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Preface

The volume Some Applications of Quantum Mechanics is intended to serve as a
reference for Graduate level students as well as researchers from all fields of science.
Quantum mechanics has been extremely successful in explaining microscopic
phenomena in all branches of physics. Quantum mechanics is used on a daily basis by
thousands of physicists, chemists and engineers. There were two revolutions in the
way we viewed the physical world in the twentieth century: relativity and quantum
mechanics. In quantum mechanics, the revolution was both profound, requiring a
dramatic revision in the structure of the laws of mechanics that govern the behavior of
all particles, be they electrons or photons, and determining the stability of matter itself,
shaping the interactions of particles on the atomic, nuclear, and particle physics level,
and leading to macroscopic quantum effects ranging from lasers and
superconductivity to neutron stars and radiation from the black holes. We have
always had a great deal of difficulty understanding the worldview that quantum
mechanics represents. Quantum mechanics is often thought of as being the physics of
the very small, as seen through its successes in describing the structure and properties
of atoms and molecules (the chemical properties of matter), the structure of atomic
nuclei and the properties of elementary particles. But this is true only insofar as the
fact that peculiarly quantum elects are most readily observed at the atomic level.
Beyond that, quantum mechanics is needed to explain radioactivity, how
semiconducting devices (the backbone of modern high technology) work, and the
origin of superconductivity, what makes a laser function. Although this book does not
cover all areas of application of quantum mechanics, it is nevertheless a valuable effort
by an international group of invited authors. I believed that it is necessary to publish
at least one volume for each type of the enormous applications of quantum mechanics.
This book is contains sixteen chapters and its brief outline is as follows:

Chapters one to five provide some methods to solve the Schrodinger equation in
different areas of science. Chapter six describes the application of quantum mechanics
in three-body systems, which are mostly used in fusion phenomena as an attractive
part of nuclear physics. Applications of quantum mechanics in solid-state physics and
nanotechnology are described well in chapter seven. Chapter eight covers the
applications of quantum mechanics in biotechnology, for analyzing Ciplatin bounds in
DNA. A study of a different surface in non-relativistic and relativistic reference frame
using quantum mechanics is presented in chapter nine. Quantum Hall effect,



Preface

superconductivity and related subjects using fractional statistic in quantum mechanics
are covered in chapter ten. Chemical processes and quantum chemistry are discussed
in chapter eleven. The application of quantum mechanics in photo electronic
properties of semiconductors to study the effect of two-photon absorption in solar cells
is discussed in chapter twelve. Chapter thirteen is related to quantum mechanical
study of multi electronic systems and their relation to information theory and
thermodynamical properties of Microsystems. Quantum computing and quantum
information science are presented as a fresh and attractive research area of applied
science in chapter fourteen. Chapter fifteen describes the hybrid ab initio quantum
mechanics applied to investigate the molecular structure of biological macromolecules.
The final chapter, chapter sixteen, deals with the application of game theory to predict
the battle of sex using matrix representation of quantum mechanics, accompanied with
related statistics.

This collection is written by an international group of invited scientists and researchers
and I gratefully acknowledge their collaboration in this project. I would like to thank
Ms. Maja Bozicevic for her valuable assistance in different stages of the project, and the
InTech publishing team for creating this opportunity for scientists and researchers to
communicate and publish this book.

Mohammad Reza Pahlavani

Head of Nuclear Physics Department,
Mazandaran University, Mazandaran, Babolsar,
Iran









Quantum Phase-Space Transport and
Applications to the Solid State Physics

Omar Morandi
Institute of Theoretical and Computational Physics, Graz University of Technology
Austria

1. Introduction

Quantum modeling is becoming a crucial aspect in nanoelectronics research in perspective of
analog and digital applications. Devices like resonant tunneling diodes or graphene sheets
are examples of solid state structures that are receiving great importance in the modern
nanotechnology for high-speed and miniaturized systems. Differing from the usual transport
where the electronic current flows in a single band, the remarkable feature of this new
solid state structures is the possibility to achieve a sharp coupling among states belonging
to different bands. Under some conditions, a non negligible contribution to the particle
transport induced by interband tunneling can be observed and, consequently, the single
band transport or the classical phase-space description of the charge motion based on the
Boltzmann equation are no longer accurate. Different approaches have been proposed for
the full quantum description of the electron transport with the inclusion of the interband
processes. Among them, the phase-space formulation of quantum mechanics offers a
framework in which the quantum phenomena can be described with a classical language
and the question of the quantum-classical correspondence can be directly investigated. In
particular, the visual representation of the quantum mechanical motion by quantum-corrected
phase-plane trajectories is a valuable instrument for the investigation of the particle-particle
quantum coherence. However, due to the non-commutativity of quantum mechanical
operators, there is no unique way to describe a quantum system by a phase-space distribution
function. Among all the possible definitions of quantum phase-space distribution functions,
the Wigner function, the Glauber-Sudarshan P and Q functions, the Kirkwood and the
Husimi distribution have attained a considerable interest (Lee, 1995). The Glauber-Sudarshan
distribution function has turned out to be particularly useful in quantum optics and in the
field of solid state physics and the Wigner formalism represents a natural choice for including
quantum corrections in the classical phase-space motion (see, for example (Jiingel, 2009)).

This Chapter is intended to present different approaches for modeling the quantum transport
in nano-structures based on the Wigner, or more generally, on the quantum phase-space
formalism. Our discussion will be focused on the application of the Weyl quantization
procedure to various problems. In particular, we show the existence of a quite general
multiband formalism and we discuss its application to some relevant cases. In accordance
with the Schrédinger representation, where a physical system can be characterized by a
set of projectors, we extend the original Wigner approach by considering a wider class
of representations. The applications of this formalism span among different subjects: the
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multi-band transport and its applications to nano-devices, quasi classical approximations of
the motion and the characterization of a system in terms of Berry phases or, more generally,
the representation of a quantum system by means of a Riemann manifold with a suitable
connection. We discuss some results obtained in this contexts by presenting the major lines of
the derivation of the models and their applications. Particular emphasis is devoted to present
the methods used for the approximation of the solution. The latter is a particularly important
aspect of the theory, but often underestimated: the description of a system in the quantum
phase-space usually involves a very complex mathematical formulation and the solution
of the equation of motion is only available by numerical approximations. Furthermore,
the approximation of the quantum phase-space solution in some cases is not merely a
technical trick to depict the solution, but could reveal itself to be a valuable basis for a
further methodological investigation of the properties of a system. In the multiband case,
some asymptotic procedures devised for the approximation of the quantum Wigner solution
have shown a very attractive connection with the Dyson theory of the particle interaction,
which allows us to describe the interband quantum transition by means of an effective
scattering process (Morandi & Demeio, 2008). Furthermore, the formal connection between
the Wigner formalism and the classical Boltzmann approach suggests some direct and general
approximations where scattering and relaxation mechanisms can be included in the quantum
mechanical framework.

The chapter is organized as follows. In sec. 2 an elementary derivation of the Wigner
formalism is introduced. The Wigner function is the basis element of a more general theory
denoted by Wigner-Weyl quantization procedure. This is explained in section 3.4 and in
sections 3.1. The sections 3.2 and 3.4 are devoted to the application of the Wigner-Weyl
formalism to the particle transport in semiconductor structures and in graphene. In section 4
an interesting connection between the diagonalization procedure exposed in section 3.1 and
the Berry phase theory is presented. In section 5 a general approximation procedure of the
pseudo-differential force operator is proposed. This leads to the definition of an effective
force field. Its application in some quantum corrected transport model is discussed. Finally, in
section 6, the inclusion of phonon collisions in a quantum corrected kinetic model is addressed
and the current evolution in graphene is numerically investigated.

2. Definition of the Wigner function

The quantum mechanical motion of a statistical ensemble of electrons is usually characterized
by a trace class function denoted as density matrix. For some practical and theoretical
reasons, as an alternative to the use of the density matrix, the system is often described by the
so-called quasi-density Wigner function, or equivalently, by using the quantum phase-space
formalism. The Wigner formalism, for example, has found application in different areas
of theoretical and applied physics. For the simulation of out-of-equilibrium systems in
solid state physics, the Wigner formalism is generally preferred to the well investigated
density matrix framework, because the quantum phase-space approach offers the possibility
to describe various relaxation processes in an simple and intuitive form. Although the
relaxation processes are ubiquitous in virtually all the real systems involving many particles
or interactions with the environment, from the the microscopical point of view, they are
sometime extremely difficult to characterize. The description of a system where the quantum
mechanical coherence of the particle wave function is only partially lost or the understanding
of how a pure quantum state evolves into a classical object, still constitutes an open challenge
for the modern theoretical solid state physics (see for example (Giulini et al., 2003)). On
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the contrary, when the particles experience many collisions and their coherence length is
smaller than the De Broglie distance, an ensemble of particles can easily be described at
the macroscopic level, by using for example diffusion equations (the mathematical literature
refers to the "diffusive limit" of a particle gas). A strongly-interacting gas becomes essentially
an ensemble of "classical particles" for which position and momentum are well defined
function (and no longer operators) of time. The phase-space formalism, reveal itself to be
a valuable instrument to fill the gap between this two opposite situations. The microscopic
evolution of the system can be described exactly and the close analogy with the classical
mechanics can be exploited in order to formulate some reasonable approximations to cope
with the relaxation effects. Scattering phenomena can be included at different levels of
approximation. The simplest approach is constituted by the Wigner-BGK model, where a
relaxation-time term is added to the equation of motion. A more sophisticated model is
obtained by the Wigner-Fokker-Plank theory, where the collision are included via diffusive
terms. Finally, we mention the Wigner-Boltzmann equation where the particle-particle
collisions are modeled by the Boltzmann scattering operator (see i. e. Jiingel (2009) for a
general introduction to this methods). Furthermore, systems constituted by a gas where
the particles are continuously exchanged with the environment ("open systems") are easily
described by the quantum phase-space formalism. It results in special boundary conditions
for the quasi-distribution function. In this paragraph, we give an elementary introduction
to the Wigner quasi-distribution function and we illustrate some of the properties of the
quantum phase-space formalism. A more general discussion will be given in sec. 3. For
the sake of simplicity, we consider a spinless particle gas, described by the density matrix
o(x1,x2), in the presence of a static potential V(r). Following (Wigner, 1932), we define the
quasi-distribution function

1 .
F00) = g fygo (g e ) e . @
1

Here, d denotes the dimension of the space. The Wigner description of the quantum motion
provides a framework that preserves many properties of the classical description of the
particle motion. The equation of motion for the Wigner function writes (explicit calculation
can be found for example in (Markowich, 1990))

af _p
E—_%'vrf""g[ﬂ/ (2)

where m is the particle mass and the pseudo-differential operator 0]f] is

_ 1 i(p—p’)- li !
o0[f] = 7(277)[1 /11{»; /IR;’D(r,’fl)e P=P) N £(r,p’) dn dp 3)
1 - in-
= W/]Rgp(r,n)f(rm)ew’dn, 4)

with

D(r,m:;[u(wgn)—u(r—;n)} . )

Equation (4) shows that the pseudo-differential operator acts just as a multiplication operator
in the Fourier transformed space r — 7. We used the following definition of Fourier transform
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f=Fpoy lf):

f= /Rdf(r,p)e_ip'" dp
1 ip-
f= preyl f(n, )P dn .

The remarkable difference between the quantum phase-space equation of motion and the
classical analogous (Liouville equation)

5}

V=P Vs Em) T, ®)
is constituted by the presence of the pseudo—dlfferential operator 0[f] that substitutes the
classical force E = —V. U. The increasing of the complexity encountered when passing

from Eq. (6) to Eq. (2) is justified by the possibility to describe all the phase-interference
effects occurring between two different classical paths, and thus characterizing completely
the particle motion at the atomic scale. The analogies and the differences between the Wigner
transport equation and the classical Liouville equation have been the subject of many study
and reports (see for example Markowich (1990)). In particular, we can convince ourselves that
in the classical limit 7 — 0, Eq. (2) becomes Eq. (6), by noting that, formally, we have

lim 6[f] = in - Vel (x) e/ ®PP) M f(x,p') dn dp’

Ry ]Rd

— 1 i(p—p’ n / I __ a9

= wvru' %/Rg/mile PP f(xr,p’) dndp —VrU'%f(f,P) :
This limit was rigorously proved in (Lions & Paul, 1993) and in (Markowich & Ringhofer,
1989), for sufficiently smooth potentials. From the definition of the Wigner function given by
Eq. (1), we see that the L?(IR¥ x IRZ) space constitutes the natural functional space where the
theoretical study of the quantum phace-space motion can be addressed (Arnold, 2008).
The key properties through which the connection between the Wigner formulation of the
quantum mechanics and the classical kinetic theory becomes evident, are the relationship
between the Wigner function and the macroscopic thermodynamical quantities of the particle
ensemble. In particular, the first two momenta of the Wigner distribution, taken with respect
to the p variable, are

n(r,t) = |, fxp1) dp @)
and
60 ==L [ pf (e d ®

where 1 and ] denote the particle and the current density, respectively. More generally, the
expectation value of a physical quantity described classically by a function of the phase-space

A (x,p,t) (relevant cases are for example the total Energy % + V(r) or the linear momentum
p), is given by

() = [ Alpb)f(6p1) dpdr. ©

4
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This equation reminds the ensemble average of a Gibbs system and coincides with the
analogous classical formula.

3. Wigner-Weyl theory

The definition of the Wigner function given in Eq. (1) was introduced in 1932. It appears
as a simple transformation of the density matrix. The spatial variable r of the Winger
quasi-distribution function is the mean of the two points (x1,xp) where the corresponding
density matrix is evaluated (for this reason sometime is pictorially defined by "center of
mass") and the momentum variable is the Fourier transform of the difference between the
same points. The Wigner transform is a simple rotation in the plane x; — xp, followed
by a Fourier transform. Despite the apparently easy and straightforward form displayed
by the Wigner transformation, its deep investigation, performed by Moyal (1949), revealed
an unexpected connection with the former pioneering work of Weyl (1927), where the
correspondence between quantum-mechanical operators in Hilbert space and ordinary
functions was analyzed. Furthermore, when the Wigner framework was considered as
an autonomous starting point for representing the quantum world, the presence of an
internal logic or algebra, becomes evident. The Lie algebra of the quantum phase-space
framework is defined in terms of the so-called Moyal x—product, that becomes the key tool
of this formalism. The noncommutative nature of the x—product reflects the analogous
property of the quantum Hilbert operators. In this context, following Weyl, by the term
"quantization procedure" is intended a general correspondence principle between a function
A(r,p), defined on the classical phase-space, and some well-defined quantum operator
Al(x,p) acting on the physical Hilbert space (here, in order to avoid confusion, we indicate
by v and p the quantum mechanical position and the momentum operators, respectively).
In quantum mechanics, observables are defined by Hilbert operators. We are interested in
deriving a systematical and physically based extension of the concept of measurable quantities
like energy, linear and orbital momentum. Due to the non-commutativity of the quantum
operators v and p, different choices are possible. In particular, based on the correspondence
A(r,p) — A(x,p), any other operator that differs from A(x,p) in the order in which the
operators v and p appear, can in principle been used equally well to define a new quantum
operator. More specifically, at the Schrodinger level, the "position” and the "momentum"
representations are alternative mathematical descriptions of the system, where the position
and momentum operators (t,p) are formally substituted by the operators (r, —iiV,) and
(ith,p), respectively. From a mathematical point of view, a clear distinction is made
between position and momentum degrees of freedom of a particle (and which are represented
by multiplicative or derivative operators). This is in contrast to the classical motion described
in the phase-space, where the position and the momentum of a particle are treated equally,
and they can be interpreted just as two different degrees of freedom of the system. As it will
be clear in the following, the Weyl quantization procedure maintains this peculiarity and, from
the mathematical point of view, position and momentum share the same properties.

The most common quantization procedures are the standard (anti-standard) Kirkwood
ordering, the Weyl (symmetrical) ordering, and the normal (anti-normal) ordering. In
particular, standard (anti-standard) ordering refers to a quantization procedure where, given
a function A admitting a Taylor expansion, all of the p operators appearing in the expansion
of A (v,p) follow (precede) the v operators. A different choice is made in the Weyl ordering
rule where each polynomial of the p and r variables is mapped, term by term, in a completely
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ordered expression of v and p. The generic binomial p”r" becomes (see i. e. (Zachos et al.,
2005))

WIIJ'I G 1 i n t Wltﬂ ro__ i i Vt}’l m—r (10)
p i L) = on L pretpT

Following Cohen, (Cohen, 1966), one can consider a general class of quantization procedures
defined in terms of an auxiliary function x(r,p). The invertible map (for avoiding
cumbersome expressions, the symbol of the integral indicates the integration over the whole
space for all the variables)

A(rp) = Tr { A(cp) PPy (r p) |

n\* 1/, an

- (ﬁ) / <f Ty

defines the correspondence A (t,p) — A (r,p). Different choices of the function y describe

different rules of association. In particular, if A is the density operator g (representing a state

of the system), from Eq. (11) we obtain the quantum distribution function fX. One of the main

advantages in the application of the definition (11) is that the expectation value of the operator
A (t,p) can be obtained by the mean value of the function A (r, p) under the "measure fX

T {A(e9)pop1)} = /AX (t,p) fX (t,p, 1) dp dr.

