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Preface

The laws of quantum mechanics were formulated about a hundred years ago, replacing the
classical laws of Newton and Maxwell. Since then, quantum mechanics has been applied
remarkably successfully to understand a very wide range of observations and systems. The
success of the laws of quantum mechanics in predicting and explaining essentially all the
known physical phenomena is astounding. However, in spite of the great success, it remains
a mysterious theory and the concepts of wave–particle duality, complementarity, the prob-
abilistic nature of measurement, quantum interference, and quantum entanglement are still
hotly discussed. However, it is not just the remarkable success in explaining all the known
phenomena that makes quantummechanics a fascinating subject. It is truly amazing that, even
today, a mere knowledge of the basic postulates can lead to startling new ideas and devices. For
example, just the knowledge of the principle of complementarity can lead to perfectly secure
communication systems, or the understanding of a beam splitter for a single photon can lead to
a highly counterintuitive communication protocol with no particle present in the transmission
channel, or the resource of quantum entanglement can lead to novel quantum computing
algorithms. Therefore it becomes possible to convey not only the foundations of quantum
mechanics but also some mind-boggling applications, such as in quantum communication
and quantum computing, with just elementary knowledge of basic physics and mathematics.

With this background it is interesting to ask whether it is possible to convey the basic
concepts of quantum mechanics and its amazing applications to someone with a limited
knowledge of physics and mathematics. In the fall of 2018, I offered a course on Quantum
Mechanics to incoming freshman students at Texas A&MUniversity.These students, just out of
high school, took this course before they took the usual Mechanics and Electricity/Magnetism
courses.This book grew out of the lecture notes of this course.Themain objective of this book is
to present an introduction to quantummechanics in an almost self-contained way for someone
with a high school physics and mathematics background.

The book challenges the common perception that quantum mechanics is a highly math-
ematical and abstract subject that is inaccessible to anyone without an advanced knowledge
of mathematics. This book, except the last chapter on the Schrödinger equation, is entirely
algebra-based. An effort ismade to derive some amazing results from very simple ideas and ele-
mentarymathematical tools. Ideally every chapter offers results that are highly counterintuitive
and interesting.This book can be used as a text for a course on quantummechanics or quantum
informatics at the undergraduate level. However it can also be a useful and accessible book for
those who are not familiar with but want to learn some of the fascinating recent and ongoing
developments in areas related to the foundation of quantum mechanics and its applications to
areas such as quantum communication and quantum computing.

The book is divided into four parts. After an introductory chapter, some basic mathematical
tools such as complex numbers, vector analysis, and introduction to probability as well as a
classical description of particles and waves are introduced in the next three chapters. In the
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next eight chapters, basic concepts of quantum mechanics are discussed, such as wave–particle
duality, complementarity, the Heisenberg uncertainty relation, quantum interference and
entanglement, no-cloning theorem, as well as issues at the foundations of quantum mechanics
such as the delayed-choice quantum eraser, the Schrödinger’s cat and EPR paradoxes, and Bell
theorem. In the following chapters, these fundamentals of quantum mechanics are applied
to applications in areas such as secure quantum communication, quantum teleportation,
counterfactual communication, and quantum computation. In the last part, the Schrödinger
equation is introduced with its relation to Newtonian dynamics and its applications for a
particle inside a box and the hydrogen atom.

Each chapter is followed by a short bibliography, guiding an interested reader to some
relevant books and papers. In some instances, the original papers are included in the list. No
attempt has, however, beenmade to give an exhaustive list of references. A number of problems
are also given at the end of each chapter for the students in case the book is followed as a text
for a course.

I owe my gratitude to several individuals for their support and encouragement in the
preparation of this book. First and foremost, I thank Marlan Scully for his long friendship and
many fruitful collaborations that helped shapemy thinking about aspects of the foundations of
quantum mechanics. A person most responsible for this book is David Lee who first proposed
the idea and remained an enthusiastic supporter and inspiration throughout the writing of
this book. I am also grateful to Peter McIntyre whose enthusiastic support, as the Head of the
Department, for teaching an unprecedented course on quantum mechanics to freshmen, was
vital to this project. Robert Brick and Wenchao Ge graciously read parts of the book and gave
me their unvarnished, but extremely helpful, comments. I also thank Jiru Liu and Chaofan
Zhou for their help with proofreading the manuscript. Special thanks are due to Sonke Adlung
and Harriet Konishi of the Oxford University Press and Cheryl Brant of SPi Global for all their
help during the publication process.

Finally I wish to acknowledge the loving support of my family members, Sarah, Neo, Sahar,
Shani, Raheel, and Reema. My deepest gratitude is however reserved for my wife, Parveen.
She has been relentless in her support not just during the writing of this book, but for all the
projects, big and small, during my life.

M. Suhail Zubairy
College Station, Texas

October 9, 2019
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1 What is this Book About?

Our common sense is based on what we observe in the world around us. The laws that govern
this world appear to be completely deterministic. If we apply a force, any kind of force, on
an object, we can predict the response quite accurately. For us light is a wave and a ball is
a particle—there is no doubt about it. Light cannot behave like a particle and a ball cannot
behave like a wave. This seems to be the world we live in. The laws of physics that explain such
behavior were formulated during several centuries leading up to the beginning of the twentieth
century and form the core of what we call classical physics.

What was found at the dawn of the twentieth century was that these laws are good only for
big objects and intense light. For small objects like electrons, atoms, and veryweak light signals,
the laws of classical physics fail miserably. For example, light can behave both like wave and
particle. Similarly an atom can also behave as both particle and wave. Soon, it was realized that
a new set of laws were needed to explain the observations related to atoms and molecules. It
took about 25 years to formulate a theory that could explain all the known observations up to
that time. This theory is called quantum mechanics. Quantum mechanics is the fundamental
theory of physics and classical mechanics is an approximation when considering macroscopic
objects. This book presents an introduction to quantum mechanics and some of its interesting
applications.

Quantum mechanics is one of the two most successful theories in human history, the other
being Einstein’s theory of relativity. The justification for this remarkable claim is that, after
the passage of almost 100 years, no physical phenomenon has been found to be in violation
of the predictions of quantum mechanics. This is true in spite of the tremendous advances in
the precision with which the measurements can be made. For example, time can be measured
with an accuracy of a billionth of a billionth of a second, distance to a trillionth of a meter,
temperature to a millionth of a Kelvin, and mass to a billionth of a gram. We can see and
manipulate a single atom and cool a gas to an extent that atoms and molecules lose their
identity. We can carry out experiments where light consists of a single “photon” and even
manipulate the interaction of a single “photon” with a single atom. In all such experiments, the
results are dramatically different from what classical physics predicts but they are remarkably
in full agreement with the predictions of quantum mechanics.

In this chapter, we first give a brief history of how classical mechanics evolved into quan-
tum mechanics. We then give a bird’s eye view of the basic aspects of quantum mechanics
and its applications. In subsequent chapters, these topics will be discussed with reasonable
completeness, with a minimum of mathematical background. Except for the last chapter, the
entire book is only algebra-based. Most of the mathematical tools needed are discussed in
Chapter 2.

Quantum Mechanics for Beginners: With Applications to Quantum Communication and Quantum Computing. M. Suhail Zubairy.
© M. Suhail Zubairy 2020. Published in 2020 by Oxford University Press. DOI: 10.1093/oso/9780198854227.001.0001
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1.1 From Classical to QuantumMechanics

We trace the beginning of the modern era of science to the year 1543, when Nicholaus
Copernicus published his book “De Revolutionibus Orbium Coelestium” (On the Revolutions
of the Heavenly Spheres). He proposed a heliocentric model of the solar system, a system in
which the sun was held at rest and all the planets including earth circled around it, replacing
the long held Ptolemaic geocentric model in which earth was at rest and at the center of
the cosmos. Without the benefit of the knowledge of the law of gravitation, it was hard to
believe how earth could be moving around the sun still maintaining the stability of all objects
including the humans on its surface. The hostility to a model that took away the centrality of
earth in a solar system was so great that Copernicus could not publish his heliocentric theory
till the end of his life. According to a legend, Copernicus received the published copy of his
book De Revolutionibus on the very last day of his life, thus dying without knowing that his
work heralded a new era of human history. Copernicus was followed by Johannes Keppler
(1571–1631) and Galileo Galilei (1564–1642) who studied the motion of planets within the
framework of the heliocentric theory.

Isaac Newton (1642–1727) is the next defining figure in the history of science. His
“Principia” laid the foundation of classical mechanics. His law of gravitation is a bright example
of the nature of scientific law—a law that applies equally well to all objects, big and small.
His contributions in mathematics, particularly his co-discovery of calculus (with Wilhelm
Leibniz) provided tools that would be vital for almost all the subsequent major discoveries
in physics and many other branches of science. They played key roles in shaping the physics
of the coming centuries. Newton’s laws of motion, discussed in Chapter 3, are the corner
stone of classical mechanics as they provided both physical and mathematical tools to make
scientific predictions. If we knew all the forces acting on an object and we knew the position
and velocity of the particle at an initial time, we could trace the trajectory of the particle for all
subsequent time.

Newton’s description of light as consisting of particles was however not able to explain
phenomena such as interference and diffraction. The work of Thomas Young (1773–1829)
and Augustin Jean Fresnel (1788–1827) showed unambiguously (as we discuss in Chapter 4)
that light consisted of waves, instead. Young’s double-slit experiment was not only decisive in
debunking Newton’s corpuscular theory of light, but it also continued to play a crucial role
in our understanding of the nature of light and matter even in the twentieth century as we see
in Chapter 8. It was left to James Clerk Maxwell (1831–1879) to complete the classical picture
of light as consisting of electric and magnetic waves. This was a truly remarkable outcome of
his efforts to unify the two known forces of nature: electric force and magnetic force.

This was the situation that existed at the end of the nineteenth century. So much was the
satisfaction with the existing laws of physics that a very eminent British scientist, Lord Kelvin,
is quoted as saying in an address to the British Association for the Advancement of Science in
1900, “There is nothing new to be discovered in physics now. All that remains is more and more
precise measurement”.The classical theories of mechanics, electromagnetics, thermodynamics,
and, of course, light, were firmly in place and it was justified in feeling that the basic laws of
nature were fully understood.
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There were however a small number of unresolved problems at the dawn of the twentieth
century that could not be explained on the basis of existing theories. A resolution of these
problems led to the birth of quantum mechanics. The development of quantum mechanics,
which replaced the classical mechanics of Newton andMaxwell, took place in two distinct eras.

The first era began in December 1899, when Max Planck introduced the notion of the
quantization of energy to explain the frequency spectrum radiated by hot bodies.This problem
had remained unresolved for almost 40 years. The two other big heroes of this era are
Albert Einstein and Niels Bohr. In 1905, Einstein used Planck’s hypothesis to explain some
observations about the emission of electrons when light shines on metals that could not be
explained on the basis of the theories that existed at that time. In the process, as we learn
in Chapter 6, Einstein introduced the notion of light quanta which were subsequently called
photons.This was, in some sense, going back to Newton’s corpuscular theory to explain certain
phenomena. Another stunning success of Planck’s quantum postulate came in 1913 when
Niels Bohr used these ideas to describe a model of the atom that could explain the discrete
frequencies emitted by hydrogen atoms.

These successful attempts to explain some unresolved phenomena based on the quantization
hypothesis of Planck led to the realization that the old classical theory, as formulated by
Newton, Young, Maxwell, and others, may not be valid when we try to understand phenomena
at the atomic level. Planck, Einstein, and Bohr could explain some unresolved phenomena
based on postulates that involved quantization of energy that had no basis in classical theories.
Despite these successes, therewas however no theory that could explain these and all other phe-
nomena in a unifiedmanner.Theperiod between 1913 and 1925was a period of unprecedented
crisis. It was becoming apparent with the difficulties faced in explaining new emerging results
at the microscopic level that a full-fledged theory was needed that should replace Newtonian
mechanics.

The second era began with the breakthrough that came in the summer of 1925 when the
24-year-old Werner Heisenberg took the first major step in formulating a quantum theory,
making a clean break with the past. In January 1926, Erwin Schrödinger independently formu-
lated the quantum theory and wrote down a dynamical equation that is called the Schrödinger
equation in his honor. Later it was shown that the theories of Heisenberg and Schrödinger were
two different but completely equivalent formulations of quantum mechanics. Schrödinger’s
equation, like Newton’s equation F = ma and Maxwell’s equations for electromagnetic fields,
is one of the most famous equations in physics. We introduce it in the last chapter of this book.

Quantum mechanics, as formulated by Heisenberg and Schrödinger (along with other
founding fathers including Max Born, Pascual Jordan, Paul Dirac, and Wolfgang Pauli), could
not only explain all the existing phenomena at themicroscopic andmacroscopic levels but also
predict new phenomena that could then be observed experimentally. Despite these stunning
successes of the new theory, the conceptual foundations of the theory became a major point
of discussion. What we see is that, at the level of a single atom or an electron or a photon,
quantum mechanics makes predictions that are startling. They are dramatically different from
the corresponding results for our everyday objects that can be described very successfully using
Newtonian mechanics. The mind-boggling aspect of quantum mechanics was not lost on the
founding fathers. Indeed, in spite of the great successes in explaining and predicting novel
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Fig. 1.1 One of the most famous photographs in the history of physics taken at the Solvay conference in 1927. Almost

all the founders of the quantum mechanics attended the conference with 17 of the 29 attendees were or to become

Noble Laureates. Back: Auguste Piccard, Émile Henriot, Paul Ehrenfest, Édouard Herzen, Théophile de Donder, Erwin

Schrödinger, J.E. Verschaffelt, Wolfgang Pauli, Werner Heisenberg, Ralph Fowler, Léon Brillouin. Middle: Peter Debye,

Martin Knudsen, William Lawrence Bragg, Hendrik Anthony Kramers, Paul Dirac, Arthur Compton, Louis de Broglie,

Max Born, Niels Bohr. Front: Irving Langmuir, Max Planck, Marie Curie, Hendrik Lorentz, Albert Einstein, Paul Langevin,

Charles-Eugène Guye, C.T.R. Wilson, Owen Richardson. Photograph by Benjamin Couprie, Institut International de

Physique Solvay, Brussels, Belgium.

phenomena, the conceptual foundation of quantum mechanics remains a hotly debated issue.
Some of these discussions will be topics of later chapters.

The major milestones in the formulation of the quantum theory are as follows:

• 1899 – Max Planck introduces first ideas about quanta to explain blackbody radiation
• 1905 – Albert Einstein explains the photoelectric effect by treating light as consisting of

particles
• 1913 – Niels Bohr presents a planetary model for the atom based on a quantum postulate
• 1924 – Louis de Broglie postulates that particles behave like waves
• 1925 – Werner Heisenberg invents quantum mechanics
• 1926 – Erwin Schrödinger presents the Schrödinger wave equation
• 1927 – Max Born introduces the probabilistic nature of quantum mechanics
• 1927 – Werner Heisenberg derives Heisenberg uncertainty relations
• 1927 – Niels Bohr formulates the principle of complementarity
• 1928 – Paul Dirac unifies the wave–particle description of light

The era spanning over almost 30 years (from 1900 till 1930) when the foundations of quantum
mechanics were laid is perhaps the most remarkable in the history of science. A whole new
way of thinking and doing physics emerged. New effects and phenomena were predicted
and observed based on quantum mechanics that led to the birth of many new fields of
study. Just as the development of classical mechanics in the seventeenth, eighteenth, and
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nineteenth centuries ushered in an industrial revolution, an understanding of the quantum
mechanical laws have led to amazing technological developments.The electronics industry, the
communication revolution, the computer technology, the sources of energy, nanotechnology
devices, lasers, and numerous other products and outcomes would not have been possible
without an understanding of the laws of quantum mechanics. Our world would have been
rather old-fashioned and simple in most respects if we still existed in an era of classical physics
of the nineteenth century.

1.2 Outline of the Book

The objectives of this book are two-fold. On one hand, we discuss the foundation of quantum
mechanics and the laws of quantum theory as were formulated by the founding fathers in the
first quarter of the twentieth century. On the other, we discuss some novel applications of these
ideas to modern and evolving fields of quantum communication and quantum computing. In
the following, some questions (that would appear bizarre, even crazy, within the framework
of classical physics) are listed. These are discussed and answered in this book with as little
mathematics as possible. The amazing nature of these questions and their answers within the
context of quantum mechanics should indicate what this book is all about. However, first a
warning! For someone not familiar, certain terms and expressions used in this section may be
new and incomprehensible. There is no need to be concerned as the premise of this section is
only to give a flavor and not the full explanation. These terms and more are explained when
they appear in later chapters of the book.

Can light behave like particles?The studies on the nature of light started in the seventeenth
century. One of the earliest theories was advanced by Newton when he postulated that light
consists of small particles. As we study in Chapter 4, this theory was completely discredited
through the work of Thomas Young on interference and Augustine Fresnel’s work on diffrac-
tion, who showed that light behaves like a wave. However Albert Einstein, while explaining
the photoelectric effect (that we discuss in Chapter 6) showed in 1905 that the experimental
results on this effect can only be explained if we treat light as consisting of quanta of energy
called photons. Thus we have a paradoxical situation with which we have lived for well over a
hundred years: light can behave like waves in some experiments and particles in some others.
A milestone experiment was performed in 1923 by Arthur Compton, who showed that the
results of the scattering of light by an electron can be explained only if we treat the light as
consisting of particles with well-defined momentum (a particle concept). The Compton effect
is discussed in Chapter 7.

Can electrons behave like a wave? Almost twenty years after Einstein showed that light
can behave like particles, Louis de Broglie postulated that the converse should also be true—
particles should also be expected to behave like a wave. His predictions, as discussed in
Chapter 7, were verified in experiments involving electrons incident on crystals. The results
of the experiments done independently by G. P. Thomson and by Clinton J. Davisson and
Lester H. Germer could only be explained based on de Broglie’s conjecture. More recently,
in 1961, it was shown in a landmark experiment by Claus Jönsson that Young’s double-slit
experiment done with electrons (instead of light) leads to interference fringes, which is a
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hallmark of waves. This amazing experiment and its role in the study of the foundations of
quantum mechanics are discussed in Chapter 8.

Delayed-choice andquantumeraser:Ananalysis of the double-slit experiment continues to
amaze us with new paradoxical results. If somehowwe are able to obtain the information about
which slit the photon or electron passed through in the double-slit experiment, the interference
fringes disappear and the particle nature is exhibited. John Wheeler argued that we can make a
delayed choice as to whether the wave nature is exhibited and interference fringes are formed
or the particle nature is exhibited by finding the which-path information, long after the photon
(or electron) passed through the double slit. In 1982, Marlan Scully and Kai Drühl went one
step further and came up with the ingenious but highly counterintuitive notion of a quantum
eraser in which the which-path information is ‘erased’ and the interference pattern is recovered
after the photon has passed through the slits and is detected on the screen. All this and more
is discussed in Chapter 8.

Can atoms andmolecules in a gas lose their identity and become one? In a gas, atoms and
molecules are tiny particles that aremoving around randomly in all directions, occasionally col-
lidingwith each other.This is the picture of a gas we have had since the laws of thermodynamics
were formulated in the nineteenth century. This picture gives a quite accurate description of
the properties of the gas such as pressure and temperature in our everyday life. However it
was observed by Nathan Bose and Albert Einstein in 1925, that, when a gas is cooled to very
low temperatures, almost at the nano-Kelvin level, the atoms shed their particle nature and
act like waves—the de Broglie waves—losing their identity in the process and becoming a big
massive object. This is a new state of matter—neither solid nor liquid nor gas—a state we call a
Bose–Einstein condensate. We study this amazing effect that was experimentally observed in
1995—some 70 years after its prediction—in Chapter 7.

Canwemeasure position and velocitywith arbitrary accuracy?WhenNewton formulated
the laws of mechanics, the underlying principle was that, if we know all the forces acting on an
object, we can predict both its location and velocity with arbitrary precision. The limitation on
themeasurements came only from the quality of themeasuring apparatus.Thuswhenwe throw
a ball, we can predict with absolute certainty where it will be and how fast it will be moving at a
given time. We can thus trace a trajectory of the ball. But is this really true? Heisenberg showed
in 1927 that, no matter how accurate and precise our measurements are, we cannot measure
two complementary variables such as position and momentum with as much accuracy as
we would like. We have inevitable uncertainties in measuring both quantities such that the
product of these uncertainties is above a minimum value, extremely tiny but nevertheless
nonzero. This uncertainty relation called the Heisenberg uncertainty relation is “derived” in
Chapter 7 and is one of the foundation principles of quantum mechanics. Heisenberg was
a research assistant to Niels Bohr when he came up with this most amazing result. Bohr
came up with his own principle of complementarity at the same time according to which two
observables are complementary if precise knowledge of one of them implies that all possible
outcomes of measuring the other one are equally probable. According to Bohr’s principle of
complementary, we cannot see both particle and wave nature in an experiment simultaneously.
This principle is discussed within the context of Young’s double-slit experiment in Chapter 8.

Can we predict anything with certainty? An important consequence of the wave–particle
duality is that there is no determinism in quantum mechanics. Using Newtonian mechanics,
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we can predict with certainty where a ball thrown will hit the wall. The same cannot be said
about an electron—quantum mechanics only allows us to calculate the probability that it hits
the screen at a given point but does not allow a definite prediction where it will hit. Even after
the electron is detected at a certain location, quantum mechanics does not allow us to talk
about the trajectory it may have followed except in some very special cases. In the quantum
mechanical description, a particle like an electron is not described as a point object that follows
a definite trajectory. Instead it is described by a wave packet or wave function that spreads as
it propagates. The wave function is NOT a real object representing the object—it (or rather
its modulus squared) represents the probability that the object is found at a certain location.
This inherent probabilistic nature of quantum mechanics makes it very distinct from classical
mechanics and this aspect is discussed in different contexts at various places in the book, most
notably in Chapters 9, 10, and 17.

Einstein–Bohr debate: One of the major events in the evolution of the quantum theory is
the debate that took place between the two giants: Albert Einstein and Niels Bohr. Through
conference presentations, letters, and research papers, these two iconic figures argued vig-
orously about the fundamental issues concerning quantum mechanics. This debate has left a
lasting imprint on any discussion on the foundation of quantum mechanics. Einstein was one
of the founding fathers of quantum mechanics through his work on the photoelectric effect
and introduction of light quanta (Chapter 6). Yet he never reconciled with the final product
that emerged with the theories of Heisenberg and Schrödinger. What he appeared to be most
uncomfortable with was the lack of the determinism that we cherish in the classical theories
of Newton and Maxwell. He could not reconcile with Bohr’s principle of complementarity that
implied themutual incompatibility between the wave and particle natures of, for example, light
and electrons. He came up with many clever thought experiments that demonstrated how we
could see both particle and wave aspects in any given experiment. Bohr, however, defended
his principle of complementarity each time, sometimes by invoking Heisenberg uncertainty
relation. We discuss aspects of this debate in Chapters 8 and 12.

Does the moon exist when we do not look at it? This rhetorical question was posed by no
ordinary mortal but by Albert Einstein. There are two fundamental principles that we cherish
as almost “self-evident truth”. These are reality and locality. Reality means that an object is real
when it exists even in the absence of an observer. Paraphrasing Einstein, we have no doubt
that the moon exists even when none of us is looking at it, i.e., it does not cease to exist when
nobody is looking at it. Locality means that no information can be sent faster than the speed of
light in vacuum. This means that if two objects are separated by a distance that light takes one
hour to go from one to the other then what happens to one object (destroyed, divided, rotated
etc.) cannot be influenced at all by the other object in any way whatsoever for one hour. One of
the most startling results is that quantum mechanics violates any theory that is based only on
these self-evident truths of reality and locality, and the remarkable result is that experiments
are all in agreement with the predictions of quantum mechanics. Thus reality and locality
cannot co-exist. We discuss this amazing result with far reaching consequences in Chapter 12.

Is perfect cloning possible? It is our common experience that, given the expertise and
resources, we can make identical copies of any object. An expert carpenter can make such a
copy of an object like a chair that the copy is indistinguishable from the original. A document
can similarly be copied such that the original and the copy are identical. But is this true even
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at the microscopic level? Can we build a cloning machine that can make an identical copy
of a single photon or an electron? The answer is, surprisingly, no. We discuss the no-cloning
theorem of quantum mechanics in Chapter 11. An immediate question is if we cannot make
identical copies then what is the best copy we can make? The answer to this question is also
presented in the same chapter.

Can we accomplish teleportation like it is done in “Star Trek”? In other words can we
make someone disappear at one place and recreate them at another place? This is still a far-
fetched dream. What has, however, been possible is that the exact state of an atom or a photon
can be destroyed in one place and generated at another. This is done by first preparing an
entangled state of two particles at the two locations. Through some joint measurements and
sending the measurement results from one location to another, the state of the atom or photon
can be “teleported”. Quantum teleportation is discussed in Chapter 10.

Can we have absolutely secure communication and detect an eavesdropper with
certainty? Exchanging secret information between two parties at a very large distance from
each other is a problem addressed for thousands of years. A field called cryptography emerged
to address this problem. The basic idea has been to exchange a random key between the two
parties through secure and reliable channels such that the key is known only to the two parties
and is completely inaccessible to a potential eavesdropper. Then a message encoded with the
key is sent from one party to the other. Even if some eavesdropper intercepts the encoded
message, the actual message cannot be deciphered without the knowledge of the key. Only the
receiving party can decipher the message with the key. A question of interest in the modern
world of e-commerce and heightened concerns about security is whether it is possible to
exchange a key on a public channel (which is accessible to everyone) and if an eavesdropper
attempts to listen to the transmitted massage they can be detected by both the sender and
the receiver. In Chapter 13, we show that this impossible task can be accomplished by using
quantum mechanical systems. We first discuss the RSA algorithm that is used in the present-
day public key distribution. We then present quantum mechanical algorithms that can ensure
absolutely secure key distribution on a public channel but also ensures that an eavesdropper
can be detected with certainty.

Is psychic communication possible? It is a paradigm that an exchange of information
between two parties requires an exchange of particles and objects that carry the information.
In ordinary conversation, atoms and molecules of the atmosphere are the carrier of our words
and speech (no verbal communication will be possible if we go to outer space where there
are no particles present). In present-day optical communication, the carrier of information
is a light beam or photons. Is it possible for two parties to communicate with no particle
existings between them? If this becomes possible, it would be akin to something like psychic
communication. In 2013, the author and his colleagues showed that it is indeed possible to
communicate with no particles in the transmission channel.This highly counterintuitive result
is discussed in Chapter 14.

Can we build a quantum computer? All the computers that we see around ourselves
use materials such as semiconductors whose properties are understood only by quantum
mechanical analysis. Every computer down to its basic building blocks such as transistors is a
quantumdevice. However the basic processing unit for the purpose of doing anymanipulation,
called a bit, is a classical object. A bit can take two possible values: “0” or “1”. A quantum
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computer is a computing device in which the processing unit is a quantum-bit (or qubit).
A qubit has highly non-classical properties—it can exist in a state where it is simultaneously in
the states “0” and “1”. Similarly two qubits can exist in an entangled state—a state in which a
manipulation of one qubit can influence the other qubit no matter how far away they are from
each other. A quantum computer can solve some problems at a speed much faster than we can
imagine in comparison with our classical or conventional computer. The basics of quantum
computing and some potential applications are discussed in Chapters 15 and 16.

Can we factorize a very large number in fewmillion steps? Multiplication is easy—we can
multiply two arbitrarily large numbers in a relatively very small time. The converse, finding
the factors of a number, is a notoriously difficult problem. The finding of the prime factors of
a number is not a mundane problem of pure mathematics—it lies at the heart of present-day
e-commerce (Chapter 13). The reason we can send our credit card number and other personal
information on the internet without any concerns about the information falling into hostile
hands is the difficulty of finding prime factors of a number. For example, it may take several
decades to factorize a 256-digit number (which is typically used in the RSA algorithm for
communication safety) on the fastest computer today. One of the major potential successes
of a quantum computer is that it can solve this problem in few million steps and thus giving
an answer in a remarkably short time. The protocol for factoring a number, called Shor’s
algorithm, is discussed in Chapter 16.

Can we find a needle in a haystack? A game we may have played in our childhood is the
shell game. A pea is hidden underneath one of the four shells and we have to guess the shell
that is hiding the pea. If we are lucky, we can find the pea in just one guess but the probability
of that happening is only 25%. Can we come up with a trick such that we can find the pea with
certainty the first time every time? In classical systems, this seems impossible. In Chapter 16,
we show that, in a quantum version of the shell game, we can indeed find the “pea” in only one
attempt every time. We also show that this simple procedure can be applied to the search for a
marked item (a needle) in an unsorted database (haystack) much faster than we can imagine
using the tricks of quantum computing.

Can a particle tunnel through a barrier even when it does not have sufficient energy?
It is a common observance that if we want to cross a hurdle or a barrier we need to have
enough energy to surpass the barrier. For example, in a pole vault, an athlete acquires enough
kinetic energy by running very fast that is at least equal to the potential energy corresponding
to the height of the barrier. A smaller incident energy will not allow the athlete to jump
over the barrier. An amazing consequence of quantum mechanics, first observed by Friedrich
Hund in 1927, is that a particle such as an electron can “tunnel” through a barrier even when
its energy is less than the minimum energy required to jump over the barrier. This effect,
which is extensively used in transistors and microscopes, is discussed as a consequence of the
Schrödinger equation in Chapter 17.

Whatdoes an atom look like? In the nineteenth century, an atom,which is the basic building
block of matter, was thought of as an indivisible small object. With the discovery that an atom
consists of both positive and negative electric charges, it was thought that negative charges
were embedded in a sea of positive charges. A major breakthrough came in the early twentieth
century when a model of the atom emerged through quantum mechanical postulates in which
positive charges are concentrated in the central part of the atom called the nucleus and the
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electrons revolve around the nucleus in fixed orbits like planets revolve around the sun. This
picture, though having serious problems within the classical electromagnetic theory, is at least
easy to visualize. This evolution of the picture of the atom is discussed in Chapter 6. The final
understanding of how the electrons are distributed within an atom developed with the advent
of full-fledged quantum mechanics, and the picture of how electronic charge is distributed
inside the atom is nothing that we can visualize with our classical intuition. This picture is
discussed in the last chapter of this book when we consider the Schrödinger equation and its
solution for the hydrogen atom.
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2 Mathematical Background

Mathematics is the language of modern physics. Mathematics provides the tools to solve
physics problems. Much of the progress of science, and particularly physics, owes to the
discovery of algebra and calculus. In the spirit of making this book reasonably self-contained,
certain topics are discussed that may be required in understanding the foundation and the
applications of quantum mechanics. Foremost are the definition and properties of complex
numbers.The central quantity of quantummechanics is the wave function which is, in general,
a complex quantity. Trigonometry and vector analysis are necessary topics for almost any
discussion of physical phenomena. In this chapter we discuss these topics to the extent that
makes their use in subsequent chapters quite natural and normal. Another topic that will
reverberate throughout this book due to the nature of quantummechanics is probability theory.
A clear understanding of the concept of probability is essential for the study of quantum
mechanical predictions and phenomena. The theory of probability is a vast topic. Here the
main ideas of probability theory are presented that should be sufficient for an understanding
of the topics discussed in this book.

2.1 Complex Numbers

There are two classes of numbers we are very familiar. The first one consists of integers:

⋯· −3, −2, −1, 0, 1, 2, 3⋯·· (2.1)

The integers can both be positive and negative. The other class of numbers is more general.
It consists of what are called real numbers.

⋯,−45.346, −1.872, 0.236, 2.000, 3.458, 2.639,⋯ (2.2)

All integers are also real numbers.These are solutions of some algebraic equations. As examples,
the solutions of the quadratic equation1

x2 − 3x + 2 = 0 (2.3)

are

x = 1, 2. (2.4)

1 The solutions of a general quadratic equation, ax2 + bx+ c = 0, where a, b, and c are arbitrary real or complex
numbers, are given by x = (−b ±√b2 − 4ac) /2a.

Quantum Mechanics for Beginners: With Applications to Quantum Communication and Quantum Computing. M. Suhail Zubairy.
© M. Suhail Zubairy 2020. Published in 2020 by Oxford University Press. DOI: 10.1093/oso/9780198854227.001.0001
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We can verify that these values of x are indeed the solutions of Eq. (2.3) by substituting them
in the equation and seeing that the left hand side is equal to zero. For example,

12 − 3 × 1 + 2 = 0. (2.5)

Similarly the solutions of the quadratic equation

x2 − 5x + 6 = 0 (2.6)

are

x = 2, 3. (2.7)

Real numbers can be represented on a line as shown in Fig. 2.1. We can choose a point on the
line representing ‘0’. All the points to the right of ‘0’ are positive numbers and the points to the
left are negative numbers.

Next we consider another simple quadratic equation:

x2 + 1 = 0. (2.8)

The solutions of this equation are

x = +√−1 and −√−1. (2.9)

These numbers are neither integers nor real numbers.They arewhatwe call imaginary numbers.
For a real number x, the square x2 is always positive even when x is negative. For example,

(−2.5)2 = +6.25. However the square of an imaginary number is negative, i.e., (√−1)
2
= −1.

Let us consider another quadratic equation

(x + 1)2 + 9 = 0. (2.10)

The solutions of this equation are

x = −1 ± 3√−1. (2.11)

These solutions are not real numbers. They are of the form

a + bi,

where a and b are real numbers. Here we used the designation

i = √−1. (2.12)

Such numbers which have a real part a and an imaginary part bi are called complex numbers.
The solution of the equation (x + 1)2 + 9 = 0 can therefore be written as x = −1 ± 3i.

–3 –2 –1 –
1

0
3

1
1 2 2 3e π

2

Fig. 2.1 Real numbers, both positive and negative, are represented on a line. (The number e is defined in Eq. (2.40).)
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Geometrically, complex numbers extend the concept of the one-dimensional line to the two-
dimensional complex plane by using the horizontal axis for the real part and the vertical axis
for the imaginary part. This is shown in Fig. 2.2. The complex number a+ bi can be identified
with the point (a, b) in the complex plane. A complex number whose real part is zero is said
to be purely imaginary; these numbers lie on the vertical axis of the complex plane. A complex
number whose imaginary part is zero can be viewed as a real number, lying on the horizontal
axis of the complex plane.

According to the fundamental theorem of algebra, all polynomial equations with real or
complex coefficients in a single variable have a solution in complex numbers. In the following
we discuss some properties of complex numbers.

Complex conjugate: Complex conjugate of the complex number

z = x + iy (2.13)

is defined as

z∗ = x − iy. (2.14)

The complex conjugate can be obtained by replacing i by −i. The geometric representation of
z and its conjugate z* in the complex plane can be seen in Fig. 2.3. The complex conjugate z* is
the reflection of z about the real axis. It can be verified that conjugating twice gives the original
complex number:

(z∗)∗ = z. (2.15)

Im

b

O a

a + ib

Re

Fig. 2.2 A complex number is represented on a plane. The x-component gives the real part and the y-component

gives the imaginary part.

Im

Re

z = x + iy

y

z* = x – iy

–y

o

r

x

r

Ø

Ø

Fig. 2.3 The complex conjugate of a complex number z = x+ iy is the reflection of z about the x-axis.
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The real and imaginary parts of a complex number z can be extracted using its complex
conjugate via

x = 1
2 (z + z∗) ; y = 1

2i (z − z∗) . (2.16)

A complex number is real if and only if it equals its own conjugate: z = z∗.

Addition and subtraction: Complex numbers are added by separately adding the real and
imaginary parts of the summands. That is to say:

(a + ib) + (c + id) = (a + c) + i (b + d) . (2.17)

Here the real part of the sum of the two complex numbers is the sum of the real parts and the
imaginary part is the sum of the imaginary parts. Similarly, subtraction is defined by

(a + ib) − (c + id) = (a − c) + i (b − d) . (2.18)

Multiplication and division: The multiplication of two complex numbers is defined by the
following formula:

(a + ib) (c + id) = (ac − bd) + i (bc + ad) . (2.19)

In deriving this equation, we used i2 = −1. In particular,

(a + ib) (a − ib) = a2 + b2. (2.20)

The real and imaginary parts of the ratio of two complex numbers are obtained by mul-
tiplying both numerator and denominator by the complex conjugate of the denominator.
This makes the denominator a real number and the numerator becomes the product of two
complex numbers, which can be separated into real and imaginary parts. Thus

a + ib
c + id

= (a + ib)
(c + id)

(c − id)
(c − id) =

(ac + bd)
(c2 + d2) + i

(bc − ad)
(c2 + d2) . (2.21)

Modulus: The modulus of a complex number z is defined as follows:

∣ z ∣= √zz∗ = √(x + iy) (x − iy) = √(x2 + y2). (2.22)

Its properties are:

(i) |z| is real.
(ii) ∣ z ∣≥ 0.
(iii) ∣ z ∣= 0 if and only if x = y = 0.

2.2 Trigonometry

Let us consider a right angle triangle ABC as shown in Fig. 2.4. For such a triangle, according
to the Pythagoras theorem,

a2 + b2 = c2, (2.23)

where a is the perpendicular, b is the base, and c is the hypotenuse.
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c
a

b

base

hypotenuse

n
o

r
m

A C

B

θ

Fig. 2.4 A right angle triangle.

We can define the trigonometric functions as follows:

sin 𝜃 = Norm
Hypotenuse =

a
c , (2.24)

cos 𝜃 = Base
Hypotenuse =

b
c , (2.25)

tan 𝜃 = Norm
Base = a

b
. (2.26)

We can verify that:

sin2𝜃 + cos2𝜃 = 1, (2.27)

tan 𝜃 = sin 𝜃
cos 𝜃 = a

b
. (2.28)

Some useful trigonometric formulae are given as follows:

sin (𝜃1 ± 𝜃2) = sin 𝜃1 cos 𝜃2 ± cos 𝜃1 sin 𝜃2, (2.29)

cos (𝜃1 ± 𝜃2) = cos 𝜃1 cos 𝜃2 ∓ sin 𝜃1 sin 𝜃2, (2.30)

tan (𝜃1 ± 𝜃2) =
tan 𝜃1 ± tan 𝜃2
1 ∓ tan 𝜃1 tan 𝜃2

, (2.31)

sin (2𝜃) = 2 sin 𝜃 cos 𝜃, (2.32)

cos (2𝜃) = cos2𝜃 − sin2𝜃. (2.33)

The functions sin 𝜃 and cos 𝜃 are oscillating functions of 𝜃 as shown in Fig. 2.5. However,
these functions have series expansions,

sin 𝜃 = 𝜃 − 𝜃3

3! +
𝜃5

5! −⋯ (2.34)

cos 𝜃 = 1 − 𝜃2

2! +
𝜃4

4! −
𝜃6

6! +⋯ , (2.35)
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where 𝜃 is given in radians and

n! = n (n − 1) (n − 2)⋯ 3 · 2 · 1. (2.36)

As examples, 3! = 3 · 2 · 1 = 6 and 5! = 5 · 4 · 3 · 2 · 1 = 120.
A condition that we encounter frequently in the book is 𝜃 ≪ 1 where 𝜃 is given in radians.

When this happens, we can see from the series expansions (2.34) and (2.35), that

sin 𝜃 ≈ 𝜃, (2.37)

cos 𝜃 ≈ 1 − 𝜃2

2 , (2.38)

tan 𝜃 = sin 𝜃
cos 𝜃 ≈ 𝜃 (2.39)

We can verify the series expansions (2.34) and (2.35) and the small 𝜃 limits of sin 𝜃, cos 𝜃, and
tan 𝜃 as given in Eqs. (2.37), (2.38), and (2.39), respectively, from Table 2.1.

Next we define the quantity e called the exponent which is defined by the following series

e = 1 + 1
1! +

1
2! +

1
3! +

1
4! +⋯ = 2.71828⋯. (2.40)

1.5

1.0

0.5

–0.5

–1.5

2

0–π π

θ

–1.0

0.0

–
2

π π

sin θ cos θ 

Fig. 2.5 The trigonometric functions sin 𝜃 and cos 𝜃 are plotted as a function of 𝜃.

Table 2.1 Selected values of trigonometric quantities

(𝜃 is in radians)

𝜃 sin 𝜃 cos 𝜃 tan 𝜃

0.00 0.0000 1.0000 0.0000

0.01 0.0100 1.0000 0.0100

0.05 0.0500 0.9988 0.0500

0.10 0.0998 0.9950 0.1003

0.14 0.1395 0.9902 0.1409

1.05 0.8674 0.4976 1.7433

2.10 0.8632 −0.5048 −1.7098
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It can be shown that

ex = 1 + x + x2

2! +
x3

3! +⋯ (2.41)

Sometimes ex is expressed as exp x (an abbreviation of exponential of x). An important
property of e is that, for two numbers x and y (real or complex),

exey = ex+y. (2.42)

This can be proven by expressing the functions ex and ey in their respective series expansions,
then multiplying term by term and keeping terms of the same orders together.

An important formula is the Euler’s formula:

ei𝜃 = cos 𝜃 + i sin 𝜃. (2.43)

We can verify this formula by comparing the series expansions of ei𝜃 , cos 𝜃, and sin 𝜃 as given
in Eqs. (2.41), (2.34), and (2.35), respectively. In addition, the property of i, namely i2 = −1, is
used. On taking the complex conjugate,

e−i𝜃 = cos 𝜃 − i sin 𝜃. (2.44)

On adding and subtracting Eqs. (2.43) and (2.44) we can rewrite cos 𝜃 and sin 𝜃 as

cos 𝜃 = ei𝜃 + e−i𝜃

2 , (2.45)

sin 𝜃 = ei𝜃 − e−i𝜃

2i . (2.46)

As a special case of Euler’s formula

ei𝜋 = −1. (2.47)

Here we used cos𝜋 = −1 and sin𝜋 = 0. One of the most famous theoretical physicists
of our time, Richard Feynman, described this relation as “the most remarkable formula in
mathematics.” This is also called Euler’s identity. As an example

ei3𝜋/2 = ei𝜋/2ei𝜋 = −ei𝜋/2 = − (cos (𝜋/2) + i sin (𝜋/2)) = −i. (2.48)

A pictorial representation of ei𝜃 is given in Fig. 2.6. Here ei𝜃 is a phasor whose magnitude is
1 and which is rotated by an amount 𝜃 in the complex plane. We can see that the projection on
the x-axis representing the real part is cos 𝜃 and the projection on the y-axis representing the
imaginary part is sin 𝜃. Thus

ei𝜃 = cos 𝜃 + i sin 𝜃. (2.49)

The Euler’s theorem helps us in proving that

(cos 𝜃 + i sin 𝜃)n = ein𝜃 = cos (n𝜃) + i sin (n𝜃) . (2.50)

This is called De Moivre’s theorem.
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sin θ

cos θo

Im (e
iθ

)

Re (e
iθ

)

θ

Fig. 2.6 A pictorial representation of ei𝜃 .

These relations help us in writing complex numbers in the polar coordinates (r, 𝜃) as follows.
The complex number

z = x + iy (2.51)

can be transformed to the polar coordinates via

x = r cos 𝜃; y = r sin 𝜃. (2.52)

We thus have

z = r cos 𝜃 + ir sin 𝜃 = rei𝜃. (2.53)

The polar coordinate r is the magnitude of z as can be seen by first noting that

∣ z ∣= √zz∗ = √rei𝜃re−i𝜃 = r. (2.54)

We thus have

r = √x2 + y2. (2.55)

2.3 Vector and Scalar Quantities

All physical quantities can be classified into two kinds. The scalar quantities are described
by a single number (including any units). Examples are temperature, volume, and time.
The vector quantities, on the other hand, require both magnitude and direction for their
complete description. Examples of vector quantities include displacement, velocity, and force.
We designate a scalar quantity by a normal font, such as the temperature is represented by T
and the time by t. To describe vectors we use the bold font. For example, velocity is v and force
is F. To describe the magnitude of a vector we use the absolute value sign: |A| or just A. The
magnitude is always positive and is equal to the length of the vector.
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Here we mention some of the properties of vectors:
Equality of two vectors: Two vectors are equal if they have the samemagnitude and the same

direction.
Movement of vectors: Any vector can be moved parallel to itself without being affected, i.e.,

two parallel vectors of the same magnitude are the same vectors.
Negative vectors: Two vectors are negative if they have the same magnitude but are 180∘

apart (opposite directions):

A = −B;A + B = A + (−A) = 0. (2.56)

Adding Vectors: While adding vectors, we can use both geometric and algebraic methods. We
first describe the geometric method.

In the geometric method for the addition of vectors, we use scale drawings. As we noted, a
vector can bemoved parallel to itself without changing itself.Thus if wewant to add two vectors
A andB, we first draw the vectorA and then draw the vectorBwith the tail of B coincidingwith
the tip of A by appropriate parallel movement of the vector B. The resultant vector R = A+ B
is drawn from the tail of the vector A to the tip of vector B as shown in Fig. 2.7. This method is
known as the triangle method of addition. When we add two vectors, the sum is independent
of the order, i.e.,

A + B = B + A. (2.57)

This same general approach can also be used to add more than two vectors. For example, the
vector sum of four vectors A, B, C, and D,

R = A + B + C + D (2.58)

is as shown in Fig. 2.8.

B

B

A

R
 =

 A
 +

 B

R
 =

 A
 +

 B

A

Fig. 2.7 A geometric method for adding two vectors A and B.

A

B

C

D

R
 =

 A
 +

 B
 +

 C
 +

 D

Fig. 2.8 A geometric addition of four vectors A, B, C, and D.
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y

A
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θ
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Fig. 2.9 A vector A is decomposed in its x- and y-components.

Inmany situations, it is inconvenient to use the geometricmethod for the addition of vectors.
A more convenient method is the algebraic method, adding the components of each vector
separately and then finding the magnitude and the direction of the vector.

Before we discuss this method, we show how the components of a vector are obtained.
We only consider the vectors in two dimensions but a generalization to three dimensions is
straightforward.

In Fig. 2.9, we consider a vector A of length A and making an angle 𝜃 with the x-axis. At
this point, we note that the coordinate system (the orientations of mutually perpendicular x-
and y-axes) is completely arbitrary. The only condition is that x- and y- axes are mutually
perpendicular. As seen in Fig. 2.9, the x-component of the vector A is obtained by drawing
a perpendicular from the tip of the vector onto the x-axis. The x-component Ax is then equal
to the distance from the origin to the point where the perpendicular intersects the x-axis. This
distance is equal to A cos 𝜃, i.e.,

Ax = A cos 𝜃. (2.59)

Similarly, the y-component, Ay, of the vector A is obtained by drawing a perpendicular from
the tip of the vectorA to the y-axis.The y-component is then equal to the distance A sin 𝜃 from
the origin to the intersection of the perpendicular on the y-axis, i.e.,

Ay = A sin 𝜃. (2.60)

From the Pythagoras theorem (2.23) as well as Eq. (2.27), it can be seen that the magnitude of
the vector A in terms of the components Ax and Ay is

A = √A2
x + A2

y . (2.61)

It follows from Fig. 2.9 (or by dividing Ay and Ax in Eqs. (2.60) and (2.59)) that

tan 𝜃 =
Ay

Ax
. (2.62)

The angle 𝜃 is obtained as

𝜃 = tan−1 (
Ay

Ax
) . (2.63)

With this description of vector components, we now discuss a component method to obtain
the vector sum of two vectors.

Component method: In this method two or more vectors can be added algebraically by
adding the x- and y-components of all the vectors.
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y y

x x

B
B

C C

A A

Ax

Ay

Cx = Ax  +  Bx 

Cy = Ay  +  By

By

Bx

o o

Fig. 2.10 Sum of two vectors A and B via component method.

Let us consider two vectors A and B as shown in Fig. 2.10. We can decompose each vector
into its x- and y- components:

A = Axx̂ + Ay ̂y, (2.64)

B = Bxx̂ + By ̂y. (2.65)

Here x̂ and ̂y are unit vectors along x- and y-axis, respectively. These unit vectors are used to
specify direction and have magnitude equal to 1. Any vector A (and B) in the xy-plane can be
written in the form (2.64) (and (2.65)).

Then the sum of the two vectors is

A + B = (Axx̂ + Ay ̂y) + (Bxx̂ + By ̂y)
= (Ax + Bx) x̂ + (Ay + By) ̂y.

(2.66)

Thus the resultant vector C can be written as

C = A + B = (Ax + Bx) x̂ + (Ay + By) ̂y. (2.67)

The x- and y-components of the vector C are therefore given as

Cx = Ax + Bx,Cy = Ay + By (2.68)

and the resulting magnitude of the vector C is

C =√(Ax + Bx)
2 + (Ay + By)

2
. (2.69)

Scalar or dot product of two vectors: The scalar product of two vectors A and B is written
as A·B. It is also called the dot product.

The dot product of two vectors can be thought of as the projection of one onto the direction
of the other and is defined via

A · B = AB cos 𝜃 (2.70)
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where 𝜃 is the angle between A and B. This is shown in Fig. 2.11. The dot product says
something about how parallel two vectors are. For example, it has maximum value when two
vectors are parallel. In this case 𝜃 = 0 and A·B = AB. On the other hand, if the two vectors are
perpendicular to each other, 𝜃 = 𝜋/2, and the dot product A·B = 0.

The dot products of the unit vectors x̂ and ̂y can then be given as follows:

x̂ · ̂y = 0; x̂ · x̂ = 1; ̂y · ̂y = 1. (2.71)

Therefore, for A = Axx̂ + Ay ̂j,

A · x̂ = A cos 𝜃 = Ax. (2.72)

In terms of the components, the dot product can be written as

A · B = (Axx̂ + Ay ̂y) · (Bxx̂ + By ̂y) = AxBx + AyBy. (2.73)

For vectors in three dimensions, we have

A · B = AxBx + AyBy + AzBz (2.74)

Cross Product: The cross product between two vectors is denoted as

C = A × B. (2.75)

Unlike the dot product, the cross product is a vector quantity. Its magnitude is

∣C ∣=∣ A × B ∣= AB sin 𝜃, (2.76)

where 𝜃 is smaller angle between the vectors and its direction is perpendicular to the plane
containing the vectors A and B as shown in Fig. 2.12.

B

A

|B| cos θ

A 
˙
 B = |A||B| cos θ

θ

Fig. 2.11 The dot product of two vectors A and B.

C = A × B

–C = B × A

A

θ

B

Fig. 2.12 The cross product of two vectors A and B.
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The cross product of two vectors says something about how perpendicular they are: Cross
product of any parallel vectors (𝜃 = 0) is zero and the cross product is maximum for perpen-
dicular vectors (𝜃 = 𝜋/2).

The cross products of Cartesian unit vectors are:

x̂ × ̂y = ̂z; x̂ × ̂z = − ̂y; ̂y × ̂z = x̂, (2.77)

x̂ × x̂ = 0; ̂y × ̂y = 0; ̂z × ̂z = 0. (2.78)

Using these results, we can show that

A × B = (AyBz − AzBy) x̂ + (AzBx − AxBz) ̂y + (AxBy − AyBx) ̂z. (2.79)

2.4 Elements of Probability Theory

Let us first give formal description of some simple properties of probability and then illustrate
with some examples.

Suppose that {a1, a2,⋯ , aN} is the set of possible outcomes of an event A. The probability
that ai occurs is denoted as P(ai). In the case where the event never happens, the probability of
that event is equal to 0. However if the event is definitely going to happen then the probability
of that event is 1. In general, the probability P(ai) is greater than or equal to zero and is less
than or equal to one. The sum of all the probabilities should be equal to 1, i.e.,

N

∑
i=1

P (ai) = P (a1) + P (a2) +⋯ P (aN) = 1. (2.80)

For a single random event A, the set of probabilities {P (a1) , P (a2) ,⋯ , P (aN)} provide a
complete description.

The simplest example of a probabilistic event is the toss of a coin. The set of possible
outcome is {Head, Tail}. For a fair coin toss, the probabilities of getting a Head or a Tail are
both equal to 1/2, i.e.,

P (Head) = P (Tail) = 1/2. (2.81)

It is easy to see that

P (Head) + P (Tail) = 1. (2.82)

A question of interest is: Can we make a definite statement about the outcome of the tossed
coin for a single event (that is a single toss) before the coin lands? The answer is no. We cannot
make a definite statement about the outcome before the toss is completed. For a single toss we
can get either a Head or a Tail. Then what does it mean to say that P (Head) = P (Tail) = 1/2?
These probabilities can be determined by tossing the coin a large number of times, say N times.
Let the number of times we get a Head be nH and the number of times we get a Tail be nT . The
probability of getting a head is thus

P (Head) = nH
N . (2.83)
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Similarly

P (Tail) = nT
N . (2.84)

For a small number of tosses, we may get random values of P (Head) and P (Tail). However, as
the number of tosses increases, nH ≈ nT = N/2, and both, P (Head) and P (Tail), approach the
value 1/2. We can also verify that P (Head) + P (Tail) = 1.

Wenext consider a somewhatmore complicated example.We consider a class of 200 students
with the scores on a 10-point quiz as shown in Table 2.2.

The distribution is such that the numbers of students scoring very low and very high are
relatively small. The maximum number of students score 7. The probability that a student has
a particular score is then obtained by dividing the number of students with the same score by
the total number of students. For example, the probability that a student has a score 6, P(6), is
given by 36/200 = 0.18.The probabilities P(n) are given in the third column of the above table.
It is easy to verify that

10

∑
n=1

P(n) = P(1) + P(2) +⋯⋯+ P(9) + P(10) = 1, (2.85)

in agreement with Eq. (2.80) showing that the sum of the probabilities of all the possible
outcomes is equal to one. The various moments of the variable n (in the above example, the
score of the students) are defined as the following

⟨nr⟩ =
nmax

∑
n=1

nrP(n), (2.86)

Table 2.2 Distribution of scores of 200 students.

Score Number of students Probability

1 04 P(1) = 04/200 = 0.02

2 04 P(2) = 04/200 = 0.02

3 04 P(3) = 04/200 = 0.02

4 08 P(4) = 08/200 = 0.04

5 12 P(5) = 12/200 = 0.06

6 36 P(6) = 36/200 = 0.18

7 52 P(7) = 52/200 = 0.26

8 34 P(8) = 34/200 = 0.17

9 28 P(9) = 28/200 = 0.14

10 18 P(10) = 18/200 = 0.09
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where r = 1, 2,⋯ andnmax is themaximumvalue of the variablen.There are twoquantities that
are of particular interest: the average (or the mean) and the root-mean-square (rms) deviation.

The average or mean is defined as

⟨n⟩ =
nmax

∑
n=1

nP(n). (2.87)

For example, in the above example, the average score of the class is

⟨n⟩ =
10
∑
n=1

nP(n)

= 1 × P(1) + 2 × P(2) +⋯⋯+ 10 × P(10)
= 1 × 0.02 + 2 × 0.02 + 3 × 0.02 +⋯⋯+ 9 × 0.14 + 10 × 0.09
= 7.

(2.88)

A high averagemeans that larger number of students scored high. An average is thus ameasure
of how good a class is.

The second important quantity is the rms (root-mean-square) deviation or fluctuation Δn
defined by

Δn=√⟨(n − ⟨n⟩)2⟩

=√⟨n⟩2 − ⟨n2⟩.
(2.89)

Here

⟨n2⟩ =
nmax

∑
n=1

n2P(n). (2.90)

In the above example

⟨n2⟩ =
10
∑
n=1

n2P(n)

= 12 × P(1) + 22 × P(2) +⋯⋯+ 102 × P(10)
= 12 × 0.02 + 22 × 0.02 + 32 × 0.02 +⋯⋯+ 92 × 0.14 + 102 × 0.09
= 52.86.

(2.91)

It follows from Eqs. (2.88) and (2.91) that

Δn = √⟨n2⟩ − ⟨n2⟩ = √(52.86 − 49) = 1.96 ≈ 2. (2.92)

The rms deviation or fluctuation is a measure of how spread is the score distribution. In the
above example, most of the students scored between ⟨n⟩ − Δn and ⟨n⟩ + Δn, i.e., between
5 and 9. We can verify that 162 students out of a total of 200 or 81% fall in this range. If, in
a class, everyone scored 7, the mean would still be equal to 7 but the rms deviation would be
zero. The rms deviation Δn is a measure of how broad a probability distribution is. It is also a
measure of uncertainty when we discuss the concept of fluctuations in quantum mechanics.

So farwe considered only one variable and the corresponding probabilities. Nextwe consider
two variables and introduce the concept of joint probability. Let A and B be two events with
the set of outcomes {ai} and {bi}. In this case the individual probability distributions P(ai) and
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P(bi) do not give complete information. For a complete probabilistic description we also need
joint probabilities {P (ai, bj)}. The definition of P (ai, bj) is that it is the joint probability that
the event A has the value ai and the event B has the value bj.

First we consider the case when the events A and B are independent of each other. We then
have

P (ai, bj) = P (ai) P (bj) . (2.93)

An example of such events is a throw of two coins. The outcome of each coin is independent
of the outcome of the other. Each coin has a 50% probability of getting a Head or a Tail. For
the two coins the possible set of events is {Head1 Head2,Head1 Tail2,Tail1 Head2,Tail1 Tail2},
i.e., both coins have Heads, the first coin has a Head and the second has a Tail, the first coin
has a Tail and second has a Head, and both have Tails. Since the two coins are independent, the
joint probability of getting two Heads is

P (Head1,Head2) = P (Head1) P (Head2) =
1
2 ·

1
2 = 1

4 . (2.94)

Similarly

P (Head1,Tail2) = P (Head1) P (Tail2) =
1
2 ·

1
2 = 1

4 , (2.95)

P (Tail1,Head2) = P (Tail1) P (Head2) =
1
2 ·

1
2 = 1

4 , (2.96)

P (Tail1,Tail2) = P (Tail1) P (Tail2) =
1
2 ·

1
2 = 1

4 . (2.97)

The sum of all the joint probabilities is equal to one, i.e.,

P (Head1,Head2) + P (Head1,Tail2) + P (Tail1,Head2) + P (Tail1,Tail2) = 1. (2.98)

Next we consider events A and B that are not independent but are ‘correlated’. In this case

P (ai, bj) ≠ P (ai) P (bj) . (2.99)

In order to illustrate how various probabilities are related, we consider the same example as
discussed above. Again we have a class of 200 students whose score distribution is given by
Table 2.3. However this time, in addition to the scores, we have another variable, gender. Let
us assume that 80 students are girls and 120 students are boys. We now have the probability
distributions with two variables, the score and the gender. For example, we can ask the
question: What is the joint probability that a girl scored 8 points? We denote it by P (8,G) .
Or what is the probability that a boy scored 6 points, denoted by P (6,B)?

According to the Table 2.3, P (8,G) can be calculated as follows. There are a total of 200
possibilities of all kinds (scores ranging from 1 to 10 and the student being a Girl or a Boy).
Out of these 200 possibilities, there are only 18 instances when the student is a Girl and the
score is 8. Therefore the joint probability P (8,G) is given by

P (8,G) = 18
200 = 0.09.

Similarly there are only 26 instances when the student is a Boy and has a score of 6. Therefore
the corresponding joint probability is
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Table 2.3 Distribution of scores of 120 girls and 80 boys

Score Number of students Probability Girls Boys Joint probabilities

1 04 P(1) = 0.02 2 2 P (1,G) = 0.01; P (1,B) = 0.01

2 04 P(2) = 0.02 0 4 P (2,G) = 0.00; P (2,B) = 0.02

3 04 P(3) = 0.02 4 0 P (3,G) = 0.02; P (3,B) = 0.00

4 08 P(4) = 0.04 2 6 P (4,G) = 0.01; P (4,B) = 0.03

5 12 P(5) = 0.06 4 8 P (5,G) = 0.02; P (5,B) = 0.04

6 36 P(6) = 0.18 10 26 P (6,G) = 0.05; P (6,B) = 0.13

7 52 P(7) = 0.28 18 34 P (7,G) = 0.09; P (7,B) = 0.17

8 34 P(8) = 0.17 18 16 P (8,G) = 0.09; P (8,B) = 0.08

9 28 P(9) = 0.14 14 14 P (9,G) = 0.07; P (9,B) = 0.07

10 18 P(10) = 0.09 8 10 P (10,G) = 0.04; P (10,B) = 0.05

P (6,B) = 26
200 = 0.13.

In Table 2.3, all the joint probabilities P (n,G) and P (n,B) are given.
At this point we note that the probability of a student scoring 8 points is

P(8) = 0.17

and the probability of a student being a Girl is

P(G) = 80
200 = 0.40.

It is clear that P(8)P(G) = 0.17 × 0.40 = 0.068 and P (8,G) = 0.090. Therefore

P (8,G) ≠ P(8)P(G).

Thus, for correlated events, the probability of the joint event is not the product of the
probability of individual variables.

An important question is: How canwe calculate single variable probabilities P (ai) and P (bj)
from the joint probabilities P (ai, bj)? In order to see how this can be done, we again consider
the example of the quiz score of the students. Suppose we want to find the probability that
a student scored 8 points P(8) from the joint probabilities P (n,G) and P (n,B). Since we do
not care about whether the student is a Girl or a Boy, the probability that ‘a student’ scored
8 points is the sum of the joint probabilities that a Girl scored 8 points and a Boy scored
8 points, i.e.,

P(8) = P (8,G) + P (8,B) .

This equation can be verified from Table 2.3.
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In general, the single-event probabilities are given by

P (ai) = ∑
j

P (ai, bj) , (2.100)

P (bj) = ∑
i

P (ai, bj) . (2.101)

Problems

2.1 Find the real and imaginary parts of

z = 2 + 3i
5 − 7i .

What are the real and imaginary parts of z2?
2.2 What is the result of the multiplication of 3+ 4i and its complex conjugate? What are the

real and the imaginary parts of 3 + 4i divided by its complex conjugate?
2.3 Express the complex number z = 4 + 3i in polar coordinates r and 𝜑.
2.4 Show that

1 + ei 2𝜋
4 + ei 4𝜋

4 + ei 6𝜋
4 = 0,

ei 5𝜋
4 + ei 7𝜋

4 + ei𝜋
4 + ei 3𝜋

4 = 0,

ei 6𝜋
4 + ei 2𝜋

4 + ei 6𝜋
4 + ei 2𝜋

4 = 0.
2.5 A vector A has a magnitude of 8 units and an angle of 60∘ with the x-axis. What are the

x- and y-components of A?
2.6 Find the dot product of two vectorsA = x̂+ ̂y and B = x̂+2 ̂y. What is the angle between

the two vectors?
2.7 Find out the cross product of two vectors A = x̂ + ̂y + ̂z and B = x̂ − ̂y + ̂z.
2.8 Prove that

1 + cos 𝜃 = 2cos2 𝜃
2
,

1 − cos 𝜃 = 2sin2 𝜃
2
.

2.9 Using the series expansion

ex = 1 + x + x2

2! +
x3

3! +⋯

show that, for two numbers x and y (real or complex),

exey = ex+y.

2.10 From Table 2.3, show that P (6,B) ≠ P(6)P(B).
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3 Particle Dynamics

In physics, a particle is described as an object that is characterized by certain properties. The
most important characteristics of a particle are its mass, position, velocity, and acceleration.
A particle can be a microscopic object like an electron or an atom or a macroscopic object
like a tennis ball or a stone. A particle is fundamentally different from a wave whose main
characteristics are amplitude, frequency, wavelength, and phase. In this chapter we present the
main characteristics of the dynamics of particles whereas in the next chapter we introduce
the properties of the waves and the associated effects like interference and diffraction. An
understanding of these effects is essential in understanding and appreciating the laws of
quantum mechanics. In quantum mechanics, the particles and waves lose their distinctive
behaviors and both of them carry each other’s characteristics.

3.1 Classical Trajectory

All the physics before the advent of quantum mechanics in 1900 is called classical mechanics.
The basic laws of classical mechanics were formulated by Isaac Newton in the late seventeenth
century. The bedrock of classical mechanics are the three laws of motion. For simplicity’s sake,
we describe them only for one-dimensional motion along the x-axis.

First law: A particle in a state of uniform motion tends to remain in that state of motion
unless an external force is applied to it.

Second law: When a force F is applied to a particle of mass m, it experiences an
acceleration a. The acceleration is directly proportional to the applied force and is in the
same direction as the force. The resulting equation is

F = ma. (3.1)

Third law: When one body exerts a force on a second body, the second body simultaneously
exerts a force equal in magnitude and opposite in direction on the first body.

An important consequence of Newton’s laws of motion is that the motion of a particle is
deterministic: If we know the initial position and velocity of the particle as well as all the forces
acting on it, then we can predict with certainty its location and velocity at a subsequent time
with arbitrary precision. In other words, the trajectory of the particle can be traced in advance.

The simplest example of the dynamics of a particle is a particle located at position xi at rest
(initial velocity, vi = 0) and no force acts on it (F = 0). According to the first law of motion, it
will remain at rest at the same position for all times. Thus, at time t, the position

x(t) = xi (3.2)

Quantum Mechanics for Beginners: With Applications to Quantum Communication and Quantum Computing. M. Suhail Zubairy.
© M. Suhail Zubairy 2020. Published in 2020 by Oxford University Press. DOI: 10.1093/oso/9780198854227.001.0001
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and the velocity

v(t) = 0. (3.3)

However if the particle is initially moving with a velocity vi, then the position and the velocity
of the particle at a later time are given by

x(t) = xi + vit, (3.4)

v(t) = vi. (3.5)

The particle continues to move with constant velocity in the absence of a force.
Next we consider the dynamical equations of the particle in the presence of a constant force.

According to the second law of motion, the particle moves with a constant acceleration. An
important example of such a motion is the movement of a particle under the action of gravity.
When we throw a particle in the upward direction, it experiences a force of gravity that pulls it
towards the earth given by

F = mg, (3.6)

where g = 9.81 m/s2 is the acceleration in the downward direction. Before we discuss such
a motion, we first derive the equations of motion for a particle moving with a constant
acceleration a. These equations relate the position x(t) and the velocity v(t) of a particle at
time t if we know the position xi and velocity vi at the initial time t = 0.

The first equation is obtained by realizing that, for constant acceleration a, the acceleration
is given by the change in velocity divided by the elapsed time, i.e.,

a = v(t) − vi
t . (3.7)

We can rewrite this equation as

v(t) = vi + at. (3.8)

The second dynamical equation can be derived by noting that the velocity changes uniformly
in time when a particle is moving with constant acceleration. Thus the displacement x(t) − xi
during time t is given by the average velocity (v(t) + vi) /2 times the elapsed time t, i.e.,

x(t) − xi =
(v(t) + vi)

2 t. (3.9)

On substituting for v(t) from Eq. (3.8) into Eq. (3.9) and making some rearrangements, we get

x(t) = xi + vit +
1
2at2. (3.10)

Another equation that does not involve time t can be obtained by solving for t fromEq. (3.8),
i.e., t = (v(t) − vi) /a, and substituting in Eq. (3.9):

v2(t) = v2
i + 2a (x(t) − xi) . (3.11)

Equations (3.8) – (3.11) provide the full dynamics of a one-dimensional motion in the
presence of a constant force (or constant acceleration). They are the consequence of the
Newton’s second law of motion.
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As an example, we consider the motion of the car that starts (vi = 0) at a location that we
designate as the origin (xi = 0). Let the car accelerate with a = 10 m/s2. We can calculate the
location of the car at time t from Eq. (3.10),

x(t) = 5t2. (3.12)

Thus after 1 second, the car will be 5 m from the starting point and, after 2 seconds, it will be
20 m from the starting point. Similarly we see, from Eq. (3.8) that the velocity of the car after
time t will be

v(t) = 10t. (3.13)

Thus the car will be moving with velocity 10 m/s after 1 second and 20 m/s after 2 seconds. We
therefore have precise knowledge about both the position and velocity at any subsequent time.
This is the hallmark of the Newtonian or classical mechanics.

An immediate consequence of the classical mechanics is determinism! If we know the initial
position and velocity as well as all the forces acting on an object, we can describe its trajectory
to arbitrary accuracy. At a given time we can determine both the position and the velocity of
the object precisely.

As another example of the deterministic nature of classical mechanics, we consider the two-
dimensional motion. In the two-dimensional motion, the x- and y-components of motion are
independent of each other. Let us consider that a particle, such as a ball, is thrown at the origin
of the coordinate system (xi = 0, yi = 0) with a velocity vi making an angle 𝜃0. The only force
acting on the ball is the force of gravity. The classical dynamical equations can predict with
certainty both the position and velocity at any point in the two-dimensional space.

At the initial time (t = 0), we can write the x- and y-components of the position

xi = 0, yi = 0 (3.14)

and the velocity

vix = v0 cos 𝜃0 and viy = v0 sin 𝜃0. (3.15)

For the motion in the horizontal direction, i.e., x-direction, there is no force. Consequently
there is no acceleration (a = 0). It then follows from Eqs. (3.10) and (3.8) that

x(t) = vixt = v0 cos 𝜃0t, (3.16)

vx(t) = v0 cos 𝜃0. (3.17)

In the vertical direction, i.e., y-direction, there is a constant force of gravitation leading to
the acceleration due to gravity acting in the downward direction. We thus have ay = −g. We
then obtain from Eqs. (3.10) and (3.8) that

y(t) = viyt −
1
2gt2 = v0 sin 𝜃0t −

1
2gt2, (3.18)

vy(t) = viy − gt = v0 sin 𝜃0 − gt. (3.19)

Thus, at a time t, we can find x(t), vx(t), y(t), and vy(t) from Eqs (3.16) – (3.18). The location
of the ball at time t is at a distance
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Fig. 3.1 In projectile motion, the location and the velocity of the particle is known precisely at all times.

r(t) = √x2(t) + y2(t) = √(v0 cos 𝜃0t)
2 + (v0 sin 𝜃0t −

1
2gt2)

2
(3.20)

from the starting point in the direction

𝜃r = tan−1 (
v0 sin 𝜃0t −

1
2
gt2

v0 cos 𝜃0t
) . (3.21)

Similarly we can calculate the velocity at time t. The magnitude and the direction of the
velocity are

v(t) = √v2
x(t) + vy

2(t) = √(v0 cos 𝜃0)
2 + (v0 sin 𝜃0 − gt)2, (3.22)

𝜃v = tan−1 (v0 sin 𝜃0 − gt
v0 cos 𝜃0

) . (3.23)

Thus, at each moment, we know precisely both the location and the velocity of the particle.
This is shown in Fig. 3.1.

In later chapters, we see that the quantum behavior is drastically different—quantum
mechanics does not allow a description in terms of a trajectory of the particle and it does
not allow a deterministic description of the motion of the particle. Contrary to the classical
mechanics, position and velocity of an object cannot be simultaneously known to arbitrary
precision according to the quantum mechanical description.

3.2 Linear Momentum

We now introduce some concepts that are basic to classical mechanics. One such concept
is linear momentum. This is a fundamental quantity associated with a particle. The linear
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momentum p of an object of mass m moving with a velocity v is defined to be the product
of the mass and velocity:

p = mv. (3.24)

In this book, we use the termsmomentum and linearmomentum interchangeably.Momentum
is a vector quantity, the direction being the direction of velocity. We can therefore define the
x- and y-components of the momentum as

px = mvx, (3.25)

py = mvy. (3.26)

The physical importance of this quantity is its close link with the force. A force on a particle
is defined as rate of the change of momentum, i.e., if the momentum changes from an initial
momentum pi at time ti to the final momentum pf at time tf , then the applied force F is
given by

F =
pf − pi

tf − ti
. (3.27)

This relationship follows from the Newton’s second law. For example, for a body moving with
constant acceleration,

F = ma = m
vf − vi

tf − ti
=

mvf −mvi

tf − ti
=

pf − pi

tf − ti
. (3.28)

Here we used the definition of acceleration from Eq. (3.6) and the definition of momentum
from Eq. (3.24). Momentum is conserved if the net force, F, on an object is zero. In this case
the particle’s momentum does not change and the final momentum is the same as the initial
momentum, i.e.,

pf = pi. (3.29)

The conservation ofmomentum in the absence of an external force is amore general concept
and can be applied when two objects collide (Fig. 3.2).

Before collision

(a)

(b)

m1 m2

υ1i

υ1f υ2f

υ2i

+x

+x

A"er collision

Fig. 3.2 Collision between two particles in one dimension.
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In any collision, linear momentum is always conserved and it remains constant both in
magnitude and in direction. The momenta of the individual objects in the system may change,
but the vector sum of all the momenta does not change. Total momentum of all the particles
before the collision is equal to the total momentum of all the particles after the collision.

As an example, we consider a one-dimensional collision between two particles, like balls,
as shown in Fig. 3.2. The particle of mass m1 moving with an initial velocity v1i collides with
another particle of mass m2 moving with an initial velocity v2i. After the collision, particles 1
and 2 move with velocities v1f and v2f , respectively. Since there is no external force on either
particle 1 or particle 2, the total momentum is conserved, i.e., the sum of the momenta of the
two particles is equal to the sum of momenta after the collision. We thus have

p1i + p2i = p1f + p2f. (3.30)

In terms of mass and velocities,

m1v1i +m2v2i = m1v1f +m2v2f. (3.31)

The conservation of momentum is a manifestation of Newton’s third law of motion: When
one body exerts a force on a second body, the second body simultaneously exerts a force equal
in magnitude and opposite in direction on the first body. Therefore if F12 is the force exerted
by the particle 1 on particle 2 and F21 is the force exerted by particle 2 on particle 1, then

F12 = −F21

or

F12 + F21 = 0. (3.32)

This is a statement that there is no external source acting on the system of two particles. The
conservation of momentum (3.30) follows if we substitute

F21 =
p1f − p1i

tf − ti
, (3.33)

F12 =
p2f − p2i

tf − ti
, (3.34)

in Eq. (3.32).

