Maciej Btaszak

Quantum versus
Classical Mechanics
and Integrability
Problems

towards a unification of approaches and
tools

@ Springer



Quantum versus Classical Mechanics
and Integrability Problems



Maciej Blaszak

Quantum versus Classical
Mechanics and Integrability
Problems

towards a unification of approaches and tools

@ Springer



Maciej Btaszak

Division of Mathematical Physics
Faculty of Physics UAM

Poznan, Poland

ISBN 978-3-030-18378-3 ISBN 978-3-030-18379-0  (eBook)
https://doi.org/10.1007/978-3-030-18379-0

© Springer Nature Switzerland AG 2019

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland


https://doi.org/10.1007/978-3-030-18379-0

To Magdalen and Lucas



Preface

It is well known for physicists that in order to describe dynamical systems of
finite number of degrees of freedom in the macro- and micro-scale, classical
and quantum mechanics, respectively, were developed. They are among the best
recognized physical theories whose correctness has been confirmed experimentally
with high accuracy. The classical Hamiltonian mechanics has been developed since
the first half of the nineteenth century, while quantum Hamiltonian mechanics has
been developed since the first half of the twentieth century. Reviewing textbooks
presenting both theories, the reader finds two fundamental inconsistencies concern-
ing quantum theory versus the classical one. Both inconsistencies are related to
mathematical language used in the quantum model. In classical mechanics, every
measurable quantity (observable) is represented by a smooth real-valued function
on a phase space, while in quantum mechanics every observable is represented
by a self-adjoint operator in a Hilbert space over configuration space. It means
that mathematical languages of both theories are drastically different. On the
other hand, as both theories describe similar systems in the macro- and micro-
scale, we expect that related formalisms should transform one into the other
when we change the scale in both directions. So how to achieve it when the
languages are not compatible? The second inconsistency is even worse. On the one
hand, the modern classical Hamiltonian mechanics is formulated in a coordinate
independent way, in the language of appropriate tensor fields. On the other hand,
even contemporary textbooks of quantum mechanics formulate the theory mostly
in Cartesian coordinates, like in the case of classical mechanics and classical
electrodynamics in the nineteenth century. It is obvious that quantum mechanics
requires a modern coordinate free formulation. One could say that the so-called
geometric quantization fulfills that requirement at least to some extent. Although
it is true, due to its mathematical complexity it was never adopted to the level of
standard textbooks of quantum mechanics. We believe that the presented theory is
an interesting alternative to the geometric quantization approach, strongly unifying
formalisms from classical and quantum level.

vii



viii Preface

Thus, the first aim of this book is a common, coordinate free formulation of
classical and quantum Hamiltonian mechanics, in the frame of common mathe-
matical language. In the presented formulation, quantum mechanics appears as an
appropriate deformation of classical mechanics. It means that quantum formalism
reduces to classical formalism when the deformation parameter tends to zero. What
is more, the model presented in the book solves two inconsistencies mentioned
above. To be more precise, presented formalism covers only the bosonic sector
of classical and quantum Hamiltonian mechanics. The fermionic sector, involving
Grassmann variables, although worthy of separate presentation, is beyond the scope
of the book.

Obviously, the idea of deformation quantization is not new and was developed
in many papers during the last few decades, but mainly by mathematicians for their
own purposes. It was less appreciated by physicists. In this book, we formulate
a coordinate free model of quantum bosonic Hamiltonian systems in Riemannian
spaces, based on the mathematical idea of deformation quantization, as a complete
physical theory with an appropriate mathematical accuracy.

The second aim of the book is related to the particular class of dynamical systems
considered on both the classical and quantum level. It is well known that the
number of classical and quantum problems which can be solved analytically, i.e.,
by quadratures, is very limited. So, it is very important to develop the theory which
will allow for a deeper understanding of classical and quantum integrability. Thus,
the second aim of the book is the presentation of the modern separability theory on
both the classical and quantum level.

On the classical level, the Hamilton-Jacobi theory is one of the most powerful
methods of integration by quadratures a wide class of systems described by
nonlinear ordinary differential equations. The theory in question is closely related to
the Liouville integrable Hamiltonian systems. The main difficulty in that approach
is that it demands distinguished coordinates, so-called separation coordinates, to
work effectively. In this book, we present a modern geometric separability theory,
based on bi-Poissonian and bi-presymplectic representations of finite dimensional
Liouville integrable systems. This approach leads to the construction of separation
coordinates in a systematic way. For the sake of the physical interest, we mainly
concentrate on the class of Hamiltonians quadratic in momenta.

We also develop the modern quantum separability theory. Actually, we present
the formalism which allows us to find a separable quantization of quadratic in
momenta classical separable systems. After such quantization, quantum stationary
Schrodinger equations also separate and respective quantized constants of motion
commute.

In order to make the text consistent and self-contained, we start from the compact
overview of mathematical tools necessary for understanding the remaining part of
the book. Moreover, because the book is dedicated mainly to physicists, despite
its mathematical nature, we resigned from highlighting definitions, theorems, or
lemmas. Nevertheless, all the claims presented are either proved or the reader is
referred to the literature where the proof is available. There are two highlighted
pieces of text. The first are examples, which illustrate the presented theory. The
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second are observations, which contain the most important messages for the reader,
resulting from the presented theory. We also boxed the most important formulas
from each chapter.

Poznari, Poland Maciej Blaszak
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Chapter 1 )
Introduction Check for

Classical and quantum Hamiltonian mechanics belong to the most important
physical theories which are able to model with an incredible precision various
physical processes which take place in the real world, from astronomical macro
scale to atomic and molecular micro scale. Historically, classical Hamiltonian
mechanics grew out from Newtonian (later on Lagrangian) mechanics, describing
particle dynamics under influence of potential forces, in the form of second order
ordinary differential equations (ODE’s) in base Euclidian (Riemannian) space.
Simple, n second order ODE’s on a base space was replaced by 2n first order
ODE’s on a phase space, parametrized by n position coordinates and » momentum
coordinates. In such formulation, the flow, governed by conserved total energy
(classical Hamiltonian) of the system, represented particle dynamics on the phase
space. Such Hamiltonians consisted of the kinetic part, quadratic in momenta, and
the potential part, position dependent. Since then, the Hamiltonian mechanics has
developed into an independent general theory allowing to describe a much wider
class of dynamical systems than only particle dynamics on some configuration space
(base space). Actually, it is a theory of Hamiltonian flows on Poisson manifolds
M, governed by arbitrary smooth real valued functions (Hamiltonians) on M.
In consequence, considered dynamical systems are subject to Poisson geometry.
Obviously, for particular Poisson manifolds and particular Hamiltonians, one can
adopt the Riemannian geometry to Hamiltonian formalism, regarding a Poisson
manifold as a cotangent bundle to some Riemannian space and momentum part of
Hamiltonian as defined by a respective metric tensor. Nevertheless, on the general
level of the Hamiltonian formalism, there is no related Riemannian geometry and
hence there is no configuration space where the dynamics could be transferred.

As a consequence, the most fundamental quantization procedure of classical
Hamiltonian mechanics should take place on a Poisson manifold in the form of
smooth deformation of a classical formalism. As a result, one should obtain a
theory of quantum Hamiltonian flows on quantum Poisson manifolds, governed by
quantum Hamiltonian functions. All these objects should be deformations of their
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2 1 Introduction

classical counterparts. To be more precise, one should deform a Poisson algebra of
classical observables with a Poisson bracket as a Lie bracket to a new Lie algebra
with a Lie bracket being deformation of the Poisson bracket. As a consequence we
present the reader the theory of quantum flows on a phase space being an appropriate
deformation of the classical theory of flows on the same space.

On the other hand, in order to unify the languages of both theories, it is
reasonable to begin on the classical level from a bit more extended formalism than
the classical Hamiltonian mechanics, i.e. from the so called statistical Hamiltonian
mechanics. There are a few advantages of such an extension. First of all, it is a
more realistic theory as in any physical experiment the physical measurement is
made with finite accuracy. Secondly, such an extension allows for introducing the
concept of classical states in the form of probability distributions on the phase
space. Obviously, after quantization we get quantum states in the form of pseudo-
probability distributions on the phase space as well, being appropriate deformations
of classical states. As a consequence, on the classical level one can introduce notions
familiar from the quantum level, i.e. pure, mixed and coherent classical states,
classical uncertainty relations, classical Schrodinger picture for time evolution of
classical states and classical Heisenberg picture for time evolution of classical
observables. As the deformation formalism presented in the book is coordinate
independent, the obtained quantum Hamiltonian theory is also formulated in a
coordinate free form.

For the distinguished class of systems, when we can adopt a Riemannian geom-
etry on the classical level, we construct a Riemannian representation (generalized
position representation) of general quantum formalism, where quantum observables
are represented by self-adjoint operators acting in a Hilbert space over Riemannian
space, with the measure induced by an appropriate metric tensor. In the particular
case of Euclidian space and Cartesian coordinates, our representation is reduced
to the standard formulation of quantum mechanics from textbooks. Obviously,
as in Riemannian representation we also have a coordinate free formulation of
quantization procedure, so we demonstrate how to properly quantize a given
Hamiltonian system in arbitrary curvilinear coordinates.

The quantization procedures performed in the general setting have more advan-
tages than the ones presented till now. Actually, it allows to control the types of
admissible quantizations. Any admissible deformation of classical Poisson algebra
is related to the particular quantization. Hence, from the mathematical point of view,
we have infinitely many admissible quantizations of classical Hamiltonian systems.
Each deformation has its own representation in a Hilbert space over phase space,
where quantum observables are represented by an appropriate self-adjoint operators.
Various quantizations differ from each other by different orderings of position
and momentum operators. So, each deformation is in one to one correspondence
with an appropriate ordering of operators of position and momenta. This is why
the ordering formalism is treated with a particular attention. The same ordering
structure is induced to Riemannian representation, if such exists. Now, which
quantization properly describes quantum behavior of real physical systems can only
be decided by physical experiments. On the other hand, our experimental experience
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is mainly related to the flat configuration space, which is not enough to chose a
unique quantization in the general case. In the book, for a given metric tensor,
we construct a two-parameter family of admissible quantizations, containing in
particular a majority of quantizations considered in literature and derived with the
help of various approaches. All these quantizations are reduced to a standard Weyl
quantization in the case of the flat configuration space and ‘natural’ Hamiltonian
function being the sum of kinetic and potential parts.

A large part of the book is dedicated to the problem of integrability and in
particular separability in Hamiltonian mechanics, which allows for integration of
particular nonlinear ODE’s on a classical level and particular linear PDE’s on a
quantum level. On the classical level we first define a class of so called Liouville
integrable systems and then develop a theory of Stickel transforms, which allows
for systematic construction of new Liouville integrable systems from the old ones.
What is interesting, the flows of Stickel related systems are transformed into each
other by an appropriate transformation between evolution parameters, depending on
points from a phase space.

Besides, we present a modern version of Hamilton-Jacobi (HJ) separability
theory of Liouville integrable systems, based on the so called separation relations.
Such formulation allows to classify separable systems of Stéckel type. In order
to apply the HJ method, one has to find a complete integral of the so called HJ
equation for generating function of canonical transformation, necessary for further
linearization of the considered system. This equation is in general nonlinear PDE,
and the only effective method of solving this equation turns out to be the method
of separation of variables, carried out in a distinguished coordinate system. In these
particular coordinates HJ equation admits a complete integral in the form of a sum
of functions depending on one variable only, determined by a set of first order
ODE’s, called separation equations. In the presented approach we show that for
general separability, in order to find separation equations, one HJ equation is not
sufficient and it is necessary to consider simultaneously all HJ equations generated
by functionally independent constants of motion which are in involution. Only such
a set of nonlinear PDE’s, written in separation coordinates, can be transformed
through purely algebraic operations into a set of separation equations, i.e. a set
of nonlinear first order ODE’s, each one of one variable. The class of systems for
which, in order to find the separation equations a single HJ equation is sufficient,
is very restrictive. Nevertheless, in standard textbooks on classical mechanics that
particular case (which is a historical one) is the only case considered.

The main problem of the classical HJ theory is the construction of transformation
to separation coordinates in which the method works effectively. For many decades
there was no general theory allowing to identify the separation coordinates for a
given Liouville integrable system. Only recently, at the turn of the twentieth and
twenty-first century, a few constructive theories of separation coordinates have
appeared. In this book we present two of them, related to particular geometric
properties of Liouville integrable systems.
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The first one is the so called bi-Hamiltonian separability theory. It enables
to construct a transformation from original coordinates to separation coordinates
and to derive appropriate separation relations, directly linked to the searched
separation equations. It was clear from the very beginning that in order to find
a transformation to separation coordinates for Liouville integrable systems, some
extra information is required. In this case it is a bi-Hamiltonian representation of the
considered system. It means that a given vector field has two different Hamiltonian
representations in the same coordinate system. Actually, there exist two different
Hamiltonians (constants of motion) and two different Poisson bi-vectors which
define the same vector field. In general, both Poisson bi-vectors are degenerate.
When the considered vector field is defined on symplectic manifold it means that
there exists its extension to Poisson manifold where bi-Hamiltonian formulation is
available. The construction of separation coordinates is related with the projection
of the second Poisson structure onto symplectic leaves of the first Poisson structure.
Thus, the reduction theory for Poisson tensor fields is required and so is presented
in the book with particular care. Once we have reduced both Poisson tensors into a
symplectic leaf of the first one, we construct the so called recursion operator being
the product of symplectic form related to the first reduced Poisson bi-vector with
the second reduced bi-vector. It is a second order tensor field of (1, 1) type. Its
eigenvalues define the first half of separation coordinates, while conjugate momenta
represent the second half of separation coordinates.

The second separability theory presented in the book is a bi-presymplectic (bi-
inverse-Hamiltonian in particular) theory. It is an alternative geometric approach,
based on the fact that the majority (possible all) of Liouville integrable systems
on symplectic manifold admit the extension to higher dimensional presymplectic
manifold, where there exists an additional presymplectic two-form such that the
differential of Hamiltonian has two different inverse-Hamiltonian representations in
the same coordinate frame. Now, the construction of separation coordinates relies
on the restriction of both presymplectic two-forms to the original manifold where
we have now two symplectic two-forms and a related recursion operator. The further
procedure leading to separation coordinates is analogous as in the bi-Hamiltonian
model.

The universality of both, mentioned above, separability theories relies on the fact
that any separable system (Stéckel system), defined by a separation curve, has bi-
Hamiltonian and bi-inverse-Hamiltonian extensions.

On the quantum level, by quantum separability we understand the integration by
quadratures of a stationary Schroedinger equation (Helmholtz equation in the case
of arbitrary metric tensor). Actually, in separation coordinates each eigenfunction of
quantum Hamiltonian multiplicatively separates into a product of one-dimensional
functions and in consequence, a multi-dimensional eigenvalue problem splits into an
appropriate number of one-dimensional problems. In this book we present a modern
quantum separability theory being a generalization of Roberson and Eisenhart
approach. As the result we prove that for any classical Stickel system with all
constants of motion quadratic in momenta and for which Stédckel matrix consists
of monomials in position coordinates, there exist infinitely many quantizations,
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parametrized by n arbitrary functions, each of one variable, that turn this system
into a quantum separable Stickel system. Moreover, separable quantizations are
constructed in explicit form.

The book is composed of eight chapters and each chapter is divided into sections
and then subsections.

Chapter 2 presents a brief survey of differential calculus, necessary for further
considerations. We review the concept of tensor fields over finite dimensional
manifolds. Exterior algebras of forms and multi-vectors, important in Hamiltonian
theory are presented with a special care. Then the transformation properties of tensor
fields via push-forward and pull-back given by an arbitrary local diffeomorphisms
are derived. Next, the theory of Lie transport and Lie derivatives of various tensor
fields is presented. A subsequent section is devoted to a linear connection and
covariant derivatives of tensor fields. Some important formulas, necessary for the
theory developed, are collected there. Finally, in the last section, the concept of
symplectic manifolds and symplectic connections is briey sketched.

In Chap. 3 a particle dynamics on Riemannian space, its variational construction
and the standard Hamiltonian representation is briefly reminded to the reader. The
particle representation of higher order variational problems is also presented. In the
next section, a coordinate free formulation of Hamiltonian mechanics on Poisson
manifold and inverse-Hamiltonian mechanics on presymplectic manifold is system-
atically derived and then related to each other. The notion of Hamiltonian flows
on symplectic manifold is discussed. Then the extension of classical Hamiltonian
mechanics to statistical Hamiltonian mechanics is presented, allowing to introduce
on a classical level the notions of states, Schroedinger and Heisenberg representa-
tions of classical dynamics, ucertainity relations and other notions familiar to the
reader from quantum level. Finally, in the last section, a geometric reduction theory
of Poisson bi-vectors onto submanifolds is discussed with a great care.

Chapter 4 is dedicated to Liouville integrable systems with particular attention to
the ones that are separable. First, the notion of Liouville integrability (superintegra-
bility in particular) is introduced and recently formulated theory of multi-parameter
Stickel transforms is discussed, allowing for the construction of new integrable
(superintegrable) systems from the old ones in any coordinate frame. Then the
modern formulation of Hamilton-Jacobi theory is presented, built on the notion of
separation relations as the fundamental objects. A particular attention is paid to
separable systems (Stidckel systems) with all constants of motion being quadratic in
momenta. Such systems are classified, adopted to Riemannian (pseudo-Riemannian
in general) geometry and then integrated by quadratures. Finally, the explicit form of
Stickel transforms relating systems from different classes as well as systems from
the same class of presented classification is constructed.

In Chap. 5 are described two geometric separability theories allowing for explicit
construction of separable coordinates for considered Liouville integrable system.
First, bi-Hamiltonian theory is presented. Bi-Hamiltonian chains of vector fields
are defined on bi-Poisson manifold and the formalism of their reduction to
quasi-bi-Hamiltonian chains on bi-symplectic submanifold is discussed. Then the
construction of separation coordinates and separation relations is presented in
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details. Second, a dual to bi-Hamiltonian, i.e. bi-presymplectic separability theory
is described. Bi-inverse-Hamiltonian chains of closed one-forms are defined on
bi-presymplectic manifold and the formalism of their reduction, again to quasi-
bi-Hamiltonian chains on bi-symplectic submanifold, is demonstrated. A separate
section is dedicated to bi-Hamiltonian and bi-presymplectic systems on R3. In the
last section is considered a subclass of Stickel systems whose geodesic parts are
defined by Killing tensors of some flat metrices. In that case, particularly important
from the physical point of view, a transformation from separation coordinates to flat
coordinates is derived in explicit form for all admissible flat metrices.

In Chap. 6 formalism of quantum deformations of classical Poisson algebra of
smooth complex-valued functions on Poisson manifold is discussed. The main
attention is paid to symplectic case when the phase space is a cotangent bundle
of some pseudo-Riemannian manifold. A class of isomorphic star-algebras is
constructed in the form of appropriate deformations of commutative algebra of
functions on a phase space. For every star-algebra a Lie bracket in the form of star-
commutator represents a quantum Poisson bracket being an appropriate deformation
of classical Poisson bracket. Moreover, it is explained why equivalent quantum
Poisson algebras lead to non-equivalent quantizations of classical Hamiltonian
systems. Finally, in the last section, operator representations in a Hilbert space over
phase space is constructed for every quantum Poisson algebra considered in the
previous section. As constructed representations are related to different ordering
rules, so the general theory of orderings is also presented.

Chapter 7 contains the formulation of quantum Hamiltonian mechanics on a
phase space. Quantum states over phase space are defined. Their time evolution
is presented in the frame of Schroedinger picture and the time evolution of quantum
observables is presented in the frame of Heisenberg picture. Quantum Hamiltonian
equations of motion are represented by nonlinear (in general) ODE’s from the space
of star-functions. The set of solutions of quantum Hamiltonian equations defines
a quantum flow on the phase space. Like in the classical case, each quantum
trajectory from the quantum flow represents a one-parameter group of quantum
symplectomorphisms (quantum canonical transformations), but contrary to classical
case, the group multiplication differs from a simple composition of maps. Various
cases of quantum trajectories are consider with particular care.

Finally, in Chap.8, the situation when a particular Riemannian geometry is
adopted to Hamiltonian dynamics is analyzed. In such a case, the class of quan-
tizations on a phase space has a Riemannian (position) representation in a form of
self-adjoint operators acting in a Hilbert space over respective configuration space
(Riemannian space). A two-parameter family of admissible quantizations in curved
configuration space is constructed in a coordinate free way. It allows to quantize
any classical system in arbitrary coordinate frame according to various quantization
procedures. A simple but instructive example of quantization of hydrogen atom
directly in spherical coordinates is presented. The last section of that chapter is
dedicated to modern quantum separability theory. First, quantum integrability and
quantum stationary separability are defined. Then, it is proved that for all considered
classically separable systems with constants of motion quadratic in momenta, there
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always exists a distinguished family of metric tensors and related quantizations
which preserve separability on a quantum stationary level, i.e. eigenfunctions of
respective Hamiltonian operator separate multiplicatively onto functions of one
variable and multi-dimensional eigenvalue problem splits into one-dimensional
problems. The problem of quantum superintegrability and quantum R-separability
is also discussed.
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In this chapter we briefly discuss some elements of differential calculus which are
important for understanding the content of this book. The reader who is familiar
with the theory of tensor fields, Riemannian geometry and symplectic (Poisson)
geometry can skip that part, keeping in mind that all important formulas of these
formalisms are collected in this chapter. The reader who is less familiar with these
mathematical tools will find here necessary knowledge presented in a compact
form. For a more comprehensive treatment of the subject we refer the reader to
the literature [1, 71, 116, 178, 255, 258].

2.1 Linear Tensor Algebra

Let V has an algebraic structure of a linear space of dimension dimV = n, with
vectors as elements. Denote by V* a set of linear forms (linear maps) @ : V. — R,
where R are real numbers, which form a linear space in its own right, called dual
space, also of dimension dim V* = n. Its elements are called covectors (1-forms):

a: v—a) eR, veV, aeV*

There is no distinguished canonical isomorphism between V and V*, but there is
such an isomorphism between V and (V*)*:

f:V — (V**such that f(v)(a) := a(v).
So, both vectors and 1-forms can be treated equally as linear maps:
Vov— v(a) ={a,v) e R: V¥ — R,

Visag — a(v) ={a,v) eR: V — R,

© Springer Nature Switzerland AG 2019 9
M. Btaszak, Quantum versus Classical Mechanics and Integrability Problems,
https://doi.org/10.1007/978-3-030-18379-0_2


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18379-0_2&domain=pdf
https://doi.org/10.1007/978-3-030-18379-0_2

10 2 Basic Mathematical Tools

where the bilinear map
(L):V*xV —R (2.1.1)

is known as a duality map, pairing V and V*.
A tensor of type (r, s) on V is called a multilinear map

’T:Y*x...xV*xVx...x\i—)R,

- ~

-~ ~
r s
Wi, oo, U, 0, ..., 05) —> T (U1, ..., 0, Q1,...,05) €R,

TG(..,v+iw,..)=T(C..,v,..)+AT(...,w,...).

The set of (r,s) tensors will be denoted by T (V) and its elements are
called tensors which are r-times covariant and s-times contravariant, wherein
TOOV) := R. The set 7" (V) is also a linear space in its own right. How
to calculate values of various tensors using the duality map? In order to do it we

have to introduce the notion of tensor product.
The tensor product ® of linear spaces 7 (V) and 779 (V) we call a map

®: T(r,s)(v) % 7‘(17’61)(‘/) N T(r+17,s+61)(v)’
such that

(A®B)(v1,...,vs,wh...,wq,al,...,a,,ﬁl,...,ﬁq)

:A(vla'-'7vSaala-'-aai’)B(wla-'-awq’ﬂla'-'7ﬂq)a

where A € T"9)(V) and B € T4 (V). As a consequence, the linear spaces
T"$)(V) can be represented by an appropriate tensor product

TV =V'®...eV'eVe...oV (2.1.2)

r s
and hence any tensor 7">*) (V) is of the respective form

T =y, ®...Qy,®21®...Q02z, y;eV* ze€V,
SO

TEOD o v, e, g) = (yiov) Ay v ) larzn) oo e, 26)
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Let {e;} be a basis in V and {e/} so called dual basis in V* defined by
(ek,ej>=8”;, k,j=1,...,n.
For arbitrary vector v € V and covector € V*
v="1ker, a=age,
where Einstein summation convention is used. From (2.1) follows that
(a,v) = Ve, ok = (ek, v>, o = (a,e).
So, components of the tensor T ¢ TC(V), ina given basis, are of the form
TU (epys . ver, e, .,ef)=11®...0 7, Qv ®...Q vs)(ex,...,e")
= ()/1, €k1>- .. (ejx, vs> = Tk/;l‘:',is,
while the tensor itself is as follows

T =T/ bl g @ ge,®... 0.

A direct sum of all linear spaces 7 %) (V)

TV):=EP T7"(V)

r,s=0

constitutes noncommutative, associative algebra with respect to tensor multiplica-
tion.

Example 2.1 Let us consider second order tensors
70D = 7102, T?Y =y, ®y,, T"V =y®z, z1,22,2€V, y vy eV
then

TOD(ar, 02) = (a1, 21) (@2, 22) . TP, v2) = (y1., v1) {2, v2),

T3 (@, v) = (@, 2) (v, v),
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where vy, v2,v € V, ai,as, a € V*. In our basis we have

TO? =21 @ =1zei®ej =Tle; ®ej,
TO =y @ yy = yva¢ ®¢ =Tel ® e/,
T(l,l) =y®z= J/jZiej Qe = T;ej R e;.
The operation producing tensors from tensors is said to be a tensor operation. So

far we have at our disposal a linear combination of tensors and a tensor product of
tensors. Another important tensor operation is contraction defined as follows

C:TOOWV) — T =Dy, T — C(T):=T(..,ex, ..., ..,

where the pairing (2.1.1) is applied to the ith V* factor and the jth V factor in
(2.1.2).

Some tensors will play an important role in our further considerations. One of
them is so called metric tensor. It is a second order covariant tensor g € 730 (V),
which is symmetric and non-degenerate, i.e.

g(v,w) = g(w,v) symmetric,

/\ gw,w) =0== v =0, non-degenerate: det(g;;) # 0.

weV
Sometimes one demands stronger requirement, namely to be positive definite
/\ g, v) = 0.
veV

Metric tensors which are not positive definite are said to be pseudo-metric tensors.
As it is well known from the linear algebra, any nondegenerate symmetric matrix
takes in a suitable basis a canonical form

¢ =diag(l,...,1,—1,...,—1). (2.1.3)

n4 n—

Then, one says that the metric tensor g has signature (n4,n_).
Metric tensor defines a scalar product in V

v-w = g(v, w):gijviwj. (2.1.4)
A linear space over complex numbers with scalar product (2.1.4) is called a unitary

space. A basis in which the metric tensor g takes the canonical form (2.1.3) is called
an orthonormal basis.
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In a given basis denote the matrix (G'/) as the inverse matrix to (g; i), i.e.
gikGY =3/

G'J constitute the components of contravariant metric tensor G € TO2 (),
Consider the maps

V*—>V: a— Ga:=G(a,")

2.1.
V>V v gv:=g@,") (2.1.5)

They are inverses to each other and define isomorphism between linear spaces V
and V*, which in arbitrary basis takes the form

ap =gijv/, v =G"aj, veV,aeV"

2.2 Tensor Fields

Let O be a smooth manifold. In many applications we will consider a very simple
case when Q = R”. Then, let F(Q) := {f : O —> R} be a set of smooth functions
on Q. F(Q) constitutes a commutative and associative algebra with respect to point
(local) multiplication. For an open set U C Q, homeomorphism

0: U — R'(', ..., x"
is called a chart of local coordinates. In local coordinates
f(’(,zfo(p*1 R" — R

will be identified with f.

Let Ty Q denote the tangent space to Q in a point x € Q. Ty Q has a structure
of a linear space. Moreover, let T, O denote the dual space. Define the sets T Q and
T*Q over Q as

ro:=Jno ATLo=vV.

xeM xeM

0= J1r0. A Tie=V"

xeM xeM

i.e. all vectors at all points x € Q are regarded as points of a new set 7' Q, while all
covectors at all points x € Q are regarded as points of a new set 7*Q, with natural
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surjective maps

7n:TQ— Q, T,0>v— x,
1:T"Q0—> Q, T;Q0>p— x.

T Q and T*Q have a natural structure of smooth manifolds induced by differential
structure (maximal atlas) on Q. Besides, if ¢ : Q@ D U — R"(x!,...,x")
is a local chart on U, where x' are local coordinates, then on the domain U =
7 W U) c T Q one can introduce canonical coordinates as follows. If v €
U — v(x) € Ty Q for x € U then

] : a
o o
v=uv o lx=v"(x) axi” 2.2.1)
o)
:TOOU — R, ....x" v'(x),...,v"(x))
is a local chart with canonical coordinates (x', ..., x", vi(x),...,v"(x)). In a

similar way, for the domain U:=t"'(U)cT*Q
§:T*0DU — R¥™(x', ... X", p1(x), ..., pa(x))

is also a local chart with canonical coordinates (xl, e X pr(x), ., pr(X)),
where p(x) € T, Q. Its decomposition with respect to the coordinate basis reads

p = pidx' |y= pi(x)dx'. (2.2.2)

For special cases, when O = R", or Q is a Lie group or Q is a set contractible to
a point, then T Q (T*Q) is diffeomorphic to Q x R" and represents trivial tangent
(cotangent) bundle, while Ty Q and T Q are respective fibers over a point x. Locally,
we always deal with trivial bundles.

The simplest tensor fields are:

. scalar field: f:0—R; f(x)eR,
2. vector field: v: Q0 —TQ; v(x)eT,0,
3. covector field: o: Q — T*Q; a(x) e T}Q.

—_—

The dual map on a smooth manifold is defined by:

(a,v) : T*O xTQ — F(Q); {o,v) (x) €R. (2.2.3)
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Notice, that (¢, v) is F(Q)-bilinear mapping:

N\ e v+ fw) = (o, v) + (o, w),
feF M)

N e+ fB.v) =, v)+ f(Bv).
feF (M)

Thus, vectors and covectors constitute a linear space over R, while vector fields and
covector fields constitute a module over algebra F(Q).
Tensor fields of (r, s)-type can be treated as maps

TEQ) :T*Ox...xT*OxTQO x...x TQ — F(0), (224)

~
r s

which are F(Q)-linear in each argument. A direct sum

T = 7"(Q)

r,s=0

with tensor product ® acting point-wise, constitutes the algebra of tensor fields on
Q. The algebra is associative and noncommutative.

A vector fieldvoverU C Q (v € UcC T Q) in local coordinate chart ¢ : U —
R*(x!, ..., x"), according to (2.2.1), is of the form

0

. !
v(x) =v' (x)9; = v'(x) axi” {M

=1,...,

where functions v’ (x) represent vector field components. Alternatively, vector fields
can be considered to be mappings in the algebra F(Q)

v F(Q) — F(Q),

i a
F@Q)> f—v(f) = v’(X)a)]:,- € F(Q)

of derivative type, i.e. such that are linear and fulfill the Leibniz rule

v(f +2h) =v(f)+rv(h), fiheF(Q), reR

v(fh) =v(Hh+ folh).
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A particular case of covector field over U C Q is a differential df of function
f : O — R, which acts on a vector field v in the following way

(df,v) = v(f).

Coordinate differentials dx! € T©D(U) constitute a dual basis (coframe) of
covector fields

(axf,0;) = 9,0 =¥,
SO
a(x) =a;(x)dx’, a;(x) = (a, ),

is consistent with (2.2.2), and in particular

0 .
a=df = aj;.dx’.

The dual map in a chosen basis is of the form
{or, v) (1) = @i (V' ().

If T(Q) € T"(Q), then in a local basis on U € Q
TEOU) = TP dt @ @dx ©9;, ®...® ;. 223)

Notice, that second order tensor fields 732 (Q), TO2 (@), T:D(Q) can be
treated as appropriate maps:

1. 7O20): T 0 — T O,
2. T@9Q): TQ — T*OQ,
370D :TQ —TQ, TUD(Q): T*0 — T*Q.

Let
ACD — Ay @8;, APY = Ajjdx' @dx/, AMD = Aldx' @ 9,
then, we will use the following notation
A0y — (A0 @) =v, ACD(B ) = <,3, A(0’2)a> — (B, v),

AZDy = C(A(z’o) Rv) =«a, A(z’o)(w, v) = <A(2’O)v, w> = (o, w),
(2.2.6)
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Ay =tV @u =w, AT @) = (o, A1) = (@, ),

AlDy —c(AlD @ay =, ATV, a) = (A“’”a, v} = (B.v).

where for the tensor A('D the first contraction is made over the contravariant
index (the upper one) while the second contraction is made over covariant index
(the lower one). Thus, later in the book, the symbols of second order tensors, like
A©-2 one, will denote the bilinear map in the notation AQ2(y(x), B(x)) € R and
simultaneously will denote the map between one-forms and vectors in the notation
AQDq(x) = v(x), where a(x), B(x) € TFQ, v(x) € Ty Q.

Tensor fields on smooth manifolds are important objects, as they are our tools in
many further considerations. What particular manifold we choose and what tensor
fields it is endowed with depends on the physical context in which the tools will
be used. In our case we mainly concentrate on pseudo-Riemannian manifolds,
Poisson manifolds and symplectic manifolds. Although tensor fields themselves are
coordinate free objects, in order to make any particular calculations we have to fix
a coordinate chart. We also have to know the transformation rule for tensor field
components when we pass from one coordinate frame to another one. Here we only
recall the basic formulas. Consider a local coordinate transformationon U C Q

; i ; il . .
x' — x'(x), Jj’. x) = o] Jacobian of the transformation.
x

Then, one can show that
dx' = Jiwdx!, @(®) = (7H] 0a;),
b =N, 0'® = @ o),
1...kg

Tt @) = ) Y oY @ ).

In particular, in matrix notation

AT = JIJJ A" = A=JAJT",
Aij = U Ag = A= HTAT,
A; = Jj(]‘l)j.Ag — A=JAJ .

Tensor field g € T@(Q) such that in arbitrary point P the tensor g is the
metric tensor in TpQ, is called the metric tensor field, and the pair (Q, g) is
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called Riemann or pseudo-Riemann space. In the simplest case, when Q = R”",
in orthonormal basis we have

gij(x) = nij = diag(l, ...,—1/:1, ...,—l).
ni n_

In particular

R", n;;) = E""~ — pseudo-Euclidean space,
(R*, nij) = E!3 — Minkowski space,
(R", 8;j) = E" — Euclidean space.

A metric tensor field identify elements of tangent bundle with elements of cotangent
bundle

g(W'd) = vidx', v = gijv/,

G(a;dxi) = (xia,-, of = Gijotj, G = g_l.

2.3 Differential Forms and Multi-Vectors

There are two subclasses of tensor fields particularly important from the point of
view of various physical theories (models). One is the class of totally antisymmetric
and fully covariant tensor fields and the other is the class of totally antisymmetric
and fully contravariant tensor fields. They are main tools in the construction of
mathematical models of important physical processes. One of such models is
Hamiltonian mechanics, the subject of a few chapters of our book. Here we only
briefly review some basic facts about these objects, important for our further
applications, referring the reader to standard textbooks for more details.
Differential k-form in a point x € Q is called k-linear antisymmetric map

ox): TyQ0 x...xT, Q0 — R,
ox)..v...w...)=—oXx)(..w...v...).
It means, that k-forms can be identified with totally antisymmetric covariant tensor
fields T*-9(Q). Let us denote the space of k-forms by Qk(Q). From definition 0-
forms are scalar fields on Q, i.e. 2°(Q) = F(Q) and 1-forms are covectors, that is

Q') = TE9(Q). As from the antisymmetry of a given form follows that

ox)(...v...v...) =0,
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so, on n dimensional manifold Q, nontrivial k-forms are these for which k =
0,...,n.So, adirect sum

Q(0) =Pt 2.3.1)

k=0

constitutes a space of differential forms.
Any covariant tensor field 7*:? e 7%*9(Q) can be antisymmetrized by means
of antisymmetrization (alternating) operator A: AT 9 (Q) e Q¥(Q)

1
AT @1,y v = > (58n )T o1y, - - - Vo)) (2.32)

where o are permutations (elements of symmetric group Si) of indices (1, ..., k)
and sgn o means a number of transpositions building a given permutation o. In
local coordinates, components of the tensor AT are expressible by components of
the output tensor 7 in the following way

1
AT e = T = 4y D810 iyt (2.3.3)
"o

For example, for k = 2, 3 we have
1
T[ah] = 2!(Tab - Tha)a
1
T[abc] = 31 (Tabc + Teab + Toca — Thac — Teba — ach)-

Notice that analogously to the above construction, any tensor 7 %0 ¢ 7.0 ()
can be symmetrized by means of symmetrization operator S

1
ST ov) = D T @o(ys - -2 Voik)-

In local coordinates, components of the tensor ST are expressible by components
of the output tensor 7 in the following way

1
S jicjp = T = > To(iiyoGo- (2.3.4)
(e
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For example, for k = 2, 3 we have
1
Tap) = 50 (Tap + Tpa),

1
T(abC) = 31 (Tuve + Teab + Toca + Toac + Teva + Tach)-

The operation which lowers the degree of a differential form is the interior
product (or the Cartan product) w.r. to a vector field v. The interior product i,w
of a k-form w with a vector field v is a (k — 1)-form defined by the relation

ll)a)(x)(vla ey vk—l) = C()(.x)(v, Ula LR ] vk—l)a (2‘35)
with components
(ly®)a..b = V'Ocq..b-

In particular, by definition, interior products of O-form f, I-form « and two-form w
are

ivf =0, ia=a@ =(av), acQ(Q),

(b)) (V) = o, v)=—),v)
G2 v, v1) = (o, v1) . e QX0Q).

and thus

Iy = —WV = Vo =a.

The following properties of the interior product hold:
1. Iyly = —lyly = (iv)2 = 0,
2. iyqaw = iy + Ay
The operation which increases the degree of a differential form is an exterior
differentiation. The exterior derivative of a k-form w is a (k 4+ 1)-form dw such that

k+1
do(x)(1, ..., Vks1) = Z(—l)’“a)’(x)[vi](vl, ey Vim 1, Vigly e e v s Uk),
i=1
(2.3.6)
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where o’ (x)[v;] denotes the derivative of a k-form w into the direction of vector
field v;, given by

(@' Wij . = awjg;f ) (v)"

(see (2.5.7) and (2.5.8) for the case of arbitrary tensor fields). Thus d provides a map
d: QQ) — 2 (Q).

Exterior derivative of O-form f (x), one-form «(x) and two-form w(x) are given by

df (x)(v) = f'0)lvl = (df. v) (x),

da(x)(v1, v2) = &' (X)[v1](v2) — &' (x)[v2](v1)
= (o'[v1], v2) (x) — (&' [v2], v1) (),

do(x)(v1, v2, 13) = &' (X)[V1](v2, 13) — &' (X)[V2](V1, V3) + & (X)[V3](V1, V2)
= o' () [v11(v2, v3) + & () [V2](v3, V1) + & (X)[V3](V1, V2)

= (' [v1]v2, v3) (x) + (& [v2]v3, V1) (x) + (& [V3]01, V2) (x)

and respectively in the coordinate basis

df)i =0 f. (2.3.7a)
(da)jj = 0iaj — 0, (2.3.7b)
(dw)ijk = dwjk + hwij +djwii, wij =—wj;. (2.3.7¢)

Generally, the component rule with respect to the coordinate basis is as follows
(dw)i..jr = (D Gk + Dopijr. 0 € 24Q),

where we used the notation w;_ j, = 0d,w;..j, and which agrees with formulas
(2.3.7). The exterior derivative d is a linear map which is nilpotent

dd =0 =5 d(dw) =0

and so, k-form w with dw = 0 is called a closed form and k-form w is called an
exact form if there exists (k — 1)-form 5 such that w = dn.
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The space of differential forms 2 (Q) on a manifold endowed with the exterior
derivative constitutes a complex

020 % s . S e Lo

This complex is called de Rham complex of a manifold Q. As the composition of
two adjacent maps dd gives zero, hence

Imd*! c kerd*,

and moreover elements of ker d¥ are closed k-forms while elements of Im d*~! are
exact k-forms. The quotient

H*(Q) :=kerd*/Imd*~!

is a linear space in its own right, called k-th de Rhama cohomology group. In a
special case, when ker d* = Imd*~!, all closed forms are exact. Actually, according

to Poincare Lemma, if Q is of the star shape ( A\ {Ax : 0 < A < 1} C Q), or
xeQ
more generally Q is contractible to the point, then each closed k-form is exact. For

example, it is the case for any manifold diffeomorphic to R", or in particular for an
open neighborhood of an arbitrary point x on an arbitrary, possibly non-contractible,
manifold.

For any r > 0 and s > 0 such that s + r < n there exists an exterior product of
forms

AQY(Q) x Q(Q) — Q7(Q), (w.n) — @A, (2.3.8)
such that
r +s)!
(@A) (v, ..., Urs Urls -2+ Vpts) = gl Alw @ m)(x)(vy, ..., Urs Upls o v vy Vrts)s

where A is an alternating operator (2.3.2), of the following properties

.oAn=(1D)"n Ao,

(oA AL =onN AL,
oAt =oAntoAg,
.dwAn)=donrn+ (—1)’w Adn,
Ly An) =ihwAn+ (Do Adyn.

[ I SO T (SR

The space of differential forms 2 (Q) (2.3.1) together with the exterior product
constitutes the so called exterior algebra of forms. We know from (2.2.5) that the
tensors dx®! ® ... ® dx’F constitute the basis of ’T(k*o)(Q) which is of dimension
n*. Since the dimension of the subspace of k-forms is (Z), the induced basis
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dx*' A ... Adx% = kIAdxS ® ... ® dx**) is an admissible basis in Q¥(Q).
For example, basic 2-forms and 3-forms are as follows:

dx' Andx!) = dx' @ dx! — dx! @ dx',
dx' Adx? AdxF = dx' @ dx! @ dxF + dx* @ dx' @ dx! + dx! @ dx* @ dx!
—dx! @ dx' @ dx* —dx* @ dx’ @ dx' — dx' @ dx* @ dx’.

Hence, in such a defined basis, arbitrary two-form is represented by

w= Za)ijdxi Adx! = zl!a),-jdx" A dxj,
i>]
and arbitrary 3-form by
w= Z a)ijkdxi Adx! A dx* = ;!wijkdxi Adx? A dxk.
i>j>k
Finally, the exterior derivative of k-form
w= a)il_._,'kd)ci1 Ao A dxik,
is the following (k + 1)-form
do =dw;,. i N dx" AL A dxE

Example 2.2 Let Q = R> with basis {d,, dy, d;} and its dual {dx, dy, dz}. Exterior
derivative of O-form f (x) (differential of f):

_of af af

d d d dz.
f Bxx—i_ayy—i_azZ

Exterior derivative of 1-form o = fdx + gdy + hdz :
doa = (g« — fy)dx Ady + (hy — f)dx Adz+ (hy — g;)dy N dz.
Exterior derivative of 2-form w = fdx Ady + gdy ANdz + hdx Adz :
do = (gx —hy + f)dx ANdy Ndz.

For two 1-forms & = a1dx + aady + a3dz and B = Bdx + B,rdy + Bidz, the
external product is

anf = (a8, —arBpdx Ady+ (@183 —aszBdx Adz+ (a2B3 —a3By)dy Andz.
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For2-formw = fdxAdy+gdyAdz+hdxAdzand vector field V = ud,+vdy+wd,
the interior product is

iyvw = —(fv+ hw)dx + (fu — gw)dy + (hu + gv)dz.

In matrix representation the last formula takes the form

0 fnh
o=|—-f 0 g, V= v ],
—h —g0 w
—fv—hw
iyvwo=—-0wV =\ fu-—gw
hu + gv

Objects dual to differential forms on manifold Q are multi-vectors. By definition,
multi-vectors are totally antisymmetric and fully contravariant tensor fields:

a(x): IO x...xTFQ — R,
7x)(..aa...B..)=—1m0x)(..8...a...).
Let us denote the space of k-vectors by AK(Q). In particular 1-vectors are ordinary

vector fields, that is A'(Q) = T©D(Q). As from the antisymmetry of a given
multi-vector follows that

7x)(..a...a...) =0,

so, on n dimensional manifold Q, nontrivial k-vectors are these for which k =
0, ..., n. Thus, a direct sum

AQ) =P r )
k=0

constitutes a space of multi-vectors.
In a complete analogy to the covariant exterior algebra of forms one can define
contravariant exterior algebra of multi-vectors with the respective basis

iy Ao A Oy, 1<ii<...<ig<n.

For example 2-vector (bi-vector) in the above basis is of the form

w(x) =Y 7 (x)3 A D;.

i>j
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Like any k-form can be represented by the exterior product of 1-forms (covectors)
ox) =a1(x) A... Aag(x),
so every k-vector can be represented by the exterior product of 1-vectors (vectors)
T(x) =vi(x) AL A vp(x).
It is a well known product (bracket)
[L,.1: AYQ) x A'(Q) — AL Q) (2.3.9)

between vector fields, called commutator (Lie bracket) (2.5.12), (2.5.13). There
exists a natural generalization of (2.3.9) onto multi-vectors

[, .Is : A¥(Q) x AL(Q) - AF=1(0) (2.3.10)

called Schouten-Nijenhuis bracket [230, 271]. It is a bilinear skew-symmetric
map identical to the ordinary Lie bracket in the case of vector fields. Let
vi,..., Vg, Wi, ..., w; be vector fields over Q, m;r = vi(x) A ... A vg(x) and
;= wi(x) A ... Awi(x). Then the bracket is defined by

[Te, mils =[vi(x) A oA v(X), wi(X) AL o Aw(x)]s

=Z(—1)i+jv1/\---ﬁi---/\vk/\[vi,wj]/\wl/\---li}j---/\wz
L]

(2.3.11)

where ¥;, w; denote the absence of v; and w;. From definition (2.3.11) it follows
that:

[k, wils = (=DM [y, mils,

[k, 70 ATils = [k, wrls At 4+ (=DE D Ay, s,
(—DXD [y [, wilsls + (D Dy, [, w,0sls + (=D * D,
[, mils]ls = 0.

1.
2.
3.

For example, using the above properties of the Schouten-Nijenhuis bracket one can
easily show that if v, w are some vector fields and 7 is a bi-vector, then

[vAaw,mls=wAv,m]ls —vA[w, ]s. (2.3.12)

Let (x!,...,x") be local coordinates on Q, K € A¥(Q) and R € A"(Q) be of
the form

1 . . 1
K = !K”"Jkail/\.../\aik, R:r

X 'Ril"'i’ iy AL A0,
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and
1 leedkgr—1
[K, R]s = (k—i—r—l)'[K’ R]S oy A ANy
then
[K, R]g...llﬁrr*l — k'l : (kKn[llmaankmlkJrr,I] + (_1)/{ar[11manKlrmlk+r,1])
irl

(2.3.13)

where [. . .] is the antisymmetrization operator over the indices.
For more details on Shouten-Nijenhuis bracket we refer the reader to the
literature [230, 251, 271].

2.4 Mappings of Tensor Fields Between Manifolds

Let f be a smooth map

ML 2.4.1)

from manifold M to manifold N for which the inverse map f~! may not exist. The
push-forward (direct image) under f of a tensor field will be denoted by f, while
the pull-back (inverse image) under f of a tensor field will be denoted by f*. For
the functiony : N — R

- N LR

the admissible composition of maps ¥ o f : M — R, i.e.

ffy=vof
represents a pull-back of function ¥ on N to function ¥ o f on M. Let {x'} be
a local coordinate on M and {y“} be a local coordinate on N. In local coordinates
f:x — yand

Y@ =y Ox).

For the composition of maps M —f> N 5§ there holds (ho f)* = f*oh*.
Moreover,

T F(N) — F(M)
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represents a morphism between algebras of functions, as

W+ a0 = AU+ af Yo, fFW) = (YD) Y.

Vector fields are transported from M to N. For vectors the natural push-forward
is defined by

fe : TheM —> Ty)N,
such that for arbitrary function ¢y : N — R
()W) = v(f*Y).

In local coordinates we have

i .0y oy? .
o = o = = iy
y4 ax

= fuv = (Jfv)da,

where f' = J/ 1= 3);;;(_)5) means the derivative of the map (Jacobian of the map). For

i

dim M < dim N the mapped basis vectors f,d; = J9, are linearly independent if
J{(x) has maximum rank, i.e. f is injective.

In contrast, for 1-forms (covectors) natural is the pull-back defined as

e T?(X)N — TIM,
such that
(f*ot, v) = {a, fyv), veTM, aeT"N.
In coordinates we have
frdy® = Jidx',  fra = ffaady®) = (@aJf)dx'.
The pull-back of arbitrary covariant tensor field
£ TNy — TEO ()

is defined as follows

(FTEMNw, .. w) =T (fovr, ..o, frvr), (X)), ..., v (x) € TeM
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and in coordinates takes the form
70O =T 0 (MdY" @ ... ® dy™
4
T =Ty a0,y (X)L T (0)dx" @ ... @ dx'r.
In a similar way, the push-forward of arbitrary contravariant tensor field
fo: TOO M) — TOD(N) (2.4.2)
is defined as follows
FTON @1, a) =T (ffar, o frag), a1, as(y) € TyN
and in coordinates takes the form
7O = Ti-5 ()3, @ ... ® 8,
4
ST O =Th5 () T8 () T (0)0y © ... ® g, (2.4.3)
In order to push-forward any covariant tensor field or pull-back a contravariant
tensor field, f has to be a diffeomorphism, i.e. we assume that f is a differentiable
bijection, whose inverse is also differentiable. In general, we rarely have to do with
global diffeomorphism of manifolds. For our further considerations the existence of
local diffeomorphism will be a sufficient assumption.
If f is a diffeomorphism, the push-forward with respect to f is the same as pull-
back with respect to f -1 so
e T*M: fo=(fD'a=((J Diady,
and
veTN: f*v=(fHw= (T Hv"a.
Then, the pull-back of a tensor field of arbitrary type (r, s)

[F TN — T (M)
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is defined by the relation

(SO v ag) = TOD (fon e five F 7D (7D ),
where vq,...,v, € TM, ai,...,as € T*M. In alocal basis it takes the form

TC) = T ()Y @ ... @ b,
U
PO = T8 (y eI x) . (D 0dx ! @ ... ® .
In a similar fashion, the push-forward of a tensor field of arbitrary type (r, s)
fo: TEO(M) — TE(N)
is defined by the relation
(TN @1 v e, o) = T Don, o, (P D0, fran, .o frag),

where vq,...,v, € TN, aq,...,as € T*N and hence, in local coordinates,

T(r,s)=T;"" (x)dx"' @ ... ® b,

=

LTs) =T 01 @) ()Y @)dy” ® ... ® b,

Example 2.3 Induced metric tensor on a sphere M = (52, g; ;) from its embedding
into N = (E3, 8;)):

f:x=Rcospsinf, y = Rsingsinf, z= Rcosf, R = const.
The differential of the map is

—Rsingsiné R cos ¢ cosd
J =11 Rcosgpsinf Rsingcosf |,
0 —Rsinf

hence

R2%sin%26 0

ng*5=JT5]=< 0 R2)<:>g=R2(sin2ed¢®d¢+d9®de).
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2.5 Lie Derivative of Tensor Fields

A curve on a manifold Q is a smooth map
y :R[t]>1 — Q.

Ifop: ® — R" [x!, ..., x"]is achart, i.e. (x1,...,x") are local coordinates on
® C 0O, one obtains a local representation of a curve y

Vo=9oy R[] — R'[x! ... x"],
i.e. a curve on R"
t— @), ... x"@),
which will be identified with y. Vector v(¢) tangent to the curve y (¢)

. dy .
= =v(t), P) =vp,
Vo= (0, yP)=vp
can be interpreted as a velocity vector of a dynamical system, whose trajectory is
represented by a curve y (). Vector vp is a velocity vector at the point P on a curve.
The metric tensor is the essential element for the concept of the length of a curve on
(0, g) between the points y (¢1) and y (f2)

n
Llyl = / dty/g(7, ).
3]

Let us consider a one-parameter set of maps

I x Q — Qe
which in a local basis (x!, ..., x") takes the form
(t,x) — O(t,x), P0O,x)=x (2.5.1)

and defines a transport on the manifold Q. For fixed xo, ® (¢, xo) represents a curve
on Q which passes through x¢. In general, ® (¢, x) can be represented by particular
solutions of a set of partial differential equations of evolutionary type

D!

= KD, Dy, Dyy,...), i=1,...,n
81‘ ( X XX )

with initial condition &7 (0, x) = x'.



2.5 Lie Derivative of Tensor Fields 31

Now the important question appears: when, using the notion of transport, can
one define a vector field on Q, or at least locally on U C Q7? It is possible when
with arbitrary point x € U it can be related one and only one vector. Geometrically
it means that curves which fill U do not intersect. Then we say that the transport
is represented by a flow. So the next question is: when is the transport (2.5.1)
represented by a flow? The answer is as follows: the one-parameter set of maps
(2.5.1) represents a flow if it is one-parameter Lie group

A /\ ®0.0)=x. ®t2.x) D11, x) = B(t1 + 12, %), (2.5.2)

xeQty,nel

where dot means a group multiplication. In particular, when the group multiplication
is point-wise (local), i.e. its value depends on x only, a vector field generated by a
flow is represented by a contravariant tensor field of type (0, 1) : v = T©D and
will be discussed in detail in Sect. 3.2.4. In particular, such flows represent classical
Hamiltonian dynamics in a phase space. When the group multiplication is nonlocal,
the flow cannot be described by local tensor algebra presented in this section. In
particular, such flows are related with quantum Hamiltonian dynamics in a phase
space and will be described in Sect. 7.2.3.
Let us consider a flow on Q

RxQ— Q:(t,x) — ¥(t,x)

such that

A N\ vO.x0)=x, Y.x) Y.x) =Y, y.x) = Y@ +n.x),

xeQt1,neR

(2.5.3)

i.e. the group multiplication is point-wise in the form of the composition of maps. It
assigns diffeomorphism ¢, to every t € R

¢ :0— 0, (2.5.4)
X=¢, x=0¢,x) =Y, x), ¢, b1 =41, (2.5.5)

It is a special case of the map (2.4.1)when N = Q, f = ¢, and ¢; ' = ¢_,.
The flow is completely determined by its infinitesimal generator

d d
vy = Y D=0 = ¢ (X)ii=0,
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i.e. a vector field on Q. At arbitrary ¢

jt ¢, =vog,, (2.5.6)
which means that for any initial condition x (0)
x(1) = ¢, - x(0) =y, x(0)
is an integral curve of the dynamical system
x=x = v(x), t — evolution parameter.
Example 2.4 Consider the one-parameter group of rotations in the plane:
<x(t) ) — g (x) _ <xcost — ysint) _ <w1(t,x, y))

y(1) \y xsint — ycost Ut x,y) )’

where the infinitesimal generator of this flow has two components

1o d _ 2, _ d _
v (X)—dtlh(f,x)\t:O——)’» v (X)—dtlﬁz(hx)\z:O—x-

It is not difficult to verify that indeed ¥ (z, x, y) is a flow (a set of integral curves)
of the dynamical system

Xt = —Y, Yyt = X.

Let T € T9(Q) and v € THO(Q) be a vector field, then a directional
derivative of the tensor field T in the direction of v is defined as follows

T(¢x)=T(x) _ . TE =T
. ,

li

d
/ P =1
T'@wl=  T(¢x)=o = lim 10 t

(2.5.7)

where ¢, is the flow generated by v.
For |t| << 1 from definition

T(¢,x) = T(x)+ T'(x)[v] -1 + O?).

On the other hand

X =¢(x)=x+ j;¢’(x)‘f=° A0 =x+v(x) -1+ 0@,
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SO

1

oT
T@ =T +v@) 14 00%) =Tk + (8 .v’) 1+ 0@
X
and in consequence

/ i aT/l'.ll.'.'.';S (x) .
(T' ()" = v (x). (2.5.8)

Jiedr T axi
The Lie transport is a process of displacing a given geometric object along a flow.

More precisely, for a given flow (2.5.4) and an arbitrary tensor field 7%, the Lie
transport of T along ¢, is a push-forward

Gre: TO(Q) — TU(Q)
and a pull-back
¢ T"(Q) — T"(Q),

where from (2.5.5) follows that

o7 =(#7") =90 (25.9)
For a given flow ¢, it may happen that for particular tensor fields T
O T=T= ¢, T=T.

Then, we say that such tensor fields are tensor invariants of the flow ¢,. As the next
step, the natural question appears: how to measure the rate of change of arbitrary
tensor field 7 along a flow ¢,? The concept of the Lie derivative gives the solution
to that problem.

Let ¢, be a flow, v(x) its infinitesimal generator, and 7% (x) an arbitrary tensor
field. The Lie derivative of a tensor field T (x) along the flow ¢, is defined as follows

d d
LyT(x) := dl(cﬁ?‘T)(x)u:o:dt(cp,,*T)(x)u:o. (2.5.10)
Hence,

d d
LT = @-nD)X)i=0=— @uT)X)i=0

_ i T(x) = (puT)(x) . T(x) — T (x)
= lim = lim

, 2.5.11
t—0 t t—0 t ( )
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and the recipe how to calculate it is as follows: push forward a tensor to the point x
according to the transformation low

T 25 7).

pull back its argument from x to x
_ b
X —x
and compare T with 7T in the point x. Hence, indeed the Lie derivative measures the
change of tensor field along a given curve.
From the definition it follows, that for |f| << 1
(¢ T)x) = T() +1- LT (x) + O?),
(@T)@) =T (@) —1- LyT(x) + 0.

The Lie derivative has the following properties:

L Ly : T"9(Q) — TH9(Q),
2. Ly(A+X1B)=L,A+XLyB, X\ = const., linearity,
3. L,(A® B) = (L,A) ® B+ A ® L,B, Leibniz rule.

So L, considered to be the map
Ly:T(Q) — T(Q)
is of a derivative type on the algebra 7 (Q) and maps (r, s) type tensors into (r, s)
type tensors.
How to derive the explicit form of the Lie derivative for various tensor fields
T5) (x) 2 We will use the definition and the following known relations
¢ () =x+1-0(0) + 0@, $j(x)=1+1-v'(x) + 0@,
(where the prime means the derivation) and
T(®) =T +T'@Whl+ 0@,
lim 7(X) = lim T (x) = T(x).
t—0 t—0
For a scalar field T (x) = TO-9(x) = f(x) push-forward is of the form

f:¢t*f:f°¢ft:f(i):f(x)
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and moreover
f) =F® = fa+v+00) = F&) +1- f@)]l+ 0.
As the result
f) = f) =t fO]I+ 00
y
Ly f = f' 0] = v(f).
For a vector field 7 (x) = T (x) = w(x) push-forward takes the form
B(E) = ¢pw(x) = ¢ [w)] = wx) +1 - v (@) [wE)] + 0(?),
50
B(E) = b(x) + 1w (W)E)]+ 0),
il
Lyw = w'[v] =V [w] := [v, w]. (2.5.12)

Thus, if v and w are vector fields, then u = [v, w] is also a vector field called the
commutator of v and w, such that

[v, wI(f) = v —w()) =u(f), u' = @w)H'—@vHw'. (25.13)
For 1-forms: T (x) = TOD(x) = a(x) we have
a(x) = ¢fa®) = ¢ (@) = a®) + - v @@+ 0@
and in consequence
(@) =a) +1-a b1+ 0@,
y

Lya =o'[v] + v [a].
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In local coordinates, considered Lie derivatives take the form

Lyf(x) = f v (x), (2.5.14)
; qw' . v . vl
(Lyw(x)) = o] v/ — o] wl, L,0; = i 07 (2.5.15)
dw; av/ Y DA
(Lya(x)); = o ; j+_8x’ is lmdx’zzaxjdx/. (2.5.16)

The general formula for Lie derivative of an arbitrary tensor field follows from the

Leibniz rule and the formulas (2.5.14)—(2.5.16)

L ( Jlll ‘;Yall ®. ®dxfr) =L ( Jlll ;Y)all R . ®dxfr _j’_T]lll ;YL (811)® ®dx/’
+. +TJ’1‘ ;‘a,l ®...® Ly(dx’r),
and hence
(r.5) i1y 8T;11.'.'.';f S L v
(LUT (X))/ljr - axm v + 3 ‘ll Tm Jr + + 3x/f '“m
avil m...is 3,)1‘: i1...m
Togym Jtedr T gym Jvede”
2.5.17)
In particular, for second order tensors, we have
. QT v . vt
i __ J .m i m
LT} = axm’ + axJ Ton axm U
ij i j
LvTij _ oT oM ov mi_ ov Tim,
ax™m ax™ ax™
0Ty, " ov™
LTy = 00"+ T+ Tim

Notice that the Lie derivative is not an F-linear map, as for any f € F(Q)

Lyv # fLo,

(2.5.18)

which follows immediately from the formula (2.5.17). For example, if f € F(Q),

v,we TOD(Q)and 7 € A2(Q), then

Lpyw = fLyw —w(f)v,

Lyym = fLym —mdf Av.

(2.5.19)
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For the Lie derivative L,, the exterior derivative d, the interior product i, and for
arbitrary k-form w, the following relations hold

1.
Low = (iyd +d iv)o, (2.5.20)

2.
d Lyw = Lydw, (2.5.21)

3.
iyLyw = Lyiyo. (25.22)

To show the first relation we proceed by induction on k. For k = 0 we have v =
f, iyf =0and L, f = (df, v) = i, f. Now assume that (2.5.20) holds for k. Then
a (k 4+ 1)-form may be written as o« A w, where w is a k-form and « is a 1-form.
Hence

(lyd+diy)(aAw) =iy(da o) —iy(a ANdo) +d(i,a Aw) —d(aAiyw)
=idaAw+da ANiyw—iya Adw —a Aiydw
+diya Aw+ iy Ado —do Aiyw — o Adiyw

=aALyw+ Lyag Aw = Ly(ax AN w)

by our inductive assumption and the properties of the external product. To show the
second relation we apply the formula (2.5.20) and the fact that d> = 0

Lyd=diyd+iyd*=diyd=d(L,—diy)=dL, —d*,=dL,.

Finally, to show the third relation we apply the formula (2.5.20) and the fact that
iyiy =0

Lviv = (d iv + ivd)iv = ivd iv = iv(Lv - iv d) = iva-

A linear space V with a bilinear product [.,.] : V x V — V which is
antisymmetric

[a,b] = —[b,a]l, a,beV (2.5.23)
and satisfies the so called Jacobi identity
la, [b, c]] + [c, [a, b]] + [b, [c,a]] = O, (2.5.24)

is called the Lie algebra.
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The linear space of vector fields on Q is an example of the Lie algebra with a Lie
product being the commutator. Antisymmetry follows from definition (2.5.12) and
the Jacobi identity is a consequence of the fact that the second directional derivative
is a symmetric bilinear form.

Another example is related to Lie derivatives themselves. First notice that Lie
derivatives constitute a linear space. The commutator

[Lvlv va] = LUILUZ - vaLUI
endows this vector space in a natural way with a Lie algebra structure. The map
v — L, is a Lie algebra isomorphism from the Lie algebra of vector fields onto the
Lie algebra of Lie derivatives
[Lvl ’ va] = L[vl,vz]-
At the end of this section let us mention that the flow ¢, itself, as well as its pull-

back ¢; may in turn be often expressed in a useful form of the exponent. Indeed, for
any flow ¢, and arbitrary ¢ (2.5.6)

d
dtd)t =vod¢,. (2.5.25)

The formal solution of this equation takes the form
¢, (x) ="V = x(t) = ¢'"x(0).

In a similar way, from relations (2.5.10) and (2.5.11) it follows that

d *k *
g0 = Loodr, (2.5.26)

with formal solution

¢F =e'lv = T(x(1)) = 'L T (x(0)).

2.6 Linear Connection and Covariant Derivative

A linear combination of two vectors from different spaces does not make sense.
However, if A : W — V is an isomorphism of the mentioned linear spaces, then
the operation

v+AA(w), veV, weW
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is admissible. A simple example of such problems is given by the acceleration of a
point mass which measures the change of velocity vector in time. Let us consider
an acceleration vector in R?. In order to measure a change of the velocity v(r) in
a moment ¢ at the point r(#) we make a parallel shift of the vector v(r 4 ¢) in a
moment ¢ 4 ¢ from the point r (¢ 4 ¢) back to the point 7(¢) and then compare both
velocity vectors, as now they belong to the same linear space.

The procedure which seems “obvious” for R? becomes completely unclear if we
pass to the sphere S? for example. How can one define the parallel shift in such a
case? A similar problem appears with the generalization of the notion of a straight-
line from R? to S2. The solution to such problems is given by the theory of linear
connection, which allows us to extend the notion of a parallel transport onto smooth
manifold Q. In what follows, the manifold Q equipped with a linear connection will
be denoted by (Q, V). We say that a rule of parallel transport is given on a manifold
Q if, for an arbitrary curve y on Q and two points x, y on the curve, there is a
prescription which assigns uniquely to vectors in x vectors in y, i.e.

t)y/,x Ty 0 — 1,0, v—> ri’,,xv.

As it has to be a generalization of the parallel shift from R”, we demand some
natural restrictive conditions on t like linearity

9 (U Aw) = T4 (V) + AT (W),
composition property
TZyOTyy =Tox
and in particular

™, =id., (ri’,,x)il = t}/,y.

Note that the rule of parallel transport needs as an input not only the edge points
x,y but also a path connecting them. In general, the resulting transported vector
may be different for different passes between x and y. We will see that the path
dependence of the parallel transport is an important and typical phenomenon and it
enables one to speak about the curvature of the manifold (Q, V).

In the case of the Lie transport along the curve y we have introduced the notion
of the Lie derivative along the vector field v = y. In a similar way, for the parallel
transport along the curve y, we can introduce the so called absolute derivative called
also a covariant derivative along the vector field v = y :

I
DT(t T'(t) - T(
© oy OO =V, T =V,T, (2.6.1)
Dt t—0 &
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where TS” (t) denotes the tensor field transported parallel backwards from the point
y(t + ¢) to the point y(¢). If T = w(y(¢)) is a vector field on y, such that its
absolute derivative along y vanishes

Vow = 0, (2.6.2)

we call it autoparallel. It means that w(y (¢)) = wl«l (y(t)). In practice, the situation
is reverse. First, we define the connection, i.e. the covariant derivative, and then the
parallel transport is defined by the demand of the condition (2.6.2). The vanishing
of the covariant derivative on a curve means that the field w(#) may be regarded in
such a way that its values everywhere on y arose by a parallel transport of its value
at a single fixed point into all the points of the curve.

Let us be more specific with the definition of a linear connection on the manifold
Q. With each vector field v on Q one may associate an operator V,, the covariant
derivative along the field v, having the following properties:

1. itis a linear operator on the tensor algebra, which preserves the tensor degree
Vo 1 T"(Q) — T"(Q),
Vo(A+AB) =V,A+AV,B, A,BeT"9(Q),

2. on a tensor product it fulfills the Leibniz rule

ViA®B)=(V,A)®B+A®V,B, AeT")(Q), BeT"(Q),
3. for a scalar field 79 = f we demand the following property

Vof =v(f) = Lo,
4. it commutes with contractions
VyoC =CoV,,
5. itis F-linear
Votfw=Vo+ f-Vy,

which is the only property that differs the covariant derivative from the Lie
derivative (see (2.5.18)).

The covariant derivative is uniquely specified by the coefficients of linear connection
Ffj (x) with respect to the frame field {0;}

Vo =: T}, (2.6.3)
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where Fl’.‘j (x) are called the Christoffel symbols of the second kind. Hence

Vwdi = V(wkak)ai = w"Vkai = (l_'l-jkwk)aj.
Then, one can show that
Vjdx' = —T}dx*, V,dx' = -5 w")dx/. (2.6.4)
Indeed, since
0= V,8, =V, (dx', ;) 2 (Vuda', ;) + (da', V0;)
= (Vuda', 0;) + (dx', T ko)) = (Vda); + Dy
we obtain (2.6.4).

The coefficients of the linear connection Ff. have one upper index and two lower
indices. Nevertheless, they are not components of any (2, 1)-tensor. Indeed, for a
given coordinate transformation x* — x'(x), i = 1,...,n we have

Ihop =vio, = OV H%a
= (rl){f [(ak(ﬂ)l,-) o+ (Vi |
= O (D) o+ ]

= [(r D) o+ @RI %

4
= (/D) gf + HEaTH gk (2.6.5)
axk 9%x! axk ax® gx™

_ r
Toax! axiaxt o axr axt ax ™

where J,é = gf,i and the first term in (2.6.5) is “non-tensorial”.

Applying properties 1-3 we get

ll Ls ) 11 is B
Y (jlja,lez) ®dx)) = w(“]>8,l® .® dx’

T (Vidy) ® ... @ dx

o T, @ ® (Vydx ),
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and thus, applying formulas (2.6.3)—(2.6.4), the component formula for the covari-
ant derivative of a general tensor field 7 into the direction of a vector field w has
the form

i1...Ig

ieds e i n...is il
(VuT)f o = I D w TS =T T (26.6)

For vector fields and 1-forms we have

Ch i i jrk
Vv = cw' +w'v/ Ty ) o, (2.6.7)
ox! J

oy : ;
Vo = (8); w' — w’osz‘lii) dx.

The F-linearity of the operator V,, with respect to w enables one to introduce
the operation of the covariant gradient

V:T(Q) — TC(Q),

(VT) (v, ..., w,0,...) = (VoT) (v, ..., c,...), (2.6.8)
(V)5 = (VD)3 = T30 (2.6.9)

From (2.6.6) it follows that

i1...0g

Til...is _ Ji-Jr + Fil Tmls 4.+ Fis Til...n " Ti]....is - Ti]...is

Jrersm™  gam nm= ji...jr nm= ji...jr Jim ... jr Jrm* ji..n

and in particular
_
T oaxk

a __ a a . b ._ .a
Viv® = opv® + v =00,

Vif = fx,

Via, = orag — ngoch = gk, (2.6.10)
Vil = T + T4 T + 15,19 == T,

ViTay = 0 Tap — Uy Ter — Uy Tac = Tapik,

ViTf = Ty + DT — D5 T8 =T,

Notice, that for a scalar field f, the covariant gradient (2.6.10) coincides with an
“ordinary” gradient, i.e. grad f := V f = df. The covariant derivative along w
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may be written in terms of the covariant gradient as

iy o mepil...is
V) =wiT e

Using relations (2.6.8) and (2.6.9) one can calculate higher order covariant
derivatives of an arbitrary tensor field. In particular, for the scalar field f we get

Vi = fi
VYV Ejij =V Piris =T V= Fiis — T8 1, fk
(VVV O ivjs = VYV )iz — Fl;1j3 (VV i, — Fl;-m (VV )ik
= Fivinis = Dy s Fok = U5 i Pk = U5 s Foiok = T8 f ik
AT TR fs + 15 T i fs

Consider the manifold Q endowed with a pair of structures, the metric tensor
g, which enables us to measure the length of the vectors and the linear connection
V, which enables us to transport the vectors along paths. We are interested in a
particular class of connections which preserve the length of vectors under parallel
transport, like in the case of the parallel shift in E”. Let y be an arbitrary curve in
(0, g, V) and v an autoparallel field

Vyv = 0.

The requirement of preservation of the length of v by parallel transport may be
stated as

Vy(g(v,v)) =0 if Vyu=0.

If this is to be true for an arbitrary curve y and an arbitrary initial vector v, then for
any two vector fields w, v one should demand

Vu(g@,v)) =0 if Vyv =0,

which is a particular example of the more general assumption that for any three
vector fields w, v, u the covariant derivative should obey

Vw(Eh,u) =0 if Vyo=0=Vy,u.
¢

Vg=0, gjx=0. (2.6.11)
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A connection V which satisfies equations (2.6.11) is called the metric connection.
The requirement (2.6.11) imposes ;nz(n + 1) constraints on 73 Christoffel symbols

Fj. ¢» following from symmetry of metric tensor g. From (2.6.11) we have
Vi&ij = 8ijik = k&ij — kagzj‘ - Fékgiz =0.
Let (Q, V) be a manifold with a linear connection. The map
T: 7490 x T49(Q) — 179(0),
T(v,w) :=Vyv—Vyw—[w, v]

defines the so called torsion tensor of the connection V : T2-D(Q). The tensor is
antisymmetric in the lower indices

T(w,v) =T, w), ie Tj =—T};
and so it has énz(n — 1) independent components
(a2, T (0. 80) = Thy = T}, = T (2.6.12)
If the torsion of the connection vanishes, i.e.
Vv — Vyw = [w, v]
then the Christoffel symbols are symmetric in the lower indices
Ty =T

and the connection is called symmetric or forsionless. If the connection is required
to be at the same time metric and symmetric, it imposes n> constraints on n’
symbols Fj. (%), hence determines the connection uniquely. In order to construct
this connection explicitly, let us introduce the Christoffel symbols of the first kind
as

Tijk = gl 2.6.13)
Then, the connection which is metric and symmetric satisfies
Cijk + Ujix = Ok gij = 8ijk> (2.6.14)

Lijk = Tigj =0
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and the two relations result in

8ijk + ik,j — &jk,i = 2Lijk, (2.6.15)
and eventually

i L i

jk = 5 G 8ljk + 8ik.j — 8jk.1) (2.6.16)
where (GV) := (gi j)_l. It means that the connection coefficients are determined

uniquely by the metric tensor. This distinguished linear connection on Riemannian
manifolds is called the Levi-Civita connection. In particular, if we chose O = E" in
the Cartesian coordinates I ’j « = 0and

Vi— 9, VT - T, V,T — T'[w].

Example 2.5 For Q = E? in polar coordinates (7, ¢), the metric tensor and non-
vanishing Levi-Civita connection coefficients are as follows

(10 ro ¢_1
g_<0r2>, F¢¢_—r, Fw—r.

For Q = E?in spherical coordinates (r, 6, ¢) we have respectively

10 0
g=10r2 0 ,
0 0 r2sin%0

Lpy =—r, F;j(p = —rsin?0,

o _ 1 o
an = . F¢0 =cot0,

re =1 r? — —sinfcosf
6= 0 g9 .

Killing vectors represent these flows along which the metric tensor is invariant,
ie.

L¢g = 0 = £-Killing vector (2.6.17)
or in component expressions (2.5.17)

gijkE* + g€ + guk; = 0. (2.6.18)
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Using relations Vig;; = 0, Killing equations (2.6.18) can be written in terms of
covariant derivatives

ViE; +ViE =ViE;) =0, & =g;§. (2.6.19)
Indeed

0=Vi§; +V;§ = (k&5 + (gikg®).;
= gjkiib" + gjkE i + gik jE* + g™,
= (gjki — T — Ui gjDE" + gjn (€, + T;8h
+(gik,j — Thjem — Th;8iNE" + g (&% + T&D
= (gjki — Diji — Djri) &5 + (i j — Tkij — Dinj )€
(Tikj + D) &5 + gjkEﬁ + giké{{j
= gijkE* + guE" + gk,
where we used formulas (2.6.10), (2.6.13), (2.6.14) and the relation
Likj + Ujki = ijk

which follows from (2.6.15).

In a complete analogy to equations (2.6.19), the Killing tensor of order m is
called a symmetric tensor K, whose components are solutions of the following
Killing equations

Vi Kis..ins1) = 0. (2.6.20)

Killing tensors of order 2 will be analyzed in Sect. 4.3.

Let us consider one more geometric object, important for the construction of
classical and quantum Hamiltonian systems. The parallel transport of a vector,
as well as an arbitrary tensor, depends in general on the path along which it is
performed. An alternative formulation of the same property is that if the tensor
is transported along a closed path (a loop), the resulting tensor may differ from
the initial one. Then we say that the considered manifold Q has nonzero curvature
with respect to the chosen connection V. A useful object “measuring” the curvature
(see literature [71, 116, 258] for a deeper insight into the problem) is the curvature
operator R(w, v) expressed by

R(w,v) :=V,Vy, =V, Vy — V[w,v] =[Vy, V]l — V[w,v]-
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It is a derivation of the tensor algebra 7 (Q), which commutes with the contraction,
vanishes on scalar fields: R(w, v) f =0, f € F(Q) and depends F(Q)-linearly on
both w and v. With the operator R(w, v) one can relate a RB:-D(Q) tensor, called
the Riemann tensor (curvature tensor)
R(u, w,v, &) := (&, R(w, v)u) = (&, ([Vaw, Vol = Viw,u)) u).
Its components are expressed by connection coefficients in the following way
]kl <dx (ViVi — Vng)8j> = F;‘l,k - ;k,l +T e — Tk i
(2.6.21)
Moreover, in particular we have
R(w, v)u = (R w*v'ul)o, (2.6.22)
and antisymmetry in the last pair of indices
RZC(I = _dec‘

For u = 9; and v = 9; the curvature operator reduces to the commutator of the
covariant derivatives

R(0;, aj) =V;V;—-V;V; = [Vi, Vj].

As the result, one can show that the commutator of the coordinate covariant
derivatives acts on the coordinate basis as

[Vi, V10 = R,’dja,, [V, V;ldx* = —R,’j.jdxl.

The first relation follows from (2.6.22) while the second one is a consequence of the
identity

0=R(w,v) {a,u) = (R(w, v)a, u) + {a, R(w, v)u) .

Thus, for an arbitrary tensor field 7">*) there holds

Ty = Ti = (Vi VD

JreJrikl J1eJrs JreJr
_ pmis pil i1..m pis  meil.ds iy
T/] Jr lek +...F T/] Jr lek Tm Jr lelk T/] mR]rlk’

(2.6.23)
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as
[V, VAT = T{5 [V, Vidx ' ® ... ® [V, Vild,.

The curvature tensor, as a tensor of (3, 1)-type, admits three contractions
Rzl:kl’ R;il, R;‘ki all the resulting tensors being of (2, 0)-type. It follows from the
antisymmetry of the last pair of indices that the second contraction differs from the
third one only in a sign and it turns out that the first one vanishes for the Levi-Civite
connection

ll:kl =0, Rj” = _Rj'ki = Rj;  Ricci curvature tensor.
In the case of a Riemannian manifold a further contraction is possible and one can
define a scalar field

R:=R) = g“lem scalar curvature.
Obviously, in E"+"~ Riemann tensor, Ricci tensor and scalar curvature vanishes.
At the end of this section let us briefly remind the notion of normal coordinates.
The basic idea behind Riemann normal coordinates is to use the geodesics through
a given point to define the coordinates for nearby points. Let the given point be P
and consider some nearby point P;. If P; is close enough to P then there exists a
unique geodesic joining Pj to P. The construction is as follows. On a manifold with
connection (Q, V) define the exponential map (centered at point P € Q)

exp: TpQ — Q v=expvi=y,(1)=P

where y (1) is the geodesic. So one assigns to a vector v the point P; from Q which
we arrive at t = 1, if at time ¢ = 0 we start from the point P with the initial velocity
v and all the time the motion is uniform and straight-line (i.e. along a geodesic). The
coordinate representation of the exponential map is

exp: vl — X, .. v =x(P)+ 0 — 5 ’jk(P)v/vk~|—...

The exp maps bijectively (diffeomorphically) some neighborhood of zero in Tp Q
to some neighborhood of the point P. Moreover, the uniform straight-line motion in
the tangent space is mapped to the uniform straight-line motion on a Riemann space

exp(vr) = (1)

The fact that a neighborhood of a point P may be diffeomorphically mapped on a
neighborhood of the zero in a linear space 7p Q means in practice that we have local
coordinates in the neighborhood of the point P. The most important property of the
coordinates constructed in such a way is the vanishing of all Christoffel symbols in
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the point P. So, let exp be exponential map centered at P € Q. If in Tp Q a basis ¢;
is fixed, we may introduce Riemann normal coordinates in the neighborhood of the
point P according to the prescription

P =(x', ... x") < P = exp(v) = exp(x’e))

So a geodesic is constructed starting in P (+ = 0) and passing through the point
P1 (t = 1) which is to be assigned coordinates. The geodesic has the unique initial
velocity v with components v’ with respect to e;. These components are identified
by definition as the coordinates x’. In these coordinates the geodesic y,(t) reads
x!(t) = v't. Moreover, for any symmetric connection (the Levi-Civite in particular)
F;k(P) = 0 and g;; x(P) = 0, so that in the neighborhood of P

1
8ij(x) = gij(P) + 2gij,kl(P)xkxl +...

i.e. the linear term is missing in the expansion.

2.7 Symplectic Manifolds and Symplectic Connections

An arbitrary closed and non-degenerate two-form @ on the manifold M is called
a symplectic form and the pair (M, w) is a symplectic manifold. The detailed
consideration of such objects, both in non-degenerate and degenerate cases, is
presented in Sect. 3.2. Here we consider a particular family of simplectic manifolds,
i.e. cotangent bundles 7*Q of arbitrary manifolds Q. As was presented in Sect. 2.2,
the manifold M = T*Q itself carries local coordinates (x*, pi) where the x
are coordinates on the base Q and the p are the coordinates in the fibre. The
most important canonical object on T*Q is the canonical 1-form 6. Its pointwise
definition is as follows. Let p € T*Q and w € T,T*Q, then

0, w) := (p, T5w). 2.7.1)
We thus first project the vector w to x = t(p) € Q and then insert it into the 1-form
peTi0 = (%), which corresponds to the point p € T*Q. The 6 form in
canonical coordinates (x*, p;) on T*Q is given by
6= pidxi.

Moreover, on T*Q there exists a natural exact symplectic form o given by w = d6
or in canonical coordinates

o =dp; Adx'
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Thus, T*Q is a symplectic manifold. In this book, on both classical and quantum
level, the manifold Q is taken as a pseudo-Riemannian manifold. The manifold Q
represents a configuration space of a given dynamical system. If dim Q = n then
dim T*Q = 2n and further on we will use the following notation: by Latin letters
i, j, k, ... we will denote indices ranging from 1 to n, by letters 7, f, k, ... indices
ranging from n to 2n and by Greek letters o, 8, y, . .. indices ranging from 1 to 2n.
Thus we have ¢ = (i, 1) and 7 = n + i, respectively.

Let (Q, g, V) be a Riemannian space and 7* Q its cotangent bundle. Let V be a
union of n-dimensional linear spaces tangent to the fibres of 7* Q. It is an integrable
distribution on T*Q which we called the vertical distribution. Let us remind that
for a manifold Q, a k-dimensional distribution is called a subset D C T Q of the
tangent bundle such that for every x € Q a Dy is k-dimensional subspace of T, Q.
A distribution is differentiable if it is spanned by k vector fields X (x), ..., X (x).
A distribution is integrable if it can be spanned by commuting vector fields.

A torsionless linear connection V on Q determines uniquely on T*Q an
n-dimensional distribution complementary to V. This distribution is called the
horizontal distribution associated with V and is denoted by H. Obviously

Ve H=TT*Q

and the pair (H, V) defines the so called almost product structure on T7*Q [267].
Let {t_1 (U), (x', pi)} be an induced coordinate system on 7* Q. The horizontal
distribution H restricted to ! (U) is spanned by the n independent vector fields

pj=" =" 4p;°
P sxd T axd "opi”

Lji = pk Flji.
The vertical distribution V restricted to 7 ~!(U) is spanned by the n independent
vector fields

. B
D-= D’/ = ,
J ap;

It follows that {Dy} = {Dj, D/} = {&if , 32_ } constitute a frame on 7! (U). As the
! J

frame is adopted to the almost product structure (H, V) it is called adopted frame

on v~} (U). The coframe {D%} = {dx/,§p 7}, dual to the adopted frame, is given

by
dpj = —Fj,'dxi +dpj.

Another natural frame on ! (U) is the one related to canonical coordinates

(") = (', pi), called Darboux frame {05} = {9;, 07} = {9,097} = {2 32,-}

with related dual coframe {dx/, dp 7}. Both frames and coframes are related in the
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following way

dx\ _ I, 0 dx
sp) \-r1,)J\dp)’
where (I');; =T';; and r’=r.
Starting from a torsionless linear connection V on Q, such that the components

in U of V are I"]?i, the symmetric tensor of (2, 0)-type on = 1(U) with component
matrix

. (-2,
= < . 0) (2.7.2)

in Darboux frame is called the Riemann extension of V. It follows that the
corresponding component matrix in the adopted frame is

A
=\ 0)
Let V be the Riemannian connection on T*(Q associated with the Riemann

extension g. ~It is called a complete lift of V to T*Q [268]. The non-zero connection
coefficients F%‘y in Darboux frame, calculated according to (2.6.16), where

are

k k Sk j
s =rk Fi] =-T7, (2.7.3)

ok I l l I I I l I
L =pQUGT + Ty — Ty = Ui ) = piT T + TR T, — Ty s — Ry
The connection coefficients in the adopted frame cannot be calculated according to
formula (2.6.16) as D, operators do not commute. The right formulas are more
complicated Emd we refer the reader~ to the literature [202, 267]. The non-zero
components ng of the complete lift V in the adopted frame are

S S B .
Uiy =T Ti;=-Tu Tij=—pRy;
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If, for example, X is a vector field on T* Q whose frame components are X “ then
VpRe = Dp(R) + % X7
are exactly the frame components of the covariant derivative VX of X.

A symplectic connection on T* Q is a symmetric linear connection V) on 7*Q
such that Vo = 0. So, the symplectic connection is defined locally by

s _ _ _ _
V((S )a)aﬂ = dswap — Wi I'lhs — Wan FES =0, Fgﬂ = Fga, o, B,8=1,...,2n,

where f‘g p are the local components of V) In Darboux coordinates, as

(0ap) = (IO ‘0’)

we have
Tgas — Taps =0, Taps —Tasp =0, (2.7.4)
where
Fups = warc %5,
From (2.7.4) one infers that if (M, w) is a symplectic manifold and V a linear
connection on M, then V is a symplectic connection if and only if for every Darboux
coordinate system in M the components I'ygs of V are totally symmetric with
respect to the indices («, 8, §). N ~
Let V be any symmetric linear connection on M and Fgﬂ = Fga its local
components. Then one can verify that
l:gﬁ = l:(iﬂ — éa)ak(ﬁaa)ﬂk + 6/30)051(), wakwkﬂ = 8%7
are the components of a symplectic connection [119]. Then,
l:Bozﬂ = l:Bozﬂ — é(ﬁaa)ﬂa + 6,3600[5)
= é(fﬁaﬂ + Tpse + Taps) — é(aaa)ﬂé + 98was),

where 'y g5 1= W Fg s- Hence, in any Darboux coordinates

Tsap = 3 (Tsap + Tpsa + Caps) (2.7.5)

we call this symplectic connection the symplectic connection on M induced by the
symmetric linear connection V on M.
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Assume that M is the cotangent bundle 7* Q over Q, where Q is n-dimensional
differentiable manifold endowed with a Riemannian metric g. From the previous
considerations we know that (T*Q, ) with w defined by (2.7.1) is a symplectic
manifold, but also (T*Q, g) with g defined by (2.7.2) is a Riemannian manifold
and the Levi-Civita connection of the metric g on 7*Q is given by (2.7.3). This
connection induces the symplectic connection on 7*Q according to (2.7.5). Thus,
we conclude that in the presented case the symplectic connection on 7*Q is induced
by the Levi-Civita connection on Q [54, 55, 219].

From (2.7.3) and (2.7.5) one finds the components I_‘g 8 of the symplectic

connection V) on T*Q in Darboux frame in terms of the Christoffel symbols
Ffj of the metric g on Q

i =1 __] =13 k
Fe= e D= T T =T (2.7.6)

I I [
F]k = pl(F/kFrz + F F Fljk Rt]k Rjik)’

with the remaining components equal zero. In the adopted frame {D;, D/} the
connection F%‘y takes the form

al a 1 l [
I =T, e = -/, Tl = — 3 PI(Rj + Ry, (2.7.7)

with the remaining components equal zero. Straightforward but tedious calculations
lead to the following components R Bys for the curvature tensor of the symplectic

torsionless connection V) given by (2.7.6)

2 ] 2 2pl
Ri = Rjs Ry = 3R

o 1 : ‘

jk="3Pr (R;kl;i + Rigi,j = OT 5 Ry + 4Rfij)[kF[]S) ; (2.7.8)

with all remaining independent components equal zero, where (-, -) and [-, -]
stand for the symmetrization and anti-symmetrization, respectively. From (2.7. 8) it
is possible to calculate the components of the Ricci curvature tensor, R wp = R”
receiving

ayp’

Rij=3Rij, R;=Kij=R;=0. (2.7.9)

In an analogical way as it was done in the previous section, Riemann normal
coordinates can be introduced on 7*(Q with respect to the symplectic connection
v,



Chapter 3 )
Classical Hamiltonian Mechanics Check for

In this chapter we present the basic facts about the underlying structure of classical
Hamiltonian mechanics and in particular statistical Hamiltonian mechanics. The
theory is formulated in the frame of Poisson geometry and presymplectic geometry.
On the level of statistical Hamiltonian mechanics we introduce the language and
notions familiar from the quantum level in order to further unify both theories.
In particular we consider such issues as Hamiltonian representation of variational
problems of arbitrary order as well as the reduction of Poisson bi-vectors on
submanifolds, important for further separability theory.

3.1 Lagrange Formalism and Canonical Hamiltonian
Formalism

In this section we briefly remind the reader equations of motion of a particle in
Riemannian space Q and their relation with extremals of an appropriate functional
of first order. We also remind the reader a canonical Hamiltonian representation of
considered dynamics in cotangent bundle 7* Q. What is important, the Hamiltonian
formalism is not necessarily related directly to some dynamics on configuration
space. We illustrate that fact presenting Ostrogradsky Hamiltonian representation in
a phase space for extremals of functionals of arbitrary order. We also present how
to adopt a flat Riemannian geometry to Ostrogradsky representation in the case of
functionals of a single variable.

3.1.1 Egquations of Motion in Riemann Space

Having been equipped with the theory of the linear connection, we may return to
the concept of acceleration. Let (Q, g) be a Riemannian space and y (¢) be a curve

© Springer Nature Switzerland AG 2019 55
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in Q, parametrized by ¢. If we realize what is actually performed with the velocity
field v(¢) on a curve in order to compute the acceleration a(¢), we immediately
conclude that the acceleration at a given point on the curve is the absolute derivative
of the velocity field along the curve, or in other words the covariant derivative of the
velocity along the velocity itself

a=V,y =Vyv, v:=y-the velocity vector.