As particular cases, it is possible to recover the definition of the most common
quasi-probability distribution functions (classification scheme of Cohen). For example for
X = eF1311 we obtain the standard (—) or anti-standard (+) ordered Kirkwood distribution
function. Hereafter, we limit ourselves to consider the case Y = 1, which gives the Weyl
ordering rules. The function fX becomes the Wigner quasi-distribution

f(r,p):(le)d/< ";l

The Weyl-Moyal theory provides the mathematical ground and a rigorous link between
a phase-space function and a symmetrically ordered operator. More into detail, the

correspondence between A and the function A(r, p) (called the symbol of the operator) is
provided by the map W [A] = A (Folland, 1989)

v - %h> X(p,m)e T HTPT qp dy e (11)

- %h> e~ dn. (12)

A — _ 1 xty Lx=y)p
(Ar) (x) = W[Ah = Gy /A( ; ,p) h(y) e dy dp . (13)
Here, 1 is a generic function. The inverse of )V is given by the Wigner transform
A(r,p) =w! A (r,p) /ICA —r—E)e’ﬁP"dn, (14)

where K 4 (x,y) is the kernel of the operator A. Let us now fix an orthonormal basis ¢ = {; |
i=1,2,...}. A mixed state is defined by the density operator Sy

SlPh /plpxx
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whose kernel is the density matrix. In the basis {y;}
x') =) pij pi(x)p;(x) (15)
L

where the overbar means conjugation. The von Neumann equation gives the evolution of the
density operator S¢ = S¢( ) in the presence of the Hamiltonian #{:

m% = [7.8] (16)

where, as usual, the brackets denote the commutator. The equivalent quantum phase-space
evolution equation can be obtained by applying the Wigner transform. We obtain

flp =[Hfy], =Hxfp— fo*H (17)

where the symbol (27th)? fo(r, p) =Sy = W1 [Sy] is the Wigner transform of py (x,x') (see
Eq. (1) and Eq. (12)) and we used the following fundamental property

-1 [ﬁ é] — AxB. (18)
For symbols sufficiently regular, the star-Moyal product x is defined as
AxB=Ae (? Ve V ) B

:;(%) pie FV_ Vp - Vp'ﬁ]HB(np)
2 () Pyt 6 e

n k=0 :

where the arrows indicate on which operator the gradients act. The Moyal product can be
expressed also in integral form (that extends the definition (19) to simply L2 symbols):

_ L f f ! o) el iR g gy /

— A( h B i(r=1)-p+i(p—pP)'m 4,4 d¢’ dn dp’

= Zd (', p) +tamp-Su)e pdr’ dndp’.
In particular, if both operators depend only on one variable (r or p), the Moyal product
becomes the ordinary product. For a one-dimensional system the Moyal product simplifies

> p (-1 )‘ | anp a~B
AxB = 2 @, H% i (a d A) (apa,B) (20)

LR = IO

k=135, 2" ocfhsa (k= P)!
- (alfﬁ aﬁB) (a’;*ﬁafA)] .
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3.1 Generalization of the Wigner-Moyal map
A separable Hilbert space can be characterized by a complete set of basis elements ; or,
equivalently, by a unitary transformation ® (defined in terms of the projection of the ;
set on a reference basis). The class of unitary operators C(©) defines all the alternative
sets of basis elements or "representations” of the Hilbert space. Once a representation is
defined, the relevant physical variables and the quantum operator can be explicitly addressed.
Unitary transformations are a simple and powerful instrument for investigating different
and equivalent mathematical formulations of a given physical situation. We study the
modification of the explicit form of the Hamiltonian H (and thus of the equation of motion
(17)), induced by a unitary transformation. We consider a unitary operator © and the "rotated”
orthonormal basis ¢ = {@; | i = 1,2,...}, where ¢; = © ;. It is easy to verify that the
following property

©!(r,p)=0(rp), (21)
holds true, where, according to Eq. (14), © (©~ 1) is the Weyl symbol of 0 (@_1). The
phase-space representation of the state under the unitary transformation ® will be denoted
by
(2rh)fp, = W1 [«%],where

S, =035, 06" 22)

is the new density operator of the system. Here, the dagger denotes the adjoint operator. By
using Eq. (21) it is immediate to verify that the equation of motion for f, is still expressed by

Eq. (17) with the Hamiltonian H' = @ H + @ L. Explicitly, ' = W~! [C:) H (:)Jf] is given by

. B 1 / 47+t p+p +p” L (r+r -1 p+p —p”
HP) = i | © 2 2 © 2 1 2 x
H(r/,p’)e%[(rfrl)'puf(l’fpl)'r”] dr’ dp’ dr” dp” . (23)

When passing from the position representation (where the basis elements in the Schrédinger
formalism are the Dirac delta distributions and where © is the identity operator), to
another possible representation, the Hamiltonian operator modifies according to formula (23).
Although the mathematical structure of the equation of motion can be strongly affected by
such a basis rotation, the distribution function f,, is always defined in terms of the classical
conjugated variables of position and momentum. The generality of this approach is ensured
by the bijective correspondence between a generical unitary transformation (describing all the
physical relevant basis transformation) and a framework where the description of the problem
is a priori in the phase-space.

3.2 Application to multiband structures: graphene

The previous formalism is particularly convenient for the description of quantum particles
with discrete degrees of freedom like spin, pseudo-spin or semiconductor band index. The
mathematical structure, emerged in sec. 3.1, can be used in order to define a suitable set
of r-p-dependent eigenspaces (with a consequent set of projectors) of the "classical-like"
Hamiltonian matrix (that in our case is just the symbol of the Hamiltonian operator).
Consequently, a "quasi-diagonalized" matrix representation of the Wigner dynamics can
be obtained. This special starting point of the phase-space representation, aids to obtain
information on the particle transitions among this countable set of eigenspaces. From a
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Physical point of view, these transitions could represent, case by case, spin flip, jumping of
a particle from conduction to valence band or particle-antiparticle conversion. The analysis
performed in sections 3-3.1 providing Egs. (16)-(23), maintains its validity when O, Harenxn
matrices of operators (and, consequently the symbols ®, H are matrices of functions). This for

example, is the standard situation for the Schrodinger-Hilbert space of the form L? (]R‘,f; C”) .

The only new prescription is to maintain the order in which the operators and symbols appear
in the formulae. To concretize to our exposition, we apply the phase-space formalism to
graphene and we present the explicit form of the equation of motion.

Graphene is the two-dimensional honeycomb-lattice allotropic form of carbon. Its discovery
stimulated a great interest in the scientific community. In fact, this novel functional material
displays some unique electronic properties (see for example (Neto et al., 2009) for a general
introduction to graphene). In a quite wide range of energy around the Dirac point, electrons
and holes propagate as massless Fermions and the Hamiltonian writes (Beenakker et al., 2008)

H = Ho+ooU(r), (24)

~

0 —i2 2
Ho=—ivpho-Ve=oph| ., 5 % %], (25)
“ixtay 0

which describes the motion of an electron-hole pair in a graphene sheet in the presence of an
external potential U(r). Here, vr is the Fermi velocity, o = ((Tx,(Ty,(TZ) indicate the Pauli
vector-matrix and oy denotes the identity 2 x 2 matrix. The upper and lower bands are
sometimes denoted by pseudo-spin components of the particle, since the Hamiltonian can
be interpreted as an effective momentum-dependent magnetic field h < o - V.

The application of the theory exposed in sec. 3.1 leads us to consider the density operator S =
© S O where O (r, V;) is a unitary 2 x 2 matrix operator. The approach generally adopted
for simplifying the description of a quantum system, is the use of a coordinate framework
where the Hamiltonian is diagonal. The graphene Hamiltonian contains off-diagonal
terms proportional to the momentum. Since position and momentum are non-commuting
quantities, it is not possible to diagonalize H simultaneously in the position and in the
momentum space. Anyway, up to the zero order in i, an approximate (r-p)-diagonalization
of the Hamiltonian can be obtained. We take advantage of the Weyl correspondence principle

and consider the symbol @ (r,p) = W™! [C:)] . Here, O (r, p) is a unitary matrix parametrized

by the r — p coordinates. It can be used in order to diagonalize the Hamiltonian symbol
H =vpo-p+oplU(r). With

1 px — ipy
op) = = YRR 6)
P)="7| petipy 1
VPR Py
we have
OHO = A (27)

where A(p) = ovp|p| + U(r) is the relativistic-like spectrum of the graphene sheet. The
equation of motion for the new Wigner symbol S’ becomes (see (Morandi & Schiirrer, 2011)
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for the details of the calculation)

., 98’
ih= - = U +Ap), ST, . (28)
The symbol U’ (x, p) is given by
U' (r,p) = O+ U (r) xOF (29)

and writes explicitly as
1 : h h iy
Uu'(r, :7/(9( + )@Jr( - = )Ur'e’(r_r)'“d dr’.
(r.p) 22 Ptk p— k) UE) "
We address explicitly the components of S’, by denoting

' — o2 (£ @®P) fi(rp)
§=@nh) (f"(r,p) f‘(r,p)> ' 0

Equation (28) is written in terms of the Moyal commutator and defines implicitly a
non-local evolution operator for the matrix-Wigner function §’. It requires the evaluation of
infinite-order derivatives with respect to the variables r and p. The commutators appearing
in Eq. (28) can be written in integral form as

noo_ 1 ' E 1 ol (L _E i(r—1t')-p /
ST = o [ [2 (e 58 @) = (p)a (b ) [ 0

(31)
V0= L [ (v T T} & ()~ ()20 (54 g
[U,S]*_(Zn)‘l {U (r smP+on ) S (dp) =S (d,p) U (r+Smp—Sn
x el utilp=p)m gy dr' dny dp’ .
(32)

The commutator of Eq. (31) describes the free motion of the electron-hole pairs in the upper
and lower conically shaped energy surfaces. When we discard the external potential U, the
evolution of the particles f* (f~) belonging to the upper (lower) part of the spectrum is
described by

afi _ 1 h h + (. i(r—r')- /
ati(ZH)Z/{E(IH—Zu)—E(p—zu)}f (¥,p)e Pdpdr. (33)

By expanding up to the leading order in 7, the previous equation reduces to

of* P +

? ~ :tvpm . Vrf (34)
which is equal to the semi-classical free evolution of the two-particle system in the graphene
band structure. We emphasize that the usual semi-classical prescription vy = V,E = vF %,
where vy is the group velocity, is automatically fulfilled. As expected from a physical point of
view, the coupling between the bands arises from the presence of an external field U(r) which
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Fig. 1. Comparison between the classical potential U and the momentum dependent
pseudo-potential ¢/'.

perturbs the periodic crystal potential. This is described by Eq. (32). In order to illustrate the
main characteristics of the pseudo-potential U’ (r, p), in fig. 1 we depict the first component
[U'] . of the matrix U’, when the external potential U(r) (represented in the sub-plot 1-(a))
is a single barrier. Equation (29) shows that the elements of the 2 x 2 matrix ¢’ depend both
on the position r and the momentum p. The main corrections to the potential arise around
px = 0, whereas [U'] _, stays practically identical to U for high values of the momentum
px. This reflects the presence of the singular behavior of the particle-hole motion in the
proximity of the Dirac point (see the discussion concerning this point given in (Morandi &
Schiirrer, 2011)). The effective potential [1/'] , represents the potential "seen" by the particles
located in the upper Dirac cone. For small values of py, the original squared shape of the
potential changes dramatically. The effective potential [1/'], | becomes smooth and a long
range effective electric field (the gradient of [I/], | ) is produced. Around p = 0, a barrier or,
equivalently, a trap potential becomes highly non-local. It is somehow "spread over the sheet"
and, in the case of a trap, its localization effect is greatly reduced.

The equation of motion (28) reproduces the full quantum ballistic motion of the particle-hole
gas. In the numerical study presented in (Morandi & Schiirrer, 2011b), one of the main
quantum transport effects, namely the Klein tunneling, is investigated. The numerical study
of the full Wigner system in the presence of a discontinuous potential is presented in (Morandi
& Schiirrer, 2011). The high computational effort required for solving the full ballistic motion
and the need of developing appropriate numerical schemes, limits the practical application
of the exact theory. This becomes particularly constraining in view of the simulation of
real devices containing dissipative effects like, for example, electron-phonon collisions, that
further increase the complexity of the problem. The Wigner formalism is well suited for the
inclusion of weak dissipative effects. The overall theoretical and computational complexity
displayed by the pseudo-spinorial Wigner dynamics, can be reduced by exploiting some
general properties of the system that characterize the application of the multiband Wigner
system to real structures (typically, the presence of fast and slow time scaling can be exploited).
Approximated models or iterative methods can be derived (see (Morandi & Schiirrer, 2011)
and (Morandji, 2009) for the application to graphene and to interband diodes, and (Morandi,
2010) for the WKB method in semiconductors).
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3.3 Application to multiband structures: correction to the classical trajectory in
semiconductors.
We investigate the application of the multiband Wigner formalism to the semiconductor
structures. The study of the particle motion in semiconductors has attracted the scientific
community, e. g. to the sometime anti-intuitive properties of Bloch waves (especially
compared with the classical counterpart). Moreover, the interest has been renewed by the
discovery of the unipolar and bipolar junctions and the final impulse to the semiconductor
research was given by the unrestrainable progress of the modern industry of electronic
devices. An important branch of the semiconductor research is now constituted by the
numerical simulation applied to the particle transport. In particular, the continuous
miniaturization of field effect transistors (length of a MOS channel approaches the ten nm)
imposes the use of a full quantum mechanical (or at least a quantum-correct) model for
the correct reproduction of the device characteristic. Beside the Green function formalism
and the direct application of the Schrédinger approach, the Wigner framework is a widely
employed tool for device simulation. Anyway, most attention is usually devoted to the
interband motion since it is often implicitly assumed that electron motion is supported only
by one single band. This approximation is based on the assumption that the band-to-band
transition probability vanishes exponentially with increasing band gaps (that, for example, in
silicon is around one eV), so that under normal conditions all the multiband effects can be
discarded. However, this assumption is violated in many heterostructures (devices obtained
by connecting semiconductors with different chemical compounds), or when a strong electric
field is applied to a normal diode. In both cases electrons are free to flow from one band to
another. Beside the evident modification of how the device operates (a new channel for the
particle transport becomes available), there is also a more subtle consequence. The application
of a strong electric field for example, is able to provide a strong local modification of the
electronic spectrum. Since high electric fields could induce a strong mixing of the bands,
the Bloch band theory becomes inadequate to describe the particle transport. Even when
the particle does not undergo a complete band transition, its motion becomes affected by the
interference of the other bands. In the following, we show how these problem can be attacked
with the use of the multiband Wigner formalism.
A multiband transport model, based on the Wigner-function approach, was introduced in
(Demeio et al., 2006) and in (Unlu et al., 2004) the multiband equation of motion is derived
by using the generalized Kadanoff-Baym non-equilibrium Green’s function formalism. The
model equations there derived are still too hard to be solved numerically. In order to maintain
easily the discussion of the problem, we consider a simple model, where only two bands,
namely one conduction and one valence band, are retained. We adopt the multiband envelope
function model (MEF) described in Ref. (Morandi & Modugno, 2005). This model is derived
within the k - p framework and is so far very general. In particular, this approach is focused
on the description of the electron transport in devices where tunneling mechanisms between
different bands are induced by an external applied bias U. It has been recently applied to
some resonant diodes showing self-sustained oscillations (Alvaro & Bonilla, 2010). Under this
hypothesis the MEF model furnishes the following Hamiltonian

n? hopx-E
EC—I—U(r)—Z A _hopk-&)
o~ m my Eg
"= h £ h? 9
_7PK.7(I‘) Ey—|—U(I')—|—7Ar

my  Eg 2m*
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Here, E; (Ey) is the minimum (maximum) of the conduction (valence) energy band, py is
the Kane momentum, mg, m* are the bare and the effective mass of the electron and U
(€ = V:U) is the "external" potential which takes into account different effects, like the bias
voltage applied across the device, the contribution from the doping impurities and from the
self-consistent field produced by the mobile electronic charge. According to Eq. (27), the
multiband system is characterized by the matrix

1 (\/14—(7 \/1—(7>

(36)

V2 \-VioVite

where
(@)

\/ P32+ 0?2 '
‘2

with Q (p) = % + ‘21:,,* Pr(r) = —h%m(:) and E; = E¢ — E, is the band gap. The eigenvalues

of the Hamiltonian are #* (r, p) = +,/P2 + Q2 + U. Here we limit ourselves to discuss the

system obtained by expanding the full quantum equation of motion given in Eq. (28) up to the
first order in 7 (the study of the full quantum system is addressed in (Morandi, 2009)). With
the definition (in order to avoid confusion with the graphene Wigner functions defined in Eq.
(30), we changed the name of the various components of the matrix)

5= 2y ( :ch ((1;,};)) i;lc;((rr’, Il:)) ) , (37)

We obtain the following equations of motion

oh,

g =

a5 =" VoH ' Vihe + ViHT - Vphe — 28 R(heo) (39)
oh

aTv = —VpH ™ Vil + ViH™ - Vphy +2¢ R(heo) (39)
oh i _

a:U :_ﬁ(H+_H )hcv+g'vphcv+§(hc_hv) (40)

where R denotes the real part and

PR Sp

= 5% (41)
P12{+Q2 m

Here, h. and hy represent the Wigner quasi-distribution functions of particles in a regime of
strong band-to-band coupling. They differ from the analogous functions based on a direct
application of the projection of the particle motion in the Bloch basis. The system of Eq.
(38)-(40) shows that, up to the zero order in 7, the Wigner functions k. (h,) follows the

Hamiltonian flux generated by %" (X ™). Furthermore, the term H* — H~ = 24/ Pg? + 02
in Eq. (40) induces fast-in-time oscillations (whose frequency is of the order of E¢ /) which,
up to zero order in 7, decouple k¢, from the slowly varying functions k. and h,. This aspect
is examined in sec. 3.4. We explore the single band limit of Egs. (38)-(40). From the physical
point of view, we expect that when the electric field goes to zero or the band gap goes to
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infinity, all the multiband corrections become negligible and the dynamics of the electrons in
the conduction band decouples from those in the valence band. It is convenient to define the
parameter Y = P—(‘f that vanishes in the single band limits £,1/E; — 0. When Y — 0 the
evolution of i and h, is described by two Liouville equations (one for each band) with the

Hamiltonian
HE = +£1/Pr%>+ Q2 + U(r) (42)

_ . IpP Eg O, 2
= U@ =S 1+ Y +0(Y).