3.3 Kinetic and Potential Energy

Another important property of the particles is energy. When a particle of mass m is moving
with a velocity v, the kinetic energy is equal to

KE = 1
2mv2. (3.35)

How does this expression for the kinetic energy come about? We first recall that energy is the
ability to do work. Work, in scientific terms, is defined as follows: If a particle is displaced by a
distance (xf − xi) under the action of a force F, then the work done W is given by
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W = F · (xf − xi) . (3.36)

From Newton’s second law, F = ma. We thus have

W = ma · (xf − xi) . (3.37)

However, according to Eq. (3.11), a·(xf − xi) = (v2(t) − v2
i ) /2. On substituting this expression

in Eq. (3.37), we obtain

W = 1
2mv2(t) − 1

2mv2
i . (3.38)

Thus the work done is equal to the change in the kinetic energy where the expression of the
kinetic energy is given by Eq. (3.35).

Next we consider the potential energy. Potential energy represents the ‘potential’ of doing
work and we designate it as V(x). For example, if we take a particle, such as a stone, to a
height h above the ground, the potential to do work (not the actual work) increases. The
potential is represented by the fact that if we drop the stone from the height h, a force of gravity
equal to mg acts on it and if the stone can move through the distance h, then the potential of
doing the work is equal to mgh. Thus the potential energy in the presence of the gravitational
force is

PE = mgh. (3.39)

Another example of potential energy is the harmonic oscillator. If we attach a mass m to
a spring of spring constant k and compress the spring by an amount x from the equilibrium
position, then, upon releasing the spring, it executes a simple harmonic motion between +x
and −x. At the displacement, x, the potential energy is

PE = 1
2kx2. (3.40)

As a final example, we consider two equal and opposite charges, such as a proton and an
electron, each carrying equal but opposite charge equal to e = 1.6 × 10−19C, separated by a
distance r. The Coulomb force between a proton and an electron is attractive and is given by

F = − 1
4𝜋𝜀0

e2
r2 , (3.41)

where 𝜖0 = 8.85× 10−12 Farad/m is the so-called free-space permittivity. The potential energy
is given by

V(r) = − 1
4𝜋𝜀0

e2
r . (3.42)

The potential energy is equal to zero when the two particles are far apart, r = +∞. As the two
charges come closer, the potential energy decreases.

The kinetic energy and momentum are simply related. We recall that the kinetic energy of a
particle of mass m moving with velocity v is given by

KE = 1
2mv2.
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We also recall the definition of momentum:

p = mv.

Therefore kinetic energy is related to momentum via:

KE = 1
2mv2 = 1

2m (mv)2 = p2

2m . (3.43)

3.4 Inelastic and Elastic Collisions

As we discussed, momentum is conserved in any collision. A collision between two particles
where momentum is conserved but kinetic energy is not is described as an inelastic collision.
In such a collision, part of the energy is lost as heat or some other form of energy. This is at
the expense of the kinetic energy of the particles. An example of an inelastic collision is when
two pieces of putty collide and stick together and move with some common velocity after the
collision.

In an elastic collision, in addition to the conservation of momentum, the total kinetic energy
of all the particles before the collision is equal to the total kinetic energy of all the particles
after the collision. Thus, in an elastic collision between two particles of masses m1 and m2,
conservation of energy and momentum lead to

1
2m1v2

1i +
1
2m2v2

2i =
1
2m1v2

1f +
1
2m2v2

2f, (3.44)

m1v1i +m2v2i = m1v1f +m2v2f. (3.45)

Here, as before, v1i and v2i are the initial velocities and v1f and v2f are the final velocities of
particles of masses m1 and m2, respectively.

3.5 Angular Motion

So far we considered the motion of a particle along a straight line. Another class of motion is
when a particle is moving in a circle. In this section, we consider the dynamics of a particle in
a circular motion along the same lines as we discussed for a linear motion.

For a circular motion, the axis of rotation is the center of the circle. We choose a fixed
reference line as shown in Fig. 3.3. This line is equivalent to the origin for the circular motion.

Reference

axis

P

θ

Fig. 3.3 Angular motion of a particle with respect to a reference axis.
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o
x

θf
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Fig. 3.4 A particle undergoes an angular displacement from 𝜃 = 𝜃i at time ti to 𝜃 = 𝜃f at a later time tf .

A point P on the circle is at a fixed distance r from the origin. As the particle moves, the
only coordinate that changes is 𝜃 and as the particle moves through 𝜃, it moves though an arc
length s. The angle 𝜃, measured in radians, is called the angular position.

Each quantity in the linear motion has an analogous quantity in the case of circular motion.
The angular displacement is defined as the angle the object rotates through

Δ𝜃 = 𝜃f − 𝜃i (3.46)

during some time interval tf − ti as shown in Fig. 3.4. This is the angle that the reference line
of length r sweeps out. The analog of the velocity v is the angular velocity 𝝎. If an angular
displacement Δ𝜃 takes place in an infinitesimal time Δt, then the angular velocity is given by

𝜔 = Δ𝜃
Δt . (3.47)

Similarly, if there is a change in the angular velocity Δ𝝎 during an infinitesimal time Δt, then
angular acceleration 𝜶 is defined as

𝜶 = Δ𝜔
Δt . (3.48)

We also note that the angular displacement 𝜃 can be related to the linear displacement x
along the circular path of radius r via

𝜃 = x
r . (3.49)

Similarly we can show that

𝜔 = v
r (3.50)

𝜶 = a
r . (3.51)

The basic dynamical equations of the circular motion involving the angular displacement 𝜃,
the angular velocity 𝝎, and angular acceleration 𝜶 can be derived following a similar approach
as that for the linearmotion as done in Section 3.1. For a circular motion with constant angular
acceleration 𝜶, the following equations of motion can be derived by replacing x by 𝜃, v by 𝜔,
and a by 𝜶 in Eqs. (3.8) – (3.11):
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ω(t) = ωi + 𝜶t, (3.52)

𝜃(t) − 𝜃i =
(ω(t) + ωi)

2 t, (3.53)

𝜃(t) = 𝜃i + ωit +
1
2𝜶t

2, (3.54)

ω2(t) = ω2
i + 2𝜶 (𝜃(t) − 𝜃i) . (3.55)

Next we discuss the analogs for the force F and the mass m in the angular motion, which we
refer as the torque 𝝉 and the moment of inertia I. Just as the force causes acceleration, a torque
causes angular acceleration.

Torque: Torque is a measure of the effectiveness of a force in accelerating a rotation
or changing the angular velocity over a period of time. The magnitude of torque is
defined to be

𝜏 = rF sin 𝜃, (3.56)

where r is the distance from the origin (or the pivot point) to the point where the force is
applied, F is the magnitude of the force, and 𝜃 is the angle between the force and the vector
directed from the point of application to the pivot point (Fig. 3.5). The torque 𝝉, like the force
F, is a vector quantity, but its direction is perpendicular to both the direction of force F and
the vector r. It is formally defined as the cross product of r and F, i.e.,

𝝉 = r × F. (3.57)

The analog of force in a rotational motion can be understood most easily by considering
the example of a door which can rotate around a hinge as shown in Fig. 3.5. We can see that,
no matter how large a force we apply on the hinge, we cannot rotate the door as depicted in
Fig. 3.5a. Similarly we cannot rotate the door if we apply a force, no matter how large, along
the direction of the door or parallel to r. The most effective location and direction of the door
are the farthest point from the hinge (maximum value of the distance r) and the maximum
angle, 90∘, between the force and the vector r as shown in Fig. 3.5c. At those points torque is
maximum according to Eq. (3.56).

Moment of Inertia: What about Newton’s second law for circular motion? In analogy with
the second law for linear motion, F = ma, we can write the equivalent law for rotational or
circular motion as

hinge door

F F F

(a) (b) (c)

Fig. 3.5 A door rotates around a hinge that serves as the pivot point for angular motion.
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o r P

F

Fig. 3.6 A point mass located at a distance r rotates around the pivot point in a circular motion when a force F is

applied in a direction perpendicular to the position vector r.

𝝉 = I𝜶, (3.58)

where we have replaced the force F by the torque 𝝉 and the linear acceleration a by angular
acceleration 𝜶. Here I plays the role of mass in the rotational motion and is called the moment
of inertia.Themoment of inertia depends on themass distribution as well as the axis of rotation
of the rotating object.

A calculation of the moment of inertia for a general object is complicated. Here we consider
a simple case where a rotating point mass is located at a distance r from a pivot point and a
force F is applied on the point mass perpendicular to r as shown in Fig. 3.6. In this case, torque

𝜏 = rF. (3.59)

It follows from Newton’s second law F = ma and the relation between the angular acceleration
𝜶 and the linear acceleration a, 𝜶 = a/r, that

𝜶 = a
r =

F
mr , (3.60)

and, according to Eq. (3.58),

𝜏 = I𝜶 = I
mrF = rF. (3.61)

Thus, I/mr = r, and the moment of inertia of a point mass m a distance r from the center of
rotation is

I = mr2. (3.62)

This quantity is analogous to mass (or inertia).
The moment of inertia of an arbitrary object can be found by breaking up the object into

little pieces, multiplying the mass of each little piece by the square of the distance it is from the
axis of rotation, and adding all these products. This leads to

I = ∑mr2. (3.63)

Here the notation ∑mr2 means summation over all the little pieces. To see the analogy of
the moment of inertia with mass, we note that the mass represents the difficulty in moving an
object – the larger the mass of an object the more difficult it is to move. Thus mass represents
the property of inertia. In the same way, moment of inertia represents the difficulty in rotating
an object. It becomesmore difficult to rotate an object if it has a largemass and is located farther
from the axis of rotation.

Centripetal force: We know that acceleration is a change in velocity, either in its magnitude
or in its direction, or both. In uniform circular motion, the direction of the velocity changes
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Fig. 3.7 In a uniform circular motion of a particle, the velocity changes from vi to vf . The change in velocity

∆v = vf − vi points towards the center of the circular path.

constantly. Therefore there is always an associated acceleration, even if the magnitude of the
velocity is constant. We consider an object of mass m moving in a circular path of radius r
with a constant speed v as shown in Fig. 3.7. We consider its change in location and the change
in velocity during time Δt. The object always stays on the circular path and we designate the
position vectors at the beginning and at the endof the timedurationΔt by ri and rf , respectively.
The velocity is along the tangent to the circle and the velocity vectors (of equal magnitude for
constant speed) are shown as vi and vf . The change in displacement is given by

Δr = rf − ri. (3.64)

Acceleration is in the direction of the change in velocity:

ac =
Δv
Δt =

vf − vi

Δt . (3.65)

As shown in Fig. 3.7, Δv points directly toward the center of rotation O (the center of the
circular path). This acceleration pointing towards the center is therefore called the centripetal
acceleration.

Next we note that the triangle formed by the velocity vectors and the one formed by the
displacement vectors are similar. Both the triangles are isosceles triangles (two equal sides).The
two equal sides of the velocity vector triangle are the speeds vf = vi = v. Using the properties
of two similar triangles, we obtain

Δv
v = Δr

r (3.66)

yielding

Δv = vΔr
r . (3.67)
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The magnitude of the centripetal acceleration is therefore equal to

ac =
Δv
Δt =

Δr
Δt

v
r =

v2

r . (3.68)

The corresponding centripetal force is obtained by multiplying the centripetal acceleration
by the mass of the object, i.e.,

Fc =
mv2

r , (3.69)

and it points towards the center O.

3.6 Angular Momentum

We have defined various quantities like mass, velocity, acceleration, and force for linear
motion. In analogy with these quantities, we defined moment of inertia, angular velocity,
angular acceleration, and torque. One important quantity is momentum.We defined the linear
momentum as the product of mass and velocity:

p = mv. (3.70)

Momentum is a vector quantity whose direction is the same as the direction of the velocity.
What if the object is not linearly moving, but it is rotating? Then we can define the angular

momentum

L = I𝝎. (3.71)

Here I is themoment of inertia of the object rotating about an axis and𝝎 is the angular velocity
and is perpendicular to the plane of rotation (or along the direction of the axis of rotation).The
angular momentum L is positive when the object rotates in a counter-clockwise direction and
is negative when the object rotates in a clockwise direction.

Let us consider a point particle of m moving around in an orbit of radius r. The moment
of inertia is I = mr2 and the angular frequency 𝜔 = v/r. On substituting these expressions in
the definition of the angular momentum, Eq. (3.71), we obtain the following expression for the
magnitude of the angular momentum:

L = mrv. (3.72)

The direction of the angularmomentum is perpendicular to the plane of the circularmotion.
In the more general form,

L = r × (mv) = r × p, (3.73)

where r is the particle’s instantaneous position vector and p is its instantaneous linear momen-
tum.Only tangentialmomentum components contribute to the angularmomentum.As shown
in Fig. 3.8, the vectors r and p form a plane and the angular momentum L is perpendicular to
this plane.

Just as the linear momentum of a system of particles is conserved in the absence of an
external force, the angular momentum is conserved in the absence of a torque.
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axis of
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r

Fig. 3.8 Angular momentum L is perpendicular to the plane containing the linear momentum p and the position

vector r.

3.7 Motion of an Electron in Electric andMagnetic Fields

The analysis of the motion of a charged particle, such as an electron, in the presence of an
electric field or a magnetic field, or both, provides an interesting example of the particle
dynamics studied in this chapter. Interestingly this analysis provides the basis of the landmark
experiments done in the 1890s by John J. Thomson which led to the discovery of the electron
as a subatomic particle.

First we introduce the basic concepts of electric and magnetic fields. The force on a charge
q in the presence of a charge Q separated by a distance r is given by Coulomb’s law:

F = 1
4𝜋𝜖0

qQ
r2 . (3.74)

The force is attractive if the charges have opposite sign and repulsive if they have the same sign.
The direction of the force is along the line joining the two charges. We can define the electric
field at a point r generated by the charge Q as the force a unit charge experiences due to the
presence of the charge Q. Thus according to the Coulomb’s law, the field generated by Q at a
distance r is

E = 1
4𝜋𝜖0

Q
r2 (3.75)

and the force on the charge q in the presence of the field E is

F = qE. (3.76)

It can be shown that a uniform electric field E can be generated by applying a voltage V
between two parallel metallic plates separated by a distance d which is given by

E = V
d
. (3.77)

The direction of the field, and hence the force, on a negative charge q is in the direction of the
positively charged plate and away from the negatively charged plate (Fig. 3.9).Thus a negatively
charged electron entering a region of uniform field is deflected in the direction of the positively
charged plate.
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Fig. 3.9 An electron passing through a region of electric field is deflected towards the positively charged plate.

B

B

I

Fig. 3.10 A current carrying wire produces magnetic field B.

Just as a static charge creates an electric field, a current produces the magnetic field. A long
current-carrying wire produces a magnetic field according to Ampere’s law. The magnetic field
at a distance r away from a wire carrying current I is given by

B = 𝜇0
2𝜋

I
r . (3.78)

where 𝜇0 = 4 𝜋 × 10−7 Henry/m is the permeability of the free space. Magnetic fields have
both direction and magnitude. The field around a long straight wire is found to be in circular
loops. According to the right hand rule, if we point the thumb in the direction of the current,
the fingers curl in the direction of the magnetic field loops created by it (Fig. 3.10).

The force on a particle of charge q moving with a velocity v in the presence of the magnetic
field B is given by the Lorentz formula

F = qv × B. (3.79)

The magnetic force is therefore in a direction perpendicular to both the direction of velocity
of the charged particle, v, and the magnetic field, B. A uniform magnetic field in a region can
be created via electromagnets. In Fig. 3.11, we show that an electron with charge −e moving
along the x-axis in a region of uniform magnetic field B in the −z-direction (into the page) is
deflected in the ̂x × ̂z = − ̂y direction and the magnitude of the force is

F = evB. (3.80)

With this introduction, we now turn to Thomson’s experiment. The objective of the experi-
ment was to prove the existence of negatively charged electrons and finding the charge to mass
ratio of these particles. The experimental set up is shown in Fig. 3.12.
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Fig. 3.11 An electron passing through a region of magnetic field is deflected in a direction perpendicular to both its

velocity and the magnetic field.
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Fig. 3.12 A collimated electron beam passes through a region where both electric and magnetic fields are applied. The

fields are set up in such a way that the electric field and the magnetic field forces on the electron are adjusted such that

the net force on the electron in the y-direction is zero.

A heated metallic plate called a cathode generates electrons. Initially they move in ran-
dom directions after being emitted from the metal. However they can be collimated in the
x-direction by a positively charged plate called the anode. The electrons are attracted towards
the anode with a small hole in the middle. The electrons passing through the anode form a
beam moving with a velocity v whose magnitude is not known. We can find the velocity by
passing the electrons through a region with both electric and magnetic fields. The fields are set
up in such a way that the electric field forces the electron to be deflected in the +y-direction
with the force eE and the magnetic field forces the electron to be deflected in the –y direction
with the force evB. The two forces can be adjusted such that the net force on the electron in the
y-direction is zero and the electron keeps moving in the x-direction without any deflection.
This happens when

eE = evB. (3.81)

The velocity of the electron is then given by

v = E
B . (3.82)

The role of the magnetic field is only to find how fast the electrons are moving.
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In the next stage of the experiment, the magnetic field is switched off and only the electric
field is applied. The electric field deflects the electron beam in the upward direction and gives a
glow at a point y on a fluorescent screen.We can find the location of this point via the dynamical
equations discussed in Section 3.1.

As there is no force in the x-direction the distance travelled by the electrons in time t is

x(t) = vt = E
Bt, (3.83)

where we substituted for v from Eq. (3.82). The vertical motion of the electron is however
governed by the electric force FE = eE and the displacement in the y-direction is given by

y(t) = 1
2ayt2 =

1
2

FE
m t2 = 1

2
eE
m t2. (3.84)

If the horizontal distance covered is x(t) = L then

L = E
Bt → t = LB

E . (3.85)

The transverse location of electrons on the fluorescent screen is

y = 1
2

eE
m (LB

E )
2
= eL2B2

2mE . (3.86)

Thus the charge to mass ratio of an electron can be inferred from this experiment via the
relation

e
m = 2Ey

L2B2 . (3.87)

Thomson found the value for e/m to be 1.76 × 10 C kg−1.

Problems

3.1 An object is launched at a velocity of 25 m/s in a direction making an angle of 30∘ upward
with the horizontal (assuming g = 10 m/s2). (a) What is the maximum height reached by
the object? (b) How much time does the object take to reach to the ground? (c) What is the
horizontal displacement when the object reaches the ground? (d) What are the magnitude
and direction of the velocity of the object just before it hits the ground?

3.2 Two masses m1 and m2 are in an elastic collision with initial velocities v1 and v2, and final
velocities u1 and u2. Prove that after the collision

u1 =
(m1 −m2) v1 + 2m2v2

m1 +m2

and

u2 =
(m2 −m1) v2 + 2m1v1

m1 +m2
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3.3 An object has a kinetic energy of 250 J and a momentum of magnitude 20.0 kg ·m/s. Find
the (a) speed and (b) mass of the object.

3.4 Consider two objects of masses m and 3m moving toward each other with equal speed v0
along the x-axis with the mass 3m moving to the right and the mass m moving to the left.
After an elastic collision, the mass m is moving downward at right angles from its initial
direction. (a) Find the final speeds of the two objects. (b) What is the angle 𝜃 with respect
to the x-axis at which the object with mass 3m is scattered?

3.5 A rotating wheel requires 4.00 s to rotate 48.0 revolutions. Its angular velocity at the end
of the 4.00 s interval is 98.0 rad/s. What is the constant angular acceleration (in rad/s2) of
the wheel?

3.6 Amodel of the hydrogen atom is an electron ofmassme = 9×10−31 kg circling around the
massive proton with a velocity v. The attractive force between the electron and the proton,
according to Coulomb’s law, is given by

e2
4𝜋𝜀0r2

where e = 1.6 × 10−19 C is the charge of the electron, 𝜀0 is the permittivity of the free
space (1/4𝜋𝜀0 = 9 × 109 N · m2/C2), and r is the radius of the electron orbit. The
angular momentum of the electron is assumed to be equal to a constant whose value is
1.05 × 10−34 J · s. What is the radius of the electron orbit? What is the velocity of the
electron?
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4 Wave Theory

One of the earliest and most important tenets of quantum mechanics is wave–particle duality:
light behaves sometimes like a wave and at other times as a particle, and similarly an electron
can also behave both like a particle and as a wave.When the formal laws of quantummechanics
are formulated, the central quantity that describes the particles is thewave function.All this and
more lies ahead in the later chapters. However they point to the need for a good understanding
of the properties of waves.This chapter introduces the concepts andmost essential applications
that are required to follow the discussion of quantum mechanical laws and systems.

4.1 WaveMotion

Waves are traveling disturbances and are found in an amazingly diverse range of physical sys-
tems. The concept of a wave is most clearly understood by looking at the periodic disturbances
through the water when we drop a small object like a pebble in a body of still water. The
disturbance produces water waves, which move away from the point where the pebble entered
the water. There are numerous other kind of waves, such as a sound wave or a light wave. In
this section, we present the basic characteristics of waves.

Waves can be classified under different criteria. One classification differentiates between two
types of waves: longitudinal waves and transverse waves. In a longitudinal wave, the particles
are disturbed in a direction parallel to the direction that the wave propagates. A longitudinal
wave consists of “compressions” and “rarefactions” where particles are bunched together and
spread out, respectively (see Fig. 4.1). Sound waves are an example of longitudinal waves
where the molecules of the medium oscillate in the direction of propagation of the wave. In a
transversewave, the particles are disturbed in a direction perpendicular to the direction that the
wave propagates (see Fig. 4.2). Light, as we will study later, is an example of a transverse wave
in which electric andmagnetic fields oscillate in the direction perpendicular to the direction of
propagation. As most of the waves we are concerned about in this book are transverse waves,
in discussing the properties of waves we will concentrate on transverse waves as examples.

Consider the wave propagating in the x-direction. We look at the wave at different times—
this is done in Fig. 4.3. In Fig. 4.3a, we consider a point P on the wave and we look at its
location at different times. Let it be at the point of maximum amplitude y = A at time t = 0. At
a later time (we label it t = T/4), the point P is found on the axis (y = 0). At the time t = T/2,
point P is found at the lowest point y = −A. The point P then starts going up and after time
t = T, it is back to where it started. Thus it takes time T for one cycle of P starting from y = A
and coming back to the same point. This cycle is repeated in time.

Quantum Mechanics for Beginners: With Applications to Quantum Communication and Quantum Computing. M. Suhail Zubairy.
© M. Suhail Zubairy 2020. Published in 2020 by Oxford University Press. DOI: 10.1093/oso/9780198854227.001.0001
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Direction of Wave Propagation

Direction of Particle Motion

Fig. 4.1 In a longitudinal wave, the disturbance moves in the direction of propagation of the wave.
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Fig. 4.2 In a transverse wave the disturbance is in the direction perpendicular to the direction of wave propagation.

We call A the amplitude of the wave (with the wave oscillating between +A and −A) and
call T the period of the wave (with the wave completing one cycle in time T). The period T
is related to another important quantity called the frequency f which is the reciprocal of the
period T, i.e.,

f = 1
T (4.1)

The frequency is the number of oscillations from +A back to +A in one second. The unit of
frequency is Hertz. A frequency of f = 10 Hertz means that there are 10 oscillations per second
and the time period is T = 1/10 = 0.1 second. Throughout this book, we use the angular
frequencies 𝜈 (frequency in radians instead of Hertz) by multiplying f by 2𝜋, i.e.,

𝜈 = 2𝜋f. (4.2)

We also note that, during the time T, the wave maximum at t = 0 at point P has advanced by
a distance 𝜆 as shown in Fig. 4.3b. This distance is called the wavelength of the wave and is the
distance between two maxima. Since the distance 𝜆 is travelled during the time T, the speed of
the wave is

v = 𝜆
T = 𝜆f. (4.3)

This is an important relation that applies to all kind of waves including both sound waves and
light waves.

The periodic motion described above can be written in the following mathematical form

y (x = 0, t) = A cos (2𝜋ft) , (4.4)

where we have chosen the location of P ( maximum amplitudeA) as x = 0.This point oscillates
back and forth between +A and –A at a frequency f. Next we note that, when the speed of
the wave is v, the wave disturbance travels from x = 0 to some point x in time x/v. The
motion of point x at time t is the same as the motion of point x = 0 at an earlier time t − x/v.
We thus have
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t=0

t=T/4

t=T/2

t=3T/4

t=T

(a) (b)

t=0

t=T/4

t=T/2

t=3T/4

t=T

Fig. 4.3 A transverse wave of amplitude A and wavelength 𝜆 is depicted at different times. (a) A point on a wave

undergoes a full oscillation during the time period T. (b) T is also the time period in which the wave propagates through

a distance 𝜆.

y (x, t) = A cos (2𝜋f (t − x
v)) = A cos (𝜈 (t − x

v)) . (4.5)

An alternate form for the wave amplitude y (x, t) is obtained from the relations 𝜈 = 2𝜋f =
2𝜋/T and v = 𝜆f :

y (x, t) = A cos (2𝜋 ( t
T − x

𝜆)) . (4.6)

Next we define the wave number:

k = 2𝜋
𝜆 . (4.7)

The speed v is then related to the angular frequency v and the wave number k via v = 𝜆/T =
𝜆f = (𝜆/2𝜋) 2𝜋f = 𝜈/k, i.e.,

𝜈 = kv (4.8)
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and

y (x, t) = A cos (𝜈t − kx) . (4.9)

This represents a wave propagating in +x direction. If we replace x by −x, then

y (x, t) = A cos (𝜈t + kx) , (4.10)

which represents a wave propagating in −x direction.
A convenient description of the wave is in term of a complex notation

y (x, t) = Ae−i𝜈t+ikx. (4.11)

In this case the real part of y (x, t) is A cos (𝜈t − kx). This description is useful in many
applications as we shall see later. The source of usefulness of the complex form of the wave
is that we can depict it as a point in the complex plane instead of a full-fledged sinusoidal
description as shown in Fig. 4.3. As an example, we show the wave at the location x = 0 and at
time t by the point P on the complex plane in Fig. 4.4. Here the x-axis corresponds to the Real
part of y (0, t) and the y-axis corresponds to the Imaginary part of y (0, t). The distance from
the origin to the point P, A, is the amplitude of the wave and 𝜃 = vt is the phase of the wave.
As time increases, the point P rotates in the complex plane.

Principle of superposition: An important property of any kind of wave is that, when two
or more waves arrive at the same point, they superimpose themselves upon one another.
This is called the principle of superposition. This important principle has many applications,
particularly in understanding interference and diffraction. We study these phenomena in later
sections of this chapter.

The principle of superposition for two waves can be stated mathematically as follows. If two
waves are described by y1 (x, t) and y2 (x, t) at a point x at time t, then the resulting wave at this
point is given by

y (x, t) = y1 (x, t) + y2 (x, t) . (4.12)

As simple examples, we consider two waves in Fig. 4.5a and Fig. 4.5b. In Fig. 4.5a, the two
waves, y1 (x, t) and y2 (x, t), are shifted with respect to each other by a distance equal to half
the wavelength. According to the principle of superposition, both waves cancel each other at
every point and the resulting amplitude at each point is zero or the resulting wave is of zero
amplitude. In Fig. 4.5b, the two waves have the same amplitude at each point and the resulting
wave is identical to each wave with the only difference that the amplitude is twice of each

A

P

O

θ
Re y

Im y

Fig. 4.4 A wave is represented by a point P on a complex plane. The distance A is the amplitude and 𝜃 is the phase.
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+ =

+ =

(a)

(b)

Fig. 4.5 Superposition of two waves. (a) The two waves are displaced by a distance equal to half the wavelength, 𝜆/2,
and the two waves cancel each other at every point, resulting in a wave of zero magnitude. (b) The two waves are

displaced by a distance equal to the wavelength, 𝜆, and the two waves superimpose on each other yielding a wave of

twice the amplitude.

individual wave. We say that the two waves interfere destructively in Fig. 4.5a and construc-
tively in Fig. 4.5b.

This description can also be used to introduce another important notion—the phase. A
displacement by a distance equal to the wavelength 𝜆 corresponds to a phase shift of 2𝜋. We
can therefore say that the two waves in Fig. 4.5a have phase shift equal to

𝜙 = 2𝜋
𝜆
𝜆
2 = 𝜋 (4.13)

whereas the phase shift in Fig. 4.5b is

𝜙 = 0 or 2𝜋
𝜆 𝜆 = 2𝜋. (4.14)

In general, the phase shift is given by

𝜙 = 2𝜋
𝜆 Δx, (4.15)

where Δx is the distance by which the two waves are displaced.
In Figs. 4.6a and 4.6b, we present another example. Let two sources give out the waves in the

same phase. Waves meet in phase or out of phase at a point P depending on its distance from
two coherent sources. In Fig. 4.6a, the path difference at point P is 𝜆 and we have constructive
interference. In Fig. 4.6b, the path difference is 1.5 𝜆. In general, the condition for constructive
interference is that the path difference is an integral multiple of the wavelength 𝜆, i.e.,

Path difference = n𝜆, (n = 0, 1, 2,⋯) (4.16)

and the condition for destructive interference is

Path difference = (n + 1
2) 𝜆, (n = 0, 1, 2,⋯) (4.17)

So far we have considered running waves in which a point on the wave moves in the
forward direction. Another important class of waves is the standing wave. In a standing wave,
certain points on the wave, called ‘nodes’, remain fixed but the points with non-zero amplitude
oscillate at the same location with time period T as shown in Fig. 4.7. In Fig. 4.7, the nodes
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r1 = 8λ

r2 = 9λ

r2–r1 = λ
r2–r1 = 1.5 λ

r1 = 8λ

r2 = 9.5λ

S1

S1

S2

S2

λ

P

P

λ

(b)(a)

Fig. 4.6 Two waves of wavelength 𝜆 originate from points S1 and S2 . (a) If, at point P the difference in the distance

travelled from S1 and S2 is equal to 𝜆, there is constructive interference and (b) if the distance is equal to 1.5 𝜆, there is

destructive interference.

N
A A

N N

Fig. 4.7 A standing wave is formed between two walls. The nodes N and the antinodes A remain fixed.

and antinodes are labelled as N and A, respectively. The points with maximum amplitudes
A are called “anti-nodes.” They oscillate from “A” to “−A.” A standing wave is formed when
two waves of equal amplitude propagate in the opposite direction. The wave function for the
standing wave is therefore given by

y (x, t) = y1 (x, t) + y2 (x, t)
= A cos (kx − 𝜈t) − A cos (kx + 𝜈t)
= 2A sin(kx) sin (𝜈t) .

(4.18)

Here we used the trigonometric identity

cos a − cos b = −2 sin (a + b
2 ) sin (a − b

2 ) .

We can see from Eq. (4.18) that the nodes (y = 0) are located at

x = 0, 𝜋
k
, 2𝜋

k
⋯ = 0, 𝜆2 ,

2𝜆
2 , 3𝜆2 ,⋯ (4.19)

and the antinodes are located at

x = 𝜋
2k
, 3𝜋
2k

⋯ = 0, 𝜆4 ,
3𝜆
4 , 5𝜆4 ,⋯ (4.20)

As an example of a standing wave, we consider a stretched string of length L fixed at both
ends.The end points of the stringmust be nodes.We can set up standing-wave patterns atmany
frequencies or wavelengths. When the string is displaced at its midpoint and released, the first
or fundamental harmonic is excited. The condition for the fundamental harmonic is

L = 𝜆
2 . (4.21)
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The corresponding frequency is

f1 =
v
2L , (4.22)

where v = f1𝜆 is the velocity of the wave. The condition for the nth harmonic is

L = n𝜆2 (n = 1, 2,⋯) (4.23)

leading to

𝜆n =
2L
n (n = 1, 2,⋯) . (4.24)

The corresponding wave vectors are

kn =
2𝜋
𝜆n

= 𝜋n
L (n = 1, 2,⋯) . (4.25)

The frequency for the nth harmonic is

fn =
v
𝜆n

= n v
2L . (4.26)

In Fig. 4.8, we plot the standing waves corresponding to n = 1, 2, 3, and 4.

N

N N N NA A A

N N N N NA A A A

A AN N

N A

λ/2 = L

n = L

2λ/2 = L

n = 2

3λ/2 = L

n = 3

4λ/2 = L

n = 4

N

(a)

(b)

(c)

(d)

Fig. 4.8 Standing waves with (a) one antinode, (b) two antinodes, (c) three antinodes, and (d) four antinodes.
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4.2 Young’s Double-slit Experiment

In 1801, Thomas Young carried out an experiment that established the wave nature of light. Its
historical significance is discussed in Chapters 6 and 9. Here we discuss the experiment and
show how it demonstrates the interference of light waves.

The schematic of Young’s double-slit experiment is shown in Fig. 4.9. Light from a source
is incident on a screen that contains two narrow slits S1 and S2 which are separated from each
other by a distance d. As the distances from the source to S1 and S2 are equal, the two light
waves have the same phase at S1 and S2. We also assume that the two slits are identical and
the waves emerging from the slits have the same frequency and the same amplitude. The light
from these slits forms an interference pattern consisting of bright and dark spots or fringes on
a screen a distance L away. The bright fringes are located at those points where the light beams
originating from S1 and S2 interfere constructively and dark fringes are located at those points
where they interfere destructively.

We can derive the conditions whether, at a certain point P on the screen, we get a bright spot
or a dark spot with the help of Fig. 4.10. The light intensity at the point P results from light
waves arriving from the two slits. The distance from the upper slit S1 to the observation point P
is r1 and the distance from the lower slit S2 to the observation point P is r2. As r2 is greater than
r1, the light from the lower slit travels a longer distance than the light coming from the upper
slit. We can immediately see that, at those locations on the screen where the path difference
r2 − r1 is equal to an integral multiple of the wavelength 𝜆, i.e.,

r2 − r1 = n𝜆, (4.27)

with n = 0, ±1, ±2,⋯, twowaves interfere constructively andwe get bright spots. And at those
locations where the path difference r2 − r1 is equal to an odd multiple of 𝜆/2, i.e.,

max

max

max

max

max

Viewing screen

Second screen

First screen

min

min

min

min

S2

S1

Fig 4.9 In Young’s double-slit experiment, light from a source is incident on a screen with two slits. The light from these

slits forms an interference pattern on the viewing screen.
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Fig. 4.10 The path difference from light originating from slits S1 and S2 is equal to d sin 𝜃 in the limit when L ≫ d.

r2 − r1 = ±𝜆2 , (4.28)

as well as

r2 − r1 = (2n + 1) 𝜆2 (4.29)

with n = ±1, ±2,⋯. The two waves interfere destructively and we get dark spots. The path
difference r2− r1 can be determined easily in the case when the distance L between the screens
is much greater than the distance between the two slits d, i.e., L ≫ d. In this case, as shown
in Fig. 4.10b, the light waves from S1 to P and from S2 to P are approximately parallel to each
other and the path difference r2 − r1 is given by

r2 − r1 = d sin 𝜃, (4.30)

where 𝜃 is the angle that the slits make with the observation point P. The condition for the
bright fringes becomes

d sin 𝜃 = n𝜆 (4.31)

and the condition for the destructive interference becomes

d sin 𝜃 = ±𝜆2 (4.32)

as well as

d sin 𝜃 = (2n + 1) 𝜆2 . (4.33)

We can see that there is a bright spot at the center point on the screen corresponding
to 𝜃bright = 0 where r1 = r2. The first dark spots are located on either side of the central
maximum at

𝜃dark = ±sin−1 ( 𝜆
2d) . (4.34)

This is again followed by bright spots located at

𝜃bright = ±sin−1 (𝜆d) (4.35)

and so on.
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We can derive the locations of the bright and dark spots explicitly. Again we assume that the
distance between the two screens, L, is much larger than the slit separation d. First we note that
the vertical displacement y of the observation point P is given by

y = L tan 𝜃. (4.36)

In the limit L ≫ d, the angle 𝜃 is small (𝜃 ≪ 1). We discussed in Section 2.2, that, when
𝜃 ≪ 1, tan 𝜃 ≈ sin 𝜃 ≈ 𝜃. Therefore, we can replace tan 𝜃 by sin 𝜃 in Eq. (4.36) to a good
approximation. We then obtain

y ≈ L sin 𝜃. (4.37)

It follows from condition (4.31) for constructive interference that bright fringes are located
at vertical positions

ybright = n𝜆L
d

(4.38)

with n = 0, ±1, ±2,⋯. The locations for the dark fringes are obtained for the vertical
positions at

ydark = (2n + 1) 𝜆L
2d
. (4.39)

The separation between the two bright fringes corresponding to (n + 1) and n is thus

(Δy)bright = (n + 1) 𝜆Ld − n𝜆L
d
= 𝜆L

d
. (4.40)

Similarly, the separation between the two dark fringes is also given by

(Δy)dark = (2 (n + 1) + 1) 𝜆L
2d

− (2n + 1) 𝜆L
2d

= 𝜆L
d
. (4.41)

The fringes are thus equally spaced as shown in Fig. 4.11.
Next we calculate the intensity distribution in the interference pattern. Light consists of

waves whose complex amplitudes can be written as

Source

S1

S2

d Q

L

P

(∆y)bright =
λL

d

Fig. 4.11 The spacing between the maxima of the adjacent fringes in Young’s double-slit experiment is equal and

given by 𝜆L/d.
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u (x, t) = uei(kx−𝜈t). (4.42)

The amplitude of the light field at point P consists of two contributions, one coming from slit 1
and the other from slit 2 as shown in Fig. 4.10. Since we assume the two slits to be identical, the
field amplitudes at P from the two sources are the same. The only difference is the additional
phase shift equal to

𝜙 = kd sin 𝜃 = 2𝜋
𝜆 d sin 𝜃 (4.43)

that the light coming from slit 2 acquires due to the additional distance it has to travel. We thus
have

u1(t) = ue−i𝜈t (4.44)

u2(t) = ue−ivt+i𝜙. (4.45)

The intensity at point P is

Ip = |u1(t) + u2(t)|
2 = I0cos2 (𝜙/2) , (4.46)

where I0 = 4u2 is the maximum intensity. On substituting for 𝜙 from Eq. (4.43), we obtain

I = I0 cos2 (𝜋𝜆 d sin 𝜃) . (4.47)

We can obtain all the above results relating to the location and spacing of the dark and bright
spots from this expression for the intensity.

First, we see that the maximum intensity occurs when
𝜋
𝜆 d sin 𝜃 = n𝜋 (n = 0, ±1, ±2,⋯) (4.48)

or

d sin 𝜃 = n𝜆. (4.49)

This is shown in Fig. 4.11.This is the same result as Eq. (4.31). Similarly dark fringes are formed
at those angles where

𝜋
𝜆 d sin 𝜃 = (2n + 1) 𝜋2 (n = 0, ±1, ±2,⋯) (4.50)

or

d sin 𝜃 = (2n + 1) 𝜆2 . (4.51)

Again this condition is identical to condition (4.33) for dark fringes.
When y ≪ L, we have sin 𝜃 ≈ tan 𝜃 ≈ y/L,

I = I0 cos2 (𝜋d
𝜆

y
L) . (4.52)

From this expression, we can see that maxima are obtained at vertical distances

yn = n𝜆L
d
. (4.53)
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The distance between neighboring maxima (and minima) is

y = 𝜆L
d

(4.54)

as before. An advantage of this approach is that we have the explicit expression for the intensity
on the screen.

4.3 Diffraction

Another important consequence of the wave nature of light is diffraction.When a light beam is
incident on an obstacle, it does not travel in a straight line. Instead it bends and light is scattered
in those areas where we expect a shadow. This is seen in Fig. 4.12, where incoming light passes
through a slit and forms a sort of interference pattern consisting of a broad, intense central
band flanked by a series of narrower, less intense secondary bands and a series of dark bands,
or minima. This phenomenon cannot be explained if we treat light as consisting of particles, as
the particles traveling in straight lines should cast a sharp image of the slit on the screen. Here
we consider the slit to have a width a unlike the slits considered in our discussion of Young’s
double-slit experiment where we assumed the slits to have negligible widths.

Like interference, diffraction can also be understood from Huygens’ principle, according to
which each point on the slit acts as a source of a wave. Light from one point can interfere with
light from another point constructively or destructively depending upon the relative phase,
thus leading to the spreading of the wave with an associated interference pattern. The resultant
intensity on the screen is the sum of the waves generated by all the points within the slit and
thus depends on the direction 𝜃.

In general, it is complicated to analyze the diffraction pattern on the screen as we have to add
the contribution of light waves from all the infinite points within the slit of width a. However
there is a simple argument to find the locations of the dark points on the screen.

We first divide the slit into halves as shown in Fig. 4.13. We assume that all the points within
the slit have the same phase. We also assume that the distance from the slit to the screen, L, is
much larger than the width of the slit a, i.e., L ≫ a. We can then, as in the analysis of Young’s

Incoming wave

Slit

θ

Fig. 4.12 Diffraction of light from a single slit.
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Fig. 4.13 Condition for a dark spot in the diffraction of light from a single slit. (a) The condition for destructive

interference is satisfied for light originating from points 1 and 3 as well as 3 and 5 and (b) the condition for destructive

interference is satisfied for light originating from points 1 and 2, 2 and 3, 3 and 4, and 4 and 5.

double-slit experiment, treat the waves originating from all the points on the slit to be almost
parallel to each other.

We see that, for destructive interference at the screen, the difference in path length between
the waves originating from the bottom and the center should be half the wavelength. As the
path difference is (a/2) sin 𝜃 (see Fig. 4.13a) the condition for the destructive interference is

a
2 sin 𝜃 = 𝜆

2 . (4.55)

If this condition is satisfied between points 1 and 3, then it must also be automatically satisfied
between points 3 and 5. As a matter of fact, for each point in the lower half of the slit, there
is a point a/2 above in the upper half of the slit, such that the waves originating from the
pair of points interfere destructively. This proves that the overall condition for the destructive
interference, and consequently the dark spot on the screen, is Eq. (4.55). We can rewrite this
condition as

sin 𝜃 = 𝜆
a . (4.56)

Next we divide the slit in four parts. The path difference between points 1 and 2, 2 and 3, 3
and 4, and 4 and 5 is equal to (a/4) sin 𝜃 as shown in Fig. 4.13b, and the condition for destructive
interference is

a
4 sin 𝜃 = 𝜆

2 , (4.57)

which can be rewritten as

sin 𝜃 = 2𝜆
a . (4.58)
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Similarly dividing the slit into six parts, the condition for destructive interference becomes

sin 𝜃 = 3𝜆
a . (4.59)

In general those points on the screen are dark where the angle 𝜃 is given by

sin 𝜃dark =
n𝜆
a , (4.60)

where n = ±1, ±2,⋯.
The locations of the dark spots in the vertical direction can be found by assuming, as before,

sin 𝜃 ≈ tan 𝜃 = y
L . (4.61)

It then follows from Eq. (4.60) that

ydark = n𝜆La , (4.62)

where n = ±1, ±2,⋯.Thus the dark spots are equidistant from each other, the separation being
𝜆L/a. This is shown in Fig. 4.14.

This simple argument provides the location of the dark spots on the screen. It does not,
however, provide information about the intensity distribution. The intensity distribution as a
function of the angle 𝜃 is given by1

Screen

0

y2

y1

–y1

–y2

θ

λ
sin θdark = m

a

L

a

Fig. 4.14 In the diffraction pattern from a slit of width a, the dark spots are equidistant.

1 The derivation for the expression of intensity follows the same method as we used to derive the intensity (4.46)
in the Young’s double-slit experiment. The difference is that, in the case of Young’s double-slit experiment, we added
the field contributions at P from only two points. In the case of the diffraction from a single slit of width a, we have to
add the contributions from each point within the slit. The result is the following integration:

I =
||||
u 1
a∫

−a/2

a/2
dxe−i𝜈t+ikx sin𝜃

||||

2

= I0⎢⎣
sin (𝜋a sin𝜃/𝜆)
𝜋a sin𝜃/𝜆

⎥
⎦

2

,

where I0 = |u|2 and we used k = 2𝜋/𝜆.
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I = I0⎢⎣
sin (𝜋a sin 𝜃/𝜆)
𝜋a sin 𝜃/𝜆

⎥
⎦

2

. (4.63)

This distribution is shown in Fig. 4.15. The diffraction from a slit thus produces an intensity
pattern with a broad, central, bright fringe flanked by much weaker bright fringes alternating
with dark fringes. The location of the dark fringes is given by Eq. (4.62) and the locations of
the bright fringes satisfy

𝜋a sin 𝜃
𝜆 = (2n + 1) 𝜋2 (4.64)

or

sin 𝜃bright = (2n + 1) 𝜆2a (4.65)

yielding, with sin 𝜃 ≈ tan 𝜃 = y/L,

ybright = (2n + 1) 𝜆L2a (4.66)

where n = ±1, ±2,⋯ . These expressions are not valid for n = 0. When 𝜃 = 0 or y = 0, the
intensity is maximum and is equal to I0. Thus the bright and dark fringes alternate on each side
of the central point y = 0.

So far we have considered a planar slit. For a circular aperture of diameter D, we obtain a
similar diffraction pattern as a slit of width a as shown in Fig. 4.16. The difference, of course, is
that the pattern consists of bight rings surrounded by dark rings as shown in Fig. 4.17a instead
of a pattern consisting of alternate bright and dark fringes. The calculation of the diffraction
pattern with a circular aperture is complicated. The resulting intensity distribution, called the
Airy pattern, is given by

I = I0[
J1(w)

w ]
2

,w = 𝜋Dr
L𝜆 . (4.67)

Here J1(w) is a function and is called the Bessel function of order 1, D is the diameter of the
aperture, r is the distance from the center line, and L is the distance from the aperture to the

–3 –2 –1 0 1 2 3
θ

I

Fig. 4.15 The diffraction pattern as given by Eq. (4.63).
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Airy

disk

D

θ

Fig. 4.16 Diffraction from a circular aperture.

(a) (b)

Intensity

0

D

1.22λ θ

Fig. 4.17 The diffraction pattern from a circular aperture is the Airy pattern (4.67). (a) There is a bright spot at the

center followed by alternating dark and bright spots. (b) The first dark spot is located at 𝜃 = 1.22𝜆/D.

screen. The first zero of the Bessel function J1(w) occurs at w = 3.832. Therefore the condition
for the first dark ring is

w = 𝜋Dr
L𝜆 = 3.832. (4.68)

The radius of the Airy disc (the distance from the center to the first dark ring) is then
given by

rmin = 1.22𝜆LD . (4.69)

Firstminimum for the diffraction pattern of a circular aperture of diameterD for small angle
(𝜃min ≪ 1) occurs for (Fig. 4.17b)

sin 𝜃min ≈ 𝜃min = 1.22 𝜆D . (4.70)

This expression is similar to the corresponding angle for the first dark fringe in the case of
diffraction from a single slit, i.e., sin 𝜃 = 𝜆/a.

The angular radii of the next two dark rings are given by

sin 𝜃2 = 2.23 𝜆D ; sin 𝜃3 = 3.24 𝜆D .
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In between there are bright rings with angular radii given by

sin 𝜃 = 1.63 𝜆D ; sin 𝜃 = 2.68 𝜆D .

4.4 Rayleigh Criterion

It is a common experience for all of us that we can distinguish two objects placed at a certain
distance from us. However, if these objects come closer, there is a point when we are unable to
distinguish them. We just see a blurred object. We experience a similar resolution limit if the
two objects keep their separation intact butmove farther away from us. How dowe understand
these limits on resolution? The fundamental limit, as we see below, comes from diffraction.

We have seen that diffraction can cause the spread of a light beam when it passes through an
aperture. An image of a point object is nomore a point but instead anAiry pattern, as discussed
in the last section. Such a circularly symmetric pattern is shown in Fig. 4.18a. If, insteadwe have
two point sources, each one makes an Airy pattern of its own. If the two objects are separated
by a sufficiently large distance, the two Airy patterns can be resolved, as seen in Fig. 4.18b.
However, when the two objects come very close, the Airy patterns they generate can no longer
be resolved, as shown in Fig. 4.18c. We want to find the minimum distance between the two
objects when they can be resolved.

For this purpose, we consider light from two point objects passing through a circular
aperture and forming an image on a screen as shown in Fig. 4.19. The image formed by each
point source is an Airy pattern with a bright spot in the center surrounded by a dark ring. If
the aperture diameter is D and the wavelength is 𝜆, the angular radius 𝜃1 of the first dark ring
is given by

sin 𝜃1 = 1.22 𝜆D . (4.71)

According to the Rayleigh criterion, formulated by Lord Rayleigh in 1879, two point sources
are regarded as just resolved when the principal diffraction maximum of one image coincides
with the first diffraction minimum of the second image. Thus the condition of minimum
angular resolution is

(a) (b) (c)

Fig. 4.18 (a) Diffraction pattern from a single point. (b) Diffraction pattern from two points whose separation is large

enough that they can be resolved, and (c) when they cannot be resolved.
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Intensities

θmin

θmin

Fig. 4.19 Images formed by two point sources through a circular aperture are Airy patterns. According to the Rayleigh

criterion, the two point sources can be resolved if the principal diffraction maximum of one image coincides with the

first diffraction minimum of the second image.

sin 𝜃min ≈ 𝜃min = 1.22 𝜆D . (4.72)

When the objects are separated by a distance s and the aperture is at a distance L away, the
angular separation 𝜃 is given by

𝜃 = s
L . (4.73)

The minimum resolvable distance between two objects is thus

smin = L𝜃min = 1.22𝜆LD . (4.74)

As our first example, we calculate the resolution of the eye. The pupil diameter D ranges
from 3–4 mm during the day to 5–9 mm at night. An eye is sensitive to optical wavelengths
ranging between 0.38 and 0.80 𝜇m. The angular resolution of an eye for light of wavelength
𝜆 ∼ 0.55 𝜇m is

𝜃min = 1.22 𝜆D = 1.220.55 × 10−6

3 × 10−3 rad = 0.224 × 10−3 rad. (4.75)

and theminimum resolvable separation between two point objects, such as two lines drawn on
a paper or two letters on a billboard, at a distance L is given by

smin = L𝜃min = 1.22𝜆LD = 0.224 × 10−3 × L. (4.76)
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We can therefore resolve two points at a distance of 1 m if they are separated by a distance of
0.224 mm or more.

The Rayleigh limit also puts restriction on microscopes and telescopes. For example, we can
calculate the resolving power of two celestial objects by the orbiting Hubble space telescope.
The primary mirror of the Hubble telescope has a diameter D = 2.5 m. Thus, for average light
wavelength of 0.55 𝜇m, the Rayleigh criterion gives the minimum resolvable angle between
two point sources such as far away stars as

𝜃min = 1.22 𝜆D = 1.220.55 × 10−6

2.40 = 2.80 × 10−7rad. (4.77)

The distance s between two objects a distance L away and separated by an angle 𝜃 is s = L𝜃.
Thus the Hubble telescope can resolve two stars with minimum separation

smin = L𝜃min = 2.80 × 10−7 × L. (4.78)

The Andromeda galaxy is about 2 million light years away from us. One light year (ly) is the
distance light of velocity 3× 108 m/s travels during one year (365× 24× 60× 60 seconds). The
Hubble telescope can therefore resolve stars that are separated by distance

smin = 2.80 × 10−7 × 2 × 106 ly = 0.56 ly. (4.79)

Typical separation between neighboring stars ranges from 1 ly to about 4 ly.Thus theHubble
telescope is able to resolve essentially all the stars in theAndromeda galaxy evenwhen it is about
2 million light years away from those stars.

Problems

4.1 Water waves in a pond travel a distance of 5.5 m in 2.2 s. The time it takes for one
complete wave to pass a certain point is 1.5 s. (a) Find the velocity of the wave;
(b) find the frequency of the wave; (c) find the wavelength.

4.2 The equation of a traveling wave is y (x, t) = 0.04 cos (37.68 t + 12.56 x), where x and y
are in meters, and t in seconds. Determine the following: (a) the direction of the wave;
(b) the wave number and the wavelength; (c) the angular frequency; (d) the frequency; (e)
the speed of the wave; and (f ) the time when y (0.25, t) = 0.02.

4.3 A string of length 0.28 m is fixed at both ends. The string is plucked and a standing wave
is vibrating at its second harmonic. The speed of the traveling waves that make up the
standing wave is 140 m/s. What is the frequency of vibration?

4.4 In a Young’s double-slit experiment, the angle that locates the second-order bright fringe
is 2.0∘. The slit separation is d = 3.8 × 10−5 m. What is the wavelength of the light?

4.5 In a double-slit experiment, the wavelength is 𝜆 = 586 nm, the separation between the
two slits is d = 0.10 mm, and the distance from the slits to the screen is L = 20 cm.
On viewing the screen, what is the distance between the fifth maximum and the seventh
minimum from the central maximum?

4.6 A slit is illuminated by light of wavelength 𝜆 = 586 nm. What is the distance between the
two slits d if the first minimum occurs at 𝜃 = 15.0∘?
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5 Fundamentals of QuantumMechanics

The laws of quantum mechanics were formulated in the year 1925 through the work of
Werner Heisenberg, followed by Max Born, Pascual Jordan, Paul Dirac, and Wolfgang Pauli.
A separate but equivalent approach was independently developed by Erwin Schrödinger in
early 1926. The laws governing quantum mechanics were highly mathematical and their
aim was to explain many unresolved problems within the framework of a formal theory. As
mentioned in Chapter 1, a conceptual foundation emerged in the subsequent 2–3 years that
indicated (to the consternation of even some of the founding fathers such as Einstein, de
Broglie, and Schrödinger) how radically different the new laws were from the classical physics.
In Chapter 17, we discuss the Schrödinger equation and its solutions for some simple prob-
lems, thus indicating how any problem in physics can be mathematically solved within the
framework of quantum mechanics. In this introductory text we do not delve into these details
and concentrate on the fundamental and conceptual aspects of quantum mechanics. An
understanding of these concepts, as we see in later chapters, is sufficient in understandingmany
recent exciting applications in areas such as quantum information and quantum computing.

In this chapter we discuss some of these salient features of quantum mechanics. This
discussion should indicate how different and counterintuitive its fundamentals are from those
of classical physics.

5.1 Quantization of Energy

In classical mechanics, any type of motion (translation, rotation, vibration) can have any
value of energy associated with it, i.e., there is a continuum of energy states. One of the most
fundamental aspects of quantum mechanics is that, in most situations, the energy comes in
discrete units called quanta of energy. The first three major contributions that led to the birth
of quantummechanics all involved quantization of energy.Thiswill be the subject of discussion
in the next chapter. Here we summarize these results to indicate how quantization of energy
was the common theme of these works.

First wemention the work ofMax Planck to explain the spectrum of light emitted from a so-
called blackbody. An object that absorbs all radiation falling on it, at all wavelengths, is called
a blackbody. When a blackbody is at a uniform temperature, it emits a characteristic frequency
distribution that depends on the temperature. The emitted radiation is called blackbody
radiation. According to classical mechanics, the emitted radiation arises due to the oscillation
of electrons of atoms and molecules at any frequency, from zero to infinity. As a result, the
amount of energy emitted has no upper limit. Thus an infinite amount of energy should be
emitted at large frequencies (or small wavelengths). However this does not happen. As amatter

Quantum Mechanics for Beginners: With Applications to Quantum Communication and Quantum Computing. M. Suhail Zubairy.
© M. Suhail Zubairy 2020. Published in 2020 by Oxford University Press. DOI: 10.1093/oso/9780198854227.001.0001
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of fact it was observed that the emitted energy peaks at a certain frequency depending on the
temperature and goes down to almost zero at high frequencies.MaxPlanck explained this result
by making a bold ansatz that the energy associated with the oscillations of electrons which give
rise to the radiation come in packets or quanta of energy. Each packet has energy proportional
to the frequency of oscillation of the electron. The quantization of energy thus explained the
blackbody spectrum.

Second we discuss how Einstein used Planck’s quantization condition to explain the phe-
nomenon of the photoelectric effect. In metals electrons are free to move and are therefore
good conductors of electricity. In the photoelectric effect, it was observed that when light was
incident on ametallic surface, electronswere ejected from the surfacewith some kinetic energy.
This is not surprising as light has energy and, when this energy is imparted to electrons inside
the metal, they acquire sufficient kinetic energy and are released. There was however a result
that could not be explained with this simple common-sense approach. It was observed that, for
a given metal, there exists a certain minimum frequency of incident radiation below which no
photoelectrons are emitted nomatter how intense the radiation field is.This frequency is called
the threshold frequency. Einstein invoked Planck’s hypothesis to explain this effect by arguing
that light should come in packets or quanta of energy and this energy should be proportional
to the frequency. Electrons are emitted if the energy of the quantum of light, which has come
to be known as a photon, is higher than a critical value.

The third problem relates to the atomic structure of hydrogen. It was known through the
work of Rutherford that an atom consists of a positively charged nucleus with electrons orbiting
around it.Whatwas also knownwas that hydrogen atoms produced somediscrete spectral lines
corresponding to light energy radiated at some well specified frequencies. How to reconcile the
Rutherford model with the observation of the spectral lines? This was a challenge around 1913
when Bohr applied a quantization condition to explain this curious effect. Bohr’s condition
implied that the electron can exist only in somewell-defined orbits whose radii can be obtained
from the quantization condition. The spectral distribution of the radiation emitted can then be
explained by assuming that, when an atom in a higher orbit jumps to a lower orbit, a photon
of discrete frequency is emitted. Bohr could show that the frequencies predicted based on the
quantization condition matched the experimentally observed frequencies.

Thus we see that the theme of quantization of energy, so alien to classical mechanics, is
fundamental to the quantum mechanical description. As we discuss in the final chapter, when
we solve the Schrödinger equation for the simplest of all problems, a particle such as an electron
moving freely inside a box, can lead us to the surprising result that the particle can only have
discrete amount of energies. This is in sharp contrast to our everyday observance that, in the
macroscopic world, particles can have any amount of energy.

5.2 Wave–Particle Duality

In classical mechanics, particles and waves are distinguishable phenomena, with different,
characteristic properties and behaviors. Particles are massive objects that can occupy well-
defined positions and can move with well-defined velocities. They can carry momentum and
can collidewith each other (Chapter 3).We cannot associate any of these properties withwaves.
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Waves are described in terms of wavelength and frequency and lead to phenomena such as
interference and diffraction (Chapter 4).

In quantum mechanics, such distinction is done away with: A truly mind-boggling result
is that both light and matter display dual behaviors, i.e., in some experiments they behave
like waves and in others they behave like particles. For example, interference and diffraction
phenomena can only be explained by treating light as a wave. These phenomena cannot be
explained by treating light as consisting of particles. On the other hand, Einstein explained
the photoelectric effect in 1905 by treating light as composed of quanta or photons. The
wave picture of light fails to explain how light of frequency below a critical level, no matter
how intense, cannot eject an electron from the metallic surface. In 1924, the other side of
wave–particle duality was argued by de Broglie when he showed that a massive object can
behave as a particle with momentum as well as a wave with an associated wavelength, which is
usually referred to as the de Broglie wavelength. Therefore a particle can act both as a particle
and a wave.

A mysterious consequence of quantum mechanics is that the choice whether light behaves
as a wave or as a particle depends on the experimental set-up. The quintessential experiment
that demonstrates wave–particle duality is Young’s double-slit interference experiment. When
a single photon goes through the slits, it registers as a point-like event on the screen (measured
say by a CCD array). An accumulation of such events over repeated trials builds up a
probabilistic fringe pattern that is characteristic of wave interference. However, if we arrange
to measure which slit the photon goes through, the interference always disappears and the
pattern on the screen is no different to that if massive particles are incident on the screen. Thus
the photons exhibit particle-like behaviour.

The counterintuitive aspect of wave–particle duality is epitomized in the problem of the
quantum eraser, as was shown byMarlan Scully and Kai Drühl in 1982.The inability to discern
which-path information, or the indistinguishability of interfering pathways, in the double-slit
experiment is the key to preserving the wave properties of the photon and the appearance of
fringes on the screen.What if, rather than subject the photon to a classicalmeasurement, we can
have it interact quantum mechanically with a localized marker particle (such as an atom) and
leave behind a record of its path?Whether the interference pattern then survives or not depends
on the marker states, which carry the tell-tale information about which path the photon took
to the detector. The coherence is destroyed as soon as we have the which-path information.
One then wonders whether it might not be possible to retrieve the coherence, and the fringes,
by destroying the which-path information contained in the marker—long after the photon is
detected on the screen. This is the essence of the quantum eraser idea. We discuss these ideas
in detail in Chapter 9 but this brief discussion helps to glean the counterintuitive nature of
quantum mechanics.

5.3 End of Certainty—Probabilistic Description

Perhaps the most celebrated and discussed aspect of quantum mechanics is the probabilistic
nature of its predictions. As we have seen in Chapter 3, particle trajectory is a central concept
in classical physics. If a particle moves under the action of known forces then the position and
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the velocity of the particle can be simultaneouslymeasured at any time with arbitrary accuracy.
The motion of the particle is therefore fully deterministic and follows a known trajectory.

In quantum mechanics, a “particle” (e.g., an electron) does not follow a definite trajec-
tory. The complete description of a particle is contained in the “wave function” 𝜓(r) which
represents the spatial distribution of a “particle”. As an example, electrons in an atom are
described by wave functions centered on the nucleus. The wave function 𝜓(r) is a function
of the coordinates defining the position of the classical particle. The wave function contains all
the information about the system. If we know 𝜓, we can determine any observable property
(e.g., energy, momentum, …) of the system. Quantum mechanics, through the Schrödinger
equation, provides the tools to determine 𝜓 computationally and then to use 𝜓 to determine
properties of the system.

Immediately after Schrödinger derived the equation for 𝜓(r) in 1926 and correctly derived
the energy levels of the hydrogen atom, the debate ensued about the meaning of the wave
function. How do we interpret the wave function 𝜓(r)? This was one of the most important
problems facing physicists immediately after Schrödinger formulated his equation for the
wave function. The breakthrough came through the work of Max Born who presented the
probabilistic interpretation of 𝜓(r), according to which the modulus square of the wave
function, |𝜓(r)|2, at any point in space is proportional to the probability of finding the particle
at that point. The wave function 𝜓 itself has no physical meaning. This amounts to the end of
the era of certainty that we associate with the predictions in classical mechanics. So whereas, on
the basis of Newtonian mechanics, we can predict with certainty where a tennis ball will land
on a wall if we know the initial velocity and the acceleration due to gravity, we have no such
prediction for an electron. If an electron is accelerated through an electric potential, quantum
mechanics does not allow us to describe the motion of the electron in terms of a trajectory and
does not tell us where the electron will hit the screen. Quantum mechanics only gives us the
probability that the electron will hit a certain point on the screen.

This end of certainty and the probabilistic nature of quantum mechanics has been truly
exasperating to many, including Einstein who, in a famous quote, said “God does not
play dice”.

5.4 Heisenberg Uncertainty Relations and Bohr’s
Principle of Complementarity

An important consequence of quantum mechanics is the Heisenberg uncertainty relations.
According to these relations, there are complementary pairs of variables such that if we know
one of them very precisely then the other becomes uncertain. One such pair of observables is
position andmomentum. According to Heisenberg, “it is impossible to specify simultaneously,
with precision, both the momentum and the position of a particle” no matter how precise our
measurement devices are.This is again in sharp contrast toNewtonianmechanics wherewe can
measure any observable property as precisely as we like—the only restriction comes from the
limitation of our measurement devices. Mathematically, the Heisenberg uncertainty relation
for position and momentum can be written as
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ΔxΔp ≥ h
4𝜋 , (5.1)

where Δx is the uncertainty in the location of the particle, Δp is the uncertainty in the
momentum, and h is a constant called Planck’s constant. Thus if we know the position, x, of
a particle exactly, we are completely uncertain about its momentum, px, and if we know the
momentum, px, exactly, we are completely uncertain about the position, x. This is consistent
with the earlier assertion that there is no concept of a particle trajectory {x(t), px(t)} in
quantum mechanics. Since Planck’s constant is very small, the uncertainty relation is valid for
small particles. For macroscopic objects, Δx and Δpx can be very small when compared with
x and px. We can therefore define a trajectory to a very good approximation.

Similar uncertainty relations exist between energy E and time t, i.e.,

ΔEΔt ≥ h
4𝜋 (5.2)

and between angular momentum L and angular displacement 𝜃, i.e.,

ΔLΔ𝜃 ≥ h
4𝜋 . (5.3)

Next we address the question: What is the origin of the Heisenberg uncertainty relation?
We answer this question in detail in Section 7.3. Here we only mention that the process of
measurement is an inherent source of uncertainty. According to Heisenberg (in his 1927
paper):

If one wants to be clear about what is meant by “position of an object”, for example of an
electron . . ., then one has to specify definite experiments by which the “position of an electron”
can be measured; otherwise this term has no meaning at all.

If, for example, we want to measure the position of an electron we have to come up with a
device like a microscope to precisely measure the location of the electron. This can be done
by first shining light on the electron and measuring the position of the electron by looking at
the scattered light. However, as discussed above, a consequence of the wave–particle duality
is that a photon has momentum that can be imparted to the electron during the process of
observation. This disturbance is the source of uncertainty in both position and momentum of
the electron. A careful analysis, as we do in Section 7.3, leads to an uncertainty relation of the
form Eq. (5.1). No one has come up with an experimental arrangement where the position and
momentum of a particle can be simultaneously determined with precision that violates this
inequality.

When Heisenberg formulated his uncertainty relations, Niels Bohr formulated the principle
of complementarity. According to this principle, two observables are complementary if precise
knowledge of one of them implies that all possible outcomes of measuring the other one are
equally probable.

We have seen above that light and electrons can behave both as particle or wave in different
experiments. For example, light can behave like a wave in interference and diffraction experi-
ments but behaves like a particle (quantum of energy) in experiments such as photoelectric
emission. According to the principle of complementarity, light (and electrons) can behave
either as a wave or a particle but never both in a given experiment.
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The uncertainty relation and complementarity appear to be related concepts. However, they
have been shown to be quite different from each other.

5.5 Coherent Superposition and Quantum Entanglement

In classical mechanics, the system is always in a well-defined state—an object can be either
here or there. There are, of course, instances when we do not have full knowledge whether the
system is in one state or another. For example, a door is open 36% of the time and closed 64% of
the time. If we approach the door, we do not know with certainty whether we shall find it open
or closed, we only know the probability that we shall find it open or closed. However, when we
get to the door we find it either open or closed. More importantly we can infer the past: If we
find the door open, we can conclude that the door was open before we got there. This is the
essence of classical mechanics.

The quantum mechanical description is however quite different. A quantum mechanical
system is, as we discussed above, described by a wave function 𝜓. The wave function can
however be in a coherent superposition of states:

Ψ = c1𝜓1 + c2𝜓2 +⋯ (5.4)

Here c1, c2,⋯ are complex numbers and𝜓1,𝜓2,⋯ are possible states of the system.The system
therefore exists simultaneously in all the possible states 𝜓1, 𝜓2, ⋯. This description is quite
different from the classical description. However, when we make a measurement, the system
is found in only one of the states 𝜓i with probability |ci|2. Moreover, if the system is found in
a certain state, say 𝜓1, we cannot conclude that, even before we made the measurement, it was
in the state 𝜓1.

We illustrate this strange behavior with an example. Without going into any details, we
mention that an electron has a property called “spin”. An electron can either be in a state with
spin up, designated by 𝜓↑, or in a state with spin down, 𝜓↓. Let us assume that, for a given
electron, the state of the electron is given by

Ψ = c↑𝜓↑ + c↓𝜓↓ (5.5)

where c↑ = 0.6 and c↓ = 0.8. Thus the probability of finding the electron with spin up (in
the state 𝜓↑) is |ci|

2 = 0.36 and with spin down (in state 𝜓↓) is |ci|
2 = 0.64. We can now do an

experiment to findwhether the spin is up or it is down by passing it through an inhomogeneous
magnetic field pointing in the z-direction. If the spin is up, it will be deflected in the upward
+z-direction and if the spin is down, it will be deflected in the downward −z-direction, as
shown in Fig. 5.1. This is an actual experiment that was first done by Otto Stern and Walter
Gerlach in 1922. According to quantum mechanics we cannot say anything in advance about
whether the electron will be deflected in +z-direction or in the −z-direction. However, when
the experiment is done, the electron is deflected in the +z-direction OR in the −z-direction.
Let us suppose that it is deflected in the+z-direction and we conclude that the electron spin is
in state 𝜓↑.
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Fig. 5.1 Schematics of Stern–Gerlach experiment. An electron is deflected by an inhomogeneous magnetic field in the

“up” direction or in the “down” direction depending on whether it is in the state 𝜓↑ or in the state 𝜓↓

The situation so far appears to be completely analogous to our example of “door open” and
“door closed”. There is, however, a major difference. Let this same electron that is found in state
𝜓↑ pass through the inhomogeneous magnetic field pointing in the x-direction. Then we get
the deflection of the electron in the +x-direction or −x-direction. If the electron is deflected
in the +x-direction, we conclude that the electron is in some state which is neither 𝜓↑ nor
𝜓↓. This is a bit surprising. However, the amazing result is that, if after this measurement on
the electron with magnetic field oriented in the x-direction, we pass the same electron again
through the magnetic field in the z-direction, there is a probability that the electron will be
deflected in the downward direction, implying that it is in state 𝜓↓. How can that be? We
already knew that the electron is in state 𝜓↑ and now we find the same electron in state 𝜓↓.
This is very strange, to say the least. Can we assign a definite state 𝜓↑ or 𝜓↓ to the electron?
The answer is no! Whether the state is 𝜓↑ or 𝜓↓ depends on the orientation of the apparatus or,
more specifically, the measurement device. Can we say that the electron existed in the state 𝜓↑
before we made the first measurement? Again the answer is no! This counterintuitive behavior
which has no analogue in classical physics has been a matter of great discussion and debate
since the earliest days of quantum mechanics. We shall discuss this issue in more detail in later
chapters, particularly Chapter 12.

Another highly counterintuitive feature of quantum mechanics is that two or more objects
can forman “entangled” state. In our classical world, if we have two objects such as two balls that
are placed a large distance apart, they are strictly independent of each other. No matter what
we do to the one, it cannot influence the other. Quantum mechanically we can form states for
the two objects such that, even when the two objects are very far from each other, what we do
to one object can influence the state of the other.

Consider two objects described by wave functions 𝜓1 and 𝜓2. Classically, the total state of
the system is

Ψ = 𝜓1 (r1) 𝜓2 (r2) or 𝜓1 (r2) 𝜓2 (r1)

i.e., the two objects are independent of each other. Quantum mechanically, we can have an
entangled state:

Ψ = 1
√2

(𝜓1 (r1) 𝜓2 (r2) + 𝜓1 (r2) 𝜓2 (r1)) (5.6)
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This is a “coherent superposition” for the two objects. The total system can no longer be
factorized—and is entangled. Such a state has no analog in classical mechanics. Both coherent
superposition and quantum entanglement lie at the heart of quantum computing.

Problems

5.1 A quantum system is found in the superposition of states 𝜓1 and 𝜓2 as

Ψ = c1𝜓1 + c2𝜓2

If c1 = 0.7 + 0.5i, what are the probabilities of finding the system in states 𝜓1 and 𝜓2?
(Please note that the conservation of probabilities leads to |c1|

2 + |c2|
2 = 1.)

5.2 The Rydberg formula for the hydrogen atom is,
1
𝜆 = RH (

1
m2 −

1
n2 )

where RH = 1.097 × 107 m−1. For m = 2 (Balmer series), find the frequency of the first
four wavelengths corresponding to n = 3, 4, 5, 6.

5.3 If the position of an electron is measured to an accuracy of ∆x= 10−10 m, what
is the minimum uncertainty in its momentum and velocity? (Mass of an electron,
me = 9.1 × 10−31 kg, Planck’s constant h = 6.626 × 10−34 J · s.)

5.4 Consider a tennis ball of mass 100 g. If its position is known to an accuracy of
∆x= 0.01 mm, what is the minimum uncertainty of the speed with which it is moving?
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6 Birth of QuantumMechanics—Planck,
Einstein, Bohr

Aswementioned inChapter 1, the basic laws of physics related tomechanics, thermodynamics,
electromagnetism, and light were firmly in place at the end of the nineteenth century. There
was a feeling among scientific circles that nothing new was expected as far as the foundation of
physics is concerned. No one could imagine that physics stood at the threshold of a revolution
that would replace the existing laws that had been formulated as far back as Isaac Newton
with laws that would be highly counterintuitive and transformational. In particular there were
certain experimental observations that could not be explained by the existing laws referred to
as the classical laws of physics. These observations related to different areas of physics, but they
had one point in common—they all involved light. A resolution of these observations would
lead to the birth of quantum mechanics.

In this chapter, we first present a brief history of light. We then describe the unresolved
phenomena of blackbody radiation, the photoelectric effect, and the spectrum of light emitted
by the hydrogen atom. Next we discuss the novel and revolutionary postulates regarding
quantization of energy aimed at resolving those problems by Max Planck, Albert Einstein, and
Niels Bohr, respectively.

6.1 Brief History of Light

The nature of light has been a subject of interest going back to antiquity. Until around the
seventeenth century, studies of light were mainly concerned with vision. The Greeks were
among the first to address the question: How do we perceive objects? Plato, Euclid, Ptolemy,
and their followers believed that light consisted of rays emitted by the eyes. The striking of the
rays on the object allows the viewer to perceive things such as the color, shape, and size of
the object. Our vision is initiated by our eyes reaching out to “touch” or feel something at a
distance. This is the essence of the extramission theory of light.