A particularly interesting case arises when acceleration vanishes a = 0. Such
curves represent trajectories of a uniform motion (a free particle motion), i.e. are
a reasonable generalization of the notion of straight lines from R”. The respective
curves, characterized by the equation

are called affinely parametrized geodesics. The geodesic equation in local coordi-
nates takes the form

AT =l +Thxlxf =0, i=1,...n (3.1.1)
so we get a system of n ordinary second-order differential equations for the
unknown functions x'(¢), which parametrize y in these coordinates. Equations
(3.1.1) follow immediately from (2.6.7). The geodesics in R”, when expressed in
Cartesian coordinates, are “ordinary” straight lines

Ml=xl, =0=x'(t) = x) +vlt, x\=x'(0), v)=x0).

In the general case, the first two terms of the expansion in ¢ of the coordinate
representation of a geodesic are

X' (1) = x'(0) + (00 + L& (0)% + ... = xf + vht — AT vfvpr” + ...
Now, let us come back to the issue of the parametrization of geodesics. One
may also traverse the geodesic path, which corresponds to the uniform straight line

motion, non-uniformly. Although the acceleration does not vanish in this case, it
remains tangent to the path

Vyy ~y = Vyy = fO)y.

Let y, be an affinely parametrized geodesic and let y := y, oo be a reparametrized
curve y (¢) = y,(0 (1)), o/(t) > 0, then

Viy =d"(0)y.



3.1 Lagrange Formalism and Canonical Hamiltonian Formalism 57
Indeed, as y = o’(¢)y, sO
Vyy =0'Vy (0'y,) =0 0"y, +0'Vy v, =0"c"y,
=o"()y.

Affine reparametrization o (t) = at + B does not spoil the affine parametrization of
a geodesic. Thus, the affinely parametrized geodesic curve represents the motion of
a free particle of unit mass and is the solution of equations of motion

a=0 & ai=0, i=1,...n

where a is the acceleration vector.

If F(x) = F'(x)d; is a force (vector) field acting on a particle, then the
parametric trajectory of a particle is a solution of the generalized Newton equation
in a Riemannian space (Q, g): a = F, which in local coordinates takes the form

x” + F’kx, xt = Fl(x).

For the potential force field, when F (x) is a gradient vector field of a (by definition
negative) scalar potential (potential energy) V (x)

Fx)=—-GdV(x) = F'(x) = -GY3;V(x), i=1,...,n,

equations of motion take the form
x ~|—F’kxt ——G’/BJV(x) i=1,...,n. 3.1.2)

In the case of a flat Riemannian space (pseudo-Euclidean space) there exist
flat coordinate systems for which I"ik = 0. A flat coordinate system which is
orthonormal, i.e. g(9;,d;) = =1, is called pseudo-Euclidean coordinate system.
In the particular case of Euclidean space E” and Euclidean (Cartesian) coordinates,
equations of motion (3.1.2) turn into the well known Newton equations

xtit =V =F@x), i=1,...,n.
Now we show how to derive equations of motion (3.1.2) from a variational

problem. In a Riemann space (Q, g) let us consider a functional (action integral)
for the unit mass particle motion y (¢)

t n
stvt= [ Lo ) - vear= [ Lo, (3.13)
1

1
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where
L(x,x) = Lgijxix] = V) = T(x,v) = V(x). (3.1.4)

The functional density L is called Lagrangian, T (x,v = x;) is the kinetic energy
of the particle and V (x) the respective potential energy. Trajectories which are
extremals of the functional (3.1.3) are solutions of the so called Euler-Lagrange
equations

5[] = 0 8S_0 oL dBL_
vi= Sxi axt  dt 8x§ o

0, i=1,...,n, (3.1.5)
where § S[y ] is a covector being a variational derivative of the functional (3.1.3) (see
next subsection for details of the derivation).

The most important is that Euler-Lagrange equations (3.1.5) are equivalent to
equations of motion (3.1.2) as they share the same set of solutions. Indeed, applying
the relation (2.6.16) to the Levi-Civita connection, we have

oL d oL

axk B dt Bx{‘

0=

1 i J 1d J j
= zgij,kx;xt ~ 24t (gkjxi + gikx;l) — oV
[ i J R rJ o . i r i aV
= 5 (8ijkX;X; — 8kjrX; X; — 8kjXiy — 8ik,rX; X; — 8ikXyy) — Ok
— [ .. iJ Vv
= —&krXs; z(gtk,/ +gk/,z gt/,k)x[xt k
g (x;t + Tpxixd ) = Voo

= —gir (0, + Typxiad + G v ).

The equivalence follows from the assumption that det g # 0.

3.1.2 Hamiltonian Representation of Variational Problems

Let us remind the reader of the classical problem from analytical mechanics: how
to transform a Lagrangian representation of equations of motion (3.1.5), being a
system of n ordinary differential equations (ODE’s) of the second order on Q
(nonlinear in general), into a system of 2n ordinary differential equations of the
first order on 7*Q? First, let us notice that equations (3.1.5) can be immediately
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transformed into a system of 2n ordinary differential equations of the first order on

ro

xi=v, i=1,...,n, (3.1.62)
Y (3.1.6b)
9 drovi =0 1=1,...,n. .

Next, we transform equations (3.1.6) from T Q to the equivalent equations of motion
on T*Q. Notice that the metric tensor g maps any vector v € T, Q onto the dual
covector p € T*Q called generalized momentum

;oL
Pr= gV = (3.1.7)
Let us define the following function on 7*Q
H(x, p) = prv*(x, p) — L, (3.1.8)
where
v = Gk py

and follows from (3.1.7) and the invertibility of the metric g. For the Lagrangian L
of the form (3.1.4), i.e.

L(x,v) = ,g;v'v/ = V(x),
we get immediately
H(x,p) =G X)pipj + V() =T + V. (3.1.9)

Hamiltonian (3.1.9), or more precisely classical Hamiltonian, will be further called
a natural Hamiltonian, as it is the sum of kinetic energy 7 and potential energy V
of a particle of unit mass.

On T*Q equations of motion (3.1.6a), (3.1.6b) take the form

oH oH

= , ), = — . 3.1.10
api (pi); i ( )

i
Xy

Equations of motion (3.1.6) and (3.1.10) are equivalent, and relations (3.1.7), (3.1.8)
are called the Legendre transformation, invertible as far as g is non-degenerate. In
fact, as

aL oH ;. O0H oL
= — . v = . pi =

axt dx!
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SO
; oH
O=x,—v =x; — ,
api
and
oL d oL oH
0o="" =" — (i,

axi  dt dvi ax

More information about Legendre transformation as well as their coordinate free
formulation the reader finds in the literature [116, 178, 258].

Equations of motion (3.1.10) are called canonical Hamiltonian equations of
motion on a space M = T*Q, called further the phase space. Coordinates (x, p) are
called canonical coordinates (Darboux coordinates). A coordinate p;, constructed
with the help of transformation (3.1.7), and called generalized momentum coordi-
nate (fiber coordinate), canonically conjugates with a position coordinate x'.

Now, we briefly demonstrate that the Hamiltonian formalism is not necessarily
directly related with particles dynamics, so in fact it is much more universal. Let us
consider the class of functionals

n
S:/ L(x,x;, Xy, ...)dt (3.1.11)
n

where functional densities L[x] = L(x, x;, x4, ...) are differential functions of
arbitrary order. Consider the following problem: for which x(¢) the functional
(3.1.11) attains a local extremum, minimum in particular. A necessary condition
of the extremum takes the form

d
S(x + enje=o = 0,
de

where 7n(¢) is an arbitrary function that has at least as many ¢-derivatives as x(¢)
does and vanishes at the endpoints #; and #,. Then we have

d 2 d
S(x + €n)je=0 =/ L(x + €n)je=o dt
de . de

1
B ’22": oL - oL dn' N oL d*n' N 5

by parts /IZX": oL _doL d* oL vidt
W S \oxi droxl T d?oxl,

288 2

:/ E .n'dt:/ (6S, n) dt
y = oxt t
i=1 1

1
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where § = (Sil’”" ai") and

S d\* oL N
sxi Z<_dt) PR T G112
k=0 Ykt

is the variational derivative of functional (3.1.11) with respect to xi(t) [212]. From
arbitrariness of 7 it follows that functional (3.1.11) attains a local extremum for
x*'(z) being solution of the following system of ODE’s

58 d\* oL
i=2(— ) [ =0, i=1...n (3.1.13)
ox =0 dt 8xkt
known as Euler-Lagrange equations. In particular, for L = L(x, x;), equations

(3.1.13) reduce to the form (3.1.5) considered in the previous subsection. Notice
that

d
ker§ =Im dt (3.1.14)
Example 3.1 Consider a two dimensional case with the notation x! = x, x> = y.
For density
LIx(), y(O] = =3 x7 + 237 + 7% + ¢x°
we have

SL d
8x 2% = dt (ﬁyz_xf) = 3% = 3y + .
SL d?

Sy = %yxt + dt2 (4y”) = gyxt + 4y4t_
If on the other hand

d
Llx(1), y(©)] = dt (xy +x:y1) = %1y + Xy + Xy + Xe Vi

then
SL d d?
= — :0’
Sx Yt dt O+ yu)+ ar Vi
oL < rammt Cox =0
= X — X X Xy =
sy ' dr O

what illustrates the relation (3.1.14).
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To be more specific, let us consider an action functional S, whose density is
represented by a Lagrangian of m-th order

L:L(xsxtv"'v-xmt)

and which fulfills the non degeneracy condition

92L
det # 0.
metaxm,

The condition §S = 0 is equivalent with n ODE’s
=0, i=1,...,n (3.1.15)

of order 2m (nonlinear in general), which are not related directly to any particle
dynamics. Nevertheless, there exists a generalized Legendre transformation to 2mn
dimensional phase space, where equations (3.1.15) are represented by a canonical
Hamiltonian equations

; oH oH
iy, = k), =— . 3.1.16
(@7")s - (Pjk), Gk ( )
in terms of the so called canonical Ostrogradsky variables (q, p) [262]
gt =x) . k=1 m, j=1...n, (3.1.17)

m—k i
oL
pik= = Z ( t) 0yl (3.1.18)

8xkt i= (k—+i)t
with the Hamiltonian function in the form
n ] m—1
H(g,p)=) [pj,mq,f"” +y Pj,kq/’k+1i| ~ L. (3.1.19)
j=1 k=1

Example 3.2 Consider the action

S[x(t)]:/( X2 —Sxxl + gx4) dr,

generated by the second order Lagrangian on the one-dimensional manifold and the
related 4-th order ODE

SL
= x4 + 10xx0; + 5x[2 +10x3 = 0.
x
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Then, Ostrogradsky coordinates are of the form

1 2 SL SL
q =X, 4 =X, p1= =—10xxt—)C3,, P2 = = Xt
8-xt 8x,,

and the respective Hamiltonian
H(q,p) = p2a; + p1g° — L = 305 +4°p1+5¢" (@»* - 3(¢H)*.

Thus, four Hamiltonian equations (3.1.16) of the first order

oH
(q") = ) =q°,
D1
.. 0H
@)=, =p
D2
oH
(P =—. =10@g"H? -5(¢g»%
g1
oH
(p2)i=—. =-—p1—10g'¢?
g2

are equivalent to one equation of the fourth order.

Example 3.3 Consider the action
Slx(®)] = / (éx; — 7xxt2t + 35x2xt2 — 7x5) dt,

generated by the third order Lagrangian on the one-dimensional manifold and the
related 6-th order ODE

xer + 14xx4; + 28x:x3; + 21xt2t + 70x2xn + 7Oxx,2 +35x* = 0.

Then, Ostrogradsky coordinates are of the form

5L
¢'=x, ¢ =x1, ¢ =xu, pr=_ =xs5+ ldxxy + 14xex; + T0x%x;,

8xt
6L 6L
P2 = = —x4y — 14xxy4, p3 = = X3¢
8x,, 8x3t

and the Hamiltonian (3.1.19)

H(q,p) = p3q; +p1a* +p2a® —L = A pi+a*p1 + @ p2+ 74" (67)* = 35(¢"H)*(¢H* +7(¢")°.
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Again, six Hamiltonian equations of the first order

oH
qh = o = q°,
P1
oH
(@)=, =4
P2
oH
G = g = D3
P3
oH
(p1) = — - ~7(q*)* +70q" (¢*)* - 35(¢"*,
oH
(p2)i =—. =—p1+70(¢"H%¢>%,
27p)
oH
(p3)e =—.  =—p3—l4q'q>,
0q3

are equivalent to one equation of the 6-th order.

The presented examples demonstrate that the Ostrogradsky parametrization
(3.1.17), (3.1.18) of the phase space M = T*Q, where (qi) are local coordinates
in some Q, is “non physical” in the sense that it does not describe any particle
dynamics (3.1.2) on Q, as Hamiltonians (3.1.19) are not natural Hamiltonians
(3.1.9).

3.1.3 Newton Representation of Variational Problems

In this subsection we present a particular parametrization for higher order ODE’s
of a single variable, which turns them into a set of Newton equations in pseudo-
Euclidean space and then, as a consequence, into a Hamiltonian representation with
natural Hamiltonian function (3.1.9) [41]. In other words, we show the equivalence
between a single variable variational problem of arbitrary order with particle
dynamics in pseudo-Euclidean space. Later on we will call such constructions the
process of adaptation of Euclidean (Riemannian in general) geometry to Poisson
geometry (see Sect.4.3) and will be important for the construction of position
representation (Riemannian representation) of quantum mechanics.

Let us consider some 2n-th order ordinary differential equations of a single
variable x in the form

Xont + V1 [x1 =0, (3.1.20)
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where y, 1 [x] = y,41(x, X1, ..., X2(a—1)s) is a differential polynomial. We assume
that (3.1.20) is homogeneous with respect to the scaling transformation

X —>&x, t — e 1/%, (3.1.21)

For these equations we introduce a new parametrization which turns them into a set
of Newton equations of the form

e =+ mG Y, k=1, 01, (3.1.22)
(rn)tl = fn(rla '-'7rn)7

k k

where each variable ¥ scales as ¥ — &Xr* and functions f; are homogeneous
polynomials of order k 4 1 with respect to this scaling transformation. If equations
(3.1.22) are Lagrangian then its Lagrangian function has an indefinite kinetic energy
term and scales as L — &"T2L.

Let us start from the 4-th order equations. A general 4-th order equation which is
homogeneous of order 3 with respect to the scaling (3.1.21), has the form

X4t + a1 xxs + azxt2 + a3x3 =0, ay,ap, a3 = const. (3.1.23)
We are looking for a Newton representation

D =r2+ b1, D = bar'r? 4 b3(rY)?, by, by, by = const.
(3.1.24)

If r! = x then r? = x;; — by x? and equations (3.1.24) are equivalent to (3.1.23) if
a; = —2by — by, ar = —2by, a3 =b1by — b3.
Thus every Eq. (3.1.23) admits the Newton representation (3.1.24), where
b = —éaz, by=ay—a;, b3= éalaz — éa% — as.
If we assume that Eq. (3.1.23) is Lagrangian, with
Lix] = éxtzt + ax)ct2 + bx4, a,b = const., (3.1.25)

(homogeneous of order £*) then its Euler-Lagrange equation

oL

5 = X4t — 2aXXsr — a)ct2 +4bx3=0 (3.1.26)
x
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is equivalent to
N =r*+ a0 D) =ar'r? + (Ja* —4b)(r'), (3.1.27)
which also follows from the natural Lagrangian

Lirl=rlgri—vV@) =rlrf+ JaeH?r? + Ga* —b)H* + P2 (3.1.28)

(01
£=\10)"
so (rl, r?) are flat, non-orthogonal coordinates. Notice that L[r(x)] = —L[x]

modulo total derivative. System (3.1.27) is also Hamiltonian with the Hamiltonian
function

where

H = yiy2— a(r')’r* + (b — §a®) (") = ()7, (3.1.29)

where y; = (rz) o 2 = (rl) , are conjugate momentum. So, the natural
Hamiltonian representation of the variational problem (3.1.25), (3.1.26) is as follows

Ve =y,
) = y1,
) =r'r? + (Ja* — 4b)(r")?,

éa(rl)2 ~|—r2,

)

as

rl=x, rP=x,— éaxz,

2 1
yi =) =x3 —axx;, y»=(r ) = x;.

On the other hand, the Hamiltonian representation of Lagrangian dynamics
(3.1.25) in Ostrogradsky representation (3.1.17), (3.1.18) takes the form

1 5 SL
q =X, 4" =X, p2= = Xrt,
8)(:”
SL
p1= = 2axx; — X3,
S.X[

H = pag? + p1g* — L = 1p3 +¢*p1 —aq'(¢®* — b(g")*
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and hence

(@ =4,

@) = p2,

(P = a(g®)* +4b(q")’,

(p2)i = —p1 +2aq'q>.

Both representations are related by the following canonical transformation (see
Sect.4.1.4 for details) of the phase space coordinates

r'=q', r*=p—Jag"%

yi=-pi+aq'q®, v=q>

Example 3.4 The Newton representation of the variational problem from Example
3.2is as follows. Asa = —5and b = g then
rl =X, r2:x”+g-x2s

2 1
i =71 =x3 +5xx, y2 =71, =X,

H=yiy+500)%2 = 30H = 5077
and hence
rhe =y,
) = y1,
OV =rrr+ 50",
) = =30 +r2

Both Ostrogradsky and Newton representations are related by the following trans-
formation

rl=4q', r2=pr+3gH%
yi=-p1—5¢'¢% y=4q%

The 4-th order case suggests that there is a unique Newton representation (3.1.22)
for the ODE in the form (3.1.20). In fact this is an exceptional case. For higher
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order ODE’s we have a lot of freedom in the construction of admissible Newton
representations. To see this let us consider the 6-th order case in detail. The most
general equation (3.1.20) of 6-th order is

X6t + a1xx4r + arxsx3: + a3xt2[ + a4xxt2 + a5x2x,, + a6x4 =0. (3.1.30)
The admissible Newton representation reads

D =r7+bi1(r?,
D =13 4+ bor'r? + b3(rh)?, (3.1.31)
()i = bar'r + bs(r)r? + be(r')* + by (rH)?,

where

P =x, r2=xy—bax% P =x4— 2b1xt2 — (2b1 4+ by)xxi + (b1by — b3)x3.

Equivalence of (3.1.31) and (3.1.30) requires that

air = —(2b1 + by + bs), ar = —@B8b1+2by), az = —(6b1 + by + by),
a4 = 6b1by + 2b1by — 6b3, as = 3b1by + 2b1by + brbs + 2b1b7 — 3b3 — bs,

ag = b3by + b1bs — b1byby — b3b7 — be. (3.1.32)

This is an undetermined system of equations, so we have some freedom in the choice
of the Newton representation (3.1.31). We can fix one b; coefficient arbitrarily
and then solve (3.1.32) with respect to the other b; coefficients. For example, if
we choose a solution with fixed b1, then we obtain the Newton equations (3.1.31)
parametrized by b

by = —éaz — 4by,

b3 = —éa4 — é(m + ax)b) — 130b2,

by = —ai + éaz +2bq,

bs = Yas —as — ya3 + yarax + (a1 — 3az — 2a3)by — 10b7,

b = —ag + éaltm - 112a2614 + (éa4 —as+ éa% — éa% + éalaz)bl

4

5 2 2043
—|—(3611— 3612—03)1?1 - 3b s

by = yar —az — 2by.
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Let us consider the subclass of Lagrangian systems. The most general Lagrangian
for (3.1.30) (up to a total #-derivative) reads

Llx] = éx%t + axx’ + bx*x? +dx°, (3.1.33)
where a, b, d are some suitable constants, and its Euler-Lagrange equation yields

SL

5, = Yo 2axxy; — 4ax,x3; — 3ax’, +2bx>x,; +2bxx* —5dx* = 0. (3.1.34)
X

Then, in terms of Newton variables, we obtain the following (bi-parametrized)
equations

D =2+ b1 H?2,
(r2)ie =13 + a — 4b)r'r? + (= 1o+ 2aby — VpH ()3,
)i = 20173 + (=b + 6aby — 1067)(r')?r? + (5d — 3bby + 5a*bT — Db (rH?
+(a —2b) ()2, (3.1.35)
with the natural Lagrangian
Lirl=r/gri = V(r)

1
=D+ b )+ (- 3b +2aby — b)) (r')r?

+ (a = 2b)r'(rH? + (d — Ybby + a?b} — 6D (")’ (3.1.36)
where
001
g=|010],
100

SO (rl, r2, r3) are again flat, non-orthogonal coordinates. Notice that L[r] = L[x]
modulo total derivative. System (3.1.35) is also Hamiltonian with the Hamiltonian
function

1
H =333+ 1y =2 = b2 + (b = 2aby + ¥bD )2

4
—(a —2b)r' (") + (—d + bby — a®bi + 3b?)(rl)i (3.1.37)
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where y; = (r3)t, 2 = (rz)t and y3 = (rl)t are conjugate momenta. So, the
natural Hamiltonian representation of the variational problem (3.1.25), (3.1.26) is
as follows

Ve = ys,
) = y2,
(”3 t =Y,

(e =2b17'7? = (b — 6aby + 1067 (r')*r? + (a — 201)(%)?
+5(d = 3bbi+a’b} — 35D (DY,

2 =r° = (b —2aby + Fo]) ()’ +2(a = 2bp)r'r?,
(y3) = r+ b1(r1)2,

as

rl =X, }’2 = X4t —b1x2,

= x4 — 2b1xt2 +2(b1 — a)xxy + ;(b — 2b%)x3,
y1 = xs5; — 2(a + b)xexy + 2(b1 — a)xxz; + (b — 2b7)xxy,

Y2 = X3 — 2b1xxs,  y3 =X,

On the other hand, the Hamiltonian representation of Lagrangian dynamics
(3.1.33) in Ostrogradsky representation (3.1.17), (3.1.18) takes the form

1 2 3
q =X, q = Xt, q = Xtt,

SL 2
p1 = = x5, — 2axx3; — 2ax; X + 2bx"x;,
8xt
SL SL
P2 = = —Xx4r + 2axxst, p3 = = X3¢,
8x,, 8x3t

H = p3q} + p2g® + pig> — L
=P +a’p2+q*p1 —aq'(@®? — b(gH*(gP* —d(g")’
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and hence
@ = ¢%
@D = ¢°,
@) = p,

(p1)r = a(g®)? +2bq" (¢®* + 5d(g")*,
(p2) = —p1 + 2b(gH24>,
(p3) = —p2 + 2aq'q>.

Both representations are related by the following transformation of the phase space
coordinates

Pl=g!

rP=q’ = big"’
= —py=201¢H* + 2019 + 30— 26D)(q "),
i = pi+2b1g' p3 = 2b14%¢” = (b +2b1)(¢)q”,
y2 = p3 —2biq' >,
=g’

which again is the canonical transformation.

Example 3.5 The Newton representation of the variational problem from Example
3.3 is as follows. Asa = d = —7 and b = 35 then, for b = %a, we find
rl=x, rr=xq+ ;xz,

rd = X4t +7th + Txx + ;X3,

21
yi = x5t + 21x: x4 + Txx3; + ) X2xt,

Yo =x3: + XX, y3 = x4

H = é)’% + yiy3 — r2r3 + ;(r1)2r3 + ;(r1)3r2 _ 241 (rl)S’
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and hence
' = y3,
) = y2,
) =1,
(1) = _73 221 22 4 12501)4’

o) =1 = JH?,

(v3) = r* = J(rH2

Both Ostrogradsky and Newton representations are related by the following trans-
formation

P g,
rP=q’+ 3"

rP=—pr+7aH* = 79'¢* + 1 (@),
v =pi—7q9'ps+79°¢> = '} (q")’q".
y2 = p3+7q'q%

3 =q”.

3.2 Coordinate Free Formulation of Hamiltonian Mechanics

In the previous section we reminded the reader of the standard canonical formulation
of classical Hamiltonian mechanics via an appropriate Legendre transformation
from Lagrangian representation. Nevertheless, the modern Hamiltonian mechanics
is formulated independently of the Lagrangian formalism (variational problems) and
what important, in a coordinate free way. In consequence, Hamiltonian formalism
not always has to be related with some dynamics in a Riemanian space. As will
be presented in the following section, Hamiltonian mechanics will be formulated
in the language of Poisson geometry (presymplectic geometry) not Riemaniann
geometry. It means that dynamical systems it describes, are from Poisson manifolds.
Nevertheless, in some particular class of examples, when the Poisson manifolds will
be chosen as the cotangent bundle of some Riemaniann spaces, the Riemannian
geometry can be adopted to Poisson geometry with great freedom in choosing an
appropriate metric tensors. That observation will be crucial for further quantization
procedure developed in the second part of the book.



3.2 Coordinate Free Formulation of Hamiltonian Mechanics 73
3.2.1 Poisson and Presymplectic Manifolds

Consider a manifold M of dim M = m, the algebra F (M) of smooth, real-valued
functions on M and a duality map (., .) : T*M x TM —> F(M). A Poisson tensor
I1 of co-rank r on M is a bi-vector IT € A%(M) with vanishing Schouten-Nijenhuis
bracket [180]:

[IT, M]s =0, (3.2.1)
whose kernel is spanned by exact one-forms
ker [T = Sp{dci}i=i....r

i.e. I1dc; = 0 according to the notation in (2.2.6). In a local coordinate system
(¢',...,¢™) on M we have

m
H:Zni/ a./\ 8., (3.2.2)
act agd

i<j

while the Poisson property (3.2.1) takes the form of the so called Jacobi equation

/o + mlen¥ + Mg/ =0, 9 := . (3.2.3)
i

and is derived as a particular case of the formula (2.3.13) for r = k = 2 and
R = K = TII. Any smooth function c(¢) € F(M) is called a Casimir function of
the Poisson tensor IT if T1dc = 0.

Having a Poisson tensor we can define a Hamiltonian vector fields on M. A
vector field X g related to a function H € F (M) by the relation

Xy =I1dH, (3.2.4)
(consistent with the notation defined by (2.2.6)), is called the Hamiltonian vector
field with respect to the Poisson tensor I1. The function H is called a Hamiltonian
function or simply a Hamiltonian.
Poisson tensor IT induces the Lie algebra structure into the associative algebra of
functions F (M) through a particular Lie bracket
(L.} FWM) x F(M) — F(M),

{F,G)n :=T1(dF,dG) = (dF,T1dG), (3.2.5)
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that additionally satisfies Leibniz rule, i.e. the bracket is also a derivation for
multiplication in the algebra of functions. Such bracket is called a Poisson bracket.
Indeed

1. {F,G}n = —{G, F}n, antisymmetry,

2. {F.GH)n = {F, G)nH + G{F, H};, Leibniz rule,

3. {F.{H,G}n}n +{H.{G, Fin}ln + {G,{F, Hin}n = 0, Jacobi identity <=
[I1, IT]s = 0.

Antisymmetry is obvious. The Leibniz rule follows from the fact that d(FG) =
(dF)G + F(dG). To show the Jacobi identity notice that

{F.{H,G}n}n = {F,dH;1YdG j}n = {F, IV H,G j}n = " F, (" H,G ;) s
=N"NYF,H;sG j+ TV F,G j H; + TN\ F,H,;G ;

and moreover [TV = —I1/¢, Fi;j = F j;, where Hl{ = 9,1 and Fij = 0;0;F.
Thus

{F,{H,G}m}n +c.p. = (7T + O° T + P TV F, H;G ;=0 (3.2.6)

according to (3.2.3). Such an algebra is called a Poisson algebra and a pair (M, IT)
is called a Poisson manifold.

The distinguished representation (canonical representation) of arbitrary Poisson
tensor is described by the Darboux theorem. It claims that if a Poisson bi-
vector IT on m-dimensional manifold M (dimM = m = 2n + r) has constant

rank 27 on some open domain, then there are local coordinates (¢!, ..., ¢") =
(& Lo, & n, c1,...,cr), where ¢; are Casimir coordinates, such that
n - 0 1,0
=38, Adgi, (n’/) —|-5,00], (3.2.7)
i=1 0 00

where I,, is n-dimensional unit matrix.

The Casimir functions c; (¢) of IT define a foliation of M denoted further by S.
This foliation consists of the leaves S, = {{ e M : ¢i(¢) = v;, i = 1,...,r},
v = (v, ..., ;). From the Darboux theorem it is obvious that the restriction of
IT to any leaf S,, i.e. m,, := Ilg, is a non degenerate Poisson bi-vector. Such a
foliation is called the symplectic foliation of a Poisson manifold (M, IT) and S, is
called a symplectic leave.

Further, a presymplectic form 2 on M is defined by a two-form that is closed, i.e.
dQ2 = 0, degenerate in general. Thus, in a local coordinate system (;1, ..., ¢™)on
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M the two-form 2 is represented by
m
Q= Zsz,»jdg' Aded, (3.2.8)
i<j
while the closeness condition takes the form
0; 2k + k2 + 9;2; = 0. (3.2.9)
Moreover, the kernel of any presymplectic form is an integrable distribution
kerQ = Sp{Z;}i=1,..r, [Zi,Zj1=0. (3.2.10)
A pair (M, 2) is called a presymplectic manifold.
Like for Poisson bi-vectors, there exists the Darboux theorem for presymplectic

forms. It claims that if a presymplectic form €2 on m-dimensional manifold M
(dimM = m = 2n + r) has a constant rank 2z on some open domain, then there

are local coordinates (;1, M= (51, e, 52", ci,...,cr),such that
n ' _ 0-1,0
Q=> "d&" AdE', (=1, 0 0]. (3.2.11)
i=1 0 00

Coordinates, in which IT and 2 take the canonical forms (3.2.7), (3.2.11) are canon-
ical coordinates (Darboux coordinates). Canonical coordinates can be equivalently
defined in the following way. Coordinates (¢!, ..., ¢™) are canonical if and only if

{¢',¢/yp =¥ (32.12)

where I1"/ are given by (3.2.7).
A vector field X7 related to a function F € F(M) by the relation

QxF =dF (3.2.13)

is called the inverse Hamiltonian vector field with respect to the presymplectic form
Q.

Any non-degenerate (r = 0) closed two form w on M is called a symplectic form.
The inverse of a symplectic form is a non-degenerate Poisson bi-vector i, called an
implectic operator which satisfies

(om)a=a, acT'M

(rw)v = v, veTM.
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Thus, if some o satisfies relations (3.2.9) then its inverse satisfies respective
relations (3.2.3). In such a case

o l=n= Xy =x". (3.2.14)

Notice that in what follows we will use small letters to denote non-degenerate
Poisson and symplectic tensors and the capital letters otherwise. Hence, in the non-
degenerate case, the theory of Hamiltonian systems coincides with the theory of
inverse Hamiltonian systems. Moreover, a symplectic operator w defines the same
Poisson bracket as the related implectic operator 7

(F.G)* == w(XF. X0) = (0Xr. Xq) = (0X" . X¢) = (dF. Xo)
(3.2.15)
= (dF,7dG) = n(dF,dG) = {F, G}x.

Darboux theorem suggests an admissible construction of symplectic two-forms
and implectic bi-vectors with the help of appropriate 1-forms and vector fields.
Such a construction will be particulary important for further quantization process.
Let (X1, ..., X2,) be a collection of 2n linearly independent vector fields on M,
which commute [Xg, X, ] = 0. Then

n
T = ZX,' A Xn+i
i=1

is a Poisson bivector, as from the commutativity of vector fields follows immediately
the vanishing of related Schouten-Nijenhuis bracket [, 7]s = 0.

Let (1, ..., a2,) be a collection of 1-forms, linearly independent on M, which
are exact: ag = dfg. Then

n
w = E Opti NQj
i=1

is a closed two-form. Besides, if ag is a 1-form dual to vector field Xg, i.e. when
(ap. X)) = Xy (ap) = 8y, then

or =nw = Iy,.

Classical Hamiltonian dynamical system on a Poisson manifold is defined by a
system of the first order ODE’s in a coordinate free form (tensorial form)

£, =XpE) =NdH = & =T"(dH);, (3.2.16)
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Hence, the solutions of the system (3.2.16) are represented by a classical flow,
generated by the Hamiltonian vector field X . Alternatively, equations of motion
(3.2.16) can be represented by an appropriate Poisson bracket

§ = &', Hin (3.2.17)
as
E Hin=¢TYH; =8TNH; =T1"H ; = IV (dH);.

In Sect.3.1.2 we considered the particular (but very important from physi-
cal point of view) example of a Poisson manifold being a phase space M =

T*Q, dimM = 2n, i.e. a cotangent bundle to some Riemannian space (Q, g)
(configuration space) of dimQ = n, with canonical parametrization (§) =
(xl, ..., X", p1,..., pp) which means that

' x/y ={pi.pj}=0, {(x',pj}= 5’]
Then, equations of motion (3.1.2)
xtit + ijx,jxtk = —GUB,'V(x), i=1,...,n
of a particle, moving in a base space Q under the influence of a force of potential

V (x), have the canonical Hamiltonian representation in the phase space 7*Q in a
form

oH 01 oH
X _ ap . n dx _
(P>, - (_SH) - (—In 0) o | =man (3.2.18)
ax ap

with natural Hamiltonian (3.1.9). Notice that in a canonical basis, Hamiltonian
vector fields are given by the formula

Xy = (apiH) 0y — (axiH) 0p;
and Poisson bracket of a pair of functions A(x, p), B(x, p) by the formula

0A 0B 0A 0B

ax' Ip; ap; 9x*

(3.2.19)

Example 3.6 Let us consider the Hénon-Heiles system [146] in the phase space
R* = T*E? and the canonical representation (x, y, px Py), with the Hamiltonian

H = ép%+ép§+x3+éxy2.
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Equations of motion are of the form

DPx
Y = Py =ndH
Px _3x2_éy2 g ’
py/, —xy?
where
0 010
0 001
= . 22
T=1-1 o000 (3.2.20)
0-100

The next example presents a more general case of a Poisson manifold, not related
to any particular configuration space.

Example 3.7 Let us consider the Euler equations of motion of a rigid body, so called
Euler top, as an example of Hamiltonian dynamics on a three dimensional Poisson
manifold (in this case being the Lie algebra so(3))

h-1I3
w1 Lz w23
— | B-h
w? - I I3 w13
w3 L1—I
t
nh wiw?2

_ 0 _(6)03 @2 4 lo? 10} 10}
o @3 @1 2 1 2D L

—wy w1 0
=TI1dH,

where w; are components of body angular momentum and /; are the moments of
inertia about the coordinate axis. As the manifold is of odd dimension, the Poisson
tensor is degenerate and the Casimir function is of the form ¢ = w% + w% + a)%

Finally, let us recall two identities important for further considerations. Let IT be
a Poisson bi-vector and 2 be a closed two-form, then

LuglI+TdaTll=0, L,Q=d(Qu), (3.2.21)

where v € TM and @ € T*M. The second identity follows immediately from
relations (2.5.20)—(2.5.22)

LoQ = (diy + ivd)Q = diyQ = d(Q),

while the proof of the first identity is a bit more involved and can be found in [24].
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3.2.2 Tensor Invariants of Hamiltonian Systems

In this subsection we turn our attention to various tensor invariants of a given
Hamiltonian flow. Assume that (M, IT) is a given Poisson manifold and Xy =
I[TdH is arespective Hamiltonian vector field, which in a local basis (¢ Lo cmy
takes the form

Xp=1Y(3;H)d = Xydy, i,j=1,....m.

As was demonstrated in Sect. 2.5, a change of considered tensor field 7 along a
Hamiltonian flow d)fl , generated by a vector field Xy, is measured by the Lie
derivative Ly,

d d
T= T+VLx,T. 3.2.22
dt ot +Lxn ( )

So, a tensor field T, which does not depend explicitly on ¢, is invariant along the
flow ¢ if

Lx,T =0.

The invariant scalar field F is called a constant of motion. Thus F € F (M) is the
constant of motion if

0=Lx,F=Xp(F)=1Y(3;H) 3F) = {F, H.

We say that F is in involution with H. It means that if we fix a trajectory of the flow,
F has a constant value for all points from that trajectory.

Observation 1 This is a proper moment to observe why bi-vectors with a vanishing
Schouten-Nijenhuis bracket (3.2.1) lead to a natural, coordinate free, generalization
(3.2.4) of canonical Hamiltonian equations of motion (3.2.18). In the canonical
formulation (3.2.18), with the Poisson tensor in the form of a constant bi-vector,
the related Poisson bracket of two constants of motion is either equal to zero or
to another constant of motion. To keep that property for a non-constant bi-vector,
the Jacobi property (3.2.6) is required. On the other hand, Jacobi identity follows
from Jacobi equation (3.2.3) which is a consequence of vanishing of the Schouten-
Nijenhuis bracket (3.2.1).

Invariant vector field Y which fulfils the condition
0=Lx,Y =[Xn,Y] (3.2.23)

is called a symmetry (or more precisely a symmetry generator) of a Hamiltonian flow
generated by X g . If by ¢, we denote the flow generated by Xy and by ¢, the flow
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generated by Y, then ¢, is the one-parameter group of symmetries of Hamiltonian
flow ¢, if

¢to¢‘[—¢ro¢t =0.

On the level of respective infinitesimal generators it means their commutativity
(3.2.23).
Poisson tensor IT itself is tensor invariant of type (0, 2), i.e.

Lx,IT=0.
It follows from the fact that [ Xy, Xyg] =0and [1(dH,dH) =0 :

O0=Lx, Xy =Lx,11dH = (Lx,11)dH +I1(Lx,dH)
= (Lx,MdH+Td(Lx,H)=(Lx,I1)dH = Lx,I1=0.

Assume now that F is a scalar field. Then we have

2. 3.2
Md{H, Fin °2” dLx, H “2” Ly, TIdH = Lx, Xy = —[Xn. Xr],

(3.2.24)

where Xr = IIdF. It means that the map I[1d : F(M) — TOD(M) is an
anti-homomorphism of the Poisson algebra of scalar fields into the Lie algebra of
vector fields. It also means that a respective Hamiltonian vector field X such that
[Xu, XF] = 0, is related with any constant of motion F i.e. X is a symmetry
generator of the flow. It is nothing but the expression of the Noether theorem in
the Hamiltonian formulation. It says that for the arbitrary Hamiltonian system, a
Hamiltonian symmetry is related with the constant of motion and vice versa, a
constant of motion is related with the Hamiltonian symmetry. Observe that the
number of all symmetries of a given flow is larger in general than the number
of constants of motion, as beside Hamiltonian symmetries there may exist non-
Hamiltonian symmetries as well.

When the Poisson bi-vector is impectic, then in an obvious way the tensor field
T2 = ¢ = 7~ is also the invariant of considered Hamiltonian flow

LXHa) =0.

3.2.3 Dual Poisson-Presymplectic Pairs

As was shown in the previous subsection, if the Poisson structure is nondegenerate,
i.e. if the rank of the Poisson tensor is equal to the dimension of a manifold, then



3.2 Coordinate Free Formulation of Hamiltonian Mechanics 81

the manifold becomes a symplectic manifold with a symplectic structure being just
the inverse of the Poisson structure. In such a case there exists an alternative (dual)
description of Hamiltonian vector fields in the language of symplectic geometry
as inverse Hamiltonian systems coincide with Hamiltonian systems (3.2.14). So, a
natural question arises, whether one can relate Hamiltonian and inverse Hamiltonian
pictures in the degenerate case, when there is no natural inverse of the Poisson
tensor [101]. For such a case we introduce the notion of dual Poisson-presymplectic
structures [38].

A pair (7, w) is called a dual implectic-symplectic pair on M if 7 is a a non-
degenerate Poisson tensor, w is a non-degenerate closed two-form and the following
partition of unity holds on 7 M, respectively on T*M: I = nw and I = wrw. So, in
the non-degenerate case, dual implectic-symplectic pair is a pair of mutually inverse
operators on M.

Let us extend these considerations onto a degenerate case. In order to do it
let us introduce the concept of a dual pair [38]. Consider a manifold M of an
arbitrary dimension m. A pair of tensor fields (IT, 2) on M of co-rank r, where I1
is a Poisson bi-vector and 2 is a closed two-form, is called a dual pair (Poisson-
presymplectic pair) if there exists r exact one-forms «; = dc; and r linearly
independent commuting vector fields Z;, such that the following conditions are
satisfied:

1. (X,’(Zj) = Zj(C,') = 8,']‘, i,j = 1,2...}’.

2. kerIT=Sp{dc; : i =1,...r}.

3.kerQ=Sp{Z;:i=1,...r}

4. The following partition of unity holds on T M, on T*M respectively

r r
I=HQ+§:L®d% 1=QH+2yq®a. (3.2.25)
i=1 i=1

Condition 1 of the above definition implies that the distribution Z spanned by
the vector fields Z; is transversal to the symplectic foliation S. Thus, for any x € M
we have

TM=TS, &Z, T*M=T'S, ®Z*

where S, is a leaf from the foliation S that passes through x, the symbol & denotes
the direct sum of the vector spaces, Z, is the subspace of Ty M spanned by the
vectors Z; at this point, T;*S, is the annihilator of Z, and Z} is the annihilator of
T, Sy. Condition 2 of the above definition implies that Im(IT) = 7S, Condition 3
means that Im(2) = T*S and Condition 4 describes the degree of degeneracy of
our pair.

A presymplectic form €2 plays the role of an *inverse’ of Poisson bivector IT in the
sense that on any symplectic leaf of the foliation defined by ker IT, the restrictions of
2 and IT are inverses of each other. Contrary to the non-degenerate case, for a given
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Poisson tensor IT the choice of its dual is not unique. Also for a given presymplectic
form €2 the choice of a dual Poisson tensor is not unique either. We will come back
to that problem at the end of this subsection.

For the degenerate case the Hamiltonian and the inverse Hamiltonian vector
fields are defined in the same way as for the non-degenerate case, but for degenerate
structures the notion of Hamiltonian and inverse Hamiltonian vector fields do not
coincide any more. For any degenerate dual pair one can find a Hamiltonian vector
field that is not inverse Hamiltonian and an inverse Hamiltonian vector field that is
not a Hamiltonian one. Actually, assume that (I1, 2) is a dual pair, X = I[1dF
is a Hamiltonian vector field and d F = QX¥ is an inverse Hamiltonian one-form,
where X is an inverse Hamiltonian vector field. Having applied 2 to both sides of
the Hamiltonian vector field, IT to both sides of the inverse Hamiltonian one-form
and using the decomposition (3.2.25) we find that

r r
dF = Q(Xp)+ Y _ Zi(F)dci, Xp=X"=Y"x"(c)Z. (3.2.26)
i=1 i=1

It means that an inverse Hamiltonian vector field X is simultaneously a Hamil-
tonian vector field Xr, i.e. X¥ = Xp, if dF is annihilated by ker(2) and X*
is annihilated by ker(IT). Besides, for any dual pair (IT, £2), the following useful
relations hold

LXFHZO, LXFQZO, LZ,.I'[=O, LZiQZO, i—l,...,r.
(3.2.27)

The first relation was proved in (3.2.2). The second one follows immediately from
(3.2.21)

LyrQ=dQXxF)=ddF)=0.
For the third one we have

0= Lz (Ildcj) = Lz;(IDdc; + 1Lz (dc;)
= Lz,(I)dc; +Tld(Lz;cj) = Lz;(IDdc; + I1d(8;})
= Lz,(Il)dc; = Lz 11 =0.

Finally, the forth relation also follows from (3.2.21)
Lz.Q2=d(QZ;)=0.

In the previous subsection we proved that in nondegenerate case the Poisson
bracket (3.2.5) can be alternatively expressed by a related symplectic form (3.2.15).
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The same formula is valid in a degenerate case, when the inverse of implectic bi-
vector is substituted by any dual presymplectic form

(F,G)® := Q(XF, X¢) = <QXF, XG> — (dF, X¢) = (dF,T1dG)

=MdF,dG) ={F,G}n
(3.2.28)

as, although Xp # XF, but (QXp, MdG) = (QXF, 1dG). Notice also that
Q(Xr, Xg) = Q(XF, X9).

Now, let us consider the problem of a ’gauge freedom’ for a duality property. In
other words: given a dual pair (IT, €2) how can we deform €2 to a new presymplectic
form €’ so that (T1, ') is again a dual pair, or how can we deform IT to a new
Poisson tensor IT" so that (IT', 2) is also a dual pair?

Let IT be a fixed Poisson tensor and €2 be a dual presympectic form. Assume that
a; =dc; € kerll, Z; € kerQ and Z;(cj) = §;j,i,j = 1,...,r. Define a new
closed 2-form

-
Q = Q+ch,» Adfi, (3.2.29)
i=1
where f; € C(M). Then (I, ') is a dual pair, with ker(2")= Sp {Z;:Zi +1II df,-},
provided that
T(df;, df;) + Z;(fi) — Zi(f;) =0 forall i, j. (3.2.30)

Now define a new bi-vector

,
0'=0+Y ZAXi. QX;=dF, (3.2.31)

i=1

then IT’ is Poisson and (IT’, 2) is again a dual pair, with ker [1" = Sp{d¢’ = dc¢; +
d F;}, provided that

Q(Xi,Xj)—i-Xj(Ci)—X,‘(Cj) =0 (3.2.32)
for any pair of indices 7, j and

Zr(Xj(ci)) =0
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for any triple of indices i, j, k. In addition, notice that from (3.2.31) follows that
r
Zi(Fj)=0 and X; = [1dF; + Z X, (cr) Zx.
k=1
Indeed, to prove duality of (T, '), as we have
r r
QN =QM+ Y de ®Ndfi =1+ Y dei ® (Z; +11dfy)
i=1 i=1
and Z(c;) = §;;, it remains to show that Z € ker @'. In fact, as

,
QZ] = (Q+) dex Adfi)(Zi + T1df)
k=1

= QIdf; + Y Zi(fdex — df; + Y T1(dfi. dfi)dcx

k=1 k=1

=Y [dfe. dfi) + Zi(fo) — Zi(fi)] dex

k=1

it vanishes under condition (3.2.30).
On the other hand, to prove duality of (IT’, 2), notice that for (3.2.31) we have

r r
MQ=MNQ+) Z ®dF =1+ 7 ®dc+dF)
i=1 i=1
and Z,-(c;.) =8;j. Also c; € kerIT" as
r
Wdcj = (TT+ Y Zi A Xi)(dey + dFy)
i=1

r r
=TdFi+ Y _Xi(e)Zi — Xp + ) Xi(F)Zi
i=1 i=1

=) Xi(e)Zi— ) Xe(e)Zi+ ) Xi(F)Zi

i=1 i=1 i=1

= Y [Q2Xx, Xi) + Xi(cx) — Xi(c)] Zi

i=1
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and vanishes under condition (3.2.32). Finally, it remains to prove that (3.2.31) is
Poisson. Using formula (2.3.11) and in particular (2.3.12) we have

r r
[, g =2 [Z AXi Ts + Y [Zi A Xi, Zi A Xils
i=1 i,k=1

r r r
=23 (Z AX; Mg+ Y Zi AXi Xk I A Zg—2 Y Xi ALZi X A Zg
i=1 i,k=1 i,k=1

r r
=2 (Zi AXi Mg+ Y Zi AlXi Xp A Zg
i=1 i,k=1

where [Z;, Xi] = 0 follows from condition (3.2.3) and relations (3.2.3). Now, using
relation

[X, s =LxI, XeA'(M), I1eA>M) (3.2.33)
relation (3.2.28) and the form (3.2.3) we get

r r
2) 1ZiAXi s =2 ) Zi ATId(Xi(cr) A Zi
i=1 i,k=1

= Y Zi ATId(Xi(cx) — Xi(c) A Zi
i,k=1

and
[Xi, X¢] = TdQ(Xx, Xi)
so finally
,
(U, )5 = ) Zi ATd(Q(Xx, Xi) + Xi(c) — Xi(ci) A Zi
i.k=1

and vanishes under condition (3.2.32).

3.2.4 Classical Hamiltonian Flows on Symplectic Manifold

In order to compare classical and quantum dynamical systems, let us analyze
classical Hamiltonian flows from the point of view of transport equations [93].
Consider a transport (2.5.1) on the phase space in local Darboux coordinates (x, p)
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carried out by some functions

Q(xs D t)s Q(-xv p, O) =X, (32343)
P(x,p,t), P(x,p,0)=p, (3.2.34b)

being a solution of the following system of partial differential equations
(O, p,1) ={Q'(x, . H(X, Pllrxpys Q. p,0) =x,  (3.235)

(P); (x, p,t) ={Pi(x, p, 1), H(X, P)}z(x.p)» Px,p,0)=p, (3.2.35b)

where 7 is given by (3.2.20). These equations are equations of motion of a classical
Hamiltonian transport on a phase space.

What is important, the system of PDE’s (3.2.35) is equivalent to the system of
ordinary differential equations

(0 = {0, H(Q, P)}x(o.p), ©Q'(0) = x', (3.2.36a)

(P); ={P;, HQ, P)}z(0,p), Pi(0) = pi, (3.2.36b)

i.e. classical Hamiltonian equations of motion. Indeed, from a previous section
it follows that both the function H and the bi-vector m are invariants of the
Hamiltonian flow, thus H(x, p) = H(Q, P) and n(x, p) = n(Q, P). Hence,
PDE’s (3.2.35) can be written in the form of ODE’s (3.2.36).

As the implectic bi-vector 7 is an invariant, so the flow

o 1 9H (x, p) = (Q(x, p, 1), P(x, p, 1))

is a one-parameter group of canonical transformations (symplectomorphisms). It
means that from relations

{xls pj}n(x,p) = alj
follows that

{Q'(x, p. 1), Pi(x, p. Dlnapy = 85 (3.2.37)

In other words, (3.2.34) represents a classical trajectory passing at t+ = 0 through
the point (x, p).
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The time evolution of any function A(x, p) € F(M) is given by the equation

dA

o =Ar=LxyA=(A H (3.2.38)

On the other hand, we know that the pull back of a function
¢;k A=Ao¢,,

which is a consequence of the fact that the product of two diffeomorphisms ¢,, - ¢,
is a simple composition of maps (2.5.3). As the result, the time evolution of any
function A(x, p) along the Hamiltonian flow ¢, is given by

A(t) = A(Q(x, p,t), P(x, p,1)). (3.2.39)

It means that once we have solutions of Hamiltonian equations of motion (3.2.36),
the time evolution of arbitrary function A (x, p) € F(M) is given by (3.2.39) which
obviously solves the Eq. (3.2.38) as

d _8A8Q+8A8P_8A
dt”  9Q 3t APt 9Q
:{AvH}TL’

dA
{Q. Hix + AP Hlx

Notice that if function A depends explicitly on ¢, then A(Q(x, p,t), P(x, p,t),t)
solves the equation

dA A dA
b = tLxgA= A H)r (3.2.40)

i.e. a particular case of the Eq. (3.2.22).

3.3 Statistical Hamiltonian Mechanics

In order to relate classical and quantum Hamiltonian mechanics to each other, we
have to unify the language of both theories. For this purpose we have to extend
the standard classical Hamiltonian mechanics to its more realistic (more ‘physical’)
version, i.e. statistical Hamiltonian mechanics. Then, on the classical level, one can
define such notions as observables, states, uncertainty relations, coherence et cetera,
familiar to the reader from the quantum level.
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3.3.1 Classical Poisson Algebra and Classical States

Let us consider a Poisson manifold (M, ) (symplectic manifold (M, w = a1
in particular), where M is a differential manifold of dimension dim M = 2n and
7 is real, nondegenerate bi-vector, of the vanishing Schouten-Nijenhuis bracket
[r,m]s = 0. Then, let us consider the space of complex valued functions
C®°(M,C) on M. The space C*°(M, C) has a structure of commutative algebra
with involution, where the product is a simple point-wise multiplication

(f -9 =f()gE), §eM,

and the involution is a complex conjugation f — f.
Recall that the involution in algebra A is represented by anti-automorphism,
whose square is an identity,

*x:A— A

such that fora, b € A

1. (a +b)* =a* + b*,
2. (ab)* = b*a*,

3. 1* =1,

4. (a)* =a.

The Poisson tensor 7 defines in the algebra C*°(M, C) the Poisson bracket
(3.2.1), (3.2.5), which is a particular realization of a Lie bracket. Such a double
algebra with involution (C*°(M), -, {., .}»,-) is called a classical Poisson algebra
and will be denoted by A¢. In particular, two Poisson manifolds are diffeomorphic
if and only if the related Poisson algebras are isomorphic. The elements of Ac,
which are self-adjoint with respect to the involution, i.e. real functions, are called
classical observables. They constitute the subalgebra of Ac.

The points in a phase space (M, m) represent states of the classical system. Each
point in M can be interpreted as generalized positions and momenta of particles
composing a classical system. Values of generalized positions and momenta of the
particles can be extracted from a point in M by writing this point in canonical
coordinates (x, p). Then, x' are values of generalized positions and p; are values of
generalized momenta.

When the exact state of the system is not known, but only a probability that the
state is in a given region of the phase space, then there is a natural need to extend the
concept of a state to take into account such a situation. In fact it is a very physical
situation as any measurement is performed with finite accuracy. The natural way of
doing this is to define states as probabilistic measures defined on a o -algebra B(M)
of Borel subsets of M. In such a chosen setting, points & of the phase space are
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identified with Dirac measures §¢

1 foréeE

, EeBWM).
0 foré¢E

8¢ (E) =!

In what follows Dirac measures will be called pure states while other probabilistic
measures mixed states, respectively. Further on we will be interested in such
probabilistic measures p that can be written in a form du = p d<2,, where p is
an integrable function on M satisfying

/ pdQ, =1 (normalization),
M

p=>0 (positive-definiteness)

and thus can be identified with functions p. Here d<2,, is a measure induced by a
volume form

1
Qui= oOA....N\o.
nl~ ~ -
n
In local coordinates (£, ..., &2") on M
dQ, = +/|detw|de" A . ... AdET (3.3.1)

and in canonical coordinates (x, p), the measure (3.3.1) turns into Lebesgue
measure

dQ =dx' ... dx"dp; ...dp,.

In particular, for Dirac measures we will use a notation ddz (§) = §(§ —&")d 2, (&),
where §(§ — &’) is Dirac delta distribution.

Observe that states can be alternatively defined as those “functions” p, where p €
LY(M) or p = 8¢, which satisfy:

l.p=p (self-conjugation),
2. [,y pdSQ2%, =1 (normalization),
3. fM f-f -pdQw=0, fe C°(M) <= p > 0 (positive-definiteness),

where C5°(M) denotes a space of all smooth functions defined on M with compact
support.

Classical states form a convex set. Pure classical states are defined as extreme
points of the set of states, i.e. as those states which cannot be written as convex linear
combinations of some other states. It can be proved that such a characterization of
pure states is equivalent with the definition of pure states as Dirac measures. In
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such a case, as will be proved later, statistical Hamiltonian mechanics reduces to
the ordinary Hamiltonian mechanics. States which are not pure are called mixed
classical states.

For M = T*E"+"~ classical pure and mixed states can be alternatively defined
as follows. Let us introduce a multiplication between states p{, p, € L' (M) in the
form of convolution

P1* Py = /M p1(ENpy(E — &NHdE'. (3.3.2)

The space L'(M) is closed with respect to that product and so form the algebra
which is commutative, associative and distributive. No algebra of functions pos-
sesses an identity for the convolution. The lack of identity is typically not a major
inconvenience, since most collections of functions on which the convolution is
performed can be convolved with a Dirac delta distribution § or, at the very least
(as is the case of L') admit approximations to the identity. Specifically,

p*x8=p.
Pure states are defined as these which are idempotent
p*xp=p. 3.3.3)

In fact, states which fulfill (3.3.3) are just Dirac delta distributions. Any mixed state
is a convex combination of pure states

P= b Pn=0. > pa=1. (3.3.4)
n n

The summation in (3.3.4) can be substituted by integration over M such that p > 0,
[y pdQ,=1

p&) = /MP(E’)Ppure(S’)de = /M p(ENSE —&NdE" = p(§),

where p fulfills the properties 1-3 of the classical state.
For a given observable A € C*° (M) and state i (du = p d2,) the expectation
value of the observable A in the state u is defined by

(A), = /MAdusz (A p)dQp. (3.3.5)
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Note, that the expectation value of the observable A in a pure state d¢ is equal A(§).
Indeed,

(A)s, = /MA@’)t?(E —&)dQu(E) = A®).

The expectation values of observables play an important role in the theory as they
are identified with measurements in a physical experiment.

Thus, it is clear that in classical statistical mechanics appear integrals over a
phase space which cannot be considered in arbitrary local coordinates, since doing
this would change the values of integrals. For example, if y: M > O — R,
Vi€ (€', ..., £¥)is a coordinate chart, then in general

ffdﬂw#/ FaE) de
M v (O)

where f is a function defined on M and d2, is a measure induced by the Liouville
form ,,. These integrals will be equal only when M \ O is of measure zero. For this
reason we introduce the following distinguished class of coordinates. A coordinate
system 1 : M O O — R?" on a symplectic manifold (M, w) is called almost global
if M\ O is of measure zero with respect to the measure d<2,,. Similarly, if (Q, g) is a
Riemannian manifold representing a configuration space, then by an almost global
coordinate system on Q we mean a coordinate system defined on an open subset
U C Q suchthat Q \ U is of measure zero with respect to the measure induced by
the metric volume form wy. It can be proved that an almost global coordinate system
on Q induces a canonical coordinate system on 7*Q with the same property.

Observation 2 Classical Hamiltonian statistical mechanics can be well formulated
on Poisson manifolds (simplectic manifolds in particular) which admit almost
global coordinate systems.

More general manifolds, where a full integration measure exists, are beyond the
scope of the book.

Example 3.8 Let Q = E? and consider Cartesian coordinates (x, y, z). Consider
also spherical coordinates (r, 0, ¢) related to the Cartesian coordinates by a
transformation ¢ : (0, 00) x (0, 7) x (0,27) — O, where O = R\ {(x, y,z) €
R?|x>0,y=0}¢:(r0.¢) > (x.y.2),

X = rsiné cos ¢,

y =rsinfsing,

z=rcosf.

In the Cartesian coordinates (x, y, z) the metric volume form w; on E 3 is equal
dx A dy A dz, and the corresponding measure dwy takes the form of the Lebesgue
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measure dxdydz. It can be seen that a set R? \ O is of Lebesgue-measure zero,
hence the spherical coordinates (r, 6, ¢) are almost global on E?.

Let (x,y,z, px, Py, p;) be canonical coordinates on T*E3 induced by the
Cartesian coordinates (x, y, z) on E3. Canonical coordinates (r,0,¢, pr, Po, Pp)
on T*E? induced by the spherical coordinates (r, 6, ¢) are related to the Cartesian
coordinates (x, y, z, px, Py, p;) by atransformation T : (0, 00) x (0, ) x (0, 27) x

R3 — ©=OXR37T: (ra95¢7pra an Pd))*_) (X,y,Z, Px,Py,Pz)a

X = rsiné cos ¢,
y =rsinfsing,
z =rcoso,
. 2 . .
sin“ @ cos sinf cos 0 cos ¢ — sin
e = rpr ¢+ po in ¢ — po ¢’ (3.3.6)
rsin @
_TPr sin” 0 sin ¢ + pg sin 6 cos 6 sin ¢ + Dp COS P
Py = rsin @ ’
rprcosf — pg sinf
Pz = .

r

In the Cartesian coordinates (x, y, z, px, Py, p;) the Liouville form Q, on T*E 3is
equal dx Ady AdzAd py Ad py Ad p;, and the corresponding measure d$2,, takes the
form of the Lebesgue measure dxdydzd pxd pyd p;. It can be seen that a set RO\ o
is of Lebesgue-measure zero, hence the canonical coordinates (r, 6, ¢, pr, po, pPy)
are almost global on T*E3.

3.3.2 Time Evolution of Classical Systems

For a given classical Hamiltonian system (M, 7, H) there exists a dual description
of its time evolution. The first one is known as the classical Heisenberg picture, The
second one, known as classical Schrodinger picture, in which observables remain
still whereas mixed states undergo a time development.

As was mentioned in Sect. 3.2.4, the Hamiltonian H governs the time evolution
of the dynamical system. Actually, H generates a Hamiltonian field Xg. Then
integral curves &(¢) of the vector field Xy, i.e. curves on M which satisfy
Hamiltonian equation of motion

£ =Xn(EW) =ndH(E®), (3.3.7)

represent positions of points & € M for every instance of time 7. All integral curves
of a Hamiltonian field Xy generate a map ¢[H : M — M, called a phase flow or a
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Hamiltonian flow, by a prescription that for each point § € M a curve

£(t) = ¢ (£) (3.3.8)

is an integral curve of (3.3.7) passing through that point at time ¢+ = (. Equation
(3.3.7) is a Hamiltonian equation and integral curves of the Hamiltonian field are
classical trajectories. For Darboux coordinates § = (x, p), the flow (3.3.8) takes
the form (3.2.4) while the Hamiltonian equation of motion (3.3.7) the form (3.2.36),
respectively. As we will see later on, the Hamiltonian equation of motion (3.3.7) has
a twofold interpretation (see Observation 3).

An equation of motion of mixed states can be derived from the probability
conservation law, i.e. from the assumption that every probabilistic measure  (mixed
state) has to be constant along any trajectory in the phase space

W()(E) = pt + Br)(PH(E)), E € B(M).
That property, written in terms of the pull-back of a measure, takes the form
w(n) = (@) ut + Br). (33.9)
From (3.3.9) it follows that

@Ry —u®  d
0= ﬂltlglo Py = s (&) +5) ls=0

d d
= (D it +5) ly=0 + ds(@f’ )*(t) ls=o,
which further implies that

3
al; + Ly,u=0, (3.3.10)

where L x, u denotes a Lie derivative of the measure  in the direction of the vector
field X . Equation (3.3.10) is called a Liouville equation and it describes the time
evolution of the state .

When a mixed state u takes a form du = p dS2,,, for a smooth function p, then
the Liouville equation (3.3.10) can be written in an alternative form. Actually, from
(3.3.10) we have

0 0
0=, (P(OR) + L, (p(12) = ( a‘; ) + Lxﬁp(n) Qo
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where the fact that Ly, 2, = 0, following from (3.2.2) and (3.3.1), was used. It
further implies that

ap ap ap
L = X = ,H} .
9 +Lxyp 9 + Xup 9 +{p, H}x

0=
Hence, the following time evolution equation for the function p corresponding to
the state u was derived

d

o
o1 {H, p}x =0. (3.3.11)
Notice that Liouville equation (3.3.11), for time evolution of a classical mixed
state, is a single linear PDE and represents the Schrodinger picture of classical
Hamiltonian evolution.

For a pure state dy() the Liouville equation (3.3.10) is equivalent to the
Hamiltonian equation (3.3.7). Indeed, from (3.3.10) it follows that

ey | d g ery | d
0= 9t +ds(q)s )*8’;‘(1‘) ls=0= 9t +ds6¢g?($(t)) ls=0

and from the above equation we get

. d 4 .
0=£§@) - g5 & @) ls=0=§) = Xu (E@)),

which is just the Eq. (3.3.7).

Until now the states undergo the time development whereas the observables do
not. As we have just mentioned, this is a counterpart of a well known Schrodinger
picture in quantum mechanics. There is also a dual representation in which states
remain still whereas the observables undergo the time development. This approach
corresponds in quantum mechanics to the Heisenberg picture. A pull-back of the
Hamiltonian flow U/ = (®H)* = ¢'IXu is, for every 7, an automorphism of the
algebra of observables Ac (M) (it preserves the linear structure as well as the point-
wise product and the Poisson bracket). Its action on an arbitrary observable A €
Ac (M) is interpreted as the time evolution of A

A1) = UH A©0) = e'1%u A(0) = &' XH A(0) = e 17 A(0). (3.3.12)

Differentiating Eq. (3.3.12) with respect to ¢t we obtain the known time evolution
equation (3.2.38) for an observable A

dA
dt (1) —{A@®),H}z =0. (3.3.13)
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Contrary to Liouville equation (3.3.11), Eq.(3.3.13) is a single nonlinear ODE
and represents the Heisenberg picture of classical Hamiltonian evolution of an
observable. In particular, for coordinate observables A = £, we get

d
; (1) — {£(0), Hlx =0 5 &, = n dH (&)

i.e. again the Hamiltonian equation (3.3.7).

For any observable A, both presented approaches to the time development yield
the same predictions concerning the results of measurements, since

(A0 ua =/ A(0) dp(t) =/ A(O)d((CDfIt)*M(O)) =/ (©/1)*A(0) du(0)
M M M

=/ A1) dp(0) = (A1) u(0)-
M

From (3.3.13) follows that the time evolution of the expectation value of
observable A in a mixed state p(7), i.e. (A) () , fulfills the following equation

d

dr (A py — {A, H}x) pry = 0. (3.3.14)

Indeed

d
<A>p(t) )

ap _d _
fMA(E) 9 (SJ)de—dl fMA(E)p(S,t)de—dt

/ AGH. p}(E. 1R = / (H. Ap)(E. ) — / (H, AYE)p(E. d
M M M

d
=—/ {H, AYE)p(E, D = | (A)pq) -
M t

In second equality we used the fact that on M

d 0
/M (H. Ap) (&, d2 = fM ( ‘- at) (Ap) (&, 1)d%

d d
- (dt - dt) (Ao =0-

Observation 3 From our considerations follows that in classical statistical Hamil-
tonian mechanics time development can be realized by two equivalent schemes.
Actually, we can either evolve in time a mixed state according to linear PDE (3.3.11)
or evolve in time an observable according to nonlinear ODE (3.3.13). Exceptional
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are classical Hamiltonian equations of motion which represent simultaneously time
evolution of classical pure stat in the frame of classical Schrodinger picture and
time evolution of position and momentum observables in the frame of classical
Heisenberg picture.

In Hamiltonian statistical mechanics the classical uncertainty relations for
canonical observables of position x’ and momentum p; in a state p are of the form

AX'Ap;>0, i, j=1,...,n, (3.3.15)
where
_ 2
AA = \/(A2>p — (A

is a standard deviation. The above uncertainty relations state that it is possible to
measure simultaneously the position and momentum of a particle with an arbitrary
precision. In particular, the equality in (3.3.15) takes place for pure states. On the
other hand, all states which minimize (3.3.15) will be called classical coherent
states. So, on a classical level, arbitrary pure state

pc(x', p') = 8(x" —x)8(p" - p), (3.3.16)

is simultaneously a coherent state. That property will not be preserved on a quantum
level.

Observation 4 According to the presented model, “physics” is represented by
measurable objects, i.e. expectation values of observables in any classical state. On
the other hand, for pure coherent classical state (3.3.16) Egs. (3.3.13) and (3.3.14)
coincide. In particular Qi(t) = (Qi(t)>pc and P;i(t) = (P (t))ﬂc’ so classical
trajectory (3.2.34) represents simultaneously the time evolution of expectation
values of position and momentum in a classical pure coherent state (3.3.16).

3.4 Reduction of Poisson Structures and Hamiltonian
Systems Onto Submanifolds

The reduction theory of dynamical systems consists of two branches: the first
branch deals with constrained Lagrangian systems, the second one with constrained
Hamiltonian systems. In the Lagrangian approach one considers separately the
case of holonomic constraints, i.e. the constraints which may depend on velocities,
but only in such a way that the equations of constraints can be integrated to
eliminate velocities, and the non-holonomic case [195]. In many cases authors
first consider the Lagrangian formulation and then pass to the corresponding
Hamiltonian formulation (see the example [252]).
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The reduction theory in the Hamiltonian context has been initiated by P.A.M.
Dirac, who in his famous paper [94] described a method of reducing a given Poisson
bracket onto a submanifold given by some constraints ¢ provided they were of
“second class”. In this approach the classical notion of holonomic constraints is
usually not introduced as in this context on arbitrary Poisson manifold (M, IT) there
is no obvious division of variables between “position” and “momentum”. The ideas
of Dirac were developed in many papers, among others in [122, 135, 179, 180, 197,
198, 237] (see also the literature quoted there).

A very general geometric interpretation of the Poisson reduction procedure has
been investigated in [197] by Marsden and Ratiu. Nevertheless, it is presented in
an abstract, formal way which is made hard to handle with particular “physical”
reduction problems. In this section, following [190], we present a constructive,
computable method of reducing (locally) a given Poisson tensor I1 to any regular
submanifold (foliation) S. The idea of the method is to chose a distribution Z (not
necessarily integrable) that is transversal to the foliation S, i.e. at any x € M
it completes 7S to Ty M. Moreover, the choice of Z is such that makes the
operator Il Z-invariant (see definitions below) and allows to deform the Poisson
tensor I1 to a new Poisson tensor I1p such that its image will be tangent to the
submanifold S. This new operator I1p will be always Poisson (and so its natural
restriction to S will be Poisson). In consequence, we obtain a method of reducing a
Hamiltonian system on M to a Hamiltonian system on every leaf S, of the foliation
S. This reduced system strongly depends on the choice of the distribution Z. As
a special case we obtain the classical Dirac reduction of the Hamiltonian system.
All our considerations will be local in the sense that our manifold M is perhaps
only an open submanifold of a larger manifold. The presented construction is
equivalent to the reduction method proposed by Marsden and Ratiu. However, it has
advantages: it can be performed simultaneously on any leaf S, of the foliation S, it
is constructive and it is formulated in the language of Poisson bi-vectors rather than
Poisson brackets. The reader can also find some elements of the proposed scheme
in [85, 112, 113] in the context of Poisson pencils.

The detailed analysis of the reduction procedures for Poisson bi-vectors will be
crucial for a bi-Hamiltonian separability theory of integrable systems, developed in
Chap. 5.

3.4.1 Geometric Reduction of Poisson Bi-Vectors

Let us consider a smooth manifold M of the finite dimension m and a foliation S
of M consisting of the leaves S, parametrized by v € R (so that » € N is the
codimension of every leaf S,). Moreover, consider a regular distribution Z on M
(i.e. a smooth collection of the spaces Z, C Ty M where v is such that x € §,) such
that it completes every 7, S to Tx M in the sense that

T M=T,S, ® Zx (3.4.1)
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for every x in M. In consequence, every vector field X on the manifold M has
a unique decomposition X = X, 4+ X such that for every x in M the vector
(XH)x € T.S (X is tangent to the leaves of the foliation S) while (X1), € 2,
(X is contained in the distribution Z). The splitting (3.4.1) induces the respective
splitting of the dual space 7, M:

T M=T}S, ® Z* (3.4.2)

where T,*S, is the annihilator of Z, while the space Z} is the annihilator of 7 S,.
Thus, any one-form o on M has a unique decomposition o« = « + o1 such that
(O‘H)x € T}S () annihilates the vectors from Z) while (o1 ), € Z} (o1 annihilates
the vectors tangent to the foliation S ). We will call X and o projections of X and
o (respectively) on the foliation S. Abusing notation a bit we will write that X C T'S
it X = X, X C Z2if X = X and similarly for one forms: « C T*S if @ = o,
aCZ*ifa=a].

Assume now that our manifold M is equipped with a Poisson bi-vector I1. A
smooth real-valued function F on M is called Z-invariant if the Lie derivative
Lz F = 0 for any vector field Z C Z. We will now adopt the following definition.
The operator I1 is said to be Z-invariant if Lz {F, G}g = 0 for any pair of Z-
invariant functions F' and G and every vector field Z C Z.

Observe that our definition does not necessarily mean that LzIT = 0 for all
vector fields Z C Z, as for any pair F, G of Z-invariant functions the condition
Lz {F,G}y = 0 means only that the function (d F, (LzI1) dG) vanishes. Thus,
IT does not have to be an invariant of the distribution Z to be Z-invariant in our
meaning. Notice also, that the above definition is equivalent to the statement that
for any pair «, B C T*S we have («, (LzIT) ) = 0 (since if F is Z-invariant then
dF C T*S).

Let us assume that the distribution Z is spanned by r vector fields Z; and that for
operator IT there exist vector fields W;;, j = 1, ...r such that

,
LzTI=) Wi AZj. (3.4.3)
j=1

It is obvious that this definition does not depend on the choice of the basis in Z
(although the vector fields W;; do). If the operator IT fulfills the condition (3.4.3),
then it is Z-invariant, as then for any two one-forms o, 8 C T*S

r

(o, (LzTD) B) =Y (o, (Wij A Zj) B) =0,

j=1

since « and B annihilate all the vector fields Z;. The converse statement is not true
in general.
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For a Poisson tensor IT on M let us define the following bi-vector:
Ip (e, B) = (e, B))) for any pair &, B of one-forms. (3.4.4)

We will call the bi-vector I1p a deformation of IT. Observe that it always exists and
that it is uniquely defined once the foliation S and the distribution Z are given. Its
image lies always in T'S. I1p(«) C TS for any one-form « on M, i.e. the image of
ITp is tangent to the foliation S. To prove it we have to show that (8, [1pa) = 0O for
any 8 C Z*, but

(B, Tpa) = TIp (B, @) =TT (B, @) =0
since B = 0 forevery B C Z*.

Thus, the deformed bi-vector I1p has its image in 7S and if we regard it as
mapping from one-forms to vector fields on M then it can be naturally restricted to
a bi-vector 5, on every leaf S, of S by simply restricting its domain to S, :

7s, = Mpys,.

Besides, ITp induces a new bracket for functions on M

{F, G}, = p (dF,dG) = TI((dF),|, (dG)|). (3.4.5)

Obviously, the bi-vector IIp (and thus even mg,) does not have to be Poisson.
However, it turns out that if IT is Z-invariant then ITp (and thus every mg)) is
Poisson. Obviously, this bracket is antisymmetric and satisfies the Leibniz property.
It remains to show, that it also satisfies the Jacobi identity for any functions F, G, H.
Using the definition of I1p, this condition can be written as

((@(@Fyy. 1 @Gy, T @H)) +cyel. =0,
However, for any vector field Z C Z we have
[d(@F)y, @Gy}, Z) = Z (((@F)y, TTdG)y)) = Lz {(dF)), TT(dG))) =0

due to the assumed Z-invariance of IT. This means that d ((dF)” ,I1(dG) H> cT*S,
so that

(d{@F)y. TdG)y))y = d((@dF), TTdG)y),

and thus condition (3.4.1) turns out to be the Jacobi identity for IT, which is satisfied
since IT is Poisson.
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Thus, given a foliation S on M and a transversal distribution Z on M, such
that (3.4.1) is satisfied, we can reduce any Poisson bi-vector IT that is Z-invariant
to a Poisson bi-vector g, on the leaf S, of S by deforming IT to I1p and then
by restricting I1p to S,. This construction yields the same operator 7, as in
the approach of Marsden and Ratiu [197] and besides we will show how this
construction can be easily realized in practice.

Notice, that in a trivial case when the foliation S coincides with the symplectic
foliation of IT then I1p = IT, since in this case I[1((d F) 1) = 0 for any function F
and so

{F,G}p, = I((dF),|, (dG),) = 1 (dF,dG) = {F, G}y .

In this case g, is the standard reduction of IT on its symplectic leaf S,,.

Let us consider a few special cases of our general construction. We firstly observe
that the annihilator Z* of T'S is defined as soon as the foliation S is determined, so
we do not need to specify a particular Z in order to define Z*. The distribution
D = II1(Z*) (so that D, = II (Z;‘) ) is called further on a Dirac distribution
associated with the foliation S. Thus, the distribution D is determined by S and by
I1. A priori, two limit cases are most interesting. If TM= D @ T S we say that we
are in the Dirac case, while if D C T S we say that we are in the tangent case. In the
Dirac case we have a canonical choice of Z, i.e. we can choose Z = D. In this case
IT is automatically Z-invariant, since Z is spanned by the vector fields Hamiltonian
with respect to 1. Nevertheless, we can also choose some other distribution Z # D
(non-canonical choices). Contrary to the previous case, in the tangent case we have
no canonical choice of Z and we are free to find a distribution Z that makes I1
Z-invariant. Anyway, in both cases we have many non-equivalent deformations ITp
and hence many non-equivalent projections i g,. Generically, the distribution D will
not be tangent to S, but it will not suffice to span T M together with T'S.

Let us now suppose that the foliation S of M is parametrized by the set of r
functionally independent real valued functions ¢; (x) so that its leaves have the form
Ss={xeM:¢p;(x)=v;,v; e R,i =1,...,r} wherer is the codimension of the
foliation. The one-forms dg; constitute a basis in Z*. Then, the Dirac distribution
D is spanned by k (possibly dependent) Hamiltonian vector fields X; = Ildgp;. Let
us denote a basis of Z dual to the basis {dq)l-} in Z* by Z;, i.e. Z; (goj) = §;j. Our
projections X and o) are then given by

.
X =X-Y X(p)Z.

i=1

(obviously X |(¢;) = O for all i so that indeed this vector field is tangent to the
leaves of §) and by

r

a=a — Za(z;)d(pi

i=1



3.4 Reduction of Poisson Structures and Hamiltonian Systems Onto. .. 101

(and obviously «(Z;) = 0 for all i). Thus

ey, B =T | @ = > a(Zdde;, p =Y B(Z))dp;

i=1 j=1

=M. p)— Y BEZN(a.dp;) — Y a(Z)T(dg;. B) +

j=1 i=1

+ Y a(Z)B(Z)T(dg;, dp)),
i,j=1

and so the deformation ITp can be expressed by
r r

Mp=T-Y XinZi+) Y ¢;ZiNZj. (3.4.6)

i=1 i,j=1

where the functions ¢;; are defined as
9ij = {9 0;}g = Xj(@) = Nldy;, dg;).

In the canonical Dirac case (Z = D), all the vector fields X; are transversal
to the foliation S and are moreover linearly independent. It happens precisely
when det(p;;) # 0 and the functions ¢; are then "second class constraints’ in the

terminology of Dirac. The vector fields Z; (the dual basis to {d ©; }) can be expressed
through the vector fields X; by

.
Zi = Z(fp_l)jixj, i=1,...,r
j=1
as indeed

Zip) =Y (0 g Xs(or) =Y (@ sjgis = 8ij.

s=1 s=1

Moreover, in this case the deformation (3.4.6) attains the following form

,
Mp=M-,Y X AZ (3.4.7)
i=1
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and ITp is Poisson as IT is Z-invariant (3.4.3). It follows from (2.5.19), (3.2.2) and
(3.2.24) as we have

r r
Lz, = (¢ )jmLx; 1= Td(p™")jm A X;
j=1 j=1

r r
=D IXj Xnl AXj=) Wi AZj, m=1,...r
j=1 Jj=1

I[1p defines the following bracket on C*°(M)
r
(F.Gm, = {F.Gln— Y_{F.0ne Dijle;. Gin, (3.4.8)
i,j=1
which is just the well known Dirac bracket [94] related to the bracket {., .}11. Notice

also that for the Dirac-Poisson tensor (3.4.7) constraints ¢; are its Casimir functions,
as

-
Mpde,, = (l_[ — ;ZX, A Z,’) do,,

i=1

r r
=Xm = 3> Ziw)Xi+ 3 ) Xi(9)Zi
i=1 i=1

I
B
s

|

r r r
3 bimXi 43 0w Y (07 1iX; (3.4.9)
i=1 i=1 j=1

.
=Xn = 3Xm— 3 > w0 ijX;
ij=1

,
=Xm— 3 Xm — ;Zamjxj =0.
j=1

In the tangent case all the vector fields X; are tangent to the foliation S and the
deformation (3.4.6) attains the form

.
HDzn—inAz,- (3.4.10)

i=1
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where transversal distribution Z has to be chosen in a form which makes IT1 Z-
invariant (3.4.3). Thus,

,
Lz,T =Lz, (Mp+ Y Xi A Zi)

i=1

r r
=Lz, D+ Y [Zn, XA Zi + Y Xi AN Zm, Zi]
i=1 i=1

and the condition of being Z-invariant is as follows
r
Lz,Tlp+ Y Xi AlZw, Zi] = 0.
i=1
Its strong solution, when Z is an integrable distribution,
Lz Np=0, [Z,,Z2;]1=0, m,i=1,...,r, (3.4.11)

will be discussed in detail in the next chapter in the frame of the bi-Hamiltonian
separability theory. Observe, that (3.4.11) is equivalent to the condition

,
Lz, U= [Zn, Xi1 A Zi,
i=1

where [Z,,, X;] := Wy,; (3.4.3). Also here the constraints ¢; are Casimir functions
of the ITp Poisson tensor (3.4.10) as

.
Mpdy,, = (n =Y Xin z,-) deoy,

i=1

r r
=Xn— Y Zilpw)Xi + Y_ Xi(@0u)Zi (3.4.12)
i=1 i=1

,
=X, — Za,-mX,- =0.
i=1

3.4.2 Reduction of Hamiltonian Dynamics

Let us begin this subsection by stating a well-known theorem about the relation
between the Dirac deformation ITp of IT and the dynamic imposed by the con-
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straints. Suppose, thus, that our manifold M is a cotangent bundle of a Riemannian
manifold (Q, g) with a covariant metric tensor g. Denote the corresponding con-
travariant metric tensor by G. Let us consider a particle moving in our Riemannian
manifold Q according to Lagrangian equations of motion

oL d 0L
- . =0, i=1,...,n, (3.4.13)
dx! dt ax;

with a Lagrangian function L(x, x;) = ) g;;xix; — V(x). As we know, this leads to
Hamiltonian equations of motionon M = T*Q

e = ' Hyn, (pi)e = {pi, Hin (3.4.14)

with the Hamiltonian H = ; pT Gp + V(x) and with the canonical Poisson tensor
I1. Now, suppose that this particle is subordinated to some holonomic constraints

on Q
0r(x)=0, k=1,...,s (3.4.15)
defining a submanifold Q¢ of Q. One often makes a physical assumption here that

the surface Qg acts on our system with a reaction force R(x, x;) that is orthogonal
to Qo and such that the trajectories of the constrained system

oL _ d oL Ri( ) (3.4.16)
.- . =Ri(x,x 4.
dx! dt ax; ! !
that start on Q¢ remain on Qg. The velocity x;, = v = vl aii of this particle must
then remain tangent to this submanifold so that
09k
0={(dy,,v)= """V
( Y > ox!
and since v' = G" p; the motion of the particle is constrained not only by the s

relations (3.4.15) but also by the s relations

g (x)

o pi=(de) Gp=0, k=1,....s,

(3.4.17)

@5k (X, p) = G (q)

that are the lift of (3.4.15) to M. We call the constraints (3.4.17) a g-consequence
of the constraints (3.4.15), as they are natural differential consequences of (3.4.15)
at a given metric tensor g. The constraints (3.4.15)—(3.4.17) define a submanifold S
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of M of dimension n — 2s and so modify the (3.4.14) to

e = Hyn, (pi)e = {pi, Hin + Ri(x, p). (3.4.18)

The equations (3.4.18) are Hamiltonian ones and can be written in the form
e ={xi, Hynp > (pide = {pi, Hin,, (3.4.19)

where [1p = IT — é > i_1 Xi A Z; is the Dirac deformation (3.4.7) of IT given by
the constraints ¢;, i = 1, ...,2s = r. Thus, the response of the Lagrangian system
(3.4.13) subordinated to the reaction forces R is accounted for by the related Dirac
deformation of the Poisson tensor I1. Below we will only sketch the proof in the
case of a pair of constraints.

The reaction force R can be calculated by differentiating the assumed identity
¢(x(r)) = 0 twice with respect to ¢ and eliminating the second derivatives (xi) i
applying equations (3.4.16) and by using the demand that the force is orthogonal to
Qp. After some calculations we obtain the result

1
R(g, p) = dp)! Gadv — (p" G)H,(Gp) + A)dp,  (3.4.20)
@D = 76 (@) (r" G Hy(Gp) + A) dy
where (H(p)l.j = ajizf;pxj is the Hessian of ¢ and A = A(x, p) is given by

de
0Xxg

A=, T5G"G"ppm.

Notice that it vanishes in flat coordinates when all Christoffel’s symbols I': ¢ are
equal to zero. On the other hand, calculating the explicit form of (3.4.19) on the
submanifold Q¢ given by the constraints ¢, ¢,, leads to the equations (3.4.18)
with R given by (3.4.20).

Consider now a Hamiltonian vector field X = TIdH on M. We constantly
assume that we have a smooth, regular foliation S on M and a regular distribution Z
on M such that (3.4.1) is satisfied. Thus, the corresponding I1p defined by (3.4.4)
is Poisson and has its image tangent to the foliation S, so that it can be properly
restricted on every leaf S, of S. Then, we call the vector field Xp = [IpdH the
Hamiltonian projection of the Hamiltonian vector field X = I1d H.

The vector field X p lives on every leaf of the foliation, i.e. its restriction on the
leaf S, is tangent to S,. Moreover, on the leaf S, it coincides with the Hamiltonian
vector field w5, dh:

pdHs, = ms,dh,
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where h = H)s, is the restriction of the Hamiltonian H to the leaf S,. To see this it
is enough to choose a parametrization {(p,-} of S and to pass on M to any system of
coordinates of the form (x, ¢). In these coordinates the bi-vector I1p has a matrix
form with a non-zero upper-left block coinciding with the matrix form of 7 5, and
with the remaining terms equal to zero.

There is a connection between X = I1d H and its Hamiltonian projection Xp =
MpdH.If X =1ldH, Xp = [1pdH and X; = I1dy; then

Xp=X| =) Zi(H)Xj. (3.4.21)

i=1

Indeed, a direct calculation shows

r r
Xp=TIpdH =X — Z(Zi(H)Xi - Xi(H)Z)) + Z @i Zj(H)Z;
i=1 i,j=1

r r
=X - Y ZiH) [ Xi =) 0,z |,
i=1 j=1

where the last equality is due to
Xi(H) =(dH, Nldy;) = —(d¢;, TIdH) = —X (¢;).

Since =X ((pj) it yields (3.4.21).

Notice that the difference between X p and X is the term er: 1 Zi(H)X;) that
is tangent to the foliation S, as it should be. Since for the Dirac case X; = 0, so
X p = X and the Hamiltonian projection is just the natural projection (in the sense
of direct sum) along the distribution Z.

The term X in X p has a natural physical interpretation: it describes the evolution
of the system X = Ild H imposed with the constraints given by ¢;. In a non-Dirac
reduction case, the physical meaning of the second term in X p is not clear, although
it should represent an additional force (friction) acting on the system and following
from a chosen reduction.

Let us now consider the degeneracy of the Dirac deformation ITp given by
(3.4.7). Suppose that the real valued functions ¢;j, i = 1,...,s on M span the
kernel of the operator IT and are such that the functions {ci, © j} are functionally
independent. Then,

1. the constraints ¢; and the ’old’ Casimirs ¢; are all Casimirs of I1p,
2. any Casimir of I1p must be of the form C(cy, ..., ¢s, 1, ... @,)-
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The proof of 1 is just a calculation partially done in (3.4.9). For ¢; functions we have

.
Mpde, = (n - Z Xi A z,-) de,
i=1
r r
=Tldc, — 5 Y Zile)Xi + 5 Y _ Xi(cr) Zi
i=1 i=1

.
=- Z (@™ "jiXj(cnXi =0.
i.j=1

To prove 2 let us complete the functionally independent functions {ci, © j} to a
coordinate system {c,-, @ xk} on M. Suppose that a function C = C(c, ¢, x) is
a Casimir of [1p : [1pdC = 0. Then, according to (3.4.21), (I"[dC)” = 0, i.e.
IIdC C Z. In the Dirac case the distribution Z is spanned by the vector fields X;
so that there exist functions «; such that

r r r
[dC = ZaiX,- = Zaind% =1 (Zo‘id‘Pi) .
i=1 i=1 i=1

Thus, I1 (dC - Zlecxidq)i) = 0ordC = Y ._joidyp; + > i_, Bidci which
proves 2.

Concluding, we state that the Dirac deformation (3.4.7) preserves all Casimirs of
IT tensor and introduces new Casimirs ¢; and that no other Casimirs arise in this
process. The situation in the case of general deformation (3.4.4) (or (3.4.6)) is more
complicated, since the Casimirs of IT does not have to survive and moreover new
Casimirs, different from ¢; ones, can arise. We can only state that in the general
case the function C is a Casimir of I1p if and only if the vector field Y = I1dC
satisfies the relation

Yy = Zi(O)Xi
i=1

which for the Dirac case degenerates to the already discussed condition Y = 0.

Here we illustrate the presented formalism in the Dirac case, both canonical and
non-canonical. The tangent case will be considered in the next chapter. Consider the
following system of the second order Newton equations

Xyt = —10x2 + 4y
yir = —16xy +10x> + 47 (3.4.22)
5 = —20xz — 8y2 + 30x2y — 15x%.
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What is interesting this system is the so called first Newton representation of the
seventh-order stationary flow of the Korteweg-de Vries hierarchy [225], with the
corresponding Lagrangian

L =x7; + ;ytz +4yz — 10x2z — 8xy2 + 1Ox3y —3x°.

The Legendre transformation (3.1.7), (3.1.2) with

Dx 001 Xt
py |=1010 Vi
Pz 100 2t

leads to a Hamiltonian representation:

dt ()C, Y, Z, Px> Py> pz)T =X :ﬂdH,

where 7 is the canonical Poisson tensor on a 6-dimensional phase space T*E>!
with the Hamiltonian

H = pxp, + épi +10x%z — 4yz + 8xy? — 10x7y + 3x°.
Notice that

001
G=|010],
100

so (x, y, z) are flat but nonorthogonal coordinates on E21, Consider also a foliation
S given by a pair of constraints

g1 =z+xy, ¢,=(d¢))" Gp = py+xpy+ yp..

where @, is the lift of ¢; from the configuration space Q to T*(Q, with respect to
the antidiagonal metric tensor G. The vector fields X; = I1dg; have the form

0 0 0 0 0 a 0 0

X = — — — N X = — f —
! Y * 2 8x+x8y+yaz p)apx pzapy

and they are transversal to S, so that we have the Dirac case.

Example 3.9 Here we consider a Dirac case with canonical reduction of the system
(3.4.22). In this case the distribution Z = D = Sp {X;} makes Il Z-invariant. The
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basis in Z that is dual to {dg; } is

1 1
Z = X2, Zr=— Xy,
P12 P12

where

912 = {01, 02} g =2y +x7.

