonzero probability of finding the

particle in the classically forbidden region. This phenomenon is called
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barrier penetration and illustrates a fundamental difference between

classical and quantum physics. 

However,  R = 1 and  T = 0. Thus there is no permanent penetration and

all the particles are ultimately returned back. 

3. The square barrier is defined by

0

 x < 0

R

 V( x) =   V

0 <  x <  a

S| 00  x>  a

T|

 Case 1:  E >  V0

If the beam is incident from the left then the complete eigenfunction is

R  Aeikx +  Be- ikx x <0

(Incident)

(Reflected )

||

 y( x) =   Ceik x¢ +  De- ik x¢

0 <  x <  a

S|  Feikx

 x >  a

|(Transmitted)

T

The reflection and transmission coefficients are, respectively, 

1

L 4 ( - )

 R =  1

0

+

2

2

sin

¢

NM

OQP-

 E E

 V

 V

 k a

0

and

1

2

2

L

sin

¢

 T =  1

0

+ 4 ( -

NM

O

) QP-

 V

 k a

 E E

 V 0

In general  T < 1. However,  T = 1 when the thickness of the barrier is

equal to an integral multiple of half the de Broglie wavelength in the

internal region. 

 Case 2:  E <  V0

The reflection and transmission coefficients are

1

L 4 ( - )

 R =  1

0

+

2

2

NM

O

sinh (

) QP-

 E V

 E

 V

 Ka

0

and

2

2

1

L

sinh (

)

 T =  1

0

+ 4 ( -

NM

O

) QP-

 V

 Ka

 E V

 E

0

1/2

2 m V

(

-  E)

L

where

 K = 

0

2

NM

O

h

QP

% 
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For a broad high barrier an order-of-magnitude estimate is

 T  ª   e–2 Ka

Thus the particle has a nonzero probability of passing through a potential

barrier which is completely opaque classically. This is called the tunnel

effect and is used in explaining various phenomena in atomic, nuclear and

solid state physics. 

For a variable potential barrier this gives

L 2  x 2

 T ª exp -

2 m V

( (  x) -

NM

 E )  dx O

h z x 1

QP

where   x 1 and  x 2 are the points for which  V( x) =  E (classical turning points). 

4. The decay of a nucleus by alpha particle emission can be explained on

the basis of quantum tunneling. Using the above formula, it is found that

the lifetime  t of the alpha particle in the nucleus is given, to a fairly good

approximation, by

 C

log  t = 

1

–  C 2

 E

where  E is the energy of the alpha particle and  C 1 and  C 2 are constants. 

This formula gives a good fit to the experimental data. 

5. The square well is defined by

0

 x

R

< 0

 V( x) =  - V

0 <  x <  a

S| 0

0

 x >  a

T|

If a particle is incident on the well from the left then the complete

eigenfunction is

R  Aeikx +  Be- ikx

 x < 0

(Incident)

(Reflected)

|

/

|

1 2

 b

-  b

 b

F

 i x

 i x

2 m ( E +  V )

 y( x) =   Ce

+  De

, 

=

0

0

 x

 a

S|

H

I

2

h

K

< < 

 Feikx

 x >  a

|(Transmitted)

T|

The reflection and transmission coefficients are, respectively, 

1

L 4 ( + )

 R =  1

0

+

2

2

NM

O

sin ( b ) QP-

 E E

 V

 V

 a

0

and

1

2

2

L

sin ( b )

 T =  1

0

+ 4 ( +

NM

O

) QP-

 V

 a

 E E

 V 0
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 T is in general less than unity. Perfect transmission takes place when the

thickness   a of the well is equal to an integral multiple of half the de

Broglie wavelength in the internal region. 

QUESTIONS

1. Consider a particle of mass  m and energy  E approaching, from the left, 

a one-dimensional potential step given by

0

 x < 0

R

 V( x) =  S V x > 0

T 0

Discuss the motion classically and quantum mechanically for the cases

(a)   E <  V 0 and (b)  E >  V 0. Obtain the reflection and transmission coefficients. 

2. A beam of particles, each of mass  m and energy  E, is incident on the

potential barrier

0

 x < 0

R

 V( x) =   V

0 <  x <  a

S| 00  x>  a

T|

(a) Show that there is a nonzero probability of transmission even if

 E <  V 0. 

(b) Show that for a broad high barrier and  E <  V 0 the transmission

coefficient is

1/2

16 E V

(

-  E )

2 m V

(

-  E)

L

 T  ª 

0

 e–2 Ka, 

 K = 

0

2

 V

2

NM

O

h

QP

0

(c) For  E <  V 0, in the limit  a Æ •, show that even though there exists a transmitted wave, the transmission probability current is zero. 

3. In Question 2, obtain the reflection and transmission coefficients if  E >  V 0. 

Show that there is perfect transmission only when the thickness of the

barrier is equal to an integral multiple of half the de Broglie wavelength

in the internal region. 

4. Write a note on the tunnel effect. 

5. Explain the alpha decay of a nucleus on the basis of the tunnel effect and

obtain an expression for the lifetime of an alpha particle inside the

nucleus. 

6. Discuss the quantum mechanical scattering of a particle of mass  m and

energy  E by the square potential well

0

 x

R

< 0

 V( x) =  - V

0 <  x <  a

S| 0

0

 x >  a

T|

%" 
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Obtain the reflection and transmission coefficients and show that their

sum is unity. 

Show that perfect transmission takes place when the thickness  a of the

well is equal to an integral multiple of half the de Broglie wavelength in

the internal region. 

EXERCISES

1. A beam of electrons strikes a potential barrier of height 0.035 eV and

infinite width. Calculate the fraction of electrons reflected at the barrier

when the energy of the incident electrons is (a) 0.035 eV, (b) 0.020 eV, 

(c) 0.045 eV. 

[ Ans. 

(a) 1, (b) 0.13, (c) 1]

2. Electrons of energy 2.0 eV are incident on a potential barrier 4.0 eV high

and 0.4 nm wide. Calculate the transmission coefficient. 

[ Ans. 

0.0122]
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Chapter  Contents

9.1

The Time-Independent Schrödinger Equation and Its Solution. Energy

Eigenvalues

9.2

The Hermite Polynomials

9.3

The Harmonic Oscillator Wave Functions

In this chapter we shall study the one-dimensional motion of a particle attracted

to a fixed centre by a force which is proportional to the displacement from that

centre. The oscillatory motion that results is called harmonic (or simple

harmonic) motion. 

The harmonic oscillator is one of the most important and fascinating

systems in modern physics. The importance of the harmonic oscillator arises

from the fact that more complicated oscillatory motions can be shown to be

approximately simple harmonic when the displacement from the equilibrium

position is small. It has applications in understanding numerous physical

problems, e.g., vibrational motion of nuclei in molecules, theory of radiation, 

crystal structure etc. 

9.1

THE TIME-INDEPENDENT SCHRÖDINGER EQUATION

AND ITS SOLUTION. ENERGY EIGENVALUES

The force acting on a particle executing linear harmonic oscillation can be

written as

 F = –  kx

(9.1)

where   x is the displacement from the equilibrium position and  k is called the

force constant. The potential energy corresponding to this force is

175
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1

 V( x) = 

 kx 2

(9.2)

2

If  w is the “classical” angular frequency of the oscillator and  m is its mass, 

then

 w = 

 k / m

or

 k =   mw 2

Therefore

1

 V( x) = 

 mw 2 x 2

(9.3)

2

The time-independent Schrödinger equation for the harmonic oscillator is

h2 2

 d y( x)

1

–

+ 

 mw 2 x 2 y( x) =   Ey( x)

(9.4)

2

2 m

 dx

2

 d  2 y( x)

2 m

1

F

or

+ 

2

2

 E -

 mw x

H

IK y( x) = 0

 dx 2

2

h

2

 d  2 y( x)

 mw

2 E

 mw

L

or

+ 

 x  2

-

 dx 2

h

 w

NM

O

h

h

QP y( x) = 0

(9.5)

It is convenient to simplify this equation by introducing the dimensionless

eigenvalue

2 E

 l = 

(9.6)

h w

and the dimensionless variable

 x =   a x

(9.7)

where

/

 mw

F

 a =  HG I

(9.8)

h KJ1 2

We have

 dx =  a

 dx

 dy

 dy dx

 dy

= 

=  a

 dx

 dx dx

 dx

 d  2 y

 d

 dy

 dx

F

= 

H IK

 dx 2

 dx

 dx

 d x

2 y

=   a 2  dd  2

 x

 mw d y

2

=  h  dx 2
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Substituting in (9.5), 

L

 mw

 d y

2

 x

( ) + ( l -  x 2) y x

( )

h

 dx  2

NM

OQP = 0

 d  2 y x

( )

or

+ ( l  –   x 2)   y( x) = 0

(9.9)

 d  2

 x

As a first step towards finding acceptable solutions of this equation, we first

examine the behaviour of  y in the asymptotic region | x | Æ •. In this limit (9.9)

reduces to

 d  2 y x

( )  –  x 2 y( x) = 0

(9.10)

 d  2

 x

It can be easily verified that for large values of | x| the functions

 y( x) =   xne± x 2/2

 n being any constant, satisfy Equation (9.10) so far as the leading terms, which

are of order  x 2  y( x), are concerned. Since the wave function must be bounded everywhere, the positive sign in the exponent is not acceptable. This suggests

that we should look for exact solution to (9.9) having the form

 y( x) =   e– x 2/2   H( x)

(9.11)

where   H( x ) are functions which do not affect the required asymptotic

behaviour of  y( x). Substituting (9.11) into (9.9) we find that  H( x) satisfy the Hermite  equation

 d  2  H( x)

 dH( x)

–  2 x

+ ( l  – 1)  H( x ) = 0

(9.12)

 d  2

 x

 dx

This equation can be solved by assuming a power series of the form

•

 H( x) =  Â  akxk =  a 0 +  a 1 x +  a 2 x 2 + …

(9.13)

 k =0

This gives

•

 dH =  Â  kak  xk–1

 dx

 k =1

and

•

 d  2  H =  Â  k( k – 1) ak  xk–2

 d  2

 x

 k =2

Substituting in Equation (9.12), 

Â  k( k – 1) akxk–2 – 2 Â  kakxk + ( l – 1) Â  akxk = 0

%& 
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or

Â  k( k – 1) akxk–2 –  Â (2 k –  l + 1)  ak  xk = 0

For this equation to be satisfied identically for all  x, the coefficient of each

power of  x must vanish. Setting the coefficient of  xk equal to zero, we obtain

( k + 2) ( k + 1)   ak+2  – (2 k +1 –  l) ak = 0

or

2 k + 1 -  l

 ak+2 = 

 ak,  k = 0, 1, 2,…

(9.14)

( k + 2) ( k + 1)

This equation is called the  recurrence relation. It shows that all the

coefficients can be determined from  a 0 and  a 1. Thus the general solution of

(9.12) has two adjustable parameters. It can be written as the sum of two series, 

one containing only even powers of  q and the other only odd powers:

 H( x) = ( a 0 +  a 2 x 2 +  a 4 x 4  +…) + ( a 1 x +  a 3 x 3 +  a 5 x 5+…) (9.15)

Let us now look at the behaviour of this series as  x  Æ •. It  is clear that

for large  x, the higher (large  k) terms in the series will dominate. Therefore, we examine the behaviour of this series for large  k. We have, from (9.14), 

 ak+2

2

Æ 

for large  k

(9.16)

 a

 k

 k

Let us now consider the expansion of the function exp ( x 2):

1

 ex 2 = 

Â  bkxk;  bk = ( k/2)! 

 k=0,2,4 º

, 

The ratio of two consecutive terms is

 b

( k /2) ! 

2

2

 k +2  = 

= 

Æ 

for large  k

(9.17)

 b

[( k + 2)/2] ! 

 k + 2

 k

 k

Equations (9.16) and (9.17) show that for large  k,    H( x) behaves as exp ( x 2). 

Thus, (9.11) shows that for large  k, 

 y ( x) ~  ex 2/2

(9.18)

which diverges as  x Æ •. Therefore, in order to obtain a physically acceptable

wave function it is necessary that the series is terminated to a polynomial. The

recursion relation (9.14) tells us that this can happen only when  l is an odd

integer:

 l = 2 n+1, 

 n = 0, 1, 2, …

(9.19)

In that case one of the two series will terminate at  k =  n. The other series is

eliminated by setting  a 0 = 0 if  n is odd and  a 1 = 0 if  n is even. In either case, Equations (9.6) and (9.19) yield the energy eigenvalues

F 1

 E

 n +

h w, 

 n

 n =

=

H I

0, 1, 2, 

(9.20)

2 K

º
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We have labelled the energy eigenvalues by the index  n which indicates the

degree of the polynomial appearing in the solution. 

Note that the infinite sequence of energy levels has the equal spacing  h w

postulated by Planck in 1900. It is also in agreement with the quantization rules

of the old quantum theory. However, unlike old quantum theory, the ground state

energy is not zero, but is

1

 E 0 = 

h w

(9.21)

2

This is called the  zero-point energy. It is characteristic of quantum mechanics

 p 2

1

and is related to the uncertainty principle. Since the energy is 

+ 

 mw 2 x 2, 

2 m

2

zero energy would be possible only if both  p and  x vanish simultaneous. This

would violate the uncertainty principle. 

It may be noted that the eigenvalues (9.20) are  nondegenerate, because for

each value of the quantum number  n there exists only one eigenfunction. This

is expected because, as we know, the bound states of all one-dimensional

systems are nondegenerate. 

The potential well and the five lowest energy eigenvalues of the harmonic

oscillator are illustrated in Figure 9.1. 

 V x

( )

9

 E 4 = 2  �w

7

 E 3 = 2  �w

5

 E 2 = 2  �w

3

 E 1 = 2  �w

1

 E 0 = 2  �w

 x

Figure 9.1

The harmonic oscillator potential and its energy levels. 

9.2

THE HERMITE POLYNOMIALS

Substituting   l = 2 n + 1 in Equation (9.12), 

we get

 Hn≤( x)  –  2 x  Hn¢ ( x) + 2 n  Hn( x) = 0

(9.22)

The polynomial  Hn( x) of order  n that is a solution of this equation is called the n th  Hermite polynomial. Their properties are well known and can be found in

&
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most books of mathematical physics†. We record here some important

properties which are of interest to us. 

Recurrence Relations

 H¢n = 2 nHn–1

(9.23a)

 Hn+1 = 2 xHn  –  2 nHn–1

(9.23b)

Generating Function

The function

 G( x,  s) =   e– s 2+2s x

is called the  generating function of Hermite polynomials. It can be shown that

•

 H ( x)

 e– s 2+2 sx = 

 n

Â

 sn

(9.24)

 n! 

 n=0

Rodrigues’ Formula

The Hermite polynomials can be evaluated from the following formula:

 n

 n

 x  2

 d

2

 H ( x)

(

)  e

( e x

= -

-

1

)

 n

(9.25)

 d n

 x

The first few Hermite polynomials are:

 H ( x) = 1

0

 H ( x) = 2 x

1

 H

2

( x) = 4 x - 2

2

(9.26)

 H

3

( x) = 8 x - 12 x

3

 H

4

2

( x) = 16 x - 48 x + 12

4

 H

5

3

( x) = 32 x - 160 x + 120 x

5

Orthogonality

If  Hn( x) and  Hm( x) are Hermite polynomials of orders  n and  m respectively, then

•

2

 e-

 H ( )  H ( ) = 0, 

 n π  m

z  x x x

 n

 m

(9.27)

- •

For   n =  m, it can be shown that

•

2

 e-

 H  2( )  d

 n

=

2  n

z  x x x p ! 

 n

(9.28)

- •

† See for example, Mathematical Physics by Ghatak et al., Macmillan India Ltd (1995). 
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9.3 THE HARMONIC OSCILLATOR WAVE FUNCTIONS

Using Equation (9.11) we see that the physically acceptable solutions of

Equation (9.9), corresponding to the eigenvalues (9.19) are given by

 yn( x) =  e– x 2/2   Hn( x)

(9.29)

Returning to our original variable  x, the eigenfunctions corresponding to the

discrete eigenvalues  En, given by (9.20), can be written as

 yn( x) =  Nne– a 2 x 2/2   Hn( ax),  n  = 0, 1, 2, …

(9.30)

where

 a =   mw /h

The constant  Nn can be determined by requiring that the eigenfunctions be

normalized to unity. That is, 

•

z

|  N |2 •

| y

 n

z 2

 n( x)|2   dx = 

 e– x 2   Hn ( x)  dx = 1

(9.31)

- •

 a

- •

Using (9.27) we obtain

 a

1/2

F

 Nn = 

 p  2 n

HG

I

 n!KJ

(9.32)

So, the normalized harmonic oscillator eigenfunctions are given by

/

1 2

F  a

2 2

 y

- a x

( x)

 e

/

=

2  H a

(

), 

, 

0 , 

1 2 , 

(9.33)

 n

 x

 n

HG

I

 p

 n

 n

2  n!KJ

=

º

From (9.27), we have

•

z  y* n( x)  ym( x)  dx= 0,  n π  m

(9.34)

- •

showing that the eigenfunctions are orthogonal. This is in agreement with the

fact that the energy eigenvalues are nondegenerate. 

We may combine (9.31) and (9.34) by writing

•

z  y* n( x) ym( x)  dx=  dnm

(9.35)

-•

showing that the eigenfunctions are orthonormal. 

The lowest four normalized eigenfunctions are:

 a

1/ 2

U

1

F

F

 y ( x) =

exp

 a  2 2

 x

|

0

HG I

H

IK

 p  KJ

- 2

|

1/ 2

F

|

 a

2

1

F

 y ( x) =

 a

(

)

 x  exp

 a  2 2

 x

|

1

HG I

H

IK

 p  KJ

- 2

V|

(9.36)

 a

1/2

1

F

F

|

 y ( x) =

(  a  2 2

2

 x

1) exp

 a  2 2

 x

2

HG I

H

IK |

2  p  KJ

-

- 2

|

 a

1/2

|

1

F

F

 y ( x) =

(  a  3 3

2

 x

 a

3

)

 x  exp

 a  2 2

 x

|

3

HG I

H

IK

3  p  KJ

-

- 2

W
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These eigenfunctions are plotted in Figure 9.2. The vertical line in each

graph represents the amplitude  A of a classical harmonic oscillator with the

same energy. It is clear that there is some penetration of the wave functions into

the regions | x| >  A that are forbidden classically. This is similar to the effect that we observed for a particle in a finite square well. 

It may be noted that the harmonic oscillator wave functions have a definite

 parity—even when  n is zero or even and odd when  n is odd. 

 y 0( )

 x

 y 1( )

 x

0

 x

0

 x

– A

 A

– A

 A

 y

 y

2( )

 x

3( )

 x

 x

 x

0

0

– A

 A

– A

 A

Figure 9.2

The first four harmonic oscillator wave functions,  y n(x), n = 0, 1, 2, 3. 

The vertical lines at x = ± A show the amplitude of a classical

oscillator with the same total energy. 

Figure 9.3 shows the corresponding position probability densities. Also

shown in each case are the probability densities  r cl for a classical harmonic

oscillator (dashed curves). Classically, the probability of finding the particle at

a point is inversely proportional to its speed at that point. As such,  r cl is

maximum near the end points of the motion, where the particle moves slowly, 

and minimum near the equilibrium position, where it moves fast. 

It is clear from the figure that for low values of the quantum number  n, the

quantum mechanical probability densities | yn( x)|2 are quite different from the

corresponding classical probability densities  r cl. In fact, for the lowest energy

state  n = 0, the quantum behaviour is exactly opposite. The probability density

| y 0( x)|2 has its maximum value at the equilibrium position  x = 0 and decreases on either side of this position. However, as  n increases the disagreement
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| y ( )|

0  x  2

| y ( )|

1  x  2

 r cl

 r cl

 x

– A  0

 A

 x

– A

0

 A

| y ( )|

2  x  2

| y ( )|

3  x  2

 r cl

 r cl

 x

 x

– A

0

 A

– A

0

 A

Figure 9.3

Probability densities | y n(x)|2 for the first four harmonic oscillator

states. The dotted curves show the corresponding classical probability

densities   r cl. 

between the quantum and classical probability densities becomes less and less

marked. Figure 9.4 shows the two probability densities for  n = 20. Note that

the general agreement between the two is quite good apart from the rapid

fluctuations of the quantum mechanical density. However, the uncertainty

principle prevents the detection of these fluctuations when the spacings of the

peaks and dips are very small as is the case for large quantum numbers. 

| y ( )|

20  x  2

 r cl

– A

0

 A

 x

Figure 9.4

Comparison of the Quantum-mechanical and classical probability

densities for a harmonic oscillator for the state n = 20. 
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The improved agreement between quantum and classical behaviours as  n

increases is expected because, for large  n, the energy interval is small compared

to the total energy. As such, the classical motion is approached wherein the

energy is continuous. This is also in accordance with  Bohr’s   correspondence

 principle, which asserts that for large quantum numbers, quantum mechanics

gives the same results as classical mechanics. 

PROBLEM 9.1

Evaluate (a)   x , (b)   x 2 , (c)   p  and (d)   p 2  for the

eigenstates of a harmonic oscillator. 

•

 Solution:

(a)   x  =  z  y* n( x)  x  yn( x)  dx

(9.37)

- •

We know that the harmonic oscillator wave functions have definite parity. 

Thus   yn( x) is either an even or an odd function of  x. Therefore, the product y* n( x)  yn( x) will always be even. Since  x is odd, the integrand will always be odd and hence   x  = 0. 

For a complete solution from first principles, we proceed as under. 

We shall use the recurrence relation (9.23b) for the Hermite polynomials

which can be rewritten as

2 a xHn( ax) =  Hn+1( ax) + 2 nHn–1( ax)

(9.38)

The harmonic oscillator wave functions can be written in terms of the

Hermite polynomials as

 a

1/2

F

 yn( x) =  2 n

HG

I

 n!  p  KJ  e– a 2 x 2/2  Hn( ax),  n = 0, 1, 2, …

(9.39)

Multiplying Equation (9.38) by

 a

1/2

F

2 n

HG

I

 n!  p  KJ   e– a 2 x 2/2

and simplifying, we obtain

1

 xy (  x) =

[  n + 1  y

(  x) +  n y

(  x)]

 n

 n+1

 n-1

(9.40)

 a  2

Substituting in (9.37), 

 n + 1 •

 n

•

 x  = 

 y*

z

 n( x)   yn+1( x) dx + 

 y* n( x) yn–1( x) dx

 a  2 z-•

 a  2 -•

Since the oscillator wave functions are orthonormal, both the integrals on

the right hand side vanish. Therefore, 

 x = 0

(9.41)

The Linear Harmonic Oscillator

&#

•

(b)   x 2  =  z  y* n( x) x 2 yn( x) dx

-•

1

•

= 

z  y* n  x n+1 y +  ny

 n+

 dx

(using 9.40)

1

 n-1

2  a -•

1

L

•

•

= 

 n + 1

 y x y

 dx +

 n

 y *  x y

 dx

z *

z

 n

 n+1

 n

 n-1

2 a  NM

O

-•

-•

QP

Using (9.40) again, 

L • R

U O

1

 n + 1

1

 n + 2

1

 n + 1

 x 2

= 

 y

 y

+

 y

 dx

z *S|

+

-•

V|

 n

 n

 n

2

 a

2

2

 a

 a

2

NMM

T|

W| QPP

L • R

U O

1

 n

-

*

1

 n

1

 n

1

+ 

 y

 y +

 y

 dx

z S|

-

- •

V|

 n

 n

 n

2

 a

2

 a

2

2

 a

NMM

T|

W| QPP

( n + )

1 ( n + 2)

•

 n +

•

1

= 

 y*

 y* n   yn   dx

2 2

 a

z

 n   yn+2   dx + 

2 2

 a

z-•

-•

 n

 n( n - )

1

•

+ 

z  y*

 y* n  yn–2   dx

2 2

 a

z

 n   yn   dx + 

2 2

 a

-•

Using the orthonormality of oscillator wave functions, we obtain

1

 x 2  = 

( n  + 1 +  n)

2 2

 a

F

h

2

2 n + 1

1

or

 x

=

=  n +

(9.42)

2

 a

H IK

2

2

 mw

•

(c)   p =  z  y* n( x) $ pyn( x) dx

-•

•

L  d x

=  z  y*

 n

 n( x) -  i h

 y ( )  dx

(9.43)

-•

NM

O

 dx

QP

Now, if  yn( x) is odd, then its derivative is even, and vice versa. Therefore, 

the integrand in the above integral is always an odd function of  x. Hence

 p  = 0. 

We can also obtain this result using recurrence relation (9.23a):

 dH ( a x)

 n

= 2 n   Hn–1( a x)

(9.44)

 d ( a x)

Differentiating (9.39), 

1/2

 dy (  x)

 a

F

 n

= 

 dx

2 n

HG

I

 n!  p  KJ  ¥

&$
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L

2

2

2

2

2

F  a x

 a x

 dH ( a )

 x

 n

O

-

F-

- ( a x) exp HG

I  H x

 n

2

KJ ( a ) + expHG

I

2

KJ

NMM

 dx

QPP

 a

1/2

F

F- a 2 2

1/2

 x

 a

F

= –  a 2 x

HG

I  Hn( ax) + 

2

KJ

2 n

HG

I

 n !  p  KJ exp

2 n

HG

I

 n !  p  KJ  ¥

F- a 2 2 x dH a(  x)

 a expHG

I  n

2

KJ  d a( x)

Using (9.39) and (9.44) this becomes

1/2

F

 dy ( x)

 a

F

- a  2 2

 x

 n

= – a 2 xyn( x) + 

HG

I  [2 nHn–1( ax)]

2

KJ

 dx

2 n

HG

I

 n !  p  KJ  a exp 

1/2

F

1

 a

F

- a  2 2

 x

=  – a 2 xyn( x) + (2 an)

exp HG

I  Hn–1( ax)

2

KJ

2 n

2 n  1

- ( n - 1) !  p

HG

IKJ

1/2

 n

F

=  – a 2 xyn( x) + 2 a  H IK  yn–1( x)

2

Using (9.40), 

 dy ( x)

- a

2 a

 n

= 

[  n + 1  yn+1( x) +   n yn–1( x)] + 

 n yn–1( x)

 dx

2

2

 dy (  x)

 a

or

 n

=

[  n y

( x) -

 n + 1  y

(  x)]

 n

(9.45)

1

-

 n+

 dx

1

2

Substituting in (9.43) and using the orthonormality of eigenfunctions, we

get

 p = 0

(9.46)

•

(d)   p 2

=  z  y* n( x)  $ p 2  yn( x)  dx

-•

•

 d  2 y ( x)

=  – h2 z  y*

 n

 n( x) 

 dx

-•

 dx

-

•

h2 a

 d

= 

 y* n 

[  n yn–1  – 

 n + 1  yn+1]   dx  (using 9.45)

2 z-•

 dx

- h2 a  L

•

•

 dy

 y

 d

= 

*

 n-1

 n

 y

 dx -  n + 1

 y *

 n

 dx

 n

 n

2

NM

+1

O

z  dx

z

-•

-•

 dx

QP

Using (9.45) again, 

-

•

h2 2

 a

 n

 p 2

= 

 y* n  [  n - 1    yn–2( x)  –   n    yn]   dx 2

z-•
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 h 2 2

 a

 n + 1 •

+ 

z  y* n [  n+1  yn –   n+2  yn+2]  dx

2

-•

- h2 2

 a  L

•

•

= 

 n ( n - 1)

 y *  y

 dx -

NM

z

 n

 y *  y dx

 n

 n  2

 n

 n

2

z

-

- •

-•

•

•

(

)

*

1

 y y

(

)

1 (

2)

*

 n

 dx

 n

 n

 y y

 d  O

-

+

+

+

+

z

z +  x

 n

 n

 n

 n  2

-•

-•

QP

Using the orthonormality of oscillator wave function, this reduces to

h2 2

 a

 p 2

=  –

(0  –  n  –  ( n + 1) + 0)

2

2 n + 1

= 

h2 a 2

2

F 1 F

=   n +

HG I  h2  mw

HG IKJ

2 KJ

h

F

or

 p 2

1

=  n +

 m

H IK  w h

(9.47)

2

PROBLEM 9.2

Evaluate the position-momentum uncertainty product for the

 n th state of a linear harmonic oscillator. 

 Solution:

(D x)2 =   x 2   –   x  2

F 1 h

 n +

HG I  – 0

2 KJ  mw

F 1 h

=   n +

HG I2KJ  mw

(D p)2 =   p 2   –   p  2

F 1

F 1

=   n +

HG I   mw h – 0 =   n+

HG I   mw h

2 KJ

2 KJ

Multiplying the two and taking square root we obtain the position-

momentum uncertainty productF 1

D x  D p =  n +

h, 

 n =

H I

0,1, 2, 

(9.48)

2K

º

This is in accordance with the uncertainty relation

h

D x  D p  ≥  2

&& 

Quantum Mechanics: A Textbook for Undergraduates

For   n = 0, (9.48) reduces to

h

D x D p =  2

showing that  the uncertainty product is minimum for the ground state. 

PROBLEM 9.3

Obtain the expectation values of the kinetic and potential

energies for the  n th state of a linear harmonic oscillator. 

1

1

1

F

 E

 Solution:

 T  = 

 p 2

= 

 n +

HG I

 n

2 m

KJ h w = 

2

2

2

1

1

F 1 h

 V  = 

 k x 2

= 

( mw 2)  n +

2

2

HG I2KJ  mw

1

1

F

 E

= 

 n +

HG IKJ h w  =   n

2

2

2

Thus, the average kinetic and potential energies for a harmonic oscillator in

any eigenstate are each equal to one-half the total energy, as in the case of a

classical harmonic oscillator. 

PROBLEM 9.4

For a linear harmonic oscillator, evaluate

•

 x

z

 kn = 

 y* k( x) x   yn( x)   dx

-•

 Solution:

Consider the recurrence relation (9.40):

1

 xyn( x) = 

[  n + 1    yn+1( x) +   n    yn–1( x)]

 a  2

Multiplying by  y *

 k ( x) and integrating over  x, 

•

z

1

L

•

•

 y*

z *

z *

 k   x   yn   dx = 

 n + 1

 y y

 dx +

 n

 y y

 dx

 k

 n  1

+

 k

 n  1

-

-•

 a  2 NM

O

-•

-•

QP

Since the oscillator wave functions are orthonormal, the above equation reduces

to

1

 xkn = 

 n + 1  d

+  n d

 k ,  n  1

+

 k ,  n  1

-

 a  2

( n + )

1 h

 n h

= 

 dk,  n+1 + 

 dk,  n–1

 m

2  w

 m

2  w

Thus, 

R ( n+ )1h if  k= n+

|

1

2 m

|

 w

 x

= S

 kn

 n h

if  k =  n -

|

1

2 m

||  w

0

otherwise

T
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PROBLEM 9.5

A harmonic oscillator has a wave function which is a

superposition of its ground state and first excited state eigenfunctions; that is, 

1

 y ( x) = 

[ y 0( x) +  y 1( x)]

2

Find the expectation value of the energy. 