The extramission theory remained influential for almost a thousand years until Alhazen
conclusively proved it to be wrong in the beginning of eleventh century. Alhazen, a Persian
scientist, proved, that, unlike the conventional theory of vision, light originated, not from the
eye but from the illuminated objects. He did this by carrying out a simple experiment in a dark
room where light was sent through a hole by two lanterns held at different heights outside the
room. He could then see two spots on the wall corresponding to the light rays that originated
from each lantern passing through the hole onto the wall. When he covered one lantern, the
bright spot corresponding to that lantern disappeared. He thus concluded that light does not
emanate from the human eye, but is emitted by objects such as lanterns and travels from these

Quantum Mechanics for Beginners: With Applications to Quantum Communication and Quantum Computing. M. Suhail Zubairy.
© M. Suhail Zubairy 2020. Published in 2020 by Oxford University Press. DOI: 10.1093/oso/9780198854227.001.0001
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objects in straight lines. Based on these experiments, he invented the first pinhole camera (that
Kepler would use and call a camera obscura in the seventeenth century) and explained why the
image in a pinhole camera was upside down.

The first studies on the nature of light were carried out in the seventeenth century through
the works of Rene Descartes (1596–1650), Isaac Newton (1642–1727), and Christian Huygens
(1629–1695). Descartes’ main contribution to optics is his book Dioptrics that was published
in 1637. It deals with many topics relating to the nature of light and the laws of optics.

Newton and Huygens were contemporaries but they came up with very different views
on the nature of light. Newton advocated a corpuscular theory of light in his classic and
influential book Opticks (published in 1704). According to him, light is made up of extremely
small particles or corpuscles, whereas ordinary matter was made of larger particles or cor-
puscles. He speculated that through a kind of alchemical transmutation they change into one
another. It is surprising that Newton advocated the corpuscular theory of light when there
was evidence that supported wave behavior. For example, Francesco Grimaldi (1618–1663)
made the first observation of the phenomenon of diffraction of light. He showed through
experimentation that when light passed through a hole, it did not follow a rectilinear path
as would be expected if it consisted of particles but took on the shape of a cone. Newton tried
to explain the phenomenon of diffraction using questionable assumptions.

While Newton was advocating a corpuscular nature of light, his contemporary, Huygens,
suggested a wave picture of light. He considered light waves propagating through the ether
just as sound waves propagate through air or water waves propagate through a lake. Light
waves, according to Huygens, were thus longitudinal waves (like sound waves), as opposed
to the later studies by Fresnel and Maxwell that showed light to consist of transverse waves.
Huygens formulated a principle (that now bears his name) which describes wave propagation.
Waves consist of wave fronts which are surfaces on a wave with the same phase and amplitude.
Huygens’ principle provides a geometric construction for determining at some instant the
position of a new wave front from the knowledge of the wave front that preceded it. When
applied to the propagation of light waves, this principle states that: Every point on a wave front
may be considered a source of secondary spherical wavelets which spread out in the forward
direction at the speed of light (Fig. 6.1). The new wave front is the tangential surface to all of
these secondary wavelets.

Newton’s status as a scientist was so great, particularly in the British Isles, that few dared to
challenge his corpuscular theory of light.The situation continued for almost 100 years, until, in
1802, Thomas Young conclusively demonstrated the wave nature of light through his double-
slit experiment. Young’s double-slit experiment was however regarded highly controversial
and counterintuitive in his own time.

As discussed in Chapter 4, when the two slits in Young’s double-slit experiment are open
then there are regions of bright spots where there is constructive interference from light coming
from the two point sources as well as the dark spots where, due to destructive interference, no
light is present. The dark spots remain dark no matter how intense is the incident light field.
Now if one of the slits is covered, then only half the light is incident on the screen. However, in
this case, the dark spots are no longer dark. In Young’s time, when the principle of interference
was not understood, this appearance of brightness when the total light incident is only half
was very mysterious. How can a screen uniformly illuminated by a single aperture develop
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Fig. 6.1 According to Huygens’ wave theory, every point on a wave front is a source of a secondary wave in the forward

direction.

Diffraction pattern

Source Circular disk

Fig. 6.2 Poisson spot: Light incident on an opaque circular disk forms a bright spot along the axis as a result of Fresnel

diffraction.

dark fringes with the introduction of a second aperture? And how could the addition of more
light result in less illumination?

Young’s theory would eventually find broad acceptance, particularly through the works of
Fresnel in France. Augustin Jean Fresnel (1788–1827), a contemporary of Young, championed
the wave nature of light based on his own work on diffraction.

An episode indicates the stunning success of the wave nature of light as formulated by
Fresnel. In 1819, Fresnel presented his work on wave theory of diffraction in a competition by
the FrenchAcademy of Sciences.The committee of judges, headed by Francois Arago, included
Jean-Baptiste Biot, Pierre-Simon Laplace, and Simeon-Denis Poisson.They were all prominent
advocates of Newton’s corpuscular theory and were not well disposed to the wave theory of
light. Poisson was however impressed by Fresnel’s submission and extended his calculations
to come up with an interesting consequence: “Let parallel light impinge on an opaque disk,
the surrounding being perfectly transparent. The disk casts a shadow—of course—but the very
center of the shadow will be bright. Succinctly, there is no darkness anywhere along the central
perpendicular behind an opaque disk (except immediately behind the disk)”. According to the
corpuscular theory, there could be no bright spot behind the disk. As Chair of the Committee,
Arago asked Fresnel to verify Poisson’s prediction and amazingly Fresnel found the bright spot
as predicted. This discovery was an impressive vindication of the wave theory and Fresnel won
the competition. This spot is now known as the “Poisson spot” (Fig. 6.2).
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Fig. 6.3 Light is an electromagnetic wave with the mutually perpendicular electric and magnetic fields oscillating in

the directions normal to the direction of propagation.

It was left to James Clerk Maxwell (1831–1879) to complete the classical picture of light as
consisting of electric andmagnetic waves.This was a truly remarkable outcome of his efforts to
unify the two known forces of nature: electric force and magnetic force. It was known through
thework ofMichael Faraday that a change ofmagnetic field yielded an electric force.The insight
due to Maxwell was that if electricity and magnetism were the two sides of the same coin then
a change of electric field should similarly result in a magnetic field. This motivated him to
add a term in Ampere’s law that corresponded to a time rate of change of the electric field.
This addition immediately yielded a wave equation for an electromagnetic wave propagating
at the same velocity as known for light, 3 × 108 m/sec. The picture of light that emerged was
thus that of undulations of mutually perpendicular electric and magnetic fields propagating.
The direction of propagation was perpendicular to both the electric and the magnetic fields.
Maxwell’s results were published in 1865. The electromagnetic waves of Maxwell were shown
to be transverse waves in line with Young and Fresnel as opposed to the picture adopted by
Huygens where light was seen as a longitudinal wave propagating through the medium ether.
The description of light as an electromagnetic wave (Fig. 6.3) was experimentally demonstrated
by Heinrich Hertz (1857–1894) in 1888.

At the end of the nineteenth century, most phenomena were understood on the basis of
the classical theory of Newton and Maxwell. However there were some phenomena involving
light that could not be explained with the existing theories. One such phenomenon was the
spectrum of light emitted by heated objects, to which we turn next.

6.2 Radiation Emitted by Heated Objects

A puzzle confronting physicists at the turn of the century (1900) was just how do heated
bodies radiate? A solid consists of atoms and molecules, and heat causes them to vibrate.
However, atoms and molecules are themselves complicated patterns of electrical charges.
Oscillating charges emit electromagnetic radiation. This radiation travels at the speed of light
and from this we realize that light itself, and the closely related infrared heat radiation,
are actually electromagnetic waves. The picture, then, is that when a body is heated, the
consequent vibrations on molecular and atomic scales inevitably induce charge oscillations.
These oscillating charges radiate, giving off the heat and light that is observed.
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In 1859, Kirchhoff addressed this problem. Central to Kirchhoff ’s studies was the concept
of a blackbody, an object that absorbs all of the electromagnetic field that falls on it. In practice
there is no object that is ideally a blackbody, but many objects in the real world come close
to exhibiting blackbody behavior. A perfect blackbody can also emit radiation with a spectral
distribution at a given temperature. A spectral distribution means a curve of intensity as a
function of frequency or wavelength. Kirchhoff proved by general thermodynamic arguments
that the spectrum of the emitted radiation from a blackbody depends only on its temperature
and is independent of thematerial.The spectral distribution function J(𝜈,T) therefore depends
only on the emitted frequency 𝜈 and the temperature T. Kirchhoff posed it as a challenge to
find an explicit expression for this function. A search of the function J(𝜈, T) would lead to the
birth of quantum mechanics, literally at the end of the nineteenth century, in December 1899,
by the German physicist Max Planck.

In order to understand the radiation emitted by heated bodies, we notice that a near-
blackbody at room temperature emits radiation that peaks at near infrared, which we call
heat radiation. As we increase the temperature, the peak shifts to higher frequencies (or lower
wavelengths). Around 550 ∘C an object like an iron rod begins to glow red and at a much
higher temperature, around 10 000 ∘C, the peak of the emitted light moves to higher frequency
blue light (see the spectrum in Fig. 6.4). The shifting of the emitted radiation peak to higher
frequencies as the temperature increases is described by Wien’s displacement law, named after
Wilhelm Wien (1864–1928). According to Wien’s displacement law, the peak frequency 𝜈max
is directly proportional to the temperature T (in Kelvin), i.e.,

𝜈max = 𝛼T, (6.1)

where 𝛼 = 2𝜋× 5.9× 1010K−1⋅ s−1 is the proportionality constant. The peak wavelength is
inversely proportional to the temperature, i.e.,
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Fig. 6.4 The spectral distribution J(𝜈, T) as a function of wavelength. The emitted radiation peaks at shorter wavelength

(higher frequency) with increasing temperature. According to classical theory the emitted radiation approaches infinity

as the wavelength decreases leading to “ultraviolet catastrophe”.
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𝜆max =
𝛽
T , (6.2)

where 𝛽 = 2.90 × 10−3 m ⋅ K is a constant.
Using the laws of classical physics, Rayleigh and Jeans developed a theory of blackbody

radiation and derived the following expression for the spectral distribution function J(𝜈, T):

J (𝜈,T) = 8𝜋𝜈2

c3 kBT. (6.3)

Here c = 3×108 m/s is the speed of light in vacuum and kB = 1.38×10−23 m2 kg s−2 K−1 is the
so-called Boltzmann constant. This result agreed with the observed spectral distribution at low
frequencies. However, this result predicted that the emitted intensity should approach infinity
at very large frequencies. Experimentally it was observed that the intensity actually drops to
zero at large frequencies. There was therefore no agreement between theory and experiment in
the ultraviolet region of the blackbody spectrum.

By 1900, this failure, known as the Rayleigh–Jeans ultraviolet catastrophe, had caused people
to question the basic concepts of classical physics and thermodynamics. It was, however,
Max Planck (1858–1947) who eventually presented the radiation formula that matched the
experimentally observed blackbody radiation spectra for the entire range of the frequency
spectrum. Planck presented his results that would eventually revolutionize our understanding
of the laws of nature.

When Planck addressed the problem of blackbody radiation, he realized that, since the
results were independent of the nature of the material in the cavity, one could use a simple
model for the cavity. He chose to consider a damped harmonic oscillator as a model for
the material in the walls. Central to Planck’s derivation of the blackbody formula was the
assumption that the total energy of the oscillators was made up of finite energy elements, and
each element had an energy E that is equal to nℏ𝜈. Here n is an integer and ℏ is a constant that
eventually carried Planck’s name and is called Planck’s constant. Its value is 1.055 × 10−34 J·s.
With this quantization condition, Planck derived the spectral distribution function

J (𝜈,T) = 8𝜋𝜈2

c3
ℏ𝜈

eℏ𝜈/kBT − 1
. (6.4)

Planck’s equation gave excellent agreement with the experimental observations for all
temperatures.

It is important to realize that the Planck relation

E = nℏ𝜈, (6.5)

for integer values of n, is a significant departure from classical thought in two ways. First, it
postulates that energy is proportional to frequency, not intensity, as would be expected for
a classical oscillator. Second, for a given frequency, 𝜈, the energy is quantized, i.e., it comes
in units of ℏ𝜈. Planck would later describe it as “an act of desperation” to get the correct
expression for the Kirchhoff function that agreed with experiments. At the time he proposed
his radical hypothesis, Planck could not explain why energies should be quantized. However
his hypothesis solved the long-standing problem of explaining the blackbody radiation spec-
trum with amazing success.
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Central to Planck’s quantization of energy is Planck’s constant. In this book we use two
different notations for the Planck’s constant h and ℏ (hbar). The relation between the two is

ℏ = h
2𝜋 . (6.6)

Planck’s constant is one of the most important constants in physics and THE most important
constant in quantum mechanics. It is related to the quantization of energy as we saw above. Its
small magnitude (h = 6.626× 10−34J · s, ℏ = 1.055× 10−34J · s) is responsible for the fact that
we do not see quantum mechanical effects in our everyday life and quantum effects are mostly
confined to microscopic scales.

For example, a harmonic oscillator of frequency 𝜈 = 540× 1012 Hz (corresponding to green
light) has an energy E = ℏ𝜈 = 1.055 × 10−34 × 540 × 1012 J = 5.69 × 10−19J. This is a very
small amount of energy from our everyday experience.

Planck’s constant h or ℏ has dimensions of angular momentum:

ℏ = E
𝜈 ∝ mv2

𝜈 ∝ mvvT ∝ px ∝ L. (6.7)

In order to see how quantum effects can be observable only for very small particles, such as
atoms and electrons, we calculate the angular momentum in different situations and compare
them with the value of Planck’s constant.

As our first example, we consider a small fly flying slowly in tight circles. Suppose its mass is
m = 0.01 gram = 0.00001 kg, and v = 10 cm/s = 0.1 m/s, and the circle radius is r = 1 cm =
0.01 m. The angular momentum of the fly is then

Lfly = mvr = 10−5 × 10−1 × 10−2J · s = 10−8 J · s

Thus the tiny fly has an angular momentum that is about 26 orders of magnitude greater than
Planck’s constant h = 6.626 × 10−34 J · s.

Next we consider an electron (of mass m = 10−30 kg) orbiting around a nucleus in a radius
of 10 Angstrom (10 Angstrom = 10−9 m). Then the angular momentum is given by

Le = mvr = 10−30 × v × 10−9J · s = v × 10−39 J · s

This is equal to h for v ≈ 6.6 × 105 m/s (much less than the velocity of light c = 3 × 108 m/s).
Planck’s constant h is about right for electrons!!!!

Planck’s hypothesis to explain the blackbody spectrum was proposed in 1899. It was a
revolutionary idea that energy of a harmonic oscillator should be quantized in units of ℏ𝜈.
However it was not perceived as such at the time it was proposed. When Planck proposed
his theory of blackbody radiation, there was no dancing on the streets, no major headlines in
the newspapers. Even the scientific community at large did not grasp the significance of the
quantization condition.

For almost 5 years, Planck’s hypothesis could not find any application until Albert Einstein
used the quantumconditionE = ℏ𝜈 to explain the photoelectric effect in his well-knownNobel
Prize winning paper of 1905. Planck’s derivation for the blackbody spectrum was based on the
quantization of the harmonic oscillator that modelled the material of the cavity and not the
radiation itself. However, it would have far-reaching consequences for the ultimate description
of the nature of light through the work of Albert Einstein and others.
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6.3 Einstein and the Photoelectric Effect

In the 1890s, HeinrichHertz (and later Philipp Lenard) observed that when light of frequency 𝜈
is incident on a metallic surface, electrons with kinetic energy Te are ejected from the surface.
The model that was used to understand this phenomenon was that electrons are part of the
atom (we present the model of the atom known at the turn of the twentieth century in the next
section) and if they are providedwith sufficient energy, known as work functionΦ for the given
metal, these electrons, called photoelectrons, will be released and leave the metal with a kinetic
energy Te that, according to the law of conservation of energy, will be the difference between
the incident energy Ei and the work function, i.e.,

Te = Ei − Φ. (6.8)

It was observed that, below a certain critical frequency 𝜈c, no photoelectrons are emitted, no
matter how intense the light field (Fig. 6.5).This critical frequency depended on themetal.This
frequency 𝜈c is called the threshold frequency.

It was also observed that, if the frequency of the incident beam is increased, the maximum
kinetic energy of the photoelectrons emitted is also increased if we keep the incident intensity
of light fixed.

Another interesting observed effect was that the emission of photoelectrons takes place
almost instantaneously after the light shines on the metal, with no detectable time delay even
if a very low intensity of light is incident.

Further the kinetic energy of each photoelectron remains constant even if the intensity of
the incident radiation of a given frequency is increased.

––

–
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–
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–
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–
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–
–
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 υ1< υc  υ2< υc  υ3< υc

Fig. 6.5 Photoelectric effect: When light is incident on a metal, photoelectrons are emitted. No electrons are emitted if

the frequency of light is below a critical frequency. At the critical frequency, the electron emission starts. As the

frequency of light is increased further, the kinetic energy of the emitted electrons is also increased.
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These observations were extremely surprising and could not be explained on the basis of
classical laws of physics known at the end of the nineteenth century. For example, how could
it be that photoelectrons are not emitted below a critical frequency of light even if it has a large
intensity but then photoelectrons are emitted even with a feeble light beam above the critical
frequency? The idea that the kinetic energy of electrons did not depend on intensity, but rather
upon the frequency has no explanation within the classical theory of light and matter. And
finally the most mysterious effect was the instantaneous emission of photoelectrons even when
a very weak beam of light was incident on the metal.

Classicalmechanical laws implied that it would take a substantially long time for the incident
field to pile up enough energy to eject a photoelectron. To illustrate this point we consider an
example, in which light of intensity I is incident on potassium.Thework function of potassium
isΦ = 2.22 eV (equal to 2.22× 1.6× 10−19J = 3.55× 10−19J). The incident energy over a time
𝜏 should be at least equal to the work function Φ for the electron to be ejected. Therefore

I × 𝜋r2 × 𝜏 ≥ Φ. (6.9)

Here r is the radius of the atom which, as we shall see in Section 6.5, is about the order of 1
Angstrom (10−10 m). For a beam of light of intensity, I= 10−2W/m2, the minimum time
required is

𝜏 = Φ
I × 𝜋r2 =

3.55 × 10−19

10−2 × 𝜋 × 10−20 s = 1.13 × 103s ≈ 19 minutes

Thus the observed instantaneous emission of electrons cannot be explained using an argument
based on classical physics.

In 1905, Einstein explained the photoelectric effect using Planck’s hypothesis of quanta
of energy. Einstein assumed that light consists of quanta, called photons, with each photon
carrying an energy equal to ℏ𝜈. When one of these photons penetrates the metal, it gives all its
energy to the electron. If the energy ℏ𝜈 is greater than the work function Φ of the metal, the
electron is ejected with the kinetic energy Te. The condition for the conservation of energy is
satisfied by the relation:

ℏ𝜈 = Φ + Te. (6.10)

A careful reflection on this equation shows that, in one stroke, it explains all the observed
characteristics of the photoelectric effect. It explains that, for light of frequency below a
critical value

𝜈c =
Φ
ℏ , (6.11)

there is no photoelectron emission, no matter how intense the light. If the frequency is
increased above 𝜈c, the kinetic energy of electrons increases, and above the critical frequency,
the rate of emission is proportional to the intensity of incident light. This equation also
explains the instantaneous emission of electrons when light is incident on the metal as only
a single photon is required for the emission of an electron if the frequency is above the critical
frequency 𝜈c.

Einstein’s explanation of the photoelectric effect was the first vindication of Planck’s hypoth-
esis. It was the first time that light quanta were introduced. The idea that light consists of



OUP CORRECTED PROOF – FINAL, 10/3/2020, SPi

90 BIRTH OF QUANTUM MECHANICS—PLANCK, EINSTEIN, BOHR

photons had a great impact on subsequent developments in the full formulation of quantum
theory. However, the concept of a photon, on one hand, explained the photoelectric effect so
beautifully, but, on the other hand, it could not explain the phenomena of interference and
diffraction. This was a dilemma whose complete resolution, via a formal theory that would
rigorously explain all these phenomena within the structure of a single theory, had to wait
almost a quarter century—till the birth of quantum mechanics in the summer of 1925. How
light knows when to behave as a wave, as in an interference experiment, and when to behave as
a particle, as in the photoelectric effect, has however remained a perplexing question for over a
hundred years. We shall discuss some counterintuitive aspects of the wave–particle duality in
later chapters.

Soon we turn to the “third coming” of Planck’s quantum hypothesis through the work of
Niels Bohr on the hydrogen atom. But first a brief review of the history of the atom!

6.4 History of the Atom till the Dawn of the
Twentieth Century

The history of the atom, like the history of light, goes back to antiquity. It starts around 450 bc
when a Greek philosopher named Democritus wondered what would happen if an object is
cut into smaller and smaller pieces. He thought that a point would be reached where the object
could not be cut into still smaller pieces. He called these “uncuttable” pieces “atomos.” This is
where the modern term “atom” comes from. Democritus thought that atoms were infinite in
number, uncreated, and eternal, and that the qualities of an object result from the kind of atoms
that composed it.

Almost a hundred years later, the Greek philosopher, Aristotle, came up with his own idea of
matter which was in contradiction with Democritus’ concept of atoms. Aristotle believed that
four elements—earth, air, fire, andwater—made up everything. For example, a heavy substance
such as iron and other metals were made up in large part of the element, earth, and in smaller
parts, the other three elements. Similarly, lighter objects could be largely made up of lighter
elements, air and fire, and a small amount of heavy elements, earth and water.

Aristotle’s influence on our scientific thinking dominated for almost 2000 years. His
thoughts about the four constituents of matter were accepted till almost the beginning of the
scientific revolution in the seventeenth and eighteenth centuries. By that time, Democritus’
ideas were more or less forgotten, but were revived around 1800 by a British chemist, John
Dalton. On the basis of his studies on the pressure of gases, he concluded that the gases must
consist of tiny particles, atoms, in constant motion. His main interest was in studying the
properties of compounds. He concluded that a compound consists of the same elements in
the same ratio. Another compound would be made up of different elements in different ratios.
The main points of Dalton’s atomic theory can be summarized as follows:

• All elements are made of extremely tiny particles called atoms. Atoms are the smallest
particles of matter. They cannot be divided into smaller particles. They also cannot be
subdivided, created, or destroyed.
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• All atoms of the same element are identical in size, mass, and other properties; atoms of
different elements differ in size, mass, and other properties.

• Atoms of different elements join together to form compounds. A given compound always
consists of the same kinds of atoms in the same ratio.

Many aspects of Dalton’s theory were correct and it became a widely accepted theory.
However he was incorrect in assuming that atoms are the smallest particles and are indivisible.
Dalton assumed that atoms are like solid spheres.Thismodel had great difficulties in explaining
how atoms can be joined together tomake compounds. He thought that atoms could have holes
and joined together using hooks. This was too simple a model with no experimental support.
Dalton’smodel was shown to be incorrect when smaller particles like electrons were discovered
through the work of J. J. Thomson in 1897, and it was realized that atoms have a much more
complicated structure.

Thomson carried out experiments in which he applied a voltage between two metallic plates
inside a vacuum tube (Fig. 6.6). He observed that an electric current flows between the two
plates, traveling much further than we would expect for a current consisting of atom-size
particles. His experiments suggested that the mass of these negatively charged particles should
be about 1/1000 times those of a hydrogen atom. He also observed that the mass of these
particles was the same regardless of the metal they came from. Thomson had discovered
electrons. He also concluded that these particles cannot be the atoms but come from inside
the atoms. Electrons are therefore subatomic particles. This was an important discovery.

Next question was how to incorporate the existence of tiny electrons inside the atom. Atoms
are electrically neutral, so how could atoms contain negative charges and still be electrically
neutral?

Thomson proposed a plum-pudding-typemodel of an atom in which a spherical atom is like
a homogeneously positively charged pudding and electrons are embedded in it like plums.This

–

–

cathode anode

+

+

Fig. 6.6 Schematics of Thomson’s experiment. A beam of electrons is deflected by an external electric field.
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Fig. 6.7 Thomson’s plum-pudding model. The atom consists of a sphere of uniform distributed positive charge and

negatively charged electrons are embedded like plums in a pudding.
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helped to explain the charge neutrality of an atom (Fig. 6.7). Thomson assumed that most of
the mass of an atom was due to the positively charged sphere and electrons made only a small
contribution.

This was the picture of the atom at the beginning of the twentieth century.

6.5 The Rutherford Atom

Ernest Rutherford, a physicist fromNew Zealand, made the next major discovery about atoms.
He discovered the nucleus.

In 1899, Rutherford discovered that certain elements emitted positively charged particles.
He called them alpha particles. In 1911, he carried out experiments in which a beam of alpha
particles was incident on a very thin sheet of gold (Fig. 6.8). Outside the gold foil he placed an
array of detectors of alpha particles. If Thomson’s plum-pudding model was correct then most
of the alpha particles should pass through the foil with very small deflection, the deflection
caused by a repulsion due to the positively charged “pudding.” The experimental results were
dramatically different. It was observed that most of the alpha particles passed through the gold
foil without any significant deflection. However, a few alpha particles were scattered at very
large angles and some even scattered in the backward direction. It was as if the atom was
mostly empty space through which the alpha particles pass through without any hindrance.
But then there were points which sharply repulsed the alpha particles. This clearly showed that
Thomson’s model of the atom being a sea of positive charge with light electrons embedded in
it was incorrect and a new model of atomic structure was required.

Based on the gold foil experiment, Rutherford proposed a new atomic model. His model
for an atom was similar to the planetary model (Fig. 6.9). He proposed that most of the mass
and the positive charge was concentrated in a small area at the center of the atom. He called
this area the “nucleus.” Negatively charged electrons revolved around the positively charged
nucleus like planets revolve around the sun. Thus most of the atom consisted of almost empty
space and most of the mass was concentrated in the small nucleus. This model could explain
his experiment—the alpha particles could pass through the empty space without deflection and
a few particles were repulsed by the massive, positively charged nucleus and scattered at very
large angles, including in the backward direction.

gold foil
detection screen

α source

Fig. 6.8 Schematics of Rutherford’s experiment. A beam of alpha particles is incident on a thin sheet of gold. An array

of detectors detect alpha particles after they scatter from the gold foil.
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nucleus

electrons

Fig. 6.9 Rutherford model of the atom: It consists of a massive positively charged nucleus surrounded by electrons in

random orbits.

Rutherford also showed that the nucleus consisted of protons.These particles are almost 1000
times heavier than electrons but carry the same but opposite charge as electrons. The number
of protons in the nucleus is equal to the number of electrons orbiting the nucleus in random
orbits. Later it was discovered that, in addition to positively charged protons, there existed
electrically neutral particles called neutrons inside the nucleus. The mass of these particles is
almost the same as protons. Due to their neutral charge, neutrons were difficult to detect and
their discovery had to wait till James Chadwick detected them in 1932.

Rutherford’s picture of the atom could explain his gold foil experiments.However, thismodel
was inadequate to explain some other experimental results, most notably the light emitted by
various atoms.

6.6 The Hydrogen Spectrum

Atoms are extremely tiny objects with a typical size of 1 Angstrom or 10−10 m. It is therefore
difficult to study directly the properties of atoms. In the nineteenth century, the tools to study
their internal structure were very limited. One important source was the radiation emitted by
the atoms. When an electric discharge was sent through a gas, light of different frequencies
was emitted, yielding an emission spectrum as shown in Fig. 6.10. The emission spectra for
different gases were different. In the late nineteenth century, it was recognized that emission
spectra consisted of specific spectral lines.

In 1885, Johann Balmer was aware that the visible spectrum of light from hydrogen displays
four wavelengths, 410 nm, 434 nm, 486 nm, and 656 nm. Balmer used this limited information
and fitted them into an empirical formula:

𝜆 = B ( n2

n2 − 22 ) . (6.12)

Here B = 364.50862 nm and n = 3, 4, 5, 6. Later when he became aware ofmany other spectral
lines (Fig. 6.11), he could see that many, if not all, satisfied this same equation.

In 1888, Johannes Rydberg generalized the Balmer formula for all the emitted spectral lines
of hydrogen. The equation commonly used to calculate the Balmer series is a specific example
of the Rydberg formula:

1
𝜆nm

= RH (
1
m2 −

1
n2 ) , (6.13)
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Slit

Prism

Gas discharge tube

containing hydrogen

Fig. 6.10 Schematics for observing the emission spectrum of hydrogen. A gas discharge tube containing hydrogen

emits radiation which is first collimated by narrow slits and then passed through a prism which deflects light of different

frequencies in different directions.

410 434 486 656

wavelength, λ (nm)

Fig. 6.11 The line spectrum of the hydrogen atom.

where 𝜆nm is the wavelength of the emitted light and depends on integers n and m such that
n > m. From experimental data the value for the constant RH was deducted and was given by

RH = 4/B = 10973731.57 m−1. (6.14)

The constant RH is called the Rydberg constant. The series of spectral lines for m = 1, m = 2,
and m = 3 (with the condition n > m) are called the Lyman, Balmer, and Paschen series,
respectively.

We recall that the prevailing model of the atom at the time this equation was written was
Thomson’s model—electrons embedded like plums in a positively charged pudding. There was
no way that this model could explain the existence of discrete energy lines for hydrogen and
derive the Rydberg formula. Even the Rutherfordmodel with a positively charged nucleus with
electrons orbiting around in randomorbits could not explain this result. Amajor breakthrough
came through the work of Neils Bohr in 1913, to which we turn next.

6.7 Quantum Theory of the Atom: Bohr’s Model

In 1913, Niels Bohr, a Danish scientist, discovered evidence that the orbits of electrons are
located at fixed distances from the nucleus. This was in contrast to Rutherford’s atomic model
in which electrons orbit the nucleus at random. According to Bohr’s model, electrons can exist
in well-defined energy levels. These energy levels correspond to orbits of fixed radii. Electrons
can only exist in these orbits and not in between. The picture is similar to a ladder where one
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can stand on one rung or another but not in between the rungs. Similarly electrons can exist
in one energy level or another but never in between these levels.

Thus Bohr’s model of atom had the following features:

• An atom consists of a positively charged nucleus with electrons revolving around it in fixed
orbits. Each orbit corresponds to an energy level. Electrons should exist only in these levels
and not in between these levels (Fig. 6.12).

• The level closest to the nucleus has the least amount of energy. As the radius increases, the
energy of the atomic level also increases.

• Atoms can jump from one energy level to another. When an atom jumps from a higher
level to a lower level, it emits a light quantum or a photon whose energy ℏ𝜈 is equal to the
energy difference between the two levels. Similarly an atom absorbs a photon of energy ℏ𝜈
and an electron jumps to a higher level such that the level energy difference is equal to the
photon energy.

The challenging task was to develop a theory that could answer the following questions:

• What are the radii of these energy levels?
• What is the energy of electrons in a given level?
• Can the theory explain the hydrogen spectrum and derive the Rydberg formula?

The simplest atom is the hydrogen atom which consists of a proton and an electron. In
Bohr’s model, the electron revolves around the proton in fixed orbits. Bohr invoked a quantum
postulate to find the radii of electron orbits for this simplest of systems. Using this postulate, he
could also find the energy of the energy levels in a hydrogen atom. The most remarkable aspect
of this model was that it could explain the spectrum of light emitted by a hydrogen atom.

We now turn to the calculation of a two-particle system of a proton and an electron with the
electron circling around the proton. We know that the attractive force between an electron and
a proton is described by the Coulomb force:

e2
4𝜋𝜀0r2

n=1

Balmer series

Lyman series

n=2

n=3

n=4

Fig. 6.12 According to the Bohr model of atom, the electrons exists only in prescribed orbits of radii rn . Each orbit has

a definite energy. When an electron jumps from a higher level to a lower level, a photon of energy equal to the energy

difference between the two levels is emitted.
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where e is the charge of the electron, 𝜀0 is the permittivity of free space, and r is the radius of
the electron orbit. For an electron of mass me revolving in a steady orbit around the nucleus,
the Coulomb force provides the centripetal force

mev2

r
where v is the speed of the electron. Equating the two we obtain

mev2

r = e2
4𝜋𝜀0r2

. (6.15)

Thus the velocity of the electron in the orbit around the proton with radius r is given by

v =
√

e2
4𝜋𝜀0mer

. (6.16)

This simple model is, however, very problematic. As the electron moves in a circular orbit
around the nucleus it accelerates, as the direction of motion is constantly changing even if the
speed is constant. However the electromagnetic theory of Maxwell predicts that an accelerated
electron emits radiation.Thus the electron should continuously emit radiation and lose energy.
It should therefore spiral around until it falls into the nucleus. Therefore the electron cannot
orbit the proton in a stable and stationary (time-independent) orbit.

At this point, Bohr made a very bold move, perhaps one of the most daring in the history of
physics. He postulated that only those orbits are stable for which angularmomentum L = mevr
is an integral multiple of the Planck’s constant ℏ, i.e.,

mevr = nℏ, (6.17)

where n = 1, 2, 3,⋯. The integer n is called the principal quantum number. Here quantum
mechanics makes its first appearance in atomic physics. On substituting the expression of the
electronic speed, v, from Eq. (6.16) in this quantum condition, we obtain

me√
e2

4𝜋𝜀0mer
r = nℏ, (6.18)

yielding the following expression for the radii of the allowed orbits:

rn = n2 ℏ2

me
(4𝜋𝜀0e2 ) . (6.19)

This is a departure from anything known about atomic structure until that point. According to
Bohr’s theory of the hydrogen atom, the electron could not orbit the nucleus in just any orbit,
but only in orbits with radii given by Eq. (6.19) for integral values of n.This condition is a direct
result of the condition in Eq. (6.17).

The radius of the lowest level (n = 1),

aB = r1 =
ℏ2

me
(4𝜋𝜀0e2 ) , (6.20)

is called the Bohr radius and gives an estimate of the size of the atom. With ℏ = 1.06 × 10−34

J · s, me = 9 × 10−31 kg, e = 1.6 × 10−19 C, and 1/4𝜋𝜀0 = 9 × 109 N ·m2/C2,
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aB ≈ 0.5 × 10−10m = 0.5 Angstrom. (6.21)

The next question we address is: What is the energy of the electron in the quantized levels of
the hydrogen atom?This question is straightforwardly answered by calculating the total energy
of the electron in the nth orbit (orbit with radius rn).

The energy of the electron consists of two parts: One is the kinetic energy, KE = mev2/2,
and the other is the potential energy,

PE = −e2/4𝜋𝜀0r. (6.22)

The total energy is therefore equal to

E = 1
2mev2 − e2

4𝜋𝜀0r
. (6.23)

On substituting for v from Eq. (6.16), we obtain

E = − e2
8𝜋𝜀0r

. (6.24)

Finally, on substituting the expression for the radius of the nth orbit from Eq. (6.19), we obtain
the resulting expression for the energy of the nth energy level,

En = − mee4

2(4𝜋𝜀0)
2ℏ2

1
n2 . (6.25)

This is the major result Bohr obtained for the hydrogen atom—the energy of the electron is
“quantized” as it depends on the quantum number n.

The hydrogen spectrum can now be explained by using Bohr’s postulate: When an electron
jumps from an excited state described by the quantum number n to a lower level with the
quantum number m (n > m), a photon of frequency 𝜈nm is emitted which satisfies the
relation,

En − Em = ℏ𝜈nm. (6.26)

On the right-hand side we have used Einstein’s relation E = ℏ𝜈.We can substitute for En from
Eq. (6.25) and obtain

En − Em = ℏ𝜈nm = mee4

2(4𝜋𝜀0)
2ℏ2

( 1
m2 −

1
n2 ) . (6.27)

We can thus find the allowed values of wavelength when jumping from level n to level m by
recalling that 𝜈 = 2𝜋c/𝜆.The result is

1
𝜆nm

= RH (
1
m2 −

1
n2 ) . (6.28)

Here RH is the Rydberg constant which is given by

RH = mee4

8𝜀20h3c
= 10973731.57 m−1 (6.29)

This is identical to the value that was experimentally observed. Here it has been derived from
Bohr’s model of the hydrogen atom and is related explicitly to the charge and the mass of the
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electron.This is truly a remarkable achievement—that Bohr’s assumption, only those orbits are
allowed for which an electron’s angular momentum is an integral multiple of Planck’s constant
ℏ, leads to the experimentally observed spectral lines of the hydrogen atom.

Bohr’s success in proposing a model that could explain the radiation emitted by the
hydrogen atom and derive the Rydberg formula was a major achievement of the quantization
postulate of Planck and Einstein. Bohr had additionally postulated that the electrons in the
hydrogen atom can exist only in some allowed orbits given by the quantization condition
in Eq. (6.17).

The results of Planck, Einstein, and Bohr gradually created a realization that Newtonian
mechanics must be an inadequate theory to explain phenomena at the atomic level. The period
between 1913 and 1925 was a timewhen new phenomena were being discovered that could not
be explained by classical theory.The foundations of Newtonianmechanics were crumbling and
the need for a new theorywas being felt very urgently.The breakthrough came in 1925/26when
quantum mechanics was born through the works of Heisenberg, Schrödinger, Born, Dirac,
and others.

One big test of the new theory was to solve the problem of the hydrogen atom, not through a
postulate as Bohr did, but as a result of a formal theory—a theory that could be applied equally
well to essentially all the problems of physics even at the level of our daily experience.

The new theory of quantum mechanics showed that, contrary to Rutherford–Bohr’s model
of atom, electrons do not travel in fixed orbits. In fact, each electronwith energy En is described
by a wave function, 𝜓n(r) such that |𝜓n(r)|2 is the probability density of finding the electron at
position r. Thus we have a probabilistic description for the location of each electron. However,
the energies En matched the expression obtained through Bohr’s theory. The full quantum
mechanical theory also explained why electrons do not radiate and fall into the nucleus. It
is the “wave nature” of electrons that allows them to exist only at certain distances from the
nucleus. We discuss these features in Chapter 17 when we consider the Schrödinger equation
for the wave function as applied to the hydrogen atom.

Problems

6.1 Using Wien’s displacement law, show that the peak radiation is in the infrared region at
room temperature and is sizzling red at 5000 ∘C.

6.2 The sun, with an effective temperature of approximately 5800 K, can be regarded as a
blackbody. Show that the emission spectrum peaks in the central, yellow-green part of
the visible spectrum.

6.3 Derive the Rayleigh–Jeans law

J (𝜈,T) = 8𝜋𝜈2

c3 kBT

from Planck’s law

J (𝜈,T) = 8𝜋𝜈2

c3
ℏ𝜈

eℏ𝜈/kT − 1
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in the limit
ℏ𝜈
kT

≪ 1.

6.4 Sketch the following graphs for the quantities involved in the photoelectric effect. (Explain
your sketches using Einstein’s theory):
(a) Kinetic energy (max) vs. intensity at constant frequency (assuming frequency 𝜈 is

greater than the threshold frequency 𝜈c)
(b) Kinetic energy (max) vs. wavelength at constant intensity
(c) Photoelectric current vs. intensity at constant frequency (assuming 𝜈 is greater than

the threshold frequency 𝜈c)
(d) Photoelectric current vs. wavelength at constant intensity.

6.5 What is the longest light wavelength (sometimes referred to as the cutoff wavelength, 𝜆c)
that can result in the production of a photocurrent?

6.6 A light source of wavelength 𝜆 illuminates a metal and ejects photoelectrons with a
maximum kinetic energy of 1.00 eV. A second light source with half the wavelength of
the first ejects photoelectrons with a maximum kinetic energy of 4.00 eV. Determine the
work function of the metal.

6.7 A photon is emitted as the electron in a hydrogen atom makes a transition from n = 4 to
n = 2 level. What are the frequency, wavelength, and energy of the emitted photon?

6.8 For the Balmer series, i.e., the atomic transitions where the final state of the electron is
n = 2, what is the longest and shortest wavelength possible? Are any of the frequencies in
the Lyman series, which corresponds to transitions where the electron ends up in n = 1
level, in the visible region? (The visible region is characterized by wavelengths in the range
400 nm to 700 nm.)

6.9 Using Bohr’s quantization rule, derive a formula for an electron’s speed in the quantized
Bohr orbits of the hydrogen atom. By putting in the values of constants explicitly, derive
the value of an electron’s speed in the n = 1 orbit. What fraction of the speed of light is it?

BIBLIOGRAPHY

O. Darrigol, A History of Light: From Greek Antiquity to the Nineteenth Century (Oxford
University Press, 2012).

A. M. Smith, From Sight to Light: The Passage from Ancient to Modern Optics (University of
Chicago Press, 2015).

M. S. Zubairy, A very brief history of light, in Optics in Our Time, Edited by M. D. Alamri,
M. M. El-Gomati, and M. S. Zubairy (Springer Nature 2016).

D. M. Greenberger, N. Erez, M. O. Scully, A. A. Svidzinsky, and M. S. Zubairy, The rich
interface between optical and quantum statistical physics: Planck, photon statistics, and Bose-
Einstein condensate, in Progress in Optics, Vol. 50, Edited by E. Wolf (Elsevier, Amsterdam
2007), p. 275.



OUP CORRECTED PROOF – FINAL, 10/3/2020, SPi

7 De Broglie Waves: Are Electrons
Waves or Particles?

In a speech, accepting the 1929Nobel Prize for Physics, Louis deBroglie described his discovery
of de Broglie waves in these words:

On the one hand the quantum theory of light cannot be considered satisfactory since it defines
the energy of a light particle (photon) by the equation E = hf containing the frequency f. Now
a purely particle theory contains nothing that enables us to define a frequency; for this reason
alone, therefore, we are compelled, in the case of light, to introduce the idea of a particle and that
of frequency simultaneously. On the other hand, determination of the stable motion of electrons
in the atom introduces integers, and up to this point the only phenomena involving integers in
physics were those of interference and of normal modes of vibration. This fact suggested to me
the idea that electrons too could not be considered simply as particles, but that frequency (wave
properties) must be assigned to them also.

De Broglie’s postulate that particles can behave like waves complemented the observation by
Einstein in 1905 that light can behave like particles. This wave–particle duality aspect for both
particles and waves had a deep impact on the subsequent development of quantum mechanics.
Some highly counterintuitive results, like the Heisenberg uncertainty relation and the Bose–
Einstein condensation, that we discuss in this chapter, were motivated by the wave–particle
duality. Perhaps the most significant outcome of de Broglie’s observation was the search for an
equation for the de Broglie waves by Schrödinger resulting in the Schrödinger equation. This
important development is discussed in Chapter 17.

7.1 De Broglie waves

Recall that, in 1905, Einstein explained the photoelectric effect by showing that light waves
sometime act like particles. The energy of these particles, the photons, is proportional to the
frequency of the light field and is given by

E = ℏ𝜈, (7.1)

where E is the energy, ℏ is Planck’s constant (1.055 × 10−34 J · s), and 𝜈 is the frequency. In
1924, Louis de Broglie argued in his Ph.D. thesis that if light can behave both like waves, as
in interference and diffraction, and like particles, as in the photoelectric effect, then particles
should also behave like both particles and waves. The de Broglie hypothesis completed the
wave–particle duality description of both waves and particles. As has been discussed before,
the characteristics of particles are mass and momentum, whereas waves are characterized by

Quantum Mechanics for Beginners: With Applications to Quantum Communication and Quantum Computing. M. Suhail Zubairy.
© M. Suhail Zubairy 2020. Published in 2020 by Oxford University Press. DOI: 10.1093/oso/9780198854227.001.0001
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frequency and wavelength. De Broglie showed that a particle of mass m moving with velocity
v is characterized by a wave of wavelength

𝜆dB =
h

mv . (7.2)

This wavelength is called the de Broglie wavelength.
De Broglie “derived” this relation by invoking Einstein’s theory of relativity. We do not give

details of the theory of relativity here but some necessary discussion is given in the section on
Compton scattering later in this chapter. A consequence of this theory is that the momentum
p of massless objects such as a photon is related to the energy E via the relation

p = E
c . (7.3)

However the energy of a photon is proportional to its frequency, E = ℏ𝜈. Thus, for photons,

p = ℏ𝜈
c . (7.4)

If we substitute 2𝜋c/𝜆 for the frequency 𝜈 we obtain

𝜆 = h
p , (7.5)

where h = 2𝜋ℏ. De Broglie’s giant leap was to conjecture that this relation, which is true for
photons, is also true for any particle with mass, such as an electron, with momentum p = mv,
i.e., a particle of mass m moving with a velocity v can be characterized by the wavelength

𝜆dB =
h
p = h

mv . (7.6)

Just as a particle moving with a velocity can be described by the de Broglie wavelength, a
photon of wavelength 𝜆 has a momentum (see Eq. (7.5))

p = h
𝜆 = ℏk, (7.7)

where we used the relations k = 2𝜋/𝜆 and ℏ = h/2𝜋. Therefore a photon can not only have
energy, it also has momentum, p, which is inversely proportional to the wavelength, 𝜆, and
directly proportional to the wave vector, k, or frequency, 𝜈 = ck.

The de Broglie hypothesis that particles behave like waves seems quite mysterious. We
do not seem to see the particles around us as waves. The particles, no matter how small, are
well defined objects and cannot, for a moment, be perceived as a wave. A baseball, or even
a dust particle, cannot be described as waves. Why? The reason, as we see below, is that the
corresponding de Broglie wavelength is small, unimaginably small, and therefore the wave
nature is completely masked.

First we calculate the de Broglie wavelength of a pitched baseball, a ball of mass m =
0.15 kg moving at a speed of v = 40 m/s (≈ 90 miles/hour). The corresponding de Broglie
wavelength is

𝜆dB =
h

mv = 6.626 × 10−34 J · s
(0.15 kg) (40 m/s)

= 1.1 × 10−34 m.
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As discussed in Section 6.7, the atomic diameter is of the order 10−10 m and the diameter of a
nucleus is of the order 10−14 m. The de Broglie wavelength of the baseball is thus a billionth of
a billionth of the size of an atom. Such a small wavelength is extremely difficult to observe or
measure. This is why we do not see a baseball as a wave.

What about a dust particle of mass 10−10 kg moving at 10−4 m/ sec (speed at room
temperature)? The corresponding de Broglie wavelength is

𝜆dB =
h

mv = 6.626 × 10−34 J · s
(10−10 kg) (10−4 m/s)

= 6.6 × 10−20 m.

Again the wavelength is too small (a billionth of the size of an atom) and we cannot therefore
even see a dust particle as a wave!!!

What about an electron of mass me = 9.11 × 10−31 kg, accelerated through a 100V voltage,
and moving with a speed of v = 5.6 × 106 m/s? The de Broglie wavelength of such an
electron is

𝜆dB =
h

mv = 6.626 × 10−34 J · s
(9.11 × 10−31 kg) (5.6 × 106 m/s)

3 = 1.2 × 10−10 m = 0.12 nm.

Thus at the nanometer scale, we should be able to see the wave nature of an electron.
A big success of the de Broglie hypothesis is, as de Broglie pointed out in his Nobel lecture

mentioned above, that it provides an insight into the Bohr quantization condition. We recall
that Bohr postulated that only those orbits of the electron around the nucleus in a hydrogen
atom are stable for which the angular momentum, L, is an integral multiple of the reduced
Planck’s constant ℏ. There was no justification for this postulate except that it gave the correct
expressions for the emission spectrum of the hydrogen atom. De Broglie waves provided some
justification for Bohr’s postulate by first arguing that a condition for the stable orbit should be

2𝜋r = n𝜆dB, (7.8)

i.e., the circumference of the allowed orbit of an electron should be an integral multiple of the
de Broglie wavelength of the electron as shown in Fig. 7.1. This seems reasonable as the orbits
would be stationary with a standing wave. If we substitute the expression of the de Broglie
wavelength

𝜆dB =
h

mv (7.9)

Fig. 7.1 (a) The Bohr condition mvr = nℏ yields stable orbits such that the circumference of the allowed orbit of an

electron is an integral multiple of the de Broglie wavelength of the electron. (b) When the Bohr condition is not satisfied,

a stable orbit cannot be obtained.
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into the stability condition (7.8), we recover the Bohr condition

mvr = nℏ. (7.10)

When de Broglie presented his hypothesis that particles can behave like waves in 1924,
he had no experimental evidence to support his conjecture. The situation soon changed. In
1927, Clinton J. Davisson and Lester H. Germer carried out an experiment that could only
be explained using de Broglie’s conjecture. In their experiment, Davisson and Germer shot
electrons at a nickel crystal. What they observed was the diffraction of the electrons similar to
wave diffraction against crystals. In the same year, an English physicist, George P. Thomson,
carried out a similar experiment in which electrons were fired towards a thin metal foil and
obtained the same results as Davisson and Germer.

In the Davisson-Germer experiment, a gun shoots a beam of electrons at a nickel target.
These electrons rebound and are detected at various angles of detection as shown in Fig. 7.2.
The experiment involves counting the number of electrons at the detector. What Davisson and
Germer observed was the following:

• As the angle 𝜃 was varied the number of detected electrons exhibited a periodic behavior
as long as the energy of the incident electros was fixed. Electron counts oscillated between
zero and a maximum number in rapid succession as the angle was varied.

• For a fixed angle, the counts increased and decreased as the energy of the incident electrons
changed.

These results were very surprising, almost shocking. They were very different from what we
expect if electrons behaved like particles. For example, if electrons behaved like billiard balls
scattering from a fixed surface, wewould expect a large fraction bouncing back at 𝜃 = 0 and the
rest scattering almost uniformly with respect to the angle 𝜃. The observed angular distribution
of the electrons was the characteristic diffraction fringe pattern. There was absolutely nothing
whatsoever to predict such a result if electrons behaved like particles. Only a wave behavior
with a characteristic wavelength that agreed with the de Broglie wavelength could explain the
observed distribution of counts.

Movable

detector

Diffracted

electron beam

Electron beam

Nickel

target

Heated

filament
θ

Fig. 7.2 Schematics of the Davisson–Germer experiment.
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So how do we explain these results using the wave nature of electrons? First we realize
that the nickel crystal consists of layers of atoms in a cubic structure, the side of each cube
being equal to 2.15 Angstroms. If electrons behave like particles, they would scatter from each
lattice site on the surface, as well as from sites inside the crystal, in all directions giving a
uniform angular distribution of electrons. However, if electrons behaved as de Broglie waves
of wavelength 𝜆dB = h/mv, they see all the atoms and are scattered at those angles 𝜃n where the
condition of constructive interference is satisfied. The condition for constructive interference
of scattering from the lattice sites is (see Fig. 7.3)

d sin 𝜃n = n𝜆dB, (7.11)

where n = 0, 1, 2,⋯ Similarly the condition for destructive interference is

d sin 𝜃n = (2n + 1) 𝜆dB
2 . (7.12)

Thus the electrons scatter only at those angles for which

sin 𝜃n =
n
d
𝜆dB =

n
d

h
mv . (7.13)

For example, when electrons are accelerated through a voltage V = 54V, we obtain

𝜃0 = 0o, 𝜃1 = 50o, (7.14)

in agreement with the experimental results.
The second observation that, for a fixed angle, the counts increased and decreased as the

energy of the incident electrons changed, can also be verified from Eq. (7.13). If we choose a
fixed 𝜃, then by varying v we can periodically satisfy the condition for constructive interference
(7.11) followed by the condition for destructive interference (7.14).

ELECTRON

GUN

50°

θ

d

d sin θ 

Fig. 7.3 The result of the Davisson–Germer experiment can be explained by treating electrons as de Broglie waves of

wavelength 𝜆dB = h/mv that are diffracted by the atoms inside the crystal and are scattered at those angles 𝜃n where

the condition of constructive interference is satisfied.
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The importance of this remarkable experiment was realized early and Clinton Davisson and
George P.Thomsonwere awarded the Nobel Prize in 1937. An interesting historical note is that
J. J. Thomson was awarded a Nobel Prize in 1906 for the discovery of the electron as a particle
and his son G. P. Thomson received the same prize 31 years later for proving that the electron
behaved like a wave.

Another milestone following the discovery by de Broglie that electrons can behave like
waves came in 1932 when Ernst Ruska invented the first electronmicroscope by replacing light
(photons) by electrons. The advantage of the electron microscope is that it operates at much
smaller wavelengths, corresponding to the de Broglie wavelength of the electrons, than those
employed in conventional microscopes, thus increasing the sensitivity immensely. In 1986
(more than fifty years after the discovery), Ruska received the Noble prize for his invention.

7.2 Wave–Particle Duality—AWavefunction Approach

De Broglie’s description of particles, such as an electron, as waves is very intriguing, to say the
least. However this description is validated by the electron diffraction experiment of Davisson
and Germer as discussed above. In Chapter 8 we discuss another landmark experiment that
shows electrons exhibiting interference in a double-slit experiment. But then what about the
experiments discussed in Chapter 3 where we used the classical laws of physics to describe
electron deflection in the presence of electric and magnetic fields? There, we treated an
electron like a particle with definite mass and charge. A natural question is: How do we recon-
cile both thewave and particle natures of an electron, aswell as for any othermassive particle? A
related question is: How do we describe a localized particle which exists in a finite space within
the context of wave–particle duality?These questions lie at the heart of quantummechanics and
the answer to these questions are rigorously given by the wavefunction approach discussed
in Chapter 17. Here we motivate such an approach via describing an electron as a wave
packet.

In the above discussion about the de Broglie waves, we assumed that the massive particle
can be described by a wave of wavelength

𝜆 = h
mv .

Such a wave with a precise wavelength can be described by a wave function

𝜓 (x, t) = A sin (kx − 𝜈t) , (7.15)

where k = 2𝜋/𝜆 is the wavevector and 𝜈 = ck is the frequency. We restrict ourselves to a
one-dimensional description for the sake of simplicity. In a more complete three-dimensional
picture, we should have components of the wavevector k in all three directions. Equation (7.15)
cannot describe a localized object as this wave extends from x = −∞ to+∞.Thewavefunction
is distributed in the entire space.

A localized particle can, however, be described as a superposition of waves with multiple
wavelengths. As the simplest such example, we consider two waves of equal amplitudes but
with slightly different wavelengths (or equivalently wavevectors):
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𝜓1(x) = A sin ((k + Δk) x) , (7.16)

𝜓2(x) = A sin ((k − Δk) x) . (7.17)

According to the principle of superposition, the resulting wave is

𝜓(x) = 𝜓1(x) + 𝜓2(x)
= A sin ((k + Δk) x) + A sin ((k − Δk) x)
= 2A sin(kx) cos ((Δk) x) ,

(7.18)

where we used the trigonometric identity

sin (𝛼) + sin (𝛽) = 2 sin (𝛼 + 𝛽
2 ) cos (𝛼 − 𝛽

2 ) (7.19)

with 𝛼 = (k + Δk) x and 𝛽 = (k − Δk) x. The wavefunction 𝜓(x), as shown in Fig. 7.4, consists
of two terms. The first term, sin(kx), oscillates at the average wavevector k

k = 1
2 [(k + Δk) + (k − Δk)] . (7.20)

It is modulated by the slowly varying second term cos((Δk)x), which oscillates at half the
difference of the two wavevectors

Δk = 1
2 [(k + Δk) − (k − Δk)] . (7.21)

We thus have a wave of wavevector k which is modulated with a wave of a much smaller
wavevectorΔk.Thus the superposition of the twowaves with close wavelengths together breaks
up the continuous wave into a series of packets. The width of each packet is of the order 𝜋/Δk.
As the number of waves increases, the superposition can lead to constructive interference in a
small region as shown in Fig. 7.5.

To describe a single electron (or any particle) confined to a highly localized region, we
need a single wave packet that is zero or nearly zero everywhere in space except for one
localized region. Such a wave packet can be constructed by superposing waves having a
continuous distribution of wavelengths, or wavevectors within the order Δk, centered around

Fig. 7.4 When two waves of the same amplitude but slightly different wavevectors are added, they lead to a wave that

is modulated by a wave of much smaller wavevectors.
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Fig. 7.5 Superposition of 5 waves leads to the formation of a wave packet of width 𝜋/∆k.

(a)

(b)

(d)

(c)
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Fig. 7.6 Superposition of (a) 3, (b) 5, (c) 9, and (d) infinite number of waves.

the wavevector k. In this case, the waves are out of phase after a distance of order 𝜋/Δk, but
since they have many different wavelengths, they never get back in phase again.

In Fig. 7.6, we show a superposition of 3, 5, 9, and an infinite number of waves, centered
around k0 and with k values ranging from k0−(Δk/2) to k0+(Δk/2). Thus, for a superposition
of 3 and 5 waves,

𝜓3(x) = cos ((k0 −
Δk
2 ) x) + 2 cos (k0x) + cos ((k0 +

Δk
2 ) x) , (7.22)

𝜓5(x) = cos ((k0 −
∆k
2
) x) + cos ((k0 −

∆k
4
) x) + cos (k0x)

+ cos ((k0 +
∆k
4
) x) + cos ((k0 +

∆k
2
) x) .

(7.23)
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As the number of waves in the superposition increases, the total wavefunction becomes more
and more localized. For a continuous distributions of the wavelengths, or wavevectors within
Δk, the resulting wave packet is localized in space in the region Δx = 𝜋/Δk.

As an example, a wave packet can be of the form

𝜓(x) = 1
(2𝜋𝜎2)1/4

e−
x2

4𝜍2 eik0x. (7.24)

This is called a Gaussian wave packet centered at x = 0 with a width Δx = 𝜎. Here k0 is the
carrier wave number. The associated de Broglie wavelength is 𝜆dB ≅ 2𝜋/k0. Such a wave packet
can be formed by a continuum of wavevectors with a distribution

𝜙(k) = (2𝜎2

𝜋 )
1/4

e−𝜍2(k−k0)2 . (7.25)

The spread of the wave packet 𝜎 = Δx is inversely proportional to Δk. This wave packet is
clearly particle-like in that its region of significant magnitude is confined to a localized region
in space.Moreover, this wave packet is constructed out of a group ofwaveswith an averagewave
number k0, and so these waves could be associated with a particle of momentum p0 = ℏk0. If
this were true, then the wave packet would be expected to move with a velocity of v0 = p0/m.
This is in fact found to be the case, as we discuss in Section 17.2.

7.3 Bose–Einstein Condensation

A remarkable effect predicted on the basis of de Broglie waves is the Bose–Einstein conden-
sation which was first predicted in 1925 by Satyendra Nath Bose and Albert Einstein and was
experimentally observed 70 years later in 1995 by Eric Cornell and Carl Wieman, by Wolfgang
Ketterle, and by Randy Hulet in separate experiments.

So far we have seen the role of small mass on de Broglie waves—the smaller the mass, the
larger is the de Broglie wavelength. But the de Broglie wavelength is also inversely proportional
to the velocity of the particle—the smaller the velocity, the larger is the de Broglie wavelength.
The velocity of particles inside a gas depends on the temperature. As we decrease the temper-
ature, the velocity of the gaseous atoms or molecules decreases and the de Broglie wavelength
of the atoms or molecules increases.

The atoms behave like point particles when they are moving sufficiently fast (Fig. 7.7a). As
we lower the temperature, the atoms move very slowly with a significantly large de Broglie
wavelength and start behaving like a wave (Fig. 7.7b). The size of the atom is of the order of
the de Broglie wavelength. As the temperature is further lowered, the atomic size (de Broglie
wavelength) becomes so large that different atoms start to overlap (Fig. 7.7c). Finally, at a very
low temperature when the atoms can barelymove, they all lose their identity and become one—
a condensed state (Fig. 7.7d). This phenomenon is called Bose–Einstein condensation. We can
calculate the critical temperature at which the Bose–Einstein condensate starts to form in a gas
of atoms of mass m.

ConsiderN atoms inside a box of volumeVmoving with an average speed v.On the average,
an atom occupies a space V/N. The atomic de Broglie wavelength is given by 𝜆dB = h/mv. If
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Fig. 7.7 The atomic gas molecules form a Bose–Einstein condensate as the temperature is decreased.

the average space occupied by each molecule starts becoming larger than V/N then they start
losing their identity and a condensate is formed. If we assume that the effective radius of the
atom, when it is moving with velocity v, is

r ≈ 𝜆dB
2 = h

2mv (7.26)

then the volume occupied by each atom in the gas is

4𝜋
3 r3 ≈ 4𝜋

3 ( h
2mv)

3

. (7.27)

The condition for the formation of condensate is

4𝜋
3 ( h

2mv)
3

> V
N . (7.28)

But what is the velocity of the atom at a given temperature T? As the atoms move faster
with increasing temperature, the kinetic energy of the atoms in the gas is proportional to the
temperature T. Thus the higher the temperature, the higher the kinetic energy of the atoms,
and vice versa. Therefore the average kinetic energy of each atom inside a gas is

1
2mv2 = 𝛼T, (7.29)

where 𝛼 is a constant of proportionality and T is the temperature in Kelvin. The constant 𝛼 can
be found from the kinetic theory of gases and is equal to (3/2)kB where kB = 1.38× 10−23 m2 ·
kg · s−2 · K−1 is called the Boltzmann constant. We obtain

1
2mv2 = 3

2kBT (7.30)
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or

v =√
3kBT
m . (7.31)

It follows, on substituting this expression for the velocity of atoms in the condensate
condition (7.28), that a Bose–Einstein condensate is formed at the temperature

Tc ≅ (𝜋N
6V )

2
3 h2

3mkB
. (7.32)

We derived this expression for the critical temperature Tc using heuristic arguments. A
careful analysis leads to a slightly different result:

Tc ≅ 3.3125(N
V)

2
3 ℏ2

mkB
. (7.33)

The required temperatures are very low, ∼ 500 nK− 2 𝜇K for particle densities in the range
1020 − 1021 m−3.

7.4 HeisenbergMicroscope

Heisenberg’s uncertainty principle, formulated in 1927, is one of the cornerstones of quantum
mechanics. It is based on the principle that it is impossible to measure anything without
disturbing it. For example, if we try to find the location of amoving particle such as an electron,
we need to shine light on it. The light scattered after hitting the particle provides information
about the location of the particle. However, as we have seen, light consists of photons and
photons carry momentum

p = ℏk (7.34)

according to the de Broglie hypothesis. Thus, when photons hit the moving particle, the
speed of the particle changes randomly. The consequence is that if we try to measure the
position of a particle very precisely, its velocity or momentum changes randomly. Similarly
we can argue that if we measure the momentum of a particle precisely, its location becomes
uncertain. Heisenberg could show a relationship between the preciseness of measurements
of both position and momentum. According to the Heisenberg uncertainty relation, the
following inequality should always hold:

Δx · Δpx ≥
ℏ
2 , (7.35)

no matter how precise our measurement instruments. Here Δx is the uncertainty in determin-
ing the position of an object and Δpx is the corresponding uncertainty in momentum.

It should be mentioned that position and momentum are not the only pair of observable
quantities that satisfy an uncertainty relation. There are other observables such as energy
and time that obey a Heisenberg uncertainty relation of the type (7.35). However, here we
concentrate only on the uncertainty relation between position and momentum.
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A formal derivation of the inequality (7.35) may require sophisticated mathematics. How-
ever, here is a derivation based on simple physical concepts that we introduced in this and
previous chapters. This heuristic derivation of the uncertainty relation is based on an analysis
of a microscope to find both the position and momentum of an object, such as an electron,
as precisely as we can. This analysis was first presented by Heisenberg himself to elucidate the
uncertainty relation named after him and is usually referred to as the Heisenberg microscope.

Let us consider a microscope consisting of a lens of diameter D and focal length F. Suppose
an electron is located at a distance d from the lens. The question is how do we look at the
electron and, more importantly, how do we determine its location as well as momentum along
the x-axis?

In theHeisenbergmicroscope, light is incident from the side. It is scattered from the electron
into the lens as shown in Fig. 7.8. When we see the scattered light through the lens, we can
determine the “position of the electron.”

Let us first analyze the collision of a photon with an electron, According to de Broglie, the
photon of wavelength 𝜆, acting like a particle, has a momentum equal to ℏk = h/𝜆. The
electron that we try to locate is assumed to be “at rest.” Thus we have a “collision” between
two “particles”—a photon and an electron. The photon is assumed to be directed along the x-
axis. If, after the collision, the photon is deflected in a direction making an angle 𝜃 with the
vertical, the conservation of momentum along the x-axis leads to

ℏk + 0 = ℏk sin 𝜃 + px. (7.36)

Here, before the collision, the photon momentum along the x-axis is ℏk and the electron has
zero momentum. After the collision, the x-component of the photon momentum is ℏk sin 𝜃
and the electron momentum is px = mvx, where vx is the component of the velocity of the
electron in the x-direction.

We assumed that the wavelength of light after the collision is the same as before the collision.
As we see, in the next section, this may not be true in general but it is a good approximation.
Thus the momentum imparted to the electron is

Screen

Lens

Light

Electron

Fig. 7.8 Heisenberg microscope. The position of the electron is determined from the light that is scattered from an

electron into the lens.
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px = ℏk − ℏk sin 𝜃. (7.37)

Next we calculate the minimum and maximum momentum imparted to the electron, if we
are able to see the electron through the lens.

The photon, after “colliding” with the electron can be deflected in any direction. However,
we consider only the range of angles +𝜃 to −𝜃 with the vertical as shown in Fig. 7.9. Only the
photons that are deflected in this range hit the lens and are detected behind the lens. For the
angles of deflection outside this range, the photon is lost and does not contribute to observing
the electron.

Thus, for those photons that are deflected in the range+𝜃 to−𝜃, the minimum momentum
imparted to the electron is for the photondeflection through+𝜃 and themaximummomentum
is imparted for the deflection through −𝜃. We therefore have

(px)min = ℏk − ℏk sin 𝜃, (7.38)

(px)max = ℏk + ℏk sin 𝜃. (7.39)

Therefore, in the act of seeing the electron, the electron can acquire a momentum in the range
between (px)min and (px)max. The uncertainty in the electron’s momentum is therefore equal to

Δpx = (px)max − (px)min = 2ℏk sin 𝜃. (7.40)

For small 𝜃, sin 𝜃 ≈ 𝜃, and we obtain

Δpx =
2h𝜃
𝜆 . (7.41)

Here, we recall ℏ = h/2𝜋 and k = 2𝜋/𝜆. This shows that the uncertainty in the momentum
of the electron after colliding with a photon is large for a photon of small wavelength 𝜆. This
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Fig. 7.9 The photon scattered in any angle ranging from+𝜃 to−𝜃 with the vertical is detected. (a) The minimum

momentum is imparted to the electron by those photons that are scattered at the angle+𝜃 whereas (b) maximum

momentum is imparted by photons scattered at the angle−𝜃.
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happens because a photon with a small 𝜆 has a large amount of energy (E = ℏ𝜈 = hc/𝜆).
Therefore, to minimize the uncertainty in the electron’s momentum, we should use light of
very large 𝜆.

Next we turn to the position resolution!!
Microscope resolution is the shortest distance between two separate points in amicroscope’s

field of view that can still be distinguished as distinct entities. As we discussed in Chapter 4,
according to the Rayleigh criterion, the smallest angle the microscope can resolve is limited by
diffraction and is given by

𝜃min ≈
𝜆
D , (7.42)

where D is the size of the aperture (or the lens in the present case).
The angle 𝜃min is, however, related to the minimum resolvable position of the electron via

(see Fig. 7.10):

tan (𝜃min/2) =
(Δx/2)

d
. (7.43)

Therefore the microscope cannot locate the electron in the x-direction any more precisely than

Δx = 2d tan (𝜃min/2) . (7.44)

For small angles, tan (𝜃min/2) ≈ 𝜃min/2, and we obtain

Δx = d𝜃min. (7.45)

CCD Camera

–
1.22λ

D

d

1.22λ
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∆x

D

D

θmin

θmin

Fig. 7.10 The uncertainty of the position of the electron is determined by using the Rayleigh criterion. The minimum

uncertainty ∆x subtends an angle 𝜃min with the lens.
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However, according to the Rayleigh criterion, 𝜃min ≈ 𝜆/D. Therefore

Δx ≅ d 𝜆D , (7.46)

or since (Fig. 7.9)

d
D = 1

2 tan 𝜃 ≅ 1
2𝜃 , (7.47)

the minimum uncertainty in the position is

Δx = 𝜆
2𝜃 . (7.48)

This shows that a photon of long wavelength causes large uncertainty in position. This is in
contrast to the measurement of momentum where long wavelength causes small uncertainty
in momentum (Eq. (7.41)).

Putting the uncertainties Δx and Δpx from Eqs. (7.41) and (7.48) together,

Δx · Δpx ≅
𝜆
2𝜃 ·

2h𝜃
𝜆 ≅ h. (7.49)

We thus obtain the uncertainty relation between the precisions with which we can measure the
position and momentum of an electron in a microscope. The product of uncertainties Δx and
Δpx is independent of the wavelength of the light, the size of the lens, and any other geometrical
feature of the system—it is equal only to Planck’s constant h.

Our derivation is based on heuristic arguments which can be made more rigorous. It turns
out that a careful derivation yields

Δx · Δpx ≥
h
4𝜋 = ℏ

2 . (7.50)

The uncertainty relation is based on the idea that the very process of measuring one quantity
(position) alters a complementary property (momentum). This uncertainty relation is inde-
pendent of the quality of our measuring instruments and is universally valid.

7.5 Compton Scattering

Although Einstein explained the photoelectric effect by postulating that light consists of quanta
of energy, called photons, the first irrefutable proof that photons behave like particles came in
1923 through the experimental work of Arthur Compton, one year before de Broglie’s postulate
about wave–particle duality. Compton considered the scattering of light by a free electron.
What he observed was that the wavelength of the scattered light was different from that of the
incident radiation. As we know, a change in wavelength is like changing the color. The amount
by which the light’s wavelength changes is called the Compton shift. This effect cannot be
explained by treating light as a wave. As seen below, the Compton effect can only be explained
by treating a photon as a particle with energy and momentum. Compton won the Nobel Prize
in Physics in 1927 for the discovery.
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What Compton discovered was that, when a photon of wavelength 𝜆i is incident on an
electron of mass me, it is scattered at an angle 𝜃 with the slightly different wavelength 𝜆f as
shown in Fig. 7.11. The experimental results showed that the difference in the wavelength of
the photon is given by

𝜆f − 𝜆i =
h

mec
(1 − cos 𝜃) . (7.51)

Compton derived thewavelength shift of the photon following essentially the same approach
as the collision between two particles. Let us therefore first discuss the scattering between
particles when a particle of mass m1 moving with a velocity v1i along the x-axis is incident
on another particle m2 at rest, as shown in Fig. 7.12. After the collision, particle 1 is deflected
with a velocity v1f making an angle 𝜃 with the x-axis and particle 2 is deflected with a velocity
v2f making an angle −𝜙 with the x-axis. If the collision is perfectly elastic, there should be
conservation of momentum and conservation of energy.

The conservation of momentum principle implies that the total momentum of the two
particles before the collision should be equal to the total momentum of the two particles after
the collision. Since momentum is a vector quantity, momentum is conserved in each direction.
We thus obtain

m1v1ix +m2v2ix = m1v1fx +m2v2fx, (7.52)

m1v1iy +m2v2iy = m1v1fy +m2v2fy, (7.53)
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ϕ

Fig. 7.11 Compton scattering: A photon of wavelength 𝜆i is scattered by an electron at rest making an angle 𝜃 with the

horizontal and with a final wavelength 𝜆f .
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Fig. 7.12 A particle of mass m1 moving with a velocity v1ix collides with another particle of mass m2 at rest. The

scattered particles move in directions making angles 𝜃 and 𝜙 with the horizontal.
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where v1ix and v1iy are the x- and y-components of the initial momentum of particle 1. Similarly
v1fx and v1iy are the x- and y-components of the final momentum of particle 1. The same is true
for particle 2. The conservation of energy requires that the total energy before the collision
should be equal to the total energy after the collision, i.e.,

1
2m1v2

1i +
1
2m2v2

2i =
1
2m1v2

1f +
1
2m2v2

2f , (7.54)

where v2
1i = v2

1ix + v2
1iy etc.

In our example above, v1iy = v2ix = v2iy = 0, v1ix = v1i, v1fx = v1f cos 𝜃, v1fy = v1f sin 𝜃,
v2fx = v2f cos𝜙, v2fy = −v2f sin𝜙. With these substitutions, we can get simplified equations
for the conservation of momentum and energy. These equations can then be solved for any
unknown quantities.

We now apply a similar approach to the problem of Compton scattering—scattering of a
photon by an electron initially at rest.

Since electrons can move with velocities approaching the speed of light, we cannot use the
usual expressions for momentum and energy for the electron. Albert Einstein, in a seminal
paper in 1905 (different from his photoelectric effect paper discussed in Chapter 6), had
developed a theory of relativity which applied to objects thatmoved at very high speeds, speeds
close to the speed of light, c = 3 × 108m/s.

An important consequence of Einstein’s theory of relativity is that energy and mass are
interconvertible. Typically, there is conservation of energy. Therefore one form of energy can
be converted into another form of energy but the total energy should be conserved. Similarly
mass is also conserved, i.e., we can convert one form of mass into another but the total mass
remains the same. However Einstein showed that energy and mass are interconvertible. For an
object of mass m0 at rest, the equivalent energy is

E = m0c2, (7.55)

where E is the energy and m0 is the mass. The amount of energy produced by converting mass
into energy is huge. For example, 1 gram of mass is equivalent to 1014 J ≡ 25 kilotons of TNT
of energy. This conversion of mass into energy is the source of nuclear energy. This is also the
source of energy that is released in atomic and hydrogen bombs.

Einstein showed that, when a particle is moving with a velocity v, the energy–mass equiva-
lence relation is modified and is given by

E = mc2 = m0c2

√1 − ( v
c
)
2
. (7.56)

Here m0 is the mass of the particle at rest (when v = 0) and m is the mass of the moving object.
The corresponding momentum of the particle is given by

p = mv = m0v

√1 − ( v
c
)
2
. (7.57)

We can see that for velocities much smaller than the speed of light, we recover the usual
result. For v << c, the expressions of momentum and energy reduce to
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p ≈ m0v, (7.58)

E ≈ m0c2 +
1
2m0v2. (7.59)

In deriving Eq. (7.59), we used

1

√1 − ( v
c
)
2
= (1 − (vc )

2
)
−1/2

≈ 1 + 1
2(

v
c )

2
. (7.60)

when v << c. This follows from the binomial expansion (1 + x)a ≈ 1 + ax for x ≪ 1. Thus
we see that the usual kinetic energy term is obtained in addition to the rest mass energy, in the
small velocity limit.