In the adapted coordinate system the Dirac deformation I1p given by (3.4.7) attains
('x’ Y, py’ Pz (P1, (,02) the form

00 —x —100
0 0 2y —x00
. 1 x—=2y 0 p,00
T 2y4+x2|1 x —p, 000
00 0 000
00 0 000

Ilp

It has, as it should, two Casimirs ¢, ¢, and we can easily restrict I1p to the operator
s, on S,. If we parametrize S, with the coordinates (x, Y, Dy, pz) (the constraints
@1, ¢, are constant on every S,) then

00 —x -1

. 1 00 2y —x
VU 2y4+x2 | x =2y 0 p;
1 x —p;, 0

TS

which, in accordance with the theory, is non-degenerate. Observe that this expres-
sion actually does not depend on the choice of the leaf S, in the foliation S. On
every leaf S, the Hamiltonian projection Xp = I1pd H attains the form

1 2y + x;)pz
7s,dhs, = 2y +x% | —2xpyp: —(z(})}x—gyx—)ggxyz + 15x°
—2pyp; — 36x2y + 12y — 5x*
where
hs, = 3Py — Xpyp: — ypy — 20x7y + 12xy% + 3x°. (3.4.23)

Example 3.10 Now we consider a Dirac case with non-canonical reduction of the
system (3.4.22). Let us choose a non-canonical distribution Z, for which IT is also
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Z-invariant. Since the operator IT has a very simple form, so any pair of constant
fields will span such a distribution, as then the condition (3.4.3) is trivially satisfied.
Thus, let us take

JR L R I
TPV oz Tap. 0z T aps

(observe that this distribution is integrable). We have now to change the basis in Z
to a new basis {Z1, Z»} such that the condition Z;(¢ ;) = §;; is satisfied. A simple
calculation yields

s a+ 1 ( 9 N a) s 1 (a a)
1 — - ) 2= - .
9z 11—y yapx op; I—y \dpx dp;

Now, the general deformation (3.4.6) defined by the above distribution attains the
following form in the adopted coordinates (x, Y, Py, Pz, @1, <p2)

0 o0 0 -1 00
0O 0 y—-1 —x 00
1 01—y 0 p,—x00
Mp =
y—1]1 x x—p; 0 00
0 o0 0 0 00
0 0 0 0 00

and thus the restricted operator 7 5, on the leaf S, parametrized with the coordinates
(x, v, py. p2) is

0 0 0 —1

1 0 0 y—1 —x
y=1101-y 0 p,—x

1 x x—p; O

s, =

v

and is non-degenerate. Again, this expression does not depend on the choice of the
leaf S, in the foliation S. The Hamiltonian projection Xp = IlpdH attains the
following form on every leaf S,

xpy +2yp;
! O+ x2=)py + (xy +x)p;
Y= =+ Dp§ = xpypz + x> py + 2xyp: + 4x(6y + 5xy — 6% — 51%)
—xp} +xp? = 2pypx +xpy — x%p; — 3622y + 12y? — 5x*

ws, dhs, =

v v

where hg, is given by (3.4.23).
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Example 3.11 Here we consider a second Dirac case with non-canonical Poisson
reduction of the system (3.4.22). Consider yet another distribution that makes I1
Z-invariant, namely

d a 0 }

zZ—5§ ,
p{aﬁapz ax

The appropriate basis of Z is given by

z ad a n a 7z ad
1= -y s L2 = .
0z Opx ap; opx
so that we have Z; (¢ j) = §;j. The general deformation (3.4.6) defined by the above
distribution yields in the adopted coordinates (x, Y, Py, Dz ¥1> (pz)

so that the restricted operator g, on the leaf S, (again parametrized with the
coordinates (x, y, py, p;)) is

00 0O
e = 1 00 10
S = y—110-10 x|’
00 —x0
and is degenerate this time, with Casimir function ¢ = x. The Hamiltonian

projection Xp = I1pd H attains on every leaf S, the form

0
1 Py — Xpz
y—1 p% - xzpy — 2xyp, +20x> — 24xy
—Xpy —l—xzpZ

ws,dhs, =

where hg, is given by (3.4.23).

Thus, given a foliation S, by choosing different distributions Z we can obtain
several different Hamiltonian projections of our original Hamiltonian system, not
only just the well known Dirac canonical reduction. The tangent case of the
reduction procedure will be considered in details in Chap. 5.



Chapter 4 )
Classical Integrable and Separable Shethie
Hamiltonian Systems

In this chapter we introduce the concept of classical integrability of Hamiltonian
systems and then develop the separability theory of such systems based on the
notion of separation relations introduced by Sklyanin [235]. Separation relations
are the most fundamental objects of modern separability theory as well as allow for
classification of all separable systems. We concentrate our attention on the subclass
of separable systems for which all constants of motion are quadratic in momenta.
This class of systems is most interesting from the physical point of view on both
classical and quantum level.

4.1 Integrable Hamiltonian Systems

Once we have a Hamiltonian system, modeling some physical phenomena, we
would like to solve it in order to get admissible trajectories of time evolution. We
could do it systematically if the system under consideration is linear. Unfortunately,
it happens only in simplest models or in linear approximation of the considered
realistic models. In a generic situation Hamiltonian systems are nonlinear. As a
consequence, even simple nonlinear dynamical systems can exhibit a completely
unpredictable behavior, which might seem to be random, despite the fact that they
are fundamentally deterministic. This seemingly unpredictable behavior has been
called chaos. For such systems the distance between two, arbitrary close to each
other, different initial conditions may diverge exponentially fast. As a consequence,
trajectories of chaotic systems are not expressible by elementary functions or even
special functions. Thus in order to find particular trajectories numerical methods
have to be implemented. On the other hand, among all nonlinear Hamiltonian
systems there exists a subclass of systems which despite their nonlinearity are
integrable by quadratures. We call them nonlinear integrable systems and they are
the subject of our further consideration, on both classical and quantum level.
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4.1.1 Liouville Integrability

Let M be a symplectic manifold of dimension dim M = 2n with the defined Hamil-
tonian system (3.2.1). Assume that the considered system posseses n global (defined
on the whole M, possible modulo some set of measure zero) constants of motion
Hi, ..., H, (first integrals) all in involution (Poisson commute) {H;, H;}; = 0,
and functionally independent in the sense that d H; are linearly independent. Such a
system is called Liouville integrable.

Let (Q, g, V) be a Riemannian space with Levi-Civita connection generated by
a covariant metric tensor g. As was mentioned in Sect. 2.6, a symmetric covariant
tensor K € T 0 (Q) is called a Killing tensor of the metric g when it fulfills the
condition (2.6.20)

Vi Kis...is1) = 0. 4.1.1)

If the function
T =,G" pipj,

where G is a contravariant metric tensor, represents Hamiltonian (kinetic energy)
of a free particle in the space (Q, g) and (x, p) is a canonical parametrization of
the phase space M = T*Q, then for arbitrary contravariant Killing tensor K €
T(O’m)(Q)

i1edm _ i1 im Ji .
K'ttm = G G K s
the function

F(x,p) = K"I'“’""pi1 e Din

is a constant of motion: {F, T}, = 0[97, 239].

To see that important relation, first let us notice that the Schouten-Nijenhuis
bracket, introduced in Sect.2.3 for multi-vectors, can be defined for symmetric
contravariant tensor fields in a completely analogical way. It is sufficient to replace
the wedge-product by a respective symmetric product. Let S¥(Q) be the space of
contravariant symmetric tensor fields of order k on Q. Let (x') be a local coordinate
systtmon Q, K € Sk(Q) and R € S”(Q), then their Schouten-Nijenhuis bracket
[K, R]s takes the form

1
[K, R]g mlk+rfl _

= [kKn(ll...3ank...lk+,71) _ ar(ll...3nKlr...lk+,fl>]

(4.1.2)
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where (. . .) is the symmetrization operator over the indices (compare with (2.3.13)).
If we now define the following functions

1 1.0k 1 1.0y
FK:k'K Piy -+ - Pig» FR:r'R Piy - - - Pi,
on T*Q, where p; are momenta conjugate to position x’ then, by a simple
inspection, we find that

{Fk, Fr} = —[K, R1g""™ "' pi, ... Pirsr_1» (4.1.3)

where {., .} is a canonical Poisson bracket (3.2.19) and hence
{Fg, Fr} =0 <= [K,R]s =0.

The formula (4.1.2) has the remarkable property that the right-hand side is
invariant under the substitution 9; — V; where V denotes the covariant derivative
with respect to any torsionless linear connection. It is in fact this property that the
right-hand side of this formula indeed gives the components of a rank k +r — 1
tensor field. Thus for each choice of a symmetric linear connection, one can write
down the above formula in an invariant way without reference to any coordinate
system [211]. So, lowering indices in covariant form of (4.1.2), substituting R = G
and using the fact that V; gjx = 0, we immediately get that [K, G] = 0 if and only
if the condition (4.1.1) is fulfilled, i.e. when K is a Killing tensor of metric g.

Example 4.1 Consider the Hénon-Heiles system from the Example 3.6. For Liou-
ville integrability two constants of motion are desired

Hy =T+ Vi=)p;+p;+ pxy” +x°,

1
Hy=Ty+ V2= 3ypepy = 330y + 257 4 (o,

It is easy to check that they are in involution with respect to the canonical Poisson
bi-vector. Obviously, geodesic Hamiltonians

T = 3p2+p2. To=)ypepy — 3xp3

Poisson commute as well {T1, T»} = 0, so in Cartesian coordinates (x, y) both
metric tensor (g;;) and its inverse (G') are represented by a 2 x 2 unite matrix, while
both the second order covariant (K;;) and the second order contravariant (K iy =
(K4 G G"7) Killing tensors are represented by
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Our next example illustrates how rare such systems are, i.e. what is the ratio
between chaotic and integrable nonlinear Hamiltonian systems.

Example 4.2 Consider the two parameter family of Hénon-Heiles systems, gener-
ated by

H = ép)zc~|—ép§~|—axy2— ébx?’.

The simplicity of its potential together with the richness of dynamical behavior
for different values of a and b turned it into a standard testing ground for many
methods of studying two-dimensional Hamiltonian systems. Usually the system is
nonintegrable. There are only three integrable cases, where there exists the second
global constant of motion [42]

b=—6a: F= éypxpy - éxpg + éaxzy2 + éay4,

b=—-a: F = pxpy —I—ax2y + éay3,

2 2.6

b=—16a: F = 3p§+ 12axy2p§ —4ay3pxpy —4a x2y2— ga yo.

The first case with a = é was considered in the previous example.

Consider a Liouville integrable systems on a 2n-dimensional symplectic mani-
fold (M, , H), with n constants of motion (F1, ..., F,) which Poisson commute.
Let us fix @ € R” and consider the map

fiM—TR", f=(F,...,F).

From the assumptions on dF; it is a regular map, so M, = f !'(a) is a
smooth, n-dimensional submanifold of M for any a € R". The Arnold-Liouville
theorem says that if M, is compact and connected, then it is diffeomorphic to n-
dimensional torus T". Moreover, in the neighborhood of the torus, in M there exist
particular coordinates ((pl, e, ) (0 < (pi < 2m), called action-angle
coordinates, in which equations of motion are linear with respect to the evolution
parameter ¢

oH(Iy, ..., 1,
(Ir); = 0, ((Pk)t = ¢ 2 = wi = const.
0l
The motion on the torus is quasi-periodic. For the periodicity, an additional
condition is necessary

n
Zmia)i = 0, m; € 7.
i=1

Assume that the considered Liouville integrable system is given in a canonical
coordinate chart (x, p) and that the system of equations F;(x, p) = a; can be
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solved almost globally (globally in particular) for the momenta p;

pi = pi(x,a) (4.1.4)

and the relations F; (x, p(x, a)) = a; hold identically. Now, let us differentiate these
identities with respect to x;

n

OFi g O e

oxJ ap, 0xJ

r=1
then multiply the resulting equations by 0 Fy/dp; and sum over j
2”: OF OF; Z OF; dF dpr _
o op; ox/ o opr dpj 0x/
swap the indices and subtract (si) — (is) obtaining finally

Z": OFs 0F; dp; _ 0F; 0Fs dpr\ _
_ dpj dp, dxI  dp; dp, dxJ )

{F'ia FS‘} +
rj=1

The first term vanishes by the assumption and rearranging the indices in the second
term we get

— IFy OF; (apr apj) _o
st dpj dpr \Ox/  ox" '

From the invertibility of matrices 9 Fs /0p; we finally get

apr . apj

. =0. 4.1.5
oxJ/ ox’ ( )

This condition implies, due to the Stokes theorem, that

‘(fpjdszo

for any closed contractible curve on the torus T". There are n closed curves I'y
which cannot be contracted down to a point, i.e. the corresponding integrals do not
vanish and in consequence we can define the action coordinates

1 .
Iy = idx’, 4.1.6
k znﬁkpj X ( )
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where the closed curve I'y is the k-th basic cycle of the torus T”
Tk ={(¢1,...,0,) €T, 0<¢; <2m, ¢p; =const.i # k},

and ¢ are some coordinates on T". The actions I are also first integrals as the r.h.s.
of (4.1.6) due to (4.1.4) only depend on @; = F; which are first integrals as well.

Now we can construct the angle coordinates ¢; canonically conjugated to the
actions using a generating function (see Sect. 4.1.4)

X
W(x,I):/ pjdx’
Xi

0

where x¢ is a fixed point on the torus. This definition does not depend on a path
joining x¢ and x as a consequence of (4.1.5) and Stoke’s theorem. Choosing different
xo just adds a constant to W thus leaving the angles

0. OW

¢ 01l

invariant. The angles are periodic coordinates with a period 2. Indeed if we add a
k-th cycle Cy to the path C between x( and x then

W(x,I) :/ pjdxj =/ pjdxj—i—/ pjdxj =W, )+ 21
CUCy C C

SO

(W

k
= 2.
o1, ¢+ 27

2
The transformations are canonical and invertible from construction
x=x(p,I), p=plp,I) and ¢ = ¢(x, p), I =1(x, p).
The dynamics is given by
k), =k, Hy=0= H=H\, ..., I)

0H(Iy, ..., 1I,)
((Pk)t = {fpk, H} = 91, "= wy = const

and thus we have reconstructed the equations (4.1.1).

So, “in principle” the system is integrable in quadratures. In practice, we can
do it explicitly only in particular cases as the explicit construction of generating
function (4.1.1) is far from being trivial. For example, we can do it in the case when
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a Hamiltonian H separates into a sum of n one-dimensional Hamiltonians /;
n
H(x,p) =Y hi(x", p).
i=1

In order to integrate by quadratures the arbitrary Liouville integrable system, we
need an extra property, i.e the existence of the so called separation coordinates.
Then, such Liouville integrable systems are called separable systems. The theory of
separable systems is developed in the next chapter.

Example 4.3 Let us consider n-dimensional harmonic oscillator described by the
following n Newton equations of motion in Cartesian coordinates

i i .
mx;,; +Bix' =0, i=1,...,n,

where m is a particle mass and §; € Ry are elastic constants, with well known
solutions

X (1) = A;sin(it + ¢)), ;= /ﬂ'}
m

parametri;ed by 2n constants (Aj, ...,An,(p(l), ...,(pg), i.e. amplitudes A; and
phases ¢. The considered system is equivalent to Liouville integrable systems
generated by n functions in involution

1 /1 ;
hi=2< pi2+ﬁi(x’)2>, i=1,...,n,
m

with the Hamiltonian function
n n 1 1
Heop)=) hi=) (mp? +ﬁi<x’>2) :
i=1 i=1

Equations of motion are in the form

i ; oH 1
x) =1{" H} = = Di,
ap; m
oH ; )
(Pi)z={pi,H}=—al.=—ﬁ,-x, i=1,...,n.
X

and split into n two-dimensional problems, each from R?. Let us consider the k-th
problem. Different choices of the energy hy = ay give a foliation of R? by ellipses

lay

1 /1
) <ml7/% +.3k(xk)2> = ay.



120 4 Classical Integrable and Separable Hamiltonian Systems

For a fixed value of a; we can take I'y = /,,. Then

1 1 Sk m ag
I = dx* = dx*dp, = = =
k 2 ﬁkpk o 21 //Sk * Pk 21 \/,Bkak Wk

where we used the Stoke’s theorem. Sy is the area of ellipse /,, and there is no
summation over k under the integral. The Hamiltonian expressed in new variables is

n n
H = Zh,’ = Za)ili
i=1 i=1

and

: 0H 0H
@hi= Gy =on == =0

4

i . i 4
') =wit+¢y 1= = const.

i

To complete the picture we need to relate (x, p) and (¢, I) coordinates. We already
know that

1 2
I = ( Pi +ma)k(xk)2).
2 \ mwy

Thus the generating function is (with a chosen sign)
W(xk, I = / pkdxk = /\/Zmlka)k — mza)z(xk)zdxk

and

W
fpk = = / ek dx* = arcsin <\/n;wkxk> - 90]5.
i \/Zmlka)k — m2e? (xk)2 I

This gives

20 .
Xk =\/ k sm(cpk +(/)](§)
mwy
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and finally we recover the solution

i : i L J2a; . i
x'(t) = A; sin(w;t + @) = sin(w;t + @),
wj m

dx' (1) ; ;
pit) =m P mw; A; cos(w;t + @) = \/Zma,- cos(wit + @),
with a new parametrization (ay, ..., a,, (p(l), R (pg), i.e. fixed values of constants
of motion F; = w;l; = a; = const and phases (pf). The respective action-angle

coordinates (¢, I) are related to canonical coordinates (x, p) in the following way

. 21 ] .
x’:\/ " sing’, p,~=\/21,-a),~sin(p’, i=1,...,n.
;i

1

The n-dimensional submanifold, such that F; = a; = const.fori = 1,...,n, is
the n-dimensional tori with the coordinate system (¢!, ..., ¢"). Fixing a point on
the tori ((p(l), ..., @) we chose a particular trajectory. Trajectories are closed when
the condition (4.1.1) is fulfilled.

4.1.2 Superintegrability

In the previous subsection we introduced the notion of Liouville integrability with
n constants of motion in involution on the 2n-dimensional phase space. So, the
natural question appears whether there are systems with a bigger number of global,
single-valued integrals of motion. The answer is positive. A real-valued function
Hj on a 2n-dimensional manifold (phase space) M = T*Q is called a classical
superintegrable Hamiltonian if it belongs to a set of n Poisson-commuting functions
Hi, ..., H, (constants of motion, so that {H,-, H,} =O0foralli,j=1,...,n)and
for which there exist 0 < k < n additional functions Hy+1, ..., Hy4+k, globally
defined on M, that Poisson-commute with the Hamiltonian H; and such that all
the functions Hy, ..., H,4, constitute a functionally independent set of functions.
Obviously, in general, {Hi, H j} #0forl <i <mnandj > n. In particular, when
k = n — 1, such systems are called maximally superintegrable.

The reader can meet in literature the weaker notion of maximal superintegrability
which requires that there exists 2n — 1 functions, one of which (the Hamiltonian)
commutes with all of the others. In this sense, maximal superintegrability coincides
with a particular case of the so called non-commutative integrability [52, 120, 201],
which requires 2n — r integrals, r of which commute with all of the integrals. Such
a class of systems is beyond the scope of the book.

In our further considerations we will limit ourselves to the so called polynomially
superintegrable systems, with functionally independent and globally defined con-
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stants of motion that are polynomial functions of the momenta. Let us analyze such
a case on examples familiar to everybody of two dimensional harmonic oscillator
and Kepler problem, respectively.

Example 4.4 The harmonic oscillator in R?, with equal component frequencies, can
be described as the Hamiltonian system in the four dimensional phase space with
Cartesian coordinates (x', x2) and conjugate momenta (pp, p2), where

H =30} + D) + ) (0261 + 0?()?).

We show how superintegrability alone determines the orbits. Here n = 2 and 2n —
1 = 3 so three constants of the motion are required for superintegrability. Consider
the following functions

Hy=x'py—x’p, H3= é(—P% +p3) + ) (—602()61)2 + wz(xz)z) . Hy=o"x'x* + pips

which are in involution with Hamiltonian with respect to the canonical Poisson
bracket: {H;, H;} = 0,i = 2,3,4, where H, represents the angular momentum
(angular momentum is conserved in any Hamiltonian system with potential that
depends only on the radial distance) and H3 and Hy represent extra quadratic in
momenta constants of motion. The remaining nonzero Poisson brackets are

{Hy, H3} = —2Ha, (H>, Hi) =2H3, {H3, Ha) = —20° Ha.

We have found 4 constants of the motion and only 3 can be functionally indepen-
dent. Indeed, one finds that

H? — H} = H} + »*H3.

Let us fix the value of total energy H; = E|, H3 = E3 < E and choose Hy = 0.
From the last choice we get o*(cH2(x3)? = p% p% while from the first two choices
we getp% = a%—w2(x1)2, p% = a%—a)z(xz)z,whereaf = E|—Ej3, a% = E|+E;3.

Eliminating p coordinates, we get the elliptical orbit in (x', x%)-plane

2 2
w2 H? + “)2 (x2)? =1.
a a4
Example 4.5 The Kepler problem is a specific case of the two body problem for
which one of the bodies is stationary relative to the other and the bodies interact
according to an inverse square law. The motion of two isolated bodies satisfies
this condition to good approximation if one is significantly more massive than the
other. Since all orbits lie in a plane (like in the previous example) we can write
the Hamiltonian system again in the four dimensional phase space with Cartesian
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coordinates (x1, x2) and conjugate momenta (p1, p2)

_ 1,2 2y a
Hy = ,(p1+ p3) \/(x1)2+(x2)2, a>0.

We show how superintegrability alone implies Kepler’s laws and determines the
orbits. Here n = 2 and 2n — 1 = 3 so again three constants of the motion are
required for superintegrability. Consider the following functions

axl ax2

, Hi=—Hyp—
Vel a2zt T e g e

which are in involution with the Hamiltonian with respect to the canonical Poisson
bracket: {H1, H;} = 0,i = 2, 3, 4, where H» represents the angular momentum (as
the Hamiltonian again depends only on the radial distance) and H3 and Hy represent
two components of the so called Laplace-Runge-Lenz vector e = (H3, Hs) in
(x', x?)-plane for the Kepler problem. For an elliptical orbit or a hyperbolic
trajectory the Laplace-Runge-Lenz vector is directed along the axis formed by
the origin (x', x2) = (0, 0) and the perihelion (point of closest approach) of the
trajectory to the origin. The perihelion is time-invariant in the Kepler problem, so
the direction in which e points must be a constant of the motion. The remaining
nonzero Poisson brackets are

1 2
Hy =x py—x“py, H3=Hypr—

{Hy, H3} = —Hy, {(H2, Hi} = H3, {H3, Hy} =2H1H);.

We have found 4 constants of the motion and again only 3 can be functionally
independent. Indeed, the length squared of the Laplace vector is determined by the
energy and angular momentum

H} + H} =2H\H> + a°.

Let us fix the value of of total energy H; = E, the angular momentum Hp = L and
choose H4 = 0. For such a choice the Laplace-Runge-Lenz vector is pointed in the
direction of the positive x-axis and E% = 2EL? + a?. Then, we have

ax? E; ax

_ , — + .
/et 7T LT Lt a2

1
p1=

The expression for H, allows us to write

Esx! a(xh? a(x?)? Ex! N ay/(xhH?2 + (x2)2

L: + =
L LJeh?+ )2 /a2 +a)? L L

’
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which after rearrangement and squaring becomes
E32 2LE L
(1— §>(x52+ ol a)?r=". (4.1.7)
a a a

These are conic sections of the plane (xl, xz), so our trajectories are ellipses,
parabolas, and hyperbolas, depending on the constants of the motion E, L.

The first Kepler’s law says that planetary orbits are planar ellipses with the sun
positioned at a focus. Indeed we found that only closed trajectories, or orbits, are
elliptical.

The second Kepler’s law says that a planetary orbit sweeps out equal areas in
equal time, so it is a statement of conservation of the angular momentum. Indeed,
let us introduce polar coordinates such that x! = rcos 0, x2 = rsin ¢ then, along
the trajectory,

dx? dx! do
Hr=L=x'Opt) — x2(t)p1(t) = x! —x2 =727,
2 x @)p20) —x"(@)p1() =x P L

The area traced out from time O to time ¢ is

o(1)
MU=§[ rde.
9(0)

Differentiating with respect to time

| 2dy

1
r =,L,
2 dt 2

d A
dt (n =
so the rate is constant.

The third Kepler’s law says that the square of the period of an orbit is proportional
to the cube of the length of the semi-major axis of the ellipse. Again, it is only
valid for closed trajectories: ellipses. We may write the period 7' of such an orbit in
terms of the constants of the motion. Explicit evaluation for ¢(0) = 0, ¢(T) = 2,
yields A(T) = LT as the area of the ellipse. Kepler’s third law follows from the
equations (4.1.7) and the simple calculus expression for the area of an ellipse.

The reader can find other examples of superintegrable systems with two degrees
of freedom and various methods of their construction for instance in [79, 163, 185,
196, 249], while superintegrable systems with three and more degrees of freedom
can be found in [8, 9, 64—66, 110, 134, 164, 166, 168] and in literature quoted there.

Suppose that we have an integrable system, i.e. n functionally independent
Hamiltonians on a 2n-dimensional phase space M that pairwise commute:
{Hi,Hj} = Oforalli,j = 1,...,n. If there exists an additional function P
commuting to a constant with one of the Hamiltonians, say with Hj (so that
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{H{, P} = ¢) and if the (n — 1) functions
Hyvi ={Hi+1, P}, i=1,...,n—1

together with all H; are functionally independent, then the system becomes
maximally superintegrable since then by the Jacobi identity

{Hn+laH1}=_{{Pa H1}7H1+1}_{{H17Hl+1}7p} =07 l= 17---5’1_ 1-

If moreover the first # integrals of motion H; are quadratic in momenta and if P is
linear in momenta, like in our two examples, then the resulting (n — 1) extra integrals
of motion H,; are also quadratic in momenta.

Suppose that (x, p) = (xl, ..., x", p1..., pn) are Darboux (canonical) coor-
dinates on a 2n-dimensional phase space M = T*Q. Consider two functions on
M:

H=1piAY(x)p;j + U(x) with A = A" and P = y' (x) p;.
Then

{H, P} = pi (LyA)" p; + Y (U), (4.1.8)

where Y is the vector field on Q given by ¥ = yi(x) aif and where Ly is the
Lie derivative (on Q) along Y. Thus, one can say that H and P commute if the
corresponding vector field Y is the Killing vector (2.6.17) for the metric defined by
the (2, 0)-tensor A (i.e. if Ly A = 0) and if moreover Y (U) = 0. Thus, the simplest
way of the construction of additional constants of motion is via an appropriate
Killing vector. We will come back to such a construction of superintegrable systems
later on. More complex methods of construction of superintegrable systems are
beyond the scope of that book and we send the reader to the literature mentioned
above.

4.1.3 Stickel Transform

Stickel transform is a functional transform that transforms a given Liouville inte-
grable system into a new Liouville integrable system on the same Poisson manifold.
Actuall, this is essentially a transformation that sends an n-tuple of functions
in involution on a 2n-dimensional symplectic manifold into another n-tuple of
functions on the same manifold, and these n new functions are again in involution.
It also generates a corresponding reciprocal transform between solutions of these
Stickel-related systems, confined to proper submanifolds of the phase space. The
construction in the restricted form (called coupling constant methamorphosis) was
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first described in [58, 150] and then generalized to the final form in [39, 231].
Applied to a Stickel separable system, this transformation yields a new Stickel
separable system, which explains its name. We will develop the theory of Stickel
transform of separable systems in the next chapter.

Consider a Poisson manifold (M, ) and suppose we have r functions (Hamil-

tonians) ; : M — R on M, each depending on k < r parameters oy, ..., 0k SO
that
hi=hiE, o1,...,ar), =1,...,r, 4.1.9)
where £ € M. From r functions in (4.1.9) let us now choose k functions Ay, i =
1,...,k, where § = {s1,...,s¢} C {1,...,r}. Assume that
det (Bhsi/aaj) #0 (4.1.10)

and that the system of equations
hg(E,ar,...,a) =a;, i=1,...,k, 4.1.11)

where &; is another set of k free parameters, or values of Hamiltonians A;,, can be
solved almost globally (globally in particular) for the parameters «; yielding

ai =hg (5,1, ...,a4r), i=1,...k (4.1.12)

The right hand sides of these solutions define k new functions ﬁsi on M, each
depending on k parameters &;. Finally, let us define (r — k) functions /; with
i = 1,...,r and such that i ¢ {s1,..., sk} by, substituting Es,- instead of «; in
h; fori ¢ {s1,..., sk}

hi=h i=1,...,r, i ¢{s1,...,5)} (4.1.13)

i |al‘>ﬁxl ,uwak‘)h‘xk ?

The functions ﬁ,- = fu(é, at,...,ox), i = 1,...,r, defined through (4.1.12)
and (4.1.13) are called the generalized Stickel transform of the functions (4.1.9)
with respect to the indices {s1, ..., sx} (or with respect to the functions hy,, . . . hg).
Note that unless we extend the manifold M this operation cannot be obtained by
any change of coordinates. It is also easy to see that if we perform again the Stickel
transform on the functions 7 ; with respect to Es,- we will receive back the functions
h; in (4.1.9). Note also that neither k nor r are related to the dimension of the
manifold M.

Example 4.6 Here we consider the simplest situation when k = r = 1. Let us take,
after [150], the Fokas-Lagerstrom potential on the four-dimensional phase space M
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with coordinates (x, y, px, py) :
h= 5z + py) — 3y
Solving the equation 7 = & with respect to the only parameter « one obtains
a=3x0)*P(ps + py) — e =h

which can be shown to be equivalent to the axially symmetric potential [150].

The importance of Stéckel transform relies on two properties that make it so
useful for the study of integrable systems, i.e. it preserves functional independence
and involutivity with respect to the Poisson tensor 7.

In the special but nonetheless important case when functions (4.1.9) depend
linearly on parameters «; it is possible to write down the Stéckel transform in an
explicit form. Suppose therefore that the functions in (4.1.9) are of the form

k
hi=H+Y oa;HY i=1..r (4.1.14)
j=1

The equations (4.1.11) defining the first part of the Stickel transform take then the
form of a system of k linear equations in unknowns «1q, .. ., &k

k
Ho+ > oiHY =d i=1,... .k
j=1

with the determinant solution for «; = ﬁsi of the form:

k
hy, = detW; /detW = Hy, + > a; A, (4.1.15)
j=1

where

1 k
Hs(l) Hs(l)
w=| : -
1 k
Hv(k)"'l_ls(k)

is the k x k matrix (3hy, /0 ;) given in (4.1.10) (so that det W % 0) and where

W; are obtained from W by replacing HS(;) in the i-th column by &; — H;; for all
j = 1,..., k. The second part of the transformation, i.e. formulas (4.1.13), is as
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follows
k _ k _
— Zh HY = Z HYD, =1, ig s, )

where ﬁsi are given by (4.1.15).
For the Stéickel transform in this case, after setting all the « and & equal to zero
we obtain the following formulas relating Hamiltonians H and H

Hy+HyH" +...+ H,HY =0, s €5,

. X . (4.1.16)
Hj+H,HY +.  + B, HP =H;,  j¢s.
Relations (4.1.16) can be written in a matrix form
H=AH (4.1.17)

where H = (Hi, ..., H)T and H = (H,, ..., H))T and where the r x r matrix A
is given by

oh;

:—Hl.(j) forj=1,...,k
oaj

Ajj = &jjfor j & {s1,.... sk}, Ais; = —
(4.1.18)

Notice that relation (4.1.17) is valid on the whole M.

Let us now discuss the Stickel transform between Hamiltonians and the cor-
responding reciprocal transform between respective solutions of two Liouville
integrable systems. Suppose that dim M = 2n and that we have exactly r = n
functionally independent Hamiltonians

hizhi(éaala---aak)a i=17---an

that depend on k < n parameters «; and that are for all values of «; in involution
with respect to a nondegenerate Poisson bi-vector n: { hi, hj }n = 0 for all i, j.
These functions yield n Hamiltonian systems on M:

d

§ =ndhi=X;, i=1,...,n (4.1.19)

dt,'
so that X; are n commuting Hamiltonian vector fields on M. Consider now a new
set of n Hamiltonians 4; obtained from k; by a Stickel transform performed with

respectto Ay, ..., hg. These functions define a set of Hamiltonian flows on M, the
vector fields of which are given by
d ~ ~
? =ndh;i=X;, i=1,...,n. (4.1.20)
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Let us now analyze the relation between the Hamiltonian systems (4.1.19)
and (4.1.20). In order to study this relation it is important to realize that both
systems (4.1.19) and (4.1.20) are multiparameter and the relation between them can
thus only be found if one fixes the values of both all «; and all &@; which means that
the sought relation can only exists on the (2n — k)-dimensional submanifolds M,, 5
given by (4.1.11):

Myg={EeM: hgE ar,...;ap) =a;, i=1,...k} 4.1.21)

Note that the surfaces M, 5 depend on the simultaneous choice of 2k parameters
«; and @; and that its codimension is k (so that dim M, 5 = 2n — k > n). Note
also that due to the equivalence between (4.1.11) and (4.1.12) the surfaces M, 5 can
equivalently be defined through

My g = {g €M :hy(E, @y, ... 60 =ai, i= 1,...k} (4.1.22)

Observation 5 Through each point & in M there passes infinitely many submani-
folds My, 4. If we fix the values of all the parameters a; we can for any & always find
some values of the parameters @; so that § € My, 5, and vice versa, if we fix &;, for
any given & we can find o; so that& € My 4.

As it follows from (4.1.11) and (4.1.12) the following identity is valid on M and
for all values of parameters ;:

hS,‘(Sal’;lS](%"&la '-'7&]()’ '-'71;;5']((%-’&1’ -a&k)) E&l’ l = 15 '-'7k-
(4.1.23)

Moreover, the second part of the transformation, given by (4.1.13), can be written
as the following identity on M, valid again for all values of &;,

hi(E, a1, ..., au) = hi(€, b (E, &1,y Gk)s .oy g (B, @1, G5)),

(4.1.24)
wherei = 1,...,n, i ¢ {s1,...,sx}. Differentiating (4.1.23) with respect to & we
get that on each M, 3

“ an
Si 7T .
dhy, = —Z o, dhy;, i=1,....k (4.1.25)
j=1
while differentiation of (4.1.24) on M,, 5 gives
L om;
dh, = dh; — Z "dhsj, i=1,....n, i &{s1,...,S}. (4.1.26)
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Obviously, in equations (4.1.25) and (4.1.26) we make the substitution (4.1.12). The
transformation (4.1.25)—(4.1.26) on M,, 5 can be written in a matrix form as

dh = Adh (4.1.27)

where dh = (dhy, ...,dh,)T,dh = (dhy, ...,dh,)T and where the n x n matrix
A is given by

oh;
Aij =8ijforj ¢ {s1, .., sk}, Ais, =— . forj=1,....k (4.1.28)
/ 30(]'

(compare with (4.1.18).
From the structure of the matrix A it follows that

det A = £ det (ahs")
da

so that detA # 0 due to the assumption (4.1.10). In consequence, the rela-
tion (4.1.27) can be inverted yielding dh = A~'dh. This leads to important two
properties. Actually, if the functions /; are functionally independent then so are /;
and if the functions /; are in involution with respect to the Poisson tensor 7 (for all
values of «;), then the functions ﬁ,- are also in involution with respect to & for all
values of @;.

For the first property, assume that /; are functionally independent for all values
of «;. Consider the differentials dh; at a given point & € M and for some
arbitrary values of &;. Due to Observation 5 one can always find values of ; such
that £ € M, 5. By (4.1.27) and by the fact that det A # O the differentials dh;
linearly independent at £ (since dh; are) and since & ia arbitrary, /; are functionally
independent on the whole M.

For the second property, assume {hi, hj}n =O0foralli,j =1,...,n and for
all values of «;. Then, as in the proof of the first statement, at any £ € M we can
choose an appropriate M, 5 so that (4.1.27) is valid and so

n

(dhi, wdhs) = <Z (A—l)l_l1 dhy,. Z (A—l)ﬂ2 dhlz>

h=1 =1

——
S
S
~.
——
B
I

n

> (A*l)”1 (Afl)ﬂz (dhy,, wdhy,)

l1,[r=1

n

= > (A*l)m (Afl)jlz {1y, by}, =0,

I1,l=1

Thus the system (4.1.20) is again Liouville integrable. It proves that Stickel
transform maps a Liouville integrable system into a Liouville integrable system.
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From (4.1.25)—(4.1.26) it follows that vector fields X; = wdh; and X; = wdh;
are on the appropriate M,, 5 related by the following transformation

kL on
Si <7 .
X;; =—Z o, Xy, i=1,...k (4.1.29a)
j=1
- oh; - . .
X, =X,-—Zaalxsj, i=1,....n, i¢{s1, ..., (4.1.29b)
j=t

This means that the Hamiltonian vector fields X; and f(i span the same n-
dimensional distribution on each M, ; and also that the vector fields X, and

X, span the same k-dimensional sub-distribution of the above distribution. The
transformation (4.1.29) can be written on My,  in the matrix form

X = AX

where X = (X1, ..., X,)7, X = (X1,..., X,)T, the n x n matrix A is given above
and substitution (4.1.12) is performed.

All the vector fields X; and X; are naturally tangent to the corresponding M, s
so that if £, € M, 5 then the multiparameter simultaneous solution

E=E&@1,....th, &) (4.1.30)

of all equations in (4.1.19) starting at § for # = 0, will always remain in M, 5z and
the same is also true for multiparameter solutions of (4.1.20).

The relations (4.1.29) can be reformulated in the dual language, that of reciprocal
multi-time transformations. The reciprocal transformation #; = 7; (t1, ..., t,, £),i =
1,...,ngivenon M, 5 by

di = ATdz, (4.1.31)
where dt = (dt,...,dt,)T and di = (df,...,di,)T, transforms the n-
parameter solutions (4.1.30) of the system (4.1.19) to the n-parameter solutions § =

5(171, ey Iy, &) of the system (4.1.20), with the same initial condition £ (0) = &,
in the sense that for any £, € M, 5 we have

EQ@, ot §0)s o nInt1, o 1, Eg), E9) = E(11, .. tn, )

for all values of #; sufficiently close to zero.
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The transformation (4.1.31) is well defined since the right hand side of (4.1.31)
is an exact differential, as it follows from the above construction. Thus it is possible,
at least locally, to integrate (4.1.31) and obtain an explicit transformation #; =
it ..., t,, &) that takes multi-time solutions of all Hamiltonian systems (4.1.19)
to multi-time solutions of all the systems in (4.1.20).

In a specific case which is important for further considerations, when k = n and
so that the Stickel transform consists only of the first part (4.1.12), the matrix A
simplifies to the form

Ajj=—_",i,j=1...n (4.1.32)

so that the formulas (4.1.29) simplify to the single formula

n
ohi o .
X,-:—Zaa'xj, i=1,...,n,
j=t "

and (4.1.31) can be explicitly written as
~ oh; )
di = -y _ aaidtj, i=1,...,n. (4.1.33)

In this case our manifolds M, 5z become level surfaces for all the Hamiltonians
h; (&, a) and also level surfaces for all the Hamiltonians h i€, a).

As a simple illustration of the above results, consider the Hamiltonian systems
on a four-dimensional phase space M = R* with the coordinates & = (x, y, px, Py)
and canonical Poisson structure. For our first example let k = 1, r = 2, 51 = 2,
a1 = « and | = & with nonlinear «-dependence.

Example 4.7 Consider the Hamiltonian

1 1.2 Ol(x2 _)’2)

+ Dy — 20°x°,
y

which is Liouville integrable because it Poisson commutes with

Xpy — ypx — 20Xy
Dy

hy =

Relation (4.1.11) for h, = « takes the form

xpy — ypx — 2haxy
y

=a,
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whence

iy — XPy — YPx — &Py

2= ;
2xy

and therefore by virtue of (4.1.13) we have

x4+ y? —2ax a(x? —ax +y? )

hy = PxPy + 212 Py

2xy

The relation {h1, ho} = O implies {ﬁl, ﬁz} =0, so ﬁl is a Liouville integrable just
like /1. The latter equality can be readily verified by straightforward computation.
Interestingly enough, in this example the generalized Stickel transform sends the
Hamiltonian /4 into a natural geodesic Hamiltonian ﬁl, but the metric associated
with ﬁl is not flat and, moreover, has nonconstant scalar curvature unlike the metric
associated with /1. Moreover, the reciprocal transformation (4.1.31), (4.1.28)

f1=t1

2,2 2
dth = (y . Dy ~|—4ocx2> dt; + xydtz
y Py
2 ~ 2
-2 2
= (—Z)Cpx + (x ax+y )Py) dt + xydtz
y Py

takes the equations of motion for /1 and %7, with the respective evolution parameters
11 and o, restricted onto the common level surface M5 = {€ € R*ha (&, o) = &}
into the equations of motion for h1 and ha, with the respective evolution parameters
f1 and #, restricted onto the same common level surface M,z = {£ € R4|ﬁ2(§ ,Q) =
o}.

For the second example we setk = r = 2.

Example 4.8 Consider the extended Hénon—Heiles system with the Hamiltonian
h) = %PJZC + épi + oy (x3+ %xy2> + arx,
which Poisson commutes with

hy = 3 y*pepy — 3xp) + 1 (}gczy2 + llﬁx“) + Jaay?
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Lets; = 1,50 = 2, k = r = 2. Then (4.1.15) yield the following commuting
deformation of /1 and h»:
2(y*+4x%) 2

4 = 16 ~
Xy4 py + al )74a2’

= 2 2 8 _
hy = xy2Px = 3 PxPy xy?

~ 2 2 2 2
h2 _ytHAxt 2 4(t+2x7)

16x*+12x2y24y* o
= T2 Px y3 xPy + 4 p

Xy x

2 2 2 2

+4x“ ~ 8(y“+2x°) ~

-7 5, o1+ Y 4 an.
q149; y

Using (4.1.32), (4.1.33) and proceeding in analogy with the previous example we
readily find that the reciprocal transformation takes the form

df = (x3 + éxyz) dt + (116x4 + }‘xzyz) dty, di) = xdt) + iyzdtz.

But what about superintegrability? Adding to Hamiltonians (4.1.3) extra con-
stants of motion hy,y; = hp4i (€, 21, ...,0r), i = 1,...,n — 1 that commute with
h and differentiating extra identities

Pogi B Gy ey @1) = hni (B, gy (B, Gy ooy @), oy By (B, @1, e, ),
with respect to & we get

k

dhnsi = dhpsi = )
j=1

dhnsi -
"Mdhy, i=1,...,n—1.
30(]'

The transformation matrix A (4.1.27),now (2n — 1) x (2n — 1), is given by the same
formula (4.1.28) and again on M, we find

2n—1

(hi-hjle = 3 (A_l)ih (A_1>jlz Uty b} -

l1,[r=1

In order to get extra conditions {ﬁl, ﬁn+ j}x = 0 a strong restriction has to be
imposed on the matrix A. Actually, the first row of A must be zero except the
element Aq1. It happens only in the case when i1 = h1(§, «1) and s1 = 1. Thus, if
all Hamiltonians depend on the same number of parameters, the superintegrability
is preserved when that number is equal one and the Stiickel transform is performed
with respect to /1 (see Sect. 4.4.4 for particular examples).
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4.1.4 Canonical Transformations

As we presented in the previous chapter, Hamiltonian mechanics is formulated in
a coordinate free way. Nevertheless, in order to perform particular calculations, we
need a local coordinate system. On the other hand, it is well known that complexity
of calculations strongly depends on chosen coordinates. It will become apparent in
the next chapter where the separability theory is presented. Thus, the coordinate
transformations are a standard element of the further developed theory.

An important class of coordinate transformations on a symplectic manifold is
the class of canonical transformations, i.e. these which do not change the canonical
form of implectic bi-vector (symplectic 2-form). A particular importance of such
transformations will be demonstrated in the next chapter. Thus, on 2rn-dimensional
phase space M consider some transformation of coordinates

(.X, [7) — (.X/, [7/)
such that if (x, p) are Darboux coordinates, i.e.
w = dp; /\dqi, T=w = aq,- A dp;,
then
/

o =dp; ndx", 7' = o = Byi A Dy
1

and hence (x’, p’) are also Darboux coordinates. In order to construct such a trans-
formation, consider any smooth function F(x, p’), called further the generating

function of canonical transformation, that aizaF ,| # 0. Then, define the following
. p
transformation
oF 5 OF .
p,-:axl,zin, x’:ap;EFl,I(, i=1,...,n (4.1.34)
which in a matrix form reads
dp = Feydx + Fyydp',  dx' = Fyydx + Fpypdp', (4.1.35)

where dp = (dp, ..., dpy)T, (Fxx)ij = Fyi,j = 0°F/dx/9x" and so on. Then,
from (4.1.35) and the fact that Fxy = FL, Fy,y = FpT,p,, Fyy = F;x it follows
that

dx = F_jdx' = F_ | Fypdp', dp= FxxFyjdx'+ (Fpy — FuxFy i Fpp)dp/

Y
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dpi A dx' = (dp)T Adx
:(dx/)TFI;}(FXX A F;p}dx/ - (dx’)TFIZinx A F;p} Fyydp'
+dp" Fopy A Fodx' — dp) Fopy A Fo i Fppdp!
+ (AP Fyp Fot Fux A Fotdx’ = @p') Fpypy oyl Fox A Fy ) Fydp!

= (dp/)T Adx" = dp} A dx".

For the last by one equality we also used the fact that a’ A Aa = a’ AAa =0
for A= AT anda” A A A7'8 = o A B. Thus in fact the transformation (4.1.34)
is canonical. In a similar way one can introduce three other generating functions of
canonical transformations

F(x,x') = pi=Fyi, pi=—Fu, i=1,...,n, (4.1.36)
F(p,p)=x'=—F,, x"=-F,, i=1,...,n, (4.1.36b)

F(p.x)=>xi=Fy, pj=Fu i=1,...n. (4.1.36¢)

The important subclass of canonical transformations on a phase space consists
of these canonical transformations, which are generated by transformations on the
underlying configuration space Q. Let (x, p) be some Darboux coordinates on M =
T* Q. Besides, consider any coordinate transformation on Q

x—>x/:x/=¢(x):>x/i=¢i(x), i=1,...,n.

The generating function of respective canonical transformation on M : (x, p) —
(x', p') is of the form

F(x, p') = ¢'(x)pl,
and hence
X = ¢ (x),

pi=[1w] p i=1m, (4.1.37)
l

where J (x) is the Jacobian of the map ¢ (x). Canonical transformations (4.1.37) are
called point transformations.
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4.2 The Modern Formulation of Hamilton-Jacobi Theory

The theory of finite dimensional conservative integrable systems has a long history,
starting from the works of Lagrange, Hamilton and Jacobi in the first half of
the nineteenth century. In fact the Hamilton-Jacobi (HJ) theory is one of the
most powerful methods of integration by quadratures a wide class of systems
described by nonlinear ordinary differential equations, with a long history as part
of analytical mechanics. The theory in question is closely related to the Liouville
integrable Hamiltonian systems. The main difficulty of the HJ approach is that it
demands distinguished coordinates, so called separation coordinates, in order to
work effectively.

There are some milestones of that theory. First, in 1891 Stéckel initiated a
program of classification of separable systems presenting conditions for separability
of the HJ equations in orthogonal coordinates [240-242]. Then, in 1904 Levi-Civita
found a test for the separability of a Hamiltonian dynamics in a given system
of canonical coordinates [177]. The next was Eisenhart [104—-106], who in 1934
inserted a separability theory in the context of the Riemannian geometry, making it
coordinate free and introducing the crucial objects of the theory, i.e. Killing tensors.
This approach was then developed by Woodhouse [265], Klanins [158, 162], and
others. Finally, in 1992, Benenti [14—16] constructed a particular but very important
subclass of separable systems, based on the so called special conformal Killing
tensors.

4.2.1 Linearization of Hamiltonian Dynamics

Let us consider a Liouville integrable system on 2nrn dimensional symplectic
manifold M, defined by n Poisson commuting Hamiltonians {H;, Hj}, =0, i, j =
1, ..., n, with related Hamiltonian equations of motion

£, =Xy =ndH;, i=1,....n, &€=, pT, 4.2.1)

where #; is the evolution parameter of the i-th equation. Assume that (x, p) are
local Darboux coordinates. The time independent HJ method of integration by
quadratures of the system (4.2.1) relies on its linearization through an appropriate
canonical transformation

x,p) — (b,a), ai=H;, i=1,...,n. 4.2.2)

In order to find coordinates b, canonically conjugated with a;, it is necessary to
find respective generating function W(x, a) of the transformation (4.2.2). Then,



138 4 Classical Integrable and Separable Hamiltonian Systems

according to (4.1.34)

oW
T da;

where function W(x,a) is the solution of the system of n Hamilton-Jacobi
equations, generated by constants of motion Hj,

aw aW ,
H,-(xl,...,x",axl,...,axn)za,-, i=1,...,n. (4.2.3)

Observation 6 Historically, as well as in standard textbooks from classical
mechanics (including Wikipedia) the reader finds a single HJ equation, for a
distinguished Hamiltonian H. A single HJ equation is sufficient to find a generating
function W only in simplest cases. Further on, we also analyze these simplest
cases explicitly. Nevertheless, for the majority of separable systems, all n HJ
equations (4.2.3) are necessary in order to find the generating function W and in
consequence to integrate by quadratures equations (4.2.1).

In (b, a) representation, n evolution equations (4.2.1) become trivial (linear)

i O0H; JdH; ..
btjizaa;ZSij, (aj)tiz—ab;zo, H,-:a,-, l]=l,...,l’l.

where

w
i =tj+cj, cj e R. 4.24)

bra) =
X,a) =

d

Equations (4.2.4) define implicit solutions of equations (4.2.1) in original coordi-

nates (x, p). Solving the system of equations (4.2.4) with respect to x* (so called
inverse Jacobi problem), we reconstruct classical trajectories in the explicit form

X =xi(t1, vy, @1y, An,Cly ooy Cn)y Pio = Pi(X, Xy, .0). 4.2.5)

Unfortunately, for the majority of separable systems, with the exception of a few
elementary systems, (4.2.5) cannot be expresed by elementary functions and the
theory of special functions like Riemannian theta functions is necessary [139] (see
also [6]). Thus, in general, searching for a solution of the inverse Jacobi problem is
a complex mathematical problem from the algebraic geometry and goes beyond the
scope of the book.

Observation 7 It is very important for the reader to keep in mind that once we are
considering separable systems on a phase space, the x' and p; are functions which
depend on n different evolution parameters t; (4.2.5) and solve simultaneously
all evolution equations (4.2.1). Obviously, for a k-th evolution system only t
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plays the role of a variable while the remaining tjx are just parameters. This
observation was crucial for understanding the concept of a reciprocal transform,
linking solutions of Stickel related Liouville integrable systems, where all evolution
parameters were simultaneously involved in the transformation (4.1.31).

So, where is the problem if the separation procedure is so clear? The main
difficulty in applying the presented method to a given Liouville integrable system
in some canonical coordinates (x, p) is in solving the system (4.2.3) for W. In
general this is a hopeless task, as (4.2.3) is a very complicated system of nonlinear
coupled partial differential equations. In essence, the only hitherto known way of
overcoming this difficulty is to find distinguished canonical coordinates, denoted
here by (A, 1) and defined almost globally on M, for which there exist n relations

(pi()\'ivlu’i;alv-'-san):os i:ls---vnv aiERv det[alm:l;éos

da;

(4.2.6)
such that each of these relations involves only a single pair of canonical coordinates
[235] and with additional assumption that we can solve these equations for a;
not only locally but almost globally on M. Thus, in the domain of (X, u), a; are
expressed in the form

ai=Hwn, i=1,...,n.

If the functions W; ()J, a) are solutions of a system of n decoupled ODE’s, called

separation equations, obtained from (4.2.6) by substituting u; = dWil()iL"t @)
o; (Ai,ui = W gy, ...,a,,) —0, i=1,....n, (4.2.7)

then the function
n .
W, a) =Y Wi/, a)
i=1

is an additively separable solution of all the equations (4.2.7). It is also a solution
of all Hamilton-Jacobi equations (4.2.3) because solving (4.2.6) to the form a; =
H; (), ) is a purely algebraic operation.

The Hamiltonian functions H;(A, u) Poisson commute as a consequence of
separation relations (4.2.6). Indeed, differentiating equations (4.2.6) with respect
to (A, u) coordinates we get

Ipr |~ g 0H,

9 " 9¢, OH,
Pk Pk r_O’ —0

oA day 9 N i = dar By
r= r=
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SO

IH, o dop  OH, A,agok
i Z S aqgi’ o Z S
Y — oA A, —= o,

where (AY) is a matrix being the inverse of the matrix (d¢,/da,). In consequence

(H H}—Xn: OH, 8H; _ 9H, dH;
A Ak By Ay ark

k=1
n n n
=3 (> a4 0pi s 99) S ar 0p; s 0¢;
- Losk™J i Jayk
k=1 \i,j=1 I g i, j=1 e+ 3N
— Zn: AT AS Zn: <a(/)i 3(/)/' . 99; a(p/>
= i k k
i,j=1 k=1 8)‘- a,LLk al’Lk a)\.

n
Y AjANg 9} =0.
i,j=1

The distinguished coordinates (A, i) for which the original Hamilton-Jacobi equa-
tions (4.2.3) are equivalent to a set of separation equations (4.2.7) are called the
separation coordinates.

Of course, the original Jacobi formulation of the method was a bit different from
the one presented above, and was adopted to a particular class of Hamiltonians,
nevertheless it contained all important ingredients of the method. Jacobi himself
doubted whether there exists a systematic method for the construction of separation
coordinates. Indeed, for many decades of development of the separability theory,
the method did not exist. Only recently, at the end of the twentieth century and
at the beginning of the twenty-first century, after more than 100 years of efforts, a
few constructive methods have appeared. Some of them are the subject of the next
chapter.

4.2.2 Stickel Systems

In what follows we restrict ourselves to considering a special case of (4.2.6) when
all separation relations are affine in constants H;:

n
D USO8 w) He = v (W ), i=1,....n, (4.2.8)
k=1
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where S;x and y; are arbitrary smooth functions of their arguments. The rela-
tions (4.2.8) are called the generalized Stdckel separation relations and the related
dynamical systems are called the Stickel separable ones. The matrix S = (Sjx) is
called a generalized Stickel matrix. The reason behind this name is the fact that the
conditions (4.2.8) with Sjx being p-independent and v; being quadratic in momenta
W are equivalent to the original Stéckel conditions for separability of Hamiltonians
H;. To recover the explicit Stickel form of the Hamiltonians it is sufficient to solve
the linear system (4.2.8) with respect to H;.

Although the restriction of linearity appears to be very strong, nevertheless for
all separable systems known from the literature (at least to the knowledge of the
author), the general separation relations can be reduced to the form (4.2.8) upon
suitable choice of constents of motion H;.

If in separation relations (4.2.8) we further assume that Six (A', 11;) = Sk (A%, ;)
and ¥, (A, ;) = ¥ (Al, ;) then the separation relations can be represented by n
copies of a single curve

D Sk W Hk = Y, ) (4.2.9)
k=1

in (A, u) plane, called a separation curve. The copies in question are obtained by
setting A = A and =pu;fori=1,...,n.

Finally, let us point out that in fact, with a given Stéckel system one can relate the
whole set of admissible separation coordinates (£, ¢), related to (A, i) by canonical
transformations of the form

A =2E ), = miEL ). (4.2.10)

It is a reason why in the literature the reader can meet the notion of separable web
instead of separation coordinates.

As the separation relations play the fundamental role in the Hamilton-Jacobi
theory, it is natural to employ them for classification of Stickel systems. The form
of separation relations (4.2.8) allows us to classify the associated Stickel systems.
Actually, any given class of Stickel separable systems can be represented by a fixed
Stédckel matrix S and the particular form of .

In our further considerations we mainly restrict to a particular subclass of
separation relations (4.2.8), for which

S, ) = S, Y ) = 3 DR+ o (WD, (4.2.11)

i.e. the Stickel matrix is p independent and v functions are quadratic in momenta
. Nevertheless, this subclass of Stéckel separation relations contains a majority
of known from analytical mechanics separable Hamiltonian systems. Also these
Stickel systems will be most interesting for the further quantization procedure.
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In order to illustrate, let us consider three important cases of separation rela-
tions (4.2.9), (4.2.11).

The first case is the simplest one, when the Hamiltonian itself separates into the
sum of Hamiltonians of one degree of freedom each: H = ) _/_| H; (A, ;) where

Hy = i +0:(), (4.2.12)
SO
n n n )
H=Y) Hi=,) ui+) oi0)=T+V.
i=1 i=1 i=1

Equations (4.2.12) are simultaneously particularly simple separation relations gen-
erated by a Stdckel matrix equal to the unit matrix.

In the second case of separable relations we assume that H,41—;(A, u) =
Hupp1—i(AY, o0 A, Ui, ..., M;) and chose H = Hj(A, u). Let us consider the
following separation relations

Hi — OO Hip = i 400, i=1,....n (4.2.13)

2

Hy — ¢, Hy = Jui+ 0100,

Hy — ¢,(0 ) H3

%M% +0200%),

(4.2.14)
H, = %,U«i +0n()\n)

generated by a Stiickel matrix of the form

1—¢;xhH 0 0 0

0 1 =)0 0
S=10 o0 L0

0 o0 0 1 —¢,(A"

0 0 0 0 1

Denote h; = éM,Z + ai(ki), then

Hi = Ti + Vi = hi + SO Hir, Hy = hy,
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and hence

Hi = hi + Sxhir1 + Selpprhier2 + oo+ 8o - Sty

which gives the common formula for kinetic 7; and potential V; parts of the
Hamiltonian Hj,

T =5 (i + Selirr + bt g + o+ Eie - St itn),
Vk =Uk~|—§k0'k+1 +§k§k+lak+2+"‘+§k"‘§n710n' (4215)

Notice that separation relations (4.2.13) can be transformed with the help of point
transformation (4.2.10) to new separation relations of the form

Hix' + Hipy =Y i0Oui +v;08), i=1,....n
Finally, the third case is a generic case, when H; = H; (Al, ..., Uy)and H = Hj.

Consider separation relations (4.2.9), with the condition (4.2.11), of the irreducible
form

n
DoHOH =5 0D} + i), i= 1, (4.2.16)
k=1
where y; > yp > -+ > y, = 0,y; € Z+ and f;, o; are rational functions.
Irreducibility means that the set {yy, ..., y,_;} of integers does not have a common

divisor . Otherwise, separation curve (4.2.16) can be reduced to the one with y; —

J‘;" € Z4 by a transformation A — Ae.
Hamiltonian functions H; are solutions of the system (4.2.16)

_ ¢—1
H=y5,'U,

where H = (Hy.....H)", U = GeihHud + o). ..., 50,0Mul +
o, (W) is the Stickel vector and

(Al)yl ()\'1))/2 |
S=| i i
MY (mrz ..o
is the Stdckel matrix.

At the end of that subsection let us briefly mention systems from classes, where
separation curves are different from quadratic in momenta. In the first class of
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systems momenta enter exponentially

n
D Hp' =explap) +exp(=bp) + o)., a.beRy, i=1,....n,
j=1
(4.2.17)

where o defines a separable potential. This class includes such systems as the
periodic Toda lattice [115], the KdV dressing chain [28], the Ruijsenaars-Schneider
system [27] and others. In the second class momenta enter cubic

ni na
R Y HDT Y HPN = 1 o1 )+ 0200, i= 1o,
j=1 j=1

where po1 and oy give rise to the separable potentials. We also know some
particular examples from the classes. For instance, stationary flows of nonlinear
PDE’s, known as the Boussinesq hierarchy, belong to the class with n; = 1 and
ny = n — 1[27, 114], while dynamical system on loop algebra s[(3) belongs to the
class withny =2 and np, = 4 [113].

4.2.3 Inverse Jacobi Problem

Let us integrate by quadratures separable equations whose separation relations were
considered in the previous subsection. In the first case

n 1 )
H= Z <2W P+ a,-(x’)) ) (4.2.18)
i=1

In this case separation coordinates are just Cartesian coordinates x’ and conjugated
momenta p;. Separation equations (4.2.3) for the generating function W are of the
form

1 (dW;\? l. .
2m; \ dxi toix')=a, i=1,....n

with the solution

W =/\/2mi(ai—a;(xi))dxi, i=1,...,n,
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thus

dw; midxt

b = =
da; V2mi(a; — o (x'))

=t—+c.

Example 4.9 Consider n dimensional harmonic oscillator, analyzed in Example
4.3, now from the point of view of separability theory. It has Hamiltonian of the
form (4.2.18) with potential

oi(xh) = 1 B;(x)2

Then, the implicit solution (4.2.3) is expressible in elementary functions

- ._/ m;dx' _\/mi . \/,31' ;
i = = arcsin 5 Xt
Jomia — dginz Vi a

and can be inverted to the form
i . 2a; Bi
X' = A;sin(wit +¢;), A= g w; = , PP = wic
i
known from the Example 4.3.

As the second case consider separation relations (4.2.13), for which the generat-
ing function is of the form

n
W a) =) Wi ais1.a), Hi=a;. (4.2.19)

i=1
From relations (4.2.7) and (4.2.13) follows that

dW;

k= V= 60ha - oG

and so

dk

e W 1/
day 2 \/ak—é“k()xk)akﬂ—ak()»k)

L / Cpg K Hars!
2 \/akq — G Dy — o (3

=t +ck, k=1,...,n. (4.2.20)
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where , 11 = 0. Hamiltonian dynamical systems from R>, which separate in
spherical and cylindrical coordinates belong to this class.

Example 4.10 Consider one particle natural Hamiltonian in 7*R3 in the Cartesian
representation

1 1
H=_ p}+ p§~|—

1 2
Vx,y,2).
2m- Y 2m mpz+ x5, 2)

2

The point transformation to spherical coordinates

(rv ¢1 91 prv p@v p¢) I (-xv )’7 <, va pyv pZ)

is given by (3.3.6) and the Hamiltonian takes the form

1 p2 Pé
H= 24 7o V(r, ¢,0).
2m (pr+r2+rzsin29)+ . ¢.9)

Assume that the potential V (x, y, z) in spherical coordinates has the following
structure

0
V(r,¢,0) =0:(r) + Ui(z - rjfi;q;)g,

then, the case (4.2.14) of separation relations is realized where n = 3, (Al, Az A3 )=
T 0,9),¢,.(r)= rlz, Lp(0) = sinlz 0 Hence, the separation relations (4.2.14) are of
the form

1 1,
Hy — r2H2 =5 +o,(r),

1 1,
H, — H; = n P +o9(0),

sin 0 2

L,
H; = + ,
3=, 0% o¢(P)

and

2
1 p? Py o9(0)  04(9)
Hi=H=h H, = 2 4 ,
1 SRl Zm (Pr * r2 + r2sin? 6 +or)+ r2 + r2sinZ 0

o¢()

, 4.2.21
sin? ( )

Hy =hg +pH3 = ! 2 5’ ®)
= = + +o +
: f 673 2m Po sin 9 o

1
Hy =hy = mpé+0¢(¢)~

2
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Generating function W additively separates
W = Wy (9, a3) + Wy(0, az, a3) + W, (r, a1, az),

and implicit solutions (4.2.20) are of the form

:\/m/ rdr — 1 tel

2J) Jra —o,(0)) —a

_\/m/ sin 6do _\/m/‘ dr —hte
2.J /sin2O(ay — 04 (8)) — as 2 rr2ar —o,(r) —a P

:\/m/ do _\/m/ do e
2J) Jaz —o4(@) 2 J sin6y/sin?0(ar — 09(0)) — a3

Let us mention that this example is a key example of the HJ theory, presented in the
majority of textbooks from analytical mechanics, here presented from the point of
view of separation relations.

Finally, as the third case, let us consider the generic case of separation rela-
tions (4.2.16), for which W(A, a) = Y ; W;(A', a), so separation equations (4.2.7)
take the form

2 n
Ly (d)J ) = —0o;(A") +kzz;ak ()J)yk =P\, a).

The solution of (4.2.3) is as follows
/ \/ 2P a)
fiD)

/ ()\'j)ykd)\'j
\/R A, a)

and thus

bk = =t +cr, k=1,...,n

where Rj (A, a) = 2f;(M)P(A/, a).

Summarizing, one can say that on the level surface M, = {£ € M : H; = a; € R}
the multi-time solutions A; = A;(t1, ..., t;, () of all Hamiltonian systems defined
by the separation relations (4.2.16), or equivalently by all Hamiltonians (4.2.2),
attain the following Abel-Jacobi differential form

dt = ST 2

' RO (4.2.22)
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where dt is a column vector with components dt; and dA/+/R (), a) means a column

vector with components dA ;/ \/ R; (A7, a). Note that solutions (4.2.22) define in a
standard (canonical) way the corresponding multi-time solutions for the momenta
mi = pi(t, ..t §0)-

Example 4.11 Consider once more the Hénon-Heiles system from Example 4.1

Hi=H=pi+ 3y +5° + 5007,
2 2.2 4
H, = éypxpy - ;xPy + }‘x Yy + 116x :

The transformation between Cartesian and separation coordinates is of the form

x=al 422y =2/,

My Ay 12 M I
px:)\l_)\2+)\2_)\'1’ Pyz\/—)\.)\ )\,I—A,2+)\,2—A,1 .

Hamiltonians H; and H> in canonical coordinates (X, ) are of the form

1 )‘1 2 1 )‘2 2 13 122 1 22 23
Hi= g ettt gt () + () 7 () ()
1At 5, 1l

2 2
zzﬂ—xﬂ”+2ﬂ—w”é_kuﬁov +Mﬁ+(ﬁ)l

1

and fulfill the following separation relations
Hi' + Hy = g + oD,
Hi3? + Hy = 50205 + 0D)°
so, the implicit solution expressed by separation coordinates is as follows
Alax! A2d)?

+ :
VRO, a) VR(O2, a)

h+c —/ d! —i—/ di>
2T VRO, @) VR(O2, a)

where R(k,a) = 2x(az + a1h — 1%). Obtaining the explicit solution in Cartesian
coordinates is a far from being a trivial task and we skip it here.

Hh—+c =

In our last example we miraculously found the transformation to separation
coordinates. In fact, the systematic construction of a transformation relating some
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natural coordinates (pseudo-Euclidean for example) with separation coordinates,
was the most challenging problem of the separability theory for over 100 years and
will be discussed in the next chapter.

4.3 Stickel Systems in Riemannian Geometry

The class of Liouville integrable and separable systems considered in the previous
section consists of functions quadratic in momenta. So, we can adopt a Riemannian
geometry to the Poisson geometry of such systems. It is not a unique procedure
and that fact will be crucial for further separable quantization of Stéckel systems,
considered in Sect.8.2. Here we mainly concentrate on a natural choice, which
allows us to identify a distinguished metric tensor and related Killing tensors from
kinetic parts of Poisson commuting Hamiltonians. We also derive the algorithmic
construction of separable potentials with the help of an appropriate recursion matrix.
We analyze in details a particular important class of Stidckel systems, so called
Benenti class. The significance of that class becomes clear in the next section.

4.3.1 Killing Tensors and Separable Potentials

Consider the separable system defined by the following separation relations

n
Y HSu () = 4 i + o0, i=1,....n, 4.3.1)
k=1

linear in H;, with the following solution

n
H,:éZAi"uerv,, r=1,...,n. (4.3.2)

i=1

It is useful for further applications to relate a symplectic geometry (Poisson in
general) with a Riemannian geometry in the context of the separability theory.
Let us consider the Hamiltonians (4.3.2) as functions from the phase space T*Q,
where Q is a Riemannian space (Q, g), written in local coordinates (A, u). Then,
Hamiltonians adopted to such an interpretation, can be written in the form

n n
He=33 Al +V, =3 B,G) ' u}+ Ve, r=1.....n. (4.3.3)

i=1 i=1
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Such freedom in the interpretation of Hamiltonians H; will be crucial for the
quantum separability theory developed in Sect. 8.2. Here, on the classical level, we
make a useful “natural” choice, identifying A with a contravariant metric tensor G,
ie.

n
Ho=T,+V,=)> (KG)"'ul+V,, r=1,....n (4.3.4)

i=1
where, from the construction, By = Ky = I, Ay = G and B, = K,
represent second order Killing tensors of (1, 1) type for the metric ¢ = G~

T, represent geodesic Hamiltonians and V, separable potentials. Notice that in
separation coordinates metric tensor G and Killing tensors K, are represented
by diagonal matrices. Moreover, V, (1) represent separable potentials. In fact we
have n such choices, where A, is identified with a metric tensor G, and A;, are
respective Killing tensors. As all constants of motion are functions quadratic in
momenta y;, so all Hamiltonian systems generated by H, have their own Legendre
transformation (3.1.7), (3.1.8), generated by the metric tensor G, = A,, and
the related second order Newton equations of motion can be represented by the
following equations

Mo+ @AM =GV, r=1.....n. (4.3.5)

The form of separation relations (4.3.1) allows for a classification of such a
type of systems. Each class is defined by a particular choice of Stickel matrix S.
Systems inside a class are parametrized by functions f and o. Actually, functions f
parametrize separable metrics (called sometimes Stickel metrics) while functions
o parametrize separable potentials. Indeed, the Stickel matrix for separation
relations (4.3.1) is of the form

S11 ()»1) S12 ()»1) - Stn ()»1)
S = .. , (4.3.6)
Sn1 ()‘-n) Sn2 ()\n) e Spn ()\n)

hence tensors A, and potentials V,. (1) can be expressed as

Ay =diag ((STHA MG, o ST faM) . ViR = (STDroiG).
4.3.7)
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Besides, for a “natural” choice G = A, we have

(57 (S‘l)m>

K, =di
’ d’“g(wl)n’ (s,

I (4.3.8)
- (8Y,. D

Kr L — ro— ,

(& (Sil)u Diy

where Dy; are respective cofactors of matrix . Notice, that for Stickel matrix S in
the form (4.3.6) we have

0 ]
gy KNi=0. i=1...n (4.3.9)
1

Moreover, one can check that metric G = A is non-flat in general. We will come
back to that problem later on.

Let us consider in greater detail two types of separation relations from the
previous subsection. For separation relations (4.2.13) f,-()J) = 1 and non-zero
elements of Stidckel matrix are of the form

Sii=1, Siiy1 =—¢ (0,
while non-zero elements of the inverse Stickel matrix are
j—1
Sha=1 iy =]]eb. i<
k=i

For example, for n = 4 we have

I-¢; 0 0 1818182 818283
g0t o | g for s o
00 1 —z4 00 1 ¢4
00 O 1 00 O 1

The first row of the matrix ! represents elements of diagonal metric G

G =diag(1,£1,8182, -5 81w Enm),s
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with respective Killing tensors of (1, 1) type

1 1
K, =diag |0,...,0,

r—1
. &= 25y,
Qg vy |0 8 L[lck( )

r—1
Separable potentials are given by relation (4.2.15).

Example 4.12 Let us supplement the Example 4.10 of separable particle dynamics
inR3 by some extra information. In spherical coordinates (7, ¢, 0) (3.3.6) the metric
tensor has the form

10 O
G=|0% o0 ,
no1
00 r2sin® 0
the related Killing tensors of (1, 1) type are
100 000 00 O
Ki=|010], Ka=[0r20 ], K3=[00 0 :

001 00 r? 00 r2sin’0

while admissible separable potentials are of the form

o(0) 4 (@)

Vi = ,
1= r? r2sin’ 0

o (@)

Vo =09(0) + ,
2 0 sin® @

V3 = a4(eh),

where o, (r), 09(0), 0(¢) are smooth functions of its arguments.

As a second particular case of separation relations (4.3.1) consider systems
whose separable relations are n copies of irreducible separation curve

n
S HG = f0) [Su? )| = L font + o), (43.10)
k=1

where y| > y, > ... > y,, ¥; € Z4, with normalization y,, = 0, being

a particular case of (4.2.16). We also assume in our further considerations the
meromorphic form of functions f (1) and o (1). The explicit form of metric tensor G
and respective Killing tensors K, will be presented in the next subsection. Here we
demonstrate the construction of separable potentials with the help of the so called
recursion matrix. Notice first that from the form of separation relations (4.3.1)
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follows that they split into a geodesic part and a potential part, respectively. The
potential part of the separation curve takes the form

VIO V0 4 VO = o (). 4.3.11)
Let us begin from the so called basic potentials, i.e. o (A) = Ak, k € Z. Then, the n

copies of the separation curve (4.3.11) with (A, u) = (A, Mi)izl n can be written
in a matrix form

.....

S, v0 = Ak, ... DT,

where VO = (Vl(k), e, Vn(k))T, A = diag(kl, ..., A") and Stickel matrix S,
according to the normalization in (4.3.10), is of the form

()\'l)yl ()\'I)VZ 1
=1
(An)yl ()Ln)l’z |

As a consequence
vO=sta,....n"=....0.0",
which follows from the form of Stickel matrix (4.3.6), and hence
S, v =Ad,....,DT = A5, vO,
SO
v =s7AS, VO = F,v©,
where
F, = S,'AS,
is called the recursion matrix for separation relations (4.3.10). Indeed
vO=FvO  kez (4.3.12)

as from the assumption about the invertibility of Stickel matrix S, follows the
invertibility of recursion matrix F),. Besides

VO =o(F)V©O, (4.3.13)

for any meromorphic function o (1) in (4.3.11). Notice that relation (4.3.13) is of
simple matrix form so it is valid in any coordinate frame on Q. Moreover, since
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vO = 0,0,...,0, )T, we find that the potentials (4.3.12) are trivial for k =
Vis+--» ¥y as

(r;)
Vr ! :5)/r’yj'

4.3.2 Benenti Class of Separable Systems

A particular important role, among all considered Stickel systems (4.3.10), plays
the so called Benenti class, defined by

Vireosv)=m—=1,n-2,...,0),

hence by separation relations of the form
n
Z H QN =) fiHui +o), i=1,...,n, (4.3.14)
r=1

with solution

H =YKy + Vv, r=1,...n (4.3.15)

r

For this class of systems the Stickel matrix

G
S =

()\'Vl)}’lfl ()\'n)n72 . 1
is the Vandermonde matrix and metric tensors are of the form

LGN
=

Gii LA = l—[()\i -, i=1,...,n, (4.3.16)

ki

i.e. are parametrized by n functions of one variable f;(1').
All metric tensors (4.3.16) have a common set of Killing tensors of (1, 1) type

. 0
K)i=="P" r=1,...n 43.17)

oA!
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where p, (L) are signed elementary symmetric polynomials in A (later in the book
called Viete polynomials, for short):

p; (1) = (=)} Z Ang-oidns i=1,....n (4.3.18)

1<ni<mpy<..<nj<n

so in particular
— 1 n _ nylq2 n
pr=—A +...4+1),...,p, = (DA A7 AT

It follows from (4.3.17) and (4.3.18) that Killing tensors and Viete polynomials
fulfill the following matrix equations

o dn =Kep1 —AKy, r=1,....n—1, p,I, =—AK,. (4.3.19)

In particular, when separation relations (4.3.14) are represented by n copies of
the separation curve

n
DHAT =5 f0on o), i=1....n,
r=1

metric tensors (4.3.16) are represented by

G=f(MGo, (Go)'= .
Aj
Moreover, the potential part of separation relations (4.3.14) is generated by

VO VIO 4 4 VO = o).

Hence, the recursion matrix F = S~' A S attains the simple form

—p1 1
F=|"" ~ (4.3.20)
: 1
—p, 0---0
with the inverse
1
000 ~
1 _P1
Fl=| o (4.3.21)
1 _p.nfl

Pn
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and for the hierarchy of basic potentials o (1) = A we have
vo = Fky O ke 7Z. (4.3.22)

Since V@ = (0,0,...,0,1)T, we easily obtain that the potentials (4.3.22) are
trivial fork =1,...,n—1as

Vr(k) = (Sr,n—k-
The first nontrivial positive potentials are

v = FvO = (—p, . —p) =V = —p,,

vOrD = Py O = (o7 — 03, 0105 — P30 p100)T

= V" = p1p, — 1,

while the first nontrivial negative potentials take the form

— - - Pr—1
V( 1):F IV(O):(—1/,0”,—,01/,0”,,.,,—pn_l/pn)T:Vr( V=- 1; ,
n
Pr—1Pn—1 — Pr—2Pn

-2 —2v,(0 -2
veEdD — F V():Vr( ) — 52
n

’

where pg := 1 and p,, = 0 for r < 0. Notice that the recursion matrix (4.3.20) and
its inverse (4.3.21) are constructed from respective vectors of potentials

F=w® ye=b vy prl= (o2 yvO yEh

From (4.3.22) follows immediately a simple recursive formula for components
of positive potentials VX, k € N

p+n — p®

k k
g O oV, =1 n—1, v = v,

(4.3.23)

while from (4.3.21) follows a simple recursive formula for components of negative
potentials V(_k), keN

. _ e I
VkD —yCR Pty b g TR =

n Pn

AN
(4.3.24)

The Benenti class is a distinguished class among separable systems of
type (4.3.10), which contains a subclass of flat metrics, hence a lot of separable
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systems, known from analytical mechanics, belong to that class. One can show that
Stdckel matrices (4.3.16) are flat when

fO0H =0 =] - . m=0.1,....n

k=1

is a real polynomial. If the polynomial f (') is of order n + 1, the metric G is of
constant curvature: R = const.

Observation 8 Note, that any Stickel system (4.3.1) of two degrees of freedom can
be transformed to the Benenti class (4.3.14) through the point transformation \' —
1

(AY71 (4.1.37). In a consequence any Stiickel system of two degrees of freedom with
both integrals of motion quadratic in momenta belongs to the Benenti class.

A typical representative of this class is the Henon Heiles system from Exam-
ple 4.11. More examples will appear in the following sections.

4.3.3 Superintegrability in Benenti Class

Let us investigate the problem of superintegrability inside the Benenti class of
separable systems. In order to simplify the problem we restrict the considerations to
systems generated by separation curves of the form

n
S+ Y HAT =" m=0,... n+1. (4.3.25)
kel r=1

where I C Z is some finite index set, numerating nontrivial basic potentials. The
coordinates (X, ), convenient for the integrability procedure, are inconvenient for
any other purpose as the components of metric tensors, Killing tensors and separable
potentials are rational functions making computations very complicated. We will
therefore perform the search of other Darboux coordinates. The simplest choice are
Viete coordinates

n Vl*i

; ()"
i . L —

qg =p;(A), pi 1;:1 Ay

(4.3.26)

Since the transformation from (A, u) to (g, p) is a point transformation the
coordinates (g, p) are also Darboux coordinates for our Poisson tensor. It can be
shown [44] that in the (g, p)-coordinates

(W), ==8lq" + 6T (G =g
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so components of metric tensors G, = A" G take the form

gititm—n=l_ i i—1,...,n—m

(Gm)V = —gititm=n=1 i i—pn—m41,....n m=1,...,n
0 otherwise
(4.3.27)
(GuiD) =q'q’ —q't, i j=1,...n,

where we set ¢° = 1 and ¢" = 0 forr > n or r < 0. An advantage of these new
coordinates is that the geodesic parts of H; are polynomial in g. Moreover, separable
potentials are given by the same formula (4.3.22) under substitution g; = p; (A).

Example 4.13 For n = 3 in Viete coordinates (4.3.26) we have

—q'10 00 1
A=|—-¢*01], Go=[014'
_q300 1q1q2

and hence the metric tensors G ; have the form

01 O 1 0 O
Gi=|14" 0 |, Go=|0-¢>-¢*],
00 —¢° 0—¢g> 0
—q' —¢* —¢* @Y —a*q'e* -4’ ¢'q®
Gi=|-¢*—-¢* 0 |, Ga=|4q'9’—¢* @ ¢
—¢> 0 0 a'e> ¢ (@)
In accordance with (4.3.2), the metric tensors Gy, ..., G3 are flat, while the metric

G4 is of constant curvature.

Let us come back to superintegrability. According to (4.1.2) and (4.1.8) we are
looking for additional constants of motion of Hjp, linear in momenta, generated
by Killing vectors of the respective metric tensor. Nontrivial Killing vectors are
expected for flat and constant curvature metrices and Viete coordinates are very
useful for such a search. In Viete coordinates, for the geodesic part of Hi, i.e.
T, = éG',{l pipj, the simplest constants of motion P, linear in momenta, generated
by Killing vectors of the metric G,, (4.3.27) with components linear in positions,
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are of the form [193]

,
P,:qu’_kpn_m_k_,_l, m=0,....n—1, r=1,...,n—m,

n—r+1
= Z qu+k71pn_m+k+1, m=2,....n+1, r=n—m+2,...,n
k=1

(4.3.28)

Formulas (4.3.28) can be verified by direct computation. Other constants P are

generated by Killing vectors with components being higher order polynomials of
position coordinates.

Example 4.14 For the metric tensors G, from Example 4.13 we have the following
sets of Killing vectors Y and related functions P (4.3.28) that commute with
geodesic Hamiltonian 7':

00 1

G(): O 1 ql . Yl :(0107 1)7 Y2:(O, zvql)s Y3 =(312¢]1»q2)
1q'4*

T 1.2 2

=p1p3 + 2172 +q p2p3 + 261 Pz,

Pi=ps, P=2p2+q'ps, Ps=3p1+2q"p2+q*ps,

01 O
Gi=[14" 0 |: Y1=(0,1,0), Y, =(2,4",0),
00 —¢°

T=pip2+3q'p3 = 2a°p3, Pi=ps, Po=2p1+q'ps,

0

1 0
Gr=|0-¢2—¢*|: Y1=(1,0,0), Y3=1(0,0,4%,
0—¢g> 0

2 22 3 3
T=é171 - éq P> —q p2p3, Pr=p1, P3=q ps,

_ql _q2 _q3 . .
G3 = _q2 _q3 0 : Yl = (07 q\70)7 Y3 = (07 qzv zq*),
4> 0 0

T=—,4'p1 —a’pip2— ¢’ p1p3 — 3a°P3. Pi=q’p2. P3=q’p2+2q°p3,
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@ -4* 4'¢* - ¢* 4'¢*
Gi=|4q'*-¢ @»* ¢
q'q’ ¢ @)
Y1 =0.4.0). Y2=(0.4%.2¢"), Y3 = (q".24%.3¢%).
T='q* = Hpip2+ 5@ —aHpt + @3 +a'a* pips + 3@ p3 +a°a paps.
Pi=¢’p1. Py=q’p1+2¢°p2. P3y=q'p1+24"p>+3q°ps.
In order to find superintegrable potentials we have to use the condition Y (U) =
¢ & {Hj, P} (4.1.2)—(4.1.8). The highest number of such potentials is detected by
P=P =pp_pform=0,....n—landby P = P, = q"py—my2 form =

n,n + 1. In consequence, the Stickel system (4.3.25) is maximally superintegrable
in the following cases:

(i) caseme{0,....,n—1}:ifIC{2n—m—1,...,n}U{-1,..., —m},
(i) casem =n:if I C {n}U{—1,...,—n+ 2},
(iii) case m = n + 1 (the case of constant curvature): if I C {—1, ..., —n + 1}.

The additional integrals /1,4, commuting with &1 have the structure
hnr = 3pi Ly Ari )Y pj +Y(Ur), r=1,....,n—1, (4.3.29)

where Y is a vector field on Q given by

: Ly @
(i) forme{0,...,n—1}: Y = dgn—m>

(i) form=n: Y = q"azz,

(iii) form =n+1: Y=q"321.

The above result provides us with a sufficient condition for maximal super-
integrability of Stickel systems of constant curvature (flat in particular) in case
when f(A) is a monomial of maximal order n 4+ 1. In consequence, the case (i)
yields an n-parameter family of maximally superintegrable systems, parametrized
by {o—p,...,0_1,0p,...,00p—m—1},m = 0,...,n — 1, where «; parametrize
families of nontrivial superintegrable potentials U in (4.3.25). Similarly, in the cases
(ii) and(iii) we get an appropriate (n — 1)-parameter families of superintegrable
systems [43]. The reader can find a more general case of that classification, i.e. the
polynomial case of f(A) in (4.3.25), in [40].

The geodesic parts

Tn+r = ;‘Ail]_,’_r()\.)[,bi[,bj,r = 1, e, —1
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of additional integrals of motion A1, = {h,41, P} withr = 1,...,n — 1, written
in the separation coordinates (A, (), are of the form
(i) forO<m <n-—1:
- 82 )\'i m )\'/ m
Al == o GO s,
AN AN AA;
- )\i m N 82 )»j m
A;ll-i-r:() Z .Pr'( )7
A st oA O A
where p, (1) are given by (4.3.18) while A; by (4.3.16)
(i) form =n,n+1
i 2p, dp, 1 GH"HY"
Appr=— o s LFE
IATONT N AT AA
aii OO~ 9o ) 9p, 1
A Saaan A e W

Let us illustrate the above considerations by some examples.
Example 4.15 Consider the flat case n = 3, m = 1, (4.3.25) with I = {—1, 3, 4},
so commuting Hamiltonians A; are given by a separation curve
4 3 2 —1_ 14,2
gl F a3’ +F AT+ oA+ hs +a A7 = ZA.M . (4.3.30)

Then, the corresponding Stickel Hamiltonians attain in Viéte coordinates the form

—1 3 4
hi=pip2+ 2a' 3 = 1P pi + e V(@) + a3V () + sV P (),

—1 3
h=1p+ 3@ —aHps = Ya'@*pi+a' pip = paps + a1V, V@) + 03V, (@)

+asVi? (@),

—1 3 4
hi=—1a°p3 = 1a** P} — P pips — ' P papsta i Vi V(@) + a3V (@) + aa VP (@),

where

1

1 1 "y q*
Vi @@= ., V, @)= ", V3 @)= ..
1 q3 2 q3 3 q3

3 3 3
vP2@ =4", vP@=¢% v =4

4 4 4
VP =—@"?+a% vP@=—4d'®+d v @ =—4'¢.
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AsY = 322 so that P = p; and thus

0 fork =—1
{hi,P} =40 fork=3
a4 fork =4

Hence, the system is maximally superintegrable with additional constants of motion
for hy given by:

hg = {ha, P} = —épg + a3 —auq’,
o1
hs = {h3, P} = —%61317% + P

Consider now the point transformation from (g, p)-coordinates to new coordinates
(x,¥,2, Px, Py, pz) such that

q'=x, ¢@=y+,x ¢=-,7 (4.3.31)
while (pyx, py, p;) are new conjugated momenta. Then (x, y, z) are flat but non-

orthogonal coordinates for the metric G = A (the reader can find more about flat
coordinates in Sect. 5.5). In new coordinates we get

010 -x 1 0
G=G =100, A= -y —Jx -z (4.3.32)
001 -}z 0 0

while the first three commuting Hamiltonians become

—1 3 4
hy = pxpy + épzz +(X—1V1( )+0l3V1( ) +(X4V1( )

1.2 1 2 1 2 1 1 -1 3 4
hy = ) px — 2 ¥Py + 2XP; + 2 XPx Dy — 22PyP: +a71V2( ) +oz3V2( ) +oz4V2( )

-1 3 4
hy = 322 p2 4+ 3+ 3 p2 = Yepeps — hxapyp + o1 Vi) a3V + oy vy

(4.3.33)
with Vk(s) = Vk(s)(x, y, 7) of the form
2
-n_ 4 1 _ 4 xT+4y
7 A A
1 Z2 2 Z2 3 Z2
vV =x v = (v 7)), v =2 (4.3.34)
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After the transformation to flat coordinates we have P = py,and ¥ = i)ay so the
additional constants of motion A,; of h are:

4o

hg = {hy, P} = —épi + a3 —asx, hs=1{h3, P} = ép? + 2 (4.3.35)

4.4 Stickel Transform for Separable Systems

In Sect.4.1 we presented the theory of the Stickel transform allowing for the
construction of new Liouville integrable system from a given Liouville integrable
system. Here we apply that theory to Stickel systems considered in the previous
section. We show that all Stickel systems form any y-class (4.2.16) are Stickel
equivalent with appropriate systems from Benenti class. Even more, systems from
Benenti class are also Stickel related. Finally, using constructed Stickel transforms
we analyze the geometric structure of Hamiltonians from the arbitrary y-class.
That structure will be important for the process of separable quantization of the
considered systems.

4.4.1 Reciprocal Equivalence with Benenti Class

We will now turn to the fundamental property of all Stickel systems generated by
separation relations of the form (4.2.16). As we will show in this subsection, any
class of Stidckel systems with the particular choice of y = (yy,...,¥,_1,0) is
related to Benenti class with y = (n—1, ..., 1, 0) by a single Stiickel transform and
in such a way those solutions of respective systems from both classes are related by a
reciprocal transform. As we mentioned above, Hamiltonians (4.3.4) do not depend
on any additional parameters «; so, in order to perform a Stéckel transform, we
have to embed it into a parameter-dependent system. Of course, there are infinitely
many ways of embedding of our Stickel system into an n-parameter system but the
choice below is natural in the sense that the corresponding Stickel transform maps
a Stéckel system into a new Stéckel system.

Consider n Hamiltonians i; = h;(:, i, o) from the Benenti class, defined by the
separation curve

R oyl 3 hyaI = f() [;MZ 4 K(A)] (4.4.1)

j=1 j=1
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where we do admit the possibility that some or all of y coincide with some n — k
and where R(}) is an arbitrary meromorphic function of one variable so that

k1 ko
RO =[Ja-8p]Je=8p""
j=1 j=1

for some (complex in general) constants 8, .. ., B, and ,3/1, e ,8;{2. This function
can be generalized to a matrix function i.e. we define, for any n x n matrix A (A-
dependent or not)

ki

ko
R(A) =[]A-p 1) []a- 817" (4.4.2)

r=1 r=1

(as all the terms in (4.4.2) commute so that there is no ordering problem here). The
relations (4.4.1) written in a matrix form are as follows

R (MN)Sya+Sh=U

where S, and § are two Stickel matrices given by (4.3.2) and (4.2.2) respectively
(so that (S,).. = (A7 and (8);; = O)"/), h = (hy, ..., hy)T is the column

ij
vector consisting of Hamiltoniar_ls hi, o = (ay, ..., an)T, U is the column vector
givenby U; = f(A) [u? + k(A))] and where A = diag(A!, ..., A").
Solving (4.4.1) with respect to & we obtain

h=8"'U~-5"R'A)S,a=5"'U -SRI (A)SST'S, . (4.4.3)

In the notation as above
ST'R(A)S = R(F),
where F is given by (4.3.20). We show (4.4.1) for R(A) = L — S as
STV (A—BI)S=S""AS—BI =F — BI = R(F).