•

 Solution:

 E =  z  y*( x)  $ E   y( x)  dx

-•

1 •

= 

z [ y*0( x) +  y*1( x)]  $ E [ y 0( x) +  y 1( x)]  dx 2 -•

1 L •

•

= 

 y *  x E y

 x dx +

 y *

( ) $

( )

( x) $

 E y ( x)  dx

z

z

0

0

1

0

2 NM -•

-•

•

•

*  x E

 x dx

 y *

( ) $

( )

( x) $

 E y (  x)  d  O

+

+

z  y y

 x

0

1

z 1 1

-•

-•

QP

1 L

•

•

= 

 E

 y *  x y

 x dx +  E

 y *

( )

( )

(  x)  y ( x)  dx

z

z

2

0

0

0

0

1

0

NM -•

-•

•

•

 E

 y *  x y x dx

 E

 y *

( )

( )

( x)  y ( x)  d  O

+

+

z

z

 x

1

0

1

1

1

1

-•

-•

QP

Since the eigenfunctions are orthonormal, this yields

1

 E = 

[ E 0 + 0 + 0 +  E 1]

2

1 1

3

L

= 

h w + h w

2 2

2

NM

OQP =  h w

PROBLEM 9.6

For a linear harmonic oscillator in its ground state, show that

the probability of finding it beyond the classical limits is approximately 0.16. 

 Solution:

The energy of the oscillator in the ground state is

1

 E 0 = 

h w

2

Classically, if  A is the amplitude of oscillation then the total energy is

1

 E cl = 

 mw 2 A 2

2

Equating the two, 

1

1

 mw 2 A 2 = 

h w

2

2

'
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h

1

or

 A = 

= 

 mw

 a

The ground-state wave function is

 a

F / F 1

 y

2

2

0 =  HG I exp -

H  a x  I

2

K

 p  KJ1 2

The probability of finding the particle within the classical limits is

 A

 P

z

in = 

 y*0   y 0   dx

-  A

 a

1/ a

2

1

 a

/ a

= 

z  e– a 2 x 2  dx =  z  e– a 2 x 2  dx

 p -1/ a

0

 p

Let   y =  ax. Then  dy =  adx. We have

2

1

 P

z

in = 

 e– y 2   dy

0

 p

L

2

4

6

8

1

 y

 y

 y

= 

1

2

-

+

-

+

- º

z  y

  dy

0

 p

2 ! 

3! 

4

NM

O

! 

QP

1

L

2

3

5

7

9

 y

 y

 y

 y

= 

 y -

+

-

+

- º

 p

3

10

42

216

NM

OQP0

2

1

1

1

1

L

= 

1 -

+

-

+

- º

 p

3

10

42

216

NM

OQP

 ª 0.84

The probability of finding the particle beyond the classical limits

 P out = 1 –   P in = 1 – 0.84 ª  0 1

. 6

SUMMARY

1. The potential energy of a particle of mass  m executing linear harmonic

oscillations of angular frequency  w is

1

 V( x) = 

 mw 2 x 2

2

2. The Schrödinger equation is

h2 2

 d y( x)

1

–

+ 

 mw 2 x 2 y( x) =  Ey( x)

2

2 m

 dx

2

3. The energy eigenvalues are

F 1

 En =   n +

HG I h w ,  n = 0, 1, 2,…

2 KJ
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The energy levels have equal spacing  h  w. The ground state energy is not

zero; it has the value

1

 E

h

0 = 

 w

2

which is called the zero-point energy. 

4. The corresponding normalized eigenfunctions are given by

 a

1/2

F

 yn( x) = 

 p  2 n

HG

I

 n !KJ exp(– a 2 x 2/2) Hn( ax),  n = 0,1,2, ... 

where  Hn( ax) is the  n th Hermite polynomial

 n

 mw

F 1/2

 Hn( x) =  (–1) n   ex 2  d ( e– x 2);  x =  ax,  a = H IK

 d n

 x

h

5. The eigenfunctions have a definite parity—even when  n is zero or even

and odd when  n is odd. 

6. For low values of the quantum number  n, the quantum mechanical

probability densities | yn( x)|2 are quite different from the corresponding

classical probability densities. However, as  n increases the disagreement

between the quantum and classical probability densities becomes less and

less marked, in accordance with the correspondence principle. 

QUESTIONS

1. Establish the Schrödinger equation for a linear harmonic oscillator and

solve it to obtain its eigenvalues and eigenfunctions. Discuss the

significance of zero-point energy. 

2. Give an outline of the quantum mechanical description of a linear

harmonic oscillator. In what way is this description different from the

classical description? 

3. Sketch the first four wave functions of the linear harmonic oscillator and

discuss their parity. 

4. Sketch the position probability densities for the first four wave functions

of the harmonic oscillator and compare these with the classical probabili-

ties. 

In the limit of large  n, how does the quantum mechanical result corre-

spond to the classical result? 

EXERCISES

1. The energy of a linear harmonic oscillator in the third excited state is

0.1eV. Find the frequency of oscillation. 

[ Ans. 

3.3  ¥ 1013 Hz]

2. Substituting the wave function

 y ( x) =  x exp (–   mw x 2/2h )

' 
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into the Schrödinger equation

 d  2 y( x)

2 m

+ 

( E  –   V( x))   y( x) = 0

 dx 2

2

h

where   V = (1/2)  mw  2 x 2, find the value of  E. 

[ Ans. 

(3/2) h w]

3. The potential energy of a linear harmonic oscillator of mass  m, oscillating

with angular frequency  w, is  V( x) = (1/2)  mw 2 x 2. 

(a) Write the time-independent Schrödinger equation for the oscillator. 

(b) Given the eigenfunction of the Hamiltonian operator for the ground

state as

 y 0( x) =  ( a/ p)1/4 exp (– ax 2/2)

where  a =  mw/h, calculate the energy eigenvalue for the ground state. 

[ Ans. 

(b) (1/2) h w]

4. A particle of mass 1 mg is attached to a spring of spring constant

10–3 Nm–1. Calculate its zero point energy. 

[ Ans. 

10.4  ¥ 10–15 eV]
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Quantum Mechanics 10

Chapter  Contents

10.1

The Dirac Notation

10.2

Operators

10.3

Orthonormal Functions

10.4

Eigenvalues and Eigenfunctions

10.5

The Postulates of Quantum Mechanics

10.6

A Note on the Superposition Principle

We have developed the basic concepts and formulation of quantum mechanics

in chapters 4, 5 and 6. The theory was applied successfully to some simple one-

dimensional systems in chapters 7, 8 and 9. In this chapter we shall present the

basic principles of quantum mechanics as a set of  postulates. As is true for all

fundamental theories, the justification for the postulates lies in logical

consistency of the theory developed on them and its success in explaining the

experimental results. 

The postulates are presented in different books in somewhat different ways. 

Even the ordering and the total number of postulates are quite arbitrary because

some books combine two postulates in a single statement. However, all the

books present the same basic ideas as postulates of quantum mechanics. 

Before stating the postulates, we shall review the general properties of

operators and their eigenvalues and eigenfunctions. We shall use the terms

“system” and “particle” interchangeably, since a single particle is the simplest

quantum mechanical system. 

10.1

THE DIRAC NOTATION

In this section we  introduce the  Dirac notation, which is a very convenient and

compact notation for the scalar product of two functions. The scalar product
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of two functions  y  1(r) and  y 2(r) is denoted by the symbol   y | y

:

1

2

 y | y

 y *

=

( ) y ( )

(10.1)

(Dir z

r

r  d r

1

2

1

2

ac notation)

The object  | y

is known as a  ket vector while   y | is known as a  bra  vector. 

2

1

They join together to form the “bra-ket”  y 1| y 2 . From the definition (10.1) we

have

 y 2| y 1 =   y 1| y 2 *

(10.2a)

 y 1|  cy 2 =   c y 1| y 2

(10.2b)

 cy 1| y 2 =   c* y 1| y 2

(10.2c)

 y 3| y 1+ y 2 =   y 3| y 1  +   y 3| y 2

(10.2d)

where   c is a complex number and  y 3 is a third function. 

10.2

OPERATORS

An operator transforms one function into another. If an operator  A transforms

the function  y into the function  f, then we write

 Ay =  f

(10.3)

For example, 

 Ay ( x) =   xy ( x)

(10.4)

indicates that the operator  A multiplies the function  y ( x) by  x. Similarly, d

 Ay ( x) = 

 y ( x)

(10.5)

 dx

means that the operator  A differentiates the function  y ( x). 

An operator  A is said to  be linear if it satisfies

 A[ y 1 +  y 2] =   Ay 1 +  Ay 2

(10.6)

and

 A[ cy ] =   cAy

(10.7)

where   c is a constant. These two conditions are equivalent to the single

condition

 A[ c y +  c y ] =  c Ay +  c Ay

1

1

2

2

1

1

2

2

(10.8)

(Condition for linearity)

It can be easily shown that the operator  d/ dx is linear. In fact, all the

operators used in quantum mechanics are linear. 
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Hermitian Operator

An operator  A is said to be Hermitian if it satisfies

 y |  Ay

=  Ay |  y

1


2

1

2

(10.9)

(Hermitian operator)

for any two functions  y 1 and  y 2 of the function space on which the operator

 A acts. 

The importance of Hermitian operators in quantum mechanics will be clear

very soon. 

PROBLEM 10.1

Prove that the momentum operator – i h— is Hermitian. 

 Solution:

For the momentum operator to be Hermitian, 

z y*(– i h— y) dr= z(– i h— y)* ydr

or

–  i h z y*— y dr =  i hz(— y*) y dr

or

z y*— ydr= –z(— y*) ydr

Now, integrating the left-hand integral by parts, 

z

•

 y*— y dr =   y* y

–  z(— y*) y dr

- •

Since  y vanishes at infinity, the first term on the right is zero. Hence it is proved

that the momentum operator is Hermitian. 

Commutator

The commutator of the operators  A and  B, denoted as [ A,  B], is defined as

[ , 

 A B] =  AB -  BA

(10.10)

(Commutator of A and B)

It follows that

[ B,  A] = – [ A,  B]

(10.11)

If [ A,  B] = 0, that is, if  AB =  BA, the operators  A and  B are said to  commute. 

If   AB  π   BA, we say that the operators do not commute. 

 d

L

PROBLEM 10.2

Find the value of the commutator   x,  dx

NM OQP. 

 Solution:

We have for any function  y ( x)

 d

L

 d

 d

F

 x, 

-

 x

H

IK y( x)

 dx

NM OQP y( x) =   xdx dx

'$
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 dy

 d

=   x

-

( xy )

 dx

 dx

 dy

 dy

=  x

–   x

–   y ( x)

 dx

 dx

=  –  y ( x)

Since   y ( x) is arbitrary, this gives

 d

L x,  dx

NM OQP = –1

PROBLEM 10.3

Prove the following commutator relations

(a) [ A,  B +  C] = [ A,  B] + [ A,  C]

(b) [ A,  BC] = [ A,  B] C +  B[ A,  C]

(c) Jacobi identity: [ A, [ B,  C] + [ B, [ C,  A]] + [ C, [ A,  B]] = 0

 Solution:

(a) [ A,  B +  C] =   A ( B +  C)  –  ( B +  C)  A

=   AB +  AC  –   BA  –   CA

=   AB  –   BA +  AC  –   CA

= [ A,  B] + [ A,  C]

(b)

[ A,  BC] =   ABC  –   BCA

=   ABC  –   BCA +  BAC  –   BAC

=   ABC  –   BAC +  BAC  –   BCA

= ( AB  –   BA) C +  B( AC  –   CA)

= [ A,  B]   C +  B[ A,  C]

(c) Expand all commutators and add. 

10.3

ORTHONORMAL FUNCTIONS

Consider two nonzero functions  yi and  yj. The functions are said to be

orthogonal if their scalar product is zero:

 y | y

= 0

 i

 j

(10.12)

(Orthogonality condition)

A function is said to be normalized if the scalar product of a function with

itself is unity:

 y y

|

=

| y  2|  d r = 1

(10.13)

(Normali z

zed function)

A set of normalized functions which are orthogonal to one another are said

to form an orthonormal set.  The  orthonormality condition is

 y | y

=  d

 i

 j

 ij

(10.14)

(Orthonormality condition)

where the Kronecker symbol  dij = 1 for  i =  j and zero for  i  π   j. 

The Formal Structure of Quantum Mechanics

'%

10.4

EIGENVALUES AND EIGENFUNCTIONS

If the result of applying an operator  A on a wave function  y is a scalar multiple

of   y itself, that is, 

 Ay =  ly

(10.15)

where   l is a complex number, then  y is called an eigenfunction of  A and  l is called the corresponding eigenvalue. 

If there is a whole set of eigenfunctions  yn of an operator  A, there is an

eigenvalue   ln associated with each eigenfunction. Thus, 

 Ay =  l y

 n

 n

 n

(10.16)

(Eigenvalue equation)

where   n takes integral values. For example, the function  yn = sin  nx is an eigenfunction of the operator  d 2/ dx 2 with the eigenvalue –  n 2. 

 d  2

 d

(sin   nx) =  n

(cos  nx) = –  n 2 (sin  nx)

 dx 2

 dx

Equation (10.16) is called an eigenvalues equation. 

The number of eigenvalues and eigenfunctions of a quantum mechanical

operator is, in general, infinite. The totality of all the eigenvalues of an operator

is called the  spectrum of the operator. This may be discrete, continuous or partly

discrete and partly continuous. 

Degeneracy

If more than one linearly independent eigenfunction have the same eigenvalue, 

then this eigenvalue is said to be  degenerate. 

One of the main occupations of quantum mechanics is that of solving an

eigenvalue equation when only the operator  A is known. For example, the time-

independent Schrödinger equation [see (6.65)]

 Hyn =  Enyn

(10.17)

is an energy eigenvalue equation with the Hamiltonian operator given by

[2 2

—

 H = –

+  V (r)

(10.18)

2 m

Another important example is that of finding the eigenvalues and eigenfunctions

of the angular momentum operators, which we shall study in chapter 11. 

We shall now prove two important theorems concerning eigenvalues and

eigenvectors of Hermitian operators. 

THEOREM 10.1

The eigenvalues of a Hermitian operator are real. 

 Proof:

We have

 Ay =  ly

'& 
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Since  A is Hermitian, 

 y | Ay =   Ay | y

or

 y | ly =   ly | y

or

 l y | y =   l*  y | y

or

( l  –   l*)   y | y  = 0

Since   y | y   π 0, we obtain

 l* =  l

Hence the eigenvalue  l is real. 

THEOREM 10.2

The eigenfunctions of a Hermitian operator corresponding

to distinct eigenvalues are orthogonal. 

 Proof:

Let  y 1 and  y 2 be two eigenfunctions of a Hermitian operator  A and let

 l 1 and  l 2 be the respective eigenvalues. Then, 

 Ay 1 =  l 1 y 1

 Ay 2 =  l 2 y 2

Since  A is Hermitian, we have

 y 2| Ay 1 =   Ay 2| y 1

or

 y 2| l 1 y 1 =   l 2 y 2| y 1

or

 l

*

1  y 2| y 1

=   l  2  y 2| y 1

Since   l*2 =  l 2, this gives

( l 1  –   l 2)  y 2| y 1  = 0

Since   l 1  π   l 2, we obtain

 y 2| y 1 = 0

Thus   y 1 and  y 2 are orthogonal. 

If an eigenvalue is degenerate, then the corresponding eigenfunctions are

not necessarily orthogonal. However, it is possible to construct a new set of

mutually orthogonal eigenfunctions using the Schmidt orthogonalization

procedure. We shall not discuss this†. 

Eigenfunctions of Commuting Operators

THEOREM 10.3

If two operators commute, they have common set of

eigenfunctions. 

 Proof:

We shall prove the theorem only for the case of  nondegenerate

eigenvalues. 

Let   A and  B be two commuting operators, that is, 

 AB =  BA

† Interested readers may consult Quantum Mechanics by E. Merzbacher. 
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Let  y be an eigenfunction of  A and let  a be the corresponding eigenvalue:

 Ay =   ay

Then

 A( By) =  B Ay =   B ( ay) =  a ( By)

This shows that  By is an eigenfunction of  A corresponding to the eigenvalue

 a. Since  a is nondegenerate,  By can differ from  y only by a multiplicative constant, say  b. That is, 

 By =   by

Thus,  y is an eigenfunction of  B, having eigenvalue  b. 

Hence  y is simultaneously an eigenfunction of both the operators  A and  B

with the eigenvalues  a and  b, respectively. 

The  converse of this theorem is also true, i.e.,  if two operators have

 common set of eigenfunctions, they commute. 

10.5 THE POSTULATES OF QUANTUM MECHANICS

Postulate 1: The Wave Function

The dynamical state of a physical system may be represented by a wave

function (or a state function) which contains all the information that can be

known about the state of the system. The function is continuous and

differentiable. It is, in general, complex and may be multiplied by any complex

number without affecting its physical significance. 

Let Y(r,  t) be the wave function associated with a particle. Since the wave

function is arbitrary to within a multiplicative constant, it is convenient to

choose this constant so that the wave function is normalized:

z|Y(r,  t)|2 dr = 1

(10.19)

where the integral extends over all space. 

The quantity

 P(r,  t) = |Y (r,  t)|2

(10.20)

can be interpreted as  position probability density.  That is, the probability of

finding the particle, at time  t, within the volume element  dr =  dx  dy  dz about the point r =  ( x,  y,  z) is

 P(r,  t)  dr = |Y (r,  t)|2 dr = Y *(r,  t)  Y(r,  t)  dr (10.21)

This is the statistical interpretation of the wave function,  first suggested by

Max Born. 

There are some wave functions, such as plane waves, which are not square

integrable, i.e., for which the integral in Equation (10.19) does not exist. 

Normalization of such functions is done either by enclosing the system in a large

box or by using the Dirac delta function (see section 6.9). 
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Postulate 2: The Superposition Principle

According to the superposition principle, if the wave functions Y1, Y2, …, Y n are

associated with possible states of a physical system, then any linear combination

 n

Y = Â  ci Y i

(10.22)

 i=1

where the  ci are complex constants, is  also a wave function associated with

a possible state of the system. 

The reader may recall that the superposition principle underlies the

representation of a particle by a wave packet which is formed by superposition

of plane waves (see Equation 5.5). 

Postulate 3: Operators

With every physical observable (or dynamical variable) is associated a linear, 

Hermitian operator. 

The rule for  associating a linear operator with a dynamical variable (already

discussed in section 6.4) is as follows:

Let   A(r, p,  t) be a dynamical variable representing a physical quantity associated with a particle. We obtain the corresponding operator   Â (r, – i[—,  t) by performing the substitutions

r Æ r

p Æ - i —

h

(10.23)

Postulate 4: Expansion in Eigenfunctions

All the eigenfunctions of any physical observable  A constitute a  complete set of

 functions so that a wave function representing any state of the system can be

expressed as a linear combination of the eigenfunctions of the corresponding

operator   Â. If all the eigenvalues are discrete, then

Y = Â  cnyn

(10.24)

where   yn are the eigenfunctions of  Â. 

Postulate 5: Measurement of an Observable: Eigenvalues

The only possible result of a  measurement of the observable  A is one of the

eigenvalues of the operator  Â associated with  A. 

Since the results of measurements are real numbers, a Hermitian operator

is suitable to represent physical observables. 

If the wave function of a system is simply one of the eigenfunctions of the

operator  Â, having the eigenvalue  ln, then a measurement of the observable  A

will certainly yield the result  ln. However, if the wave function is not an

eigenfunction of  Â, then a measurement of  A will yield any one of the values
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 l 1,  l 2,  … . Thus, the act of measurement forces the system into one of its

eigenstates. It is not possible to predict which eigenstate the system will change

into. However, it is possible to find the probability of obtaining a particular

eigenvalue  ln. We shall see this after the next postulate. 

Postulate 6: Expectation Values

If a system is described by a normalized wave function Y, the  expectation  value

of a measurement of an observable  A is given by

 A =  y |  Ay

(10.25)

(Expectation value)

We have

 A * =   y | Ay * =   Ay | y

Since  Â is Hermitian, 

 Ay | y  =   y | Ay

It follows that   A * =   A . That is,  A  is real. 

The expectation value may be interpreted as either the average value of the

same measurement of the quantity  A on many identical systems or the average

value of many measurements on the same system. 

Expanding  Y in terms of  yn as in (10.24), 

 A =  Â Â  c* m cn ym| Ayn

 m

 n

=  Â Â  c* m cn   ln ym| yn

 m

 n

If the eigenfunctions  yn are orthonormal, then

 ym| yn =  dmn

So, 

 A =  Â Â  c* m cn ln dmn

 m

 n

=  Â |  cn|2  ln

(10.26)

 n

Since Y is normalized, that is, 

Y |Y = 1

we also have

Â | cn|2 = 1

(10.27)

 n

Equation (10.26) shows that the expectation value is the  weighted average

 of all the eigenvalues of Â. Of course, a single measurement will always yield
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just one of the eigenvalues of  Â. Following Born’s interpretation, we call the

quantity

 Pn = | cn|2

(10.28)

the  probability that a given measurement will yield the particular eigenvalue  ln. 

The condition (10.27) expresses the fact that the total probability is unity. 

Postulate 7: Time Development of the Wave Function

The wave function of a system develops in time according the time-dependent

Schrödinger equation

 i[ ∂ Y ( , 

r  t) =  H  Y( , 

r  t)

(10.29)

∂ t

when  H is the Hamiltonian operator for the system. For a single particle of mass

 m, having potential energy  V(r,  t), the Hamiltonian is given by

[2 2

—

 H =  –

+  V (r,  t)

(10.30)

2 m

If the potential is time-independent, i.e.,  V (r,  t) =  V (r), then Y (r,  t) may be written as the product of a spatial function  y (r) and a time function  f ( t). 

The spatial part is an energy eigenfunction satisfying the eigenvalue equation

 H yn(r) =  En yn(r)

(10.31)

where  En is the energy of the  n th state. Since  En remains constant in time, the solution  yn are called  stationary states. They form a complete, orthonormal set

of functions. The solutions of (10.29) can then be written as

Y n(r,  t) =  yn(r)  e– iEnt/[

(10.32)

According to the superposition principle, the general solution of (10.29)

may be written as

Y(r,  t) = Â  cn yn(r)  e– iEnt/[

(10.33)

 n

10.6

A NOTE ON THE SUPERPOSITION PRINCIPLE

The principle of superposition of states (Postulate 2) is one of the most funda-

mental concepts of quantum mechanics. It states that the wave functions

representing the states of a quantum mechanical system can be superposed

linearly to form new wave functions which also represent possible states of the

same system. A proper understanding of this principle is very important in order

to have a working knowledge of quantum theory. However, it is not easy for the

beginner to comprehend this principle and therefore he/she should not get dis-

heartened if the first encounter with this principle leads to confusion and

misconception. 
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Perhaps the main reason for the confusion is that there is no superposition

of states in classical physics, even though the concept of superposition occurs

quite frequently therein, the most well known being the superposition of waves. 

Mathematically, the classical and quantum superpositions appear to be

analogous. However, this analogy is misleading. As Dirac writes in his classic

book†,  “The assumption of superposition relationships between the states leads

 to a mathematical theory in which the equations that define a state are linear

 in the unknowns. In consequence of this, people have tried to establish

 analogies with systems in classical mechanics, such as vibrating strings or

 membranes, which are governed by linear equations and for which, therefore, 

 a superposition principle holds. It is important to remember, however, that the

 superposition that occurs in quantum mechanics is of an essentially different

 nature from any occurring in the classical theory, as is shown by the fact that

 the quantum superposition principle demands indeterminacy in the result of

 observations.” 

It may be noted that Postulate 4 concerning expansion of a wavefunction

representing any state of a system in terms of the eigenfunctions of an operator

is a consequence of the superposition principle. 

A particularly common and serious misconception in the minds of the

beginner is that “the energy eigenstates are the only allowed states††”. It seems

to arise partly from the statement that “the energy eigenvalues are the only

 allowed energies”, which is correct. 

This misconception is clarified if one understands the relationship between

the superposition principle and the measurement process (see Postulate 5). 

Suppose a dynamical variable of a system is to be measured in an experiment. 

Let Y1 and Y2 be two states of the system such that if an observation is made

in state Y1, one gets the definite result  l 1, and if the observation is made in state

Y2, the result is definitely  l 2. The crucial question now is: What will be the result

of the observation if the system is in the superposed state

Y =  c 1Y1 +  c 2Y2. The answer is: The result will sometimes be  l 1 and sometimes l 2. No other result will ever be obtained. However, it cannot be predicted when

we would get the result  l 1 and when we would get  l 2. We can only say that

the  probability of getting result  l 1 is |  c 1 |2 and the probability of getting  l 2 is

|  c 2 |2. 

The reader will recall from section 4.4 that the interference effects in the

double-slit experiment can be explained only by using the superposition

principle. It can be shown that the superposition principles also makes it possible

to obtain a deeper understanding of the uncertainty principle. However, we shall

not discussion it here. 

† P.A.M. Dirac: The Principle of Quantum Mechanics, 4th edition, Oxford University Press, 

New York (1958). 

†† See Daniel F Styer,  Common Misconceptions Regarding Quantum Mechanics, 

Am.J. Phys. 64(1), 1996. 

 " 
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So far, we have mainly concentrated on the application of quantum mechanics

to systems in one dimension. We shall now study the application of quantum

mechanics to some simple three-dimensional systems. An important new

concept that now appears is that of angular momentum. We have already

encountered this in the discussion of the Bohr model. 

We know that in classical mechanics, the angular momentum is one of the

three fundamental constants of motion of an isolated system, the other two

being energy and linear momentum. It turns out that this statement is also true

for isolated quantum mechanical systems. The correspondence principle also

demands that this must be so. The conservation of angular momentum is

actually a consequence of the  isotropy of space, which means that the physical

laws governing an isolated system do not depend on the orientation of that

system in space. 

In this chapter we shall consider  orbital angular momentum, which is the

counterpart of the angular momentum encountered in classical physics. We shall

see later (in chapter 13) that in quantum mechanics the angular momentum is

a more general concept. In addition to orbital angular momentum, there is an
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intrinsic property of elementary particles which is called  spin angular momentum. 

It has no classical counterpart. The total angular momentum of a particle is the

vector sum of the orbital and spin angular momenta. 

11.1

THE ORBITAL ANGULAR MOMENTUM OPERATOR

AND ITS CARTESIAN COMPONENTS

Classically, the angular momentum L of a particle with respect to some fixed

origin  O is defined as

L =  r  ¥  p

(11.1)

where p is the momentum of the particle and r is its position vector with respect

to  O. Thus L is a vector which points in a direction at right angles to the plane

containing r and p. The Cartesian components of L are

 Lx =  ypz –  zpy

(11.2a)

 Ly =  zpx –  xpz

(11.2b)

 Lz =  xpy –  ypx

(11.2c)

The corresponding quantum mechanical operators are obtained by replacing

p,  px,  py and  pz by the respective operators representing them. We have L = - i h(r ¥ —)

( . 

11 )

3

and

F

 Lx =

∂

∂

-  i h  y

-

HG

I

 z

( . 

11 4a)

∂ z

∂ y KJ

 Ly

 i hF

=

∂

∂

-

 z

-

HG

 x  I

( . 

11 4b)

∂ x

∂ z KJ

F

 Lz =

∂

∂

-  i h  x

-

HG

I

 y

( . 

11 4c)

∂ y

∂ x KJ

(Angular momentum operators)

11.2

COMMUTATION RELATIONS

Let us now obtain the commutation relations between  Lx,  Ly and  Lz. For this we use the basic commutation relations between position and momentum operators, 

viz., 

[ x,  px] = [ y,  py] = [ z,  pz] =  i h

with all other pairs (for example  x and  py) commuting. We have

[ Lx,    Ly] =  Lx Ly  –  Ly Lx

= (  ypz –   zpy) ( zpx –   xpz) – ( zpx –   xpz) (  ypz –  zpy)

=  ypz zpx –  ypz  xpz –  zpy  zpx +  zpy  xpz  –  zpxy pz

+   zpx  zpy +  xpz  ypz –  xpz  zpy

 $
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=   ypx(  pzz  –  zpz) +  py x( zpz  –  pzz)

= ( z pz –  pzz) ( xpy –   ypx)

= [ z,  pz] ( xpy  –  ypx)

=   i[ Lz

In similar fashion we obtain the values of the commutators [ Ly,  Lz] and

[ Lz,  Lx]. Putting all the three together, we have

[ L ,  L ] =  i h  L

( . 

11 5a)

 x

 y

 z

[ L ,  L ] =  i h  L

( . 

11 5b)

 y

 z

 x

[ L ,  L ] =  i h  L

 z

 x

 y

( . 

11 5c)

(Commutation relations)

We find that the operators representing any two components of the orbital

angular momentum do not commute. As discussed in chapter 10, it implies that

they cannot have simultaneous eigenfunctions and hence cannot be precisely

measured simultaneously. As such, it is, in general, impossible to assign definite

values to all the components simultaneously. In other words, if a system of

particles is in an eigenstate of one of the components, it cannot be in an

eigenstate of either of the other two components. 

Let us now consider the operator representing the square of the magnitude

of the orbital angular momentum:

 L 2 =   L 2 x +  L 2 y +  L 2 z

(11.6)

Let us evaluate its commutator with  Lx:

[ L 2,  Lx] =  [ L 2 x +  L 2 y +  L 2 z,  Lx]

Since [ L 2 x,  Lx] = 0, we get

[ L 2,  Lx] =  [ L 2 y,  Lx] + [ L 2 z,  Lx]

=   Ly[ Ly,  Lx] + [ Ly,  Lx] Ly +  Lz[ Lz,  Lx] + [ Lz,  Lx] Lz

= –  i[( Ly   Lz +  Lz   Ly) +  i[( Lz   Ly +  Ly   Lz)

= 0

In a similar manner, we can show that  Ly and  Lz also commute with  L 2. 

Thus, 

[  L 2 ,  L ] = [  L 2 ,  L ] = [  L 2 ,  L ]

 x

 y

 z = 0

(11.7)

This shows that the magnitude of the orbital angular momentum and any

one of its Cartesian components can be simultaneously measured precisely. 

Therefore, it is possible to find simultaneous eigenfunctions of  L 2 and any one

of   Lx,  Ly or  Lz. 
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11.3

ANGULAR MOMENTUM OPERATORS IN SPHERICAL

POLAR COORDINATES

In order to obtain the eigenvalues and simultaneous eigenfunctions of  L 2 and one

of the components of L, it is convenient to express the operators in spherical

polar coordinates ( r,  q,  f). As shown in Figure 11.1, the spherical and Cartesian coordinates of a point  P are related as

 x =   r sin  q cos  f

 y =  r sin  q sin  f

(11.8)

 z =   r cos  q

 z

 P ( x, , 

 y z  or ,  r , 

 q

)

 f

 r

 q

 z

 O

 y

 f

 x

 y

 x

Figure 11.1

The Cartesian and spherical polar coordinates of a point P. 