2m*

Equation (42) shows that the eigenvalues of the Hamiltonian symbol, provide a simple

2
quantum correction to the classical single band Hamiltonian Hy, = U(r) £ ‘21;]‘* . The particles

follow a new trajectory defined by

P = ! P
e e Al
e (R)

2
Similar results can be obtained with ™. Due to the term /1 + (%’) , the particles move

with a slightly larger effective mass. The mass correction depends on the classical position and
momentum. This effect could partially compensate the small effective mass values predicted
by the k - p theory in semiconductors with a small band gap like InAs or InSb.

3.4 Study of the band transition, an iterative solution Wigner function

The quasi-diagonal Wigner formalism suggests an interesting analogy between band
transition induced by a constant electric field (usually denoted as Zener transition (Zener,
1934)) and the scattering processes. In sec. 3.3 the analysis of the equation of motion was
restricted to the single band dynamics. In this section, the full many-band dynamics is treated
by means of an iterative procedure. For the sake of simplicity, we consider the two-band
system in the presence of a uniform electric field. We introduce the new momentum variable
p’ = p + £t and we apply the Fourier transformation with respect to the r variable. The Egs.
(38)-(40) become

% = ip- VpH T (H)ge —&(t) (8co + goc) 9
aéi: =ip- VpH ™ (t)go +E(t) (§eo + ue) )

a co

S’t :_%z PR+ Q2(t) geo +&(t) (8¢ — &o) (46)
a ve ]

S’t - %2 PR+ Q2(t) geo + 8 (t) (e — 80) “7)

where, in order to avoid confusion, we defined the new unknowns g; = Fr—p [1;(r, p + Et,1)]
with i = ¢, v, cv, vc. The time dependence of the coefficients is originated by the definition of
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o
Time.

Fig. 3. Modulus of the functions g; with i = cv, ¢, v, vc.

the p’ variable. Explicitly, VpH ™ (t) = VpH ™|
for the other coefficients.

The system of Eqs. (44)-(47) is a time-dependent eigenvalue problem with perturbation. In
fact, if we define the four component vector G = (g, o, gw,gm)t, Eqs. (44)-(47) can be
rewritten as aa—? = i(t)G + Z(t)G, where £ is a diagonal time-dependent matrix and ¥ is
the perturbation. In order to make the subsequent discussion easier, we define the elements
of £by Ac = - VpH (1), Ao = - VpH ™ (), Aco = —31/P3 + Q2(t) and Aye = —Aco (the
coefficients of T can be obtained by comparison with Eqgs. (44)-(47)). Each function g; can be
identified by the component of G of the unperturbed eigenvector basis (in this case, the simple
canonical basis). The eigenvalues of the matrix £ are shown in fig. 2.

If we assume that £(¢) and T vary slowly in time, according to well known results of adiabatic
perturbation theory, eigenspaces belonging to different eigenvalues are decoupled as long as
the difference among the eigenvalues is large. In this case, the projections of the solution on
the different eigenspaces evolve independently. Only when the eigenvalues become closer, a
coupling is possible and a transition from one eigenspace to another can be performed. In our
case, a coupling of the eigenspaces is can be observed only around t ~ t; and ¢ ~ t, (see fig.
2).

For the sake of concreteness, we consider a tunneling transition from the conduction band to
the valence band. This can be described by setting initially all the functions to zero, with the
exception of g.. As itis customary in the time-dependent perturbation theory, we fix the initial
time equal to —co. The value of g, for t — +oo gives the measure of the interband tunneling

Y &(t) = &(p = p’ — £t), and similar
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induced by £. We write the solution in terms of the Dyson expansion
zf7 dTG +/ 7]# drg( )Gi—l(tl) ar’ (48)

The integral equation (48) can be easily approximated order by order. The second order writes
(we discuss only the valence component of G)

8o = Jo,co+ Joc, (49)

with
Fowelt) = SO [ (1) o el A0 1l (1) g (50)
g () = 0 oS e d'r/ () o JirAe=Aco) dT gy 51)

where g¥ is the initial condition of g.. Similar formula holds for J, c,. We have that |Acy(t) —
Ac(t)] > Eq, therefore, in a wide gap semiconductor, the only relevant contribution to the
integral is generated in the neighborhood of the minimum of the oscillation frequency (for
t = ty, see fig. 2). Consequently, at t = t; the gy function increases sharply (see fig. 3).
The integral in Eq. (50) can be approximated in the same manner. Since the minimum of
[Aco(t) — Ay(t)] occurs for t = t, > t;, gk, can be considered as constant around #, and the
integral can be estimated by using the stationary phase approximation.

According to these considerations, the time evolution of the system can be described as
follows. For t < t; the solution, which initially belongs to the S eigenspace (we denote
with S; the eigenspace spanned by the i-th component of G), evolves adiabatically remaining
in S;. As shown in fig. 3, gc is the only non-vanishing component of the solution G until
t =t;. Att = t1, a very sudden drop of the value of g. is observed, and, correspondingly, the
gcv distribution function increases. This can be interpreted as the creation of an excited state in
the ¢ band (visualized with the B point in fig. 2). This excited state "moves" in the S, band
until, at t = fp, it generates an Sy state, which is described by the g, distribution function. The
term Jy,co of Eq. (50) is thus associated with the path A — B — C — D indicated in fig. 2. The
particle is initially in the conduction band (represented by the point A) and in B an excited
state is created. It moves towards the point C. There it generates a particle in the valence
band which moves adiabatically (point D). The inverse of the difference of the eigenvalues
(Ae — Acw in t and Agp — Ay in tp) quantifies the strength of the coupling (or the probability of
a transition). The behavior of the function g. can be described with similar arguments. The g,
function describes the states that move from A (initial time) to H (final time). This distribution
undergoes two scattering events, in B (at t = t1) and in E (at t = t;). We note that, at t = 0, no
scattering phenomena can be observed, since the eigenspaces S, and S; are always decoupled.
This represents the analogous of the selection rules for the ordinary scattering phenomena.
This iterative procedure resemble very closely the formalism used for the description of the
electron scattering phenomena in semiconductors. In our study of interband transitions, this
analogy used for the description of the Zener phenomenon in term of a tunneling process
where a particle "disappears" from the band where it was initially located, and it "appears”
in a different branch of the band diagram. This behaves similarly to the generation of an
electron-hole pair induced by the absorption of a photon. This procedure has been exposed
more into details in (Morandi & Demeio, 2008). The field dependent case is treated in
(Morandi, 2009).
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4. Berry phase and Wigner-Weyl formalism

In a crystal where the effective Hamiltonian is expressed by a partially diagonalized basis (e.
g. in graphene or in semiconductors), the major particle operators have off-diagonal elements
and the usual definitions of the macroscopic quantities, like for example the mean velocity or
the particle density, no longer apply. The theory of Berry phases offers an elegant explanation
of this effect in terms of the intrinsic curvature of the perturbed band (Bohm et al., 2008; Xiao
et al., 2010). We discuss how it is possible to characterize the Berry phase in a multiband
system by using our kinetic description of the quantum dynamics.

The Berry phase theory cannot be directly applied to the particle evolution in a graphene
sheet for the obvious reason that the Hamiltonian given in Eq. (25) does not contain any
adiabatic variable. Anyway, a Berry-like procedure can be developed if we renounce to treat
rigorously the particle dynamics and some approximations are retained. From the physical
point of view, one of the most interesting properties of the particle-hole pair in graphene is
its pseudo-spinorial character and its connection with the orbital motion. In the momentum
representation, the unperturbed graphene Hamiltonian writes v o - p. If we assume that
the particle wave function is represented by a non-spreading wave packet centred around
the position r and the momentum p, we expect due to the Ehrenfest theorem that, in the
presence of a gentle potential U (sufficiently smooth), the center of mass of such wave function
will describe a trajectory r(t), p(t). Sometime this is pictorially visualized by saying that
the particle is confined in a small box located at a certain position r and that the wave
packet moves without spreading along a certain trajectory r(f). If we now assume that in
such situation the graphene Hamiltonian can be approximated by vr o - p(t), we can treat
the momentum trajectory like an external adiabatic variable. It should be noted that since
a non-trivial trajectory is always generated by a potential U, this term should be explicitly
included in the graphene Hamiltonian as we did in Eq. (24). Anyway, when included, the
Hamiltonian in the momentum space would loose the easy expression vr o - p (the potential
U generates a sum over all the possible momenta). In the following, we will show that the
multiband Wigner procedure suggests a natural way to treat the Berry phases of the system
for which there is no need to identify in the particle trajectory the "external parameter" of
the Hamiltonian, as indicated by the previous artificial procedure. We define by u. the
orthonormal eigenvectors of Hg ; = vr o - p. With the Dirac notation

Hea(p) [ux(p)) = Lor|p| |us(p)) (52)

we write the solution of the Schrédinger problem

d
20— 34aly) (53)

as |¢) = c4-(£) [us(p)) +c—(t) |u—(p)). A straightforward calculation gives (similar equation
hold true forc_)

ihant(t) = —ci(t) <u+<p>]a”gf")> —c-(t) <”+(P)’au57t(p)> Fer(torlel -G8

The adiabatic theory ensures that the second term on the right side of the equation becomes
arbitrarily small in the limit of sufficiently slow-in-time evolution of the momentum p
(quasi-static or adiabatic hypothesis). An introduction to the adiabatic theory containing a
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rigorous proof of this statement presented in a general context, can be found in (Teufel, 2003).
If we assume the initial condition |¢(t9)) = |u+(p)), in the adiabatic limit Eq. (54) gives

(1)) = s (p(1))) &+ Sy orlp@lar (55)

where the term 7 is denoted as dynamical phase factor. It can be evaluated by the path
integral, along the p(t)-trajectory of the Berry connection A(€)

7= [Asilp)- dp. (56)
The Berry connection is given by

Ass(p) = i(ur(p)|Vpus(p)) ; rs=+,—. (57)

According to the discussion presented in sec. 3.2, the multiband Wigner-Weyl formalism
describes the particle motion by the set of equations (28)-(31)-(32). In order to see the
connection with the Berry phase theory, it is useful to explore the classical limit, or 7i-expansion
of the Wigner-Weyl system. According to Eq. (19), if the external electric potential U(r) is
sufficiently regular, we have

n .
Ap), 8], + [U,S], = [0,8] = 5 {VpA, ViS'} +ihVill- VpS +0(i?),  (58)
where curly brackets denote the anti-commutators. We focus our attention to the first term of

Eq. (68). In particular, 2 groups all the terms that, originated from the fi-expansion procedure,
are simple matrix multiplications acting on &’ (all the other are differential operators):

a=nt 5 [0, Vp0] - ViU
_ UF|P| 0 ih (Ays A\
- ( 0 —ovepl ) T2 lasa ) VU (59)

In Eq. (59) we used that the columns of ® are the eigenvectors of H# (Eq. (24)) and by applying
the definition of Eq. (57), we obtain A;(p) = [®(P)VP®(P)]1‘,' = Yk i VpOy;. Equation
(59) emphasizes the role played by the Berry connection in the kinetic description of the
particle-hole motion. In our formalism, the Berry connection leads to the first correction (in
terms of an 71 expansion) of the classical of motion. Up to the first order in 7, the equations of
motion (28) become (the components of S’ are defined in Eq. (30))

afi _ i _ sl
i :I:UF‘p‘ Vet 4+ Vel vpfiiz(zsf Bf), (60)
% —AF VUV fi B (- ), (61)

where overbar means conjugation and

2 2 1
A_—ﬂ \+ Ay —A__)- vruf—ﬂ| P+ o (PAVALD): (62)
B=1a..vau=1P"P oavu), 63)

2 2 |p)®
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Here, (p A V:U), denotes the out-of-plane component (z-coordinate) of the vector p A VU.
We remark that we use a slightly generalized definition of Berry connection. The standard
Berry theory limits itself to consider the "in band" evolution of the system. This is a direct
consequence of the adiabatic approximation that forbids band transitions. The Wigner-Weyl
formalism, being more general, is not limited to any adiabatic hypothesis and band transition
are allowed. For that reason, besides the diagonal Berry connections A, and A__, the
terms A _ and A__ appear. They are responsible for the particle band transitions (see the
discussion of this point in (Morandi & Schiirrer, 2011)).

5. Approximated model for the Wigner dynamics

The numerical solution to the equation of motion for the Wigner quasi-distribution function
has been the subject of many studies (see i.e. (Frensley, 1990)). Often, a strong the similarity
of the shape of the Wigner function with the classical counterpart can be observed. This is
especially true in situations where strong quantum interference effects are not expected, but
sometime also in the presence of sharp barriers and resonant structures. This consideration
is often invoked for justifying the approximation of the 6 operator appearing in Eq. (2) with
the classical force term (leading term in the 7i-expansion). Although the fi-expansion appears
to be the most natural way to proceed, its application encounter many difficulties when
approximations beyond the classical term are concerned. In fact, when applied to realistic
problems, this procedure could generate a proliferation of corrective terms. Their number
could be quite large and, furthermore, it is usually very difficult (sometime impossible) to
ascribe to each term a clear physical meaning. Moreover, the range of validity of such
an expansion, when truncated at a certain order, is questionable. The reason is that, at
the microscopic level, the particle motion is characterized by complex phase-interference
phenomena, which cannot be viewed as a simple refinement of the classical dynamics. Here,
we present a slightly different strategy for approximating the Wigner equation of motion.
The idea is to replace the 6 operator, which is the source of the difference between classical
and quantum dynamics, with a more tractable term. The similitude with the classical motion
is exploited by approximating the Wigner evolution equation with a Liouville-like equation,
where the force operator is the "best classical" approximation of the 6 operator in the sense of
the L% norm. We consider the functional

N1 = e -Fw L

L*(R{xRY)

Here, the Wigner function is considered as a given function and the pseudo-field F is the
unknown. We choose F such that the previous functional reaches the minimum value. The
function F(r,p) thus provides the closest approximation of 6[f] in the L?(R¢ x IR%) norm,
for each function f sufficiently regular. The minimization of N [f] is obtained by solving the
variational problem

SN [f] =0.
Straightforward calculations show that the minimizing function F is given by
- 2
g 1D () | F x| dn
Fi(r) = —i ! — 5 (64)
Jryg 1} ‘f (r,n)’ dn
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Fig. 4. Comparison between the external potential U and the pseudo-potential U* = [ F dr.

Equation (64) reveals that the calculation of the pseudo-force field in a certain position requires
the knowledge of the potential in the overall r space (via the term D). By computing the

integral, the potential U is evaluated at the positions r = %n and has a measure proportional

2
to |f| , the spectral power of f in the n—space. As a consequence, the more the p-gradient

of the solution f(r, p) increases, the more the force F becomes non-local and the values of the
potential faraway from r are important. This can be expressed pictorially by saying that, as
compared with a smoother distribution function, an irregular profile of the solution "sees" a
larger spatial region. The approximated quantum-Wigner evolution equation becomes

of __p
This is a nonlinear system where the pseudo-electric field F depends on the solution itself.
In some situations, the nonlinearity can be eliminated and a good approximation of the
field F can be obtained by replacing in Eq. (64) the solution f with the classical Boltzmann
equilibrium distribution at the temperature T

fe1 = ,/Lﬂe‘%<%"‘) ,
T

where y is the chemical potential of the particle gas and k the Boltzmann constant. In fig. 4
the comparison of the classical and the pseudo electric field obtained by using the Boltzmann
distribution function is presented. A glance at the figure reveals that, compared with the
bare potential U, the effective pseudo-potential is smoother and extends beyond the support
of U. As a consequence, the particle in the presence of the quantum corrected potential are
decelerated or accelerated before they reach the classical force field — V.U, making evident
the non-local action of the quantum potential. Furthermore, the snapshot fig. 4-(a) shows
that the maximum value of the effective potential is smaller than the classical one. As a
consequence, particles with energy smaller than the maximum of the potential (but greater
than the maximum of the pseudo-potential) are not reflected by the barrier. This simple
example illustrates how quantum tunneling can be approximatively described by a classical
formalism. Furthermore, in fig. 4-(b) we depict the solution of Eq. (65) in the presence of the
potential U. At the boundary, the Boltzmann distribution is imposed.
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Fig. 5. (a)-(c) Polar plot of the density for current in graphene. (d) Total current.