The general statement follows by developing the above derivation. Thus, introduc-
ing the shorthand notation

—1._ ¢—1
W, = S8,
formula (4.4.3) can be written as

h=H-R ()W, '« (4.4.4)

where H = S~'U is the part of & that is independent of parameters o; (cf. (4.3.4)).
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Let us shortly analyze the structure of the matrix W~ =5 71Sy. Assume that
o (A) in (4.3.2) is a polynomial of the form o (A) = Z?:l a;AYi. Then, as it follows
from (4.3.2) and from the definition of potentials V(&) (4.3.22), we have

n
y©) — Z o; vy
i=1

where Vi) = (Vl(yi), cees V;l(yi))T are basic potentials from Benenti class. On the
other hand, the formula (4.3.2) can be written as

SV©@ =§,a

so that V©) = §~1§ o = w, !a which implies that

(W;l)ij AL (4.4.5)

where Vi) = F7ivV© are the basic potential from Benenti class. Therefore, the

formula (4.4.4) can be written in the form

n

hi=Hi— Y (R’I(F))

J.k=1

V%%, i=1,....n.
ij /

Let us now perform an n-parameter Stickel transform of the system given by
the separation curve (4.4.1). Since the number of parameters ¢; and the number of
Hamiltonians 4; is equal to n, the Stickel transform consists only of part (4.1.12)
and is generated by the relation 2z = & (which implies h = «) in the vector notation.
The n-parameter Stéckel transform generated by # = & transforms the set of n
Hamiltonians % defined by (4.4.1) into the following set of Hamiltonians

h =W, R(F)H — W, R(F)a (4.4.6)

(where h = (hy, ..., hy)T and similarly & = (@, ..., a&,)7) which constitute a
new Stickel system with the separation curve of the form

RG)Y a3 hari = f() [,ﬂ + K()\)] , (4.4.7)
j=1 j=1
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where f (A) := R(A) f (1). Moreover, the reciprocal transformation

—1
df = [R(FT)WVT ] dt (4.4.8)
transforms n-time solutions § = &(t1, ..., 1y, §¢) of the system (4.4.1) into n-time
solutions & = £(f1, ..., Iy, &) of the system (4.4.7). Note that in spite of the fact

that we introduced both systems in the (A, p)-variables the matrix formulas (4.4.6)
and (4.4.8) are not of tensor type and that they are coordinate-free. They can be
therefore freely applied in any coordinate system on M, which will be used in the
examples further on.

In order to verify the formulas (4.4.6)—(4.4.8) let us multiply the curve (4.4.1) by
R(X) obtaining

> a4+ RO) Y 2" = R £ () [MZ + K()\):I
j=1 j=1

which after the Stickel transform 7 = & (so that h = o) obviously attains the
form (4.4.7). Let us therefore show the matrix form are

R(A)S& + S,h = R(A)U.
Solving this with respect to & we get
h=S'"R(AU - S, 'R(A)S& = S, R(A)SH — S, ' R(A) S
_ (s;lR(A)Sy) (S*ISV)_1 H— (s;lR(A)Sy> (s*lsy)_1 &
= R(F,)W, H — R(F,)W,a

so the only remaining thing is to show that R(F, )W, = W, R(F). We show it for
R(X) = A — B as a general statement can be proved in a similar way

(Fy — )Wy =S, (A= B1) S, S, 'S =5 (A—-BD) S
=S,'8871 (A — BI) S = W, (F — B).

Finally, the formula (4.4.8) is obtained by inserting (4.4.4) into (4.1.33)

. an\" N
dt_—<aa) dt_[R(F )Wy] dr,

where we use the equality R(A)T = R(AT).
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Let us also present an alternative way of proving the formula (4.4.8), directly
involving solutions of (4.4.1) and (4.4.7). It follows from (4.2.22) and from the
above considerations that the multi-time solutions of the systems (4.4.1) and (4.4.7)
on any common level surface

Ma,&z{geM:hi(g,al,...,an)=&,~,ﬁ,~(§,&1,...,&n)=a,~i=1,...n]

take the form

di

_ T dx
V2P, &, @)

dt df . (4.4.9)

=T
14 ~
J2RGY F) PO @)

where

PO a a)=—fOk()+ Y &a" 7+ R7'0) Y adli,
j=1 j=1

P(h o, @) =—Ff00k0)+ RO D ap" 7+ a;ali.
j=1 j=1

Now, we can see that P(A, o, @) = R(A)P (A, @, &) as R(A) f(1) = f(1), so that,
by (4.4.9) and by the fact that R(A) is symmetric,

- o dxr r dxr
di = §! =57 ) )
\/2R(A)f(k)13(k,a,&) V2R2W) f(WD)P (A, &, @)
di -1 T
=STR=I(A =STRYA)(ST) dr=(s"'R7YA)S,) d
e L (7)) ar=( (M)Sy) " dr

= (S—ISVS;IR—I(A)SJ,>Tdt = (WV—IR—I(FV))Tdt

and hence

4 = R(FT) (Wyr)‘l dr = [WVTR(FyT)]_1 di = [R(lVT)WyT]_1 dt
_ [W),TR(FT)]_l dt,

which is what we wanted to prove.

Our formulas contain two special cases: when y = (n — 1, ..., 1,0) and when
R = 1. In the first case we relate systems belonging to the same Benenti class and
differ by f and o. The matrix W,, = I, so that the formulas (4.4.4) and (4.4.6)
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become

h=H— R " (F)a,

~ (4.4.10)
h=R(F)H — R(F)a,
while (4.4.8) attains the form
di = R7'(FTdz. (4.4.11)
In the second case (R = 1) we relate systems from different classes, i.e.
(¥1,-.-,vy) and Benenticlass (n — 1, ..., 1, 0) respectively, which share the same
f and o. The formulas (4.4.4) and (4.4.6) become
h=H-W, a,
B (4.4.12)
h=W,H—W,aQ,
while the formula (4.4.8) attains the form
. -1
df = [WVT ] dr. (4.4.13)

Thus, the general transformation between the systems (4.4.1) and (4.4.7) can
be regarded as a composition of two transformations: a map between two Stickel
systems from the Beneti class with different f (i.e. metrics) and the transformation
between two Stickel systems from different classes, sharing the same f.

4.4.2 Elementary Stickel Transforms in Benenti Class

In the previous subsection we presented the construction of equivalent separable
systems, in the sense that their sets of Hamiltonians were related by the Stéckel
transform (4.4.6) and respective solutions are related by an appropriate reciprocal
transformation (4.4.8) (coordinate dependent reparametrization of evolution param-
eters). If we skip the demand of reciprocal relations between solutions and restrict
only to Stickel related systems, then on the level of Stickel transforms we can
formulate the following statement. Any separable system generated by a separation
curve of the form

Z Hj)Wi = fop +6() (4.4.14)
j=1
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is Stdckel-related to a Benenti system generated by a separation curve

Z Hia" = foyu* +o) (4.4.15)
j=1

under the condition
o) =M fA) = o) =fMxR), () = FfMx®), (4.4.16)

where the single Stickel transform is of the form

H=W,R(F)H (4.4.17)

with R(A) = J;E)‘; In particular, any two geodesic Stickel systems (i.e. with
o = o = 0) are connected by the Stickel transform (4.4.17). The statement follows
directly from (4.4.4) and (4.4.6) for the particular case « = @ = 0 (compare
with (4.1.17)). In this sense our Stickel transform transforms the parameter-
free Liouville-integrable system (4.4.15) into another parameter-free Liouville
integrable system (4.4.14), although their solutions are not related by any reciprocal
transformation.

The condition (4.4.16) splits all Stickel systems generated by (4.3.10) into

equivalence classes since it is an equivalence relation. Indeed, if ?a; = ZT&% =

Ri(A) and 2% = o33 _ py(3) then P = 734 — Ry ()R () so the relation

Ly Gz(k)f " * S1) o1(d) P .
2 _ 02 — 1 _ 01 _ 1
is transitive. Further, if A0 = 610y = R()) then B = o0y = R SO the
relation is reflexive. Finally, J;: &; = gia; = 1 so the relation is symmetric.

The general Stickel transform (4.4.17) is a composition of two elementary
Stickel transforms. The first one is the Stidckel transform inside Benenti class,
relating two systems with different f (1)

HOm ™ a2 o Hy = fO) [ + )]
lR(F), W, = I,
Ao B 4 4 Hy = FOL [;;ﬁ +K()\)], (4.4.18)
where

H = R(F)H, R(F)= f(F)f '(F). (4.4.19)
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The second one (R = 1) relates systems from Benenti class with systems from
(Y1, .-, vy class, which share the same f(A)

HOm ™ o2 e Hy = fO0) [ + 0]
l W,, R(F) =1, (4.4.20)
HW' 4+ HoA 2 4+ Hy = (L) [éuz +;<()\)] ;
where
H=W,H. (4.4.21)

Let us analyze the structure of the matrix W), = S/ 1S in a similar fashion as
we analyzed the structure of the matrix W, =g _1Sy in the previous subsection.
Assume that o (A) in (4.3.11) is a polynomial of the form o (1) = Zle ai A
Then, as it follows from (4.3.11) and from the definition of potentials V& we have

n
VO =3 a7,

i=1

where V) = (\_/1("7’.), ., VT are basic potentials from y-class (4.3.10).
On the other hand, the formula (4.3.11) can now be written as

@)Yy — 5
Sya V =Sa,
so that V©) = S; log = W, a, which implies that
(Wy),; = V"7, (4.4.22)

where V"—/) = F;'_j VO in accordance with (4.3.13).

4.4.3 The Structure of Stickel Hamiltonians from y-Classes

The separation curve for y-class of Stickel systems for y = (y,...,¥,_1,0) is
of the form

HA +Ho)2+- -+ H =f(x)[§u2+x(x)] = fuP+o), (44.23)



4.4 Stickel Transform for Separable Systems 171

with Hamiltonians

Ho=, ) Al +V r=1...n (4.4.24)

According to our previous considerations, tensors A, and separable potentials V()
can be calculated either directly from the separation curve (4.4.23) with the help
of (4.3.7) and (4.3.13) or by the Stickel transform (4.4.20), (4.4.21) from Beneti
class.

For the sake of the further quantum separability theory, it is important to reveal
in a greater detail the structure of tensors A,. In order to do it in this subsection we
adopt the alternative derivation of Stéckel transform (4.4.20), developed in [30]. Let
us start with the separation curve (4.4.23) with the following notation

A o072 4 B = L Fon? + o), (4.4.25)
with missing k monomials H,, A" 0= [, ae+0=ma - Cp o eH0-me o
m<...<mg<n+k—1,keN,€ie Hy = Hy, = ... = Hy, =0, and the

separation curve for Benenti systems with the same right hand side
H A Hol" 2 o+ Hy = L + o (). (4.4.26)
As for the basic potentials of Benenti class
Vl(n+k)kn—1 +...+ Vn(n+k) = Atk

substituting this relation to (4.4.25) for A+0=1 3" and comparing the
obtained relation with (4.4.26) we get

H =H o+ VOV E v g, o 4 vWHE, r=1,....n,

(4.4.27)
where I':Im1 =...= I:Imk = 0and Vr(m) are appropriate basic potentials. Notice that
fixing the numbers m1, ..., m; we chose in a unique way the numbers y{, ..., y,,

i.e. a y-class.
The inverse formula to the (4.4.27) one, is given by a following determinant form

Hex proy oo+ Prex
Hmlfk pml—l e pml—k

_ H, _ IR _
Hr _ mr—k Pmyp—1 Pmy—k 7 (4428)
lomlfl ,Oml,k

pmk—l e pmk—k
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where p; are Viete polynomials (4.3.18), where py = 1, p, = 0 for r > n and
r < 0. The constants mm; are those for which the corresponding monomials A" 5~
are missing in the left hand side of (4.4.25).

In order to verify the formula (4.4.28), first we select from (4.4.27) k equations
containing I:Iml, R I:Imk

Hpyk = VI3 v ™ Ay,

mi—k 1

vor g 4+ v H

Hmk*k = Vip—k k
The solution with respect to I:Ii, i =1,...,k1is given by a determinant form
~ D;
1 D ’ = 15 ’ na
where
(n+k—1) (n)
le—k le—k
D= e
(n+k—1) (n)
mG—k e mG—k
and
(n+k—1) (n)
) Hml*k le—k le—k
D; = (-1)'t!
(n+k—1) (n)
Hmk*k mG—k e mG—k
with the column (Vyfgtllz_i), el Vn(:;t],i_i))T missing. Substituting this result
to (4.4.27) we get
k—1
-~ H D=V D — v Dy
T D
Hy Vr(ﬁ-lrk_l) T Vr(ﬁ)k
(n+k—1) (n)
Hml*k le—k le—k
(n+k—1) (n)
_ Hmk*k mG—k e mG—k
(n+k—1) (n)
le—k le—k

V(n-‘rk—l) . V(ﬂ)

myr—k
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Hy Pr—1 " Pr—k
Hmlfk pml—l e pml—k

Hmk—k pmkfl e pmkfk

pml—l e pml—k
lomkfl e ,Omk,k

The last step is valid due to the fact that Vi(") = —p;, the form of the recursion
formula for basic potentials (4.3.23) and the properties of determinants. It allows
us to replace the arbitrary potential Vs(n+k_l) in determinants by the @

s+k—i —
— Pyt i one. For each recursive step we have

LLoyetk=D )

m1—k m1—k

I VAUR S DR PA D)

my—k my—k
VY v
B V,,Yf:’,:rifl) _ l;).m.k—k Vl(nJrkfifl) Vrs;i)—k
|t s,

The formula (4.4.28) applies separately to the geodesic and the potential parts.
Moreover it is valid in any local coordinates. So first, let us look at n geodesic

Hamiltonians Tr, r=1,....,n+k, r #my, ..., mg. Introducing the abbreviation

pml—l e pml—k
(p(mlv-'-5mk) = cte . 5 (44.29)

lomkfl e ,Om](,k

one finds

Tr— Pr—1 " Pr—k

Tr = ! Tm[*k pml—l e pml—k
¢ DRI DRI .. ..

ka—k Pmp—1 """ Pmy—k
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Using the known relations for Killing tensors (4.3.19), the convention K, = 0 for
r > n and r < 1 and the property of determinants we get (in a coordinate free form)

Kk pr—ll pr—kI
T = 1pT Ko~k Pmy—1L -+ oy —id le
2 ... P P P w
Kmk_k ,Omk,II U pmkfkl
Krfk Kr te Kr7k+1
— ;pT Kmlfk Kml te Km17k+1 le
DR T ... ¢

Kmk—k Kmk co Kmk—k-‘rl

K, --- KV*k‘i’l Ky &
1 . 1
_ (_1)k pT Kml Km.l._.k-’_l Kfnll.—k Gp

= 4.4.30
2P (4.4.30)
Kmk e Kmk—k-l—l Kmk—k
1 71
=,p° MGp,
27 9
where
K, --- Kr—k+1 Kk
Mrz(—l)k Kml ---Kml*kJrl Km[*k , r:1,...,n~|—k, (4431)
Kmk e Kmk7k+1 Kmkfk
I = I, and K, p,,] in determinant calculations are treated as symbols not

matrices. Again the formula (4.4.30) is valid in any local coordinate frame. Thus,
the structure of tensors A, in Hamiltonians (4.4.25) is as follows

~ 1

= M, G, (4.4.32)
pimy, ..., mg)

where G is a metric tensor (4.3.16) from Benenti class, M, tensors are polyno-
mial functions (4.4.31) of Killing tensors (4.3.17) and function ¢ is determined

by (4.4.29). From the construction of M, tensors, it follows that in the separation
coordinate

9 .
9, (M)l =0, i=1,....n. (4.4.33)
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The structure of A, tensors, revealed above, will be crucial for the quantum separa-
bility theory developed in Sect. 8.2. Additionally, the basic deformed potentials can
be calculated form the general formula

Vick Dot co+ Preik
‘7 _ 1 le,k Pmy—1 " Pmy—k .
(/)(ml,“.,mk) ..
mG*k pmk—l e pMk—k

Let us consider in detail the simplest nontrivial case k = 1, 1 < mj < n, where
Hamiltonians H = T + V and H = T + V from (4.4.23) and (4.4.25) are related
by

- :I:I,, r=1,...,m —1,
H =H-\, r=mi,....n (4.4.34)
and will be expressed by respective elements of Benenti Hamiltonians

H, (4.4.26), (4.3.15). The formula (4.4.28) applies separately to the geodesic
and the potential parts

To=T - "' 1, 1, (4.4.352)
mp—1

G Pr—1

Vo=V — Vi, 1. (4.4.35b)
pml—l

- 1
T, = ;‘pr Mera MrszlKr_l_Kml_lKr’
mi—1

where ¢(m1) = p,,,_; and T, are related with 7, by relation (4.4.34). Now, let

us analyze the basic potentials \7,(’") related with (X)) = A™, m € Z in (4.4.25).
From (4.3.2)—(4.3.23) and (4.4.35a) we have

Vr(m) =68 —1ln-m» m<n+1, m#n+1-—m
and first nontrivial potentials

Vr(l’H*lfml) = Sy — Pr—1 ’ Vr(n+1) ——p, + 'Orflprml

,Oml,I 'Om171
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Again V. are related with \7, by relations (4.4.34), soform < n+ 1, m #
n+1—m

Vr(m)z(sr—l,n—ma r=17-"’m1_1’
‘_/r(m) :8}’,}’17}%7 r=mi,...,n,
then
e Y TR Y
Pmy—1
‘_/r(VH*l*ml):_ Pro o r=my,...,n,
Pmy—1
and
— 1 Pr—1P
VOt = —p M =1 my — 1,
Pmy—1
= (n+1) PrPm
Vi = o, T m=man,
my—1

respectively. The recursion matrix (4.3.1), expressed by vectors of potentials V (™)
takes the form

F=S8"'AS= b yet3=m) yatl=m) -y

We illustrate the general case k > 1 by one simple example.

Example 4.16 Consider the case of y = (4,1,0),1ie.n = 3, k = 2, m; =
2, ny = 3 and thus the separation curve in the form

H\ 4+ Hoo+ Hy = S fOp + o (h).
The related Hamiltonians from Beneti class are given by the separation curve
HIM + Hoh+ Hy = ) fOpu? + o ().

According to (4.4.28) and (4.4.29)

1
=‘p1 = pt — P2,
P2 P1
) 1 010 1
Hy =H = 0p; 1=, H,
PT — P2
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H> p3 p2

_ . 1 _

H2=H4=(p 0 p 1 =H2+P32 ,0102H1’
H1,02,01 P71 02
H30,03

_ | P1P

H3=H5=(p 0 p 1 |=H3— 213 Hi.
Hi py py Pr=r2

Observe that Hamiltonians H; can be alternatively constructed according to (4.4.21)
and (4.4.5)

7 w1
H=W, H
where
W, = V(4) V(l) V(O) =| pip2—p310
V(4) V“) V(‘” pipz 01

According to (4.4.30), geodesic parts of Hamiltonians H; are T; = ;épTM, Gp,
where

I 00
Mi=M=|K, I 0|=1,
K3z Ky I

0 K3 K»
M2=M4= K, I O =K§—2K2K3,
Kz Ky 1
0 0 K3
M3y=Ms=|K, I 0 |=K3Kz—Kj.
Kz Ky 1

Metric tensor G and Killing tensors K; are from the Benenti class. Separable
potentials are constructed according to formulas

_ - 1
Vi=Vi= , Vi,
PT — P2
Vz—V4—V+'03_'01'02V1,
:01 02
‘_/32‘75:‘/3— P1P3 V.

P%—Pz
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The simplest potentials are as follows

vl =(0,1,07,
T
‘7(2) — 1 P3—P1P2 __ P1P3
03—y’ pi—py T pI-py )

X T
“/(3)= _ Pl PI=P1P3  prpP3
0I=p2 pi—py T pi-p2 )

V& =(1,0,007,

T
v — 201p2=p1=P3  201P2P3—P3—P3 P1PI—P3P3
PR=pr T P, piem

and the recursion matrix takes the form

2p1p2—P}—P3 1 0

p%fpz3 , pI—p2

_ — = -~ 2p1p203—P3—p -

F=S'AS=W®, v® vy P3PS P3P

PT—P2 PT—P2

2 2

P1P3=PP3  _ P1P3 0

) )

4.4.4 Stickel Transform of Superintegrable Systems

In this subsection we perform Stidckel transforms of systems considered in
Sect.4.3.3 that preserve maximal superintegrability. According to the results of
Sect.4.1.3, the Hamiltonian /; of the considered system can only depend on one
parameter 41 = hi(x, ). It is then natural to choose one of the ¢y in (4.3.25) as
this parameter.

Consider thus a maximally superintegrable system (h1, ..., ho,—1) with the first
n commuting Hamiltonians 41, .. ., h, defined by a separation curve

Zasxs+h1)\"*1+hzx"*2+...+hn=é)d" 2 m=0,...,n+1,

sel

where the index set / was found in Sect. 4.3.3 and where the higher integrals A,
are constructed as usual through %, = {h,4+1, P}. Let us now choose one of the
parameters o, with s € I, say ay, (we will suppose that k > n or k < 0 otherwise
the corresponding potential is trivial, as explained earlier) and define the functions
Hy,r=1,...,2n — 1, through

hy =H +a VP, r=1,...,2n - 1.
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We now perform the Stickel transform on this system (h1, ..., hy,—1) with
respect to the chosen parameter ;. Thus, we first solve the relation 7| = & i.e.
Hi + oy Vl(k) = a with respect to oy which yields

~ 1 1
h =ay=— H +a (4.4.36)
(k) (k)
4 Vi
and then replace oy with hi in all the remaining Hamiltonians:
(k) (k)
~ V, V
h, = H, — ’(k)H1+& ’(k), r=2,...,2n—1 (4.4.37)
Vi Vi
We obtain in this way a new superintegrable system (41, . .., h2,_1) where the first

n commuting Hamiltonians &, are defined by the following separation curve

Ak Z ah" + @A oA by = A m=0,..n+1
sel, s#k
(4.4.38)

since on the level of the separation relations our Stickel transform replaces oy
with 21 and & with &@. For k > n the system (4.4.38) is no longer in the Benenti
class (4.3.25). On the other hand, for k < 0, the separation curve (4.4.38) attains
after the consecutive point transformation given by

A= 1/ u— —Azu,
the form

R S T e Y e N TTE TRy T
sel, s#k

Thus, for k = —1, it again attains the form (4.3.25), i.e. belongs to the Benenti
class, while for k < —1 we deal with particular y-class. Notice that the transforma-
tion (4.4.4) does not change the separation web of the system.

Denoting

hy=H +aV,, r=1,....2n—1

(where h, forr = 1, ..., n are defined by (4.4.37) while h, forr = n+1, ..., 2n—1
are obtained through A4, = {h,+1, P}) we find from (4.4.37) that

y®

V, =V, —
r r Vl(k)

Vi, r=2,...,2n—1
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and from (4.4.36) it also follows that the geodesic part Ty of /11 has the form

f‘lzéijpip~ G=-— ! G
7 V(k)
1

It means that the metric G is a conformal deformation of either a flat or a constant
curvature metric G.

It is interesting to find the cases of superintegrable systems when the metric G is
actually flat or of constant curvature as well. The following results hold:

(i) ForO <m <n—1landk € {-m,...,—1,n,...,2n —m — 1} the metric
Gin (444)isflatfork € {—[m/2],...,—1,n,....n —1+[(n —m)/2]},
where [-] denotes the integer part. Moreover, form = 1 and k = —1 G is of
constant curvature. Otherwise G is conformally flat.

(ii) Form = nandk € {—(n —2), ..., —1,n} the metric G in (4.4.4) is flat for
k e {—[n/2],...,—1}. Otherwise Gis conformally flat.

(iti) Form =n+ landk € {—(n — 1), ..., —1} the metric G in (4.4.4) is flat for
ke{—[(n+1)/2],...,—1}. Otherwise Gis conformally flat.

For the proof we send the reader to [40].

1t Y(V) = 0 then Y(1/V{*) = 0 and due to (4.4.4) also LyG = 0 so that
{h1, P} = 0 as well and the same P as in the “non-tilde”-case (i.e. before the
Stéickel transform) can be used as an alternative definition of extra Hamiltonians
through A4, = {h,4+1, P}, r = 1,...,n — 1. This is, however, no longer true if
Y(Vl(k)) = ¢ # 0 and it happens only in the case whenm < nandk =2n—m — 1.

In consequence, if Y (Vl(k)) = 0 then both sets of extra integrals of motion:
hytr = {hr+1,P} r=1,...,n—1
and
hgr = hnirlygp@-r=1.....n—1

coincjde. Indeed, on one hand, according to (4.4.37) and due to the fact
that{h, P} = 0 we have

V(k) )
+r = {hr1, P} = 11— "Hi+a "t P
Vl r r r V(k) V(k)
Hl (k) (k)
= (H PV o v e ]+ e {v%, pl

1

= (Hy1 P+ [V, P
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On the other hand, due to

T k
ks = husrlocin@ = Uit Pllociy@ = (Hrans P+ [V, P

a=hi (@
which yields the same result.

Thus, if Y (Vl(k)) = 0, the diagram below commutes

P .
(hla'-'ahn) - (hla---,th—l) Wlthhn+r={hr+lap}
| |

Stickel transform Stickel transform

(hrooba) = (B oy ) with gy = (g, P

Example 4.17 Let us apply the relations (4.4.36)—(4.4.37) to perform the Stickel
transform on the system from Example 4.15. To keep the formulas simple, we
assume that all the o in (4.3.30) are zero except the transformation parameter o.
Thus, we consider again the system given by the separation curve

X + A% + ok + hy = Jap?,

with k = —1, 3 or 4, respectively. Applying the Stickel transform to the resulting
Hamiltonians from Example 4.15 we obtain a maximally superintegrable system
with the separation curve of the form:

Ak 4+ @A + hok + by = 2au?, (4.4.39)

Again we perform our calculations in non-orthogonal flat coordinates (x, y, z, px,
Dy, Pz). Explicitly, we obtain for k = —1

zzpf + izszpy — i&z2

Y — YD} = 3Xpapy — y2pyp: + X

hy = §2%p} — (}txz +y) PxPy — yZPxPz — 4XZPyPz + 4@ (xz +4y)

ha =30, (4.4.40)
hs = —pxpy +a

fork =3

h=—1ppy =y p;+@)

1.2 | 1x*—4y 1.2 1 13x2—4y 2 | 1~x+4y
hy =P+ 4" 7 PxPy = o¥Py — 22iPyPzt g7 T PI 0
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_ 1z 1 1.2.2 1x34+4xy+22 2 1=~¢
h3 = 4 % DxPy — 22PxDz + g2 py — 4prypz + g X D; — 49
S| 2 11,2, ~1
hy = — *PxPy — pr_zxpz +O‘x
~ 1.2
hs =, r;
and fork =4
= 1 11 2, ~ 1
hy=— 3 ,PxPy = 32pz+a 3,
Y—yX Y= gX Y= gX
ro_ 1.2 12x —8xy— 2 2 1x —12xy 272 1
hy=3p% = 5ypy — 3, PiTs 3, PxPy = 2%Pyp:
Y yX Y yX
xy+}1x3+}122
y— 4)‘2
- 1.2 .2 1 3x*48x2y+4xz?+16y2 2 | 1 xz2 1 1
hy = g2°py — 3, s ) Ypity ,PxPy = 22PxPz — 4XZPy Pz
—4* Y yX
lg *7 4.4.41
+ 40 73 (4.4.41)
y74x2
7 1.2 1 X 2 X ~ X
ha=—=spy+o Sapit 5 PPy =@ 3
4 Y=g 3%
~ 1.2
hs =, p;

According to (i) of that subsection the metrics of hy are of constant curvature, flat
and conformally flat, respectively.



Chapter 5 )
Classical Separability Theory Shethie

As was analysed in the previous chapter, once we find separation coordinates for a
Liouville integrable system, we can integrate the system by quadratures through
an appropriate separation relations. The fundamental problem in the Hamilton—
Jacobi method is the systematic construction of transformation from some “natural”
coordinates to separation coordinates. As was demonstrated in the previous chapter,
such coordinates like Cartesian, spherical or cylindrical are separation coordinates
only in very special cases. In general, separation coordinates are much less obvious
and completely unpredictable. So the question about the existence of a systematic
method for the construction of separation coordinates is very important. Indeed,
for many decades of development of the separability theory, the method did not
exist. Only recently, at the end of the twentieth century, after more than 100 years
of efforts, a few different constructive methods were suggested. Obviously, the
knowledge of all constants of motion for a given Liouville integrable system is not
enough. Some extra information is required.

The first constructive theory of separated coordinates for Hamiltonian systems
was made by Sklyanin [235]. He adopted the method of the Soliton theory, i.e. the
Lax representation and the so called r-matrix approach, to systematic derivation
of separation coordinates. In that theory involutive functions appear as coefficients
of the characteristic equation (spectral curve) of Lax matrix. The method was
successfully applied to the separation of variables for many integrable systems
[107, 108, 175, 233-235, 272, 273]. The detailed description of r-matrix approach
to separability theory and related mathematical tools the reader can find in the book
[6], so we skip it here.

Then, a modern geometric theory of separability on bi-Poisson manifolds
[23, 26-28, 112-115, 189], and bi-presymplectic manifolds [29, 32, 46] was con-
structed. In that approach we require from symmetries to constitute appropriate
bi-Hamiltonian chains or from conserved 1-forms to constitute appropriate bi-
presymplectic chains, both on an extended phase space. The geometric approach
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for the construction of separation coordinates is at least as powerful as the »-matrix
approach and as the less known to readers, will be presented with all details in the
following sections.

5.1 Bi-Hamiltonian Separability Theory

Presented here the modern geometric separability theory relies on the fact that any
Liouville integrable and separable system, with separation relations generated by a
separation curve, possesses two different Hamiltonian representations in any local
coordinates, or can be extended to such representations. Thus, for a given Liouville
integrable system its bi-Hamiltonian representation is sufficient for the construction
of a transformation from original coordinates to separation coordinates. During that
process we will reduce the second Poisson bi-vector onto the symplectic foliation
of the first one. As in the considered case, the Dirac distribution is tangent to the
foliation (see the results of Sect.3.4), we have to find an appropriate transversal
distribution Z along which the reduction will be performed. This is the only non
algorithmic element of the construction.

5.1.1 Bi-Hamiltonian Liouville Integrable Systems

The idea of bi-Hamiltonian systems was introduced by Magri [186] in the context
of the so called Soliton systems, i.e. integrable nonlinear PDE’s (see [23] for review
of bi-Hamiltonian field systems). Then it was transferred to the theory of finite
dimensional systems [4] (see also [23] and the literature quoted there).

The first step in a geometric separability theory is to find the bi-Hamiltonian
representation of a given Liouville integrable system. This is closely related to the
notion of Poisson pencils of a particular type and their Casimirs. Let us consider
a manifold M and two Poisson tensors Iy and IT;. A linear combination IT, =
IT; — ATlp (A € R) is called a Poisson pencil if the operator I, is Poissonian for
any value of the parameter A. In this case we say that [Ty and I1; are compatible.
A pair of Poisson bi-vectors Iy and IT; is compatible if and only if one of the
following equivalent conditions is satisfied

1.

[[p, IT1]s =0, (5.1.1)

({{fv g}nov h}l‘h + {{fs g}l_[()s h}l'll) + c.p.= Os (512)
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(X5, Yol + Yy, Xgl = Xf.0)n, + Yirigin,, Xy =TModf, Yy =TLdf.
(5.1.3)

In fact, each of these conditions follows from the application of the corresponding
conditions (3.2.1), (3.2.6), (3.2.24) for a single Poisson structure to a Poisson pencil.
For example we have

0 = [I1;, ;15 = [Ty, [Ty ]s — 2A[TTp, IT1]s + A*[TI, Tp]s = [T, IT1]s = 0.

Given a Poisson pencil IT; = IT; —AIlp we can often construct a sequence of vector
fields X; on M that have a twofold Hamiltonian form (the so-called bi-Hamiltonian
chain)

X; = I1dh; = Modh;4+1 (5.1.4)

where h; : M — R are called the Hamiltonians of the chain (5.1.4) and where i is
a discrete index. This sequence of vector fields may or may not truncate (depending
on the existence of Casimir functions).

Let us consider a bi-Poisson manifold (M, Iy, IT;) of dmM = m = 2n +r
where Ilp, I1; is a pair of compatible Poisson tensors of rank 2n. Moreover we
assume that the Poisson pencil IT, admits 7, polynomial with respect to the pencil
parameter A, Casimir functions of the form

nj
RO Gy =Y ami, j=1...r (5.1.5)
i=0

such thatny 4+ ... 4+ n, = n and hgj ) are functionally independent. The collection
of n bi-Hamiltonian vector fields

Modhy’ =0
M dh' D) =0 : (5.1.6)
Hodhf{;) - Xf/J) = 1'[1dh%)71
0= Mydhy)

where j = 1,...,r, is called the Gel’fand—Zakharevich (GZ) system of pure
Kronecker type (see [123, 124, 216, 217] and the references quoted therein). Notice
that each chain starts from a Casimir of I1p and terminates with a Casimir of IT;. It
is the Liouville integrable system as all hf] ) are functionally independent from the
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definition and moreover pairwise commute with respect to both Poisson structures

xPn®y = o@n®, dn?y = My @h®, dh?)) = 0. (5.1.7)
In fact, as

Modh®, dn'?y = M1@n®, dh'”)) = =11, @h”,, dn®)

— _HO(dh,(])la h(k)l) — HO(dh(k)l, h(])l)

so after an appropriate number of iterations we get either l'[o(dh(()k), dhgf )) =0or
Modh®, dn{’) =0

Below we illustrate our considerations with a few instructive examples. First
three examples are bi-Hamiltonian chains written in some canonical coordinates.

Example 5.1 The bi-Hamiltonian extension of the Henon—Heiles system.
Let us consider the integrable case of the Henon—Heiles system considered in
previous examples with an extra parameter ¢

Xy ==3x" =3y e, yu=—xy. (5.1.8)

In the Hamiltonian representation the system (5.1.8) belongs to one-Casimir bi-
Hamiltonian chain on a 5-dimensional extended phase space parametrized by

(x,y, px, Py, €)

IModhg =0

IModhy = X1 = Iidho

IModhy, = Xo = I11dh;
0 =TIlidha,

(5.1.9)

where
ho = c,
hi = ypr+ 5Py + pxy° +x° —cx,
hy = Yypepy — bap2 + byt + 1x%? — Loy’

and both Poisson structures are

0 0100 0 0 x 1y ps
0 0010 0 0 1y 0 p
Mo=|-1 0000]|, Mi=| —x =3y 0 1py—hiy
0-1000 3y 0 =Jpy 0 —hy,

0 0000 —px —py hix hiy O
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One can check that indeed [ITg, IT;]s = 0. Notice that the last column of I1; is built
of Hamiltonian vector field X, which represents Hamiltonian dynamics (5.1.8).
The chain (5.1.9) represents the Casimir h(A) = cA? + hiA + hy of the Poisson
pencil [Ty = Iy — ATlp: ITpdh(X) = 0.

Example 5.2 The bi-Hamiltonian extension of the Kepler problem in the plane.
Let us consider the classical problem of a particle in the plane under the influence

of the Kepler potential (Example 4.5) and an additional homogeneous field force.
The Hamiltonian function reads

W= H _ 1.2 1.2 o _
1= 1—cy_2px+2py—\/x2+y2—cy, o = const.

There is a second independent integral of the motion

ay
h2:—H4—icxzz—éyp)%-i-éxpxpy—i-é\/ 2 z_icxz,
X y

which together with hg = ¢ allows us to construct a bi-Hamiltonian chain (5.1.9)
with the second Poisson structure in the form

0 0 0 Jx px
0 0 éx y Dy
0 _éx 0 _épx _hl,x

_éx -y él’x 0 _hl,y

—Px — Dy hl,x hl,y 0

I, =

Example 5.3 Two-Casimir bi-Hamiltonian chains. Consider the two-parameter
Lagrangian system

L= éx)ct2 + ;)cyt2 —x2 = éyz +c1(x + Allx_lyz) +ex L (5.1.10)
In the Hamiltonian representation, the system generated by (5.1.10) belongs to

the two-Casimir bi-Hamiltonian chain on a 6-dimensional extended phase space
parametrized by (x, y, px, py, c1, ¢2)

Modh\” =0 Modh{? =0
Modh!" = X = manl’  Meah® = xV = m,dn? (5.1.11)
0 = Man" 0 =Mdn”
where
n = e,

WY =L T 4 ) e ) — e
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h(()Z) = (2,
2 1.2 .2 1 —-1.2 2 4 —-1.4 —-1.2
WY = =471y p2 + dypepy — X VP — eyt eyt 4 e T

and both Poisson structures are

0 01000
0 00100
~1 00000
Mo=1 0_10000]
0 00000
0 00000
0 0 x by 8,mY 8,0
0 0 Ly 0 a,h" Y
m, = _1x _éy ? épy _axhgi _Bth;
—2Y 0 —opy O —=dyhy —dyhy
—ap Y =9, k" 9:h D 9,nD 0 0
~0p, 1 —8, 0 9.k 9yhP 0 0

Notice that two last columns of IT; are built of Hamiltonian vector fields X 51) and
X{Z). The chains (5.1.11) represent two Casimirs D) = cl)»—i-hgl) and h® (1) =
cax + h'? of the Poisson pencil T, = Ty — ATlp: dh®@ (1) =0, i = 1,2.

The last example is a bi-Hamiltonian chain written in a non-canonical represen-
tation.

Example 5.4 The Euler top, considered in Example 3.7, has the following bi-
Hamiltonian representation

1 2 1,2 1 2

1 2 1 2 1 2
h = L4107 + ,a0w5 + ,a303,

0 —w3 w 0 azws —axwy
o= w3 0 —wi |, Ih=|-a3w3 0 aw |,
—wy w; O arwy; —ajwp 0
IModhg =0

IMModhy = X =I11dhg
0=1TI11dh;
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where

(a3 — ap)wrw3 1
X=| (a1 —as3)oiw3z |, a=1I".

(a2 —ap)w w2

Although the presented examples show the existence of bi-Hamiltonian rep-
resentation of some Liouville integrable systems, nevertheless in order to make
the bi-Hamiltonian separability theory relevant, such a representation has to be a
common feature inside integrable systems. Fortunately, it is the case, i.e. any Stickel
system with separation relations of the general form

n
STH O i)Y =y ). v 8, eN, i=1...n (5112
j=1

has an appropriate extension to the bi-Hamiltonian chains of Gel’fand—Zakharevich
type (5.1.6) [31]. In order to construct such an extension, let us rearrange the l.h.s.
of (5.1.12) collecting terms and renumerating Hamiltonians as follows:

Y OB upHPQ) =y, 05 ), i=1.m, (5.1.13)
k=1

where

ng
HOW =Y 1O ni++n, =n

i=1

BX (A, W;) are respective monomials of it arguments and let impose the normaliza-
tion 7 (A!, w;) = 1. The matrix § is uniquely defined by r functions Bk = Bk, ),
k=1,...,r, and the partition (n1, ..., n,) of n. Note that in our normalization we
have 8" = 1.

All Hamiltonian systems Hi(k) are defined on 2n-dimensional phase space
parametrized by their separation coordinates (X, ). Now, let us extend the phase
space by r extra coordinates (ci,...,c,) to new, (2n + r)-dimensional space.
Moreover, let us extend Hamiltonians Hl.(k) (A, 1) to a new Hamiltonians by adding
terms linear in ¢;:

,
hO0 w,0)=HO0,w+ > FE" 0, wen, (5.1.14)

m=1
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which fulfills the following, new separation relations

r

Y OB O uph® 0N =y ), i=1.n, (5.1.15)
k=1
nk
KOGy = hPAT o, =, (5.1.16)
i=0
where hg)k) = ck. It means that Fi(k’r) can be treated as additional potentials

generated by extra terms B, w;) ()™ ¢y in separation relations (5.1.15). So, the

(k.m)

potentials F; are solutions of the set of linear algebraic equations

.

B )+ BON up FEM ) =0, m=1,....r, i=1,....n,
k=1

(5.1.17)

where
nk
F(k’m)()\.) — Z F;k,m))\’nk—/’ n+---+n, =n.
Jj=1

Such extended Hamiltonian functions form bi-Hamiltonian chains (5.1.6) ona (2n+
r)-dimensional extended phase space, where

Iy = 0 , (5.1.18a)

m=|" (Xgl))T . (5.1.18b)
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The proof that Poisson tensors [Ty and I1; form a Poisson pencil I, = IT; — ATlg
with A0 (1) (5.1.16) as Casimirs

,dh® (1) = 0, k=1,....r (5.1.18c)

is laborious and technical so we send the interested reader to the original paper [31].
In particular, a lift to bi-Hamiltonian chains can be done for the class (4.3.10) of
separation relations considered in Sect. 4.3.

To illustrate the method, let us consider such a lift for particular classes of Stickel
systems. The simplest one is the Benenti class where r = 1 = k = m =

1, B (A, u;) = 1, hence Egs. (5.1.17) for Fl.(l’l) = F; reduce to
O+ FI Y .+ F,=0, i=1,....n
U
Fi=-v",
where V™ is given by (4.3.23). Thus,
hi G ©) = Hi(h, ) — VP e = Hi(h, 1) + p; (e

and we have one bi-Hamiltonian chain (5.1.6) in a (2n + 1)-dimensional extended
phase space. It explains, for example, the appropriate extension of the Henon—Heiles
system from Example 5.1, where the transformation to Cartesian coordinates is
given in Example 4.11. The bi-Hamiltonian representation of systems from Benenti
class was first constructed in [156].

Another class of separation relations for which we construct the extension
(5.1.14) is given by a separation curve (4.4.23) of the form

HA" + .o+ Hy V™ 4 By A e Hy = ) f R+ o (L),
(5.1.19)

or equivalently by (4.4.25)withk = 1,1 <m| = n1+1 < n, discussed in Sect. 4.3.
Adopting the notation (5.1.13), the separation curve (5.1.19) takes the form

att=m g om=t g B - HP AT L+ HD) = L fopP o). nitny =n,

ny

where
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thus A1 (1) = A"1="1 and B2(1) = 1. So, the potentials Fl.(k’l) are solutions of the
set of linear algebraic equations being n copies of

antt=mgm o pEDam=t oy By 4 (Rt FRD) =0,

while the potentials Fl.(k’z) are solutions of the set of linear algebraic equations being
n copies of

)\Vl“rl*nl (Fl(l’z))un171 4.+ Frgll,Z)) + ()an + F1(2,2))\n2,1 T Frg’z)) _o.
Thus
1,1 1.2
(Fi2 11) — _jptD (FE2 22) g _ g
F'= ’ F@

and according to (4.4.3) and (4.4.3)

Fr(l,l)zpr_ prilan»l’ r:l,...,l’ll,
P
Fr(z’l) = prur — pn1+r10n1+1 = 1’ ..., n,
ni

Fr(l,2) — pr—l’ r=1,...,n1, (5.1.20)

Pny
FD = Pmrr

Pny

Extended Hamiltonians
1 1 1,1 1,2 .
h O e 0) = HGuw) + FV 00 e + FP 0L er, =1,y
2 2 2,1 2,2 .
20,y e) = HP 0, )+ EXV 0L wer + F220, wer, i=1,..., 0,

belong to two bi-Hamiltonian chains (5.1.6) in a (2n + 2)-dimensional extended
phase space.

5.1.2 Reduction of Poisson Pencils onto Symplectic Leaves

The second step of our geometric separability theory is as follows. The neces-
sary condition for separability of Hamiltonian systems generated by functions
hf/ ) (5.1.5) is a Poisson projection of the pencil IT, onto a symplectic foliation
S of Ilp, that is a 2n-dimensional submanifold defined by fixed values of Casimir
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functions of I : h(()l) =Clyen., h(()r) = ¢,. Thus, every leave S, is a submanifold
of a codimension r in M. The projection is done through the particular realization

of the reduction schema considered in Sect.3.4.1. As our constraints ¢; = h(()k) =
ck, k=1,...,r are Casimirs of Il its reduction is trivial. From the property that

all Casimirs ¢; of Ilp are in involution with respect to I : {dh(()k), dh(()j )}1-[1 =

I (dhf)k), dhf)j )) = 0 we have to reduce I1; according to the tangent case (Dirac
reduction is useless in that case). Actually, we are looking for an appropriate
distribution Z, transversal to the foliation S that the deformation of IT; in the form

,
Mp=T; - Y XV rze, X =10an® = many, (5.1.21)
k=1

fulfills the following conditions:

1. the image of I1p is tangent to the foliation S,

2. I1p is Poisson,

3. Ilp is compatible with Iy,

4. all constants of motion are in involution with respect to I1p :

(dh®. an' Py, = Np@h®, an?y = o (5.1.22)

The first condition means that Im(I1p) C TS, i.e. that for every 1-form o and
k=1,...,r,

(ang. o) =0

and it follows directly from the fact that h(()k) are Casimirs of I1p (3.4.12). The
second condition is fulfilled if Z is an integrable distribution ([Z,-, Zjl= 0) and
Lz, TIp = 0 or equivalently fulfills relation (3.4.1) for i = 1,...,r. For the
compatibility of I1p and I1p we have the condition

.
0 =[Mp, Mols = [Ty, Tols — 3 [X* A Z, o]
k=1

.
- (—LX@ MoAZi+XP ALy, no) , (5.1.23)
k=1

where the last equality follows from the properties of Schouten—Nijenhuis
bracket (3.2.33). As LX(k) ITp = 0(3.2.2), the strong solution of (5.1.23) is
1

LzTo=0, k=1,...r (5.1.24)
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Finally, the involutivity (5.1.22) follows from the form of I1p (5.1.21)
. . r .
Mp@h, dnf) = n@n, an) + 3 (an”, x{ A zyan?)
k=1

r . .
= ¥ (X P - xPazin?)
k=1

according to (5.1.7). Notice, that if the compatibility condition (5.1.24) is fulfilled,
then the condition (3.4.1) takes the form

r r
Lz =) [Ze X)IANZi =) Y AZi Yig = Tod(Zi(h").  (5.1.25)
i=l1 i=1

Assume that conditions 1—4 are fulfilled. Then, bi-Hamiltonian chains on M take
the form

,
Mpdh” = Nodh{}), — > Zi(dh{”)Modh{"

k=1

(5.1.26)
,
= Modh}) = > F/medn,
k=1
where Fl.(j - Zi (dhl(j )) and can be restricted to any leave S, of Iy

midh? = mwodh)y = > FImodn, (5.1.27)

k=1
where

w1 =Ips,, mo=TIgs,

are Poisson restrictions of I1p and ITy to S; and h(j ) are functions on S with
constant values of ¢; coordinates. Obviously, from the construction, 7w and | are
compatible Poisson tensors on S, and 7 is nondegenerate. Hence, wo = 7, ~1
symplectic two-form on S.. Moreover, on S, we have

wo@h?, dh®y =0, w1@h?,dn) =0
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The involutivity with respect to 7 is obvious, while the involutivity with respect
to 71 follows from (5.1.22). Relations (5.1.27) are called the quasi-bi-Hamiltonian
representation of the Liouville integrable system [60, 203].

Application of the presented reduction procedure to bi-Hamiltonian chains for
Hamiltonians (5.1.14), which are written directly in separation coordinates (1, W, €)

is a trivial task. With a natural choice of transversal distribution Z by Z; = a?:,-’
i =1,...,r,oneach symplectic leaf of [Ty (5.1.18a),1.e. ¢c; = const,i =1, ... o7
Hamiltonians (5.1.14) form a quasi-bi-Hamiltonian chains (5.1.27) with Fl.(] )

being solutions of (5.1.17) and with two nondegenerate Poisson structures

o — 0 I, S 0 A,
0= —In 0 s 1= —An 0 3
being reductions of (5.1.18). Notice that in particular, for ¢; = 0,7 = 1,...,r,

Hamiltonians (5.1.13) form the same quasi-bi-Hamiltonian chains on a bi-Poisson
manifold (M, g, 71).

5.1.3 Bi-Simplectic Manifolds

Let us consider a bi-Poisson manifold (S, wg, w1), where g is invertible and
compatible with 7 1. Then consider a following (1, 1)-tensor field

N:nlnal = mTwo, woznal, (5.1.28)
called a recursion operator with the dual
N*=NT = wom;. (5.1.29)
Notice that
Nmog=mq, N*wy = wom 1w := 1. (5.1.30)
First, we show that from the compatibility of m¢ and m; follows that the
Nijenhuis torsion 7' (N) of tensor N vanishes on the image of . We recall that
the Nijenhuis torsion of a (1, 1)-tensor N on a manifold S is the (1, 2)-tensor T (N),
such that for all vector fields v € T'S

T(N)v = LyyN — NLyN. (5.1.31)

The alternative definition is given by the formula

T(N)(v,w) =[Nv, Nw] — N[Nv, w] — N[v, Nw] + Nz[v, w]. (5.1.32)
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Indeed

T(N)(v,w) = Lyy(Nw) — NLyyw — NLy,(Nw) + N’Lyw
= (LnyN)w — N(LyN)w = (LyyN — NLy,N)w.
In order to show the vanishing of T (N) it is enough to show that 7' (N) vanishes

on any pair of vectors (wodf, modh) where f, h € F(S). In fact, using the notation
from (5.1.3)

T(N)(modf, modh) =[Nmodf, Nmodh] — N[Nmodf, modh] — Nmodf, Nmodh]
+ N2 [rodf, wodh]
=[Y7, Y4] — N[Ys, Xp] — N[X 7, Y41+ N*[X 7, X4]

2
=Y(rnye, — NX(fin)e, + Yi£in)e,) + N7 X{ £y s

which vanishes since NX, = Y,, g € F(S). Bi-Poisson manifolds (S, 7o, 1)
with the tensor 7 invertible and the tensor N = 717 Uof vanishing torsion, are
also called w N manifolds and were studied for example in [173] and [187].

Second, we show that from the compatibility of 7w and 7| follows that the
second two-form w1 (5.1.30) is closed on S. First observe that as 779 and wg = nal
are nondegenerate on S, so any vector field v € TS can be represented by
v = moy for some y € T*S and any y can be represented by y = wov for
some v € TS. Moreover, from relations (3.2.21) follows that for closed wg we
have L,wo = d(wov) = dy and for Poisson pencil

0= Lyn,ymy+m(dy)ms
12

0= Ly ymo~+ Lrgym1 +m1(dy)mo+ woldy)m
= Lyywyn1yT0 + Ly +mw1(dy)mwo + mo(dy)my
= —mod(wom1y)mo + Ly +mw1(dy)mo + moldy)my.

Multiplying from left and right by wg we get

0= —d(wom1y) + wo(Lym1)wo + wom1(dy) + (dy)m
= —d(wom1wov) + wo(Ly71)wo + o1 Lywo + (Lywo)T 1w

= —d(wom 1wov) + Ly (wor1wp)

and hence, according to (3.2.21), w1 = wom 1wy is closed.
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In our further considerations we will assume that the recursion operator N has, at
every point of S, n distinct and different from zero double eigenvalues A1, ..., Ay,
functionally independent as a functions of oryginal variables. Such an operator will
be called a regular recursion operator. In such a generic case the second closed
two-form w1 is symplectic.

Concluding, if S is a bi-Poisson manifold (S, ¢, 1) where ¢ is invertible and
compatible with 7, and where N = 77 lisa regular recursion operator, then
S is simultaneously a bi-symplectic manifold (S, wg, w1), where both symplectic
forms are given by

wo = 7161, W] = WO 1w :7{617117161.

Now we are prepared to introduce the notion of compatibility for closed forms,
at least in the case when one of them is symplectic. The compatibility of two
presymplectic forms will be defined in the next subsection. Let S be a manifold
of even dimension with a symplectic-implectic pair (wo, 7o = g D), ie a
nondegenerate case of a dual pair (3.2.25). We say that a closed two-form w; is
d-compatible with a symplectic form wy if wow1m( is a Poisson tensor. We say
that a Poisson tensor 71 is d-compatible with an implectic tensor m if wom 1w is
closed.

What is important, in the case considered, i.e. when 7 is nondegenerate, the
notions of d-compatibility and compatibility of Poisson tensors are equivalent.
Actually, we proved that if mo and 7| are compatible then are d-compatible. As
the presented proof works in both directions, so in this case, from d-compatibility
follows also compatibility of 7o and 1.

Let (S, w) be a symplectic manifold, with dim § = 2n. A Lagrangian distribution
on S is a n-dimensional distribution D such that w(x1, xp) = 0 for all vector fields
X1, X2 € D. So, for the quasi-bi-Hamiltonian system (5.1.27) and closed two-forms

o, w1 (5.1.3), using the relation (5.1.2) and notation le/) = nodhgj), we have

a)o(xl(j), Xl(k)) = <a)oxl(.j), Xl(k)> = (a)onodhgj), nodhl(k)>
= (an, 7odn) = zotan?, an® =,
and
a)l(xlw, xl(k)) = <w1x§j), xl(k)> = <won1woxfj), xl(k)>

= (wom1dn?, %) = — (wox?, 7141

= —(an, 7m1an") = 71 @n?, an =0.
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Hence, in the generic case, the n-dimensional integrable distribution
D = Spix” =mgdhPy C TS

is bi-Lagrangian as it is Lagrangian with respect to two different symplectic forms.
Now, using relations (5.1.28)—(5.1.30), quasi-bi-Hamiltonian chains (5.1.27) are
equivalent to quasi-bi-symplectic chains

o1x” = wox?, — Z FPwxV. (5.1.33)

There are also two other equivalent representations

Nx =x) — Z FUPx® (5.1.34)
k=1
and
r .
N*dn? = an?) - > FIan. (5.1.35)
k=1
Renumbering Hamiltonian functions (h(ll), e, h,([r)) = (h1, ..., h,) and respective

vector fields (x(l) .. an)) = (X1, ..., Xy) relations (5.1.34) and (5.1.35) can be
written in compact forms

n
Nxi =Y Fyxj, i=1,....n, (5.1.36)
and
n
N*dh,-:ZFijdhj, i=1,...,n, (5.1.37)
j=1

where matrix F is called a control matrix [113]. Relation (5.1.36) says that bi-
Lagrangian distribution (5.1.3) is invariant with respect to N and relation (5.1.37)
says that the subspace spanned by (dhi, ..., dh,) is invariant with respect to N*.
In particular, forc; = 0,i = 1, ..., r, the subspace spanned by (dH1, ...,dH,) is
also invariant with respect to N*

n
N*dH; =Y FijdH;, i=1,....n.
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5.1.4 Stickel Separability on Bi-Symplectic Manifolds

A set of local coordinates (£, ¢) on the bi-symplectic manifold (wN manifold)
is called a set of Darboux-Nijenhuis (DN) coordinates if they are canonical with
respect to a symplectic form wy

n
wo =Y di; AdE'
i=1
and diagonalize the recursion operator
n
N =3 o) (00 ©de +0, ®de;),
i=1
thus
n
=) Ao Adg,.
i=1

The existence of DN coordinates is a consequence of vanishing of the Nijen-
huis torsion T (N) of operator N [123, 247, 250]. The double eigenvalues Al
follow from the implectic-symplectic factorization of N (5.1.28). The coordinates
(Al, cooy Ay, ... 4y), Where p; are momenta canonically conjugate to positions
A, are called special DN coordinates and will be identified with separation
coordinates. It means that in the (A, n) coordinates

po—( O In (0 A o (2O

= \-n,0) "7 \=a,0) T 70 A,
where A, = diag(\i, ..., A,), and their differentials span the T* A which is an
eigenspace of N* (the adjoint of N), as

N*dx; = AidA;, N*dﬂi =Aidp;,, i=1,...,n.

A function f on wN manifold is said to be a Stdckel function if its differential is
an eigenfunction of N*

N*df = Adf.

The immediate consequence of such a definition is that f = f (AL, w;). As the
elements of Stickel matrix are Stickel functions, hence

N*dS = AdS <= N*dS;; = 1'dS;;.
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In previous subsections, using the reduction procedure, we proved that the
subspace (dhy, ..., dh,), spanned by differentials of Stickel Hamiltonians (5.1.14)
or in particular (5.1.13) ones, is invariant with respect to N*. Here we show the
simple alternative proof, revealing simultaneously the structure of the control matrix
F (5.1.37). Let us start with general Stiickel separation relations (4.2.9)

n
Qi by ) =) SE w0 ) =0, i=1,....n.

k=1
(5.1.38)
Differentiate the relations (5.1.38)
0p; . i </>, 99
o d P+ Z dh
and then apply N* to obtain
00; ;i i, 09;.; = dg;
CANAA + AMdup; + N*dh; = 0.
B Y ; an;
It follows that
~. 9g; 0; 0¢; ~. 9g;
"N*dh; = -\ LA Ydp; ) = A "dh;,
Zah,- j (a)v o “’) Zah,- J
j=1 j=1
or in the matrix form
SN*dh = ASdh => F = ST'AS, (5.1.39)
where §;; = S,‘f; are elements of the Stidckel matrix, dh = (dhy,..., dh,,)T,

N*dh = (N*dhy, ..., N*dh,)T and so, Eq.(5.1.39) coincides with Egs. (5.1.37).
Thus, the control matrix F is nothing but the recursion matrix (4.3.1), considered
in the previous chapter for particular separation relations (4.3.10). From (5.1.39)
follows that F matrix has n distinct eigenvalues A’ and the i-th row §; :=
(Si1, ..., Sin) of a Stickel matrix S is a related left eigenvector

S;F =AlS;.

Moreover, for the Stickel separability, the control matrix F satisfies

n
N*dF = FdF <= N*dF;j = ZmdFk,, i,j=1,...,n. (5.1.40)
k=1



5.1 Bi-Hamiltonian Separability Theory 201

Indeed

N*dF = N*d(S7'AS) = N*(—=S 'dSS7'AS + ST'dAS + S~'AdS)
=—S'AdSST'AS + ST'AdAS + STIA%dS
=S 'AS(—S1dSST'AS + 571 dAS + ST'AdS) = FdF.

Condition (5.1.40) is also sufficient for the Stickel separability. Actually, let
(hi1, ..., h,) be independent functions, defining a bi-Lagrangian foliation on a
regular o N manifold (5.1.37). If the control matrix F fulfills additionally rela-
tion (5.1.40), then the left eigenvectors of F, if suitably normalized, form a Stiickel

matrix and the functions (41, ..., h,) are a Stickel separable in DN coordinates.
The reader can find the proof of the sufficient condition in [113].
So, up to now, we have demonstrated that a n-tuple (hgl), R hff,)) of func-

tions which fulfill separation relations (5.1.15) form Gel’fand—Zakharevich bi-
Hamiltonian chains (5.1.6). On the other hand, we have demonstrated that an
n-tuple (h(ll), ...,hff,)) of functions from Gel’fand—Zakharevich bi-Hamiltonian
chains (5.1.6) are a Stickel separable if a Poisson pencil IT, is reducible onto a
symplectic foliation S, of ITp (5.1.34)—(5.1.37), the recursion operator N on each
leave is regular and the control matrix F fulfills the condition (5.1.40).

Now, for a quasi-bi-Hamiltonian chains (5.1.27), given in some local coordinates
(x, p) on a 2n-dimensional phase space, we construct a transformation to separation
coordinates (A, u), i.e. special DN coordinates and find the explicit form of
separation relations (5.1.15) following [113]. First, we find Al coordinates which,
by definition, are roots of the minimal polynomial of N or, equivalently, roots of a
characteristic polynomial of the control matrix F' :

0 = \/det(A\] — N(x, p)) (5.1.41)
=det(\] — F(x,p)) = A"+ p A" L+ ...+ p, = B,

where p; (1) are Vitte polynomials (4.3.18). Before we go further on, we will show
the alternative construction of A' coordinates. Let us define the r x r matrix F (1)

Zy (kD) - Zih " ()
FG) = : :
Z,(hVR) - Zp (WD (1)

The eigenvalues of N (F) can be easily obtained from the matrix F(A). Actually,
the determinant of F(A) is the characteristic polynomial of F

det F(A) = det(Al — F) = B(L). (5.1.42)
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In order to show it, let us differentiate the separation relations (5.1.15) with respect
to Zy

0=Zﬁk(ki)azmh(k)(ki)=(ﬁl(ki),...,ﬁr(ki))F(Ai), m=1,...,r, i=1,...,n.
k=1
(5.1.43)

This shows that det F (') = 0. Since det F () is a monic degree n polynomial and
Al are distinct, we conclude that (5.1.42) holds. Moreover, from Egs. (5.1.43) we
can calculate Casimir multipliers 8% from separation relations (5.1.15). Obviously,
Eqs. (5.1.43) have infinitely many solutions with respect to ¥ unless we chose one
by fixing the normalization, 8" = 1,i = 1, ..., n in our case.

Finally, let us describe a procedure for constructing conjugate momenta u;. First
observe that

n
0
Y =modp; =Z B’ 01 =—;trN =—tuF=—Q"4+...+".
i=1 !

Then, notice that (B'(A%),..., B (A))F(A') = ¥, (A, ;) is a Stickel function
Applying successively Y vector to (81 (A1), ..., 87 (X)) F(A\)) find such f; (x, p, A1)
that

Y(fitx,p,A) =1, i=1,....n
and define
pi=fite,p, A, =10 (5.1.44)

which is an admissible canonical momentum conjugated with A’.

In order to demonstrate how efficient the presented procedure of separability
is, let us start with a few instructive examples. More systematic application of bi-
Hamiltonian separability theory is presented in the next section. First of all, notice
that if the Poisson structure Il is canonical and

0

nY =0, i,j=1,....,2n, k=1,...,r, (5.1.45)
dck

then a desired transversal distribution is given simple by {Zy = 9, }k=1,....-. In fact,

if we define I1p

.....

,
* , 9
Mp=11;-> x©OA ",
D 1 kzz; 1 aCk
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so that

; nY, i, j=1,...,2n,
I, =
0, 2n<i,j<2n+r,

then, according to considerations from Sect. 3.4.1, I1p is Poisson and compatible
with ITg if Lz, ITp =0, kK =1, ..., r, which reduces to (5.1.45). It is the case of
our first following three examples. The first example is a one-Casimir case with a
separation curve.

Example 5.5 Let us separate the Henon—Heiles system from Example 5.1. It is a
one-Casimir case with one-dimensional transversal distribution generated by Z =
adc' Indeed, one can check that

Lzl =0, LzII1 =Y AZ,

where

0
Y =[Z, X1] =Tod(Z(h1)) = opy

X

The Casimir multiplier is trivial and hence, F (A1) matrix is one-dimensional
d 2 1.2 2
F() = 8ch()») =A"—xA— 4,V =A"+ oA+ Py
4
A ar=x, A=

Alternatively, one obtains the same result from (5.1.41), where

0 0 x y)\ /00-1 0
_ 0o o0 'y o 00 0-1
N = 1 _ 2

1o —x =ty 0 lp |10 0 o
)y 0 =Jpy, O 01 0 0

x éy 0 0

| 2y 0 00

0 Jpy x 5y

_épy 0 éy 0
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x 1
F = ( 1 ) .
2
470
As (x, p) are canonical coordinates and the transformation to separation coordinates
is a point transformation, we could calculate the missing part of a canonical

transformation using formula (4.1.37). Nevertheless, we demonstrate how works
the general construction (5.1.44). First notice that

and

Y =modp, =
1 apx
and
Y(h(W) = peh+ Sypy, Y2(h(A) = A,
hence
Y(h
y YRONY _
Y2(h()))
As aresult
YY) 1Py (—ala)1/2
My = Yz(h()\l)) = Dx 2 )\1 = Px )\'1 Py
_Y(hOP) 1Py (—ata)1/2
Mo = Yz(h()\z)) =DPxT, 2 P 52 Py
so that

My My 1,2 M1 %)
Px=s1 et py =Vl M2 T

and we reconstructed the transformation to separation coordinates from Exam-
ple 4.11, given there ad hoc. Evaluating #(A') we recover separation relations in
the form

cON? +mr + b = Dt + 0N,
cOP + A7 +hy = 1225 + 00
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which are two copies of the separation curve
A+ hia+hy = b ot

The second example is also a one-Casimir case without a separation curve.

Example 5.6 Let us separate the Kepler problem on the plane considered in Exam-
ple 5.2. Like in previous example, it is a one-Casimir case with one-dimensional
transversal distribution generated by Z = adc' As

F:)»z—y)»—}‘xz,

SO
A1+A2=y, a2 = 1,2
Moreover
0
opy
hence
_Yhah) Lxp, (—ata%)1/2
My = Y2(h()\.1)) = Py 2 )\'1 = Dy )\1 Px
YD) Lxpy (—xhaH1/2
Mo = Yz(h()\.z)) =Py 2 )\'2 = Dy )\2 Px>
so that

1 2
_ 1.2 M1 7%} A ATy
px = V=il (Al—x2+x2—xl)’ =0t

Again, evaluating (1) we recover separation relations in the form
cON? +mr +ho = 2 f = Ja,
cON2+hia? +hy = 1223 + la

for A!' > A% and a — —a for A> > A!. These separation relations are not related to
any separation curve.

The third example is a two-Casimir case again with separation curve.
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Example 5.7 Let us separate the system from Example 5.3. It is two-Casimir case
with two-dimensional transversal distribution generated by Z; = 8?:1’ Zy =0

dcy?
hence
_ 1,.-1.2 1 ,.—1.4
Poy = (PO ey
—X At xTy
and
det F()) =2* —xa— }y? = A+ 2% =x, a2 =-1y% (5.1.46)

so the transformation to separation coordinates is the same as in the Henon—Heiles
case from Example 5.5. The Casimir multiplier is calculated from

1 1. -1.2 —1
1 _(BilA =+ 4 xTy)] —x _
(B 1) F) —< LAy G g 1y )—0~

Substituting (5.1.46), both equations give the same result ,3[.1 = (A)2. Evaluating
,Bilh(l) D) + D (L) we recover separation relations in the form

a3+ Va2 F el + P = Ll 1 s,
(123 _I_hgl)()\z)z T+ e+ h(lz) _ ;AZM% + ()4,
which are two copies of the separation curve
1
e +hV3% e+ h?P = RS
Finally, we consider bi-Hamiltonian separability of the Euler top from Exam-

ple 5.4

Example 5.8 Although the bi-Hamiltonian representation of Euler top (see Exam-
ple 5.4) seems relatively simple, nevertheless, it is not such a simple task to find
a one-dimensional distribution Z of the desired properties. An appropriate vector
field is of the form

]
2 2
w1+ws
)
7 = w%+w%

0
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Indeed, as according to (2.5.8)

)
w%+w%

7] = 0 0o -
plZ] = el |
w2 w1
w%er% w%er%

0 0 - @«
w%+w§
/ _ 0 0 aywi
Hl[Z]— w%—i—w% ’
@mw2  ajw)
w%+w% w%er%
_ ‘”%_“’% 2w 0
(@+03)?  (0l4wd)?
Z'=| _ 200 “17% o>
(@]+03)?  (0]+03)?
0 0 0

then, one can check that
LzT1lg=0, LzII1 =Y AZ,

where

2ar—ax)wlwyws
(@0} +0d)?
2
Y =[Z,X] = Tod(Z(hy) = | HO—gperere
(w1+w2)
_ 2(a1—ax)wyw2
w%+w%

hence, according to (5.1.24) and (5.1.25), the Poisson pencil IT, = I1; — AIl; can
be reduced along the distribution Z. Now,

2 2
aiwiy + arw
FO)=ZOho+h) = h+ 102
a)l—i—a)z

and

ala)% + azw%

det F(L) =0= 1! = L
a)l—i—a)2
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Then,
[Mod(=A1) = Hod(Z(h1)) =Y

and one can check that

= 1

v ( Y(h(3)) ) _ _ Y w3(@? + w3)
Y2(h())) Y2(h(v) % (a2 —aDwiws’

giving the following separation relation
e+ =20 +a) ! + @) +az)ud.

The transformation between original coordinates (w1, w2, @3) and separation coor-
dinates (Al, W1, c) is as follows

ala)% + azw% 1 a)3(a)% + a)%)

1 _ _ 1.2 1.2 1 2
A= s c=,0]+ ,0; + ,03.

Wi + w3 T 2@ —apwion”

There is a famous generalization of Euler top from so(3) to so(m), constructed
by Manakov [188], which has also a bi-Hamiltonian formulation of the GZ type
[117]. Nevertheless, it has not been separated yet. We even do not have any proof
that it can be separated. Although we know [31] that separable systems have a bi-
Hamiltonian extension to GZ chains, the inverse statement is not proved. As will be
presented in the next section, the necessary and sufficient condition for separability
of GZ chains is the so called d-compatibility of two Poisson structures, which is a
stronger demand than ordinary compatibility.

5.2 Application of Bi-Hamiltonian Separability Theory

A reach source of finite dimensional bi-Hamiltonian systems are hierarchies of
bi-Hamiltonian field systems, i.e. nonlinear PDE’s known as Soliton equations. A
systematic methods of their construction the reader can find in [23] and in literature
quoted there. In particular, the construction of bi-Hamiltonian representation for
stationary flows and constraint flows of Soliton field equations is presented. Thus we
skip that class of examples. Here we will illustrate the bi-Hamiltonian separability
theory, described in previous sections, on another classes of systems with arbitrary
number of degrees of freedom.



5.2 Application of Bi-Hamiltonian Separability Theory 209
5.2.1 Elliptic Separable Potentials

Consider a Liouville integrable geodesic Hamiltonians in M = R?", given in
Euclidean coordinates x' and conjugate momenta p; by

L[ 30,8) 1 & 320,08) 4ol 2 1 < 30,08 ;
=, -, 2 i+, D x'x!pipj,
= { 0B 4 L7 OPidP 8 itz WPiOP; ’
(5.2.1)

forr = 1,...,n, where p,(B) are Viete polynomials of n parameters §; (signed

elementary symmetric polynomials of 8; (5.5.3)). The extended systems in M =
R2n+1

n

1 0 :
hy = Tr+c[p,<ﬁ> - ’;ﬂ(’g ) (x’)z} (5.2.2)
i=1 !

form a bi-Hamiltonian chain [24, 224]

IModhy =0
MModhy = X1 =Iidhy
(5.2.3)
Iodh, = X,, = Ii1dh,—1
0 =TIIdh,
where
01,0 0 B — }‘x ® x )4
MMoy=\|-1, 00, I} = —B~|—}‘x®x ip@x—ix@p—lcx ,
000 -p Jex 0
5.2.4)

x =@ T p = (pr.....p))T. B = diag(By,....8,) and hy = c.
Notice that

=Y e [pr ],
i=1 i=1

According to the projection procedure
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and
Z(hg) =1, Y(hg) =0, LzIy=0, LzII;=YAZ.

The first part of the transformation to separation coordinates is a point transforma-
tion

pr() = pr(B) — Z 0B i o1 (5.2.5)
4T 0k
As is proved in Sect. 5.5.1 (see formulas (5.5.11), (5.5.20) and (5.5.13) fore = —1),
the relations (5.2.5) are equivalent to the following one

n

H(Z—)»j)

j=1
which defines the generalized elliptic coordinates (Al, ..., AN, Moreover,
n
[, - .
Y2 — k= o _
(-x) _4 n ’ :u’/_a)\’jplv ]—1,” (526)

[]6;-80
k=1
k#j

and we get the following form of Hamiltonians (5.2.2) in separation coordinates

n
n -8 )H«z + et
b= (1] 5 90,00 A1 e
" 2 Al no
i=1 [T G =2ah
k=1,k#i

In consequence, the separation curve takes the form
n n—1 L 2
AT+ MATT 4+ 4k, = 5 [T = Bou
k=1

and belongs to the Benenti class.
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In the next step let us add some potentials to Hamiltonian functions (5.2.2)

he =T 4 Vo) e [ 9, () | Z P iy |. (5.27)
' 4T 0k
It change the tensor I1; to the form
0 B — ix ® x p
I = —B~|—}‘x®xip@x—ix@p—aivl(x)—écx . (5.2.8)
—p a‘i{Vl(x)—i- écx 0

As we demand from new Hamiltonians to constitute the bi-Hamiltonian chain
(5.2.3), so ITI; has to be a Poisson tensor and Jacobi equations (3.2.3) impose
restrictions on Vi (x) in the form

9%y 3 AV Y% “ 9%y RN 22 %
Bi =B ! (xf - l)—l— <x1xk P xiygk @0 ):0,
k=1

xiox/ 4 dax! dax/ dxigxk dx/axk
(5.2.9)

where i, j = 1, ..., n. Notice that remaining potentials V,. are uniquely determined
by Vi and the chain (5.2.3). Such potentials are known as elliptic separable
potentials, as sepatate in generalized elliptic coordinates, and are constructing
systematically in Sect. 5.5.1.

Example 5.9 Garnier system with n degrees of freedom. Its Hamiltonian represen-
tation in canonical coordinates (x, p) is of the form [24, 68]

oy =pi, i=1,...,n,

1 . <& 1 .
(pi)t=—4x’;(x")2+2(ﬂ,-—c)x’, i=1,...,n

generated by the Hamiltonian function

n n 2 n n
_1 2 1 iN2 _1 2 '_1 i
_zgpi+16[§<x>} 4§ﬁ,(x) cZ[ﬁ, 4(x):|.

i=1

The potential

n 2 n
_ 1 2| 1 iy2
Vi= [E(x)} 4;/3,()6)
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fulfills condition (5.2.9) so h; belongs to bi-Hamiltonian hierarchy for elliptic
potentials. For simplicity we illustrate the separability procedure for the case of
n = 2. The two dimensional Garnier system

@D =pi
= p
1 1
(P == 2 [+ @D+ (81— o'
1 1
() == 2 [ @) + D2+ (B — 0
Cr = 0

is a Liouville integrable system with two constants of motion

1 1 1 21 1 1 1
=, pi Pt [+ @] = B = By e [—ﬂl — B2+ 4<x1>2+4<x2>2] ,
1 1 1 1
hy == Bopt = Bips+ (pr—xpp)? = [+ (27 [Box!) + 81 (6]
F BB+ 0] e ~Biat Bt B
4 1P2 1P2 4 2 4 1

which together with 4y = ¢ belong to the bi-Hamiltonian chain (5.2.3), where

0 0100
0 0010
=] -1 0000,
0-1000
0 0000
0 0 B — L2 Lyl o
0 0 —yxx? Ba— 1D
I = —,31~|—41‘(x1)2 ixlxz 0 éll(xzpl_xlp2)_g/;}
pahr B+ LaD)? =i (Ppr —x'p) 0 — o
—p1 —p2 o e 0

From (5.2.6) we find the transformation to separation coordinates

’

i 2\/(131 S N 2\/(52 — a8y -2
B1— B2 ’ B2 — B
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B =AY =D [(m — Ay G )»2)#2}
pP1 = ﬁl_ﬁZ Al 2 22—l ’

B =D (By =D [(ﬁz — Dy G AZ)M2:|
P2 = ‘32_‘31 )\1_)\2 )\2_)\1

and the separation curve of the form

1
A%+ hdthy = 0= B)G = B, 1 + ).

5.2.2 Bi-Cofactor Systems

Let us consider the system of differential equations in Euclidean space E" =
(R"*, g = I,) of Newton form

x,=F), i=1,...,n (5.2.10)
Notice, that in E" and Euclidean coordinates, rising and lowering indices of any
second order tensor with the help of metric tensor does not change its matrix

representation. Thus, in the further notation, for a second order tensor A : Al (x) =
A’j (x) = A;j(x). The function

1
H = 2A]p,'pj +V,

where p; = x} , A = A(x) is a nondegenerate symmetric matrix and V = V(x)
is some function, is an integral of motion for the system (5.2.10) if and only if the

following two conditions hold
JATK + (AT +9;AM =0, i jk=1,...,n (5.2.11)

and

AijF/ +@v); =0, i=1,...,n. (5.2.12)
Equations (5.2.11) implies that the matrix A is a Killing tensor of the Euclidean
metric. We will restrict ourselves to a class of solutions of (5.2.11) that have the

form

A = cof(J)
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with
J=axQ@x+BQx+xR®B+v,

where cof means the cofactor matrix (so that cof(J)J = det(J)), x =
(xl, .. .,x”)T, a is a real constant, B = (B4, ..., ,Bn)T is a column vector of
constants and y is a symmetric n X n constant matrix. Equations (5.2.12) imply that
the force F can be written in the quasi-potential form F = —A~'dV .

In the case when the system (5.2.10) has the second, functionally independent of
H, integral of motion of the form

_ 1 Tij _
H = 2A pipj+V,
with an invertible matrix A(x), then it can be written in a quasi-potential form in
two distinct ways. Actually, a system of equations
xy=F=—-A"'dav =—-A"1aqv (5.2.13)

where A and A are two linearly independent matrices of the cofactor form

A=cof(J), J=axQ@x+BRQx+xQp+y

A=cof(J), J=ax@x+pQx+xQ@B+7¥
where V = V(x) and V = V(x) are two scalar functions, is called a bi-cofactor
system [184, 194, 225].

If the Newton system (5.2.10) has a bi-cofactor form (5.2.13) then it has n
integrals of motion of the form

1 N
H; = Z(Ak)ljpipj-l-Vk, k=1,...,n

where the matrices Ay are defined as coefficients in the polynomial expansion of
cof(J + AJ) with respect to the parameter A [184]

n
cof(J + AJ) = Z Ak
k=1

with A1 =cof(f ), A, =cof(J) and where V| = VandV, = V. Consequently, such
a system can be written in a quasi-potential form in # distinct ways

Xxy=F=—A'dVi, k=1,...,n. (5.2.14)
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The admissible potentials Vi can be constructed recursively [184] through the
formula

det(J + AJ)

V(H_l)()») — det(]_)

Vl(r) _ay® A)

and its inverse

1 [det(J +AJ)
v o) = yo+h _ ye+D ey ,
() x( det(J) " @)

where VW (1) = Y et V,{(r)kn_k . Starting from a trivial potential Vi(o) = §j, it is
possible to construct the infinite hierarchy of positive and negative potentials Vk(r),
rez.

The bi-cofactor system (5.2.13) can be embedded in a bi-Hamiltonian system on
M = T*E" x R. Actually, consider a following pencil IT, = I1; — AIlp

0-J 0 0 J p
Mo=|J-R-2N]|, hi=(-J R F+2N|. (5.2.15)
0OcN 0 —p —F —cN 0

The n x n symmetric matrices J and J are exactly the matrices that defined our
system (5.2.13), the n x 1 matric N and N are given by

N=ax+p8, N=ax+

=!I

and the n x n matrices R and R are defined by
R=N®p—-p®N, R=N®p—p®N.

It is a Poisson pencil due to the fact that the term F can be represented as (5.2.14).
The bi-Hamiltonian chain (5.2.3) is generated by the Casimir function %, of IT, of
the form

1 _ _
hy, = 2pTcof(J L AJ) + V) — cdet(J + AJ),

where V() = VW), r € Z. Thus, h; = Zzzohkk"_k with functions
hi(x, p, c) given by

hk(xapac)ZHk(xap)_CDka k=17-'-ana hO(X,C)Z_CDO
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and with D; defined as

n
> D F = det(J + 1),
k=0

so that Dy = det(J) and D,, = det(J). Notice that coordinates (x, p, ¢) are non-
canonical coordinates for both Poisson structures (5.2.15).

In order to separate the bi-Hamiltonian system we pass to new coordinates
(x,p,¢c) — (x,p,c), where ¢’ = hg = —cDy. In new coordinates the bi-
Hamiltonian chain (5.2.3) is generated by

0-J0
Mo=|J-RO |,
000
0 J —det(J)p
I = —J R —det(J)F + ¢ (N —JJ~'N)
det(J)p det(J)F —c'(N — JJ~IN) 0

and

D
hk(x,p,c/)sz(x,p)—i—c/Dk, k=1,....n, ho(x,c)=c.  (5.2.16)
0

For this new representation the projection procedure is as follows [189]

0 Dy
Z=", Y =Tod(Z(h)) = Mod :
9¢! 0d(Z(h1)) 0 <D0)

LzT1p =0, LzII1=YAZ,
and

Y (hy,)=0, i=1,...,n. (5.2.17)
From (5.2.16) follows that

det(J + 1J)

20 = g

s0 A; (x) are roots of det(J + AJ) = 0. From (5.2.17) follows that

Y(hx") .
;= =1,...,n. 2.1
lu’l Y2 (h)\,')’ 4 ’ an (5 8)
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Example 5.10 We consider 2-dimensional bi-cofactor system

L 2+
X =
T2 = 2x?)

x2 _ (x2)2
" -2’

generated by a pair of matrices

= 1 x! 7= (xDH2+1 x1x2
- xl 2)(?2 ’ - x1x2 (X2)2

and a pair of potential functions

x2(x2+2) _ (x2)2
= N V = .
2x2 — (x1)2 2x2 — (x1)2
Two constants of motion are
1 x2(x2+2)
_ 22 1 2
Hi =x pr— X pip2 + 2]72 + 2x2 — (x1)27
L 05 1.2 L 40 2 (x?)?
H2 = z(x ) pl —XX P1P2+ 2[()C ) + 1]p2+ 2X2— (xl)zf

where p; = xtl, P2 = xtz. As

_ 1
oo amn 1= 1=(3) 7r=(20).

the extended Hamiltonians

hi=H —cx*(x?+2), hy=Hr—c(x®? and ho=c[(x")? —2x]

form the bi-Hamiltonian chain (5.2.3) with respect to two Poisson tensors

00 —1 —x! o0

0 0 —x!—2x2 0
Mo=| 1 x" 0 p1 O )

x'2x2—p; 0 —2¢

00 0 2 O

217



218 5 Classical Separability Theory

0 0 241 xlx? P

0 0 xlx? (x?)? P2
M= -GP-1-x22 0 xpp—a?p 2D, 42!
—x'x2 )2 —xlpy +x2p 0 [(xing;;]z + 2¢x2

* 0

According to presented procedure, the first part of transformation to separation
coordinates is given by

det(J + 1J) L, XA 42) Lo (x2)2
S =0= A +2’= , =— .
det(J) + (xH2 —2x2 (x1)2 — 2x2
As
VAL CIE T VI 2632 9

D2 —2x29p1 (xH2—2x23py’

the second part of transformation to separation coordinates, according to (5.2.18),
takes the form

' 1 [(xH2 —2x2] x'x2 (2 4+ 2ix2 + 200 py
70 22 [(a2)3 4 (r1)202 4 200 (x)2 + 2 (x2)3 + 20 (x1)22]
LIaD? = 202006)? = (D)2 + 31 ()2 = A/ () = A ()22 pa

. . . i =1,2.
2 x2[(x2)3 + ()22 + 2200 (x D)2 + AT (x2)3 + 247 (x1)2x?] l

The solution is as follows

_ VAR e nel ey, Ax2
Al 42 4 ala2 ’ Al a2 4%

X
W2 =+, A2 Al - )\2),”}

_ 313201 2
pl_\/ Ao+ D +1)[ 200 =22 A2 —ah

A+ Dy N 02 + 1)#2}

152
P2 = 2)‘)‘[)»1_)»2 32 _ !

with separation curve

hoA? + hih + hy = 2220 + D + A2
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The theory of bi-cofactor systems extended from Euclidean space E” to Rieman-
nian space the reader can find in [70, 72, 73, 191].

5.2.3 Non-Periodic Toda Lattice

Let us consider a dynamical system on M = R>"*1

(ai)t=ai(bi—bi+1)=Xi, i=1,...,n
(5.2.19)
(b =2a—a2 )=X""  i=1...n+1
where (ai, ..., an, b1, ..., b,11) are some coordinates on M. The system (5.2.19)

is known as non-periodic Toda lattice in Flaschka coordinates [121]. For arbitrary n
it is bi-Hamiltonian Liouville integrable system [77], with first Poisson tensor given
by the following non-zero elements

o : A{ai,bitn, = —ai, {ai,biv1}n, = ai
and the second Poisson tensor given by

1
Iy : {ai, aiv1}n, = yaiaiv1, {ai, biln, = —aibi,

{ai, bit1}ny = aibiy1.  {bi, bis1}n, = 2a?.
The bi-Hamiltonian chain is given by the Casimir of Poisson pencil IT, = I1; —
Al : I"[)thg\") = 0, where
dh{" = det I — L) = A"+ 02" + VA 4+ h Y,
brar 0 0 0
arbyay 0 0
Ln = O ar " . K . O )
00 . by, ay
00 0 an byy1

hY is the Casimir of Mo while 3" is the Casimir of TTj. The system (5.2.19)
is generated by Hamiltonian vector field X; = Hodh(ln). Moreover, Hamiltonian

functions hf"H) can be constructed recursively by

R = h"D — 7D — a2n P (5.2.20)

n'ti—2

with 2" = 1.
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The projection procedure for the Poisson pencil of non-periodic Toda lattice is
given by

3 3
Z =— , Y=a,
3bn+1 day
as
ZhMY =1, Ly =YAZ
and thus

MMip=II1 —m X1 ANZ.

Poisson structures projected on symplectic leaves h(()") = const parametrized by
ai,...,ay, by, ..., by,), are nondegenerate tensors 7o, 771 and minimal polyno-
g poly

mial of N = nlnal (5.1.41) is equal h(lnfl) as according to (5.2.20) Z(hg\")) =
h{"~D. Also from (5.2.20) it follows that

Y(h") = —2a2(h" ) = ¥ [; In (—2a5h§"‘2))] —1.

In consequence, transformation to separation coordinates is given by the following
relations

pi0) =h"V ;=1 (—Mﬁhﬁ’j‘”) Ci=1,....n (5.2.21)
and separation curve takes the form
AL RS R 4 h® = Lexpu),
see Eq.(4.2.2).

Example 5.11 Non-periodic Toda system with n = 2. The dynamical system

(a1)r =ai(by — b2)
(a@2): =az(by — b3)
(b1); = — 2a7
(b2); =2(aj — a3)
(b3): =2a3
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is bi-Hamiltonian and Liouville integrable with constants of motion of the form

ho=—b1—by— b3
h1 =b1by + b1b3 + bybz — a% — a%

hy) = — b1bybs + a%b3 + a%bl

and two Poisson tensors

0 O—a; a O
0 0 O0-arar
Iy = aa 0 0 00O0],
—a; ap 0 00
0O—a 0 0O

0 éalaz —aib1 aiby 0

_%611612 0 0 —azby axbs
I, = ab 0 0 2a 0
—aiby  aby —2a% 0 2a3

0 —azb3 0 —2a5 0
The transformation to separation coordinates, calculated from (5.2.21) of the form

)\1~|—)\2=b1—|—b2, )Ll)\2=b1b2—a%, c=—by—by— b3,
I P S b a0
pr = 020~ b)),y = ) In(-2a30 ~ b)),

is given by

2
_ 2PexpQup) —alexpQuy) M expQuy) =22 eXpu2) 1 e

5 2
exp(2u) — exp(2uy) exp(2iey) — exp(2us)

2= expuy + 2up) (A — A%)? 2o Lexp(2u;) — exp(2ip)
DT (exp@uy) —expuo))? TP 2 Al =22 ‘

As h,i = ho(A)2 4+ h Al +hy = é exp(2u;) — (A3, i=1,2, the separation curve
takes the form

AP+ hoA® + A + hy = ) exp(2L).
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5.2.4 Dressing Chain

Consider the so called dressing chain
(Ve + VkaD)x = Vg — Vyy + ok, v = 0k(x), g = const (5.2.22)
for the Schroédinger equation
Wyep = (U — AW (5.2.23)

If uy is a sequence of solutions of (5.2.23), generated by a chain of Darboux
transformations and uy = (vr), + v,% + B is a Miura map to the modified fields
vk, then the new fields vy are related among themselves through the chain of
Eqgs. (5.2.22), where ay = B; — B (see [232] for details of the construction).

Closing the chain by vy = vk4n, o = ax+n and by assumption that Z,ivzl o =0,
we obtain a finite dimensional dynamical system

(vk+vk+1)xZUI%_U]%_H‘F,B](—,B](_H, k=1,...,N,

where x plays a role of evolution parameter. As was shown in [253], for N = 2n+1
and variables gx = vg + vk+1, it is a bi-Hamiltonian system. The nonzero matrix
elements of both Poisson tensors are the following

{gks gkfl}l_[() =1,
{ek. gjtm = (=D gqug;, jAKkEL

{8k, gk—1}m1;, = &k&k—1 + Bi,
and the Casimir of the pencil ITy = IT; — ATl is given by

N 92 N
hy, = hoA +h A 4k, = (DY T (1 + i ) g Ci=PBi—A
=1 08j08j+1/ | k=1

The projection procedure for the Poisson pencil of the dressing chain is given by
(28]

9 N-1 _ 9 N-1 _ 9
Z=—, . Y=Y D%g 4D (g
agN ; Hog ; ] ogn
as then

Z(ho) =1, Y(ho)=0, LzIlg=0, Lz =YAZ.
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The first part of the transformation to the separation coordinates is

oh
c=ho, pO)= % k=1,...,n (5.2.24)
dgN

The following property of the Casimir 4,
Y3(ha) = Y(hy) = Y In(Y (h3) + Y2 () = 1
gives the second part of the transformation
pp = In(Y (hy,) + Y2(h3)), k=1,...,n. (5.2.25)

Moreover, low dimensional examples suggest the separation curve of the form
1 al 1
hoA + A"+ o+ hy =2 [T — By) exp(—p) + 5 exp(u),
i=1
see Eq.(4.2.2).
Example 5.12 The dressing chain for N = 5. The dynamical system

(g)x=81(—g2+8 —8g+85)+pB1— B>
(82)x = 82(81 — g3+ 84— 85) + B2 — B3
(g3)x = 83(—g1+ 82 —g4+85)+B3— B4
(84)x = g4(g1 — g2+ 83 — 85) + B4 — Bs
(g5)x = 8g5(—g1+ 82 — g3+ 84) +B5s — By

is bi-Hamiltonian and Liouville integrable with constants of motion of the form

ho = g1+ g2+ 83 + g4 + g5,

h1 = —g18283 — 828384 — 838485 — 848581 — 858182

—81(B3 + Bs) — 82(Bs + B1) — 83(Bs + B2) — 84(B1 + B3) — 85(B2+ Ba).
8182838485 + B1828384 + B2838485 + P3848581 + B4858182 + B5818283
+B3B581 + B1Ba&2 + B2B583 + B1B384 + B2Pags

h

and two Poisson tensors

Iy =

-0 O = O
S O = O =
S = O = O
'—‘O'LOO
S = O O =
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0 —g182— B2 8183 —g8184 818 + By
8182 + B2 0 —8283— B3 8284 —8285
I = —8183 8283+ B3 0 —8384— B4 8385
8184 —8284 8384+ By 0 —g8485 — PBs
—8185—B1 885 —8385 8485+ Bs 0

The transformation to separation coordinates, calculated from (5.2.24) and (5.2.25),
is of the form

g1 = 1 (A2 — A1) exp(py + 12) ’
2 (A2 = B3) (k2 — By (A2 — Bs)exp(uy) — (A1 — B3)(A1 — Ba) (A1 — Bs) exp(ua)
o= 5 #2 = B2) (2 — B (2 — Bs) exp(ur) — (k1 = B2) (k1 — B (A1 — Bs) exp(u2)
(A2 = By (A2 — Bs)exp(iy) — (A1 — B4) (A1 — Bs) exp(u)
" (A2 — B3)(h2 — B4) (A2 — Bs) exp(uy) — (A1 — B3) (k1 — B4) (A1 — Bs) exp(p,)
(A2 — Ap)exp(uy + 12,
o = 1 (A2 — B3)(h2 — Bs) exp(uy) — (A1 — B3) (A1 — Bs) exp(iz)
2 (A2 = B3)(A2 — By (A2 — Bs)exp(uy) — (A1 — B3)(A1 — By (A1 — Bs) exp(us)
o A2 = B2 = Bs) exp(uy) — (A1 = Ba) (M1 = Bs) eXP(M2)7
(A2 =21 — B5)(r2 — Bs)
g4 = (A2 = A1) (A1 — B (A1 — Bs)(h2 — Bo) (A2 — Bs)

(= By (o — Bs)exp(iy) — (1 — By (A1 — Bs) exp(iy)”
85 = C— g1 — 82— 83 — &4

and the separation curve is

ed?+hid+hy =20 =B (A= B2) (A —B3) (A — By) (A — Bs) exp(—p) + b exp().