OP = r is the position vector of P with respect to the origin. 

with 0 £  r £ •, 0 £  q £  p, 0 £  f £ 2 p. After some straightforward but lengthy algebra, it can be shown that

F ∂

∂

 L =  i h

 f

+

 q

 f

 x

sin

cot

cos

HG

I

 q

∂

∂ f  KJ

(11.9a)

F

∂

∂

 L = -  i h

 f

-

 q

 f

 y

cos

cot

sin

HG

I

(11.9b)

∂ q

 f

∂ KJ

∂

 L = -  i h

(11.9c)

 z

 f

∂

and

2

L 1 ∂

∂

1

h

F

∂

 L 2

2

= -

sin  q

(11.10)

2

2

sin  q ∂

NM

O

 q  HG

I

∂ q  KJ + sin  q ∂ f  QP

11.4

EIGENVALUES AND EIGENFUNCTIONS OF L2 AND Lz

From (11.9) we note that the expression for  Lz is simpler than those for  Lx and

 Ly. Therefore, it is convenient to obtain simultaneous eigenfunctions of  L 2 and

 Lz. 

 & 
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Let us denote the eigenvalues of  L 2 and  L

h

 z by  l  h2 and  ml

, respectively, 

and let the corresponding common eigenfunction be  Y( q,  f). Then the two

eigenvalue equations can be written as

 L 2 Y( q,  f) =   l  h2 Y( q,  f)

(11.11)

and

 L

h

 zY( q,  f) =   ml

 Y( q,  f)

(11.12)

The subscript  l is attached to  m for later convenience. Substituting for  L 2

from (11.10) into (11.11), we obtain

1

∂

∂

F

 Y

1

2

∂  Y

sin  q

HG

IKJ + 

+  lY = 0

(11.13)

sin  q

 q

∂

∂ q

2

2

sin  q

 f

∂

This equation can be solved by using the method of separation of variables. 

We write

 Y( q,  f) =  Q( q)  F( f)

(11.14)

Substituting in (11.13), multiplying by sin2 q/ Y( q,  f) and rearranging, we obtain 1

2

 d  F

sin2  q  L 1

 d

Q

 d

F

–

= 

sin  q

+  l Q

2

F

NM

O

HG

IKJ

 df

Q

sin  q

 q

 d

 q

 d

QP

The variables have separated out, and therefore, each side must be equal to a

constant. We take this constant to be  m 2 for reason which will become clear

 l

soon and obtain the following ordinary differential equations:

 d  2F  +  m 2 l F = 0

(11.15)

 d  2

 f

and

F

1

 d

 d Q

F

 m 2

sin  q

H

IK +   l-  l  Q = 0

(11.16)

sin  q dq

 dq

2

sin  q

HG

IKJ

Equation (11.15) can be immediately solved to give

F( f) =  Aeim  f

 l

where   A is an arbitrary constant. For F( f) to be single-valued we must have

F( f + 2 p) =  F( f)

or

 e 2 p m il = 1

or

 ml = 0, ±1,  ±2,  …

Taking  A = 1/ 2 p , we obtain the normalized solutions of (11.15):

1

F

 im f

 l

( f ) =

; 

= 0, ± , 

1 ± 2,º

(11.17)

 m

 e

 l

 m

 l

 p

2

Orbital Angular Momentum in  Quantum Mechanics

' 

where we have labelled the functions by the subscript  ml. It can be easily shown

that these functions form an orthonormal set. That is, 

2 p

z F* m¢( f) F m( f)  df =  dmm¢

(11.18)

0

 l

 l

 l

 l

We can immediately note here that the function F m ( f) is an eigenfunction

 l

of the operator  L

[

 z with the eigenvalue  ml . Indeed, 

∂

1

 i

F

 f

 Lz  F m ( f) =  -

 f  HG

 eiml

h

I

2 p

KJ

 l

∂F

=   ml h

1

 eimlf

HG

IKJ

2 p

=   m [

 l   F m ( f)

(11.19)

 l

Let us now turn to Equation (11.16). Introducing the change of variable

 x = cos q and writing  Q( q ) =  P( x), the equation becomes

F

 d  L

 dP

 m 2

(1

 x 2

-

)

-

 l

 P( x) = 0

(11.20)

 dx

 dx

NM

OQP +   l - x

HG

I

2

1

KJ

It is convenient to solve this equation in two steps—first for  ml = 0 and then

for   ml  π 0. 

The Case ml = 0

For   ml = 0, the above equation reduces to

 d  2  P

 dP

(1  –   x 2)

–  2 x

+  lP = 0

(11.21)

 d  2

 x

 dx

This is the well known  Legendre differential equation. We attempt a power

series solution of the form

•

 P( x) =  Â  ak   xk

(11.22)

 k =0

Substitution into (11.21) gives

•

Â [( k + 1) ( k + 2)  ak+2 + { l –  k( k + 1)} ak]  xk = 0

 k =0

This equation can be satisfied only if the coefficient of each power of  x

vanishes. This gives the  recurrence relation

 k ( k + )

1 -  l

 ak+2 = 

 ak

(11.23)

( k + )

1 ( k + 2)

Since   ak+2 is related to  ak, (11.22) may be written as

L  a

 a

L  a  3  a

 P( x) =  a

2

4

4

3

5

5

0 1

2

+

 x +

 x + º

NM

O +  a 1  x+  x +  x +º (11.24)

 a

 a

QP NM

O

 a

 a

1

1

QP

0

0

 

Quantum Mechanics: A Textbook for Undergraduates

The two series inside the brackets represent the two linearly independent

solutions of (11.21). Now, from (11.23) we note that

 a

 k

lim

 k +2  =  lim

= 1

 k Æ•

 a

 k Æ•

+ 2

 k

 k

Therefore, if the two series in (11.24) do not terminate at some value of  k, they

will diverge for  x = ± 1 (i.e., for  q = 0 and  p) and so will not be acceptable as a wave function. 

From (11.23) we find that one of the two series will terminate if

 l =  l( l + )

1 , 

 l = , 

0 , 

1 , 

2 º

(11.25)

For even values of  l, the even series will terminate. The odd series can be made

to vanish by choosing  a 1 = 0. Similarly, for odd values of  l, the odd series will terminate and the even series can be got rid of by choosing  a 0 = 0. 

The possible eigenvalues of the operator  L 2 are seen to be

 l h2 =  l( l + )h2 = , h2 , h2 , h2

1

0 2

6

12

, º

(11.26)

as  l assumes the values 0, 1, 2, 3, … . Justifiably,  l is called the  orbital angular momentum quantum number. 

Legendre Polynomials

The physically acceptable solutions of the Legendre equation are thus polynomi-

als. These are called the  Legendre polynomials,  denoted  Pl( x), where  l is the degree of the polynomial. These polynomials are uniquely defined apart from an

arbitrary multiplicative constant which, by convention, is chosen so that

 Pl (1) = 1

(11.27)

Also, since  Pl( x) contains only even or odd powers of  x, depending on whether l is even or odd, we have

 Pl (– x) =  (–1) l   Pl ( x)

(11.28)

The first few Legendre polynomials are:

 P ( x) = 1

0

 P ( x) =  x

1

1

 P

2

( x) =

(3 x - 1)

2

2

1

 P

3

( x) =

(5 x - 3 x)

(11.29)

3

2

1

 P

4

2

( x) =

(35 x - 30 x + 3)

4

8

1

 P

5

3

( x) =

(63 x - 70 x + 15 x)

5

8

Below we give some important properties of the Legendre polynomials. The

details can be found in any book on mathematical physics. 
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Rodrigues’ Formula

1

 l

 d

 Pl( x) = 

( x 2  – 1) l

(11.30)

2 l

 l

◊  l !  dx

Recurrence Relations

( l + 1)  Pl+1( x ) =  (2 l + 1) x Pl( x)  –   l   Pl–1( x) (11.31)

and

 dP

(1  –   x 2)

 l

=  –  lx   Pl( x) +  l   Pl–1( x)

(11.32)

 dx

Generating Function

•

 T( x,  s) = (1 –  2 xs +  s 2)–1/2 =  Â  Pl( x) sl, | s| < 1

(11.33)

 l =0

Orthogonality

+

z 1

2

 Pl( x)   Pl¢( x)   dx = 

 dll¢

(11.34)

-1

2 l + 1

This equation shows that the Legendre polynomials are orthogonal over the

range  –1  £   x  £ 1, but they are not normalized to unity. 

The General Case ml  π  0

Without going into details, we mention that, in general, Equation (11.20) has

physically acceptable solutions only if  l =  l( l + 1) and | ml| £  l. These solutions are called  associated Legendre functions. The associated Legendre function

 Pml

 l ( x) of degree  l and order  ml is defined in terms of the Legendre polynomial Pl( x) as

 ml

 m

2  m /2  d

 P l

 l

( x) = (1 -  x )

 P( x), 

 m = , 

0 , 

1 , 

2 º,  l

 l

(11.35)

 d m

 l

 l

 l

 x

This can be shown as follows:

Differentiating the Legendre equation for  Pl( x) [Equation (11.21)] after

replacing  l by  l( l + 1),  ml times and then substituting (11.35) into it, we obtain the equation

L

O F

 d

 dPm

2

 l

 m

2

 l

(1 -  x )

 l

( + )

1 -

 p ml

 l  = 0

(11.36)

 dx

 dx

NMM

QPP +   l l

1 -

HG

I

2

 x  KJ

which is same as (11.20) with  l replaced by  l( l + 1). 

Now, according to (11.17),  ml can have negative values also. However, 

Equation (11.36) remains unchanged if  m

– m

 l is replaced by – ml. Therefore,  Pl

 l

must be equal to  P m

 l l, apart from a possible multiplicative constant. 
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Regarding the possible values of  ml, which is called the  magnetic quantum

 number for reasons which will be clear later, it may be noted that since  Pl( x) is a polynomial of degree  l, its | m

 ml

 l| th derivative, and hence  Pl ( x), will vanish

if | ml| >  l. Therefore, for a given  l, there are only (2 l + 1) possible values of ml:

 m

 l,  l

, 

1

, , 

0

,  l

, 

1  l

 l = -

- + º

º

-

(11.37)

Using (11.28) and (11.35) it can be shown that

 P m

 m

 l l(– x) =  (–1) l– ml   Pl l( x),  ml = 0, 1, 2, …,  l (11.38)

The associated Legendre functions satisfy the recurrence relations

(2 l + 1) x   Pm

 ml

 ml

 l l( x) =  ( l  –   ml + 1)   Pl+ ( x) + ( l +  m ( x) (11.39)

1

 l)   Pl-1

and

(2 l + 1) (1 –   x 2)1/2   Pml -1 ( x) =   Pml ( x)  –   Pml ( x) (11.40)

 l

 l+1

 l-1

and the orthogonality relations

+

z 1

2

( l +  m )! 

 P m

 ml

 l

 l l( x)   P

( x)   dx = 

 d

 l¢

 ll¢

(11.41)

-1

2 l + 1 ( l -  m )! 

 l

The first few associated Legendre functions are:

 P 1

2 1/2

( x) = 1

( -  x )

1

 P 1

2 1/2

( x) = 3 1

( -  x )

 x

2

 P 2

2

( x) = 3 1

( -  x )

2

3

(11.42)

 P 1

2 1/2

2

( x) =

1

( -  x )

(5 x - 1)

3

2

 P 2

2

( x) = 15 x  1

( -  x )

3

 P 3

2 3/2

( x) = 15 1

( -  x )

3

Coming back to the  q-equation (11.16), we may now assert that its

physically admissible solutions Q lm ( q), normalized so that

 l

 p

z Q* l¢ m( q) Q lm( q) sin q  dq =  dll¢

0

 l

 l

are given by

1/

L

2

2

1

U

(  l + ) ( l -  m )! 

Q

 ml

 l

 ml

( q ) = (- )

1

(cos q ), 

0

 lm

 P

 m

 l

 l

 l

2 ( l +

)! 

NM

OQP

≥ V| (11.43)

 l

 m

 ml

= (- )

1

Q

( q ), 

< 0

 l| m |

 l

 m

W||

 l

The choice of the phase factor is in conformity with the one most commonly

used in the literature. 
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11.5

SPHERICAL HARMONICS

Finally, using (11.14), (11.17) and (11.43) we obtain the common eigenfunctions

of the operators  L 2 and  Lz as

1/

L

2

 m

(2 l + )

1 ( l -  m ) ! 

 Y

 l

 l

( q,  f )

(- )

1

 Pml (cos  q )  eimlf

=

,  m

0

 lm

 l

 l

( . 

11 44)

 l

 p

4 ( l +  m ) ! 

NM

OQP

≥

 l

and

 Y

 ml

( q,  f ) = (- )

1

 Y *

( q,  f), 

 m £ 0

 lm

 l

( . 

11

)

45

,- m

 l

 l

 l

These functions are known as the  spherical harmonics. They satisfy the

orthonormality condition

z Y* l¢ m¢( q,  f)  Ylm( q,  f)  d W

 l

 l

2 p

 p

=  z  df z  Y* l¢ m¢( q,  f)  Ylm( q,  f) sin q  dq 0

0

 l

 l

=  dll¢  dm m ¢

(11.46)

 l l

where the integration is over the full range of the angular variables ( q,  f) and

 d W is the element of solid angle:  d W = sin q   dq  df. 

We have

 L 2  Y ( q,  f) =  l( l

2

+ 1)h  Y ( q,  f), 

 l = 0, 1, 2, º

( . 

11 47)

 lm

 lm

 l

 l

and

 L Y ( q,  f ) =  m  h  Y ( q,  f), 

| m | £  l

 z

 lm

 l

 lm

 l

( . 

11

)

48

 l

 l

The first few spherical harmonics are given in Table 11.1. 

Table 11.1

The First Few Spherical Harmonics

l

m l

Spherical Harmonic Ylm ( q,  f)

l

1

0

0

Y0,0 =  4 1 2

(

) /

 p

1 2

3

F

1

0

Y1,0 =  HG I

4 p  KJ /  cos q

1 2

F

±1

Y1,±1 =  m

3

HG I

8 p  KJ /  sin q e±i f

(11.49)

1 2

5

F

2

0

Y2,0 =  HG I

16 p  KJ /  (3 cos2 q – 1)

1 2

F

±1

Y2,±1 =  m 15

HG I

8 p  KJ /  sin q cos q  e±i f

1 2

15

F

±2

Y2,±2 =  HG

I

32 p  KJ /  sin2 q e±2i f

 " 
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Parity of Spherical Harmonics

Under the parity operation r Æ –r, the spherical polar coordinates transform as

 r Æ –  r,  q Æ   p  –   q,  f  Æ   f +  p

Thus, if P is the parity operator, then

P[ Ylm ( q,  f)] =   Ylm ( p  –  q,  f +  p) l

 l

Now, 

 P m

 m

 ml

 l l[cos( p  –   q)] =   Pl l(– cos q) = (–1) l– ml   Pl (cos q) using (11.38). Also, 

 eim ( f +  p)

 p

 f

 f

 l

=  eiml   eiml  = (–1) ml  eiml

Therefore, 

 P[ Y

+ m

 lm ( q,  f)] = (–1) l– ml

 l   Ylm  = (–1) l   Ylm

(11.50)

 l

 l

 l

Thus   Ylm  has the parity of  l, that is, even parity for even  l and odd parity for l

odd   l. 

11.6

EFFECT OF THE OPERATORS Lx  AND  Ly ON Ylml

The effect of  Lx and  Ly on the function  Ylm  can be conveniently studied by l

introducing the two operators

 L+ =  Lx +  i  Ly

(11.51a)

and

 L– =  Lx  –  i  Ly

(11.51b)

These are called the  raising and  lowering operators respectively. The

significance of these names will be clear shortly. 

Using (11.9) these operators can be written in spherical polar coordinates

as

L

∂

 L+ =  h  eif ∂ +  i  cot  q

(11.52a)

∂ q

∂

NM

O

 f  QP

L

∂

and

 L– =  – h  e– if ∂ -  i  cot

(11.52b)

∂ q

∂

NM

O

 f  QP

Now, we have

∂ [ Y ( q,  f)] =  im

( q,  f)

∂ f

 lm

 l   Ylm

 l

 l

To determine  ∂Y/ ∂q, we note that from (11.35) it can be shown that

 d Pml

 x

 l

1

 m

= 

 P m +1

 l

 m

 l l

– 

 Pl l

 dx

1

2 1 2

(

) /

-  x

1

 x  2

-
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( l +  m ) ( l -  m + )

1

 m x

=  –

 l

 l

 Pm –1

 l

 m

 l l

+ 

 Pl l

(1 - 2) /

1 2

 x

1

 x  2

-

Now, using (11.44), we can derive the relations

 L+   Ylm ( q,  f) =  h[ l( l + 1) –   ml( ml + 1)]1/2   Yl,  m +1( q,  f) (11.53a)

 l

 l

and

 L–   Ylm ( q,  f) =  h[ l( l + 1) –   ml( ml  – 1)]1/2   Yl,  m –1( q,  f) (11.53b)

 l

 l

We note that the effect of  L+ on  Ylm  is to generate a multiple of  Yl,  m +1; the l

 l

quantum number  ml  increases by one unit. Similarly, the effect of  L– decreases

the quantum number  ml by one unit. Hence the names raising and lowering

operators. Now, from (11.51), 

1

 Lx = 

( L+ +  L–)

(11.54a)

2

1

and

 Ly = 

( L+  –   L–)

(11.54b)

2 i

Using (11.54) and (11.53), the result of the action of  Lx and  Ly on  Ylm  can be l

immediately obtained. 

Let us now find the expectation values of  Lx and  Ly in the state  Ylm . Using l

the above equations we find

 L±

=  z  Y*lm  L±  Ylm  d W

 l

 l

=  [[ l( l + 1) –   ml( ml  ± 1)]1/2  z  Ylm  Yl,  m±1  d W

 l

 l

= 0

by orthonormality of the spherical harmonics. It immediately follows that

 Lx =   Ly  = 0

(11.55)

However, 

1

 L 2

2

2

 x

=   L

= 

 L 2  –   L

 y

 z

2

1

= 

[ l( l + 1) –   m 2 l] h2

(11.56)

2

11.7 VECTOR MODEL OF ANGULAR MOMENTUM:

SPACE QUANTIZATION

We can now summarize the behaviour of the quantum mechanical angular

momentum as follows. We find that the  x-and   y-components of the angular

momentum L are not zero, but their average values are always zero. Further, the

maximum value of the component of L on the  z-axis, which is  l h , is less than

 $
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the magnitude of L, which is

 l( l + )

1 h . These results can be conveniently

visualized in terms of a model which is called the  vector model of angular

momentum. 

According to this model, the orbital angular momentum vector L precesses

about the  z-axis such that its projection on the  z-axis is constant. This property is frequently called  space quantization. The magnitude of L is 

 l( l + )

1 h  and

its projection on the  z-axis is quantized, the possible values of  L

h

 z being  ml

, 

 ml = – l, – l + 1, …, 0,  l  – 1,  l, i.e., (2 l + 1) values in all. Thus, the vector L

lies on the surface of a cone of altitude  ml h  with the  z-axis as the axis of

symmetry (Figure 11.2). The possible orientations of L for  l = 2 are shown in

Figure 11.3. 

 z

 L L

 z

Figure 11.2

Precession of L about the z-axis. 

 ml = 2

 ml = 1

 l = 2

 ml = 0

 ml = –1

 ml = –2

Figure 11.3

Possible orientations of L for l = 2. 

This peculiar behaviour of the angular momentum in quantum mechanics

is in accordance with the uncertainty principle. If L were fixed in space so that

all the three components  Lx,  Ly and  Lz had definite values, then the particle would have to be in a definite plane at all times. This would violate the uncertainty

principle. For example, if L points permanently in the  z-direction, the electron

would be in the  xy plane all the time. Since its  z-coordinate gets fixed ( z = 0), the  z-component  pz of its momentum will have infinite uncertainty according to

the uncertainty principle, which is impossible. 
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11.8

THE RIGID ROTATOR

Consider a particle of mass  m, constrained to remain at a fixed distance  R from

a certain point, which we take as the origin of coordinates. The particle is

otherwise free. In other words, the particle is free to move on the surface of

a sphere whose centre is at the origin. This system is known as a  rigid rotator. 

Its Hamiltonian is given by

 L 2

 H = 

(11.57)

2  I

where   I =  mR 2 is the moment of inertia of the particle and  L is its angular momentum. The Schrödinger equation can be written as

 L 2  y( q,  f) =   Ey( q,  f)

2  I

or

 L 2 y( q,  f) =  2 IEy( q,  f)

This is the eigenvalue equation for the operator  L 2. We know that the

eigenfunctions of  L 2 are the spherical harmonics  Ylm ( q,  f) and its eigenvalues l

are  l( l + 1)[2, with  l = 0, 1, 2, … . Therefore, the  eigenfunctions of the rigid rotator are the spherical harmonics   Ylm ( q,  f) and the corresponding energy l

eigenvalues are

h2

 E

 l( l + 1), 

 l

º

 l =

= 0, 1, 2, 

(11.58)

 mR 2

2

It may be noted that the energy eigenvalues do not depend on the quantum

number   m. So, the energy level  El is (2 l + 1) fold  degenerate because all the eigenfunctions  Ylm ( q,  f) with  ml = – l, – l + 1, …, 0, …,  l – 1,  l correspond to l

the same energy. This degeneracy is a consequence of the fact that the

Hamiltonian (11.57) commutes with the operator L and is therefore invariant

under rotations. As such, all directions in space are equivalent and so the energy

cannot depend on the orientation of the vector L with respect to an arbitrary

axis, which is here the  z-axis. Hence  E must be independent of the quantum

number   ml. 

Equation (11.58) can be used to obtain the rotational energy levels of a

diatomic molecule. In first approximation, a diatomic molecule can be

considered as a rigid dumb-bell with the nuclei of the two atoms held at a fixed

distance. Figure 11.4 shows the schematic diagram of a diatomic molecule, 

having nuclei  A and  B at distances  RA and  RB from their centre of mass. The axis of rotation ( z-axis) is perpendicular to the line joining the two nuclei and

passes through the centre of mass  O. If  mA and  mB are the masses of the two nuclei, then the moment of inertia of the system is

 I =  m

2

2

 A   RA +  mB   RB  =  mR 2

 & 
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 z

 A R w

 A

 O

 RB

 B

 R

Figure 11.4

Rotation of a diatomic molecule. 

where  m =  mAmB/( mA +  mB) is the reduced mass of the system and  R =  RA +  RB

is the distance between the nuclei. 

The Hamiltonian of the system is

 L 2

 H =  2 I

and the energy eigenvalues are given by (11.58). 

SUMMARY

1. Orbital angular momentum is one of the fundamental constants of motion

of an isolated three-dimensional system. 

2. The orbital angular momentum operator in quantum mechanics is

L = – i h (r ¥  —)

It is most convenient to deal with the orbital angular momentum in

spherical polar coordinates. The operators corresponding to  Lx,  Ly,  Lz

and   L 2 in spherical coordinates are

F ∂

∂

 Lx =   i h sin  f

+ cot  q  cos  f

HG

I

∂ q

 f

∂ KJ

F

∂

∂

 Ly =  - i h cos  f

-

HG

I

cot  q  sin  f

∂ q

∂ f  KJ

∂

 Lz =  - i h ∂ f

F 1 ∂

∂

2

h2

F

1

∂

 L 2 =  -

sin  q

sin  q ∂

HG

I

 q  HG

I

∂ q  KJ +

2

sin  q ∂ 2

 f  KJ
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3. These operators satisfy the following commutation relations:

[ Lx,  Ly] =   i[ Lz

[ Ly,  Lz] =   i[ Lx

[ Lz,  Lx] =   i[ Ly

[ L 2,  Lx] = [ L 2,  Ly] =  [ L 2,  Lz] = 0

These relations show that it is possible to find simultaneous eigen-

functions of  L 2 and any one of  Lx,  Ly or  Lz. Due to its simplest

mathematical form  Lz is chosen. 

4. The eigenfunctions are found to be spherical harmonics given by

1/2

L(2 l + )1( l -  m)! 

 Y

 l

 m

 f

 lm ( q,  f) =  (– 1) ml

 Pl l(cos q)   eiml ,  ml  ≥  0

 l

4 p ( l +  m ) ! 

NM

OQP

 l

and

 Ylm ( q,  f) =  (–1) ml   Y* l,– m ( q,  f),  ml < 0

 l

 l

where   P m

 l l(cos q) are the associated Legendre functions.  Ylm  has the

 l

parity of  l. 

5. It is found that

 L 2   Ylm ( q,  f) =   l( l + 1) h2    Ylm ( q,  f), l

 l

and

 L

[

 z   Ylm ( q,  f) =   ml    Ylm ( q,  f), 

 l

 l

 l = 0, 1, 2, …; 

 ml =  – l,  – l + 1, ..0, …,  l  – 1,  l. 

 l is called the orbital angular momentum quantum number and  ml is called

the magnetic quantum number. 

6. Physically, the quantum mechanical angular momentum can be visualized

in terms of the vector model. According to this model, the orbital angular

momentum vector L precesses about the  z-axis such that its projection

on the  z-axis is constant and is quantized. This property is called space

quantization. The magnitude of L in state  Ylm  is   l( l + )

1 h  and the

 l

possible values of the projection  L

[

 z are the (2 l + 1) values of  ml . 

7. If a particle of mass  m is constrained to move at a fixed distance  R from the origin, its Hamiltonian is

 L 2

 H =   mR 2

2

Such a system, called a  rigid rotator, obviously has the spherical

harmonics   Ylm  as the eigenfunctions and the corresponding energy

 l

eigenvalues are

h2

 El = 

 l( l + 1), 

 l = 0, 1, 2, …

2

2 mR
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This equation can be used to obtain the rotational energy levels of a

diatomic molecule if  m is replaced by the reduced mass of the diatomic

molecule. 

QUESTIONS

1. Deduce the commutation relations for the components  Lx,  Ly,  Lz of the orbital angular momentum operator and show that all the three commute

with   L 2 =  L 2

2

 x +  Ly  +  L 2 z. 

2. Express the angular momentum operators  Lx,  Ly,  Lz and  L 2 in spherical polar coordinates. 

3. Obtain the eigenvalues and eigenfunctions of  L 2 and  Lz. 

4. What are spherical harmonics? Show that these are common eigen-

functions of  L 2 and  Lz. Discuss the parity of spherical harmonics. 

5. What are raising and lowering operators? Discuss their effect on the

spherical harmonics. If  L+ is the raising operator and  L– is the lowering

operator then show that

 L± = 0

Using the result show that

 Lx =   Ly  = 0

1

and

 L 2

2

2

 x

=   Ly

= 

[ l( l + 1) –   ml ] h2

2

6. Discuss the vector model of angular momentum. 

7. What is a rigid rotator? Write its Hamiltonian and obtain its eigenvalues

and eigenfunctions. 
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C h a p t e r

Spherically  Symmetric  Potentials

and Hydrogenic Atoms 12

Chapter  Contents

12.1

Separation of the Wave Equation into Radial and Angular Parts

12.2

Reduction of a Two-Body Problem to an Equivalent One-Body Problem

12.3

Hydrogenic Atoms

12.4

Effect of Magnetic Field on the Atomic Energy Levels: The Zeeman Effect

We shall now turn our attention to the study of the motion of a particle in a

potential  V( r) which depends only on the magnitude  r of the position vector r of the particle with respect to some origin. Such a potential is called a  spherically

 symmetric potential or a  central potential. This is one of the most important

problems in quantum mechanics and forms the starting point of the application

of quantum mechanics to the understanding of atomic and nuclear structure. 

12.1

SEPARATION OF THE WAVE EQUATION INTO RADIAL

AND ANGULAR PARTS

If   m is the mass of the particle then its Hamiltonian is

h2

 H = –

—2 +  V( r)

(12.1)

2 m

Since   V( r) is spherically symmetric, it is most convenient to use the

spherical polar coordinates defined in chapter 11 [see Equation (11.8) and

Figure 11.1]. Expressing the —2 operator in spherical polar coordinates†, the

Hamiltonian (12.1) becomes

† This can be found in any standard textbook on mathematical physics. 
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h2

2

L 1 ∂ ∂

1

∂

∂

1

F

F

∂

 H = –

2

 r

sin  q

+  V( r)

2

2

2

2

2

2

NM

O

HG IKJ + sin q q  HG

I q KJ+

 m r ∂ r

 r

∂

 r

∂

∂

 r  sin  q ∂ f  QP (12.2)

Recalling from chapter 11 that the representation of the square of the angular

momentum operator in spherical polar coordinates is given by

(see Equation 11.10)

L 1 ∂

∂

2

h2

F

1

∂

 L 2 =  -

sin  q

(12.3)

sin  q ∂

NM

O

 q  HG

I

∂ q  KJ +

2

sin  q ∂ 2

 f  QP

We may write

h2 L 1 ∂

2

2 ∂

F

 L

 H =  -

 r

+  V( r)

(12.4)

2

 m r ∂

NM

O

 r  HG

I

∂ r  KJ - h2 2

2

 r  QP

The time-independent Schrödinger equation for the particle can be written

as

 Hy(r) =  Ey(r)

(12.5)

L h2 R

2

1

2

 L

O

∂

∂

F

U

or

-

 r

 V( r)  y( r,  q,  f) =  Ey( r,  q,  f) m  S 2

2 2

2

 r

 r

V

 r ∂

NMM T HG I

∂ KJ - h  r  W +

QPP

1 ∂

∂

F  y  2 m

 L 2

or

2

 r

+ 

[ E  –   V( r)]   y( r,  q,  f) = 

 y( r,  q,  f) (12.6)

2

HG

IKJ

 r

 r

∂

∂ r

2

h

2  r 2

h

This equation can be solved by using the method of separation of variables. Let

us write

 y( r,  q,  f) =  R( r)   Y( q,  f) Substituting into (12.6), 

 Y ( q ,  f)  d

 dR

F

2 m

 R( r)

 r  2

HG IKJ  +  [ E –  V( r)]  R( r) Y( q,  f) =    L 2  Y( q,  f) r  2

 dr

 dr

2

h

h2 r 2

Dividing by  R( r) Y( q,  f)/ r 2, 

1  d  F 2  dR

2

2

 mr

1

 r

HG IKJ  + 

[ E  –   V( r)] = 

 L 2 Y( q,  f)

(12.7)

 R dr

 dr

2

h

2

h  Y

The left-hand side of this equation depends only on  r and the right-hand side

depends only on  q and  f. Therefore, both sides must be equal to a constant. 

Calling this constant  l, we obtain the  radial equation

1  d  F

L

 l

2  dR

2 m

 r

 E

{ -  V( r)} -

 R( r) = 0

(12.8)

2

HG IKJ  + 

 r dr

 dr

2

2

NM

O

h

 r  QP

and the  angular equation

 L 2 Y( q,  f) =  l h2 Y( q,  f)

(12.9)
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The Angular Equation

Equation (12.9) is an eigenvalue equation for the operator  L 2. We recall from

section 11.4 that physically acceptable solutions of this equation are obtained for

 l =  l( l + 1),  l = 0, 1, 2, …

(12.10)

Thus, the eigenvalues of  L 2 are  l( l + 1) h2,  l = 0, 1, 2, …. The corresponding eigenfunctions are the spherical harmonics  Ylm ( q,  f) defined in Equations l

(11.44) and (11.45). The spherical harmonics  Ylm ( q,  f) are also eigenfunctions l

of the  z-component of the angular momentum  Lz such that

 L

[

 zYlm ( q,  f) =  ml Ylm ( q,  f),  ml = –  l,  –  l + 1,…, 0,….,  l  – 1,  l (12.11)

 l

 l

It may be noted that so long as the potential is spherically symmetric, 

whatever be its precise form, the angular eigenfunctions are always the

spherical harmonics. 