We can solve Eq. (7.57) for v and find the relativistic factor:

1 − (vc )
2
=

m2
0c

2

p2 +m2
0c2

. (7.61)

On substituting this factor in Eq. (7.56), we obtain

E = √(m0c2)
2 + (cp)2. (7.62)

This is the expression that we use for the energy of the electron in the conservation law. We
note that, for massless particles (m0 = 0) such as a photon, the energy–momentum relation is

E = pc.

This relation was used in Section 7.1 to “derive” the de Broglie relation

p = h
𝜆 .

The energy–momentum relations are usually called the dispersion relations. The dispersion
relations for the massive particle (Eq. (7.62)) and for the photon (Eq. (7.3)) are plotted
in Fig. 7.13.

Next we apply the laws of conservation of energy and momentum in Compton scattering.
According to the conservation of energy:

Epi + Eei = Epf + Eef, (7.63)

E

pmoc2
p

E

(a) (b)

Fig. 7.13 The dispersion relation (a) for a massive particle as given by Eq. (7.62) and (b) for a photon as given

by Eq. (7.3).
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where

Epi = ℏ𝜈i =
hc
𝜆i

(7.64)

is the initial energy of the photon,

Eei = mec2 (7.65)

is the initial energy of the electron,

Epf = ℏ𝜈f =
hc
𝜆f

(7.66)

is the final energy of the photon, and

Eef =√(mec2)
2 + (pef c)

2
(7.67)

is the final energy of the electron. It follows, on substituting these expressions in
Eq. (7.63), that

hc
𝜆i
+mec2 =

hc
𝜆f
+√(mec2)

2 + (pef c)
2
. (7.68)

A rearrangement of Eq. (7.68) leads to the following equation

p2
ef = ( h

𝜆i
− h
𝜆f
+mec)

2

− (mec)
2. (7.69)

Next we consider the conservation of momentum:

ppi + 0 = ppf + pef, (7.70)

where the initial momentum of the electron, pei, is equal to zero. In Eq. (7.70)

ppi =
h
𝜆i

(7.71)

is the magnitude of the initial momentum of the photon, and

ppf =
h
𝜆f

(7.72)

is the magnitude of the final momentum of the photon. It follows from Eq. (7.70) that the final
momentum of the electron, pef can be calculated as

p2
ef = (ppi − ppf) · (ppi − ppf)

= p2
pi + p2

pf − 2ppippf cos 𝜃

= ( h
𝜆i
)
2
+ ( h

𝜆f
)
2
− 2 ( h

𝜆i
) ( h

𝜆f
) cos 𝜃.

(7.73)

On equating the two expressions for p2
ef , one derived on the basis of conservation of energy

(Eq. (7.69)) and the other on the basis of conservation of momentum (Eq. (7.73)), we obtain
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(hc
𝜆i
− hc
𝜆f
+mec2)

2

− (mec2)
2 = (hc

𝜆i
)
2

+ (hc
𝜆f
)
2

− 2 (hc
𝜆i
) (hc

𝜆f
) cos 𝜃. (7.74)

On rearranging Eq. (7.74), we obtain the result:

𝜆f − 𝜆i =
h

mec
(1 − cos 𝜃)

which agrees with the experimental results of Compton. The quantity h/mec = 2.43× 10−12 m
is called the Compton wavelength of an electron.

As discussed at the beginning of this section, the significance of Compton’s result is that the
photon has been treated as a particle of momentum, p = h/𝜆.

Problems

7.1 What is the de Broglie wavelength of a 12.0 gram bullet traveling at the speed of sound?
The speed of sound is 331 m/s.

7.2 What is the de Broglie wavelength of an electron with 13.6 eV of kinetic energy? (1 eV =
1.60 × 10−19J)

7.3 Find the temperature at which a gas of rubidium atoms with a density of 1020 m−3 forms
a Bose–Einstein condensate. Rubidium is a chemical element with symbol Rb, atomic
number 37, and a standard atomic weight of 85.47.Themass of a proton is 1.67×10−27 kg.

7.4 Calculate the de Broglie wavelength of an electron in the first Bohr orbit in the hydrogen
atom.

7.5 If a particle of rest mass m0 is moving with a velocity v, the relativistic energy and
momentum are given by the expressions:

E = mc2 = m0c2

√1−( v
c
)
2
,

p = mv = m0v

√1−( v
c
)
2
.

Here c is the speed of light in vacuum. Using these expressions, show that

1 − (vc )
2
=

m2
0c

2

p2 +m2
0c2

.

Finally, show that the energy is related to the momentum via

E = √(m0c2)
2 + (cp)2.

7.6 Consider the Compton scattering set-up as shown in Fig. 7. 11. Using the laws of
conservation of energy and momentum, show that the angle of scattering 𝜙 is given by

cot𝜙 = (1 + h
mec𝜆i

) tan (𝜃/2) .
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8 Quantum Interference:
Wave–Particle Duality

The double-slit experiment, first carried out in 1802 by Thomas Young, played a crucial
role in establishing the wave nature of light. This was in contrast to Newton’s postulate that
light consisted of small corpuscles. In the first quarter of the twentieth century, the concept
of wave–particle duality firmly took root, motivating a deeper understating of the double-
slit experiment, particularly for incident electrons instead of light beams. The experimental
observation that incident electrons yield a similar interference pattern as that formed by light
waves was a shocking result. Richard Feynman remarked in his famous Feynman Lectures
that Young’s double-slit experiment with electrons contains the deepest mystery of quantum
mechanics. The only way the experimental results could be explained is via a wavefunction
description of electrons. But the mystery does not stop there. If, in the same experiment, one
can acquire the information about the path the electrons followed, the interference fringes
disappear. This is the essence of the wave–particle duality.

Young’s double-slit experiment was also at the center of the first of several debates between
Albert Einstein and Niels Bohr on the foundations of quantum mechanics. Einstein came
up with arguments that challenged Bohr’s principle of complementarity by suggesting a
clever scheme in which one can have both the wave and particle aspects exhibited in the
same experiment. Bohr successfully defended the principle of complementarity by invoking
Heisenberg’s uncertainty relation.

The wave–particle aspect as embodied in the double-slit experiment has continued to lead
to highly counterintuitive notions of delayed choice and quantum eraser effects showing how
the availability or erasure of information generated in the past can affect how we interpret the
data in the present. All these topics are discussed in the following sections of this chapter.

8.1 Young’s Double-slit Experiment for Electrons

In Chapter 4, we discussed in great detail how, when a light beam passes through two slits, it
can generate an interference pattern, a pattern of bright fringes separated by dark fringes, on a
screen, as shown in Fig. 8.1a. The bright fringes are located at those points on the screen where
the path difference between the light waves from the two slits is zero or an integral multiple of
the wavelength 𝜆, thus leading to constructive interference. The dark fringes are, on the other
hand, located at those points where the path difference is equal to (n + 1/2) 𝜆 (with n being an
integer), leading to destructive interference.

Quantum Mechanics for Beginners: With Applications to Quantum Communication and Quantum Computing. M. Suhail Zubairy.
© M. Suhail Zubairy 2020. Published in 2020 by Oxford University Press. DOI: 10.1093/oso/9780198854227.001.0001
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Fig. 8.1 Young’s double-slit experiment with waves.

Central to this description is the wave nature of light. Light from a slit incident on the screen
is described by an electric field of amplitude E. The complex amplitude of light from slit 1 is
given byE1 = ∣E1∣exp (i𝛿1) and from slit 2 is given byE2 = ∣E2∣ exp (i𝛿2).Themeasured intensity
is given by I = |E|2.

Thus, the intensity of light at the screen, when slit 2 is blocked and light can only pass
through slit 1, is given by

I1 = |E1|
2 (8.1)

and is shown in Fig. 8.1b by the curve I1. Similarly when slit 1 is covered, light passes through
slit 2 only and the light intensity at the screen is given by

I2 = |E2|
2 (8.2)

and is shown by the curve I2 in Fig. 8.1b.
When both slits are open, the total amplitude of light on the screen is E1 + E2 and the

intensity of light is given by

I12 = |E1 + E2|
2. (8.3)

Thus

I12 ≠ I1 + I2. (8.4)

Instead we have
I12 = I1 + I2 + (E∗1E2 + E1E∗2)

= I1 + I2 + 2 ∣E1‖E2 ∣ cos 𝛿
= I1 + I2 + 2√I1I2 cos 𝛿,

(8.5)

where 𝛿 = 𝛿1 − 𝛿2 is the phase difference between the fields E1 and E2. The last term in the
bracket is responsible for the interference. The intensity pattern on the screen is depicted by
the curve I12 in Fig. 8.1c.
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Fig. 8.2 Young’s double-slit experiment with bullets.

Next we consider the double-slit experiment with particles like bullets as shown in
Fig. 8.2. Here a gun is a source of bullets, sent in the forward direction, which are spread over a
wide angle. These bullets can pass through holes 1 and 2 in a wall and hit a screen where they
are detected. Unlike the light waves, there is no interference in this case. What we observe is
the following.

When hole 2 is covered, bullets pass only through slit 1. The probability of a single bullet
hitting the screen at a location x is given by P1. This is shown by the curve marked P1. The
maximum of P1 occurs at the value of x which is on a straight line with the gun and slit 1.
When a large number of bullets are incident on the screen, their distribution (fraction of
the total number of bullets hitting the screen) is given by the curve marked P1. This curve
is identical to the curve I1 for the waves in Fig. 8.1b. When hole 1 is closed, bullets can only
pass through hole 2 and we get the symmetric curve for the distribution P2. When both holes
are open, the bullets can pass through hole 1 or they can pass through hole 2 and the resulting
distribution of the bullets on the screen is

P12 = P1 + P2. (8.6)

The probabilities just add together. The effect with both holes open is the sum of the effects
with each hole open alone.We call this result an observation of “no interference.” An important
point to note here is that, for each bullet detected on the screen, we know (at least in principle)
which hole it came from, i.e., we have the “which-path” information for each bullet. Indeed we
can determine the full trajectory of each bullet from the point it leaves the gun and hits the
screen.

So far, we have considered Young’s double-slit experiment with waves and with bullets. In
case of waves, the field amplitudes add and we find interference. However, when we repeat the
same experiment with bullets, the probabilities add up and we find no interference.

What about Young’s double-slit experiment with electrons? Do electrons behave like bullets
or do they behave like waves?

We consider electrons being emitted by an electron gun. This beam of electrons passes
through a wall with two slits as shown in Fig. 8.3a. The set-up is identical to the set-up for
the double-slit experiment for bullets. But do we get the same result as those for the bullets?
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Fig. 8.3 Young’s double-slit experiment with electrons.

When slit 2 is closed, electrons can only pass through slit 1. The probability of a single
electron to hit the screen at location x is P1 which is shown in Fig. 8.3b. The similar symmetric
curve P2 is obtained when slit 1 is closed and the electron can pass through slit 2 only. These
curves are identical to the corresponding curves when the bullets are incident on the screen
and also identical to the intensity distribution when a beam of light is incident.

But what happens, when both slits are open? Do electrons behave like particles as bullets do
or they behave like waves as a light beam behaves? The results are shown in Fig. 8.4. Here we
see the build-up of electrons on the screen. For 100 electrons, the distribution of the detected
electrons on the screen appears to be random. After about 1000 electrons are detected, the
distribution on the screen seems to have some regions with a dense distribution compared
to other regions. But still it is difficult to conclude anything regarding the particle or wave
behavior of the electrons.

After 10 000 electrons are detected on the screen, there is an unmistakable interference
pattern with bright fringes, separated by dark fringes. The individual electrons are detected
one by one, but instead of giving a pattern that is similar to that corresponding to bullets, we
find that the electrons are detected in some regions and not in others. This is a stunning result.
How do the electrons know where to hit the screen such that we see an interference pattern
emerging after a large number of electrons hit the screen?

This experimentwas proposed byRichard Feynman in his famous FeynmanLectures in 1965
in these words:

We choose to examine a phenomenon which is impossible, absolutely impossible, to explain in any
classical way, and which has in it the heart of quantum mechanics.

He, however, claimed that the experiment is too difficult to carry out and may never be done.
What Feynman apparently did not know was that a double-slit experiment with electrons had
already been done by Claus Jönsson in 1961.

The situation becomes more mysterious when a slight variation of this experiment gives us
a completely different outcome.
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(a)

(b)
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Fig. 8.4 The outcome of the Young’s double-slit experiment with (a) 100 electrons, (b) 1000 electrons, and

(c) 10 000 electrons.
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Fig. 8.5 Young’s double-slit experiment with which-path information.

Let us place a source of light between the two slits as shown in Fig. 8.5. When an electron
passes the slits, light scatters from the electron and provides us the which-path information. In
this case, the interference disappears and the result is depicted in Fig. 8.5c, which is identical
to the result obtained for the double-slit experiment with bullets. This is in contrast to the
experiment depicted in Fig. 8.3, where we had a lack of knowledge about the path each
individual electron took. This lack of which-path knowledge seems to be responsible for
interference.
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Thus if we “look” at which path each electron followed, the interference disappears and we
get the same distribution on the screen as for particles. So either we get interference when
we have no which-path information or we lose interference when we have the which-path
information.

No classical explanation can describe these observations. We can reconcile these observa-
tions only with the fundamental principles of quantum mechanics discussed in Chapter 5.

We describe the electron, not as a particle traveling in a well-defined trajectory, but by a
wavefunction 𝜓(r) which is a complex function of position. At any point R on the screen, there
are two contributions for the same electron coming from the two slits, 𝜓1(R) and 𝜓2(R).

When slit 2 is closed, the total wavefunction at the position R is 𝜓1(R) and the probability of
finding the electron is

P1 = |𝜓1|
2 (8.7)

Similarly, when slit 1 is closed, the total wavefunction at the position R is 𝜓2(R) and the
probability of finding the electron is

P2 = |𝜓2|
2 (8.8)

When both slits are open, the total wavefunction of the electron at the position R is

𝜓(R) = 𝜓1(R) + 𝜓2(R) (8.9)

and the probability of finding the electron is

P12 = |𝜓1 + 𝜓2|
2

= |𝜓1|
2 + |𝜓2|

2 + (𝜓∗1𝜓2 + 𝜓1𝜓∗2 ) = |𝜓1|
2 + |𝜓2|

2 + 2∣𝜓1‖𝜓2∣ cos 𝜃.
(8.10)

Here 𝜓1 = ∣𝜓1 ∣ exp(i𝜃1), 𝜓2 = ∣𝜓2 ∣ exp(i𝜃2), and 𝜃 = 𝜃1 − 𝜃2. The angle 𝜃 depends on
the location on the screen. The last term is the interference term which, depending on 𝜃, can
become equal and opposite to |𝜓1|

2 + |𝜓2|
2 at certain locations, giving us a zero probability of

finding the electron at those locations and is responsible for the interference. The wavefunc-
tions𝜓1 and𝜓2 seem to play the same role as the complex fields E1 and E2 in the case of Young’s
double-slit experiment with waves. However there is one crucial difference: The quantities
I1 = |E1(R)|

2 and I2 = |E2(R)|
2 are the intensities of the light coming to the point R from

slits 1 and 2 whereas the quantities |𝜓1(R)|
2 and |𝜓2(R)|

2 are the probabilities that the electron
coming from slits 1 and 2 hits the screen at the point R, respectively.

If an experiment is performed which is capable of determining whether the electrons passed
through slit 1 or slit 2, the probability of finding the electron at a point R on the screen is the
sum of the probabilities for each alternative,

P12 = P1 + P2, (8.11)

and the interference is lost.
This concept of wave–particle duality has been a source of intense discussion since the

earliest days of quantum mechanics. How the same electron can behave like a wave in
one situation and a particle in another is quite mysterious. Wave–particle duality was the
subject of a fierce debate between Albert Einstein and Niels Bohr, as we discuss in the next
section.
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Richard Feynman expresses his amazement at these incredible results in these words:

Onemight still like to ask: “How does it work?What is themachinery behind the law?” No one has
found anymachinery behind the law. No one can “explain” anymore than we have just “explained.”
No one will give you any deeper representation of the situation. We have no ideas about a more
basic mechanism from which these results can be deduced.

Here we discussed the experiment with electrons. The same can be said about a similar
experiment with light. If we treat the light beam in a Young’s double-slit experiment as
consisting of a large number of photons, the situation is similar to the interference experiment
with electrons.The reason we get interference of a light beam in a double-slit experiment is due
to the lack of which-path information for each photon. If somehow we are able to get which-
path information for each photon, the interference disappears.

This is the essence of the wave–particle duality or Bohr’s principle of complementarity:
Electrons and photons can behave like waves when we have no which-path information and
they behave like particles when we have the which-path information.

8.2 Einstein–Bohr Debate on Complementarity

In 1927Niels Bohr introduced the principle of complementarity, which can be stated as follows:
In any quantum mechanical experiment, certain physical concepts are complementary. If the
experiment clearly illustrates one concept the other concept will be completely obscured. As an
example, if the particle nature of an object is exhibited in an experiment then the wave nature
will be completely obscured.Thus, in the double-slit experiment, we can either have the which-
path information or the existence of an interference pattern. According to Bohr’s principle of
complementarity, they can never be observed at the same time, in the same experiment.

Einstein, however, came up with a clever scheme such that we can have both which-
path information (particle nature) and interference (wave nature) in the same experiment—
violating Bohr’s principle of complementarity.

In Einstein’s proposed experiment a wall with two slits is placed on rollers so that it can
move freely in the vertical direction as shown in Fig. 8.6. This is an example of what we call
a thought experiment or a gedanken experiment. In other words, we do not actually conduct
the experiment, we use only our imagination and reasoning instead. An electron gun shoots
electrons towards the wall where they can pass through the two slits and then onto the
back screen to create the interference pattern. The electrons have momentum in the forward
direction. However the electron beam is spread and can have small momentum components
in both +x and −x directions. For example, the electrons passing through slit 1 should have
a momentum component along the x-axis equal to p1 and those passing through slit 2 should
have the x-momentum component equal to p2. After passing through the slits, there is a
momentum change in the electrons. For those passing through slit 1, if the final momentum
in the x-direction is p′1, the momentum change of that electron is 𝛿p1 = p′1 − p1. Similarly for
the electrons passing through slit 2, the momentum change is 𝛿p2 = p′2 − p2.

Einstein argued that if the wall is on rollers then, by the law of conservation of momentum,
it should recoil with a momentum equal to the change in momentum of the electron and in
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Fig. 8.6 Einstein’s gedanken experiment. Electrons pass through a narrow slit through a wall that can freely move on a

roller. The momentum transfer to the wall provides the which-path information. At the same time electrons from the

two slits can form an interference pattern on the screen.

the opposite direction. Thus electrons that pass through the upper slit (slit 1) should impart a
momentum equal to−𝛿p1 to the wall. If the electron is deflected in the downward direction as
shown in Fig. 8.6, then themomentum of the wall should be in the upward direction. Similarly,
the electrons passing through the lower slit (slit 2) and deflected in the upper direction will
give a downward kick to the wall. Therefore, for every position of the detector on the screen,
the momentum received by the wall will have a different value for a traversal via slit 1 than for
a traversal via slit 2. Since an electron has a very small mass, the momentum change is very
tiny and it may be difficult to measure the momentum change of the wall. However, no matter
how small this momentum is, it should in principle be detectable. So without disturbing the
electrons at all, but just by watching the wall, we can tell which path the electron used.

Einstein then argued that, after passage through the slits, the undisturbed electrons can
proceed to the screen and give the interference pattern as before. However, we can get the
information about which slit the electrons passed through bymeasuring themomentum of the
wall after each electron has passed through. Thus we have both the ‘which-path’ information
and the interference. This is in contradiction to Bohr’s principle of complementarity.

This was a forceful argument against the foundational principle of quantum mechanics and
Bohr had to respond to it immediately. Leon Rosenfeld records the encounter in his book
Fundamental Problems in Elementary Particle Physics (Proceedings of the Fourteenth Solvay
Conference, Interscience, New York, p. 232) in the following words:

. . . Einstein thought he had found a counterexample to the uncertainty principle. It was quite a
shock for Bohr … he did not see the solution at once. During the whole evening he was extremely
unhappy, going from one to the other and trying to persuade them that it couldn’t be true, that it
would be the end of physics if Einstein were right; but he couldn’t produce any refutation. I shall
never forget the vision of the two antagonists leaving the club [of the Fondation Universitaire]:
Einstein a tall majestic figure, walking quietly, with a somewhat ironical smile, and Bohr trotting
near him, very excited …The next morning came Bohr’s triumph.

Bohr invoked the Heisenberg uncertainty relation to refute Einstein’s argument and saved the
principle of complementarity.
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According to the Heisenberg uncertainty relation, if we determine the x-component of its
momentum with an uncertainty Δp, we cannot, at the same time, know its x-position more
accurately than Δx = ℏ/2Δp (Section 7.4). In Einstein’s argument, it is necessary to know
the momentum of the wall before the electron passes through it sufficiently precisely. This is
required as we need to know the change in the momentum of the wall in the x-direction after
the electron has passed in order to obtain the which-path information. However, according
to the Heisenberg uncertainty principle, we cannot know the position of the wall in the
x-direction with arbitrary accuracy. Therefore a precise measurement of momentum means
that the locations of the slits become indeterminate. The uncertainty in the location of the slits
means that the electrons effectively see a blurred pair of slits. The locations where electrons
hit the screen consequently become random and the center of the interference pattern has
a different location for each electron, thus wiping out the interference pattern. This shows
that the which-path information in the Young’s double-slit experiment smears the interference
pattern.

In order to quantitatively see this result, we consider a slightly different set-up as shown in
Fig. 8.7. Here a beam of electrons is first sent along the z-axis through a wall with a narrow
opening that selects only those electrons moving along the z-axis. Before hitting the wall
the x-component of the momentum of these electrons is zero. After passing through the slit
they diffract in the x-direction. Electrons can pass through another wall at a distance L with
double slits. The separation between the two slits is d. The electrons are detected on the screen
another distance L away. The first wall is placed on a roller such that it can freely move in the
x-direction.

The incident electrons move with a momentum

p0 =
h
𝜆 (8.12)

along the z-axis. Here 𝜆 is the de Broglie wavelength of the electrons. After passing the first
wall, they acquire momentum in the x-direction. Since these electrons pass through the two
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Fig. 8.7 An analysis of Einstein’s gedanken experiment. Electrons pass through a wall giving it a push in the upward or

the downward direction depending on whether the incoming electron is scattered in the downward or upward

direction. This provides the which-path information. These electrons then pass the double slit and form a pattern

on the screen.
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slits at the distance L from the first wall and located at x = ± (d/2) the x-component of
the momentum can range from −p0sin𝜃 for electrons going below the z-axis to +p0sin𝜃 for
electrons going above the axis. By the conservation of momentum, the corresponding recoil
momentum on the first wall therefore ranges from +p0sin𝜃 for electrons going below the z-
axis to−p0sin𝜃 for electrons going above the axis. Thus the limit on the accuracy of measuring
the recoil momentum is

Δp = +p0 sin 𝜃 − (−p0 sin 𝜃) = 2p0 sin 𝜃 ≈ 2p0𝜃 = 2h
𝜆

d
2L = hd

𝜆L , (8.13)

where we assume 𝜃 ≪ 1 and sin 𝜃 ≈ 𝜃. According to the Heisenberg uncertainty relation, the
minimum uncertainty in the position of the source slit is

Δx ≈ h
Δp = 𝜆L

d
, (8.14)

where we substituted forΔp fromEq. (8.13).Thus, if the electronmomentum in the x-direction
is known with sufficient accuracy to find the which-slit information, the location of the slit in
the first wall is uncertain by an amount given by Eq. (8.14). This leads to a corresponding
uncertainty in the location where the electron hits the screen. We recall that the fringe spacing
in the double slit experiment is 𝜆L/d (Eq. (4.54). The resulting pattern on the screen becomes
blurred to the extent that the interference pattern is lost. This clearly shows that the which-
path information leads to the disappearance of the interference pattern—Bohr’s principle of
complementarity is saved, thanks to the Heisenberg uncertainty relation.

Richard Feynman, in his Lectures, describes the role of the uncertainty relation in keeping
the foundations of quantum mechanics secure in the following words:

The uncertainty principle “protects” quantum mechanics. Heisenberg recognized that if it were
possible to measure the momentum and the position simultaneously with a greater accuracy, then
quantum mechanics would collapse. So he proposed that it must be impossible. Then people sat
down and tried to figure out ways of doing it, and nobody could figure out a way to measure the
position and themomentum of anything—a screen, an electron, a billiard ball, anything—with any
greater accuracy. Quantum mechanics maintains its perilous but still correct existence.

8.3 Delayed Choice

In the Young’s double-slit experiment, whether we get the interference fringes or not depends
onwhether we have nowhich-path information orwe have thewhich-path information.Thus a
photon behaves like a wave or a particle depending uponwhat kind of an experiment we decide
to do. If we decide not to look at the photon when it is passing through the slits, it behaves
like a wave. However, if we decide to find which slit the photon goes through, it behaves like a
particle.Thiswave–particle duality is verymysterious and it becomes evenmore sowhenwe try
to address the question whether the photon knew in advance what behavior it should exhibit.
This question was addressed by John Wheeler in his “delayed choice” gedanken experiment.

In Wheeler’s gedanken experiment, photons are generated by cosmic objects like quasars.
They are split into two paths with the galaxy acting as a gravitational lens as shown in Fig. 8.8.
Photons can follow either path, left of the galaxy or right of the galaxy. After having traveled a
distance of billions of miles the photons arrive at earth where we detect these photons in one
of the two different experimental set-ups.
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Fig. 8.8 Wheeler’s delayed choice experiment. Light that left a quasar millions of years ago can be made to act like a

particle or a wave depending on our choice of the experimental set-up.

In the first set-up, we place two detectors D1 and D2. The detector D1 clicks if the photon
followed the left path and the detector D2 clicks if the photon followed the right path. Thus
a click at either D1 or D2 provides the which-path information. For example, for a click at
D1, we can conclude that the photon was in the left path all along for all those billions of
years. Similarly, for a click at D2, we can conclude that the photon was in the right path
all along.

The other possibility is to pass them through the two slits in a Young’s double-slit experiment
and get an interference pattern.We can then conclude that the photons behaved like waves and
they went through both ways around the galaxy.

Therefore, in the first case the photons appear to pass through only one side of the galaxy
and behave like particles and in the latter case they behave like waves and go through both ways
around the galaxy. The paradoxical situation is that it depends on the experimenter’s “delayed
choice” whether the photon generated billions of years ago behaves like a particle or a wave.
Until the experiment is done, we cannot say whether the photon will behave as a particle or as
a wave.

8.4 Quantum Eraser

An even more counterintuitive aspect of wave–particle duality is the notion of the “quantum
eraser” introduced by Marlan Scully and Kai Drühl in 1982. In the Young’s double-slit experi-
ment, we get an interference pattern if we have no knowledge about which slit the photon went
through. However if we somehow obtain the which-path information then the interference
is lost. Scully posed the question: Is it possible to “erase” the which-path information and
recover the interference pattern after the photon has passed through the slits and is detected
on the screen? The quantum eraser brings out the counterintuitive aspects related to time in
the quantum mechanical domain.
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Fig. 8.9 Schematics of the quantum eraser experiment. (a) The single-photon pulses l1 and l2 incident on two atoms

help to generate two photons 𝛾 and 𝜙 by either atoms at site 1 or the atom at site 2. The 𝛾 photons proceed to the

screen and the 𝜙 photon to the left. (b) The distribution of 𝛾 photons when no detection is made at detectors D1 , D2 , D3 ,

or D4 . This distribution is also obtained when either both mirrorsM1 andM2 are removed and the clicks are at detectors

D3 and D4 or the mirrors M1 and M2 are in place and the clicks are at detectors D1 and D2 . (c) The distributions of the 𝛾
photons for clicks at D3 and D4 . The which-path information destroys the interference. (d) The distributions of the 𝛾
photons for clicks at D1 and D2 . In this case we do not have the which-path information and interference is obtained.

We present a simple description of the quantum eraser as depicted in Fig. 8.9. Instead of two
slits, we consider the scattering of light from two atoms on the screen.

The two atoms are placed at sites 1 and 2. Each atom is of the type shown in the inset of
Fig. 8.9. There are four atomic levels a, b, b′, and c and the atoms are initially in level c. These
atomic levels are of the type we discussed for the hydrogen atom in Section 6.5. The atom can
absorb a photon and make a jump from a lower level to a higher level if the energy difference
between the two levels is the same as the energy of the incident photon. Similarly, an atom in
the excited state can jump to the lower level and emit a photon whose energy (and frequency)
matches the level spacing. These atoms are excited by pulses l1 and l2 which carry just enough
energy to excite only one atom from level c to a and from level b to b′, respectively.

The photon pulse l1 tuned to c-a transition excites one atom (we do not know which one) to
level a. The other atom remains in level c. The excited atom emits a photon by making a jump
from level a to level b. We call such a photon a 𝛾 photon. The photon pulse l2 excites the atom
from level b to b′. The atom finally makes a transition from level b′ to level c emitting a photon
we call 𝜙 photon. Thus, after the passage of the pulses l1 and l2, one of the atoms (we do not
know which one) has generated two photons, 𝛾 and 𝜙 and both atoms are found in the ground
state c after the scattering process is complete.

We repeat this scattering process a large number of times. We consider only those instances
where the 𝛾 photon proceeds to the right to the screen and the 𝜙 photon proceeds to the left to
the mirrors M1 and M2. The 𝛾 photons are collected on the screen as in the usual double-slit
experiment. The 𝜙 photon is detected by one of the detectors D1, D2, D3, or D4 after passing
through the optical set-up consisting of the mirrors M1, M2, and the beam splitter B. The role
of the beam splitter B is to let the photon get transmitted or get reflected with equal probability.
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For example, a photon reflected from the mirror M1 can either get reflected through B and be
detected at D1 or be transmitted and detected at D2, with equal probability. A detailed analysis
of a beam splitter for a single photon is given in Section 9.4. The 𝛾 photons from atom 1 or
atom 2 play the same role as the light passing through the two slits in the Young’s double-slit
experiment. The 𝜙 photons can be employed to manipulate the which-path information as
described below.

This experiment yields a distribution of 𝛾 photons on the screen as shown in Fig. 8.9. But
what about the appearance and disappearance of interference fringes discussed above? For this
purpose we look at the 𝜙 photons that proceed to the left.

The 𝜙 photon, if emitted by atom 1, proceeds to mirror M1 and, if emitted by atom 2, to
mirror M2. The distance between the screen (with two atoms) and the mirrors M1 and M2
is assumed to be much larger than the distance between the atoms and the screen where the
𝛾 photons are detected.

For each 𝜙 photon, a choice is made: either both mirrors M1 and M2 are removed OR they
are kept in place. In the case where the mirrors M1 and M2 are removed the photon proceeds
unhindered and there is a click at either detector D3 or D4. On the other hand, if the mirrors
M1 and M2 are in place, there is a click either at detector D1 or D2.

For each detection of a 𝛾 photon on the screen, we thus have four possibilities for the
detection of the corresponding𝜙 photon: It can be detected at detectorsD1 orD2 or at detectors
D3 or D4 depending on whether the mirrors M1 and M2 are in place or they are removed. Let
us examine these cases.

First we consider the case when a decision is made to remove both mirrors M1 and M2. In
this case there is a click either at D3 or D4.

If the 𝜙 photon is detected at D3, there is only one path possible, namely 1D3. The 𝜙 photon
must have come from atom 1. We thus have the information about the atom that generated the
𝜙 photon. The corresponding 𝛾 photon must have been generated by atom 1 as well and we
acquire the which-path information for the 𝛾 photon on the screen.

Following the same reasoning, we conclude that, if the 𝜙 photon is detected at D4, it must
have come from atom 2. The corresponding 𝛾 photon must have been generated by atom 1 as
well and, again, we acquire the which-path information for the 𝛾 photon on the screen.

Next we consider the case when a decision is made to keep both mirrors M1 and M2. In this
case there is a click either at D1 or D2.

If the 𝜙 photon is detected at D1, there is an equal probability that it may have come from the
atom located at 1 following the path 1M1BD1 or it may have come from the atom located at 2
following the path 2M2BD1. Thus we have erased the information about which atom scattered
the𝜙 photon and there is nowhich-path information available for the corresponding 𝛾 photon.

The same can be said about the 𝜙 photon detected at D2. There is an equal probability that
it may have come from the atom located at 1 following the path 1M1BD2 or it may have come
from the atom located at 2 following the path 2M2BD2. There is, however, a phase shift of 𝜋, as
we get two reflections in case 1 and one reflection and one transmission in case 2.1

1 The 𝜋 phase shift is understood using the properties of the beam splitter that we formally derive in Sections 9.3
and 9.4.
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After this experiment is done a large number of times, we shall have 𝜙 photons detected
each at detectors D1, D2, D3, or D4. The spatial distribution for all the collected 𝛾 photons in
the absence of any sorting is given in Fig. 8.9b. Next we do a sorting process. We separate out
all the events where the 𝜙 photons are detected at detectors D1, D2, D3, and D4. For these four
groups of events, we locate the positions of the detected 𝛾 photons on the screen.

And now comes the key result! For the events corresponding to the detection of 𝜙 photons
at detectors D3 and D4, the pattern obtained by the 𝛾 photons on the screen is the same as we
would expect if these photons had scattered from atoms at sites 1 and 2, respectively. This is
shown in Fig. 8.9c. That is, there are no interference fringes as would be expected when we
have which-path information available. On the contrary, we obtain phase-shifted interference
fringes for those events where the 𝜙 photons are detected at D1 and D2. This is shown in
Fig, 8.9d. For this set of data there is nowhich-path information available for the corresponding
𝛾 photons.

Mathematically we can understand the essential results of the Scully–Drühl quantum eraser
by first realizing that the photon state emitted by the atoms located at sites 1 and 2 is given by

Ψ = 1
√2

(𝜓𝛾1𝜓𝜙1 + 𝜓𝛾2𝜓𝜙2) , (8.15)

i.e., either the photon pair 𝛾1, 𝜙1 is emitted by the atom located at site 1 or pair 𝛾2, 𝜙2 is emitted
by the atom located at site 2. Thus if the 𝜙 photon is detected by D3, the quantum state reduces
to 𝜓𝛾1 . A similar result is obtained for the 𝜙 photon detection by D4. This is the situation when
the which-path information is available and the sorted data yields no interference fringes.

The physics behind the retrieval of the fringes is made clear by rewriting the state Ψ as2

Ψ = 1
2 (𝜓𝛾1 + 𝜓𝛾2) 𝜓𝜙+ +

1
2 (𝜓𝛾1 − 𝜓𝛾2) 𝜓𝜙− , (8.16)

where

𝜓𝜙+ =
1
√2

(𝜓𝜙1 + 𝜓𝜙2) (8.17)

is the symmetric state of the𝜙 photon at the detectorD1 after passage through the beam splitter
B, and

𝜓𝜙− =
1
√2

(𝜓𝜙1 − 𝜓𝜙2) , (8.18)

is the antisymmetric state of the 𝜙 photon at the detector D2 after passage through the beam
splitter B. Thus a click at detectors D1 or D2 reduces the state of a 𝛾 photon to

𝜓𝛾+ =
1
√2

(𝜓𝛾1 + 𝜓𝛾2) (8.19)

2 Here again the symmetric and antisymmetric states 𝜓𝜙+ and 𝜓𝜙− are obtained at the detectors D1 and D2,
respectively, by using the properties of the beam splitter that we derive in Sections 9.3 and 9.4.
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or

𝜓𝛾− =
1
√2

(𝜓𝛾1 − 𝜓𝛾2) , (8.20)

respectively, leading to a retrieval of the interference fringes according to Eqs. (8.9) and (8.10).
Thus, in summary, a detection of the 𝜙 photon at the detectors D3 or D4 corresponds to

the probabilities ||𝜓𝛾1
||2 or ||𝜓𝛾2

||2, respectively, of the 𝛾 photon being detected on the screen,
leading to no interference. This situation is similar to the double-slit experiment with which-
path information as in Fig. 8.4 and the results are depicted in Fig. 8.9c. However, a detection of
the𝜙 photon at detectorsD1 orD2 corresponds to the probabilities ||𝜓𝛾1 + 𝜓𝛾2

||2 or ||𝜓𝛾1 − 𝜓𝛾2
||2,

respectively, of the 𝛾 photon being detected on the screen, leading to interference in both
cases due to a lack of which-path information as in Fig. 8.3, and the present result is shown in
Fig. 8.9d.

The remarkable result is that we can place the 𝜙 photon detectors, D1, D2, D3, and D4,
far away—very far away, such that we can make the decision whether to remove the mirrors
M1 and M2, thus acquiring the which-path information, or to place the mirrors to lose the
which-path information long after the 𝛾 photon is detected on the screen. Thus the future
measurements on the 𝜙 photons influence the way we think about the 𝛾 photons measured
today (or yesterday!). For example, we can conclude that 𝛾 photons, whose 𝜙 partners were
successfully used to ascertain which-path information by removing the mirrors M1 and M2
resulting in clicks at D3 or D4, can be described as having (in the past) originated from site 1 or
site 2.We can also conclude that 𝛾 photons, whose𝜙 partners had theirwhich-path information
erased by placing the mirrors M1 and M2 resulting in clicks at D1 and D2, cannot be described
as having (in the past) originated from site 1 or site 2, but must be described, in the same sense,
as having come from both sites. The future helps shape the story we tell of the past. This is
a highly counterintuitive and startling result. The scheme for the quantum eraser discussed
above has been realized experimentally.

In his book, The Fabric of the Cosmos, Brian Greene sums up beautifully the counterintuitive
outcome of the experimental realizations of the quantum eraser:

These experiments are a magnificent affront to our conventional notions of space and time.
Something that takes place long after and far away from something else nevertheless is vital to our
description of that something else. By any classical-common sense-reckoning, that’s, well, crazy.
Of course, that’s the point: classical reckoning is the wrong kind of reckoning to use in a quantum
universe. For a few days after I learned of these experiments, I remember feeling elated. I felt I’d
been given a glimpse into a veiled side of reality.

Problems

8.1 Electrons of momentum p fall normally on a pair of slits separated by a distance d. What
is the distance between adjacent maxima of the interference fringe pattern formed on a
screen a distance L beyond the slits? Note: You may assume that the width of the slits is
much less than the electron de Broglie wavelength.
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8.2 In an experiment performed by Jönsson in 1961, electrons were accelerated through a
50 kV potential towards two slits separated by a distance d = 2 × 10−4 cm, then detected
on a screen L = 35 cm beyond the slits. Calculate the electron’s de Broglie wavelength, 𝜆,
and the fringe spacing Δy. Note: kinetic energy of electrons is equal to eV.

8.3 In an interference experiment with electrons, we find the most intense fringe is at
y = 7.0 cm. There are slightly weaker fringes at y = 6.0 cm and 8.0 cm, still weaker
fringes at y = 4.0 cm and 10.0 cm. No electron are detected at y < 0 cm or y > 14 cm.
Sketch a graph of |𝜓|2.
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9 Simplest Quantum Devices:
Polarizers and Beam Splitters

As we discussed in Section 6.1, James Clark Maxwell showed that light consists of electric and
magnetic fields that oscillate in directions perpendicular to the direction of propagation. The
electric and magnetic fields also oscillate in directions mutually perpendicular to each other.
Thus the directions of the electric field and the magnetic field and the direction of propagation
are all perpendicular to each other. Light is therefore a transverse electromagnetic wave.
Associated with this picture of light as an electromagnetic wave is an important property—
the polarization of light. The polarization of light is related to the direction of oscillation
of the electric field in an electromagnetic wave. The classical properties of polarization have
been studied for more than two centuries. An important question relates to the propaga-
tion of polarized light through certain materials called polarizers and the changes in the
characteristics of a light beam when it passes through a polarizer.

The polarization property of a single photon is a major resource in our understanding of the
basic laws of quantum mechanics. It is interesting to note that one of the founding fathers of
quantum mechanics, Paul Dirac, described the passage of a single photon through a polarizer
to discuss the mysteries of quantum mechanics in the very first pages of perhaps the very first
book on quantum mechanics written by him in 1930. In this chapter, we follow this approach
and show how some of the basic laws of quantum mechanics can be understood by an analysis
of the simplest of systems—a polarizer. We also discuss the transformation properties of beam
splitters. These properties when applied to a single photon can lead to many novel phenomena
that are the subjects of later chapters.

9.1 Polarization of Light

Electromagnetic waves are transverse waves as the direction of oscillation of the electric and
magnetic fields, E and B, are perpendicular or transverse to the direction of motion k as shown
in Fig. 9.1. This is different from longitudinal waves such as sound waves where the wave is
oscillating in the direction of propagation.

Polarization of light: An important property of the electromagnetic field is polarization.
The polarization of an electromagnetic wave is described as the direction of the electric field
oscillation. As the field oscillates in both positive and negative directions, it is equivalent if we
describe the direction of polarization to be along (say) +y-axis or along –y-axis. The possible
directions of polarization therefore range over 𝜋 angles (from 0 to 𝜋).

Natural light sources such as sunlight as well as many artificial sources such as a light
bulb emit light with random directions of polarization. For a light beam from such sources,
the electric field vector oscillates in all possible 𝜋 directions in the plane perpendicular

Quantum Mechanics for Beginners: With Applications to Quantum Communication and Quantum Computing. M. Suhail Zubairy.
© M. Suhail Zubairy 2020. Published in 2020 by Oxford University Press. DOI: 10.1093/oso/9780198854227.001.0001
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Fig. 9.1 An electromagnetic wave. Electric and magnetic fields, E and B, oscillate in directions mutually perpendicular

to each other as well as perpendicular to the direction of propagation of the wave vector k.

to the direction of propagation with equal probability. Such a light beam is described as
unpolarized as it lacks a certain well defined direction of polarization. When such a light
passes through a material called a polarizer, the electric field of the filtered light oscillates in
a well-defined direction depending on the orientation of the polarizer and the light becomes
polarized.

Polarizer: A polarizer is typically made of a crystalline structure with a preferred axis
called the polarizing axis such that light whose electric field, E, is oscillating in the direction
perpendicular to this axis is completely absorbed and none of that light is transmitted, whereas
the light whose electric field vector is oscillating in the direction parallel to this axis passes
through. For a field oscillating in an arbitrary direction, we can decompose the electric field
vector in the directions parallel and perpendicular to the polarizing axis. The component
of the field along the direction of the polarizing axis passes through and the component
perpendicular to the polarizing axis is blocked.The electric field vector of the transmitted field,
andhence the polarization, is in the direction of the polarizing axis and itsmagnitude is reduced
by an amount that depends on the angle between the direction of initial polarization and the
polarizing axis of the polarizer.

As an example, let us assume that a beam of light, propagating along the z-axis, is incident
on a polarizer with its polarizing axis along x-axis. Let the polarization of the incident beam
be along a direction E making an angle 𝜃 with the x-axis as shown in Fig. 9.2. The electric field
can then be decomposed along x- and y-directions as follows:

E = Exx̂ + Ey ̂y = E cos 𝜃 x̂ + E sin 𝜃 ̂y, (9.1)

where Ex = E cos 𝜃 is the x-component of the electric field and Ey = E sin 𝜃 is the y-component
of the field. The component of the field that passes through the polarizer is Ex = E cos 𝜃 and
the field component Ey = E sin 𝜃 is blocked. The transmitted field is polarized along x-axis and
its amplitude, ET , is

ET = E cos 𝜃. (9.2)
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Fig. 9.2 Polarization is along the direction E making an angle 𝜃 with the x-axis.

The intensity of the transmitted field is proportional to |ET |2 and is given by

IT = I0cos2𝜃, (9.3)

where I0 = |E|2 is the intensity of the incident field. This is called Malus’ law.
Next we consider various examples that illustrate the properties of polarizers.
First we consider an unpolarized light beam of intensity I0 in which all polarization

directions in the xy-plane, the plane perpendicular to the z-axis which is the direction of
propagation, are equally probable (Fig. 9.3). When such a beam passes through a polarizer
with the polarizing axis along the x-axis, only half of the intensity I0/2 is transmitted. This can
be shown with the help of Malus’ law as follows.

As discussed above, the polarization direction 𝜃 is equivalent to the polarization direction
𝜃 + 𝜋. Therefore, for unpolarized light, the polarization angle 𝜃 is uniformly distributed
between 0 and𝜋. According toMalus’ law, the transmitted intensity for the polarization angle 𝜃
is equal to I0 cos2𝜃.Thus for each angle𝜙 in the range 0 and𝜋/2, we have a corresponding angle
𝜙+ (𝜋/2) in the range 𝜋/2 and 𝜋. The average contribution to the transmission intensity from
the two angles is

cos2 𝜙 + cos2 (𝜙 + (𝜋/2))
2 = 1

2 ,

where we used cos (𝜙 + (𝜋/2)) = − sin𝜙 and cos2𝜙 + sin2𝜙 = 1. The transmitted intensity is
thus equal to I0/2 and the light beam is polarized along the x-axis.

We proved this statement for a polarizer oriented along the x-axis. However this is a general
result. If an unpolarized beam of intensity I0 passes through a polarizer oriented along any
arbitrary direction in the xy plane, the transmitted beam has an intensity equal to I0/2 and is
polarized along the direction of the polarizing axis of the polarizer.

Next we consider a set of three polarizers, A, B, and C as shown in Fig. 9.4. Let an
un-polarized light beam be incident on polarizer A whose polarizing axis is along the x-axis.
As discussed above, only half the incident intensity is transmitted, and is polarized along the
x-axis. In the following we consider the output intensities for various orientations of polarizers
B and C.
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x

y

Fig. 9.3 Unpolarized light passing through a polarizer with its polarizing axis along the x-axis.

A

B

C

Fig. 9.4 The three polarizers A, B, and C.

First, we consider the case when polarizer B is also oriented along the x-axis (Fig. 9.5a).
Since the light is polarized along the x-axis after passage through A, the polarization of the
light incident on B is entirely along the x-axis. The result is that all the light incident on B is
transmitted which is equal to half the intensity of the incident light on A. This can be verified
from Malus’ law. If the incident light is unpolarized and has intensity I0, then after passing
through the polarizer A, the light intensity is

IA =
I0
2 . (9.4)

The intensity of light after passing through the polarizer B, according to Malus’ law, is given by

IB = IAcos20o = I0
2 cos20o = I0

2 . (9.5)

The AB system is thus transparent to the horizontally polarized light.
Next we consider the situation when the polarizer B is oriented such that its polarization

axis is along the y-axis (Fig. 9.5b). Then, like before, the intensity of light after passing through
the polarizer A is

IA =
I0
2 (9.6)
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(b)(a) (c)

Fig. 9.5 The polarizers A and B are placed next to each other such that (a) the polarization axes of both polarizers are

parallel to each other; (b) the polarization axes of both polarizers are perpendicular to each other. (c) The polarizer C is

inserted between the polarizers A and B with an orientation of 45∘ with respect to both A and B in the configuration (b).

and the polarization of the light is along the x-axis. The intensity of light after passing through
polarizer B, according to Malus’ law, is

IB = IAcos290
o = I0

2 cos290o = 0. (9.7)

This AB system is thus opaque to the horizontally polarized light.
Next comes the interesting question: What happens if we insert a third polarizer C between

the two polarizers A and B whose polarization axes are oriented along x- and y-axes, respec-
tively (Fig. 9.5c). At first sight, the guess is that, regardless of the orientation of the polarization
axis of C, the ABC system should be opaque to the incident unpolarized light. However this
happens only if the orientation of the polarization axis of C is either along the x- or y-axis. For
any other orientation, the ABC system is no longer opaque.

To see this, let us consider the situation when C is oriented at 45∘ to the x-axis. Then, as
before, the intensity of light after A is

IA =
I0
2 . (9.8)

When this x-polarized light passes through C, the transmitted light is

IC = IAcos245o = I0
2 cos245o = I0

4 . (9.9)

Importantly, the emerging light is polarized along the polarization axis of C, namely along
the direction making an angle of 45∘ to the x-axis. In vector notation, the direction of the
polarization is along

̂x + ̂y
√2

.

When this light passes through the polarizer B whose polarization axis is along the y-axis, the
angle between the polarization axes of C and B is 45∘.Thus the intensity of the transmitted field
after passage through the ABC system is

IB = ICcos245o = I0
4 cos245o = I0

8 . (9.10)

The polarization of the transmitted light is along the y-axis. Thus the insertion of a polarizer at
an angle makes the set-up partially transparent.
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Incident

beam

Transmitted

beamθ1 θ2 θ3

Fig. 9.6 A beam of unpolarized light is incident on a series of three polarizers oriented by angles 𝜃1 , 𝜃2 , and 𝜃3 with

respect to the x-axis.

As another example, we consider a system of three polarizers as shown in Fig. 9.6. For the
polarizers, we consider the orientation of the polarization axis to be along axes making angles
𝜃1, 𝜃2, and 𝜃3 with the x-axis as shown in the figure. The incident beam of light of intensity
I0 is unpolarized. We want to find the intensity of the beam transmitted through the three
polarizers.

The intensity of light after the first polarizer oriented at 𝜃1 is I0/2 and the light is polarized
along 𝜃1. According to Malus’ law, the intensity of light after passage through the second
polarizer with orientation along 𝜃2 is

I0
2 cos2 (𝜃1 − 𝜃2) (9.11)

and the light is polarized along 𝜃2. The intensity of light after passage through the third
polarizer with orientation along 𝜃3 is

I0
2 cos2 (𝜃1 − 𝜃2) cos2 (𝜃2 − 𝜃3) (9.12)

and the light is polarized along 𝜃3.
We note that the system depicted in Fig. 9.5c corresponds to 𝜃1 = 0, 𝜃2 = 45o, and 𝜃3 = 90o.

9.2 Malus’ Law for a Single Photon—Dirac’s ket–bra Notation

So far we have analyzed the polarization of a beam of light. Malus’ law relates the incident
intensity to the transmitted intensity when light of certain polarization passes through a
polarizer. The fraction of light that is transmitted depends on the orientation of the polarizer.

In this section, we consider the quantum mechanical picture of a light beam consisting
of “photons”. In this picture, light consists of individual particles. Malus’ law can now be
interpreted not in terms of intensities but in terms of number of photons passing through the
polarizer. For example, the law

IT = I0cos2𝜃 (9.13)

can be rewritten as

nT = n0cos2𝜃, (9.14)

where n0 is the number of incident photons, nT is the number of transmitted photons, and 𝜃 is
the angle between the polarization of individual photons and the direction of the polarizing
axis of the polarizer. The two equations are not different from each other. Here we have



OUP CORRECTED PROOF – FINAL, 10/3/2020, SPi

MALUS’ LAW FOR A SINGLE PHOTON—DIRAC’S KET–BRA NOTATION 143

implicitly assumed that the intensity is directly proportional to the number of photons, I0 ∝ n.
This relation can be obtained by realizing that, for a light beam of frequency 𝜈, the energy of
an individual photon is ℏ𝜈, and therefore

I0 = nℏ𝜈. (9.15)

On substituting this expression for I into Eq. (9.13), we obtain Eq. (9.14) with nT = IT/ℏ𝜈 and
n0 = I0/ℏ𝜈. Thus nT and n0 can be interpreted as dimensionless intensities.

The question we ask now is:What happens when a single photon passes through a polarizer?
An answer to this question bears on the novel features of quantum mechanics that allow us to
use these concepts in several applications, such as in quantum communication.

The most important difference between a single photon and a beam of light is that we do
not have a relation of the type in Eqs. (9.13) or (9.14). A single photon cannot be described
in terms of intensity. The passage of a light beam through the polarizer is described in terms
of the fraction of intensity, a fraction is absorbed and a fraction is transmitted. However a
single photon cannot be split such that part of the photon can be absorbed and part of it
is transmitted. The photon either goes through the polarizer as a whole or it does not go
through at all.

As we show below, we should talk in the language of probability as opposed to the language
of intensity. The relevant question for the case of single photon is: What is the probability
of a photon of certain polarization passing through an appropriately oriented polarizer? The
probabilistic description is the hallmark of quantum mechanics that we address in many
contexts in the coming chapters.

However, the first question we address is how to describe a single photon of certain
polarization. Here we note that a photon in a certain polarization state is described by a vector,
the so-called state vector. The properties of this state vector are very similar to a vector in two-
dimensional space. We next discuss this close analogy.

Aswe recall fromChapter 2, two-dimensional space is described by twomutually perpendic-
ular unit vectors. Let us assume that these vectors, ̂x and ̂y are along x- and y-axes, respectively.
The normalization condition states, that ̂x and ̂y are of unit length, i.e.,

̂x · ̂x = 1, ̂y · ̂y = 1 (9.16)

and the orthogonality condition states

̂x · ̂y = ̂y · ̂x = 0. (9.17)

An arbitrary vector A (as shown in Fig. 9.7) can then be decomposed in terms of x- and
y-components as follows:

A = Ax ̂x + Ay ̂y, (9.18)

where

Ax = A cos 𝜃,Ay = A sin 𝜃. (9.19)

We also note that that the choice of the (x, y) coordinate system with unit vectors
̂x and ̂y is very subjective. We could have chosen another coordinate system (X, Y) with

unit vectors X̂ and Ŷ. The (X, Y) coordinate system is rotated by an angle 𝜙 with respect to the
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Fig. 9.7 (a) The vector A with components Ax and Ay along the x- and y-axes, respectively. (b) The same vector A in the

two coordinates systems (x,y) and (X,Y) mutually rotated by an angle 𝜙.
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Fig. 9.8 An analogy between a vector A and a state vector |𝜃⟩ for a single photon. Just as the vector can be

decomposed in terms of its x- and y-components, the state vector |𝜃⟩ can be decomposed in terms of the state vectors

|→⟩ and |↑⟩.

(x, y) coordinate system as shown in Fig. 9.7b. The vector A can then be decomposed in terms
of X- and Y-components as follows:

A = AXX̂ + AYŶ, (9.20)

where

AX = A cos (𝜃 − 𝜙) , AY = A sin (𝜃 − 𝜙) . (9.21)

The relation between the (x, y) and (X, Y) coordinate systems can be established via the
rotation angle between the two coordinate systems. For example, if the (X,Y) coordinate system
is rotated by 45∘ with respect to the (x, y) coordinate system, then

X̂ = 1
√2

( ̂x + ̂y) , Ŷ = 1
√2

(− ̂x + ̂y) , (9.22)

and it follows from Eqs. (9.18) and (9.20) that

AX =
1
√2

(Ax + Ay) ,AY =
1
√2

(Ay − Ax) . (9.23)

Based on this description of an arbitrary vector in a coordinate system, we can first describe
Malus’ law for a beam of polarized light in vector notation and then answer the question
regarding the polarization of a single photon.

First we choose a coordinate system in the xy-plane as shown in Fig. 9.8a. A beam polarized
in a direction A making an angle 𝜃 with the x-axis can be described by the field

E = Exx̂ + Ey ̂y = E cos 𝜃 x̂ + E sin 𝜃 ̂y. (9.24)
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If this beam passes through a polarizer whose polarization axis ̂n is oriented at an angle 𝜙 with
respect to the x-axis,

̂n = cos𝜙 x̂ + sin𝜙 ̂y, (9.25)

then the field component that passes through the polarizer is given by the dot product

̂n · E = (cos𝜙 x̂ + sin𝜙 ̂y) · (E cos 𝜃 x̂ + E sin 𝜃 ̂y)
= E cos𝜙 cos 𝜃 x̂ · x̂ + E cos𝜙 sin 𝜃 x̂ · ̂y + E sin𝜙 cos 𝜃 ̂y · x̂
+ E sin𝜙 sin 𝜃 ̂y · ̂y

= E cos (𝜃 − 𝜙) .

(9.26)

Here we used ̂x · ̂x = 1, ̂y · ̂y = 1, ̂x · ̂y = ̂y · ̂x = 0 and sin𝜙 sin 𝜃 + cos𝜙 cos 𝜃 = cos (𝜃 − 𝜙).
The intensity of the transmitted light is proportional to | ̂n · E|2 and is given by

IT = I0cos2 (𝜃 − 𝜙) , (9.27)

where I0 is the intensity of the incident field. This is a generalized form of Malus’ law discussed
in the previous section.

Next we consider the polarization of a single photon. The description follows the same line
as above but we first need a notation to describe the quantum state of the photon. This was
done by Paul Dirac and the notation is therefore named after him as the “Dirac notation.”

In the Dirac notation, the polarization state of the single photon along an axis making an
angle of 𝜃 with the x-axis is denoted by |𝜃⟩ (Fig. 9.8b). We designate the polarization state
along the x-axis as |→⟩ and along the y-axis by |↑⟩. An alternate representation for |→⟩ and
|↑⟩ can be given by |H⟩ and |V⟩, respectively. Here H represents the Horizontal polarization
and V represents the Vertical polarization. The polarization state |𝜃⟩ can then be written as a
linear combination or superposition of the polarization states |→⟩ and |↑⟩ as

∣𝜃 ⟩ = cos 𝜃 ∣→⟩ + sin 𝜃 ∣↑⟩. (9.28)

This equation can be compared with Eq. (9.24) where the polarization vector is decomposed
in terms of the x- and y-components. The notation |𝜃⟩ is called Dirac’s “ket” notation.

An important point! As discussed above, as the field oscillates in both positive and negative
directions, the polarization direction along (say) the+x-axis is equivalent to polarization along
the –x-axis. In general a polarization direction along an angle 𝜃 is equivalent to polarization
directions 𝜃 + 𝜋 or 𝜃 − 𝜋. Thus, for a single photon, ∣→⟩≡∣←⟩ and ∣↑⟩ ≡∣↓⟩. In general
∣𝜃 ⟩ ≡ ∣ 𝜃 ± 𝜋⟩ .

Next, we define another notation, Dirac’s “bra” notation, ⟨𝜙|. The origin of “bra” and “ket”
notations is the word “bracket”, “bra” for the left side and “ket” for the right side of a “bra c ket”,
⟨||⟩. Traditionally ⟨𝜙||𝜃⟩ is written as ⟨𝜙|𝜃⟩ and has a clear analogy with the dot product. The
states |→⟩ and |↑⟩ are normalized like the unit vectors ̂x and ̂y. So in analogy with ̂x · ̂x = 1
and ̂y · ̂y = 1, we have

⟨→|→⟩ = ⟨↑|↑⟩ = 1 (9.29)

and, similar to the orthogonality relation ̂x · ̂y = ̂y · ̂x = 0,

⟨→|↑⟩ = ⟨↑|→⟩ = 0. (9.30)
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So what is the physical meaning of the ket and bra notations?The ket notation |𝜃⟩ represents
the quantum state of the photons and the bra notation ⟨𝜙| is defined such that ⟨𝜙|𝜃⟩ represents
the projection of the |𝜃⟩ state onto ⟨𝜙|. The quantity ⟨𝜙|𝜃⟩ is called the “probability amplitude”
of the photon in state |𝜃⟩ to be found in state |𝜙⟩ and its modulus square, |⟨𝜙|𝜃⟩|2, is the
corresponding probability. This is an important definition that we use extensively in this and
later chapters.

In analogy with Eq. (9.25), a polarizer whose polarization axis is oriented at an angle 𝜙 with
respect to the x-axis, is described by

∣ 𝜙 ⟩= cos𝜙 ∣→⟩ + sin𝜙 ∣↑⟩. (9.31)

The probability amplitude for the photon in state |𝜃⟩ to pass through a polarizer in a state |𝜙⟩
is therefore given by

⟨𝜙|𝜃⟩ = (cos𝜙 ⟨→∣ + sin𝜙 ⟨↑∣) (cos 𝜃 |→⟩ + sin 𝜃 |↑⟩) (9.32)

Using the orthogonality and normalization properties of the states |→⟩ and |↑⟩, as given in
Eqs. (9.29) and (9.30), we obtain

⟨𝜙|𝜃⟩ = cos𝜙 cos 𝜃 + sin𝜙 sin 𝜃 = cos (𝜃 − 𝜙) . (9.33)

The quantum mechanical probability of the photon passing through the polarizer is obtained
by taking the modulus square of ⟨𝜙|𝜃⟩, i.e.,

P𝜃 = |⟨𝜙|𝜃⟩|2 = cos2 (𝜃 − 𝜙) . (9.34)

This is Malus’ law for a single photon.
This equation is very similar to Eq. (9.26), the only difference being that the intensity IT is

replaced by the probability P𝜃 . It is important to emphasize this difference as this corresponds
to the difference between the classical picture and the quantum picture. In the classical
picture, the light beam is described in terms of intensity. At the polarizer, part of the beam
passes through and the rest is absorbed. We can say with certainty about what fraction will
be transmitted and what fraction will be absorbed. This is not true in quantum mechanics.
In the quantum description of a single photon, either the whole photon is transmitted or it is
absorbed, but we do not have a definite prediction about what will happen. The only quantity
we know is the probability whether the photon will be transmitted or it will be absorbed.

As a special case, the probability that a photon polarized at an angle 𝜃 with respect to the x-
axis passes through a polarizer oriented in the horizontal direction (the polarization axis along
the x-axis) is given by

|⟨→|𝜃⟩|2 = cos2𝜃. (9.35)

Similarly the probability of the same photon passing through a polarizer oriented in the vertical
direction (the polarization axis along the y-axis) is

|⟨↑ |𝜃⟩|2 = sin2𝜃. (9.36)

The probability that a vertically polarized photon passes through a polarizer with its
polarization axis oriented along the x-axis is zero, i.e.,

|⟨↑ |0o⟩|2=∣⟨↑|→⟩|2 = cos290o = 0, (9.37)
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and the probability that a vertically polarized photon passes through a polarizer with its
polarization axis oriented along the y-axis is unity, i.e.,

|⟨↑ | 90o⟩|2 = |⟨↑| ↑⟩|2 = cos20o = 1. (9.38)

We have defined a polarization state |𝜃⟩ in terms of the horizontally and vertically polarized
states |→⟩ and |↑⟩ as

∣ 𝜃 ⟩ = cos 𝜃 ∣→⟩ + sin 𝜃 ∣↑⟩. (9.39)

This is just like we defined an arbitrary vector A in terms of unit vectors ̂x and ̂y as

A = A cos 𝜃 ̂x + A sin 𝜃 ̂y. (9.40)

In the vector analysis, ̂x and ̂y form the basis in which any vector A can be expanded. In the
same way we can define |→⟩ and |↑⟩ to be the basis for the polarization state such that any
arbitrary state of polarization |𝜃⟩ can be expanded in terms of these states. As discussed above,
the probability of detecting the photon in the state |→⟩ is |⟨→|𝜃⟩|2 = cos2𝜃 and the probability
of detecting the photon in the state |↑⟩ is |⟨ ↑ |𝜃⟩|2 = sin2𝜃. An important point to note is that
these outcomes depend on the orientation of the polarizer 𝜃.

Recall the amazing result of how, by an insertion of a 45∘ polarizer (C) between the
horizontal (A) and the vertical polarizer (B), light gets through the vertical polarizer that
stopped it previously (Fig. 9.5c). What is the corresponding result if, instead of a beam of
light, only a single photon is incident?We consider a single photon initially polarized along the
x-axis which is incident on a sequence of three polarizers as shown in Fig. 9.9. The state of the
incident photon is |→⟩.

After passing the first polarizer, whose polarization axis is along the x-axis, the photon is
transmitted in state |→⟩.The probability that a horizontally polarized photon |→⟩ gets through
the polarizer oriented at an angle of 45∘ is

|⟨𝜃 = 45∘|→⟩|2= ∣ ⟨↗|→⟩|2 = cos245
∘ = 1

2 . (9.41)

If the photon passes through the second polarizer, its polarization is oriented at an angle 45∘
with the horizontal.We designate such a polarization state by |↗⟩. Just as a unit vector pointing
in a direction making an angle 45∘ can be written as a superposition of equal vectors in the x-
and y-directions, a photon in the state |↗⟩ can be written as a linear combination of |↑⟩ and
|→⟩, i.e.,

∣↗⟩ = 1
√2

(|→⟩ + |↑⟩) . (9.42)

Therefore, the probability that the photon passes the final vertically oriented polarizer is

|⟨↑ | ↗⟩|2 = 1
2 . (9.43)

Here we used ⟨↑ |→⟩ = 0 and ⟨↑ |↑⟩ = 1. The probability that a photon emerging from the
vertical polarizer passes through the final horizontal polarizer in the presence of an interme-
diate 45∘ polarizer can be calculated as

∣ ⟨ ↑ | ↗⟩|2 ∣ ⟨↗ |→⟩|2 = 1
2 ·

1
2 = 1

4 . (9.44)
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|↑〉 |↑〉 |↗〉 |→〉

Fig. 9.9 A single photon with initial polarization along the y-axis passes through a sequence of three polarizers whose

polarization axes are oriented along the y-axis, making an angle 45∘ with respect to the x-axis, and along the x-axis.

This result is similar to the classical result where we considered a beam of light with incident
intensity I0 and showed that only I0/4 passes through the ACB polarization set-up of Fig. 9.5.
For a single photon, the corresponding result is that the probability of transmission is 1/4.

9.3 Input–Output Relation for a Classical Beam Splitter

In this section, we discuss the classical description of the beam splitter. In the next section,
we discuss the quantum beam splitters that are important for our analysis of some quantum
devices that we discuss in the following chapters.

A beam splitter is a piece of glass on which two light beams of equal frequencies and
amplitudes a1 and a2 are incident as shown in Fig. 9.10a. We assume that the glass plate is
lossless, i.e., it does not absorb any energy. When these two beams pass through the beam
splitter, they are reflected and transmitted, resulting in the two beams of amplitudes b1 and b2
in the output. We want to find the relation between the output amplitudes b1 and b2 and the
input amplitudes a1 and a2.

From Fig. 9.10a, we see that the amplitude b1 consists of the reflected part of a1 and the
transmitted part of a2. Similarly the amplitude b2 consists of the transmitted part of a1 and the
reflected part of a2. We can thus write the following input–output relations:

b1 = r1a1 + t2a2, (9.45)

b2 = t1a1, + r2a2, (9.46)

where r1 and r2 are the reflection coefficients and t1 and t2 are the transmission coefficients. In
general they can be complex numbers. These coefficients are not arbitrary.

For a lossless beam splitter, the input energy is equal to output energy. We recall that the
energy of a light field is proportional to the modulus square of field amplitude. The law of
conservation of energy therefore requires

|b1|
2 + |b2|

2 = |a1|
2 + |a2|

2. (9.47)

On substituting for b1 and b2 from Eqs. (9.45) and (9.46)

|b1|
2 + |b2|

2 = (t2a2 + r1a1) (t∗2a∗2 + r∗1a
∗
1) + (t1a1 + r2a2) (t∗1a∗1 + r∗2a

∗
2)

= (|t1|
2 + |r1|

2) |a1|
2 + (|t2|

2 + |r2|
2) |a2|

2

+(t1r∗2 + t∗2r1) a1a∗2 + (t∗1r2 + t2r∗1) a∗1a2.
(9.48)
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b1 b2

a1 a2

b1 b2

a1 a2

(b)(a)

π-phase shi"

Fig. 9.10 A beam splitter with input amplitudes being a1 and a2 and output amplitudes being b1 and b2 . The

relationship between the input and output amplitudes is given by Eqs. (9.45) and (9.46). The two systems are equivalent

if we choose (a)−t1 = t2 = sin 𝜃 and r1 = r2 = cos𝜃 and (b) t1 = t2 = sin 𝜃 and r1 = −r2 = cos𝜃 along with the 𝜋
phase shifter at the input a2 .

It follows that the two sides in Eq. (9.47) are equal if

|t1|
2 + |r1|

2 = |t2|
2 + |r2|

2 = 1, (9.49)
t1r∗2 + t∗2r1 = t∗1r2 + t2r∗1 = 0 (9.50)

Note that these relations between the reflection coefficients r1 and r2 and the transmission
coefficients t1 and t2 are obtained only under the condition that the beam splitter is lossless.
Any lossless beam splitter has to obey these relations. The specific choice of these coefficients
within these constraints depends on the thickness and the material of the glass plate.

A choice −t1 = t2 = sin 𝜃 and r1 = r2 = cos 𝜃, satisfying the above conditions, gives

b1 = cos 𝜃a1 + sin 𝜃a2 (9.51)
b2 = cos 𝜃a2 − sin 𝜃a1. (9.52)

Here 𝜃 is a parameter such that sin2𝜃 and cos2𝜃 are the transmissivity and reflectivity
coefficients of the beam splitter, respectively, i.e., if I is the intensity of light incident on the
beam splitter, a fraction sin2𝜃 is transmitted and a fraction cos2𝜃 is reflected.

This is the classical picture.
For a usual beam splitter, t1 = t2 = sin 𝜃 and r1 = − r2 = cos 𝜃, which gives slightly dif-

ferent relations than Eqs. (9.51) and (9.52). We however follow the input–output relations in
Eqs. (9.51) and (9.52) in later chapters as they give simple transformation properties when
discussing more complicated optical set-ups. The transformations in Eqs. (9.51) and (9.52) can
be realized in the laboratory by including a 𝜋 phase shifter at the input a2 of a beam splitter
with t1 = t2 = sin 𝜃 and r1 = −r2 = cos 𝜃, as shown in Fig. 9.10b.

9.4 Beam Splitter for a Single-photon State

Next we address the question: What happens when there is only single photon in the input of
a beam splitter? More precisely, what are the output states for the photon, when the input state
at one of the ports is a single photon state |1⟩ and the other port has zero photon state |0⟩. Here
we have to be careful as the output states will be different in the two situations whether port 1
or port 2 has the photon state |1⟩. We represent port 1 as the port on the left-hand side and port
2 is the port on the right-hand side as in Fig. 9.10. We represent the total input state |10⟩ as the
state when the photon is incident from the left side (Fig. 9.11a) and |01⟩ when the photon is
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|1〉 |0〉|0〉
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(b)
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Fig. 9.11 The input–output relation when the input photon is incident from the left-hand side and the right-hand side.

incident from the right side (Fig. 9.11b). As there is only one photon in the input and it cannot
be split, there are two possibilities in the output: either it is reflected or it is transmitted. As
before, the reflection coefficient is cos 𝜃 and the transmission coefficient is sin 𝜃. In analogy
with the classical input–output relations (9.51) and (9.52), the following are the input–output
relations for a single photon input:

∣10 ⟩→ cos 𝜃 ∣10⟩ + sin 𝜃 ∣01⟩, (9.53)
∣01 ⟩→ cos 𝜃 ∣01⟩ − sin 𝜃 ∣10⟩. (9.54)

The probability that the photon is reflected is equal to R = cos2𝜃 and the probability that it is
transmitted is equal to T = sin2𝜃.

9.5 Polarization Beam Splitter and Pockel Cell

In this section, we discuss how we can measure the polarization state. A polarizer is an
inconvenient device as the photon is either transmitted or it is absorbed. What is more
desirable is a device that is able to send one polarization state (say |→⟩) along one way and
the other |↑⟩ along a different path. This is done in a polarization beam splitter.

Let us consider a photon that is prepared in the polarization state

∣𝜃 ⟩ = cos 𝜃 ∣ →⟩ + sin 𝜃 ∣ ↑⟩. (9.55)

When such a photon is incident on a polarization beam splitter, as shown in Fig. 9.12,
it can either go in the forward direction in the horizontally polarized state |→⟩ or in the
downward direction in the vertically polarized state |↑⟩. We can then find the state of the
photon depending on whether we get a click at the detector D1 or at the detector D2. A click at
D1 means that the photon is in the state |→⟩ and a click at D2 means that the photon is in the
state |↑⟩. The probability of the click at D1 is |⟨→ |𝜃⟩|2 = cos2𝜃 and the probability of click at
D2 is |⟨↑ |𝜃⟩|2 = sin2𝜃.

Unlike a polarizer, the polarizing beam splitter cannot be easily rotated to measure the
polarization state along some other axis, say along an axis rotated by an angle 𝛼 with the
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source

D2

D1

PBS

|↑〉

|→〉θ

Fig. 9.12 If a photon polarized in a direction making an angle 𝜃 with the polarization axis is incident on a polarization

beam splitter (PBS), it can pass through as a photon in state |→⟩ in the forward direction or get reflected in state |↑⟩ in
the downward direction.

cos α |→〉 + sin α |↑〉

PC PC

cos " |↑〉 − sin α |→〉|→〉 |↑〉

(b)(a)
αα

Fig. 9.13 A Pockel cell (PC) rotates the polarization of an incoming photon by an angle 𝛼. (a) The state |→⟩ is
transformed to state |𝛼⟩ and (b) the state |↑⟩ is transformed to state ∣ 𝛼 + 𝜋/2⟩.

horizontal. For that, we need to insert a polarization rotator before the polarizing beam splitter.
This device should be able to rotate the state of the polarization of an incoming photon by an
angle 𝛼 before passing it through the polarization beam splitter. One such device is the Pockel
cell. It is an electro-optic device which rotates the polarization of the incident light passing
through it in proportion to the applied voltage. As an example, by applying an appropriate
voltage, the Pockel cell can rotate the polarization of a photon by an angle 𝛼 with the horizontal
as shown in Fig. 9.13. As a result the horizontally and vertically polarized photons in states |→⟩
and |↑⟩, respectively, undergo the following transformations:

∣→⟩→∣ +𝛼⟩ ≡ ∣ 𝛼 ⟩= cos𝛼 ∣→⟩ + sin𝛼 ∣↑⟩, (9.56)
∣↑⟩→∣ −𝛼⟩ ≡ ∣ 𝛼 + 𝜋/2 ⟩ = cos𝛼 ∣↑⟩ − sin𝛼 ∣→⟩. (9.57)

We note that, just like the pair of states {|→⟩, | ↑⟩}, the states {| + 𝛼 ⟩, | − 𝛼⟩} are normalized
and are mutually orthogonal, i.e.,

⟨+𝛼 | + 𝛼⟩ = ⟨−𝛼 | − 𝛼⟩ = 1, (9.58)
⟨+𝛼 | − 𝛼⟩ = ⟨−𝛼 | + 𝛼⟩ = 0. (9.59)

A polarization beam splitter can determine whether the polarization state of the incoming
photon is |→⟩ or |↑⟩. A question of interest is: How can we determine whether the polarization
of the incoming photon is along an angle 𝛼 or along 𝛼 + 𝜋/2 with the horizontal? The
corresponding states are ∣ +𝛼 ⟩≡ ∣𝛼⟩ and ∣ −𝛼 ⟩≡ ∣ 𝛼 + 𝜋/2⟩. A way of doing this is to first
rotate the polarization angle of the incoming photon by an angle −𝛼. This should transform
the state |𝛼⟩ to |→⟩ and the state ∣ 𝛼 + 𝜋/2⟩ to |↑⟩. This can be done by passing the photon
through a Pockel cell that rotates the polarization by an angle −𝛼 with the horizontal. Next
the photon passes through a polarization beam splitter as shown in Fig 9.14. If the detector D1
clicks, the polarization of the incoming photon is along an angle 𝛼 with the horizontal (in state
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D1

D2
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{|α〉 , |α + π/2〉}
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|→〉
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Fig. 9.14 A Pockel cell that rotates the polarization by angle−𝛼 followed by a beam splitter can determine the

polarization of the incoming photon. A click at D1 implies that the polarization of the incoming photon is along an

angle 𝛼 with the horizontal and a click at D2 means that the state of the incoming photon is along an angle 𝛼 +𝜋/2
with the horizontal.

|𝛼⟩) and a click at the detector D2 means that the state of the incoming photon is along an angle
𝛼 + 𝜋/2 with the horizontal (in state ∣ 𝛼 + 𝜋/2⟩).