6. Dissipative effects in the Wigner formalism: electron-phonon collisions in
graphene

As described in the introduction, one of the major advantages of the Wigner formalism is
the possibility to include in a quantum mechanical treatment also some dissipative effects,
or (in the opposite limit) to derive some quantum corrected models for the simulation
of quasi-classical systems. As an example, we apply the results obtained in sec. 5 for
studying the particles evolution in graphene and we include a detailed description of the
electron-phonon scattering phenomena, via a Boltzmann scattering collision operator. An
important property of the pseudo-electric field approximation is the preservation of the
positivity of the quantum-corrected distribution function. Since the Boltzmann collision
operator is defined only for positive functions, positivity preservation becomes a fundamental
property for any Boltzmann quantum-corrected kinetic model (anyway, despite the lack of
theoretical support, some Wigner-Boltzmann solver have been numerically tested (Kosina &
Nedjalkov, 2006)). A semiclassical Boltzmann model with quantum corrections, allows the
study of the relaxation processes dynamically, providing information on the time scale on
which the equilibrium is established.

The phonon system of graphene has already been thoroughly investigated by means of
density functional theory (DFT) and Raman spectroscopy (Piscanec et al., 2004). The phonon
dispersion relations and electron-phonon coupling matrix elements are essential ingredients
for kinetic models of carrier transport in graphene. Results of DFT calculations show that
longitudinal optical (LO) and transversal optical (TO) phonons modes contribute significantly
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Fig. 7. Evolution of the energy density and the total energy of the particle gas.

to inelastic scattering of electrons in graphene. Because of their short wave vectors these
phonons scatter electrons within one valley. In addition, zone boundary phonons close to
the K-point are responsible for intervalley processes. The Boltzmann equation of motion
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including optical phonon scattering writes

ﬁqc PV fE—F. vt =Y c! (66)
ot TUFpl T P -

The collision kernel, containing emission and absorbtion processes, is given by

cl(p) m s [ AWl PO = )] = Wi 1= RO F(p)} ap’, ij=+ (67)

where 7 labels the specific scattering processes, B denotes the first Brillouin zone of graphene
and

ngp] iji [1 + &y (p —Pl)} 6(ei — 8;’ - hw’?) + Sgip/]' 81 (p/ —p)oe — 8;’ + hwr]) . (68)

The delta functions (where we adopt the simplified notation &; = ¢;(p), e; = ¢j(p') and

wy denotes the energy of the 77-th mode) ensure the conservation of the energy during the
scattering processes. The explicit expression of the scattering elements SZ’]' pir Can be found in

(Lichtenberger et al., 2011; Piscanec et al., 2004). According to sec. 3.2, the functions f * and
f~ represent the particle distribution in the upper and in the lower Dirac cone, respectively.
Finally, the g, are the phonon equilibrium distribution functions related to the #-th mode.
Here, for sake of simplicity, we assume that the phonon system is an infinite reservoir at a
constant temperature T. In this hypothesis, the g, can be approximated by the Bose-Einstein
distributions g% = [exp(hwy /kT) — 1] 1. The study of the coupled electron-phonon system
is presented in (Lichtenberger et al., 2011). It has been shown that the optical phonons are
in equilibrium only for a low-bias polarization (around 0.1 eV), otherwise hot phonon effects
should be included.

We apply the Boltzmann system given in Eq. (66) to study the transient evolution of the
electron-hole and phonon gas in response on the abrupt change of the applied bias. As initial
datum, for t = 0, we assume that the graphene sheet is in the stationary state for an applied
voltage U equal to 0.01 V. For t > 0 we impose U = 0.1 V. In Fig. 5-d we show the evolution
of the total current at the drain contact for the intrinsic graphene. The simulations reveal the
presence of a current overshoot (approximatively one picosecond after the potential change)
and a subsequent approach to the equilibrium value. The further approach to the equilibrium
is a quite slower process of approximatively 200 picoseconds.

The detailed explanation of the transient current overshoot observed during the first
picosecond requires a deeper analysis of the high non-equilibrium motion of the hot carriers.
The presence of an overshoot in the current evolution is an unexpected phenomenon in
graphene. It is well known that, in this material, the carrier velocity is independent from the
modulus of the momentum. For this reason, we expect that even if some transient phenomena
are able to move the hot carriers toward high values of the momentum, this should not
significantly affect their velocity and consequently the total current of the system. The
overshoot can be explained by analyzing the following two-step process: initially the particles
are ballistically accelerated by the strong external field (the temperature of the particles gas
stays essentially constant). However, after some picoseconds, the scattering processes are able
to transform the kinetic energy of the carriers into thermal energy. During the first picosecond,
the component of the momentum parallel to the external field increases. As a consequence,
the direction of the momentum (and thus the velocity) is turned toward the direction of the
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electric field. In this first part of the dynamics, the motion is essentially ballistic, the particles
share similar momentum direction and group together in the velocity space. This behaviour
is evident from fig. 5 where we depict the polar plot of the angular density of the current. For
t < 0.3 ps the drift term dominates the Boltzmann collision operator. The latter is a nonlinear
operator and its effects on the distribution function depend on the shape of the function itself.
On the contrary, the ballistic operator translates the distribution function over the phase plane
along the Hamiltonian flux and is independent of the distribution. During the overshoot of
the current, the Boltzmann operator is not able to balance the effect of the ballistic term. This
can be seen in fig. 6 where we depict the evolution of the electron distribution function f*
for different times. The first part of the dynamics (fig. 6(a)) is just a rigid translation of f*
towards higher values of the momentum variable. After one picosecond, an enlargement of
the distribution function around its center of mass can be observed. This is a clear signature
of the temperature increase of the system. The friction process occurs only by dissipating the
kinetic energy of the particles by phonon emission. This requires a certain time delay. A closer
look at the density of energy of the carriers explains the reason why the particle gas need a
delay before starting to emit phonons. In fig. 7 we plot the evolution of the energy density
and the total energy of the particles. We see that a peak of high energy particles is present
after 0.3 ps. This peak represents the particles accelerated by the field. Their kinetic energy
increases until they are able to emit optical phonons (whose energy is 196 and 161 eV for I' and
K phonons respectively). Around an energy of 200 meV, the kinetic energy can be efficiently
dissipated and the distribution reaches a new thermal-like state characterized by a smaller
total current.

6.1 Conclusions

In this Chapter, various approaches based on the Wigner-Weyl formalism, are presented.
In particular, we highlight the existence of a general formalism where in analogy with
the Schrodinger formalism, we use the class of unitary operators in order to define a
class of equivalent quasi-distribution functions. The applications of this formalism span
among different subjects: the multi-band transport in nano-devices, the infinite-order
h-approximations of the motion and the characterization of a system in terms of Berry phases
or, more generally, the representation of a quantum system by means of a Riemann manifold
with a suitable connection. The exposition of the theory is completed with some numerical
test and applications to real devices.
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1. Introduction

Reaction mechanisms are an important tool for chemists in the determination of
thermodynamic and kinetic properties of chemical reactions.(Hanggi & Borkovec 1990;
Heidrich 1995; March 1992; Tolman 1925) The mechanisms are integral in the understanding
of detailed molecular or chemical transitions from one equilibrium state (reactant) to
another equilibrium state (product). In computational chemistry, the reaction mechanism is
often represented as a reaction path on the Born-Oppenheimer potential energy surface
(PES) of the system of interest through construction of a potential energy function of the
nuclear coordinates.(Bader & Gangi 1975; Lewars 2011; Mezey 1987; Truhlar 2001; Wales
2003) The PES serves as an important theoretical construct to provide a framework to
describe the transition between different states in detail. The equilibrium states correspond
to local minimum on the PES with zero first order derivatives (gradient) in all directions and
all positive eigenvalues of the second order derivative (Hessian) matrix, excluding rotation
and translation degrees of freedom. The transition states (TSs), based on the transition state
theory (TST),(Doll 2005; Eyring 1935; Laidler & King 1983; Pechukas 1981; Truhlar et al.
1983; Wigner 1938; Yamamoto 1960) are the first order saddle points with zero gradient and
only one negative eigenvalue of the Hessian matrix. The equilibrium states are often easy to
identify through experimental or computational studies. Understanding the detailed
transition process between equilibrium states is of more interest in research, but
unfortunately is very difficult to study experimentally. On a given PES, one can imagine that
there could exist an infinite number of possible routes connecting two predefined states on
that surface. However, not every route has the same weight in elucidating of reaction
mechanisms. In the static point of view, the minimum energy path (MEP) is the route that
needs the least amount of potential energy for the system to undergo the transition. The
MEP connecting two local minima must go through one or more TSs, and is identified as a
representative reaction path. In the statistical point of view, the minimum free energy path
(MFEP) is the most probable transition path connects two metastable states. The simulation
of the systems either through molecular dynamics (MD) or Monte Carlo (MC) sampling on
the PES could generate an ensemble of transition paths, from which the MFEP can be
identified. Both an MEP and an MFEP can be used to predict important properties, such as a
reaction’s kinetic isotope effect.
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Although one could generate a reduced PES for complex systems with selected reaction
coordinates,(Kldhn et al. 2005; Shi et al. 2008; Tao et al. 2009a) it is rarely practical to
construct a reduced PES of a system of interest to identify a reaction path connecting two
minima. Moreover, reducing a complex multi-dimensional system to a simplified pathway
is a form of data reduction. This reduction is non-unique and a choice imposed in this
reduction will affect the quality and applicability of the results. It is more feasible to search
for the MEP or MFEP directly on a given PES. Given the complexity and high degree of
freedom of most systems of interest in chemistry, molecular biology and materials science,
there has been a rapid development in methodologies for reaction pathway identification in
large systems. As an attempt to reflect the current development and to better understand the
consequences of specific methodological choices, this chapter reviews the recent progress of
various methods to identify reaction paths with or without knowing the TS(s) a priori.
Specifically, it emphasizes the applications of these methods in macromolecular systems.

It should be noted that identifying saddle points on a PES alone is not the focus of this
report. This report does not cover the geometry optimization including equilibrium and
transition structures,(Farkas & Schlegel 2003; Henkelman et al. 2000a; Olsen et al. 2004;
Schlegel 1982, 2003, 2011) conformational sampling,(Beusen 1996; Leach 1991; Parish 2002)
or global minimum search methodologies,(Floudas & Pardalos 1996, Horst 1995, 2000; Torn
1989) which are all important for the studies of computational chemistry and biology. Other
related topics, including enhanced sampling methods,(Earl & Deem 2005; Hamelberg et al.
2004; Lei & Duan 2007; Okur et al. 2006; Sugita 1999; Swendsen & Wang 1986; Thomas et al.
2005; Wen et al. 2004) simulation of nonequilibrium states,(Bair et al. 2002; Cummings &
Evans 1992; Hoover 1983; Hoover & Hoover 2005; Kjelstrup & Hafskjold 1996; Li et al. 2008;
Mundy et al. 2000) and minimization methods,(Bonnans 2003; Dennis & Schnabel 1996;
Fletcher 2000; Gill 1982; Haslinger & Mékinen 2003; Nocedal 2006; Scales 1985) are not
covered in this chapter either. The curious readers are welcome to read cited references for
more information.

2. PES walking methods

Without the intention to generate a complete PES, it is logical to develop methods to explore
the PES by walking along the surface from certain starting points using local information of
the PES, such as the energy, gradient and even the Hessian.(Hratchian & Schlegel 2005a;
Schlegel 2003, 2011) In this way, one can start from somewhere on the PES, either reactant,
product, or TS, and walk uphill or downhill, depending on the starting points to reach the
adjacent stationary points. The walking trajectories, after successfully reaching these
stationary points, are the reaction pathways that describe the mechanism of transitions. For
smaller systems, walking methods may be sufficient to fully understand a given reaction
mechanism. However, for larger and more complex systems, pathways explored by such
walking mechanisms are often not reversible, and can show significant hysteresis that
results in a poor representation of the reaction.

2.1 Reaction path following methods

When using mass-weighted Cartesian coordinates, a steepest descent path from the TS
down to the reactant and product is referred to as the intrinsic reaction coordinate (IRC)
path.(Fukui 1981; Quapp & Heidrich 1984; Tachibana & Fukui 1980; Yamashita et al. 1981)
The steepest descent pathway is given by the differential equation
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ax(s) _&

ds ‘g(x)‘

where x is the vector of Cartesian coordinates, s is the step size of the path, and g is the
energy gradient at x. The path obtained by solving this equation is the IRC, when x is mass-
weighted. Numerous methods were developed to locate the TS on a PES.(Baker 1986;
Banerjee et al. 1985; Bell & Crighton 1984; Cerjan 1981; Ionova & Carter 1993, 1995; Jensen
1983; Miiller & Brown 1979; Peng et al. 1996; Simons & Nichols 1990) The IRC could be
optimized based on its variational nature.(Bofill & Quapp 2011; Quapp 2008) However, it is
more applicable for many systems to construct the IRC by solving Eq. (1) from a TS.
Gonzalez and Schlegel developed the implicit trapezoid method (GS-IRC) for reaction path
following at second order accuracy.(Gonzalez & Schlegel 1989, 1990) In their initial
development, the points along the target reaction path are constructed by constrained
optimization using internal degrees of freedom of the molecules. For each step of
optimization along the path, the new point is constructed and optimized so that the gradient
at each point is tangent to the path. Therefore, the resulting path is both continuous and
differentiable. This initial method is correct to second order in the limit of small step size.
The same method was later developed up to sixth order accuracy.(Gonzalez & Schlegel
1991) The GS-IRC method is generally efficient for small systems.

To improve the computational efficiency, the velocity Verlet algorithm (Verlet 1967) to
propagate a classical dynamics trajectory was applied to integrate the IRC with a magnitude
of the velocity damping for each step.(Hratchian & Schlegel 2002) This method is referred as
the damped velocity Verlet (DVV) algorithm. The time step for each integration step is
adjusted to ensure that the damped trajectory stays close to the IRC. The DVV-IRC method
can be considered as running downhill along the PES from TS in a slow motion (by
damping the velocity at each step). It enjoys the stability of the Verlet integrator and low
cost of computation since the Hessian does not need to be calculated.

In their later work, Hratchian and Schlegel introduced an approach using a Hessian based
predictor-corrector (HPC) integrator to solve Eq. (1).(Hratchian & Schlegel 2004) The HPC
integrator comprises two steps: the predictor step and the corrector step. The gradient g and
Hessian H of the system PES are used to calculate the predictor step with second order
accuracy. Then, the correction of the predicted step is calculated through a modified
Bulirsch-Stoer algorithm based on the gradient information at the predicted step.(Bulirsch &
Stoer 1964, 1966a, b) Although, the HPC-IRC method is comparable to GS-IRC with fourth
order accuracy, calculation of the Hessian at each step can be rather expensive for large
systems. This bottleneck was resolved by applying a Hessian updating scheme in their later
development.(Hratchian & Schlegel 2005b) For each step of an IRC calculation, the Hessian
is not calculated de novo, but updated from the Hessian of the previous step and the change
of the gradient and step size between two steps. With this scheme, the Hessian only needs to
be calculated once at the TS, and then is updated at each step of the IRC calculation. This
HPC-IRC method with Hessian updating has been applied successfully in large protein
systems using a combined quantum mechanical and molecular mechanical (QM/MM)
method.(Tao et al. 2010; Tao et al. 2009b; Zhou et al. 2010) In these studies, the inhibition
mechanism of matrix metalloproteinase 2 (MMP2) by its potent inhibitor, was elucidated in
great detail using QM/MM methods. The TS of the key reaction in the active site of MMP2
was identified. The IRC of the reaction including the protein environment was calculated to
confirm that the reactant and product are connected through the identified TS (Fig. 1).

1)
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Fig. 1. IRC profile for SB-3CT in the MMP2 active site at the ONIOM(B3LYP/6-
31G(d):AMBER) level of theory. Key bond lengths are in angstroms. (Reprinted with
permission from ref. (Zhou et al. 2010). Copyright 2010 American Chemical Society.)

Very recently, Hratchian and Schlegel applied the Euler (first-order) predictor and corrector
method (EulerPC) using an Euler explicit integrator in the calculation of predicted step.
(Hratchian et al. 2010) This method avoids the expensive Hessian calculation at the TS and
updating afterwards. By repeating the evaluation and correction several steps after the
prediction, the error of the calculation is greatly reduced. The newly developed EulerPC
method shows comparable accuracy with HPC but with much less computational cost, and
is tested on several rather large enzymatic systems.(Hratchian & Frisch 2011)

As a summary, the IRC calculations are becoming practical even for large enzyme systems
using the QM/MM approach. However, to apply any of the IRC methods listed in this
section, a well-defined TS structure is necessary to serve as the starting point. For a large
system, e.g. an enzymatic reaction system, using QM/MM methods may take substantial
effort in identifying a TS.