5.3 Bi-Presymplectic Separability Theory

The bi-Poisson formulation of finite dimensional integrable Hamiltonian systems
has been systematically developed in the previous two sections. It has been
found that most of the known Liouville integrable systems have more then one
Hamiltonian representation. Moreover, in the majority of known cases, both Poisson
structures of a given flow are degenerate. For such systems, related bi-Poisson (bi-
Hamiltonian) commuting vector fields belong to one or more bi-Hamiltonian chains
starting and terminating with Casimirs of respective Poisson structures. The most
important aspect of such a construction is its relation to the geometric separability
theory. Having a bi-Hamiltonian representation of a given system, the sufficient
condition for the existence of separation coordinates is the reducibility of one of
the Poisson structures onto a symplectic leaf of the other one. Unfortunately, this
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procedure is non-algorithmic and has to be considered independently from case to
case and is related with finding an appropriate integrable distribution Z, transversal
to symplectic foliation. Moreover, we do not have any proof that it is always possible
for any GZ system. Anyway, once the reduction is done, the remaining procedure
of the construction of separation coordinates is algorithmic. The relevance of bi-
Hamiltonian formalism in separability theory confirms the fact that the arbitrary
Stickel system, defined by an appropriate separation relations (4.2.9), has a bi-
Hamiltonian extension [31].

On the other hand, it is well known from the classical mechanics that if the
Poisson structure is nondegenerate, i.e. if the rank of the Poisson tensor is equal to
the dimension of a phase space, then the phase space becomes a symplectic manifold
with a symplectic structure being just the inverse of the Poisson structure (see the
previous chapter). In such a case there exists an alternative (dual) description of
Hamiltonian vector fields in the language of symplectic geometry. So, a natural
question arises, whether one can construct such a dual picture in the degenerate
case, when there is no natural inverse of the Poisson tensor. For such tensors the
notion of dual presymplectic structures was developed in Sect. 3.2.3.

The presymplectic picture is especially interesting in the case of Liouville inte-
grable systems. As was mentioned above, there is a well developed bi-Hamiltonian
theory of such systems, based on Poisson pencils of the GZ type, whose Casimir
functions are polynomials with respect to pencil parameters and the related sep-
arability theory. The important question is whether it is possible to formulate a
dual, bi-presymplectic (bi-inverse-Hamiltonian in particular) theory of Liouville
integrable systems with the related separability theory and how both theories are
related to each other.

The following section presents the general bi-presymplectic theory of Liouville
integrable systems when the co-rank of presymplectic forms is equal and fixed.
The whole formalism is based on the notion of d-compatibility of presymplectic
forms and d-compatibility of Poisson bi-vectors. What is important, in the new
formalism the construction of separation coordinates is simply algorithmic, once the
bi-presymplectic chain is given. Finally it is shown that any Stéckel system, defined
by an appropriate separation relations, has a bi-inverse-Hamiltonian representation,
which confirms the relevance of the presented formalism.

5.3.1 D-Compatibility of Closed Two-Forms and Poisson
Bi-Vectors

In the following section we develop a concept of d-compatibility which is crucial for
our further considerations. The notion of d-compatibility for a non-degenerate case
was introduced in Sect. 5.1.3. Here we extend the notion of d-compatibility onto the
degenerate case.
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A closed two-form €2 is d-compatible with a closed two-form €2 if there exists
a Poisson tensor I, dual to 2, such that [Tp<2; 1 is Poisson. Then we say that
the pair (29, €21) is d-compatible with respect to ITp. Analogically, a Poisson tensor
[T is d-compatible with a Poisson tensor IT; if there exists a presymplectic form
0, dual to ITp, such that Q20I1; 2 is closed. Then we say that the pair (ITg, I1y) is
d-compatible with respect to 2.

Comparing the notions of compatibility and d-compatibility for Poisson pair
(ITp, IT1) we have shown in Sect. 5.1.3 that when ITj is non-degenerate both notions
are equivalent, but for a degenerate case the notion of d-compatibility is the stronger
one. Actually, let us consider the following identity, proved in [29],

L)y I + (IL) dy (TTy)
= ML (R1I1120) — d(R2I11Rp7) — Z,’[QO(LZI-Hl)QO]T Adci (5.3.1)
— > t(en)[R0(Lz 1)1},

where IT, = I1; 4+ ATl is a Poisson pencil, Iy, I1; are Poisson tensors, (ITo, $20)
is a dual pair, where dc¢; € kerIly, Z; € kerQp, v € TM and y = Qot € T*M.
Assume first that [Tp and I1; are d-compatible with respect to €2¢. Then Q201112 is
closed and hence

L (20I1120) — d(20I11207) =0, TteTM. (5.3.2)
In particular, for T = Z;, relation (5.3.2) gives
Qo (Lzl.l'll) Qo =0, i=1,...,r (5.3.3)
so as a result
Ly + (L) dy (TT) =0 (5.3.4)

and IT; + AIlp is Poisson according to (3.2.21). On the other hand, from the
compatibility relation (5.3.4) the d-compatibility (5.3.2) follows under additional
conditions (5.3.3).

Observation 9 From the above construction follows that d-compatibility of a
Poisson pair (Ilg, I11) with respect to Q, dual to 1y, guarantees not only ordinary
compatibility of the pair (Ilg, I11), but also a Poisson reduction of Tl onto the
symplectic foliation of T along the distribution Z = ker Q2. So, in a generic case,
bi-Hamiltonian chains of Liouville integrable systems, with a d-compatible pair of
Poisson structures are separable.

Before we pass to bi-presymplectic chains and the related separability theory,
we need some relations between d-compatible Poisson bi-vectors and d-compatible
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presymplectic two-forms. Thus, let a Poisson tensor I1p and a closed two-form 2
form a dual pair. Moreover, let Z; € ker Qq, dci € ker [1g and Zi(c;) = 8ii, k, i =
1, ..., r. Then, we have the following statements.

1. If IT; is a Poisson tensor d-compatible with Ty with respect to 2p and
IMi(dci,dcj) =0,

then forms €2¢ and Q1 = QI1; 20 are d-compatible with respect to 1.
2. If @1 is a closed two-form d-compatible with € with respect to I1p and

Q1(Zi, Zj) =0 and Mo Z; = Modh® (5.3.5)

for some functions h® € h(M), i = 1,...,r, then Poisson tensors ITp and
[T = [1p<21I1p are d-compatible with respect to €2¢, provided that

Zi(h'y =z, (hDy,  kyi=1,...,r (5.3.6)
In the first case, from the definition, ¢ and Q21 = Q12 are d-compatible if

r r
I = Moo = MR QMo = (I — Y Zi @dep)i(I — Y dej ® Z))
i=1 j=1

r r
=T - Y XinZi+) Y Th(de.de)Zi A Z;
i=1 i,j=1

,
=11 —ZX,» AZ;,
i=1

where X; = I11dc;, is a Poisson. From (3.2.27) and (5.3.3) it follows that L 7, IT = 0
and hence

,
Lz T =) [Zk, Xil A Zi.
i=1
Using relations (3.2.33) we get

r r
[T, Mg = [T, Mls = 20) _ Xi A Zi. s + 1) Xi AZin Y Xj A Zjls
i=1 i=1 j

=2 (Zi ALXi, Thils — X; A1Zi, )

i=1
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,
+ D (Zi AXi X AN Zjls — Xi A Zi X A Zjls)
ij=1

r r
:ZZXi ALz Tlp + Z(Zi/\Xj /\[Xi,Zj]—Xi /\[Zi,Xj]/\Zj)
i=1 i,j=1
r
= Z(ZX,‘ /\[Zi,Xj]/\Zj-l-Zi /\Xj/\[Xi,Zj]—Xi/\[Zi,Xj]/\Zj)
ij=1

= 0. (5.3.7)

In the second case, from the d-compatibility of €2¢ and €2 it follows that I is a
Poisson. Then,

r r
QolT1 Q0 = QollpR IR0 = (I — Zde ® Zr)Sa1(I — Z Zi @dci)
k=1 i=1

r r
1
= Qi+ /; deg N (Z0) + _kzl Q(Zi, Zydey A de.
= I,K=

From the assumption (5.3.5) and decompositions (3.2.25) it follows that

r r
@7 = dh® + Y[ @12 20) = Zih®) | dei = dh® = 3" 2, de,
i=1 i=1

hence,

r

.
Qi = Q1 + Y dex Adh® — Y [Z,-(h("))] dey A de;
k=1 i,k=1
r r )
=+ Y da ndh® + 13 [Zu) = Z:(hD)] dex n de
k=1 i,k=1

and under condition (5.3.6) Q0IT; g is closed.

As a consequence of previous relations, two other statements can be proved.
Let again a Poisson tensor Iy and a closed two-form 2o form a dual pair, where
Zi = YV € kerQo, dex = b € kerTlg and YV (b)) = 8pi, ki = 1,...,r.
Then, we have what follows.

1. If Iy is a Poisson tensor d-compatible with ITp with respect to €29,

X" =mdn{) =nodn®,  k=1.....r
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are bi-Hamiltonian vector fields for some functions hgk) and
My (dh’, dh§’y =0, i, j=1,...r
then Qo and Q; = QIR + Y5, dh'” A dh is a d-compatible pair of
presymplectic forms with respect to ITp.
2. If Q7 is a presymplectic form d-compatible with €2¢ with respect to I,
B =iyP =qr®,  k=1,....r (5.3.8)
are bi-presymplectic one-forms for some vector fields Y’ l(k) such that
x® =g = nmpan™, wP e FMm), k=1,....r (5.3.9)
and

) vy =0, ij=1,....r (5.3.10)

then Iy and [Ty = 1o 1y + 22:1 Xik) A Yék), are d-compatible Poisson tensors
with respect to €2¢, provided that

Yl(s)(h(k)) _ Y(k)(h(s))’ k,s=1,...,r, (5.3.11b)
1—[0,3( ) _ HOQ Y(k) I dh(zk)’ h(k) c F(M) (5311C)

In the first case obviously d21 = 0 and from the definition, Q29 and Q; =
Qo Qo+ Yy dh(lk) A dh(()k) are d-compatible as

.
21 Mo = TSI 201Tp + I (Z dhgk) A dh(()k)> n
k=1

= MM RoIT11RQpIly = IT

is a Poisson according to (5.3.7).
In the second case, the proof is technical and laborious so we skip it and refer the
interested reader to the original paper [45].



230 5 Classical Separability Theory
5.3.2 Bi-Presymplectic Chains

Now we are ready to investigate main properties of bi-presymplectic chains. Assume
we have a pair of presymplectic forms (€2¢, €21), d-compatible with respect to some
[Ty dual to ¢, both of rank 2n and co-rank r. Assume further that they form bi-
presymplectic chains of one-forms

BY =y =iy, i=1,2,....m (5.3.12)

where k = 1,...,r, n1 + ...+ n, = n and each chain starts with a kernel vector
field Yék) of Q¢ and terminates with a kernel vector field Yn(,]f) of Q1. Then:

1.
QM Y™y =P, ¥ =0, (5.3.13)

fork,m=1,...,r,i=1,2,...,0, j=1,2,...,0p.
2. Moreover, let us assume that

x® =" = npan®, (5.3.14)

fork=1,...,r,i =1,2,..., ng, which implies

r
B = dn® — 3" v (h)dng", (5.3.15)
m=1
vy =x® 4 Z YO ndy™, y®Pmimy £ o, (5.3.16)
m=1
where [1gdhg = 0. Then,

Mo(dh®. dn™) =0, (X, x"1=0 (5.3.17)

and bi-presymplectic one-forms (5.3.12) define a Liouville integrable system

i = Xl(k)@) = Hoﬂlgk)(g) = Hodhlgk)(éj)

fork=1,...,r,i=1,...,n.
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3. Additionally, if

y{" () = v m{™m), (5.3.18a)
v () = v ™), (5.3.18b)

where k,m = 1,...,r,i = 1,2,...,n,, then vector fields ka) (5.3.14) form

bi-Hamiltonian chains

x® =pan® = man®,, (5.3.19)
where
,
My =Moo+ Y X{™ A Y™, (5.3.20)
m=1
kkm=1,....,r,i=1,2,...,nrand n; + ...+ n, = n. The chain starts with

h(()k), a Casimir of I, and terminates with A,,’, a Casimir of IT;. Moreover, the
Poisson pair (ITg, I11) is d-compatible with respect to 2.
. Contrary, if

k
Yo h™) =0,

for all admissible values of k, m and i, chains (5.3.12) are bi-inverse-Hamiltonian
as p gk) =d hgk) and obviously X l.(k) are not bi-Hamiltonian according to violation
of condition (5.3.18b). Such Hamiltonians will be denoted by Hl.(k) according to
the notation from previous sections.

From (5.3.12) we have

k k
Q" 7" = Qv v,
k k
Oy = )

k k
Q0. vy = v v ).

Then, the first property (5.3.13) follows from

QP v =0, ®, v =o.

From properties of dual pair (I1g, €29), if Xl.(k) = Hodhl(k) then

Mo(dh{, dhf’) = 20X, x{").
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On the other hand as X fk) Y, ® 4 Yo (k)Y (m), where oz( ) are appropriate
functions. So the second property follows from the fact that

Q(x7. X{") = o v,
The property (5.3.19) is proved as follows

x® = nodn® = HQlY(k)

,
= Mo Todh?) + Y v®, (g™ x{™

m=1

(5.3.=18b) (Mo TTo + Z X(m) Y(m))dh(k)

m=1

= Mdh®,.

Moreover, I1p and I1; are d-compatible Poisson tensors provided that (5.3.18) are
fulfilled (see (5.3.8)—(5.3.11c)). We also have

r r
Midh{ = (Moo + Y X" A Y™ )dn®=Mo2 XE + Y vi™ (n) x ™

m=1 el
r r
PEY @i = 3T rR GG ")+ 3 v )X
m=1 m=1
r r
==Y PRI XM £ 3 v m®)xm L g,
m=1 m=1

As will be demonstrated in the next subsection, for Stickel systems condi-
tions (5.3.18) are violated, so the only case when Stiickel system has simultaneously
a bi-Hamiltonian and a bi-presymplectic representation is the case of co-rank r = 1,
when conditions (5.3.18) reduce to a trivial one (see examples from next section).

Finally we show that arbitrary Liouville integrable system (5.3.14), (5.3.17),
which has a bi-presymplectic representation on (2n-+r)-dimensional extended phase
space, has also quasi-bi-Hamiltonian representation on any symplectic leaf of its
Poisson structure I1p. Actually, from (5.3.12), (5.3.16) follows that

Modh®), = MepY), = Mo v Y

,
= o1 (X + Y v m§"™)vy™)

m=1
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,
= Mo Modh + > v ™) x{™

m=1

.
= Mo Modh + 3 ¥* (h§")Modh "™,

m=1

hence on a (2n + r)-dimensional extended phase space we have a quasi-bi-
Hamiltonian representation

,
Mpdh{® = Modh, =3 F*" Todn{™, (5.3.21)

m=1

where Ip = MR Mo, F*™ = ¥* (h{™) (compare with (5.1.26)).

Notice that both Poisson structures Ilg and I[1p = I1g2I1p share the same
Casimirs h(()k), so the quasi-bi-Hamiltonian dynamics can be restricted immediately
to any common leaf S. of dimension 2n

,
midh) = wodn), =" F " medn),  i=1..n,

m=1

where w1, m1 = mowimo, o are restrictions of Qp, I1p, I1g and hl(kg = hf:kl?,

respectively. As wj is closed, hence w( and 7| are compatible and we ‘deal with
a Stickel system whose separation coordinates are eigenvalues of the recursion
operator N = 7y h provided that N has n distinct and functionally independent
eigenvalues at any point of S, i.e. we are in a generic case. We will come back to
separable systems in next subsections.

The advantage of a bi-presymplectic representation of the Liouville integrable
system, when compared to bi-Hamiltonian ones, is that the existence of the
first guarantees that the system is separable and the construction of separation
coordinates is purely algorithmic (in a generic case), while the bi-Hamiltonian
representation does not guarantee the existence of the quasi-bi-Hamiltonian repre-
sentation and hence separability of the system in question. Moreover, the projection
of the second Poisson structure onto the symplectic foliation of the first one, in order
to construct a quasi-bi-Hamiltonian representation, necessary for separability, is far
from being trivial non-algorithmic procedure, as was demonstrated in the previous
section.

5.3.3 Bi-Inverse-Hamiltonian Representation of Stiickel
Systems

As was shown in the previous section, the Stickel Hamiltonians defined by
separation relations (5.1.13) admit on M the following quasi bi-Hamiltonian chains



234 5 Classical Separability Theory

in (A, ) representation

k k k.l 1 k .
rrldH;):rrodH;) ZF( 'wodH", Hlﬁklrl=o, k=1,....r, j=1,... m,
=1

(5.3.22)

with compatible Poisson tensors 7 and 7|

0 In 0 An . 1 n
= s = , AN,=d A, A
o <_In O) T (_An 0 ) n iag( )

and the expansion coefficients F’ ;k’l) (appropriate basic potentials) being solutions
of the set of linear algebraic Eqs. (5.1.17).

Now we show how to lift (5.3.22) to a bi-inverse-Hamiltonian representation on
the extended phase space. Let us consider the following symplectic forms on M

o — 0 -1, o — 0 —A,
=\, o) “"T\a, 0 )
Observe that (g, wp) constitutes a non degenerate dual implectic-symplectic
pair as wg = 7w 1, mo and w1 = mowim are d-compatible with respect to
wo and wo and w1 = womwiwo are d-compatible with respect to mo. Besides,

quasi bi-Hamiltonian chains (5.3.22) have equivalent quasi bi-inverse-Hamiltonian
representations (5.1.33)

o = wox), Zﬂ%xgw, <020 k=l =l m,
(5.3.23)
where
x = rodH®, aH® = wx®.

Let us lift the whole construction to the extended phase space
M— M:pn — (Ao, (5.3.24)

where ¢y, ..., ¢, are extra coordinates and dim M = 2n + r. Then, on M

wo 0 7o 0
w0—>§20=<000>, 710—>1'I0=<000>,
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where

0 (k)
, QoY =0
dck %0

kerQo = Sp(¥*), k=1,....r, v =
and

kerTlp = Sp{der}, k=1,...,r, Todey =0, YF(c))=8.

Obviously, (TTp, €20) is a dual Poisson-presymplectic pair on M. In the same fashion
we lift

w1 — Qip, 71— Mip, xP - xP=x® 07,

where kerQ1p = kerQo and kerI1;p = kerIlp. On M quasi bi-inverse-
Hamiltonian chains (5.3.23) take the form

r
(k) _ (k) (k,0) 0] ky _ _ T
QIDXi —Q()XH_I—E Fz Q()Xl, Xnk+l_0’ k=1,...,r, i=1,...,n.
=1

Let us define the following presymplectic two-forms
r
Qi =Qip+ Y dH Adey (5.3.25)
k=1
and the set of vector fields
.
v =x® + 3 F* Pyl (5.3.26)
=1
Then, we have

QOY-(k) —adH®

i+1 i+1
.
k k k,l )
— XY, = 2px + Y F 2
=1
r r r
) k k,l ) k,l )
=@ — Y dH" ndeyyP =3 FEY )+ 3 F P an?
=1 =1 =1

r r r
k k,l [ k
=0 =S F v = > v enan® + > v HPde
=1 =1 =1
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r r r
*kD) g g ko) 3 Om) (D) *kD) g g
+Y FEVan® - 3 Ay Yde + ) FAVdH]|

I=1 I,m=1 =1

—ar®,
as

iy = Z(dH(k)Adc Y\ =dan?,
k=1

k 1 k k,l
yPwEPy =0, vP@)=F*", v (ex) = 8

Hence, on M, differentials d Hl.(k) form a bi-inverse-Hamiltonian hierarchies

QY P =0
Qv =an® = o,y

: k=1,...,r (5.3.27)
QoY = dH,) =Y |

0=y

which start with a kernel vector field Yék) of Q¢ and terminate with a kernel vector
field Y\© of Q. Indeed

QI = @+ 32 dH A den ) + 3 FER)

m=1 m=1

r r
~ 3 FEman 4 Y EEman o,

what follows from (5.3.17), (5.3.25), (5.3.26) and the fact that QlDYék) = 0.
Moreover, €2¢ and €21 are d-compatible with respect to I, as

o211y = 21 pIly = Iip

which is a Poisson. According to conditions (5.3.18) vector fields X fk) are not
bi-Hamiltonian as Y;k)(cl) = F;k’l) # 0 and Yék)(Hl.(k)) = 0, which violates
condition (5.3.18b).
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In order to lift (5.3.22) to a respective bi-Hamiltonian representation on the
extended phase space M (5.3.24), one has to extend the original Hamiltonians H *)

HY - n = H(k)~|—ZF(kl) i=1,...,n,
=1

where functions F *D are appropriate potentials calculated from Egs. (5.1.17).
Then, on M, vector fields X ® Hodh(k) form a bi-Hamiltonian chains

Modh), = X\ =man®, j=1.2...m. k=1.._r

where

,
M =Mp+ Y X" Avy"”

m=1

is a Poisson tensor compatible with Iy one. Each chain starts with the Casimir of
Iy, i.e. Hék) = ¢k, and terminates with the Casimir of ITy, i.e. H,f,lf). The reader finds
the details of the construction in [31]. Poisson tensors [T and IT; are d-compatible
with respect to Q9 as

QolIT20 = Q011 po = QLip

is closed. As was proved in [29], bi-Hamiltonian chains (5.3.3) have no bi-
presymplectic counterparts as the conditions (5.3.18) are not satisfied. Indeed

as coefficients F l(k’l) are solutions of the set of linear algebraic Eqs. (5.1.17) and all
are different in general. The only exception is the case of co-rank one (r = 1), as
then (5.3.18) is trivially fulfilled.

Example 5.13 The bi-inverse-Hamiltonian of the Henon—Heiles system.
Let us consider the integrable case of the Henon—Heiles system considered in
Examples 3.6 and 4.1 with the following constants of motion

H =H= %pf+%p§+%xy2+x3,

Hy = Yypepy — yxpy + 452y + 0"
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On 5-dimensional extended phase space parametrized by (x, y, px, py, ) differen-
tials d Hy and d H, have a bi-inverse-Hamiltonian representation of the form

QoY =0

QoY1 =dH| = 1Y)

QoY =dH, = Q211
0=

where vector fields Y; are

Yo = (0,0,0,0, )7

27 _xys _-x)T

Yi = X1+ F1Yo = (px, Py, —3x% — éy
Y2 =Xo+ FaYo = (3yPy. yPx — Xpx, épf - éxyz,
3 2 2

—aPxpy = 30 = 3x%y. =)

presymplectic forms

00—-1 00

000 —10
Q=100 00],

010 00

000 00
0 —apy —x —py3xt4
2Py 0 —y O xy

Q= X %y 0 O Dx

24y 0 0 0 Py

—3x2—=1y* —xy —pr —py 0

are d-compatible with respect to the canonical Poisson tensor I1g dual to €2 one,

X; = Ilpd H; and expansion coefficients (5.1.17) F1 = Fl(l’l), P = Fz(l’l) are
respective basic potentials F; = _V1(2) =—x,In = —VZ(Z) = — iyz. The chain
starts with a kernel vector field Yy of ¢ and terminates with a kernel vector field

Y, of ;. On R* we have immediately

00—1 0
000 —1

=Q = s
@0=Rlr=11009 o

010 O
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1
w1 = Q21 |pa
R x 1

and the quasi-bi-Hamiltonian representation takes the form (5.3.22)

midHy =nogdHy — FimodH,, mdH,=—-—F,modH,

where
0 010
0 001 _1
=111 = = s
mo=Tolre =1 g9 =%
0 —-100
0o O 1x éy
0 0
w1 = oQMplgs = L2 = oW1 70,
—x —,y 0 ,py
_éy 0 _épy 0

Example 5.14 Consider the separation relations on a 6-dimensional phase space M
given by the following geodesic separation curve

T\A2 + Toh + T3 = yp?.

This curve corresponds to the geodesic motion for a classical Stickel system

(of Benenti type). As in this example » = 1, we use the notation Tl.(l) = T;.
The transformation to flat coordinates (x, y, z) of associated metric (see Sect.5.5)
follows from the point transformation

pr=x=—-A =22 =23,
py = sx*+y =212+ 4 %3,
p3 = yxy +z=—1"2%3

In the canonical coordinates (x, y, z, px, py, p;) Hamiltonians take the form

Ti = pxp: + 413,
_ 1 2 1 1 1.2
T, = pxpy + 24Dy + 2XPxPz — 2 YPyPz — 22P7> (5.3.28)

T3 =) ps + §x°Py + §°P2 + 3xpxDy + 502 p: — (4xY + 2Py p-.
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and admit a quasi bi-inverse-Hamiltonian representation (5.3.23)

w1X| = wpXy — FlawpX,
w1X2 = woX3 — Frwpx,

w1X3 = —F3woX|,

with symplectic operators wg and w1 of the form

_ 0—1I
wy =y = (13 03> i (5.3.29)

0 2py 3Pz 3% 5y 2
—%py 0 0O —-10 %y
—,p: O 0 0 —1,x

=2 : 53.30
T 1 0 0 000 4330
-3y 0 1 0 00
—z —3y—3x 0 0 0

and Hamiltonian vector fields x; = wodT;, i = 1, 2, 3. The expansion coefficients
Fl.(l’l) = F; are respective basic potentials F; = —Vi(3) = p;, i.e. the solution of
equations (5.1.17)

WP+ RO+ PA + =0, =123
which in flat coordinates are
Flzplzx’ F2:p2:}‘_x2+y, F‘:;:O':%:é-xy‘i_z

On the extended phase space M of dimension seven, with an additional coordinate
¢, the differentials d H; form a bi-inverse-Hamiltonian chain

QYo =0

QoY1 =dT) = 1Y)

QoY =dT, = Q1Y)

QoY; =dT3 = Q11
0=Q73,

with presymplectic forms

wo 0 w1 dT
Q = Q =
’ (00) P (—unﬂ 0)
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d-compatible with respect to

0 30
[ly=|-5500
0 00

and vector fields
Yo=(0,....,0,D), Yi=X;+FYy, i=123,

where X; = IodT; = (x;, 0)7.

Example 5.15 Consider the separation relations on a 6-dimensional phase space
given by the following geodesic separation curve

1133+ A2+ T =22+ ) + 10 = 12

representing geodesic motion for a classical Stickel system (this time of the non-
Benenti type). Actually it is the case (5.1.19) from the previous section when n = 3,
n1 = 2 and o (A) = 0. Using the coordinates, the geodesic Hamiltonians 7;, and the
functions o; from the previous example we find, according to (4.4.34) and (4.4.35)
forn =3, m = 3, that

and thus we see that the Hamiltonians Ti(k) are related to 7; (5.3.28) through

the Stéckel transform (4.4.28) (see Sect.4.4.3 for details). They admit a quasi bi-
inverse-Hamiltonian representation (5.3.23)

(1) (1 F(l Dy ( ) F(l 2) 2

w1X] " = WoX, woX; ",
o1xy) = —F Do F(l D wpx(?,
o1x? = —F@DgoxD _ 240, ®

with the presymplectic forms (5.3.29), (5.3.30) and Hamiltonian vector fields xgk) =

wod Tl.(k). The expansion coefficients, according to (5.1.17), are solutions of three
copies of respective equations

22+ P+ B+ FPV =0
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and
RE B+ o+ FEY) =0
for A = A1, A2, A3, i.e. from (5.1.20) we get

11 _ _p3 (L) _ _ P1P3 Q@0 _ 03
B =P1T e B=r P2’ £ o

1,2 _ 1 (1,2) _ py 2,2) _
Fy e’ ) e Fy Pz

On the extended phase space M of dimension eight, with additional coordinates ¢
and ¢y, the differentials d Ti(k) form a bi-inverse-Hamiltonian chains

(1)
Qor D = dT(l) Q Y(l) @l =0
0ty = Q Y(z) dT(z) Q Y(z)
Qv = dT(l) Q Y(l) )
= m 0=a¥”
0=QY,
with the presymplectic forms
@y 0 0 w41tV ar®
Q=0 | &= —@d1"T
0 _(dTl(z))T

d-compatible with respect to Iy and vector fields
v"=0,....0,,07, ¥ =0.....0,0,07, vy=x{"+ "y’ + FPy?,
Y(l) X(l) + F(l 1)Y(1) + F(l 2)Y(2) Y(2) X(2) + F(2 I)Y(l) + F(2 2)Y(2)

where again X(/) = HodT(/) (X(/) 0)7.

Example 5.16 Consider Hamiltonians with elliptic potentials, described in
Sect.5.2.1

_ I ¢ _8pr(ﬁ) _ 1 - azpr(ﬂ) k2 2 1 n pr(ﬁ)
HV_ZZ:|: aB; 4 Z 9808 ) pi+8 Z dﬂlaﬂ]x)f]]?,p]—i—v (%),

k=1,ksi i, j=Li#j
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where r = 1, ..., n. They form the bi-inverse-Hamiltonian chain

QoY =0
QoY1 =dH| = 1Y)

QoY, =dHy = Q1Y

0=Q1Y,
where
ip@x—ix@p—B—l—}lx@xa‘g;x)
0-1,0
Q=L 00], @@=| B- x®x 0 p
0 00
Vi (x)
—a -p 0
and
(X!
. 01,0
Y, = "o , X, =TodH,, Tlp=|-I, 00

o)
prB) = 4 iy P (1)

The presymplectic forms €21 and 2 are d-compatible with respect to 1 if and only
if the potential function V;(x) satisfies the Egs. (5.2.9).

5.4 Bi-Hamiltonian and Bi-Presymplectic Theory in R3

The simplest realization of the theory presented in previous two sections takes
place in M = R3. We consider Poisson bi-vectors and presymplectic forms which
in this case have a particularly convenient description. In consequence we get a
simple condition for respective compatibility. We analyze bi-Hamiltonian and bi-
presymplectic chains with particular care and find conditions for their equivalence.
We illustrate that case by a few instructive examples.
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5.4.1 Poisson and Presymplectic Structures in R3

In R3, parametrized by coordinates (¢!, ¢2, ¢%), any Poisson bi-vector IT can be
represented by the following form [5]

- - 0 wozF —udrF
MY = pue™®*{F =M= | —puhF 0 wudF|. (5.4.1)
U0 F —po F 0

Here u and F are some differentiable functions in R3 and €/* is a Levi-Civita
symbol

0 when some indices coincide
€/®* =1 1 for even permutations of i, j, k
—1 for odd permutations of i, j, k.

Note that for the above Poisson tensor we have I1d F = 0 that is the kernel of IT is
spanned by the form d F'.
In order to prove the representation (5.4.1) put I1'2 = u, I13! = v and 11> = w,
respectively. Then the Jacobi equation (3.2.3) takes the form
ud1v —vdiu + woru — udrw + vozw — wazv = 0. (5.4.2)

First, assume that u # 0, let «k = v/u and & = w/u, then Eq. (5.4.2) can be written
as

ik — 02& + k0336 —&0d3 =0,
or in a more suitable form
(01 —£03)k — (02 —KkD3)E = 0. (5.4.3)
Introducing differential operators
Dy =01 —§03, Dy=10,—k0s,
one can write Eq. (5.4.3) as

Dix — D& =0. (5.4.4)
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If (5.4.4) is satisfied, it is easy to show that the operators D and D, commute and
. . -1 =2 =3
hence there exist new coordinates (¢ , ¢, ™), such that

D) = 321, Dy, = 852. (5.4.5)
Let F be a common invariant function of D; and D,
D\F = DyF =0, (5.4.6)
. -1 2 =3 .
then the coordinates (¢ , {7, ¢7) are given by
-1
¢ =¢, U= T =F
Moreover, from (5.4.6) we get

_ o F _ o F

= , k= . (5.4.7)
3 F 3 F

3

. . . . . -1 =2 =3 .
Using (5.4.7), the entries of matrix IT, in the coordinates (¢ , ¢, { ), can be written
as

u=puhF, v=wuhF, w=pndkF. (5.4.8)

Thus matrix IT has the form (5.4.1).
So far we assumed that u # 0. If u = 0 then the Jacobi equation (3.2.3) becomes
simpler

vo3w — wdzv =0,

which has the simple solution w = ve (¢!, ¢%), where ¢ is an arbitrary differentiable
function of ¢! and ¢2. This class is also covered by the general solution (5.4.1) by
letting F be independent of ¢3.

Let Poisson tensors I1p and I be given by (Ho)i/ = /Loei/kakHo and (Hl)U =
Mlei/ ko Hy, where o> iy and Hy, H; are some differentiable functions. Then Iy
and IT; are compatible if and only if there exists a differentiable function ® (Hy, H;)
such that

O, @

5.4.9
Ho D11y ( )

M=

provided that 9y, ® = 0®/0H; # 0 and 9y, ® = 0P/0Hy # O [5]. Indeed,
compatibility means that the linear combination of I1p and IT; has the form (5.4.1).
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Let us consider the Poisson structure (5.4.1) with F = ®(Hy, H;). Then
. - od od
I = ue* F = ue/*y o H, WH
e 0k He" o 8H0k 0+8H1k 1

3D PYOR
= Tk H ko H
MaHoe k o—HLaHlé k111,

hence

ad P

MO:M&H@’ M =M3H1

and after elimination of i we get condition (5.4.9).

For example, it follows that a Poisson tensor I1p, given by u and a function Hy,
and a Poisson tensor I, given by —u and a function Hj, are compatible. One
should take ® = Hy — H;.

The presymplectic forms in R? are described in the following way. Any closed
two-form  in R3 has the form

0 vY? —vy?
Qj=vepY == -vr® 0o wr! |, (5.4.10)
vY?2 —vy! 0

where v is a differentiable function and Y = (Y L y2 y3 )T is a vector, such that vY
is a divergence free vector

divvY = 8;(vY") =0 <= vdivY + Y (v) = 0. 5.4.11)
Equation (5.4.11) has also a strong solution
divY =0, Y(v) =0. (5.4.12)
Note that for the above presymplectic form we have QY = 0, which means that the
kernel of €2 is spanned by the vector Y. A particular case of (5.4.10) for v = 1 was
considered in [46].
Next, let us consider a dual pair. For a Poisson tensor [TV = pe"/ korF and a
presymplectic form €2;; = ve;jx Y* the pair (IT, Q) is a dual pair if and only if

Y(F)=Y'9,F=1, v=—u". (5.4.13)

Indeed, the form €2 is dual to the Poisson tensor IT if the following partition of the
unit operator holds

I=TIQ+Y ®dF.
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The above equality is fulfilled under condition (5.4.13), as

(MQ): = pve e Fry™ = po kst — siskyFry™

m
= uvFY" — pvF ks,
where we used the following property of the Levi-Civita symbol
eMgjsm = ik — 8ol . (5.4.14)
C_(_)nsider a dual pair (ITo, Q0), where the Poisson tensor ITj is given by (ITg)" =
uoe’/k Ok Ho and the presymplectic form Qg is given by (0)i; = —uy 1eijk Yé‘ .

Then, the Poisson tensor ITj, (Hl)i/ = MleijkBkHl, is d-compatible with the
Poisson tensor I if

Yo <“1 YO(H1)> —0. (5.4.15)
Ho

The condition (5.4.15) follows from the fact that the two-form

7
QoI Qo =" Yo(H)
Mo

is closed under condition (5.4.15) which follows from (5.4.12).
Consider the same dual pair (Ilp, €2¢9). Then, the presymplectic form €,
(821)ij = vi€ijiY lk , 1s d-compatible with the presymplectic form g if
Y1(Hp) # 0. (5.4.16)
The condition (5.4.16) follows from the fact that the bi-vector

[ToS21TTp = povi1 Y1 (Ho)Ip

is a Poisson if Y1 (Hp) # 0.

5.4.2 Bi-Hamiltonian and Bi-Presymplectic Chains in R3

Suppose we have two compatible Poisson structures I1p and I1; in an open domain
of R3, given by

(M) = we* & Hy and ()7 = —pwe* e Hy, i, j=1,2,3.
(5.4.17)
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The Casimirs of the 1y and Il are d Hy and d H respectively. Then we can consider
a bi-Hamiltonian chain

I[ModHy =0
IMogdH = X =T111dHy (5.4.18)
0=1I1dH;.

It follows from the fact that

(Tod Hy)' = e (3 Ho) (3 Hy),
(TidHo)' = —p e (3 H1) (0 Ho) = pe"* (3 Ho) (3 Hy).
From the construction it follows that in R3 any Hamiltonian vector field X is
simultaneously a bi-Hamiltonian.
Moreover, if the presymplectic form Q, given by (L20);; = —M_leijk Yk, isa
dual to Poisson structure ITg with additional condition (5.4.15)
Yo(Yo(Hyp)) =0, (5.4.19)
then the pair (ITp, IT1) is d-compatible with respect to €2p.

Consider closed two-forms Qo and €21 in an open domain of R3, given in terms
of vectors Yy, Y1 and a function v by

(Q)i; = veijxY§ where (Y =0, i,j=1,2,3 (5.4.20)
and

(Q1);j = —veiYf where (Y[) =0, i,j=1273. (5.4.21)

It is easy to see that in R? any two such presymplectic forms give a bi-presymplectic
chain

QoY =0
QoY =8 =Y (5.4.22)
0=Q1Y;.

Again it follows from the fact that

(QoY1); = VgijkY(;chj,

(Q1Y0); = —veijr Y{Y] = vein Y§ Y.
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If a Poisson tensor I1p given by 1'[6] = —i €% 3, Hy is dual to Q¢ and such that
Y1(Hp) # 0, then ¢ and €21 are d-compatible with respect to ITp.

For a d-compatible bi-Hamiltonian chain (5.4.18), (5.4.19) we can construct a
corresponding bi-presymplectic chain. Take a pair of presymplectic structures in
the form (£20);; = —/L_léijkYk, Q)i = /L_lé,'jlek where

Y1 = X+ Yo(Hy)Yp. (5.4.23)

The two-form €2 is presymplectic dual to ITp and the 2-form €2 is presymplectic
as

div(u='y1) = div(e ™' X) + div(Yo(H1)u ™ Yo)
= div(u™'X) + div(e ™ Yo) + 1 Yo(Yo(Hy)) = 0.
They form a bi-presymplectic chain (5.4.22) with

B = QoY1 = QX = QllopdH = (I —dHy® Yo)dH, = dH| — Yo(H1)d Hp.
(5.4.24)

For a d-compatible bi-presymplectic chain (5.4.22) we can construct a corre-
sponding bi-Hamiltonian chain provided that

X =TIy = Ipd Hy, (5.4.25)

where Iy, given by I"I:)J = —11) €% Hy, is dual to Qg and such that ¥; (Hp) #
0. Following previous considerations, every Hamiltonian system in R has a bi-
Hamiltonian representation. Thus the vector field X = ITod H; can be also written
as X = I11d Ho, where (I1))" = ! /g, H, fori, j = 1,2,3.

Relations (5.3.18)—(5.3.20) from the previous section also give the bi-
Hamiltonian representation of the vector field X. Let us show that these two
representations coincide provided that

Yo(H1) = Y1(Hop). (5.4.26)
According to (5.3.20)
M) = Moo+ X A Yo (5.4.27)
that is

Y = LYi(Ho)e ™ o Ho + (X'Y] = XT¥Q). i, j=1,2.3,
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The property (5.4.14) allows us to write
X'Y] - X7Y] = "Wy, Wi = g4y XY
and
My = —!¥i(Hoe ™ o Ho + €7 Wy = €7 (= L vy (Ho)ax Ho + Wi).
Since X! = — iei/knléajHl, we can put
Wi = eprs XY = = Lepnse’™ (3 Ho) (3 H) Y = — | (8181 — 8180)(3; Ho) (8 HD)Y{
= — ! Yo(H)dHo + | Yo(Ho)dHi.
Using the above equality for Wj and condition (5.4.26) we get
Y = 1yi(Ho)e o Ho —  Yo(H) eV o Ho + e oy Hy = el o Hy.
Finally, we show that there might exist presymplectic chains that do not admit

a dual bi-Hamiltonian representation. Consider closed 2-forms ¢ and €21 in R3,
given by

0-10 0 c¢—-b
Q=11 00], Q=|-—c 0 a
0 00 b—a 0

where a, b and c are the functions of x1, x> and x3. Their kernels are spanned by
vectors Yo = (0,0, 1) and Y1 = (a, b, ¢)' respectively. Since divY; = 0 then we
have

d1a + drb + 93¢ = 0.
Let us take a Poisson tensor ITg in the form

0 03Hy —02Hy
I[To= | —93Hy 0 01Hy |,
drHy —01 Hy 0

where Hj is an arbitrary function of ¢ 1, ¢ 2 and ¢ 3If 03 Hp = 1, then one can show
that ITp and €2 are dual and 2¢ and €2; are d-compatible with respect to I1p and

Hy =3+ hoZ', ¢2). (5.4.28)
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The forms ¢ and 21 create a presymplectic chain

QYo =0
QoY1 =8 =211 (5.4.29)
0= 17,

where 8 = (b, —a, 0)".
Now, let us consider a vector field X

X =Top = (a,b,0)".

We find that an additional condition

X =TIlopdH;,
gives
a= hH — (0oHy)(0z3H1), (5.4.30a)
b= —01H; + (01 Hy) (03 Hy), (5.4.30b)
ad1Hy + b dyHy = (31 Ho) (02 H1) — (32Ho) (31 Hy), (5.4.30c)

and from the constraint (5.4.26) we get that
03Hy =a 0 Hy+boryHy+c. (5.4.31)

Then, using a and b from the Eqgs. (5.4.30a) and (5.4.30b)respectively we show
that (5.4.30c¢) is satisfied. Moreover, using the identity (5.4.30c) in (5.4.31) we get

¢ = 03Hy — (01 Ho) (02 Hy) + (32 Hp) (91 Hy). (5.4.32)

As a summary we are left with the Eqs. (5.4.30a), (5.4.30b), (5.4.32) for a,b, and
c. When we use a, b and c in (5.4.29) we obtain that

37H, = 0. (5.4.33)

This is nothing else but the d-compatibility condition (5.4.19),1i.e., Yo(Yo(H1)) = O,
of the Poisson tensors I1p and IT;. Equation (5.4.33) means that

Hi = hi(¢", ¢%) Ho+ ha(c', %) (5.4.34)
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where i1 and h; are arbitrary functions of ;1 and ;2. Using (5.4.34) and (5.4.28)
we get

a = Hooyh + d0xhy = {382/11 + 0xhy + foohy,
b= —Hydithy — d1hy = —¢>d1hy — d1hy — fdihy,
c=h1 —ad1Hy—bdorHy=hy —adi f —borf.

From the above equations follows immediately that a bi-presymplectic chain
(5.4.29) has a dual bi-Hamiltonian chain only in the case when functions
a,b and c are linear with respect to ¢3. On the other hand, arbitrary three
functions h1(¢', ¢?), ha(c', ¢?) and f (¢', ¢?) determined all bi-presymplectic
chains (5.4.29) which have dual bi-Hamiltonian chains.

Observation 10 Summarizing the results of this section, first observe that any
Hamiltonian system in R is simultaneously bi-Hamiltonian with respect to a
pair of compatible Poisson bi-vectors (5.4.17) and belongs to the bi-Hamiltonian
chain (5.4.18). If in addition Poisson bi-vectors are d-compatible then there exists
a related pair of d-compatible presymplectic forms (5.4.20), (5.4.21) and related
bi-presymplectic chain (5.4.22), (5.4.24). In particular, when Yo(H1) = O the
chain is bi-inverse-Hamiltonian. The opposite is not always true, i.e. once we have
a one-form in a bi-presymplectic representation (5.4.22), there exists a related
bi-Hamiltonian chain (5.4.18) provided that extra condition (5.4.25) is fulfilled.
Finally, observe that any Darboux coordinates are separation coordinates.

Example 5.17 Consider the harmonic oscillator in the extended phase space R,
where it has both bi-Hamiltonian and bi-inverse-Hamiltonian representations. In
Darboux coordinates (x, p, c) the first (canonical) Hamiltonian representation takes
the form

X p 010
p| = -0k |=[-100]d(3p?+}e0?) = MoaH
c/, 0 000
where Ilp is generated by puy = 1 and Hy = c¢. The second Hamiltonian
representation
x p 0 0 p
p =| —?x | = 0 0 —w?x |de=11,dHy
2
c/, 0 —pwx 0
is generated by 4, = —1 and H; = ; (p2 + a)zxz). Poisson tensors I1p and I are

d-compatible with respect to the presymplectic form

0-10
Q=100
000
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generated by vp = —1 and Yy = (0,0, 1)7, dual to ITy. So, according to (5.4.23),
the second presymplectic form

0 0 w’x
Q= 0O 0 p
—w?’x —p 0

generated by vi = 1 and Y| = (p, —w?x, 0), is d-compatible with £ with respect
to ITp. Both presymplectic forms lead to the bi-inverse-Hamiltonian representation
of a harmonic oscillator

w*x 0-10 p
dlh=| p |=[1 00| —’x | =Y
0 000 0
(5.4.35)
0 0 o 0
= 0 0 p 0] =Y.
—w?’x —p 0 1

However, the constructed representation does not fit to the schema from the previous
section as the reduction procedure of I1; onto symplectic foliation of Iy along
the transversal distribution Z = ker Q2o = Yp does not reconstruct separation
coordinates A! = x,uu; = p. Simply o, = Qilge = 0, 71 = wowimg = 0
and hence N = m1wo = 0. In order to fit in the schema presented in Sects. 5.1 and
5.3 one has to extend the harmonic oscillator Hamiltonian H; by an extra term

H = é <p2 ~|—a)2x2) —cx.

For the extended harmonic oscillator its bi-Hamiltonian representation takes the
form

X p 010

p| = -*x+c|=x=|-100 d(ép2+éw2x2—cx>=H0dH1
c/, 0 000
0 X p
=|-—x 0 —w’x+c|dc=TdH (5.4.36)

—pwix—c 0
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where Ilp is generated by g = 1,Hy = c and Il by u; = —1,H =
é ( Pr+ w2x2) — cx. The related bi-presymplectic representation takes the form

w’x —c 0-10 p
B = p =100 —w*x+c | =Qo1
0 000 —X
0 —x w*x — ¢ 0
= X 0 )4 0] =11

—

—w’x+c—p 0

where Q is generated by v = —1,Yy = (0,0,1) and Q1 byv = 1,71 = X +
Yo(H)Yo = (p, —w*x + ¢, —x)T. Notice that B # d H; so it is not a bi-inverse-
Hamiltonian representation. We make it bi-inverse-Hamiltonian putting ¢ = 0

w’x 0-10 p
dH) = p =[100]| -0’ |="
000 —X
—x w’x
= X O = Q1Y
—w?x —p O 1

as new 21 is still a presymplectic two-form, generated by vi = 1,Y] = X +
Yo(HDYy = X = (p, —w*x,0)T. Notice that there is no related bi-Hamiltonian
representation (5.4.36) of a standard harmonic oscillator, as a bi-vector

0 x p
—x 0 —w?x

—po’x 0

is not Poisson any more. The reduction of €2¢ and €2; onto any symplectic leave of

Iy gives
won — 0—-1 o = 0 —x
1o ) T xo0

and hence the recursion operator

N = mowi =a)gla)1 = (gg)

reconstructs trivial information that A! = x.
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In the presented example bi-Hamiltonian and bi-inverse-Hamiltonian represen-
tations of a harmonic oscillator were irrelevant, as from the beginning the system
was written in separation coordinates. In the next examples both representations are
crucial for the construction of separation coordinates.

Example 5.18 Consider the Lorentz system [5, 141]

y
v = —xz
z xy

t

It admits a bi-Hamiltonian representation (5.4.18) with Hy = iz — ixz, o =1
and H; = y2 + 72, u; = —1,s0

ol o
.. . 4
Hg:s”kakHo:}Ho: —}‘ O—éx
0,xr 0
and
- - 0 —2z2y
Ny ="y =M= 2z 00
-2y 0 0

The form ¢ dual to ITp and compatible with IT; is given by

0 y-8
Q=—|-y 0 «a],
b—a 0

where the vector Yy = («, B, )7 . The conditions on «, 8 and y are
divYo = dya + 3B+ d.y =0, Yo(Ho) = Jy — sxa =1
One can find €21 having determined Y from (5.4.23)
Y1 = (3y +2am, —x 2+ 21, xy + 2yn)

where n = é Yo(H1) = By + yz. We have an additional constraint on «, 8 and y
coming from div Y1 = 0 which reads

Yo(n) = adyn + Boyn + yd.n =0.
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A simple solution for the above presymplectic structures is givenas o = —2/x, 8 =
—2y/x2, ¥ = 0. Thus we have a pair of presymplectic forms given by

—2x7!
vo=-—1, Yp= —2yx72
0
and
1y +8y%x 3
vi=1, Y= z+87x73 |,
xy
)
0 0 —2yx2
(Q0)ij = —&ijk Y6 = Qo = 0 0 2!
2yx—% —2x~! 0
and

Q)i = 8ijkY1k =
0 Xy —z—8y3x73
Q) = —Xy 0 ;y+8y2x’3
7+ 8y3x3 —éy—Syz)c’3 0

are d-compatible presymplectic forms with respect to ITy. According to Observa-
tion 9, the reduction of the Poisson structure I1; onto symplectic foliation of Il
is given along the distribution Z = ker Q¢ = Yy. So, following the procedure
described by (5.1.4)—(5.1.44), we find that

F(\) = Yo(H (L) = Yo(Hoh + Hy) = —dx2y2,
—2x_2y

Y = Hod(Yo(H1) = | —2x73y? |,
—4x~ 1y

S (YHODY
Y2(H (%))
and the transformation to separation coordinates (AL, U1, c) is as follows

Al = 4x_2y2, nu = —éx_ly - }‘xy_lz, c=Hy= }‘Z - ixz.
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The respective separation relation takes the form
1 12 Lo
Ho)" + Hy =41 py — 64@ )~.

As another example let us come back to the Euler top from Examples 5.4 and 5.8.

Example 5.19 Both Poisson structures of Euler top from Example 5.4 are generated

by the formula H;j = ulei~/k8kH1,l = 0,1, where ug = —1, Hy = éw% +

éw% + éw% and u; = 1, H = éalw% + éazw% + §a3w%. The bi-presymplectic
representation of Euler top can be found by an analogical procedure as in the case
of the Lorentz system. Thus we have a pair of presymplectic forms given by

]
2., 2
w]+w;

vo=1, Yy= 2
0 s 0 w%_'_w%

0
and

(alw%Jrazw%)a)l
(w%er%)z
(@10} +ar0})wy
(@} +w3)?

(a2 — ap)wiw

(a3 — ax)wrws +

vi=-1L N=1( -aww+

The transversal distribution Z, which appeared ad hoc in Example 5.8, is just equal
to Yy from the above construction.

5.5 Direct Transformation from Separation to Flat
Coordinates

In previous sections we constructed in a systematic way a transformation from
original coordinates (x, p) (flat in particular) to separation coordinates (A, ), pro-
vided a bi-Hamiltonian or a bi-inverse-Hamiltonian representation of the considered
Liouville integrable systems is given. The presented construction of separation
coordinates is general and covers all Stickel systems. Nevertheless, there exists
an alternative approach to the problem. Actually, we can start from the system
written in separation coordinates, constructed from a given separation relations,
and then find the transformation to some distinguished coordinates in which all
commuting Hamiltonians take a particularly simple form. For the class of systems
considered in previous chapters, flat coordinates of particular Stickel matrices are
such distinguished coordinates.
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The search for flat coordinates for systems that we a priori know are flat is not
an easy task. In this section we construct separable flat systems of Stickel type
directly from scratch i.e. from an appropriate separation curve or an appropriate set
of separation relations and then find the transformation to flat coordinates [44, 192].
We also establish the signature of metric tensors of these systems as in the majority
of cases we deal with pseudo-Euclidian spaces. Moreover, we present in these new
coordinates the explicit form of many important geometric objects connected to
these flat Stickel systems like metric tensors, Killing tensors or separable potentials.
Notice, that once we construct the set of Stickel systems in some flat coordinates,
we can construct all other Stickel systems in the same coordinates, using the Stickel
transform described in the previous chapter.

Our construction contains in particular two known cases of pure Euclidean
metrics, when separation coordinates are either Jacobi elliptic coordinates [157]
or Jacobi parabolic coordinates. All other cases are related with pseudo-Euclidean
metrics.

In the following section we consider separation curves (4.3.14) in the form

n
S H T = L0 06y = B (L2 +4F), meNkez
j=1
(5.5.1)

where

Bu() =) 2" "By =[] (- 8;) (5.5.2)

j=0 j=1

is a real polynomial of order m in A with possibly complex roots ; that are all
assumed to be different. A particular case of degeneracy will be considered in a
separate subsection. The real coefficients pi.m) (B) are thus Viete polynomials of the
possibly complex constants 81, ..., 8,

P (B) = (=1)f > By Bs; J=1,....m. (5.5.3)

J
I<si<sy<...<sj<m

The Hamiltonians H; generated by the separation curve (5.5.1) were considered in
Sect.4.3.2. Let us remind that Hamiltonians H; have the form

Hi="KiGu+ U i=1,....n, (5.5.4)
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with the metric tensor G and the Killing tensors K; given explicitly through

Al Al B, (\! B,, (A" o
G:diag(f( ),...,f( )>:diag( ( ),..., ( )>, A= [T =AY

Ay Ay Ay Ay i
. . (5.5.5)

. (9q’ ag"\ .
K,':—dlag<a)\l’...’a)hn> i=1,...,n
Here and below ¢/ = ¢’(1) are Viete polynomials (4.3.18) in the variables
A

g') = (=)} > AU i=1,...,n (5.5.6)

1<si<sy<...<si<n

(cf. (5.5.3)) that can also be considered as new coordinates on the Riemannian
manifold Q and in the previous chapter we referred to them as Viete coordinates.

As was mentioned in Sect. 4.3.2, the metric (5.5.5) is flat only for m < n and is
of constant curvature for m = n + 1. For higher m it has a non-constant curvature.
Thus, it is meaningful to seek for flat coordinates for Benenti systems only in case
whenm =0, ..., n.

Let us now turn our attention to the separable potentials U; (1) in (5.5.4) in the
Benenti case. The potentials U; (1) depend on the constants m and k (as well as
on the dimension n) so will be denoted by Ui(m’k), while the column vector with

components Ul.(m’k) will be denoted by U %)

T
0 _ (ymb "
v = (U™, UYL

By solving (5.5.1) with respect to H; one obtains that

m

(m,k) __ (m) (m—j+k)

um _ij BV =i (5.5.7)
j=0

where the column vector V® represents the so called basic separable potentials
related to o () = AK which was constructed recursively (4.3.22) by

y® = phky© (5.5.8)

with the recursion matrix F (4.3.20) of the form

F= _? (5.5.9)
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and with V@ = (0,0,...,0, 1)7. Note that the formulas (5.5.7)—(5.5.9) are non
tensorial so are the same in an arbitrary coordinate system. Note also that form = 0
we have U,(O’k) = V,(k) so that for m = 0 both families of potentials coincide. The
potentials U are naturally linear combinations of the basic separable potentials V
determined by our specific choice of the function o (1) in (5.5.1). This choice is
motivated by the fact that the potentials U in flat coordinates generalize the well
known potentials as it will be demonstrated below.

5.5.1 Flat Coordinates for Real Non Degenerate Case

In this subsection we construct flat coordinates of G in the case where all the roots
Bis ..., By of By (A1) are real and distinct.
Consider thus the following generating function [192]

n

[Te-»)

n—m m i
o1 H2 i=1
domial — ey (D™ (5.5.10)
j=0 4 -1 Bj -
: : [Tc-8)
j=1
where ¢ = 41 or ¢ = —1 and where the identity is taken with respect to the
variable z. As will be shown below, this function defines locally an invertible map
between variables (Al, el A") and new variables (x!,...,x™, al, ..., a" ™) on

the flat Riemannian manifold Q whereas the choice of the sign of ¢ is governed by
the actual sign of the variables in a given region of Q. A simple way to see this
is to multiply both sides of (5.5.10) by B, (z) = ]_[';’:1(1 — B) and compare the
coefficients of polynomials on both sides of the equation. We find that ag = 1, so in
the particular case m = n the generating function (5.5.10) attains the form

H(Z—)»j)
1 «H? =1
1—48 - B, =",
= Tle-8p
j=1

n

(5.5.11)

which in the regions of the manifold Q when ¢ < 0 is nothing else than the well
known transformation (see [157]) between the coordinates (xl, R x”) and the

Jacobi elliptic coordinates (Al, R A”).
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In the case m = n — 1 the function (5.5.10) becomes

C Tle=w
1 & &) =

z~|—a1—4£ =,
[[c-8)

j:1Z_'BJ
j=1

which is commonly known as the generating function for transformation
between the coordinates (xl, o xnh al) and the Jacobi parabolic coordinates
(Al, RN A”). In the case m = 0 we consider instead of (5.5.10) the generating

function of the form

n

Y el = ﬁ(z — ) (5.5.12)

j=0 j=1

so that a’ () = ¢’ (1) i.e. the variables (a!, ..., a") coincide then with the Viete
coordinates (5.5.6) while the variables x; are not present at all. One can say that this
function is a variant of (5.5.10) with both ¢ and all §; not present.

Let us now investigate the map between coordinates (Al, R A") and
(xl, x™moagl a"~™) in a general case. Such a map is given by

[T -5

(x))? = —4e"=! L j=1,...m (5.5.13)
[ -80
k=1
k)
al q'W) —p1(B)
: -M (5.5.19)
anfm qnim()\) - pn—m(ﬂ)

where M is a square matrix with the following entries

(m,m—14i—j) . .
My =1V forj =i Githi,j=1,....n—m
0 for j > i
where Vl(m’m71+i7j ) are basic separable potentials given by (5.5.8) with the

dimension n replaced by m.
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To show (5.5.13) let us first multiply both sides of (5.5.10) by By, (z) = [ [, (z—
B) receiving

k)2

= ]‘[( — 5. (5.5.15)

B (2) i kR — sB (@) Z (x

k=0

Then, let us insert z = f; in (5.5.15) and since By, (B ;) = 0 we obtain

- e(x/)2 H(ﬂ, B = H(ﬂ, )
k#]

from which (and since 1/¢ = ¢) we obtain (5.5.13). The formula (5.5.14) can be
obtained by comparison of coefficients of polynomials in (5.5.15).
By a direct comparison of the coefficients in (5.5.15) one can also find that

n—m
ap
i =mm) Y2 i =1 5.5.16
Z a—l—ez 2. (x%) . ....n (5.5.16)
j=0 j=1 J
which represents the map from the variables (xl,... x™, al ...,a"””) to the

Viete variables (5.5.6) and where we use the notation p; 0 fori < O or for
i >mandpy = 1.
Let us now move on to the problem of finding flat coordinates for the metric G

generated by (5.5.1). In order to do it consider the polynomial map [44]
ai=ri+‘1‘erri_j, i=1,....n—m (5.5.17)

from the variables (rl, c M) 1o (al, ...,a"™™). This map is invertible due to
its triangular structure and its inverse is also a polynomial map. Then, combining the
maps (5.5.13)—(5.5.14) and (5.5.17) we find the map between variables AL
and (xl, xmopl LTy,

We are now in position to formulate the following statement. The metric G

defined by (5.5.5) in coordinates (xl, xmopl =) attains the form
G = ( el Omx(n—m) ) (5.5.18)
0(n—m)><m J(n—m)x(n—m)

where [« denotes the k x k identity matrix and Ji«x denotes the k x k matrix
given by (Jkxk);j = 8ik—j+1 i.e. with entries equal to 0 everywhere except on the
antidiagonal where all the entries are equal to 1.
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The form (5.5.18) can be proved by direct but tedious calculation. Thus, the vari-

ables (xl, xmopl r"’m) as a whole are flat but not orthogonal coordinates
for the metric G. Actually, they consist of the orthogonal part (xl, cee xm) and the
not orthogonal part (rl, .. .r"’m). It is now elementary to find the transformation
from coordinates (xl, xmopl r"””) to the pseudo-Euclidean coordinates

for G. However, we skip that transformation as formulas for Killing tensors and
potentials become much less transparent in orthogonal flat coordinates.

The signature (n4,n_) (2.1.3) (where ny and n_ is the number of positive
respective negative eigenvalues of G) of the metric G in the considered case is given
by

n—m n—m : .
(n+,n_)=<n—[ ) i|,|: ) i|> in the region where ¢ = 41

(ny,n_) = (n —m— [n —2m:| , |:n —zm:| —i—m) in the region where ¢ = —1

where [«] denotes the integer part of the number «. This means that the metric G is
Euclidean (in the appropriate regions, where & = 4-1) only in the elliptic case and in
the parabolic case, i.e. for m = n and m = n — 1, otherwise it is pseudo-Euclidean.
Note also that in the case m = 0 both expressions coincide.

We will now investigate the structure of the Killing tensors A; = K;G and
separable potentials V in flat coordinates el o, x™ rl L P T™Y in the elliptic
case (xl, ..., x"") and in the parabolic case (xl, o xh r). In the case of arbitrary

m the formulas become very complicated and non-transparent, so we only present
some results concerning the simplest separable potentials.

Let us start with the elliptic case m = n. The form of the (0, 2)-type tensors A,
in flat coordinates can be calculated by the usual transformation rules for tensors

and in flat orthogonal coordinates (xl, R x”) attains the form

192

d SR
4 9B;0B;

G 1 92

Al =gl N O (k2 (5.5.19)
0B; 4= 0pi0p;
ki

(no summation over repeated indices is performed here) where p, =
pén)(ﬂl, ..., B,) is given by (5.5.3). Notice that matrix elements of tensors A,
are quadratic functions of Cartesian coordinates.

It is not possible to present the general formula for the potentials U,("’k) in flat
coordinates but we can at least present a few first potentials with low k. Let x =
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(xl, R x")T and by (-, -) we denote the usual scalar product in R". Further, denote
(n) (n)
0 0
Iy = —diag Ps R Ps s=1,...,n
3181 aﬂn

B = diag(By, ..., B,)

W =1+ }e(x,B ')
where p;, = 0 for s < 0 and s > m. In the above notation, where (5.5.16) reduces
to

a0 =p;(B)+4¢)

j=1

90.
Pl i=1,....n (5.5.20)
28,

after some calculations we obtain
ur? =le (st, B2x> + [k (Tsx, x) (x, Bx) + L e(Tox, x)(x, x)?
+ 16 (x. x)(Tsx, Bx),
U = Je(Tsx, Bx) + g (Tsx, %) (x, %),

Uim? = le(Tyx, x),

U = 1g (st,wlj_lﬂ ’
un=2 = V;Z (}‘s (st, B*%c) + L (er, B*lx) (x, B~
— o (Moo, 1), B720)?).
For a higher positive or negative k these potentials quickly become very complicated

functions of their arguments. Since I'1 = I and I'g = 0 (due to (5.5.3)) we have in
particular

Ul("’2) = }18 (x, B2x> + é(x, Bx) (x,x) + 6148()6, x)3,
U = le(x, Bx) + |k (x. x)%,

,0
U = le(x, x),

—1
n-1 _ 1. (x,B7x)
U =iy
-2
-2 1 (., B7%x)
U1 = ,¢ .

w2
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This family of potentials, known as elliptic separable potentials, has been
obtained for the first time in [264] (see also [3]). The potential Ul(n’l) is the well

known Garnier potential while U 1("’0) is just a harmonic oscillator. Note that both in

the Killing tensors A and in the potentials Us(”’k) the sign ¢ is present only at terms
with odd powers of (x, x) which is clearly due to (5.5.13).

Let us now turn to the parabolic case m = n — 1. In this case the structure of
the Killing tensors Ay in flat coordinates (x Lo xmL r) is more complicated and
attains the form

g 1%y
AT 0P i =1, n—1,
49B;08;
. aps 12 82p,_ dps_
Al = g0 NP kg O -
0B 4= 0B,0By i
ki
. . 1dp._;
Ain—ani = OPselyd oy,
‘ 2 0B
AP = ps1(B),
(again, with no summation over repeated indices) where p;, = pﬁ"il) Bis--» Bu_1)

is given by (5.5.3). Also in that case matrix elements of tensors A, are quadratic
functions of Cartesian coordinates.
We will now construct the potentials Us(nfl’k). Let us slightly change the

notation:
(n—1) (n—1)
d d
[y = —diag Ps R Ps s=1,...,n
3181 aﬂnfl

B =diag(By, ..., Bn_1):
W=r+ }18 (x, B_lx) ,

while (-, -) stands now for the standard scalar product in R"~! In the above notation,
where (5.5.16) reduces to

n—1
. 90 1 .
ql=,0if1r+}15§ Pi a2 i=1,...,n
j=1 8ﬁj
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we receive, after some calculations

n—1
U§”‘L3) = —,os,lr3 + is (FCy_1x, x) r2—¢ é (TCyx, x) — ins,j,l(x, B'x)|r
j=1

+ 4& (Dox, Bx) + |} (Ts_1x, x) (x, %),
U=t = p - is (Ts—1x,x)r + is (Tsx, x),
Ut = —p e+ 26 (Te1x,x),

UX(”_I’O> =0y 1,
1 1 _
vt = (e + he (Nmix B
yr-1-2 _ ! ( +lg (F X szx) B P (F X Bilx) + ls(F X szx)r
s ~ w2 Ps—1 4 sAs 2 s—14, 4 s—1X,
+ 116 (l"s_zx, B_lx) (x, B_lx) — 116 (Fy—2x, x) (x, B_zx)) s
(withs = 1, ..., n) and again these formulas become quickly very complicated for
g q y very p
a higher positive or negative k. In the particular case s = 1, since pg = 1,I'1 =1
and I'p = 0 we get
Ul("_l’4) =rt+ 38()6, x)r? — és(x, Bx)r + is(x, B%x) + 116()6, x)?,
_ 1
Ul(" L= 3 + %s (x,x)r + 45 (x, Bx),

-1,2
Ul(" ’)=r2~|—}1£(x,x),

L
yoto _
(n—1,—1) 1
U =~
1 -2
Ul("fl’*z) _ 1+ 48 (x, B x) .

w2

Again, in the above formulas the sign ¢ is present only at terms with odd powers of
(x, x). All these potentials are known as parabolic separable potentials.

For arbitrary 0 < m < n — 2 the form of the Killing tensors Ay is not so
transparent and we will omit it here. Let us, however, present some results on
separable potentials UK. In the case m = 0 the variables are (r',...,r") and

Ur(o’k) = V,(k) where Vr(k) are functions of qi given by (5.5.8)—(5.5.9). Thus,



5.5 Direct Transformation from Separation to Flat Coordinates 267

remember that for m = 0 we have ¢’ = a (5.5.12),

k
—all 0
0.k k —a* :
UOP @y =v® @) = |, kez
: 1
—a"0---0 1
with
i—1
a; =r; —1—}‘2}’]‘}’,’7]‘, i=1,...,n
j=1
and so the first nontrivial potential is VO™ = (—a(r), ..., —a,(r)T.

The situation is much more complex for arbitrary m such that 0 < m < n —
1. Before we present some results in this generic case, let us introduce a notation
similar to that from previous cases. We denote

9 (m) 9 (m)
ry = —diag 7 ..., °" s=1,...,m
aﬁl aﬁm
B = diag(By, ..., Bm)
and to shorten the notation we denote p§m) (Bi,--., By by ps. The variables
are now (X1, ..., Xy, 71 ...,—m) and (-, -) denotes the scalar product in R"~".
Introduce now the column vector of potentials V) = VO (r, ... .r,_,) given by
!
—ai(r) 1 0
voey = | —=0 |.iez
: 1

—ap () 0 --- 0 1
with

i—1

a =r' 4112 Pl i=1,...,n—m
j=1
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so that the last trivial potential is yo=m=1 — (1, ... 0)7. After some calculations
we obtain
2
2 2 —m+1—j
g = Z e V{0 + 1o D (Thmiumm— ks ) V")
Jj=0

1
1 1 —m—j
gt = Zp VI 4 ke Y (Tecompxa x) VT ()
j=0

g = Zp VT fe (e ) VTR 0)

U,fm’nfmfl) = pk_lVl("fmfl)(r) = const.

m—1) _ Z?;ﬁ" pk—jaj—1(r) + iS(ka(nfm)x, B~ 1x)
an—m((r) + Allg(x, B~lx)

Potentials higher than U ,Em’"fmﬂ) as well as lower than U ,Em’fl) contain terms at
least quadratic in (x, x) and are too complicated to present them in the explicit form.
The reader can find the case of complex roots j (5.5.2)in [192].

5.5.2 Flat Coordinates for Particular Degeneration

Our second case under consideration is represented by the separation curve in the
form (5.5.1) with a maximal degeneracy of (5.5.2), givenby ; = ... = 8,, =0,
ie.

Hl)\n71+H2)\'"*2+...+Hn=é)\,m 2~|—)xl, IGZ, neN

with By, (X)) = A™. Solving these equations for fixed m and / yields n functions
denoted here by Hr(m’l)(k, w). In this case, the passage to flat coordinates is
as follows [44]. The first step of the construction is to perform the canonical
transformation from the (A, u) to the Viete coordinates (g, p) (4.3.26)

n
g =pi). pi=—Y 05 w/Ar i=1,...n
k=1



5.5 Direct Transformation from Separation to Flat Coordinates 269

In the (g, p) coordinates flat metrics are (4.3.27)

gt i =1, . n—m
(Gm)" = —gititmen=l g = —m4+1,...,n
0 otherwise
Wherewesetqozl,qk=0fork<00rk>0andm=0,...,n.

At the second step, we fix the value of m and perform a canonical transformation
from the (g, p) to the (r, s) coordinates:

S -1
L P S
j:
. n . . .
q’:—iz'rfrnfﬂ”, i=n—m+1,...,n, (5.5.21)
J=t
n 3qi

SkZZ arkpi, k=1,...,n.

It is straightforwe_lrd to verify that for any given m, 0 < m < n, the metrics G, in
the coordinates ' defined by (5.5.21) takes the form

Gt = (8870, + 5,0 ) (5.5.22)

Notice that although the canonical coordinates (r, s) are still nonorthogonal,
the metric tensor G, is constant in these coordinates. In order to bring G,, into
a canonical form, with +1 and —1 at the diagonal and zeros off the diagonal,
we must perform one more canonical transformation from flat not orthogonal
coordinates (r, s) to pseudo-Euclidian coordinates (x, py), defined as follows (here
d = [(n — m)/2]). For any given m, 0 < m < n, the transformation defined by the
formulas

or'
pxk:axksi, k:l,...,f’l,

P=@l+xmith V2, i=1,....d,

b= (pn—m—it+l —x’"+i)/«/2, i=n—m—-—d+1,...,n—m,

D= (ximmtmtd gy 2n=m—d=itly /o j=p—m+1,...,n—m+[m/2],
D= (xmtitd=i _yi=dy, /2 i=n+4+1—[m/2],...,n,

if n — m is odd and m is even then rd+! = xd+lm/2I+1

if n — m is even and m is odd then p—m+m/21+1 — yd+[m/21+1

if both n — m and m are odd then 91! = xd+m/21+1 pn—m+{m/2+1_ yd+{m/2]+2

T T )
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brings the metrics G, into the form

- +1,ifi=jandi=1,...,n —[(n —m)/2] — [m/2],
Gy = —Lifi=jandi=n—[(n —m)/2] —[m/2]+1,...,n,
0 otherwise.

and we have

n—d—[m/2] n

H™ = Z Dx; — Z pi | Vi, m=0,....n
j=1 j=n—d—[m/2]+1
As a final remark notice that the metrics G,,, m = 0, ..., n, are in general

pseudo-Euclidean with the signature

e e S R s )]

Example 5.20 Let us illustrate our results for n = 4 [44]. In the (g, p) coordinates

we have
00011 00110 01100
Go= 8(1);132 G = (1);1;]2 8 G2 = (1)%_(;3_(2]4 ’
14" 4% 4> 00 0 —g* 00 —g* 0
10 0 0 4! 4>~ ~4"*
“=lo g oo | =0 o |
0—g* 0 0 —q* 0 0 0
with the simplest nontrivial potentials being
Vl(f3) _ (q2q4 _ (q3)2)/(q4)3’ V1(72) _ q3/(q4)2’ Vl(fl) _ 1/44, V1(4) _ _ql’

VO=—g*+@"), VO=—¢*+2¢'>~ @), V" = —¢*+2¢' ¢+ @H? -3+ @)
For m = 0 in the (r, y) coordinates we have
¢ =rl, = i(rl)z—i—rz, P ér1r2+r3, gt = ér1r3+ i(r2)2+r4,

0001
0010
0100 |’
1000
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while in the (x, py) coordinates

2
1 1 1 4 2 _ 1 1 4 1 2 3
q —¢2Q +x), q-—gQ +x> +¢2Q +x),

K i<x1x2+x1x3+x4x2+x4x3)+\}2 (x _x3>7

2
4 _ 1 1,2 1.3 4.2 4.3 1 2 3 1 1 4
q_4<xx—xx ~|—xx—xx)~|—8<x ~|—x>+\/2(x —x),

100 0

010 0
Go=|p0-10 |’

00 0 —1

and, for instance, the Hamiltonian H 1(0’6) reads

0.6) _ 1
Hl -2

+ s (x3 _xz) ~ a2 (xl +x4>3'

For another choice m = n — 1 = 3 in the (r, s) coordinates we obtain

(Pil + I’)zcz - I’i} - Pi4) + Z (xlxz + x4 xtx? ~|—x4x3)

ql:rI’ q2:_£11(r3)2_;r2r4, q3:_ér3r4, q4:—}1(}’4)2,
1000
0001
G; = ,
37 loo10
0100

and in the (x, py) coordinates we have

g' =2, ‘122_}1 ((x1)2+(z)2_(x4)2>’ (132_2«1/2 3 (xl_x4)’

100 0
010 0
G; = ,
37 1oo01 0

000 -1

271
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and, for example, the Hamiltonian H 1(3’6) takes the form

HEYO =3 (p2 4 ph 4 0y = %) = 3 (D2 42622 4+ )7 = (42) 2

1 1 4 3
+2J2<x —x)x.

5.5.3 Stickel Transform in Flat Coordinates

In a few previous subsections the explicit transformation to flat coordinates was
presented for separable systems from Benenti class (5.5.1) with flat metrics. In fact,
using Stickel transform (4.4.17), we can write down any Stéckel system (4.3.2) in
these coordinates. We will illustrate the whole procedure for a few particular cases.

First, let us analyze the construction of systems from Benenti class when the
metric G = A; is non-flat. In fact we have to construct the geodesic parts
as potentials do not depend on the metric tensor and are constructed according
to (5.5.8), (5.5.9).

Example 5.21 As the first example let us consider a pseudo- Euclidean space E>1
with signature (+ + —) and flat non-orthogonal coordinates (r', 72, r3) such that

001
g=1010
100

Then, consider the following Stickel geodesic system on 7* E2!

T = G”S,’Sj = 5153 + és%,

T = (K2G)Vsis; = §(r')?st — jr'riss + § () s5 + (}xrlr2 + 1) 5152

( 34?2 )S1S3 }‘r2r3S2S3,

1
4
T3 = (K3G)" sis; ( ) 2 }‘rlr?’slsz — ‘1‘}”2}’3S1S3 + All(r3)2szs&

One can check that {7}, Tj} = 0. The transformation to separation coordinates
(&, ) is generated by (5.5.21)

A2+ =R 4 1?2
AR A0 = =0, (5.5.23)

A3 = 132
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and the related separation curve is

Tl)\z + TQ)\. + f_@, = é)\.?’ﬂz.
The recursion matrix F (5.5.9) in r-coordinates is

i+ i eH2 10

F = érzr3 01},
LD 00

so separable potentials Vr(k) are given by (4.3.22). For example, the first nontrivial
potential is

1 1
2r1r3 4 4(}”2)2

VO = By 1,23

and the separation curve for Hamiltonians H; = 7_", + 1_/i(k), i = 1,2,3, takes the
form

H1)2 + Hoh + Hy = 12302 4%,
Now, let us consider the following Stickel transform
H1)2 4 Hoh+ Hy = 1032 05—+
Hi2> + Hoh+ Hy =\ u? 447

so, H = F*3H and in particular, for s = 4 and r = 4, we have for H; = T; + Vi(4)

T

ilg(rl)zsl2 + é(rz)zs% + 21;(r3)2s32 + (}Jlr2 + 1) s182 + ‘llrlrSSIS3 + ir2r3s2s&

T, = (}Jlr2 + %) s12 + ir2r3s% — ir1r3s1sz + ir2r3S1S3 + i(r3)2szs&

1,,.3y2 1,.3y2.2
T3 = ,(r')"sis3+ g(r’)7sy

and

4

Vl() }‘(rl)z(r?’)z irl(r2)2r3 116(r2)4 §r2r3,
4
‘,2() }‘rlrz(r3)2 §1;(r2)3r3 Al;(r3)2,

V3(4) — 16(r3)2 <2r1r3 4 (rz)z)‘
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Of course, again canonical transformation generated by (5.5.23) is a transformation
to separation coordinates.

Now we present how to construct in Euclidean coordinates and conjugate
momenta systems from the subclass given by the separation curve of the form

n
S AT =L 0ot +00) = Bun ) (Ju2 +35), meNkez

j=1
(5.5.24)
where
n+1
Bini) =[] (- 8))
j=1

is a real polynomial of order n + 1 in A with real roots ;. As was mentioned in the
previous subsection, in this case the metric tensor (5.5.5) is of constant curvature
while Euclidean coordinates are flat orthogonal coordinates for systems described
by a separation curve (5.5.1) with m = n. Hence, according to (4.4.19)

H=R(F)H = (F — B, DH
and in particular
I‘_IkZ—PkHl_.Bn+1Hk+Hk+lv k=1,...,l’l.

Using formulas (5.5.19), (5.5.20) and the following relation between Viete polyno-
mials (5.5.3)

(n) (n) (n+1)
—Bur1Pr F Pr1 = Pty

tensors Ay of the geodesic part take in Euclidean coordinates the form

2 (n+1)
1]218’064“1 xixj,i;éj
4 0p;98,;
(n+1) n (n+1)
N ) 1 9 9
Al = ¢ Pst1 Z p™ 4 Pst1 )2,
IB; 4= 9Bk i
ki

Example 5.22 Neumann system for n = 3. Relations (5.5.24) for o (L) = cA" are
separation relations for the Neumann system [25, 204, 218, 223] well known from
the analytical mechanics. Hence, according to our considerations, three commuting
Hamiltonians of the three dimensional Neumann system written in Euclidean
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coordinates (x, y, z)
H =, A/ pipj+V,, r=1.23

are given by

1 x2 xy xz By + B3+ B4 0 0
Ar=, | y?yz)—e 0 Bi+ B3+ B4 0

xz yz 2% 0 0 B1+ B2+ Bs
(B2 + B3)x?
By — B0 + ) (B3 + Ba)xy By + Ba)xz
_ 1 (B1 + B3)y?
Ax=—, (B3 + Ba)xy By — B +20) (Br+ Bayz
(B1 + B3)Z?
(By + Ba)xz (B1+ Ba)yz F(Bs — B2 +3)
BaB3 + BaBs+ B3B4 0 0
+e 0 B1B3+ B1Bs+ B3B4 0
0 0 B1Ba+ B1Bs + BrB4
(B2B3)x?
+(B1B3 — B3Ba)y? B3Baxy B2Bayz
+(B1B2 — B2Ba)Z?
| (B1B3)y*
A3 =, B3Baxy +(B2B3 — B3By)x? B1Bayz
+(B1Bs — B1BZ*
(B1B2)Z?
B2Baxz B1Bayz +(BaB3 — BrBy)x?

+(B1B3 — B1B)Y?

B2B3Bs O 0
—¢ 0 B1B3Bs O
0 0  BiB2Bs

and
Vi= —}‘SC [xz + y? ~|—z2],
Vo= jec(Ba+ Bo)x? + (B + B2y + (B + B2

Vi=—lec [/32,33)62 + B1B3y* + ,315222] .
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Now let us consider the Stickel transform (4.4.20) in flat coordinates. Again we
illustrate the method using the example of a system with three degrees of freedom.

Example 5.23 Consider the Stéckel system for n = 3 given by the separation curve
of the form

HA? + Hoh + Hy = Jap? + 24 (5.5.25)
and flat coordinates (', 72, r3) defined by (cf. 5.5.21)
pr=—(1+22427) =r!
py = A2+ A 23 =2+ 012
py = —A1A2A3 = _411(’,3)2.
Solving the relations (5.5.25) with respect to the Hamiltonians H; and passing to

the variables ri we receive H, = AY s;s i + V,(r), where y; are momenta conjugate
to r', where the tensors A, have the form

010 1 ohoo
Ar=1100], A= érl —r? —ér?’ ,
001 0 —ir3 s
0 0 -
Az = 0 41‘(r3)2 —Altrlr3
ér3 L1p3 12 42
and respective potentials are
Vi=—30hH2+r2
Vo = _Alt(rl)3 N i(r3)2

Vi=yri ()%

According to (4.4.28), the Stickel transform to Hamiltonians H; from separation
curve

H\A + B + Hy = Jaud + 47, i=1,2,3

is given by

Hy =—- Hj, H2=H2—p2H1, 1:13=H3—p3H1~
P1 P1 P1
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Hence, we obtain

2 4T T

1 (r3)? 1.3

0 4, —,r
_116»% 1,.3:2 1.1.3
A= 100 L0d bty

1,3 1,131,132, .2, 10%?
=l g )+ +4(rrl)
with the corresponding potentials

2

-
Vi) =—3r' + o

13, 1,12, 1,.3\2 (r?)?
Va(x) = 16(”) +2r r —‘1-4(}’) + ,l
2¢,3y2
re(r’)
Vi) = — krlrH? — | o

In Sect. 8.2 we will demonstrate how to quantize all systems constructed in this
section in a way preserving quantum separability.



Chapter 6 )
Deformation Theory of Classical Poisson Shethie
Algebras

Classical physics explains matter and energy on a scale familiar to human expe-
rience, including the behavior of astronomical bodies. It remains the key to
measurement for much of modern science and technology. However, toward the end
of the nineteenth century, scientists discovered phenomena in both the large (macro)
and the small (micro) worlds that classical physics could not explain. It means for
example, that for a proper description of conservative dynamics in micro-scale the
classical Hamiltonian mechanics has to be modified (deformed) to a new theory
whose predictions are in agrement with experiments in micro-scale of atoms and
molecules. Summarizing experimental results from that level we observe that on the
microscopic level the classical uncertainty relations (3.3.15) are violated and have
to be modified to a new quantum uncertainty relations

Ax"Apj=3hs, i j=1,....n (6.0.1)

where / is a fundamental constant (the Planck constant) determined in a physical
experiment. This is a fundamental change compared to classical mechanics, where
the only source of different from zero uncertainty is our limited knowledge of the
system. In a quantum system, different from zero uncertainty follows directly from
the physical nature of the system itself.

From our previous consideration it is clear that the modern classical Hamiltonian
mechanics is formulated on the Poisson manifold in a coordinate free way. So, it is
natural to formulate its quantum modification on a quantum analog of the Poisson
manifold (symplectic manifold in particular) and obviously in a coordinate free
way as well. Such a theory cannot be formulated from the very beginning in a
Riemannian space (the Euclidean space in particular) as a priori such a structure
does not exist in a classical Poisson geometry. On the other hand, as we know
from previous chapters, one can adopt various Riemannian geometries to a given
Poisson geometry, identifying the phase space with cotangent bundle to a chosen
Riemannian basic space (configuration space). In consequence, on the quantum
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280 6 Deformation Theory of Classical Poisson Algebras

level, we also expect to construct respective Riemannian representations of the
quantum Hamiltonian mechanics, which will reduce in the case of the Euclidean
space and Cartesian coordinates to a standard formulation of quantum mechanics
from many textbooks.

6.1 Star-Algebras

In this section we construct in a systematic way star-algebras and related quantum
Poisson algebras which are admissible from the point of view of our quanti-
zation assumption (6.0.1). On an appropriate symplectic manifolds we derive
star-products in vector representation, covariant representation and integral rep-
resentation, respectively. We present a detailed discussion on equivalence of the
constructed star-algebras and the explicit form of the related morphisms.

6.1.1 Preliminaries

One of the admissible realizations of the quantization procedure is deformation
quantization developed in [11-13]. Their work was based on earlier works of Weyl
[260, 261], Wigner [263], Groenewold [140], Moyal [205] and Berezin [19-21]
on the physical side and of Gerstenhaber [125-129] and Gerstenhaber and Schack
[130] deformation theory of associatives algebras on the mathematical side (see
also later papers of Bordemann et. al [53-57]). Since then many efforts have
been made in order to develop the phase space quantum mechanics [54, 59, 74,
75, 80, 81, 83, 90-92, 111, 152, 153, 207, 213, 236, 256, 269, 270], see also
[96, 142, 143] for recent reviews. In this approach quantum mechanics is formulated
as a deformation of classical mechanics. Such a procedure results in a quantum
theory described in a geometric language similar to that of its classical counterpart.
This allows the introduction of many concepts from the classical theory like
trajectories, observables or states into quantum mechanics. Moreover, the formalism
of deformation quantization gives a smooth passage from the classical to quantum
theory, which makes it easy to investigate the classical limit of quantum mechanics.
The main element of deformation quantization is a formal deformation of a
Poisson algebra C°°(M) of smooth complex-valued functions defined on a phase
space M (symplectic manifold). The formal deformation procedure is based on the
Gerstenhaber’s theory of deformation of rings and algebras [126]. Let C[v] and
C*°(M)[[v] denote the ring of formal power series in a parameter v with coefficients
in C and C°° (M), respectively. The space C*°(M)[v] is a C[v]-module. A star-
product on a symplectic manifold (M, @ = 7 ~!) is defined as a bilinear map

CX(M) x CX(M) — CRMDIV,  (f9) > frg =Y vFCulf. o),
= 6.1.1)
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which extends C[[v]-linearly to C®°(M)[[v] x C*®(M)[[v], with the following
properties

1. Cy are bi-differential operators,

2. (f xg) »h = f % (g % h) (associativity),

3. Co(f.8) = fg,. Ci(f. 8) — Ci(g, f) =1{f, g}x>
4. 1xf=fxl=f.

Then, a deformed Poisson bracket is defined by the formula

1 1
[f gll«:= v[f,g]*= v(f*g—g*f), (6.1.2)

and a formal involution as an anti-linear map

Co(M) = CXODIVL, > f* =Y v Bulf), (6.1.3)

k=0

extending C[[v]-anti-linearly to C°°(M)[[v], where

1. By are anti-linear operators,

2. (frg) =g"*f",

4. Bo(f) = f.

From the above definitions it follows that the x-product, the quantum Poisson
bracket [ -, - ]I+, and involution % are deformations of the point-wise product of
functions -, Poisson bracket { -, - };, and complex-conjugation:

fxg=fg+oW),
Lf, gl = {f. g}z +0(v), (6.1.4)
f*=f+o).

On the other hand, the associativity of the x-product implies the following relations
that the bi-differential operators Cy have to satisfy

k

> (Cu(Cron(f. ). 1) — Culf. Chon(g. b)) =0, k=1,2,....
n=0

Moreover, in what follows the deformation parameter v will be chosen in the form
if in order to make the presented theory compatible with quantum uncertainty
relations (6.0.1).
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For our further considerations star-products of the following form are particularly
interesting

o0

i k
f*g=z<l2) Ci(f. 8). (6.1.5)

k=0

which beside the conditions (1-4) from definition (6.1.1) fulfill additionally the
following ones

L Cr(f,8) = (=D Ci(g, /),
2. Ce(f, 8) = Ci(f, 8),
3. iy Ck(f, 8)d2 =0for f,g € C3°(M) andk = 1,2, ... .

Cg°(M) denotes the space of smooth compactly supported functions on M, and
d2 is the Liouville measure induced by the Liouville form €2,. Conditions 1 and 2
imply that like in the classical case, the complex-conjugation is a proper involution,
and from condition 3 follows that the x-product under the integral sign reduces to
the ordinary point-wise product

/f*ng:/fng, f.8 € CS(M). (6.1.6)
M M

However, we will not limit ourselves only to star-products of the form (6.1.5) and
we will also consider other star-products, in particular, those for which an involution
differs from the complex-conjugation.

The symplectic manifold M is completely described by the Poisson algebra
C°° (M), hence the deformation of the Poisson algebra can be though of as a
deformation of a geometrical structure of the symplectic manifold M. Thus by the
deformation of C°°(M) to some non-commutative algebra we can think of it as
describing a non-commutative symplectic manifold.