As an example, if wewant to findwhether the photon is in the state ∣ 𝜃 = 45∘ ⟩ ≡ ∣↗⟩ or ∣ 𝜃 =
135∘ ⟩ ≡ ∣↖⟩, we consider the set-up in Fig. 9.14 with 𝛼 = 45∘. A rotation of the polarization
by an angle −45∘ transforms the state ∣ 𝜃 = 45∘ ⟩ ≡ ∣↗⟩ to the horizontally polarized state
|→⟩ and the state ∣ 𝜃 = 135∘ ⟩ ≡ ∣↖⟩ to the vertically polarized state |↑⟩. Therefore a click
at D1 implies that the incoming photon is in the state |↗⟩ and a click at D2 implies that the
incoming photon is in the state |↖⟩.

Problems

9.1 A beam of horizontally polarized light of intensity I impinges on a set-up consisting of N
polarizers, where N is very large. The first polarizer is oriented at an angle 𝜖 = 𝜋/2N to the
horizontal; the next one is at an angle 𝜖 from the previous, and so on until the final one,
which is exactly vertical. What is the intensity of light at the output of the last polarizer?
What is its polarization?

9.2 Consider an unpolarized photon passes through a series of five polarizers oriented at 0∘,
22.5∘, 45∘, 67.5∘, and 90∘ with respect to the horizontal axis. Find the probability that the
photon will pass through. What is the probability of transmission if we remove the second
and the fourth polarizers oriented at 22.5∘ and 67.5∘, respectively? What happens if we
remove the third polarizer oriented at 45∘ as well?

9.3 Consider a photon in the state

∣ 𝜃 ⟩ = sin 𝜃 ∣ ↑⟩ + cos 𝜃 ∣→⟩,

which, after passing through a Pockel cell that rotates the polarization by an angle 𝛼 with
respect to the horizontal, passes through a polarization beam splitter (PBS) as shown in
Fig. 9.15. Find the probability of clicks at detectors D1 and D2.
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|θ〉
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D1

D2
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|→〉

|↑〉$

Fig. 9.15 Optical set-up corresponding to problem 9.3.

9.4 Consider the experimental set-up in Fig. 9.16. For an initial state

∣ 𝜃 ⟩ = sin 𝜃 ∣ ↑⟩ + cos 𝜃 ∣→⟩,

find the probability of clicks at detectors D1, D2, and D3 if the Pockel cells PC1 and PC2
rotate the polarizations by angles 𝛼 and 𝛽, respectively.

|θ〉

PC1

D1

D2 D3

PBS PBSPC2

! "|↑〉 |↑〉

|→〉 |→〉

Fig. 9.16 Optical set-up corresponding to problem 9.4.
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10 Quantum Superposition and Entanglement

In Chapter 8, we discussed the novel features of quantum interference. An electron can exhibit
an interference pattern in a Young’s double-slit type experimental set-up. An explanation of
this experiment brought out the need to describe an electron in terms of a wavefunction which
can be in a superposition of states of being at both slit 1 and slit 2.

In this chapter, we introduce the notion of quantum superposition of states in a formal
way through the example of a polarized photon. This, like the double-slit experiment with
electrons, brings out the novel feature that the state of the system depends on how we set up
the experiment. The orientation of the polarizer determines the state of the polarization. We
also discuss some paradoxical consequences of quantum superposition, namely, a microscopic
superposition can be transformed into a superposition of macroscopic objects: A cat can be
simultaneously dead and alive. This is the essence of the famous Schrödinger’s cat paradox.

This descriptionmotivates another important consequence of quantummechanical descrip-
tion of the multiple objects, namely, their ability to exist in an entangled state. The properties
of two objects, like two photons, can remain entangled no matter how far away they are from
each other, and thus have the ability to influence each other. Quantum entanglement was first
introduced by Schrödinger when he discussed some paradoxical consequences of quantum
mechanics. Quantum entanglement saw its revival in recent years when it was shown to be
a wonderful resource for quantum communication and quantum computing, topics that we
discuss later in this book.

10.1 Coherent Superposition of States

Conventionally, if we have a system that can exist in two possible states then it is found
either in one state or another but never simultaneously in both states. For example, a door
can be either open or it can be shut but cannot be in a state where it is both open and shut.
Similarly a ball can be inside a box or outside the box but never be simultaneously in “inside”
and “outside” states. A quantum system, on the other hand, can be in a “coherent superposition
of states.”

We have seen that a photon polarized at an arbitrary angle 𝜃 with respect to the horizontal
can be written as a coherent superposition of states with vertical and horizontal polarizations
(Fig. 10.1):

|𝜃⟩ = cos 𝜃 |→⟩ + sin 𝜃 |↑⟩, (10.1)

i.e., the photon simultaneously exists in both horizontal and vertical states of polarization.This
continues to be true as long as we do not disturb the system or try to make a measurement.

Quantum Mechanics for Beginners: With Applications to Quantum Communication and Quantum Computing. M. Suhail Zubairy.
© M. Suhail Zubairy 2020. Published in 2020 by Oxford University Press. DOI: 10.1093/oso/9780198854227.001.0001
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|θ〉
|↑〉

θ
|→〉

Fig. 10.1 A photon in the state |𝜃⟩ is in a coherent superposition of |→⟩ and |↑⟩ states.

The situation changes when we make a measurement and try to “see” the state of polarization
of the photon. What happens if we try to measure the state of polarization?

First we note that the measurement process involves passing the photon through a Pockel
cell and a polarizing beam splitter as discussed in Section 9.5. The set-up, as depicted in Fig.
9.14, can be used to find the polarization state in an arbitrary direction. We can, for example,
determine whether the polarization state of the photon is |𝛼⟩ or ∣𝛼 + 𝜋/2⟩ by rotating the
polarization of an incoming photon by an angle –𝛼 with the horizontal and then passing it
through a polarizing beam splitter. If the photon is found in the state |→⟩, we can conclude
that the state of the incoming photon was |𝛼⟩. However, if the photon is found in the state |↑⟩,
we conclude that the state of the incoming photon was ∣𝛼 + 𝜋/2⟩. Thus the set-up in Fig. 9.14
corresponds to effectively rotating the polarization beam splitter by an angle𝛼. In the following,
when we talk about a polarization beam splitter rotated by an angle 𝛼, we have this set-up in
mind.

It turns out that the outcome of measuring the photon in state (10.1) depends on the
orientation of the polarization beam splitter. If the polarization measurement apparatus is set
up with 𝛼 = 0, the state |𝜃⟩ “collapses” and the outcome is that we get either a horizontally
polarized photon |→⟩ or a vertically polarized photon |↑⟩. The superposition is destroyed in
the process of measurement.

The measurement process is mathematically represented by applying the “bra” operator ⟨→|
onto the state |𝜃⟩ and the result is

⟨→| 𝜃⟩ = cos 𝜃. (10.2)

The probability that the outcome of the measurement is going to be |→⟩ is given by

P∣→⟩ = |⟨→|𝜃⟩|2 = cos2𝜃. (10.3)

In a similar manner, the probability of finding the photon in the state with vertical polarization
|↑⟩ is

P∣↑⟩ = |⟨↑ |𝜃⟩|2 = sin2𝜃. (10.4)

Therefore, what we see is that a photon in the polarization state |𝜃⟩, when measured, can
be found either in state |→⟩ with probability P∣→⟩ = cos2𝜃 or in state |↑⟩ with probability
P∣↑⟩ = sin2𝜃. The coherent superposition (10.1) persists only if we do not make any mea-
surement. As soon as we make a measurement, the coherent superposition (ability to be
simultaneously in both |→⟩ and |↑⟩ states) disappears.
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At first sight this result does not appear surprising or mysterious. After all we seem to
encounter similar situations all the time. If awindow remains open 40%of the time and remains
closed for the other 60% of the time then before looking at the window we can only say that
there is a 40% probability that it is closed and 60% probability that it is open. However when we
look at the window, it is found either open or closed—never simultaneously open and closed.
So what is so special about the quantum “coherent superposition of states”?

Just as we can represent a vector A in any mutually perpendicular basis as discussed in
Section 2.2, we can express the state of polarization in any other basis set of orthogonal states.
For example, a vertically polarized photonmay be written as a linear superposition of any other
orthogonal basis states, for example |45∘⟩ and |135∘⟩ which we designate |↗⟩ and |↖⟩, respec-
tively. The polarization states |↗⟩ and |↖⟩, like |→⟩ and |↑⟩, form another set of basis states.

The two basis states {|→⟩, |↑⟩} and {|↗⟩, |↖⟩} are related to each other via rotation relations
similar to those between the vector coordinate systems (x, y) and (X,Y) discussed in Section 8.2.

∣↗⟩≡∣45∘⟩ = 1
√2

(|↑⟩ + |→⟩) , (10.5)

∣↖⟩≡∣135∘⟩ = 1
√2

(|↑⟩ − |→⟩) . (10.6)

These relations can be verified fromFig. 10.2.We can invert these polarization states and obtain

∣↑⟩ = 1
√2

(|↗⟩ + |↖⟩) , (10.7)

∣→⟩ = 1
√2

(|↗⟩ − |↖⟩) . (10.8)

We can verify

⟨↗|↗⟩ = ⟨↖|↖⟩ = 1, (10.9)
⟨↗|↖⟩ = ⟨↖|↗⟩ = 0. (10.10)

On substituting for |→⟩ and |↑⟩ from Eqs, (10.7) and (10.8), the state

∣𝜃⟩ = cos 𝜃 ∣→⟩ + sin 𝜃 ∣↑⟩ (10.11)

can be rewritten in the new basis as

∣𝜃⟩ = cos𝜙 ∣↗⟩ + sin𝜙 ∣↖⟩ (10.12)

|↑〉

|↗〉
|↖〉

135°

45° |→〉

Fig. 10.2 The two set of basis states: {|→⟩, |↑⟩} and {|↗⟩, |↖⟩}.
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|↑〉
|↑〉

|→〉

1

2√
–

|↗〉|↖〉

|↗〉

(b)(a)

1

2√
–

1

2√
–

1

2√
–

Fig. 10.3 (a) A photon in state |↑⟩ can be looked upon as a superposition of |↗⟩ and |↖⟩ states; (b) A photon in state

|↗⟩ can be looked upon as a superposition of |→⟩ and |↑⟩ states.

with

cos𝜙 = 1
√2

(sin 𝜃 + cos 𝜃) , sin𝜙 = 1
√2

(sin 𝜃 − cos 𝜃) . (10.13)

Thus we obtain the same polarization state |𝜃⟩ with different amplitudes (cos 𝜙 and sin 𝜙
instead of cos 𝜃 and sin 𝜃) in the new basis. If we measure the polarization of the photon
in the {|→⟩, |↑⟩} basis, the outcome will be |→⟩ or |↑⟩ with probabilities cos2𝜃 and sin2𝜃,
respectively. However if we measure the polarization of the same photon in the {|↗⟩, |↖⟩}
basis, the outcome will be |↗⟩ or |↖⟩with different probabilities cos2𝜙 and sin2𝜙, respectively.
Thus the outcome depends on the setting of the measuring apparatus, the orientation of
the polarizing beam splitter in this example. The dependence of the experimental outcome
of the same object on the orientation of the apparatus is a very important difference between
the usual classical description and the quantum description.

This raises an important question: Can we objectively define the state of the polarization
of a single photon? This question lies at the heart of the conceptual foundations of quantum
mechanics as we see later. In the light of the above discussion, a question such as “What
is the state of polarization of the given photon?” is ambiguous and incomplete. A well-
defined question would include the description of the experimental apparatus (in this case, the
orientation of the polarization beam splitter as the measurement device) as well. So a complete
question should be: “What is the state of polarization of the given photon if it passes through
a polarization beam splitter oriented in the 𝜃 direction?” We can further illustrate the role
of measurement in defining the physical property such as the polarization by the following
discussion.

Consider a single photon with polarization |↑⟩. What happens when this photon passes
through a polarization beam splitter oriented at 45∘? The state of the photon |↑⟩ can be
decomposed in the {|↗⟩, |↖⟩} basis of the polarization beam splitter which is the measuring
device via (see Fig. 10.3a)

∣↑⟩ = 1
√2

(|↗⟩ + |↖⟩) .

Experimentally, the system will be found in |↗⟩ with the probability |⟨↗|↑⟩|2 = 1/2 or |↖⟩
with the probability |⟨↖|↑⟩|2 = 1/2. Let us assume that the photon is found in the polarization
state |↗⟩, If, after this measurement, we measure the polarization again in the original {|→⟩,
|↑⟩} basis, our classical intuition tells us that the photon should be found in the state |↑⟩
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with unit probability, that is with certainty. However this is not what happens. To see this
we consider the passage of the photon again through a polarization beam splitter that can
measure the polarization state in the {|→⟩, |↑⟩} basis. The polarization state |↗⟩ is decomposed
in the {|→⟩, |↑⟩} basis of the polarizer via (see Fig. 10.3b)

∣↗⟩ = 1
√2

(|↑⟩ + |→⟩)

The polarization components |↑⟩ and |→⟩ are now equally probable, i.e., if we measure the
polarization again in the original {|→⟩, |↑⟩} basis then the outcome will be |↑⟩ or |→⟩ with
equal probability. Thus there is a 50% chance that the photon will be found in the horizontally
polarized state |→⟩. This is a counterintuitive result that could not be expected in classical
mechanics.

This result motivates us to ask a related question: Can we associate two polarization
components |↑⟩ and |↗⟩ for the same photon? The answer is an emphatic No!

The above analysis provides a beautiful and simple example of Bohr’s principle of comple-
mentarity, namely, two observables are complementary if precise knowledge of one of them
implies that all possible outcomes of measuring the other one are equally probable. In the
above example, if we measure the polarization in the {|→⟩, |↑⟩} basis and the outcome is |↑⟩,
then subsequently the outcome in the {|↗⟩, |↖⟩} basis becomes completely uncertain, with
50% probability each for the outcomes |↗⟩ and |↖⟩. Measurement disturbs the system. This
result provides the foundation for some of the most dramatic successes in the field of secure
communication as we discuss in later chapters.

10.2 Quantum Entanglement and the Bell Basis

As we have seen, the ability of a quantum system to exist in a coherent superposition of states
is a novel feature of quantum mechanics. Another interesting aspect of quantum systems is
that they can exist in an entangled state. Quantum entanglement is not only a counterintuitive
effect but, as we see in our discussions on quantum computing in Chapters 15 and 16, it is a
remarkable resource.

Let us consider a system of two independent objects. In principle, they may be so far apart
that they cannot interact with each other in any way. If this happens then, according to classical
mechanics, both objects are independent of each other and their properties are not influenced
by what we do to the other object. For example, say we have two balls, one of them red and the
other blue. Let them be very far away from each other. No matter what we do to the ball in our
possession (paint it, crush it, throw it …) the properties of the ball far away from us will not be
affected in any way. This behavior can be seen in all classical systems.

Quantum mechanical systems can remarkably demonstrate a dramatically different behav-
ior. We illustrate it with a simple example. Let us consider two photons A and B. Suppose we
prepare them in the quantum state

∣𝜓AB⟩ =
1
√2

(|→A⟩|↑B⟩ + |↑A⟩|→B⟩) . (10.14)
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Let these photons propagate long distances from each other such that they cannot interact
with each other. Let the photon A stay with Alice and the photon B be far away with Bob. It is
clear that if Alice measures her photon, there are two possibilities: If Alice’s photon is found in
state |→A⟩ then Bob’s photon is definitely found in state |↑B⟩ and if Alice’s photon is found in
state |↑A⟩ then Bob’s photon is found in state |→B⟩ with certainty.

There is nothing remarkable about this result. We could say the same thing about our two-
ball example: If Alice finds the ball in her possession to be red then the ball in Bob’s possession
is blue and vice versa.

However the situation becomes different if Alice decides to measure her photon in the
{|↗⟩, |↖⟩} basis by passing the photon through a polarizer oriented at 45∘ with respect to
the horizontal (Fig. 10.1). According to the transformation Eqs. (10.7) and (10.8),

∣↑⟩ = 1
√2

(|↗⟩ + |↖⟩) ,

∣→⟩ = 1
√2

(|↗⟩ − |↖⟩) ,

and the two-photon state becomes

∣𝜓AB⟩ =
1
2 [|↗A⟩ (|↑B⟩ + |→B⟩) + |↖A⟩ (|→B⟩ − |↑B⟩)] . (10.15)

Thus a measurement outcome of Alice’s photon in the state |↗A⟩ “collapses” Bob’s photon in
the state

⟨↗A|𝜓AB⟩ =
1
√2

(|↑B⟩ + |→B⟩) =∣↗B⟩. (10.16)

However if Alice’s photon is found in the state |↖A⟩, then the state of Bob’s photon reduces to

⟨↖A|𝜓AB⟩ =
1
√2

(|→B⟩ − |↑B⟩) = − ∣↖B⟩. (10.17)

Thus the quantum state of Bob’s photon depends on what Alice decides to do even when
there is no way that Alice’s and Bob’s photons can interact with each other. The same is also
true for Alice’s photon—the state of the photon in Alice’s possession is influenced by what Bob
does to his photon. The two photons are “entangled” even if they are far apart. There is no
corresponding result for classical objects.

This remarkable result is due to the fact that the two photons were initially created in a
quantum state (10.14) which is not separable—instead it is entangled. We can now formally
define the “separable” and the “quantum entangled” states.

The state of the AB system is separable if the total state vector of the AB system |𝜓AB⟩ can be
factorized into separate states for the A system and B system, i.e.,

∣𝜓AB ⟩=∣𝜓A⟩ ∣𝜓B⟩. (10.18)

TheAB system is entangled if such a separation is not possible. i.e., |𝜓AB⟩ cannot bewritten as
a product of |𝜓A⟩ and |𝜓B⟩. We thus define a quantum entangled state as the state that satisfies
the condition:

∣𝜓AB ⟩≠∣𝜓A⟩ ∣𝜓B⟩. (10.19)
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We illustrate these concepts with some examples. As a first example, we note that the state

∣𝜓AB⟩ =
1
√2

(|↑A⟩|↑B⟩ + |↑A⟩|→B⟩) (10.20)

can be written as a product of individual states for photons A and B. We can identify the states
of the individual photons to be

∣𝜓A =∣↑A⟩ and ∣𝜓B⟩ =
1
√2

(|↑B⟩ + |→B⟩) .

We say the states of the two photons are separable.
Next we consider the following state of the two photons:

∣𝜓AB⟩ =
1
√2

(|→A⟩|↑B⟩ + |↑A⟩|→B⟩) . (10.21)

This state of the AB system cannot be written as a product of two independent states. This state
is therefore an example of an entangled state. We can prove the entangled behavior of the state
(10.21) as follows:

Let us suppose that |𝜓AB⟩ is separable so that

∣𝜓AB ⟩=∣𝜓A⟩ ∣𝜓B⟩. (10.22)

The most general superposition states of A and B photons are

∣𝜓A ⟩= c1 ∣↑A⟩ + c2 ∣→A ⟩ and ∣𝜓B⟩ = d1 ∣↑B ⟩+d2 ∣→B⟩ , (10.23)

where c1, c2, d1, and d2 are complex numbers that satisfy the conditions

|c1|
2 + |c2|

2 = 1, (10.24)

|d1|
2 + |d2|

2 = 1. (10.25)

Then if the state |𝜓AB⟩ is separable,
1
√2

(|→A⟩|↑B⟩ + |↑A⟩|→B⟩) = (c1|↑A⟩ + c2|→A⟩ ) (d1|↑B⟩ + d2|→B⟩) . (10.26)

This equality is satisfied if

c1d2 = c2d1 =
1
√2

and c1d1 = c2d2 = 0. (10.27)

But this is impossible. No four complex numbers c1, c2, d1, and d2 can satisfy the conditions
(10.27) simultaneously. Therefore our assumption that ∣𝜓AB ⟩=∣𝜓A⟩ ∣𝜓B⟩ is wrong. The state
|𝜓AB⟩ is therefore an entangled state.

In general, for a system consisting of two objects 1 and 2, that can have two possible states
|0⟩ and |1⟩, there are four possible states: both are in |0⟩ state, first is in |0⟩ state and the
second in |1⟩ state, first in |1⟩ state and the second in |0⟩ state, and both are in |1⟩ states. These
states

∣01, 02 ⟩, ∣01, 12⟩ , ∣11, 02 ⟩, ∣11, 12⟩ (10.28)
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form the basis set of states for two-particle systems just as |0⟩ and |1⟩ formed the basis
set of states for a single particle system. For two particles, the most general state can be
written as

∣𝜓12⟩= c00 ∣01, 02⟩ + c01 ∣01, 12 ⟩ + c10 ∣11, 02⟩ + c11 ∣11, 12⟩, (10.29)

where c00, c01, c10, and c11 are complex numbers that satisfy the condition

|c00|
2 + |c01|

2 + |c10|
2 + |c11|

2 = 1. (10.30)

The physical meaning of the coefficients c00, c01, c10, and c11 can be understood as follows.
The joint probability P(1, 2) of the two-photon system being in (say) state |01, 02⟩ is

P (01, 02) = ∣⟨01, 02 ∣𝜓12⟩ ∣
2 = |c00|

2. (10.31)

Similarly,

P (01, 12) = ∣⟨01, 12 ∣𝜓12⟩ ∣
2 = |c01|

2, (10.32)

P (11, 02) = ∣⟨11, 02 ∣𝜓12⟩ ∣
2 = |c10|

2, (10.33)

P (11, 12) = ∣⟨11, 1 ∣𝜓12⟩ ∣
2 = |c11|

2. (10.34)

We can also determine the probability of finding the state of a single particle by using the
procedure discussed in Section 2.4. As an example, the probability of finding the first photon
in state |0⟩ is obtained by summing the probabilities that the first photon is in the state |01⟩ and
the second photon is in state |02⟩ as well as the first photon is in the state |01⟩ but the second
photon is in state |12⟩, i.e.,

P (01) = P (01, 02) + P (01, 12) = |c00|
2 + |c01|

2. (10.35)

Similarly,

P (11) = P (11, 02) + P (11, 12) = |c10|
2 + |c11|

2, (10.36)

P (02) = P (01, 02) + P (11, 02) = |c00|
2 + |c10|

2, (10.37)

P (12) = P (01, 12) + P (11, 12) = |c01|
2 + |c11|

2. (10.38)

Next we ask the question: What is the condition under which the general state (10.29) is an
entangled state? For this purpose we define the quantity

C = 2 ∣c00c11 − c01c10 ∣ . (10.39)

It turns out that 0 ≤ C ≤ 1. The state (10.29) is entangled if and only if C > 0. The quantity C
is called concurrence and is a measure of entanglement. A two-particle state is unentangled or
separable if C = 0 and is maximally entangled if C = 1.

The following states, called Bell basis states (or simply Bell states), are among the most
entangled states of the two particles with C = 1:
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∣B00 (1, 2)⟩ =
1
√2

(|01, 02⟩ + |11, 12⟩) , (10.40)

∣B01 (1, 2)⟩ =
1
√2

(|01, 12⟩ + |11, 02⟩) , (10.41)

∣B10 (1, 2)⟩ =
1
√2

(|01, 02⟩ − |11, 12⟩) , (10.42)

∣B11 (1, 2)⟩ =
1
√2

(|01, 12⟩ − |11, 02⟩) . (10.43)

These states are all mutually orthogonal. For example, ⟨B01|B00⟩ = ⟨B01|B10⟩ = ⟨B01|B11⟩ =
⟨B11|B00⟩ = 0. A significance of the Bell basis states is that we can write a general entangled
state (10.29) as a linear superposition of Bell states.

10.3 Schrödinger’s Cat Paradox

Erwin Schrödinger was one of the inventors of quantum mechanics. However, he always
felt uncomfortable with quantum mechanics and came up with paradoxical consequences.
Schrödinger’s cat paradox (1935) is one such example. Schrödinger’s cat experiment is an
example of a gedanken experiment, i.e., we do not actually conduct the experiment, we use
only our imagination and reasoning instead.

What Schrödinger was concerned with was the notion of the coherent superposition of
states where, as we have seen above, the system can be simultaneously in two quantum states.
However when we measure, we find the system in one state or another. Schrödinger argued
that if we extend the ideas that are valid for microscopic objects such as an electron, a photon,
or an atom to the macroscopic world, it may lead to absolutely amazing consequences. One
such consequence is a cat that can simultaneously be in a state of being alive and a state of
being dead. Since we do not encounter a cat both alive and dead, there must be something
wrong about quantum mechanical interpretation.

alive cat

radioactive

matter

dead cat
poison

Geiger

counter

Fig. 10.4 Schrödinger’s gedanken experiment: A radioactive atom decays and the radiated particle is detected by a

Geiger counter that releases a hammer hitting a vial of poison, causing the cat to die. So the state of the cat (dead or

alive) depends on the state of the radioactive atom (decayed or not decayed).
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In Schrödinger’s gedanken experiment, a cat is placed inside a steel box (Fig. 10.4). The
box also contains a radioactive atom, a Geiger counter, a hammer, and a vial of poison. The
radioactive atom can decay in the process by which its unstable atomic nucleus loses energy by
emitting massive alpha and beta particles and massless gamma ray photons. Radioactive decay
is a randomprocess at the level of single atoms. According to quantum theory it is impossible to
predict when a particular radioactive atom will decay. A Geiger counter can detect the emitted
particles. In Schrödinger’s set-up, when the radioactive substance decays, the Geiger counter
detects it and triggers the hammer to release the poison, which subsequently kills the cat. Thus
we have two possibilities: the radioactive decay does not take place and the cat is alive OR the
radioactive decay does take place and the cat is dead. We thus have the microscopic state of the
radioactive atom and the cat:

∣𝜓AC⟩ = ca ∣no decay⟩ ∣Alive cat⟩ + cb ∣decay⟩ ∣Dead cat⟩. (10.44)

Here the coefficients ca and cb are the amplitudes such that |ca|
2 and |cb|

2 are the probabilities
that the atom has not decayed and cat is alive or that the atom has decayed and the cat is dead,
respectively. Equation (10.44) corresponds to an entangled state between the state of the atom
and the state of the cat.

A coherent “superposition” of the cat states of the form

∣𝜓C ⟩ = ca ∣Alive cat⟩ + cb ∣Dead cat⟩ (10.45)

can be obtained first by an operation that takes the atomic state |decay⟩ to the state
(|no decay⟩ + |decay⟩) /√2 and the state |no decay⟩ to the state (|no decay⟩ − |decay⟩) /√2
and then making a measurement on the radioactive atom. The atom, if found in the state
|no decay⟩, would lead to the cat in the superposition state (10.45). This is a paradoxical
situation, as in real life, we do not see a cat that is simultaneously alive and dead.

Until the box is opened, an observer does not know whether the cat is alive or dead. The
cat’s fate is intimately tied to the atomic state. As soon as the box is opened we find that
the cat is dead or alive but not in a “superposition” state—the cat is alive or is dead but
not both.

Here we present the cat paradox in Schrödinger’s own words:

One can even set up quite ridiculous cases. A cat is penned up in a steel chamber, along with
the following device (which must be secured against direct interference by the cat): in a Geiger
counter, there is a tiny bit of radioactive substance, so small, that perhaps in the course of the
hour one of the atoms decays, but also, with equal probability, perhaps none; if it happens, the
counter tube discharges and through a relay releases a hammer that shatters a small flask of
hydrocyanic acid. If one has left this entire system to itself for an hour, one would say that the
cat still lives if meanwhile no atom has decayed. The first atomic decay would have poisoned it.
The psi-function of the entire system would express this by having in it the living and dead cat
(pardon the expression) mixed or smeared out in equal parts……It is typical of these cases that an
indeterminacy originally restricted to the atomic domain becomes transformed into macroscopic
indeterminacy, which can then be resolved by direct observation. That prevents us from so naively
accepting as valid a “blurredmodel” for representing reality. In itself, it would not embody anything
unclear or contradictory. There is a difference between a shaky or out-of-focus photograph and a
snapshot of clouds and fog banks.
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An interesting and revealing comment is by Einstein in his letter to Schrödinger, essentially
patting him on the back, for coming up with an elegant argument regarding “reality”1:

You are the only contemporary physicist, besides Laue, who sees that one cannot get around the
assumption of reality, if only one is honest. Most of them simply do not see what sort of risky
game they are playing with reality—reality as something independent of what is experimentally
established. Their interpretation is, however, refuted most elegantly by your system of radioactive
atom + amplifier + charge of gun powder + cat in a box, in which the 𝜓-function of the system
contains both the cat alive and blown to bits. Nobody really doubts that the presence or absence of
the cat is something independent of the act of observation.

We discuss Einstein’s concept of reality and his own criticism of quantum mechanics in detail
in Chapter 12.

10.4 Quantum Teleportation

Teleportation is a science fiction concept that was popularized by the 1960s TV program “Star
Trek.” The phrase “Beam me up, Scotty!!” used by Captain Kirk to direct his Chief Engineer
Scott when he wanted to be transported from a faraway planet to the Starship Enterprise,
remains one of the most famous phrases of television programming. Teleportation was used as
a means of transport—Captain Kirk would disappear on the planet and reappear on a platform
inside the Starship.

Can we do teleportation in real life? If teleportation becomes possible, there will be no need
for cars or air planes—we could be teleported from one place to another. So far, teleportation
of human beings is only science fiction—it would take an infinite amount of energy to teleport
even a single atom. However, teleporting a two-state quantum system has become a reality,
thanks to the concept of quantum entanglement. Quantum teleportation of a two-state system
fromone location to another, first proposed byC.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa,
A. Peres, and W. K. Wootters, is one of the most beautiful examples of quantum entanglement.

The problem of teleportation can be described as follows. Suppose Alice has an object with
an unknown quantum state

∣ 𝜓(A)⟩ = c0 ∣0A⟩ + c1 ∣1A⟩ (10.46)

at location A. By unknown we mean that we do not know the coefficients c0 and c1. The binary
states |0⟩ and |1⟩ can be the states of any two-state system, such as two atomic levels, two
states of polarization, etc. There is a two-state system located at C at Bob’s end. Just like in
the television serial Star Trek, we would like to destroy the unknown quantum state (10.45) of
the system at Alice’s end and create the same quantum state on the system at Bob’s end.

To be more specific, suppose we have an atom in an unknown coherent superposition of the
ground state |g⟩ and an excited state |e⟩ of the form at Alice’s end

∣𝜓(A)⟩ = cg ∣g⟩ + ce ∣e⟩ (10.47a)

1 Einstein’s comment on Schrödinger’s cat in a letter to Schrödinger dated December 22, 1950 is in K. Przibram
(ed), Letters on Wave Mechanics (Philosophical Library, New York, 1967),p. 39.
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Classical transmission

Alice Bob

Bell state

B00(B, C)

B
B

C

|Ψ(A)〉 |Ψ(C)〉

Fig. 10.5 Teleportation of a state |𝜓(A)⟩ at Alice’s end to Bob’s end. An entangled state |B00(B, C)⟩ is generated, particle
B goes to Alice and particle C goes to Bob. Alice announces the outcome of the Bell basis measurement for states A and

B to Bob on a classical channel. Bob makes local adjustments on his particle C accordingly and the state |𝜓(A)⟩ is
teleported to Bob.

and a two-level atom with Bob. Can we teleport the state |𝜓(A)⟩ to the atom with Bob so that
its state becomes

∣𝜓(C)⟩ = cg ∣g⟩ + ce ∣e⟩? (10.47b)

Thekey to quantum teleportation is the presence of two channels for exchanging information
between Alice and Bob. This is shown in Fig. 10.5. The first is what we call a quantum channel,
which allows two objects B and C, prepared in an entangled state, to be sent to Alice and Bob
(object B to Alice and object C to Bob). The second is a classical channel such as a telephone
line which Alice uses to send the outcome of her measurement to Bob.

Quantum teleportation of a quantum state of the form (10.46) can be accomplished in three
steps:

Step I: We prepare two objects B and C in an entangled state:

∣B00 (B,C)⟩ =
1
√2

[|0B, 0C⟩ + |1B, 1C⟩] . (10.48)

This is one of the Bell states, B00, discussed in Section 10.2. The particle B is sent to Alice who
has in her possession the particle A. The particle C is sent to Bob. So now particles A and B are
at Alice’s end and particle C is at Bob’s end. The combined state of the A, B, C system is:

∣𝜓 (A,B,C)⟩ = 1
√2

[c0 (|0A, 0B, 0C⟩ + |0A, 1B, 1C⟩) + c1 (|1A, 0B, 0C⟩ + |1A, 1B, 1C⟩)] .

(10.49)

We can rewrite |𝜓(A, B, C)⟩ in terms of the Bell basis states (10.40)–(10.43) for the AB system
by first noting that

∣0A, 0B⟩ =
1
√2

[|B00 (A,B)⟩ + |B10 (A,B)⟩] , (10.50)

∣0A, 1B⟩ =
1
√2

[|B01 (A,B)⟩ + |B11 (A,B)⟩] , (10.51)

∣1A, 0B⟩ =
1
√2

[|B01 (A,B)⟩ − |B11 (A,B)⟩] , (10.52)
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∣1A, 1B⟩ =
1
√2

[|B00 (A,B)⟩ − |B10 (A,B)⟩] . (10.53)

Then, substituting these expressions in Eq. (10.49), we have

∣𝜓 (A,B,C)⟩ = 1
2
[∣B00 (A,B)⟩ (c0|0C⟩ + c1|1C⟩)

+ ∣B01 (A,B)⟩(c0|1C⟩ + c1|0C⟩)
+ ∣B10 (A,B)⟩( c0 ∣0C⟩ − c1 ∣1C ⟩)
+ ∣B11 (A,B) ⟩(c0|1C⟩ − c1|0C⟩)] .

(10.54)

So far the state of system A at Alice’s end is not touched.
Step II: In this step, Alice, who has both systems A and B, makes a joint measurement on

the AB system in the Bell basis. She can get one of the outcomes |B00(A, B)⟩, |B01(A, B)⟩,
|B10(A, B)⟩, or |B11(A, B)⟩. Now the interesting result! It is clear from Eq. (10.54) that, if her
outcome is |B00(A, B)⟩, then the system at Bob’s end, C, reduces to c0 ∣0C⟩+c1 ∣1C⟩, i.e.,

∣B00 (A,B) ⟩→ c0 ∣0C⟩ + c1 ∣1C⟩. (10.55)

Similarly,

∣B01 (A,B) ⟩→ c0 ∣1C⟩ + c1 ∣0C⟩, (10.56)

∣B10 (A,B) ⟩→ c0 ∣0C⟩ − c1 ∣1C⟩, (10.57)

∣B11 (A,B) ⟩→ c0 ∣1C⟩ − c1 ∣0C⟩. (10.58)

This is remarkable as the details of the unknown state contained in the coefficients c0 and c1
have been “teleported” to Bob who may be, in principle, very far from Alice. However, at this
stage, Bob has no knowledge about which state he has as he is unaware of the outcome of the
Bell basis measurement done by Alice.

Step III: In this step, Alice informs Bob about her outcome through a classical channel,
such as a telephone line. If the measurement outcome is |B00(A, B)⟩, then Bob knows that the
state of the system C at his end is c0∣0C⟩ + c1∣1C⟩. This is exactly the state that Alice wanted to
teleport to Bob. So Bob knows that the state of the system C is the desired state and he does
nothing.

If Alice tells Bob that her measurement outcome is |B01(A, B)⟩, then Bob knows that
the state of system C is c0∣1C⟩ + c1∣0C⟩. In this case he makes a quantum amplitude transfor-
mation ∣0C⟩→ ∣1C⟩ and ∣1C⟩→ ∣0C⟩ and the state of the system C reduces to the desired state,
c0∣0C⟩ + c1∣1C⟩.

If Alice tells Bob that her measurement outcome is |B10(A, B)⟩, then Bob knows that
the state of system C is c0∣0C⟩ − c1∣1C⟩. In this case he makes the quantum phase trans-
formation ∣0C⟩→ ∣0C⟩ and ∣1C⟩→ −∣1C⟩ reducing the state of the system C to the desired
state.

Finally, if Alice tells Bob that her measurement outcome is |B11(A, B)⟩, then Bob
knows that the state of C is c0∣1C ⟩ − c1∣0C⟩ . In this case Bob makes both quantum
amplitude transformation ∣0C⟩→ ∣1C⟩ and ∣1C⟩→ ∣0C⟩ as well as quantum phase
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transformation ∣0C⟩→ ∣0C⟩ and ∣1C⟩→− ∣1C⟩ to bring the state of the system C to the
desired state.

This finishes the teleportation protocol—the state |𝜓(A)⟩ = c0∣0A⟩ + c1∣1A⟩ has been tele-
ported from Alice to Bob. The important resource used in the process of teleportation is
quantum entanglement.

There are a couple of points worthmentioning. First we note that the process of teleportation
cannot be used to transfer information faster than the speed of light. If it did, it would violate
the tenet of another important theory of physics—Einstein’s theory of relativity. At first sight
it would appear that Alice can send information superluminally by encoding it in the state
|𝜓(A)⟩. As soon as Alice completes the Bell basis measurement at her end the information
about |𝜓(A)⟩ is teleported to Bob instantaneously. However this is not true as, until Alice tells
Bob the outcome of her measurement on a classical channel where information is transferred
at a speed less than or equal to the speed of light, Bob is not able to reproduce Alice’s state.

The second point is that, in the process of teleportation, the state ∣𝜓(A) ⟩ = c0∣0A⟩ + c1∣1A⟩
is destroyed at Alice’s end before it is created at Bob’s end. After Alice makes the Bell state
measurement, any information about |𝜓(A)⟩ (which is contained in coefficients c0 and c1) is
destroyed. Thus there is no way that Alice’s state can be copied or cloned in the teleportation
process.

10.5 Entanglement Swapping

Let us suppose Alice and Bob are very close friends. Similarly Cathy and David are also very
close friends. Bob and Cathy are able to interact but Alice and David have never met each
other. Indeed they (Alice and David) live very far away from each other, never have communi-
cated, and do not even have a capacity to interact with each other in any way whatsoever. Is it
possible that an interaction between Bob and Cathy can lead to a very close friendship between
Alice and David?

An equivalent quantum problem can be stated as follows: Alice and Bob have an entangled
pair of objects, such as photons, in a state

∣ΨAB ⟩ = ∣B00 (A,B)⟩ =
1
√2

[|0A, 0B⟩ + |1A, 1B⟩] . (10.59)

Similarly Cathy and David have also an entangled pair of photons in state

∣ΨCD ⟩ = ∣B00 (C,D)⟩ =
1
√2

[|0C, 0D⟩ + |1C, 1D⟩] . (10.60)

Alice and David are so far away from each other that they cannot communicate. Can Bob and
Cathymake a joint measurement on the photons in their possession such that an entanglement
is generated between the photons in Alice’s and David’s possession? As shown in the following,
the answer is Yes!

Another interesting thing happens in the process: In the end there is entanglement between
Bob and Cathy and between Alice and David, but no more entanglement between Alice and
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Bell measurement

Before Bell measurement

Alice Bob Cathy David

Alice Bob

Entanglement

Entanglement

Cathy David

A!er Bell measurement

(b)

(a)

Bell state

B00(A, B)

Bell state

B00(C, D)

Fig. 10.6 Entanglement swapping: (a) Entangled states are prepared between Alice and Bob’s photons as well as

between Cathy and David’s photons. A Bell state measurement is made between Bob and Cathy. (b) The result is that,

after the measurement is made, the previous entanglements disappear and new entangled states are formed between

Alice and David and between Bob and Cathy.

Bob and between Cathy and David. It is as if the friendships between Alice and Bob and
between Cathy and David have been swapped with friendships between Alice and David and
between Bob and Cathy.

The full state of the ABCD system is the product of entangled states between Alice and Bob
and between Cathy and David (Fig. 10.6a):

∣ΨABCD⟩ = ∣ΨAB ⟩∣ΨCD⟩
= 1

2
[∣0A⟩ ∣0B, 0C⟩∣0D⟩ + ∣0A⟩∣0B, 1C⟩ ∣1D⟩ + ∣1A⟩ ∣1B, 0C⟩∣0D⟩

+ ∣1A⟩∣1B, 1C⟩ ∣1D⟩].
(10.61)
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Next we rewrite this state in the Bell basis for the BC system via the transformations

∣0B, 0C⟩ =
1
√2

[|B00 (B,C)⟩ + |B10 (B,C)⟩] , (10.62)

∣0B, 1C⟩ =
1
√2

[|B01 (B,C)⟩ + |B11 (B,C)⟩] , (10.63)

∣1B, 0C⟩ =
1
√2

[|B01 (B,C)⟩ − |B11 (B,C)⟩] , (10.64)

∣1B, 1C⟩ =
1
√2

[|B00 (B,C)⟩ − |B10 (B,C)⟩] . (10.65)

The resulting expression for ∣ΨABCD⟩ is

∣ΨABCD =
1

2√2
{ ∣0A⟩[|B00 (B,C)⟩ + |B10 (B,C)⟩] ∣0D⟩

+ ∣0A⟩[|B01 (B,C)⟩ + |B11 (B,C)⟩] ∣1D⟩
+ ∣1A⟩[|B01 (B,C)⟩ − |B11 (B,C)⟩] ∣0D⟩
+ ∣1A⟩[|B00 (B,C)⟩ − |B10 (B,C)⟩] ∣1D⟩}

= ∣B00 (A,D)⟩∣B00 (B,C)⟩ + ∣B01 (A,D)⟩∣B01 (B,C)⟩
+ ∣B10 (A,D)⟩∣B10 (B,C)⟩ + ∣B11 (A,D)⟩∣B11 (B,C)⟩ .

(10.66)

At this point Bob and Cathy make a joint measurement in the Bell basis. There are four
possible outcomes, namely |B00(B, C)⟩, |B01(B, C)⟩, |B10(B, C)⟩, and |B11(B, C)⟩, with equal
probability. It can be seen from Eq. (10.66) that a measurement outcome of |B00(B, C)⟩ by Bob
and Cathy reduces the state of Alice and David to an entangled state |B00(A, D)⟩, i.e.,

∣B00 (B,C)⟩ →
1
√2

[|0A, 0D⟩ + |1A, 1D⟩] = ∣B00 (A,D)⟩. (10.67)

Similarly,

∣B01 (B,C)⟩ →
1
√2

[|0A, 1D⟩ + |1A, 0D⟩] = ∣B01 (A,D)⟩, (10.68)

∣B10 (B,C)⟩ →
1
√2

[|0A, 0D⟩ − |1A, 1D⟩] = ∣B10 (A,D)⟩, (10.69)

∣B11 (B,C)⟩ →
1
√2

[|0A, 1D⟩ − |1A, 0D⟩] = ∣B11 (A,D)⟩. (10.70)

The net result is that the entanglement between Alice and Bob and between Cathy and David
has been swapped to between Alice and David and Bob and Cathy, as shown in Fig. 10.6b.

Quantum entanglement swapping has applications in quantum communication when
entanglement of distant objects is created by first breaking up the transmission distance into
smaller distances and then making Bell state measurements at the intermediate locations.
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Problems

10.1 Consider the following two-photon states:

∣𝜓1⟩ =
1
2
[|→1,→2⟩ + |→1, ↑2⟩ + |↑1,→2⟩ + |↑1, ↑2⟩] ,

∣𝜓2⟩ =
1
2
[|→1,→2⟩ + |→1, ↑2⟩ + |↑1,→2⟩ − |↑1, ↑2⟩] ,

∣𝜓3⟩ = cos 𝜃 ∣→1,→2⟩ + sin 𝜃 ∣↑1, ↑2 ⟩] ,
∣𝜓4⟩ =

1
2
[|→1,→2⟩ − |→1, ↑2⟩ − |↑1,→2⟩ + |↑1, ↑2⟩] .

Verify that all the states are correctly normalized. Which ones are entangled? Write those
that are not entangled as an explicit product of single-photon states.

10.2 Show that the states

∣C00⟩ =
1
2
[−|01, 02⟩ + |01, 12⟩ + |11, 02⟩ + |11, 12⟩] ,

∣C01⟩ =
1
2
[|01, 02⟩ − |01, 12⟩ + |11, 02⟩ + |11, 12⟩] ,

∣C10⟩ =
1
2
[|01, 02⟩ + |01, 12⟩ − |11, 02⟩ + |11, 12⟩] ,

∣C11⟩ =
1
2
[|01, 02⟩ + |01, 12⟩ + |11, 02⟩ − |11, 12⟩] ,

are normalized, mutually orthogonal, and maximally entangled (concurrence, C = 1)
10.3 Consider the following entangled state:

∣𝜓⟩ = 1
√54

[2|→1,→2⟩ + 3|→1, ↑2⟩ + 4|↑1,→2⟩ − 5|↑1, ↑2⟩] .

Find the probability that the first photon is found in state |→⟩. Also find the probability
that the second photon is found in the state |↑⟩.

10.4 Express the general two-particle state

|𝜓12⟩ = c00|01, 02⟩ + c01|01, 12⟩ + c10|11, 02⟩ + c11 ∣11, 12⟩

as a linear superposition of Bell states:

|𝜓12⟩ = d00|B00⟩ + d01|B01⟩ + d10|B10⟩ + d11|B11⟩.

Find the coefficients d00, d01, d10, and d11 in terms of the coefficients c00, c01, c10, and c11.
What is the concurrence, C, in terms of the new coefficients?

10.5 Discuss the quantum teleportation of the state

∣𝜓(A)⟩ = c0 ∣ 0A⟩ + c1 ∣1A⟩

when the initial entangled state between B and C is

∣B01 (B,C)⟩ =
1
√2

(|0B, 1C⟩ + |1B, 0C⟩) .
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11 No-cloning Theorem and
Quantum Copying

Heisenberg’s uncertainty relation and Bohr’s principle of complementarity form the founda-
tions of quantum mechanics. If these are violated then the edifice of quantum mechanics can
come crashing down. Thus, any process that can potentially lead to a violation of these sacred
principles must be examined with utmost care. One such process is the cloning of quantum
states. The question of interest is whether it is possible to make a perfect copy or a clone of an
unknownquantum state |𝜓⟩without destroying the original state? If this becomes possible then
we could make as many copies of the state |𝜓⟩ as we like. We can then make measurement of
any variable with arbitrary precision, leading to a violation of both the Heisenberg uncertainty
relation and the principle of complementarity.

In order to illustrate this point, let us go back to the example of the measurement of
the polarization of photons in different bases as discussed in Chapter 10. We noted that a
photon, when observed in the {|→⟩,|↑⟩} basis, could either be in the state |↑⟩ or in the state
|→⟩. However the same photon, when observed in the {|↗⟩,|↖⟩} basis could either be in
the state |↗⟩ or in the state |↖⟩. The principle of complementarity does not allow us to
measure the polarization of the photon in the two bases simultaneously. However, if cloning
becomes possible, we can make identical copies of the state |𝜓⟩. We can then measure the
polarization of half of them in the {|→⟩,|↑⟩} basis and the other half in the {|↗⟩,|↖⟩} basis.
These measurements can give precise values of the complementary variables, thus violating
the principle of complementarity. In a similar way, we can show that, if cloning of quantum
states is allowed, Heisenberg’s uncertainty relation can be violated as well.

In this chapter, we show that cloning of an arbitrary quantum state is not allowed. The
foundation of quantum mechanics is therefore protected. The no-cloning theorem that we
discuss in Section 11.2 was formulated in a classic paper by William Wootters and Wojciech
Zurek in 1982. The motivation for this paper came when a paper by Nick Herbert was
published in 1982 showing that photon cloning can lead to superluminal (faster than light)
communication, thus violating another tenet of modern physics, namely, Einstein’s theory of
relativity. According to the theory of relativity, no information can be sent faster than the speed
of light.

In the next sections, we discuss how quantum cloning can lead to superluminal communi-
cation before discussing the no-cloning theorem.We also discuss that, if making a perfect copy
of a quantum state is forbidden, how best a copy of a state can be made.

11.1 Cloning and Superluminal Communication

It is an everyday observance that identical copies can be made of objects. For example, a page
from this book can be copied—the copy can be as close to the original as we like depending

Quantum Mechanics for Beginners: With Applications to Quantum Communication and Quantum Computing. M. Suhail Zubairy.
© M. Suhail Zubairy 2020. Published in 2020 by Oxford University Press. DOI: 10.1093/oso/9780198854227.001.0001
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upon the quality of the copying machine. In principle, it should be possible to make perfect
copies with a high quality copier.

However this observation is true for macroscopic objects which are governed by classical
laws of physics. Here, we address the question: Can we make identical copies of an unknown
quantum state? As an example, we consider a single photon in the polarization state

∣𝜓⟩ = cos 𝜃 ∣→⟩+ sin 𝜃 ∣↑⟩ , (11.1)

where |→⟩ is the state of the photon with horizontal polarization and |↑⟩ is the state of the
photon with vertical polarization. The coefficients cos 𝜃 and sin 𝜃 may be unknown. Can we
make identical copies of such photons? The answer is No! We cannot make perfect copies of
the quantum state |𝜓⟩. We thus have a no-cloning theorem.

Before we prove the no-cloning theorem, we show that, if we could make identical copies
of a quantum state, then we could have superluminal communication—communication faster
than the speed of light. As mentioned above, no information can be transmitted faster than
the speed of light according to Einstein’s theory of relativity. So this should not be possible!!! A
no-cloning theorem therefore saves Einstein’s theory of relativity!!!

We consider the transmission of information via photons. The information is supposed to
be binary, “0” or “1.” A key to our argument is two conjugate bases: a {|→⟩,|↑⟩} basis and a
{|↗⟩,|↖⟩} basis where

∣↗⟩ = 1
√2

(|→⟩ + |↑⟩) , (11.2)

∣↖⟩ = 1
√2

(|↑⟩ − |→⟩) , (11.3)

are polarization states in a frame rotated with the {|→⟩,|↑⟩} basis by 45∘.
The key to the communication protocol is that an entangled pair of photons is shared by

Alice and Bob, who could be a long distance apart. The entangled state of the photon can be of
the form

∣ΨAB⟩ =
1
√2

(|→A, ↑B⟩ + |↑A,→B⟩) , (11.4)

i.e., if Alice’s photon is polarized along the horizontal direction, then Bob’s photon is polarized
along the vertical direction and vice versa. It follows from Eqs. (11.2) and (11.3) that {|→⟩,|↑⟩}
can be written in terms of {|↗⟩,|↖⟩} as

∣↑⟩ = 1
√2

(|↗⟩ + |↖⟩) , (11.5)

∣→⟩ = 1
√2

(|↗⟩ − |↖⟩) . (11.6)

Therefore, on substituting for |→⟩ and |↑⟩ from Eqs. (11.5) and (11.6) into Eq. (11.4), the
entangled state (11.4) can be shown to be equivalent to

∣ΨAB⟩ =
1
√2

(|↗A,↗B⟩ − |↖A,↖B⟩) . (11.7)
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Thus Alice–Bob’s entangled state is:

∣ΨAB⟩ =
1
√2

(|→A, ↑B⟩ + |↑A,→B⟩)

or

∣ΨAB =
1
√2

(|↗A,↗B⟩ − |↖A,↖B⟩)

depending on our choice of bases.Which basis we choose depends on the experiment we carry
out. If our polarizer is such that it is vertically polarized in the {|→⟩,|↑⟩} or ⊕ basis, then the
photon polarization is measured as either in state |→⟩ or in state |↑⟩. On the other hand, if the
polarizer is in the rotated {|↗⟩,|↖⟩} or ⊗ basis then the photon polarization is measured as
either in state |↗⟩ or in state |↖⟩.

The communication protocol proceeds as follows: If Alice wants to transmit a “0”, she
measures her photon in the {|→⟩,|↑⟩} basis. In case her outcome is,|→A⟩, then Bob’s state
collapses to ⟨→A|ΨAB⟩ = |↑B⟩ and if her outcome is, |↑A⟩, then Bob’s state collapses to
⟨↑A|ΨAB⟩ = ∣→B⟩. Here we substituted the form in Eq. (11.4) for |ΨAB⟩. The probabilities
of obtaining the ‘|→A⟩’ or ‘|↑A⟩’ state of photon by Alice are 50% each. If Alice wants to
transmit a “1”, she measures her photon in the {|↗⟩,|↖⟩} basis, collapsing Bob’s state to either
⟨↗A|ΨAB⟩ =∣↗B⟩ or ⟨↖A|ΨAB⟩ = ∣↖B⟩ depending upon whether Alice’s outcome is |↗A⟩ or
|↖A⟩, respectively.

If Bob cannot clone Alice’s photon, then superluminal communication cannot take place.
For example, if Alice decides to transmit a “0”, she measures her photon in the {|→⟩,|↑⟩} basis,
and let the outcome be “|→A⟩”. Now Bob can make his measurement with the basis {|→⟩,|↑⟩},
and the outcome is “|↑B⟩”. However if Bobmakes his measurement in the basis {|↗⟩,|↖⟩}, then
there is a 50% chance that his outcome is “|↗B⟩” and a 50% chance that his outcome is “|↖B⟩”.
Thus there is no way for Bob to find out what information, “0” or “1”, Alice sent.

But what happens if cloning is possible? A cloning machine, if it existed, would take some
auxiliary systems in some well-defined state |0⟩ (where |0⟩ can be |→⟩ or |↑⟩) in addition to the
input state |𝜓⟩ and convert them both into |𝜓⟩. A cloning machine therefore acts as follows:

Uclone∣𝜓⟩∣0⟩ = ∣𝜓⟩∣𝜓⟩ (11.8)

for any state |𝜓⟩. The cloning machine Uclone can thus make many identical copies of |𝜓⟩ as
shown in Fig. 11.1.

After Alice has measured the polarization of her photon, Bob’s state reduces to a state
depending on the basis that Alice chose. Bob’s strategy would be to first clone his photon and
make a large number of identical copies. In the second step he would make his measurements
in the {|→⟩,|↑⟩} basis on all the cloned photons. Next we see how Bob can find out whether
Alice sent a “0” or a “1”.

| 〉 | 〉

Uclone
|0〉 | 〉

Fig. 11.1 A cloning machine makes an identical copy of an unknown state |𝜓⟩.
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Let us first see what happens when Alice sent a “0”. In this case, she measures her photon in
the {|→⟩,|↑⟩} basis. If her outcome is |→A⟩, then Bob’s state collapses to |↑B⟩. If Bob measures
all his cloned photons in the {|→⟩,|↑⟩} basis, the outcome for all of them will be a |↑B⟩ state.
Bob would immediately know that Alice sent a “0”.

Next consider the case when Alice sends a “1” by measuring her photon in the {|↗⟩,|↖⟩}
basis. If Alice’s outcome is |↗A⟩, then the state of Bob’s photon collapses to |↗B⟩ as well. All
Bob’s cloned photons will also be in the |↗B⟩ state. Since

∣↗⟩ = 1
√2

(|→⟩ + |↑⟩) ,

Bob’s measurements in the {|→⟩,|↑⟩}will split evenly between |→⟩ and |↑⟩. Thus for sufficiently
large number of cloned photons, Bob can find out that Alice sent a “1”.

Thus cloning allows communication faster than the speed of light which is not allowed by
Einstein’s theory of relativity.

11.2 No-cloning Theorem

Let |𝜓⟩ be an unknown quantum state. Unknown means that, for a state of the type,

∣𝜓 = cos 𝜃∣ →⟩ + sin 𝜃∣↑⟩, (11.9)

we do not know the value of 𝜃. Can we make a cloning machine that performs the operation:

Uclone∣𝜓⟩∣0 ⟩ = ∣𝜓⟩∣𝜓⟩

for any state |𝜓⟩? Such a machine cannot exist!! This is the no-cloning theorem. We can
prove it by proving the contrary as false, i.e., if we assume that a cloning machine exists, the
consequence is a result we know to be false.

In order to prove the no-cloning theorem, we first assume that there exists a transforma-
tion Uclone such that, for any two states |𝜓⟩ and |𝜙⟩ (such that ∣𝜓 ≠ ∣𝜑⟩) of the system,
we have

Uclone∣𝜓⟩∣0⟩ = ∣𝜓⟩∣𝜓⟩, (11.10)

Uclone∣𝜑⟩∣0⟩ = ∣𝜑⟩∣𝜑⟩. (11.11)

where |0⟩ denotes some well-defined initial state of the target system. Next we consider the
state

∣𝜎⟩ = 1
√2

(|𝜓⟩ + |𝜑⟩) (11.12)

and apply the Uclone operator. It follows from Eqs. (11.10) and (11.11) that

Uclone∣𝜎⟩∣0⟩ = Uclone
1
√2
(|𝜓⟩ + |𝜑⟩)∣0⟩

= 1
√2
(|𝜓⟩|𝜓⟩ + |𝜑⟩|𝜑⟩) .

(11.13)
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However, a true cloning machine should make the clone of the state |𝜎⟩, i.e., we expect

Uclone∣𝜎⟩∣0⟩ = ∣𝜎⟩∣𝜎⟩
= 1

√2
(|𝜓⟩|𝜓⟩ + |𝜓⟩|𝜑⟩ + |𝜑⟩|𝜓⟩ + |𝜑⟩|𝜑⟩) . (11.14)

But this is not the same as Eq. (11.13). This shows that if the cloning machine works for
the states |𝜓⟩ and |𝜙⟩, it cannot work for the state |𝜎⟩ as given by Eq. (11.12). Thus a
universal cloning machine that clones all the states cannot exist. This proves the no-cloning
theorem.

11.3 Quantum Copier

We have seen that a perfect quantum copying machine cannot exist. A question of interest
is that if we cannot copy quantum states exactly, how well can we copy an arbitrary state? In
order to answer this question, we should define a quantity that is a measure of how good a
copy is.

A suitable measure for a quantum state is the fidelity that we can define as follows. If the
initial state is |𝜓⟩ and the final state is |𝜙⟩, then the fidelity is defined as

F = |⟨𝜓|𝜙⟩|2. (11.15)

For a perfect copy ∣𝜓 ⟩= ∣𝜙⟩ and F = |⟨𝜓|𝜙⟩|2 = ∣⟨𝜓|𝜓⟩|2 = 1.We can illustrate how fidelity is
a good measure of the quality of the copy of a quantum state vector by using an analogy with
vectors.

We first recall from Section 9.2 that ⟨𝜓|𝜙⟩ is analogous to the dot product between two
vectors. With this in mind, we consider a unit vector A and try to make an identical copy.
For this purpose we draw another vector B of unit magnitude. If the drawn vector B is parallel
to the vectorA, it will be a perfect copy of A (except for the direction). When this happens, the
dot product between A and B is unity, i.e.,

A · B = ±1 for ∣A∣ = ∣B∣.

However the worst copy is made when the unit vector B is perpendicular to A and the dot
product between A and B is zero, i.e.,

A · B = 0 for A ⟂ B.

In general, if there is an angle 𝜃 between the unit vectorsA andB, then the dot product between
the two vectors is cos 𝜃, i.e.,

A · B = cos 𝜃.

We thus have a range of “similarity” between the vectors A and B with dot product ranging
from 1 to 0 as 𝜃 varies from 0 to 𝜋/2 radians. However A · B can be negative in the range
𝜋/2 < 𝜃 < 3𝜋/2. If we do not care about the direction of the copied vector, we can modify
our definition of how similar the two vectors are by considering the quantity (A · B)2 instead
of A · B.
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Analogously if we want to copy the state |0⟩ onto another state |𝜙⟩, then |⟨𝜙|0⟩|2 is a measure
of the quality of the copy. Here we take the modulus square because, in general, the inner
product ⟨𝜙|0⟩ can be complex but |⟨𝜙|0⟩|2 is always real and positive and ranges from 0 to 1.
Thus if ∣𝜙⟩ = ∣0⟩, then the fidelity F = |⟨𝜙|0⟩|2 = ∣⟨0|0⟩|2 = 1 and |𝜙⟩ is a perfect copy of |0⟩.
However if ∣𝜙⟩ = ∣1⟩, then F = ∣⟨𝜙|0⟩|2 = ∣⟨1|0⟩|2 = 0 and |𝜙⟩ is the worst possible copy of
|0⟩. In general, when

∣𝜙⟩ = cos 𝜃∣0⟩ + sin 𝜃∣1⟩, (11.16)

the fidelity F = |⟨𝜙|0⟩|2 = cos2𝜃. This ranges from 1 for 𝜃 = 0 to 0 for 𝜃 = 𝜋/2.
We now consider the possibility of copying the state of one system (such as a photon) in a

well-defined state |𝜓⟩ onto another system. In the copying process, the quality of the original
state decreases such that the quality (as measured by fidelity F) is the same for the two systems.
This is equivalent to making a copy of an original onto a blank page. The copying machine
prepares two identical copies such that the quality of both copies is less than that of the
original. The quantum copying machine as discussed here was first proposed by Vladimir
Buzek and Mark Hillery in 1996.

Let us consider the state in system 1:

∣𝜙1⟩ = cos 𝜃∣01⟩ + sin 𝜃∣11⟩. (11.17)

We want to faithfully transfer this state to system 2 initially in state |02⟩. We would like the
quantum copying machine to carry out the operation

Ucopy∣𝜙1⟩∣02⟩ = ∣𝜓1⟩∣𝜓2⟩, (11.18)

where, due to the no-cloning theorem, the fidelity F = |⟨𝜙|𝜓⟩|2 is expected to be less than 1. It
turns out that a copying machine with just two states may not provide maximum fidelity.

In order to achieve maximum fidelity, we need an auxiliary system 3, called ancilla, initially
also in state |03⟩. The role of the ancilla system 3 will be only to facilitate in making a high
fidelity copy on system 2, and we will not be concerned about the state of the ancilla in the
process. We thus have a situation where the system 1 can be either in state |01⟩ or state |11⟩ or
a linear superposition of states |01⟩ and |11⟩. The systems 2 and 3 are initially in states |02⟩ and
|03⟩. The initial state is thus

∣Φ123⟩ = ∣𝜙1⟩∣02⟩∣03⟩. (11.19)

The copying machine with maximum fidelity can be obtained by the following quantum
transformations:

Ucopy∣01 ⟩∣02⟩ ∣03⟩ = √
2
3 ∣01⟩∣02 ⟩∣03⟩ −

1
√6

(|01⟩|12⟩|13⟩ + |11⟩|02⟩|13⟩) , (11.20)

Ucopy∣11 ⟩∣02⟩ ∣03⟩ = −√
2
3 ∣11⟩∣12 ⟩∣13⟩ +

1
√6

(|01⟩|12⟩|03⟩ + |11⟩|02⟩|03⟩) . (11.21)

These transformations map the orthogonal states |01⟩|02⟩|03⟩ and |11⟩|02⟩|03⟩ of the
initial tripartite system onto orthogonal states. These transformations can be realized
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experimentally in different quantum systems. In general, the unknown quantum state (11.17)
undergoes a transformation by using the individual transformations (11.20) and (11.21) as
(with c ≡ cos 𝜃; s ≡ sin 𝜃)

∣Ψ123⟩ = Ucopy∣Φ123⟩ = Ucopy∣𝜙1⟩∣02⟩∣03⟩
= cos 𝜃Ucopy∣01⟩∣02⟩∣03⟩ + sin 𝜃Ucopy∣11⟩∣02⟩∣03⟩

= √
2
3
(cos 𝜃|000⟩ − sin 𝜃|111⟩) − cos𝜃

√6
(|011⟩ + |101⟩) + sin𝜃

√6
(|010⟩ + |100⟩) .

(11.22)

Here, for convenience’s sake, we use the shorthand notation |000⟩ to represent the three-system
state |01⟩|02⟩|03⟩, notation |111⟩ to represent the state |11⟩|12⟩|13⟩ and so on. We want to find
how the copying machine described by the mapping (11.22) leads to a high-quality copy of the
state (11.17) onto state 2 with a large fidelity.

In order to illustrate how the mapping (11.22) can lead to a copy with high fidelity, we first
consider the simple case when 𝜃 = 𝜋/2. This simple example should help to elucidate the
copying procedure. The original state that needs to be copied is ∣𝜙1 ⟩ = ∣11⟩ and the initial state
for the three systems is

∣Φ123⟩ = ∣𝜙1⟩∣02⟩∣03⟩ = ∣11⟩∣02⟩∣03⟩. (11.23)

It follows from Eq. (11.21) that

∣Ψ123⟩ = Ucopy∣Φ123⟩ = Ucopy∣𝜙1⟩∣02⟩∣03⟩
= Ucopy∣11⟩∣02⟩∣03⟩

= −√
2
3
∣111⟩ + 1

√6
(|010⟩ + |100⟩) .

(11.24)

It therefore follows that the only states that can exist are |11⟩|12⟩|13⟩, |01⟩|12⟩|03⟩, and
|11⟩|02⟩|03⟩. Following is the table that shows the probability of the outcome of all possible
states after Ucopy has been applied on the initial state. For example the probability of getting
the state |01⟩|12⟩|03⟩ is |⟨010|Ψ123⟩|

2 = 1/6.

Outcome Probability

|000⟩ 0

|001⟩ 0

|010⟩ 1/6

|011⟩ 0

|100⟩ 1/6

|101⟩ 0

|110⟩ 0

|111⟩ 2/3
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Weare interested in the first systembeing found in state |11⟩.This can happen in twodifferent
ways. As we see from the table, the total probability of finding the system 1 in state |11⟩ is
the sum of the probabilities of finding the total system ∣Ψ123⟩ in states |100⟩ and |111⟩ with
probabilities equal to 1/6 and 2/3, respectively. The total probability of getting

∣𝜙1⟩ = ∣11⟩

for the first system is therefore equal to
1
6 +

2
3 = 5

6 .

Similarly, the probability of finding the system 2 in state |12⟩ is the sum of the probabilities of
finding the total system ∣Ψ123⟩ in states |010⟩ and |111⟩ with probabilities equal to 1/6 and 2/3,
respectively. Thus the probability of the outcome

∣𝜙2⟩ = ∣12⟩

is also equal to 5/6.
The probability of the systems 1 and 2 being in states |11⟩ and |12⟩, respectively, is equal to

5/6 for each one of them. Thus the original state |11⟩ is no longer in the state |11⟩with certainty.
Instead it can be found in this state with a fidelity equal to 5/6 = 0.83. The fidelity has thus
gone down from 1 to 0.83. What we have gained as a result of applying the copying operation
Ucopy is that the state of the second system which was originally in state |02⟩ with fidelity
F=|⟨𝜙2|02⟩|

2 = ∣⟨12|02⟩|
2 = 0 is now found in state |12⟩with 83%probability as well.The fidelity

for the second system has gone up from 0 to 0.83. This is the essence of quantum copying.
Next we discuss a formal procedure of calculating fidelity for the first two systems in the

above example. We can obtain the fidelity for the first system by considering all possibilities
where the first system is in state |11⟩ regardless of the states of the second and third systems.
There are four possible combination of states for the second and third systems, namely, |02⟩|03⟩,
|02⟩|13⟩, |12⟩|03⟩, and |12⟩|13⟩. Thus, the fidelity for the first system is the sum

|⟨100|Ψ123⟩|
2 + |⟨101|Ψ123⟩|

2 + |⟨110|Ψ123⟩|
2 + |⟨111|Ψ123⟩|

2 = 5
6 . (11.25)

Here we substituted for ∣Ψ123⟩ from Eq. (11.24). Similarly, we can obtain the fidelity for the
second system:

|⟨010|Ψ123⟩|
2+ ∣ ⟨011|Ψ123⟩|

2+ ∣ ⟨110|Ψ123⟩|
2+ ∣ ⟨111|Ψ123⟩|

2 = 5
6 . (11.26)

These are the same values for the fidelity for the two systems that we obtained before.
We now turn to the general state of the following form for the system 1 that we want to copy:

∣𝜙1⟩ = cos 𝜃∣01⟩ + sin 𝜃∣11⟩. (11.27)

The fidelity for the first system is

F1 = |⟨𝜙00|Ψ123⟩|
2 + ∣⟨𝜙01|Ψ123⟩|

2 + ∣⟨𝜙10|Ψ123⟩|
2 + ∣⟨𝜙11|Ψ123⟩|

2, (11.28)

where the state of the three systems |Ψ123⟩ is given by Eq. (11.22). Similarly, the fidelity for the
second system is
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F2 = |⟨0𝜙0|Ψ123⟩|
2 + ∣⟨0𝜙1|Ψ123⟩|

2 + ∣⟨1𝜙0|Ψ123⟩|
2 + ∣⟨1𝜙1|Ψ123⟩|

2. (11.29)

We can calculate various terms in these equations. It follows from the expression for |Ψ123⟩ in
Eq. (11.22) that

⟨𝜙00|Ψ123⟩ = cos 𝜃 ⟨000|Ψ123⟩ + sin 𝜃 ⟨100|Ψ123⟩ = √
2
3cos2𝜃 + 1

√6
sin2𝜃, (11.30)

⟨𝜙01|Ψ123⟩ = cos 𝜃 ⟨001|Ψ123⟩ + sin 𝜃 ⟨101|Ψ123⟩ = − 1
√6

sin 𝜃 cos 𝜃, (11.31)

⟨𝜙10|Ψ123⟩ = cos 𝜃 ⟨010|Ψ123⟩ + sin 𝜃 ⟨110|Ψ123⟩ =
1
√6

sin 𝜃 cos 𝜃, (11.32)

⟨𝜙11|Ψ123⟩ = cos 𝜃 ⟨011|Ψ123⟩ + sin 𝜃 ⟨111|Ψ123⟩ = − 1
√6

cos2𝜃 −√
2
3sin2𝜃. (11.33)

It follows, on substituting Eqs. (11.30)–(11.33) in Eq. (11.28), that

F1 =
5
6 . (11.34)

In a similar manner, we can show that

F2 =
5
6 . (11.35)

Thus the copying machine prepares systems 1 and 2 with 83.3 percent fidelity each. The fidelity
is independent of 𝜃 in state |𝜙1⟩. It can be shown that this is the maximum fidelity that can be
obtained in the copying process.

Problems

11.1 Consider the quantum copying machine with the following transformations:

Ucopy∣01⟩∣02⟩∣03⟩ = √
2
3
∣01⟩∣02⟩∣03⟩ −

1
√6
(|01⟩|12⟩|13⟩ + |11⟩|02⟩|13⟩) ,

Ucopy∣11⟩∣02⟩∣03⟩ = −√
2
3
∣11⟩∣12⟩∣13⟩ +

1
√6
(|01⟩|12⟩|03⟩ + |11⟩|02⟩|03⟩) .

We consider the copying the state of system 1

∣𝜙1⟩ = cos 𝜃∣01⟩ + sin 𝜃∣11⟩

onto system 2. In the text, we have explicitly calculated the fidelity of system 1 and found
it to be equal to 5/6. Show that the fidelity of the copied state of system 2 is also equal to
5/6. What is the fidelity of the auxiliary system 3?

11.2 Consider a copying machine that copies the state

∣𝜙1⟩ = cos 𝜃∣01⟩ + sin 𝜃∣11⟩
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of system 1 onto system 2 via the transformation

Ucopy∣01⟩∣02⟩ = cos𝛼∣01⟩∣02⟩ + sin𝛼∣11⟩∣12⟩,
Ucopy∣11⟩∣02⟩ = cos𝛼∣11⟩∣02⟩ + sin𝛼∣01⟩∣12⟩.

Calculate the fidelities of systems 1 and 2. For what value of 𝛼, the two fidelities are equal?

BIBLIOGRAPHY

N. Herbert, FLASH–A superluminal communicator based upon a new kind of quantum
measurement, Foundations of Physics 12, 1171 (1982).