2.2 Uphill walking methods

By walking uphill from a minimum, one could reach an adjacent TS. Applying a reaction
path following method on the obtained TS could yield another minimum corresponding to a
product or intermediate state and a complete reaction pathway could be formed. Simons
and coworkers developed methods that walk on the PES toward the selected direction
(either uphill or downhill) using local gradient and Hessian information.(Nichols et al. 1990;
Simons & Nichols 1990; Taylor & Simons 1985) By applying a local quadratic
approximation, the PES close to a starting structure xo can be written as

E(x) = Eg + xFy + 2 xHox . )
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where Eo, Fp and Hj are the energy, gradient and Hessian at xo, respectively. Vector x is in
the region around xo, in which the local quadratic approximation is valid. In the attempt to
walk uphill, the vector with the lowest Hessian eigenvalue will be chosen to define the
moving direction. The potential energy increases along the chosen direction, but remains at
minima along the other eigenvectors. For the best computational efficiency, the step size for
each round of searching is controlled using eigenvalues of the Hessian matrix. After leaving
the region in which the local quadratic approximation is valid, the Hessian matrix H can be
recomputed or updated for further calculations. Along the walk, the Hessian eigenvalue of
the eigenvector, which is being followed may cross with other eigenvalues. This is likely to
occur when the starting geometry is not within the quadratic approximation region of the
TS. In such situations, a decision needs to be made to either keep track of the original
eigenvector, or follow the eigenvector with the lowest eigenvalue after crossing. This
decision may significantly affect the final TS.

An algorithm was developed by Ohno and Maeda to find reaction pathways on a PES
systemically.(Maeda 2003; Ohno 2004; Ohno & Maeda 2006; Yang et al. 2005) In their
method, the PES around the equilibrium structure (ES) is expanded using reduced normal
coordinates in terms of normal coordinates Q; with eigenvalues A;,

q; = ﬁi%Qi . ©)

The degrees of freedom for translation and rotation are projected out from the normal
coordinates. In such representation, any constant energy around the ES within the limit of
harmonic potential gives spherical hypersurface (hypersphere) (Fig. 2). Any structure
represented on a hypersphere is somewhat distorted from the ES around which the
hypersphere is constructed. This common feature is referred to as anharmonic downward
distortions following (ADDF), and is used for a reaction path search by walking uphill
toward the direction with the local maxima of ADDEF. Through a series of hyperspheres with
different sizes but common origin, different reaction paths may be identified by following
the local maxima of ADDF on each hypersphere. TS regions or dissociation channels (DC)
can be identified through the variation of the first order derivatives along these reaction
paths. Further calculations need to be carried out to precisely determine the real TS
structures, which may not be on any hypersphere. The reaction path following methods can
be applied to the TSs to find new ESs. The whole procedure can be repeated for new TSs.
This is referred as scaled hypersphere search (SHS) method. Theoretically, the SHS method
can be repeated until all the stationary points and reaction channels are identified for a
given system. This method provides a means to systematically explore the PES and is
referred to as global reaction route mapping (GRRM). By applying GRRM, the PESs of
several small organic molecules were explored with numerous ESs and TSs identified for
each system.(Maeda & Ohno 2007; Yang et al. 2005)

Recently, a new GRRM method was developed to search reaction pathways for large flexible
systems using a microiteration-ADDF (u-ADDF) technique.(Maeda et al. 2009) The
microiteration scheme was originally developed for the QM/MM method.(Svensson et al.
1996; Vreven et al. 2006b; Vreven et al. 2006a; Vreven et al. 2003) For large systems, it may
not be practical to follow all the ADDF maxima. Instead, two other methods were developed
by the same authors to follow only large ADDF pathways (LADDF),(Maeda & Ohno 2007) or
to follow the reverse direction from a point on a very large hypershpere to the sphere center
with decreasing hypershere radius (double-ended ADDF, or dADDF).(Maeda et al. 2009)
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Fig. 2. Schematic illustrations of computational procedures for GRRM by the SHS method: (A)
Though the reference harmonic potential has a constant energy on the scaled hypersphere
surface, the real potential has some minima on the same surface, which correspond to the
anharmonic downward distortions indicating the symptoms of chemical reactions. Following
those minima on different sizes of scaled hypersphere (spheres 1 and 2), reaction routes (paths
1-3) can be traced from the equilibrium structure (ES) by the SHS method as shown by arrows.
(B) Starting from an ES, find all reaction routes as energy minima on the scaled hypersphere
(maxima of anharmonic downward distortions), then continue uphill walking to reach DC or
TS, and then downhill walking from the TS region to DC or another ES. From each new ES, the
above procedures for finding DC, TS, and ES should be repeated until no new ES is found.
This one-after-another approach in the SHS method can be automated, and it enables us to
perform GRRM within finite processes. (Reprinted with permission from ref. (Ohno & Maeda
2006). Copyright 2006 American Chemical Society.)

Both methods were implemented with the y-ADDF technique. In this new GRRM method, a
large system is divided into reaction-center and nonreaction-center parts. All the path
following calculations, including minimizations on scaled hyperspheres, ES and TS
optimization, and IRC following, are carried out in macroiteration steps. The positions of
nonreaction-center atoms are optimized during microiteration steps after macroiteration. All
movements of reaction-center atoms are treated by the GRRM method as in the case without
microiterations with either exact or updated Hessian. (H2CO)(H20)100 and (Sis)(C21H17)s
were examples used to test the stability and efficiency of the new method. Multiple reaction
pathways were identified in both cases. Thus, the GRRM method with p-ADDF could serve
as a powerful tool to explore PESs of reactions in large molecular systems. However, the
GRRM has not been reported to be applied on protein systems.

2.3 Combined method for determining reaction path, minima, and TSs

It is worth noting that Schlegel et al. developed a method to determine TSs, minima and the
reaction path in a single procedure without calculating the Hessian matrix.(Ayala & Schlegel
1997) In this method, a starting approximate path is constructed as several (5 to 7) structures
on PES, and iteratively relaxed until two endpoints reach minima, and one of the middle
points reaches a TS. The final path is a second order approximation of the steepest descent
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path. However, this method became impractical for large biological systems, such as
proteins, because of the computational cost of eigenvector following searches for TSs.
Nevertheless, this method provides a rigorous means of identifying reaction paths and TSs
simultaneously.

2.4 Reduced Hessian methods

Hessian calculations are important for TS calculations, as well as reaction path following
methods. However it may not be practical or necessary to calculate a full Hessian for
macromolecular systems, since a large amount of degrees of freedom are unrelated to the
reaction of interest. Therefore, these degrees of freedom can be somewhat disregarded. The
partial Hessian vibrational analysis (PHVA),(Li & Jensen 2002) was developed to
diagonalize only a subblock of the Hessian matrix to yield vibrational frequencies for
partially optimized systems. In a recent development of vibrational subsystem analysis
(VSA), the complexity of Hessian calculation can be reduced by separating a large system
into an active “subsystem” with the remainder of the system defining the “environment”.
The environment is kept at a minimum energy with respect to the motion of the subsystem,
thus an effective Hessian involving only the subsystem needs to be considered.(Woodcock
et al. 2008) The VSA is an improvement over PHVA, but does entail higher computational
costs. These reduced Hessian approaches can only work if an adequate subsystem including
all important atoms for the reaction can be identified.

By applying the methods introduced in this section, one could locate an IRC on any given
PES with well-defined TSs. There are certain limitations of these methods, especially for
large systems with high degrees of freedom. For large systems, the uphill walking methods
should not be one’s first choice since PESs of such systems are rather complicated and
rugged, with numerous local saddle points. The downhill walking methods worked very
well for the listed studies. However, a TS needs to be identified before applying IRC
calculations. There is always a possibility that the IRC calculated from identified TS does not
reach the desired reactant or product. It is even more likely that there are multiple TSs that
exist between the reactant or product. In consideration of these factors, there might be more
interest to obtain information about reaction pathway rather than TSs, especially for large
biomolecular systems. Accordingly, the so-called chain-of-states methods were developed to
obtain a reaction pathway without identifying TSs.

3. Chain-of-states methods

In chain-of-states methods, a number of replicas (i.e. states) of a system are used to connect
two endpoints, and are subject to minimization simultaneously. The first and the last
replicas usually correspond to the reactant and product, and are often fixed during the
minimization. For large complex systems, chain-of-states methods can be used to address
issues relating to hysteresis, free energy, reaction rates, and multiple pathways. In this
section, various chain-of-states methods to build reaction paths are surveyed.

3.1 Line integral methods

Elber and Karplus (EK) developed a method using a line integral representation of a
discretized path subject to optimization.(Elber 1987) In their method, the objective function
subject to optimization reads as



34 Some Applications of Quantum Mechanics

2
2
(AL)
M

K 1 M M M
S (RO,...,RM)L:7ZV(R].)AZJ»+Z/1 Al - 21 (4)
iz

=

.
I
Juy

where R; is the coordinates of replica j, M is the total number of steps from the starting

replica R, to the final replica Ry, Al; =/[(R; —R]-_l)z] ,and V(R;) is the potential energy
of the system at replica R;. The degrees of freedom of the rigid body, i.e. translation and

rotation, are projected out from the minimization for replicas with reference to the end
points of the path. The objective function is subject to non-linear optimization for the final
reaction path. The method was applied to several systems including the conformational
change of myoglobin.(Elber 1987)

Czerminski and Elber then developed the self-penalty walk (SPW) method (Czerminski &
Elber 1990a) based on original EK formulation. The main development of SPW is the
addition of repulsion terms for each replica j:
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where Al;j=|Ri-Rj|, Al= z , A and p determine the range and maximal value of the

j=1
repulsion between replica i and j. These repulsive terms can help to prevent the aggregation
of replicas in the neighborhood of two endpoints where the energies of replicas are lower
than those close to the TS region. As discussed in their paper, the repulsive terms reflect the
stiffness of the reaction path and mimic the effect of kinetic energy on the classical trajectory.
The reaction path calculation of alanine dipeptide isomerization using SPW displayed a
convergence rate that is 10 times faster than the one using the EK method. The
conformational change of isobutyryl-ala;-NH-methyl (IAN) between the helix and extended
chain was also studied. By using the optimal values of parameters in this method, a reaction
path that is very close to the MEP was obtained for IAN from the calculations with a straight
line as initial path. In another study, the SPW method was applied to study the diffusion of
carbon monoxide through leghemoglobin.(Nowak et al. 1991) Three similar but distinct
diffusion pathways were identified and compared. The barrier heights calculated for the
three pathways were in the agreement with the proposed model.
Ulitsky and Elber (UE) proposed a locally updated planes (LUP) method to calculate
steepest descent paths (SDP) in flexible polyatomic systems.(Ulitsky & Elber 1990) For a
series of replicas {rk}y=1,m, sk is the unit vector along the gradient for replica rk. The SPD

satisfies that VV,.

discretized path, the vector sk is approximated as (rk*1 - r1)/ | r**1 - rk-1|. To refine the path
of each round, the coupled differential equations of all the replicas {(J/ A)r¥(t)=V Vprojhi=1,m
were solved by a fifth order Adams predictor-corrector algorithm.(Gear 1971) The SDP
could be reached in the limit of t—c. Choi and Elber later improved the LUP method by a

:VV—(VVosk)sk:O, where V is the potential energy. For a
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gradient updating scheme.(Choi & Elber 1991) The local gradient vector sk is calculated
based on the initial path, and updated based on new reaction path after every M steps of
optimization. The authors found that M=20 to be efficient for the helix formation of
tetrapeptides under their studies. As Choi and Elber pointed out, the final results depend on
the initial guess. If multiple MEPs exist between two endpoints and the initial guess is not in
the radius of convergence of a single path, the result may be discontinuous and contain
segments from different MEPs.

3.2 Nudged elastic band (NEB) methods

As pointed by Jonsson, Mills and Jacobesen,(Jénsson et al. 1998) the line integral methods
suffer from the “corner cutting” problems in which the final paths bypass the TS region,
leading to overestimated barriers. This problem originates from the fact that elastic forces
added to replicas have non-zero components perpendicular to the path. The optimization of
objective functions that include elastic forces will have a tendency to pull replicas off from
the MEP. In addition, replicas along the final path tend to aggregate around endpoints
where the potential energies are smaller than the TS region, which is underrepresented in
the chain. This is because the actual forces of the path pull the replicas downhill against
elastic forces. To solve these problems, the NEB methods were developed to project out
perpendicular components of elastic forces and parallel components of the true force with
respect to the path under minimization.(Henkelman et al. 2000a; Jénsson et al. 1998)

For a reaction path with N+1 replicas [Ry, Ry,...,Rn], the NEB method is implemented as the
following: The tangent at the replica i, T;, can be estimated based on adjacent replicas i-1 and
i+1:

. R 1-Ri
7= RH] Rr 1 (6)
[Ris1 Ry
The force acting on a replica subject to optimization is
e ”
where F- is the sum of the true force perpendicular to the tangent:
E-=-VV(R;)+VV(R;)e7; ®)
and F’ //'is the elastic force along the tangent,
F// =k(Riy1 —Ry| - [R; —R; 4|) o 212, )

V is the potential energy of the system, k is the elastic force constant. By projecting out the
elastic force perpendicular to the path, the final path should relax to the MEP in principle.
One potential problem that the NEB method may encounter is producing kinks along the
path, mainly in regions where the parallel component of force is large compared with the
perpendicular component. A new NEB method was developed by Henkelman and Jénsson
to eliminate the kinks along the path.(Henkelman & Jénsson 2000) In the new
implementation, the tangent is defined as
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where V; is the potential energy of replica i, V(R;). However, when the replica i is at a
minimum (Vi+1>V;<Vi1) or at a maximum (V;+1<V;>V,,), the tangent is estimated as
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where AV =max(|V;,, - V| |Vi1 - Vi|), and  AV™" =min(|V;,; -V;|,[V;.y - Vj[). This
implementation was motivated by the calculations of finding the MEP from a TS. It is
always easier to find a MEP by following the PES downbhill from a TS rather than going
uphill from a minimum. Therefore, the local tangent of the path is always defined by the
higher energy replicas nearby to improve the stability of the calculation. The updated NEB
method is reported to behave well and remove kinks from the reaction paths.(Henkelman &
Jénsson 2000)

Henkelman, Uberuaga and Jénsson (Henkelman et al. 2000b) developed climbing image

NEB (CI-NEB) by defining the force of the replica with the highest energy imax as

F

imax — 7VV(Rimax) + 2VV(Rimax) b zA'irnax{'irnax (12)

The basic idea is to invert the component of force along the path. Therefore, the
minimization movement based on a given force will lead this replica toward the saddle
point, which has the maximum energy along the path but minimum in all other directions.
In addition, the elastic force constant along the path is scaled linearly on the energy of the
replicas. Therefore, the replicas around the TS region would be connected through stronger
elastic bands than those closer to the endpoints. Compared with the regular NEB method,
the CI-NEB method generates reaction pathways with TS regions better represented, and
leads to more accurate estimates of reaction barriers.

Maragakis et al. (Maragakis et al. 2002) proposed the adaptive nudged elastic band approach
(ANEBA) to search for saddle points. Instead of starting with a large number of replicas,
three movable replicas are added for the initial round of the NEB calculation. After
obtaining reasonable convergence, the two replicas that are adjacent to the one with the
highest energy will serve as endpoints for the next round of NEB calculations after inserting
new movable replicas in between. This process could be repeated until a well-defined TS is
identified. The major goal of ANEBA is TS searching, but a reaction path that approximates
the MEP will be obtained after finding the TS.

Trygubenko and Wales proposed a doubly nudged elastic band (DNEB) method by
retaining a portion of perpendicular component of elastic force.(Trygubenko & Wales 2004b;
Trygubenko & Wales 2004a) The limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-
BFGS) quasi-Newton optimizer was implemented with the DNEB method. One of the
strategies adapted is gradually projecting the perpendicular component of elastic force until
the full path is reasonably stable. Then replicas with potential energies above their adjacent
replicas are subject to an eigenvector-following calculation for TSs.

Chu et al. (Chu et al. 2003) developed the first superlinear minimizer for the NEB method
that was based on expanding the adopted basis Newton-Raphsion (ABNR) method (Brooks
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et al. 1983), and this is available in CHARMM.(Brooks et al. 2009) Other improved
optimizers,(Alfonso & Jordan 2003; Bergonzo et al. 2009; Galvan & Field 2008) and other
software packages, such as AMBER,(Case et al. 2005) have efficient implementations of NEB
as well.