From a historical point of view, the existence of a star-product on the arbitrary
symplectic manifold was first proved in 1983 by De Wilde and Lecomte [84]. Later
Fedosov [118] and Omori [213], independently, gave a proof of the existence of
a star-product on a symplectic manifold using the framework of Weyl bundles.
Finally, in 1997, Kontsevich [172] proved the existence of a star-product on the
arbitrary Poisson manifold.

Let » and «' be two star-products on a symplectic manifold (M, w). Both star-
products are said to be equivalent if there exists a series

o0
S=) V&, S=id, 6.1.7)
k=0
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where Sy are differential operators on C*° (M), such that
S(f~g) =Sf+ Sg. (6.1.8)

On the other hand, having a star-product on (M, w) and a morphism (6.1.7) one
can define a new star-product on (M, w) by the formula (6.1.8). One can check that
the new star-product indeed satisfies conditions 1-4 from the definition of a star-
product.

From the mathematical point of view the study of equivalences of star-products
was described in the language of Hochschild cohomologies [126]. The relation
of equivalence of star-products is an equivalence relation, so the set of all star-
products on any symplectic manifold is divided into disjoint equivalence classes.
Due to results of Nest and Tsygan [210], Bertelson et al. [22] and Deligne [86], the
equivalence classes of star-products on a symplectic manifold M are parametrized
by formal series of elements from the second de Rham cohomology group of M,
ie. HX(M; O)[v]. In particular, on a symplectic manifold M for which the second
de Rham cohomology group H?(M; C) vanishes all star-products are equivalent.

If we choose a coordinate system on a domain O C M of the Poisson manifold
M, then a given star-product can be written locally in this coordinate system.
The simplest case is when a coordinate representation of the star-product is in
the form of a Moyal star-product (6.1.33) [205]. To each star-product corresponds
a particular class of coordinate systems, namely quantum canonical coordinate
systems. Coordinates which are canonical with respect to a one star-product do not
have to be canonical with respect to the other star-product. If O C M is a domain
of a coordinate system ¢: @ — R2?V then equivalence classes of star-products
written in these coordinates are parametrized by elements of H 2(O; C)[[#]l. The
Moyal star-product is in one of these classes. Let us denote this class by S(O, ¢).
So every star-product on M whose coordinate representation with respect to the
coordinate chart (O, @) is in the class S(O, ¢) is locally equivalent with the Moyal
star-product. For part of these star-products, the coordinates (O, ¢) are quantum
canonical (see (6.1.15)), like for the Moyal product. We will denote the class of
such star-products by S, (O, ¢).

The star-products in S;c(O, ¢) will be used to perform nonequivalent quan-
tizations of the classical Hamiltonian system. For this reason the knowledge of
morphisms relating the star-products in S;(O, ¢) with the Moyal product can
help in establishing the relations between the received nonequivalent quantizations.
Moreover, the fact that these star-products are equivalent with the Moyal product is
useful when constructing particular realizations of quantizations. For this reason we
will need an explicit form of § which will be constructed order by order. Fortunately,
for classical Hamiltonian functions polynomial in momenta, the /-expansion of §
has only the finite number of terms which will give the non-zero contribution when
acting on such functions. For instance, we will show that to calculate the action of
S on functions at most cubic in momenta we only need S to the second order in 4.

Let (M,w, H) be a classical Hamiltonian system. Such a system can be
quantized in the framework of deformation quantization. Actually, the classical
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Poisson algebra Ac = (C*°(M), -, {-, -}, -) is deformed to a quantum Poisson
algebra Ag = (C*(M)[[v], *, [ -, -1, %), with the deformation parameter v = if.
In analogy to classical case, elements of C*°(M)[[v]], self-adjoint with respect to
the involution * from 4 form the set of admissible quantum observables. So,
like on the classical level, an observable corresponds to every measurable quantity.
The correspondence between measurable quantities and self-adjoint elements of
C>®(M)[[v] is fixed by the particular choice of quantization, so can vary depending
on the chosen quantization. What is important, quantum observables do not have
to coincide with functions in the classical case and in general they will be an
h-deformations of classical observables. They do not even have to be real valued
if for the considered quantization the involution from .Ap is not the complex-
conjugation. Note that to each classical observable corresponds the whole family
of quantum observables, related to various admissible quantizations, which will
reduce to the same classical observable in the classical limit. It means that if A¢
is a classical observable then the related quantum observables corresponding to it
are of the form

o
Ag =Ac+ thAk
k=1

for some functions Ay € C®°(M).

On a mathematical level there is no way of telling which assignment of
measurable quantities to elements of C°°(M)[[#] is appropriate for a given star-
product. This can be only verified through experiment, i.e. on a physical level.
On the other hand, there is a very restrictive number of known physical quantum
systems, being counterparts of some classical systems. They are mainly described
by the so called natural Hamiltonians

H(x,p) = YGY(x)pip; + V(x),

with flat metrics G on a configuration space. The knowledge of quantization of such
systems is not enough to fix uniquely the quantization in arbitrary Riemann space
and is the source of ambiguities. In consequence, in the literature one meets various
versions of quantizations which coincide for the class of natural flat Hamiltonians.

Observation 11 A choice of quantization of the classical Hamiltonian system is
fixed by a choice of both, the x-product and the particular assignment A —
A(h) to classical observables A their quantum counterparts A(h). Moreover, two
quantizations (x, A(h)) and (x', A’(h)) are equivalent if there exists an isomorphism
S of their quantum Poisson algebras, i.e. when both star-products are related
by (6.1.7), (6.1.8), and respective quantum observables are related by A’(h) =
S (A(h)).

In what follows let dQ2;(§) = (0122%?1 be the normalized Liouville measure and

L*(M, dS2p) a Hilbert space of functions defined on the phase space M and square
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integrable with respect to the measure d 2, where the scalar product is given by

(frg) = /M FE)g(€) dy. 6.19)

So far we considered a quantum Poisson algebra as a formal algebra and so
we did not worry about the convergence of formal series appearing during the
process of formal quantization. However, such an approach is not entirely physical
as observables should be functions on a phase space not formal power series and
hence, complete quantum theory requires to investigate the problem of convergence.
This is an important mathematical problem which is beyond the scope of the book,
nevertheless let us give some remarks about the convergence of formal power series
appearing in the definition of star-products.

Let x be a star-product on (M, ). In general it is not possible to find a
topology on C°°(M) such that the x-product will be convergent for every pair of
smooth functions. What can be done is to search for a subspace A C C*(M)
with appropriately chosen topology such that the x-product will be convergent. In
general, functions from A can depend implicitly on 7. Additionally, we will require
that there exists a subalgebra G C A such that G is a dense subset of L2(M ,dSQ2p),
and for f, g € G there holds

If =gl < IfIgl- (6.1.10)

From (6.1.10) results that the x-product is continuous on the subspace G x G
with respect to the L>-topology and in consequence can be uniquely extended to
the continuous star-product on the whole space L>(M, dS2;) satisfying (6.1.10)
for every f,g € LZ(M ,d2p), which follows from the fact that G is dense in
L*(M, dS).

The convergence of a *-product in L?(M,d2;) is closely related with the
existence of integral representation of such a product (see the next subsection).
The reader can find more on the convergence of deformation quantization in the
literature. For example, in [208, 209, 226] the authors study the convergence in
the framework of C*-algebras (this is usually referred to as strict deformation
quantization). A non-formal deformation quantization developed in the framework
of Fréchet-Poisson algebras is studied in [214, 215]. Worth noting are also papers
[136,238] where the convergence of a Moyal product on suitable spaces of functions
is investigated.

The Hilbert space L*(M, dS) with some convergent x-product (6.1.5) has a
structure of an algebra, denoted hereafter by £. From properties (1—3) of (6.1.5)
it is clear that for the algebra £ = (L*(M, d2;), ) the complex-conjugation is
an involution, that under the integral sign the star-product of two functions from
L*(M, dS2p) reduces to the point-wise product and that the following relation holds

(g, fxh) = (f*g h), f.gheL*(M, dp).
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For any f € A such that D(f) is a subspace of A, dense in L>(M, dQp), and
such that for every p € D(f), f x p € L>(M,dSQp), we can associate a densely
defined operator f + on the Hilbert space L>(M, d2p,) with the domain equal D( f)
and which satisfies

(fx)'=fx.

Defining a trace functional by the formula
Tr(f) =f [EdQu©),  feL'(M.dp), 6.1.11)
M

the x-product in the algebra £ obey the following property: the ideal £' = £ x £ is
a subset of L' (M, d2p) and

Tr(f *g) = (f. &) (6.1.12)

forany f, g € L>(M, d2).

So far the star-products have been represented by formal series of bi-differential
operators. Then, using a respective topology on an appropriate space of smooth
functions, these series could be made convergent. In such a way we can introduce
a star-product on a subspace of C°°(M) and then transfer it to the Hilbert space
L*(M, dS2). There is however alternative way of introducing star-products, pre-
sented in [170]. One can first define a star-product on some subspace G C C*°(M)
of smooth functions, which is at the same time required to be a dense subspace
in L?(M, dQp). Then G should be endowed with a topology. Moreover, the star-
product should be continuous in G and it is usually defined by an integral formula.
From there it can be extended to a continuous star-product on the whole space
L3(M, dp).

The geometrical language which was used to deform classical Poisson algebra
allowed for the deformation presented in a coordinate free way. However, in a full
analogy with the classical case, it is possible to develop the deformed theory in any
particular coordinate system. Let M D U — V C R2" & > (E1(8), ..., E2(&))
be a local coordinate system on the symplectic manifold M. In analogy with the
classical case this coordinate system is called quantum canonical if there holds

&%, &1 = n*f, (6.1.13)

where

afy _ 0 I
(r )_<—In 0>. (6.1.14)
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In the case when M = T*Q we will denote a quantum canonical coordinate system,
like in the classical case, by

1

(-x a'-'axnapla-'-apn)z(xiapj)‘

Then the quantum canonicity condition (6.1.13) takes the form
Ix', x/T = pi, pj1 =0, [x', pi1 =36 (6.1.15)

Note that in the limit # — 0 a quantum canonical coordinate system reduces
to a classical canonical one. If (x’, p;) and (x", p}) are two quantum canonical

coordinate systems then the transformation (x, p i) (x 7 p}) is called a quantum
canonical transformation and will be considered with a special care in our further
considerations.

Let us derive the condition on a coordinate system (€', ..., €%") which has to
be satisfied to make it simultaneously classical and quantum canonical coordinate
system. A coordinate system (', ..., &™) is classical and quantum canonical for
star-algebra (6.1.1), (6.1.2) if and only if

(£, &Py = 1%, &%) — C1(£P, %) = P, (6.1.16a)
Cr(€*, &P) = Ch(EP %), k=2.3,..., (6.1.16b)
for every o, 8 = 1,...,2n, where Cy are bi-differential operators from the

expansion (6.1.1) of the »x-product. Indeed, from (3.2.12) and condition 3 from the
definition (6.1.1) of a x-product we get (6.1.16a). In accordance with (6.1.13) a
coordinate system (£!,...,£?") is a quantum canonical coordinate system if and
only if

(6% EP] = ¥ w£P — £P w£% = P,

The above condition can be written in the form

o0
Yok (CuE® &8 - CrEP &) = ihn
k=0
and is equivalent with the system (6.1.16a), (6.1.16b). In particular
Cr(%,£P) = Ch(8P,6%) =0, k=2,3,....

For the distinguished class of x-products in the form (6.1.5) the symmetry

Ci(f, &) = (=DFCi(g, f)
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reduces conditions (6.1.16a), (6.1.16b) to the simpler form

C1 (&%, &Py = n°F,
Cr(E%, ) =0, k=3,5....

If (¢',..., %) is a coordinate system on some domain V C M then we can
write elements of C°°(M)[[A] in these coordinates and get a formal power series
in C®°(V)[[A]l. In particular, if f = Y oo, i* fi € C®(M)[A], then by writing
each fy € C°°(M) in the coordinates (& L & 2y we get a formal power series
in C*°(V)[A]. Analogically, we can write a x-product on M in the coordinates
(€',..., &%) receiving a star-product on a subset V. Further on we will denote
such star-product by &,

Let us make some remarks about admissible domains of coordinate systems. If
one is interested only in the investigation of a geometry of the classical Hamiltonian
system (M, w, H), then one can consider coordinate systems defined on arbitrary
open subsets U of a phase space M. However, for quantum systems, even on such
a general level of the geometry of the system, this does not remain true since star-
products, considered in a non-formal setting by an integral representation are not
local. The same situation occurs on both classical and quantum levels, when one
investigates integrals over the phase space in order to calculate expectation values
of observables. Then it cannot be done in an arbitrary coordinate system. The reason
for this is that, in general the values of integrals will change if the integration
will be performed over a subset U C M where coordinates are defined. That
problem was already discussed on a classical level. The only coordinate systems in
which it is meaningful to consider integration are almost global coordinate systems
(cf. Observation 6). In most general situation, when integration is defined in several
charts, a full integration measure on M may exists as well. Nevertheless, that
cases are beyond the scope of the book and we confine to manifolds with almost
global coordinate system, where both classical Hamiltonian statistical mechanics
and quantum Hamiltonian mechanics can be always well formulated.

6.1.2 Fourier Transforms

Fourier transforms play an important role in our further considerations. Thus, it is
a proper moment for a choice of a notation and a convention for various Fourier
transforms used in the following sections on the quantum level. In what follows we
will define the Fourier transform of a function f € L'(R*") by a formula

1 i n _ i I
FNHEQ) = 0 f fE)e o dg = / FE)e s dQ (&)
(27Th) R2n R21
(6.1.17)
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and the inverse Fourier transform by

F1HE) = . h)n f F@&en<n" a = f F@)enses" dQy ()
(6.1.18)

The Fourier transform has the following properties
i
FBgrn )(C) = héﬂff(g“), (6.1.19)
F(f-8)=Ff=TFg, (6.1.20)

where * is a convolution of functions defined by

(f*xg)E) = /Rz" fENgE —&Hdu(E) = /RZn f(E—E)gENdQm(E).
6.1.21)

For further considerations we also need a notion of a symplectic Fourier
transform. Thus, for a function f € L'(R?") we define a symplectic Fourier
transform of f by a formula

Fol €)= h)n / F@&)e 10 gg = / FEe 1€ Da0, @),

6.1.22)

where o is a canonical symplectic form on R*V given by w(¢/, &) = waﬂé’“éﬂ

where
0, —1,
(wq ﬂ) < 1, 0, )

Note that F,, f (') = F f (0T &).
In (x, p) representation we have

Fuf( o o [ s presn| = (it =) | dxa
wf(p X = Qrhy Rnfx,p exp —h(pkx —X pk) xdp,

_ 1 i
Flfe,p) = Qnhy’ /Rn N f(p', x")exp " (p;ixk - x”‘pk) dx'dp’.



290 6 Deformation Theory of Classical Poisson Algebras
Besides, in this convention
i n i m
Fo@70) (P X)) = <h p’) (—hX’> Fof (', 2,
Fo"p" (P’ x") = (ihdy)" (—ihd)" Foo f (', X)),
. i n i m
Fo (0,00 ) (x, p) = <_hx) (hp> Fof(x, p),

F " x™ f)(x, p) = (—ihdo)" (ihdp)" Fu £ (x, p),

and

S —x0) = / ok — by ) d
TR appyn Jou P\ T TOPE AP

. .
8(p = po) = Qrhy" fR exp (— ; (pk — pOk)x"> dx.

Finally, let
~ , 1 e
fx,x) = @iyt g f(x, plen dp (6.1.23)
and

f'.p) = f Fx, pye” i7" dx, (6.1.24)
Rn

where f denotes the Fourier transform of a function f € L'(R?") with respect to
n momentum coordinates p or n position coordinates x, respectively. The inverse
transforms are

~ i y 1 ~ i/
f(x,p)=/Rf(x,x’)e_“’”kdx’— /Rf(p/,p)eﬁ””kdp/.

T Quah)n
(6.1.25)

6.1.3 Star Products on R?"

Let us consider a 2n-dimensional simplectic manifold M = R with Darboux
coordinates (€', ..., £2"). In particular we can adapt the Euclidean geometry to the
construction in the sense that the first n Darboux coordinates &' are a Cartesian
coordinate system (xl, ...,x™) on E" while the remaining Darboux coordinates
are fiber coordinates, i.e. momenta p; conjugated to x’. That is M = T*E" and
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(El, el 52”) =, ..., X", D1, -, Pn)- In these coordinates the symplectic form
o takes the canonical form d p; A dx*. Also the Poisson tensor (implectic bi-vector)
7 = ! related to the symplectic form w can be written in the form

=P en @ By = Dy A D (6.1.26)

In Sect. 3.2.1 was shown that the Poisson tensor 7= can be decomposed into a
wedge product of pair-wise commuting on M vector fields (3.2.1)

7=71"D,®D, = ZX AYi, (6.1.27)

where X; = D; and Y; = D,y fori = 1, ..., n, as the Poisson property [, w]s =
0 follows directly from commutativity of vector fields D,, : [D,, D,] = 0. The
canonical Poisson bi-vector (6.1.26) can be represented by these D,, for which

XinNY;=D; A Dn+i = 8xi A 8pl..
The related Poisson bracket { f, g}, can be written as

{f. 8)x = m(df.dg) = Z[x (FYi(g) = Yi(F)Xi(2)]

i=1
n
— = — = < =
=fZ(XiYi—YiXi)g=f<ZXi/\Yi>g,
i=1

In what follows we will define an important family of star-products on the
symplectic manifold 7*E". Let (D,,) be a sequence of pair-wise commuting global
vector fields from the decomposition (6.1.27) of the Poisson tensor 7. Define a star-
product by the formula

n
fxg= fexp (éihnM”(BMBO g = fexp (éih Z 3?1( A 7k) g

k=1

n n

<~ = <~ =

=fexp<;ih§ XY= 5ihy kak>g:f~g+0(h),
k=1 k=1

(6.1.28)

and aquantum Poisson bracket by a respective formula

1 1
Lf gl = ih[f, gl = l.h(f*g —gxf)=1{fglx + O(). (6.1.29)
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From the commutativity of vector fields X;, Y; follows the associativity of the
star-product and hence the quantum bracket (6.1.29) is a Lie bracket as the
Jacobi identity (2.5.24) is fulfilled by any commutator built up on an associative
multiplication. Besides, the quantum involution in the star-algebra (6.1.28) is the
complex conjugation as from (6.1.28) we get immediately that

frg=2x7f. (6.1.30)

In the simplest case n = 1, for example, the product (6.1.28) can be written in the
form

L. = |..<=
f*g:fexp(zth Y —5ihY X)g

_i 1 (lh>k2k:<k>( l)m(Xk—mYm )(mek—m )
Top\2) =\m) / &)

6.1.31)

However, the decomposition (6.1.27) of the Poisson tensor 7 is not unique. There
are different sequences of commuting vector fields le, Yl.’ ,i=1,...,non M =
T*E" such that

n n
T=Y XinYi=) X{AY] (6.1.32)
i=1 i=1

So, with the arbitrary canonical Poisson tensor 7 (6.1.26) one can relate the whole
family of star-products (6.1.28), parametrized by appropriate sets of commuting
vector fields from the decomposition (6.1.32).

The constructed family of star-products consists of equivalent star-products,
which is a direct consequence of the fact that the second de Rham cohomology
group H*(R?"; C) vanishes. In particular, for any pair of -algebras generated by
respective sets of commuting vector fields (X;,Y;) and (X}, Y/) there exists an
isomorphism S (6.1.7), (6.1.8) of both algebras.

Example 6.1 Let us consider the Poisson manifold 7*R = R? with the canonical
Poisson tensor 7 in a Darboux coordinate system (x, p). Consider the following
vector fields

X =0, Y =0,

X = xzax —2xpdp, Y = x—za,,.
It can be checked immediately that [X, Y] = 0, [X’, Y'] = 0 and that

T=XAY=X AY =0, A0D.
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Star-products induced by vector fields X,Y and X', Y’ are equivalent and the
morphism § up to 42 is given by

B2
s=id+, (207 +x2po) —x 10,0 ) + 0.

Note that vector fields X, Y and X', Y’ are related by a canonical transformation
T:(x,p)— T(x,p)=(—x"1 x2p):

Xf)oT =X'(foT), (XfloT =Y'(foT),

for f € C®(R?). We will investigate systematically the construction of star-
products via canonical transformations in the next subsection.

For a given sequence of vector fields (D) from the decomposition (6.1.27)
of the Poisson tensor 7 there exists a coordinate system (£!,..., £%") in which
D,, are coordinate vector fields, i.e. D, = 0dg+. Such a coordinate system is of
course a Darboux coordinate system associated with the Poisson tensor 7. In these
coordinates the star-product (6.1.28) takes the form

ih ws =
f*xug=fexp 271 den dgv ) g

21 [fik\*
= Z Xl ( ) ) v, -]Tl’Lkvk(asﬂl - 3%_,% f)(a%"’l - 35‘,kg)’
k=0
(6.1.33)

where 7" is the Poisson tensor in Darboux coordinates (6.1.14). The star-
product (6.1.33) was first considered by [140, 205], and [19] and is usually called
a Moyal product. The coordinate system (€', ..., &2 will be called a natural
coordinate system of the x-product.

The family of x-products (6.1.28) belongs to a particular class of products
defined by (6.1.5). The property 1 follows immediately from the form of (6.1.28)
and the expansion of the exponents (see (6.1.31) for example). The property 2
was mentioned in (6.1.30). Finally, we prove the property 3 by writing the
product (6.1.28) in its natural coordinate system (6.1.33). Let

1
Ch(fog) = | ¥ oo 8 (B - B ) (P - Dok ).
Then, using integration by parts we get fork = 1,2, ...
1
/ Ck(fa g)d%- — _/ nvllu-lnnu-zvz_,_nl/-kvk(asvlaguz ag“kf)
R2N R2N k!

X (Ogn1 0gva -+ - O0gvk g) dé = —A;N Ce(f, ) d§
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and so
/ Cu(f, 8 dé =0,
RZN

which proves 3.
In the simplest case n = 1, for example, the Moyal product (6.1.33) in (x, p)
representation takes the form

f*u g = fexp [éih <<8_x_3>,, — (3_,;5))()] g

_i 1 (m)"
K\ 2

k (6.1.34)
§ : k mak—m qm m qk—m

m
m=0

and hence
1 gl =, fin[30 (5.7, - 5,7.)]s

X=D" A\ 241
a2 o (5) F(TT-TT) e
n=1 :
(6.1.35)

The structure of the symplectic manifold T*E" distinguishes one product
from the presented family of star-products, namely the one for which the natural
coordinate system is the Cartesian coordinate system. Such a star-product is indeed
uniquely defined since coordinate vector fields of Cartesian coordinate systems are
related to each other by linear symplectic transformations and such transformations
do not change the star-product (6.1.33), as will be shown later. This distinguished
star-product will be called a canonical star-product on T*E". As will be proved in
the next chapter, such a particular deformation of the classical Poisson algebra is
equivalent with standard Weyl quantization of classical mechanics.

As was mentioned above, in a given classical canonical coordinate system
(El, R 2"), one of the products (6.1.28) takes the form of Moyal representa-
tion (6.1.33). In this case evidently classical canonical coordinates are simultane-
ously quantum canonical coordinates. Besides, all other star-products (6.1.28) are
generated from the Moyal one (6.1.33) by classical canonical transformations (see
Example 6.1). Obviously, not every classical canonical transformation generates
a new star-product (6.1.28) for which coordinates (& L 52") are quantum
canonical. That problem will be considered in details in the next subsection.

According to Observation 11, the choice of quantization consists of the choice of
a x-product and simultaneously the choice of a quantum observable A (7). For a
particular class of x-products (6.1.28), or more general (6.1.5), when the involution
is a complex conjugation, the simplest admissible choice of quantum observables is
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given by
Ag(h) = Ac.

Now let us present a family of star-products on T*E”, which are not in the
form (6.1.28) and for which the complex-conjugation is not the involution. Let
X1y, X0, Y1, ..., Y, be a set of pair-wise commuting global vector fields from
the decomposition (6.1.27) of the Poisson tensor 7. Define a star-product (in fact a
three-parameter family of star-products) by the formula

. 1 LR 1 WP
f*a,a,ﬂngeXP<’h(2—U) X/Y/—lh<2+0)ZY/X/
Jj=1 j=1
n n
+haz<)?jxj+hﬂz(?/7,)g,
j=l =l

(6.1.36)

where o,a,8 € R. The star-product (6.1.36) is equivalent with the star-
product (6.1.28) corresponding to the same sequence (X;, Y;) of vector fields.
A morphism S (6.1.7), (6.1.8) giving this equivalence is of the form

n n n
So.wp=exp | —iho Y X;¥j+ ha Y X;X;+ 3hB> ¥;Y;
j=1 j=1 j=1
(6.1.37)

For the simplicity of formulas we will prove it for a particular case of « = 8 = 0,
when

[*o g = feXp<ih (é —0) Zn: XY, —in (% +0) anvji)j)g
j=1 j=1
and

n
So =exp | —iho Y _ XY,
j=1

Using the notation

fexp (()? 7) g :=exp (Xng) (fo)
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and observing that for commuting vector fields X, Y

exp(X)(f) =exp [ (X/ +X¢) (v/ +v9) ] (7o)
we get

Frog="S-(S"fxS "¢

n n
—exp | —iho Y (X/f + X§) (Yf + Yf) exp | iho Y x1v/
j=1 j=1

n n
exp ;ihZ(X{Yf—X§Y]f> exp ihaZXfY}g (fg)
j=1 =l

n n
=exp | if (é —0) ZXJJ.'Y;? —ih (é —i—o) ZXijf (fg)
= =1

« =
Y X;|sg.

Il
\
[¢]
>
S}
>
VN
N —
|
Q
N—"
>t
~.
~
.
|
>
N
N —
+
Q
N—"
M-

The involution for the %4 o g-product as well as for other star-products of the
general form (6.1.1) is constructed from the following considerations. Assume
that in a x-algebra the involution is the complex-conjugation. Let a «’-algebra be
isomorphic to the previous one by S. Then, the involution in ' -algebra, induced by
involution in x-algebra, takes the form

fr=88"1f. (6.1.38)
Indeed
(f*8) =SS1(f*g)=58("1fxS"1g)
=SS lgxS1f)y=8S"lgx §5-1¢)
=g>|< */ f*

Now, the same question, concerning a choice of a quantum observable according
to Observation 11, appears for x-products with involution given by (6.1.38). The
simplest admissible deformation of a classical observable Ac, which is self-adjoint
with respect to (6.1.38) is given by

Ag(h) = W(h)Ac, SS—'W =W. (6.1.39)
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Indeed, for such W (%) we have A}, = Ag. In particular, for

SS~! =expiB => W =exp,iB,

where B is a real differential operator.
The involution of algebra (6.1.36), induced by the involution of algebra (6.1.28),
according to (6.1.38) takes the form

n
fr=exp|=2iho Y X;¥; | f (6.1.40)
j=1
and
n
W (1) = exp —ihaZXij . (6.1.41)
j=1

From (6.1.40) it is evident that for o # 0 the involution for the *, o g-product is
different from the complex-conjugation and functions self-adjoint with respect to it
can be complex in general .

Example 6.2 In particular let us consider a quantization given by the x4 o, g-product
for a one-dimensional case (n = 1) and in a natural coordinate system when X = 0y
and Y = 9,. Then

ff=exp (—2ih68x3,,) f. W(h) = exp(—iho0,0p)
and choosing for instance Ac = xp? we get
Ag(h) = W(h)Ac = xp* — 2iho p,

which evidently is self-adjoint: A*Q(h) = Ag(h).

The last question, related to the definition of involution different from the
complex conjugation, is about the existence of a canonical choice of the involution.
Such a problem is related directly with the existence of a canonical star-product on
the considered manifold. From previous considerations we know that a canonical
star-product exists on T*E", i.e. the one which in Cartesian coordinates takes the
form of the Moyal product. Thus, on T*E", we also have a canonical choice of
S in (6.1.39) as this related the considered star-product with the canonical star-
product.
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Let us consider a larger family of star-products related to the decomposi-
tion (6.1.27) of the classical Poisson tensor & by the formula

n n
<~ = <~ =
f*ngexpeihz X Y= )ih) Y Xy
k=1 k=1
h) (6.1.42)

n»s

<~ — P
+P(X1+Xq,..., Y, +

—
Y
<~ < - -
_P(Xla-'-a Yn;h)_P(Xla--a Yn;h) ga

where P is a polynomial of 2n arguments with coefficients dependent on %. An
isomorphism § intertwining the x-product (6.1.42) with the x-product (6.1.28) reads

S=exp(P(X\,...,Yu h)).

Obviously the family (6.1.36) is the particular case of (6.1.42) with S given
by (6.1.37). If additionally the condition

P(Xla-'-aYn)ZP(Yla'-'axn)

is fulfilled, then the complex-conjugation is the involution for this product as well.
In particular let us take P(Xq,..., Yy h) = —ébh2 Zz,/’:l Xk XYY, b € R
Then the x-product (6.1.42) takes the form

n n
fxg=fexp <éih Z ()?kT/)k — éih Z ?k})k
k=1 k

=1

1122 T e e« > =25 = =
+gbh® Y (Xi Y X Y j+ Xp Vi XY )

k,j=1

n

<~ - - <« - <« —

— b D (X + XY+ Y O(Xj+ X (Y + Yj))g

k,j=1

(6.1.43)

and will play an important role in our further considerations.

For a given sequence of vector fields (X;, ¥;), from the decomposition (6.1.27)
of the Poisson tensor 7, there exists a coordinate system (xl, e, X" pl, ..., pp)in
which X; = 9,i, ¥; = 9), are coordinate vector fields. Such a coordinate system, as
was mentioned earlier, is a Darboux coordinate system associated with the Poisson
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tensor 7. In these coordinates the star-products (6.1.42) take the form

f*g:fexp(éih <(8_Xk_8)pk — <8_pk_8)xk> +P((3_x1 +_8)X1,..., (8_17;1 +_8)pn;h)

<« <~ — —
—P(0 1, 0 i B)—P(D 1,..., 8pn;h))g

while the star-product (6.1.43) the respective form

L (< = — -
frxg=fexp zzh(axka,,k—a,,kaxk)

1,0, < < <
+ 16?8 k9 p 0 5 0 p, +

—

R~ <~ - <« - <« —
_8bh(axk+ axk)(apk"_ apk)(axj+ axj)(apj+ apj) 8-

Again, all other star-products (6.1.42) are constructed by classical canonical
transformations of coordinates.

An integral representation of a star-product is very important and particularly
useful for further considerations. In order to do it let us chose the Fourier transform
and the convolution defined by formulas (6.1.17)—(6.1.21). Next we need to specify
a space G where the series (6.1.1) ((6.1.7) in particular) is convergent. Let G =
F (Cgo (R?")) be the Fourier image of the space of smooth functions on R2" with
the compact support, where the Moyal product (6.1.33) is convergent [136]. We
prove the following integral form of that product

frm& = / f FE+E)gE +ENe 1o qgl qe,
(m h) R
(6.1.44)

Indeed, using the properties (6.1.19) and (6.1.20) of the Fourier transform, the
Moyal product (6.1.33) can be written in the following representation

(2w &) = F L F(f o )6) = h)n / F(f #u 9)@)er " dg

1 X1 [ih
= Mivr |, MEkVk e . ’

X F(Bgut -+ g 8)(¢ — ¢en’ué" ' de

1 1 fin\* i i

/ / 7

= (Qrhyn /RZnZk! <2> anVl...anvk/RZNhgul...hguk}‘f@)
k=0
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i ’ T / ;{Méud /d
(;W =8y G — TR = e ¢’ dg

1 o 1 —l k o ) X
= Qrhy /Rzn /RZ" ; k! (2&) (ﬂ“ ¢u(&y — CU))

x Ff&Fgt — ¢ehtnt" ar’ dg
1

= ! _ ! _zihﬂ‘w{h(fu_fc;) ;i,fugud /d .
Qi) /R% /uw FrE)Fe& —¢)e e ¢'de

After the change of variables
Ey = Cs
Cp—=Cut8,

we get
1 ign lﬂw ’ i ,
Fow® = o [ [ FREOFa@eh €02 el g

g E"
(271h)"/ Ff@HgE + yng’ Yeh¢us" dqg’

[
(ZM)Z” /Rz / FENgE + dmeherut emn it ag g
Performing another change of variables

g1 > gl g,
g.;L N 20)’,“)5//1)

and observing that m@ = I, we receive the result. Notice that in the representation
M = T*R" with canonical basis (xl, ..., X", p1,..., pn), the star product (6.1.44)
takes the form [7, 152, 269]

(f *m &) (x, p) (6.1.45)

1k 1

1
:( h)2n/ fa+xp+pHgx+x", p+pe” B 0! pk)dx’dx"dpdp”
T R2n JR2n
1 1k

— / f(xl,p')g(x”,p Ve~ h[(l’k P (K —xk)— (x’k—xk)(pk P")]dx’dx"dp dp”
(T[h)zn R2n JR2n

The integral form of the Moyal product is also valid for the space of Schwartz
functions S. Moreover, it can be shown that ), is continuous on S and that for
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f,g € Swehave f %y g €S and

ILf*m glizz < I fliz2llgliz2s

see e.g. [33, 136]. The extension of the Moyal product from G to a continuous
star-product on S is unique since G is dense in S. Hence the Schwartz space S
is an algebra with respect to the Moyal product. From (6.1.3) follows that the
Moyal product is continuous with respect to the L>-topology and thus can be
uniquely extended to a continuous star-product on L?(R*") making it an algebra
L= L>R*N wy).

Under substitution x” — éx’, x" - —éx”, the integral form (6.1.45) of the
Moyal product can be written in the following way

(f»*m &)(x, p) = / / f(x + ;x/,x”)g(x _ ;x//’x/)e—;(x’k+xuk)pk dx/dx”,
R? JR"

(6.1.46)

where f denotes the Fourier transform of f in the momentum variable (6.1.23).
Note, that the Moyal product on G is not local, which can be seen from its integral
form (6.1.44). For a fixed & € R?" the value of the integral in (6.1.44) depends on
the values of functions f and g far away from §.

The Moyal product (6.1.33) is also a valid star-product on the symplectic
manifold M = T*U = U x R", where U is an open subset of R”. This is a
direct consequence of the fact that the Moyal product is a series of bi-differential
operators which are local operators. For f, g € C;°(M) the integral form (6.1.44)
of the product still makes sense, since f and g can be uniquely extended to smooth
functions on the whole space R?" with the same supports as f and g respectively
(simply by putting the functions f and g equal 0 outside U x R"). In such a case
the expression (6.1.44) still can be formally expanded to the series (6.1.33). For
f» g € G formula (6.1.46) makes sense and defines the Moyal product of functions
f and g. Moreover, f xjs g is smooth and hence f x); g € G, i.e. G is an algebra
with respect to xjy.

Finally, at the end of that subsection, let us prove that any function f € Ag can
be expanded into an appropriate x-power series. For simplicity we do it for the case
n = 1, but the generalization onto arbitrary n is straightforward. We show that for

any f(x, p) € Ag

-
~ -~ -
m

(e.¢]
f= Zanmf*-u*x*p*---*p, (6.1.47)
n

n,m=0
where a,,, € C. First we prove it for the Moyal algebra. From relations

X*yX=X:X, pxMyp=p-Pp, X*Mpzx'pdl'%iﬁ
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we get the recurrence relations

X (X AN XN X KN P RN kM D) T X KM kM X KN P RN KM P
~ - - ~ - - ~ -~ - ~ -~ -
n m n+1 m
—éihmx*M~-~*Mx*Mp*M~~-*Mp,
- - - - . —
n m—1

D-(Xhp - kY XA DAY Ky P) =X Khpp -k XKy PRy =Xy P
- —_ - < - — - . - < -
m

-~
n n m+1

- éihnx*Mu«Mx*Mp*M---*Mp
n-\—/-l -;nf
and hence, it follows that monomials x” p™ can be written as x;-polynomials. Thus
after expanding f into the power series it is seen that f can be written in the
form (6.1.47). Then, for any other x-product, related to the Moyal one by (6.1.8),
we have

~ -~ - < ~— -
n,m=0 n m
and hence
o0
f= Z Ay X K XX KD Kk P,
~ -~ < - -
n,m=0 n m
where
o
/_S—l _ /
fr=85"r= Ay 4 *M * %M q*M D *M ***M D -
- - - - - -
n,m=0 n m

Particular examples of morphism S, either explicitly or up to some order of 7,
are constructed in next subsections.

6.1.4 Canonical Transformations of Star-Products

As previously, let us consider a symplectic manifold M = T*U = U x R", where
U is an open subset of R”. A transformation of phase space coordinates is defined
as in classical mechanics, i.e., as a smooth bijective map 7: M D U > (x, p) —
(x', p') € W C M. The transformed star-product, denoted hereafter by x7, should
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fulfill the following natural condition
(f*g)oT =(foT)*r(goT), [ ge€Ag.

Assume that (x/, p’) are classical canonical coordinates. When the star-product in
(x’, p) coordinates is the Moyal product

~— = 1l «~ =
[y g= fexp(éih 0 xi 0 = 5100 9 x,,-)g (6.1.48)

hence (x’, p’) are also quantum canonical coordinates. Then, the x7-product is given
by the following formula (6.1.33)

1< = L. < =
farg= fexp(zlh D, D, —linD, ij)g, (6.1.49)

where vector fields D,j, D, ; are derivations d,/;, 9 . transformed by the transfor-
J
mation 7" according to the rule

@yif)oT =Dyj(foT), feC?(M),
@y )oT =Dy, (foT). [feCM).

Notice that the Moyal product (6.1.48) in (x’, p’) coordinates transforms into a non-
Moyal product (6.1.49) in new coordinates (x, p), more complicated in general.

To this moment we considered general transformations of coordinates. In what
follows we will focus on an important class of transformations, namely these which
are classical and/or quantum canonical transformations. In classical mechanics a
canonical transformation is such a transformation 7 of phase space coordinates
which transforms the system from one canonical coordinate system to the other. In
other words, T is a canonical transformation if it preserves the form of the Poisson
bracket (see Sect. 4.1.4), 1i.e.,

{xis pj} = Si's

where { -, -} denotes a Poisson bracket transformed by 7 to the new coordinate
system:

(g ={foT L goT ™ WoT, fgeC®WM).

Canonical transformations for the quantum Poisson bracket are defined in a
similar manner [35, 75, 87, 91, 147]. Namely, a quantum canonical transformation
is such a transformation 7' of coordinates which preserves the form of the quantum
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Poisson bracket, i.e.,
[[-xls pj]]* = Sl's

where [ -, - ]l denotes a deformed Poisson bracket transformed by 7' to the new
coordinate system:

[f,gli=0foT ', goT MyoT, f geC®M).

Assume now that (x, p) are canonical coordinates for a nondegenerate Poisson
tensor 7 and %y is a Moyal product in these coordinates. Let us denote

T(x,p) =(Q'(x,p),..., Q" (x, p), Pi(x, p), ..., Pulx, p)),

then 7" defines a classical canonical transformation if

TACNON RO

: 4 (6.1.50)
{Q'@p. 0 p) = (PG p. P p), =0
and T defines a quantum canonical transformation if
1O (x, p). Pj(x, p)lsy = &',
(6.1.51)

[e'c.m o/ m] =[P P, =0

*M

There are transformations which are either classically canonical or quantum canon-
ical. The following two examples illustrate such cases.

Example 6.3 A transformation which is only classically canonical [93]. Let us
define such a transformation by

Q(x, p) = xexp2axp), P(x, p) = pexp(—2axp),

where o # 0 is a real parameter. It is obviously classically canonical transformation
as

{Q(-xv p)s P(-xv P)} =1.

However, it is not a quantum canonical with respect to the Moyal bracket. To check
this let us first compute Q(x, p)xy P(x, p) using the kernel representation (6.1.45).
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Substituting ¢ = it, we get after some integrations and integration by parts

xp — éih
[1+ (ah)?)?

xp+ Sih

[1+ (eh)?])?’ P(x, p)*xy Q(x, p) =

Q(-xv p) *M P(-xv p) =
and hence

[QO(x, p), P(x, p)1l,,, = [1 + (@h)*]7% # L.

Example 6.4 A transformation which is only quantum canonical [93]. Let us define
such a transformation by

O(x. p) =ﬂeXp<;), P(x, p) = exp (—/’;) [p+ysinh<2ﬂ;”>]

where § and y are positive real constants. Obviously this is not a classically
canonical transformation as

(Q(x, p). P(x, p)} = 1+ zﬂhw cosh <2ﬂ;p> b

On the other hand we have

“«— — «— — \2n+1 27 2+l 281
Q(x,p)(Bxa,,— a,,ax) P(x,p):ﬂy(h) cosh( ﬂh”).

Consequently, from (6.1.35),
[Q(x, p), P(x, p)l.,,
={Q(x, p), P(x, p)}

(=D A\ — >« = \2H]
+;(Zn+l)!(2) 0w, p) (9.9,-9,3.)" Pe.p)

2 2
=1+ '}‘;y cosh( ,8};1[7) sinmt =1,

and so this is a quantum canonical transformation.

In what follows we will present four important classes of nonlinear canonical
transformations (both classical and quantum) [35]. The linear case is considered
separately. A sufficient condition for such a class of transformations is a linearity in
one set of arguments of an appropriate generating function (see Sect. 4.1.4).



306 6 Deformation Theory of Classical Poisson Algebras

Let us begin with the case of two-dimensional phase space and generating
function of the form

Fi(x',x) = x'¢1(x) + ¢ (x).

The related transformation is expressed by equations
JdF] aF;
/_ / _ ’
[7 - ax/ (-xax)v [7 8)6 (-xa-x)a

where ¢ is a smooth bijective function and ¢, is a smooth function. The above
equations lead to a class of transformations in the form

Ti(x, p) = (Q1(x, p), P, ) = (= (#10) ' p = (#10) ' 65(0), 61 (),
(6.1.52)

where ¢/ (x) = d”id)(x). Note, that generating function

Fi(x',x) = —x¢1 (x') — ¢p(x')

induces a transformation Tl being an inverse transformation to 77.
The second class of transformations

, o, o,
X = — ,(pap)ﬂ X = ([7,[7),
ap ap

is generated by functions
F(p'.p) = —p'¢1(p) — $2(p)
which give
Ta(x, p) = (Qa(x. p). Pa(x, p)) = (91(p). =61 (1) "'x = (#1(1) ' 62(p))-
In this case functions

F(p', p) = pp1(P) + ¢ (p)

generate transformation 7> being an inverse transformation to T5.
The third and fourth classes of transformations are generated by

F3(x', p) = X'¢1(p) + ¢2(p),
Fi(x, p') = —=p'o1(x) — ¢ (x),
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with related transformations expressed by the equations

0F3 3
p/: ax/ ()C/, p)s X = ap (-x/s p)v
and
dFy d0Fy
-x/:_ ,(xsp/)s pP=— (-xvp/)'
ap ox

The above equations give transformations in the form

T3, p) = (Q3(x, p), P, p)) = ((#1() ™' = (#1(1) ' 82(p), 91 (1))
(6.1.53)

Tix, p) = (Qa(x. p). Pax, p)) = (910, (1) ' p = (#10) ' 9h(0))-
(6.1.54)

Observe that functions

B, p) = —pp1(x') — ¢o(x),
Fy(x, p') = x¢1(p)) + ¢2(p)
generate transformations f’3 = T4_1 and 7~’4 = T3_1.
Note, that the transformations 7>, 73 and 74 can be constructed from 77 with

the help of an interchange of variables transformation 7 (x, p) = (—p, x) being a
special case of the transformation T} generated by a function F(x’, x) = xx':

T2=IoT10171,
T35=Tiol ",

Ty=1"'oT.

Thus instead of considering the transformation theory for transformations 71, 75,
T and T4 it is enough to consider only the transformation 77 and its appropriate
compositions with /.

The four presented classes of transformations are obviously classically canonical.
It can be shown that they are also quantum canonical for Moyal product as

[Qi(x. p), Pi(x, p)l,, = 1.
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They belong to the intersection of the set of classical canonical transformations of
a given Poisson tensor 7 and the set of quantum canonical transformations of its
related quantum deformation.

The presented considerations can be easily extended to a 2n-dimensional case. As
an example let us present the transformation 77 (6.1.52) in 2n-dimensions. Consider
a generating function

F(x',x) = x"(¢1)i (x) + ¢ (x),

where ¢; = ((@)1,..., (@1)n): R" — R” is a smooth bijective function and
¢,: R" — R a smooth function, and x = (xl, ..., x™). The function F generates
the transformation 7' (x, p) = (x’/, p’) of the form

X = = p il ) = (g5 011 ),
P = (i),

where [(¢) (x))~'1/" is the inverse of the Jacobian matrix [P\ ()]ij = ag’j&)i (x) of
¢, and [¢’2(x)] j= gff (x) is the Jacobian matrix of ¢,. A calculation shows that
this transformation is also quantum canonical for the Moyal product. All other cases
can be extended in a similar fashion.

In what follows the well known linear transformations of coordinates of a
quantum phase space will be reconsidered in the frame of formalism just developed.
For n = 1 the linear transformation is a transformation 7': R> — R? given by the

equation
T(x, p) = (dx —bp, —cx + ap),

where a, b, ¢, d € R. Moreover, it is assumed that ad — bc = 1, which makes this
transformation canonical both on a classical and quantum level, i.e. it preserves both
the Poisson bracket and the star-commutator. The inverse transformation is given by
the following equation

T_l(x/, p) = (ax' +bp’, cx’ +dp').
2

The linear transformation T is generated by a function F (x', x) = lljxx’ — X =

d . 2
X5 1€

aF
(x, x),
X

/ oF ’
P = (.X,X), pP=—
ax’ a

where (x/, p') = T(x, p).
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For a given function f € C®°(R?) the derivatives of the function f transform as
follows

af
0x’

af
ap’

oT:aa(foT)+ca(foT),
ax ap

oT:ba(foT)—l—da(foT).
ax ap

Using the above formulae one finds that the linear transformation T preserves the
*-product, i.e. the x-product does not change after the transformation of coordinates

(fxg)oT =(foT)x(goT), f geC®R?.

Of course, in this case the isomorphism St = 1. The extension onto arbitrary n is
straightforward.

Let us return to the transformed Moyal product (6.1.49). If new coordinates
(x, p) are quantum canonical with respect to the transformed product (6.1.49) then,
as will be proved in the next subsection, there exists a morphism S7 of the form

o0
Sy = id~|—thSk,
k=1

where Sy are differential operators on C* (R¥M)[[A]), such that

Sr(f *ﬁ;’p) g8 =58rf *(Tx’p) Srg, (6.1.55a)
Srxt=x', Srpi=pi, i=1,...n, (6.1.55b)
where *5&’1’ ) is a star-product which in the coordinates (§) = (xl, S N 7] PR

Pn) is of the form of the Moyal product (6.1.33). This fact is crucial as it means that
in new coordinates we again can use the Moyal product with deformed properly
quantum observables.

For deriving the form of the automorphism Sz for particular transformations 7',
other forms of the conditions (6.1.55) will be more useful. The conditions (6.1.55)
are fulfilled if and only if the conditions

Gr) = Sr@am)’ sy, (6.1.56a)
(Pr)j = St(Pm); Sy (6.1.56b)
are fulfilled, where (Gr)/ = x/ 7, (pr); = pj *r ., (Gu)) = x/ *u

and (py); = pj *m are operators of position and momentum in xy and x7
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quantizations, respectively. Notice, that according to (6.1.34)
Gu) =x7 +ihd,,,  (pu)j = pj — yihdy, (6.1.57)

and are known as “Bopp shifts” (see Chapter 18 in [82], for example).

For simplicity we will present the proof for a two-dimensional case (n = 1).
If the conditions (6.1.55) are fulfilled then the conditions (6.1.56a), (6.1.56b) are
fulfilled as well, as for any f € Agp

grf =xxr f =808 (xxr f) = Sr(Sy' x xu S;' f)
= St (x %y S7' f) = [Sr(eoxan)S7'1f = (Srg Sz f

with similar calculations for (6.1.56b). Assume now, that the conditions (6.1.56a),
(6.1.56b) are fulfilled. Then it follows that (6.1.55a) will be satisfied for every f in
the form of a x-monomial x xp7 -+ - %p7r X *p7 P *p7 -+ - %y P as

ST(({*M"'*M{*M{’*M"'*M{{)*Mg)
n m

= STXx *7 ST({*M"'*M{*M?*M -~-*M13*Mg)
n—1 -\n:
= STX AT AT ST{*TfTP XT - kT STll*TSTg
n "
=§Tx AT - kT ST{*TfTP AT - KT STIl*TST(I’ *M P)*T STE

-~ -~
n m—2

= ST (X *M - *pm X *kp P xy o *m D) *T STS.

" "
From the linearity of St and the fact that the general f € A can be written in the
form of the series (6.1.47) follows the condition (6.1.55a). The condition (6.1.55b)
can be received by calculating left and right sides of (6.1.56a), (6.1.56b) on function
identically equal 1.

If T = T, then for both star-algebras (6.1.48) and (6.1.49) the complex
conjugation is an involution. As a consequence Sy = S7. More generally, such
transformations do not change the involution (6.1.38) for the class of a star-
product (6.1.42). Indeed

f¥T = SSr(SSp)~ f = SSpS;lsTV f = S5l f = f*
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Let us analyze the following instructive case [35] of a particular class of nonlinear
transformations of coordinates

T(x, p) = (—ap — ad'(x),a" ' x),

i.e. the case of Tj (6.1.52) generated by the function F(x’, x) = a~'xx’ + ¢(x)
(a € R, a # 0, ¢ being an arbitrary smooth function). This transformation is a
classical canonical transformation. For a given function f € C* (R?) the derivatives
of the function f transform as follows

a 19
for==17 (o),
ax’ adp

af

3 N
o oT=a, (fol)~ap (x)ap(foT).

Hence the Moyal *'-product transforms to the following one
.= . <=
f*r g = fexp (21thDp - 2lthDx) g,
where

D, = a—la,,,
Dy =ady — ad)”(x)ap.

In consequence, one calculates that

qAT = X T :x+ ;lhap,

1 [in\"
n=2
and moreover
(g, pr] =ih.

The above equation shows that the transformation 7 is a quantum canonical
transformation for the Moyal product.
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The isomorphism St intertwining the Moyal x7-product with the x7-product in
(x, p) coordinates is given by [35]

X 1 B\ 2"
St = exp (— > on 4 1) (=1)" <2> qs(?"“)(x)ag"“) ) (6.1.58)
n=1 :

Indeed, from (6.1.56a), (6.1.56b) it is enough to prove that

ar = SrgmSy ",

pr = StpuS;'

Since S; = e where

. o0 1 A 2n
A== iy <2> AOLAN

n=1
the above equations, from the Hadamard’s lemma, take the form
Gr = ™ gy, (6.1.59)

pr =X 1py. (6.1.60)

One can calculate that [A, gm] = 0 and thus

Gy = qu = gr,

which proves (6.1.59). On the other hand, one finds that

o]

[A,ﬁM]z—Z (Zn),(—) ( ) ¢V ()"

o]

A 2n

1
1
— Z " ( ) (n+1)(x)an
=2

and
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Thus

e¢]

A1 . 1 [(ik\" .
e dpy = p—inde =3 | <2> ¢" V()3 = pr,

which proves (6.1.60).
Let us derive the more compact formula for S7, transforming (6.1.58) as follows

> 1 in\" 1+ (—1)"
_ exp( X_; 1)1 (l ) (2 ) ¢(n+1)(x)a;+l)
|: . Z ' 1 — (—1)’!) ¢(”)(x) (;;wa,,)n}

n=2
= exp [; (¢ (x + 2ih3,,) — () — ¢'(x)ihd, — ¢ (x - éiha,,)
Fo(x) — ¢’(x);ma,,)]
= exp [; (¢ (x n gihap) — (x - ;ihap) - ih¢’(x)8p)}
= exp (, [0 ~ 000w~ 003 + 6 35 ).
Observe that the map St preserves the involution, i.e.,

Sr(f) = (Srf), feAg,

which can be immediately seen from the fact that St = Sr.

The class of point transformations on the phase space M = T*E" is particularly
important for our further considerations. Let us start from the simplest case of n = 1.
Then, the transformation takes the form

T(x,p) = ($(x), @ ()" p)

generated by functions F(x, p’) = —p'¢(x) (¢ being an arbitrary smooth
bijective function). These transformations from construction are classical canonical
transformations of class T4 (6.1.54) where ¢ = ¢ and ¢, = 0. For a given function
f € C®(R?) the derivatives of the function f transform as follows

3f
ax’
af

g ol = ¢><x) (o).
P

=(¢'(x))” 2¢”<x>p (foT)+(¢(x))1 L(foD),
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In consequence, the Moyal «'-product transforms to the following product
f*Tg=fexp(;ih‘5xB,, - ;ih‘ﬁpﬁx) 2, (6.1.61)

where

Dy = (@' (x)7'ax + (@' (1)) 29" (x) pd,,
D, = ¢/'(x)d,.

To the third order in 7 the operators g7 and pr are of the form

1
A 1. 142 2 23 2 3 4
gr = x + ,ihdp + gh"T'(x)d;, — 481h (ZF (x) — F/(x)) 9, + 0",
pr = p — jihdx + gh’ [2r2(x)ap + 20 (0,8, + (220 ~ ') paﬁ]

L in3 [6r (T (002 + 307 ()30 — (I (x) + 40T (1)) p?? n*
+481 [ () (x) T (x)0x p—( (x) +4r ()M (x)p p:|+0( ),

where I'(x) = (¢'(x))~'¢” (x). Moreover, it can be verified [35] that
(g7, pr] = ih,

which proves that 7' is a quantum canonical transformation.
Up to the second order in # the isomorphism S7 reads

2

Sp—14" [3r2(x)af, +30 ()32 + 22 (x) — r’(x))paf,] + oM.

41

Example 6.5 Consider a classical point transformation of coordinates [35] 7: (R \
{0}) x R — (R\ {0}) x R, T'(x, p) = (x, p’) where

= p' = py/I2x],

o JI2x|, x>0
—J]2x], x <0’

with the inverse 7! in the form

_1.n

. éx’z, x>0 =l
x= T =l
)X, x' <0
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The operators g7 and pr take then the form
gr = x + ,ihd, — {h* sgn(x)|2x| 9,
1 .- in\"*! 1 1
pr=p-— Sih0x + Z (— ) ) ((sgn(x))"|2x|—nax8; — n(sgn(x))n+ [2x| 7"~ 8;),
n=1
and the isomorphism S7 is expressed by the formula
Sr = exp Z(—l)" (2> (An sgn(x)|2x| 7> 1o, 02" — Bn|2x|*2"a,2,") ,
n=1
where A, and B,, are rational constants given recursively by
1 1w
A= (1 -3 A1)
k=2
R o s
B, (21 Bl )

k=2
where
n—1
k k—1

AS) =340 - 2m) A AN,
m=1
n—1

B = X (400 = mBy A~ a5
m=1

fork=2,3,...,nandn =2,3,...,and

AV =BP =0, k=2,3,...,

AY =204, BY  =2mB, n=12,....

n—

The values of a few first constants A, and B,, are

1 1 1 7
A1:27 A2:47 A3=41 A4=241
5 49
B =), By=3. B3=4, B4=24-
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Now, let us pass to a multi-dimensional case of point transformation on M =
T*E"

T: x" =¢'(x),
j (6.1.62)
’_ / —1
pi =[] ps.
where ¢’(x)~! is an inverse of Jacobian [d)’ (x)]i. = gf;, x’ are Cartesian
coordinates and x are curvilinear coordinates on E”. The Moyal product
S exp (;m 98, — Lin <a_pg_a>x,,-) (6.1.63)

transforms to a new star-product

*5P) = exp(%ih(ﬁxiBm - %ih(Bl,i Bxi> = expéihn“ﬂ(BQBﬂ,
(6.1.64)

such that

(F+SEP) ) o T = (foT)+"P (goT),
where
o1’ ronat VT =11 k
Di =Dy =[] au+ [0 [#'0™!] [0 P,
Dysi = Dy, = [¢' (0] 3,
(6.1.65)
d [¢")]5, = 2%, is the Hessian of ¢. U drati in 7
and [¢ (x)]jl = 5. is the Hessian of ¢. Up to quadratic terms in f,
the isomorphism S relating ;" -algebra (6.1.33) and +(*-P)-algebra (6.1.64)
respectively, is of the form

N S :
Sr=id+ 30} (OT ()3, 0, + 3T (1)1,

4 (6.1.66)

+ (2r;l(x)r7k(x) - ax,rjk(x)) Pidp; 0 0p] + O(HY)
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and will be crucial for our further considerations. To the second order in 7 the
operators qA% and p;r are

@Gr) =x’ + Lindy, + $R2TL ()08, + O, (6.1.67a)
(Pr)j =pj — 3ihd,j + §h* {2r;’;(x)r;;k(x)a,,k +20%, (X)3,40p,  (6.1.67b)
+ TR COT, () + T (0T () = Ty (01pidp, 0 | + O,
where
M) = 16" )" @)

are coefficients of the Levi-Civita connection on E” in curvilinear coordinates
(see (2.6.5)).

In what follows let us transform the vector representation (6.1.64) of the
*%P)_product to its covariant representation. Taking into account the explicit form
of vector fields (6.1.65), the *(x*l’)-product (6.1.64) can be written in the form

g Uy (YT pitedn oy pit i
fx 8= Z n!m!(_ ) ) ( i1.udn ) jl,_,jmg)
n,m=0

1 in\F & [k o
k— woJk—n i1...In
sz!<2> Z(n)<—1> "D WD ),
k=0

n=0
(6.1.68)
where operators Dl.j1 ll{z " are given by recursion formulas [37]
Dt'jll...i{,+1f = Din+l (Dzjlltjn f) - Fi]in+1 Dlill,,j f - Finin+1 Dljllkj f
j k...jm im j1...k
+ r,g;m anin f+-+ r,gl.n“ D{l{“in 1, (6.1.69a)
D}l f = Dinei (D) ), (6.1.69b)
D;f =0, f+T};pidp, f, (6.1.69¢)
D/f=2d,f (6.1.69d)

and where {D;, D/} is a so called adopted frame on R = T*E" (see Sect. 2.7).
Note that the upper indices in the operator Dl]llli’" commute with the lower indices,

i.e. it does not matter if, when calculating Dl.jl 11{1”’ f, we first use formula (6.1.69a)
and then (6.1.69b) or vice verse.
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Equation (6.1.68) takes the form

f *P) g (6.1.70)

> h
—Zk, (’ ) Z( )( DV Diinidin Vo Vi ieciin

n=0 k k

where 7 = n + i and V is a linear connection on the symplectic manifold 7*EV,
whose components in the frame {D;, D/} are

M =T Th=-Th (6.1.71)

with the remaining components equal zero. Thus, Eq. (6.1.70) can be written in the
form

00 . k k
f NEND) g = Z 1 [ih Z k AWV AMnVn BRat1Vatl .. BHKVE
k'\ 2 n
k=0 n=0
(V —_— V_,f)ll«] M (V Vg)vl Vo (6172)
k k

where

0, I 0n On
A = s B = .
<0n On) <_In On)

Then, Eq. (6.1.72) can be transformed to the form
21 ik o _
fAre=% ( 2 ) A+ B (A B Y D § 2V v
k=0 k k

and introducing

0 I,
AT (—In 0)

we finally receive

e¢]

1 (in\*
f*(x’p)gZZkl (2) i nukvk(v Vf)m Mk(v Vg)vl vk

k=0 k k
6.1.73)
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Since D; AD/ = 0,i N0 pjs stV are components of the Poisson tensor in the Darboux
frame {9,:, dp, } as well as in the adopted frame {D;, D7y,

The Christoffel symbols of the linear connection V in the Darboux coordinate
frame take the form

i i _l____] _l____k”
Dje =Tje Ty =T Tip=-Tj,

T = pr (D TL + TRTL =T ), (6.1.74)
with the remaining components equal zero. Comparing (6.1.74) and (6.1.71)
with (2.7.7) and (2.7.6) we immediately recognize that V = V9 is a flat
symplectic connection on T*E" induced by the Levi-Civita connection on E”.
Thus we wrote the canonical star-product on T*E" in a covariant form (6.1.73)
with respect to an appropriate symplectic connection. Notice that the isomorphism
St (6.1.66) between *g‘;’p)-algebra (6.1.33) and **-P)-algebra (6.1.73), expressed
by a symplectic connection in the Darboux frame, is of the form

n (-
S=id+ (—ra,gya“a”ay +

4! 2

3. _

rﬁargﬁa“aﬂ) + O(h%), (6.1.75)
WheI_‘e 0% = ﬂaﬂasﬁ, (%—11752}’1) = (-xls'-~7-xns plsvpn) and ﬁaﬂy =
Os rg ,» while (6.1.67a) reads

My )

1 in\? [ - S =
Era =g+ in9" + (12 ) (—ATs omar = JT0, FU2,0%) + 0 (),
(6.1.76)

As we will see in the next subsection, on a symplectic manifold endowed with
a symplectic torsionless connection it is possible to distinguish a whole family of
star-products. In the majority of physically interesting cases a symplectic manifold
is taken in the form of a cotangent bundle to a Riemannian configuration space.
In such a case there exists a distinguished connection, induced by the Levi-Civita
connection from the related Riemannian space, and thus a family of star-products
which can be used in the process of quantization.

The star-product (6.1.64) is also an admissible star-product on more general
symplectic manifolds. Let us consider a symplectic manifold M whose Poisson
tensor can be written in the form (6.1.27). Additionally, let us assume that the first
de Rham cohomology class H'(M) vanishes, which guarantees the existence of
global natural coordinate systems associated to the star-products (6.1.64). On such
a symplectic manifold M the product (6.1.64) is a proper star-product, which can
also be written in a covariant form (6.1.73) with an appropriate linear connection
V. However, in this case there is no distinguished star-product from the family
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of products (6.1.64). To distinguish a star-product we have to select a set of
commuting vector fields (D) from the decomposition (6.1.27) of the Poisson
tensor, or equivalently, by choosing a flat torsionless symplectic linear connection
VonM.

6.1.5 Star Products on Symplectic Manifolds

Let now (M, w = m~') be a general symplectic manifold with x-product (6.1.1).
The following statement will be crucial for our further considerations. If on M exists
a coordinate system M D U — V C R, & — (&',...,£%") such that it is at
the same time classical with respect to the classical Poisson bracket and quantum
canonical with respect to the quantum bracket (6.1.2), then there exists a unique
series S of the form

o
S:id+2hkSk,
k=1

where Sy are differential operators on C*°(U)[[#]], such that

S(f +5) g) = Sf +® sg, (6.1.77a)
SE* = &9, (6.1.77b)
where *Eé}) is a star-product which in the coordinates (§ L ..., &™) is of the form of

the Moyal product (6.1.33). The operators S; will satisfy the following recurrence
relations for k > 1

k
[t 69100 = 3 3 (CE™, Semt () + Cu(Sii (), D), f € CX(M),
=1
(6.1.78)

where operators C; are defined in (6.1.1). The reader can find the proof of that
statement in [99].
If the x-product satisfies also the parity condition (6.1.5)

Cu(f,8) = (=D*Cilg. /), f.g € CE(M), (6.1.79)

then relations (6.1.78) take the form

[S2r41, §*1(f) = 0, (6.1.80a)

k
[Sat, E*1Cf) = ) Cu(€®, Sage—ny(f)), (6.1.80b)

=1
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for k > 1. Thus, in this special case only terms of the even order in the expansion
of § are non-zero and they are given by (6.1.80b).
A direct calculation shows that the solution of (6.1.78) is of the form

e¢]

1 o
Sk = Z n! [gal e [ganil ’ Fk n]]asal e asa" s (6.1.81)
n=1
where
k
FE(f) = 1Y (CrE®, Semi(f)) + Ci(Semi(f), £)). (6.1.82)
=1
Indeed,
@ .- 1 o n
6.6 = = 30 (660 6 g, -0,

1
+ nzzzl = 1)![5/31’ e [%‘/Sn—l’ Flg]]aﬂl e 0g,

[ehr, ... &P, Fl0p, -+ 0p

- Z n! "
n=1
1
+) (6P g Feop, - 0p, = FE
n=0
Observe that when Cy are finite order bi-differential operators then the sum
in (6.1.81) will be finite.

If the x-product satisfies additionally the parity condition (6.1.79), then (6.1.82)
reduces to the form

k

F(f) = Y (CuE® Sae—n (/). (6.1.83)

=1

Further on we will consider such *-products for which, for every almost global
classical and quantum canonical coordinate system M D> U — V C R?" £
(€1, ..., £M), the associated series S such that § = § giving the equivalence with
a Moyal product has the property that for every f € Cg°(V) the series S(f) is
convergent to an element of L*(V,dSQp) and

/Sfth =[ fdQm, feCEW). (6.1.84)
\% \%
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From (6.1.84) it follows that

Indeed, we have
(SF. Sg) = / SfSgdS = / SF ) Sgd
\% \%4
=/ S(f +%) g)dszh=/ 8 gdn = (£, g).
\% \%

The above property imposed on the series S guaranties that S can be uniquely
extended to a unitary operator defined on the whole Hilbert space L>(V, d$2;) and
satisfying

S(f ) g) =57 +® S, f g€ L2V, dm).

In the case when (£!, ..., £%") is a purely quantum canonical coordinate system,
i.e. it is not at the same time classical canonical, then it must depend on 7 and will
be a deformation of a classical canonical coordinate system. The components 7 *”
of the Poisson tensor 7 for such purely quantum canonical coordinate system will
be /i dependent and can be expanded in the series

() = wh” + hrlt + R+ o), (6.1.85)
where n(’f " components are of the form (6.1.14). In consequence, the bi-differential
operators Cy from the expansion (6.1.1) of the x-product written in the coordinates
(€',..., &%) will depend on /. Expanding Cy in the power series of 7 allows to
write the &) -product in the form

&g =3 "ncut o,

k=0

where C, are new bi-differential operators which do not depend on #, and
satisfy conditions 1-4 of (6.1.1). Moreover, in condition 3 the Poisson bracket, in
accordance with (6.1.85), is associated with the Poisson tensor 7¢. In consequence,
the &) -product can be regarded as a coordinate representation, with respect to the
coordinate system (€, ..., &%), ofa star-product on a Poisson manifold (V, ).
The coordinates (£!, ..., £€2") are then classical and quantum canonical. Thus,
our statement is also valid for a purely quantum canonical coordinate system
(€, ..., €2, but the Moyal product *55) will no longer be associated with the
Poisson tensor 7 (%), but with another Poisson tensor.
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The current considerations can be summarized as follows.

Observation 12 Quantum Hamiltonian mechanics is formulated on simplectic
manifolds which admit almost global coordinate systems. Choosing such a coordi-
nate system (€', ..., €¥"), a family of admissible quantizations is represented by a
family of »&)-products equivalent through S with the Moyal product *551) (6.1.33)
and such that (6.1.77b) and (6.1.84) are fulfilled. Moreover, a canonical choice
of quantum observables for &) -product with involution in the form of complex-
conjugation is given by Ag(h) = Ac, and for *&)_product with other involution by

Ag(h) = W(h)Ac (6.1.39) respectively. In consequence, all these nonequivalent

quantizations can be represented by a single Moyal product *f[) and a family of

assignments of quantum observables As(h) = SAg(h) (see Observation 11).

The star-product (6.1.28) can be defined on more general symplectic manifolds
M, different from M = R*". Moreover, we adopt the Riemannian geometry to our
construction. Let (Q, g) be an n-dimensional flat pseudo-Riemannian manifold with
a property that every two points of Q can be connected by exactly one geodesic. On
such a manifold, called the simple connected pseud-Riemannian manifold, there
exists a global Riemann normal coordinate system (xl, ..., x™), which are flat
coordinates of the metric tensor g. Every such a coordinate system is parametrized
by apointx € Q and abasis ey, ..., e, in Q. Using the flatness of the manifold Q
one can show that Riemann normal coordinate systems transform according to the
formula

x/i = Aé.xj —|—x(i), (6.1.86)

where xé are the coordinates of the origin of the second coordinate system from
the perspective of the first coordinate system, and A; is a matrix which transforms

the basis ey, ..., e, of the first coordinate system to a parallel transported basis
e}, ..., e, of the second coordinate system, respectively.

The Riemann normal coordinate system (xH = (x1, ..., x") induces a global
canonical coordinate system (§%) = (xt, pi) = (!, .., xn, Pl,---,Pn) ON a

symplectic manifold M = T*Q. We will call this coordinate system a Riemann
normal coordinate system on 7*(Q. The canonical Poisson tensor 7 on T*Q in
Riemann normal coordinates can be globally written in the form (6.1.26).

Using the coordinate vector fields of the Riemann normal coordinate system
on T*Q we can introduce a star-product on the symplectic manifold 7*Q by the
formula (6.1.33) and hence the Riemann normal coordinate system is a natural
coordinate system for this star-product. Such a star-product is independent of
the choice of the Riemann normal coordinate system as according to (6.1.86)
coordinate vector fields of Riemann normal coordinate systems are related to each
other by linear symplectic transformations which do not change the star-product.
Thus, on the symplectic manifold 7*Q, for any flat connection V on Q there is a
distinguished star-product from the family of star-products (6.1.28) having Moyal
representation (6.1.33) in any Riemann normal coordinate system on 7*Q induced
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by Riemann normal coordinates of V. We will call this product a canonical star-
product on 7* Q related to the flat connection V.

For Riemann normal coordinates the Christoffel symbols Fj. ¢ of the Levi-Civita
connection V on Q vanish, so g is a symmetric constant matrix. In consequence
the Christoffel symbols f‘%‘y of the lift (6.1.74) of the connection V to a symplectic

connection V on 7* Q vanish as well. This shows that the canonical star-product on
T*Q can be written in a covariant form

oo N
1 [ih _ _ - -
f*g=2k| <2) 7-[//«1”1,..nﬂkvk(y;Yf)ul...uk(y;zg)vl...vk
k=0 k k
X1 [ik\* vy e
:Zkl 2 hdat! R el (85;11 asukf)(asvl "'8§ng),
k=0 "

(6.1.87)

as for Riemann normal coordinates both products coincide. From flatness property
of the linear connection V follows the associativity of the star-product (6.1.87).
Now, let us consider some automorphism ¢ of (Q, g). Itinduces a new flat metric

g’ = (¢"1)T gp'™! (6.1.88)

of the same signature as g and new connection V¢ with different from zero
Christoffel symbols in Riemann normal coordinates of the old connection V. The
new connection Vy induces a new symplectic connection ﬁ(p on T*Q and a new
star-product

o =4
frg= fexp <éihn“ﬁv¢a V¢ﬁ> g

o1 i\
= Z k' ( 2 > T[:ulVl .. -j'[:ukl)k (y¢ _v‘ Vif),ul,_,,uk (y¢ _v‘ Véig)VIka

k=0 k k
(6.1.89)
being a covariant representation of the product (6.1.28)
frg= feXP(iihn“ﬂ(BQB,s)g (6.1.90)

201 ik
= Z k' < 2 ) n“lvl .. ‘ﬂ“kuk(Dslll . "Dgukf)(Df"l .. .stkg)
k=0
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where Dy = Dg« are given by (6.1.65). Thus, we have constructed a family of star-
products (6.1.89), (6.1.90) induced by a family of flat connections on the base space
Q and hence by a family of flat symplectic connections on 7*Q.

It is also possible to distinguish covariant star-products on more general sym-
plectic manifolds. Let Q be an n-dimensional flat Riemannian manifold, and let
us take as a symplectic manifold M the cotangent bundle to Q, M = T*Q.
According to (6.1.74), we can lift a flat Levi-Civita connection V on Q to a flat
torsionless symplectic connection V on M. In analogy to (6.1.73) we can define a
local canonical star-product on M by the formula

00 . k
1 [ih _ _ _ -
fre=3 ., ( 5 ) R A A A N CATER /I He
k=0 " k k

6.1.91)

On can prove that the star-product (6.1.91) is associative (see [12]), so it is a proper
star-product on M. What is interesting, in a case of a non-flat connection V the
star-product (6.1.91) in general fails to be associative and thus has to be modified
(deformed).

The star-product (6.1.91) can be written in a different, coordinate free form. Let
exp: TM — M be an exponential map of the connection V. For every & € M
there exists a neighborhood U C M of § on which exp is a diffeomorphism of an
open subset V' of the tangent space Tz M onto U. Diffeomorphism exp, can be used
to locally represent each function f € C%(M) as a smooth function defined on
the vector space Tg M. On each vector space there exists a canonical star-product,
namely the Moyal product s, thus it is natural to define on M a star-product by the
following formula

(f % 8)(€) = (exp.f » expig)(0), (6.1.92)
where the pull-back expg‘ J = f oexp;. Using the formula

k
ym . aym T EROD| = 8 Vo ) (6.1.93)
one can see that the star-product (6.1.92) is equal to (6.1.91).

In what follows we are mainly interested in certain manifolds Q for which
the star-product (6.1.91) can be written in an integral form. For this purpose a
Riemannian manifold (Q, g) will be called almost geodesically simply connected
if for every x € Q there exists a neighborhood U C Q of x such that O \ U
is of measure zero with respect to the measure induced by the metric volume
form wg, and every point in U can be connected with x by a unique geodesic. By
analogy we define the notion of an almost geodesically simply connected symplectic
manifold (M, w) equipped with a torsionless symplectic connection. In that case in
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the definition we replace the metric volume form wg by Liouville volume form £2,,.
If Q is almost geodesically simply connected then 7*Q has the same property. The
simplest nontrivial example of almost geodesically simply connected Riemannian
manifold is the sphere.

If M = T*Q is almost geodesically simply connected then for every & € M
exists a neighborhood U C M such that M \ U is of measure zero and exp; is a
diffeomorphism of an open subset V. C T: M onto U. If f € C3°(M) is a smooth
function with the compact support then expg‘ f € C§°(V) has the same property.
The function expg‘ f can be uniquely extended to a smooth function on the whole
tangent space Tz M with the same support as expg‘ f, just by putting the function
expg‘ f equal 0 outside V. Thus according to (6.1.92) and the known integral form
of the Moyal product (6.1.44) it follows that for f, g € C§°(M) the x-product can
be written in the following integral form

1 _2i
frE = / £ (exps (u)) g (expg (v))e™ # 5 du dv.
()N Jrem J1em

(6.1.94)
Note that the crucial assumption that M \ U is of measure zero guaranties that the

above integral form of the x-product indeed expands to the series (6.1.91).
An important property of the star-product (6.1.91) is that for a given classical
and quantum canonical coordinate system (x, p) it is equivalent with the Moyal
product associated with the same coordinates (x, p). The morphism S is constructed

according to general formulas (6.1.81) and (6.1.83). For a star-product (6.1.91) the
calculation shows that the operators Cy (§%, -) take the form

. 1 /i\* )
Cr(x/, ) = 0 <2> (y;~v/xf),-lmjk3,,,.1 B s (6.1.95a)
k

1 NG 1
Cir1(pj, ) = k + 1) (2> (y;jl---jk+l =kt DY F;Hl)l) Prdpj, + 3pj,
AN
S Lo 98, D
kK \2 Y jir-ix %' %Py P
1 NG 1
r
- (k —1)! (2) Y Gt ij)rapjl T 3Pik ’ (6.1.95b)
where functions ylj 1., are given recursively by

! _ I r
Ciccor =KV e Dl

I _
yh, =1 (6.1.96)

1 1 r
Vijteerr = YiGiejoiorn T Vil
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The round bracket () means as usually the symmetrization with respect to a group
of indices. Indeed, using (6.1.74) one receives that

VN = VD (6.1.97a)
k k
S - I
YV P = (mml -kt l)yj(jlmjkr;kJrl)l) pr. (6.1.97b)

k+1

S S _ _ 1

VP = Ve (6.1.97¢)

k+1

where remaining terms are equal zero, and

(y o ?f)jl...]k = Opj, - Opy (6.1.982)
k
(yl.\;_.?f)lflmfk = 818y - Opy g+ 0p; - 0p [t F T8y - 8p, f.

k+1
(6.1.98b)

From (6.1.97) and (6.1.98) one receives (6.1.95).
Let us calculate the second order terms in the / expansion of the morphism S.
As Fy = C2(§%,-) and

Cr(x', ) = ér,’;j(x)a,,ka,,j,
Ca(pi.) = ST @OTL ()8, + 4T ()20,
+ [T (T, () + T ()T, (0) = Ty 1 (0)1pidp,,

hence, from (6.1.81) and (6.1.83) we find that

Sy = Ca(E”, )0y + 5 [E%, C2(E7 )] 0padpr + ¢ [£%, [6F, C2(87,)]] O OO

. . 1 . .
1 1 !
= T4 0,i0p; 0p + g Ty Tix0p,0p, + 24 <2F;11F;'lk - Fljk,l) Pidp;0p0p

(confront with (6.1.66)). The complexity of terms S; grow rapidly for k > 2. The
reader can find the complicated explicit form of Sy, calculated using a computer
algebra program, in [99].

Now, let us describe a procedure of constructing star-products on a symplectic
manifold M = T*Q over a non-flat almost geodesically simply connected pseudo-
Riemannian manifold (Q, g). In such a case, in analogy to the flat case, we will use
a symplectic connection V on 7*Q induced from a Levi-Civita connection V on
0, in order to derive a star-product. However, for a curved linear connection Va
star-product in the form (6.1.91) is not a proper star-product as it is not associative
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and (6.1.93) is not valid any more. In consequence we have to deform the star-
product (6.1.91) in such a way that for a curved linear connection V it would remain
associative. In addition, we would like the new star-product to be equivalent with
the Moyal product for every classical and quantum canonical coordinate system.

In what follows, any admissible star-product will be constructed from an
appropriate morphism S acting on the Moyal product (see Observation 13). We will
present the construction up to the third order in 7. Let us take the admissible one
parameter family of morphisms S, which in the flat case coincide with the known
formula (6.1.75)

1
S, = id +#2 (—

241‘“aﬁya°‘aﬂay + (T, +a1§aﬁ)a“aﬁ> + oY),

(6.1.99)

where a is a real parameter, Rq g 1is the Ricci curvature tensor (2.7.9) and the
components of the non-flat symplectic connection in the Darboux coordinate frame
are given by (2.7.6). Then, after some cumbersome calculations, we will receive the
one-parameter family of star-products in the form

00 N
1 [ih _ - _ _
f*a g :Z k! (2) v ~--ﬂﬂkvk((y'_v_"vdf)mmuk(y;vdg)vlmvk
k=0 " k k

+ B,ul...p,kvl...vk (f, g)),
(6.1.100)

equivalent with the Moyal product, up to third order in /i, where By, .., v,...v, are
bilinear operators given by [37]

Bo(f,8) =0,
By, (f,8) =0,
Byuyipiy (f 8) = —=3a Ry, 1, (Vo /)(V1,8),
B jiauvivavs (5 8) = —Ruluzuwﬂaﬂ(@@@f)umwg (V)
— Ryt oz P (Vg VYV ) 050
— 4R s (Vs )YV )0,
+ 3R 15213 (VY oy (Vs 8)
+9a R0, (VV )13 (VV )y

+ Ry s Ry P77 (Vg £)(Vs ).
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where Raﬂyg = a)axlé;}yg is the curvature tensor. Clearly for the flat linear

connection V the product (6.1.100) reduces to (6.1.91) ones.
In a special case a = 0 the star-product (6.1.100) reduces to

00 N
1 [ih
fxg= E k! ( 2) vt ‘ﬂukvk(Dp,l...,ukf)(Dvl...vkg), (6.1.101)
k=0 "

where Dy, .., are linear operators mapping functions to k-times covariant tensor
fields according to the formulas

Dof = f, (6.1.102a)
Dy, f=Vyuf. (6.1.102b)
Dy f = YV i (6.1.102¢)
Dyyiois f = VIV ) oy — Rugpiopina ™ Vg f. (6.1.102d)

A direct calculation, with the help of the Ricci identity
Rapys + Raysp + Raspy =0,

shows that operators (6.1.102) are symmetric with respect to indices g, is, .. ..
The reader can verify that the star-product (6.1.101), up to at least third order in #,
is a Fedosov star-product associated with the Weyl curvature form Q@ = w [118].
It should be also noted that for a # 0 the star-product (6.1.100) is not a Fedosov
star-product.

From the presented construction it is clear that when the configuration space Q
is curved there is no single natural star-product on 7*Q but rather the whole family
of natural star-products. In the considered case (see formula (6.1.99)) the natural
star-products are parametrized by a real number a. Notice that also the Fedosov
construction of star-products has freedom in taking different Weyl curvature forms
Q[118].

Let us extend the introduced family of star-products on M = T*Q in the
way which will be important for the formalism developed in the next chapter.
Using (2.7.6) and (2.7.9) the formula (6.1.99) can be rewritten in the Darboux chart

K2 . .
S=id+, [3 (r;jrfk + aRjk> Bp,p, + 307,10, 3,
! (6.1.103)

+ (2F2,F?k - F;k’,) Pidp; 8pk8p,] + 0hY.
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Now let us generalize the formula (6.1.103) in the following way

. h? , :
S =id+,, [3 (T3 Th + aRjic) 8, + 378,60, 0,
+ (Zrilzryk - ij,z) Pidp;dp, Ip,

—3b8), By + Ty pidp)dp, (Bt + F,ﬁnp,a,,,l)] + oMY,
(6.1.104)

where b is a real parameter. This two-parameter family of morphisms will be
crucial for quantizations considered in the next chapter. For a symplectic manifold
T*E" and Cartesian coordinates (x’, p ;) all Christoffel symbols F; « = 0 and the
morphism § (6.1.104) take the form

hZ
S =id— g bd,j0p,dkdp, + O(hY),

and can be regarded as the expansion of the following morphism
hz
S=exp|-— g b9,j0p; 04k dpy | - (6.1.105)
The morphism S (6.1.105) induces a star-product which takes the form

L (& = « =
f*xg=fexp 2th<3xk3pk—3pk8xk>

- > -
a a

%
xk 0 Pk 0

1,00, % < < <
—|—8bh(8xkapk8xl,-8pj+

xJ Pj)

— <~
d 0,

11,0, % — <~ — <~ —
—gb" (0 + 0 1)(0 p + 9 p)( 9 i+ 9 ) pit 9 p))8

considered in Sect. 6.1.3. In general, the star-product induced by the morphism
S (6.1.104) fora = 1 and b = 1 leads to what will be called in Sect. 8.1.6 a
“minimal” quantization. Moreover, the same quantization will be used in Sect. 8.2 in
order to investigate the quantum integrability and quantum separability of classical
Stéckel systems.

Observation 13 As long as a symplectic manifold T* Q has the flat base manifold
0, a lot of star-products have a compact explicit representation. However, it is
lost in the case of a non-flat base. Fortunately, such explicit representations are
not necessary in many physically interesting cases. Observe that for the quantum
theory, once we chose a local coordinate system, all admissible quantizations (star-
products) should be equivalent with the one which has the Moyal representation in
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these coordinates. Thus, they are uniquely specified by an appropriate morphism S.
Obviously, for quantization of classical Hamiltonian, represented by an arbitrary
smooth function on T* Q, a complete S in explicit form is necessary. But, in the case
of “physical” Hamiltonians, represented by functions polynomial in momenta, a
few first terms in i expansion of S are sufficient. For example, for a two-parameter
family of quantizations defined by (6.1.104), the knowledge of Sy is sufficient for
quantizations of Hamiltonians which are linear, quadratic and cubic in momenta.

6.2 Operator Representation of Star-Algebras and Related
Orderings

In the previous section we constructed a broad class of quantum Poisson algebras
Ag = (C®(M)[A], *). Observables were represented by particular elements of
A, self-adjoint with respect to involution. In the following section we construct
an operator representation of the algebra Ag in the Hilbert space L>(M, dS2).
Actually, with any element of C°°(M)[[/#] we associate an operator

A

A A= Ax (6.2.1)

defined on the Hilbert space L2(M ,d2p). We construct both, integral and differ-
ential representations of any operator (6.2.1) for the class of quantum algebras
considered in the previous section. We prove that for each star-algebra Ag any

operator A is represented by appropriately ordered operators of position and
momenta

A = Ax = A(xx, px) = A, P).

Thus, with each quantization we relate some ordering.

6.2.1 Weyl Ordering for Moyal Product

Let us take as a phase space M the symplectic vector space (R>", w), where w
is a symplectic form. Moreover, let us consider on M a star-product which in
canonical coordinates (§', ..., £2") takes the form of Moyal product (6.1.33). For
any element of C*°(R?")[[/i]] we can associate the operator defined on the Hilbert
space L2(R?", dQ2p,) by the prescription

A Axy . (6.2.2)
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Formula (6.2.2) gives us a representation of the algebra Ag = (C*° RE)Y[A], *1)
in the Hilbert space LZ(Rzn, d2p). In what follows we will derive the form of the
operators A *y .

Let A be an element of the space S(R>") of Schwartz functions. The operator
A x)s can be written in the following integral form

A = (Znh)n/ Fu(p et = o] gy 63

where
Gu) =x" %y =x"+ Jihdy, (Pu)j = pi*m = pi — 5ihd

are operators of position and momenta, respectively and F,, is the symplectic
Fourier transform (6.1.23). The formula (6.2.3) can be derived as follows. For
p € LER™), using the identity

%p)=p+y), O...,y") eR¥

and the Baker-Campbell-Hausdorff formula

JOPN JURPS ISP 4 A A n
ea+h zeaebelea,b]’ e eb _ebe e[a b] A

we receive that

e;i[P./f@M)jfxlj(ﬁM) ]p(x p)=e 2}1)‘ PleﬁPJ(LIM) ,;x’j(ﬁM)jp(x’p)

i i 1.
— th p] ﬁp " (x! +2zhd,, ) ,lixu(pj—yhaxj)

p(x, p)
S S | _1 /9 iy _71 iy

=e 2w  PienPi* o 2Pi%j T h ¥ Pi 297 % p(x, p)
Lo xd—xliny —Lye _11' .

= en P =P 2% o230 (x| )
i i i
(Pix!=x"pj) L./ Ly

=en'li Pp(x =, x,p—,p).

From the above result we find that

A xye Pian =G| g oy
|:(271h)" Rhfw (P, x)e xdp | p(x, p)

e h)n/ FoAp . x)px — 1x', p — p)eh(” A=) gy dp
T
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_ 1 "non 1.7 1./
= Qnmy /RZM/RMA(X PP —5x, p—5p)

X e;i(p}(xjfx”j)*x/j(P.ffp./i/)) dx'dp'dx" dp".

After changing variables
x'j— =2x"j, x"j— xI+x"j,
pi—=2p;,  pi—>pi+p]

the above equation can be written in a form

i [P @) = o), |
[(Znh)”/ FoAQ', plet T dx"dp'| p(x, p)

= Zn/ / Ax +x", p+ppx +x',p+pHe” B g dp'dx"dp",
(ﬂh) R2n JR2n

which is the known integral form (6.1.45) of the Moyal star-product A xjs p.

The formula (6.2.3) represents the Weyl ordering (symmetric ordering) of A as a
function of quantum canonical operators gz, pys, as will be shown in a moment, so
we will use the following notation

A(q, p)*m = Aw(Gm. pu). (6.2.4)

It was first proposed by Weyl [260] for the symmetrlc orderlng and formally
it works by substituting variables ¢', p; with operators ¢, p; and appropriately
ordering them. The symmetric-ordered function A of operators ¢', p; (6.2.3) will
be shortly denoted by a formula

Aw(q, p) = (o )‘1)”/ FoAp, x)T(p xdx'dp’, (6.2.5)

where

7y 1 /

T, x)—eh(qux D) = Pl o= ¥ i g 2 X (6.2.6)

is a unitary operator for every (p’, x') € R?".
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These functions A which are polynomial in momenta are particulary interesting
from the point of view of further applications. For A(x, p) = K/ /m(x)pj, -+ Pj,»
where K/!"/m is a symmetric tensor field on R", we get

o S m\ . T R
AW P = > (k)pfl e P K@) Py P (6.2.7)
k=0

Indeed, from (6.2.5) for (p’, x) = (n, &) we get
9. D 1 J1eeeJi —i(ﬂ.xj_sjp.>/\
Aw(q, p) = @rhy oo Joon K Im(xypj, - pj,e n DT (0, &) dx dp d€ dn

1 o R

= Quhy /Rzn fRzn K0 ) (i) =g h 0800

x T(n, &) dxdpdé& dy

1 R T )

= (271h)2n /Rz,, v/];{zn Kjl---jm(X)e‘ hixi—&1pj) ((lh)maéjl . "agjm T(’]?%))

x dxdpdg dn. (6.2.8)

Using the Baker-Campbell-Hausdorff formula the operator f(n, &) can be written
in a form

~ Vigin i Aj 1igja
T(n, &) =e 205 Pignnid’ ¢= 20801, (6.2.9)
From (6.2.6) and the Leibniz’s formula we get

A Ligjs i sj _Lligjs
Gy -+ Din T (0, ) = ()" Dy -+ Dime™ 205 Pieh M8 e= 208705

m k m—k
Z m\ [ 1\" . o ilgis i i (] . N il
N <k> <2) Pji - Dj€ 1afiennd <2> Djiyi =" Pjm® #2800,
k=0
(6.2.10)

Substituting (6.2.10) into (6.2.8) and performing integration with the help
of (6.1.23) and (6.1.23) we get the result. In particular, for n = 1, we get

1 m
(@)= D (’Z)ﬁkf@ﬁm—k, 62.11)
k=0
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thus
~ 1 ~ ~
(fpw=,p+pf)
A2 1 ~2 ~2 1Ara
(fPOw=4(fp"+p°f)+,pfp,

FPw = 5B+ PN+ BFP* + 5[,

SO = 6B+ 5 D+ 3PP+ P f D) + B,

A general differential representation of (6.2.5) for any canonical operators ¢, p
takes the form

Aw(§, p) = A(—ihdy, ihde)T (1, €)jg=y=0 (6.2.12)

from which we get immediately (6.2.7) once we choose f"(n, &) in representa-
tion (6.2.9). The proof of (6.2.12) is based on the following equality

. . 1
F (B, =R, Plyem = / Fof (v, p)g(e. p)dx dp
JTh R2

for a pair of coordinates(x, p) and admissible functions f and g.
The adjoint { in the Hilbert space H = Lz(Rzn, dQ2p) is defined, according
to (6.1.1), by

(o1, Awxur po) = <(A*M)T P1s p2>,
where
(o1 Asir 02) = [ 51 Anst p2) s
M

thus we get

(Axi)' = Axy = Aw (G, P).
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6.2.2 General Theory of Orderings

Let S be an isomorphism of quantum algebras (Ag, *37) and (Ag, *) on (R2N | ),
given by (6.1.77), which does not change the value of integral

/ SAthz/ AdS2p (6.2.13)
R2n R2n

for any integrable function A € Ap. Such types of isomorphisms are generated,
for example, by coordinate transformations which are simultaneously classical and
quantum canonical (see the previous subsection). Isomorphism S defines a new
*g-product

frsg=SE""fxuSlg), fge Ao
Involution in xg-algebra is defined by (6.1.38). Besides, let f, g € Ag be such that

f xs g and g x5 f are integrable functions. Then, from (6.1.6) for Moyal product
and (6.2.13) follows that

/ (f*Sg)thZ/ (g s 1) dD.
RZV( RZn

We demonstrate now how to construct an operator representation of xg-algebra
[33]. Let us define an S-order of operator function through the relation

A(q, pyxs = As(§, p) == (ST Aw(§, p), (6.2.14)

where [§¥, p il=i )‘181;. The conjugation of such an ordering is of the form

.
[45@. ] =[" Hw@. 5]
=S Aw@. p) LY (57 AN w @, p)
= (A*)S (ét ﬁ)s

where * is a new involution (6.1.38) of xg-algebra.
Let us introduce new operators

@s) :==x'xs, (ps)j = pj*s,
then, according to (6.1.56a) and (6.1.56b), we get

Gs = SquS™', ps=SpuS~". (6.2.15)
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Obviously, from (6.2.15) follows that
[(G9)", (Ps);] = ins’.
Now, for any A € Ag we have
Asxs =As(és, ps) = (S Dw(@s. ps)

/ FoS™ 0,8y exp | [,(ds) — £ (ps) 1 dn
(6.2.16)

(271h)"

as
Axs =SS~ (Axs) = S(S~ ' A)w (G, p)S~!