The Radial Equation

Substituting (12.10) into (12.8), the radial equation becomes

L

 d  2  R

2  dR

2 m

 l( l

2

+ 1)h

+

+

 E -  V( r) -

 R( r) = 0

(12.12)

 dr 2

 r dr

2

 mr 2

2

NM

OQP

h

If we put

 R( r) =  u( r)/ r

then the equation for the  new radial function  u( r) is

L

 d  2 u

2 m

 l( l

2

+ 1)h

+

 E -  V( r) -

 u( r) = 0

(12.13)

 dr 2

2

2 mr  2

NM

OQP

h

This equation shows that the radial motion is similar to the one-dimensional

motion of a particle in the “effective” potential

 l( l + )

1 2

h

 V eff =  V( r) + 

(12.14)

2 mr  2

The additional term  l( l + 1)[2/2 mr 2 is due to the “centrifugal barrier” which is a consequence of the non-zero angular momentum. This can be understood as

follows: According to classical mechanics, if a particle has angular momentum

 L about an axis, then its angular velocity is

 L

 w =   mr 2

where  r is the distance of the particle from the axis. The “centrifugal force” on

the particle is

 L 2

 mrw 2 =   mr 3

  " 

Quantum Mechanics: A Textbook for Undergraduates

The corresponding “centrifugal potential energy” of the particle is  L 2/2 mr 2. 

Putting  L 2 =  l( l + 1)h2 gives the additional term in (12.14). This term tends to infinity as  r Æ 0. Thus, it acts as a repulsive core and prevents the system from

collapsing. Figure 12.1 shows typical shapes of the centrifugal barrier and the

effective potential when the particle is moving under the Coulomb force. 

Centrifugal

barrier

 l l( + 1) � 2

2 mr 2

 r

 V eff

 V r

( )

Figure 12.1

Shapes of the centrifugal barrier, effective potential and Coulomb

potential. 

In order to proceed further with the solution of the radial equation, we must

know the precise form of the potential  V( r). In what follows we shall solve the

radial equation for a hydrogenic atom, which consists of a nucleus and an

electron interacting via the attractive Coulomb force which depends on the

magnitude of the distance between the two. In the next section, we shall show

that for a two-body system, if the potential energy depends only on the

coordinates of one particle relative to the other, then the problem can be reduced

to an equivalent one-body problem along with a uniform translational motion of

the centre of mass of the two-body system. In section 12.3 we shall solve the

equivalent one-body radial equation for a hydrogenic atom. 

12.2 REDUCTION OF A TWO-BODY PROBLEM TO

AN EQUIVALENT ONE-BODY PROBLEM

Consider two particles, of masses  m 1 and  m 2, interacting via a potential  V(r1 – r2) which depends only upon the relative coordinate r1 – r2. The time-independent

Schrödinger equation for the system is

L h2

2

2

h

-

— -

—2 +  V(r -

NM

O

r ) Y

r

r

1

2

(r1, r2) =  E  Y(r1, r2)

(12.15)

2

1

2

2

 m

 m

1

2

QP
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where   E is the total energy of the system. Let us now introduce the  relative

 coordinate

r =  r1  – r2

(12.16)

and the  centre-of-mass coordinate

 m r +  m r

 R = 

1 1

2

2

(12.17)

 m +  m

1

2

A simple calculation will show that

h2

2

h2

h2

2

h

-

— -

—2 =  -

—2   – 

2

—

(12.18)

2

r

r

r

1

2

2

 m

 m

2  M

R

2 m

1

2

where

 M =   m 1 +  m 2

(12.19)

 m m

and

 m = 

1

2

(12.20)

 m +  m

1

2

The quantity  m is called the  reduced mass of the two-particle system. The

Schrödinger Equation (12.15) becomes

L h2

2

2

h

-

— -

—2 +

NM

O

 V(r) Y(R, r) =  E  Y(R, r)

(12.21)

2 M

R

2 m

r

QP

Now, since the potential  V(r) depends only on the relative coordinate, the

wave function Y(R, r) can be written as a product of functions of R and r: Y(R, r) = F(R)   y(r)

(12.22)

Substituting into (12.21) it can be easily shown that the functions F(R) and

 y(r) satisfy, respectively, the equations

h2

-

—2RF(R) =   ERF(R)

(12.23)

2  M

and

L h2

-

—2 +

NM

O

 V(r)  y(r) =   Er y(r)

(12.24)

2 m

r

QP

Equation (12.23) describes the motion of the centre of mass. It says that

the centre of mass moves as a free particle of mass  M and energy  ER. 

Equation (12.24) describes the relative motion of the particles. It says that the

relative motion is same as that of a particle of mass  m moving in the potential

 V(r). Clearly

 E =  ER +  Er

(12.25)

In a physical problem, we are mainly interested in the eigenvalues and

eigenvectors connected with the relative motion. Therefore, we shall be

concerned only with the solution of Equation (12.24). Thus, by separating the

centre-of-mass motion, the solution of the problem gets considerably simplified. 

  $
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12.3

HYDROGENIC ATOMS

Let us consider a one-electron atom having atomic number  Z. We know that

 Z = 1 for the hydrogen atom (H),  Z = 2 for the singly ionized helium atom (He+), 

 Z = 3 for the doubly ionized lithium atom (L++

i ), and so on. Such atoms are called

hydrogenic atoms or hydrogen-like atoms. The charge on the nucleus is  Ze and

that on the electron is –  e. The potential energy due to the attractive Coulomb

interaction between them is

 Ze 2

 V( r) =  -

(12.26)

4 pe r

0

which depends only on the distance  r between the nucleus and the electron and

hence is spherically symmetric. 

If  m is the mass of the electron and  M is the mass of the nucleus, then the

reduced mass of the system is

 mM

 m = 

(12.27)

 m +  M

Since the nuclear mass  M is much larger than the electron mass  m, the reduced

mass  m is very close to  m. Therefore, henceforth we shall replace  m by  m. That is, we shall consider the nucleus to be stationary. The correction for the nuclear

mass is then simply a matter of replacing  m by  m. 

The radial Equation (12.12) becomes

 d  2  R

2  dR

2 m  L

 Ze 2

 l( l

2

+ 1)h

+

+

 E +

-

 R( r) = 0

(12.28)

 dr 2

 r dr

2

h

4 p e r

2 mr  2

NM

OQP

0

Since we are interested only in the energies associated with the relative motion, 

we may assume that we are working in the centre-of-mass system, so that  ER

= 0 and the total energy  E is equal to the energy  Er of relative motion. Further, 

we shall be interested only in the bound state solutions and therefore, we shall

consider   E < 0. 

In order to solve (12.28), it is convenient to introduce the dimensionless

variable   r and the dimensionless constant  l defined by

F

1/2

8 mE

 r =  -

HG

I  r

(12.29)

2

h KJ

and

F

1/2

 Ze 2

-  m  1/2

F

-  mc 2

 l = 

H IK  =  Za

(12.30)

4 pe  h 2 E

HG

I

2  E  KJ

0

where   a =  e 2/(4 p e [

0  c)  ª 1/137 is the well known fine-structure constant. In

terms of  r and  l, Equation (12.28) becomes

L

 d  2  R

2  dR

 l

1

 l( l + 1)

+

+

-

-

 R( r) = 0

(12.31)

 d  2

 r

 r d

2

 r

 r

4

 r

NM

OQP
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In order to solve this equation, we first examine the asymptotic behaviour

of   R( r). We note that as  r  Æ  •, Equation (12.31) reduces to

 d  2  R

1

-

 R( r) = 0

(12.32)

 d  2

 r

4

The solutions of this equation are proportional to exp (±  r/2). Out of these only

exp (– r/2) is acceptable because exp ( r/2) becomes unbounded as  r Æ •. This suggests that the exact solution of (12.31) must be of the form

 R ( r) =   e– r/2 F( r)

(12.33)

Substitution into (12.31) gives the equation for  F( r) as

 d  2  F

 dF

 r 2

+  r(2  –   r) 

+ [( l  – 1)  r  –   l( l + 1)]  F( r) = 0 (12.34)

 d  2

 r

 dr

When  r = 0, this equation yields

 l( l + 1)  F(0) = 0

or

 F (0) = 0

for

 l  π 0

(12.35)

This shows that a power series solution for  F( r) cannot contain a constant

term. Therefore, we try a series solution of the form

•

 F( r) =  Â  ak  rs+ k

(12.36)

 k =0

Substituting into (12.34) and simplifying, we obtain

•

•

Â  ak[( s +  k)( s +  k + 1) –  l( l + 1)] rk – Â  ak[ s +  k + 1 –  l] rk+1 = 0

 k =0

 k =0

(12.37)

For this equation to be valid, the coefficient of each power of  r must vanish. 

Equating the coefficient of  r 0 to zero gives

 s( s + 1) –   l( l + 1) = 0

or

( s  –  l) ( s +  l + 1) = 0

Thus, 

 s =  l

or

 s =  – ( l + 1)

(12.38)

If we take  s = –( l + 1), then the first term in the expansion (12.36) would be

 a 0/ rl+1, which tends to infinity as  r  Æ 0. Therefore, the acceptable value is s =  l. Now, setting the coefficient of  r k+1 in (12.37) equal to zero, we obtain ak+1[( s +  k + 1)( s +  k + 2) –   l( l + 1)] –   ak( s +  k + 1 –   l) = 0

Putting  s =  l and rearranging, we obtain the  recurrence relation

 k +  l + 1 -  l

 ak+1 = 

 ak

(12.39)

( k + 1) ( k + 2 l + 2)

  & 
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This relation determines the coefficients  a 1,  a 2,  a 3,… in terms of  a 0 which can be arbitrary. In order to infer the behaviour of the series (12.36) for large values

of   k, we note that

 a

1

lim

 k +1  = 

 k Æ•

 a

 k

 k

This is similar to the asymptotic behaviour of the expansion of the function

exp ( r) as shown below. We have

•

 er =  Â  ck  rk

 k =0

where

1

 ck =   k! 

Therefore, 

 ck+

 k ! 

1

1

= 

= 

 c

+

 k

( k

)

1 ! 

 k + 1

 c

1

So, 

lim

 k+1 = 

 kÆ•

 c

 k

 k

Thus, if the series (12.36) does not terminate, then  F ( r) will behave as

exp ( r) and so, according to (12.33),  R( r) will behave as exp ( r/2), which diverges as  r  Æ  •. Since this is not acceptable, the series must terminate at

some value of  k, say  nr. This can be possible if we require that  l be equal to a positive integer  n such that

 l =  n =  n +  l +

 r

1

(12.40)

In that case  ak+1, and hence all higher coefficients, will be zero. Since both  nr

and  l can be positive integers or zero, it is clear that  n can have only positive

integral values.  nr is called the  radial quantum number and  n the  principal quantum number. Note that for a given  n the allowed values of  l are 1, 2, …, n  – 1. 

Energy Eigenvalues

Equations (12.30) and (12.40) give the bound-state energy eigenvalues

2

 m  F  Ze 2

1

 E

-

 n =

2 2

h

4 p e

 n

HG I 2

0 KJ

(12.41)

1

2

2 (  Za )

= -

 mc

, 

 n = 1, 2, 3, ... 

2

 n 2

This formula agrees exactly with the one obtained from the Bohr model

(see Equation 3.17, section 3.3.), which was based on ad-hoc assumptions. 
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It was the most important early success of Schrödinger’s theory because it

could reproduce Bohr’s formula from a general equation of motion. As

discussed in chapter 3, the calculations based on this formula explain the main

features of the experimental spectrum of hydrogen. However, the agreement is

not perfect and various corrections, especially for the fine structure arising from

the relativistic effects and the electron spin, must be taken into account to obtain

detailed agreement with the experiment. 

It may be noted that  n may take all integral values from 1 to •. As such, 

the bound-state energy spectrum of a system held by the Coulomb force

contains an  infinite number of discrete energy levels. This is because the

magnitude of the Coulomb potential decreases slowly at larger  r. On the other

hand, short-range forces have a finite number of bound states. 

Degeneracy

Another very important point to note is that the energy eigenvalues depend only

the principal quantum number  n. There is no dependence on  l and  ml. On the other hand, the eigenfunctions for a hydrogenic atom are determined by the

values of three quantum numbers  n,  l and  ml. So for each energy level  En given by (12.41) there are more than one distinct state which have the same energy. 

This phenomenon is called degeneracy. The Bohr model was extremely

inadequate because it did not account for degeneracy, which has important

consequences as we shall see later. 

The degeneracy with respect to the quantum number  ml is present for all

spherically symmetric potentials. The degeneracy with respect to the quantum

number   l is characteristic of the 1/ r Coulomb potential—it is removed if the

potential function is even slightly modified. This happens in atoms more

complex than hydrogen. 

Let us find the total degeneracy of the energy level  En. For a given value of

 n, the quantum number  l may take any of the values 0, 1, …,  n – 1. For each value of  l, the quantum number  ml may take any of the (2 l + 1) possible values

– l, – l + 1, …, 0, …,  l – 1,  l. The total degeneracy of the level is therefore given by

 n

Â

 n ( n - )

1

(2 l + 1) = 2

+  n =  n 2

(12.42)

2

 l =0

It is important to mention here that there is yet another property that

increases the degeneracy further. Electrons (also protons and neutrons) have an

intrinsic angular momentum called  spin, that makes them fall in two possible

states but the energy of the hydrogen atom is independent of these states. As

a result, the degeneracy of the atom is 2 n 2, not  n 2. We shall discuss spin in detail in the next chapter. 

Figure 12.2 shows schematically the energy levels of hydrogen atom. The

degenerate energy levels with the same  n but different  l are shown separately. 

 !
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These levels are labelled by two symbols according to the standard spectroscopic

notation. The first is a number which represents the principal quantum number

 n; the second is a letter which indicates the value of the orbital angular

momentum quantum number  l according to the following scheme:

Value of  l

0

1

2

3

4

5... 

Letter

 s

 p

 d

 f

 g

 h... 

and so on alphabetically. The choice of the letters  s,  p,  d and  f originated during the initial period of the development of spectroscopy and has no physical significance. 

According to this notation, the ground state ( n = 1,  l = 0) is a 1 s state, the first excited state ( n = 2,  l = 0, 1) is four-fold degenerate, having one 2 s state and three 2 p states with  ml = –1, 0, +1, and so on, as shown in the figure. All

the  ml-states corresponding to a particular value of  l are drawn slightly apart to show their multiplicity, but they are degenerate. 

(4 f )
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(4 )

 d
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 m
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|
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S|

|

|
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 n = 4

0

|
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 l = 1

T|
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T|
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(3 p)
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R
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S|
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|T|
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T|
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S|
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(1 )

 s

 n = 1

 l = 0

Figure 12.2

Schematic energy level diagram of hydrogen atom. The spacing

between the non-degenerate levels is not to scale. 
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Radial Eigenfunctions

Let us now come back to the solution of (12.34). The above discussion

suggests that we seek a solution of the form

 F( r) =  rlL( r)

(12.43)

where  L( r) is a polynomial. Substituting in (12.34) and putting  l =  n gives the differential equation satisfied by  L( r) as

 d  2  L

 dL

 r

+ (2 l + 2 –   r)

+ ( n  –   l  – 1)  L( r) = 0

(12.44)

 d  2

 r

 dr

The physically acceptable solutions of this equation may be expressed in

terms of  associated Laguerre polynomials. To see this we first define the

 Laguerre   polynomials  Lq( r) in terms of a generating function  U( r,  s): exp[-  rs/(1 - )]

 s

•

 L ( r)

 q

 U( r,  s) = 

=  Â

 sq, | s|<|

(12.45)

1 -  s

 q ! 

 q =0

Differentiating in turn with respect to  s and  r yields the recurrence formulae

 Lq+1( r)  –  ( r  – 1 –  2 q)   Lq( r) +  q 2   Lq–1( r) = 0

(12.46)

and

 d

 d

 Lq( r)  –   q

 Lq–1( r) +  q   Lq–1( r) = 0

(12.47)

 dr

 dr

It can be easily seen that the lowest order differential equation involving only

 Lq( r) that can be constructed from (12.46) and (12.47) is

 d  2

 dL

 r

 q

 Lq + (1 –   r)

+  qLq( r) = 0

(12.48)

 d  2

 r

 dr

We now define the  associated Laguerre polynomial as

 d p

 Lpq( r) = 

 Lq( r)

(12.49)

 d p

 r

Differentiating (12.48)  p times, we can show that  Lpq( r) satisfies the differential equation

 d  2  Lp

 dLp

 r

 q

 q

+ (  p + 1 –   r)

+ ( q  –   p) L pq ( r) = 0

(12.50)

 d  2

 r

 dr

Comparing (12.50) with (12.44) we see that the physically acceptable solutions

of (12.44) are the associated Laguerre polynomials   L 2 l+1

 n+ l ( r). Note

that the order of   L 2 l+1

 n+ l  is ( n +  l)  – (2 l + 1) =  n  –   l  – 1 =  nr, as required (see Equation 12.40). 

The generating function for the associated Laguerre polynomials can be

obtained by differentiating (12.45)  p times with respect to  r:

 ! 
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(- )

1  p  exp [-  s

 r /(1 - )

 s ]

 Up( r,  s) = 

(1 - )  p+1

 s

•

 p( r)

 q

 L

=  Â

 sq, | s|<1

(12.51)

 q ! 

 q =  p

The explicit expression for   L 2 l+1

 n+ l ( r) is found to be

 n- l-1

[( n

 l)!]2

 k

+

 r

 L 2 l+1

 n+ l ( r) =  Â (–1) k+1

(12.52)

( n -  l - 1 -  k )! (2 l + 1 +  k )!  k ! 

 k =0

This can be verified by substituting into (12.51) with  q =  n +  l and  p = 2 l + 1. 

Combining (12.33) and (12.43) we may write the full radial eigenfunction as

 R

2 l+1

 nl( r) =   Ne– r/2 rl Ln+ l ( r)

(12.53)

where  N is the normalization constant and

-

F

1/2

F

8 mE

2

2

 Z me

F 2 Z

 r =  HG

 n  I

 r = 

2

h

KJ

 n(4

2

HG

I

 p e )h KJ  r =   na

HG IKJ  r

(12.54)

0

0

 a 0 being the radius of the first Bohr orbit for hydrogen:

 a 0 = (4 pe 0)[2/ me 2

The constant  N is determined by requiring that

•

z Ω Rnl ( r)Ω2  r 2  dr = 1

0

3

F

•

or

 N 2  na 0

HG I z  e– r  r 2 l [ L 2 l+1 n+ l( r)]2 r 2 dr = 1

2 KJ

 Z

0

The integral can be evaluated by using the generating function (12.51). It is

found that the value of the integral is

2

3

 n[( n +  l) !]

( n -  l - 1) ! 

This gives

/

FR

1 2

3

2

1

U

 Z

( n

 l

) ! 

 R ( r) = -

 e r/2  l

 r L 2 l

S|

1  r

(12.55)

3 V

|

+

 nl

 n l (

)

 na


HG I0KJ - -

2 n[( n +  l) !]

T|

W| -

+

The  complete normalized energy eigenfunctions for the hydrogenic

atoms are, therefore, 

 y

( r,  q,  f) =  R ( r)  Y

 q

( ,  f )

 nlm

 nl

 lm

 l

 l

 n = , 

1 2, , 

3 ...;  l = 0, 1, 2, ...,  n - 1

(12.56)

= - , - + , 

1 ..., , 

0 ..., - , 

1

 l

 m

 l

 l

 l

 l
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The first three radial eigenfunctions are:

3/2

F  Z

F  Zr

 R = 2
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-
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0
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(12.57)
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HG IKJ FHG IKJ -HG IKJ

0

0

0

Figure 12.3 shows the graph of these three radial functions. It may be noted

that only for the  s-states ( l = 0) are the radial functions different from zero at r = 0. This is due to the presence of the factor  r l in the expression for  Rnl. 
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Figure 12.3

Radial functions R10(r), R20(r) and R21(r) for hydrogen atom. The unit

of length is a0. 

The complete eigenfunctions for the lowest few states are:
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HG IKJ

|

0

0

5/ 2

±

|

1

F  Z

F  Zr

 y ±

|

=

 r  exp

(sin  q
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)  e i

21 1

1/ 2

8 p

 a
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|
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PROBLEM 12.1

Obtain the average distance of the electron from the

nucleus for the ground state of a hydrogenic atom. 

 Solution:

If a state is described by the wave function  ynlm ( r,  q,  f), then the l

expectation value of any function of position,  f ( r,  q,  f), is

 f ( r,  q,  f) =  z  y* nlm  f( r,  q,  f)  y* nlm  dr l

 l

where

 dr =  r 2   dr sin q  dq   df

Here

 f ( r,  q,  f) =  r

 ynlm ( r,  q,  f) =   Rnl( r)   Ylm ( q,  f) l

 l

Thus, 

•

2 p p

L | Y ( , )| sin  d d  O

 r  =  z | R

2

 nl|2   r 3   dr

 q f

 q q f

NMz z  lml

QP

0

0

0

Since the spherical harmonics  Ylm  are normalized, the value of the angular

 l

integral is unity. 

 This shows that for finding the expectation value of a quantity which

 depends only on r, we need consider only the radial function Rnl(r). 

For the ground state,  n = 1,  l = 0. So, 

•

 r =  z | R 10( r)|2  r 3  dr

0

Now, 

3 2

F  Z

F- Zr

 R 10 = 2  a

HG IKJ /  exp HG I

 a 0 KJ

0

Therefore, 

4 3

 Z

•

F-2 Zr

 r = 

z exp   r 3  dr

3

0

 a

HG I

 a 0 KJ

0

Using the standard integral

•

z

 n ! 

 rn  e– ardr = 

, 

+

0

 a n  1

we obtain

3 a

 r = 

0

2 Z

Note that larger the value of  Z, smaller is the value of   r . This is expected

because higher the charge on the nucleus, more is the inward pull on the

electron. 

PROBLEM 12.2

Calculate the most probable distance of the electron in the

ground state of a hydrogenic atom. What is the radial probability density at that

distance? 
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 Solution:

Radial probability density

 Pnl( r) =  r 2  | Rnl( r)|2

For the ground state

2

3/2

F

F

 Z

 Zr

 P 10( r) =  2

exp

 r 2

 a

 a

HG IKJ

-

HG IKJ

0

0

4 3

 Z

F-2 Zr

= 

 r 2 exp 

3

 a

HG I

 a 0 KJ

0

 P 10( r) will be maximum when

 dP 10 = 0

 dr

F-2 Z

F-2 Zr

F-2 Zr

or

HG I  r 2 exp 

+ 2 r exp 

= 0

 a

HG I

 a

HG I

 a 0 KJ

0

KJ

0

KJ

 a

or

 r = 

0

 Z

This is the required most probable distance. The maximum value of the radial

probability density is

2

4 3

 Z

 a

F

F-2 Z a

( P

0

0

10)max = 

3 HG IKJ  exp 

 a

 Z

HG

I

 a

 Z

0

KJ

0

4 Z

= 

2

 e -

 a 0

PROBLEM 12.3

Calculate  1/  r  for an electron in the ground state of a

hydrogenic atom and use the result to calculate (a) the average potential energy

and (b) the average kinetic energy. 

1

•

1

 Solution:

=  z | R 10( r)|2    r 2 dr

 r

0

 r

4 3

 Z

•

F-2 Zr

 Z

= 

z  r exp   dr = 

3

0

 a

HG I

 a

 a

0

KJ

0

0

-  Ze 2

 Ze 2

1

(a) Average potential energy   V( r) = 

=  -

4 p e r

4 p e

 r

0

0

 Z  2 e 2

=  - 4 pe a

0

0

 Z  2 e 2 F  me 2

=  -

2

4 p e

4 p e  h

0 HG

I

0

KJ

 !$
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 m  F  Ze 2

=  -

= –  mc 2   Z 2 a  2

h2 HG

I

4 pe  0 KJ

(b) Average kinetic energy

 K

=   E  –   V( r)

2

2

 m  F  Ze 2

L  m Ze 2 O

-

F

2

M 2

P

=  - 2h HG

I

4 pe

h

 pe

0 KJ - NM

HG I

4

0 KJ QP

2

F

 m

 Ze 2

 mc 2  Z  2 2

 a

=  2 2

h

4 pe

HG IKJ  =  2

0

We note that

1

 K  = –

 V( r)

2

This result is the quantum mechanical equivalent of the classical “virial

theorem”. It is true not only for the ground state, but for all bound states of

hydrogenic atoms. 

PROBLEM 12.4

The ground-state wave function for hydrogen is

1

 y( r) = 

 e– r/ a 0

3

 p a 0

Calculate the probability of finding the electron at a distance (a) less than  a 0

from the nucleus, (b) between  a 0/2 and 2 a 0 from the nucleus. 

 a 0

 Solution:

(a) Required probability  P

z

1 = 

| y( r)|2  4 p   r 2 dr

0

The factor 4 p is the value of the integral over the angular variables:

2 p

z  pdf zsin q  dq = 4 p

0

0

Thus

4

0

 a

 P

z

1 = 

 r 2   e–2 r/ a 0 dr

3

 a

0

0

We know from the table of indefinite integrals

z

F  a r 2  a 2 r a 3

 r 2  e–2 r/ a 0 dr =  - 0

- 0 -

HG

0 I    e–2 r/ a 0

2

2

4 KJ

Taking the limits from 0 to  a 0, 

L

 a

3

-2

3

3

0

z

- 5 a e

 a

 a

 r 2   e–2 r/ a 0 dr = 

0

+ 0  =  0 (1  –  5 e–2)

0

NM

O

4

4 QP

4
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Hence

 P 1 = 1 – 5 e–2 =  0 323

. 

4

2 a 0

(b) Required probability  P

z

2 = 

 r 2   e–2 r/ a 0   dr

3

 a

 a /2

0

0

5

= 

 e–1  – 13 e–4

2

=  0 682

. 

12.4

EFFECT OF MAGNETIC FIELD ON THE ATOMIC

ENERGY LEVELS: THE ZEEMAN EFFECT

The Zeeman effect is the  splitting of atomic energy levels and,   consequently, 

 the associated spectral lines when the atoms are placed in a magnetic field.  This

effect provides a strong experimental confirmation of the quantization of angular

momentum and also tells why  ml is called the magnetic quantum number. 

Michael Faraday had suggested, towards the middle of the nineteenth century, 

that the spectrum of a light source would change if it is placed in a strong

magnetic field. However, he was unable to observe any effect because the

spectroscopes of his days did not have sufficient resolving power. In 1896, 

Peter Zeeman repeated the experiment with equipment of high resolving power. 

He found that many spectral lines were split into groups of closely spaced lines. 

H.A. Lorentz developed a theory to explain this effect. Zeeman and Lorentz were

jointly awarded the 1902 Nobel Prize in physics. 

Lorentz’s explanation of the splitting of lines was based on classical

physics. We shall not discuss it. According to this theory, a spectral line must

split into  three components—one of these has the same frequency as the original

line and the other two have frequencies higher and lower than the original

frequency by the same amount. This is indeed observed in the spectra of some

elements under certain conditions and is called the normal Zeeman effect. 

However, in most of the cases a line is split into more than three components

and even when only three components are present, there spacing does not

always agree with the prediction of the classical theory. Due to this reason it was

called the anomalous Zeeman effect.  The name still persists even though there

is nothing “anomalous” about it now. 

A complete understanding of the Zeeman effect could be possible quantum

mechanically only after the concept of electron spin was introduced by

Goudsmidt and Uhlenbeck in 1925. In fact, explanation of anomalous Zeeman

effect was one of the reasons for the introduction of electron spin. However, 

the normal Zeeman effect can be explained if we ignore spin and consider only

the orbital motion of the electron. We shall do so in this section. We must first

understand how an orbiting electron has properties that cause it to be affected

by a magnetic field. 

 !& 
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Magnetic Moment of an Orbiting Electron

An orbiting electron is equivalent to a current loop and, therefore, it behaves as

a magnetic dipole. The magnetic moment of a current loop is given by

m =  IA

(12.59)

where  I is the current flowing through the loop and A is the vector area enclosed

by the loop. The direction of A is perpendicular to the loop and is given by the

usual right-hand rule. The current  I is the rate at which charge flows past a point

and so is equal to  e/ T, where  T is the time period of revolution and  e is the electronic charge. If  v is the speed of the electron and  r is the radius of the orbit, then   T = 2 pr/ v and  A =  pr 2. Thus, the magnetic moment has the magnitude ev

1

 m = 

 pr 2 = 

 evr

2 p r

2

We can express this in terms of the magnitude of the angular momentum

which is  L =  mvr. We obtain

 e

 m = 

 L

(12.60)

2 m

Since the direction of vector L is same as the direction of vector A and the

charge on the electron is negative, the direction of m is opposite to that of L. 

Thus, in vector notation

F  e

m = - H I L (Orbital magnetic moment of electron) (12.61)

2 m  K

The ratio of the magnitude of m to that of L is

 m

 e

=

(12.62)

 L

2 m

and is called the  gyromagnetic ratio. 

Expression (12.61) has been obtained using classical physics. However, it

remains true in quantum mechanics. Though the concept of orbit is not valid

in quantum mechanics, a quantum state does indeed have an angular

momentum. 

According to Bohr’s theory,  L =  n h , where  n = 1, 2, 3, …. For the ground state,  n = 1 and so (12.60) becomes  m = ( e/2 m) h. Though Bohr’s theory is not correct, this quantity serves as a convenient unit for magnetic moment. It is

called the Bohr magneton,  denoted by  m B:

 e h

 m =

(Bohr magneton)

(12.63)

B

2 m

Its numerical value is

 m B = 9.274 ¥ 10–24 J/T or A◊m2
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Effect of External Magnetic Field: Splitting of Energy

Levels

It is well known that when a magnetic dipole of moment m is placed in a

magnetic field B, it experiences a torque t = m ¥ B. The potential energy of the

dipole in the field is given by

 U = – m

m◊B

(12.64)

Now, suppose a hydrogen atom is placed in a magnetic field B. Since the

electron in an orbit acts as a magnetic dipole of dipole moment given by (12.61), 

its potential energy in the field would be

 e

F

 U =  HG IKJ B◊L

(12.65)

 m

2

Let the magnetic field be directed along the  z-axis. Then

 e

 U = 

 B Lz

(12.66)

2 m

This potential energy must be substituted into the Schrödinger equation

alongside the potential energy due to the Coulomb force. However, we know

that the angular part of the wave function,  Ylm ( q,  f), is an eigenfunction of the l

operator   L

h

 z with eigenvalue  ml

. Therefore, the energy of the electron in the

magnetic field is

 e h

 E¢ =   En + 

 Bml

2 m

 ml =   l,  l  – 1, …, 0, …,  –  l + 1, –  l

(12.67)

where  En is given by (12.41). Thus, the change in the energy of a particular

( n,  l) state due to the presence of the magnetic field is

 e

F h

D E =  m

 B =  m

 B

 l

 l

 B

HG IKJ

 m

(12.68)

2 m

Note that the magnetic interaction energy depends on the value of  ml. The

reason is that  ml determines the orientation of the magnetic moment vector m

with respect to the magnetic field B. This explains why  ml is called the magnetic

quantum number. 