In general, the NEB methods have been applied in numerous studies, including diffusion
processes on surfaces,(Agoston & Albe 2010; Sgrensen et al. 1996; Uberuaga et al. 2000;
Villarba & Jonsson 1994; Yang et al. 2009) nucleation process,(Lutsko 2008) stability of
nanoparticle,(Vélez et al. 2008) and dissociative adsorption of a molecule on a surface.(Mills
1995)

Xie, Liu and Yang adapted the NEB method for enzymatic reactions.(Xie et al. 2004) The
major development of their method is carefully choosing the degrees of freedom that are
essential for the reaction. The chosen degrees of freedom were subject for the calculation of
distances between replicas. The large number of soft and floppy spectator degrees of
freedoms are, therefore, excluded from the elastic force computation in NEB. The potential
problem of such selection is discontinuity of contributions from spectator degrees of
freedoms to the total potential energy. One solution is starting from relatively rigid
reference systems and keeping position restraints to the environmental atoms throughout
the NEB calculations. The third alteration is cutting off the elastic band for intermediate
states from multiple reaction steps to allow them to relax to the minimum. They applied this
modified NEB method to study the mechanism of enzyme class A p-lactamase, and obtained
the MEP of the reaction at the active site. With further improvement,(Cisneros et al. 2005;
Liu et al. 2004) the NEB methods were applied in more enzyme systems to map out the
detailed MEP of their mechanisms.(Cisneros et al. 2009; Zhao & Liu 2008)

3.3 Zero temperature string (ZTS) methods

Similar to NEB, the ZTS method was developed to find the reaction pathway connecting
two minima on a PES.(Cameron et al. 2010; E et al. 2002, 2007; Ren 2003) In the ZTS method,
a series of evenly distributed initial states between two endpoints are minimized towards a
MEP using path gradients and tangent information. Instead of adding spring forces on the
path to maintain appropriate distances between states, a step is added to evenly redistribute
the states along the path after each step of minimization. The basics of the ZTS method can
be summarized as the following. For transitions between two metastable states A and B, the
MEP is a smooth curve ¢* between A and B which satisfies

(VVY (p*)=0 (13)

where (VV)J' is the component of VV perpendicular to ¢*. From an arbitrary string ¢
connecting A and B, searching MEP can be realized by evolving ¢ through

1
w-==(VV)(0) (14)
where u is the perpendicular component of force with reference to ¢. For simplicity, ¢ is

parametrized by normalized arc length a, for which a=0 at A and a=1 at B. The Eq. (13) can
be rewritten as

0, =—(VV)" +1f (15)
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where

(VV)' =VV —(VV,7)7 (16)

7 is the unit tangent factor of ¢ and scalar field 7(a,t) is a Lagrange multiplier determined by
parameterization. In real applications, the string is discretized into a series of replicas, which
move according to the first term of the right hand side of Eq. (15). Eq. (15) can be solved using
ordinary differential equation (ODE) solvers to evolve the string towards a MEP. The
reparametrization can be carried out after certain number of evolving steps of the string to
redistribute the replicas to enforce the equal arc length (distance) between adjacent replicas.

In a further development,(E et al. 2007) the Eq. (15) is rewritten as

. =—(VV)+r? 17)

where r=r+(VV,?). Eq. (17) is equivalent to Eq. (15), but avoids a force projection
operation in the string evolving step for better numerical stability. It is noted that the ZTS
method does not require the location of minima beforehand to generate an initial string. The
final converged string should connect two minima, as long as the two endpoints of the
initial string lie in the attraction basins of the minima (Fig. 3). Based on the framework of the
ZTS method, the transition path theory was developed to sample the minimum free energy
path. This theory will be introduced in section 4.3.

Fig. 3. Initial string and calculated MEP using the string method with ten images. The empty
circle indicates the saddle point identified by combining the string method with the
climbing image technique. (Reprinted with permission from ref. (E et al. 2007). Copyright
2007, American Institute of Physics.)

3.4 Growing string methods

So far, the chain-of-states algorithms introduced in section 3.1-3.3 require an initial path
composed by series of replicas. The initial paths are usually constructed by linear
interpolation between two minima. There are two potential drawbacks of these methods
when applying them in studies involving expensive quantum mechanics (QM) calculations.
First, the expensive QM calculation needs to be carried out for every replica in each round of



Reaction Path Optimization and Sampling Methods and Their Applications for Rare Events 39

optimization from the very beginning of the reaction path calculation until convergence.
Second, the initial linear interpolation path may include structures with severely
overlapping atoms, which can cause failure of the QM calculations. The first drawback
means intensive computation of reaction path optimization. The second drawback simply
means immediate failure of the chain-of-states calculation. Growing string methods (GSM)
were proposed (Peters et al. 2004) and are under continuous development to address these
issues.(Goodrow et al. 2008, 2009, 2010; Quapp 2005, 2009)

The basic idea is to gradually grow two strings separately from two minima by continuously
adding replicas to each string until both strings merge. The GSM generally comprises five
steps.(Goodrow et al. 2008) In step one, two replicas are added along the linear synchronous
transit path, and placed close to reactant and product, which defines the linear path. The
reactant and product plus each added replica close to them serve as starting segments of
two separate strings. In step two, the two string segments are minimized until the norm of
the orthogonal force of each replica converges to a specified tolerance. After step two, the
two string segments lie on the steepest descent direction from the frontier replica of each
segment. In step three, replicas on both string segments are redistributed uniformly in terms
of arc length, similar to the ZTS. The arc length of the string can be calculated by integrating
the cubic spline fitted to all the replicas. The rigid body movement needs to be projected out
for all the replicas with reference to the reactant and product after each round of the
minimization. In step four, a new replica is added to each string segment along the fitted
cubic spline. Steps two through four are repeated until the arc length between two frontier
replicas from the string segments is small enough so that the two string segments can be
considered a united string. In step five, the joined string is minimized and reparametrized
with a fixed number of replicas until the sum of the norm of the orthogonal forces on all
nodes falls under predefined tolerance. Step five is analogous to the ZTS method. One or
more replicas with maximum energies among their neighbors can be used for TS search
calculations. The general GSM is illustrated in Fig. 4.

In various developments, Newton projector,(Quapp 2005) internal coordinate,(Goodrow et
al. 2008) conjugate gradient method,(Goodrow et al. 2008) and different TS search strategies
(Goodrow et al. 2009, 2010) are implemented in GSM for better performance.

The major goal of GSM is improving the calculation efficiency of the ZTS framework for
systems involving expensive QM calculations. By growing strings stepwise from two
endpoints instead of minimizing from an initial path with potentially bad geometries, a
large amount of calculations can be saved from carrying out QM calculations to move the
fixed number of replicas from initial path to MEP iteratively. The GSM has been applied in
one study using a model system representation of an enzymatic system (Maresh et al. 2008)
and some other studies using small models.(Goodrow & Bell 2008; Zheng & Bell 2008a, b)
The application of GSM directly on protein system has yet to be reported.

3.5 Conjugate peak refinement (CPR) method

The CPR method (Fischer 1992; Noé et al. 2006) focuses on finding saddle points along a
path that connects a predefined reactant (r) and product (p). At the beginning of the CPR
calculation, the replica with maximum potential energy, y1, is searched along an initial path,
e.g. linear interpolation between r and p (Fig. 5). Then, the energy is minimized along the
direction of each conjugate vector to reach the next replica, x1. This replica is added to the
path, which is represented as (r, x1, p). The procedure is repeated for the partial path (r, x1)
and (x1, p). If there is only one TS that exists between r and p, the maximum may not
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Fig. 4. Four snapshots of a growing string on the Muller-Brown potential energy surface.
(Reprinted with permission from ref. (Peters et al. 2004). Copyright 2004, American Institute
of Physics.)
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Fig. 5. Illustration of the conjugate peak refinement (CPR) method. The reactant, product
and intermediate wells are indicated with r, p and i. (Reprinted from ref. (Fischer 2004),
Copyright 2004, with permission from Elsevier.)

exist for one path segment. Therefore the procedure will not be carried out for this specific
path segment. The procedure is carried out recursively on each new path segment defined
by newly added replicas, until the root mean square (RMS) of the gradient falls under a
predefined tolerance for the saddle points by refinement along conjugate vectors. In
practice, the linear interpolation often produces very poor structures with severe
overlapping atoms. This could result in extremely high energies and gradients. Therefore,
certain limitations need to be imposed on atomic movements during refinement. The CPR
method can possibly identify one or more TSs between r and p through recursive searches
and refinement. However, a smooth path will be not a direct result from the CPR procedure.
From identified TSs, steepest descent calculations can be carried out to generate a final MEP
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between r and p. Implicitly, it is assumed that TSs identified through the CPR method lie on
the same MEP. Otherwise, the steepest descent calculations from TSs do not necessarily
generate a continuous path between r and p. The CPR method has been applied to study the
ligand-binding pathways in myolobins,(Golden & Olsen 2008) several small molecule
systems (Fischer et al. 1994; Fischer et al. 1995; Verma et al. 1996) as well as large molecules,
such as proteins.(Blondel et al. 1999; Caflisch et al. 1997; Dutzler et al. 2002; Fischer et al.
1993; Gruia et al. 2005; Santos et al. 2000)

3.6 Reference path methods

In some applications, especially for macromolecules, the convergence to the MEP using
chain-of-states methods could require a large number of iterations. Reference path methods
were developed to generate reference reaction paths that are a good approximation to true
MEPs with fast convergence rates and evenly distributed replicas along the path. Such
reference paths can be used as an expansion to calculate free energies, reaction rates, or
kinetic isotope effects.

3.6.1 Hyperplane projection methods
Czerminski and Elber (Czerminski & Elber 1989) proposed applying holonomic constraints
on replica R along a reaction path connecting replicas R; and Ry:

(R-R,)¢(R;-Ry)=0 (18)

where R, :[(l—a)Rl +aR2J, and a is a parameter that varies from 0 (reactant) to 1

(product) with small steps. For each a value, the potential energy of the system V(Rg) is
minimized while keeping the system in the hyperplane defined by Eq. (18). It is necessary to
project out the rigid body motions from the optimization using either Ry or R; as reference
structures. The optimized path satisfies the condition that at any point along the path, only
one direction may have negative energy curvature, because energy is minimized for all
degrees of freedom except the direction perpendicular to the hyperplane defined by Eq. (18).
The Powell conjugate gradient algorithm was applied to optimize the reaction path with
linear constraints in this method. The conformational change of IAN between the helix and
extended chain was studied using this method. The lowest energy path of the transition
identified by the calculation was presented. In addition, the 257 direct transitions between
112 minima of IAN were also identified and subject to statistical analysis. The same authors
later introduced another constraint to the path using parameter #:

R-R
_R-Ry| n=0 (19)
IR-R;[+[R-R,|
where 7 is the parameter between 0 (reactant) and 1 (product).(Czerminski & Elber 1990b)
Combining application of a and # constraints, more comprehensive results were presented
for conformational changes of IAN.

3.6.2 RPATH/restraint method

Woodcock et al. implemented the reaction path (RPATH) method with restraints of both
best-fit root mean square distances (RMSD) and angles on replicas along the pathway.
(Woodcock et al. 2003) The RMSD restraint forces are defined as
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N 1 .
Erms = Zakrms(ri - 1’) (20)
i=1

where N is the number of replicas, knus is the force constant used to restrain distance
between adjacent replicas along the reaction pathway, r; is the best-fit RMSD between
replica i and i+1, and 7 is the average distance between adjacent replicas. The angle
energetic penalty term reads

N
Eangle = z%kang(cosmx —cos(6);)> COSMAX > cos(6);, o
i=1

Eppeie =0 COSMAX < cos(6);

angle

The angle 0, illustrated in Fig. 6, defines the deviation of the pathway from linearity. The
force constant ks, controls the rigidity of the pathway. Constant COSMAX determines the
value of cos(0) subject to the angle forces.

1-1 i+1
RMSD, ;.
Fig. 6. Definition of angle 0 for replica i in RPATH calculation. RMSD;.1; is the distance
between replica i-1 and i. It is similar to RMSD; ;+1 and RMSD;.1,j+1.

The RPATH/restraint method was applied to study the mechanism of chorismate mutase.
(Woodcock et al. 2003) All protein residues or water molecules that had any atom within 6 A
of the substrate were replicated 21 times to build the reaction path. All other atoms within
the system served as the environment of all the replicas. Starting from a linear interpolation
pathway, the optimization of the RPATH/restraint calculation was converged within 400
steps. The reaction barrier obtained from RPATH/restraint calculations was also in good
agreement with experiments.

3.6.3 RPATH/constraint method
Recently, Chu and coworkers (Brokaw et al. 2009) applied an equal distance holonomic
constraint in the RPATH framework. Given two states of a molecular system with N atoms,
¥ and r¥, a chain of K+1 replicas can be constructed to connect these two states. The distance
between each pair of adjacent replicas is set to be equal to each other:

A —eoe=Al'—e0e=AKT1 =4 (22)
Here, Ali is the distance between replica i and i+1. Al is the average distance between
adjacent replicas. The distance (Al) can be in any form, including best-fit RMS distance. To
apply the equal distance constraint defined in Eq. (22), the following scheme is used to
propagate the reaction path with two ends, 1 and 7*, fixed at the initial coordinates.
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i.  Set up and calculate initial average distance, AI, for replicas r%© through r«©. The
superscript “(0)” indicates the optimization iteration step.

ii. To maintain the equal distance, a set of K coefficients, (A))(i=0,K-1), are used to update
the coordinates of each replica i:

+ (1 . n i- (n) (1 i (n)
=) e 2 @

iii. Solve (A)® by setting the first order Taylor expansion of each of ((4)@+1) -Al )(i=0,K-1)
with respect to (A)®™ to zero:

i+ i)
a8 (2] e

j=i-1 A

iv. If any of the values of |(Al)e*)- Al |(i=0,K-1) is greater than a selected tolerance, then
repeat steps (ii) and (iii).
After convergence, the RPATH calculation leads to a reaction path composed by K+1 equal
distance replicas connecting states # and 7.
In the framework of using constraints with RPATH, a kinetic energy potential can be added
to the potential energy with overall objective functions as a Hamiltonian for path
optimization. Therefore the optimized path is the so-called minimum Hamiltonian path
(MHP) instead of MEP. The kinetic energy component in the potential prevents kinks,
therefore helping maintain the smoothness of the path. This smoothness comes at the cost of
deviating from the MEP, resulting in higher reaction barriers, but with the benefit as a better
starting point for free energy studies.
The RPATH/ constraint was applied to study the helix-to-sheet transition of a GNNQQNY
heptapeptide.(Brokaw et al. 2009) An initial reaction path with 100 replicas was generated.
Then a stable intermediate was chosen to divide the pathway into two segments in which
the number of replicas was doubled. Using this divide-and-conquer strategy, a smooth
reaction pathway with 464 replicas was obtained to describe the transition (Fig. 7).

4. Free energy sampling of reaction paths for large systems

The methods introduced in Section 3 provide a framework for determining a minimum
potential energy pathway connecting two equilibrium states. For biological processes the
minimum free energy pathway (MFEP) is often more desirable to compute, ensuring that the
results obtained for the PES are converged, in a thermodynamic sense. Experimental
observables can be transformed more readily to free energies of the reactant and product
states.(Hu et al. 2008) Biased sampling methods, such as umbrella sampling (Bartels &
Karplus 1997; Kastner 2011; Torrie & Valleau 1977; Torrie & Valleau 1974) and
metadynamics (Bussi et al. 2006; Laio 2002; Laio & Gervasio 2008; Raiteri et al. 2006) have
been widely applied to sample free energies of the transition path for large systems. Due to
their high computational cost, the applications of these methods have been limited in
studies of enzymatic reaction mechanisms using QM/MM methods. However, powerful
modern computing systems and advanced methodologies make the dynamical simulation
of enzymatic reactions for free energy profiles much more feasible than a decade ago. In this
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Fig. 7. An optimized path of the helix-to-sheet transition of a solvated GNNQQNY
heptapeptide RPATH/ constraint. The path contains a total of 464 replicas. Structures of
selected replicas are shown to illustrate the nature of the transition. (Reprinted with
permission from ref. (Brokaw et al. 2009). Copyright 2009 American Chemical Society.)

section, methods for direct simulation of protein systems using QM/MM methods are
surveyed.

4.1 QM/MM free energy path (FE) and minimum free energy (MFEP) path methods
QM/MM-FE methods have been pioneered by Yang and coworkers (Zhang et al. 2000) and
are sequential based approaches for first optimizing an equilibrium geometry on a reaction
potential energy surface, followed by the calculation of free energies between two states, or
along a path. (Hu & Yang 2008) The first innovation of their approach involves separating
the QM and MM parts of the system and optimizing them independently to allow for faster
convergence. There is no concurrent optimization of the QM and MM energy functions
making it effective in reducing the number of expensive QM energy and gradient
evaluations. Starting from a given structure, the coordinates of the MM portion are frozen
while the QM coordinates are optimized. The MM portion is subsequently minimized while
the QM portion is held fixed and the process is repeated until convergence is reached for
each partition. Further simplification is made by using an approximate QM/MM energy
function for the MM minimization where only Coulombic interactions between the point
charges of the MM atoms and the QM electrostatic potential (ESP) fitted charges are
accounted for:

N 9z Zoag Q.45
VDN D Ve LA LD D (25)
1 BeMMBi  acOM, peMM Tap acOM, peMM  Top

In order for the approximation to yield a monotonic convergence of the QM/MM energy,
the MM minimization must be able to approximate the PES closely. It is important to fully
optimize the reactant and product structure at the same level of theory applied on
QM/MM-FE calculations.
From the converged PES obtained through the sequential optimizations, a free energy of
perturbation is performed:
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Rfand R’are different points along the reaction coordinate and represents an

(D 4
ensemble average over the MM sub-system with the QM region frozen to the optimized
coordinates.(Zhang et al. 2000) A major advantage of the QM/MM-FE method over
previous QM-FE approaches (Chandrasekhar & Jorgensen 1985; Chandrasekhar et al. 1985;
Jorgensen 1989) is the inclusion of the enzymatic environment in the QM optimization.