W. K. Wooters and W. H. Zurek, A single photon cannot be cloned, Nature 299, 802 (1982).

V. Buzek andM.Hillery, Quantum copying: beyond the no-cloning theorem, Physical Review
A 54, 1844 (1996).

S. Stenholm and K.-A. Suominen, Quantum Approach to Informatics (John Wiley, 2005).

V. Scarani, L. Chua, and S. Y. Liu, Six QuantumPieces: A First Course inQuantumMechanics
(World Scientific 2010).



OUP CORRECTED PROOF – FINAL, 10/3/2020, SPi

12 EPR and Bell Theorem

It is ironical that both Albert Einstein and Niels Bohr played crucial roles in laying the
foundation of quantummechanics but strongly disagreed on the interpretation and limitations
of the theory. In Chapter 8, we discussed the first round of the debate between Einstein and
Bohr when Einstein challenged Bohr’s principle of complementarity at the Solvay conference
in 1927 and Bohr successfully defended it. The most serious challenge, however, came in
1935 through a paper by Einstein, Podolsky, and Rosen (EPR) entitled ‘Can Quantum-
Mechanical Description of Physical Reality Be Considered Complete?’ when they argued the
incompleteness of quantum mechanics through a gedanken experiment.

In this chapter, we present EPR’s arguments about the incompleteness of quantum
mechanics as embodied in the EPR paper and Bohr’s reply to it. The ultimate answer came
almost 30 years later, almost ten years after Einstein’s death, and the answer was nothing that
Einstein would have expected.

12.1 Hidden Variables

What Einstein felt uncomfortable about in quantum mechanics was the probabilistic nature
of quantum mechanical predictions. In his viewpoint, a “complete” theory should be able to
give definite predictions. However, as quantum mechanics can only tell us whether an event
will happen or not probabilistically, quantum mechanics should be incomplete. In order to
illustrate this point, we consider a simple example.

Two photons identical in every respect are prepared in the polarized state |↗⟩. In the
{|→⟩, |↑⟩} basis, these photons are described as:

∣↗⟩ = 1
√2

(|↑⟩ + |→⟩), (12.1)

As discussed in Section 10.1, if a photon in state (12.1) passes through a polarizing beam
splitter oriented to measure photons in the {|→⟩, |↑⟩} basis, there is equal probability that, after
passing through the beam splitter, it will be found in state |↑⟩ or in state |→⟩. We thus have four
possible outcomes with equal probabilities for the two photons: both are found in state |↑⟩, the
first is found in state |→⟩ and the second is found in state |↑⟩, the first is found in state |↑⟩ and
the second is found in state |→⟩, and both are found in state |→⟩. This is the probabilistic
aspect of quantum theory that Einstein never accepted, proclaiming that “God does not
play dice.”

Let us suppose that the first photon is found in state |↑⟩ and the other in state |→⟩ as shown
in Fig. 12.1. We ask the obvious question: What is the difference between the two photons? The
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PBS

D1
D1
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|→〉|↗〉 |↗〉

|↑〉

(b)(a)

Fig. 12.1 Two photons in identical state |↗⟩ pass through a polarization beam splitter. One photon is found in state |↑⟩
and the other in state |→⟩.

equally obvious answer is that the first photon after passing through the polarizing beam splitter
is found in state |↑⟩ and the other in state |→⟩. But then we ask the difficult question: What
was the difference between the two photons before they passed through the beam splitter?
If, somehow we knew the difference, we could understand why the two photons behaved
differently. However, according to quantum mechanics, there was no difference between the
two photons, yet one of them ended up in state |↑⟩ and the other in state |→⟩.

One might think that this situation is similar to flipping two coins where we have 25%
probability that we get the first coin with head up and the other coin with tail up. However,
in this case, if we knew all the forces and the initial orientations of the coins, we could predict
with certainty whether we will get head up or tail up. This is not the case with quantum objects
like the polarization state of a single photon.

Oneway out of this conundrum is to assume that the two photons, being apparently identical
in all respects, such as the frequency and the polarization, were indeed different even before
they entered the beam splitter. These photons had some “hidden” properties that we do not
know and we cannot measure in the laboratory but which distinguished them from each other.
If, some day, we are able to identify these “hidden variables” and incorporate them in the
theory, then we will be able to make definite predictions like in classical mechanics. Quantum
mechanics would then become “complete.”

In Section 12.3, we discuss how this debate was resolved via certain inequalities called Bell’s
inequalities that could be tested in the laboratory. The results ruled out any or all theories
based on “hidden variables.”

12.2 The Einstein–Podolsky–Rosen (EPR) Paradox

There are certain postulates that can be described as “self-evident truths” which lie at the
foundation of physics. Challenging them would amount to challenging common sense. Two
such “truths” are reality and locality.

According to the postulate of reality, regularities in observed phenomena are caused by some
physical reality whose existence is independent of human observers. For example, as Einstein
put it, we all believe that the moon exists even when none of us looks at it. It is hard to imagine
that the reality of an object like the moon depends on us directly observing it.
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The other postulate about locality comes directly from the work of Einstein himself on the
theory of relativity. One of the postulates of the theory of relativity is that no information
of any kind can propagate faster than the speed of light in vacuum. If information can be trans-
ferred faster than the speed of light, then we would be violating another foundational principle
of science, causality. According to causality, the present is determined by what happened in
the past and what is happening in the present but NOT by what will happen in the future.

One of the most startling results of the twentieth century is that quantum mechanics is not
consistent with at least one of these “truths” and experiments agree with the predictions of
quantum mechanics. This is what we discuss in the rest of this chapter.

We begin by presenting EPR’s concept of reality which, in their own words, is stated as
follows:

If without in any way disturbing a system, we can predict with certainty (i.e., with probability equal
to unity) the value of a physical quantity, then there is an element of physical reality corresponding
to this physical quantity.

They then argue that

. . . Every element of the physical reality must have a counterpart in the physical theory.

What this implies is that, if somehow, we can attribute well-defined orientations of polariza-
tion of a photon in both {|→⟩, |↑⟩} and {|↗⟩, |↖⟩} bases then the theory, quantum theory,
should be able to predict with certainty the outcome of measurement when this photon is
passed through different orientations of the polarization beam splitter.We have seen in Section
10.1 that this is not possible.

First we address the question: How do we establish the reality of an object “without in any
way disturbing” or making measurement on it? How do we know that the moon exists when
we do not look at it? A way to establish reality, “physical reality whose existence is independent
of a human observer”, is to look at events with common cause (highly correlated events).
Thus the reality of the moon can be established by going to the shore of an ocean and looking
at the tides. A careful analysis of the tides (their amplitude and periodicity, etc.) can help in
proving the existence of the moon without ever looking at it.

As another example we consider a box containing two balls, one blue and the other
red. Let Alice and Bob, blindfolded, pick one ball each and travel in opposite directions to
distances so far away that they cannot influence each other in any way. Alice then removes her
blindfold and discovers that the color of the ball in her possession is red. She instantaneously
concludes that the color of the ball in Bob’s possession must be blue. Therefore, according to
EPR’s definition, there is an element of reality associated with the blue color of the ball in Bob’s
possession.

This simple experiment does not have any mystery about it. However a version of a similar
experiment when done on quantum objects like the polarization of a single photon leads
to paradoxes. Quantum mechanics does not agree with our common-sense analysis and
predictions. We now turn to a simplified version of the EPR gedanken experiment.

Consider two photons 1 and 2 at the source that are prepared in an entangled state

∣𝜓12⟩ =
1
√2

(|↑1⟩|↑2⟩ + |→1⟩|→2⟩) . (12.2)
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Therefore, if photon 1 is measured in the {|→⟩, |↑⟩} basis and found to be in the state |↑1⟩, then
the state of photon 2 reduces to |↑2⟩ and, if the photon 1 is measured in state |→1⟩, then the
state of photon 2 reduces to |→2⟩. The same state of the two-photon system, when expressed
in the {|↗⟩, |↖⟩} basis, is given by

∣𝜓12⟩ =
1
√2

(|↗1⟩|↗2⟩ + |↖1⟩|↖2⟩) (12.3)

after we made the transformations (Eqs. (10.7) and (10.8)):

∣↑⟩ = 1
√2

(|↗⟩ + |↖⟩) , (12.4)

∣→⟩ = 1
√2

(|↗⟩ − |↖⟩) . (12.5)

These photons are separated such that photon 1 flies to the right to Alice and photon 2 flies to
the left to Bob. Again Alice and Bob may be so far away that they cannot influence each other’s
photon in any way.

Now EPR’s argument runs as follows:
Alice makes a measurement on photon 1 in the {|→⟩, |↑⟩} basis by passing the photon

through a polarizer whose polarization axis is along the y-axis (Fig. 12.2a). A click at
the detector implies that the polarization of her photon is |↑1⟩. She can then conclude
instantaneously (based on Eq. (12.2)) that photon 2’s polarization is |↑2⟩. Alice made this
conclusion “without in any way disturbing” photon 2. Thus, according to EPR, there should
be an element of reality associated with the polarization |↑2⟩ of photon 2.

Let, on the other hand, Alice choose to make a measurement on photon 1 in the {|↗⟩,
|↖⟩} basis and let her outcome be |↗1⟩. She then concludes (based on Eq. (12.3)) that photon
2’s polarization should be |↗2⟩. As before, Alice makes this conclusion “without in any way

source
linear

polarizer

detector

source
linear

polarizer

detector

(|→→〉 + |↑↑〉)|Ψ〉 =

(|↗↗〉 + |↖↖〉)|Ψ〉 =

(a)

(b)

1

2√
–

1

2√
–

Fig. 12.2 Two photons initially prepared in an entangled state are sent in opposite directions. In (a) Alice chooses the

polarization orientation along the y- axis and in (b) along an axis making and angle 45∘ with the y-axis.
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disturbing” photon 2 and according to EPR, there should be an element of reality associated
with the polarization |↗2⟩ of photon 2.

We thus have a situation where it is possible to determine the state of photon 2 in the two
bases {|→⟩, |↑⟩} and {|↗⟩, |↖⟩} and these polarization states are obtained “without in any way
disturbing” photon 2. Then, EPR argue that, in any complete theory, “every element of the
physical reality must have a counterpart.” Therefore the states of the polarization in the two
bases for photon 2 should be obtainable from quantum mechanics if it is a complete theory.
However, quantum mechanics is unable to determine the states of polarization of a photon in
the two bases {|→⟩, |↑⟩} and {|↗⟩, |↖⟩} simultaneously as it would violate Bohr’s principle of
complementarity.

This result has come to be known as the “EPR paradox.” The inability of quantum mechanics
to make definite predictions for the outcome of certain measurements led EPR to conclude
that quantum mechanics is an incomplete theory. They postulated that the theory may be
made complete if we include certain “hidden variables” that are not known and perhaps not
measurable. It was hoped that an inclusion of these “hidden variables” would restore the
completeness and determinism to quantum mechanics.

12.3 Bohr’s Reply

The EPR paper was published in 1935. Leon Rosenfeld has recorded Niels Bohr’s reaction to
the EPR paper in these words:

. . .This onslaught came down upon us as a bolt from the blue . . . Its effect on Bohrwas remarkable.
As soon as Bohr had heard my report of Einstein’s argument, everything else was abandoned,
we had to clear up the misunderstanding at once . . . Bohr, greatly excited, immediately began
to dictate a reply to Einstein. He found, however, that this was no easy matter. He’d start off on
one track, then change his mind, backtrack, and start again. He couldn’t put his finger where the
problem was. “What can they mean? Do you understand it?”, he would ask . . . After some six
weeks of work, Bohr had an answer . . .

In his reply (also published in 1935 and with the same title as the EPR paper), Bohr argued that
quantum mechanics does not deal with the history of objects from an earlier time when two
particles were correlated to a later time when they are free. Quantum mechanics only provides
us with a set of rules regarding the outcome of the measurements on the physical properties of
the object when the measurements are carried out. In his words,

The extent to which an unambiguous meaning can be attributed to such an expression as “physical
reality” cannot of course be deduced from a priori philosophical conceptions, but . . . must be
founded on a direct appeal to experiments and measurements.

Bohr’s case against EPR rests on the premise that ameasurement inevitably disturbs the system.
Thekey point of Bohr’s reply is that, in the EPRargument, the twophotons should not be treated
as independent until a measurement is made. It is therefore incorrect to say that the photon
at Bob’s end is not disturbedwhenAlicemakes hermeasurement. It is Alice’smeasurement that
causes a separation between the photons at Alice’s and Bob’s ends. Until Alice’s measurement



OUP CORRECTED PROOF – FINAL, 10/3/2020, SPi

BELL’S INEQUALITY 187

the two photons are in the entangled state (12.2), i.e.,
1
√2

(|↑1⟩|↑2⟩ + |→1⟩|→2⟩) .

Her measurement in the {|→⟩, |↑⟩} basis reduces the state of the two-photon system to

∣↑1 ⟩∣↑2⟩ .

Before making a measurement by Alice of her photon we could not associate the reality of
the polarization state of Bob’s photon. It is only Alice’s measurement of her photon in the
{|→⟩, |↑⟩} basis that allows us to determine the polarization of Bob’s photon in the same basis,
namely |↑2⟩.

When Alice makes a measurement in the {|↗⟩, |↖⟩} basis, the two photons are no longer in
the entangled state (12.2) or (12.3). They have been disturbed by the first measurement and the
state of the two photons is |↑1⟩|↑2⟩. Alice’s second measurement in the {|↗⟩, |↖⟩} basis further
disturbs the system. The prediction of the outcome of the next measurement cannot be made
in advance and we cannot associate an element of reality with the component of polarization
in the {|↗⟩, |↖⟩} basis. The principle of complementarity is therefore intact.

In this interpretation, the reality of an object does not exist until either the object has
been measured or is in a position to be measured with a predictable result. So, in the EPR
gedanken experiment discussed above, the reality of the polarization states |↑2⟩ of Bob’s photon
is established only after Alice made a measurement in the {|→⟩, |↑⟩} basis of her photon. In
order to establish the reality of the polarization state of Bob’s photon in the {|↗⟩, |↖⟩} basis
another measurement in the {|↗⟩, |↖⟩} basis is needed. However this measurement is made
on the disturbed system.

Bohr argues that the inevitable disturbance during the measurement process leads to “final
renunciation of the classical ideal of causality and a radical revision of our attitude towards
the problem of physical reality.” The principle of complementarity explains the quantum-
mechanical description of physical phenomena and this fulfills, “within its scope, all rational
demands of completeness.” The reality at the quantum level does not exist until the object is
measured. According to Bohr, quantum mechanics is therefore not incomplete.

There is therefore a fundamental difference in the definitions of reality by Einstein and Bohr.
According to Einstein, an object is real if it exists independent of a human observer. On the
other hand, according to Bohr, we cannot assign reality to an object until either it is measured
or is in a position to be measured with a predictable result.

12.4 Bell’s Inequality

In the absence of a concrete experimental situation to test the reality and locality aspects of
quantum mechanics, the debate concerning the foundations of quantum mechanics remained
philosophical. It was also not clear whether any inclusion of “hidden variables” in quantum
mechanics could make it complete—a theory with deterministic description like Newtonian
mechanics.
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The situation changed dramatically in 1964 when John Bell proposed an inequality that
would be satisfied by any theory whose main ingredients were locality and reality. This
inequality involved experimentally measurable quantities and thus afforded an opportunity
to experimentally test whether quantum mechanics always satisfied this inequality and thus
ensure that our common-sense belief in locality and reality is justified. We now derive a form
of Bell’s inequality that was first given by J. F. Clauser and M. A. Horne in 1974.

We consider the EPR gedanken experiment illustrated in Fig. 12.3. As before, two photons 1
and 2 are prepared at the source in an entangled state

∣𝜓12⟩ =
1
√2

(|↑1⟩|↑2⟩ + |→1⟩|→2⟩) . (12.6)

Photon 1 travels to the right and photon 2 travels to the left. For the purpose of proving Bell’s
theorem we are interested in the probability of photon 1 passing through a polarizer whose
polarization axis is oriented at an angle a with the vertical direction and that photon 2 passes
through a polarizer whose polarization axis is oriented at an angle b to the vertical.

Just to make sure that our conclusions are valid for all theories that include hidden variables
as well, we introduce quantities p1 (a,ℋ) and p2 (b,ℋ) where p1 (a,ℋ) is the probability of
detecting photon 1 for setting a of the polarizer and the settingℋ of the hidden variable and
p2 (b,ℋ) is the probability of detecting photon 2 for setting b of the polarizer and the setting
ℋ of the hidden variable. By definition, hidden variables are variables which we have no way
of knowing about or measuring. Measurable quantities are therefore obtained by taking an
average over all the hidden variables {ℋ}, i.e.,

p1(a) = ∑ℋp1 (a,ℋ) 𝜌 (ℋ); p2(b) = ∑ℋp2 (b,ℋ) 𝜌 (ℋ) . (12.7)

Here 𝜌 (ℋ) is the weight function of the hidden variable ℋ and contains all the information
about the hidden variable. Therefore measurable quantities in this set-up are:

p1(a) − Probability of detecting photon 1 for setting a of the polarizer
p2(b) − Probability of detecting photon 1 for setting b of the polarizer.

The condition for locality requires that the two polarizers, 1 and 2, are so far away that they
cannot communicatewith each other.Therefore the joint probability, p12 (a, b,ℋ) , of detecting
photon 1 for setting a and photon 2 for setting b of the polarizers and the setting ℋ of the
unknown hidden variables is the product of the probabilities p1 (a,ℋ) and p2 (b,ℋ), i.e.,

p12 (a, b,ℋ) = p1 (a,ℋ) p2 (b,ℋ) . (12.8)
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Fig. 12.3 The set-up for the test of Bell’s inequality. Two photons initially prepared in an entangled state are sent in

opposite directions. The photon at Alice’s end is detected with a polarizer oriented with an angle a with the vertical and

the photon at Bob’s end is detected with a polarizer oriented along angle b with the vertical.
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Here we used the property that the joint probability of independent events is the product of
individual properties. The measured joint probability can, however, be obtained by taking an
average over the hidden variables as before:

p12 (a, b) = ∑ℋp12 (a, b,ℋ) 𝜌 (ℋ) = ∑
h
p1 (a,ℋ) p2 (b,ℋ) 𝜌 (ℋ) . (12.9)

Thus, hidden variables may (or may not) introduce correlation, i.e., p12(a, b) may no longer be
a product of p1(a) and p2(b). The probabilities can be numbers that lie between 0 and 1. Thus,
in general,

0 ≤ p1 (a,ℋ), p2 (b,ℋ) ≤ 1. (12.10)

So, before deriving the Bell inequality, we reiterate that locality is enforced by our assumption
(12.8) that the probability of detecting the two photons is independent of each other and the
joint probability p12 (a, b,ℋ) factorizes.

The reality is incorporated by noting that even if we cannot make simultaneous measure-
ments on particle 1 along both a1 and a2 directions and on particle 2 along both b1 and b2
directions, we can speak about the outcome of measurements in the two directions of the
analyzers. These polarization directions can be chosen using a more elaborate set-up as shown
in Fig. 12.6 when we discuss the real experimental arrangements to test Bell’s inequality.

The Bell inequality can now be derived by first noting that, for any four numbers that lie
between 0 and 1, i.e.,

0 ≤ X1,X2,Y1,Y2 ≤ 1, (12.11)

the following inequality holds

U = (X1Y1 − X1Y2 + X2Y1 + X2Y2 − X2 − Y1) ≤ 0. (12.12)

We can prove this inequality in two steps. First let us assume X1 ≥X2. In this case
U = (X1 − 1)Y1 + (Y1 − 1)X2 + (X2 − X1)Y2. Since all the terms are less than or equal
to zero, U ≤ 0.Next we assume that X2 > X1. In this case, U = X1Y1 + X2Y1 + X2Y2 − Y1 +
X2 (Y2 − 1) ≤ X1Y1 + X2Y1 + X2Y2 − Y1 + X1 (Y2 − 1) = X1 (Y1 − 1) + (X2 − 1)Y1. Again as
both terms are less than or equal to zero, U ≤ 0. Thus the inequality (12.12) is proved for all
possible cases.

Next we substitute for X1, X2, Y1, Y2 in Eq. (12.12) the following probabilities

X1 ≡ p1 (a1,ℋ) , (12.13)

X2 ≡ p1 (a2,ℋ) , (12.14)

Y1 ≡ p2 (b1,ℋ) , (12.15)

Y2 ≡ p2 (b2,ℋ) , (12.16)

The resulting inequality is

p1 (a1,ℋ) p2 (b1,ℋ) − p1 (a1,ℋ) p2 (b2,ℋ) + p1 (a2,ℋ) p2 (b1,ℋ)
+ p1 (a2,ℋ) p2 (b2,ℋ) − p1 (a2,ℋ) − p2 (b1,ℋ) ≤ 0.

(12.17)
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Fig. 12.4 The polarization directions a1 , b1 , a2 , and b2 .

We recall that

p12 (a, b,ℋ) = p1 (a,ℋ) p2 (b,ℋ) . (12.18)

The inequality (12.17) becomes

p12 (a1, b1,ℋ) − p12 (a1, b2,ℋ) + p12 (a2, b1,ℋ) + p12 (a2, b2,ℋ)
− p1 (a2,ℋ) − p2 (b1,ℋ) ≤ 0.

(12.19)

Finally, taking an average over the hidden variables we obtain

∑ℋ 𝜌 (ℋ) dℋ [] → p12(a1, b1)− p12(a1, b2) + p12(a2, b1) + p12(a2, b2)
p1(a2)+ p2(b1)

≤ 1. (12.20)

This is Bell’s inequality that can be tested in an experiment. This inequality has been obtained
with only two assumptions: locality and reality. A violation of this inequality would therefore
imply that locality and reality, our cherished self-evident truths, may not co-exist.

The Bell’s inequality

p12 (a1, b1) − p12 (a1, b2) + p12 (a2, b1) + p12 (a2, b2)
p1 (a2) + p2 (b1)

≤ 1

can be further simplified. In all the experiments to date, p1(a), p2(b) are independent of
the direction and the joint probability p12(a, b) depends only on the angle between a
and b, i.e.,

p12 (a, b) = p12 (𝜃) , (12.21)

where 𝜃 = a − b. If we assume the angles between a1 and b1, b1 and a2, and a2 and b2 to be 𝜃
then the angle between a1 and b2 is equal to 3𝜃 as shown in Fig. 12.4. Bell’s inequality (12.20)
then reduces to

S (𝜃) =
3p12 (𝜃) − p12 (3𝜃)

p1 + p2
≤ 1. (12.22)

12.5 QuantumMechanical Prediction

Next we calculate the value S for the experimental set-up in Fig. 12.3 based on quantum
mechanics.We stress that a violation of the inequality (12.22) even for a single value of 𝜃 would
mean that locality and reality do not co-exist in quantum mechanics.
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The quantum state for the two photons 1 and 2 is given by

∣𝜓12⟩ =
1
√2

(|↑1⟩|↑2⟩ + |→1⟩|→2⟩) . (12.23)

The joint probability of detection of photons 1 and 2 with polarizer orientations a and b with
the horizontal, respectively, is given by

p12 (a, b) = ∣⟨a|⟨b|𝜓12⟩|
2 = 1

2 ∣⟨a|↑1⟩⟨b|↑2⟩ + ⟨a|→1⟩⟨b|→2⟩|
2

= 1
2 [sin a sin b + cos a cos b]2 = 1

2cos2 (a − b) = 1
2cos2𝜃.

(12.24)

We therefore obtain

p12 (a, b) ≡ p12 (𝜃) =
1
2cos2𝜃. (12.25)

For each individual photon, 1 and 2, there is no well-defined polarization direction if they
are prepared in the entangled state (12.23). The situation is therefore similar to the passage of
an unpolarized photon as discussed in Section 9.1. The probability p1(a) can be calculated as
follows:

p1(a) = ∣⟨a||⟨↑2|𝜓12⟩||
2 + ∣⟨a∣⟨→2|𝜓12⟩|

2 = 1
2 (∣⟨a|↑1⟩⟨↑2||↑2⟩||

2 + ∣⟨a|→1⟩⟨→2|→2⟩|
2)

=1
2 (sin

2a + cos2a) = 1
2 . (12.26)

Similarly p2(b) = 1/2.
On substituting these values in the expression for S, as given by Eq. (12.22), we obtain

S (𝜃) = 1
2 (3cos

2𝜃 − cos23𝜃) .

In Fig. 12.5, we plot S(𝜃) as a function of 𝜃.Themaximum value of S(𝜃) is obtained for 𝜃 = 𝜋/8
which is given by

S (𝜋/8) = 1.207. (12.27)

Thus S can be greater than 1 and the Bell’s inequality is violated by quantum mechanics.
Therefore locality and reality do not co-exist in quantum mechanics. This is a startling result.
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Fig. 12.5 A plot of S(𝜃) vs 𝜃 as predicted by quantum mechanics. In the region where S (𝜃) > 1, Bell’s inequality (12.22)

is violated.
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12.6 Experiments to Test Bell’s Inequality

The experimental activity to test Bell’s inequality has an interesting and rich history. The
first experiment was done by S. J. Freedman and J. F. Clauser at the University of California
at Berkeley in 1972. The outcome was in violation of Bell’s inequality and agreed with the
predictions of quantum mechanics. In 1974, R. A. Holt and F. M. Pipkin carried out a similar
experiment at Harvard University. This experiment was in agreement with Bell’s inequality
but in disagreement with quantum mechanics. This work was never formally published and
remains in reprint form. So, in 1974, we had two experiments at the two coasts of the United
States, both disagreeing with each other. A decisive experiment was carried out by E. S. Fry
and R. C. Thompson at Texas A&M University two years later in 1976. This experiment
proved Freedman–Clauser correct and demonstrated the violation of Bell’s inequality. Another
experiment that explicitly addressed the issue of locality was done by A. Aspect, J. Dalibard,
and G. Roger in 1982.

Most experiments to test Bell’s inequality have been a variation of an experiment of the type
shown in Fig. 12.6. The source of the entangled pair of photons is a three-level atom initially
excited state which can emit two photons of slightly different frequencies 𝜈1 and 𝜈2.The atomic
levels are chosen in such a way that either both photons are vertically polarized or they are
horizontally polarized. The resulting state of the emitted photons is an entangled state of the
form (12.2), i.e.,

∣𝜓12⟩ =
1
√2

(|↑1⟩|↑2⟩ + |→1⟩|→2⟩) .

The emitted photons move in opposite directions as shown in Fig. 12.6. An optical filter on
the right-hand side allows only photons with frequency 𝜈1 to be transmitted and a filter on the
left-hand side transmits only photons of frequency 𝜈2. On each side there are two path selectors
c1 and c2. The role of the path selectors is to direct the incoming photons to the appropriate
polarizers. The path selector c1 can direct the photon of frequency 𝜈1 to the polarizer oriented
in the direction a1 or a2 with the horizontal. Similarly the path selector c2 directs the photon
of frequency 𝜈2 to the polarizer oriented in the directions b1 or b2 with the horizontal. The
photons that pass through the polarizers are detected at Da1 , Da2 and Db1 , Db2 . We carry out

Sourcec2
b2

b1

 1

 1

 2

 2

Db1

Db2

Da1

Da2

a2

a1

c1

Fig. 12.6 Schematics for an experiment to test Bell’s inequality.
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this experiment a large number of times with random orientations. Thus, we have four sets of
data: (i) when polarizer 1 is oriented along a1 and polarizer 2 is oriented along b1, (ii) when
polarizer 1 is oriented along a1 and polarizer 2 is oriented along b2, (iii) when polarizer 1 is
oriented along a2 and polarizer 2 is oriented along b1, and (iv) when polarizer 1 is oriented
along a2 and polarizer 2 is oriented along b2.

If we want tomeasure the joint probability, such as p12(a1, b1), we consider only those events
where polarizer 1 is oriented along a1 and polarizer 2 is oriented along b1. If the total number
of such events is Na1b1 , we find the number of events na1b1 when both Da1 and Db1 click. Then

p12 (a1, b1) =
na1b1

Na1b1

. (12.28)

Similarly

p12 (a1, b2) =
na1b2

Na1b2

, (12.29)

p12 (a2, b1) =
na2b1

Na2b1

, (12.30)

p12 (a2, b2) =
na2b2

Na2b2

. (12.31)

Thesemeasurement results are then substituted in the expression (12.20) or (12.22) for S to test
Bell’s inequality.

All the experiments done so far to test it have violated Bell’s inequality and agreed with the
predictions of quantum mechanics.

12.7 Bell–CHSH Inequality

In Section 12.2, we derived the Bell’s inequality that involved polarizationmeasurements along
one axis only. In this section we derive another Bell’s inequality which was first proposed by
J. F. Clauser, M. Horne, A. Shimony, and R. Holt, and is usually referred as the Bell–CHSH
inequality. This inequality involves polarization measurements along both orthogonal axes.

The experimental set-up is as shown in Fig. 12.7. Again we consider a source that emits two
entangled photons of slightly different frequencies 𝜈1 and 𝜈2. They are initially prepared in the
entangled state

∣𝜓12⟩ =
1
√2

(|↑1⟩|↑2⟩ + |→1⟩|→2⟩) . (12.32)

The first photon travels to Alice to the right and the second photon to Bob to the left; each
photon passes through the respective path selectors c1 and c2. The path selector c1 directs the
photon of frequency 𝜈1 to the Pockel cells that rotate the polarization of the incoming photon
by the angles −a1 or −a2 with the horizontal followed by the polarization beam splitter and
the detectors. As discussed in Section 9.5 (see Fig. 9.14), this set-up allows us to measure both
the horizontal and vertical components of the photons, with the possible orientations a1 or a2
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Fig. 12.7 Schematics for an experiment to test the CHSH inequality.

for the first photon. Similarly, the path selector c2 directs the photon of frequency 𝜈2 to the
Pockel cells that rotate the polarization of incoming photon by the angles −b1 or −b2 with
the horizontal followed by the polarization beam splitter and the detectors. This set-up allows
us to measure both the horizontal and vertical components of the photons with the possible
orientations b1 or b2 for the second photon.

The net result is that, at Alice’s end, the photon can be detected in states |↑⟩ and |→⟩ along
the directions a1 or a2 and similarly, at Bob’s end, in states |↑⟩ and |→⟩ along b1 or b2.

Let r1(a) and r2(b) be the measurement outcomes observed by Alice and Bob for mea-
surements along angles a and b. If Alice measures |↑⟩ along the angle a then r1(a) = +1.
Similarly if Bob measures |↑⟩ along the angle b then r2(b) = +1. On the other hand, if Alice
or Bob measure the polarization directions to be horizontal |→⟩ along the angles a and b
then r1(a) = −1 and r2(b) = −1. Here, as before, we consider two possible orientations for
a (a1 and a2) as well as for b (b1 and b2).

Next we define the probabilities P++(ai, bj), P+−(ai, bj), P−+(ai, bj), and P−−(ai, bj) with
i = 1, 2. Here P++(ai, bj) is the probability that we get r1(ai) = +1 and r2(bj) = +1. Similarly
P+−(ai, bj) is the probability that we get r1(ai) = +1 and r2(bj) = −1, P−+(ai, bj) is the
probability that we get r1(ai) = −1 and r2(bj) = +1, and P−−(ai, bj) is the probability that
we get both r1(a) = −1 and r2(a) = −1.

These probabilities are measured in the experiment. For example, we carry out the exper-
iment N times with the beam splitter orientations along a1 and b2 where N can be very
large. We measure the outcomes at Alice’s and Bob’s ends for the polarization of photons.
Suppose n++ is the number of times the measurement outcomes are |↑⟩ for Alice and |↑⟩ for
Bob; then

P++ (a1, b2) =
n++
N . (12.33)

Similarly, for n+− measurement outcomes of |↑⟩ for Alice and |→⟩ for Bob,

P+− (a1, b2) =
n+−
N , (12.34)

for n−+ measurement outcomes of |→⟩ for Alice and |↑⟩ for Bob,

P−+ (a1, b2) =
n−+
N , (12.35)
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and for n−− measurement outcomes of |→⟩ for Alice and |→⟩ for Bob,

P−− (a1, b2) =
n−−
N . (12.36)

Here

n++ + n+− + n−+ + n−− = N. (12.37)

In the same way, we can measure the joint probabilities P++(ai, bj), P+−(ai, bj), P−+(ai, bj),
and P−−(ai, bj) for other orientations of the polarizers at Alice’s and Bob’s ends.

If Alice and Bob are very far away so that one cannot influence the other in any way, we
expect the joint probabilities to be factorized, i.e., P++(ai, bj) = P+(ai)P+(bj). The source of
the correlation can be the hidden variables. Again we average over a distribution of hidden
variables the way we did it in Section 10.2.

We define the correlation function ⟨r1(ai)r2(bj)⟩ between the measurements at Alice’s and
Bob’s ends as follows. There are four possibilities. We can have r1(ai) = +1 and r2(bj) = +1.
The probability of such events happening is P++(ai, bj). Thus the contribution of such events
to ⟨r1(ai)r2(bj)⟩ is (+1)(+1)P++(ai, bj). Similarly the contribution of the events r1(ai) = +1
and r2(bj) = −1 is (+1)(−1)P+−(ai, bj), of the events r1(ai) = −1 and r2(bj) = +1 is
(−1)(+1)P−+(ai, bj), and of the events r1(ai) = −1 and r2(bj) = −1 is (−1)(−1)P−−(ai, bj). If
we add all these contributions, we get

⟨r1(ai)r2(bj)⟩ = (+1)(P++(ai, bj) + P−−(ai, bj))
+(−1)(P+−(ai, bj) + P−+(ai, bj)).

(12.38)

We label this quantity as E(ai, bj), i.e.,

E(ai, bj) = ⟨r1(ai)r2(bj)⟩
= P++(ai, bj) + P−−(ai, bj) − P+−(ai, bj) − P−+(ai, bj)

(12.39)

It is clear that the correlation function E(ai, bj) can be constructed from the experimentally
measured quantities P++(ai,bj), P+−(ai, bj), P−+(ai, bj), and P−−(ai, bj).

We now form a quantity S defined as

S= E (a1, b1) − E (a1, b2) + E (a2, b1) + E (a2, b2)
= ⟨r1 (a1) r2 (b2)⟩ − ⟨r1 (a1) r2 (b2)⟩ + ⟨r1 (a2) r2 (b1)⟩ + ⟨r1 (a2) r2 (b2)⟩
= ⟨r1 (a1) (r2 (b1) − r2 (b2))⟩ + ⟨r1 (a2) (r2 (b1) + r2 (b2))⟩ .

(12.40)

Since both r1(𝛼) and r2(𝛽) can have only two values,+1 and−1, S can have a value in the range
−2 to +2, i.e.,

∣S ∣ ≤ 2. (12.41)

This is another version of Bell’s inequality. Just like the earlier inequality discussed in Section
12.2, this inequality is also based only on the postulates of locality and reality.

What is the prediction of quantum mechanics for this inequality? To answer this question,
we have to calculate the probabilities P++(ai, bj), P+−(ai, bj), P−+(ai, bj), and P−−(ai, bj). We
recall that the initially prepared state is an entangled state
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∣𝜓12⟩ =
1
√2

(|↑1⟩|↑2⟩ + |→1⟩|→2⟩) . (12.42)

In the set-up shown in Fig. 12.7, for the setting a, the measurement basis is

∣ + a⟩ ≡ ∣a⟩ = cos a∣→⟩ + sin a ∣↑⟩, (12.43)

∣ − a⟩ ≡ ∣a + 𝜋/2⟩ = cos a ∣↑⟩ − sin a∣→⟩. (12.44)

This follows from our discussion in Section 9.5 (see Eqs. (9.56) and (9.57)). Here |+a⟩ is the
polarization state when the polarizer is rotated by an angle a with respect to the horizontal.
Similarly |−a⟩ is the polarization state when the polarizer is rotated by an angle a+𝜋/2a with
respect to the horizontal. As an example, if a = 0o, then ∣ + a ⟩ = ∣→⟩ and ∣− a⟩ = ∣↑⟩. This
corresponds to the photon passing through a simple polarization beam splitter. However, if
a = 45o, then ∣+ a⟩ = (|→⟩ + |↑⟩)/√2 = ∣↗⟩ and ∣− a⟩ = (|↑⟩ − | →⟩)/√2 = ∣ ↖⟩.
This corresponds to the photon passing through the polarization beam splitter after passing
through a Pockel cell that rotates the polarization of the incoming photon by an angle −45∘
(see Fig. 9.14).

Similarly the measurement basis with setting b, i.e., when the polarization axis is oriented at
an angle b with the horizontal direction, is

∣ + b ⟩ = cos b∣→⟩ + sin b∣↑⟩, (12.45)

∣ − b ⟩ = cos b∣↑⟩ − sin b∣→⟩. (12.46)

The probability of an outcome with polarization |→⟩ for both photons with orientations of
the polarizers along ai for photon 1 and along bj for photon 2 is thus

P++(ai, bj) = ∣ ⟨+ai∣⟨ + bj|𝜓12⟩|
2 = 1

2cos2(ai − bj). (12.47)

Here i = 1, 2 and j = 1, 2. Similarly

P+−(ai, bj) = ∣⟨+ai∣⟨−bj|𝜓12⟩|
2 = 1

2sin2(ai − bj), (12.48)

P−+(ai, bj) = ∣ ⟨−ai ∣ ⟨+bj|𝜓12⟩|
2 = 1

2sin2(ai − bj), (12.49)

P−−(ai, bj) = ∣ ⟨−ai ∣ ⟨−bj|𝜓12⟩|
2 = 1

2cos2(ai − bj). (12.50)

It follows, on substituting from Eqs. (12.47)–(12.50) into Eq. (12.39), that the correlation
function

E(ai, bj) = P++(ai, bj) + P−−(ai, bj) − P+−(ai, bj) − P−+(ai, bj)

= cos2(ai − bj) − sin2(ai − bj)
= cos(2(ai − bj))

(12.51)
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If we choose a1 − b1 = b1 − a2 = a2 − b2 = 𝜃, then a1 − b2 = 3𝜃 and

S= E(a1, b1) − E(a1, b2) + E(a2, b1) + E(a2, b2)
= 3 cos(2𝜃) − cos(6𝜃).

(12.52)

The maximum value for S is obtained for 𝜃 = 𝜋/8,

S = 2√2. (12.53)

This represents violation of the Bell–CHSH inequality (12.41).

Problems

12.1 Show that, for any four numbers, X1, X2, Y1, Y2, such that

0 ≤ X1,X2 ≤ A and 0 ≤ Y1,Y2 ≤ B

the following inequality holds

−AB ≤ (X1Y1 − X1Y2 + X2Y1 + X2Y2 − X2 − Y1) ≤ 0.

[Hint: See Appendix A of the paper J. F. Clauser and M. A. Horne, Phys. Rev. D 10, 526
(1974)]

12.2 Consider the experimental set-up in Fig. 12.3. The initial quantum state for the two
photons 1 and 2 is given by

∣𝜓12⟩ =
1
√2

(|→1⟩|↑2⟩ − |↑1⟩|→2⟩).

Find the joint probability of detection of photons 1 and 2, p12(a, b), with polarizer
orientations a and b with the horizontal, respectively. Show that the Bell inequality
(12.20) is violated.
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13 Quantum Secure Communication

Since ancient times, a topic of great interest has been the exchange of information over long
distances with complete secrecy and security. The sender of the information (say Alice) should
be confident that her message is received by the receiver (say Bob) in such a way that no one
else has access to this message. This topic has many applications ranging from commercial
transactions where the information transferred is kept secret from a potential eavesdropper
to military applications where the security and confidentiality of information can make the
difference between victory and defeat.

Cryptography is a method of secure communication between two or more parties. Here, the
sender, Alice, and receiver, Bob, first exchange a key in a secure manner. Alice then encodes
her message with the key, which is known only to Alice and Bob. The message gets encoded in
a way that makes it scrambled. This encoded message is then sent to Bob who can decode the
message using the key.

As an example of this kind of old-fashioned cryptography, let us assume that Alice and Bob
exchange a key such that each letter in alphabet is shifted by one, i.e.,

A → Z,B → A,C → B⋯⋯Z → Y

This is perhaps the simplest of the keys. Typically, the keys could be much more complex. Now
let us suppose that Alice wants to send the message:

I AM HAPPY TO BE READING THIS BOOK

The message is encoded with the above key by displacing each letter by one (“I” becomes “J”,
“AM” becomes “BN”, etc.). The sent message would therefore be

J BN IBQQZ UP CF SFBEJOH UIJT CPPL

The message is then sent through a public channel like a telephone line or via the internet. If,
during transmission, an eavesdropper, Eve, is able to intercept this message, it would not make
any sense to her unless she knows the key. When the message reaches Bob, he can decode the
message by shifting each letter by one in the opposite direction (“J” becomes “I”, “BN” becomes
“AM”, etc.) and the full message is recovered.

There are however two problems with this type of cryptography. First Alice and Bob
should exchange the key through highly reliable and secure channels. For example, such a key
cannot be exchanged on a telephone line that can be intercepted rather easily by a resourceful
eavesdropper. A secure channel could be through a physical contact between Alice and Bob
or their reliable representatives who can then travel to their destinations before starting the
exchange of information. The second problem is that a clever eavesdropper can, by a careful
analysis of the sent information, reconstruct the key. Both Alice and Bob may continue

Quantum Mechanics for Beginners: With Applications to Quantum Communication and Quantum Computing. M. Suhail Zubairy.
© M. Suhail Zubairy 2020. Published in 2020 by Oxford University Press. DOI: 10.1093/oso/9780198854227.001.0001
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communicatingwithout knowing that their key is known to a clever Eve and consequently their
communication security is compromised. Of course many clever schemes for conventional
cryptography have been proposed and implemented, but ultimately all of them are plagued
with these problems.

In this chapter, we discuss how to overcome these problems. A scheme for exchanging a key
over public channels, the so-called RSA algorithm, is presented, followed by a discussion of
quantum cryptographic techniques. However, first we discuss the role of numbers that are the
tools for communication in the present-day world

13.1 Binary Numbers

We are most familiar with the decimal numbers in base-10, which require 10 integers, 0, 1, 2,
3, 4, 5, 6, 7, 8, 9, to represent any number. For example, the number 3568 represents

3568 ≡ (3568)10 = (3 × 103) + (5 × 102) + (6 × 101) + (8 × 100)

Modern communication and computing, however, is done in binary numbers that require only
0 and 1. The reason for using binary numbers is that the processing becomes very simple with
just two options, a high voltagemay refer to “1” and a low voltage to “0.” Each 0 and 1 is referred
to as a bit. The price we pay is that a decimal number when written as a binary number may
have many more digits. For example the decimal number 13 with only two digits requires four
digits to write it in binary form, as follows:

1101 ≡ (1101)2 = (1 × 23) + (1 × 22) + (0 × 21) + (1 × 20) = (13)10.

In a similar manner, we can show that (111001)2 = (57)10, i.e.,

111001 = (111001)2 = (1 × 25) + (1 × 24) + (1 × 23) + (1 × 20) = (57)10.

The first nine numbers are shown in the following conversion table between the decimal
(base-10) and binary (base-2):

Decimal 0 1 2 3 4 5 6 7 8

Binary 0000 0001 0010 0011 0100 0101 0110 0111 1000

For most communication purposes, an ASCII code is followed where each letter (lower and
upper case), symbol, space, etc. is characterized by a sequence of binary numbers, as in the
following table.

Thus any message can be represented by a long sequence of 0s and 1s. For example, the word
“Book” corresponds to the sequence

B

⏞⎴⎴⏞⎴⎴⏞0100 0010
o

⏞⎴⎴⏞⎴⎴⏞0110 1111
o

⏞⎴⎴⏞⎴⎴⏞0110 1111
k

⏞⎴⎴⏞⎴⎴⏞0110 1011
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ASCII Code: Character to Binary

0 0011 0000 I 0100 1001 a 0110 0001 s 0111 0011

1 0011 0001 J 0100 1010 b 0110 0010 t 0111 0100

2 0011 0010 K 0100 1011 c 0110 0011 u 0111 0101

3 0011 0011 L 0100 1100 d 0110 0100 v 0111 0110

4 0011 0100 M 0100 1101 e 0110 0101 w 0111 0111

5 0011 0101 N 0100 1110 f 0110 0110 x 0111 1000

6 0011 0110 O 0100 1111 g 0110 0111 y 0111 1001

7 0011 0111 P 0101 0000 h 0110 1000 z 0111 1010

8 0011 1000 Q 0101 0001 i 0110 1001 space 0010 0000

9 0011 1001 R 0101 0010 j 0110 1010 ! 0010 0001

A 0100 0001 S 0101 0011 k 0110 1011 “ 0010 0010

B 0100 0010 T 0101 0100 l 0110 1100 ’ 0010 0111

C 0100 0011 U 0101 0101 m 0110 1101 ( 0010 1000

D 0100 0100 V 0101 0110 n 0110 1110 ) 0010 1001

E 0100 0101 W 0101 0111 o 0110 1111 ‘ 0010 1100

F 0100 0110 X 0101 1000 P 0111 0000 . 0010 1110

G 0100 0111 Y 0101 1001 q 0111 0001 : 0011 1010

H 0100 1000 Z 0101 1010 r 0111 0010 ; 0011 1011

? 0011 1111

This example shows that any message or information can be communicated through numbers.
Thus a secure way of sending numbers would ensure that any message can be sent in a secure
manner.

13.2 Public Key Distribution, RSA

Conventional cryptography was used for secure communication for millennia until around
1970, when the advent of public key algorithms such as the RSA protocol changed the
nature of cryptography dramatically. Even before the internet became a widely used means of
communication, there was a need for a key exchange through a public channel. If a bank wants
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B3

B4

(d, N)

B1

B2

(e, N)

Fig. 13.1 Schematics of RSA key distribution. Alice announces the encryption key (e, N) to everyone including her

friends as well as potential eavesdroppers. She keeps the decryption key d secret.

to communicate sensitive financial information with branches scattered all over the world, it
would be too impractical and expensive to exchange keys via physical contact.The key has to be
exchanged on the communication channels that are readily available, such as a telephone line
or the internet.With the arrival of the internet in the 1990s and its usefulness in e-commerce, it
became essential that data and information transfer should be exclusively on public channels,
and, at the same time, should be secure.

Three mathematicians, Ronald Rivest, Adi Shamir, and Leonard Adleman, devised the so-
called RSA protocol in 1978 that allows us to exchange keys through public channels with very
high level of security.The RSA protocol is a beautiful (and useful) example of the purest branch
of mathematics, called number theory.

Now the RSA public key system is described. It is shown how a key can be exchanged on
a public channel and a message in the form of a decimal number can be sent in an almost
secure manner. The RSA algorithm is schematically shown in Fig. 13.1. Here Alice wants
to exchange information with many friends Bob1, Bob2,⋯ scattered around the world, in
complete security. She would like to do it in such a way that if Bob1 sends some information
to Alice, then Bob2, Bob 3, etc. should not be able to figure out the message even if they have
access to the information that Bob1 sent to Alice.

The way this is done is that Alice forms a key consisting of two numbers e and N that
she announces to all her friends on some public channel like the internet, a cell phone, or
a telephone line. This encryption key is accessible to any eavesdropper as well. Alice retains
a decryption key d that is kept secret. Now if any of Alice’s friends wants to send a message (a
decimal number) he/she can encode the message with the key e and N in a prescribed manner
and send to Alice. Alice, at her end, uses the decoding key d to decipher the message. The
amazing aspect of the RSA protocol is that, although all the friends and eavesdroppers have
access to both the encoded message and the encoding key (e and N), it is almost impossible for
them to decipher the message. This seems almost too good to be true—announcing the key to
everyone with no one being able to decipher the sent message. How this is done is discussed in
the following.

Anyone with a pocket calculator knows it is trivial to multiply two prime numbers, however
large they may be. However, carrying out the reverse—finding the unknown prime factors
given a large number—is extremely difficult. To appreciate the difficulty, try to find the prime



OUP CORRECTED PROOF – FINAL, 10/3/2020, SPi

PUBLIC KEY DISTRIBUTION, RSA 205

factors of the number 21583.1 The difficulty in finding the prime factors of a number lies at the
heart of the RSA encryption system.

In order to understand the RSA algorithm, we need a mathematical tool that is used very
frequently in number theory—the modulo operation. For two integers a and b, the modulo
operation is defined via the relation

amod b = r, (13.1)

where a is the divided, b is the divisor (or modulus), and r is the remainder. As examples,
11 mod 4 = 3 because 11 divided by 4 (twice) with 3 remaining, 25 mod 5 = 0 because
25 divided by 5 (five times) with 0 remaining; 3 mod 2 = 1 because 3 divided by 2 (once)
with 1 remaining.

The steps involved in RSA encryption and decryption are as follows:

1. The sender (Alice) chooses two large prime numbers p and q. Alice multiplies these prime
numbers to obtain another number N. In RSA, N is typically a 256 digit number.

2. From N, p, and q, Alice generates two additional numbers e and d. Here e stands for
encryption and d stands for decryption. The encryption key e is chosen randomly such
that it is co-prime (no common factors) with (p − 1)(q − 1) and the decryption key is
made via

1 = d · emod ( (p − 1)(q − 1)), (13.2)

that is, when the product d · e is divided by (p − 1)(q − 1), the remainder is 1, i.e.,
d · e = 1+ k (p− 1) (q− 1) where k is an integer. Finding d according to this equation may
be a bit complicated but there are known ways of doing it. Alice announces the encryption
key (e, N) to everyone through a public channel. She can even put this encryption key on
her website for everyone to see. She keeps the decryption key d secret and it is only known
to herself.

3. If anyone, (say) Bob, wants to send a message, it should be encoded with the encryption
key (e, N). Typically the message is a decimal number m. The encrypted message then is
given by

c = me modN. (13.3)

Bob sends the encrypted message c to Alice. In principle, everyone is able to see that Bob
has sent c to Alice.

4. Next comes the interesting and crucial step: Alice can decrypt the message with her
decryption key (d, N) via

cd modN = m (13.4)

and the message is recovered. This equation follows from a theorem of number theory and
is central to the RSA algorithm.

1 The answer can be found on page 246.
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Here we consider an example.
Let Alice choose her prime numbers to be p = 47, q = 71 so thatN = p·q = 47× 71 = 3337.

We then obtain

(p − 1) (q − 1) = 46 × 70 = 3220

Alice chooses the encryption key e = 79 and verifies that 79 has no common factors with 3220.
The decryption key is then obtained via

1 = d · emod ((p − 1)(q − 1)) = 79 · d (mod 3220)

The resulting value of d is 1019. We can verify this result by noting that 1019 × 79 = 80501
is equal to 3220 × 25 + 1, i.e., when d · e = 80501 is divided by (p − 1)(q − 1) = 3220, the
remainder is 1.

Alice then sends her encryption key (e,N) ≡ (79, 3337) to everyone including Bob, but
keeps the decryption key d = 1019 secret.

Next we suppose that Bob wants to send a numerical message

m = 688.

He encodes the message m with the encryption key (e,N) ≡ (79, 3337) and generates the
number

c = me mod N = 68879 mod 3337 = 1570.

This is the encrypted message that is sent to Alice on a public channel which is accessible to
everyone.

When Alice receives this encrypted message, she applies her decryption key (d,N) ≡
(1019, 3337) to recover the actual message:

cd mod N = 15701019 mod 3337 = 688.

The message sent by Bob is finally recovered by Alice.
It seems very surprising that a key can be exchanged between Alice and Bob on a public

channel. More remarkable is the fact that the key is shared with everyone so that anyone can
use the same key to send a message to Alice through a public channel without being fearful
that his/her message will be compromised.

Central to the security of the RSA protocol is the difficulty of factorizing the number N. To
see this, we note that what is public knowledge in the RSA protocol are the encryption key e
and N. In order to break the security one needs to know the decryption key d and that, in turn,
requires a knowledge of the prime numbers p and q.Thus the difficulty of factorizingN ensures
the security of the RSA protocol.

In order to appreciate the difficulty of factorizing a large number, we note that it would take
decades to find prime factors of a 256-decimal-digit number on one of the fastest computers
available today. A 1000-decimal-digit number would take about ten billion years (1010 years).
This is indeed a long time considering that the present estimate of the age of the universe is
13.8 billion years. Thus by increasing the size of the prime numbers, the amount of difficulty
in breaking the security can be made extremely large.



OUP CORRECTED PROOF – FINAL, 10/3/2020, SPi

BENNETT–BRASSARD 84 (BB-84) PROTOCOL 207

The RSA protocol may be a secure way to communicate in today’s world. However, with
the exponential growth of technology, it is not inconceivable that sometime soon it will be
possible to find prime factors in an efficient way.There is, therefore, a need to develop foolproof
methods to communicate with security. It turns out that cryptographic systems based on
quantum concepts like Bohr’s principle of complementarity can make it possible. We turn to
these quantum cryptography protocols next.

13.3 Bennett–Brassard 84 (BB-84) Protocol

We have seen how it is possible to exchange a key on a public channel using the RSA protocol.
However, the ultimate security of communication is not guaranteed as a clever eavesdropper
can, via efficient factorization algorithms, find the decoding key and jeopardize the security of
the protocol.

As discussed earlier, there are two requirements to bemet for a practical secure communica-
tion channel: Firstly, the communication should take place on a public channel, and, secondly,
if there is an eavesdropper trying to intercept the communication, he/she should be readily
detected. We have seen that the RSA algorithm can accomplish the first task, i.e., a key is
exchanged between Alice and Bob on a public channel. However, anyone who can find an
efficient way of factoring large numbers in a short time can eavesdrop and the multi-billion
dollar field of e-commerce will be put into serious danger. Remarkably, an algorithm, which is
potentially very strong in factorizing numbers, is based on the principles of quantum physics,
the so-called Shor’s factorization algorithm. This algorithm is an important application of the
emerging field of quantum computing and is discussed in Chapter 16.

In recent years, new andnovel approaches to secure communicationhave been proposed that
are based upon the fundamental principles of quantummechanics.These quantummechanical
protocols for quantum cryptography are based on novel aspects of quantum entanglement and
the inherent probabilistic nature of quantum measurement. Quantum cryptography makes it
possible to exchange a key on a public channel and to do the impossible task of detecting an
eavesdropper with certainty.

Before discussing quantum cryptography, we discuss the procedure for encoding and
decoding the message via a random key made up of binary numbers, schematically shown
in Fig. 13.2.

Message MessageEavesdropper

Key Key

Alice

Encryption

Scrambled

Message

Bob

Decryption

Fig. 13.2 Schematics for secure communication.
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Typically, transmission via a random key takes place as follows: The objective is to send the
data (a sequence of bits 1 and 0):

Message∶ 1 1 0 1 0 0 0 1 1 1 1 0 1 0 0 0 0 1 1 0 0 1 0

from Alice to Bob. These data are combined with a random sequence of bits, called the key,
and then sent through a communication channel. The random key is another sequence of bits
known only to the sender (Alice) and the receiver (Bob):

Key∶ 1 1 0 0 0 1 1 1 1 1 0 0 1 1 1 0 0 0 0 1 1 0 1

The transmitted sequence is obtained by adding the two sequences using the rules of binary
addition, namely, 0+ 0 = 0, 0+ 1 = 1+ 0 = 1, and 1+ 1 = 0. Using these addition rules, the
transmitted sequence is thus a scrambled sequence of 1s and 0s:

Srambled message∶ 0 0 0 1 0 1 1 0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 1

The scrambledmessage is sent byAlice to Bob on a public channel. An important point is that
the key is knownonly toAlice andBob.OnceBob receives the scrambledmessage encodedwith
the secret key, he unscrambles the message by adding the sequence representing the key, i.e.,

Key∶ 1 1 0 0 0 1 1 1 1 1 0 0 1 1 1 0 0 0 0 1 1 0 1

thus recovering the original message

Message∶ 1 1 0 1 0 0 0 1 1 1 1 0 1 0 0 0 0 1 1 0 0 1 0.

The randomness of the key ensures that the transmitted data is also random and is
inaccessible to a potential eavesdropper who does not have the key. The safety of the channel
therefore depends critically on the secrecy of the key. A problem with a classical channel is
that, in principle, eavesdropping can take place without the sender or the receiver knowing.
This is not true of quantum cryptography, in which (as we see below) eavesdropping disturbs
the transmitted sequence in a detectable way.

The major objective of quantum cryptography is therefore exchanging the key (which is a
random sequence of binary numbers) on a public channel in such a way that an eavesdropper
can be traced immediately.

The first protocol for quantum cryptography was proposed by Charles Bennett and Gilles
Brassard in 1984 and is referred as the BB-84 protocol. In the next section, we discuss another
protocol which was proposed by Bennett in 1992 and is referred as the B-92 protocol.

The main idea behind the BB-84 protocol is Bohr’s principle of complementarity, i.e., two
observables are complementary if precise knowledge of one of them implies that all possible
outcomes of measuring the other one are equally probable (see Fig. 13.3).

As we discussed earlier, the measurement of a quantum system in general causes a dis-
turbance. In quantum cryptography, this aspect of quantum mechanics is used to allow
two parties, Alice and Bob, to communicate in absolute secrecy, even in the presence of an
eavesdropper, Eve.

There are two channels of communication in the BB-84 protocol: one is the quantum
transmission channel through which an array of polarized photons is sent from Alice to Bob
and the other is a classical channel like a telephone line or the internet where Alice and Bob can
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Fig. 13.3 Complementarity for a polarized photon. A vertically polarized photon in state |↑⟩, when measured in

the {|↗⟩, |↖⟩,} or⊗ basis is found in state |↗⟩ or |↖⟩ with equal probability. Similarly a photon in state |↗⟩, when

measured in the {|→⟩, |↑⟩} or⊕ basis is found in state |↑⟩ or|→⟩ with equal probability.
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Fig. 13.4 Schematics for the BB-84 protocol.

exchange information about the preparation and measurement of the photons. It is essential
that the eavesdropper, Eve, should not be able to block the classical channel and impersonate
Alice to Bob and Bob to Alice. It is, however, assumed that Eve has unlimited resources to
manipulate the photon in the transmission or quantum channel. The schematics of the BB-84
protocol are shown in Fig. 13.4.

Let us assume thatAlice has a source of horizontally polarized photons. Such a source can, for
example, be formed by sending unpolarized light through a polarizer whose polarization axis
is along the horizontal direction. In the BB-84 protocol, Alice sends a stream of single photons
with four possible polarizations along 0∘, 45∘, 90∘, or 135∘ with the horizontal corresponding
to the states |→⟩, |↗⟩, |↑⟩, and |↖⟩, respectively. This can be accomplished by using a Pockel
cell. In a Pockel cell, as discussed in Section 9.5, the polarization of the incoming photon can be
rotated by applying an appropriate voltage. In the BB-84 experimental set-up, as shown in Fig.
13.4, the Pockel cellPC1 rotates the polarization vector by angles of 0∘, 45∘, 90∘, or 135∘ for each
photon at Alice’s choice. Thus Alice is able to transmit a beam of photons with each photon’s
polarization orientation being 0∘, 45∘, 90∘, or 135∘ with the horizontal direction corresponding
to states |→⟩, |↗⟩, |↑⟩, or |↖⟩, respectively.

The 0∘ and 90∘ orientations corresponds to {|→⟩, |↑⟩} or ⊕ basis whereas 45∘ and 135∘
orientations correspond to {|↗⟩, |↖⟩} or ⊗ basis. The two polarization states, say along 0∘
and 45∘, stand for the bit “0” while the other two, along 90∘, and 135∘, stand for the bit “1.”
Alice encodes her sequence of data bits, switching randomly between⊕ and⊗ bases. She then
transmits the photons to Bob with regular time intervals between them.
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Bob’s apparatus includes a second Pockel cell PC2 which can rotate the polarization vector of
the incoming photon by an angle of either 0∘ or−45∘ at Bob’s choice, followed by a polarization
beam splitter that can detect photons in the {|→⟩, |↑⟩} or⊕ basis. The two choices, 0∘ and−45∘
for the rotation by the Pockel cell, are therefore equivalent to detecting in the⊕ and⊗ bases,
respectively. This follows from our discussion in Section 9.5. After deciding the basis in which
to detect, the incoming photon, after passing through the Pockel cell PC2 and the polarization
beam splitter PBS, is eventually detected by either detector D1 or detector D2. For the choice 0∘
for PC2, a click at D1 corresponds to the photon state |→⟩ and a click at D2 corresponds to the
photon state |↑⟩. Similarly, for the choice−45∘ for PC2, a click at D1 corresponds to the photon
state |↗⟩ and a click at D2 corresponds to the photon state |↖⟩.

Bob receives the photons and records the results using a randomchoice of⊕ and⊗detection
bases as determined by the rotation angle of his Pockel cell and the outcomes of the detection at
detectorsD1 andD2.When the basis chosen by Bob is the same as that of Alice, the polarization
of the received photon is perfectly correlated with Alice’s photon. Thus, a photon polarized
along 90∘ received through the {|→⟩, |↑⟩} or⊕ basis will be found polarized along 90∘ and so
on. However, no such correlation exists when the basis chosen by the receiver is different from
that of the sender, i.e., a photon polarized along 90∘ will be found polarized either along 45∘, or
135∘ with equal probability if received through the {|↗⟩, |↖⟩,} or⊗ basis.This is a consequence
of Bohr’s principle of complementarity.

As an example, let Alice send a stream of 9 photons with the sequence of polarizations along

0∘ , 90∘ , 135∘ , 0∘ , 45∘ , 135∘ , 45∘ , 45∘ , 90∘

This sequence is sent by Alice choosing the bases

⊕,⊕,⊗,⊕,⊗,⊗,⊗,⊗,⊕

This stream of photons, when received by Bob through a sequence of basis

⊗,⊕,⊕,⊗,⊗,⊗,⊕,⊗,⊕

yields the outcome sequence with polarizations along

(45∘ or 135
∘), 90∘ , (0∘ or 90

∘), (45∘ or 135
∘), 45∘ , 135∘ , (0∘ or 90

∘), 45∘ , 90∘ .

Bob records the outcome of his measurements in secrecy. Here notice that Bob’s outcome is
identical to that of Alice if he measures the photon in the same basis ⊕ or ⊗ as that of Alice.
However, when the basis chosen by Bob is the opposite to that of Alice, then there is an equal
probability for the two possible outcomes in his basis.

Next, Alice and Bob compare their sequences of basis through a classical channel (such as a
telephone line) without revealing the results.They retain the instances where they use the same
basis and discard the rest. Thus, in the above example, outcomes at 2, 5, 6, 8, and 9 are retained
and the outcomes 1, 3, 4, and 7 are discarded. When translated into bits 0 or 1 (1 0 1 0 1 in the
above example), the key is obtained.

Next we study what happens if there is an eavesdropper, Eve. In the BB-84 protocol the
choice of Alice’s and Bob’s bases is completely hidden from Eve. Passive eavesdropping in this
protocol is not possible as any attempt at eavesdropping would lead to discrepancies between
the sequences.



OUP CORRECTED PROOF – FINAL, 10/3/2020, SPi

BENNETT-92 (B-92) PROTOCOL 211

As an example, consider the case when Alice sent a photon by choosing the {|→⟩, |↑⟩} or⊕
basis with the polarization of the photon oriented along 90∘. Also suppose that Bob received
the photon in the same basis and his outcome for the polarization is along 90∘. It is important
to note that the {|→⟩, |↑⟩} or⊕ basis is selected by Alice and Bob before they compared their
sequence of bases through a public channel whichmay be available to a potential eavesdropper.
The eavesdropper, Eve, located between Alice and Bob, can intercept the photon and can make
anymeasurement on it when it passes through her. She has no way of knowing what basis Alice
chose to send her photon and what basis Bob chose to detect the photon when it arrives at his
end. Therefore, Eve has no way of knowing what basis Alice and Bob chose.

Eve thus has two choices to infer about what is being transmitted. She can either use the
same basis,⊕, that Alice and Bob used or the conjugate basis⊗. We now discuss these cases:

In the case Eve chooses ⊕ basis, and this may happen about 50% of the time, she gets the
same outcome, 90∘, that Alice chose and which Bob also detects.

However, in those roughly 50% instances when Eve chose the wrong basis ⊗, she may get
45∘ or 135∘ orientations of the polarization with equal probability. If she gets a 45∘ orientation
of the photon that she resends to Bob, the outcome at Bob’s end will no longer be 90∘, but,
as a consequence of Bohr’s principle of complementarity as discussed above, will be 0∘ and
90∘ with equal probability. The same happens if Eve finds the photon polarization orientation
along 135∘.

Thus, when Eve tries to eavesdrop with random orientation of her basis, roughly 25% of the
outcomes at Bob’s end will be different from those of Alice. Thus Alice and Bob can try to infer
the presence of an eavesdropper by comparing part of their data. If about 25% discrepancies
are found, they can then be confident about the presence of an Eve who is trying to eavesdrop.
They can then reject their data and start over.

Thus the BB-84 protocol achieves the impossible: Exchanging a key on a public channel in
such a way that an eavesdropper can be traced with almost 100% accuracy. This is, thus, a
fascinating application of quantum mechanics and a direct consequence of Bohr’s principle of
complementarity.

We also note that the security of BB-84 is due to the no-cloning theorem. If cloning of
the quantum state were possible, Eve could make a large number of clones of the transmitted
photon. She could then send the original photon to Bob and measure the cloned photons, half
in⊕ basis and the other half in⊗ basis. When Alice and Bob compare their sequences of basis
on the public channel, Eve can also listen in and find the correct basis (⊕ in the above example)
and keep the outcome corresponding to this basis.Thus she has the same information that Alice
and Bob have. In this process, Bob’smeasurement is not affected as Eve sent the original photon
to Bob. So when Alice and Bob compare part of their data, they would not see any discrepancy
and will not be able to trace Eve. The no-cloning theorem does not allow this scenario and an
absolutely secure communication is made possible.

13.4 Bennett-92 (B-92) Protocol

We have seen that, in the BB-84 protocol, Alice can send binary information “0” and “1”
throughpolarized photons in the twobases, the⊕basis or the⊗basis. In 1992,Charles Bennett
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Fig. 13.5 In the B-92 protocol, if Alice sends the bit “0” encoded with a polarized photon in the state |→⟩, Bob can

unambiguously determine this state if his outcome is |↖⟩ if measured in the {|↗⟩, |↖⟩} basis. Similarly if Alice sends the

bit “1” encoded with a polarized photon in the state |↗⟩, Bob can unambiguously determine this state if his outcome is

|↑⟩ if measured in the {|→⟩, |↑⟩} basis.

proposed another protocol, the so-called Bennett-92 or B-92 protocol, in which, instead of
four pairwise orthogonal states, Alice employs only two non-orthogonal states |→⟩ and |↗⟩,
corresponding to values 0 and 1 of her random bit. Bob, upon receiving the photons, measures
them in a randomly chosen basis {|→⟩, |↑⟩} or {|↗⟩, |↖⟩}, as in the BB-84 protocol.

The B-92 protocol works on the following premise: If Alice sends photons only in states |→⟩
and |↗⟩ to Bob, then Bob can determine the |→⟩ state unambiguously only in those events
where he happens to choose the {|↗⟩, |↖⟩} basis and the outcome is |↖⟩. Only when he finds
the received photon in the |↖⟩ state can he be certain that it is not in the |↗⟩ state as the
two states are mutually orthogonal and, by default, it should be in |→⟩ state. Similarly he can
determine the |↗⟩ state unambiguously only in those instances where he uses the {|→⟩, |↑⟩}
basis and the outcome is |↑⟩. In this case, he can be certain that the incoming photon is not in
the state |→⟩, and therefore, by default, it should be in the |↗⟩ state. In all other cases he can
never be sure about the state of Alice’s photon. This can be understood from Fig. 13.5.

Now we present the steps in the B-92 protocol:

• Alice sends a streamof bits in such away that the bit “0” is encodedwith a polarized photon
in state |→⟩ and the bit “1” encoded in state |↗⟩.

• Bob assigns the value “0” to his bit if he chooses the {|↗⟩, |↖⟩} basis and assigns the value
“1” if he chooses the {|→⟩, |↑⟩} basis. Thus he forms a random string of bits.

• Bob then measures the polarization of the received photon in the chosen basis. Based on
the measurement outcome, Bob forms another string of bits which he calls “control bits”
by assigning the value “0” for the states |→⟩ or |↗⟩ and the value “1” for the states |↑⟩
and |↖⟩.

• At this point, Alice has a stream of bits with “0” corresponding to |→⟩ and a “1”
corresponding to |↗⟩whereas Bob has two strings: a streamof bits with “0” corresponding
to the basis {|↗⟩, |↖⟩} and “1” corresponding to the basis {|→⟩, |↑⟩} that he chooses, as
well as a stream of control bits with “0” corresponding to the outcomes |→⟩ or |↗⟩ and
“1” for the outcomes |↑⟩ and |↖⟩.

• Bob informs Alice the values of the control bits without telling her the bases that he used.
They decide to keep only those values of the bits for which the values of the control bit are
“1.” These values of the bits form the key.
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Now consider an example that illustrates how this protocol works. Suppose Alice wants to
send to Bob a “0.” She sends a photon polarized in the horizontal direction in the state |→⟩.
Bob measures the polarization by choosing either the {|→⟩, |↑⟩} basis or the {|↗⟩, |↖⟩} basis.

Let us first assume that Bob chooses the {|→⟩, |↑⟩} basis and he assigns the value “1” to his
bit. Since the polarization of the photon is |→⟩, Bob’s outcome is definitely going to be the state
|→⟩ and he assigns the value “0” for the control bit. But can Bob conclude that Alice sent him
the photon in the state |→⟩? The answer is No because if Alice had sent a “1” via the |↗⟩ state
then due to the decomposition

∣↗⟩ = 1
√2

(| →⟩ + | ↑⟩) , (13.5)

there is a 50% probability that the outcome will also be |→⟩. Thus a detection in the state |→⟩
means that Alice could have sent either |→⟩ or |↗⟩.

Next we assume that Bob choses the {|↗⟩, |↖⟩} basis and he assigns the value “0” to his bit.
Since

∣→⟩ = 1
√2

(| ↗⟩ − | ↖⟩) , (13.6)

there is equal probability that his outcomewill be |↗⟩ or |↖⟩. If his outcome is |↗⟩, Bob assigns
the value “0” for the control bit. In this case he again cannot be sure what polarization Alice
sent, |→⟩ or |↗⟩, as both possibilities are allowed.

Lastly, we examine the remaining possibility that his outcome is |↖⟩, for which he assigns
the value “1” for the control bit. For this outcome, Bob can be sure about one thing: Alice
did not send the state |↗⟩ as it is orthogonal to |↖⟩. Since Alice was allowed to send the
photon in either state |→⟩ or state |↗⟩, Bob can now conclude with certainty that Alice sent the
state |→⟩.

Finally, Bob tells Alice the value of the control bit. If it happens to be “0” corresponding to
the outcomes |→⟩ or |↗⟩, they conclude that Bob has not been able to decipher what Alice
sent. However, if the value of the control bit is “1” corresponding to the outcomes |↑⟩ or |↖⟩,
they decide to keep the value of the bit, which happens to be “0” in our example.

What happens if an eavesdropper, Eve, is present? As, in the BB-84 protocol, Eve has a 50/50
probability of choosing the correct and incorrect bases. Eve can be intercepted in the B-92
protocol on the same ground as in BB-84, the basic premise being that a quantummeasurement
disturbs the system.

Both Alice and Bob compare the state of the bit “0” or “1” of some of the successful events,
events for which the control bit is “1”, corresponding to the outcomes |↑⟩ or |↖⟩. The presence
of Eve is inferred if Eve’s measurements lead to a wrong outcome for Bob. This can happen in
two ways.

1. If Alice sent a “0” with a photon in state |→⟩ and Bob detects it in the state |↑⟩, thus
concluding that Eve sent “1” with state |↗⟩. Such an outcome can happen if Eve measures
the incoming photon in the {|↗⟩, |↖⟩} basis and Bob makes the measurement in the {|→⟩,
|↑⟩} basis. The reader can see that the probability of such an outcome is 12.5%.

2. Similarly, if Alice sent a “1” with a photon in state |↗⟩ and Bob detects it in the state
|↖⟩, thus wrongly concluding that Alice sent a “0” with the photon in state |→⟩. This can
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happen if Eve measures the incoming photon in the {|→⟩, |↑⟩} basis and Bob makes the
measurement in the {|→⟩, |↑⟩} basis. The probability of such an outcome is again 12.5%.

Therefore, if Alice and Bob find 25% discrepancy in their outcomes, they can infer that an
eavesdropper is present and start all over again.

13.5 QuantumMoney

An interesting and potentially important application of quantum security is quantum money.
This idea, due to StephenWiesner, was first presented in 1983, andwas a precursor to the BB-84
protocol for communication security.The problem is how to design a foolproof system to avoid
counterfeiting of currency notes. More specifically, if we have a currency note, a counterfeiter
could try to make an identical copy. Is it possible that, regardless of how good a forgery, the
copy is identified as such with certainty?

In the present world, tremendous efforts have been made to make the task of the coun-
terfeiter very difficult. Each currency note has embedded strips, holograms, special inks, or
microprinting to safeguard its integrity. However, from a classical perspective, no matter how
sophisticated our techniques, it is impossible to absolutely guarantee that a counterfeiter cannot
succeed for the simple reason that any printing device a good guy can build, a determined bad
guy can also build an identical copy.

Quantum aspects like no-cloning and complementarity can however make it possible to
potentially create a currency note that cannot be copied and it should be possible to identify a
forged copy with certainty.

Typically a currency note is identified only by a serial number. But, in a quantum currency,
each bill can have, in addition to a classical serial number, n trapped photons secretly prepared
in one of the four BB-84 states |→⟩, |↑⟩, |↗⟩, |↖⟩. At the bank, there is a record of all the
polarizations and the corresponding serial number as shown in Fig. 13.6. On the bank note,
the serial number is printed, but the polarizations are kept secret. The bank can always verify
the polarizations by measuring the polarization of each photon in the correct basis without
introducing any disturbance.