Since there are (2 l + 1) values of  ml for a given value of  l, an energy level with a particular  l contains (2 l + 1) different orbital states. When no magnetic

field is present, all these states have the same energy; that is, they are

degenerate. In the presence of a magnetic field this degeneracy is removed and

each  l level is split into (2 l + 1) distinct energy levels. The adjacent levels differ in energy by  mB  B. We have already shown this splitting in Figure 12.2. The

splitting is very small even for fairly high magnetic fields because  mB is very

small. To get an estimate let  B = 2 T. Then

 mB   B = 9.274 ¥ 10–24  ¥ 2 J

 "

Quantum Mechanics: A Textbook for Undergraduates

9 274

. 

¥ 2 ¥ 10-24

= 

eV

1 6

. ¥ 10 19

-

= 1.16 ¥ 10–4 eV

This is very small compared to the atomic energy levels which have energies

of the order of a few electron-volts. Because of the splitting of the energy levels, 

there is a consequent splitting of the spectral lines as we shall see below. But

before that we mention the  selection rules that govern the possible transitions. 

Selection Rules

It can be shown by quantum mechanical calculations that not all combinations

of final and initial levels are possible. Only those atomic transitions can take

place in which the orbital quantum number  l changes by ±1 and the magnetic

quantum number  ml does not change or changes by ±1. That is, the selection

rules for allowed transitions are:

D l = ± 1

(

. 

12 69)

(Selection rules)

D m = 0, ±1

 l

(

. 

12 70)

There is no restriction on the changes in the principal quantum number  n. 

Transitions which do not obey these rules are called forbidden transitions. 

Some forbidden transitions do occur but their probability is very small — the

intensities of the corresponding spectral lines are about 104 times smaller than

those of the lines given by allowed transitions. 

The selection rules can be justified physically by invoking the conservation

of angular momentum because the photon ordinarily carries one unit (h ) of

angular momentum. 

Splitting of Spectral Lines

It is clear from Figure 12.2 that the 1 s state of hydrogen, for which  l = 0, will

not split, while the 2 p state, for which  l = 1, will split into three, with  ml = +1, 0, –1. The transitions from the three  l = 1 states to a single  l = 0 state will give radiation of three different frequencies. This is shown in Figure 12.4. All the

transitions are allowed by the selection rules. Figure 12.4(a) shows the single

line which is emitted when no magnetic field is applied. Figure 12.4(b) shows

the three lines which appear when the field is applied. The frequency of one of

the lines is equal to the original frequency  n 0. The frequencies of the other two

lines are  n 0  – D n and  n 0 + D n where the frequency shift D n is m

 e

F h  B eB

D n =

 B B =

=

H IK

(Frequency shift)

(12.71)

 h

2 m

 h

4 p m
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 ml

+1

2 p

0

–1

1 s

 ml = 0

 n

 n

0

0–D n n

 n

0

0+D n

(a) No magnetic field

(b) Magnetic field applied

Figure 12.4

Splitting of the spectral line in the 2p  Æ  1s transition. 

Let us now consider the 3 d  Æ  2 p transition. The 3 d state, for which

 l = 2, will split into five states corresponding to  ml = +2, +1, 0, –1,  –2. The

transitions which are allowed by the selection rules are shown in Figure 12.5. 

It is seen that there are nine possible transitions. However, there are only three

frequencies  n 0 – D n,  n 0 and  n 0 + D n, where D n  is given by (12.71). Thus the 3 d Æ 2 p line is also split into three lines only. 

 ml

+2

+1

3 d

0

–1

–2

+1

2 p

0

 n 0

–1

R | | S | | T

R | | S | | T

R | | S | | T

D ml = –1

D ml = 0

D ml = +1

 n

 n

D

0 –

 n 0

 n

 n

D

0 +

Figure 12.5

Splitting of the 3d  Æ  2p spectral line. 

It is in general true for all atoms that if only the orbital angular momentum

is considered then each line is split into three equispaced components. This is

called the  normal Zeeman effect. 

 " 
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SUMMARY

1. A potential  V( r) which depends only on the radial coordinate  r and is independent of the angular variables  q,  f is called a spherically symmetric

potential or a central potential. 

2. For a spherically symmetric potential, the wave function  y( r,  q,  f) can be written as a product of two functions; a radial function  R( r) and an

angular function  Y( q,  f):

 y( r,  q,  f) =  R( r)   Y( q,  f) 3. The angular function, which is common to all central potentials, is the

spherical harmonic  Ylm ( q,  f) discussed in chapter 11. These are

 l

eigenfunctions of the operators  L 2 and  Lz with the eigenvalues  l( l + 1)h2

and   m  h

 l  respectively, where  l = 0, 1, 2, … and  ml =  l,  l  – 1,…, 0,…, 

– l + 1, – l. 

4. The radial function  R( r) satisfies the equation

L

 d  2  R

2  dR

2 m

 l( l + 1

2

) h

+ 

+ 

 E -  V( r) -

 R( r) = 0

 dr  2

 r dr

2

h

2

2

 mr

NM

OQP

Its solution depends on the precise form of the potential  V( r). 

5. For a hydrogenic atom, for which, 

 Ze 2

 V( r) =  - 4 pe r 0

the normalized radial eigenfunctions are

FR

1/2

3

2 Z

( n

 l

1) ! U

 R

S|

 e– r/2 rl L 2 l+1( r), 

3 V

|

 nl( r) =  - HG I

T|

 n+ l

 na 0 KJ

- -

2 n[( n +  l) !] W|

F 2 2

 Zme

where

 r =   n(4

2

HG

I

 p e ) h KJ  r

0

and   L 2 l+1

 n+ l ( r) is the associated Laguerre polynomial.  n is called the

principal quantum number and can have positive integral values. 

6. The complete normalized energy eigenfunctions for a hydrogenic atom

are

 ynlm ( r,  q,  f) =  Rnl( r)   Ylm ( q,  f) l

 l

where

 n = 1, 2, 3, …

 l = 0, 1, 2, …,  n  –  1

 ml =  – l,  – l + 1, …, 0, …,  l  – 1,  l

7. The bound-state energies for the hydrogenic atom are

2

 m  F  Ze 2

1

1

( Za )2

 En = -

=  -

 mc 2 

, 

2 2 HG

I

4

2

h

 p e

2

2

0 KJ  n

 n
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 n = 1, 2, 3,…, 

where   a is the fine structure constant. 

The expression for  En is same as that obtained in the Bohr model. The

energy depends only on the principal quantum number  n. Since for each

 n there are  n 2 possible ( lml) combinations, and hence as many eigen-

functions, the eigenvalues are  n 2-fold degenerate. The  ml-degeneracy is

due to spherical symmetry of  V( r); the  l-degeneracy is characteristic of

the Coulomb potential. 

8. An electron orbiting around a nucleus in an atom behaves as a magnetic

dipole of moment

F  e

m =  - HG I L

2 m KJ

The quantity  e/2 m is called the  gyromagnetic ratio. 

If the atom is placed in a magnetic field, this dipole experiences a torque

and so there is a change in the energy of the electron. If the magnetic

field  B is along the  z-axis, then the change in the energy of an ( n,  l) state is e h

D E = 

 Bml,  ml =  l,  l  –1,  …, 0, …,  –  l + 1, – l. 

2 m

Thus the energy of a state depends on  ml. Since there are (2 l + 1) values

of  ml for a given  l, an energy level with a particular  l is split into (2 l + 1) distinct, close lying, energy levels. The adjacent levels differ in energy

by   mB   B where  mB =  e h/2 m is called the  Bohr magneton.  As a consequence, there is a splitting of atomic spectral lines. This phenomenon is

called the Zeeman effect. 

9. The selection rules which govern the emission of spectral lines are

D  l =  ±1

and

D ml = 0, ±1

According to these rules, each line is split into three components.The

frequency of one of the lines is equal to the original frequency  n 0. The

frequencies of the other two lines are  n 0  –  D n and  n 0 + D n where D n =  eB/4 pm. This is called the normal Zeeman effect.  However, in

most cases a line is split into more than three components. It is called

the anomalous Zeeman effect and can be explained only after the  spin

of the electron is taken into account. 

QUESTIONS

1. Obtain the time-independent Schrödinger equation in spherical polar

coordinates for a particle in a spherically symmetric potential. Carry out

the separation of variables and solve the angular equation. 

 "" 
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2. Set up the time-independent Schrödinger equation for a hydrogenic atom

in spherical polar coordinates ( r,  q,  f). Split this equation into three

equations corresponding to the three variables. Obtain the solution of the

radial equation. 

3. Write the Schrödinger equation for the hydrogen atom in terms of

spherical polar coordinates ( r,  q,  f) and separate the radial and angular

parts. Solve the radial part to obtain the energy eigenvalues. 

4. State the Schrödinger equation for the hydrogen atom in spherical

coordinates. Explain the significance of various quantum numbers

defining a state of the atom. What is the order of degeneracy of a certain

energy level? 

5. Solve the Schrödinger equation for a hydrogen-like atom and show that

the expression obtained for energy levels is in agreement with Bohr’s

theory. 

6. The radial wave function for the ground state ( n = 1,  l = 0) of the

hydrogen atom is

3 2

F 1

 R 10( r) =   a

HG IKJ / 2 e– r/ a 0

0

where   a 0 = h2/ me 2, the Bohr radius. If the probability of finding the

electron between  r and  r +  dr is  P( r)  dr, draw a rough sketch to show how   P( r) varies with  r for the ground state. Discuss briefly how the

result compares with the prediction of Bohr’s simple model of the

hydrogen atom. 

7. Show that the magnetic moment of an orbital electron is given by

F  e

m =  - HG I L

2 m KJ

where the symbols have their usual meaning. 

8. What is normal Zeeman effect? Discuss in detail how it is explained using

quantum theory. Derive the expression for the frequency shift. 

9. Consider the normal Zeeman effect in the 3 d Æ 2 p transition. (a) Draw

the energy-level diagram that shows the splitting of 3 d and 2 p levels in

an external magnetic field. Indicate all possible transitions from each  ml

state of 3 d level to each  ml state of 2 p level. (b) Which transitions satisfy the D ml = ±1, 0 selection rule? Show that there are only three different

frequencies emitted. 
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In spite of the broad success of the quantum theory developed so far in

predicting the energy levels and spectral lines of the hydrogen atom, it was soon

realized that we were far from having a complete understanding of the structure

and spectra of all the atoms. 

Experimental data was continuously gathering which could not be explained

on the basis of the existing theory. It was clear that some vital ingradients were

missing from the theory. Since physics was in an active stage of development, 

these “ingradients” were very soon discovered leading to a satisfactory

description of atomic structure and related phenomena. They were the concept

of  electron spin and the  Pauli exclusion principle. We shall now study how these

two hypotheses were incorporated into the theory to provide a resonably

complete picture of atoms. The concept of spin will be incorporated into the

theory in this chapter and the Pauli principle in the next chapter. 
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13.1 SPIN ANGULAR MOMENTUM

The main experimental observations which could not be accounted for by con-

sidering only the orbital angular momentum of the electron were the following:

The Anomalous Zeeman Effect

We have seen in chapter 12 that certain spectral lines split into a number of

closely-spaced lines if the source is placed in a magnetic field. We found that

if we attempt to explain this phenomenon considering the interaction of the

orbital magnetic moment of the electron with the magnetic field, then each

spectral line must be split into three components. However, in most cases a line

is split into more than three lines. Since this splitting could not be understood, 

it was called the anomalous Zeeman effect. 

Fine Structure of Spectral Lines

Even in the absence of a magnetic field, certain spectral lines actually consist

of a group of closely-spaced lines. This  fine structure is observed when the

spectrum is examined with a spectrograph of high-resolving power. An example

is the first line of the Balmer series of hydrogen which arises from the transition

 n = 3 Æ   n = 2. On the basis of the theory developed in chapter 12, this must

be a single line of wavelength 6563 Å; actually there are two lines 1.4 Å apart. 

Another typical example is the yellow line of sodium—called the D-line—

corresponding to the transition 4 p Æ 3 s of the outermost electron. This line is

found to be a doublet having wavelengths 5890 Å and 5896 Å. The fine

structure is a small effect but it highlights the lack of completeness of the theory. 

The Stern-Gerlach Experiment

In order to demonstrate the quantization of angular momentum, Stern and

Gerlach passed a beam of neutral atoms through a non-uniform magnetic field. 

As we shall discuss a little later, if there were only orbital angular momentum, 

the beam must split into an odd number of different components. However, 

beams of some atoms were found to split into an even number of components

which could not be explained. 

In an attempt to account for these anomalies, two Dutch research scholars

S. Goudsmidt and G. Uhlenbeck proposed, in 1925, that the  electron has an

 intrinsic angular momentum and associated with this angular momentum, a

 magnetic moment.  This is in addition to and independent of any orbital angular

momentum that the electron has in an atom. 

The intrinsic angular momentum is called  spin angular momentum. The

name spin gives the impression that the electron is a tiny charged sphere

spinning about an axis. Surely, Goudsmidt and Uhlenbeck must have got the idea

from the motion of a planet, which revolves around the sun as well as rotates
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(spins) about its own axis. However, it was soon realized that this classical

model of a rotating electron is not valid. In fact, spin has  no classical

 counterpart and is a  purely quantum mechanical effect. Of course, spin is not

incorporated in the Schrödinger equation. However, in 1928 Dirac developed a

more general equation combining quantum mechanics with relativity. The

concept of spin appears in this theory naturally. All electrons have the same spin

angular momentum whether they are free or bound in atoms. The spin is a

fundamental property of the electron, like its charge and mass. 

The spin angular momentum is described in terms of the spin quantum

number  s, usually called simply spin. The only value  s can have is

 s = 1/ 2

(Spin quantum number)

(13.1)

This is in contrast to the orbital quantum number  l whose value depends on

the state of motion of the electron. The value  s = 1/2 has been obtained

empirically from spectroscopic data. It also follows from Dirac’s relativistic

theory of the electron. In this book, we shall not go into this theory. 

The properties of the spin angular momentum are quite similar to those of

the orbital angular momentum. The spin angular momentum is described by a

vector  S whose magnitude is given by

1 1

3

1 h

F

 S =

 s ( s + )

=

+ 1 h =

h

2 HG

I

2

KJ 2

(13.2)

(Magnitude of spin angular momentum)

This is in analogy with the corresponding formula for the magnitude of the

orbital angular momentum:

 L = 

 l ( l + )

1 h

The  space quantization of the spin angular momentum can be specified by

giving its  z-component   Sz. This component is given in terms of the spin

magnetic quantum number   ms. Recall that the orbital magnetic quantum

number   ml can have (2 l + 1) values ranging from –  l to +  l in integer steps. 

Therefore, the vector L can have (2 l + 1) possible orientations with respect to

the  z-axis (In an actual experiment the  z-axis is specified by applying a magnetic field in that direction; hence the name magnetic quantum number). Similarly, the

spin angular momentum S can have 2 s + 1 = 2(1/2) + 1 = 2 orientations with

respect to the  z-axis. As such, the only allowed values of  ms are

 m = ±1/2

 s

(13.3)

(Spin magnetic quantum number)

This is shown in Figure 13.1. The  z-component of the spin angular momentum

is, therefore, 

1

 S =  m  h

±

h

 z

 s

=

(13.4)

2

 "& 
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1

1

 S

h

h

 z = +

is commonly called the “spin up” state and  Sz = –

is called the

2

2

“spin down” state. 

Thus, it turns out that  the complete description of the state of an electron

 in an atom requires four quantum numbers n, l, ml  and  ms.  The first three arise

from the Schrödinger equation; the fourth one results from empirical evidence

and also from the Dirac equation, which combines quantum mechanics with

relativity. 

 Sz

12  �

3  �

2

 S =

1

– 2  �

Figure 13.1

The two possible orientations of the spin angular momentum vector

with respect to the z-axis. 

Spin Eigenfunctions

A question that confronts us is how to write the spin wave function. Clearly, 

spin cannot be described by a spatial wave function of the type that describes

an orbital angular momentum, i.e., a spherical harmonic. The reason is that there

are no internal angles that can be marked. In the  matrix version of quantum

 mechanics, the spin “up”  ( ms = +1/2) and spin “down”  ( ms = –1/2) eigen-

functions are given, respectively, by

1

L

0

L

 c+ =  0

NM OQP ,  c– =  1NMOQP

The  complete wave function for the hydrogen atom is then

Y

( , 

r ±) =

( q,  f)  c

 nlm m

 nl

 R

 lm

 Y

 l

 s

 l

±

The spin angular momentum operator is given, in matrix form, by

1

S = 

[s

2
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where  s is called the  Pauli   spin operator. Its components have the matrix

representation

0

1

L

0

-

L  i

1

0

L

 sx = 

,  sz = 

1

0

NM OQP,  sy =   i  0

NM OQP

0

-1

NM OQP

These are called the Pauli spin matrices. We shall not discuss these further in

this book. The students will learn about these in their postgraduate studies. 

Before ending this section, we would like to inform the reader that spin is

an attribute associated with all the particles in nature: electrons, protons, 

neutrons, alpha particles, quarks, photons—all have a spin angular momentum

which is a characteristic property of the particle and describes its behaviour. In

fact on the basis of spin all the particles have been divided into two categories. 

The first category consists of those particles which have spin quantum number

 s equal to half an odd integer, i.e., 1/2, 3/2 etc. Such particles are called  fermions because their distribution in solids is governed by the Fermi-Dirac statistics. The

second category consists of particles which have spin quantum number  s equal

to zero or integer. Such particles are called  bosons because their distribution is

governed by the Bose-Einstein statistics. The electron, proton and neutron are

fermions. The alpha particle and photon are bosons. An important difference

between the two is that fermions obey the Pauli exclusions principle whereas

bosons do not. 

13.2

MAGNETIC MOMENT DUE TO SPIN

We have seen in section 12.4 that a magnetic moment is associated with the

electron due to orbital angular momentum. It is given by (see Equation 12.61)

 e

m L = –

L

(13.5)

2 m

By extrapolation, we might assume that there is a magnetic moment due to spin

angular momentum as well. The assumption has proved to be correct. The

magnetic moment due to spin is given by

 e

m = -

S

 S

 s

 g  2 m

(13.6)

(Magnetic moment due to spin)

Note the presence of the factor  gs which does not appear in Equation (13.5). 

This is purely a quantum mechanical factor that has no classical analogue. This

factor has been obtained both experimentally as well as theoretically. The most

recent experimental value is  gs = 2.000231930437. In Dirac’s relativistic

quantum theory, the magnetic moment due to spin emerged naturally, with

 gs = 2, a value very close to the experimental value. The theoretical value

calculated on the basis of quantum electrodynamics (QED) is 2.0002319305

which is in remarkable agreement with the experiment value. 

 #
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Taking   gs = 2, the possible components of m S along the  z-axis are

 e h

 mS  = ±

= ±1 Bohr magneton

(13.7)

 z

2 m

13.3

THE STERN-GERLACH EXPERIMENT

In 1922 O. Stern and W. Gerlach performed a series of experiments to verify

directly the  space quantization of angular momentum, i.e., the property that the

angular momentum vector associated with a quantum state can take up only

certain specified directions in space with respect to a chosen axis. However, the

experiments also provided a confirmation of the hypothesis of  electron spin

proposed by Goudsmidt and Uhlenbeck. 

Figure 13.2 shows the apparatus of the Stern-Gerlach experiment. A

narrow beam of neutral atoms coming from an oven, after passing through

collimating slits, are allowed to pass through a nonuniform magnetic field

directed along the  z-axis to finally fall on a collecting plate. The nonuniform

magnetic field is produced by a magnet with specially designed pole pieces as

shown in Figure 13.2(b). The upper pole piece is in the form of a knife edge

and the lower one has a channel cut in it parallel to the knife edge. Thus the field

has a gradient in the  z-direction. 

 z

 z

 S

 S

 x

 y

Oven

 N

 N

Collimating

Cross-section

slits

Magnet

of pole pieces

Collecting

(a)

plate

(b)

Figure 13.2

The Stern-Gerlach apparatus. 

When no magnetic field is applied, the beam produces a single trace on the

collecting plate as shown in Figure 13.3(a). When the field is switched on the

trace splits distinctly into more than one trace. Let us discuss the theory of the

experiment to be able to understand its outcome. 

When the experiment was first performed, the concept of electron spin was

not discovered. Let us ignore spin to begin with. Now, each atom consists of
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(a) No magnet

(b) Expected classical

(c) Actual pattern with

field

pattern with field on

field on

Figure 13.3

Pattern on the collecting plate for a beam of silver atoms. 

electrons which have orbital angular momenta and hence magnetic moments. If

m is the resultant magnetic moment of the atom and B is the applied magnetic

field then the potential energy of the atom in the field is

 U =  –m

m◊B

(13.8)

Using Equation (12.61), we may write

 e

F

 U =  H IK  L◊B

(13.9)

2 m

where  L is the resultant orbital angular momentum of the atom. 

Since the field is along the  z-axis,  B =  Bz. Therefore, we obtain, 

 e

 U = 

 Lz   Bz

(13.10)

2 m

The force on the atomic dipole is

 dU

 e

 dB

 F

 z

 z = –

=  -

 Lz

(13.11)

 dz

2 m

 dz

If space quantization of angular momentum did not exist, the L vectors for

different atoms could be pointing in different directions in an arbitrary manner. 

Then  Lz would take  any value from + L to – L and, therefore, when the magnetic field is turned on, different atoms will move up or down by different amounts

till they strike the collecting plate. The result would be a spreading out of the

trace as shown in Figure 13.3(b). Stern and Gerlach found that this was not the

case. On the other hand, the beam split into a few subbeams, each of which

made a well defined separate trace on the plate. The number of traces depends

on the type of atoms forming the beam. This could be possible  only if the

 angular momentum is quantized. Let us see how. When  L is quantized then the

only possible values of  L

[

 z are given by  ml  where the magnetic quantum number

 ml can take (2 l + 1) values ranging from – l to + l,  l being the orbital quantum number. Thus the beam must be split into (2 l + 1) subbeams. 

However, there was a problem. Since (2 l + 1) is odd, it would imply that

the number of traces on the plate would always be odd. It was found that this

was not so for all atoms. For many atoms, e.g., silver, hydrogen, lithium, 

sodium, potassium, copper and gold it was found that the beam splits into two

components, an even number (see Figure 13.3(c)). The explanation came only

after the hypothesis of electron spin was proposed in 1925 because spin would

also contribute to the magnetic moment of an electron. 

 # 
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Let us consider the case of silver. The valency of silver is one. It is now

known that the orbital and spin magnetic moments of all but the valence electron

in a silver atom cancel. For this electron the orbital angular momentum, and

hence the orbital magnetic moment, is zero. Therefore, if spin were not there, 

a silver beam would not be split when the magnetic field is on, which is contrary

to experimental observation. 

Now, if spin is taken into account, it can take up only two orientations in

a magnetic field, corresponding to  ms = ±1/2. Hence there would be two

subbeams, which was actually observed. Thus, the Stern-Gerlach experiment

was a direct confirmation of space quantization and the concept of electron

spin. 

PROBLEM 13.1

A beam of silver atoms moving with a velocity of 105 cm/s

passes through a magnetic field of gradient 0.5 Wb/m2/cm for a distance of

10 cm. What is the separation between the two components of the beam as it

comes out of the magnetic field? 

 Solution:

If the magnetic field is applied along the  z-axis, then the force on

the atom is along the  z-axis and is given by (see Equation 13.11), 

 dB

 F =   m

 z

 z dz

where   mz is the  z-component of the magnetic moment of the atom. 

A silver atom has only one valence electron which has  l = 0 and therefore

the magnetic moment is only due to spin. Therefore, 

 dB

 F =  m

 z

 S z dz

Acceleration of the atom is

 F

 m S dB

 a

 z

 z

 z = 

= 

 M

 M

 dz

where  M is the mass of the silver atom. If  d is the distance travelled inside the

field and  v is its velocity, then the time spent by the atom in the field is

 d

 t =   v

The displacement of the atom along the  z-direction is

1

1

2

 mS dB d

 z = 

 a

 z

 z

 z   t 2 = 

◊

◊

2

2

2

 M

 dz

 v

From Equation (13.7)

 e h

 mS =  ±

 z

2 m

The plus sign corresponds to electrons with spin “up” and the minus sign

to electrons with spin “down”. These two types of electrons will move in
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opposite directions. Therefore, the separation between the two components of

the beam

= 2 z

| m |

2

 S

 dB

 d

= 

 z

 z

◊

◊

 M

 dz

2

 v

 e h

Now, 

Ω mS Ω = 

= 1 Bohr magneton

 z

2 m

= 9.274 ¥ 10–24 J/Wb/m2

 M = 107.868 amu

= 107.868 ¥ 1.6605 ¥ 10–27 kg

 dBz = 0.5 Wb/m2/cm = 50 Wb/m2/m

 dz

 d = 10 cm = 0.1 m

 v = 105 cm/s = 103 m/s

Substituting the values, 

2 z = 2.59 ¥ 10–3  m

=  2 6

. mm

13.4

TOTAL  ANGULAR MOMENTUM OF THE ELECTRON

IN A ONE-ELECTRON ATOM

In this section we consider hydrogen and hydrogen-like atoms which have only

one electron moving around the nucleus. The case of more than one electron

will be discussed in chapter 14. 

As we have seen, the electron has both orbital angular momentum L and

spin angular momentum S. The magnitude of L is given by

 L = 

 l( l + )

1 h

(13.12)

where  l is the orbital angular momentum quantum number. The component of

L along the  z-axis is

 L

[

 z =   ml

(13.13)

where   ml is the orbital magnetic quantum number. 

Similarly, the magnitude of S is given by Equation (13.2), 

 S = 

 s ( s + )

1 h

where  s is the spin quantum number which has the value 1/2. The  z-component

of  S is (Equation 13.4), 

 S

[

 z =   ms

where   ms is the spin magnetic quantum number, having the values ±1/2. 

 #" 
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The total angular momentum of the electron is the vector sum of L and S. 

It is denoted by the symbol J:

J = L + S

(13.14)

(Total angular momentum)

The possible values of the magnitude of J are given in terms of the quantum

number   j by

 J =

 j (  j + )

1 h

(13.15)

(Magnitude of J)

where

 j =  l +  s

or

Ω l –  sΩ

(13.16)

Since   s is always 1/2, 

1

1

 j =   l + 

or

 l -

(13.17)

2

2

Clearly,  j is always half an odd integer. If  l = 0,  j has only the value 1/2. If  l

= 1,  j can be 3/2 or 1/2. If  l = 2,  j can be 5/2 or 3/2, and so on. 

The possible values of the component of J along the  z-axis are given in

terms of the quantum number  mj as

 J =  m  h

 z

 j

(13.18)

where

 mj =  ml  ±   ms

(13.19)

It can be easily seen that for a given value of  j,  mj takes (2 j + 1) values given by

 mj =  j,  j  – 1, …,  –(  j  – 1), – j

(13.20)

Thus we conclude that for a one-electron atom, the possible values of  j are

1

1

 l + 

and   l -

. The former corresponds to the case in which the vectors

2

2

L and S have parallel  z-components while the latter corresponds to L and S

having antiparallel  z-components. Figure 13.4 shows the two possible ways in

which J can be formed by combining L and S. It must be kept in mind that the

vectors  L and S can never be parallel or antiparallel to each other or to the

vector  J. 

In section 13.7 we shall see that the spin and the orbital motion produce

internal magnetic fields. As a result the angular momenta L and S exert torques

on each other. The effect of these torques is to make the vectors L and S

precess around their resultant J, whose magnitude and direction are conserved

in the absence of an external torque. This is shown in Figure 13.5(a). In case

an external magnetic field B is present (which can be assumed to be along the
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S

S

J

L

L

J

 j =  l +  s

 j =  l –  s

Figure 13.4

The two ways of combining L and S to form J. 

 z-axis), then the vector J precesses about the  z-axis while L and S keep precessing about J, as shown in Figure 13.5(b). 

 z-axis

J

B

L

 mj�

S

J

S

L

Atom

Atom

(a)

(b)

Figure 13.5

(a) Precession of L and S about J and (b) Precession of J about the

direction of an external magnetic field B along the z-axis. 

PROBLEM 13.2

Draw diagrams to show the possible orientations, with

respect to the  z-axis, of the vector J for the different  j-states that correspond to   l = 1. 

 Solution:

The values of the quantum number  j corresponding to  l = 1 are:

1

3

1

1

 j = 1 + 

= 

and

 j = 1 – 

= 

. 

2

2

2

2

1

1

1

For the  j = 

state,  mj = 

,  –

. 

2

2

2

3

3

1

1

3

For the  j = 

state,  mj = 

, 

,  –

,  –

. 

2

2

2

2

2

 #$
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The possible orientations of J with respect to the  z-axis for these  j values are shown in Figure 13.6. 

 Jz

 Jz

3  �

 mj = 3

2

2

J

1

1

 �

 m

 �

 m

 j = 1

2

2

2

 j = 12

J

J

J

1

–

J

 �

 m

1

 j = – 1

2

2

 – �

 m

2

 j = – 12

 J =  j(  j +1) � = 3  �

J

2

3

–  �

 mj = – 3

2

2

 J =  j(  j +1) � = 15 �

2

1

(a)  j =

3

2

(b)  j =  2

Figure 13.6

Space quantization of total angular momentum when l = 1. 

13.5

SPECTROSCOPIC NOTATION FOR ATOMIC STATES

It would be appropriate at this stage to introduce the reader to the notation which

spectroscopists commonly use to designate atomic states. This notation is also

called  term notation and is more useful in the case of  LS coupling in

multielectron atoms which will be discussed in section 14.8. 

The term notation for a state is given by the following symbol:

2 s  1

+ L j

Here  s is the resultant spin quantum number of the atom and  j is the total angular momentum quantum number. The symbol L denotes the letter corresponding

to the resultant orbital angular momentum quantum number  l according to

following scheme. 

Value of  l

0

1

2

3

4

5

... 

Letter (L )

 S

 P

 D

 F

 G

 H

... 
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Recall from section 12.3 that lowercase letters  s,  p,  d,  f  … etc. are used to denote the values of  l for a single electron. 

The superscript number 2 s + 1 is called the  multiplicity of the state, which

is the  number of different possible values of the total angular momentum J

obtained by various possible orientations of L and S. 

Actually, the multiplicity is equal to 2 s + 1 only when  l >  s, since  j has values ranging from  l +  s to  l –  s in integer steps. This is the usually occuring situation. 

The multiplicity corresponding to the case  s >  l is 2 l + 1. As an example, let 3

5

3

 l = 1 and  s = 

. In this case the possible values of  j are only three:  j = 

, 

, 

2

2

2

1 . Thus the multiplicity is  three. However, by convention, these states are

2

designated  4 P 5/2,  4 P 3/2 and 4 P 1/2 because 2 s + 1 = 4. 