Yang and coworkers (Hu & Yang 2008) have extended the QM/MM-FE method to
overcome the challenge of having the optimized path be influenced by the initial starting
conformation. This influence is problematic when solvent effects may be prominent in the
reaction system, e.g. for solvent exposed active sites. Instead of using MM minimization in
the sequential optimization scheme, MD sampling is used for obtaining the MM subsystem
minima. Optimization of the QM region is then performed with a fixed MM conformational
ensemble. Another key distinction of this so-called QM/MM-MFEP over the original
QM/MM-FE method is that the optimization function for the QM region is the QM potential
of mean force

N
A(ﬂ)(rQM) = Ay — ;ln{;] > exp{—IBAE}} (27)
=1

instead of the total energy surface. The associated gradient with respect to the i-th QM
coordinate

N - n
&A(n)(rQM) B Z;é’E(rQM,rL; (T) /ﬁrQM,l exp{fﬁ'AE}) (28)
é,rQM A i exp{—pAE}

r=1

provides a convenient way to compute the free energy as an ensemble average over the QM
atoms. The efficiency of the method derives from having a fixed size ensemble of MM
conformations instead of repetitive sampling at each step. This is achieved through the
updated QM reference structures of each iteration cycle. A precise potential of mean force
(PMF) is obtained through optimization with classical numerical schemes. Convergence is
equally quick, often achieved within 10 steps.

4.2 Transition path sampling (TPS) methods

First pioneered by Pratt (Pratt 1986) and developed much further by Chandler and his
collaborators,(Bolhuis et al. 2002; Bolhuis et al. 2000; Dellago & Bolhuis 2004; Dellago &
Bolhuis 2009; Dellago et al. 2002) TPS methods are a set of computational techniques to
determine the transition process between two metastable states of complex systems. TPS
does not require a reaction path a priori, because no specific or “typical” reaction pathway is
pursued in TPS methods at all. Instead, a large number of transitions between two
metastable states (say A and B in Fig. 8) need to be sampled to represent a transition path
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ensemble (TPE) between these states. The TPE comprises all the dynamical trajectories that
start from one state and end up in the other, which are called reactive trajectories. It is
impractical to sample the TPE by starting a dynamics simulation from either A or B in many
trials and hoping that enough number of trials can overcome the barrier and reach the other
state. This is simply because the transition between A and B is a rare event, and can only be
observed in an extremely limited number of trajectories if at all. Instead of this direct
sampling strategy, the importance sampling methods, such as generalized MC procedures,
were applied to enhance the sampling efficiency and generate a collection of reactive
trajectories with a frequency proportional to their probability weight in the TPE.

Starting from a reactive trajectory, new trajectories can be generated through so-called
shooting moves (Fig. 8). From initial trajectory, a random frame is selected as the shooting
point. Then, the velocity of each particle in the shooting point is perturbed. From the
shooting point with perturbed velocity, the equations of motion are integrated forward and
backward to obtain a complete trajectory. In a simplified formalism, the new trajectory is
accepted based on the acceptance probability:

Py [xO(T) = x)(T)] = iy [x§ g [ (29)

Fig. 8. In the shooting algorithm for deterministic dynamics a new path (green) is generated
from an old one (black) by first randomly selecting one point on the old path, the shooting
point. Then, the particle momenta at that point are modified by addition of a small
perturbation 8p. From the point with perturbed momenta the equations of motion are
integrated forward and backward to obtain a complete trajectory. For small perturbations,
the new trajectory will be close to the old one near the shooting point but will then rapidly
diverge from it due to the chaoticity of the underlying dynamics. (With kind permission
from Springer Science+Business Media: Fig. 8 in ref. (Dellago & Bolhuis 2009).)

Function ha[xo®] indicates that whether the system resides in state A at time 0 in the new
trajectory: ha[xo®] is 1 for x; € A, and 0 otherwise. Function hp[x1("] is defined analogously
to indicate whether the system resides in state B at time T in the new trajectory. According
to this expression, any new trajectory that is reactive will be accepted. The perturbation
added to the shooting point can be adjusted to control the acceptance probability and
optimize the TPE sampling efficiency.(Dellago et al. 1999) To begin path sampling, an initial
reactive trajectory is required as the starting point. In most studies of rare events, this may
not be achieved by simply running a long molecular dynamics trajectory starting from either
metastable state. In practice, the system can be driven from one state to the other artificially.
Such a trajectory may not carry large statistical weight in the TPE, but will be sufficient as a
starting point for the sampling procedure.

A key factor for a successful TPS calculation is the sampling efficiency in the path space. For
a simple system with only one MEP and one TS in between, the path sampling could
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converge quickly. However, the PES of a complex system may have multiple reaction
pathways, with one or more stable intermediate states presenting on each pathway. To
enhance the sampling efficiency for such a complex system, the TPS with path replica
exchange (Bolhuis 2008) and multi states transition TPS (Rogal & Bolhuis 2008) were
developed. Based on the TPS framework, a transition interface sampling (TIS) method
(Moroni et al. 2004; Van Erp et al. 2003; Vanerp & Bolhuis 2005) was developed to measure
the positive flux through a series of hypersurfaces in phase space for the calculation of
reaction rate constants. The TPS and TIS methods were applied to simulate the p-hairpin
folding,(Bolhuis 2003) base-pair binding of DNA,(Hagan 2003) Trp-cage folding in explicit
solvent,(Juraszek & Bolhuis 2006) and the reaction mechanism of lactate dehydrogenase.
(Quaytman & Schwartz 2007)

4.3 Transition path theory (TPT)

Most of the reaction path theories are based on the TST,(Eyring 1935, Wigner 1938;
Yamamoto 1960) with major emphasis on identifying a first order saddle point on the PES as
the TS. The TS concept is also the foundation for the methods introduced in section 2 and 3.
The TPS method bypasses the TS identification by sampling the reactive trajectories directly.
(Bolhuis et al. 2002) Vanden-Eijnden and his coworkers advanced further by proposing TPT.
(E et al. 2005b; E et al. 2005a; E & Vanden-Eijnden 2006; Maragliano et al. 2006; Metzner et al.
2006; Ren et al. 2005; Vanden-Eijnden ; Vanden-Eijnden & Venturoli 2009) The TPT is a
framework to study the transition trajectories between two metastable states and the
probability density functions of these reactive trajectories. In the TPT framework, the
reactive trajectories are viewed as a portion of a long trajectory that oscillates between the
metastable states A and B (Fig. 9). Two important quantities in TPT are probability density
function and probability current function, which can be defined for a hypothetical long
trajectory of an overdamped system with friction y; and white noise #; on compoment x;, as
the following. For a given position x (neither in A nor in B) and ¢, the function g(x) defines
the probability that the trajectory reaches first B rather than A. The probability density to
observe a reactive trajectory at point x and time t is

Z e Vg(x) (1=(x)) (30)

where Z is the partition function of the whole trajectory, V(x) is the potential function of the
system at x. Another quantity of interest is the probability flux of reactive trajectories across
an isoprobability surface, or isocommittor surface, dividing A and B through x. The flux is
the vector field with ith component reads

Tan () =2 e PV g1 A0 G1)
’ Ox;
where kg is the Boltzmann factor, T is the temperature. It should be noted that for a system
in thermodynamic equilibrium, the net flux through any surface is zero. The overall reaction
rate from A to B can be calculated by integrating the reactive flux through an isocommittor
surface S dividing A and B:

vg = [(As(2) ¢ Jr(2)dos(2) (32

where fg(z) is the unit vector perpendicular to S toward B. The TPT is a general theory
about the rare transition events between metastable states based on reactive trajectories
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but in configurational space. Similar to the TPS, the concept of reactive trajectories does
not require the identification of the TS, which is not well defined for many complex
systems.

Fig. 9. Schematic illustration of a long trajectory oscillating between the reactant state A and
the product state B. The reactive pieces of this trajectory, during which the system travels
from A to B, are shown in green. (Reprinted with permission from ref. (E & Vanden-Eijnden
2010). Copyright 2010 Annual Reviews.)

The method to apply TPT in practice is finite temperature string (FTS) method,(E et al.
2005b) which is a finite temperature generalization of the ZTS method introduced in section
3.3. In the FTS method, the concept of string ensemble ¢2(a) is introduced to have a mean
value as the string ¢(a), where a is a parameter between [0,1]. The string ensemble can
evolve by the equation

(2 (0} L [0 . 2~
o =—(VV((p )) +(77 ) +717 (33)
where 7 is the unit tangent vector along ¢, 1@ is a white noise with covariance

2kTopo(t) ifa=a'

(34)
0 otherwise

(o (wyaa0) |
Using isocommitter surface, a transition tube can be defined as certain region around the
most probable reactive trajectory through isocommitter surfaces between A and B. These
regions have a significant probability to be visited by reactive trajectories. Of course, there
could exist more than one transition tube between two metastable states. These may
correspond to the multiple reaction pathways or mechanisms observed on the PES.
The free energy associated with isocommitter surface S(a) is given as

F(a)=—kzTIn js(a)e-ﬁ”% (35)

In this presentation, these hyperplanes serve as reaction coordinates of the transition
between metastable states. The free energies are a minimum at A and B. There may exist one
or more maxima between the two metastable states.

The FTS method has been applied in a couple of biomolecular systems very recently. In one
study,(Rosta et al. 2011) the mechanism of cleavage of the RNA backbone catalyzed by
ribonuclease H is elucidated through QM/MM simulations. The converged strings for the
entire reaction are reported with estimated free energies along the path (Fig. 10). In another
study,(Ovchinnikov et al. 2011) the conformational change between the prepowerstroke and
rigor states of myosin VI was simulated using a replica exchange umbrella sampling
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Fig. 10. 2D free energy surface and reaction strings for the complete catalytic reaction with a
protonated Asp132, obtained by projection onto coordinates Qe = ET probing bond
formation and breaking and Qp = (PT1a+PT1b)/2+PT2 probing PT steps. The black curve
shows the initial string; the blue and purple curves show the converged strings for the entire
reaction and for the final step, respectively. The inset shows a schematic of the active-site
coordination in the intermediate state. (Reprinted with permission from ref. (Rosta et al.
2011). Copyright 2011 American Chemical Society.)

algorithm in a string method framework. The free energy and reaction rate of the transition
were calculated and found to be consistent with the experimental observation.(De La Cruz
etal. 2001)

The harmonic Fourier bead (HFB) approximation proposed by Khavrutskii and his
coworkers (Khavrutskii et al. 2006; Khavrutskii et al. 2008a; Khavrutskii & Mccammon 2007)
possesses many similarities with FTS method. The main difference is the representation and
parametrization of the path by

P
9i(e) = 4;(0) +(9;(1) = q;(0))x + 3 b sin(n7a) (36)

n=1

where a is single progress parameter between 0 and 1, g; is the ith bead, which is the ith
component of the configuration vector R=(q,...,qan), b}, are the amplitudes of the Fourier
basis functions. The string or reaction path in HFB can evolve under certain constraints or
reparametrization, similar to ZTS and FTS, to obtain MEP and MFEP. The HFB method was
applied to study the conformational transition of the signature peptide of the KcsA ion
selectivity filter.(Khavrutskii et al. 2008b) A novel hypothesis of the ion selectivity
mechanism was proposed based on the HFB simulation results.

4.4 Action based methods
There is a group of methods that are based on minimization of action functional of transition
paths. According to the Onsager-Machlup (Onsager & Machlup 1953) and Freidlin-Wentzell
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theories,(E et al. 2004; Freidlin 1984) the most probable path for the random dynamical
system is the minimum action path (MAP). The MAP is a more general definition than MEP,
for MEP is undefined for nongradient systems. For gradient systems with energy
landscapes, the MAP degenerates with MEP in the high friction limit. Therefore, MEP can be
obtained through optimization of path action. Olender and Elber (Olender 1997) first
proposed to minimize a functional, which is called “scalar work” for a trajectory:

Wicalar = _”VV‘ ‘dl‘ (37)
where V is the potential energy of the system, dl is a segment of the trajectory. For the
steepest descent path, Wicir has a minimum value, where VVis parallel to dl along the
path. More recently, the geometric minimum action method (Vanden-Eijnden & Heymann
2008) and adaptive minimum action method (Zhou et al. 2008) were developed as two
action based methods for MEP optimization.

Some action-based methods are developed to simulate the reaction path. Doniach and his co-
workers (Eastman et al. 2001) proposed reaction path annealing methods to simulate protein
folding trajectories which are distributed according to the Onsager-Machlup action functional:

P[X<t>]ocexpﬁ[xf”} 8)
B

where the action S[X(f)] can be calculated for an overdamped system with friction y in
discretization form as

1 X; X g
_ i~ A

S[X(t)]= 2}/;[}/M[ n j+ VV(XZ)] o At (39)
M is the mass matrix, V is the potential energy function, and At is the time step of the
trajectories. The reaction path annealing method was employed to simulate the
conformational changes among the a-helix, 3-sheet and the random coil of a seven residue
peptide from prion-like protein.(Lipfert et al. 2005)

Faccioli and co-workers developed the dominant reaction path (DRP) method, and applied
it on numerous systems.(Autieri et al. 2009; Faccioli 2008; Faccioli et al. 2006; Mazzola et al.
2011; Sega et al. 2007) Their method is based on the Fokker-Planck equation, which defines
the probability of finding a particle at position x and time t:

82

(X,t)] +D— 7P, (40)

0 o 1 auxX,
ot X

ZP(X,t)=D
kT 0X

where D is the diffusion constant, U is the potential energy function for the particle. The
Boltzmann distribution of probability P(X)~exp(—V(X)/ksT) is a stationary solution of Eq.
(40). Using a substitution

P(X, t) = ¢GRIy, (x 1) (41)

the Fokker-Planck equation can be written in the form of a time dependent Schréodinger
equation,
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where the effective Hamiltonian operator is defined as
H,y =-DV? +V,5(X) (43)

and the effective potential is defined as

Vi (X) :%[(vum)z —2kBTV2U(X)] (44)
4(kyT)

A path-integral representation can be obtained as the solution of Eq. (42) subject to the

boundary conditions as that the system is in state A at time 0, and state B at time T. this

presentation also allows a switch from the time-dependent Newtonian description to the

energy-dependent Hamilton-Jacobi (HJ) description. In the HJ framework, the most

probable trajectory can be obtained by minimizing the target HJ functional

Sy (X) = L’i dl)kZT[Eeff V(%)) 45)

where dl=)dX?, y is the friction, and E. is an effective energy parameter, which

determines the total time of trajectory. In very recent studies, the simulation of reaction
pathways connecting two boundary states were carried out to search for the dominant
reaction pathway for folding of a small peptide,(Faccioli et al. 2010) an organic reaction from
cyclobutene to butadiene,(Beccara et al. 2010) and the folding of tetraalanine at
semiempirical level of theory.(Beccara et al. 2011) Although the DPR method is still in its
early stage of development, the current progress demonstrates the efficiency of this method
in sampling the reaction pathways for rare transition events.

5. Summary

The development of reaction path methods to study the mechanism of rare events of high
dimensional systems has been an active research field for more than two decades. Many
efficient methods have been developed and applied in numerous applications. The IRC is a
well defined reaction pathway of the MEP. It plays an important role in explaining reactions
in complicated systems, especially when the reaction coordinates are not simple order
parameters. However, one can only generate an IRC after obtaining a TS. In many studies,
identifying a TS is the bottleneck of the research. In some cases, the IRC generated from a TS
may not connect with the target reactant and product. For large systems, there may exist
multiple reaction pathways between the reactant and product. To map out multiple reaction
pathways through IRC, it is required to identify multiple TSs a priori, which is a very
challenging task. The chain-of-states methods were developed to simultaneously optimize a
series of replicas as the representation of the reaction pathway connecting two equilibrium
states. Starting from an initial guess, the path optimization could lead to a reaction pathway
that closely resembles the MEP between two equilibrium states. One advantage of the chain-
of-states methods is that no TS is required to generate a reaction path. The replicas with
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highest energy from reaction path calculations are often subject to a TS search for better
estimation of the reaction barriers.

For large systems, special caution is needed when carrying out the IRC calculations or chain-
of-states calculations. To ensure the continuity of the reaction pathways that connect the
reactant and product, large amounts of spectator degrees of freedom need to be controlled,
or frozen, during the calculations. This treatment can make the working PES cleaner, but has
the drawback of ignoring important degrees of freedom that contribute to the free energies,
which can be directly compared with the experimental observations. Recently, more
research has been reported to develop methods that sample the reaction pathway directly in
the transition path space, rather than the phase space. With these developments, multiple
reaction pathways could potentially be sampled without obtaining TSs for each pathway a
priori. For rare events with high thermodynamic or kinetic barriers, the efficiency of
sampling in the reaction path space is higher than the one of sampling in the phase space.
The free energies could be estimated for each pathway with the sampled ensembles.
Currently, the reaction path sampling method is still in its early stage of development for
both theory and sampling techniques. It is clear that advanced computational power,
theories and sampling techniques are in sight to make the computational study of the
mechanisms of rare events for large systems more practical and appealing.