Bank

System

M 7148396 H

Quantum

100

100

Fig. 13.6 A quantum currency note has a serial number and a number of trapped photons each stored in one of the

four BB-84 states |→⟩, |↗⟩, |↑⟩, |↖⟩.
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For a potential forger, the serial number is known, but the challenge is how to copy the
polarization states. He needs to know the bases for each photon to copy the photon polarization
states. He faces the same dilemma that Eve faced in the BB-84 protocol. If the forger uses the
correct basis (and thismayhappen 50%of the time), he canfind the secret polarization state and
copy it faithfully on his forged copy. However if he chooses the wrong basis (and this happens
also about 50% of the time), it will change the polarization of the photon in the trap.The forged
banknote created will be with this wrong polarization.

Let us illustrate this with an example. We assume that the polarization state of the photon in
the currency note is |→⟩. If the forger measures it with the {|→⟩, |↑⟩} basis, he gets the correct
polarization state |→⟩ and his forgery may not be detected. However, if he measures it in the
{|↗⟩, |↖⟩} basis, then, since

∣→⟩ = 1
√2

(|↗⟩ − |↖⟩),

he gets either the state |↗⟩ or the state |↖⟩with equal probability. Let us assume his outcome is
|↗⟩. Now, at the bank, when polarization is checked with the correct {|→⟩, |↑⟩} basis, there is a
50% chance that the outcome will be |→⟩, but a 50% chance that the outcome will be |↑⟩. Thus
for each photon the success probability is 3/4 in duplicating it correctly but a failure probability
of 1/4. If the total number of photons on the bank note is N, a duplicate will have a probability
(3/4)N of passing the bank’s verification test. IfN is large, this probability can become extremely
small. For N = 20, the success probability is only about 0.3 percent. The fact that a quantum
state cannot be copied is ultimately guaranteed by the no-cloning theorem, which underlies
the security of this system.

Problems

13.1 Express the following decimal numbers as binary numbers: 688, 573, 894, and 974.
13.2 Express the following binary numbers as decimal numbers: 10010111, 11011010,

10010001, and 11110011.
13.3 In the RSA protocol, let us choose two prime numbers p= 47 and = 59. Find an

encryption key e and a decryption key d. If the numerical message is 537, what would be
the encryptedmessage? Show that the decryption key can decode the encryptedmessage.

13.4 Consider an elementary code in which the letters are represented by five-bit binary
numbers from 1 to 26 according to the sequence of the alphabet. Thus A is 00001, B
is 00010, C is 00011, and so on until Z is 11010. The “space” is represented by 00000.
Develop a table for all the letters from A to Z. The encryption process is addition
modulo 2, and the random key is

10011 01010 00101 11000 10101 00010 10101 10101 10100 11100 01010 00110 10101
11110 10101 00100 10010 01111 01010 11001 11100 01001 10011 00110.

Decode the message

11010 01010 01001 10111 00011 00111 10101 00100 00001 11101 00100 10010 00000
10011 10101 01001 10111 01100 00010 11000 10010 00000 10000 10101.
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13.5 Assume the letters A to Z are encoded as in Problem 13.1. Let the exchanged key between
Alice and Bob be

“10100 11100 01101 01100 01000 10001 01000 10010”

Alice sends the following message encoded with the key:

“10010 01110 01000 11111 00000 11100 01001 11100.”

Find the message.
13.6 Suppose that Alice sends the message “001011001011” according to the BB-84 protocol

with the following sequence of bases:

⊕⊕⊗⊕⊗⊗⊗⊕⊕⊗⊕⊗.

What is the state of the polarization of Alice’s photons? Bob uses the following sequence
of detection bases:

⊗⊕⊕⊗⊗⊕⊕⊕⊗⊕⊗⊗.

Find the exchanged key. Explain how Alice and Bob can figure out that there is an
eavesdropper.

13.7 Consider the B-92 protocol for quantum key distribution. Suppose Alice wants to send
to Bob the bit “1” encoded in state |↗⟩. Discuss all the possibilities with Bob measuring
the photon in the {|→⟩, |↑⟩} basis or the {|↗⟩, |↖⟩} basis. For what outcome can Bob be
confident that Alice sent the bit “1” to him?
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14 Optical Communication with
Invisible Photons

It has always been a self-evident feature of any kind of communication that there should
be an exchange of objects between the sender and the receiver to convey any information.
For example, light pulses or photons are carriers of information in optical communication.
For a binary information transfer (0 or 1), the information can be coded as a horizontally
polarized photon as “0,” and a vertically polarized photon can be coded as “1.” Thus, if, in a
communication between (say) Alice and Bob, Alice wants to send “0,” she sends a horizontally
polarized photon and if she wants to send a “1,” she sends a vertically polarized photon.
Another example is that Alice may decide to send no photon if she wants to send “0” and
send a photon if she wants to send a “1.” In these and any other examples of communication,
an exchange of an object, like a photon, always takes place even if it is for one half of the
communication (as in the second example). It is inconceivable that a communication between
Alice and Bob can take place in such a way that there is no photon present in the channel of
transmission (such as empty space or fiber optic cables) in both cases, when the sender wants
to send a “0” or wants to send a “1.”

It was shown in 2013 by the author in collaboration with his colleagues M. Alamri, Z.-H.
Li, and H. Salih that quantum mechanics can be used to achieve this apparently impossible
objective. Such a communication protocol is called counterfactual communication. Counter-
factual communication is thus optical communication with invisible photons. The protocol for
counterfactual communication is schematically shown in Fig. 14.1.

The objective is for Bob to send binary information, “0” or “1,” to Alice. As shown in Fig.
14.1a, Alice has a source of single photons, an optical set-up involving optical devices such as
mirrors and beam splitters (represented by the box) as well as two photon detectors D1 and D2.
Bob only has a mirror. Alice sends a photon to Bob such that it interacts with optical devices
inside the box in a specified manner before proceeding to Bob via a transmission channel that
can be free space or optical fiber. Bob has now two choices: He can either block the photon
from reaching the mirror, for example, by placing his hand in front of the mirror (Fig. 14.1b)
or he does nothing and allows the photon to reflect from the mirror (Fig. 14.1c). In the case
when Bob blocks the photon intending to send a “0,” the detector D1 clicks at Alice’s end
(Fig. 14.1b). This signals Alice that Bob sent a “0” to Alice. On the other hand if Bob allows
the photon to get reflected, intending to send a “1,” the detector D2 clicks at Alice’s end
(Fig. 14.1c), signaling to Alice that Bob sent a “1.” The amazing and highly counterintuitive
result is that, in both instances, when the photon is supposed to be bouncing back and forth
between Alice and Bob, the probability of finding the photon in the transmission channel is
zero. Thus the photon bounces back and forth from mirrors and other optical instruments at
Alice’s end placed inside the box and give us a click at D1 or D2 without traveling to Bob but
sensing what Bob has done, either put his hand in front of his mirror or done nothing.

Quantum Mechanics for Beginners: With Applications to Quantum Communication and Quantum Computing. M. Suhail Zubairy.
© M. Suhail Zubairy 2020. Published in 2020 by Oxford University Press. DOI: 10.1093/oso/9780198854227.001.0001
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Fig. 14.1 Schematics for counterfactual communication.

How can this be done? This looks almost magical or supernatural like psychic communica-
tion. In order to understand the protocol for counterfactual communication, we first consider
some simple interferometric configurations before we explain a system of mirrors and beam
splitters that can exhibit counterfactual communication.

14.1 Mach–Zehnder Interferometer

First we consider an interferometer with two beam splitters and two mirrors as shown in
Fig. 14.2a. This is called a Mach–Zehnder interferometer.

The main optical components involved in our analysis are mirrors and beam splitters. The
input is a single photon in one port of the beam splitter and none at the other. We make use of
the transformation properties of these devices that we discussed in Sections 9.3 and 9.4. We
assume perfect reflection from a mirror. The input–output relations for a beam splitter with a
single photon input are given by Eqs. (9.53) and (9.54), i.e.,

∣10⟩→ cos 𝜃∣10⟩ + sin 𝜃∣01⟩, (14.1)

∣01⟩→ cos 𝜃∣01⟩ − sin 𝜃∣10⟩. (14.2)

Here, the probability that the photon is reflected is equal to R= cos2𝜃 and the probability that
it is transmitted is equal to T= sin2𝜃.
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|1〉 |0〉 |1〉 |0〉

Fig. 14.2 (a) In a Mach–Zehnder interferometer, a photon incident on a beam splitter BS1 is reflected by mirrors,

recombined at the second beam splitter BS2 , and is detected either at detector D1 or D2 . (b) The same set-up as in (a)

but with a photon absorber on the right-hand side of the interferometer.

In a Mach–Zehnder interferometer (Fig. 14.2a), a single photon in state |1⟩ is incident from
the left on a beam splitter (BS). There is no photon on the right-hand side. The input state is
therefore designated as |10⟩. The input photon passes through the first beam splitter, BS1, then
reflected by the mirrors, passes through the second beam splitter, BS2, and finally onto the
detectors D1 and D2. We calculate the probabilities that the photon gives a click at D1 and D2.

According to Eq. (14.1), the photon state after passing through the first beam splitter, BS1, is

∣10⟩→ cos 𝜃1∣10⟩ + sin 𝜃1∣01⟩. (14.3)

Nothing happens when the photon is reflected from eithermirror.The input state at the second
beam splitter, BS2, is therefore equal to cos 𝜃1 ∣ 10⟩+ sin 𝜃1∣01⟩. Thus, after the second beam
splitter, the output state is

cos 𝜃1∣10⟩+ sin 𝜃1∣01⟩ → cos 𝜃1 (cos 𝜃2|10⟩ + sin 𝜃2|01⟩)
+ sin 𝜃1 (cos 𝜃2|01⟩ − sin 𝜃2|10⟩)

= cos (𝜃1 + 𝜃2) ∣10⟩+ sin (𝜃1 + 𝜃2) ∣01⟩
(14.4)

Here cos 𝜃i and sin 𝜃i are the reflection and transmission coefficients of the ith beam splitter,
respectively. Each term in this equation has a physical interpretation. The amplitude cos 𝜃1
cos 𝜃2 is the amplitude at D1 resulting from two reflections, one at beam splitter 1 and the
other at beam splitter 2, the amplitude (−sin 𝜃1 sin 𝜃2) is also the amplitude at D1 resulting
from two transmissions, one at beam splitter 1 and the other at beam splitter 2. The amplitudes
cos 𝜃1 sin 𝜃2 and sin 𝜃1 cos 𝜃2 are the amplitudes at D2 resulting from one reflection and one
transmission, one at beam splitter 1 and the other at beam splitter 2.

For identical beam splitters, 𝜃1 = 𝜃2 = 𝜃 and the state of the output state is

cos (2𝜃) ∣10⟩+ sin (2𝜃) ∣01⟩ . (14.5)

For a 50/50 beam splitter, 𝜃 =𝜋/4, so that the probability that the photon is reflected is
R= cos2𝜃 = 1/2 and the probability that it is transmitted is T= sin2𝜃 = 1/2. The two proba-
bilities are equal. However, we see from Eq. (14.5) that the output state becomes |01⟩. Thus we



OUP CORRECTED PROOF – FINAL, 10/3/2020, SPi

220 OPTICAL COMMUNICATION WITH INVISIBLE PHOTONS

get a click at detector D2 with unit probability. We also note that, for 𝜃 ≤ 𝜋/4, the photon state
has an increasing amplitude for |01⟩.

Next we consider the configuration as shown in Fig. 14.3b. Again a photon is sent in the
Mach–Zehnder interferometer from the left, i.e., the input state is |10⟩. After the first beam
splitter, BS1, the quantum state of the photon is, as before,

∣10⟩→ cos 𝜃 ∣10⟩ + sin 𝜃 ∣01⟩

The difference with the earlier case is that if the photon is transmitted by the beam splitter and
ends up on the right arm of the interferometer, it is absorbed. As the probability amplitude for
the photon being in the right arm, i.e., in being state |01⟩, is sin 𝜃, the probability of the photon
being absorbed or lost on the right-hand side is

Pright = sin2𝜃. (14.6)

The probability amplitude of the photon being on the left arm is cos 𝜃. The photon state just
before the second beam splitter, BS2, is cos 𝜃|10⟩. The output state is

cos 𝜃 (cos 𝜃|10⟩ + sin 𝜃|01⟩) . (14.7)

Thus the probability that the photon is detected at D1 is

PD1 = cos4𝜃. (14.8)

If the photon is detected at D1, it must have been reflected from the two beam splitters, each
time contributing a factor equal to the reflectivity r = cos 𝜃.
It follows from Eq. (14.7) that the probability of the photon being detected at D2 is

PD2 = cos2𝜃sin2𝜃. (14.9)

There are only three possibilities: either the photon is lost on the RHS or the photon is detected
at D1, or the photon is detected at D2. The sum of the three probabilities should therefore be
unity, i.e.,

Pright + PD1 + PD2 = 1. (14.10)

14.2 Interaction-free Measurement

There is an interesting feature associated with the Mach–Zehnder interferometer shown in
Figs. 14.2a and 14.2b. In the special case of a 50/50 beam splitter (𝜃 = 𝜋/4 ), we have already
seen that the output state becomes |01⟩ when there is no absorber present on the right-hand
side of the interferometer (Fig. 14.2a). Thus, as a result of quantum interference, we get a click
at D2 with unit probability.

In the case when there is an object present on the right-hand side of the interferometer, the
probability of the photon being absorbed by the object is

Pright = sin2𝜃 = 1
2 . (14.11)
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The probability of a click at detector D1 is

PD1 = cos4𝜃 = 1
4 (14.12)

and the probability of a click at detector D2 is

PD2 = cos2𝜃sin2𝜃 = 1
4 . (14.13)

We have an interesting situation: If the object is not there then there is a definite click at
D2, but if there is an object present, then there is a click at D1 and D2 with 25% probability
each and 50% probability of absorption by the object. Next we address the question: Can we
get information whether the object is present or not by looking only at the output detectors
D1 or D2?

Now note that if there is a click at D2, we have no way of knowing whether the object is there
or not because there is a non-vanishing probability of a click at D2 in both situations, when
there is an object and when there is no object on the right-hand side.

However, if there is a click atD1, we knowwith certainty that there is an object present on the
right-hand side of the interferometer.The amazing result is that we can determine the presence
of the object in those instances in such a way that the photon does not interact with the object
and follows a trajectory entirely on the left-hand side (Fig. 14.2b).This is called Interaction-free
Measurement.

The concept of interaction-free measurement was first suggested by A. C. Elitzur and
L. Vaidman in 1993. In a colorful example, they proposed it as a method for a bomb tester.
Suppose we have a collection of bombs, some good and some bad. The bad bombs do not
absorb photons and let them pass through unhindered. The good bombs however absorb the
photons and explode. The question is: Can we make an optical measurement to find the good
bombs without exploding them? In any conventional method, the good bombs will always
explode in an attempt to find them. However an interaction-free measurement, as described
above, can lead to finding the good bombs with a 25% success probability.

14.3 An Array ofNMach–Zehnder Interferometers

Next we consider an array of N Mach–Zehnder interferometers, as shown in Figs. 14.3a and
14.3b. In both cases we have an array of N beam splitters with a reflectivity r = cos (𝜋/2N)
and transmittivity (t = sin (𝜋/2N) .Thus the whole array of Mach–Zehnder interferometers is
characterized by a single number N with N being the number of Mach–Zehnder interferome-
ters as well as the reflectivity of the beam splitters,

r = cos 𝜃; 𝜃 = 𝜋
2N . (14.14)

In Fig. 14.3a, there is no object on the right-hand side for any of the Mach–Zehnder inter-
ferometers, whereas, in Fig. 14.3b, there is an object or absorber in the right arm of each
interferometer.The input, as before, is |10⟩, a single photon is incident on the first beam splitter
from the left. We calculate the probabilities of a click at D1 and D2 in both cases.
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Fig. 14.3 (a) An array of N Mach–Zehnder interferometers. (b) Same set-up as in (a) but with an absorber at each step

such that if the photon leaks to the right-hand side, it is absorbed.

First, we consider the case when there is no object on the right-hand side (Fig. 14.3a). We
have already seen that if the photon, in the input state |10⟩, passes through the two beam
splitters, the output state is

cos (𝜃1 + 𝜃2) | 10⟩+ sin (𝜃1 + 𝜃2) | 01⟩ , (14.15)

where cos 𝜃i and sin 𝜃i are the reflection and transmission coefficients of the ith beam splitter,
respectively. For anN beam splitter set-up, the corresponding result is obtained by generalizing
Eq. (14.15), and we obtain

cos (𝜃1 + 𝜃2 +⋯𝜃N) | 10⟩+ sin (𝜃1 + 𝜃2 +⋯𝜃N) | 01⟩ . (14.16)

For equal reflectivity at the beam splitters (𝜃1 = 𝜃2 = ⋯𝜃N = 𝜃), the result in the output is

cos (N𝜃) | 10⟩+ sin (N𝜃) | 01⟩ . (14.17)

Since N𝜃 = 𝜋/2, the final state after the passage through N Mach–Zehnder interferometers is
|01⟩, i.e., the detector D2 clicks with certainty. This result is independent of the number N of
theMach–Zehnder interferometers provided the reflectivity of each beam splitter in the set-up
is such that 𝜃 = 𝜋/2N.
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Next we analyze the set-up as shown in Fig. 14.3b. Here there is an object that absorbs the
photon if it is incident on it, at each step in the multi Mach–Zehnder interferometric set-up.

At each step the reflected amplitude is cos 𝜃 and the transmitted amplitude is sin 𝜃. The
transmitted amplitude is lost as any photon found on the right-hand side is absorbed. After N
cycles, the initial state |10⟩ therefore evolves to

∣10⟩ → cosN−1𝜃(cos 𝜃∣10⟩ + sin 𝜃∣01⟩ . (14.18)

Here, cosN𝜃 is the amplitude that is reflected N times and gives a click at D1. The probability
of a click at D1 is therefore

PD1 = ||cosN𝜃||2 = cos2N𝜃. (14.19)

The amplitude cosN−1𝜃 sin 𝜃 is the amplitude that is reflected (N − 1) times until the last beam
splitter and then transmitted to D2. The probability of a click at D2 is therefore

PD2 = cos2N−2𝜃sin2𝜃. (14.20)

There is also the probability Pright that the photon may cross over to the right-hand side and
get absorbed. Since the total probability is unity, i.e.,

Pright + PD1 + PD2 = 1, (14.21)

we obtain

Pright = (1 − PD1 − PD2) = (1 − cos2N−2𝜃). (14.22)

It turns out that, for large N, cos2N𝜃 = cos2N (𝜋/2N) ≈ 1.1 The photon is almost completely
reflected and the detector clicks with unit probability.

In summary, we have shown that when there is no object or absorber as shown in Fig. 14.4a,
the detector D1 clicks with certainty, whereas if there is an object or absorber at each step as
shown in Fig. 14.4b, then D2 clicks with almost unit probability. In the next section we use
these results to show how counterfactual communication (no photon in the public channel)
can be realized.

14.4 Counterfactual Communication

Next we discuss the protocol for counterfactual communication—communication with no
photons present in the transmission channel.

1 This follows from the series expansion (2.35) for cos 𝜃 and the binomial expansion

(1+ x)n = 1+ nx+ n (n+ 1)
2! x2 +⋯

Thus

cos2N ( 𝜋2N ) = (1− 1
2! (

𝜋
2N )

2
+⋯)

2N

= 1− 1
2!
𝜋2

2N + terms of the order (1/N2 ) .

In the limit of large N(N →∞), we obtain cos2N (𝜋/2N) → 1.
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Consider a set-up as shown in Figs. 14.4a and 14.4b. Here we consider an array of M Mach–
Zehnder interferometers. The reflectivity and the transmittivity of each beam splitter BSM is
given by cos 𝜃M and sin 𝜃M , respectively, with

𝜃M = 𝜋
2M . (14.23)

In the right arm of each Mach–Zehnder interferometer, there is an array of N Mach–Zehnder
interferometers of the type shown in Figs. 14.3a and 14.3b and discussed in the previous
section. The reflectivity and the transmittivity of all the beam splitters BSN in these arrays of
interferometers are given by cos 𝜃N and sin 𝜃N , respectively, with

𝜃N = 𝜋
2N . (14.24)

Thus only two numbers, M and N, characterize this array of M interferometers with the arrays
of N interferometers in the right arms of each of these interferometers; the reflectivities and
transmittivities of the corresponding beam splitters are described by 𝜃M and 𝜃N . Typically both
M,N >> 1.

The system is set in such a way that the source of photons, all the M beam splitters BSM , all
the N×M beam splitters BSN , all the M mirrors on the left side of the outer interferometers, all
the N×M mirrors on the left side of the inner interferometers, and the detectors D1 and D2 are
all on Alice’s side. The only objects at Bob’s end are the N × M right side mirrors of the inner
interferometers and the detectors DL as shown in Figs. 14.4a and 14.4b. The region between
Alice’s set-up and Bob’s mirrors is the transmission region, which can be made large.

We now describe the counterfactual communication protocol. In this protocol, Alice sends
a single photon from the left as shown in Fig. 14.4. The input state is therefore |10⟩. The
information is sent by Bob: He sends a “1” when he does not place any absorbing object in
front of all the mirrors, as shown in Fig. 14.4a, and a “0” by placing an object that absorbs the
photon in front of all the mirrors at his end, as shown in Fig. 14.4b. We now show that, when
Bob sends “1,” the detector D1 at Alice’s end clicks and she knows that Bob sent a “1.” However
when Bob sends “0,” the detector D2 clicks and Alice knows that Bob sent a “0.” The amazing
result is that, in both instances, there is no photon present in the transmission channel.

First, consider the case when Bob wants to send “1” to Alice. He does not block the photon
as shown in Fig 14.4a. For large M, there is a large probability that the photon is reflected from
the beam splitters BSM . However, there is a small probability of transmission. In those rare
instances when photon is transmitted from BSM to the right side, it ends up at the detectors
DL and is lost (see Fig. 14.3a). There is, thus, zero probability that the photon may enter
the large interferometer back from the right side to the left side through the beam splitters
BSM . Basically the array of N Mach–Zehnder interferometers in the right arms of the M outer
interferometers acts as an absorber. The situation is therefore effectively similar to that in Fig.
14.3b and the probability of a click at D1 is

PD1 = ||cosM𝜃M||
2 = cos2M𝜃M. (14.25)

ForM >> 1, PD1 ≅ 1.Thus,we have a click atD1 with an almost unit probability.The important
thing to note is that, in those instances when we get a click at D1, the photon follows an outer
trajectory, reflecting from all BSM from the left side, and is never found in the transmission
channel.
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Fig. 14.4 A double array of Mach–Zehnder interferometers for counterfactual communication. Here Alice sends the

photon and Bob decides whether to send (a) bit “1” by not blocking the mirrors and (b) bit “0” by absorbing the photon

if it enters the Bob side of the interferometer.

Next, we consider the case when Bob wants to send “0” to Alice. He blocks the photon at
each stage as shown in Fig 14.4b. There is an array of blocked Mach–Zehnder interferometers
on the right-hand side of the M interferometers at each step. We have seen, in our discussion
of such a blocked array (Fig. 14.3b), that the photon ends up on the left side (at detector D1)
with almost unit probability (cos2N𝜃N = cos2N (𝜋/2N) ≅ 1). Thus the configuration shown
in Fig. 14.4b is effectively the configuration for M Mach–Zehnder interferometers (similar to
Fig. 14.4a) with no block and the photon is detected at D2 with almost unit probability. A click
at D2 signals Alice that Bob sent a “0.” Again the important observation is that we can be sure
that the photon never crossed through the transmission channel, because if it had, it would
have been absorbed by one of the blockers.

We thus achieve a highly counterintuitive result: When Alice sends a photon, Bob can send
a “1” by allowing the photon to be reflected from his mirrors and Alice gets a click at detector
D1 AND Bob can send a “0” by blocking the photon at each stage and Alice gets a click at D2.
In both instances, the probability that the photon exists in the transmission channel is zero.
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Problems

14.1 Consider an optical set-up involving a Mach–Zehnder interferometer with another
Mach–Zehnder interferometer in one arm as shown in the figure.

BS1

BS2
B

BS2

BS1

D1 D2

D3

E

A

C

50/50

D

|1〉

A single photon is incident as shown in the figure. Both the beam splitters BS2 are
50/50 beam splitters whereas the beam splitters BS1 have transmission and reflections
amplitudes t and r.
(a) Show that the probability of existence of a photon at E is zero no matter what the
values of t and r are.
(b) What is the probability of detecting the photon at detectors D1, D2, and D3?
Hint: Beam splitter transformation for BS1 (with r = cos 𝜃, t = sin 𝜃):

∣10⟩→ cos 𝜃∣10⟩+ sin 𝜃∣01⟩
∣01⟩→ cos 𝜃∣01 ⟩− sin 𝜃∣10⟩
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15 Quantum Computing I

The emergence of quantum computing as a major field of research is due to the realization that
certain problems can be solved much faster on a quantum computer than on a conventional
computer. The extraordinary speed-up of a quantum computer is due to some novel features
of quantum mechanics, such as coherent superposition and quantum entanglement. Thus, the
computational power of a quantum computer can exceed that of conventional computers.

The first ideas about quantum computing can be traced to Richard Feynman when he pro-
posed solving complicated quantum mechanical problems by simulating them on a quantum
computer around 1982. The mathematical framework of quantum computing was developed
by David Deutsch in the late 1980s. There was, however, no practical problem that could
be solved on a quantum computer with a substantial speed-up compared to conventional
computers. The interest in the field of quantum computing remained limited to a very small
number of researchers. The situation changed drastically in the mid 1990s when two major
quantum computing algorithms were proposed. One related to factoring a large number into
its prime factors and the second related to finding a marked object in an unsorted database.
Since then there has been tremendous activity in this field. Quantum computing provides a
beautiful example of how quantum mechanical concepts such as coherent superposition of
states and quantum entanglement can lead to incredibly fast speed-up in the solution of certain
problems.

15.1 Introduction to Quantum Computing

The basic building block of a computer is a bit that can take on two values, “0” or “1”. In a
conventional computer, these bits are classical objects like voltage—high voltage corresponds
to “1” and low voltage corresponds to “0”. These are therefore referred to as classical bits or
simply as “bits.”

On the other hand, a quantum bit (or a “qubit”) is a system that can exist in two possible
quantum states that we label as |0⟩ and |1⟩. The qubits, in the laboratory, can correspond to
many different realizations. For example, a photon that can exist in the polarization state |→⟩
or |↑⟩, corresponding to “0” or “1”, respectively, is a qubit. Other examples include an atom in
the ground state |g⟩ and the excited state |e⟩ and a radiation field with states with no photon
|0⟩ or one photon |1⟩ corresponding to “0” or “1”, respectively. Any computer that carries out
computation using qubits, instead of classical bits, is called a quantum computer.

Quantum Mechanics for Beginners: With Applications to Quantum Communication and Quantum Computing. M. Suhail Zubairy.
© M. Suhail Zubairy 2020. Published in 2020 by Oxford University Press. DOI: 10.1093/oso/9780198854227.001.0001
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Quantum bits, being quantum states, can satisfy two novel aspects which are inaccessible to
their classical counterparts.

Coherent superposition: The first is the possibility that qubits can exist in a state of coherent
superposition. For example, an atom can exist in a superposition of ground state |g⟩ and an
excited state |e⟩, i.e., cg∣g⟩ + ce∣e⟩ where cg and ce are, in general, complex numbers that satisfy
||cg||

2 + |ce|
2 = 1. In general, for any qubit, we can have the state

∣𝜓⟩ = c0∣0⟩ + c1∣1⟩ . (15.1)

Quantum entanglement: A system consisting of two or more qubits can be found in an
entangled state where the two qubits lose their independent identity and the state of one qubit
depends on the state of the other. For example, when the two qubits can be found in the state

∣𝜓 (1, 2)⟩ = 1
√2

(|01, 12⟩ + |11, 02⟩), (15.2)

the state of the two qubits cannot be written separately in the form ∣𝜓 (1, 2)⟩ = ∣𝜓(1)⟩∣𝜓(2)⟩.
If the first qubit is found in state |0⟩ then the state of the second qubit is |1⟩ corresponding
to |01, 12⟩ and if the first qubit is found in state |1⟩, then the state of the second qubit is
|0⟩ corresponding to |11, 02⟩. The two qubits cannot be expressed independently. In order to
appreciate the potential power of a quantum computer based on quantum entanglement we
consider the states generated by N qubits.

In general, the quantum state of two qubits can be written as
1
2 (c0|0, 0⟩ + c1|0, 1⟩ + c2|1, 0⟩ + c3|1, 1⟩), (15.3)

i.e., a superposition of 22 = 4 states. Here, as before, ci (i = 0, 1,⋯ 3) are complex numbers.
Thus, a two-qubit computer can store 4 complex numbers.

Similarly, the most general state generated by 4 qubits is
1
4
(c0∣0, 0, 0, 0⟩ + c1∣0, 0, 0, 1⟩ + c2∣0, 0, 1, 0⟩ + c3∣0, 0, 1, 1⟩
+ c4∣0, 1, 0, 0⟩ + c5∣0, 1, 0, 1⟩ +⋯+ c15∣1, 1, 1, 1⟩).

(15.4)

Thus we have a superposition of 24 = 16 states described by 16 complex numbers c0, c1,⋯⋯
c15. Similarly we see that N qubits can store 2N numbers “simultaneously.”

If we increase the size of the quantum computer to 256 qubits, then, following the same
argument as above, we have the possibility of a superposition of 2256 states with 2256 complex
numbers as amplitudes. This is an enormously large number, larger than 1077. It is estimated
that there are between 1078 to 1082 atoms in the known, observable universe. That works out to
between one quadrillion vigintillion and ten thousand quadrillion vigintillion atoms1. Thus if
we have the capability tomanipulate just 256 qubits, such as 256 atoms, we can have a computer
with a power that can be acquired by our conventional computers only if they work with
almost all the atoms in the known universe as bits. This realization is scintillating, almost mind
boggling. This observation also clearly shows why one feels extremely excited at the prospect
of a quantum computer.

1 1 quadrillion is equal to 1015 and 1 vigintillion is equal to 1063.
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Then the obvious question: If, even with the modest number of 256 qubits, we can poten-
tially make a computer that will match a conventional computer with all the atoms in the
known universe in its memory, why is such a computer not a reality so far? The answer to this
question lies in two aspects of quantum mechanics that would appear to destroy the prospect
of a quantum computer. Just as the quantum mechanical concepts of coherent superposition
and quantum entanglement lead us to the prospect of a quantum computer with almost
unbelievable capability, the other two aspects of quantum mechanics, namely the probabilistic
nature of the measurement outcome and decoherence, can prove fatal to the design of a robust
and reliable computer.

The probabilistic nature of quantum mechanics has been emphasized throughout this book.
In the present context, let us consider (say) a two bit computer with an initial state of the form

∣𝜓input⟩ = ∣0, 0⟩ . (15.5)

After some computational manipulations, let the output state of the two qubits be a
superposition

∣𝜓output⟩ =
1
2 (d0|0, 0⟩ + d1|0, 1⟩ + d2|1, 0⟩ + d3|1, 1⟩). (15.6)

If we measure the output state of the two qubits, it will be |0, 0⟩, |0, 1⟩, |1, 0⟩, or |1, 1⟩ with
probabilities |d0|2, |d1|2, |d2|2, and |d3|2, respectively. The outcome of the measurement is
probabilistic. Before the measurement we have no way of knowing what the outcome will
be. This is very disappointing as a probabilistic answer to any computation is typically not
acceptable. So this should be the end of the “quantum computer” fantasy.

The second issue relating to decoherence is more subtle. It has to do with the errors induced
in the state of qubits by their interaction with the environment. In our everyday experience, we
know that any interaction of a given system with the environment can lead to a change in the
state of the system even when we do not intend to do so. For example, a cup of hot coffee can
cool to room temperature by losing energy to the environment. The environment is huge and
we do not notice any change of temperature of the environment. However the temperature of
the coffee in our little cup goes down.This process is irreversible as the cooling of the coffee can
and does take place by losing energy to the surrounding but it never happens that a cup of cold
coffee suddenly heats up by extracting energy from the surroundings. Quantum mechanically
the situation is even more complex. It has to do with the nature of vacuum. Before the advent
of quantum mechanics, a vacuum was perceived as nothing—a place where no light existed,
nothingmoved, and therewas no energy present.Thequantummechanical picture of a vacuum
turned out to be dramatically different. According to quantum mechanics, a vacuum, even at
almost absolute zero temperaturewhennothingmoves andno energy is supposed to be present,
has an infinite amount of energy associatedwith the electromagnetic field. In addition, there are
quantum mechanical fluctuations as a result of Heisenberg’s uncertainty relation that cannot
be neglected. Thus when a qubit, such as an atom in the excited state, experiences fluctuating
fields associated with vacuum fluctuations, it can decay to the ground state spontaneously.This
becomes a source of inevitable error.

Thus, we have a situation where, on the one hand, the possibility of preparing a qubit
in a coherent superposition of its states and the possibility of multiple qubits existing in an
entangled state raises the possibility of processing a large (indeed extremely large) amount of
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datamuch faster, but, on the other hand, the probabilistic outcome of themeasurement and the
presence of inevitable decoherence due to the interaction of the qubits with the environment
appear to kill the prospect of quantum computing. The challenge, therefore, is to come up
with problems that can be solved by taking advantage of the tremendous potential of quantum
entanglement but are not adversely affected by the probabilistic nature of themeasurement out-
come. Decoherence is still a stumbling block.This is a practical problem that requires searching
for the systemswherewe canminimize the effect of decoherence or using some error correction
codes and procedures. This challenge is met in a limited number of problems—the two most
famous being the determination of the prime factors of a composite number and the search of
an unsorted database as discussed above. These problems are discussed in the next chapter.

In the following, we discuss the conditions for quantum computing systems and, in the next
section, the basic building blocks such as the logic gates for quantum computing. A logic gate
converts the input states of the qubits in the output states in a prescribed manner.

A typical quantum computing system, like any computing device, consists of an input, a
processor, and an output as shown in Fig. 15.1. The input consists of qubits in prescribed
initial states. Inside the processor, these qubits can carry out the necessary manipulations via
logic gates. The output is again a set of qubits in a prescribed quantum entangled state and a
measurement is made on these qubits to achieve the result.

A quantum computer can adopt many different technologies as the choice of the form of the
qubits and the processing systems can vary depending on the requirements. For example, the
qubits can be photons, atoms, electrons, or some other two-state quantum systems. There is,
however, a set of criteria, called Di Vincenzo criteria, that should be satisfied by any quantum
computer. These are listed as follows:

• A quantum computer should be a scalable physical system with well-defined qubits. The
quantum computing system should consist of qubits that can take only two possible states
and no more. For example, as we have seen in our discussion of the hydrogen atom, there
are many, indeed infinite, energy levels. The atom can therefore exist in any of these levels.
However the atom can be treated as a qubit only if two levels (such as the ground state
and the first excited state) are relevant and the atom is never found in the higher excited
states. Additionally, the complexity of the computation should be directly proportional to
the number of qubits required.

• A quantum computing device should be initializable to a simple state, i.e., the qubits
are prepared in a prescribed initial state. Such a state, for example, can be of the form
|0, 0, 0, . . .⟩, i.e, all qubits are initially in the state |0⟩. Any fluctuation or uncertainty can
become a source of error.

Processor

Input Output

Fig. 15.1 Schematics of a quantum computer. It consists of three parts: The input consists of qubits in some

well-defined states, the processor consists of some quantum logic gates, and the output gives the outcome of

measurements.
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• The qubits should have long decoherence times. As discussed above, decoherence arising
out of the fluctuations may cause error. The system evolves randomly under the action of
these fluctuations. There is a timescale associated with the decoherence process. A quan-
tum computing system will be viable only if we can do a sufficiently large number of
operations before errors are introduced.

• A quantum computer should have a universal set of quantum gates. Both in classical
computing and quantum computing, we can implement an algorithm with the help of
logic gates. For a quantum computer, a universal set of logic gates is a very small set of 1
and 2 qubit gates that can implement a large computing device by using just this small set
of gates. It is therefore necessary to have such logic gates readily available and they are able
to carry out the desired computation.

• Qubit-specific measurements should be possible. In any quantum computing device, the
qubits at the input interact with each other to form an array of quantum logic gates.
When the computation is done, we have an output state of the device that should be read
by making the measurement on the output qubits. The measurements should be highly
reliable and not introduce significant error.

It is hard to imagine that there will be an all-purpose quantum computer that is able to solve
a wide range of problems like our everyday computers in the near future. However, it should
be possible to design a quantum computer that can solve particular problems much faster than
conventional computers.

15.2 Quantum Logic Gates

The basic building blocks of any computer are logic gates. The logic gates, in conventional
computers, are electronic devices that can have two or more ports at the input as well as ports
in the output. The input ports have binary inputs “0” and “1”, corresponding to low and high
voltages, respectively. The output port can have a prescribed binary output. A table, describing
the input–output relation, is called a truth table. As examples, the truth tables for AND and
exclusive-OR (XOR) gates are given as follows.

AND XOR

A B A ⋅ B A B A ⊕ B

0 0 0 0 0 0

0 1 0 0 1 1

1 0 0 1 0 1

1 1 1 1 1 0

HereA andB are the states of the input ports. For binary numbers, there are four possibilities
for the input,{0A, 0B} , {0A, 1B} , {1A, 0B} , {1A, 1B}. For an AND gate, represented by A · B, the
output is “1” only when both inputs are “1.” In the other instances when one or both inputs are
“0”, the output is also “0.” For an XOR gate, represented by A ⊕ B, the output is “1” in those
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instances when either A or B is “1.” When both inputs are “0”s or “1”s, then the output is “0.”
The symbols of AND and XOR gates are shown in Fig. 15.2.

A careful look at these gates indicates that whereas the XOR gate represents the sum of two
binary numbers:

0 + 0= 0,
0 + 1= 1,
1 + 0= 1,
1 + 1= 0,

the AND gate represents the carry, the carry being “1” only when we add “1” and “1.” As shown
in Fig. 15.3, these two gates can be combined together to make a “half adder” such that, for an
input A and B, the output is the sum (A · B) and the carry (A⊕ B).

The classical logic gates are irreversible, i.e., from the output, we cannot determine the input
uniquely. For example, in the XOR gate, if the output is “1,” we cannot determine whether the
input is {0A, 1B} or {1A, 0B}.

Next, consider quantum logic gates. Due to the coherent nature of quantum mechanics,
quantum logic gates should be reversible. The basic building blocks are the one-qubit and two-
qubit gates.

First, we discuss the one-qubit gate. A general one-qubit gate is called a unitary gate,
designated by U𝜃 . It has one input and one output such that, when it acts either on state |0⟩ or
on state |1⟩, it generates, in general, a coherent superposition of states |0⟩ and |1⟩. i.e.,

U𝜃∣0⟩ = cos 𝜃∣0⟩ + sin 𝜃∣1⟩, (15.7)

U𝜃∣1⟩ = sin 𝜃∣0⟩ − cos 𝜃∣1⟩. (15.8)

As seen in Chapter 9, a polarizing beam splitter can lead to a similar transformation when |0⟩
and |1⟩ are identified with horizontally and vertically polarized photons.

(a) (b)

A
A.B

B

A

B

A B

Fig. 15.2 The symbols for classical AND and Exclusive-OR or XOR gates.

A

≡

A.B

Half

adder

B
A B

Fig. 15.3 A circuit for a half adder. The XOR gate gives the sum and the AND gate gives the carry in the binary

summation.
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As a special case, for 𝜃 = 𝜋/4, the maximum coherence is obtained between |0⟩ and |1⟩,
yielding the so-called Hadamard gate H, i.e.,

H∣0⟩ ≡ U𝜋/4∣0⟩ =
1
√2

(|0⟩ + |1⟩) , (15.9)

H∣1⟩ ≡ U𝜋/4∣1⟩ =
1
√2

(|0⟩ − |1⟩) . (15.10)

A bit flip gate (∣0 ⟩→ ∣1⟩ and ∣1⟩ → ∣0⟩), labelled as X, is obtained for 𝜃 = 𝜋/2, i.e.,

X∣0⟩ ≡ U𝜋/2∣0⟩ = ∣1⟩, (15.11)

X∣1⟩ ≡ U𝜋/2∣1⟩ = ∣0⟩. (15.12)

In a similar manner, a Z gate is defined as one that changes the sign only when the input is |1⟩.
Such a gate is obtained when 𝜃 = 0, i.e.,

Z∣0⟩ ≡ U0∣0⟩ = ∣0⟩, (15.13)

Z∣1⟩ ≡ U0∣1⟩ = −∣1⟩. (15.14)

In the table below, we list these important one-bit gates.

H

X

Z

IUnity

|0〉 → |0〉

|1〉 → |1〉

|0〉 → |1〉

|1〉 → |0〉

|0〉 → |0〉

|1〉 → –|1〉

|0〉 →

H

X

Z

(|0〉 + |1〉)
1

2√

|1〉 → (|0〉 – |1〉)
1

2√

It should be noted that there is no corresponding classical one-bit logic gate: an input “0”
remains a “0” and a “1” remains a “1” for a classical one bit gate as identified by I.

Next, consider two-qubit gates. These gates are responsible for creating entangled states
between two qubits. Unlike the classical logic gates discussed above, the two-qubit gates are
two-input and two-output gates and are reversible.

There are two most prominent two-qubit gates. The first is a quantum phase gate and is
designated by the operator Q𝜙. For the two inputs, the input–output transformation of a
quantum phase gate is given as follows:

Q𝜙∣01, 02⟩ = ∣01, 02⟩, (15.15)

Q𝜙∣01, 12⟩ = ∣01, 12⟩, (15.16)
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Q𝜙∣11, 02⟩ = ∣11, 02⟩, (15.17)

Q𝜙∣11, 12⟩ = ei𝜙∣11, 12⟩. (15.18)

Thus a quantum phase gate Q𝜙 does not change the input state when one or both qubits are in
the state |0⟩. Only when the input state is |11, 12⟩ do we have a phase shift ei𝜙. As a special case,

Q𝜋∣01, 02⟩ = ∣01, 02⟩, (15.19)

Q𝜋∣01, 12⟩ = ∣01, 12⟩, (15.20)

Q𝜋∣11, 02⟩ = ∣11, 02⟩, (15.21)

Q𝜋∣11, 12⟩ = −∣11, 12⟩. (15.22)

Another important two-qubit quantum gate is the Controlled-NOT gate or the CNOT gate.
The truth table of the CNOT gate is given as follows:

CNOT Gate

|A⟩ |B⟩ |A⟩ |A ⊕ B⟩

|0⟩ |0⟩ |0⟩ |0⟩

|0⟩ |1⟩ |0⟩ |1⟩

|1⟩ |0⟩ |1⟩ |1⟩

|1⟩ |1⟩ |1⟩ |0⟩

Here |A⟩ is called the controlling bit and |B⟩ is called the controlled or target bit. When the
controlling qubit |A⟩ is in the state |0⟩, the controlled bit |B⟩ remains the same. However when
the controlling qubit |A⟩ is in the state |1⟩, the controlled bit |B⟩ flips, i.e., ∣0⟩ → ∣1⟩ and ∣1⟩ →
∣0⟩. Thus a CNOT gate, designated by UCNOT , leads to the following transformations:

UCNOT∣01, 02⟩ = ∣01, 02⟩, (15.23)

UCNOT∣01, 12⟩ = ∣01, 12⟩, (15.24)

UCNOT∣11, 02⟩ = ∣11, 12⟩, (15.25)

UCNOT∣11, 12⟩ = ∣11, 02⟩. (15.26)

A CNOT gate is typically represented in the circuit diagrams as shown in Fig. 15.4.
In earlier chapters we have seen that the Bell state basis

∣B00 (1, 2)⟩ =
1
√2

(|01, 02⟩ + |11, 12⟩) , (15.27)

|A〉

|B〉

|A〉

|A      B〉

Fig. 15.4 Symbol for the CNOT gate.
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H H

|Bab〉

|a〉

|b〉

|a〉

|b〉

|Bab〉

(a) (b)

Fig. 15.5 Circuit diagrams for (a) generating Bell states via Hadamard and CNOT gates and (b) measurement of the Bell

basis states.

∣B01 (1, 2)⟩ =
1
√2

(|01, 12⟩ + |11, 02⟩) , (15.28)

∣B10 (1, 2)⟩ =
1
√2

(|01, 02⟩ − |11, 12⟩) , (15.29)

∣B11 (1, 2)⟩ =
1
√2

(|01, 12⟩ − |11, 02⟩) , (15.30)

plays a key role in many applications such as quantum teleportation and quantum swapping.
As an example, we show how the Bell basis states can be created using the quantum logic gates
discussed in this section, and how Bell basis states can be measured using the logic gates.

In Fig. 15.5a, the circuit involving Hadamard and CNOT gates can generate a desired Bell
state. As an example, we consider the initial state |01, 02⟩ and show how we can generate the
Bell basis state |B00(1, 2)⟩. First apply a Hadamard gate H1 on the first qubit in the initial state
|01, 02⟩. It follows from Eq. (15.9) that the resulting state is

1
√2

(|01, 02⟩ + |11, 02⟩) .

Next, apply a CNOT gate on the qubits. A CNOT gate keeps the state |01, 02⟩ unchanged
according to Eq. (15.23) and transforms the state |11, 02⟩ to |11, 12⟩ according to Eq. (15.25).
The net result is that the output is the Bell basis state |B00⟩ as given by Eq. (15.27). Formally,
this is

UCNOTH1∣01, 02⟩ = ∣B00 (1, 2)⟩. (15.31)

In the same way, the states |01, 12⟩, |11, 02⟩, and |11, 1⟩ are transformed into the Bell basis states
|B01(1, 2)⟩, |B10(1, 2)⟩, and |B11(1, 2)⟩, respectively.

The reverse process corresponds to a measurement of the Bell basis states—a Bell basis state
∣Bab (1, 2)⟩ (a, b = 0, 1) can generate the state |a, b⟩ in the output which can then be measured
as shown in Fig. 15.5b. A measurement outcome of state |a⟩ for the first qubit and state |b⟩ for
the second qubit yields the information that the input state is the Bell state |Bab(1, 2)⟩ in the
input.

15.3 The Deutsch Problem

In 1985, David Deutsch discussed a simple problem that indicates the power of quantum
computers. It is a toy problem that may not be useful in any practical application: However,
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the remarkable aspect of the Deutsch problem is that, despite the probabilistic nature of
quantum mechanics, we obtain a deterministic and definite answer to a quantum mechanical
problem.

The problem can be stated as follows: Suppose we are given a binary function of a binary
variable f (x), i.e., x can take on only two values “0” and “1,” and both f (0) and f (1) can take on
two values, again “0” and “1.” Thus

f (0) can be 0 or 1
f (1) can be 0 or 1

There are now two possibilities: Either f (0) is equal to f (1) (i.e., both f (0) and f (1) are equal to
0 or 1) or f (0) is not equal to f (1) (i.e., if f (0) is equal to 0 then f (1) is equal to 1 or vice versa).
The question we ask is: By making only one measurement, can we determine with certainty
whether

f (0) = f(1) (15.32)

or

f (0) ≠ f(1)? (15.33)

Classically we always require two measurements to solve this problem. We should measure
both f (0) and f (1). Only then can we find out whether the two functions are equal or unequal.
Can quantum mechanics do better and solve the problem by making only one measurement?
The answer is, remarkably, “yes” as we see in the following.

The problem is solved using two qubits. Let the initial state of the two qubits be |x⟩|y⟩ or
|x, y⟩ and the quantum computer then carries out the following transformation on the input
qubits:

∣x, y⟩ → ∣x, y⊕ f (x)⟩. (15.34)

Here ∣y⊕ f (x)⟩ is the CNOT gate such that the binary states transform as follows,

∣0, 0⟩ → ∣0, 0⊕ f (0)⟩ = ∣0, f (0)⟩, (15.35)

∣0, 1⟩ → ∣0, 1⊕ f (0)⟩ = ∣0, f (0)⟩, (15.36)

∣1, 0⟩ → ∣1, 0⊕ f(1)⟩ = ∣1, f(1)⟩, (15.37)

∣1, 1⟩ → ∣1, 1⊕ f(1)⟩ = ∣1, f(1)⟩, (15.38)

where the bar indicates the opposite value: 0 = 1, 1 = 0. For example, if f (0) = 0 then f (0) = 1.
Let the two qubits be prepared initially in states |0⟩ and |1⟩ as shown in Fig. 15.6. Hadamard

transform (15.9) and (15.10) on both qubits leads to

∣x⟩ = H∣0⟩ = 1
√2

(|0⟩ + |1⟩) , (15.39)

∣y⟩ = H∣1⟩ = 1
√2

(|0⟩ − |1⟩) . (15.40)
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Therefore the input state of the two qubits is

∣𝜓in⟩ = ∣x⟩∣y⟩
= 1

√2
(|0⟩ + |1⟩) 1

√2
(|0⟩ − |1⟩)

= 1
2
(|0, 0⟩ − |0, 1⟩ + |1, 0⟩ − |1, 1⟩) .

(15.41)

According to Eq. (15.34), the output state is

∣𝜓out⟩ = ∣x, y⊕ f (x)⟩
= 1

2
(|0, f (0)⟩ − |0, f (0)⟩ + |1, f(1)⟩ − |1, f(1)⟩)

= 1
2
[|0⟩(| f (0)⟩ − ∣ f (0)⟩) + |1⟩(| f(1)⟩ − ∣ f(1)⟩)]

, (15.42)

where we used transformations (15.35)–(15.38).
We next consider the two cases: If f (0) = f(1) then f (0) = f(1), and we obtain

∣𝜓out⟩ =
1
2 (|0⟩ + |1⟩)(| f (0)⟩ − ∣ f (0)⟩). (15.43)

However, if f (0) ≠ f(1) then f(1) = f (0) and f(1) = f (0), and the result is

∣𝜓out⟩ =
1
2 (|0⟩ − |1⟩)(| f (0)⟩ − ∣ f (0)⟩). (15.44)

Next we make the Hadamard transformation

∣0⟩ → 1
√2
(|0⟩ + |1⟩),

∣1⟩ → 1
√2
(|0⟩ − |1⟩),

on the first qubit. The output state for f (0) = f(1) (Eq. (15.43) becomes

∣𝜓out⟩ = ∣0⟩(|f (0)⟩ − ∣ f (0)⟩) (15.45)

and for f (0) ≠ f(1) (Eq. (15.44) becomes

∣𝜓out⟩ = ∣1⟩(|f (0)⟩ − ∣ f (0)⟩). (15.46)

Finally, we make a measurement on the first qubit |a⟩ (Fig. 15.6). It is clear from Eqs. (15.45)
and (15.46) that if the state is found to be |0⟩ we know that f (0) = f(1), and if the outcome is
|1⟩ then f (0) ≠ f(1). Thus, by making just a single measurement, we can find with certainty
whether f (0) = f(1) or f (0) ≠ f(1).

This is a remarkable result as we cannot devise a classical algorithm which can solve this
problem with just a single measurement.

H H

x     f(x)

H

|0〉

|1〉

|a〉

|b〉

Fig. 15.6 Circuit diagram for the implementation of the Deutsch algorithm.
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15.4 Quantum Teleportation Revisited

In Section 10.4, we learned how entanglement can be used to teleport an arbitrary unknown
state

∣𝜓C⟩ = c0∣0⟩ + c1∣1⟩ (15.47)

fromAlice to Bob. Here we revisit quantum teleportation from a quantum circuit point of view.
The circuit for quantum teleportation is shown in Fig. 15.7. Alice and Bob share a pair of

qubits in a Bell state

∣B00 (A,B)⟩ =
1
√2

(|0A, 0B⟩ + |1A, 1B⟩) . (15.48)

The initial state |𝜓3⟩ of the system of three qubits is

∣𝜓(0)3 ⟩ = ∣𝜓C ⟩∣B00(A,B)⟩
= 1

√2
[c0|0C⟩ (|0A⟩|0B⟩ + |1A⟩|1B⟩) + c1|1C⟩ (|0A⟩|0B⟩ + |1A⟩|1B⟩)] .

(15.49)

The first two qubits (C and A) are at Alice’s location, and the last qubit (B) is at Bob’s location.
Alice applies the CNOT transformation to her two qubits, with the controlling qubit being the
qubit C to be teleported to Bob. Thus ∣0C ⟩∣0A⟩ → ∣0C ⟩∣0A⟩, ∣0C ⟩∣1A⟩ → ∣0C ⟩∣1A⟩ , ∣1C ⟩∣0A⟩ →
∣1C ⟩∣1A⟩ , and ∣1C ⟩∣1A⟩ → ∣1C ⟩∣0A⟩, and the resulting state is

∣𝜓(1)3 ⟩ = 1
√2

[c0|0C⟩ (|0A⟩|0B⟩ + |1A⟩|1B⟩) + c1|1C⟩ (|1A⟩|0B⟩ + |0A⟩|1B⟩)] . (15.50)

Alice then applies the Hadamard transformation ((15.9) and (15.10)) to qubit C, with the
result

∣𝜓(2)3 ⟩ = 1
2
[c0 (|0C⟩ + |1C⟩) (|0A⟩|0B⟩ + |1A⟩|1B⟩)
+c1 (|0C⟩ − |1C⟩) (|1A⟩|0B⟩ + |0A⟩|1B⟩)],

(15.51)

H

I, X, Z, ZX

|a〉

|b〉

|Ψ〉

|Ψ〉

|B00〉
Alice

Bob

Fig. 15.7 Circuit diagram for the quantum teleportation of the state |𝜓⟩ from Alice to Bob. A Bell basis state |B00⟩ is
created between Alice and Bob. Alice makes a joint Bell basis measurement on the two qubits at her end and conveys

the outcome to Bob via a classical channel. Bob transforms his state by applying I, X, Z, and ZX gates depending on

Alice’s measurement and recovers the state |𝜓⟩.



OUP CORRECTED PROOF – FINAL, 10/3/2020, SPi

QUANTUM DENSE CODING 241

which can be cast in the form

∣ 𝜓(2)3 ⟩ = 1
2
[∣0C, 0A⟩ (c0|0B⟩ + c1|1B⟩) + ∣0C, 1A⟩ (c0|1B⟩ + c1|0B⟩)
+ ∣1C, 0A ⟩(c0|0B⟩ − c1∣1B⟩) + ∣1C, 1A⟩ (c0|1B⟩ − c1|0B⟩)].

(15.52)

Finally, Alice measures the two qubits C and A in her possession and communicates the
result to Bob with the two bits of information. The possible outcomes are four possible states
|0C, 0A⟩, |0C, 1A⟩, |1C, 0A⟩, and |1C, 1A⟩.

The measurement outcome |0C, 0A⟩ reveals that the state of Bob’s qubit is equivalent to the
original state |𝜓⟩ that was to be teleported. So, if Bob receives from Alice a two-bit message
00, he knows that the state of his qubit B coincides with |𝜓C⟩ and he does not change it. This
corresponds to applying a unity I operation.

If, on the other hand, Bob receives message 01, he applies the X (NOT) transformation to
his qubit, whose state then becomes |𝜓C⟩.

Similarly, messages 10 or 11 instruct Bob to apply, respectively, the Z or ZX transformations
to attain state |𝜓C⟩.

This completes the protocol. Herewe have seen how an application of the one-bit and two-bit
gates can lead to the quantum teleportation of an unknown state.

15.5 Quantum Dense Coding

As discussed before, photons are ideal carriers of information. Typically a single photon can
carry only one bit of information {0, 1}. For example, a photon in the horizontal polarization
state |→⟩ can represent “0” and in the vertical polarization state |↑⟩ can represent “1.”ThusAlice
can send a single bit of information “0” or “1” to Bob by suitably choosing the polarization of
her photon. A question of interest is whether we can send two bits of information {00, 01, 10,
11} by exchanging just one photon. If this becomes possible, then the information capacity can
be doubled. In the following we show that quantum entanglement can help us in achieving
this goal.

As a first step, Alice and Bob can create an entangled pair of photons in the state
1
√2

[|0A, 0B⟩ + |1A, 1B⟩] , (15.53)

with Alice holding the first qubit and sending the second qubit to Bob. This can, for example
be done at a time when communication traffic is slow. We also assume that the qubits can be
stored in their respective states for a sufficiently long time before decoherence can induce any
errors. Next Alice sends two bits of information by sending her qubit to Bob after making one
of the four operations. This is shown in the box in Fig. 15.8.

If Alice wants to send “00” she does nothing (logic gate I) and sends her photon to Bob. In
this case the state of the two photons at Bob’s end is

∣B00 (A,B)⟩ =
1
√2

(|0A, 0B⟩ + |1A, 1B⟩) . (15.54)
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H

I, X, Z, ZX

Alice|B00〉

Bob

|a〉

|b〉

Fig. 15.8 Circuit diagram for quantum dense coding.

If Alice wants to send “01” she applies the logic gate X on her qubit transforming ∣0A ⟩→ ∣1A⟩
and ∣1A⟩ → ∣0A⟩ before sending her photon to Bob. In this case the state of the two photons at
Bob’s end is

∣B01 (A,B)⟩ =
1
√2

(|0A, 1B⟩ + |1A, 0B⟩) . (15.55)

If Alice wants to send “10” she applies the logic gate Z on her qubit transforming ∣0A⟩ → ∣0A⟩
but ∣1A⟩ → −∣1A⟩ before sending her photon to Bob. In this case the state of the two photons
at Bob’s end is

∣B10 (A,B)⟩ =
1
√2

(|0A, 0B⟩ − |1A, 1B⟩) . (15.56)

Finally, if Alice wants to send “11” she applies first the logic gate Z on her qubit transforming
∣0A⟩ → ∣0A⟩ but ∣1A⟩ → −∣1A⟩ and then applies the logic gate X transforming ∣0A⟩ → ∣1A⟩ and
∣1A⟩ → ∣0A⟩ before sending her photon to Bob. In this case the state of the two photons at Bob’s
end is (apart from a trivial overall factor −1)

∣B11 (A,B)⟩ =
1
√2

(|0A, 1B⟩ − |1A, 0B⟩) . (15.57)

Thus, the resulting entangled state at Bob’s end is one of the Bell states which are mutually
orthogonal. Bob can therefore uniquely determine the Bell state, and hence the two-bit
information, by making the measurement on the two qubits using a Bell State Discriminator
consisting of a CNOT gate and a Hadamard gate H as shown in Fig. 15.8. In the presence of a
prior entangled state Alice’s photon can, therefore, carry two bits of information.

Problems

15.1 A swap gate USW is characterized by the following transformations:

USW∣0 ⟩∣0⟩ = ∣0 ⟩∣0⟩ ,
USW∣0 ⟩∣1⟩ = ∣1 ⟩∣0⟩ ,
USW∣1 ⟩∣0⟩ = ∣0 ⟩∣1⟩ ,
USW∣1 ⟩∣1⟩ = ∣1 ⟩∣1⟩ .
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Show that this gate can be implemented by a combination of three CNOTgates as follows:

15.2 Show that the following circuits effect the same transformation

HH

H H

(b)(a)

List the transformation for all the four possible input states |01, 02⟩, |01, 12⟩, |11, 02⟩, and
|11, 12⟩.

15.3 Show that a CNOT gate can be accomplished via a combination of Hadamard gates and
a quantum phase gate Q𝜋 .

15.4 In the text we discussed explicitly how the Bell state |B00⟩ can be created by applying
a Hadamard gate on the first qubit H1 followed by a CNOT gate on the initial state
|01, 12⟩. Show, in a similar manner, that a Hadamard gate on the first qubit H1 followed
by a CNOT gate on the initial states |01, 12⟩, |11, 02⟩, and |11, 12⟩ yield the Bell basis states
|B01⟩, |B10⟩, and |B11⟩, respectively.

15.5 Show that, as depicted in Fig. 15.5b, a CNOT gate followed by a Hadamard gate on the
first qubit, H1, transforms the initial Bell basis states |B00(A, B)⟩, |B01(A, B)⟩, |B10(A, B)⟩,
and |B11(A, B)⟩ into states |0A, 0B⟩, |0A, 1B⟩, |1A, 0B⟩, and |1A, 1B⟩, respectively.
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In Chapter 13, we discussed the RSA algorithm that is used to exchange a key on a pub-
lic channel such as optical fiber or telephone line. This algorithm provides the foundation
for the communication security in the present internet-based e-commerce. We are able to
exchange confidential information like our credit card number on the internet due to the
security provided by the RSA algorithm in the exchange of a key on a public channel. We
also discussed how RSA is critically dependent on the difficulty of finding the prime factors
of a number N that is a product of two prime numbers p and q. On a conventional computer,
it takes an extremely long time to find the factors p and q, which ensures that the RSA-based
exchange of information is safe. Recall that a 256-digit number that is typically used in the
present-day RSA would require several decades on the fastest computer available to factorize.
However, if we can find an algorithm that can accomplish this task (finding prime factors p
and q of the number N) much faster, RSA would be compromised and e-commerce might be
seriously endangered.

In 1994, Peter Shor proposed a quantum computing algorithm to find the prime factors p
and q of the number N much more efficiently. This sent a major alarm throughout the inter-
national community. The potential of quantum mechanics to seriously attack the foundation
of e-commerce sent tremors through the security community and created great interest in the
emerging field of quantum computing. Shor’s algorithm remains the most powerful example
of the applications of quantum computing.

Another algorithm created by Lov Grover related to the search of an unsorted database. It
is well known how difficult it is to find a needle in a haystack. This proverbially corresponds
to the problem of the search for a marked object in a large database. A considerable speed-up
in solving this problem by using a quantum computer provided another major impetus for the
interest in quantum computing.

16.1 How to FactorizeN?

We first address the question how to find prime factors of a number N, i.e., if we have a
number N= pq where p and q are primes then how to find p and q. This can be done as
follows.

We can adopt the obvious course: divide N by all the prime numbers starting with the lowest
up to √N and see if N is divisible by any of them. If so, then that prime number would be a
factor. There should be at least one prime factor of N less than or equal to√N. For example, if
we want to find the factors of 21583, we first list all the primes less than√21583 ≈ 147. There
are 34 such primes and they are:

Quantum Mechanics for Beginners: With Applications to Quantum Communication and Quantum Computing. M. Suhail Zubairy.
© M. Suhail Zubairy 2020. Published in 2020 by Oxford University Press. DOI: 10.1093/oso/9780198854227.001.0001
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2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67,
71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139

Next, we divide N= 21583 by each prime, one by one, and find that this number is exactly
divisible by 113. From 21583/113= 191, it follows that the prime factors of 21583 are
113 and 191.

This procedure may be suitable for a relatively small number N for which we may know all
the prime numbers smaller than N. However, for a large number such as a 256- digit number,
the number of primes is prohibitively large and this procedure is not practical. In the late
seventeenth century, famous mathematicians Gauss and Legendre conjectured that, for a large
number N, the number of primes less than N is approximately equal to N/ln N, which can
be extremely large.We therefore need to have a formal procedure that should be able to provide
the prime factors via awell-defined algorithm.Herewe describe such a procedure or algorithm.

Before formally stating the algorithm, we motivate it with a simple example by finding the
prime factors of N = 15. In order to do so, first, select an integer x that is co-prime with N, i.e.,
there are no common factors between x and N and the great common divisor (gcd) is equal to
1.1 In our case we choose x = 2. We can verify that 2 and 15 have no common factors. The next
step is to find the sequence formed by the function

f (a) = xa mod N. (16.1)

Here recall the definition of the modulo function: a statement

b = amod N (16.2)

means that b is the remainder when a is divided by N. Thus 3 = 21mod 6 and 5 = 65mod 12
etc. We encountered the modulo function when discussing the RSA algorithm in Chapter 13.

It follows on substituting x = 2 and N = 15 in Eq. (16.1), we obtain the following sequence:

f (0) = 20 mod 15 = 1
f (1) = 21 mod 15 = 2
f (2) = 22 mod 15 = 4
f (3) = 23 mod 15 = 8
f (4) = 24 mod 15 = 1
f (5) = 25 mod 15 = 2
f (6) = 26 mod 15 = 4
f (7) = 27 mod 15 = 8
f (8) = 28 mod 15 = 1
f (9) = 29 mod 15 = 2

and so on. We observe that the sequence is periodic with periodicity r = 4, i.e., for any value
of a

1 A Euclidean algorithm can be used to find the gcd of two numbers a and b (with a > b). First, divide a by b
and let the remainder be r1. Next we divide b by r1 and let the remainder be r2. Next divide r1 by r2 and continue the
process until the remainder is 0 and we stop. The final non-zero remainder is the gcd(a, b). For example, if we want to
find gcd(45, 30), we divide 45 by 30 and the remainder is 15. We then divide 30 by 15 and the remainder is 0. Therefore
gcd(45, 30) = 15.
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f (a) = f (a + r). (16.3)

For example, f (1) = f (1 + 4) = f (5) etc. We also note that f (r) = f (4) = 1. Thus according to
Eq. (16.1),

1 = xr mod N. (16.4)

In the present case, when x = 2, N = 15, and the periodicity r = 4, we have

1 = 24 mod 15.

This equation can be rewritten as

0 = (24 − 1)mod 15,

i.e., (24 − 1) is divisible by 15. However (24 − 1) = (22 − 1)(22 + 1) = 3 · 5. Therefore 3 and 5
should be the factors of 15. We confirm this by dividing 15 by 5 and 3 and find that these are
indeed factors of 15.

It is interesting to note that the crucial point of this procedure is to find the periodicity of
the function f (a). For an even value of r (r = 4 in the present case), we find smaller factors
(2r/2 − 1) = (22 − 1) and (2r/2 + 1) = (22 + 1) that contain the prime factors of N = 15. This
is the essence of the method to finding the prime factors of N.

In order to illustrate this method further, we consider another slightly more complicated
example. We try to find the prime factors of N = 91 and choose x = 3. The sequence

f (a) = xa mod N

is given by

f (0) = 30 mod 91 = 1
f (1) = 31 mod 91 = 3
f (2) = 32 mod 91 = 9
f (3) = 33 mod 91 = 27
f (4) = 34 mod 91 = 81
f (5) = 35 mod 91 = 61
f (6) = 36 mod 91 = 1
f (7) = 37 mod 91 = 3
f (8) = 38 mod 91 = 9
f (9) = 39 mod 91 = 27

and so on. The period, r, of the function f (a) is 6, i.e., for any value a, f (a) = f (a+6). It follows
from

f (r) = 1 = xr mod N,

that, for x = 3 and N = 91, we have

1 = 36 mod 91.

This equation can be rewritten as

0 = (33 − 1)(33 + 1)mod 91.
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Thus (33 − 1) = 26 = 13 × 2 and (33 + 1) = 28 = 7 × 4 have the prime factors of 91. We can
verify that these factors are 13 and 7.

These examples clearly show that themain objective of an algorithm to find the prime factors
ofN is to find the period r of the function f (a) = xa(modN).We can now formulate the general
procedure of finding the prime factors p and q of a number N as follows.

Choose a random number x that has no common factors with N and find the period r of the
sequence

f (a) = xa mod N

If the period r is even, we proceed. If it is odd then we start over by choosing a different x and
finding the period of the sequence f (a) with the new value of x. If the period r is even then

1 = xr mod N
0 = (xr/2 − 1)(xr/2 + 1)mod N

Thus, (xr/2−1) or (xr/2+1)must have common factors with N. We factorize the relatively small
numbers (xr/2 − 1) and (xr/2 + 1) and verify which of these prime numbers are factors of N by
finding whether N is divisible by these numbers.

The crucial step in finding the prime factors is therefore determining the period r of the
function f (a) = xa(modN).

16.2 Discrete Quantum Fourier Transform

How can quantum mechanics help in finding the period r of the function f (a)? It turns out
that a discrete “quantum” Fourier transform helps in this objective. This is a beautiful example
where the basic features of quantum mechanics can be employed in solving a very practical
problem. The principles of superposition, quantum interference, quantum entanglement, and
the probabilistic nature of measurement all come together to achieve this goal.

A quantum Fourier transform is given by the following transformation on |a⟩:

∣a⟩ → 1
√q

q−1

∑
c=0

e2𝜋i ac
q ∣c⟩, (16.5)

i.e., a state |a⟩ is prepared in a coherent superposition of all possible states. As a simple example,
we assume q = 8. Then, for a = 0 and 1, we obtain the following transformations:

∣ 0⟩ → 1
√8
[|0⟩ + |1⟩ + |2⟩ + |3⟩ + |4⟩ + |5⟩ + |6⟩ + |7⟩]

∣ 1⟩ → 1
√8
[ei0|0⟩ + ei𝜋

4 |1⟩ + ei𝜋
2 |2⟩ + ei 3𝜋

4 |3⟩ + ei𝜋|4⟩ + ei 5𝜋
4 |5⟩ + ei 3𝜋

2 |6⟩ + ei 7𝜋
4 |7⟩]

In a similar manner, the transformation of the states |2⟩ … |7⟩ can be obtained. The important
thing is to realize that each amplitude has a well-defined phase. We now address the ques-
tion how this transformation of the quantum states helps in finding the periodicity of the
function f (a).

For this purpose, consider the quantum Fourier transform of an entangled state |𝜙(A, B)⟩
between two systems A and B as follows:
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∣ 𝜙(A,B)⟩ = 1
√q

q−1

∑
a=0

∣a f (a)⟩ → |𝜓(A.B) >= 1
q

q−1

∑
a=0

q−1

∑
c=0

e2𝜋i ac
q ∣ c, f (a)⟩. (16.6)

This is a double sum that contains q2 terms.
Again, for simplicity’s sake, consider the case: q = 8.We then obtain

∣ 𝜓(A,B)⟩ = 1
8

7

∑
a=0

7

∑
c=0

e2𝜋i ac
8 ∣ c, f (a)⟩. (16.7)

This double sum can be written explicitly as follows:

∣ 𝜓(A,B) = 1
8
∣ 0⟩ [| f (0)⟩ + | f (1)⟩ + | f (2)⟩ + | f (3)⟩ + | f (4)⟩ + | f (5)⟩ + | f (6)⟩ + | f (7)⟩]

+ 1
8
∣ 1⟩ [ei0| f (0)⟩ + ei 𝜋

4 | f (1)⟩ + ei 2𝜋
4 | f (2)⟩ + ei 3𝜋

4 | f (3)⟩ + ei 4𝜋
4 | f (4)⟩ + ei 5𝜋

4 | f (5)⟩ + ei 6𝜋
4 | f (6)⟩ + ei 7𝜋

4 | f (7)⟩]

+ 1
8
∣ 2⟩ [ei0| f (0)⟩ + ei 2𝜋

4 | f (1)⟩ + ei 4𝜋
4 | f (2)⟩ + ei 6𝜋

4 | f (3)⟩ + ei0| f (4)⟩ + ei 2𝜋
4 | f (5)⟩ + ei 4𝜋

4 | f (6)⟩ + ei 6𝜋
4 | f (7)⟩]

+ 1
8
∣ 3⟩ [ei0| f (0)⟩ + ei 3𝜋

4 | f (1)⟩ + ei 6𝜋
4 | f (2)⟩ + ei 𝜋

4 | f (3)⟩ + ei 4𝜋
4 | f (4)⟩ + ei 7𝜋

4 | f (5)⟩ + ei 2𝜋
4 | f (6)⟩ + ei 5𝜋

4 | f (7)⟩]

+ 1
8
∣ 4⟩ [ei0| f (0)⟩ + ei 4𝜋

4 | f (1)⟩ + ei0| f (2)⟩ + ei 4𝜋
4 | f (3)⟩ + ei0| f (4)⟩ + ei 4𝜋

4 | f (5)⟩ + ei0| f (6)⟩ + ei 4𝜋
4 | f (7)⟩]

+ 1
8
∣ 5⟩ [ei0| f (0)⟩ + ei 5𝜋

4 | f (1)⟩ + ei 2𝜋
4 | f (2)⟩ + ei 7𝜋

4 | f (3)⟩ + ei 4𝜋
4 | f (4)⟩ + ei 𝜋

4 | f (5)⟩ + ei 6𝜋
4 | f (6)⟩ + ei 3𝜋

4 | f (7)⟩]

+ 1
8
∣ 6⟩ [ei0| f (0)⟩ + ei 6𝜋

4 | f (1)⟩ + ei 4𝜋
4 | f (2)⟩ + ei 2𝜋

4 | f (3)⟩ + ei0| f (4)⟩ + ei 6𝜋
4 | f (5)⟩ + ei 4𝜋

4 | f (6)⟩ + ei 2𝜋
4 | f (7)⟩]

+ 1
8
∣ 7⟩ [ei0| f (0)⟩ + ei 7𝜋

4 | f (1)⟩ + ei 6𝜋
4 | f (2)⟩ + ei 5𝜋

4 | f (3)⟩ + ei 4𝜋
4 | f (4)⟩ + ei 3𝜋

4 | f (5)⟩ + ei 2𝜋
4 | f (6)⟩ + ei 𝜋

4 | f (7)⟩] ,
(16.8)

where we used

ei(2𝜋n+𝜃) = e2𝜋inei𝜃 = ei𝜃 (n = 0, ±1, ±2,⋯). (16.9)

There are 8 × 8 = 64 terms in the double summation representing |𝜓(A, B)⟩. In Fig. 16.1,
the phases of all these 64 terms are plotted. The intersection of the ith horizontal and the jth
vertical lines gives the phase contribution of the state ∣ c = j, f (i)⟩ in the sum.

| f(7)〉

| f(6)〉

| f(5)〉

| f(4)〉

| f(3)〉

| f(2)〉

| f(1)〉

| f(0)〉

|0〉 |1〉 |2〉 |3〉 |4〉 |5〉 |6〉 |7〉

Fig. 16.1 The arrow at each intersection corresponds to the phase of the corresponding term |c, f (a)⟩.
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Next assume that the period r of the function f (a) is equal to 2, i.e., f (a) = f (a + 2). In this
case

f (0) = f (2) = f (4)⟩ = f (6),
f (1) = f (3) = f (5) = f (7).