In the case of one-electron atoms or atoms having a single valence electron

(e.g. sodium), the principal quantum number of this electron is sometimes

attached as a prefix to the term symbol; that is, it is written as

 n  2 s  1

+ L j

For example, the  ground state of a hydrogenic atom has

 n = 1,  l = 0

Since  s is always 1/2, we have  j = 1/2. Therefore, the  term symbol for this state is

1 2

2

 S

or simply   S

1/2

1/2

(Ground state of hydrogen)

As we shall see in Section 14.4, the  ground state of sodium has

 n = 3,  l = 0

Therefore, its term symbol is

3 2

2

 S

or simply   S

1/2

1/ 2

(Ground state of sodium)

Note that the  S-state is always a singlet but the term notation indicates it as

a doublet. 

The   P states of a one-electron atom are denoted by the term symbols

2 P 1/2,  2 P 3/2

Similarly, the  D and  F states are denoted, respectively, by

2 D 3/2,  2 D 5/2

and

2 F 5/2,  2 F 7/2

 #& 
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Note that for a one-electron atom all the states for which  l π 0 are doublets; 

i.e., they have two values of  j. 

PROBLEM 13.3

Write the values of the quantum numbers  n,  l,  s,  j,  mj for the following states:

3  2 P 1/2, 3 2 D 3/2, 4 2 F 5/2

 Solution:

 n

 l

 s

 j

 m j

1

1

1

32  P

3

1

±

1/2

2

2

2

1

3

1

3

32  D

3

2

± , ±

3/2

2

2

2

2

1

5

1

3

5

42  F

4

3

± , ±

, ±

5/ 2

2

2

2

2

2

13.6

SPIN-ORBIT COUPLING AND FINE STRUCTURE OF

SPECTRAL LINES

We can now understand the fine structure of spectral lines mentioned in

section 13.1. Actually the splitting of spectral lines arises due to various effects. 

We shall be concerned here only with the splitting due to an interaction between

the magnetic moments due to the spin and the orbital motion of the electron. 

This effect is called spin-orbit coupling. 

The other effects which contribute to energy shifts and hence splitting of

spectral lines are (i) the relativistic correction to the kinetic energy of the

electron, (ii) the Darwin term which applies only to the  l = 0 case, and (iii) the

Lamb shift due to quantum electrodynamic effects known as radiative

corrections. The energy shifts due to all these effects are of the same order of

magnitude as due to spin-orbit coupling and, therefore, must be taken into

account in a complete theory. However, these are beyond the scope of an

undergraduate course. 

A complete quantum mechanical derivation of the change in the energy of

an atomic level due to spin-orbit interaction is outside the scope of this book. 

Therefore, we shall give a semiclassical treatment of this phenomenon. 

Spin-orbit interaction can be understood in terms of the following simple

model. An electron in an atom revolves around the nucleus. However, in the

reference frame of the electron, it appears as if the nucleus is moving around

it (Figure 13.7) (just as to an observer on the earth the sun appears to orbit the

earth). Since the nucleus is a charged particle, this apparent motion generates

a magnetic field at the location of the electron, as measured in the electron’s

frame of reference. This field interacts with the electron’s spin magnetic

moment. This causes a twofold splitting of the energy levels, corresponding to
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the two possible orientations of the spin angular momentum. The splitting of

energy levels results in a splitting of spectral lines. Hence the fine structure! 

B

– e

+ Ze

– e

+ Ze

(a) An electron moving around a

, 

nucleus

(b) In the reference frame of the electron, the

as seen from the reference frame

nucleus appears to move around it. As a

of the nucleus. 

result, the electron experiences a magnetic

field directed upwards. 

Figure 13.7

We shall now show that the spin-orbit interaction energy can be expressed

in terms of the scalar product of the orbital and spin angular momentum vectors

L and S. 

Consider a hydrogenic atom of atomic number  Z. Assume that the electron

is moving in a circular orbit of radius  r with a speed  v around the nucleus. In

the reference frame of the electron, one sees the nucleus moving in a circular

orbit of radius  r with the same speed  v but in a direction opposite to that of the electron. This is equivalent to a current loop with current  I given by

 Ze

 Zev

 I = 

= 

2 p r / v

2 p r

The magnitude of the magnetic field due to this current at the centre of the

loop is

 m I

 m Zev

 B = 

0

=  0

2 r

 p  2

4  r

This is the magnetic field experienced by the electron. In vector notation, 

 m Ze r ¥ v

 m Ze

B =  0

= 

0

(r  ¥   mv)

 p  2

4  r

 r

 p

3

4  mr

 m Ze

= 

0

(r  ¥  p)

 p

2

4  mr

where  m is the mass of the electron and p is its momentum. Putting r ¥ p = L, the orbital angular momentum of the electron, and  m 0 = 1/ e 0 c 2, we obtain Ze

B = 

L

(13.21)

4

 mc  2 r 3

 p e  0

If m S is the magnetic moment of the electron due to spin, then the interaction

energy of m S and B is given by

1

 H spin-orbit = –

m S◊B

(13.22)

2

 $
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The additional factor of 1/2 is known as the Thomas precession factor. Its

explanation comes from a proper treatment using the theory of relativity. 

Substituting the value of m S from Equation (13.6), 

1 F

 e

 H spin-orbit =  -

-  g

S ◊B

2 HG

I

2 m  KJ

The value of the  g factor is very very close to 2. Taking  g = 2 and

substituting for B from Equation (13.21), 

 Ze 2

 H spin-orbit = 

L◊S

(13.23)

 m 2 c 2 r 3

8 p e  0

Let us now introduce the total angular momentum of the electron:

J =  L + S

We have

 J 2 = J◊J = (L + S)◊ (L + S) =  L 2 + 2L◊S +  S 2

or

1

L◊ S = 

( J 2  –   L 2  –   S 2)

(13.24)

2

Substituting in (13.23), 

 Ze 2

 H spin-orbit = 

( J 2  –   L 2  –   S 2)

(13.25)

 m 2 c 2 r 3

16 p e  0

So far, the treatment has been on classical lines. We can change to quantum

mechanics by interpreting (13.25) as an operator corresponding to the spin-orbit

interaction energy. If the electron is in a state described by the wave function

 ynlj then the spin-orbit energy is given by

 E spin-orbit =   H spin-orbit

 Ze 2

 J  2 -  L 2 -  S 2

= 

(13.26)

 m 2 c 2

 r 3

16 p e  0

where

F

 J  2 -  L 2 -  S  2

 J  2 -  L 2 -  S  2

=  z  y* nlj

 r 3

 r 3

HG

IKJ ynlj  dV

(13.27)

 dV being an infinitesimal volume element. Now the eigenvalues of  J 2,  L 2 and  S 2

are  j(  j + 1)[2,  l( l + 1)[2 and  s( s + 1)[2, where  j,  l and  s are the total, orbital and spin angular momentum quantum numbers, respectively. Since  s = 1/2, 

1 1

F

3

 s( s + 1)[2 = 

+ 1

HG IKJ [2 =  [2

2

2

4
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Therefore, (13.26) becomes

 Ze 2 2

h

3

1

L

 E spin-orbit = 

 j(  j + 1) -  l( l + 1) -

 p e m 2 c 2 r  3

4

NM

OQP

(13.28)

 r  3

16

0

1

The evaluation of 

is somewhat lengthy and we shall not do it. The

3

 r

result is

1

 Z  3

= 

(13.29)

3

 r

F

 a  3  n 3

1

 l l +

( l

1)

0

HG IKJ +

2

where

 a

h2

0 = 4 pe 0

/( me 2)

(13.30)

Substituting in (13.28) and using the fact that there are two possible values

1

1

of   j, viz.,  j =  l + 

and  j =  l  – 

, we obtain after some simplification, 

2

2

U

 mc 2  Z  4 4

 a

1

 E

=

for  j

=  l +

|

spin-orbit

2 n 3 ( l + 1) (2 l + 1)

2 V|

 mc 2  Z  4 4

 a

1 |

(13.31)

= -

for  j

=  l -

|

2 n 3  l (2 l + 1)

2 W

(Spin-Orbit Interaction Energy)

where  a is the  fine structure constant, given by

 e 2

1

 a = 

ª 

(13.32)

4 pe  h c

137

0

For   l = 0, the spin-orbit interaction vanishes and so  E spin-orbit = 0 in that

case. 

Equation (13.31) may also be written as

 Z  2 2

 a

1 U

 E

= -  E

for  j =  l +

(

1) (2

1)

2 |

spin-orbit

 n n l +

 l +

(13.33)

2

2

 a

1 V

|

 Z

|

=  E

for  j =  l -

 n

(2

1)

2 |

 nl

 l +

W

where   En is the energy of the  n th state when spin angular momentum is not

considered. This is given in Equation (12.41):

1

 Z  2 2

 a

 En =  -  mc 2

2

 n 2

 $ 
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The  total energy of a state designated by the quantum numbers  n,  l,  j is now given by

 Enlj =  En + ( E spin-orbit) nlj

Using (13.33) this becomes

L

 a

U

 Z  2 2

1

 E

=  E

1 -

for  j =  l

(

) (

)

|

 nlj

 n

 n l + 1 2 l + 1

2

NM

OQP + |

L

V

(13.34)

 Z  2 2

 a

1 |

=  E

1 +

for  j =  l

 n

(

)

|

 nl  2 l + 1

2

NM

OQP

-

W

We find that the spin-orbit interaction partially lifts the degeneracy which

was present when this interaction was not included in our formulation. Earlier, 

the energy was found to depend only the principal quantum number  n; now the

energy depends on the orbital quantum number  l too. In addition, there is a

dependence on the total quantum number  j as well. 

For a given  n and  l, except  l = 0, there are two states corresponding to

1

1

1

 j =  l + 

and  j =  l  – 

. The spin-orbit interaction pushes up the  j =  l + 

2

2

2

1

state and pushes down the  j =  l – 

state from the unperturbed position. The

2

energy difference in the doublet, using (13.31), is

(D E) j= l±1/2 = ( E spin-orbit) j= l+1/2  –  ( E spin-orbit) j= l–1/2

 mc 2  Z  4 4

 a

L 1 1

= 

+

 n 3

2

(2 l + 1)  l + 1

 l

NM

OQP

 mc 2  Z  4 4

 a

or

(D E)

=

 j

(13.35)

= l± /

1 2

 n 3

2

 l( l + )

1

The following conclusions can be immediately drawn:

1. The doublet separation decreases as  n and  l increase. 

2. The doublet separation is relatively much more prominent in heavy

atoms. It is proportional to  Z 4. 

Example: Hydrogen Atom

As an example of spin-orbit splitting consider the  n = 1 and  n = 2 levels of the

hydrogen atom. 

For  n = 1, the only possible value of  l is  l = 0. The state is called 1 s state. 

As discussed earlier there is no splitting for any  s state. 

For   n = 2, the possible values of  l are  l = 1, 2. The corresponding states are 2 s and 2 p. There is no splitting for the 2 s state. The 2 p state is split into two, 
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1

3

1

1

corresponding to  j = 1 + 

= 

and  j = 1 – 

= 

. The two states are called

2

2

2

2

2  P 3/2 and 2  P 1/2. The  P 3/2 state is pushed up and the  P 1/2 state is pushed down by the spin-orbit interaction. The energy difference between the two states is

obtained by substituting the values of the various quantities in Equation (13.35)

and taking  Z = 1:

( . 

9 1 ¥ 10- )

31 (3 ¥ 108)2 ( /

1 137)4

D E = 

2 (2)3 1(1 + )

1

= 7.264 ¥ 10–24  J

= 4.54 ¥ 10–5 eV

which is a very small amount. 

It may be noted that the  P 3/2 state is pushed up by D E/3 and the  P 1/2 state is pushed down by 2D E/3 from the unperturbed position. 

As a result of this splitting the spectral line in the transition 2 p Æ 1 s (which

is the  a line of the Lyman series) splits into two close lying lines corresponding

to the 2 P 3/2  Æ  1 S 1/2 and 2 P 1/2  Æ  1 S 1/2 transitions. The situation is shown in Figure 13.8. 

2 P 3/2

2 p

D E

2 P 1/2

1 s

1 S 1/2

(a) Without spin-orbit

(b) With spin-orbit coupling (two lines). 

coupling (single line). 

Figure 13.8

Splitting of the  a line of the Lyman series in hydrogen spectrum. 

In fact, each line of the Lyman series is split into a pair of lines called a

 doublet, corresponding to the transitions

 nP 3/2  Æ  1 S 1/2,  nP 1/2  Æ  1 S 1/2

where   n > 1. 

The splitting of the lines in the Balmer and other series can be discussed in

a similar manner. The situation is somewhat more complicated than the Lyman

series and, in general, the lines are found to split into more than two components. 

 $" 
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The  selection rules for all such transitions are:

D l = ±1; D j = 0, ±1

(13.36)

PROBLEM 13.4

Show that the spectral line arising in the transition 3 d Æ 2 p

in the hydrogen atom splits into three components due to spin-orbit coupling. 

 Solution:

The situation is shown in Figure 13.9. The spin-orbit interaction

splits the 3 d and 2 p levels into doublets. The  j values for the 3 d level are 5/2

and 3/2 and, therefore, it splits into the states 3 D 5/2 and 3 D 3/2. The  j values for the 2 p level are 3/2 and 1/2 and it splits into the states 2 P 3/2 and 2 P 1/2. The selection rules allow the following three transitions

3 D 5/2  Æ  2 P 3/2

3 D 3/2  Æ  2 P 3/2

3 D 3/2  Æ  2 P 1/2

Thus the line will split into three components. Since the 3 d splitting is much

less than the 2 p splitting, the first two lines are relatively close to each other than

the third line. 

3 D 5/2

3 d

3 D 3/2

2 P 3/2

2 p

(a) Without spin-orbit

coupling (single line). 

2 P 1/2

(b) With spin-orbit coupling (three lines). 

Figure 13.9

Splitting of the 3d  Æ  2p line of the Balmer series in hydrogen

spectrum. 

PROBLEM 13.5

Show how the yellow line of sodium is split into two

components (called  D 1,  D 2 lines) due to spin-orbit coupling. 

 Solution:

Sodium has a single valence electron. In the ground state this

electron is in the 3 s level. The yellow light arises in the transition 3 p Æ 3 s. The
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spin-orbit interaction splits the 3 p level into two states—3 P 3/2 and 3 P 1/2. The 3 s level is not split—the corresponding  j-state is 3 S 1/2. Thus there are two possible transitions: 3 P 3/2 Æ 3 S 1/2 and 3 P 1/2 Æ 3 S 1/2. As a result the yellow light is split into two components. The first one is called the  D 1 line and the second is called

the   D 2 line. The situation is shown in Figure 13.10. 

3 P 3/2

3 p

3 P 1/2

3 s

3 S 1/2

 D 2  D 1

(a) Without spin-orbit coupling. 

(b) With spin-orbit coupling. 

Figure 13.10

Splitting of the yellow line of sodium due to spin-orbit coupling. 

13.7

TOTAL  MAGNETIC MOMENT OF THE ELECTRON. 

THE LANDÉ g FACTOR

We have seen in sections 12.4 and 13.2 that the magnetic moment of the

electron in an atom arises due to its orbital motion around the nucleus as well

as due to its spin. The orbital magnetic moment is [Equation 12.61]

F  e

m L =  - HG I L

(13.37)

2 m KJ

and that due to the spin is [Equation 13.6]

 e

F

m S = – gs  HG IKJ S

2 m

Taking   gs = 2, we have, 

 e

F

m S =  –2 HG IKJ S

(13.38)

 m

2

The total magnetic moment of the electron is

 e

 e

m LS = m L + m S =  -

(L + 2S) =  -

(J + S)

(13.39)

2 m

2 m

 $$
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where  J is the total angular momentum vector:

J = L + S

(13.40)

Figure 13.11 shows schematically the relationships between the angular

momentum vectors and the magnetic moment vectors. The resultant magnetic

moment  m LS (= m L + m S) is not along the line of the vector J. Since L and S

precess about J, m L and m S must also precess about J. Hence their resultant m LS

also precesses about J. The effective magnetic moment of the electron will

therefore be m J, the component of m LS along the direction of J. The component perpendicular to J will average out to zero over one complete revolution. m J may

be written as

m J = (m LS◊ $J) $J

(13.41)

J

L

S

m

m

 L

 S

m

m

m

 J

 LS

Figure 13.11 Schematic diagram showing the relationships between the angular

momentum vectors and the magnetic moment vectors. 

where  $J is the unit vector along J:

$

J

J = 

(13.42)

 J

Substituting (13.42) into (13.41), 

(m

◊J) J

m

 LS

 J = 

(13.43)

 J  2

Using Equation (13.39), 

 e

(J + S)◊

F

J

m J =  -

J

(13.44)

2 m  HG

I

 J  2

KJ
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Let us now evaluate the quantity

(J + S)◊J

 g = 

(13.45)

 J  2

for a given ( lsj) state. We have

(J + S)◊J =  J 2 + S◊J

Since  L = J  –  S, we have, 

 L  2 =   J 2 +  S 2  – 2 S◊J

 J  2 +  S  2 -  L 2

or

S ◊ J = 

2

Therefore, 

 J  2 +  S  2 -  L 2

(J + S)◊J =   J 2 + 

2

Substituting in (13.45), 

 J  2 +  S  2 -  L 2

 g = 1 + 

 J  2

2

Replacing   J 2,  L 2 and  S 2 by their quantum mechanical values  j(  j + 1) h2, l( l + 1) h2 and  s( s + 1) h2, respectively, we obtain

 j (  j + 1) +  s( s + 1) -  l ( l + 1)

 g = 1 +

2  j (  j + 1)

(13.46)

(Landé  f

 g actor)

The quantity  g is called the Landé  g factor. Its value depends on the quantum numbers  l,  s and  j. As such, its value is different for different states. The total magnetic moment of the electron can be written in terms of  g as

 e

m = -

J = -  m J/h

 J

 g

 g B

2 m

(13.47)

(Total magnetic moment of the electron)

where   mB is the Bohr magneton. 

PROBLEM 13.6

Calculate the Landé  g factor and the total magnetic moment

for the following states:

(a) 2 S 1/2

(b) 2 P 1/2

(c) 2 P 3/2

(d) 2 D 3/2

 Solution:

(a) For the 2 S 1/2 state

1

1

 l = 0,  j = 

, 2 s + 1 = 2 fi   s = 

2

2

 $& 
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 j (  j + )

1 +  s ( s + )

1 -  l ( l + )

1

Landé   g factor  g = 1 + 

2  j (  j + )

1

1 3

1 3

◊

+

◊

- 0 1

◊

= 1 +  2 2

2 2

1 3

2◊ ◊

2 2

= 1 + 1 =  2

Total magnetic moment  mJ =   g

 j (  j + )

1  mB

1 3

= 2◊

◊

 mB

2 2

= 

3 mB

where  mB = 1 Bohr magneton = 9.274 ¥ 10–24 Am2

(b) For the 2 P 1/2 state

1

1

 l = 1,  j = 

,  s = 

2

2

1 3

1 3

◊

+

◊

- 1 2

◊

 g = 1 +  2 2

2 2

1 3

2◊ ◊

2 2

1

2

= 1 – 

= 

3

3

2

1 3

1

 mJ =  ◊

◊

 mB = 

m

3

2 2

B

3

(c) For  2 P 3/2 state

1

 l = 1,  j = 3/2 fi   s =  2

 j (  j + )

1 +  s( s + )

1 -  l ( l + )

1

 g = 1 + 

2  j (  j + )

1

3 5

1 3

◊

+

◊

- 1◊2

= 1 +  2 2

2 2

3 5

2◊ ◊

2 2

1

4

= 1 + 

= 

3

3
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 mJ =  g  mB

 j (  j + )

1

4

3 5

= 

◊    mB

3

2 2

2

= 

15  m

3

 B

(d) For  2 D 3/2 state

3

1

 l = 2,  j = 

,  s = 

2

2

3 5

1 3

◊

+

◊

- 2◊3

 g = 1 +  2 2

2 2

3 5

2◊ ◊

2 2

1

4

= 1 – 

= 

5

5

4

3 5

 mJ = 

◊  mB

5

2 2

2

=  

15  m

3

 B

In Table 13.1 we list the values of the Landé  g factor for some of the doublet

states. Also given are the values of  gmj. 

Table 13.1

Values of g and gmj for Some Doublet States

State

l

j

g

mj

gmj

1

1

1

S

2 1/2

0

2

, -

1, -1

2

2

2

1

2

1

1

1

1

P

2 1/2

1

, -

, -

2

3

2

2

3

3

3

4

3 1

1

3

2

2

P

2 3/2

1

, 

, -

, -

2, 

, -

, - 2

2

3

2 2

2

2

3

3

3

4

3 1

1

3

6 2

2

6

D

2 3/2

2

, 

, -

, -

, 

, -

, -

2

5

2 2

2

2

5 5

5

5

5

6

5 3 1

1

3

5

9 3

3

9

D

2 5/2

2

, 

, 

, -

, -

, -

3, 

, 

, -

, -

, - 3

2

5

2 2 2

2

2

2

5 5

5

5

13.8 THE ANOMALOUS ZEEMAN EFFECT

We introduced the reader to the Zeeman effect in section 12.4.  The Zeeman

 effect is the splitting of spectral lines when the atom is placed in a magnetic

 %

Quantum Mechanics: A Textbook for Undergraduates

 field.  The classical theory, due to Lorentz, predicted that each line must be split

into three lines. The early quantum theory, which was developed before the

electron spin was discovered, also agreed with the classical prediction. 

However, experimentally it was found that in a  weak magnetic field, a spectral

line is generally split into more than three lines. This effect was called the

“anomalous” Zeeman effect, to distinguish it from the “normal” effect which

could be explained by the theories existing at that point of time. We are now in

a position to explain the anomalous Zeeman effect by taking into account the

magnetic moment due to the spin of the electron. 

Suppose the atom is placed in a magnetic field B which is relatively weak

so that the coupling between L and S does not break down. In that case the total

angular momentum vector J will precess about the direction of the magnetic

field. The potential energy of the atom due to the action of the magnetic field

would be

 U = –m J◊B

(13.48)

where  m J is the total magnetic moment of the electron. Substituting its value

from Equation (13.47), 

 g m

F

 U = 

 B

HG I

h KJ J◊B

(13.49)

If the direction of the magnetic field is taken as the  z-axis, then

 g m

 U = 

 B J

h

 z B

(13.50)

Substituting for  Jz its eigenvalue

 m  h

 j

,  mj =  j,  j  – 1, …, 0, …, –(  j  – 1), – j

we obtain the shift in the energy of the state with quantum numbers  n,  l,  j, mj as

(D E)

=  g m m B

 nljm

 j

 B

(13.51)

 j

Thus the magnetic field removes the  mj-degeneracy. Earlier all the  mj states

for a given set of  n,  l,  j were degenerate. Now each ( n,  l,  j) level is split into mj levels. Consequently, each spectral line will be split into a number of lines, 

depending, of course, on the number of possible transitions, which are governed

by the  selection rules

D l = ±1;  D mj = 0, ±1

(13.52)

It turns out that, due to the presence of the Landé  g factor in (13.51), the

splitting of the levels is different for different multiplets. As a result, there are

more spectral lines in this case than the three lines corresponding to the normal

Zeeman effect. To understand this, let us discuss the splittings in the case of

the hydrogen atom. 
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Example: Hydrogen atom

We have seen in Figure 13.8 that the ground level of hydrogen is 1 S 1/2 and the

next two levels are 2 P 1/2 and 2 P 3/2, the  P 1/2 level being slightly lower than the P 3/2 level. The separation of the  P 1/2 and  P 3/2 levels is a consequence of the spin-orbit coupling. Thus, when no magnetic field is applied, there are two spectral

lines resulting from the transitions 2 P 1/2  Æ  1 S 1/2 and 2 P 3/2  Æ  1 S 1/2 between these levels. 

Let us see how the levels split in the presence of a magnetic field. 

For the 1 S 1/2 level, we have from Table 13.1,  g = 2. There are two possible

1

1

1

values of  mj, +

and –

. Therefore, this level splits into two. For  mj = +

, 

2

2

2

1

 gmj = +1 and for  mj = –

,  gmj = –1. Thus, according to (13.51) the energy

2

shifts in the two levels are

(D E)

=  m

O

1

 B

 m

 B

=

and

 j

2

(D E)

= -  m

1

 B

 m

 B

QPP

(13.53)

 j = - 2

1

For the 2 P 1/2 level,  g = 2/3. Again there are two possible values of  mj, + 2

1

1

1

and  –

and so the level splits into two. For  mj = 

,  gmj =   and for

2

2

3

1

1

 mj = –

,  gmj = – . Therefore, the energy shifts of the two levels are

2

3

 m B  O

(D E)

 B

=

P

 m

1

 j =

3

and

2

P

(13.54)

-  m B P

(D E)

 B

=

 m

1

QP

 j = - 2

3

For the 2 P 3/2 level,  g = 4/3. There are four possible values of  mj:

3

1

1

3

 mj = 

, 

,  –

,  –

2

2

2

2

The corresponding values of  gmj are


2

2

 gmj = 2, 

,  –

,  –2

3

3

The energy shifts of the four levels are

(D E)

= 2 m

O

3

 B

 m

 B

 j = 2

P

2 m B

P

(D E)

 B

=

 m

1

P

 j = 2

3

P

(13.55)

2 m B

(D E)

 B

= -

P

 m

1

 j = - 2

3

P

(D E)

-  m

P

3 =

2

 B

 m

 B

Q

 j = - 2

 % 
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The energy splittings of the levels and the allowed transitions are shown in

Figure 13.12. It is found that the 2 P 1/2 Æ 1 S 1/2 line splits into four lines and the 2 P 3/2 Æ 1 S 1/2 line splits into six lines. 

The reason why there are more lines than in the case of the normal Zeeman

effect is that the splittings of the levels are different for different multiplets. This

is due to the fact that the values of the Landé  g factor is different for different

states. 

 m  Energy

 j

shift

3

2m

2

 BB

1 2 m

2

 BB

3

2 P 3/2

1

–

2

– m

2

 BB

3

3

 m

–

2m

 j  Energy shift

2

 BB

1

1 m BB

2 P

2

3

1/2

1

–

1

– m

2

 BB

3

 mj

1

m

2

 BB

1 S 1/2

1

–

–m

2

 BB

Figure 13.12 Splitting of the n = 1 and n = 2 levels and the corresponding

spectral lines of atomic hydrogen in a weak magnetic field, giving

rise to the anomalous Zeeman effect. The 2P1/2  Æ  1S1/2 line splits

into four lines and the 2P3/2  Æ 1S1/2 line splits into six lines. 

Frequencies of the Zeeman Lines

Let  n 0 be the frequency of a spectral line in the absence of the magnetic field. 

When the magnetic field is applied, the upper and lower levels will split into

different  mj states. Let  g,  mj and  g¢,  mj¢ refer to a particular pair of upper and
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lower states, respectively. Then the frequency  nB of the spectral line arising due

to the transition from the upper to the lower state is given by

( gm -  g¢  m ¢)  m B

 n

 j

 j

 B

 B =   n 0 + 

(13.56)

 h

 eB

or

 nB =   n 0 + ( gmj  –  g¢ mj¢)

(13.57)

4 p m

Thus the frequency shift of this particular Zeeman component is

 eB

D n = ( gm -  g m

¢

¢)

(13.58)

 j

 j

 p

4  m

13.9

ZEEMAN SPLITTING IN A STRONG MAGNETIC

FIELD: THE PASCHEN-BACK EFFECT

As mentioned in the previous section, the anomalous Zeeman effect is observed

in a weak magnetic field.  If the field is increased to a high value, it is found

 that the anomalous Zeeman pattern changes to the normal Zeeman triplet. This

 is called the Paschen-Back effect.  The reason for this behaviour can be

understood as follows. When the atom is placed in a strong magnetic field, the

spin-orbit coupling tends to break down. Therefore, the vectors L and S are

uncoupled and the vector J ceases to exist. The vectors L and S, and hence the corresponding magnetic moment vectors m L and m S, precess independently

about B. They are, therefore, separately space-quantized. The potential energy

of the atom due to the action of the magnetic field is now given by

 U = – m L◊B –  m S◊B

=  – (m L + m S)◊B

 m

=  -

 B (L + 2S)◊B

(13.59)

h

If the direction of the magnetic field is taken as the  z-axis, then the above

expression becomes

 m

 U =  -

 B ( L

h

 z + 2 Sz) B

(13.60)

Substituting for  Lz its eigenvalue

 m  h

 l

; 

 ml =  l,  l–1,…, 0,…,  –( l–1),  – l

(13.61)

and for  Sz its eigenvalue

1

 m  h

 s

; 

 ms = ±

(13.62)

2

we obtain the energy shift for the state with quantum numbers  n,  l,  ml,  ms as D E = ( ml + 2 ms)   mB   B

 %" 
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Since

 ms =  ±1/2, this becomes

D E =  ml   mB   B  ±   mB   B

(13.63)

It may be noted that the first term, which is due to orbital motion, is same

as that in the case of the normal Zeeman effect. The second term, which is due

to spin, is a constant for all the states. Therefore, when we calculate the energy

change in a transition from one state to another, this term cancels out. Hence

the pattern obtained is same as the normal Zeeman pattern. 

In the above treatment we have completely neglected the spin-orbit

coupling. However, more precise experimental and theoretical studies have

shown that some spin-orbit coupling still remains. Consequently, each line of the

Zeeman triplet is actually a doublet of very closely spaced lines. 

PROBLEM 13.7

Draw the energy level diagram to show the Zeeman

splittings of the ground state and the first two excited states of sodium in a

weak magnetic field. Also show the transitions allowed by the selection rules. 

 Solution:

Sodium has only one valence electron. Its ground state is 3 2 S 1/2 and

the next two states are 3 2 P 1/2 and 3 2 P 3/2. 

The anomalous Zeeman splittings and transitions are similar to those for the

hydrogen atom shown in Figure 13.12. 

SUMMARY

1. In 1925, Goudsmidt and Uhlenbeck proposed that the electron has an

intrinsic spin angular momentum, and associated with it a magnetic

moment. Spin has no classical counterpart and is a purely quantum

mechanical effect. The spin quantum number  s has the value 1/2 for

electrons. Therefore, the magnitude of the spin angular momentum is

3

 S = 

 s ( s + )

1 [ = 

[

2

The spin magnetic quantum number is  ms = ±1/2. 

It was later realized that spin is associated with all the particles in nature. 

The particles which have  s = 1/2, 3/2… etc. are called fermions and

particles which have  s = 0, 1, … etc. are called bosons. 

2. The magnetic moment of the electron due to spin is

 e

m S =  – gs 

S

2 m

where

 gs ª 2. 

3. The concept of spin made it possible to account for various unexplained

phenomena, e.g., the anomalous Zeeman effect, the fine structure of

spectral lines and the Stern-Gerlach experiment. 
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4. The total angular momentum J of the electron in an atom is the vector

sum of L and S:

J =  L + S

The magnitude of J is

 J = 

 j (  j + )

1 h

where

 j =   l +  s or | l  –   s|

1

1

=   l + 

or

 l -

2

2

 j is called the total angular momentum quantum number. The corre-

sponding magnetic quantum number has the values

 mj =  j,  j  – 1, …,  –(  j  – 1), – j

5. The spectroscopic notation for atomic states is

2 s+1L j

where L is replaced by  S,  P,  D,  F, … etc. for  l = 0, 1, 2, 3, … etc. The superscript 2 s + 1 is called the multiplicity of the state. 