1 [0 @m)’ —& (pm)j] g1
(Znh)"/ Fu(ST A)(m, E)SE” dt dn

1 [U,S(!IM)JS 1—£7S(py); S~ ]
(m)n / FolS71 A) . E)eh dt dn

(Znh)"/ Fu(ST1AY(n, &) exp [n,(qs)/ £ (ps)j1dE dn
= As(gs, ps)-

Moreover, the related differential representation of (6.2.16), for any canonical
operators g, p, takes the form

As@G, p) = (S’IA) (—ihdy. ihde) T (7, €)== (6.2.17)

where f‘(é , 1) is given by (6.2.6) or equivalently by (6.2.9).
The S-ordering rule (6.2.16) is very general and contains as special cases all
ordering rules found in the literature. In particular, for a class of S for which

S~ = F(ihd,, —ihd,), (6.2.18)

where F: R?" — Cis a general analytic function such that F'(0) = 1, the S-ordered
function of operators ¢', p; can be presented alternatively by the formula

1 i(p.Gi—Eip:
As@G. p) = 7 (s 'a ’ w4 =80)) ge a
$@. §) oo [, 7 (57 4) opper & d

Lial—£7p))
(m)n f Fo (FA) (1, ) dE dn
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1(njq 75 Pj)
(znh)n/ FoAm, §)F(n, §)er dé dn (6.2.19)

(zﬂ oy / FoA(1.§)Tr(n.8) dE dn. (62.20)

The above formula was first considered by Cohen [69]. Thus, it is clear that the
very broad family of orderings considered in [69] is a special case of the introduced
family of orderings (6.2.16). In this case, alternative to (6.2.17) differential repre-
sentation of (6.2.20) for any canonical operators g, p takes the form

As(§, p) = A(=ihdy, ihd)Tr(n, €)jg=p=0. Tr(n, &) =T, E)F1,&).
(6.2.21)

Now, let us illustrate various admissible orderings by a few particular cases. As
the first case let us consider , o g-algebra (6.1.3) on the symplectic manifold M =
(R?", ) in natural coordinates (x, P)

(1 <~ = (1 <~ —=
froap g =fexplih (2 —O') 040 p; —th<2+0) 0 i 0x;
(6.2.22)
<~ - ~ —
+had ;o +hp 81,‘,. an g,
related with xy;-product by isomorphism S, « g (6.1.37)
n
So.ap=exp Y (—ihod,;dp, + yhad’; + ;hﬁaf,j). (6.2.23)
Jj=1
Observables A(f) in xps-algebra are real functions on M A(h) = Ac, ie.

functions self-adjoint with respect to complex conjugation, while in x4 4 g-algebra
observables were chosen as the set of functions A(h) = W(h)Ac (6.1.41) which
are complex functions, self-adjoint with respect to involution (6.1.40)

n
A*=exp ) (—2ihod,;dp,) A.

For such a choice the Moyal quantization and , , g-quantization are nonequivalent
quantizations. The choice of quantum observables in the form A (%) = S5 o, g(A)Ac
makes them isomorphic.



6.2 Operator Representation of Star-Algebras and Related Orderings 339

Besides

(és)/ = x/*g,a,ﬁ = So.,a,8 (qAM) Sa }x 8 = x/ +lh(2 — 0‘)81,, + had,j,

(6.2.24)

(ﬁS)/ = Pj*o,a,p = Sa,a,ﬂ (ﬁM)/ SU 11 B =pj— lh(; +U)axj +h13817/
(6.2.25)

and
[(ds)” . (ps), ) = insy.

So,a,p-ordering is expressible by the Cohen formula

Aoap@. P) = / FoA &) expy (1,47~ 5;)

2n ﬁ)"

i lan 5, 18,1
X exp hoéfnj+2h;nj+2hj2=;§’ dé dn.
(6.2.26)

The integral formula (6.2.16) gives us immediately the integral representation of
a respective x4 o, g-product in the form

(f *o.a B8, p)=

(m)n / Fuf (680 — (b + o) +ian, p— (L — o)y — ipgrer =820 g ay.

or equivalently, for 62 — a8 # i, in the form

(f *o,a,p g)(x7 P) =

1 N \/1%2}1 \/];an f(.x/, p/)g(x//’ [)”)K(x,[)Z x/’ p/’x//’ p//)dx/dp/dx”dp”,

Qmhy2 }‘w,ﬁfﬂ‘

with the kernel

n

»» (G +o0) = pp =i —x))
j=1

K(x, ; x/’ [7,, X”, p//) =exp _l
( +o¢ﬂ o

(= xiy — ((é — o) fxf)+ia<p}/fpj>> (] *PJ')]]'



340 6 Deformation Theory of Classical Poisson Algebras

The representation (6.2.2) follows from (6.2.2) after substitution

1 j ; .
Fof 6= o 0, /R S pexp [— L (n =67 p})} dx'dp

and change of coordinates from Ef ,njto
XM =xl =+ o) +ian;, pj=pj—(—om;—ipE’.
We have two admissible differential representations of Sy o, g-ordering of opera-
tors (6.2.24) and (6.2.25), given by formulas (6.2.17) and (6.2.21), respectively. Let

us consider more carefully the case « = f = 0 and in particular the differential
formula (6.2.21)

As(§. ) = A=ihiy, ihde)To (1. E)e=p-0.  To(n.8) =T (. &) exp oI,

Using the Baker-Campbell-Hausdorff formula the operator T, (n, &) can be written
in a form

- i 1 Ca i A i1 -
T (n, &) = e 12~ Pi i@’ =1 (3 +0)E b

and then, for A(x, p) = K/1-m (X)pj -+ Pjn» We get

m
=Y m k m—k N Tl im (AN A .
Aol = (k) (A=) (A+0)"  bne Bik/ " @piss - b
k=0
(6.2.27)

The best known from the literature particular orderings (6.2.27) are symmetric

(Weyl) ordering W : 0 = 0(6.2.11), standard ordering St : o = ; and anti-standard

ordering ASt : 0 = —;. Forn =1and A = f(x)p™
Asi (@, p) = f(@p", Ausi(q,p)=p"f(@).
Example 6.6 For the simplest monomial A = gp and o-ordering (6.2.27) we have
A0 p) = (s +0)ap+(3—0o)ha

Observe, that we can construct an equivalent formula for Weyl ordering (6.2.11)
using isomorphism S of quantum algebras (Ag, xs;) and (Ag, *xy) on (R?, w),

S =expih}d,d,
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and differential formula (6.2.14). Actually, for A = f(x)p™

m
A - A A m\ 1 . _
Aw@. p) = ("' Dsi@ =Y (k>2k =inf (FP )
k=0
=3 (") L cimt g pm
k ) 2k ’
k=0
(6.2.28)
and one can prove the equivalence with (6.2.11) observing that [p, f(¢)] =
—inf'(q).
In the general case, when o # 0 and 8 # 0, formula (6.2.17) is more suitable for
the construction of the appropriate ordering.
Example 6.7 Forn = 1 and A = g¢gp + éqz + %pz we get for (o, w, B)-
ordering (6.2.17)
Avap@, p) =S Aw(@, p) = (5&2 + 192 +Gp+iho — Lha — ;hﬁ)w

12+ 192+ 1Gp+ pa) + o1, pl + Lialg, pl+ Liplg. pl

A A . o\ A a 1 . . o n
éqz_’_épz_,_(é+g+éza+§lﬁ)qp+(2—o—éza—ézﬂ)pq.
For n = 1, in holomorphic coordinates [136]

aa.0)=""T" aqpn="1"" w0
) \/20) ) ) \/20) )

the x4 o, g-product takes the form

1 B\ <« — 1 B\ <« —
froap8=fexp|,hi|l+aw+ dg0a— Al —aw— 0504

1) 1)
+éh (20 +aw — ﬁ) (B_a_Z))a — éh <20 — 0w + ﬂ) (8_@_8>a] g.
1) 1)
Let us consider a particular case of the star-product (6.2.2), wheno = 0, ¢ = — 2‘)

and 8 = —\w

fag=fexp [h (; - x) W Ba—h (; n x) ‘3__5] g (6.2.29)
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Moreover, the operators f x; can be written in a form

fo = f@ah= " / Ff(w, myel wa'=aataiul) 42,
JTh R2

+

where @ = a %), a' = a x, are operators of annihilation and creation, and

1 1, - -
Ffw, w) = / flz, el @m g2y
wh R2

where d’z = d(Rez) d(Imz), is the symplectic Fourier transform in holomorphic
coordinates. The star-product (6.2.29) and the operator function f;(a, a’y are
widely used in quantum optics. In particular, for A = é (=0, =— 210), B=-9)
we have the so called normal ordering N while for A = —; (c =0,a = 210), B =
9) we have the so called anti-normal ordering AN. For monomial f = a"a™

fyv@@,a"y = @hma",  fan,a" =a"@Hm.

The choice o =0, o = 21,(, B = ’5 turns the product (6.2.2) into

Foe g =fexp [;h (1 n wzﬂz) 9a0a-'n (1 - w2+K2) EFEP

2Kk 2k

P () T T+ () TaT ] e

2Kkw 2kw

and related ordering is called generalized anti-normal (Husimi) ordering which
collapses onto anti-normal ordering for k = w.

In general, morphisms S are not of the form (6.2.18). As an example in two-
dimensional case (n = 1) the following two parameter family of morphisms may
serve

§ = exp (—ihad,d, + inbgd}) (6.2.30)

where a, b € R.

Example 6.8 To illustrate the S-ordering rule (6.2.30) let us consider a function
A(gq, p) = épz + gp. Then, one finds that

(S7'A) (g, p) = L p* +qp +iha — ihbg
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and for canonical ¢, p operators

nn A 1, A n arn
2@p+ pa) + 2p2 +alg, p) — blg, pla

(3+a)ap+(1—a)pa+ i —bapa+bpi*

As(q, p)

Let us now consider a general phase space in the form of a cotangent bundle
T*Q to an almost geodesically simple connected pseudo-Riemannian manifold Q,
and a general x-product (6.1.1) defined on it such that for any canonical coordinates
' p ;) on T*Q the **P)_product is equivalent with the Moyal product. Using
the related morphism § and performing analogical considerations as for (6.2.14),
we get for a quantum observable A(x, p, /) polynomial in momenta an appropriate
operator

Ax, p, h) *5P) = Ag(§, p),

acting in the Hilbert space L>(T*Q, d2p). Observe that for star-products consid-
ered in the previous subsection the action S~! A of the morphism S on a function
A polynomial in momenta was again a function polynomial in momenta. Thus,
to a general star-product on 7*Q written in canonical coordinates corresponds an
S-ordering of operators of position and momenta.



Chapter 7 )
Quantum Hamiltonian Mechanics fleckir
on Symplectic Manifolds

In the previous chapter we presented the general theory of quantum deformations
of classical Poisson algebras. In the following chapter we develop a deformation
procedure applied to classical statistical Hamiltonian mechanics (described in
Sect.3.3) in order to construct its quantum analogue on the phase space. First,
we define quantum states as appropriate deformations of classical states and their
time development through the respective deformation of the classical Liouville
equation. Then we introduce quantum Hamiltonian equations of motion being a
deformation of classical Hamiltonian equations and time development of quantum
observables. With particular care we present the theory of quantum flow and
quantum trajectories on a phase space together with a wide range of examples which
illustrate the presented formalism. Such constructed quantum theories (each related
with an appropriate quantum algebra) reduce to a common classical counterpart as
deformation parameter % tends to zero: A — 0.

7.1 General Theory of Quantization

7.1.1 Quantum States

By definition, by an analogy with the classical case (cf. Sect. 3.3.1), quantum states
related to quantum Poisson algebra Ag = (C*(M)[A]l, », [ -, -1, *) are those
functions p € L?(M, d,) which satisfy the following conditions

1. p = p* (self-conjugation),
2. [y pdS2n = Tr(p) = 1 (normalization),
3. [y [ExfxpdSQm =Tr(f** fxp) = 0for f € C3°(M) (positive-definiteness).

Quantum states form a convex subset of the Hilbert space L%(M, d). Pure states
are defined as extreme points of the set of states, i.e. as those states which cannot
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be written as convex linear combinations of some other states. Thus pp is a pure
state if and only if there do not exist two different states p and p, such that ppy. =
pp1 + (1 — p)p, for some p € (0, 1). A state which is not pure is further called a
mixed state.

For certain symplectic manifolds M pure states can be alternatively characterized
as functions pyye € L*(M,dQp) which are self-conjugated, normalized, and
idempotent (cf. Sect.3.3.1):

Ppure * Ppure = Ppure- (7.1.1)

Mixed states p,;, € L>(M,dS2;) can be characterized as convex linear combina-

tions, possibly infinite, of pure states pg{l)re

Pmix = Zp)»pl()ﬁ)re’ (7.1.2)
A

where py > Oand ), p) = 1.

The interpretation of pure and mixed states is similar as in classical mechanics.
When we have the full knowledge of the state of the system, then the system is
described by a pure state. If we only know that the system is in some pure state with
some probability, then the system must be described by a mixed state. The quantum
states o are the analogue of the classical distribution functions representing states
of the classical Hamiltonian system and considered in Sect.3.3.1. The difference
between classical and quantum distribution functions is that the latter do not
have to be non-negative everywhere. Thus, p(x, p) cannot be interpreted as a
probability density of finding a particle in a point (x, p) of the phase space. This
is a consequence of the fact that x and p coordinates do not commute with respect
to the x»-multiplication, which yield, from the Heisenberg uncertainty principle, that
it is impossible to measure simultaneously the position and momentum of a particle
like in classical mechanics. Hence, the point position of a particle in the phase space
does not make sense anymore. On the other hand it is possible to introduce the so
called marginal distributions

P(x) = / (S7'o)(x, pdu(p), P(p) = / (7' o)(x, pdu(x), (7.1.3)

which are probabilistic distribution functions and can be interpreted as probability
densities that a particle in the phase space has position x or momentum p (see
Sect.8.1.2). In (7.1.3) S-operator links a given x-product with the Moyal one.
The result is not surprising as each marginal distribution depends on commuting
coordinates only. Note, however, that only in the case of the xj/-product the
marginal distributions are received by simple integration of a distribution function
with respect to x or p variable. In general, the distribution function first has to be
transformed with the isomorphism S.
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Finally, for a given observable A € C°°(M)[[#] and state p the expectation value
of the observable A in the state p is defined by

(A), :/ (A xp) dQp = Tr(A * p), (7.1.4)
M

being the analogue of respective classical notion (3.3.5).

7.1.2 Time Evolution of Quantum Systems

The quantum time evolution of a system is governed by a quantum Hamilton
function H € C®(M)[[#] which is, like in classical mechanics, a distinguished
observable, being a deformation of a classical Hamilton function Hc¢ and self-
conjugated with respect to involution * of respective x-algebra. Like in the classical
theory, there are two equivalent points of view on the time evolution: quantum
Schrodinger picture and quantum Heisenberg picture. In the Schrodinger picture
states undergo time development while observables do not. An equation of motion
for states which is the analogue of classical Liouville equation (3.3.11) takes the
form

9 3
af (1) — [H, p()] = 0 < ih a’; t) — [H, p(t)] =0 (7.1.5)

The formal solution of (7.1.5) is of the form

o) =U@)*p0)«»U@®)*, (7.1.6)
where
U(t) = exp (—itH =§:1<—itkH*--.*H (7.1.7)
* h k:Ok! h ~ -;:- - o

is a unitary function as H is self-conjugated
H=H*—->U®W*=U®)
and hence

Uty «U@) =U@) «U@) = 1. (7.1.8)



348 7 Quantum Hamiltonian Mechanics on Symplectic Manifolds

Here ¢(1) = exp, ¢ B is the noncommutative exponential solution of

?;f =Bx¢p=0¢p*xB, ¢0) =1.

In consequence, the time evolution of states can be expressed in terms of the one-
parameter group of unitary functions U (¢). Notice that quantum Liouville equation
(von Neumann equation) on the symplectic manifold is represented like its classical
analogue by a linear PDE.

States p which do not depend explicitly on time: %‘; = 0, are called stationary
states and hence fulfill the relation

[H, p] =0. (7.1.9)

As will be shown in Sect. 8.1.2, if p is a pure state, then (7.1.9) is equivalent to a
pair of x-genvalue problems

Hxp=Ep, pxH=Ep, EeR (7.1.10)

Notice that E in (7.1.10) is equal to the expectation value of Hamiltonian H in a
pure stationary state p, i.e. is equal to energy of a system in that state

<H>p=f (H*p)thzE/ pdQp = E.
M M

From (7.1.5) follows that time evolution of expectation value of observable A €
Ag in astate p(1), i.a. (A) o) fulfills the following equation of motion

d

o Ay = (A HT ) = 0. (7.1.11)

Indeed

0=[ A*<ap—[[A,H]]>th
M at

=/ A% hae, —/ Ax L [H % p(t) — p(t) x HIdD
M Jat M ih

d 1
= f A*,o(t)th—/ [AxH — HxA]l* p(t)d2p
dt M M ih

d

= i (A)piry — (LA, HID 1) -

In the Heisenberg picture states remain still whereas observables undergo the
time evolution. The time evolution of an observable A € C°°(M)[[#4]] is given by
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the action of the unitary function U (¢) from (7.1.7) on A:

A = U x AO) x U(1) = 1 14(0), 7112
where
1
e A1 3 k!(_;)kL[H, [H....1H. -1...1
k=0 k

and U (¢) is given by (7.1.7).
Differentiating (7.1.12) with respect to ¢ results in the evolution equation for A:

dA L dA
dt ) —MA@), Hl =04 ih dt —[A(#), H] = 0. (7.1.13)

Equation (7.1.13) is the quantum analogue of the classical equation (3.3.13).
In particular, guantum Hamiltonian equations of motion are of the form

(Ql)t(x’p’t):[[Qi(x’p’t)’H(va)]](x,p)» 0'(x, p.0)=x",  (7.1.14a)

(Pi)t (x’p’t):[[Pi(-xvpﬂt)aH(x’p)]](x,p)’ Pi(x’pao)zpi (7114b)

and, as in the classical case, are nonlinear PDE’s and represent a quantum Hamil-
tonian transport. What is important, the system of PDE’s (7.1.14) is equivalent to
the system of ordinary differential equations but in the space of x-functions. Indeed,
any function A € Ag can be expanded in a x-power series (6.1.47). In particular,
any monomial x” p™ can be expressed as an x-polynomial (6.2.16)

x"p" = (x"p")x1 = (x"pm)s (xx, p)1. (7.1.15)

So, equations (7.1.14) can be written as the system of ODE’s in the space of -
functions in the form

. . oH
Q; =10 (x, p.0), Hx, p)lix,p) = U(=1) % op; (x, p)xU(1)

oH oH
=U(—t)* [8 (x, P)} (x*, pR)U (1) = [ (g, P)} (O*, Px)1,
Pi Ky oP; S

(7.1.16a)

oH

Py =[Pi(x, p, 1), H(x, pP)lx,py = I:_aQ»

(0, P)i| (Ox*, Px)1. (7.1.16b)
N
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Notice, that according to Observation 12, equations (7.1.16) can be always trans-
formed to the Moyal case in (x, p) coordinates and Weyl ordering, with transformed
Hamiltonian H (k) = S(A)H.

Example 7.1 Consider the Hamiltonian system on M = RZ? with the classical
Hamiltonian function in canonical coordinates (x, p)

H(x,p) =kx’p*, «k>0.

Classical equations of motion are

81; =2¢Q’P, Q(0) =x,

Ql = {Q(x7 p, t)7 H(‘x! p)}(x,p) = {Q! H(Q! P)}(QP) = 9

Pr={P(x,p.0), H(x, p)}x.p) ={P, H(Q, P)}o.p) = = -2cQP*, P(0)=p.

oH

90
If the quantization is given by x-product which in (x, p) chart takes the Moyal form,
then quantum equations of motion, according to (7.1.16), take the form

oH
0 =10, p,t), Hx, p)llx,p) = <8P> (O%, Px) 1 =kQ*O*xP+kPxQx*0,
w

P =[P, p,t), Hx, p)lx,p) = (— gg) (O*, Px) 1l = —xkQxPxP—xkPxPxQ,
w

where Q(0) = x, P(0) = pand x = *E;’p ) The solution of classical and quantum
dynamics will be considered in the next section.

Like in the classical case, both presented approaches to the time evolution yield
equal predictions concerning the results of measurements, since from the property
of trace (6.1.11)

(A oy = /M A0) * p(r) dS2p = /M A(1) x p(0) d2n = (A(D) p(0)-

Observation 14 Comparing the results of Sects. 3.3.2 and 7.1.2 we observe that
the linear aspect of classical and quantum Hamiltonian mechanics is represented
by time evolution of states, described on both levels by linear PDE (the so called
Schrodinger picture). On the other hand, the nonlinear aspect of both theories
is represented by time evolution of observables, described on both levels by
nonlinear ODE (the so called Heisenberg picture) defined on an appropriate space
of ordinary-functions and star-functions, respectively. Contrary to a classical case,
on a quantum level Hamiltonian equations of motion belong only to the Heisenberg
picture as pure coherent classical states (3.3.16) are not admissible as quantum
states.
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7.2 Quantum Trajectories in Phase Space

The time evolution of a classical Hamiltonian system is fully determined by
trajectories (a flow) in a phase space (see Sect. 3.3.2). Once we calculate a classical
flow &, for the given system a time evolution of states and observables can be
received by simply composing them with ®;. A classical flow is defined as a map
®;: M — M on the phase space M, which at every point &, € M gives a trajectory
(curve) y (1) = D4(£y) on M passing through the point £, and being a solution of
the Hamilton’s equations (3.2.35). Moreover, any trajectory ®,(£)) has the property
of being a classical canonical transformation for every ¢, and the set {®,},cr have a
structure of a group with multiplication being a composition of maps.

From the very beginning of quantum physics, a lot of efforts have been taken
to formulate some kind of an analogue of phase space trajectories in quantum
mechanics [95]. The most common approaches to quantum dynamics are the
de Broglie-Bohm approach [50, 51, 154], the average value approach [181, 266],
and the Moyal trajectories approach (see [93, 174] and references therein).

In the following section we develop the theory of Moyal trajectories resulting
from quantum Hamiltonian equations (7.1.14). In consequence, the time evolution
of observables cannot be given as a simple composition of observables with a
quantum flow. For this reason in papers [93] and [174] observables were considered
to be *-functions. Then the action of a flow on observables was given as a
*-composition.

In the approach presented in this section we treat observables as ordinary
functions on a classical phase space. We also present in an explicit form a quantum
action of a flow on observables, which is a deformation of the respective classical
action. The resulting time dependence of observables gives an appropriate solution
of a quantum time evolution equation for observables (7.1.13). Then, we show that a
set of quantum symplectomorphisms (quantum flow) has a structure of a group with
multiplication (quantum composition) being a deformation of the ordinary com-
position regarded as a multiplication in a group of classical symplectomorphisms
(classical flow) [34]. Such an approach to quantum trajectories has a benefit in that
it is not needed to calculate the form of observables as star-functions, but only a
quantum action of a given trajectory needs to be found.

7.2.1 Quantum Flow

Let us consider the Moyal quantization of a classical Hamiltonian system
(M, rm, H), where M = RN 7 = 0. A dp;,and H € C°°(M) is an arbitrary real
function. Then the solution of quantum Hamiltonian equations

(Qj)t =101, HI, (P;), = [P;®), HI, 7.2.1)
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where Q' (x, p,0) = x' and Pj(x, p,0) = pj, i.e., the Heisenberg representation
for observables of position and momentum, generates a quantum flow ®; in a phase
space according to an equation

@ (x, p; 1) = (Q(x, p.1: h), P(x, p,1; ). (7.2.2)

For every instance of time ¢ the map ®; is a quantum canonical transformation
(quantum symplectomorphism) from coordinates (x, p) to new coordinates x’ =
Q(x, p,t; ), p' = P(x, p,t; k). It means that ®, preserves the quantum Poisson
bracket [Q' (1), Pl = 83., which can be seen from (7.2.3) and the fact that
[Q'(0), P;(O)] = [[x*, p 1l = &%

The flow &;, treated as a quantum canonical transformation, can act on observ-
ables and states as simple composition of maps. Such a classical action can also
be used to transform the algebraic structure of the quantum Poisson algebra so that
the action will be an isomorphism of the initial algebra and its transformation. So,
a star-product %, being the Moyal product transformed by @fl is defined by the
formula

(frg)od ' =(fod Hx (god ), fgeCOR™M).

As we know from our previous considerations, the ;-product takes the form

where vector fields D, D, are transformations of coordinate vector fields 9,i, d,:

@i f)o® ! =Du(fod ), (3pf) 0@ =Dy (fod .

The most important for our further construction is the observation that the ;-product
is gauge equivalent to the Moyal product. In other words, to a quantum flow ®; there
corresponds a unique isomorphism S; satisfying

Si(f*xg) =St f * Stg,
Sxt=x', Sipj = pj,

S:(f) = (St ).

Observe, that for the x;-algebra the involution is also the complex-conjugation.
A formal solution of the time evolution equation (7.1.13) for an observable A €
Ag can be expressed by the formula

i H _itH
A = e THT40) = e x AO) xe, ",
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(confront with (7.1.12), (7.1.7) and (7.1.2)). In particular, the solution of (7.2.1) is
of the form

0'(t) = e M- 1010y = ! w 01Oy xes M, (7.2.3a)
Pi(t) = e 1p.0) = e ™« Pj(0) ey M, (7.2.3b)

which for the fixed initial condition Q'(x, p,0) = xé and P;(x, p,0) = po;j
represents a particular quantum trajectory.

A time evolution of an observable A € A should be alternatively expressed by
action of the quantum flow ®; on A. The composition of ®; with observables, i.e.
the classical action of ®; on observables, does not result in a proper time evolution
of observables and thus it is necessary to deform this classical action. It will be
proved that a proper action of the quantum flow ®; on functions from Ag (a pull-
back of ;) is given by the new formula

DFA = (S,A) 0 D, (7.2.4)

where S; is an isomorphism associated to the quantum canonical transformation
o !
The formula (7.2.4) can be proved first by noting that

®FO'(0) = (S,0'(0)) 0 &, = Q'(0) 0 @, = Q' (r) = e '1#:" 101 (0)
and similarly
@ P;(0) = e 'IH-1p;(0),

where the fact that S;x' = x’ and S;p; = p; was used, being on the other hand a
consequence of the quantum canonicity of ®;. Secondly, ®} given by (7.2.4) is an
automorphism of Ag as
DY (AxB) = (S5(AxB)) o ®; = (S5;A* S;B) o ®;
= ((S;A) 0 @;) * ((S;B) o ®;) = D*A « OB,

where x, denotes a star-product transformed by @, ! Thus

oF = 'MH--] (7.2.5)
holds true since, as was proved earlier, every function from .4 can be presented as
a *-power series.

In a complete analogy with classical theory one can define a quantum Hamil-
tonian vector field by ¢y = [-, H]. Then (7.2.5) states that ®; is a flow of
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the quantum Hamiltonian vector field ¢ ;. Moreover, in an analogy with classical
mechanics, {®,} is a one-parameter group of quantum canonical transformations
with respect to a new multiplication defined by

(Dtl . CDTZ = (S[z CDI]) o cDIzs (726)

where Sy, ®;, denotes a map RN — R2N given by the formula

S ®sy = (S, 0'(11), ..., S, Py (1)),

where ®;, = (QYt), ..., 0N, Pi(r1), ..., Py(1)). Multiplication defined in
such a way satisfies properties similar to their classical counterparts (composition):

cI>0 = lda q>t1 . cbtz = q)tl-l—tza

proving that {®,} is a group. Further on we will call it a quantum composition. The
quantum composition rule given by (7.2.6) is properly defined since it respects the
quantum pull-back of flows:

(@, - D1)* = @} 0 . (7.2.7)

Indeed, it is enough to prove (7.2.7) for an arbitrary -monomial. For simplicity we
will present the proof for a two-dimensional case and for a x-monomial x x p. Using
the fact that S;x = x and S; p = p for every ¢ one calculates that

(® 0 ) (x % p) = OF (S, (x % p)) 0 Dyy) = B ((x %, p) 0 Dy,)
= @1 (Q(1) * P(1) = (5,(Q(11) * P(1))) 0 @,
= (Stz Q(t) *p, S,ZP(tl)) 0 @y = (X *pp,1y P) © S, Dty 0 Dy,

where *;,, x,, denote Moyal products transformed, respectively, by transformations
@, L CD;ZI, and %, ;, denotes the x,-product transformed by (S, ®;)~!. From
the relation S7,07, = S7y,7,57, valid for any transformations 77, 7> defined on
the whole phase space (St;07, is an isomorphism intertwining star-products » and
*Ti0Tys STy, T, INtertwines 7, with x7,,7,, and S7; intertwines x with x7,, where *7,
and 7,7, are the Moyal products transformed, respectively, by transformations 7
and 77 o T3), one finds that

S((Dtl @tz)—l (x*p) = S‘:Dél’(srzq)rl),] S;z(x*p) = S‘:Dél’(srzq)rl),] ()C *IZ p) = X *IZJI p

and hence

(q);kz o q);kl)(x * p) = S(,:I)rl q)tz)—l(.x * p) (@) St2q>tl (@) q>1‘2 = (<Dt1 . q),z)*(x * p)
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As a direct consequence of these considerations and the fact that for the Moyal
product

1 2
[H, N =(H, ) = ) 1™ [(3i95 95 H) Bp, 3, O
— Oy O, D H) i 0,50k — 3 (3,01 H) Dy D 0 (7.2.8)
+ 3B, 0p, 0k H)3,i9, 9, ] + O (H*)

yields the following observation.

Observation 15 Quantum trajectories of the linear Hamiltonian systems coincide
with classical trajectories. It follows from the fact that for the Hamiltonian functions
being quadratic polynomials of phase space coordinates: [|H, -|| = {H, -} (7.2.8).
Besides, because solutions Q(t) and P(t) are linear in x', p;, so S; = 1. It means
that the quantum group multiplication (7.2.6) (quantum composition) coincides with
the classical composition (7.2.10) and in consequence, the quantum time evolution
of any observable A is the same as the classical time evolution of A. For such
systems, the only difference between the classical and quantum dynamics relies on
different admissible states in which the evolution takes place. On the other hand,
even in such simplest cases, classical and quantum systems differ fundamentally on
the level of stationary states.

In the limit # — 0, (7.2.3) reduces to classical phase space trajectories
/1) =101 ),  Pj(t)=e 1P 0),
Q/(x,p,0)=x/, Pj(x,p,0)=pj,

which are formal solutions of classical Hamiltonian equations
(07) =10/, 1y (P), = (P;0). H).

In a more explicit form classical trajectories are represented by a flow (classical
symplectomorphism)

@ (x, p) = (Q(x, p, 1), P(x, p,1)), (71.2.9)

which is an i — 0 limit of the quantum flow (7.2.2) (quantum symplectomor-
phism). An action of the classical flow ®; on functions from 4¢ (a pull-back of ®;)
is just a simple composition of functions with ®,, being an # — 0 limit of (7.2.4)

DFA=Aod,.
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{®;} forms a one-parameter group of canonical transformations, preserving a
classical Poisson bracket: {Q'(¢), P;j (1)} = 5’/., with multiplication being an
ordinary composition of maps

th] . (I)[z = th] o q)l‘zv (7210)

which is the # — 0 limit of quantum composition (7.2.6).

7.2.2 Quantum Dynamics with Classical Trajectories

In the following subsection we analyze fairly accurately a few simple examples
of quantum systems, with quantization defined by the Moyal product, for which
classical and quantum trajectories coincide. Let us start from a free particle in one
dimension. The free particle is a system, whose time evolution is governed by a
Hamiltonian

H(x,p) = 1p%

where the mass of the particle m = 1. This Hamiltonian describes only the kinetic
energy of the particle. It does not contain any terms describing the potential energy,
i.e. there are no forces acting on the particle (the particle is free).

From relation (7.2.8) it follows that ®} (k) = ®;(0) as

exp (=1 [H,-]) =exp(—t{H,}).

Thus, a common quantum and classical flow of a free particle is of the form
@ (x, p; 1) = @;(x, p) = (Q(1), P(1)), where

0@t) =x+pt, P@t)=p. (7.2.11)

Besides, because S; = 1 for any linear transformation, so the time evolution of any
classical and quantum observable A (x, p) is given by

A(r) = A(Q(1), P(2)). (7.2.12)

So, what is a difference between the classical and quantum free dynamics? Let me
remind that both, on the classical and the quantum level, “physics” are represented
by expectation values of observables (A), in a chosen admissible state p. For the
classical system, Eqgs. (7.2.11) and (7.2.12) represent simultaneously the dynamics
of expectation values of observables (position and momentum in particular) in the
pure coherent classical state

pe', p') = 8(x' = 0)8(p' — p), (7.2.13)
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as
Q1)) = /Rz pc(x’, PO, p'.ndx'dp" = Q(x, p. 1),
(PO, = /R pe@, VPG, P 0dxdp = PG, p.1)

and

(A0 ={Q°0) ~ (N} =0, (APWY =(P*®) (PO =0.
(7.2.14)

On the other hand, the state (7.2.13) is not an admissible quantum state.
Let us consider a one-parameter family of pure quantum states p of the form

1
po',p' y) =2exp (—;(x’ - x)2> exp (— (p' — p)2> . Y eRy,

yh
(7.2.15)
They all are pure states as one can show by direct calculations that
[ pot vmagh = [ oot ppavay =1, (216
and
P, P ) xpox’, pliy) = pox’, Pl y). (7.2.17)

States (7.2.15) are simultaneously coherent states as they minimize quantum
uncertainty relation: Ax Ap = ! 7. Tt follows directly from the property of the Gauss
distribution

_ _ 1 (z—w?
f(za o, I’L) - U\/Zj'[ eXp <_ 20_2 )a

for which
(2) ~=/zfdz=u, 22 =/z2fdz=ltz-l-02,
Y R ( >f R
and then
h yh
2_[2\ 2 2_[2\ 2 —
(Ax) —(x >pQ oy 2y (Ap) <P >pQ (Prog =",
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So, in the case of the initial quantum coherent state (7.2.15), the time evolution of
the expectation value of position and momentum takes the form

1

(QW)po =5 fRsz(x/, pHOW', p',nydx'dp" = Q(x, p, 1), (7.2.18)
1

(PO)py =, 4 /Rng(x’, PP, p',0dx'dp" = P(x, p,1), (7.2.18b)

and coincides with the classical time evolution of the expectation value of position
and momentum in a classical pure coherent state po = 3(x’ — x)8(p’ — p).
Nevertheless, contrary to the classical case, for the quantum system we get

1
W=, //szw podx'dp = x + pi.

1 A
(P())p, = h //RzP*M podx'dp’ = p,
A00) = [107), — 1013, = (Ax2 + (ap22,

AP@) = \[(P?)py — (P2, = Ap

where
@ant=""" ap?=lyn
X = s =
2y Py =5
and in consequence

AQMAP(r) = 1h\/1 +y22 > Jh.

Note that during the time evolution the uncertainty of the momentum AP () of
the free particle described by the state (7.2.15) does not change in time and is
equal to its initial value Ap, whereas the uncertainty of the position A Q () initially
equal Ax increases in time. Note also that the uncertainties of the position and
momentum satisfy the Heisenberg uncertainty principle, i.e. AQ({#)AP(t) > g
Moreover, initially the free particle is in a state which minimizes the Heisenberg
uncertainty principle since AQ(0)AP(0) = AxAp = g It is also worth noting that
the expectation value of the momentum (P(z)), 0 is constant and equal p, whereas
the expectation value of the position (Q(?)), 0 is equal x + pr. Hence, the time
evolution of the free particle described by the state (7.2.15) can be interpreted as
the movement of the particle along a straight line with the constant momentum
equal p, similarly as in the classical case. The difference between the classical and
quantum case is that in the quantum case there is some uncertainty of the position
and momentum, in contrast to the classical case where the position and momentum
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are known precisely. Observe also that for any admissible value of y the coherence
is not preserved during time evolution.

It is interesting to calculate to which classical state the state (7.2.15) converges
in the limit # — OT. The limit has to be calculated in the distributional sense, i.e.
one has to calculate the limit limj,_,o+(0 ¢, ¢) = limy_.o+ Tr(po(h)¢) for every
test function ¢. One easily calculates that

(Pg.P) = d(x, p).

lim
h—0t
Hence
lim =8(x"—x)8(p' — p),
im.po ( )8(p" — p)

where the scalar product (-, -) is given by (6.1.9). The above equation implies that
the state py (7.2.15), describing a quantum free particle, converges in the limit
h — 07 to the classical pure state describing a classical free particle moving along
a straight line with the constant momentum equal p.

Our second example is the harmonic oscillator described by Hamiltonian

He,p)=1 (p2 + a)2x2) , weR,. (7.2.19)

Again from relation (7.2.8) it follows that @} (7)) = ®} and thus a common quantum
and classical flow of harmonic oscillator is of the form ®;(x, p; i) = ®;(x, p) =
(Q(), P(1)), where

Q(t) = xcoswt + w ' psinwt, P(f) = pcoswt — wx sinwt. (7.2.20)

Moreover, as S; = 1, so the time evolution of any classical and quantum observable
A(x, p) is given by (7.2.12). For the classical system, like in the previous example,
equations (7.2.20) represent simultaneously the dynamics of expectation values of
position and momentum in the pure coherent classical state (7.2.13), for which the
minimal classical uncertainty relation (7.2.14) is fulfilled. As the state (7.2.13) is
not an admissible quantum state we again consider a one-parameter family of pure
and coherent quantum states p of the form (7.2.15).

Like in the previous case, the time evolution of the expectation value of position
and momentum takes the form (7.2.18) and so coincides with the classical time
evolution of expectation value of position and momentum in the classical pure
coherent state p- = 8(x’ — x)8(p’ — p). Nevertheless, contrary to the classical
case, for the quantum system we get

2

(AQ(1))?

wt,

(m)

h yh
2 2 .
o (Q( ))pQ 2 cos” wt + ) sin
h ’h
@Y =(PP0) — (PO}, =) coswr + 7 Tsin’ o
Q
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and hence
1

h 0)2 )/2 2
AQ(t)AP(t) = sin* ot + cos* wr + + sin® wt cos® wt | .
2 y2  o?

Notice that in this particular case there exists a distinguished coherent state
po&',p))=2exp| - “ o =0 ) exp (- : (' - p)?
h wh

when y = w, which remains coherent for arbitrary value of ¢. Indeed, as

h h
(AQ(1))* = (Ax)* = 2 (AP1)? = (ap? =",
w 2
then
h
AQ()AP(1) =,

As was proved earlier, in the limit 7 — O, pure coherent quantum states (7.2.15)
converge to the pure coherent classical state (7.2.13).

Let us try to find stationary pure states of the harmonic oscillator. From
Sect.7.1.2 it is known that the stationary pure states are precisely the solutions of
the following pair of x-genvalue equations

Hxp=Ep, p*H =Ep,

for E € R. To solve the above equations it is convenient to introduce new
coordinates called holomorphic coordinates (6.2.2)

wx +ip wx —ip

She T TSP o,

The functions a and a are called the annihilation and creation functions since
they decrease and increase the number of excitations of the vibrational mode with
frequency w (annihilate and create the quanta of vibrations). Note, that ax = (%',
a% = (ax)" and

a(x, p) =

la,al=axa—axa=1.
In these new coordinates the function H takes the form

H(a,&):hwa&:hw(&*a—i—é):ha)(a*fl—é).
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Let us consider a more general problem of finding a solution to the following pair
of x-genvalue equations

H * pyp = Emppns (7.2.21a)
Pon*H = Ey 0, (7.2.21b)

where m, n are numbering the x-genvalues of H. It can be shown that m, n are non-
negative integer numbers. The energy levels E, of the harmonic oscillator are equal

E, = (n+ )ho.

Since H = hiw(a xa + é), *-genvalues of the function N := a  a are the natural
numbers n = 0, 1, 2, ... and x-genfunctions are the x-genfunctions p,,,, of H,i.e.

N*ppn =mpPpp,  Pun * N =npy,.

Hence, the function N = a x a can be interpreted as an observable of the number of
excitations of the vibrational mode with frequency w.

Moreover, the normalized solutions of Egs. (7.2.21) can be calculated from the
ground state

ax*pgo =0

according to the equation

1

= A*...xA*Pgy* A *...xd
P Vmin! =~ ErPooFEx T
m n

and the ground state p takes the form

P2 + wx2
hw ’

poola, a) = 2exp(—2aa), Poolx, p) =2exp (—

with normalization given by (7.2.16). The x-genfunctions p,,, can be now calcu-
lated giving

_ 1 - kM (n 1 —m—k n—k _
pmn<a,a>=¢m!n!;o<—1) k!(k)(k)zzk_n_m“’" a" =" poo(a, @).

The above equation can be written alternatively when passing to the polar coordi-
nates (r, 0)

wx +ip =re'’.
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Then we have
a(r,0) = ! rel®, a(r,0) = ! re % r? = p? 4 0x?
' Sho ’ V2hw ' ’

and Eq. (7.2.2) takes the form [10, 111, 140]

. fnl o1 r\""
pmn(r, 0) :2(_1) \/m'2n_m <\/2hw>

2 2
x L:’I;*n (i" ) efi(mfn)e exp (_; > ,
w w

x—sex dn _ n (n +S)'
s . X .n+s\ __ _ k k
LY (x) = - (e7*x"T) = ];)( D (n — I)\(s _|_k)!k!x

where

are the generalized Laguerre polynomials. The stationary pure states of the harmonic
oscillator are of the form

2 2
Pun(r,0) =2(=1)"L, <2r ) exp (— ' ) , (7.2.22)
how hw

where L, (x) = LS (x) are the Laguerre polynomials. Equation (7.2.22) can be also
written in the following form

4H 2H
how how

It is interesting to check to which classical states quantum states p,, in the limit
h — 0T converge. Again it has to be calculated in a distributional sense, hence the

limit limy_, o+ (p,,, ¢) has to be calculated for every test function ¢. One finds that
for fixed n

lim {p,, ®) = ¢(0,0) = (3(x)8(p), P)
h—0t
and hence

hli%l+ Pn = 8(x)8(p),
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i.e. all quantum stationary pure states p,, of the harmonic oscillator converge, in the
limit # — 0T, to the single classical state (x = 0, p = 0) describing a particle
with the position and momentum equal 0. This result is not surprising as the state
(x =0, p = 0) is the only classical stationary pure state of the harmonic oscillator.

The reader can find other interesting examples of x-genvalue problems and their
solutions in [75] and [76]. Moreover, the reader can find the general solution of
*-genvalue problem for Hamiltonians quadratic in phase space coordinates in [92].

Previous results of this subsection give us an ambiguous answer to the question
of time development of the initial coherent state. We investigated it indirectly,
calculating time development of uncertainty relation AQ(#) A P(¢), with minimal
initial value AQ(0)AP(0) = " Forafree particle we found that the coherence is not
preserved during time evolution (7.2.2) while for harmonic oscillator it is preserved
for a distinguished initial coherent state (7.2.15) for y = w. Thus, let us investigate
more systematically that problem for arbitrary linear Hamiltonian system in R.

Let us consider a harmonic oscillator described by a Hamiltonian (7.2.19). It is
convenient to introduce normalized variables

1

x — x, p— Jop.

Jo
In these new variables the Hamiltonian of the harmonic oscillator takes the form
H = lop?+x%. (7.2.24)

Adding to (7.2.24) the interaction term

Hi(q. p) = axp+ yBp* — ) Bx",

where o, B € R are some constants, we will consider the following Hamiltonian
[100]

H(q,p) = y(@+ B)p* + 3 (@ — B)x* + axp. (7.2.25)

Note that any Hamiltonian quadratic in x and p variables is of the above form for
some values of constants w, o and 8. It should be noted that this type of Hamiltonian
is very often found in quantum optics where admissible coherent and squeezed states
of the light are investigated [132, 133, 144, 243, 257].

The classical and quantum Hamilton equations for time evolution of observables
of position Q(#) and momentum P (¢) take the common form

Or=aQ+ (B +wPk,
Pi=(B—-wQ—aP.

(7.2.26)



364 7 Quantum Hamiltonian Mechanics on Symplectic Manifolds

The Hamilton flow in a case w? > o + B2 reads

o) = oax+ (2 +Php sin(Rt) 4+ x cos(Rt),

(—B)x+ap

P(t)=— X

sin(Rt) + p cos(Rt),

where R = \/|a)2 — a2 — p%|. When 0? < o? + % we get

on =" (‘1‘; AP Gah(Re) + x cosh(R?),
Py =@ ﬂ;: TP Gnh(Rt) + p cosh(R1),

and when w? = o? + 2

Q) = x + (ax + (0 + B)p)t,
P@t) =p—(@—pB)x +ap)t.

2 > «? 4 B%. In an initial coherent state

B y(x' —x)? (p' — p)?
p(q, p) =2exp| — 5 expl— "
14

First, we will focus on the case w

we receive the following formulas for the uncertainties (A 0)? and (AP)?

2 2 2
(A0)? Z;ﬁl <“ + VR(E" TP G2 (Re) + cos?(R1) + 2}‘; sin(R1) cos(Rt))
2 2 2 2 _ 2 2
D (14 2R BV
200,
+ R sin(Rt) cos(Rt)),
a2 =", @ty py sin (Rt) + cos(Rr) — - sin(Rr) cos(R?)
2 R? R
2 AN -2 -2 2 2
Sy (142 0T D

2% Gn(R1) cos(R
~ R sin(Rt) cos( t)).
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Introducing a parameter £ = o + i = re'? and writing it in polar variables (r, 6)
the uncertainties (A Q)2 and (A P)? take the form

(AQ)? = 7217/71 (1 n sin?(R¢?) (2}’2 +2y2wr sinf + (y2 — 1)(w? + r?sin®0)

R R

+ 2rcosf cot(Rt) ) ) ,

2

APy hy (1 . siniiRt) <2r2 — 2y 2wrsiné + (;—2 — 1)(@?* + r*sin® 0)

— 2rcosé cot(Rrt) ) ) .
(7.2.27)

From (7.2.27) we find that coherence is not preserved during time evolution when
parameters w, «, B are arbitrary.
In the special case y = 1 (y = w for old x and p)

h 2 ino
(407 = (1 + Rr sin?(Rr) (“stm

+ cos 6 cot(Rt))) ,

, K 2r 5 r —wsinf
(AP)” = 5 I+ g SO (Rt)

— cos6 cot(Rt))) .

and

) ) h? 4r? ) w . . 2
(AP (ap? =", (14 L, sin’(R) (R cos 6 sin(R1) — sin @ cos(Rt)) .
(7.2.28)
From (7.2.28) it follows that the minimization of the Heisenberg uncertainty relation
occurs only for Rt = km and Rt = arctan(ﬁ tanf@) + km, k € Z. Thus, we will

consider a further reduction. First, let us take 8 = 0 and « > 0. Then r = « and
0 = 0. In this case we receive

(AQ)? = z (1 + 2;’ sin?(R1) (; —|—cot(Rt)>> ,

2 h 200, 2 o
(AP)? = 5 (1 + i (Rt) (R —cot(Rt))>,
and

5 2 K2 4o’ 4
(AQ)“(AP)” = 4 <1+ R sin (Rt)). (7.2.29)



366 7 Quantum Hamiltonian Mechanics on Symplectic Manifolds

From (7.2.29) it follows that the coherence is preserved during time evolution if
additionally o = 0, but this is exactly the case of the harmonic oscillator (7.2.24).
Now, let us consider the case w?> < o> + 2 by taking @ = 0. Then R = r and

0(q, p,t) = (gcosB + psinf)sinh(rt) + g cosh(rt),

(7.2.30)
P(gq, p,t) = (g sinf — pcosO)sinh(rt) + p cosh(rt).
Moreover,
, B . 2 22 s 12
AQ) = 2)/ (cosh(2rt) + cos 0 sinh(2rt) + (y© — 1) sin” 6 sinh (rt)),
h
(AP)? = ) ¥ (cosh(2rt) — cos 6 sinh(2r1) + (y~2=1)sin’0 sinhz(rt)).

(7.2.31)

If additionally y = 1 we get

h h 0 0
(AQ)? = ) (cosh(2rt) + cos 6 sinh(2rt)) = ) (ez” cos? ) + e %" gin? 2) ,
h h % 0
(AP)* = _(cosh(2rt) — cos@sinh(2rt)) = _ (e " cos® _ +e*'sin* _ ),
2 2 2 2
and

2
(AQ)2(AP)? = Z (1 4 sinZOSinhz(Zrt)). (7.2.32)

Again, as it is evident from (7.2.32), the Heisenberg uncertainty relation is not
minimized during the whole time evolution. In order to get a minimal uncertainty
for any ¢ we have to take 8 = 0. Then 6 = 0, r = «, equations (7.2.30) reduce to

0(q, p.1) = ge“,

P(q,p.t) = pe™,
variances (7.2.31) are

(AQV==zy*%Mﬁ

(Am2=§yfh2

and hence we get a conservation of minimal uncertainty

2
(A@%Am2=i.
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Finally, let us consider a case w? = a2 4+ 2. In this case

(40)* = z (r'a+an? +y B+ o),
(7.2.33)

h
@pPy? =" ("B -’ +y—an?).
and

(A0)*(AP)? (7.2.34)

2
= h4 (1 =202 4204 21+ an)? (B — w)?2 + (1 —an)?(B + a))zt2> .

It can be seen that during time development the variance of position (AQ)? and
momentum (A P)? increase quadratically with time, so the minimal uncertainty is
not preserved for any ¢ except + = 0. In the particular case, when f = w = é and
a = 0, formulas (7.2.33) and (7.2.34) reduce to these for a free particle, considered
at the beginning of this subsection.

Note that in a case w®> > a? + B2 the following one-parameter family of linear
canonical transformations of coordinates

, Ra+aA
- o+ B 7+ 4p +8
A::l:\/w —612, aGR
, _aa—RA ta R
= w4 q +ap,

transforms the Hamiltonian (7.2.25) into the following Hamiltonian of the harmonic
oscillator

H(q', p) = yR(p* +q").

On the other hand, in a case w? < «? 4 B2 another one-parameter family of linear

canonical transformations of coordinates

q' = R+aaq ap

@+ aeR
o= R—aq_a)—i—,B

2Ra 2Ra

transforms the Hamiltonian (7.2.25) into the following Hamiltonian

H(q',p")=Rq'p'.
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For both Hamiltonians H(q’, p’) the initial coherence is preserved during time
evolution.

Observation 16 From the above considerations it follows that the conservation
of coherence property during time development of quantum state is rather rare
phenomenon. Even for a three-parameter family of linear quantum Hamiltonian
equations (7.2.26) in R?, initial coherence is preserved during time evolution only
for two cases: B = a = 0 and B = w = 0. So why should we expect such a
property for nonlinear quantum Hamiltonian equations? On the other hand, when
w® > o 4+ B% we can always reduce the dynamics to the harmonic oscillator
(B = a = 0), and when w* < o* + B* we can reduce the dynamics to the case
w = B = 0, provided that we will be working with new variables q', p’. In the
frame of original variables q, p it means that for the considered class of systems
there always exist canonically conjugated observables q' = q'(q, p), p’ = p'(q, p)
for which the minimal uncertainty is preserved during time evolution.

At the end of this subsection let us consider a system of two degrees of freedom
described by the Hamiltonian cubic in phase space coordinates

pl P
Hx,p)=_' + 7% 4kx!'p3, (7.2.35)
2m;  2my

where m1, my are masses of particles and k is a coupling constant. Quantum
equations of motion (7.1.16) for observables of position and momentum are of the
form

1 _ 1
Q)= P,
mi

1
(0% =, P2 +2kQ" x Py,

(P1) =— kP, % Py, (7.2.36)

(P2); =0.
Hamiltonian (7.2.35) is specific because x2 is a cyclic coordinate, so P, is a constant
of motion equal to its initial value P» = p» and in consequence, equations (7.2.36)
reduce to their classical counterparts

1 1
oYy =" P,
mi
1
(0% =  P,+2kQ'Py,
my

(P); = —k (P2)?,
(P2)t =0.
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with the solution

k
2.2
1P2t1

1
o'y =x"+  pit—
my 2m

Pi(1) = p1 — kp3t,
2

k
nr, (7.2.37)
1

1 k
0% (1) =x* + ( P2+ 2kx1p2) t+  pipat® —
my mq 3m

Py (1) = pa,

which again represents a common quantum and classical trajectory of the considered
two particle system. Hence, the flow (7.2.37) represents a one-parameter family
(group) of classical and quantum canonical transformations T(xl, x2, pP1, p2) =
(Q', 0%, Py, P,) in a four-dimensional phase space R* with the following generat-
ing function

1 1
F(x',x2, P, P) =x'Pi + X°Py + kix'(P)2 + . t(P)*+ . t(Py)?
2mq 2mo
k k2
+ 0 PP(P)*+ PPt
2mq 6mq

Note, that this transformation is a four-dimensional example of the transformation
generated by F4 from Sect. 6.1.4. In accordance with (7.2.1) the received quantum
flow &, transforms the Moyal product to the following product

1< = 1. < = L. < = 1< =
f*tngexp(zlthl Dy + LihD 2Dy — LinD ) Do — zlthszz) g
where

D =0, + 2ktpy0,2,
D =20,.,

1 k 5
Dy, =0, + mltaxl + mlt D20,2,
k 2 1 1 k 2 k2 3.2
Dy, = 03y, — 2ktpr0,, — mll p20,1 + m2t+2kl‘x — mlt p1— mll D5 | 0,2.

Moreover, the isomorphism S; associated with ®, and intertwining the Moyal
product at t = 0 with the *;-product takes the form

11 1k
Sl‘ =exXp I:}lkhz <2m1t23x1832 + taplajz + 3 n{l)lzt?’aiz)} .
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It can be also proved that S; is an isomorphism (unitary operator) of the Hilbert
space L?(R*) onto itself.

As in this case S, ®;;, = &y, the group multiplication for {®;} is just a
composition of maps, as one could expect since @, is simultaneously the classical
and quantum trajectory. However, the action of ®; on observables and states does
not reduce in general to a composition of maps (7.2.1) like in the classical case
as now S; # 1, which is a direct consequence of the fact that the Hamiltonian
is a cubic function of phase space coordinates. As the result, the time evolution of
quantum observables is governed by (7.2.4). This shows that for the considered case
the time evolution of quantum observables differs in general from the time evolution
of classical observables.

One can check by direct calculations that the action of the quantum flow ®; on
an observable A, given by (7.2.4), indeed describes the quantum time evolution of
A. As the illustration of that fact let us take A(x, p) = xlxg. Then

k
(S;A)(x, p) = x1x3 + }J‘zzml r*

and it can be checked by direct computation that
1 202 152 K 2
A1) = (S$;A) o @ = O (O(Q7 ()" + 47 mlt

satisfies the time evolution equation (7.1.13).

7.2.3 Pure Quantum Trajectories

We discuss the concept of quantum trajectories on a simple, but far from being
trivial, example of a system described by a Hamiltonian

H(x, p) = szpz.
The Moyal dynamics (7.1.16) takes the form (see Example 7.1)

Qr=kQ*xQ*P+xkPx0*x0Q, Q(0)=nu,
Ph=—kQxPxP—kPxPxQ, PO =np. (7.2.38)

We briefly sketch how to find the solution of the considered quantum dynamics [93].
Since [Q, P]| = 1 at any time ¢, we have

d
dt(Q*P) =0 * P+ 0P

=kPxQ*xQ*xP —kQxPxPxQ
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=kPxQ*xQ*P —kPxQxQxP +ihkPxQ—ihkP*Q
=0

and so, as in the classical case, Q * P is a constant of motion

Q(x, p, )« P P(x, p,t) =x x p = xp + Sih. (7.2.39)

Substituting (7.2.39) in the Eq. (7.2.38) we get

Qr =xQx(xp) +xxp)*Q, Q) =x,
Pi=—«k(xp)*x P — kP *x(xp), P(0) = p.

One can immediately check that the solution of this equations is

QO(x, p,t) =exp,(ktxp) x x x exp, (ktxp)
P(x, p,t) =exp,(—«ktxp) * p x exp,(—ktxp). (7.2.40)
By construction this is a unitary transformation.
In order to go further we need the explicit form of x-exponential from (7.2.40).
Following a technique developed in [12], in [92] was derived the x-exponential for
any polynomial of second degree in phase space coordinates

H = AgpE®&? + Byg®,

where A is a symmetric, nonsingular, 2n x 2n matrix. In a particular case, for
factorization

A=S5%s,
such that
SAa)Sg =aw,

where w is a symplectic matrix (6.1.2) and a € C, the noncommutative exponential
is given by

H 1
exp, (Y H) = [cos(ihay)]™" exp{ . tan(ihay) + aBTA_lB [tan(ihay) — ihay]} .

ih 4ih

In our case (7.2.40) H = xp and

0! 1/11
B=0, A=(2]), Sa= ,oa=ti
(15): =2 (i) amu
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hence
1 2 1
exp, (xtxp) = sec (tht) exp :I:hxp tan <2Kht)
and so

O(x, p,t) = exp,(ktxp) x x x exp, (ktxp)
= [1 + i tan (éxht)] exp, (ktxp) * [x exp*(ictxp)]
P(x, p,t) = exp,(—«txp) x p xexp,(—ktxp)

= [1 +itan (%Kﬁl‘):l exp, (—ktxp) * [pexp,(—«ktxp)].

Applying the integral representation (6.1.45) of the x-product, after some calculation
we get the final solution of quantum Hamiltonian equations (7.2.38) in the form [93]

2
O, p,t;h) = secz(/cht)x exp (h tan(;cht)xp) , (7.2.41a)
2 2
P(x, p,t; i) = sec”(kht) p exp ~5 tan(xfit)xp |, (7.2.41b)

fort # 2]‘2“ ;Z@ , k € 7Z. This solution (7.2.41) is a deformation of a classical one

given by the limit # — 0

2tkxp —2tkxp
s .

Qc(x,p,t) = xe Pc(x, p, 1) = pe

The induced quantum flow &, is an example of a flow for which &;, for every
t# f’,;, is not a classical symplectomorphism, since

{0(), P(1)} = sec*(kht) # 1.

In accordance with (7.2.1) the quantum flow @, transforms the Moyal product to
the following product

1. < = L < =
frg=rfexp(3inD. B, inD, D),
where

D, = secz(/cht)(l + 2t x (Kht)xp) exp (Zt)( (Kht)xp) Ox

— 2ty (kht) sec? (kht) p* exp (2t x (kFit)xp)d,,
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D, = 2t x(cht) sec* (kht)x? exp ( — 2 x (khit)xp)dy
+ sec?(kht) (1 — 2t x (cht)xp) exp ( — 2t x (khit)xp)d,,
tan(kht)

and x (kht) = ht sec(cht) " Moreover, the isomorphism S; associated with ®; and

intertwining the Moyal product with the *;-product, up to the second order in #,
takes the form

S =1+ h2lc2<é(3t2x3 + 4t3x4p)8§' + é(.’at2p3 - 4t3xp4)813,
+ é(—tp —2xp® + 4t3x2p3)8x812, + é(tx —2x%p — 4t3x3p2)838p

+ Q7% 42007 p)og + (27 p* = 207 xp)0) + (—2t2xp)8x3,,> + o).
(7.2.42)

In fact, expanding relations (6.1.77) with respect to /i one can show that S; in the
above form satisfies these relations up to O (7?).

From the fact that @, is a purely quantum trajectory, we deal with the quantum
group multiplication (7.2.6) for {®;} as well as the quantum action (7.2.4) of ®; on
observables and states. Indeed, expanding (7.2.41) with respect to #:

0w, p,1: 1) = Qc (1+ 1% (7 + 2xp) ) + 0%,
P(x, p,1; ) = Pc (1 + h%c? (t2 - §t3xp)) + oM
and applying isomorphism §; (7.2.42), the quantum composition law

Ot + 1) = S8, 0(t1) 0 @, = S, Q(12) 0 Py,
P(tl + t2) = Stzp(tl) o q>t2 = Sth(tz) o q>t1

holds up to O (h?). Note also that the flow ®; is not defined for all 7 € R as it is
singular for r = 2/‘2+ ! o » contrary to classical flows which are globally defined. This
is an interesting result showing that in general the quantum time evolution do not

have to be defined for all instances of time ¢.

Observation 17 Singularities of classical trajectories are not admissible as each
classical trajectory represents measurable quantities, actually expectation values
of position and momentum of a system in a pure coherent classical state (7.2.13)
for all t € R. On the contrary, pure quantum trajectories themselves are not
“physical” objects as states (7.2.13) are not admissible so, singularities of pure
quantum trajectories are acceptable.
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Let us come back to the singular quantum trajectory (7.2.41). Through direct
integration we can calculate the expectation values of Q and P from (7.2.41) in the
coherent state (7.2.15). The result after introducing

© = cos(kfit) y 1 sin(kfir)
A= \/COS(ZKhl)x Jcos(2khit) p-
b(t) = — y sin(k fit) cos(khit)

Jeosiht) T Jeosht) D

reads

_a@ V(2,8 .2
Q) = ocoenn &P (h (@) - x ))

G Lo
Pho = os@uchr) eXp(hy (b @ =p ))

Note, that (Q), and (P), are well defined only on intervals (—411 +n) Kﬂh <t< (}1 +
n) ., n € Z. This once again shows that time evolution of the considered system is
not defined for all values of the evolution parameter ¢ and even time development
of expectation values of position and momentum is only well defined on certain
intervals of 7.

Observation 18 We have found that for the considered quantum trajectories,
expectation values of observables of position and momentum in the coherent state
(7.2.15) were well defined only on certain intervals of t, which raises problems and
questions of interpretation of such a kind of time evolution. If we assume, like in
the classical case, that the expectation values of position and momentum have to
be smooth functions for any t € R, then we have two options. Either, for a chosen
quantization, there exist quantum states for which our assumption is fulfilled (the
state (7.2.15) does not belong to that class) or, if there are no such states, our
quantization is not ‘physical’ and we have to chose another quantization which
fulfills the imposed assumption.

The above observation was made from the mathematical point of view. Let’s have
a look on the problem from the physical side. In other words, let us asses the length
of the interval on which time evolution of the system is well defined. Notice that
dimension of « in joule-seconds is J ~'s ™2 so we put k¥ = || J~'s~2 and moreover
i ~ 1073*J5. So, the length of the time interval 4pe Will be approximately equal

k|1 0.785 x 103*s. Notice that the age of Universe is 0.437 x 10'8s. So, for a large
range of « singularities appearing in time evolution are nonphysical.

After reading this chapter the reader might be disappointed with a small number
of examples of stationary problems of known quantum systems, presented in
deformation quantization formalism. The exception was made for the case of
quantum harmonic oscillator. The reason is that such calculations directly in a
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Hilbert space over the phase space are very cumbersome and complex. Fortunately,
at least for the canonical quantization, we can simplify that problem passing to so
called position representation of quantum systems. This is the subject of the next
chapter in which we present many known and new examples of separable eigenvalue

quantum problems defined in an appropriate Hilbert spaces over Riemannian
configuration spaces.



Chapter 8 )
Position Representation of Quantum Shethie
Mechanics over Riemannian

Configuration Space

The last chapter of the book is devoted to two very important issues of the
developed quantum theory. The first one is related with systematic construction
of the so called position representation of quantum mechanics over an appropriate
class of Riemaniann spaces in any admissible local curvilinear coordinates. In
particular, for a flat space and Cartesian coordinates we reconstruct the standard
quantization procedure from textbooks of quantum mechanics. The second issue of
that chapter is related with quantum integrability (quantum superintegrability) and
quantum separability. Actually, we present the reader a class of quantizations of
classical Stickel systems considered in previous chapters, which preserve quantum
integrability, quantum superintegrability and quantum stationary separability of
related quantum Hamiltonian operators.

8.1 Operator Representation over Riemannian Space

In this section we will present a coordinate free construction of a natural operator
representation of quantum mechanics [33, 36, 37, 98], which reproduces the usual
Hilbert space approach to quantum mechanics. We will be dealing with quantum
systems defined on a phase space M in the form of a cotangent bundle 7*Q to
the almost geodesically simply connected Riemannian manifold Q. The manifold
O plays the role of a configuration space of the system. The representation will be
constructed in a Hilbert space L2(Q, d wg) of functions on Q, square integrable with
respect to a measure du(x) = | g|1/ 2 (x) dx induced by the metric volume form w,
on Q, where |g| (x) = |det[g;; (x)]|, and with standard inner product

(0, ¥) = /Qé(x)llf(x)du(x). (8.1.1)
© Springer Nature Switzerland AG 2019 377
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The elements of L>(Q, dwyg) are interpreted as wave functions describing the states
of the quantum system in position representation.

8.1.1 Moyal Quantization

First, let us consider the phase space M = T*U, where U is an open subset of
R”, such that R"\U is of measure zero, endowed with a metric tensor g. Then, we
will consider a classical system defined on M and its quantization with respect to
the Moyal product on M. The construction of the position representation for such a
quantum system we begin with an observation that the Hilbert space L>(T*U, d$2;)
can be written in the form of a tensor product of the Hilbert space L?(U, d ) and the
space dual to it. Thus we start with the explicit construction of this tensor product.

In accordance with the Riesz representation theorem, the Hilbert space
(L*(U, dp))* dual to L*>(U, dp) is isomorphic to the Hilbert space L>(U, d 1) and
can be naturally identified with L2(U, d ) itself. Actually, such linear isomorphism
J: L*(U,dp) — (L*(U,dp))* takes the form J(¥) = (¥,-) (8.1.1). Let us
denote by L?>(TU) the Hilbert space of functions from the tangent bundle TU =
U x R", square integrable with respect to the Lebesgue measure on U x R". Then,
let us define a bilinear map of Hilbert spaces w: (L*(U, du)* x L*(U, du) —
L?(TU), which on vectors o, € CSO(U) takes the form

W@, ¥)(x,y) = p(x — INY(x + )¢ (x, ), (8.1.2)
where
ce,y) =g e = Iy lglH (e + 3.
For ¢, ¥y, @2, ¥, € Cg°(U) it holds
(W@ w0 W@ w) = @1, 621, o). (8.1.3)

Indeed,

(W((/’_lv ¥, W(ga, 1ﬂ2)> = /U . W (@1, ¥1)(x, VW (@2, ¥2)(x, y) dx dy

xR/
= /U o p1(x — é)’)lﬂl(x + %y)wz(x — éy)l/fz(x-i— éy)

x Ig"? (x = Yy 1g1"% (x + L y) dx dy. (8.1.4)
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Note that since ¢, V|, ¢, ¥, have a compact support, the integration in (8.1.4) can
be extended to the whole space R" x R”". Under the following change of variables

/ 1
X'=x—=5y,

" 1
X=X+,

Equation (8.1.4) transforms to
(W@ ). W, v)) = /R 21 () ]2 (') d’

x /R V") 1112 () dx”
= (97, 92) (V1. V).

From property (8.1.3) follows that W is continuous on CSO(U) X CgO(U). Thus, as
Cg°(U) is densein L2(U, d ), it can be uniquely extended to a bilinear map defined
on the whole space (L*(U, du))* x L*(U, dp) and satisfy (8.1.3). One can prove
that finite linear combinations of vectors W(g?), V) for ¢, ¥ € L*(U,du) create
a dense subset of L2(T'U). In conclusion W is a tensor product of Hilbert spaces
(L>(U,dw))* and L2(U, d ).

Next, let us take the Fourier transform (6.1.23) of W(gb, Y¥) in momentum
variable p conjugated to position variable y. In such a way we receive a bilinear
map of Hilbert spaces W: (L2(U, dw))* x L*>(U,du) — L*(T*U, dSp), which
on arbitrary vectors ¢, ¥ € Cg°(U) takes the form

W@, ¥)(x, p) = / R L
R (8.1.5)
ik
[ ot s b e may

Because the Fourier transform in momentum variable is an isomorphism of the
Hilbert space L*(T*U) onto the Hilbert space L3(TU), so W is also a tensor
product of Hilbert spaces (L2(U,dw))* and L2(U, dw). Let us denote this tensor
product by @y

pew Y =W, ¥).

In a case when U = R” with a standard metric tensor g in flat coordinates, (8.1.5)
is a well known from literature Wigner transform [2, 263].
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Now let us prove a couple properties of the tensor product @w. For ¢, ¥ €
L2(U, dp) there holds

oWV =V Qw ¢, (8.1.6)

/ (¢ ®w V) d2n = (@, ¥). (8.1.7)
T+U

Formula (8.1.6) follows immediately from the definition (8.1.5). To prove (8.1.7) it
is enough to consider ¢, ¥ € C3°(U) as the general case follows from the continuity
of the tensor product ® w and the integral, and from the fact that Cgo (U) is dense in
L%(U, dw). From (8.1.5) we have that

1 ) o B 1
Qrhy /Rann @@w V)(x. pydedp =, W /wa /Rn o — iY@+ 1y

e VP VA (= Ly 1g]V4 (x4 Ly)dydx dp
= fR /R o — Iy + 3y g1 e = Ay 181 (x + 19)8(y) dy dx

= fR e () 1812 @) dx = (g, ).

Let py = @1 ®w Y1 and py = @ ®w Yy for 1, ¥y, @9, ¥y € L>(U, dp), then
P1L*um P2 = (@1, ¥2) (@2 Qw V). (8.1.8)

To prove formula (8.1.8) it is sufficient to consider ¢, V1, ¢, ¥, € CC(U)
since the general case again follows from the continuity of tensor product ®yy, the
Moyal product ), and a scalar product, and from the fact that C;°(U) is dense in
L%(U, dw). From (6.1.46) we have that

ik ok
orow o) = [ [ st by = Jane Oy g

= f /WWH =lovic+ by + lolrarly - 1o

1/4

xlgl* G+ 3y + 0= 3y = Loy + 1y - 12

1/4 1

ik ok
gl =y =L jglVA o+ Ly — 1oy n TP gy gz,

and after the change of variables

xX'=y+z

"no__ 1, 1
X' =x+,y—,%,
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we get
1o 0205, = [ o1 6l )

x / Pa(x — )XY (x + 5x/)e"'%”"k
Rn
x 1gI"* (x — 1x) 1gI"* (x + Jx') dx’
= (@1, ¥2) (@2 ®w ¥ (x, p).

Let {¢;} be an orthonormal basis in L>(U, duw), then {pij} = {¢; ®w ¢;} is an
orthonormal basis in L2(T*U, d2p). From relations (8.1.6), (8.1.7), and (8.1.8) we
find that the basis functions p;; have the following properties:

Bij = Pjis (8.1.92)

/ pij A = 8ij, (8.1.9b)
T*U

Pij *M Pri = 8il Pkj- (8.1.9¢)

Using the basis {p;;} the following characterization of quantum states can be
proved. Function p € L>(T*U,dS2) is a quantum state, i.e. it satisfies conditions
L. p=np,
2. [ruy ,o_th =1,
3. fT*Uf*f*deh > Ofor f € C3°(M)

if and only if p is in the form

p = i@, ®w ).
A

where ; € L*(U., dw), llg; | = 1. pr = 0,and 3=, ps = 1.
Indeed, function p can be written in a form

P = E CijPij,
i,J

where ¢;j € C and {p;;} = {¢; ®w ¢;} is an induced basis in L*(T*U, d2)
by the basis {¢;} from LU, dp). Properties 1-3 mean that the coefficient matrix
¢ = (¢;j) is self-adjoint (¢ = ¢, normalized (tr & = 1), and positively define (c;; >
0). Indeed, self-adjointness and normalization follow from (8.1.9a) and (8.1.9b). In
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order to prove the positive definite note that 3 is valid for every f € L2(T*U, dQp)
since C;°(T*U) is dense in L*(T*U, dS2p). So, in particular for basis functions
Prk» With the help of (8.1.9), we have

05/ Pkk *M Pk *M P dS2 =/ Pkk *M P A =ZCU/ Pkk *M Pij A2
T*U T*U i ™u
=) cij / Skjpik dQn =Y cik / pikdSQm =Y cixdir = ik
— T*U , T*U ,
L] 1 1
for any k.
Since the matrix ¢ is self-adjoint it can be diagonalized, i.e. there exists a unitary

matrix T such that cij = Zk’l T;’,;(pk8kl)le =3 I_‘k,-kakj for some p; € R.
Hence, p can be presented in the form

p = Z Tiipk T (9; @w @) = Zpk (Z Tki@j) Qw (Z Tkj(pj)
i, jk K i j

=Y (e ®w V),
k

where ¥, = Zi Tii@;. The conditions that ¢;; > O and tr¢ = 1 give that 0 < p <

land ), pr = 1.
From the above considerations follows that every pure state has the form

Ppure = ® Qw ¢, (8.1.10)

for some normalized ¢ € L%*(U,du). Conversely, every function p of the
form (8.1.10) is a pure state. Besides, from relation (8.1.8) follows that every pure
state is idempotent

Ppure *M Ppure = Ppure-

The inverse is also true, i.e. that every function p € L? (T*U, d2,) which satisfies

L. p=np,
2. [py pdQu =1,
3. pxm p=p,

is a pure state. Indeed, function p can be written in a form

p= Zcijpija

iJj
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where ¢jj € C and {p;;} = {¢; ®w ¢} is an induced basis in LX(T*U, dS2).
Again, properties 1-3 are equivalent to the statement that the coefficient matrix
¢ = (cij) is self-adjoint (¢ = ¢M), normalized (tr & = 1), and idempotent (2 = &).
So, since the matrix ¢ is self-adjoint it can be diagonalized, i.e. there exists a unitary
matrix 7 such that cij = Zk’l T;{(akSkl)le => Tkiakaj for some a; € R. In
consequence, p takes the form

p =Y TuaTij(@; ®w ¢;) = Y _ax (Z Tki@i) Qw (Z Tkj(pj>
i J

ij.k k

=Y (Y w V),
k

where Y, = Y. Tig;. The conditions that & =c¢and tré = 1 give that a,% = ay
and Zk ar = 1. Hence ay = Sy« for some ko, from which we get p = 1/ka Qw 1/ka.
Thus indeed p is a pure state.

As was just noted, pure states p € L2(T*U, dS2p) are of the form p = @y ¢ for
normalized ¢ € L?(U, d ) and in consequence there is a one to one correspondence
between pure states and normalized vectors in L2(U ,du). Moreover, we will show
that there is also a one to one correspondence between states p € L2(T*U ,d2p)
and density operators p on L>(U, d) [33, 98].

From the Sect. 6.2.1 we know that vectors f € L*(T*U, d) can be regarded
as operators f *y on L>(T*U, d2) given by the formula

(f*m)p=frup, peL>T*U,dQ).

Besides, from (6.1.3) it follows that operators f xp; are bounded with the norm
II.f %3 I < 1l f]l. Now, we will prove that operators f 3 can be naturally identified
with Hilbert-Schmidt operators on LU, dp).

For a Hilbert space H a bounded operator A € B(H) is called a Hilbert-Schmidt
operator if tr(ATA) < oo. The space of all Hilbert-Schmidt operators will be
denoted by By s(H) and it forms a Hilbert space with a scalar product given by

(A, Byys =tr(A"B), A, B € Bys(H). (8.1.11)
From the relation between the Hilbert-Schmidt norm and the usual operator norm
IAl < IAllms, A€ Bus(H)

it follows that the inclusion By s(H) C B(#H) is continuous.
In what follows we show that for every p € L3(T*U, d2)

oxy =1Q®w P, (8.1.12)
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where p € BHS(Lz(U ,dw)) is a Hilbert-Schmidt operator defined on the Hilbert
space L2(U, d). Conversely, for every p € BHS(Lz(U, du)) the operator i Qw p
is of the form pxj for some p € L? (T*U, d2p). Moreover, the following properties
are fulfilled:

(@) forp =@ ®wy,p=(p, V¥,
(i) pry =1®wp'
(i) Tr(o) = [r.y pdQ2m = tr(p),
(iv) for py, py € L>(T*U,d2;) and py, p, € Bys(L*>(U, dw)) such that pyxy =
1@w p) and py xy = 1®w py

<p17 102> = (12)15 [A)Z)HSa

v) fT*U fam fHp pdSQp > 0for f € Cg°(T*U) if and only if (¢, pe) > 0 for
¢ e LU, dp).

First, let us consider property (i). From (8.1.8) for basis functions p; = 0 Qwe j
we get

pxum pij = (@ @w V) *m (9; ®w @) = (¢, ;) (@; Ow V) = ¢; ®w (b9 ;)
= (1 ®w p)pi;.

which proves (i).

Now, note that for a basis {¢;} in L%(U, d) the operators f)l-j = (¢;, )¢, form
a basis in the Hilbert space Bus(L*(U, duw)) of Hilbert-Schmidt operators. From
(i) for basis functions p;; = ¢; ®w ¢; we have

pij*u = 1®w pij. (8.1.13)

Any p € L*(T*U, d2p) can be written in the form p = Zi’j cijp;j for some
cij € C, so according to (8.1.13) the corresponding Hilbert-Schmidt operator p is
of the form p = Zi’j cijpij- This proves the relation (8.1.12).

In order to show properties (ii)—(iv) it is enough to prove them for basis functions
p;j- Property (ii) results from (8.1.9a) and the fact that ,5:.’/. = p ;- Property (iii) is
a consequence of (8.1.9b) and the identity tr(p; ;) = éij. Property (iv) follows from
the equality

(0ij+ PEI) =/ PijPr1 dS2n =/ Pji *M Pk A2 =/ 8j1pki dS2p = 818k
T*U T*U T*U

AT A N N
=w(p;;pr) = (Pij, PrOHS-
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In order to prove (v) we expand p and p in the corresponding basis: p = Zi’ j CijPij
and p = ) ;cijp;;j- The property follows from the fact that the positive-
definiteness of p and p is equivalent with the inequality cgx > O for every k.

From the foregoing considerations it follows that the Hilbert spaces
L3(T*U,d2) and Bps(L2*(U,dw)) are naturally isomorphic, where the
isomorphism p — p is given by p xyy = 1 ®w p. The isomorphism p +— p
is in fact a representation of the algebra £ = (L2(T*U, dS2p), xpr) in the Hilbert
space L2(U, d ) as it satisfies

P pr=P16r. b=p", Ti(p)=tr(p),

where the last property is restricted to the subspace £' = £ 3y £. Moreover, it
follows as well that there is a one to one correspondence between quantum states
p € L*(T*U,dSQ) and density operators on L2(U,dp), i.e. trace class operators
0 satisfying

1. p" =5,

2. tr(p) =1,

3. (¢, pp) = O forevery ¢ € L>(U,dp).

The density operators represent quantum states in the operator representation of
quantum mechanics.

Now let us show that observables A € C°°(T*U)[[4] can be naturally identified
with appropriate operators defined on the Hilbert space L>(U, du) [33, 98]. What
is important, the presented identification will be in agreement with the Weyl
correspondence rule. Let A € C*°(T*U)[[A]l and p = ¢ @w V¥ for ¢, ¥ € C(U).
Then

Axy p=¢®w Aw(q, PV, (8.1.14a)

pxu A= (Aw(q, p)'o) ®w ¥, (8.1.14b)

where Aw (g, p) is a symmetrically ordered function of canonical operators of
position and momentum

gl =xI, pj=—ih(@, +3T%)), (8.1.15)

where I' ’j « are Christoffel symbols of the Levi-Civita connection on U, acting in the
Hilbert space L2(U,du).
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Indeed, from (6.1.46) and (8.1.2) we get
(Awxy p)(x, p) = / / A(x + éxr, x”)[)(x _ éxu’ x/)e—}{,(x’k+x”k)pk dx' dx"
Rn R)’l

:/ / A(x—i—lx xNo(x — ! ”—éx/)l/f(x éx”—i— x')
itk nk
X g1 (e = 3" = 3 g1 (e = o e T i da

After the change of variables

we receive

(Axpy p)(x, p)
= [ A = Doe = L L = gl - )

X 1g14 e+ L = ) L9114 (e + 1) 114 (e 4 Laye ™ h " P ay a”

=/ o = "0 AG, I+ 1 I8l (= S g (ot Ly h
]Rn

= (p ®w A@G, P)V)(x, p),

where

(4G s+ 3 = [ b= by =)

x 1gI'* (x + 3x" = ) gl (x + jx")dy.

Changing x + , ! x” — x, taking explicit form of the Fourier transform in momentum

variable (6.1. 23) and changing y — —y, we get

AG. ) = / / A+ Ly, e Py y)
' Qi) Jpn Jgn 2
x gV (x +y) g™+ (x)dydp.  (8.1.16)

What remains to prove is that formula (8.1.16) represents Weyl ordering (6.2.3) of
operators ¢ and p given by (8.1.15). Actually, for A(x, p) = K" (x)pi, - - - i,
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where K1 is a symmetric complex tensor field on U, and any ¥ (x) € H, we get

Aw(G. b _ ! e (e 4 Loy p o o kP
w(g, Py (x) = Qrh)y Jon Jan K (x+5Y)piy - piye Y(x+y)
x g% (x + ) 1174 vy dy dp
1 . ik
= Q)" /n _/n Kt (x + é)’) [(ih)na)ril "'3),,',,(3 hY Pki| Y(x+y)

x 1gIV* (x + ) 1g1~V* (x) dy dp

1

= (27{]71)” /l'{n - (_ih)nayil P ayin [Kil...in (X + ;y)lﬂ(x + y)g(x, y)]

ik
xe Y Pkdydp

= (i) Dy K x4 L)+ )8 e )]

y=0
8.1.17)
By virtue of the following identity
1
0y (8 + 30 (x +9)) = @ + 080 + X0 + x4 5x")]
x’:x”:y
valid for any functions g and £, (8.1.17) can be written in a form
n n ..
Aw(@. Py @) = (=in)" Y (k>ayn c D Dy - O [KT (x4 3 y)
k=0
XY+ 5y + 56 g1 4 Sy 4+ 50 817V )]
y=x'=0
(8.1.18)
Applying the known relation to the metric tensor
algl k
I =218l T (8.1.19)

we find that

. vl .
—~ihd (g% = —in (M. g1+ 9T |g|1/4> = (v gl
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where p; is given just by the formula (8.1.15). From this and (8.1.18) we receive

n

Aw@. pY ) =Y ("

n—k ..
k)(—ih)" (;) By - Ay [K (x4 L)
k=0

. . 1
X (Pigr =+ ¥+ 33+ 22 [ (e 3y + 0

x [gI71* (0]
y:v:O
L5~ ("), o pritein (5 A A
- on Z k piy -+ i K@) Piryy - Pig U (X)
k=0

that recovers formula (6.2.7) and (8.1.14a) is proved.
In order to prove (8.1.14b) we can use (8.1.6) and (8.1.14a) receiving

prmA=Axyp=1VQwAL@G, Pe = (Awd, p)'e) @w ¥.

Observe, that products A 37 p and p s A are properly defined by (6.1.46), even
though A has no compact support and is not defined on the whole space R" x R",
since p has the form ¢ @w ¥ for ¢ and ¥ with a compact support.

From (8.1.14) follows that operators A )y can be written as the following tensor
product

Axy =1Qw Aw(, p). (8.1.20)

Equation (8.1.20) is an analog of (8.1.12) for functions A € C*(T*U)[%] and
it allows to identify functions A with operators A(g, p). That way the Weyl
correspondence rule in a natural way appears in the operator representation of
quantum mechanics.

The map A — A = Aw(§, p) has the following properties

Al xu Ay = A1 Ay, A=Al

for functions Ay, Ay € C°(T*U)[#]), thus we are dealing with representation of
the algebra Ag = (C*°(T*U)[[A]l, xu) in the Hilbert space LU, dw).

Let A € C®(T*U)[A] and p € L% (T*U,dQ), then for A xy p €
LY (T*U, d2) we have

/ Axyt pdS = tr(Aw(G. P)P). (8.121)
T*U
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In particular, if p = ¢ @w ¥ for ¢, ¥ € Cj°(U) then
[ Avu pd2n = . Aw@. 0. (8.122)
T*U

We prove (8.1.21) assuming that {¢; } is a basis in L?(U, dy) such that @; have a
compact support. From (8.1.14) and (8.1.7) then follows that

*[J *U

for p;; = ¢; ®w ¢;. The function p can be expanded in the basis p;;, p =
2 j €ijpij- Using this expansion we find that

[ Asupasn=[ apdon=Ycy [ Apyasn=Y A pep
T*U T*U i T*U i
= cij r(Aw (. P)pij) = tr(Aw (§. p)P).-
i,J

The results of this subsection for a very special case of a flat metric tensor
and Cartesian (i.e. flat and orthogonal) coordinates, are well known from the
literature and were investigated in many papers, starting from [7, 111, 246]. Here we
generalized these results to the case of the arbitrary metric tensor and the arbitrary
coordinate system.

Example 8.1 Let us consider the case of a harmonic oscillator and verify rela-
tions (8.1.14) for its spectral problem [151]. In the phase space representation,
the spectral problem was considered in Sect. 7.2.2. In the position representation,
the spectral problem of a harmonic oscillator is presented in any textbook of
quantum mechanics. For classical Hamiltonian H = ; (p2 + wzxz) and canonical
operators (8.1.15)
qg=x, p=—ihdy,
the eigenvalue problem

Ap,) =} (<120} + 0'x?) 9, () = Expy().  n €N

has the following solution

1
a 1 _l2a2
En=m+ Do, ¢, = (1) (Znn,)e 2" Hy (ax),
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1
where H), is the nth Hermite polynomial, a = (2) 2 and ¢, (x) are orthonormal

functions from the Hilbert space L2(R). In order to verify the relations (8.1.14) we
have to prove that phase space x-genfunctions p, (x, p) (7.2.23) and eigenfunctions
¢, (x) are related by (8.1.10), (8.1.5)

a5 ) = 005) O 04 0) = W5 00) = [ 0= L)+ Lyre i ay.
Rescaling y — —2y, we find that
Wk o = 01 o2 / e P62 Hy(a(x + ) Hyla(x — y)dy.
VT 2! R
We note that
a’y? = 2ipy/h = a*(y —ip/a’h)’ + p*[a’F?
and define a new variable
z=a(y—ip/a’h).

Then

1

. 2
W(pn. on) = Jr o

1
,zazxzehz/ e—zan(ax—l—Z—i-b)Hn(ax_Z_b)dz’
R

where b = ip/ah. As H,(—x) = (—1)"H, (x), we get

—D" _1 22 5
( ) zaxeb

W(py, ¢n) = €

/Refzan(z +b+ax)H,(z+ b —ax)dz.
The integral can be done [137]

/REZQH" (z4 b +ax)Hy,(z + b — ax)dz = 2"/7n'L,(2(a*x* — b%))
where L, is the nth Laguerre polynomial. Re-expressing the argument of L, by x

and p we get

2H

1
a’x* —b* = (p2 + a)zxz) =
hw

how

and finally

. . 2H 4H
W((pna (pn) = 2(_1) eXp <_ ﬁa)) Ln (hu)) = lon(-xv p)
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8.1.2 Other Admissible Quantizations

Let us consider n-dimensional almost geodesically simply connected Riemannian
manifold forming the configuration space Q and a related phase space M = T*(Q.
Then, let us consider a classical system defined on M and its quantization by means
of a x-producton M.Let Q DU — V C R", x — (x!, ..., x™) be an almost
global coordinate system on Q. From the assumption that Q is almost geodesically
simply connected such a coordinate system always exists. The coordinate system on
Q induces on M an almost global classical canonical coordinate system 7*U —
T*V =V x R", (§%) > (xh . X, P1s - .., pn). This coordinate system will be
at the same time quantum canonical. Observe that although x-product is not local it
still can be written in the coordinates (x, p) since this coordinate system is almost
globally defined on M.