The summation (16.8) can then be rewritten as

∣ 𝜓(A,B)⟩ = 1
8
∣0⟩ [| f (0)⟩(1 + ei0 + ei0 + ei0) + | f (1)⟩(1 + ei0 + ei0 + ei0)]

+ 1
8
∣1⟩ [| f (0)⟩(1 + ei 2𝜋

4 + ei 4𝜋
4 + ei 6𝜋

4 ) + | f (1)⟩(ei𝜋
4 + ei 3𝜋

4 + ei 5𝜋
4 + ei 7𝜋

4 )]

+ 1
8
∣2⟩ [| f (0)⟩(1 + ei 4𝜋

4 + ei0 + ei 4𝜋
4 ) + | f (1)⟩(ei 2𝜋

4 + ei 6𝜋
4 + ei 2𝜋

4 + ei 6𝜋
4 )]

+ 1
8
∣3⟩ [| f (0)⟩(1 + ei 6𝜋

4 + ei 4𝜋
4 + ei 2𝜋

4 ) + | f (1)⟩(ei 3𝜋
4 + ei𝜋

4 + ei 7𝜋
4 + ei 5𝜋

4 )]

+ 1
8
∣4⟩ [| f (0)⟩(1 + ei0 + ei0 + ei0) + | f (1)⟩(ei 4𝜋

4 + ei 4𝜋
4 + ei 4𝜋

4 + ei 4𝜋
4 )]

+ 1
8
∣5⟩ [| f (0)⟩(1 + ei 2𝜋

4 + ei 4𝜋
4 + ei 6𝜋

4 ) + | f (1)⟩(ei 5𝜋
4 + ei 7𝜋

4 + ei𝜋
4 + ei 3𝜋

4 )]

+ 1
8
∣6⟩ [| f (0)⟩(1 + ei 4𝜋

4 + ei0 + ei 4𝜋
4 ) + | f (1)⟩(ei 6𝜋

4 + ei 2𝜋
4 + ei 6𝜋

4 + ei 2𝜋
4 )]

+ 1
8
∣7⟩ [| f (0)⟩(1 + ei 6𝜋

4 + ei0 + ei 2𝜋
4 ) + | f (1)⟩(ei 7𝜋

4 + ei 5𝜋
4 + ei 3𝜋

4 + ei𝜋
4 )] .

(16.10)

It follows from using the relation

ei(𝜋+𝜃) = ei𝜋ei𝜃 = −ei𝜃 (16.11)

that all the terms involving states |1⟩, |2⟩, |3⟩. |5⟩, |6⟩, and |7⟩ vanish. Only the terms involving
|0⟩ and |4⟩ survive and the end result is that, for f (a) = f (a + 2),

∣ 𝜓(A,B)⟩ = 1
2 (|0, f (0)⟩ + |0, f (1)⟩ + |4, f (0)⟩ − |4, f (1)⟩). (16.12)

Thus the outcome of stateA is |0⟩ or |4⟩with equal probability.2 A clever application of quantum
Fourier transform led to a cancellation of most of the terms; only few survived. We can see
pictorially from Fig. 16.1 that only the states |0⟩ or |4⟩ survive when f (a) = f (a + 2).

Next we ask the obvious question: What is the significance of the states |0⟩ and |4⟩ that
survived? What have these states to do with finding the period r?

2 Following the discussion in Section 2.4, the probability for the outcome |0⟩ is

P(0) = ∣ ⟨0, f (0)|𝜓(A,B)⟩|2+ ∣ ⟨0, f (1)|𝜓(A,B)⟩|2 = 1/2.
Similarly the probability for the outcome |4⟩ is

P(4) = ∣ ⟨4, f (0)|𝜓(A,B)⟩|2+ ∣ ⟨4, f (1)|𝜓(A,B)⟩|2 = 1/2.
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In general, for f (a) = f (a + r), the only |c⟩ states that survive are

∣c0⟩ = ∣0⟩, ∣q/r⟩, ∣2q/r⟩,⋯ , ∣ (r − 1)q/r⟩.. (16.13)

All the others vanish. In our example, q = 8 and r = 2, therefore only surviving states are
|0⟩ and |4⟩. Due to the probabilistic nature of quantum mechanics, these outcomes are equally
probable.3

This is an amazing result and is a consequence of quantum interference – some amplitudes
interfere destructively and get cancelled and the others interfere constructively and survive.
Thus, if the state |𝜓(A, B)⟩ of the form (16.6) is prepared such that f (a) is periodic with an
unknown period r, the outcome of the measurement of the state |c⟩ carries the information
about r. Even for very large q, if we make a measurement of the state |c⟩ in identically prepared
systems,we should get the outcomes ∣0 ⟩, ∣ q/r⟩ , ∣ 2q/r ⟩, … , ∣ (r − 1)q/r⟩with equal probability.
Thus, after a modest number of measurements, we should be able to determine the value of r.
This, as shown below, is the essence of Shor’s algorithm.

16.3 Shor’s Algorithm

Armed with a mathematical method for finding the prime factors of a number N and the
ability of the quantum Fourier transform to find the period of a function, a simplified form
of Shor’s algorithm to factorize a number quantum mechanically with a much faster speed-up
can be described.

The quantum computer is prepared in two registers A and B.The registers are essentially two
separate sets of qubits. As an example, if our qubits are two-level atoms, then register A would
correspond to one set of atoms and register B to another set of atoms. Each register consists of
qubits initialized to values “0”, i.e., all qubits in both registers are initially in states |0⟩. Thus if
we have n qubits in register A and m qubits in register B, then the initial state is

∣A0;B0⟩ = ∣01, 02⋯ 0n; 01, 02⋯ 0m⟩ . (16.14)

For the sake of simplicity we denote it by |0; 0⟩, i.e.,

∣A0;B0⟩ = ∣0; 0⟩ . (16.15)

Register A is used to hold the arguments of function f (a) whose unknown period is sought
whereas register B is used to store the value of f (a).

Now consider the sequence

f (0), f (1), f (2), … , f (q − 1)

3 This result is strictly true if q is divisible by r. In case this condition is not satisfied, the outcome of the
measurement of the state |c⟩ may have contributions other than those listed in Eq. (16.13). However it can be shown
that the probability of getting those states is significantly lower. In order to keep things simple, we assume in the
following that the condition, q is divisible by r, is satisfied.
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where q = 2k. Register A stores k qubits so that it can store all the values of a, from 0 to 2k. Here
we recall that k qubits can store 2k numbers. Register B should have enough qubits to hold the
largest value contained in the above sequence.

The Shor algorithm requires the following four steps.
1. On each qubit of register A, perform the Hadamard transformation H, i.e.,

H ∣0⟩ = 1
√2

(|0⟩ + |1⟩). (16.16)

The resulting state of register A is the superposition of all possible 2k states:

∣0, 0⟩ ⇒ 1
√q

q−1

∑
a=0

∣ a, 0⟩. (16.17)

Thus, we get every possible bit of length k in register A.
2. Map the state |a, 0⟩ to the state |a, f (a)⟩ for any input. The number of qubits required for

registerBmust be at least sufficient to store the longest result f (a) for any of these computations:

1
√q

q−1

∑
a=0

∣ a, 0⟩ ⇒ 1
√q

q−1

∑
a=0

∣ a, f (a)⟩. (16.18)

This is a highly entangled state!!!
In order to illustrate these two steps, consider the case when N = 91 is factorized. In the

factorization algorithm, discussed above, choose x = 3. If only 8 terms are retained, then only
three qubits are needed in register A. The Hadamard transformation on each qubit leads to

∣0, 0, 0⟩ ⇒ 1
√2

(|0⟩ + |1⟩) 1
√2

(|0⟩ + |1⟩) 1
√2

(|0⟩ + |1⟩),

= 1
√8

(∣ 0, 0, 0⟩ + ∣ 0, 0, 1⟩ + ∣ 0, 1, 0⟩ + ∣ 0, 1, 1⟩

+ ∣ 1, 0, 0⟩ + ∣ 1, 0, 1 ⟩ + ∣ 1, 1, 0⟩ + ∣ 1, 1, 1⟩

= 1
√8

∑7

a=0
∣ a⟩. (16.19)

Here, the qubit binary states can be translated into the decimal number states. For example,
∣0, 0, 0⟩ ≡ ∣0⟩, ∣0, 0, 1⟩ ≡ ∣1⟩, ∣0, 1, 0⟩ ≡ ∣2⟩, ∣0, 1, 1⟩ ≡ ∣3⟩, and so on.

In the next step, the entangled state
1
√8

∑7

a=0
∣ a, f (a)⟩ = 1

√8
(∣0, 1 ⟩ + ∣ 1, 3⟩ + ∣ 2, 9 ⟩+ ∣ 3, 27⟩ + ∣ 4, 81 ⟩

+ ∣ 5, 61⟩ + ∣ 6, 1 ⟩ + ∣ 7, 3⟩ (16.20)

is prepared. As the maximum value of f (a) is 81, we need minimum seven qubits to store
the values for f (a) for all values of a. The decimal states in Eq. (16.20) can be converted
to binary states: |0, 1⟩ ≡ |000; 0000001⟩, |1, 3⟩ ≡ |001; 0000011⟩, |2, 9⟩ ≡ |010; 0001001⟩, and
so on. Thus the joint state for the entire A and B registers consist of an entanglement of
10 qubits:



OUP CORRECTED PROOF – FINAL, 10/3/2020, SPi

SHOR’S ALGORITHM 253

1
√8

7
∑
a=0

∣ a, f (a)⟩ = 1
√8
(∣000; 0000001⟩ + ∣001; 0000011⟩

+ ∣010; 0001001⟩ + ∣011; 0001011⟩
+ ∣100, 1010001⟩ + ∣101, 0111101⟩
+ ∣110, 0000001⟩ + ∣111, 0000011⟩).

(16.21)

Here we see that, even for a small number like 91, the requirement for an entangled state is very
severe. This step is a big stumbling block for the practical realization of the Shor algorithm for
factorizing a realistically large number.

3. Perform a discrete “quantum” Fourier transform on the first register

∣a⟩ ⇒ 1
√q

q−1

∑
c=0

e2𝜋i ac
q ∣c⟩ (16.22)

so that

1
√q

q−1

∑
a=0

∣a, f (a)⟩ ⇒ 1
q

q−1

∑
a=0

q−1

∑
c=0

e2𝜋i ac
q ∣c, f (a)⟩. (16.23)

4. Finally, carry out the measurement. We retrieve the output from the quantum computer
by measuring the state of all qubits in register A. As seen in earlier discussion of the quantum
Fourier transform, if f (a) = f (a + r), the sum over a yields constructive interference from
coefficients

e2𝜋i ac
q

only when c/q is a multiple of 1/r. All other values of c/q produce destructive interference.
Each measurement will give an outcome for one of the allowed values for c, e.g.,

c = q
r n, n = 0, 1, 2,⋯ , (16.24)

i.e., a measurement of c gives an outcome which is either 0 or q/r or 2q/r and so on. If we
make a large number of measurements on the first register on identically prepared systems,
the histogram for c/q as shown in Fig. 16.2 is created. After a sufficient number of measure-
ments, we should be able to infer the value of the period r. This completes Shor’s algorithm.
It is interesting to note that a quantum Fourier transform played a key role in finding the
periodicity of the function f (a).

Despite the mathematical simplicity, it is still a very difficult problem to experimentally
realize the Shor algorithm to factorize a realistically large number. In addition to the usual

0 1

r r r

2 3

P(c)

c
—
q

...

Fig. 16.2 The probability of the outcome |c⟩ in the first register is non-vanishing only for those c that satisfy the

condition c = qn/r where n is an integer.
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problem associated with decoherence discussed in the last chapter, there are issues coming up
with possible schemes to generate the massive entangled states of the form in Eq. (16.23) for
very large q. Nevertheless Shor’s algorithm has opened up the possibility of factoring large
numbers in a considerably shorter time than previously. We recall that the most efficient
presently known algorithm can factorize a 1000-digit number in a time equal to almost the age
of the universe. Shor’s algorithm, when experimentally feasible, would be able to accomplish
this task only in few million steps.

16.4 Quantum Shell Game

Another important application of a quantum computing algorithm is to find an object in an
unsorted database. This algorithm is presented in the next section. Here a shell game that we
may have played in our childhood is described and see how a quantum computer can help in
playing this game and winning each time in an almost unbelievable way.

Consider a shell game in which four inverted cups or nutshells are moved about with only
one of the shells hiding a pea underneath. The contestants must spot the shell with the pea
underneath (Fig. 16.3). The search process requires inverting each shell one by one to find the
pea. If we are lucky, we may find the pea under the first shell and win. The probability of this
happening is only 25%. If we are not lucky, we may have to flip all four before we find the shell
with the pea. On the average it requires more than two searches to find the pea.

Can we find the pea in only one try with certainty every time? Conventional wisdom tells us
that this is simply not possible. However the situation is different in the quantum shell game. In
a quantum shell game, where the shell is replaced by a quantum state and the pea is replaced by
an “inverted” target state, we canfind the target statewith certainty onlywith onemeasurement.

For four shells, we need two qubits with |01, 02⟩ ≡ |0⟩, |01, 12⟩ ≡ |1⟩, |11, 02⟩ ≡ |2⟩, |11, 12⟩ ≡
|3⟩. More formally the whole database can be represented as a state of the form

∣S⟩ = 1
2 [|01, 02⟩ + |01, 12⟩ + |11, 02⟩ + |11, 12⟩] . (16.25)

This state can be depicted in a pictorial form as follows:
1

2

|         〉01, 02 |         〉01, 12
|         〉11, 02 |         〉11, 12

Fig. 16.3 In the shell game, contestants must spot the shell with a pea underneath.
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Here the horizontal axis represents the two-qubit states ∣ n,m⟩ (n,m = 1, 2). The vertical axis
represents the amplitudes. In the case of the state |S⟩, all the amplitudes are equal to 1/2. Each
term in |S⟩ represents a shell.

Suppose, without us knowing, someone flips the sign of one the states (say ∣11, 02⟩) such that
the resulting state is

∣F⟩ = 1
2 [|01, 02⟩ + |01, 12⟩ − |11, 02⟩ + |11, 12⟩] . (16.26)

Pictorially it is represented as:
1/2

–1/2

|         〉01, 02
|         〉01, 12

|         〉11, 02

|         〉11, 12

The question is whether we can find this flipped target state with certainty in just one
measurement?

The answer remarkably is YES and is the basis of one of themost famous quantumcomputing
algorithms – the so-called Grover’s algorithm. Here, we show how the quantum shell game
is played.

There are three steps: In the preparation step, starting with two qubits in the |0, 0⟩ state, the
state |S⟩ is prepared; in the flipping stage, a target state such as |10⟩ acquires a phase shift and
the new state is |F⟩; and finally, in the measurement stage we find in just one measurement
of the two qubits the target state. All these steps can be carried out using the quantum gates
discussed in the last chapter.

Initially, the two qubits are prepared in the state |01, 02⟩. If we apply the Hadamard gates H1
and H2 to the two qubits, we obtain

H1H2 ∣01, 02 ⟩ = H1 ∣ 01⟩H2 ∣ 02⟩ =
1
√2

(|01⟩ + |11⟩)
1
√2

(|02⟩ + |12⟩) (16.27)

This step is equivalent to preparing the data basis.
In the second step, a 𝜋-phase shift is implemented for a target state which can be any one

of the four states: |01, 02⟩, |01, 12⟩, |11, 02⟩, or |11, 12⟩. This can be done by first applying the
quantum phase gate, Q𝜋 , on |S⟩. We recall that the quantum phase gate leaves all the states
undisturbed except |11, 12⟩, for which Q𝜋 ∣ 11, 12 ⟩= − ∣ 11, 12⟩, Thus

∣C11⟩ = Q𝜋 ∣S⟩ =
1
2 [|01, 02⟩ + |01, 12⟩ + |11, 02⟩ − |11, 12⟩] . (16.28)

If the target state is |11, 12⟩, then the desired state is ready. If however the target state is (say)
|11, 02⟩, then we apply the X2-gate on the second qubit making the transformation ∣ 12 ⟩↔∣ 02⟩.
The resulting state is:

∣C10⟩ = X2Q𝜋 ∣S⟩ =
1
2 [|01, 02⟩ + |01, 12⟩ − |11, 02⟩ + |11, 12⟩] . (16.29)

Similarly,

∣C01⟩ = X1Q𝜋 ∣S⟩ =
1
2 [|01, 02⟩ − |01, 12⟩ + |11, 02⟩ + |11, 12⟩] , (16.30)
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∣C00 ⟩ = X1X2Q𝜋 ∣S⟩ =
1
2 [−|01, 02⟩ + |01, 12⟩ + |11, 02⟩ + |11, 12⟩] . (16.31)

Thus, any desired state can be flipped by a combination of operators Xi and Q𝜋 . The resulting
states are Cij with i, j = 0, 1.

Now the challenge!! Can we do just onemeasurement on these qubits to find out which state
is flipped? This operation is accomplished by inverting about the mean as shown in Fig. 16.4.
The rule of the game is that we do not know the target state. So the operation should be blind
to the state that is flipped.

Inversion about the mean operation (denoted by arrows) takes the marked state |11, 02⟩
to unit amplitude, while the other states are taken to zero amplitude. It turns out that an
application of the following sequence of logic gates

N = H1H2Q𝜋H1H2X1X2 (16.32)

can accomplish the task. We can show that

N ∣C11 ⟩ = ∣ 11, 12⟩ , (16.33)

N ∣C01 ⟩ = ∣ 01, 12⟩ , (16.34)

N ∣C10 ⟩ = ∣ 11, 02⟩ , (16.35)

N ∣C00 ⟩ = ∣ 01, 02⟩ . (16.36)

Thus, by measuring the output qubits we can determine uniquely which qubit is flipped. For
example if we find the two qubits in the state |11, 02⟩, we know that the target state was |C01⟩ as
given by Eq. (16.30).

A full circuit diagram for the implementation of the shell game is shown in Fig. 16.5. The
two qubits are initially prepared in the state |01, 02⟩. The database is prepared by applying the

|01, 02〉

1

1/2

1/4

|01, 12〉 |11, 12〉

|11, 02〉

−1/2

Fig. 16.4 Inversion about the mean. The inversion of all the states about the mean value of the amplitude 1/4 takes the

amplitude of all the states to zero except the flipped state |11 , 02⟩ whose amplitude becomes 1.

Quantum

phase

gate

H1

H2 Qπ Qπ

X1

X2

H1

H2

H1

H2

X1

X2

Quantum

phase

gate

|0〉

|0〉

Fig. 16.5 Circuit diagram to implement the quantum shell game.
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Hadamard gates H1 and H2 to the two qubits as shown in the first dotted box. Next, the target
state is flipped as shown in the second dotted box by applying the quantum phase gate Q𝜋 and
a combination of Hadamard gates H1 and H2 as discussed above. The quantum gates in the
third dotted box represent the operation of inversion about the mean as given by the operator
N in Eq. (16.32). Finally the two qubits are measured.

16.5 Searching an Unsorted Database

We now discuss Grover’s algorithm, for the search of an object in an unsorted database. The
searching problem can be stated as follows: Suppose there is a database consisting of N items
out of which just one item satisfies a given condition. We would like to retrieve that item.

There are two kinds of databases, a sorted database and an unsorted database. Consider
a telephone book with names listed in alphabetical order with their telephone numbers. If
we are given a name and want to find the telephone number, we can search alphabetically
to recover the telephone number. This is an example of sorted database. However, what if
we are given the telephone number and we would like to know the name of the person it
belongs to? This is an example of an unsorted database as the telephone numbers in the book
are listed completely randomly. In the search for an item in an unsorted database of N items,
we would look at each item one by one. If we are lucky, the first item can be the searched item.
However, there is a possibility that the searched item is the last on our search list, thus requiring
N searches. On average, it may require N/2 searches before we find the desired item. In the
example of the telephone book, if we are searching for the name of the person with a certain
telephone number, we may require, on average, a search through half the telephone book
before we see the name matching the telephone number. This is the essence of what we call the
classical search.

Next, we ask the question: Can quantum mechanics provide a speed-up? Can we do better
than N/2? Here, we show that, for a certain class of search problems, the searching process of
an unsorted database in a quantum computer may require only√N searches instead of N/2 for
large databases.

In the previous section (16.4) on the quantum shell game, we saw an example of a database of
four items described by quantum states ∣ 01, 02⟩ ≡ |0⟩, ∣ 01, 12⟩ ≡ |1⟩, ∣ 11, 02⟩ ≡ |2⟩, ∣ 11, 12⟩ ≡
|3⟩. One of the items had an inverted phase andwe searched that item in just onemeasurement.
To illustrate how we may require only about √N searches instead of N/2 for large databases,
consider the example of sixteen items, N = 16, and follow the same steps as in the shell game.

(i) In the first step, a database is prepared as a superposition of all 16 states. This can be done
by applying the Hadamard gate H to each of the four qubits initially in states |01⟩, |02⟩, |03⟩,
and |04⟩, leading to

S = H1 ∣ 01 ⟩H2 ∣02⟩H3 ∣03 ⟩H4 ∣04⟩

= 1
√2

(|01⟩ + |11⟩)
1
√2

(|02⟩ + |12⟩)
1
√2

(|03⟩ + |13⟩)
1
√2

(|04⟩ + |14⟩)

= 1
4 [|0000⟩ + |0001⟩ +⋯⋯⋯⋯+ |1111⟩] , (16.37)
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where the notation ∣ 0000 ⟩ ≡ ∣ 01⟩ ∣ 02 ⟩∣ 03⟩ ∣ 04⟩ etc. is used. A more convenient notation is
to represent this superposition of all the 16 possible states as

1
4 (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1). (16.38)

Here each number in the bracket represents the amplitude of the corresponding state. As an
example

(c0, c1, c2, c3) ≡ c0 ∣00 ⟩ + c1 ∣01⟩ + c2 ∣10 ⟩ + c3 ∣11⟩ .

Since, the coefficients of all the states, |0000⟩, |0001⟩,⋯, are equal to 1/4 for the superposition
state (16.37), it is represented by Eq. (16.38) in the simplified notation.

In the next step, an oracle inverts the amplitude of the target state (say) |0011⟩ thus changing
it from +1 to −1. This inversion operation leads to

1
4 (1, 1, 1, −1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1). (16.39)

Note that if we make a measurement on the qubits at this stage, there is equal probability for
each state, including the target state |0011⟩, equal to 1/16 = 0.0625. Our objective is to find the
target state |0011⟩.

Also note that the mean amplitude is the sum of all the amplitudes of states ∣ 0000⟩,
∣ 0000⟩,⋯⋯ ∣ 1111⟩ divided by 16, i.e.,

x0 =
1
16 (

1
4 +

1
4 +

1
4 −

1
4 +

1
4 +

1
4 +

1
4 +

1
4 +

1
4 +

1
4 +

1
4 +

1
4 +

1
4 +

1
4 +

1
4 +

1
4)

= 1
16 (

14
4 ) =

7
32 . (16.40)

Our measurement, as in the shell game, is an inversion about the mean. If the probability
amplitude of a particular state is x, then an inversion about the mean x0, leads to new
amplitude

x0 − (x − x0) = 2x0 − x. (16.41)

Thus
1
4 → 2 · 7

32 −
1
4 = 6

32 = 3
16 , (16.42)

−1
4 → 2 · 7

32 +
1
4 = 22

32 = 11
16 . (16.43)

The resulting state is
1
16 (3, 3, 3, 11, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3). (16.44)

If, at this point, a measurement is made, the probability of finding |0011⟩ is (11/16)2 = 0.39.
This is a substantial increase from the original probability of (1/4)2 = 0.0625. However, this is
still far from a unit probability. Therefore refrain from making a measurement here and repeat
the process once more.

(ii) In the next cycle, our starting state is (16.44). As before, the oracle inverts the amplitude
of the target state |0011⟩ from 11/16 to −11/16. The resulting state is
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1
16 (3, 3, 3, −11, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3). (16.45)

The mean amplitude is
1

(16)2 [3 × 15 − 11] = 17
128 . (16.46)

The operation corresponding to the inversion about the mean leads to
3
16 → 2 · 17

128 −
3
16 = 5

64 , (16.47)

−11
16 → 2 · 17

128 +
11
16 = 61

64 , (16.48)

and the final state after this step is
1
64 (5, 5, 5, 61, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5). (16.49)

The probability of finding the target state |0011⟩ has now gone up to (61/64)2 = 0.91. This is a
very large probability. Can we do better? To find out we repeat the process again.

(iii) The starting state is (16.49). The same steps (oracle inverts the target state |0011⟩ and we
invert about the mean) lead to the new state

1
256 (−13, −13, −13, 251, −13, −13, −13, −13, −13, −13, −13, −13, −13, −13, −13, −13).

(16.50)

The probability of finding |0011⟩ has increased to (251/256)2 = 0.96. Can we improve further?
(iv) The same steps as above lead to

1
1024 (−171, −171, −171, 781, −171, −171, −171, −171,

− 171, −171, −171, −171, −171, −171, −171, −171). (16.51)

The probability of finding the target state |0011⟩ has now gone down to (781/1024)2 = 0.58.
This indicates that the best strategy was to stop after 3 steps when the probability of detection
of the target state was 96 percent.

But how do we know when to stop? A careful analysis indicates that the number of
measurements required for the search of a target state in N states is the integer closest to
𝜋√N/4. In our example of N = 16, this number is 3. We should therefore stop after 3 steps.

Thus the Grover search algorithm allows the search for a target state in a superposition of N
states in the order of√N steps.

Problems

16.1 Find the period of the function

f (a) = 5a mod 4069.

Use this result to find the factors of 4069.
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16.2 Consider the state

∣𝜓(A,B)⟩ = 1
8

7

∑
a=0

7

∑
c=0

e2𝜋i ac
8 ∣ c, f (a)⟩.

Show that, for a function f (a) with period r = 4, the only allowed values of c are 0, 2, 4,
and 6.

16.3 Consider the state

∣𝜓(A,B)⟩ = 1
16

15

∑
a=0

15

∑
c=0

e2𝜋i ac
16 ∣ c, f (a)⟩.

Show that, for a function f (a) with period r = 4, the only allowed values of c are 0, 4, 8,
and 16.

16.4 Discuss Shor’s algorithm to factorize 15 by choosing x = 11 in Eq. (16.1). What is the
period of the function f (a)? What is the minimum number of qubits required for the
implementation of the algorithm?

16.5 Show explicitly that

N ∣C11⟩ = ∣11, 12⟩,
N ∣C01⟩ = ∣ 01, 12⟩,
N ∣C10⟩ = ∣11, 02⟩,
N ∣C00⟩ = ∣ 01, 02⟩,

where the states ∣Ci j⟩(i, j = 0, 1) are given by Eqs. (16.28)–(16.31) and

N = H1H2Q𝜋H1H2X1X2.

16.6 How many steps are required for the implementation of Grover’s algorithm for N = 32?
What is the final success probability?
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17 The Schrödinger Equation

Felix Bloch, the first Ph.D. student of Werner Heisenberg and the winner of the 1952 Nobel
Prize, was a student at the Swiss Federal Institute of Technology (ETH) in Zurich in 1925. In
his reminiscences on the occasion of the 50th anniversary of quantummechanics, he described
the birth of the Schrödinger equation in these words (Physics Today, December 1976):

Once at the end of a colloquium I heard Debye saying something like: “Schrödinger, you are
not working right now on very important problems anyway. Why don’t you tell us some time
about that thesis of de Broglie, which seems to have attracted some attention.” So, in one of the next
colloquia, Schrödinger gave a beautifully clear account of how de Broglie associated a wave with
a particle and how he could obtain the quantization rules of Niels Bohr . . . . . . . by demanding that
an integer number of waves should be fitted along a stationary orbit. When he had finished, Debye
casually remarked that he thought this way of talking was rather childish . . . . . . . to deal properly
with waves, one had to have a wave equation. It sounded quite trivial and did not seem to make
a great impression, but Schrödinger evidently thought a bit more about the idea afterwards. Just a
few weeks later he gave another talk in the colloquium which he started by saying: “My colleague
Debye suggested that one should have a wave equation; well, I have found one!”

The equation Schrödinger found is what we know as the “Schrödinger equation.” This is one of
the most important equations of physics, and perhaps science, of all time. This is an equation
on a par with Newton’s equation F = ma in terms of importance and impact. The Schrödinger
equation provides the tools to tackle most problems in physics.

In this chapter, the Schrödinger equation is derived from the de Broglie wave description of
matter. A solution of this equation is presented for some of the simplest problems and illustrates
some novel and highly counterintuitive effects based on these solutions.

But first a warning! Unlike the previous 16 chapters, this chapter assumes a knowledge
of basic calculus. This involves a knowledge of the differentiation and integration of simple
functions. In some places we present the results without explicit calculation. The physical
meaning of the results should however be clear, even if the mathematical derivation is not.

17.1 The Schrödinger Equation in One Dimension

As seen in Chapter 7, de Broglie waves describe particles in terms of matter waves. However,
it is not clear from de Broglie’s formalism how these waves are produced and how they evolve.
Schrödinger derived the governing wave equation for these waves in close analogy with a
description of classicalmechanics as formulated by the nineteenth century Irishmathematician

Quantum Mechanics for Beginners: With Applications to Quantum Communication and Quantum Computing. M. Suhail Zubairy.
© M. Suhail Zubairy 2020. Published in 2020 by Oxford University Press. DOI: 10.1093/oso/9780198854227.001.0001
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William Hamilton. Through a simple approach, the Schrödinger equation is “derived” directly
from the de Broglie postulate.

So, how can we derive it from the de Broglie wave description of particles? First, the dis-
cussion is restricted to one-dimensional problems and then generalized to three dimensions.
Central to this equation is the concept of the wavefunction𝜓(x,t) that contains the information
about the position and the momentum of the particle at time t. The object is to derive a
dynamical equation for 𝜓(x,t).

From the discussion of waves in Chapter 4, recall that a wave of frequency 𝜈 and wavevector
k propagating in the x-direction is described by

𝜓 (x, t) = Aei(kx−𝜈t), (17.1)

where A is an amplitude. The function 𝜓(x,t) can be differentiated with respect to x and t as
follows:

𝜕𝜓 (x, t)
𝜕x = ikAei(kx−𝜈t), (17.2)

𝜕2𝜓 (x, t)
𝜕x2 = −k2Aei(kx−𝜈t), (17.3)

𝜕𝜓 (x, t)
𝜕t = −i𝜈Aei(kx−𝜈t), (17.4)

𝜕2𝜓 (x, t)
𝜕t2 = −𝜈2Aei(kx−𝜈t). (17.5)

If k = 𝜈/c, as we learned in Chapter 4, we obtain a wave equation of the form

𝜕2𝜓 (x, t)
𝜕x2 − 1

c2
𝜕2𝜓 (x, t)

𝜕t2 = 0. (17.6)

This is the wave equation for the propagation of light waves in free space at the speed of light c.
The important step in the derivation of this equation is the relation

𝜈 = ck. (17.7)

Such a relation between the frequency and the wave number is called the dispersion relation.
For a particle like an electron, the corresponding relation between frequency 𝜈 and

wavenumber k is very different. According to de Broglie’s description, the momentum of
the particle is described in terms of the de Broglie wavelength, 𝜆, and the corresponding
wavenumber k as

p = h
𝜆 = ℏk. (17.8)

Here we used k = 2𝜋/𝜆 and ℏ = h/2𝜋. The kinetic energy, E, is related to the momentum, p,
via the classical equation, E = p2/2m.However, Einstein showed that the energy can be related
to frequency 𝜈 via E = ℏ𝜈. Therefore the wave–particle duality implies

E = ℏ𝜈 = p2

2m . (17.9)
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Combining Eqs. (17.8) and (17.9), we obtain

𝜈 = ℏk2

2m . (17.10)

With these expressions, we can write the exponent in Eq. (17.1) as follows:

i (kx − 𝜈t) = i
ℏ (ℏkx − ℏ𝜈t) = i

ℏ (px − Et) = i
ℏ (px −

p2

2mt) . (17.11)

The wavefunction of the de Broglie wave is therefore given by

𝜓 (x, t) = Ae
i
ℏ (px−

p2

2m
t). (17.12)

The function 𝜓(x,t) can be differentiated with respect to x and t as before and we obtain:

𝜕𝜓 (x, t)
𝜕x = i

ℏpAe
i
ℏ (px−

p2

2m
t), (17.13)

𝜕2𝜓 (x, t)
𝜕x2 = − p2

ℏ2 Ae
i
ℏ (px−

p2

2m
t), (17.14)

𝜕𝜓 (x, t)
𝜕t = −i

p2

2mℏAe
i
ℏ (px−

p2

2m
t). (17.15)

The resulting wave equation for 𝜓(x,t) is

− ℏ2

2m
𝜕2𝜓 (x, t)
𝜕x2 = iℏ𝜕𝜓 (x, t)𝜕t . (17.16)

This is the Schrödinger equation for a free particle like an electron (or a baseball…) moving
along the x-axis.

Recall that the corresponding equation for a free particle (force F = 0) is ma = 0 where
a = d2x/dt2 is the acceleration.Therefore the equation ofmotion of a free particle inNewtonian
mechanics is

md2x
dt2

= 0. (17.17)

This equation has no resemblance to the Schrödinger equation (17.16) even when they are
describing an identical system.How the results of Newtonianmechanics can be recovered from
the Schrödinger equation is discussed in the next section.

Next, we try to understand the Schrödinger equation (17.16) as the law of conservation of
energy. Following a departure from the classical concept of physical quantities as numbers, we
define position, momentum, and energy as differential operators

̂x = x, (17.18)

̂p = −iℏ 𝜕
𝜕x , (17.19)

̂E = iℏ 𝜕𝜕t . (17.20)
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With these substitutions, the Schrödinger equation (17.16) reads

̂p2

2m𝜓 (x, t) = ̂E𝜓 (x, t) . (17.21)

This looks like an equation for a free particle (E = p2/2m) except that the “observable” quanti-
ties, such as momentum and energy, are differential operators operating on the wavefunction.
This novel feature has no analog in classical mechanics where the position and momentum are
always some real numbers.

In the presence of potential energy, V(x), this equation can be completed as follows. The
total energy is the sum of the kinetic energy and the potential energy, i.e.,

E = p2

2m + V(x). (17.22)

If E and p are replaced by operators operating on the wavefunction, we obtain

(
̂p2

2m + V(x)) 𝜓 (x, t) = ̂E𝜓 (x, t) . (17.23)

It then follows from Eqs. (17.18)–(17.20) that

(− ℏ2

2m
𝜕2

𝜕x2 + V(x)) 𝜓 (x, t) = iℏ𝜕𝜓 (x, t)𝜕t . (17.24)

This is the complete Schrödinger equation for the one-dimensional problems. Thus if a
particle is moving under the action of a force, the correct equation is no longer Newton’s
equation F=ma but the Schrödinger equation. Equation (17.24) is called the time-dependent
Schrödinger equation.

In many problems, we are often interested in the steady state after the system settles down
to a state with a characteristic energy E. In those situations, the wavefunction 𝜓(x,t) can be
expressed as

𝜓 (x, t) = 𝜙(x)e−i(E/ℏ)t. (17.25)

Then
𝜕𝜓 (x, t)

𝜕t = −iEℏ𝜓 (x, t) . (17.26)

The Schrödinger equation reduces to the so-called stationary-state Schrödinger equation,
which is of the form

(− ℏ2

2m
𝜕2

𝜕x2 + V(x)) 𝜓 = E𝜓. (17.27)

In the following sections, both forms of the Schrödinger equation (Eqs. (17.24) and (17.27))
are considered along with solutions for some simple problems.

An immediate question of interest is: What does it all mean? Both forms of the Schrödinger
equation look rather abstract. Even if we can solve these equations mathematically, how do
we find the quantities of interest such as the position, the momentum, and the energy of
the particle.
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The central quantity in the Schrödinger equation is the wavefunction 𝜓(x,t) and all the
physical quantities can be determined when we know it. From a knowledge of 𝜓(x,t), we can
immediately calculate |𝜓(x,t)|2. According to the interpretation of Max Born, |𝜓(x,t)|2 is the
probability density of finding the particle at position x at time t. Since the particle exists at some
point in space,

∫|𝜓 (x, t)|2dx = 1. (17.28)

This is called the normalization condition and is satisfied by all the wavefunctions.
The Schrödinger equation does not give us a well-defined or deterministic answer about

the location and the momentum of the particle. However, in view of Born’s interpretation of
|𝜓 (x, t)|2 = 𝜓∗ (x, t) 𝜓 (x, t) as being the probability density, we can calculate the average or
expectation value of any observable O via

⟨O⟩ = ∫𝜓∗ (x, t) Ô 𝜓 (x, t) dx, (17.29)

where 𝜓*(x,t) is the complex conjugate of 𝜓(x,t) and Ô is the operator corresponding to the
observable quantity O.

For example, themean value of the position and themomentum can be calculated as follows:

⟨x⟩ = ∫𝜓∗ (x, t) ̂x 𝜓 (x, t) dx = ∫𝜓∗ (x, t) x 𝜓 (x, t) dx, (17.30)

⟨p⟩ = ∫𝜓∗ (x, t) ̂p 𝜓 (x, t) dx = ∫𝜓∗ (x, t) (−iℏ 𝜕
𝜕x)𝜓 (x, t) dx. (17.31)

Similarlymean square position andmean squaremomentumof the particle are calculated from

⟨x2⟩ = ∫𝜓∗ (x, t) ̂x2 𝜓 (x, t) dx = ∫𝜓∗ (x, t) x2 𝜓 (x, t) dx, (17.32)

⟨p2⟩ = ∫𝜓∗ (x, t) ̂p2 𝜓 (x, t) dx = ∫𝜓∗ (x, t) (−iℏ 𝜕
𝜕x)

2

𝜓 (x, t) dx. (17.33)

The root-mean-square deviations or the uncertainties of the position and momentum are

Δx = √⟨x2⟩ − ⟨x⟩2, (17.34)

Δp = √⟨p2⟩ − ⟨p⟩2. (17.35)

It can be shown that these uncertainties satisfy the Heisenberg uncertainty relation

ΔxΔp ≥ ℏ
2 . (17.36)

The allowed energy values for a given system can be obtained by solving the steady-state
Schrödinger equation (17.27). A remarkable result is that a solution of the three-dimensional
version of the Schrödinger equation (17.27) yields the correct energy values for the allowed
energy levels for the hydrogen atom. This is discussed in Section 17.5. There is no need for
a quantum postulate, as was done by Bohr, to explain the spectrum of light emitted by a gas



OUP CORRECTED PROOF – FINAL, 10/3/2020, SPi

270 THE SCHRÖDINGER EQUATION

of hydrogen atoms. What is more, we can solve practically any problem of particle dynamics
using this version of the Schrödinger equation. In general, it is difficult to analytically solve the
Schrödinger equation for a realistic problem and we usually have to resort to the numerical
calculations.

Finally, we note that the Schrödinger equation is valid for all problems within what we call
the non-relativistic limit, i.e., for those problems where the particle velocity is much less than
the speed of light. For relativistic particles, Paul Dirac derived another more general equation
in 1928, called the Dirac equation.

17.2 Kinematics in Classical and Quantum
Mechanics—Newton vs. Schrödinger

Thedynamical equations for a particle in quantum mechanics and classical mechanics are very
different and there is no resemblance between the Schrödinger equation and Newton’s second
law of motion. So how do we understand the connection between the two? We do not see
the probabilistic nature that is central to quantum mechanics in our everyday life. Newtonian
mechanics gives very accurate and precise results. How do we reconcile these observations?

In order to answer these questions, consider the simplest problem of particle dynamics, solve
it in both Newtonian and quantum mechanics, and see where the fundamental differences
come in the two approaches. This simple problem also helps to illustrate that the fundamental
theory is quantum mechanics and classical mechanics is an approximation—a remarkably
good approximation—when considering macroscopic objects.

The problem of the motion of a free particle of mass m along the x-axis is considered.
Assume that the particle is at position xi at time t = 0 moving with momentum pi. There
is no force acting on it. The question posed is: What is the location of the particle at a later
time, t?

The answer to this question in Newtonianmechanics is simple and straightforward. Accord-
ing to Newton’s second law of motion, F = ma, where F is the applied force and a is the
acceleration. Since the external force F is equal to zero, we have ma = 0, i.e.,

ma = md2x
dt2

= 0, (17.37)

where we have used the definition of acceleration, a = d 2x/dt2.This equation can be integrated
to obtain the momentum at the time t as follows:

p(t) = mdx
dt

= pi. (17.38)

Another integration yields the position at time t:

x(t) = xi +
pi
mt. (17.39)

That this is, indeed, the solution of the Newtonian equation can be verified by differentiating it
twice with respect to t and seeing that Eq. (17.37) is satisfied. Also, it is clear from Eqs. (17.39)
and (17.38) that the position andmomentum at t = 0 are xi and pi, respectively.Thus, knowing
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the position and momentum at the initial time ti, we can predict the position and momentum
at the later time precisely. This is the hallmark of Newtonian mechanics.

What about the solution of the same problemwithin the framework of quantummechanics?
The corresponding equation for the wavefunction 𝜓(x,t) for a free particle is the Schrödinger
equation (with V(x) = 0)

− ℏ2

2m
𝜕2𝜓 (x, t)
𝜕x2 = iℏ𝜕𝜓 (x, t)𝜕t . (17.40)

The first issue is: How do we describe the initial position and momentum of the particle?
The well-defined values xi and pi cannot be identified for the initial position and momentum
as that would violate the Heisenberg uncertainty relation. The Heisenberg uncertainty relation

ΔxΔp ≥ ℏ
2

does not allow us to assign precise values for position and momentum. We cannot therefore
think of the particle as a point object precisely located at xi and moving with a well-defined
momentum pi. Instead we have to describe the particle as a wavefunction 𝜓(x,0) at t = 0, the
modulus square of the wavefunction |𝜓(x,0)|2 describing the probability density of finding the
particle at position x. The particle is thus described by a wave packet centered at the position
x = xi. For a discussion of the wave packet description we refer to Section 7.2.

The wave packet is created by combining many wavefunctions with different wavelengths,
where the wavelength is determined by the particle momentum (remember the de Broglie rela-
tion p= h/𝜆). This wave packet provides information about both the location and momentum
of the object. However, it cannot give us exact values for either quantity. The wavefunction
leaves us with an uncertainty in position and an uncertainty in momentum for the particle
in accordance with the Heisenberg uncertainty relation (17.36). This wave packet approach is
used to look at how knowledge of an electron’s position and momentum evolves with time. For
this, we need to solve the Schrödinger equation (17.40).

A simple wave packet describing the particle at time t = 0 is the so-called Gaussian wave
packet of the form

𝜓 (x, 0) = 1

√√2𝜋𝜎i

e
− (x−xi)

2

4𝜍i2 ei pi
ℏ (x−xi). (17.41)

The probability of finding the electron in this wave packet is given by

|𝜓 (x, 0)|2 = 1
√2𝜋𝜎i

e
− (x−xi)

2

2𝜍i2 . (17.42)

This wave packet is centered at the position x = xi and is symmetric about this position as
shown in Fig. 17.1. Physically, this means that the particle, instead of being localized at the
position x = xi, is given by the probability density which is maximum at x = xi and decreases
as we go away from this point. The probability distribution is narrow if 𝜎i is small. Thus 𝜎i is
a measure of how “localized” a particle is. The important point to note is that the particle can
exist at any value of x with certain probability. This is, as we mentioned earlier, contrary to the
classical picture of the particle.
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Using the integral

∫
∞

−∞
e−u2du = √𝜋, (17.43)

the wavefunction (17.41) is normalized:

∫
∞

−∞
|𝜓 (x, 0)|2dx = 1. (17.44)

Also, the average position of the particle is

⟨x(0)⟩ = ∫
∞

−∞
x|𝜓(x, 0)|2dx = xi. (17.45)

The mean-square position is given by

⟨x2(0)⟩ = ∫
∞

−∞
x2|𝜓(x, 0)|2dx = x2

i + 𝜎i
2. (17.46)

The root-mean-square deviation or the spread of the wave packet is therefore equal to

Δx = √⟨x2(0)⟩ − ⟨x(0)⟩2 = 𝜎i. (17.47)

This is shown in Fig. 17.1.
Next consider the evolution of this wave packet according to the Schrödinger equation

(17.40). The solution is given by

𝜓 (x, t) = 1

√𝜎i [1 + iℏt/2m𝜎i
2]√2𝜋

e
−{ (x−xi)

2

4𝜍i2[1+i(ℏt/2m𝜍2
i )]

− i
ℏ

pi(x−xi)−(p2i /2m)t
[1+i(ℏt/2m𝜍i2)]

}
(17.48)

A formal derivation of this result is quite complicated and is not produced here. However,
it can be verified that this is indeed a solution of Eq. (17.40) by differentiating 𝜓(x,t) twice
with respect to x and differentiating it once with respect to t and substituting the resulting
expressions in Eq. (17.40). In addition we note that this expression of 𝜓(x,t) reduces to the
expression of 𝜓(x,0) as given in Eq. (17.41) for t = 0.

The probability density of the particle at time t is given by the modulus square of the
wavefunction:

|𝜓 (x, t)|2 = 1

𝜎i√1 + (ℏt/2m𝜎i
2)2√2𝜋

e
− (x−xi−(pi/m)t)

2

2𝜍i2(1+(ℏt/2m𝜍i2)
2) . (17.49)

∆x

xxi

Fig. 17.1 A Gaussian wave packet according to Eq. (17.42).
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Fig. 17.2 Spreading of a one-dimensional Gaussian wave packet as it propagates.

This quantity can be used to find the probability of locating the particle at a later time t. Note
that the wave packet (17.49) at time t has the same form as the initial wave packet (17.42) but
with a displaced average position location and enhanced fluctuations. As we see in Fig. 17.2,
the wave packet spreads as it propagates.

First, note that the center of the wave packet moves from x = xi to

x = xi +
pi
mt

at time t.This is the same equation as obtained by classical mechanics (Eq. (17.39)). Here this is
the equation, not for the location of the particle, but for the center of a spreading wave packet.
The Gaussian wave packet is symmetric about the center of the wave packet. Therefore the
center of the wave packet is identical to the mean position of the particle. This can be seen
by substituting for |𝜓(x,t)|2 from Eq. (17.49) in the definition (17.30) and integrating using
Eq. (17.43). The result is

⟨x(t)⟩ = ∫
∞

−∞
x|𝜓(x, t)|2dx = xi +

pi
mt. (17.50)

Thus a more general result is obtained: the mean position of the wave packet obeys the same
dynamics as the classical particle.
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We have thus shown that the mean position obeys the same equation as derived from the
Newtonian equations of motion for the simple case of uniform motion in the absence of any
external force. However this result can be shown to be quite general and is valid even in the
presence of any potential V(x). The result that the average location follows the same trajectory
as predicted by the Newton’s equation of motion is often referred as the Ehrenfest theorem and
forms the bridge between the Newtonian and the Schrödinger descriptions.

From this result, it is seen that a very narrow wave packet that hardly spreads with time
should be a good description for the particle dynamics in Newtonian mechanics. A narrow
wave packet corresponds to a well-localized particle and a lack of significant spreading of the
wave packet corresponds to a reasonably well defined trajectory.

Next we study the spread of the wave packet as it propagates. The spreading of the wave
packet is given by the root-mean-square width of the wave packet at time t, 𝜎f (t). From
Eq. (17.49),

𝜎f (t) = Δx = √⟨x2(t)⟩ − ⟨x(t)⟩2 = 𝜎i√1 + ( ℏt
2m𝜎i

2 )
2

. (17.51)

The wave packet representing the particle spreads in time. The spreading can be very slow
for a massive particle. The wave packet spreads to twice the initial value (𝜎f (t) = 2𝜎i)
when

1 + ( ℏt
2m𝜎i

2 )
2

= 4 (17.52)

or

t = 2√3m𝜎i
2

ℏ . (17.53)

For example, if we describe a marble of mass one gram (= 10−3 kg) by a wave packet corre-
sponding to its size equal to 1 mm (= 10−3 m), it spreads to twice the value (2 mm) in a time

tmarble =
2√3m𝜎i

2

ℏ = 2√3 × 10−3 × 10−6

1.1 × 10−34 sec ≈ 1025 sec ≈ 1015years, (17.54)

which is about 10 000 times the known age of the universe.
As a second example, we consider an electron of mass m = 9.1 × 10−31 kg confined within

1 𝜇m, the spread time for the wave packet is

telectron =
2√3m𝜎i

2

ℏ = 2√3 × 9.11 × 10−31 × 10−12

1.1 × 10−34 sec ≈ 10−8 sec . (17.55)

Thus, a fast spreading of the wave packet is observed for electrons.
Next, we ask the question: Where is the particle at time t? We cannot give a deterministic

answer to this question (as we can do in Newtonian mechanics). We can only say that the
particle is located at position x at time t with a probability distribution given by Eq. (17.49).
The most probable location of the particle is the same as predicted by Newton’s law of motion
but it can also be found far from the classical trajectory, even if with very small probability.
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As the particle moves, the corresponding wave packet spreads and the region where it can be
found increases.

The spreading of the wave packet can be understood by invoking theHeisenberg uncertainty
relation. According to the uncertainty relation, a wave packet spread in space has also a cor-
responding spread in momentum. Thus the wave packet contains waves of different momenta
and hence different velocities. This causes the wave packet to spread. In the case where the
wave packet is narrow in space, the momentum distribution is wider and the result is that the
spreading is faster. This agrees with our conclusions based on rigorous calculations.

The spreading of the wave packet can be directly derived from the Heisenberg uncertainty
relation without resorting to the Schrödinger equation as follows. First we note that each point
inside the initial wave packet follows the path defined by

x = xi +
pi
mt. (17.56)

The mean location then follows the trajectory

⟨x⟩ = ⟨xi⟩ +
⟨pi⟩
m t. (17.57)

Next we find the mean square location

⟨x2⟩ = ⟨(xi +
pi
mt)

2
⟩ = ⟨x2

i ⟩ + 2 ⟨xi⟩
⟨pi⟩
m t +

⟨p2
i ⟩

m2 t2. (17.58)

The position spread is defined as

𝜎f (t) = Δx = √⟨x2(t)⟩ − ⟨x(t)⟩2 =√(Δxi)
2 +

(Δpi)
2

m2 t2, (17.59)

where we substituted for ⟨x⟩ and ⟨x2(t)⟩ from Eqs. (17.57) and (17.58), respectively. According
to the Heisenberg uncertainty relation, under the most optimal conditions,

Δpi =
ℏ

2Δxi
. (17.60)

On substituting this expression for Δpi in Eq. (17.59), we recover the wave packet spreading
relation (17.51) with the substitution 𝜎i ≡Δxi. This simple derivation brings out the intimate
relation between the uncertainty relation and the spreading of the wave packet, and conse-
quently an understanding of the origin of quantum dynamics.

17.3 Particle Inside a Box

One of the simplest problems in quantum mechanics is a single free particle confined inside a
one-dimensional box of length L. The potential energy is zero inside the box but infinite at the
boundaries x = 0 and x = L. Inside the box, Schrödinger equation

[− ℏ2

2m
d2

dx2 + V(x)] 𝜓 = E𝜓 (17.61)
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reduces to

− ℏ2

2m
d2𝜓
dx2 = E𝜓. (17.62)

The particle always remains inside the box because of the infinite potential barrier at the walls.
So the probability of finding the particle outside the box is zero, i.e., 𝜓 = 0 outside the box. The
wavefunction must be continuous at the boundaries of the potential well at x = 0 and x = L.
Therefore the wavefunction satisfies the boundary conditions

𝜓(0) = 𝜓(L) = 0. (17.63)

The Schrödinger equation (17.62) is solved subject to these boundary conditions.
Equation (17.62) can be rewritten in the form

d2𝜓
dx2 + k2𝜓 = 0, (17.64)

where

k =√
2mE
ℏ2 . (17.65)

This equation has the familiar form of the equation for a harmonic oscillator. The general
solution of this equation is given by

𝜓(x) = A sin kx + B cos kx, (17.66)

where A and B are constants that can be determined from the boundary conditions as well as
normalization.

The condition that 𝜓(0) = 0 leads to B = 0. Therefore

𝜓(x) = A sin kx. (17.67)

The condition that 𝜓(L) = 0 implies that

A sin kL = 0. (17.68)

This equation can be satisfied in two different ways. First is to choose A = 0. However, this
leads to 𝜓(x) = 0, which is not possible as it implies that particle is not inside the box. The
other possibility is that

kL = n𝜋, (17.69)

where n = 1, 2,⋯ are integers. Thus the solutions for the wavefunction are

𝜓n(x) = A sin (n𝜋L x) . (17.70)

The constant A can be found from the condition that the particle is somewhere inside the
box, i.e.,

∫
L

0
|𝜓n(x)|

2dx = 1. (17.71)
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We thus have

A2∫
L

0
sin2 (n𝜋L x) = A2 L

2 = 1

The normalization constant A is equal to√2/L. The wavefunction is

𝜓n(x) = √
2
L sin (2𝜋𝜆n

x) . (17.72)

In Fig. 17.3, the wavefunctions 𝜓n(x) are plotted for different values of n. The corresponding
probability densities are given by

|𝜓n|
2 = 2

L sin2 (n𝜋L x) (17.73)

and are plotted in Fig. 17.4.

n = 3

n = 2

0 L

n = 1

x

ψ3

ψ2

ψ1

Fig. 17.3 The wavefunctions for a particle inside a one-dimensional box for n = 1, 2, 3.

n = 3

n = 2

0 L

n = 1

x

|ψ1|
2

|ψ2|
2

|ψ3|
2

Fig. 17.4 The probability density of the particle in a one-dimensional box, |𝜓n|2 , for n = 1, 2, 3.
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What about the energy of the particle when it exists in the quantum state 𝜓n(x)? If we
substitute the value of k from Eq. (17.65) into Eq. (17.69), we obtain

En =
n2𝜋2ℏ2

2mL2 (17.74)

(n = 1, 2⋯). We thus have a very counterintuitive result: A particle can have only quantized
energies as given by Eq. (17.74). Even more surprising is that the location of the particle can
be given only probabilistically with the corresponding probability density given by Eq. (17.73).
As seen in Fig. 17.4, for a given energy, there are locations where the particle cannot exist.

Why do we not see such strange behavior in our everyday life? What we observe is that the
particles (like a tennis ball) can have any energy and can be found anywhere between the two
walls. To explain this contradictory behavior, we note that the quantum behavior as depicted
by Eq. (17.73) for the wavefunction and Eq. (17.74) for energy can be observed only for small
values of the quantum number n. This happens when

2mL2En
𝜋2 ∼ ℏ2. (17.75)

For example, an electron of mass m = 9.1 × 10−31 kg and an energy of (say) 7 eV = 7 × 1.6 ×
10−19J confined in a region L = 4×10−10 m would be in quantum states with n∼ 1−2. Such a
situation approximately corresponds to a free electron moving inside a metal. A metal consists
of atoms occupying positions in a lattice. The free electron experiences a repulsive force due
to the electronic cloud surrounding the atom. For a sufficiently large repulsion, the situation is
similar to an electron confined between two walls.

As the energy and/or the mass of the particle increases, the quantum number n increases to
very high values and the energy levels get closer. A tennis ball of mass 50 grams moving with
a velocity of 5 m/s has the energy (1/2)mv2 = 0.625 J. If it is confined between two walls 10 m
apart, then

n = √2mL2En
𝜋ℏ ∼ 1034, (17.76)

i.e., there are 1033 nodes of the wavefunction within a distance of 1 m (the spacing between
the two nodes being 10−33 m), forming essentially a continuum. This continuum means the
particle is free, can be anywhere between the walls, and can have continuous values of allowable
energies. The quantum mechanical model is no longer necessary and the classical model gives
accurate results.

17.4 Tunneling Through a Barrier

In this section, the problem of a particle crossing a barrier is addressed. An example of such a
barrier is a wall of height h0. According to Newtonian mechanics, only those particles of mass
m moving with velocity v whose total energy (sum of kinetic and potential energies) is larger
than the energy mgh0 are able to surmount the barrier and get to the other side of the wall. In
the absence of any frictional forces, such particles should always be able to cross the barrier.
However, if the total energy of the particle E is less than the required energy, i.e.,



OUP CORRECTED PROOF – FINAL, 10/3/2020, SPi

TUNNELING THROUGH A BARRIER 279

xO

V0

L

Fig. 17.5 A potential barrier of width L and height V0 .

E < mgh0, (17.77)

then there is no way that the particle can cross over to the other side. This is a common sense
result and can be observed around us all the time.

What about the corresponding result in quantum mechanics? Consider a one-dimensional
potential barrier of width L and height V0, i.e.,

V(x) = {
0,
V0,
0,

x < 0
0 ≤ x ≤ L

x > 0
(17.78)

Such a barrier is shown in Fig. 17.5. The question we ask is:What happens when a particle with
energy

E < V0 (17.79)

is incident on the barrier? Do we get the classical result that it definitely bounces back
(Fig. 17.6a) or is there some possibility that it can “tunnel” through the barrier and is found on
the other side (Fig. 17.6b)? The surprising answer is that there is a definite probability that the
particle tunnels through the barrier. In the following, we show how to calculate the tunneling
probability by solving the Schrödinger equation

(− ℏ2

2m
d2

dx2 + V(x)) 𝜓 = E𝜓. (17.80)

The method works as follows. The wavefunction 𝜓(x) of the particle should be spread
over the entire one-dimensional space from x=−∞ to x=∞. The wavefunction should
be uniform with no kinks or discontinuities throughout the space. In order to find such a
wavefunction, we first write down and solve three separate Schrödinger equations for the
three regions: before the barrier (x< 0) with wavefunction 𝜓I(x), inside the barrier (0≤ x≤ L)
with wavefunction 𝜓II(x), and beyond the barrier (x > 0) with wavefunction 𝜓III(x). In
order to ensure that the total wavefunction is smooth in the entire one-dimensional space,
we equate the wavefunctions and their derivatives at the boundaries of the potential. For
example, matching the wavefunction and ensuring its smoothness at the boundary x= 0
requires

𝜓I(0) = 𝜓II(0), (17.81)

d𝜓I(x)
dx

|||x=0
= d𝜓II(x)

dx
|||x=0

. (17.82)
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Fig. 17.6 (a) In the classical picture, a particle whose energy E is less than that of the height of the potential barrier V0

is completely reflected with no chance of crossing over to the right side. (b) In the quantum picture, the same particle

treated as a wave packet has a finite probability of tunneling through the barrier.

Similar conditions are obtained at the boundary located at x = L, i.e.,

𝜓II(L) = 𝜓III(L), (17.83)

d𝜓II(x)
dx

|||x=L
= d𝜓III(x)

dx
|||x=L

. (17.84)

These boundary conditions along with the solutions of the Schrödinger equations in the three
regions give the complete information, and the probabilities of transmission and reflection of
the particle can be calculated.
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In the region I (−∞ < x < 0), where the potential V(x) is zero, the Schrödinger equation
for the wavefunction 𝜓I(x) is given by

− ℏ2

2m
d2𝜓I(x)

dx2 = E𝜓I(x). (17.85)

In the region II (0 < x < L), the potential is V(x) = V0 and the Schrödinger equation for the
wavefunction 𝜓II is

(− ℏ2

2m
d2

dx2 + V0)𝜓II(x) = E𝜓II(x). (17.86)

Similarly, in the region III (L ≤ x < ∞), the potential is zero and the equation for the
wavefunction 𝜓III is

− ℏ2

2m
d2𝜓III(x)

dx2 = E𝜓III(x). (17.87)

Next we find a general solution of these equations. First we find the solution of Eq. (17.85)
which can be rewritten as

d2𝜓I(x)
dx2 + k2𝜓I(x) = 0, (17.88)

where

k =√
2mE
ℏ2 . (17.89)

A general solution of this equation is

𝜓I(x) = Aeikx + Be−ikx. (17.90)

HereA andB are constants that can be obtained from the boundary conditions discussed above.
In a similar manner Eq. (17.87) for 𝜓III(x) can be solved. The result is

𝜓III(x) = Feikx + Ge−ikx. (17.91)

Again F and G are constants.
Finally Eq. (17.86) for 𝜓II(x) can be rewritten as

d2𝜓II(x)
dx2 − 𝛽2𝜓II(x) = 0, (17.92)

where

𝛽 = √
2m (V0 − E)

ℏ2 . (17.93)

The solution of this equation is given by

𝜓II(x) = Ce𝛽x + De−𝛽x, (17.94)

where the constants C and D are determined from the boundary conditions.
Before proceeding to use the boundary conditions, first consider the physical nature of

these solutions. The wavefunction in the region 1, 𝜓I(x), consists of two terms: The first
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term, A exp (ikx), corresponds to a wave traveling to the right, and A is the amplitude of
this incident wave. The second term, B exp (−ikx), corresponds to a wave traveling to the
left, and B is the amplitude of this reflected wave. The ratio B/A is therefore the reflection
amplitude and

R = |||
B
A
|||
2

(17.95)

is the probability that the particle is reflected back. If the particle behaves classically we would
expect R = 1.

Next look at the solution in the region 3, 𝜓III(x), as given by Eq. (17.91). Here, the first
term, F exp(ikx), corresponds to a wave traveling to the right, and F is the amplitude of this
transmitted wave. The second term, G exp(−ikx), corresponds to a wave traveling to the left.
However, in region 3, the particle can only move in the +x-direction, there is no reflection.
Therefore G should be equal to zero. The transmission coefficient can be defined as

T = |||
F
A
|||
2
. (17.96)

Here T is the probability that the particle somehow tunneled through the barrier. The sum of
the reflection and transmission coefficient should be equal to unity, i.e.,

R + T = 1. (17.97)

Next we substitute the general solutions (17.90), (17.91), and (17.94) in the boundary
conditions (17.81)–(17.84). The resulting equations (with G = 0) are

A + B = C + D, (17.98)

ik(A − B) = 𝛽(C − D), (17.99)

Ce𝛽L + De−𝛽L = FeikL, (17.100)

𝛽(Ce𝛽L − De−𝛽L) = ikFeikL. (17.101)

These are four equations in five unknownsA,B,C,D, and F. However the number of unknowns
can be reduced to four if the unknowns are defined as B/A, C/A, D/A, and F/A. Since we are
only interested in the reflection and transmission coefficients, we are interested in finding B/A
and F/A.

After a lengthy but straightforward calculation (which we do not reproduce here),
we find

B
A =

−i (k2 + 𝛽2) sinh (𝛽L)
2k𝛽 cosh (𝛽L) + i (𝛽2 − k2) sinh (𝛽L) , (17.102)

F
A = 2k𝛽e−ikL

2k𝛽 cosh (𝛽L) + i (𝛽2 − k2) sinh (𝛽L) . (17.103)

The reflection coefficient R and the transmission coefficient T are then given by

R = |||
B
A
|||
2
=

(k2 + 𝛽2)2sinh2 (𝛽L)
4k2𝛽2 + (k2 + 𝛽2)2sinh2(𝛽L)

, (17.104)



OUP CORRECTED PROOF – FINAL, 10/3/2020, SPi

THE SCHRÖDINGER EQUATION IN THREE DIMENSIONS AND THE HYDROGEN ATOM 283

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4

E/V0

R
, 

T

0.6 0.8 1.0

Fig. 17.7 The reflection coefficient, R (solid curve), and the transmission coefficient, T (dashed curve), of a particle for

a potential barrier of width L = 0.5 𝜆 (kL = 𝜋) where 𝜆 is the de Broglie wavelength as a function of the ratio of the

energy E of the incoming particle to the height V0 of the barrier.

T = |||
F
A
|||
2
= 4k2𝛽2

4k2𝛽2 + (k2 + 𝛽2)2sinh2(𝛽L)
. (17.105)

In Fig. 17.7, we plot the reflection coefficient R and the transmission coefficient, T of a
particle for a potential barrier ofwidthL = 0.5 𝜆 (kL = 𝜋) where 𝜆 is the de Broglie wavelength.
The simplified expressions of R and T are

R =
V2

0sinh
2 (√(V0/E) − 1 𝜋)

4E (V0 − E) + V2
0sinh

2 (√(V0/E) − 1 𝜋)
,

T = 4E (V0 − E)
4E (V0 − E) + V2

0sinh
2 (√(V0/E) − 1 𝜋)

.

It can be seen that, when the energy of the incoming particle, E, is much less than the height
of the potential barrier, V0, the reflection coefficient, R, is equal to 1 and the transmission
coefficient, T, is equal to zero. This is the same result we expect from the classical mechanics.
However, the quantum features, completely contrary to our classical intuition, start to appear
when the ratio E/V0 > 0.5. For these values, the energy of the incident particle is still sub-
stantially less than the height of the potential barrier V0 but the transmission coefficient, T,
is non-zero. Therefore the particle has a non-vanishing probability of “tunneling” through the
barrier. This remarkable result has been used in many quantum devices such as transistors and
high precision microscopes.

17.5 The Schrödinger Equation in Three Dimensions
and the Hydrogen Atom

Historically, the most important success of quantum mechanics was the derivation of the
energy levels in a hydrogen atom. This was indeed the test of the validity of a full theory.
Schrödinger was able to solve his equation for the hydrogen atom and recover analytically all
the known results at that time regarding the spectra of hydrogen atoms. This went far beyond



OUP CORRECTED PROOF – FINAL, 10/3/2020, SPi

284 THE SCHRÖDINGER EQUATION

Bohr’s model where the hydrogen atom spectrum was derived by using a postulate with no
justification except that it gave an answer which agreed with experimental results.

We begin by generalizing the one-dimensional stationary Schrödinger equation (17.27) to
the three-dimensional Schrödinger equation

[− ℏ2

2m ( 𝜕
2

𝜕x2 +
𝜕2

𝜕y2 +
𝜕2

𝜕z2 ) + V (x, y, z)] 𝜓 = E𝜓. (17.106)

In simplified notation, Eq. (17.106) can be rewritten as

[− ℏ2

2m∇2 + V (r)] 𝜓 = E𝜓, (17.107)

where r ≡ (x, y, z) and

∇2 = 𝜕2

𝜕x2 +
𝜕2

𝜕y2 +
𝜕2

𝜕z2 . (17.108)

The differential operator ∇2 is called Laplacian.
For many problems of interest with spherical symmetry, it is more convenient to use

spherical coordinates (r, 𝜙, 𝜃) instead of rectangular coordinates (x, y, z), as shown in
Fig. 17.8. They transform into each other via the relations

x = r sin 𝜃 cos𝜙, (17.109)

y = r sin 𝜃 sin𝜙, (17.110)

z = r cos 𝜃. (17.111)

This transformation can be verified from Fig. 17.8.
The Laplacian operator in the spherical coordinates is given by

∇2𝜓 = 1
r2
𝜕
𝜕r (r

2 𝜕𝜓
𝜕r ) +

1
r2 sin 𝜃

𝜕
𝜕𝜃 (sin 𝜃

𝜕𝜓
𝜕𝜃 ) +

1
r2sin2𝜃

𝜕2𝜓
𝜕2𝜙 . (17.112)

Therefore the Schrödinger equation in the spherical coordinates can be written as

[ − ℏ2

2m
( 1

r2
𝜕
𝜕r
(r2 𝜕

𝜕r
) + 1

r2 sin𝜃
𝜕
𝜕𝜃
(sin 𝜃 𝜕

𝜕𝜃
) + 1

r2sin2𝜃
𝜕2

𝜕2𝜙
)

+ V (r, 𝜙, 𝜃) ]𝜓 = E𝜓.
(17.113)
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Fig. 17.8 Transformation from the rectangular coordinates (x, y, z) to (r, 𝜙, 𝜃).
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Next we turn to the problem of the hydrogen atom and solve the Schrödinger equation for
energy values and the corresponding wavefunctions.

A hydrogen atom consists of one proton and one electron. In the Rutherford and Bohr
models, the proton formed the nucleus and the electron revolved around it. Our aim is thus
to find the energy and the wavefunction of the electron. The potential energy of the proton–
electron system is given by

V(r) = − e2
4𝜋𝜀0r

, (17.114)

where r is the distance of the electron from the proton in the nucleus. This problem has
spherical symmetry as the potential energy only depends on the spherical coordinate r. We
therefore use the Schrödinger equation in the spherical coordinates. It follows, on substituting
the potential energy (17.114) in the Schrödinger equation (17.113),

[− ℏ2

2m ( 1
r2
𝜕
𝜕r (r

2 𝜕
𝜕r) +

1
r2 sin 𝜃

𝜕
𝜕𝜃 (sin 𝜃

𝜕
𝜕𝜃) +

1
r2sin2𝜃

𝜕2

𝜕𝜙2 )

− e2
4𝜋𝜀0r

] 𝜓 = E𝜓. (17.115)

This equation can be solved exactly for both the allowed values of energy E and the correspond-
ing wavefunction 𝜓. The derivation is rather involved and it is not reproduced here. We only
give the salient features of the solution.

A most remarkable result in the early development of quantum mechanics was that Eq.
(17.115) could be solved and the only allowed values of the energy E were

En = − me4

2(4𝜋𝜀0)
2ℏ2

1
n2 , (17.116)

where n = 1, 2, 3⋯ is called the principal quantum number. These values of electron energy
are in perfect agreement with experimental observation of the hydrogen spectrum.

As an example, consider the case, n = 1. It turns out that the corresponding wavefunction
is given by

𝜓1 =
1
√𝜋

( 1
aB
)
3/2

e−(r/aB), (17.117)

where

aB =
ℏ2

m (4𝜋𝜀0e2 ) (17.118)

is the Bohr radius as given by Eq. (6.20). It is easy to verify that 𝜓1 is the solution of the
Schrödinger equation when the energy is given by

E1 = − me4

2(4𝜋𝜀0)
2ℏ2

. (17.119)

First, we note that the wavefunction 𝜓1 depends only on radial coordinate r and does not
depend on 𝜙 and 𝜃. Therefore the simplified Schrödinger equation is obtained by neglecting
the 𝜙 and 𝜃 dependent terms in Eq. (17.115). The resulting equation is
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− ℏ2

2m ( 1
r2
𝜕
𝜕r (r

2 𝜕
𝜕r))𝜓1 −

e2
4𝜋𝜀0r

𝜓1 = E1𝜓1. (17.120)

This equation can be verified by substituting for E1 and 𝜓1 from Eqs. (17.119) and (17.117),
respectively. We note that

1
r2
𝜕
𝜕r (r

2 𝜕𝜓1

𝜕r ) =
𝜕2𝜓1

𝜕r2 + 2
r
𝜕𝜓1

𝜕r .

It follows from Eq. (17.117) that

𝜕𝜓1

𝜕r = − 1
√𝜋

( 1
aB
)
5/2

e−(r/aB), (17.121)

𝜕2𝜓1

𝜕r2 = 1
√𝜋

( 1
aB
)
7/2

e−(r/aB), (17.122)

where the Bohr radius, aB, is given by Eq. (17.119). On substituting from Eqs. (17.121) and
(17.122) into Eq. (17.120), it follows that

− ℏ2

2m ( 1
r2
𝜕
𝜕r (r

2 𝜕
𝜕r))𝜓1 −

e2
4𝜋𝜀0r

𝜓1 = − me4

2(4𝜋𝜀0)
2ℏ2

𝜓1

Thus, the energy, E1, is given by Eq. (17.119).
It turns out that, for n = 1, there is only one allowed energy level described by the

wavefunction 𝜓1. For n > 1, there is more than one energy level for each value of n and the
number of allowed energy levels increases as n increases. Here, we concentrate only on the
case n = 1. We have seen that the Schrödinger equation can be solved and the correct value of
the electron energy is obtained.

But what about the location of the electron? Bohr’s theory predicted a well-defined orbit
of radius r equal to the Bohr radius aB. The full quantum mechanical picture is dramatically
different.

In Fig. 17.9, we plot

|𝜓1(r)|
2 = 1

𝜋(
1
aB
)
3
e−(2r/aB). (17.123)

This equation represents the probability density of finding the electron inside the atom. This
distribution has no resemblance to an orbit. The picture of the hydrogen atom is therefore
remarkably different from what we expect from classical or quasi-classical (Bohr) pictures. In

y

x

Fig. 17.9 The probability density |𝜓1(r)|2 of the electron in the lowest atomic level (n = 1). The nucleus is located at

the origin (r = 0).
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the quantum mechanical picture of the hydrogen atom in its lowest energy state, the proton
forms the nucleus and the electron is described, not by a definite location or an orbit, but by
a cloud that represents the probability of finding the electron. This probability of finding the
electron is higher close to the nucleus and decreases as the distance increases from the nucleus.
The shape of the probability cloud becomes more complex for higher values of n but the basic
idea remains the same.

Problems

17.1 Verify that

𝜓 (x, t) = 1

√𝜎i [1 + iℏt/2m𝜎i
2]√2𝜋

e
−{ (x−xi)

2

4𝜍i2[1+i(ℏt/2m𝜍2
i )]

− i
ℏ

pi(x−xi)−(p2i /2m)t
[1+i(ℏt/2m𝜍i2)]

}

is the solution of the Schrödinger equation

− ℏ2

2m
𝜕2𝜓 (x, t)
𝜕x2 = iℏ𝜕𝜓 (x, t)𝜕t

subject to the initial condition

𝜓 (x, 0) = 1

√√2𝜋𝜎i

e
− (x−xi)

2

4𝜍i2 ei pi
ℏ (x−xi).

17.2 Consider an electron of energy E incident on a potential barrier of width L and height
V0 as discussed in Section 17.5. Show that, when E > V0, the reflectivity is not zero as
would be the case in classical mechanics.

17.3 Show that the wavefunction

𝜓2 =
1

4√2𝜋
( 1
aB
)
3/2
(2 − r

aB
) e−(r/2aB)

satisfies the Schrödinger equation for the hydrogen atom (Eq. (17.115)) when the energy
is given by

E2 = − me4

2(4𝜋𝜀0)
2ℏ2

1
4 .
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