6. The interaction between the magnetic moments due to the spin and the

orbital motion of the electron gives rise to spin-orbit coupling. This

1

1

coupling pushes up the  j =  l + 

state and pushes down the  j =  l – 

2

2

state from the unperturbed position:

 mc 2  Z  4 4

 a

1

 E spin-orbit = 

for

 j =  l + 

 n 3

2

( l + 1) (2 l + 1)

2

 mc 2  Z  4 4

 a

1

=  -

for

 j =  l  – 

 n 3

2

 l (2 l + 1)

2

Therefore the energy difference in the double is

 mc 2  Z  4 4

 a

(D E) j= l±1/2 =   n 3

2

 l ( l + 1)

This gives rise to the splitting of energy levels and hence the fine

structure of spectral lines. 

7. The total magnetic moment of the electron due to the combined effect

of the orbital motion and the spin is

m J =  – gmB  J/[

where the Landé   g factor is

 j (  j + )

1 +  s ( s + )

1 -  l ( l + )

1

 g = 1 + 

2  j (  j + )

1

 %$
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8. In a weak magnetic field, a spectral line is generally split into more than

three lines. This is called the anomalous Zeeman effect. 

In a weak magnetic field B the coupling between L and S does not

breakdown and so the vector J precesses about the direction of B. The

shift in the energy of the state with quantum numbers  n,  l,  j,  mj is (D E) nljm =   g   m

 j

 j   mB   B

Thus each  nlj level is split into  mj levels giving rise to splitting of spectral

lines, subject to the selection rules

D l = ±1,  D mj = 0, ±1

9. If the magnetic field is increased to a high value, the anomalous pattern

changes to the normal triplet. This is called the Paschen-Back effect. The

reason is that in a strong field the spin-orbit coupling breaks down and

therefore the vector J ceases to exist. The energy shift for the state

 n,  l,  ml,  ms is

D E =  ml   mB   B  ±   mB   B

The first term is due to orbital motion. The second term, which is due

to spin, is constant and therefore, does not contribute to energy changes

in a transition from one state to another. Hence the pattern becomes

normal. 

QUESTIONS

1. Describe the Stern-Gerlach experiment and give its theory. Discuss the

significance of this experiment. 

2. Describe an experiment which conclusively demonstrates the existence

of spin angular momentum and explain how the experiment arrives at this

conclusion. 

3. Discuss diagrammatically the two possible ways in which the vectors L

and  S combine to form the vector J. Why do L and S precess around

J? 

4. What is meant by spin-orbit coupling? Obtain an expression for the

1

energy difference in the two states corresponding to  j =  l + 

and

2

1

 j =  l  – 

due to spin-orbit interaction. 

2

5. What do you understand by fine-structure of spectral lines? Explain the

splitting of the 2 p  Æ  1 s line in the hydrogen spectrum on the basis of

spin-orbit coupling. 

6. Show that the total magnetic moment of an orbital electron in the state

with total angular momentum J is given by

m J = – g  mB J/h
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Write the expression for the Landé  g factor. 

7. Distinguish between normal and anomalous Zeeman effect. Give the

theory of the anomalous Zeeman effect. 

8. Explain the splitting of atomic spectral lines in the presence of a moderate

magnetic field by taking spin into account and hence explain the splitting

of the (2 P 3/2  Æ  1 S 1/2) and (2 P 1/2  Æ  1 S 1/2) lines of the hydrogen spectrum in a moderate magnetic field. 

 %& 
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So far, our study of atomic structure has been mainly concerned with

hydrogenic atoms, which have only a single electron moving around the

nucleus. We have obtained the various quantum states of such an atom and their

energies. Let us now move to atoms having more than one electron. 

In order to obtain the quantum states and the corresponding energies of a

many-electron atom, we have to solve the Schrödinger equation for this atom. 

However, the mathematical complexities of solving such an equation are so

much that it has not been solved exactly even for the helium atom, which has

only two electrons. The reason is that each of the electrons interacts not only

with the nucleus but also with every other electron. Therefore, the potential

energy and the wave function are functions of the coordinates of all the elec-

trons. Obviously, the problem has to be solved under certain approximations. 

The simplest approximation would be to ignore all interactions between

electrons and consider each electron as moving only under the action of the
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nucleus. This is called the  independent particle approximation.  However, it

turns out that this approximation gives quantitative predictions which are far off

the observed values. The reason is that as the number of electrons increases, 

their interactions with each other become as significant as their interactions with

the nucleus. 

14.1

THE CENTRAL FIELD APPROXIMATION

A more appropriate picture is to assume that  each electron moves in an effective

 spherically symmetric potential generated by all the other electrons and the

 nucleus.  This is called the central field approximation and provides a useful

starting point for the understanding of the structure and properties of many-

electron atoms. 

The above approximation greatly simplifies the analysis because we can

again deal with one-electron wave functions. The change is that the Coulomb

potential energy function, which varies as 1/ r, is replaced by a different function

 V( r). However, since  V( r) is spherically symmetric, it does not enter the differential equations for Q( q) and F( f). Therefore, these angular functions, 

and hence the orbital angular momentum states, are the same as those for the

hydrogenic atoms. The quantum numbers  l and  ml have the same meaning as

in one-electron atoms, and the magnitude and the  z-component of the orbital

angular momentum are again given by

 L = 

 l ( l + )

1 [, 

 l = 0, 1, 2, …,  n  – 1

(14.1)

and

 L

[

 z =   ml , 

 ml = 0, ±1,  ±2,  …,  ± l

(14.2)

The radial wave functions are, however, different from those for the

hydrogenic atoms because of the change in  V( r). Therefore, the energy levels

are not given by (12.41). It turns out that  the energy of a state now depends on

 both n and l, rather than just on n.  A quantum state can still be labelled by the

four quantum numbers ( n,  l,  ml,  ms). 

14.2

THE PAULI EXCLUSION PRINCIPLE

Having obtained the quantum states of a many-electron atom in the central-field

approximation, the next, and perhaps the most important, question that

confronts us is:  How are the electrons distributed in these states in the ground

 state of the atom? In a hydrogenic atom, there is only one electron and it remains

in the lowest energy state. Are all the electrons in a complex atom also packed

in the lowest state? Experimental evidence tells us that this cannot be possible. 

For, if this were true, then there would be only gradual changes in the chemical

and physical properties of elements as the atomic number increases. However, 

such gradual changes are not observed. The properties of elements are found

 &
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to vary drastically in certain cases where the atomic number differs by just one. 

A typical example is that of the three elements fluorine, neon and sodium, which

have atomic numbers 9, 10 and 11, respectively. Fluorine is a halogen gas which

is chemically very active and tends to form compounds in which each fluorine

atom acquires an extra electron. Neon is an inert gas forming no compounds

at all. Sodium is an alkali metal, which is also very active chemically and tends

to form compounds in which each sodium atom loses an electron. There are

similar other groups of elements. 

These observations show that in the ground state of a many-electron atom

all the electrons cannot be in the lowest energy level because in that case the

chemical and physical properties cannot change so drastically by a small change

in atomic number. 

The answer to this puzzle was provided by W.Pauli, who in 1925, 

discovered the principle that governs the electronic structure of many-electron

atoms. It is called the exclusion principle and states that

No two electrons in an atom can occupy the same quantum state. 

Since an atomic state can be described by the four quantum numbers  n,  l, 

 ml and  ms, the exclusion principle may also be stated as

No two electrons in an atom can have the same values of all four

quantum numbers ( n,    l,  ml,  ms). 

The Pauli exclusion principle has a more general and much deeper

significance than what is apparent from the above discussion. Physicists have

divided all particles into two classes:  fermions and  bosons. Particles having

half-an-odd-integral spin are called  fermions because a system of such particles

is governed by the Fermi-Dirac statistical distribution law. Electrons, protons

and neutrons are the most important examples of fermions. 

Particles having zero or integral spin are called  bosons. A system of such

particles is governed by the Bose-Einstein statistical distribution law. Photons

and alpha particles are examples of bosons. 

It is found that only the fermions obey the Pauli exclusion principle. Thus, 

a more general statement of the exclusion principle is:

No two identical fermions in a system can occupy the same quantum

state. 

14.3 SYMMETRIC AND ANTISYMMETRIC WAVE

FUNCTIONS: THE GENERALIZED PAULI PRINCIPLE

Before proceeding with the application of the exclusion principle in determining

the electronic configuration of elements, let us see what are its implications in

constructing the wave function of a system of identical particles. At the

microscopic level, the identical particles are literally  indistinguishable from one
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another. There is simply no way to “tag” a particle so that it may be distinguished

from another similar particle. This fact has to be taken care of in constructing

the wave functions of identical particle systems. For simplicity, let us consider

a two particle system. The particles are assumed to be noninteracting. 

Suppose particle 1 is in the state labelled  a and particle 2 is in the state

labelled  b. Then it would be natural to think that the two-particle wave function

might be written as

Y(1, 2) =  ya(1)   yb(2)

(14.3)

Here the letter  a or  b represents the set of all the quantum numbers which

define a particular one-particle state. For example, if the particles are electrons

in an atom, then  a or  b represents the set ( n,  l,  ml,  ms). The integer 1 or 2 refers to all the coordinates of a particle. 

On the other hand, if particle 2 is in state  a and particle 1 is in state  b, then

the two-particle wave function would be

Y(2, 1) =  ya(2)   yb(1)

(14.4)

Now, since the particles are indistinguishable, neither of these wave

functions is satisfactory because we have no way to find out which of the two

describes the system at any moment. In fact, both the situations are equally

probable. Therefore, the proper description of the system would be a linear

combination of Y(1, 2) and Y(2, 1). Two such combinations are possible. The

first is the symmetric combination

1

Y S(1, 2) = 

[Y(1, 2) + Y(2, 1)]

2

1

= 

[ ya(1)   yb(2) +  ya(2)   yb(1)]

(14.5)

2

The other is the antisymmetric combination

1

Y A(1, 2) = 

[Y(1, 2) –  Y(2, 1)]

2

1

= 

[ ya(1)   yb(2)  –   ya(2)   yb(1)]

(14.6)

2

The factor 1/ 2  in front is the normalization constant. Y S(1, 2) remains

invariant when the two particles are exchanged while Y A(1, 2) changes sign

under such an exchange. That is, 

 P 12Y S(1, 2) = Y S(2, 1) = Y S(1, 2)

(14.7)

and

 P 12Y A(1, 2) = Y A(2, 1) = – Y A(1, 2)

(14.8)

where   P 12 is the  particle exchange operator.  The overall sign change is

acceptable because physical probabilities involve only the absolute squares of

the wave functions, which remain unaffected by a change of sign. 
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Now comes the important question: Which of the two wave functions, Y S

or Y A must be used to describe a system of two identical particles. The answer

is provided by the Pauli exclusion principle which says that  no two identical

 fermions in a system can occupy the same quantum state.  If, in violation of the

Pauli principle, we put  a =  b in the right hand sides of (14.5) and (14.6), we

find that Y A becomes zero whereas Y S does not. Thus, the Pauli exclusion

principle requires that only an antisymmetric wave function be used to describe

a system of fermions, which includes electrons, the particles with which we are

mainly concerned. The antisymmetric wave function for a two-fermion system

[Equation (14.6)] may be written conveniently as a 2 ¥ 2 determinant:

1

 y  1

( )

 y  1

( )

Y

 a

 b

 A(1, 2) = 

(14.9)

2  y (2)  y (2)

 a

 b

This form can be immediately generalized to write the antisymmetric wave

function for any system of  N fermions as an  N  ¥   N determinant:

 y

1

( )

 y

1

( )

º  y

1

( )

 a

 a

 a

1

2

 N

1

Y 1

( , 2, 

, 

º  N) =

 y (2)

 y (2)

º  y

(2)

 A

 a

 a

 a

1

2

 N

 N! 

(14.10)

M

 y ( N)  y ( N) º  y

( )

 a

 a

 a

 N

1

2

 N

This is called the  Slater determinant. 

The other class of particles,  bosons,  have wave functions that are  symmetric

under exchange of any two identical particles. 

It is found that it is more fundamental and useful to classify particles

according to the symmetric or antisymmetric nature of their wave functions

rather than according to whether they obey the Pauli exclusion principle or not. 

The  generalized Pauli principle may be stated as:

 The wave function of a many-particle system is antisymmetric under the

 exchange of two identical fermions and symmetric under the exchange of two

 identical bosons. 

14.4

ATOMIC SHELL STRUCTURE

We are now in a position to determine how the electrons are distributed in

various quantum states in a multielectron atom. This distribution is governed by

the following two factors:

(1) The Pauli exclusion principle, according to which no two electrons can

occupy the same quantum state. 

(2) In a normal (unexcited) atom the electrons tend to occupy the lowest

possible energy levels. 
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Shells and Subshells

A quantum state in an atom is characterized by four quantum numbers  n,  l,  ml

and   ms. We have seen in section 14.1 that in the central field approximation, 

which we use for a multielectron atom, the energy of a state depends on the

quantum numbers  n and  l, and not just on  n. There is, of course, no dependence on  ml and  ms. The energy still depends mainly on  n, as in a one-electron atom and varies only slightly with  l. It increases (i.e. becomes less negative) as  l is increased. 

Electronic states having the same principal quantum number  n are said to

belong to the same shell.  Shells are denoted by capital letters as under:

 n

1

2

3

4

5

6

7

Letter

 K

 L

 M

 N

 O

 P

 Q

This notation has its origin in the study of  X-ray spectra. For a given  n, the

quantum states that have the same orbital quantum number  l are said to belong

to the same subshell.  A subshell is denoted by the ( n,  l) values. Thus, we have 1 s, 2 s, 2 p, 3 s, 3 p, 3 d etc. subshells. The maximum number of electrons in a subshell is 2(2 l + 1), since the quantum number  ml can take the (2 l + 1) values 1

1

ranging from –  l to + l while  ms may be either +

or –

. 

2

2

The total number of states with the principal quantum number  n is given by

 n-1

 N =  Â 2(2 l + 1)

 l =0

= 2[1 + 3 + 5 + … + (2 n  – 1)]

L 1+(2 n-1

R

) U

= 2  n  S

V

2

NM

O

T

WQP

= 2 n 2

This is also the maximum number of electrons that can occupy the  n th shell. 

Table 14.1 gives the number of quantum states in, or equivalently, the

maximum number of electrons that can occupy, all the shells and subshells upto

 n = 4. 

It will be useful to keep in mind some important facts at this stage. The

number of subshells in the  n th shell is  n. The number of  spin-orbitals (defined by   ml,  ms) in a subshell with orbital quantum number  l is 2(2 l + 1). When a subshell is filled, S ml = S ms = 0. A completely filled shell or subshell is said to be “closed”. For a closed subshell  L =  S = 0 and so  J = 0. Therefore, only the electrons outside closed subshells need to be considered in order to find the total

angular momentum of an atom. 
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Table 14.1

Number of Quantum States in Shells and Subshells upto n = 4

Shell

Subshell

Number of States

Number of States

Notation

n

Notation

l

in  the Subshell

in the Shell

2(2l + 1)

(2n2)

K

1

1s

0

2

2

L

2

U

2s

0

2 V

2p

1

6 W

8

M

3

3s

0

2 U

3p

1

6 V|

3d

2

10 W|

18

N

4

4s

0

2 U|

4p

1

6 V|

32

4d

2

10 |

4f

3

|

14 W

Electronic Configurations of Atoms in Their Ground States

 A specification of the n and l values for all the electrons in an atom is called

 the electronic configuration for that atom.  Unless otherwise stated, the

electronic configuration means the ground state (lowest energy) configuration. 

The electronic configurations of all the elements can be obtained beginning with

hydrogen and putting in the electrons one by one in the lowest available ( n,  l)

state. It is found from spectroscopic analysis that the order of succession of

the energy levels  Enl is nearly the same for all atoms and does not depend

significantly on the details of the central field potential  V( r). From the analysis of spectroscopic data, the following empirical rule has been discovered, which

governs the ascending order of energies  Enl of the ( n,  l) states:

 The energy Enl of an (n, l) state is an increasing function of the sum

 (n + l). If two states have the same (n + l) value then the state with the lower

 n value fills first: For example, the states 4 p and 3 d have the same  n +  l value but 3 d has lower  n value. Therefore, 3 d is filled before 4 p. 

The order of the subshells with increasing energy is:

1 s, 2 s, 2 p, 3 s, 3 p, [4 s, 3 d], 4 p, [5 s, 4 d], 5 p, [6 s, 4 f, 5 d], 6 p, [7 s, 5 f, 6 d]. 

The brackets enclose levels which have nearly the same energy so that their

order can vary frome one atom to another. 

In Table 14.2 we give the ground state electronic configurations of all the

elements from  Z = 1 to  Z = 103. The number of electrons in a subshell is

indicated by a superscript. Thus, 1 s 2 tells that there are 2 electrons in the 1 s level and 2 p 4 tells that there are 4 electrons in the 2 p level. The table also gives the lowest spectral terms and the ionization energies of the atoms. 

For the first element hydrogen, which has  Z = 1, the ground state

configuration is 1 s or 1 s 1. The next element, helium ( Z = 2), has the ground state configuration 1 s 2. Thus helium has  closed  1 s subshell. 
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The third element, lithium ( Z = 3), obviously has the ground state

configuration 1 s 2 2 s. This is written in the table as [He] 2 s, where [He] indicates the He configuration, i.e., 1 s 2. This notation is used to indicate all inert gas

configurations, e.g., [Ne], [Ar] etc.. Beryllium ( Z = 4) has the closed subshell

configuration 1 s 2  2 s 2. 

In the elements from boron ( Z = 5) to neon ( Z = 10), the electrons fill the

2 p subshell progressively as shown in the table. The 2 p subshell closes at neon

which has the configuration [He] 2 s 2  2 p 6. 

From sodium ( Z = 11) to argon ( Z = 18) the normally expected filling

process continues. At potassium ( Z = 19) the first departure from the expected

ordering according to lowest value of  n occurs. The last electrons in potassium

and calcium ( Z = 20) go into the 4 s rather than the 3 d subshell. 

The filling of the 3 d subshell starts with scandium ( Z = 21), which has the

configuration [Ar] 4 s 2 3 d, and ends with zinc ( Z = 30). There is an anomaly at chromium ( Z = 24) which has only one 4 s electron, the configuration 4 s 3 d 5

being energetically more favourable than 4 s 23 d  4. We have already mentioned

that the 4 s and 3 d levels are very close in energy and their ordering may vary

from element to element. In manganese ( Z = 25) the last electron goes into the

4 s level which was left unoccupied in chromium. 

A similar situation develops at copper ( Z = 29) and zinc ( Z = 30) which have

the configurations [Ar] 4 s  3 d 10 and [Ar] 4 s 2  3 d 10, respectively. 

The rest of the table can be analyzed in a similar manner. The filling of the

levels is generally systematic except for some irregularities at certain places. 

Table 14.2 also gives the ionization energies and the lowest spectral terms

for the elements for ready reference. 

Table 14.2

Electronic Configurations, Spectral Terms and Ionization Energies of

the Atoms in their Ground States

Atomic

Element

Electronic

Spectral

Ionization

number Z

configuration

term

energy (eV)

1

H

Hydrogen

1 s

2S1/2

13.60

2

He

Helium

1s2

1S0

24.59

3

Li

Lithium

[He]2s

2S1/2

5.39

4

Be

Beryllium

[He]2s2

1S0

9.32

5

B

Boron

[He]2s22p

2P1/2

8.30

6

C

Carbon

[He]2s22p2

3P0

11.26

7

N

Nitrogen

[He]2s22p3

4S3/2

14.53

8

O

Oxygen

[He]2s22p4

3P2

13.62

9

F

Fluorine

[He]2s22p5

2P3/2

17.42

10

Ne

Neon

[He]2s22p6

1S0

21.56

11

Na

Sodium

[Ne]3s

2S1/2

5.14

12

Mg

Magnesium

[Ne]3s2

1S0

7.65

13

Al

Aluminium

[Ne]3s23p

2P1/2

5.99

14

Si

Silicon

[Ne]3s23p2

3P0

8.15

( Cont. )
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Table 14.2

Cont. 

Atomic

Element

Electronic

Spectral

Ionization

number Z

configuration

term

energy (eV)

15

P

Phosphorus

[Ne]3s23p3

4S3/2

10.49

16

S

Sulphur

[Ne]3s23p4

3P2

10.36

17

Cl

Chlorine

[Ne]3s23p5

2P3/2

12.97

18

Ar

Argon

[Ne]3s23p6

1S0

15.76

19

K

Potassium

[Ar]4s

2S1/2

4.34

20

Ca

Calcium

[Ar]4s2

1S0

6.11

21

Sc

Scandium

[Ar]4s23d

2D3/2

6.54

22

Ti

Titanium

[Ar]4s23d2

3F2

6.82

23

V

Vanadium

[Ar]4s23d3

4F3/2

6.74

24

Cr

Chromium

[Ar]4s3d5

7S3

6.77

25

Mn

Manganese

[Ar]4s23d5

6S5/2

7.44

26

Fe

Iron

[Ar]4s23d6

5D4

7.87

27

Co

Cobalt

[Ar]4s23d 7

4F9/2

7.86

28

Ni

Nickel

[Ar]4s23d 8

3F4

7.64

29

Cu

Copper

[Ar]4s3d10

2S1/2

7.73

30

Zn

Zinc

[Ar]4s23d10

1S0

9.39

31

Ga

Gallium

[Ar]4s23d104p

2P1/2

6.00

32

Ge

Germanium

[Ar]4s23d104p2

3P0

7.90

33

As

Arsenic

[Ar]4s23d104p3

4S3/2

9.81

34

Se

Selenium

[Ar]4s23d104p4

3P2

9.75

35

Br

Bromine

[Ar]4s23d104p5

2P3/2

11.81

36

Kr

Krypton

[Ar]4s23d104p6

1S0

14.00

37

Rb

Rubidium

[Kr]5s

2S1/2

4.18

38

Sr

Strontium

[Kr]5s2

1S0

5.70

39

Y

Yttrium

[Kr]5s24d

2D3/2

6.38

40

Zr

Zirconium

[Kr]5s24d 2

3F2

6.84

41

Nb

Niobium

[Kr]5s 4d 4

6D1/2

6.88

42

Mo

Molybdenum

[Kr]5s 4d5

7S3

7.10

43

Tc

Technetium

[Kr]5s2 4d 5

6S5/2

7.28

44

Ru

Ruthenium

[Kr]5s 4d7

5F5

7.37

45

Rh

Rhodium

[Kr]5s 4d 8

4F9/2

7.46

46

Pd

Palladium

[Kr]4d10

1S0

8.34

47

Ag

Silver

[Kr]5s 4d10

2S1/2

7.58

48

Cd

Cadmium

[Kr]5s24d10

1S0

8.99

49

In

Indium

[Kr]5s24d105p

2P1/2

5.79

50

Sn

Tin

[Kr]5s24d105p2

3P0

7.34

51

Sb

Antimony

[Kr]5s24d105p3

4S3/2

8.64

52

Te

Tellurium

[Kr]5s24d105p4

3P2

9.01

53

I

Iodine

[Kr]5s24d105p5

2P3/2

10.45

54

Xe

Xenon

[Kr]5s24d105p6

1S0

12.13

55

C s

Caesium

[Xe]6s

2S1/2

3.89

56

Ba

Barium

[Xe]6s2

1S0

5.21

57

La

Lanthanum

[Xe]6s25d

2D3/2

5.58

58

Ce

Cerium

[Xe]6s24f 5d

1G4

5.47

59

Pr

Praseodymium [Xe]6s24f 3

4I9/2

5.42

( Cont. )

Atomic Structure II: Many-Electron Atoms

&%

Table 14.2

Cont. 

Atomic

Element

Electronic

Spectral

Ionization

number Z

configuration

term

energy (eV)

60

Nd

Neodymium

[Xe]6s24f 4

5I4

5.49

61

Pm

Promethium

[Xe]6s24f 5

6H5/2

5.55

62

Sm

Samarium

[Xe]6s24f 6

7F0

5.63

63

Eu

Europium

[Xe]6s24f 7

8S7/2

5.67

64

Gd

Gadolinium

[Xe]6s24f 75d

9D2

6.14

65

Tb

Terbium

[Xe]6s24f 9

6H15/2

5.85

66

Dy

Dysprosium

[Xe]6s24f 10

5I8

5.93

67

Ho

Holmium

[Xe]6s24f 11

4I15/2

6.02

68

Er

Erbium

[Xe]6s24f 12

3H6

6.10

69

Tm

Thulium

[Xe]6s24f 13

2F7/2

6.18

70

Yb

Ytterbium

[Xe]6s24f 14

1S0

6.25

71

Lu

Lutetium

[Xe]6s24f 145d

2D3/2

5.43

72

Hf

Hafnium

[Xe]6s24f 145d2

3F2

7.0

73

Ta

Tantalum

[Xe]6s24f 145d3

4F3/2

7.89

74

W

Tungsten

[Xe]6s24f 145d4

5D0

7.98

75

Re

Rhenium

[Xe]6s24f 145d5

6S5/2

7.88

76

Os

Osmium

[Xe]6s24f 145d6

5D4

8.7

77

Ir

Iridium

[Xe]6s24f 145d7

4F9/2

9.1

78

Pt

Platinum

[Xe]6s 4f 145d9

3D3

9.0

79

Au

Gold

[Xe]6s 4f 145d10

2S1/2

9.23

80

Hg

Mercury

[Xe]6s24f145d10

1S0

10.44

81

Tl

Thallium

[Xe]6s24f145d106p

2P1/2

6.11

82

Pb

Lead

[Xe]6s24f 145d106p2

3P0

7.42

83

Bi

Bismuth

[Xe]6s24f145d106p3

4S3/2

7.29

84

Po

Polonium

[Xe]6s24f 145d106p4

3P2

8.42

85

At

Astatine

[Xe]6s24f 145d106p5

2P3/2

9.5

86

Rn

Radon

[Xe]6s24f145d106p6

1S0

10.75

87

Fr

Francium

[Rn]7s

2S1/2

4.0

88

Ra

Radium

[Rn]7s2

1S0

5.28

89

Ac

Actinium

[Rn]7s26d

2D3/2

6.9

90

Th

Thorium

[Rn]7s26d 2

3F2

91

Pa

Protactinium

[Rn]7s25f 26d

4K11/2

92

U

Uranium

[Rn]7s25f 36d

5L6

4.0

93

Np

Neptunium

[Rn]7s25f 46d

6L11/2

94

Pu

Plutonium

[Rn]7s25f 6

7F0

5.8

95

Am

Americium

[Rn]7s25f 7

8S7/2

6.0

96

C m

Curium

[Rn]7s25f 76d

9D2

97

Bk

Berkelium

[Rn]7s25f 86d

8H17/2

98

Cf

Californium

[Rn]7s25f10

5I8

99

Es

Einsteinium

[Rn]7s25f11

4I15/2

100

Fm

Fermium

[Rn]7s25f12

3H6

101

Md

Mendelevium

[Rn]7s25f13

2F7/2

102

No

Nobelium

[Rn]7s25f14

1S0

103

Lw

Lawrencium

[Rn]7s25f 146d

2D3/2

 && 
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In section 14.6, we shall see how the electronic structure of elements

accounts for the periodicity and regularity in their properties. Before that, in

section 14.5, we present the main features of the periodic table of elements, 

which was drawn up by the chemists on the basis of chemical properties. 

14.5

THE PERIODIC TABLE

The Russian chemist D. I. Mendeleev formulated the periodic law of elements

in 1869, which states that

When the elements are arranged in order of increasing atomic

number, the elements with similar physical and chemical properties

recur at regular intervals. 

Mendeleev arranged all the elements according to increasing atomic number

in a table such that the elements with similar properties appear in a column. The

elements in a row are found to exhibit gradual changes in properties as one

proceeds from the first to the last element in the row.  The arrangement is called

 the periodic table.  A simple modern version of the periodic table is given in

Table 14.3. 

The elements in a column are said to form a group and the elements in a

row are said to form a period.  Group I consists of hydrogen and the alkali

metals. Group II consists of alkaline earth metals. Group VII consists of halogen

gases and Group VIII consists of inert (noble) gases. Thus, across each period

there is a gradual transition from an active (alkali) metal through less active

metals and nonmetals to highly active nonmetals (halogen) and finally to an inert

gas. 

Each period after the third has a series of elements, called transition

metals.  They have similar physical and chemical properties. Fifteen of the

transition metals in period 6, known as lanthanides (or rare earths), are

almost indistinguishable in their properties. They are put at the same place in the

periodic table. Similarly, period 7 has a group of metals, called actinides which

are almost indistinguishable, and hence placed at the same place. 

14.6

EXPLANATION OF THE PERIODIC TABLE

When Mendeleev proposed the periodic table in 1869, electrons and nuclei were

not discovered and quantum mechanics was a long way off in the future. After

the development of the quantum theory of the atom, it was realized that the

concept of electronic shells and subshells fits extremely well into the pattern of

the periodic table. We now know that the chemical activity of an atom is mainly

determined by the electrons in the ‘outer’ subshell, which are least tightly

bound. These are called the  valence electrons. The crucial factors are the

number of occupied states in this subshell, and the energy difference (gap)

between this subshell and the next one. 

Table 14.3

The Periodic Table

Group

I

II

III

IV

V

VI

VII

VIII

Period

1

1

2

H

He

2

3

4

5

6

7

8

9

10

Li

Be

B

C

N

O

F

Ne

3

11

12

13

14

15

16

17

18

Na

Mg

Al

Si

P

S

Cl

Ar

Atomic 

4

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

K

Ca

Sc

Ti

V

Cr

Mn

Fe

Co

Ni

Cu

Zn

Ga

Ge

As

Se

Br

Kr

5

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

Structure 

Rb

Sr

Y

Zr

Nb

Mo

Tc

Ru

Rh

Pd

Ag

Cd

In

Sn

Sb

Te

I

Xe

6

55

56

57–71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

Cs

Ba

†

Hf

Ta

W

Re

Os

Ir

Pt

Au

Hg

Tl

Pb

Bi

Po

At

Rn

II: 

7

87

88

89–103

 Halogens

 Inert

Many-Electron 

Fr

Ra

††

 gases

 Alkali

 metals

† Rare earths

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

(Lanthanides)

La

Ce

Pr

Nd

Pm

Sm

Eu

Gd

Tb

Dy

Ho

Er

Tm

Yb

Lu

Atoms

†† Actinides

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

Ac

Th

Pa

U

Np

Pu

Am

Cm

Bk

Cf

Es

Fm

Md

No

Lw

&' 
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An atom tends to be chemically inactive if its outer subshell is completely

filled (closed) and there is a large energy gap between this subshell and the next

higher one. This is the situation for the gases He, Ne, Ar, Kr, Xe and Rn. Hence

the reason why they are called  inert or  noble gases. In the periodic table all of

them appear in a single column (group VIII). 

The alkali metals, Li, Na, K, Rb, Cs and Fr contain a single  s electron outside

an ‘inert gas’ core. This electron is relatively far from the nucleus and is also

‘shielded’ from the nucleus by the inner electrons. Therefore, it is weakly bound

and the atom has a tendency to lose this electron in its interaction with other

atoms. They all appear in the same column (group I) in the periodic table. 