The idea behind introducing the operator representation over configuration space
Q for the considered quantum system lies in the observation that the quantum
system in coordinates (x, p) is equivalent with a system quantized by the Moyal
product. If S is an appropriate morphism of this equivalence then § is an unitary
operator on the Hilbert space L>(T*V, dQ2p). Let us introduce a new tensor product
®s: (L2(V,du))* x L>(V,dw) — L*(T*V,d2) defined by the formula

PRV =S@wY), ¢, ¥ el*(V,du) (8.1.23)

and a function A of S-ordered operators §/, p;

As(@. p) = (ST Aw(@, p)- (8.1.24)
Using properties (6.1.77) and assumption (6.1.84) it can be proved that all previous
formulas for the case of a Moyal quantization, presented in the previous subsection,
also hold true for a general quantum system in (x, p) coordinates, provided that the
tensor product @y will be replaced by ®s and operators Aw (g, p) by As(q, p).

respectively. In particular, let A € C®(T*V)[[A]l and p = ¢ ®s ¢ for ¢, ¥ €
C§°(V). Then [33, 98]

AXP) p =0 Qg As(§, PV, (8.1.25a)

p*x*P) A = (As(§, p)To) ®s ¥, (8.1.25b)

where Ag(q, p) is an S-ordered function of canonical operators of position and
momentum

G/ =xI, pj=—ih@d, + ;r’;k), (8.1.26)

acting in the Hilbert space L2(V,dp).
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From (6.1.77) and (8.1.14) we find that
AXEP) o= SSTHASED ) = S(ST' AT 57 ) = S (P @w (ST Mw (@ pY)
= ¢ ®s As(q, P)¥

which proves (8.1.25a). Equation (8.1.25b) can be proved analogically.
From (8.1.25) follows that operators A +>”) can be written as

AP =1®g As(§, p). (8.1.27)

Equation (8.1.27) allows us to identify functions A € C°°(T*V)[[#] with operators
As(q, p). Moreover, the map A +—> A = As@G, p) is a representation of the
algebra Ag = (C®(T*V)[[A], 7)) in the Hilbert space L>(V, du). Moreover,
the analog of (8.1.12) holds true, which gives us a representation p +— p of the
algebra £ = (L>(T*V,dQp), **P)) in the Hilbert space L>(V, d ) given by

0 K&r -9 Qs p.

Furthermore, the following analog of (8.1.21) and (8.1.22) can be proved. Let
A e C®(T*V)[Alland p € LE(T*V,dQ). If A+x%P) p € LY(T*V,d2p) then

/ AP pdQy = r(As(@. P)P)- (8.1.28)
T*V

In particular, if p = ¢ ®g ¥ for ¢, ¥ € C3°(V) then
/T . AP pdQy = (9, As(q, P)V). (8.1.29)

To show it, let {¢;} be a basis in L?(V,du) and {pij} = {¢;i ®s ¢;} an
induced basis in L2(T*V, d$2;). Function p can be expanded in the basis {p;;}:
p = Zi’j Cij Pij- From (6.1.77), (8.1.21), (8.1.22) and assumption (6.1.84) we find

/ AxP) paqy, =/ SSTHA TP pyaqy, =/ s AP 571 p aqy
T*V T*V TV
=Y cij _/T*VS%A *ﬁ;’p) STl pijdn =Y cij(pi. As(@. o))
i.j

ij

=Y cij tr(As(G. p)pij) = tr(As(@. p)P).
i,j
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Using the results of this subsection it is possible to prove a pure state stationary
equations (7.1.10) from Sect. 7.1.2. Namely for any A € A, a pure state function
P = @ Qs ¢ € H satisfies the equation

[A,p] =0 (8.1.30)
if and only if it satisfies the following pair of xg-genvalue equations
Axsp=ap, p*xsA=ap, (8.1.31)
for some a € C.

Indeed, it is obvious that if p satisfies (8.1.31) then it also satisfies (8.1.30). Let
us assume that p satisfies (8.1.30). Hence, it also satisfies

Axs pxs p=pxs Axgp.
From the idempotent property of pure states the above equation implies
Axs p=p*xs Axsp. (8.1.32)
From (8.1.25) it follows that

Axs p =9 ®s As(q, p)e. (8.1.33)

Now, Egs. (8.1.32) and (8.1.33), with the help of (8.1.8) which valid for any g, give
Axg p=pxs (Axs p) = (p,As(q, P)p)p = ap,

where a = (¢, As(g, p)¢p). The second xg-genvalue equation can be derived
analogically.

Observation 19 Note that for a general xs-quantization the operator represen-
tation corresponding to a coordinate system gives us the correspondence rule
A — As(q, p) which in general differs from the Weyl correspondence rule. The
Weyl correspondence rule is associated only with the Moyal quantization. To create
an operator representation of arbitrary xs-quantum system in any coordinates on
Q in a consistent way, one should use S-ordering (8.1.24) of the same operators of
position and momentum (8.1.26).



394 8 Position Representation of Quantum Mechanics over Riemannian Configuration. . .

Let us construct the ®g-tensor product for particular star-algebras. First, notice
that (8.1.23) can be written in an integral form

i

(% ®s ¥)(x, p) =S/dy eXp(—hpiyi)sﬁ(x — oY+ 5 0E ()
Z/dx/dp’dy exp(—;P;’cyk)@(X’ — Y+ 5y)
181 (e = Ly g4 (x + 1) S(x, po i, p),

where ¢, ¥ € L>(R") and S(x, p, x’, p’) is an integral kernel of isomorphism S.

Example 8.2 As an interesting example let us consider the x4 o g-algebra in the
simplest case n = 1 and Cartesian coordinates. Let us start from a simpler case
o = B = 0. Then, as we already know,

Se = exp(—ihod,dp)
and hence, using (6.2.1) and (6.2.1) we get
& ®0 ¥)(x, p) = exp(—ihodedp) / dyexp(—, Y — I+ )
= / dy exp(— ;py) exp(—iho 3, 3p) exp(—o yd)p(x — )Y (x + 3 3)
= /dy exp(—;pw@(x — G+ ONPE+ () — o).
For o, § > 0 we have
Su.p = exp(3had} + JhBd7)

4

Seprpx = exp|=L D amatlen =1 oo py2
wpi Bt 2whop 2 ha 2 hp ’
and finally
(¢ Bo.a,8 ¥)(x, )

dx'dp'dy exp(— ;pm(x — A+ onve+ = o)y)

N 2nh1¢aﬁ /

11 11
(x — xﬂ exp [— (p— ,/)2} :

X exp|—
2 ha 2hp
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The diagonal tensor products (¢ ®s ¢)(x, p) are pure phase space quantum states
related to xg-quantization, known in the literature as pure phase-space distribution
functions (d.f.)[176]. In particular, for the family of x,  g-quantizations, we have:

1. 0 = a = B = 0 : symmetrically ordered d.f. (Wigner function) [263]

2.0 = %, o = B =0 : standard ordered d.f. [199]

3.0 =— é, o = B = 0 : antistandard ordered d.f. (Kirkwood function) [171, 227]
4.0 = 0,0 = — 210), B = —‘é’ : normal ordered d.f. (Glauber-Sudarshan P

function) [132, 133, 243]

5.0=0,a= 210,7 B = % : antinormal ordered d.f. (Q function) [133]

6.0 =0,a = —21,( ,B = —’5, k # o : generalized antinormal ordered d.f. (Husimi

function) [155]

So, if {p;; = ¢; ®s ¢;} represent the orthonormal basis in H = L2 (R, phase-
space distribution functions belong to the subspace H” C H span by

HP = span{p;; = p; = ¢; ®s ¢;}, ¢; € L*[R")

obviously isomorphic with L (R").

An arbitrary phase-space distribution function (pure or mixed) p =
Zy py((,b(”) ®s ¢")) e HP and normalized ¢ e L2(R"), fulfills
relations (7.1.3). In particular, for Euclidean coordinates,

1 2
Qrhy fSilp(x’p)dp =Y p e | =P (8.1.342)
Y
1 2
Qmhy /S*lp(x, pdx = ZPV ‘]:(/,(y)(p)‘ = P(p), (8.1.34b)
Y

which are marginal distributions. For example, the first relation for a pure state p =
(¢ ®s @) follows from

1 . 1 i 1 |
S dp = — — dyd,
Qi / p(x, p)dp Qrhyn //exr)( PRy o (x Zy)w()hL > ¥)dydp
- /a(yw*(x — Iy + L ndy = o).
As the conclusion we observe that the expectation value of an observable

A € C®(T*U)[A] in a state p € L*(T*U,dS2) in the position representation
of quantum mechanics is expressed by the formula

(A), =tr(As(q, p)p). (8.1.35)
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Moreover, in the position representation, the following equation corresponds to time
evolution equation (7.1.5)

ey A A

ih, (1) = LHs(q, p). p(1)] =0 (8.1.36)
It is known as the von Naumann equation. For pure state p = (¢, -) ¢ Eq.(8.1.36)
takes the form

g

0 A A
ih( af 99 +ih (0. 5 = (0.) Hs@. po + (Hs@. Pe. ) ¢

dg A
= _.h H ) [ [ .h
(—i 3t+ s(q, D)o, e + (¢ )(l 9

0
v _ Hs(q, ﬁ)(ﬂ) =0
¢

., 0 A
ik 2 = Hs(q, p)o. (8.1.37)

Equation (8.1.37) is nothing but the well known Schrodinger equation of time

evolution of quantum states in the position representation of quantum mechanics.
The equation for stationary states takes now the form

[Hs(q, p), p] =0,

which for pure states p = (g, - )@ is equivalent to the well known eigenvalue
equation

Hs(q, p)p = Eg
called the stationary Schrodinger equation.

The respective representation of one-parameter group of unitary functions (7.1.7)
in the Hilbert space L?(R") is a one-parameter group of unitary operators

JA i JUA
Us(q, p,t) = exp (—htHs(q,p))- (8.1.38)
The time evolution of density operator p can be alternatively expressed by

It is easy to check that such defined p(¢) represents a solution of the von Neumann
equation (8.1.36).
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With the help of the unitary operator (8.1.38), the time evolution of observable
As(q, p) can be expressed in analogy to (7.1.12) by

As(q, p.1) = Us(q, p. —1)As(q. p)Us(q, p,1). (8.1.39)

The expression (8.1.39) is a formal solution of the equation

d A A
ihths(t) = [As(q. p). Hs(q. )], (8.1.40)

which is a well known Heisenberg equation of time evolution for quantum
observables in position representation.

8.1.3 Coordinate Transformation on Configuration Space

Assumethat Q DU — V C R, x > (x',...,x") and Q D U — V' C R,
X = (x’l, ..., x™) are two almost global coordinate systems on Q, and T*U —
T*V =V xR, € (', ..., x", p1,...,py) and T*U' — T*V' = V' x R",
£ (X, . X, P} .., py) are induced canonical coordinate systems on 7*Q.
A map ¢: (x"',...,x") — (x',...,x") is then a transformation of coordi-
nates on the configuration space Q and a map 7: (x'',..., x™, Plseeos D))
(xl, ..., x", p1,..., pnp) is a respective canonical transformation of coordinates on
the phase space T* Q. The transformation 7 is given by the formula (6.1.62).

In what follows we will investigate how the operator representation of quantum
mechanics behaves after such changing of coordinates. First, note that a map
Ur: LAV, dw) — L*(V',dy') given by

Ur) () = P (p(x) (8.1.41)

is an isomorphism of the Hilbert spaces. Moreover, a map L*(T*V,d2;) —
L2(T*V',dQp) given by

fr foT
is also an isomorphism of the Hilbert spaces. Let ® ¢ and ®¢ be tensor products

which correspond to star-products **-?) and *-p) respectively. The following
statement can be proved. For ¢, ¢ € L%(V, du) there holds

@®s V) oT = (Ure) @y Ury. (8.1.42)
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From relation (8.1.42) follows that operator representations of quantum mechan-
ics corresponding to different coordinate systems are unitarily equivalent. In partic-
ular, we get that operators corresponding to the same function A € C*(T*Q)[[%]
written in different coordinate systems, are unitarily equivalent. Actually, for A €
C®(T*V)[A]) there holds

Ay @', p) = UrAs@. pU; ", (8.1.43)

where A’ = Ao T and §/ = x/, p; = —ih(d,; + yT%) and " = x, p; =
—ih(0; + é I‘}lj() are respective operators of position and momentum in coordinates
(x, p) and (x/, p’) respectively.

In order to prove (8.1.43), first let p = ¢ ®g Y. Then, from (8.1.25) and (8.1.42)
we get from one side

(A*5P) p)o T = A¥YP) (poT) = (Ure)* @5 Ay (@, pHUrv
and from the other side

(A*EP) pyoT = (¢ ®s As(G, p)¥) o T = (Urg) ®s UrAs(§, p)v
= (Urg) @5 UrAs(q, p)U; ' Ury.

Comparing the above two formulas we get the result.
In particular, let us derive the position and momentum operators (8.1.15) in
curvilinear coordinates directly from the canonical transformation. Let

¢:R'"DV >V CcR", x'=¢kx)

be a transformation from curvilinear coordinates (xl, ..., x™") to pseudo-Euclidian
coordinates (x'', ..., x™), such that R"\V’ is of measure zero. Transformation ¢
induces classical and quantum canonical transformation 7 (6.1.62). Notice that
Hilbert spaces over R"” and V’ are naturally isomorphic.

First, we define position and momentum operators corresponding to the curvilin-
ear coordinate system (x, p) by symmetrically ordered Euclidean operators ¢, p’
in the following form

0/ = (@)Hw@)=0'@). Pi=FPpw@.p). §7=x". [ =-ihd,
where T-1(x’, p/) = (Q'(x'), ..., Py(x', p')) and
x/ =0/ = [dfl(x/)]j,

i
i

pi=Pi=pi[¢@7 )]
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These operators are defined on a Hilbert space L2(V) = Lz(R") parametrized
by pseudo-Euclidean coordinates x’. Then, we can use operators Qi and 13j for
the construction of the position representation of a quantum system related to the
curvilinear coordinates (x, p).

Let Ur : L>(R") — L%(V,dw), where du(x) = |¢'(x)|dx =
|det[g (x)]| 12dx,bea unitary operator such that

(Ure)(x) = ¢(9(x))
¥
Oro =@od) ),  O7'9() = (pos™") ),

then

¢ =Ur QU =4 (8.1.44)
is a new position operator in a Hilbert space L?(V, 1) as

@0 = (0r007'y) ) = (007 v 0 8) (x)
= (007" v) &y = [67' @] (voo ) ) =xv .
New momentum operator j; in L%(V,duw) is of the form
pj = B07" = —in (0, + 1T%). (8.1.45)
where Fj. ¢ are connection coefficients of the metric tensor g(x). Indeed, P; = p; =
P ¢/ @~ ]} s0
(Pj¥)(x)

A A A A 1,09 10
= (0rP;07'v) 0 = (UT (zﬁ/ Cean+,,

YoxJ

> (¢1(é’))ﬁ,’-> 0T1w> )

xJ

— Yo ' o) (p)Y () —1iha¢i ()3 (¥ 0~ (p(x))
T2 o 2 gxd

xJ

. <a¢" g~k oy 1 3%0 g~ H
= —ih C(x
dx/

) @ o+, 0 <¢<x))w(x>>

T B
=1 jaxk+2 jk ¥ (x),
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where we used the relation (¢’ @)t = (d)’l)’ (¢(x)), from which follows that
00—k
[(¢' ()c))’l]f.C = 9@ )" (4(x)), and the formula (2.6.5) for the transformation of

ox'i
connection coefficients between the pseudo-Euclidean and curvilinear basis.
Momentum operator p; (8.1.45) is self-adjoint in the Hilbert space L2(V,dp).

Indeed, integrating by parts and using formula (8.1.19) we find
(p. pj¥) = / PP ()dp(x) = f GO (=im) (D, + ATH NV () g0/ dx
—ih / Y (x)dy (@) 1802 dx — Yin f A )™ ()Y () g1/ dx
=it [ W0 G el Prdx+ it [ TE o000 1801 dx
= Lin [ Thmaowe e dx

= [[inG,s + AT enu ) lewol 2 dx = (e ),

which means that p; = [3; in L2(V,duw).

8.1.4 Coordinate Free Formulation

In previous subsections we developed the operator representation of quantum
mechanics written down in some coordinate systems on the configuration space. In
this subsection we will apply our formalism to derive an operator representation in
a coordinate free way [37,98]. Let¢p: Q DU — V CR"and ®: T*U — T*V =
V x R" be an almost global coordinate system on the configuration space Q and
the phase space T*Q, respectively. Since the coordinate system ¢ is almost globally
defined in consequence it defines an isomorphism U: LZ(Q, dwg) — L3(V, dw)
of the Hilbert spaces by

Uy =ylyog .

In fact, the restriction |y is an isomorphism of L2(Q, dwg) onto L2(U ,du) since
fory € L(Q, dwg), ¥ and Y|y are equal almost everywhere and Hilbert spaces of
square integrable functions consist of equivalence classes of functions equal almost
everywhere. In consequence, the coordinate system & defines an isomorphism of
the Hilbert space L>(T*Q, d25) onto the Hilbert space L>(T*V, d25). Let us now
define a tensor product

®: (L*(Q,dwy))* x L*(Q,dwg) — L*(T*Q, dS2)



8.1 Operator Representation over Riemannian Space 401

as follows

PV =((Up)@sUy)od, ¢, ¥ € L*(Q,dwy),

where
®s: (L*(V,dw)* x L*(V,dp) — L*(T*V, dQp)

is a tensor product defined in the previous subsection, corresponding to the
coordinate system ®. Such a definition of the tensor product ® is independent of the
choice of a particular coordinate system. Indeed, if ¢': Q D U’ — V' C R" and
@ T*U' — T*V' = V' xR" is another almost global coordinate system on Q and
T*Q, respectively and L*(Q, dwg) — L*(V',du') a Hilbert space isomorphism
induced by ¢ then T = ® o &'~ is a canonical transformation of coordinates and
UT = U'U is a related unitary operator (8.1.41). Then from (8.1.42) we have

PRV =((Up)@sU¥)oT o® = (UrUg) @5 UrUy) o @'
= (U ®@s U'y)od.

The tensor product ® inherits all properties of the tensor products ®s. In
particular, for every p € L>(T*Q, dp)

px =1®p,

where p € BHS(LZ(Q, dwyg)) is a Hilbert-Schmidt operator defined on the Hilbert

space LZ(Q, dwyg). Conversely, for every pX= BHS(LZ(Q, dwyg)) the operator i ®p
is of the form p » for some p € L*(T*Q,dS2). The following properties are
fulfilled:

(i) forp = ¢®1/f p = (o, IV,

(i) pr =1®p",

(iii) Tr(p) = [+ pdQn = tw(p),

(iv) for py, py € L2(T*Q dQp)and py, py € Bus(L? (Q,dwyg)) such that p)x =
1®pandpy» =1 p,

(P1.p2) = (P1, P2 HS,

v) fT*Q fxfxpdQp > 0for f € Cgo(T*Q) if and only if (¢, pe) > 0 for
g € L*(Q,dwy).
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Let A e C(T*Q)[[h] and p = ¢ @ ¥ for ¢, ¥ € C3°(Q). Then

Axp=9® Ay,

prA=(ATp)® Y, (8.1.46)
where A is an operator acting in the Hilbert space L?(Q, dwg). Besides, if
(xl, ..., x™) is an almost global coordinate system on Q: (xl, e XM Py, Pr)
a respective canonical coordinate system on 7*Q and U a corresponding unitary
operator given by (8.1.4), then

UAU™ = As@§. p).

Let A € C®(T*Q)[Alland p € L>(T*Q, d2). If Axp € LY (T*Q, d2p) then
/ AxpdQp = tr(Ap).
0
In particular, if p = ¢ ® ¥ for ¢, ¥ € C5°(Q) then
[ Avpdan = dv).
T*Q

From (8.1.4) follows that the map p +> p is a representation of the algebra
L = (L*(T*Q,dS2),*) in the Hilbert space L2(Q,da)g). Furthermore, from
relation (8.1.46) follows that functions A € C*°(T*Q)[[4] can be identified with
operators A through the formula

Ax =1Q® A.
Moreover, the map A Ais a representation of the algebra Ap =
(C®(T*Q)[[A]], ») in the Hilbert space L>(Q, dwg).
We get the following characterization of quantum states. Pure states can be

alternatively characterized as these functions ppye € L*(T*Q, d2;) which are
self-conjugated, normalized, and idempotent

Ppure = :(_)pure’
/ Ppure dQp =1, (8.1.47)
T*Q

Ppure * Ppure = Ppure-
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Then mixed states px € L>(T*Q,dQp) are characterized as convex linear
combinations, possibly infinite, of some families of pure states pf,ﬁ)re

A
Pix = Y PAPSre:

where py > 0and ), p) = 1.

If¢g: 0 DU - V Cc Rtand ©: T*U — T*V = V x R*" are
almost global coordinate systems on the configuration space Q and the phase
space T*(Q, respectively, and U: L2(0, dwg) — L2(V d,u) an isomorphism of
the Hilbert spaces given by (8.1.4), then the maps x’ = &' and p; i = o/t
(i,j = 1,2,...,n) are observables of posmon and momentum correspondmg to
the coordmate system ®. To the maps x', p; are related operators g', p; defined
on the Hilbert space L0, dwg). The operators G' = ¢! are of the form of
multiplication operators by coordinate functions ¢’ and they constitute a complete
set of commuting observables and thus they can be used to create a position
representation corresponding to the coordinate system ¢. In this representation
operators §' take the form of the multiplication operators by a coordinate variable
defined on the Hilbert space L2(V,dp). In accordance with (8.1.4) the unitary
operator giving this representation is equal U.

8.1.5 Quantization of Hydrogen Atom in Curvilinear
Coordinates

In order to illustrate how to quantize the classical system directly in curvilinear
coordinates, let us consider a quantum system of the hydrogen atom [36]. A
configuration space of such a system is the 3-dimensional Euclidean space E* and
represents the position in space of an electron of the hydrogen atom. A phase space
of the system is 7* E® and a Hamiltonian H in Cartesian coordinates takes a form

2 2 2 2
_ pxt+pytp; 1 e
H(x,y,z, px, Py, Pz) = o " drey WETEIS (8.1.48)

A standard Weyl quantization means that as a star-product on 7*E? is taken the
canonical x-product which in the Cartesian coordinates takes the form of the Moyal
product. In the position representation, the Hilbert space of states takes the form
of the space L?(R3) of functions on R3 square integrable with respect to the
Lebesgue measure. The canonical operators of position and momentum in Cartesian
coordinates take the standard form

C?XZX, ‘?yzy’ qAZZZ’
px = —ihdy, py=—ihd,, p,=—iho,,
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and the Hamiltonian operator, being a symmetrically ordered function H of the
operators of position and momentum, takes the form

1 &2

4meo /x2 +y2 422
(8.1.49)

h2 2 2 2
@7+ 0d) -

H(‘}xa C}ys qAD ﬁxv ﬁyv ﬁz) = _2

where 83 + 8y2 + 822 = A is the Laplace operator in the Cartesian coordinates. This
is the quantization procedure presented in any textbook of quantum mechanics.

Now, let us quantize the considered system directly in the spherical
coordinates. The Moyal product in Cartesian coordinates, under the point
transformation to spherical coordinates (3.3.6), transforms to a star-product of
the form (6.1.64), (6.1.65). This star-product is equivalent to the Moyal product,
where the equivalence morphism S, by virtue of (6.1.66), takes the form

R, 1 o 1 1 .,
S=id+ 4 |:r28Pr + (2tan20 - 1) e _am; + rtaneaprape + r2p98  Opo

- é.prapraze +

2 [IPIC DA S 2 1, a3
rtan9p¢ap’8p98p¢ — | ,prsin” 0 + rpg sinf cos 6 Bpr8p¢ — 3P00;,

1
2 1 2 1 3 2 1 2 1 o2 2
+ tanzepq;amaw — 2p98p98p¢ — 3p¢8p¢ + r2p¢8r 8p¢ — 2r8r8p€ — ,rsin 98,8%

1 L , 1 1 s
+ B0, By, — ) sin® cosBd + Apdy, Iy, + tan03¢ap€ap¢] + oY,

The classical Hamilton function (8.1.48) in spherical coordinates takes the form
r2 " 2sin20 ) 4meq r

2
1 P2 p 1 e
H(r, 0,9, pr.po, Pg) = o <p§+ g + ¢ ) , (8.1.50)

and the action of the morphism S on the transformed Hamilton function (8.1.50)
results in the following new function

2
) 1 v P e
STYH)(r, 6,9, pr, po, pg) = P+ -
( )1, 0,9, pr, po, Pg) om (p, + r2 + r2sin2 6 dweg r
A (8.1.51)
8mr? \ sin% 6 . o

Note the extra term in (8.1.51) depends on /2. Thus, the quantum system in spherical
coordinates can be described by the Hamiltonian (8.1.50) and the star-product in
the form (6.1.61), or equivalently by the Hamiltonian (8.1.51) and the Moyal star-
product.



8.1 Operator Representation over Riemannian Space 405

In the position representation in spherical coordinates the Hilbert space of
states is equal L2(V,dp), where V. = (0, 00) x (0,7) x (0,27), du(r,0,¢) =
r2sin6 dr d6 d¢ and according to (8.1.26) the operators of position and momentum
take the form

ér=r, qA0=9’ q¢=¢a

1 1 (8.1.52)
ﬁi’ :—lh (ar+ ), [;9 =_lh <80+2C0t9>, [3¢=—th3¢
r

The Hamilton operator is calculated as an S-ordered Hamilton function (8.1.50) of
operators of position and momentum (8.1.52), or equivalently as a symmetrically
ordered function (8.1.51) of these operators:

HS(ér» é@s C]Aq), ﬁrv ﬁes ﬁ(ﬁ) :(S_lH)M(érv éGs C]Aq}, ﬁrv ﬁ@v ﬁ¢)

__» 82+28 +1 a2 + by + L2
T [T T 2\ T ane® sinZg
1 ¢?

— . 8.1.53
47‘[6() r ( )

The expression in square brackets is just the well known Laplace operator written
in spherical coordinates. A direct computation shows that the operators (8.1.49)
and (8.1.53) are unitarily equivalent, where a unitary operator giving this equiva-
lence is equal

Ur: L*(RY — L>(V,dp), (Urv)(r,0,¢) = y(rsind cos ¢, rsind sin, r cos ).

Note, that the property that the spherical coordinates are almost global is crucial for
Ur to be a unitary operator. Since the operators (8.1.49) and (8.1.53) are unitarily
equivalent they have the same spectra, and thus solving the eigenvalue problem of
one of these operators gives the solution to the other one.

8.1.6 Operators Linear, Quadratic and Cubic in Momenta

Suppose now that we want to quantize in any almost global coordinates a Hamil-
tonian system given on a phase space M = T*Q that is the cotangent bundle to
an appropriate pseudo-Riemannian manifold equipped with a metric tensor g. In
what follows we will consider the class of quantizations of a classical system with
Hamiltonians polynomial in momenta [36, 37], for which the morphism S giving
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the equivalence with the Moyal quantization is in the form (6.1.104)
h2 . . . .
§=id+ (3 <Fl; i+ “Rjk> Op;0py + 30041 9p;0p, + <2F21F?k - F;’k,l) Pidp; p, I,
= 360y, By + Ty pi0p)0p, Oy + T prdy,) ) + O,
for any classical and quantum canonical coordinate system.

First, let us consider a function H on T*(Q linear in momenta, which in a
Darboux coordinate system (x, p) takes the form

H(x, p) = Al (x)p;, (8.1.54)

where A’ are components of a vector field A defined on Q. The action of the
morphism § on H leaves function H unchanged:

(ST H)(x, p) = H(x, p).
Thus the following self-adjoint operator will correspond from (6.2.7) to function H
Hs(q. p) = 3 AV @) bj + 35,47 (@).
By virtue of (8.1.26)
G/ =x1, pj=—ih@;+3Tk), 8, =0,

the above operator can be written in the form

Hs(G. p) = —hin (2470, + AT+ T547) = ~Lin (2479, + 47 ).
Finally, one can transform the above operator to the following invariant form

Hs(@, p) = —Lin (2A’V,- + A";,.) = —lin (Aiv,» + v,-A") , (8.1.55)

expressed by covariant derivative operators.
Now, let us consider a function H on T*Q quadratic in momenta, which in a
Darboux coordinate system takes the following form

H(x, p) = YAV (x)pipj + V(x), (8.1.56)

where A"/ are components of a symmetric second order contravariant tensor field A
defined on Q and V is a smooth function on Q, representing a potential. Now the
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action of the morphism S on H results in the following function

—1 _ 12 1 400 vk | 1 gijpkpl 13 40 1 Aijp..
(ST H)(x,p)=H(x,p)—,h <4A ’kFij+4AJF,iij—4bA ;ij+4aAfR,j).

The following self-adjoint operator will correspond from the above equation
and (6.2.7) to function H (quantum Hamiltonian)

HsG, p) = (44T @pip; + s piaT @p; + L pidjAT @) + V(@)
=3 (347 ,@TE@ + sAT@TE@TE @ — 1b47 @ + JaAT @R @)
Again by virtue of (8.1.26) the above equation can be transformed to the form
Hs@G, p) = — ;h2<A"fa,-aj + AT 8+ AY 0; + AV 4 haiTE T+ LAY T

i 1 gid pk 4 1 ipkpl 1 Aid LaAl
—+ 4A”,ij + 4A”,k1"ij + 4A”F1irkj - 4bAlj;ij + 4aAl]Rij> v

and then, using the equality Aij’k =—A" I‘ik — A" I‘Zk —I—Aij;k and relation (2.6.21),
it simplifies to

Hs(§, p) = — ;h2<A"/aia,~ + AT o+ AY 8+ J (1 - b)Aij;ij
— - a)A"fR,-,) + V. (8.1.57)
Note that (8.1.57) can be written in the following invariant form

Hs(@, p) = —3h* (Vialv; + L —p)a” - L — AT Ry) + v

= _éthAA + unant +V,
(8.1.58)

where Ay = V; AV j 18 the pseudo-Laplace operator and
Vauani(x; @, b) = =412 [ (1 = A7, = (1 =) AT Ry |

represents a quantum correction to classical potential V (x).
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Observe that according to (2.6.10) and (8.1.19), the pseudo-Laplace operator Ay
can be expressed by

~ . 1 | I
AAZV,'A”V/'=|g|72 d; |g|2 Aljaj. (8.1.59)

For a special case, when A coincides with the standard metric tensor g on the
configuration space, the function H has the form of a natural Hamiltonian (6.1.1),
and Eq. (8.1.58) reduces to

Hs(3, p) = —\n? (Gl’fv,-vj ~la- a)R) +v (8.1.60)

where V;G/V j = Giv;v j = A is the Laplace-Beltrami operator. Hence, in
particular

R .. 1 1 ..
A=V,GV;=1gI"2 0 |g]2 GYd;. (8.1.61)

Thus, we get a two-parameter family of quantizations related to a given metric
tensor g. Particular examples of Hamiltonian operators (8.1.58) with fixed values
of parameters a and b, derived by different methods can be found in the literature
[61, 88, 89, 102, 109, 131, 183, 220].

Observation 20 To the knowledge of the author, for the general non-flat metric
tensor g, there is no experimental evidence which quantizations, from the considered
family, are realized in nature. On the other hand, for a flat metric tensor g and a
natural Hamiltonian (6.1.1), all quantum operators (8.1.60) collapse onto a single
operator

.. 1 1 ..
H@G. p)=—yh*GIV;V;+V =—1n?1g|72 9 |g]2G79; + V
equivalent to a standard Weyl quantization. For a non flat case there exists one

distinguished quantization given by a = b = 1, called a minimal quantization, for
which quantum correction to the classical potential vanishes: Vgyan = 0 and hence

.. 1 1 ..
H(G, p) = —1m*V;AUV; + v = —1r%g|72 8 |g|2 AVd; + V. (8.1.62)

Finally, let us consider a function H on 7*(Q, which in a Darboux coordinate
system (x, p) is cubic in momenta (we skip the lower terms in momenta):

H(x, p) = A% () pi p; pr, (8.1.63)
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where A* are components of a symmetric third order contravariant tensor field
A defined on Q. In a similar fashion as in the previous case (we skip here a
cumbersome calculations) one can derive the form of the corresponding self-adjoint
operator:

Hs(q, p) = 3ili® (v ATRY (Vi 4+ ViV AT + L (1= b)Yy A”"

+la- b)Aijk;l.ij 31 —a@)V;ATR R — 3(1 - a)A"f"Rjkvi).
(8.1.64)

In particular, for minimal quantization, we get
roay 123 (o ik v . Aljk
HS(CI,P)—th ViA V/Vk%—V,V./A Vi),

the form considered for the first time in [103], but introduced without any justifica-
tion from basic principles. Minimal quantization, related to various metric tensors,
will be of great importance for the quantum stationary separability theory developed
in the next section.

Note that the received operators are defined on the Hilbert space L>(V,duw)
and correspond to a given canonical coordinate system (x, p). These operators
are written in an invariant form and consequently they can be treated as operators
defined on the Hilbert space L2(Q, dwg). Indeed, using the unitary operator U
related to the coordinate system (x, p) and given by (8.1.4), in accordance with the
formula (8.1.4) we can receive operators defined on the Hilbert space LZ(Q, dwg).

8.2 Quantum Integrability and Stationary Quantum
Separability

The notion of classical integrability and classical separability in particular is well
recognized and was described in details in the first half of the book. The question
about the definition of quantum integrability on the most general level of multi-
particle fermionic and bosonic systems is far from being trivial (see [62] and
references there). Fortunately, as far as we will concentrate on quantum analogous of
classical separable systems, considered in previous chapters, the following restricted
definition of quantum integrability will be sufficient for our purpose.
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Let us consider a quantum system (M, x, H) on a 2n dimensional phase space
M. By the analogy to classical systems, we say that the quantum system is quantum
integrable if

1. in the Hilbert space L>(M), there exist n operators H; (including H ), formally
self-adjoint

(H*) =H'x=Hx*, i=1,....n
which are in quantum involution
[Hi, H;]]=0, i.j=1,....n,

2. which are algebraically independent
3. and in the classical limit

Hx ") H, k=1.....n

functions Hy constitute a Liouville integrable system.

Algebraic independence means that there is no polynomial P built of operators H;x
and such that

Ps(Hi*, ..., Hyx) = (S”'P)w(Hix, ..., Hyx) =0,

where the morphism S defines the quantization . In a position representation of
quantum mechanics it means that there exist n self-adjoint differential operators
H;(q, p) in the Hilbert space L2(Q,dp), being quantum counterparts of classical,
functionally independent Hamiltonians in involution, which are algebraically inde-
pendent and which commute

The restriction to pure differential operators allow us to avoid the consequences of
von Neumann theorem [254] in the majority of cases. The theorem says that if a
pair of self-adjoint operators A and B commutes, then there is a third self-adjoint
operator C such that A = f(C) and B = g(C). However, if A and B are differential
operators C usually is not a differential one. But even if it happens, like for the
two dimensional quantum oscillator [259], it not contradicts presented definition.
It simple means, that for some quantum integrable systems one may alternatively
finds a less number of commuting operators, carrying the same information about a
quantum system. It is of course a pure quantum phenomenon.

By quantum dynamical separability we understand the existence of quantum
separation coordinates (A, ) which allow efficient linearization of quantum Hamil-
tonian equations of motion. It means the construction in an explicit form (or at
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least implicit form) quantum trajectories, i.e. integration by quadratures quantum
equations of motion (7.1.14) or equivalently (7.1.16). It is complex mathematical
problem beyond the scope of the book. There is no quantum analog of the theory
developed in Chaps.4 and 5 and so completely different mathematical tools have
to be applied. What in literature is known as quantum separability should be
rather called quantum stationary separability. Actually it means the existence of
such quantum Darboux coordinates (A, i), in which simultaneously separate n
eigenvalue problems

Hi(qg,p)VY=EV¥, i=1,....n (8.2.2)

of commuting differential operators (8.2.1).

The problem of quantum stationary separability has a long history, starting from
the early works of Robertson [228] and Eisenhart [104], and has a reach literature
(see for example [17, 18, 47-49, 145, 182, 206, 248] and references therein).
In the following section we develop quantum separability theory for quantized
Stickel systems with quadratic in momenta first integrals, considered in Chap. 4,
and prove that for any classical Stickel system from the considered class, there
exists an infinite family of quantizations leading to a quantum stationary separable
system. The presented theory is a significant extension of already classical results
of Robertson [228] and Eisenhart [104]. We want to stress, however, that we do
not deal here with spectral theory of the obtained quantum systems, as it requires a
separate investigations.

8.2.1 Separability for Minimal Quantization with Natural
Metric

Let us come back to Stickel systems considered in Chap. 4 with all constants of
motion quadratic in momenta, so fulfilling general separation relations (4.2.9) with
condition (4.2.11). First, let us consider a minimal quantization (8.1.62) of classical
Stédckel Hamiltonians (4.3.2) in classical separation coordinates

n n
Ho= )Y A+ v, = )Y (K G pi+ Ve r=1,...n,  (823)

i=1 i=1

with a natural choice of metric tensor G = A1, where matrices A, and K, are given
by formulas (4.3.7) and (4.3.8). Notice, that with such choice of metric, tensors K,
are Killing tensors of G. Then, the respective quantum Hamiltonians H, (8.1.62)
are given by

n
ﬁ,:-éhzzvm?v;w,, r=1,....n (8.2.4)
i=1
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where V; are operators of Levi-Civita connection associated with the metric g =
G~'. Hamiltonian operators (8.2.4) are self-adjoint in the Hilbert space L0,
|detg|'/2 dp).

Now let us consider a set of eigenvalue problems (stationary Schrodinger
equations) associated with Hamiltonian operators (8.2.4). For the purposes of
calculation let us introduce metrically contracted Christoffel symbols of g defined
by

;=G Ty = G, T = )0 Indet |G| — gixd,; G'*. (8.2.5)

As the classical separation coordinates A are orthogonal coordinates, a lot of
formulas simplify. For example, nonzero Christoffel symbols in such coordinates
are

Fl./j = F;i = —13;In G/, no summation over j,

I =—3G"0gjj. i #],

hence
n 3 . Gkk
Ii=30) InG* -3 InG" = 9 In n"é’” (8.2.6)
k=1
and
Z Tf = — 50, Zln G* = —I'i — 9 InG". (8.2.7)
k=1 k=1

Denoting (K,)! = vl we get A = v/ G’ and then
ViAW = 0 (A0 + T AF 0, w
= A2 + (0, AF + T Al Yo v
=0 G?W + (aj(v{fo) — vl GI(T; +8;1In fo)) 9w
= vl G oW + G (3jv] — v/T;)a; v
=i Gl (af - r,~a,~) v

= 4l (97 - i0y) w, (8.2.8)
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where relations (4.3.9) and (8.2.7) were used. Thus, in classical orthogonal separa-
tion coordinates A

n
mW=—y¥Z>W(f—r@)w+ww,r=1““m. (8.2.9)
i=1

Now we demonstrate that the system of n eigenvalue problems (8.2.2) is
separable if and only if

3T =0, i #je i =T, (8.2.10)
Condition (8.2.10) is known as a Robertson condition [228]. What is interesting,
it is possible to demonstrate that in orthogonal coordinates, the non-diagonal

components R;; of Ricci tensor are expressed by metrically contracted Christoffel
symbols I'; [17]

3
Rij = 28,-I‘j, i#]j, (8.2.11)
so the condition of stationary quantum separability can be reduced to the diagonality
condition of the Ricci tensor in classical separation coordinates [104].

Applying the Stickel matrix (4.3.6) to the system (8.2.2) and using rela-
tions (8.2.9) we get

and then
[E1S1i00) + ExSpi ) + -+ 4 En Sy DIV = =112 £;0F) [a? -~ F,»a,-] W+ o)WY,

i = 1,...,n. From equations (8.2.1) follows that eigenfunction W separates
multiplicatively

wol A B E) = [0 By E)

i=1
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if and only if the condition (8.2.10) is fulfilled and system (8.2.1) separates onto n
one-dimensional eigenvalue problems (quantum separation equations)

[E1S1i (W) 4 ExSpi (M) + -+ + EnSpi )1y 01

Lz g o a* 0oH O p0h) + iy, =1
— L — T . . i i , Il=1,...,n,
20 (dxi)? T and |
(8.2.12)

where «;, B; are integration constants originating during the process of solving

equation i-th in (8.2.12). As a consequence, differential operators H; fulfill quantum
separation relations

St A Hy 4 S5 WY Hy + - -+ S W) H,

2 (8.2.13)

b, | d
——zhﬁ(k)[(

. d .
(O (O ;
N 5 — ;. )d)»"i| +o;(A), i=1,...,n.
Thus, summarizing our considerations, we conclude that n eigenvalue prob-
lems (8.2.2) separate in classical orthogonal separation coordinates under an extra
condition (8.2.11).

Let us analyze in details the Stidckel systems considered in Chap.4. We begin
with separation relations (4.2.13)

Hi — ¢, Hipy = M2 + V0D, i=1,....n (8.2.14)

As diagonal elements of the metric tensor G are products of functions of one
variable (4.3.1), so from relation (8.2.6) we get

d .
L= m—i) ¢
2 =) Mg ()

and Robertson condition is fulfilled.

Example 8.3 For n = 3 and spherical coordinates we have the quantum version of
systems from Example 4.10. In that case

" [, 2 1 [, 1 1, og6)  o(d)
A = - ) ) 9 9 9 ,
1 2m|:r+r r+r2<0+tan9 0+sin29 ¢>]+ar(r)+ r2 +r2sin29

. o, 1 1, o¢(9)
Hy = — ) B 0 0 ,
2 2m<0+tan0 0+sin29 ¢)+09()+sin29

N n
H3=—2m8¢ +og(d)
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and as
I=—, T'g=—cotd, Ty =0,

so, quantum separation relations (8.2.13) are of the form

1:11—11:12=—1 2|:d2+2di|+6r(r),
r2 2m dr?  rdr
I—AIZ— ! I:I3=— ! h2|:d2 ~|—cot9di|—|—ae(9)
sin” @ 2m | do? do ’
Hy=— ! h? a +09(0)
2m 42 '

while one-dimensional quantum separation equations (8.2.12) take the form

1 1 ,[d*> 2d
(E1 — rzEz)w(r)=—2mh [er +rdr}¢(r)+or(r)¢(r),
(Ey — ! En®) = — ! h2[d2 +cot9di| 0) + o9 (0)n(H)
27 (2 BINO) ==, AT a0 |7 a9 (0)n (),
E __lp @ 0
3x(¢)——2m d92X(¢)+09( )X (@),

and ¥ = ¢ (r)n(9) x (¢).

As another class of the Stickel systems consider these systems, generated by
irreducible separation relations (4.2.16)

n
DOHG =) i} + oD, i=1,. .0, (8.2.15)
k=1

with the Stickel matrix S, given by (4.2.2). From relations (8.2.6) follows that in
separation coordinates metrically contracted the Christoffel symbols can be written
in the form

Ii=)0InF, (8.2.16)
where

T G TSy D1 T kO 8,00 Tl SR

F; . = . = .
G" (S, Hu fiGD Di(M)  fi(A)

(8.2.17)
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The symbol D;i(A) stands for the signed (i, 1)-minor of S,, which is A;-
independent, and

5100 = L D1
(det S)n—2

is a rational function of variable A’ with coefficients being polynomials with respect
to the remaining variables A%, k % i.

It can be proved [47] that for general y = (y;,...,y,) metrically con-
tracted Christoffel symbols (8.2.16), (8.2.17) do not satisfy the Robertson condi-
tion (8.2.10) except the distinguished case of the Benenti class defined by y =
m—-1,...,1,0)

n
DoHGH)" = fiGDui + o), i=1.n, (8.2.18)
k=1

where the Stdckel matrix is a Vandermonde one (4.3.2) with the metric tensor in the
form (4.3.16). Then

Tz G (=1 B; Tl Je )

F; = . B =T =5

G [l Be /3D ki
and (—=1)"B; [ [ fk%k) term does not depend on A’, hence
L LAY i
Iy=ganf " =— 17" foh="""".
] 2% n-fl 2 ﬁ()\‘l) \fl ( ) d)\‘l

Thus, eigenvalue problems for quantum Hamiltonians (8.2.4) from the Benenti
class, in a minimal quantization with natural metric G = A1, separate onto n one-
dimensional eigenvalue problems

[E\OD)" 4 Bp )" 2 4 4 Eylyr; (A

__12 o d? Ldfi(A') d (i (3N (2]

= 2h [f,()\)(d)\i)ﬁz I dki}w,(xwa,()\)w,()\).
(8.2.19)
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Besides, Hamiltonian operators in separation coordinates fulfill the respective
quantum separation relations

O H + OO Hy + - + H,

d? 1df,-()v') d i
(dx ) to dﬂ}_%gmk)’l

=1,...,n.

[ﬁ(k)

(8.2.20)

Example 8.4 Quantum Hénon-Heiles system. Two constants of motion in the Carte-
sian and separation coordinates respectively are of the form (see Example 4.11)

H=T+V= %p%—i— %p§+x3+éxy2,

Hy =Ty + Vo= Yypipy — yxpy + 4529 + [gx*,

1 Al , 12 ) s R o
H1:2)L1_)L2M1+2)L2_)\1/‘2+()~)+(A)A + 2102 + (W23,
Loalaz o 1 a2 2003132 24 5202

H2=2)"1_)L2M1+2)\’2_ 1/L2 A)\[(A)-{-AA + (A2

The respective operators in both maps are

A w2 ” + ” + Vi(x, y)
= - X, )
=7 \ax2 T g2 1y

A (2 ?? 82+18 + Va(x, y)
=- x —x X, ¥),
2 dx dy 9y?  20x 25

g Lol A 9? R +x2 9? PR
R PY R (921)>  2alant ) 2=l \ (9227 227007

+ Vit A%,

R I Ata? 32 +11 3 N A2 32 +11 3
oo -\ 2atant) T2t (022 20202

+ Vot a%).

As for the Hénon-Heiles system separation relations come from the separation
curve, so quantum stationary separability reduces to a one-dimensional eigenvalue
problem

d2

2 m} Y () + 2 ().

(Eth+ EDy() = —;rﬂ I:A
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Taking two copies of the sglution YY) s a = ALAZ,w) = yHy(?) is a
common eigenfunction of Hj and Hj

HYO) = E\VQ), HYOR) = EYQ).
Besides, one can verify that
[Hi, 2] =0

and in separation coordinates

. N 1 d? 1 d

AH 4+ B = — hz[kl + }+ b4,
TR @ Tagu [T
. . 1 d? 1 d

AH + Hy = — hz[ﬁ + }+ A2,
=" @22 24dx2 %

For the considered quantization the Benenti class is exceptional for the fam-
ily (8.2.15). One can show [47] that for the remaining Stéckel matrices S, (4.2.2),
the Robertson condition is not fulfilled as

0
.0 .
MG

It means that systems from these classes after minimal quantization with respect to
natural metric G = Ay, are not stationary separable.

Now, let us verify why minimal quantization is optimal for quantum separability.
In Sect. 8.1.6 was considered the two-parameter family of quantizations of classical
Hamiltonian systems quadratic in momenta

H(x,p)= 3 K'pipj+V
4
AG, p) =307 (VK75 + L0 =K = 10— @)K Ry ) + V.

It means that in the process of quantization the quantum correction to classical
potential is generated in the form

Vauant(x, ) = — 172 (}‘(1 —-b)K", - - a)Kinij) : (8.2.21)
What is interesting, for systems from the Beneti class with flat metrics
Vquant(x, i) = const. In consequence, all quantizations (8.2.21) for these systems
are equivalent. Differences in quantizations appear in the case of non flat metrics
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and hence nontrivial quantum potentials are generated. The problem is that these
potentials are not separable. It means that using alternative admissible quantizations
instead of the minimal one, we restrict the class of quantum separable Hamiltonians
to these with flat metrics.

Let us consider dynamical systems from the Benenti class with metrics (4.3.16)
generated by f; (A') = (A)X, k € Z. Then, one can show that

K/ =4+ 1- ryv& (8.2.22)
where V,(k) are potentials (4.3.22). In the flat cases, when 0 < k < n, Vr(ffl) =
8r,n—k» Rij = 0 and Hamiltonian operators (8.2.21) coincide with these for minimal
quantization up to a constant. For non flat cases extra terms R and K" R;; are
complicated functions of position, non expressible by separable potentials and we
lose quantum separability. The exceptional non flat case is the one with constant
curvature. Then, when k = n + 1, one can show that

K/Rij=- n+1-nm-1)vV", Vo=1.
From (8.2.22) we have

K'Y g = }‘(n +1-— r)Vr(f)l

r

and the choice

cancels quantum potential (8.2.21).

Similarly to the classical case, also on the quantum level the notion of quantum
integrability is wider than the notion of quantum separability. So, the question arises
whether there are quantum Stiickel systems which although are not separable but are
integrable, i.e. when

[H;, H1=0, i, j=1,...,n. (8.2.23)

The problem of commutativity (8.2.23) for Hamiltonians (8.2.4) was considered in
detail in [18]. Here we skip the involved calculations, presenting only the final result
formulated in separation coordinates. In [18] was proved that Hamiltonians (8.2.4)
commute if and only if in classical separation coordinates the so-called pre-
Robertson condition

0iRij — TiRyy =0 = 0; (40 = 12) =0, i # (8.2.24)

1

is fulfilled.
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From (8.2.24) follows immediately that the Robertson condition (8.2.10), (8.2.11)
implies the pre-Robertson condition (8.2.21), so quantum separability implies
quantum integrability, in full analogy to the classical case. But less obvious
is the observation that for the class of Stidckel systems related to separation
relations (4.2.16), the pre-Robertson condition is satisfied if and only if the
Robertson condition holds [47].

8.2.2 Separability for Minimal Quantization with Adopted
Metric

In the previous subsection, using the natural minimal quantization, we proved
the quantum integrability and quantum stationary separability for systems from
class (8.2.14) and from the Benenti class (8.2.18). Can we find some quantizations
for other classes of systems (8.2.15), preserving quantum integrability and quantum
separability? We give the positive answer to that question in the following subsec-
tion. To do it, let us first adopt more general Riemannian geometry than the natural
one. The specifications below will be motivated by the fact that our quantization
procedure will be performed in appropriate pseudo-Riemannian spaces. Thus, from
now on we will suppose that the manifold M is a cotangent bundle to a pseudo-
Riemannian manifold i.e. M = T*Q with Q equipped with a metric tensor g. We
will also make three additional assumptions:

1. The manifold (Q, g) and the Poisson structure are adapted to each other in the
sense that the first n Darboux coordinates A’ are coordinates on Q while the
remaining Darboux coordinates p; are fiber coordinates.

2. Coordinates A’ are orthogonal coordinates for the metric g i.e. g and G = g~
are diagonal (but not necessarily flat) in A’

3. The base manifold Q is almost covered by a single, open and dense in M, chart
with coordinates (AL, ..., A").

1

The matrices A, in (8.2.3) can be interpreted as (2, 0)-tensors on Q that can be
written as

Ar=BG, r=1,...,n

where B, are some (1, 1)-tensors on Q. Further, in a very special case, considered
in the previous subsection, when G = A the tensors B, are Killing tensors K, for
the metric G. In what follows, we assume that in general G # Aj.

Suppose we have a Stdckel system written in arbitrary Darboux coordinates

(x, p):

Ho=1p"Ap+V,, r=1,...,n (8.2.25)



8.2 Quantum Integrability and Stationary Quantum Separability 421

Given a metric g we can now perform the minimal quantization of our Stickel
system (8.2.25) as described in the previous subsection. As a result we obtain n
quantum Hamiltonians

A =-1r*V;(B,.G)/V;+V,, r=1,...,n (8.2.26)

acting in the Hilbert space L0, wg), Wy = |detg|1/2 dx, where A, = B,G. Let
us rewrite the operators (8.2.26) in separation coordinates (X, ) for the classical
Stickel system (8.2.25). We will always assume the conditions 1-3 from the
beginning of the subsection. This also means that g and thus G should be diagonal
in separation coordinates. Thus, since A, are diagonal in separation coordinates, so
are B,. Calculating covariant derivatives like in (8.2.8) we obtain

n
Ay = =302y G (BVoF + @B — BT ) + V,

i=1

n
.. a. )
=—im YAl o2+ (M ) a ]+ v,
i=1 !

(8.2.27)

where Br(i) = (B,)f (no summation). Notice that 9; B,(i) # 0 for B, # K,.
From (8.2.27) it follows that the necessary and sufficient condition for quantum
separability of operators H, takes the form

B =Ei(W)ord;jE =0, j#i (8.2.28)
where
__ %BY
8= i = I;.
By

The condition (8.2.28) is called the generalized Robertson condition [48]. Indeed,
due to (4.3.7), the operators (8.2.27) can be written as

A i . . i .
A =—1n2 (s;l)r o0 (a,? n a,-(x’)a,-) n (s;l)ro—,-(x’), r=1,....n
and then application of the Stickel matrix S, to the system of eigenvalue problems
v E1¥
Syl @ =S
H,V E,WV
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separates it to n one-dimensional quantum separation equations

(B 4 B2 44 B 9G4

_ Lo dzl/’i()\i) d‘/f( D)
= 2"1 fz()»)[ @iy + & (A) :|

' ' (8.2.29)
+oi (AP (A,

so that again like in (8.2.1) U A E) = ]_[?:l 1/fi(ki, E) is a common,
multiplicatively separable solution of the stationary Schrodinger equations for all
H,.. The related quantum separation relations are of the form

d2

(x")ylﬁ1+(x")y2ﬁz+m+ﬁn=— 12 f; G )[ s,»(x">d‘ii}+a,»a">.

(dri)?

Notice that in both above formulas y,, = 0 according to our normalization (4.2.16).
In the special case G = Aj (or, in general, G equal to any A) B, = K, are

Killing tensors of g so in A-coordinates o; Kr(i) = 0. In consequence the condi-

tion (8.2.28) reduces to the Robertson condition for quantum separability (8.2.10).

In the previous subsection we proved that for the case G = A; the only class
of Stickel systems (8.2.15) for which the Robertson condition (8.2.10) is satisfied
is the Benenti class. For all other choices of y; in (8.2.15) this condition fails. It
means that in order to achieve quantum separability of an arbitrary Stickel system
of the type (8.2.15) we have to consider a broader class of admissible metric tensors
g used in the quantization procedure.

Let us now go back to an arbitrary Stéickel system of the form (8.2.15) defined
by the choice of the constants y; > y, > --- > y, = 0 and the choice of functions
fi, oi. Then, according to results from Sect.4.4.3, the tensors A, for this system
can be written as (4.4.32)

1
A= MGpys r=1,...,n (8.2.30)
%

where G 7 is the corresponding Benenti metric

(AGH G
Gp,r=d s , 8.2.31
B.f iag < Al A, ( )
M, are some polynomial functions of the Killing tensors K, and
pml 71 e pml 7k
@ = det oo , (8.2.32)

pmk—l e pmk—k



8.2 Quantum Integrability and Stationary Quantum Separability 423

where we adapt the notation pjp = 1 and p; = O fori < Oori > n. Let me
remind that constants n; are those for which the corresponding monomials A" +<="
are missing in the left hand side of (8.2.15), i.e. they are “holes” in the sequence
{yi=n+k—1,y,,---,y, =0} numbered from the left. Besides, k is determined
from the equation y; = n + k — 1. Note that if such “holes” are absent (as in the
Benenti case) then ¢ = 1. For example, if the left hand side of the Stéckel system is
Hix*+ Hoh+ Hs, thenn = 3,k = 2, m; = 2, m> = 3 and the function ¢ becomes:

2

o= det(pl Po) =2+ ()P) + 02+ A2 a3 4223,
P2 P1

Consider thus a Stickel system (8.2.15) defined by a fixed choice of y| > y, >

- > y, = 0 and the choice of f;, o;. We will now search for the metric G that

satisfies the generalized Robertson condition (8.2.28) for this system. Due to the
structure (8.2.30) of A, we look for G in the form

G=u"'(M)Gpye (8.2.33)

where G p ¢ is the Benenti metric given by (8.2.31) with n arbitrary functions 6; (Ah:

01(\") enw)) (8.2.34)

G =dia e,
B0 g( Al An

and where u is a function on Q. Albeit this choice is by no means the most general
one it will prove to be sufficiently general. The tensors B, become in this case

u
Br = (erGB,f 8B.,6

where ¢ is again given by (8.2.32) and where as usual gg g = Gglg. Plugging this
into (8.2.28) we get

@) ey
0; B K (A
’(.’) -I; = l(l.), =1,....,n (8.2.35)
B Ki(A')
where «; are arbitrary functions of one variable (the right hand side is just a
convenient for us way of writing an arbitrary function of A;). Since for (8.2.33)

oju

I' = (FB,Q)Z. + (1 — %n) y
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with (Fg,g)l. being the metrically contracted Christoffel symbols for the metric
G B9, the formula (8.2.35) takes the form

ndu e k) 16D ffQD

2u @ kGH 20,00 fGH]

=1,...,n

which has a solution

1
2 2 (16i162\
u:(pnl‘[< i ) (8.2.36)

i=1
In order to receive a solution as simple as possible we choose «; so that

101 k7

2ot
1

(notice that 6; are still arbitrary) yielding (8.2.36) in the form u = (pi . Thus,
applying the procedure of minimal quantization, with

2
g=¢"8Bo (8.2.37)

to the Stéckel system (8.2.15) we obtain a quantum system (8.2.26) in separation
coordinates

v Lo i [ iz, (AFOD TR AOOHY T Nty
Ho=—h ;}s ),[f(k)8,+( o T 2008 )a,]+2<s o (W),

i=l1

with separation equations of the form

(1G4 B2 )72 44 B s 01)

Py (f/(x") _ wgw)) dy; (A1)

Lo i
=— _h“fi(x . . . .
M )[ (drh)? fiGh 20,00 )  an

} +o; 0y ),

where i = 1,...,n. Notice that in particular, we also have an infinite family of
separable minimal quantizations of systems from the Beneti class in which case
¢ = 1. The most natural choice of the metric (8.2.37) is the one when 6; = f;, then
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Hamiltonians (8.2.2) take the form

R PP L Uy a2, 1A N e lni i
He=—h ;w ), [f<x>a,-+2 Y a,}+;(s ) (D),

(8.2.38)

and separation equations (8.2.2) are

I:El()\i)yl + Ez()\i)y2 + ..+ En:l wi()\'i)
>y, () 1 fO0) dyr (W) (8.2.39)

__1 2 pyi
h 2h f’()\)[ drH2 2 fi(Ah)  dA

]+o,~(x">wi(x">.

Observation 21 There exists an infinite family of separable quantizations of a
Stickel system (8.2.15) parametrized by n arbitrary functions 6; of one variable:
any Stdckel system (8.2.15) can be separably quantized in the metric (8.2.37) (note
that this metric is conformally flat in the case when gp ¢ is flat). Moreover; since for
the Benenti class ¢ = 1, any Stdckel system from the Benenti class (8.2.18) can be
separably quantized in any other metric of the Benenti class (8.2.34), including in
particular the subclass of flat metrics.

Now, the question arises: whether all these separable quantizations are indepen-
dent from each other? We answer this question in the next subsection.

8.2.3 Minimal Quantization in Different Hilbert Spaces

Our goal now is to relate two minimal quantizations induced by different metric
tensors. We will need this in order to be able to write systems of commuting
operators in various Hilbert spaces with measures induced by different metrics and
in particular to relate different separable minimal quantizations.

Consider thus two different metric tensors g and g. As usual, we will denote
their contravariant forms by G and G, respectively. Each of these metrics induces a
minimal quantization (described in Sect. 8.1.6) by morphisms S and S, respectively,
where (cf. (6.1.104) witha =b = 1)

h? , : : :
S=1+, [3(F;jrfk + Rjt)dp; dpy + 305 0x,0p; 0y + QUL T =T ) pidp;0p, 9,

~30p, (3, + T pidp) iy (B + Ty rdp,) + 0(h4)] , (8.2.40)
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and where S is given by an analogous expression with F;k replaced by the

Christoffel symbols I' ’j i of the Levi-Civita connection induced by g. For a (classical)
observable of the form

H(x,p) = A" pipj +V
its minimal quantization with respect to g is given by
H=S"Hw& p)=—1°VAV; +V (8.2.41)

and acts in L>(Q, wg), while its quantization with respect to g is given by a similar
expression involving V; . These are in general two different operators, acting in two
different Hilbert spaces: L2(Q,w ¢) and L0, w ), respectively. The Hilbert spaces
L0, wg) and L0, wg) are however isometric, with the isometry L0, wg) —>
L?*(Q, w;) given by
1/4
F— U= |det g|

= 8.2.42
|det 3| (8242

1/4

where W € LZ(Q,a)g) and ¥ € LZ(Q,a)g). The isometry (8.2.42)Ainduces a

similarity map between operators in both spaces: it maps an operator F acting in
L0, wg) to the operator

F=UFU"! (8.2.43)
acting in L0, wgz).

Suppose that the operator H in the Hilbert space L*(Q, wg) is given by (8.2.41).
Then the operator U HU -1 acting in the Hilbert space L2(Q, wg), has the form

A

UHU™' = = r*V, AUV + V(x) + i*W (8.2.44)
with function W given by
W= LAl (ks = AT ) + b (47 (% = T4). (8.2.45)

We will call the term W(x) the quantum correction term as it describes what
happens to the operator (8.2.41) transformed from LZ(Q, wg) to LZ(Q, wg).

One can prove the relation (8.2.44) by direct calculations of U HU™'. As

VAU = U (=3n2ViAlV; + V) U = = L2UviAivu Tt 4 v
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and using the fact that

w _ k _ pk
axi 2U<Fik _Fik)s

after some calculations we arrive at (8.2.44)—(8.2.45).

Alternatively, the similarity map (8.2.43) can be calculated using the automor-
phism SS~!. From our general theory it follows that quantizing the observable H
with respect to g yields an operator that is mapped through (8.2.43) on the operator
that we obtain by quantizing the observable H' = SS~! H with respect to g. This
yields that the operator (8.2.41) attains in the space in L0, wg) the form

UHU ' = 'HYwx, p) = S1SS T Hyw(x, p) = (ST H)w (&, p).
(8.2.46)

Let us thus explicitly calculate the operator on the right hand side of (8.2.46). Due

to (8.2.40) and using the fact that H is second order in momenta (so that the only
terms in ™! that act on H are or order up to /%), after some calculations we obtain

1y 152 (1 41 14if k1 Aijk
STH=H+,h <4A g T2 AT T+ AT

1 aij ok ol o1 2
+ 4ATTA T ) =57+ 02w
with

L1 40 k ~k 1 4ij (Tk ~k 1 4ij (kI k1l
W=, [2A i (ij - ij) +,4Y (Fik,j - Fik,j) + ,AY (Fikrjl - Fikrjl)]

coinciding with W (x) in (8.2.45).
The relation (8.2.45) can be also written in a covariant form as

W= 51; (Aij;insng;j +AiijSgks;ij +AiijS;,~gks;j + iAiij’gkr;iGS’gsz;j)
(8.2.47)

where the covariant derivatives are taken with respect to the connection V;. The
reader can find the proof of formula (8.2.47) in [49].
In separation coordinates formulas simplify drastically. We have

H = - VAV + V = - 1n2AV[07 + &9+ V, (8.2.48)

and then

U=vw=U[]v0) (8.2.49)
i=1
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and
5 5 orr—1 142 4ii | 92 — aU 2
H =URU™ == n? A0 |7 + (8 =27 ) o |+ V, + 22 W,
= _1p2ail [82+W»a-]+v iy (8.2.50)
- 2 r i —i 0 r r ol
= — VAUV + V, + B W,
where
I il (%UN? U  _ oU
W,:-zz;A, 2(U) -y tEo | (8.2.51)
1=

We will say that operators (8.2.50) are R-separable, as their eigenfunctions are of
the form (8.2.49), where U (1) is a known function of A and ¥ (};) solve quantum
separation equations (8.2.2). The reader can find more about R-separability in a
historical context in the last subsection.

In order to compare separable quantizations (8.2.2) and (8.2.38) and check
whether they are unitary equivalent or not, consider the operators

+Y (s hio@). (8.2.52)

A Lo o1y i\a2
Hy == 123 (™Hi | raDe7 + e 3
1=

i=1

1‘”(”’3,-)
. Lo omtai | ppmina o (AFGD 1R dfOd) N i =
H =—_h S 2)9; =T e STHie (b,

5 ,;( ),[f( ),+< i T2 Foh ) }+i§( )iG (A

(8.2.53)

(for simplicity we assume that f,-()\i) = f()f) and f,-()\i) = f(Ai)) and the
associated eigenvalue problems

HVY =EV, HY=EWVY, r=1,...,n,

where W(A!, ... ") = [Tie, w05, @ o) = [Tie, 05, and v (15
and v (AX) are n copies of one-dimensional eigenvalue problems

n Ly _ 12 dzw()u) 1df () dyr()

(8.2.54)
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o - dzl/f(?») df() 1 f)dfe)Y dy ()

. yl — —
(;E’A )wm B [f( ) dx2 ( dv 2 f0) di ) dh }
+aWY(). (8.2.55)

It is easily checked that we also have quantum separation relations

n

1 d? 1df(x) d
y - _ 2
k§1“Hk 2)‘1 <f(>») 2 2 dA)Jra()\),

d? df) 1 fydfmy d7 . -
— _ K2 _
ZAVka o [f( )t ( e )dk}ﬂm,

where, just as in (8.2.54) and (8.2.55), A = A, i=1,...,n
Moreover, we see from (8.2.52) and (8.2.53) that for a suitable choice of & ())

the operators H, and H, are related by a transformation (8.2.43)

H =UHU". (8.2.56)

- (f(w'))”“
Caa\ren)

1

Indeed, for

relation (8.2.56) holds under condition

d*>v(A)  1df(d) dv()v'))

i R
oM)=0") — (f()d()\,)2 2 o

where

P\ 1/4
: Al
ity = (190"
VAU
In consequence, the Hamiltonians (8.2.52) and (8.2.53) are the avatars of the same
operator, acting on different Hilbert spaces. Notice that if we impose the additional

constraint 6 (A) = o ()), the_ Hamiltonians I:I, and H, become the avatars of the
same operator if we choose f (1) so that

d*>v()) N Ldf(h) dv(n)

A
F® d)? 2 dr  di
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It means that
f)

v(h) = f FO)2dh > f) =a 4
[/ (ron~"2ar]
where a is an arbitrary constant. Of course, the above results are readily generalized
to the case when our separation relations are not copies of the same separation curve.
Now, let us come back to the question from the end of previous subsection. For
f) =001, g = (pr%gg,f, g = (pigg,g, observing that Hilbert spaces L>(Q, wg)
and L%(Q, wg) are isometric, with the isometry given by

1
|detgV* o <9k(x’<)>4
ldetg|'/* = k)

the avatar of operator (8.2.38) from LZ(Q,a)g) is the operator (8.2.2) from
L?(Q, wz) with

f @)

0N =a 4

[[(ron"as]

Other separable quantizations (8.2.2) are not equivalent to the (8.2.38) ones.
Observe that there is a distinguished class of separable quantizations related to

flat metrics gp . Then, for the Benenti class we are dealing with the class of flat

minimal quantizations [48] and for other classes, with conformally flat minimal

quantizations. We consider them in the next subsection.

8.2.4 Quantum Integrability of Stickel Systems in Various
Hilbert Spaces

We remind the reader that in [18] the authors derived tlle necessary and sufficient
condition for commutativity of quantum Hamiltonians H, of the form (8.2.4) (and
with A1 = G) called the pre-Robertson condition (8.2.24), which took the form

30, — T, =0, i+#j.
In our case metric G is not related with any A,, so analogous calculations to these

from [18] lead to the following necessary and sufficient condition for commutativity
of H,, which we call the generalized pre-Robertson condition [48]

E; —EidE; =0, i#j. (8.2.57)
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Let us consider a Stickel system H,, r = 1,...,n of the form (8.2.15) and
let us perform the procedure of minimal quantization of this system in the metric
G given by (8.2.37). We obtain then the quantum separable system consisting
of n operators H acting on the Hilbert space L0, wg), Wg |det g|1/ 2dx.
Since the generalized Robertson condition (8.2.28) implies the generahzed pre-
Robertson condition (8.2.57) we conclude that this system is also quantum inte-
grable: [H,, H,] = 0. Using (8.2. 44) we are able to write operators H, in another
metrlc G i.e. in the Hilbert space L>(Q, wg) which yields new quantum operators

Hr, r =1, ..., n that constitute again quantum integrable and quantum R-separable
system. Due to the theory developed in the previous subsection we know, that we
can equally well take the classical Hamiltonians H, amended by quantum correction
terms, i.e. the functions H, + h>W, with W, given by (8.2.45) (or equivalently
by (8.2.47)) and minimally quantize them in the metric G as this yields the same

quantum integrable system H.,r=1,... n.

In Sect.4.4 we demonstrated that any Stickel system of the class (8.2.15) can
be constructed by an appropriate Stickel transform of a suitably chosen flat Stiickel
system from the Benenti class. Moreover, in Sect. 5.5 we explicitly constructed flat
coordinates for any flat Stiickel system. Therefore we are able to write down our
original Stickel system H,, r = 1,...,n in flat coordinates of the metric G of
the form (8.2.34) (G is flat as soon the (4.3.2) is satisfied). In this specific case, if
we apply the standard Weyl quantization (minimal flat quantization) to the Stickel
system H, + h>W, we will obtain a quantum integrable system. One can also say,
alternatively, that if we want to avoid quantum correction terms, we should quantize
the original system H,.,r = 1, ..., n not by the Weyl quantization but in a suitably
chosen minimal quantization with respect to conformally flat metric G. In what
follows we will also need a specification of this correction term to the following
situation: suppose that G = thG B.o (where u = u(x)) where the metric Gp g is flat

and suppose that G = G B.¢- Then the correction term (8.2.47) attains the form

W(x) = |:A’/ (0u )}Jr 4 ) (a, ) (8.2.58)
u 32 u?

In papers [148, 149] the authors presented some ad hoc calculations generating
quantum correction terms that guarantee integrability of quantum systems obtained
through the Weyl quantization of some Hamiltonian systems. The presented theory
shows how to construct these quantum correction terms in a systematic way (albeit
within the class of Stickel systems not considered in [148, 149]). We will illustrate
this on two examples below. It is important to stress that the presented systems
cannot be separably quantized in the frame of the classical Robertson-Eisenhart
formalism.
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Example 8.5 Consider the Stickel system (8.2.15) for n = 3 given by the
separation curve of the form:

HAM + Hoa+Hy= a2 +2%, i=1,2,3 (8.2.59)

sothat y; = 3, v, = 1, y3 = 0 with FO) = At and o (M) = (A))*. In this case
o=p 1) = —(A'+ 2%+ 13). Consider also the corresponding metric G g,y given
by (8.2.34). This metric is flat. In the coordinates x, y, z defined through (cf. 4.3.18))

p1=—-+A2 423 =x
py =+ A+ =y + x (8.2.60)
p3=—-AaA3 =z
the metric G g, r reads
010

Gpr=|100
001

so ¢ = x and (x, y, z) are flat non-orthogonal coordinates for Gp, r. Solving the
relations (8.2.59) with respect to the Hamiltonians H; and passing to the variables
(x,y,z) wereceive H, = pT A, p+V, where p = (px, Dy p2)T and where tensors
A, have the form

1 1,y
01 . 0 1y4x T O1
Ar=|—-, 0 01 s A= — —1y 3_2Zy ,
0 0 T x 0 _2Z 4x_x
1z 1
0 43 —27Z
_ 1z 1 1
As=1 40 42 TaX
-l eyl

with the corresponding rational potentials

V1=—ix-l-i),

Vo= o+ by hz+

1 1Y<
V3=—16xz—4x.
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From the presented theory it follows that we can perform a separable quantization
of this system in the conformally flat metric G = ;G B,f (which means that we

2
choose 6 = f) withu = (pi = x 3. We obtain three commuting operators
H = - 0?v;A7v; + v, (8.2.61)

(where V; is the connection defined by G),acting in the Hilbert space L0, wg) =
L*(Q, |x|dxdydz) (0 = |detg|'/? dxdydz = |u/?|dxdydz = |x|dxdydz). In
the separation coordinates (A, 1) the separation equations (8.2.39) for ﬁr attain the
form of three copies of

d*y () 1dy(h)

1
ED+E+EDY(A) =— K2
(E1A°+ ExA+ E3) Y (A) (d)@ ) da

5 )+A4¢(A). (8.2.62)
Let us now rewrite our operators (8.2.61) in the Hilbert space L2(Q,a)g) =
L*(Q, dxdydz) (wg = |detg|'/?dxdydz = dxdydz) with the flat metric G =
Gp, r. From our theory it follows that a suitable way to do it is to quantize our
Hamiltonians H, directly in the metric G after amending them by the quantum
correction terms W; given by (8.2.58)

31 11

Wi =0,Wo=—". ,Wy=—
: 2T 7R T T

One can check by direct calculations that the operators

-~

Hy == n?8;A70; + W, + Vo, r=1,....n (8.2.63)

do indeed commute, thus constituting a quantum integrable system. The opera-
tors (8.2.63) are however not quantum separable, contrary to the operators (8.2.61),
but are R-separable. It means that in separation coordinates

A90) = EUG), W0) = U0 = (. +22 +x3>§w(xl>w<xz)w(x3>,

and ¥ (A1) solves (8.2.62).
Example 8.6 In our second example we consider the Stickel system generated by
the following separation curve

H23 + HoA? + Hy = L 458,

so that this time ¥, = 3, y, = 2 and y3 = 0 but still with f(A’) = A’ and
o (A = (A)*. In this case ¢ = pa(A) = A2 4+ 2103 + 2223, We consider again
the same metric G s with the same flat coordinates (x, y, z) given by (8.2.60).
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This time the tensors A, have the form

1
| -1 —x 0
A1= —éx y %Z ’
P2 1
0 22 —X
1 —X —ixz—i—y 0
A2=,0 —1x2+y yX Xz )
2
0 5 XZ —sz-i-y
Z2 %zzx —é <x2+4y)z
1
Az = %zzx iz2x2 —iz<x3+4yx+212)
4p; 4

—% (x2+4y)z —iz(x3+4yx+222) ix +2x2y+4y2+22x

where p, =y + ix, while the potentials are

x+4xy+z

Vi=-— x—|—4x +272)=— s
T g T gy

1

x+2xy+xz+4y
Vs = — (1 2 4):-4 ,
2T gy \$ TR x+4y
Vs b4 1z

- 160, (x) T 4x +4y’

Now, let us perform a separable (]2uantizati0n in the conformally flat metric G =

thG B,y withu = (,o5 = (y + ix) 3. We obtain again three commuting operators
H = -10?v;A7v; + v,

(where V; operators are related with the connection defined by G),acting in the

Hilbert space L?(0, ,02| dxdydz), while the separation equations (8.2.39) for I:I,
attain the form of three copies of

2
d=y (1) n 1d¢(k)) TN

1
ES+ EaA> + EDv(A) =— KA
(E1A° + E20” + E3) Y (M) ) ( 2 ) da

with the same right hand side as in the previous example. Rewriting our opera-
tors (8.2.61) in the Hilbert space L% 0, dxdydz) with quantization in the flat metric
G = G, s leads to the following correction terms W; (x, y, z)

1 5x —4y
1 = 3 b
16 P (x)
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1 7x —20xy
2 —
32 pi(x)
We — 1 x+8xy+13xz+l6xy+4yz
P78 P3(x)
Again, the operators
Hy = - n28;A78; + R*W, +V,, r=1,....n (8.2.64)

commute, as it can be checked for example in Maple. Operators (8.2.64) are R-
separable and in separation coordinates

HU0) = EB(), B0y =02+ 4003 + A2A3)5w(xl>w<xz)w(x3>,

where Iﬂ(ki) solves (8.6).

8.2.5 Quantization of Superintegrable Stickel Systems

In analogy to classical mechanics, a quantum maximally superintegrable Hamil-
tonian is a self-adjoint differential operator hy acting in an appropriate Hilbert
space of functions on the configuration space Q (square integrable with respect to
some metric) belonging to a set of n commuting self-adjoint differential operators
hl, .. h acting in the same Hilbert space (so that [h,, hi jl=0foralli,j =
1, n) and such that it also commutes with an additional set of n — 1 differential
operators hn+1, .. hzn 1 of the finite order. Besides, it is required that all
the operators hi,... hon_1 are algebraically independent. There is an extended
literature devoted to the construction and investigation of quantum superintegrable
systems [67, 138, 165, 167, 169, 221, 229] (see also references of the review paper
[200]).

This subsection is devoted to separable quantizations of superintegrable Stickel
systems that were considered in the classical setting in Sects. 4.3.3 and 4.4.4. First,
let us formulate the quantum analog of the classical commutator (4.1.8). Suppose
that / is given by

h=- VAT ()V; +V(x) = 1h2\/| la iV1glAY (x)d; + V(x)  (8.2.65)

and that Y = y’(x)V; is a vector field on the Riemannian manifold (Q, g). Then

[ﬁ, Y] = 112V, (Ly AYT V; + 11240 (vjvky") v, — Y(U)
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_ One proves this relation by a direct computation. Thus, a sufficient condition for
[A, Y] = c is satisfied when Y is a Killing vector for both A and g and if moreover
U is constant along Y, that is when

LyA=0, Lyg=0, Y(U)=c (8.2.66)

(note that Ly g = 0 implies V; y* = 0).

Suppose we have a quantum integrable system on the configuration space Q, that
is a set of n commuting and algebraically independent operators hi, ..., hy of the
form (8.2.65) acting in the Hilbert space LZ(Q, |g|1/2 dx) where g is a metric on
Q. Suppose also that a vector field Y satisfies (8.2.66) with A; and U; instead of A
and U (so that [ﬁl, Y] = ¢). Then, analogously to the classical case, the operators

~

hnir = [h,H, Y] = U2V (Ly Ay )T V= Y(Urg1), r=1,....n—1
(8.2.67)

satisfy [fzn_w, le] = 0 and the system le, R fzz,l_l is algebraically independent;
that is we obtain a quantum separable and quantum superintegrable system.

We can now apply this formula to construct quantum superintegrable counter-
parts of classical systems considered in Sects. 4.3.3 and 4.4.4. According to results
of previous subsections, for the systems generated by the separation curves (4.3.25)
the most natural choice of the metric g is to take G = Aj. Then, by construction,
[fz,-, h jl=0fori, j =1,...,n while the remaining operators fzn_w are constructed
by the formula (8.2.67) and are - up to a sign - identical with minimal quantization
(in the metric G) of the extra integrals 4,4, obtained in (4.3.29).

Example 8.7 Consider again separation curve (4.3.30) from Example 4.15. Per-
forming the minimal quantization of the Hamiltonians (4.3.33) in the metric G = A
i.e. given by (4.3.32), we obtain, in the flat coordinates (4.3.31)

=

V=32 (0t + J02) +a VY eV + v,

A 132 2 1 1 1 1

hy = — b7 | 9y — dyydy + x0;0; + zaxxay + ,Xx0y01 — 2,0y0; — ,3:20y
ta gV aaVy +auvy?,

. 1

hy=—1r? (;faf, + <2y + ;x2) 0% — 20,0, — 0,20, — 5 X20y0: = ;xazzay>

+ 0171‘/3(_1) + Ot3V3(3) + Ol4V3(4),
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The respective one dimensional eigenvalue problem, according to (4.3.30)
and (8.2.19), is of the form

T s P aa  F EVV A EdA+ ED Y (W) = —
(—1 Fa3zA’Fas A"+ EA T+ EA+E3) Y (L) 2 D2 2 di

1 a2y ldy(

hz[x v ( )Jr v ( )}
Now Y = 0y satisfies the conditions (8.2.66) and the extra operators fl4, ﬁ5 can be
obtained either by using the formula (8.2.67) or directly by a minimal quantization
of functions &4, hs in (4.3.35). The result is (up to a sign)

ﬁ4 = ihzaﬁ — a3 + o4x, ﬁ5 = —ihzaf + 43;1

If we want to perform the separable quantization of superintegrable systems
obtained by the Stickel transform, as in Sect. 4.4.4, we have two cases: either the
system—after the Stickel transform—belongs again to the same class (4.3.25) or
belongs to the other class, given by the separation relations (4.4.38) that are different
from (4.3.25) as soon as k % —1. In the first case the natural choice of the metric
in which we perform the minimal quantization is to take G = A; i.e. G as given
by (4.4.4). In the second case we have to use the metric given by (8.2.37) which in

our case is given by G = <p1’5/{1 with ¢ = —Vl(k).

Example 8.8 Let us now minimally quantize the Stickel Hamiltonians ftl, ﬁz, 53
given in (4.4.40), obtained through the Stiickel transform in Example 4.17, generated
by the separation curve (4.4.39) with k = —1, that is by

A~ a4+ hor + hy = Lap?,
The metric associated with ﬁl

010
G=A=,1100 (8.2.68)
001

is of constant curvature as after applying transformation (4.4.4), in the new
separation coordinates the separation curve (4.4.39) turns to

ant At 4+ o = a0
and belongs again to the class (4.3.25). Thus, we have to perform the minimal

quantization of this system with respect to the original metric A; of the system
which is just (8.2.68). Observing that \/|§| = 8/7z3, we obtain the following
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quantum superintegrable system (we use the second expression in (8.1.62)):

21 = —ifizzz (ézazéaz + ax82) - }‘&Zz,

o = L2 (=202 + 205y + Doxdy + X0y + 20y + 20 by ) + &,
hy = I? [—z23y2 + (2% + 4Y)0xdy + dxx7dy + 40y ydy + 22019; + 2270, le R

x20y0; + xz3az 212 Bx] + }16( <x2 + 4y) ,

P 13242
hy = 5 h°95,
hs = 23,9y + &
Example 8.9 Let us finally minimally quantize the Stickel Hamiltonians ftl, ﬁz, 53
given in (4.4.41), obtained through the Stickel transform in Example 4.17 and
generated by separation curve (4.4.39) with k = 4.
hiat +@r? + hoh + hs = S ap?,

The metric associated with ﬁl

o 010
G=A =, 100
=y \o001

is conformally flat. We have to perform minimal quantization of this system with

respect to the metric G = (pl_:zz Ay with ¢ = — V1(4) given by

-2 2 (010
G:(—V1(4)) 3G=(y—ix2) 3 (1)8(1)

Observing that \/|g| = V1(4) =y— sz, we obtain the following quantum operators
(we use again the second expression in (8.1.62)):

2 —1 o
=4 (y-322) (2000y+02)+ %
Y = gX
1.3, 1.2
2 -1 i XY+ X7+ 42
h2=—£ﬁ2<y—‘3‘x2> Zal’Blzjaj—Ol 4 3 24
ij YT X



8.2 Quantum Integrability and Stationary Quantum Separability 439

2 -1 i, ~ xz2
=12 (- 32) " Casi v da
y— X

i 4
}5142_%%2( Zx2> [axxay+x8y8x—3y <y_2x2> ay+x822]—5[y_x3x2
4
hs = — 11292
where
y—3 3.2 xy_ Bal2
B, — 2xy—8x3~|- —y(y 323 y—4x
0 2Z(y—ix2) 2xy—2x +
0 g2 2Z y—ixz
By — 2 (y_zxz) 1xz<y_z 2)
E (y— ?ucz) ixz (y— xz) =y %%y ¥ — e —

with B = 4/|g|A in (8.1.62). It can be checked that it is again a quantum
superintegrable system.

8.2.6 R-Separability of Stickel Metrics

In the following subsection we analyze the notion of R-separability, introduced
in previous subsections, from a more restrictive point of view, known from the
literature. We begin that subsection by a short summary of the most important results
from the whole section. Consider separation relations of the form (8.2.15)

n
Y HGH =) 0D 008, i=1,...,n
and related Stidckel Hamiltonians

Hy = ) ZA”M, +Vr=, Z(S DD + Z(S DG, (8.2.69)

i=1
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where the Stéckel matrix is of the form (4.3.1). In particular, fory = (n—1, ..., 0),
we deal with the so called Benenti class and then

O CON ()

Al — ,
" A; " A

’

where

A=l =25, kO =_"""" -1, n,
; g( ), K| Y

and p,(A) are the Viete polynomials (4.3.18) so aKr(")/axi = 0. For any other y-
class we have (4.4.32)

1ML 1 MPe0)
BERRN"T0S LY

i _
ey A
where ¢(2) is the function given by (4.4.29) and M,(i) are appropriate polynomials
of K](.’), j=1,...,n (see Sect.4.4.3), hence again aMr(l)/a)J' =0.

Minimal quantization of classical Hamiltonians (8.2.69) leads to the respective
quantum Hamiltonians H, (8.1.62) given by

ﬁ,:—;;ﬁzi VA, 4V, r=1,....n (8.2.70)

where V; are operators of a covariant derivative associated with a metric g = G~!
for which A coordinates are orthogonal coordinates. Hamiltonian operators (8.2.70)
are self-adjoint in the Hilbert space L?(Q, |detg| 172 43). For the Benenti class, with
a natural choice of the metric tensor

Gl = All — fiGH
1 A[ ’
we have proved that n multi-dimensional eigenvalue problems

HY=EVY, r=1,...,n (8.2.71)

for Hamiltonian operators

n n /
R . y 1 f
He=—)n*Y VAV, 4V =— 1) Al [a,?+ U

3,':| + V,
i=1 i=1 2 fl
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separate multiplicatively
W) =Tz i),
onto n one-dimensional eigenvalue problems

[E1G)" 4 By 2 o+ Enly; 0D

d? +1df,-(ﬂ) d

l 2 -
=—_r| £ e
2 [f’( )(dxi)z 2 di o di

} i + oDy, i=1,...n.

We also have proved that for any other y-class, with a choice of the metric tensor in
the form

(A

_ 2 fi
G =)
o) A

n multi-dimensional eigenvalue problems (8.2.71) for Hamiltonian operators
A n n ’
Ho= =302 VAl Vi+ v ==3n2 Y a2+ Vo] +v, 272
i=1 i=1
separate multiplicatively
V) =TT ¥ 0
onto n one-dimensional eigenvalue problems of the form

[E1(A)Y1 4 Es(A)Y2 4o Y W) (8.2.73)

1, iodr o 1dfioh d |- i
=—_h (A . . i (A i(ADY; (A7), =1,...,n.
) [f( )(W_)ﬁz N dl,}w( ) +0i ADP; (), i n

Now, applying the results of Sect. 8.2.3, let us transform the eigenvalue problem
to the Hilbert space with a measure generated by a natural metric of y-class (4.4.32)

(i) j
Gil — All 1 M fi()»l).

= 8.2.74
ERT0S Y ( )

According to (8.2.42) and (8.2.43) we have

V=U""W=RY=R[[, ¥;:A), (8.2.75)
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where

n 1
U=g2sD I1 (Ml(k))_4 . (8.2.76)
k=1

Thus, like in (8.2.48)—(8.2.51), we get from (8.2.72) and (8.2.76) that

n
A~ e/
i

H =U"'HU=— 10> Al [a,? + (23;,” + 1y

i=1

)ai|+ Ve + 12w,

n
=— 32 VAUV +V, + 1 W,

i=1
where quantum correction terms are of the form

1< (32U 1 faU l , U 1 U
W, = — Al i i I 571 i ) i

i=1

and operators V; are related to metric tensor (8.2.74).
If W1 = 0, then we say that the stationary Schrédinger equation

— JHPAW + (V — E)Y =0 (8.2.77)

is R-separable. It means that eigenfunctions are of the form (8.2.75), where R(})
is a known function and each 1},-()»") solves one-dimensional second order ODE
((8.2.73) in our case). Particular cases of Eq. (8.2.77) are the n-dimensional Laplace
equation (E1 = 0, V = 0) and n-dimensional Helmholtz equation (V = 0).

The notion of R-separability, understood as above, was introduced by Darboux
in the second half of nineteenth century and then has been further completed in his
monograph [78], where he classified all R-separable cases of the 3-dimensional
Euclidean Laplace equations. Some classification results in the 4-dimensional
Riemannian space can be found in [159] and [245] and other results on that subject
together with particular examples in [63, 160, 161, 222, 244].

Here, according to classical definition, we would like to identify the
n-dimensional Stdckel metrics (8.2.74) which lead to R-separation of the
Schrodinger equation (8.2.77). First, let us notice that from the form of quantum
corrections (8.2.6) and (8.2.76) follows nonexistence of nontrivial case with all
W, = 0. Thus, let us concentrate on R-separability of Eq.(8.2.77) and find for
which Stéckel metrics (8.2.74) W1 = 0. From the form of trivial potentials for a
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given Stéackel matric (4.3.1) it follows that if

n

Za,(x)(xi)yr, i=1,....n

r=2

22U 1

1
flU 2

iU
_

5
1

then W1 = 0.
Let us consider particular y-classes given by

y=m+k—1,n-2,n-3,...,0), keN,
and Stédckel Hamiltonians defined by the separation curve of the form

Hp = o =2 4 Hy = L foor? + 0.

It means that in the notation of Sect.4.4.3m; =2, my = 3,...,mp = k + 1 and
from (4.4.27) we find that
H L H
1= - 1
(n+k—1)
Vln
4
Gii — _ 1 f:00)
Vl(n+k_1) A;
U
(n+k—1) 2(3-1)
U= (—V1 )
where Vl("+k_1) is an appropriate potential (4.3.22) such that

k—1 k—1
v — y D e, forn >k

and p; are the Viete polynomials (4.3.18). On the other hand, the Viete polynomials
fulfil the following relations

ap

N
gyt = 2P WO =1

r=1
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SO
k—1
aiU iNr
D ILACICS
r=0
and
2(k—1)
opU U U \> .
r=0
In consequence, if f; is a polynomial in Al of order «, then
22U 1 gy kDt . .
fi l[] 2f/ l[J = FZ:O ar()\)()\,l)r’ 1 :1’._.’,/1

and Wi (1) = 0 for n > 2k + o where metric (8.2.6) is a conformal deformation of
flat metric (8.2.6) from the Benenti class.

In order to illustrate our considerations, let us take the simplest case when k = 1
with the separation curve

HV"+ HoA" 2+ 4+ Hy = ) fOR* + 0 (0),

where f (1) is a polynomial of order « and o is a rational function. Then, Vl(") =p;
so the natural Stickel metric takes the form

_LfeD _ 1 fO5
p1(A) A WA A

Gl = Aili _
and the stationary Schrddinger equation
— R*GUV VW + (V — ENV =0
is R-separable for n > 2 + «, where
Lo ny :
W= a2 D v
i=1

and ¥ (1') are n copies of one dimensional ODE

d? 1df(A) d

n n—2 ——1 2
[E1A" 4+ EpA ++ ENYQ) = 2]’1 I:f()t)(d)h)2+2 dx di

} v )
+o (MY ).
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In particular, when o = 0, the nonzero quantum correction appears only for the last
operator

Wo=—§(1-5)@B-2)0 " +...+aH72

Such a case forn = 3, « = 0 and V = 0 was considered in [160].
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