At the other extreme are halogens, F, Cl, Br and I, which have an outer  p

subshell lacking only one electron. They have a tendency to capture an electron

so that they may complete their outer subshells and thus have a more stable

arrangement of electrons. This makes them chemically very active. This explains

why a halogen atom readily combines with an alkali atom to form compounds

such as NaCl, LiF etc. The halogens appear in group VII of the periodic table. 

We can account for the similarities of the elements in the other groups of

the periodic table by the same kind of reasoning. Thus,   the recurrence of similar

 chemical properties in the periodic table is due to the regularities in the

 electronic configuration of outer electronic shells.  This phenomenon is basically

a consequence of the Pauli exclusion principle. 

The transition elements are formed when a  d state is gradually filled. In

these elements, the outer electrons have configurations of the type

( n + 1) s 2 n d x or ( n + 1) snd x+1. The first set of transition elements (from Z = 21 to  Z = 30) has  n = 3, the second set (from  Z = 39 to  Z = 48) has  n  =

4, and the third set (from  Z = 71 to  Z = 80) has  n = 5. Some irregularities occur in the filling of subshells due to the competition between the  nd and ( n + 1) s levels. 

The   lanthanides (rare earths) correspond to the gradual filling of the 4 f

subshell and the  actinides to the filling of the 5 f subshell, with some irregularities in both the cases. The addition of the  f electrons has very little effect on the

chemical properties of these elements. This justifies these being put at the same

place in the periodic table. 

Thus, all the salient features of the periodic table can be accounted for by

the quantum theory of atomic structure. 

14.7

IONIZATION ENERGIES

The ionization energy of an atom is the energy required to remove the outermost

electron from the atom. In Figure 14.1 we show the variation of the ionization

energies of the elements with the atomic number  Z. As expected, the ionization

energy does not vary in a monotonic manner with  Z. It has maximum values

for the inert gases which have a complete  K shell (He) or  p subshell (Ne, Ar, 

Kr, Xe, Rn) and is minimum for the alkali metals whose electronic configuration

corresponds to that of an ideal gas plus an s electron. 
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Figure 14.1

The ionization energy as a function of the atomic number Z. 

This behaviour can be understood qualitatively as follows. In the case of

alkali metals the single  s electron is at a fairly large distance from the nucleus

and is also shielded very effectively from the nucleus by the electrons in the

completely filled subshells. As we move from group I to group VIII across a

period, more and more electrons start filling the shell/subshell. These electrons

have equivalent spatial distributions and so any one of them is not shielded very

effectively from the nucleus by the other electrons. As a result the effective

charge experienced by these electrons increases as  Z increases during the filling

of a subshell. Hence the binding energy reaches a maximum value for a closed

subshell. 

14.8

CORRECTIONS TO THE CENTRAL FIELD

APPROXIMATION:  LS COUPLING AND j j COUPLING

So far we have assumed that, in a many-electron atom, each electron moves

independently in an average effective potential produced by the attraction of the

nucleus and the repulsion due to the other electrons. This is called the  central

 field approximation. It is necessary to apply corrections to this approximation

so that a precise prediction of the energies, angular momenta and other

properties of the various states of the atom may be possible. The two main

corrections are those due to (a) the  residual electrostatic interaction between the

electrons and (b) the  spin-orbit interaction of the electrons. The former is the

difference between the actual electrostatic repulsion between the electrons and

the average repulsion contained in the central field. 

In all but the heaviest atoms, interaction (a) is much stronger than interac-

tion (b). The procedure developed to take care of this situation is called the  LS

 (or Russel-Saunders) coupling scheme.  The second situation, in which (b) domi-

nates (a), occurs in heavy atoms. It is taken care of by the  jj coupling scheme. 

 ' 
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LS Coupling

In this case the electrostatic interaction couples the individual orbital angular

momenta L i of all the electrons into a single resultant L. Similarly, the individual spin angular momenta S i are coupled together into a resultant S. The weak spin-orbit interaction then couples L and S to give the total angular momentum of the

atom  J. Thus, the  LS coupling scheme is

L = SL i

S = SS i

(14.11)

J = L + S

(LS Coupling)

As explained in section 14.4, for a closed subshell L = S = 0 and so J = 0. 

Therefore, only the electrons in the incomplete subshells need be considered to

calculate  L, S and J for the whole atom. 

The  commonly used convention in the spectroscopy literature is to use

capital letters  L,  S,  J,  ML,  MS and  MJ for the quantum numbers pertaining to the whole atom in the case of many-electron atoms. We shall follow this convention. 

The angular momentum magnitudes  L*,  S*,  J* and their respective  z-

components  Lz,  Sz,  Jz can be expressed in terms of the corresponding quantum numbers   L,  S,  J,  ML,  MS and  MJ in the usual manner: L* =

 L ( L + )

1

; 

h  L

h

 z =  ML

 S* =

 S ( S + )

1 h;  S

h

 z =  MS

(14.12)

 J* =

 J (  J + )

1

; 

h  J

h

 z =  MJ

To obtain the possible values of  L and  S, we start with two electrons, find

out all possible  L,  S values for these two electrons and then bring in the third

electron, the fourth electron, and so on. For two electrons having quantum

numbers   l 1 and  l 2, the allowed values of the orbital quantum number  L are L = | l 1  –   l 2|, | l 1  –   l 2| + 1, …,  l 1 +  l 2

(14.13)

Since

 s 1 =   s 2 = 1/2, we have  S = 0, 1. 

For a particular  L,  S pair, the allowed values of  J are

 J = | l  –   s|, | l  –   s| + 1, …,  l +  s  – 1,  l +  s (14.14)

The quantum states corresponding to definite values of  L,  S and  J are called terms.  For  S <  L, there are (2 S + 1) values of  J. This number is called the   multiplicity of the term. When  S >  L, there are (2 L + 1) values of  J. 

The  term notation has been already discussed in detail in section 13.5. The

reader should go back to it and review it before proceeding further. The term

notation for the ( L,  S,  J) state of a many-electron atom is

2 S+1L J

Atomic Structure II: Many-Electron Atoms
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Some Examples of LS Coupling of Two Electrons

While determining the possible terms corresponding to a given configuration, 

we must remember to reject the values of  L and  S corresponding to states

forbidden by the Pauli exclusion principle. 

If the two electrons are  nonequivalent, i.e., they belong to different

subshells, then the exclusion principle is automatically satisfied. However, if the

two electrons are  equivalent, i.e., they belong to the same subshell, then the

exclusion principle must be taken care of. It can be shown that according to the

exclusion principle  only singlet states (S = 0) are allowed for even values of L

 and only triplet states (S = 1) are allowed for odd values of L.    We shall not go into the details of this rule. 

EXAMPLE 1

Two nonequivalent  p electrons (configuration   np   n¢ p) 1

Here

 l 1 =  l 2 = 1;  s 1 =  s 2 =  2

Therefore, the possible values of  L and  S are

 L = 0, 1, 2;  S = 0, 1

The   J values for each  L,  S combination and the corresponding spectral

terms are given in Table 14.4. 

Table 14.4

LS Coupling of Two Nonequivalent p Electrons

L

S

J

Spectral Terms

0

0

0

1S0

0

1

1

3S1

1

0

1

1P1

1

1

0, 1, 2

3P0,1,2

2

0

2

1D2

2

1

1, 2, 3

3D1,2,3

Thus, there are a total of 10 possible terms. 

EXAMPLE 2

Two equivalent  p electrons (Configuration  np   np)

According to the rule given above, to satisfy the Pauli exclusion principle, we

must exclude the second, the third and the sixth rows from Table 14.4. Thus

there are only five allowed terms: 1 S 0, 3 P 0,1,2 and 1 D 2. 

EXAMPLE 3

Configuration  np  n¢ d

1

Here

 l 1 = 1,  l 2 = 2;  s 1 =  s 2 =  2

Possible values of  L  = 1, 2, 3

Possible values of  S = 0, 1

The   J values for each  L,  S combination and the corresponding spectral

terms are given in Table 14.5. 

 '" 
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Table 14.5

LS Coupling of Two Electrons having Configuration np  n¢d

L

S

J

Spectral Terms

1

0

1

1P1

1

1

0, 1, 2

3P0,1,2

2

0

2

1D2

2

1

1, 2, 3

3D1,2,3

3

0

3

1F3

3

1

2, 3, 4

3F2,3,4

Relative Energies of Different Terms. Hund’s Rules

The relative energies of different terms can be obtained by detailed quantum

mechanical calculation using perturbation theory. However, the following

empirical rules, called  Hund’s rules, are useful in finding out the energywise

ordering of the terms for the ground state configuration. 

Rule 1: For a given configuration, the term with the largest possible value of

 S has the lowest energy. As  S decreases the energy of the term increases. 

Rule 2: For a given value of  S, the term with the maximum value of  L has the lowest energy. 

Rule 3: For multiplets formed from equivalent electrons, the term with the

smallest value of  J has the lowest energy if the subshell is less than half-filled; 

the term with the highest value of  J has the lowest energy if the subshell is more

than half-filled. The multiplets in the first case are called  normal;  in the second

case they are said to be  inverted.  There is  no multiplet splitting if the subshell is just half-filled. 

In Figures 14.2 and 14.3, we give the energywise ordering of the terms

corresponding to the configurations discussed in Examples 1 and 2, respec-

tively. 

 L = 0,  S = 0, 1 S

 J = 0, 1 S 0

 L = 1,  S = 0, 1 P

 J = 1, 1 P 1

 L = 2,  S = 0, 1 D

 J = 2, 1 D 2

 np n p

¢

 L = 0,  S = 1, 3 S

 J = 1, 3 S 1

 J = 2, 3 P 2

 L = 1,  S = 1, 3 P

 J = 1, 3 P 1

 J = 0, 3 P 0

 J = 3, 3 D 3

 L = 2,  S = 1, 3 D

 J = 2, 3 D 2

 J = 1, 3 D 1

Figure 14.2

Energywise ordering of the terms for the configuration np  n¢p. 
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 L = 0,  S = 0, 1 S

 J = 0,1 S 0

 L = 2,  S = 0, 1 D

 J = 2,1 D 2

 np np

 J = 2, 3 P 2

 L = 1,  S = 1, 3 P

 J = 1, 3 P 1

 J = 0, 3 P 0

Figure 14.3

Energywise ordering of the terms for the configuration np  np. 

Selection Rules for Electron Transitions in LS Coupling

Assuming that only one electron makes a transition at a time, the selection rules

for the transitions between  LS coupled states are:

 For the electron making the transition

(a) D l = ±1

(14.15)

(b) D ml = 0, ±1

 For the atom as a whole

(a) D S = 0

(b) D L = 0, ±1 ( L = 0 ´   L¢ = 0 forbidden)

(c) D ML = 0, ±1

(14.16)

(d) D J = 0, ±1 ( J = 0 ´   J ¢ = 0 forbidden)

(e) D MJ = 0, ±1

jj Coupling

In heavy elements the spin-orbit interaction in individual electrons becomes large

and dominates over the residual electrostatic interaction between electrons. 

Therefore, the L i and S i vectors of individual electrons couple to give resultant J i vectors. These individual J i vectors then combine to give a resultant J vector of the whole atom. This is called the  jj coupling scheme:

J = L + S

 i

 i

 i

J = SJ

(14.17)

 i

(  jj Coupling)

 '$
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If there are two electrons having total angular momentum quantum

numbers   j 1 and  j 2, then the possible values of the total angular momentum

quantum number of the atom are

 J = |  j 1  –   j 2|, |  j 1  –   j 2| + 1, …,  j 1 +  j 2  – 1,  j 1 +  j 2

(14.18)

In fact, one rarely finds examples of pure  jj coupling. There is a gradual

transition from  LS  to  jj coupling in heavier atoms. However,  jj coupling is of great importance in nuclear structure, because spin-orbit interaction is strong in

nuclei. 

Example: Two Nonequivalent p Electrons

For each electron

1

1

3

 j 1 =  j 2 =  l ±   s = 1 ± 

= 

or 

2

2

2

The possible ways of combining these to obtain the  J values and the spectral

terms are given in Table 14.6. 

Table 14.6

jj Coupling of Two Nonequivalent p Electrons

j1

j2

J

Spectral Terms

1

1

1 1

F

1, 0

, 

2

2

HG I

2 2 KJ10, 

3

1

3 1

F

2, 1

, 

2

2

HG I

2 2 KJ 2 1, 

1

3

3 1

F

2, 1

, 

2

2

HG I

2 2 KJ 2 1, 

3

3

3 3

F

3, 2, 1, 0

, 

HG IKJ

2

2

2 2 3 2

, 1

, 0

, 

There are a total of 10 terms. 

SUMMARY

1. The Schrödinger equation for a many-electron atom cannot be solved

exactly due to the mathematical complexities of handling the interaction

of electrons with one another. 

2. As a first approximation, it is assumed that each electron moves in an

effective spherically symmetric potential  V( r) generated by all the other

electrons and the nucleus. This is called the central field approximation. 

The energy of a state now depends on both  n and  l rather than just on  n. 

However, the dependence on  l is rather small. A quantum state is still

labelled by the quantum numbers ( n,  l,  ml,  ms). There is no dependence on   ml and  ms. 

Atomic Structure II: Many-Electron Atoms
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3. The distribution of electrons in these states in the ground state of the

atom is governed by the Pauli exclusion principle, which states that: No

two electrons in an atom can have the same values of all four quantum

numbers ( n,  l,  ml,  ms). 

4. A consequence of the exclusion principle is that the wave function for

a many-electron system must be antisymmetric in the exchange of any

two electrons. For a two-electron system

1

 y  1

( )

 y  1

( )

Y

 a

 b

(1, 2) = 

2  y (2)  y (2)

 a

 b

5. The Pauli exclusion principle leads to atomic shell structure. The

electronic states having the same value of  n are said to belong to the same

shell. In a shell the states having the same value of  l are said to belong

to the same subshell. A subshell is denoted by the ( n,  l) values, such as

1 s, 2 s, 2 p etc. The maximum number of electrons in a subshell is 2(2 l

+ 1) and the maximum number of electrons in a shell is 2 n 2. 

6. A specification of the  n and  l values for all the electrons in an atom is called the electronic configuration for that atom. 

7. The order of succession of the energy levels  Enl is nearly the same for

all atoms. It is 1 s, 2 s, 2 p, 3 s, 3 p, [4 s, 3 d], 4 p, [5 s, 4 d], 5 p, [6 s, 4 f, 5 d], 6 p, [7 s, 5 f, 6 d]. 

8. The electronic shell structure of elements accounts for the periodicity

and regularity in their properties which was systematically studied by the

chemists. According to the periodic law given by Mendeleev: When the

elements are arranged in order of increasing atomic number, the elements

with similar physical and chemical properties recur at regular intervals. 

The quantum theory tells us that this is a consequence of the regularities

in the electronic configuration of outer electronic (valence) subshells and

the energy gap between the valence subshell and the next one. 

9. There are two main corrections to the central field approximation. These

are due to (a) the residual electrostatic interaction between the electrons

and (b) the spin-orbit interactions of the electrons. In all but the heaviest

atoms, the former is dominant, leading to  LS  coupling. The opposite

situation leads to  jj coupling. 

QUESTIONS

1. What is central field approximation in the context of many-electron

atoms? 

2. State and explain the Pauli exclusion principle. 

3. (a) What are symmetric and antisymmetric wave functions? What is

Slater determinant? 

(b) Explain how antisymmetry of the two-electron wave function leads

to the Pauli exclusion principle. 

 '& 
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4. State the generalized Pauli principle. 

5. Discuss briefly the atomic shell structure, explaining the meaning of

shells and subshells. What is meant by electronic configuration of atoms? 

6. Discuss how the electronic shell structure of elements explains the

periodic table and the ionization energies of elements. 

7. Discuss what is meant by  LS coupling and  jj coupling. State the selection rules for  LS coupling. 

8. State Hund’s rules. 

9. Distinguish between singlet and triplet states in the case of atoms which

have two electrons in the outermost subshell. Which of the two states

has lower energy? 

EXERCISES

1. Find the  S,  L and  J values that correspond to each of the following states: 2 S 1/2,  1 S 0,  3 P 2,  2 D 3/2,  5 F 5,  2 P 3/2

2. Consider a two-electron system with  l 1 = 2 and  l 2 = 1. What are the

possible total angular momentum ( J) states, assuming  LS coupling. Write

the spectral term for each state. 

[Hint.  See Example 3 of  LS coupling in the text]

3. Find the possible values of total angular momentum quantum number  J

in  LS coupling of two atomic electrons having orbital quantum numbers

(a)  l 1 = 1 and  l 2 = 3, 

(b)  l 1 = 2 and  l 2 = 3. 

4. The electronic configuration of Mg is 1 s 2 2 s 2 2 p 6 3 s 2. Obtain its spectral term. 

[ Ans . 

1 S 0]
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A p p e n d i x

The Fourier Transform

A

Consider a single-valued periodic function  f( x), with period 2 L, so that

 f( x + 2 L) =  f( x)

(A.1)

If  f( x) and  f ¢( x) are piecewise continuous, then it can be expanded in a Fourier series in the interval (– L,  L). The series has the form

 a

•

 np x

 np x

F

 f ( x) =  0 + Â  a  cos

+  b  sin

H

IK

(A.2)

2

 n

 n

 L

 L

 n=1

where the coefficients  an and  bn are given by

 L

1

 np x

 a

z

 n = 

 f( x) cos 

 dx, 

 n = 0, 1, 2, …

(A.3)

 L

 L

-  L

and

 L

1

 npx

 b

z

 n = 

 f( x) sin 

 dx, 

 n = 1, 2, …

(A.4)

 L

 L

-  L

Since

 npx

1

cos

= 

( einpx/ L +  e– inpx/ L)

 L

2

and

 npx

1

sin

= 

( einpx/ L  –   e– inpx/ L)

 L

2 i

We can write the Fourier series in the form

•

1

 f ( x) = 

Â  cn  einpx/ L

(A.5)

2 p n=-•
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The factor 1/ 2 p  has been put so that the final formulae are in symmetrical

form. The coefficients  cn are given by

1

 L

 p

 c

z

 n = 

   f( x)   e– inpx/ L   dx

(A.6)

 L

2 -  L

Let us now rewrite (A.5) as

•

1

 f ( x) = 

Â  cn  einpx/ L D n

(A.7)

2 p n=-•

where  D n is the difference between two successive integers, which is unity. 

Suppose now that the function  f( x) is not periodic. We may say that the

period is infinite. We shall see, by taking the limit  L Æ •, that in this case the

Fourier series (A.7) changes into an integral. As  L increases, the difference

between the successive terms in the series (A.7) becomes smaller and smaller. 

Recalling the Riemann definition of an integral, we can replace the sum over  n

by an integral:

•

1

 f( x) = 

Â  cn  einpx/ L  dn

(A.8)

2 p -•

Let us introduce a new variable  k:

 np

 k = 

(A.9)

 L

and define a new function  A( k):

 Lc

 A( k) = 

 n

(A.10)

 p

We have

 L

 p

 dn = 

 dk, 

 c

 A( k)

 p

 n =   L

Substituting in (A.8)

1

 f x =

 A k eikx

( )

( )

 dk

z

(A.11)

2 p

Taking the limit  L  Æ  • in (A.6) and substituting in (A.10), we get

•

1

 A k =

 f x e - ikx

( )

( )

 dx

z

2 p

(A.12)

-•

The integrals (A.11) and (A.12) are called  Fourier integrals. The function

 A( k) is known as the  Fourier transform of  f( x) and the function  f( x) is known as the  inverse Fourier transform of  A( k). 
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The Dirac Delta Function

B

The reader is familiar with the Kronecker delta  dij which is defined for the

discrete variables  i and  j as

 dij = 0

if  i  π   j

(B.1)

= 1

if  i =  j

Equivalently,  dij may be defined by

•

 f(  j) =  Â  dij   f( i), 

 j = 1, 2, …

(B.2)

 i=1

The Dirac delta function is a generalization of the Kronecker delta to the

case of a continuous variable. It is defined by the equations

 d ( x -  a)

0

 x π  a

( . 

B )

3

•

 d( x -  a)  dx

z

=

if

and

= 1

( . 

B 4)

- •

Equivalently, if  f( x) is an arbitrary function, then

•

 f (  x)  d ( x -  a)  dx

 f ( a)

z

=

(B.5)

- •

In particular, for  a = 0, 

 d( x) = 0

if  x π 0

(B.6)

•

z  d( x)  dx= 1

(B.7)

-•

•

and

z  f( x)  d( x)  dx=  f(0)

(B.8)

- •
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It is clear that  d( x) is not a proper function of  x and is exceedingly singular in nature. Qualitatively, it may be thought of as being zero everywhere except

at  x = 0, and being so large at  x = 0 that the area between it and the  x-axis is unity. 

Properties of Delta Function

Below we give the main properties of the delta function. These properties have

meaning only if a subsequent integration is carried out:

1. 

 d( x) =  d(-  x)

U

0

|

2. 

 xd ( x) =

|

3. 

 d (

¢  x) = - d (

¢ -  x)

||

4. 

 d

 x (

¢  x) = - d( x)

|

1

0

|

5. 

 d(

)

 ax =

 d( x),  a π

|

|  a |



V (B.9)

6. 

 f( x)  d ( x -  a) =  f( )

 a d ( x -  a)

||

7. 

 d( a -  x)  d ( x -  b)  dx =  d ( a -  b) z

|

2

2

1

|

8. 

 d ( x -  a ) =

 d

[ ( x -  a) +  d ( x +  a)]

2

|

| a|

|

1

|

9.  d[( x -  a) ( x -  b)] =

 d

[ ( x -  a) +  d ( x -  b)],  a π  b

|  a -  b|

W|

Integral Representation of the Delta Function

It is possible to obtain an integral representation of the Dirac delta function using

Fourier integrals. Substituting  A( k) given by (A.12) into (A.11), we get

1

•

•

L  f x e ikx

( )

 dx  O

 f ( x) = 

-

¢

z NMz ¢ ¢   eikx  dk

2 p -• -•

QP

Reversing the order of integration, 

1

•

L •

 f( x) = 

 f x

 eik x- x

( )

(

¢)

¢

 dk

z z

 dx¢

(B.10)

2 p -•

NM

O

-•

QP

Comparing (B.10) with (B.5), we obtain

•

1

 d( - )

 ik(  x-  x¢)

 x

 x¢ =

 e

 dk

(B.11)

2 p  z-•

This is the integral representation of the Dirac delta function. It is very

useful in quantum mechanics and has been used in chapter 6 in normalizing the

momentum eigenfunctions (see Equation 6.97). 
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Index

Alpha, 

Bra vector, 194

decay, 165–167

Brackett series, 34

scattering experiment, 32

Broadening of spectral lines, 87–88

Angular momentum, 

in Bohr’s model, 35

lowering operator, 214

Central field approximation, 279

raising operator, 214

corrections to, 291

vector model of, 215–216

Centre-of-mass, 

 see also orbital angular momentum, 

coordinate, 225

spin angular momentum and total

motion, 225

angular momentum

Centrifugal barrier, 223

Anomalous Zeeman effect, 237, 246, 269–

Commutator, 195

272

Compton effect, 16–22

Antisymmetric wave function, 280–282

Compton shift, 20

Associated legendre functions, 211–212

Compton wavelength of electron, 20

Atomic shell structure, 282–288

Conservation of probability, 102–103

spectra, 33–35

Correction for finite nuclear mass, 45

Correspondence principle, 49–51

Balmer series, 34

Davisson-Germer experiment, 61–63

Barrier penetration, 163

De Broglie wave, 55

Blackbody radiation, 4–8

De Broglie wavelength, 55–58

Bohr frequency rule, 36

De Broglie’s hypothesis, 54–55

Bohr magneton, 238

Degeneracy, 113, 197, 229

Bohr model of hydrogenic atoms, 35–38

Delta function normalization, 120–121

frequency of radiation in, 37

Dirac delta function, 301–302

limitations of, 46

Dirac notation, 193–194

wavelength of radiation in, 37

Double-slit experiment, 65–67, 82–83

Bohr orbit, 

Dual nature of radiation, 26–27

energy of electron in, 37

radius of, 36

speed of electron in, 36

Ehrenfest’s theorem, 106–109

Bohr radius, 37

Eigenfunctions, 113, 119

Bohr’s correspondence principle, 49–51

expansion in, 200

Boson, 280

of commuting operators, 198–199

Box, 

of   L 2 and  Lz, 213

normalization, 120

of momentum, 118–121

one-dimensional, 126–131

of spin, 248

three-dimensional, 137–140

orthogonality of, 114–115
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 Index

Eigenvalue(s), 

Jeans’ number, 5

degenerate, 113, 197, 229

 jj coupling, 291, 295–296

equation, 113, 197

of   L 2 and  Lz, 207–213

reality of, 113

Ket vector, 194

Einstein’s photoelectric equation, 10

Electron diffraction experiments, 61–64

Electronic configuration of atoms, 284–288

Landé   g factor, 267, 269

Energy level diagram for hydrogen, 39

Legendre polynomials, 210–211

Energy operator, 99

Linear harmonic oscillator

Energy-time uncertainty relation, 78

 see harmonic oscillator

Equation of continuity, 103

Linear operator, 194

Expectation value, 104, 201

Lowering operator, 213

 LS coupling, 291–295

selection rules for, 295

Fermion, 280

Lyman series, 34

Fine structure constant, 261

Fine structure of spectral lines, 246, 258–

264

Magnetic moment of electron, 

Forbidden transitions, 240

orbital, 238

Fourier transform, 299–300

due to spin, 249

Franck-Hertz experiment, 48–49

total, 265–267

Free particle, 117–121

Magnetic quantum number, 

Frequency, threshold, 9, 11

orbital, 212, 239

spin, 247

Mass of p-meson, 88–89

G.P. Thomson’s experiment, 63–64

Matter wave, 55

Gamma-ray microscope, 79–81

Measurement of an observable, 201–202

Gaussian wave packet, 111

Minimum uncertainty wave packet, 110–111

Group velocity, 73

Momentum eigenfunctions, 118–121

Gyromagnetic ratio, 238

normalization of, 119–121

Momentum operator, 99

Hamiltonian, 100

hermiticity of, 102–103

Normal Zeeman effect, 237–241

Harmonic oscillator, 175–190

Normalization, 

eigenfunctions for, 181

box, 120

energy eigenvalues for, 178

delta-function, 120–121

zero point energy of a, 86–87

of wave functions, 68, 101

Heisenbergs’s gamma-ray microscope, 79–81

Heisenberg’s uncertainty principle, 77–79

applications/consequences of, 83–89

Old quantum theory, 48

general statement of, 79

Operator, 

Hermite equation, 177

energy, 99

Hermite polynomials, 179–180

Hermitian, 103, 195

Hermitian operator, 103, 195

linear, 194

Hund’s rules, 294

lowering, 214

Hydrogenic atoms, 226–233

momentum, 99

energy eigenfunctions for, 232–233

particle exchange, 281

energy eigenvalues for, 228, 229

raising, 214

radial eigenfunctions for, 231–233

Orbital angular momentum, 204–218

radial equation for, 226

quantum number, 210

Orbital angular momentum operators, 

in Cartesian coordinates, 205

Ionization energies, 290–291

in spherical polar coordinates, 206

 Index
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Orthogonality of eigenfunctions, 114–115

Radial eigenfunctions, 231–233

Orthonormal functions, 196

Radial equation, 

for hydrogenic atoms, 226

for spherically symmetric potentials, 

Parity, 115–116

223

Parseval’s theorem, 75

Radial probability density, 235

Particle exchange operator, 281

Radial quantum number, 228

Paschen series, 34

Raising operator, 214

Paschen-Back effect, 273

Rayleigh-Jeans law, 5

Pauli exclusion principle, 279–280

Reduced mass, 45, 225

generalized, 282

Reflection coefficient, 153, 154, 160, 162, 

Pauli spin matrices, 249

169

Periodic table, 288–290

Relative coordinate, 225

Pfund series, 34

Relative motion, 225

Phase velocity, 72

Rigid rotator, 217–218

Photoelectric effect, 8–11

Russel-Saunders coupling  see LS coupling

equation, 10

Rutherford nuclear model, 33

Photon, 10

Rydberg constant, 34

Pi-meson (p-meson), mass of, 88–89

Rydberg-Ritz formula, 34

Planck’s quantum hypothesis, 6

Planck’s radiation law, 8

Position-momentum uncertainty relation, 77

Scalar product, 193

exact statement and proof of, 109–110

Schmidt orthogonalization, 115

Position probability density, 68, 101

Schrödinger equation, 

Postulates of Bohr model, 35

time-dependent, 98–100

Postulates of quantum mechanics, 199–202

time-independent, 111–112

Potential, 

Selection rules, 240, 264, 270, 295

harmonic oscillator, 176, 179

Shell, 283

one-dimensional finite square well,  140–

Single-slit diffraction experiments, 81–82

146, 168–169

Slater determinant, 282

one-dimensional infinite square well, 

Sommerfeld’s elliptic orbits, 46–48

126–131

Space quantization, 215–216

spherically symmetric, 221

Spectroscopic notation, 256–257

step, 150–155

Spherical harmonics, 213

stopping, 11

parity of, 214

three-dimensional infinite square well, 

Spherically symmetric potential, 221

137–140

Spin angular momentum, 246–249

Potential barrier, 

magnetic moment due to, 249

square, 157–162

Spin eigenfunctions, 248

variable, 162–163

Spin quantum number, 247

Principal quantum number, 228

Spin-orbit coupling 258–262

Probability, conservation of, 102–103

Spin-orbital, 283

Probability current density, 103

Square well potential, 

one-dimensional infinite, 126–131

one-dimensional finite, 140–146, 168–169

Quantization of angular momentum, 36

three-dimensional infinite, 137–140

Quantum hypothesis, Planck’s, 6

Stationary orbit, 35

Quantum number, 

Stationary state, 103, 114

orbital, 210

Step potential, 150–155

orbital magnetic, 212, 239

Stern–Gerlach experiment, 246, 250–252

principal, 228

Stopping potential, 11

spin, 247

Subshell, 283

spin magnetic, 247

Superposition principle, 200, 202–203

total, 254

Symmetric wave functions, 280–282
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 Index

Term notation, 256–257, 292

Born’s (statistical) interpretation of, 68, 

Threshold frequency, 9–11

101, 199

Total angular momentum, 253–255, 292, 295

continuity and boundary conditions on, 

quantum number, 253

116–117

Transmission coefficient, 153, 154, 160, 

in momentum space, 75

162, 169

need for a, 67–68

in alpha decay, 166–167

normalization of, 68, 101

Tunnel effect, 163

square integrable,  69

Two-body problem, reduction of a, 224–225

symmetric, 280–282

time development of a, 202

Wave packet, 71–76

Uncertainty principle  see   Heisenberg’s

group velocity of a, 73

uncertainty principle

having minimum uncertainty product, 

110–111

in three dimensions, 75–76

Vector model of angular momentum, 215–216

motion of, 106–109

reciprocity relation in a, 74

Wien’s law, 5

Wave equation, 

Wilson–Sommerfeld quantization postulates, 47

conditions imposed on, 98

necessity for a, 97

separation into radial and angular parts, 

Zeeman effect, 237

221–222

anomalous, 237, 246, 269–272

Wave function, 199

normal, 237–241

antisymmetric, 280–282

Zero-point energy, 86–87, 130
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