6. Abbreviations

#-ADDF, microiteration-ADDF;

ABNR, adopted basis Newton-Raphsion;

ADDF, anharmonic downward distortions following;
ANEBA, adaptive nudged elastic band approach;
CI-NEB, climbing image NEB;

CPR, conjugate peak refinement;

dADDF, double-ended ADDF;

DC, dissociation channels;

DNEB, doubly nudged elastic band;

DRP, dominant reaction path;

DVYV, damped velocity Verlet;

EK, Elber and Karplus;

ES, equilibrium structure;

ESP, electrostatic potential;

EulerPC, Euler predictor and corrector method;
FTS, finite temperature string;

GRRM, global reaction route mapping;

GS-IRC, Gonzalez and Schlegel IRC;

GSM, Growing string method;

HFB, harmonic Fourier bead;

H]J, Hamilton-Jacobi;

HPC, Hessian based predictor-corrector;

IAN, isobutyryl-ala-NH-methyl;

IRC, intrinsic reaction coordinate;

IADDF, large ADDEF;

L-BFGS, limited-memory Broyden-Fletcher-Goldfarb-Shanno;
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LUP, locally updated planes;

MAP, minimum action path;

MC, Monte Carlo;

MD, molecular dynamics;

MEP, minimum energy path;

MFEP, minimum free energy path;
MHP, minimum Hamiltonian path;
MMP2, matrix metalloproteinase 2;
NEB, nudged elastic band;

ODE, ordinary differential equation;
PES, potential energy surface;
PHVA, partial Hessian vibrational analysis;
PMF, potential of mean force;

QM, quantum mechanics;

QM/MM, combined quantum mechanical and molecular mechanical method;
RMS, root mean square;

RMSD, root mean square distances;
RPATH, reaction path;

SDP, steepest descent path;

SHS, scaled hypersphere search;
SPW, self-penalty walk;

TPE, transition path ensemble;

TPS, transition path sampling;

TPT, transition path theory;

TS, transition state;

TST, transition state theory;

UE, Ulitsky and Elber;

VSA, vibrational subsystem analysis;
ZTS, zero temperature string.
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1. Introduction

Among the equivalent formulations of quantum mechanics, Heisenberg’s matrix mechanics
and quantum theory, based on the Schrédinger wave equation, are the most technically
advanced. Since the advent of quantum mechanics, these two schemes have provided the
mathematical tools and the primary basis for the description of quantum phenomena. The
path integral method developed by Dirac and Feynman has important advantages in the
quantisation of gauge theories. We discuss here the formulation of quantum mechanics in
phase space, known as deformation quantisation.

Deformation quantisation uses the Wigner-Weyl association rule (Weyl, 1927, 1929, 1931;
Wigner, 1932) to establish a one-to-one correspondence between the functions in the phase
space and the operators in the Hilbert space. Wigner’s function appears as the Weyl symbol
of the density matrix. A consistent dynamical description of the systems with the help of the
Wigner function leads to deformation quantization. A useful formulation of the Wigner-
Weyl association rule was proposed by Groenewold (1946) and Stratonovich (1957).
Groenewold introduced a non-commutative associative *-product (star-product) of the
functions in the phase space (Groenewold, 1946). The evolution of the quantum systems is
determined by the antisymmetric part of the *-product (Groenewold, 1946; Moyal, 1949),
known as the Moyal bracket. The Moyal bracket represents the quantum deformation of the
Poisson bracket. Deformation quantisation preserves many features of classical Hamiltonian
dynamics.

The formulation of deformation quantisation is based on the Wigner function and the Moyal
bracket (i.e., the *-product). The Wigner-Weyl association rule is necessary to prove the
equivalence of deformation quantisation and the standard formalisms of quantum
mechanics.

Extensive literature has reported on the formulation of quantum mechanics in the phase
space and the *-product. We refer the reader to excellent reviews by Bayen et al. (1978a,
1978b), Carruthers & Zachariasen (1983), Balazs & Jennings (1984), Hillery et al. (1983),
Karasev & Maslov (1991), and Osborn & Molzahn (1995), where one may find additional
references. Wigner’s function, as a fundamental object of deformation quantisation, has
numerous applications in many-body physics, kinetic theory, collision theory, and quantum
chemistry. Transport models, originally created to simulate chemical reactions, have been
modified and are widely used to describe heavy-ion collisions.
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Deformation quantisation does not have many recognised successful applications in
quantum theory. Recently, attempts have been made to use specific properties of the
formalism to investigate semiclassical expansion (Osborn & Molzahn, 1995; McQuarrie et
al., 1998) and to calculate the determinants of one-loop operators in field theory (Pletnev &
Banin, 1999; Banin et al., 2001) and the high-order corrections to the Bohr-Sommerfeld
quantisation rule (Gracia-Saz, 2004; Cargo et al., 2005). Potential applications of deformation
quantisation in transport models are presented in this review.

Transport models for heavy-ion physics are designed for phenomenological descriptions of
the complex dynamics of nuclear collisions. Several types of advanced transport models are
based on the Boltzmann-Uhlenbeck-Ueling equations (BUU) (Blaettel et al., 1993),
(relativistic) quantum molecular dynamics (QMD/RQMD) (Sorge et al., 1989; Aichelin, 1991;
Faessler, 1992), or antisymmetrised molecular dynamics (AQMD) (Feldmeier & Schnack,
1997). These approaches have the correct classical limit and they contain special plug-ins
and quantum-mechanical attributes, such as Pauli blocking for binary collisions of fermions.
Numerical solutions are implemented through the distribution of test particles (BUU) or
centroids of wave packets (QMD, AQMD) for classical trajectories in the phase space. For
AQMD, the wave packets are antisymmetrised in their parameters. The transport models
provide a solid basis for a phenomenological description of a variety of complex nuclear
collisions phenomena. However, quantum coherence effects and non-localities are beyond
the scope of these models. The internal consistencies of the approximations in the models
remain a subject of debate, promoting further developments (see, for example, papers by
Kohler (1995) and Feldmeier & Schnack (1997) and references therein).

The most striking feature of the transport models is the depiction of the trajectories in the
phase space, which are test particles or centroids of wave packets. The evolution of the
system of classical particles can be calculated using standard programs to solve first-order
ordinary differential equations (ODEs). At the same time, the evolution of wave functions of
many-body systems is a field-theoretic problem with an infinite number of degrees of
freedom that cannot be solved either analytically or numerically.

Any simulation of many-body quantum dynamics must be based on a concept of
trajectories, which is the only attribute allowing access to an approximate description of
complex quantum systems.

The concept of phase-space trajectories arises naturally in the formalism of deformation
quantisation through the Wigner transformation of the operators of the canonical
coordinates and momenta in the Heisenberg representation. These trajectories satisfy the
quantum version of Hamilton's equations (Osborn & Molzahn, 1995; Krivoruchenko &
Faessler, 2006b) and are the characteristics by which the time-dependent Weyl’s symbols for
the other operators can be determined (Krivoruchenko & Faessler, 2006b; Krivoruchenko et
al., 2006¢, 2007). In the classical limit, quantum characteristics reduce to classical trajectories.
Knowledge of the quantum phase flow, i.e., the quantum trajectories, is equivalent to a
complete knowledge of the quantum dynamics.

In this chapter, we provide an introduction to deformation quantisation and demonstrate
the usefulness of the formalism in solving the evolution problem for many-body systems in
terms of semiclassical expansion. We show that, in any fixed order of expansion over the
Planck’s constant, the evolution problem can be reduced to a statistical-mechanics problem
of calculating an ensemble of quantum characteristics in the phase space and their Jacobi
fields. In comparison with the corresponding rules of classical statistical mechanics, the
rules for computing the probabilities and time-dependent averages of observables are
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modified. The evolution equations represent a finite system of first-order ODEs for quantum
trajectories in the phase space and the associated Jacobi fields (Krivoruchenko et al., 2006¢).
The method of quantum characteristics allows the consistent inclusion of specific quantum
effects, such as non-localities and coherence, in the description of the propagation of
particles in the transport models.

In the next section, the Wigner-Weyl association rule is described, and the concept of the *-
product is introduced using the Groenewold method (Groenewold, 1946). Section 3 is
devoted to the properties of the quantum characteristics. We explore the transformation
properties of the canonical variables and functions in phase space under unitary
transformations in Hilbert space using the Wigner-Weyl correspondence rule. The role of
quantum characteristics coincides with the role of characteristics in a solution of the classical
Liouville equation. Section 4 starts from the semiclassical expansion of *-functions around
the normal functions. The results are then applied to the decomposition of the functions of
the quantum characteristics. Quantum characteristics, when expanded in a power series of
Planck’s constant, are found by solving a coupled system of ODEs for quantum
characteristics and the associated Jacobi fields. The numerical methods for solving many-
body scattering problem, including the rule for the calculation of the average values of
physical observables, are discussed in Section 5. Special features of the scattering problem
are discussed in Section 6.

In the field of deformation quantisation, the terminology is not well established.
Deformation quantisation is synonymous with Weyl-Groenewold quantisation and *-
product quantisation. The *-product is synonymous with the Moyal product. Wigner’s
image of an operator is Weyl’s symbol. The Moyal bracket is also known as the sine bracket.
The quantum Liouville equation is synonymous with the Groenewold equation and is the
Wigner image of the von Neumann equation.

2. The Wigner-Weyl association rule, the *-product and the Wigner function

In Hamiltonian formalism, classical systems with n degrees of freedom are described by 2n
canonical coordinates and momenta

&= (ql,,..,q",pl,..,,pn) eR?",

The Poisson bracket for these variables takes the simple form

gk, ¢y =11 )
The matrix
0 -E,
HIH= E 0 4
n

where E, is the identity matrix, endows the phase space with a symplectic structure. In the
following, we use the form I7 to lower and raise the indices, e.g., Al= AjI ji, A= IijAj,
where I;; =" and A is a vector in the phase space.

In quantum mechanics, the canonical variables are mapped into operators of the canonical
coordinates and momenta in a Hilbert space:
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£ =0 q" Py by) € Op(LPRY)) -

These operators obey the commutation relations

[, 2= -inl" . @

The operators f e Op(I?(R")) are denoted by Gothic letters, and the functions in phase space
R*™ are denoted by Latin letters.

The Wigner-Weyl correspondence ¢' <>t extends to arbitrary functions and operators. A
set of operators e Op(L*(R")) in the Hilbert space is a set closed under multiplication by c-
numbers and summation. This set forms a vector space V. The elements of its basis can be
numbered by the phase space coordinates &' eR?™. Typically, the Weyl-Groenewold basis is
used:

2n :
B = Qa6 0= [ o Lexplnl¢ o). ©

The vectors B(S) eV satisfy the following properties:
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where T is the Poisson operator
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In Equation (4), the first line is obvious. The equations in lines two to five are equivalent to
Equations (4.15) - (4.18) in Groenewold (1946). The last equation can be found, e.g., in
Krivoruchenko et al. (2006a). The equation in the 6th line is a consequence of the 5th and 7th
equations.

The Wigner-Weyl association rule f({)<«>f takes, in the basis B(¢), the simple form

(Groenewold, 1946; Stratonovich, 1957):

f(§)=Tr[B()f], ©)
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g
f=] 2y OBE) ©)

In particular, t' — &' =Tr[B(E)r']. The reciprocal relation&' —t', defined by the second
line, also holds.

The function f(¢) can be interpreted as a coordinate of the operator § in the basis B(¢), and
Tr[B(¢)f] can be viewed as the scalar product of B(¢) and f . Other operator bases are also
discussed (Balazs & Jennings, 1984).

The set Op(I*(R")) is closed under the addition and the multiplication of the operators.

Thus, vector space V acquires the structure of associative algebra. For any two functions
f(§) and g(¢), a third function can be constructed (Groenewold, 1946):

f(8) 8(§) =Tr[B(8)fe] - )

The operation is called star-product (*-product) of f(¢) and g(&) . The explicit form of *-
product is as follows

f(§)x 8(§) = f(§)exp( h7’)8(§)/ ®)

where P =T . The *-product splits into symmetric and skew-symmetric parts

frg=fog+lfag. ©)

The skew-symmetric component is known as the Moyal bracket (Groenewold, 1946; Moyal,
1949). In the classical limit, the Moyal bracket f A g turns into the Poisson bracket

{f,81=f(EPs(S)-

Weyl’s symbol of the symmetrised product of the operators of the canonical coordinates and
momenta ¢, ¢*) coincides with the dot (ordinary) product of the associated canonical
variables

Tr{B(E)e e .p) ] = ghg .,
which is explicitly symmetric for permutations of the indices. The symmetrised products of
the Hermitian operators u' correspond to the symmetrised *-products of the associated
real functions u' (&)= Tr[B(&)u']:

THBE)uCu ) | = 1 (o (© o o0 ) ().

The o-product is not associative. Its order here is not important, because the indices are
symmetrised.

Weil’s map from functions to operators was originally formulated in terms of the Taylor
expansion. Consider the decomposition of a function near zero

O-2 asilf e
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According to the Weyl rule (Weyl, 1927, 1929, 1931), the function f({) maps into the

operator f

fr=f(®)
- > lm iy At

Note that the indices of summation over the coordinate components are automatically
symmetrised. A simple calculation,

fr(§)=Tr[B()ir]

-3 1 20 o & e % £
;s!ayf 6§i5§ § §

1 _0f(0) cieir
;Eagﬁ a¢* et

shows that the Taylor expansion of the product of the operators of the canonical coordinates
and momenta provides the correspondence rule, completely equivalent to Equation (6).

Thus, we obtain f()= f(§) & fr =f.

For any operator §eOp(I*(R")), one may find a function f£¢) such that f= f(x). This
property shows the completeness of the set of operators of canonical coordinates and
momenta in Op(L*(R")).

The average value of a physical observable § is determined by the trace of ft, where t is

the density matrix, or by averaging the function f({) over the Wigner function

W (&) =Tr[B(&)r]. (10)
Because Tr[t] =1, the Wigner function is normalised to unity
d2H§ B
J Quh)" ©)=
The average value of f is given by
_ _ d2n§ . §
()= Trlfe] @y’ ) W(E)= @y’ W () - (11)

In this case, the *-product of f(¢) and W($) can be replaced by a dot product, because the
derivatives of the Poisson operator are reduced to surface integrals and can be omitted.

Not every normalised function in phase space can be interpreted as the Wigner function.
The eigenvalues of the density matrix are nonnegative. For each density matrix, one may

then find a Hermitian matrix t/?, such that t’/?t’/? =t . For any Wigner function W(¢) a
function W, /,(§) exists, such that W, () x W, () = W(S) .
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For a pure state, t=|y><y]|, and the Wigner function equals W()=<y|B(S)|p>. To

show that the Wigner map, which is described in standard textbooks, is equivalent to
Equation (5), we first find the mixed matrix elements of the basis vectors of V :

(x|B(q,p) k)

~2exp( -2 ~<q—x)j<x|k>,

where x and g are the canonical coordinates and kand p are the canonical momenta. After
simple transformations, the usual expression then follows:

W(q,p)=(w|B(q,p)|w)

d"xd"k
- B(q, p) | ky(k
f(znh)n<w|x><x| @)1 k) )

" Xy exo(Lxpyg - X
= Jd"xtplq+ Dexp(ap)a = 1),

Applying the Schwartz inequality to the integral and taking the normalisation condition
<lp | z,u) =1 into account, one obtains the constraint -2" <W({)<2" (Baker, 1958). The value
of W(S) is bounded, provided |y > has a finite norm, which is the case for bound states of

discrete spectrum and wave packets in the continuum.

3. Quantum trajectories in phase space as characteristics

One-parameter unitary transformations acting on the operators of the canonical coordinates
and momenta generate the trajectories in the phase space by Wigner’s association rule.
Knowledge of these trajectories is equivalent to knowledge of the quantum dynamics. The
time-dependent symbols of the operators are functions of the trajectories. In this sense, the
phase-space trajectories play a special role, similar to the role of classical trajectories in
solving the Liouville equation.

The Liouville equation is a partial differential equation (PDE). Its general solution can be
represented by its characteristics. The characteristics of the classical Liouville equation are
the classical trajectories of the particles. Quantum trajectories solve the Groenewold
evolution equation. For this reason, we call them "quantum characteristics."

3.1 Wigner map of unitary transformation
Consider a unitary transformation acting on the operators f—f'=U"fi, where
U =UU" =1. The operators of the canonical coordinates and momenta are transformed

according to the rule ' —i"=4"t'l, while their Weyl's symbols are transformed
according to the rule

§' & =u'(€) =Tr[ B U r'U]. (12)

Thus, unitary transformations in the space Op(I*(R")) generate, through the Wigner
association rule, a coordinate transformation in the phase space R*". Such transformations
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are not canonical (see below), and we call them '"unitary transformations". The
transformation law of functions under the unitary transformation takes the form

F(§) = F()=Tr[B()f'1= Tr[B)U U]

1 O°f0) L
= —7’1—' % Ll 1 2... ‘”u
Zagiocn ogn RO EE ]
_y1l_ 0f0)

‘ol ASii Al Acly "iz 'iz e ’is 13
Sslachioch .ock Tr[B(&)r" ™™ ] 13)

1 & f0) i i i
=L TIO ey au () x s (©)
08! 0§"o¢" .08
= f(xu(§))-
This expression defines a composite *-function. The *-product here may be substituted by

the o-product. The o-product contains even powers of the Planck's constant in its
decomposition. Consequently, the expansion around f(u(¢{)) contains even powers of 7 .

Provided that u(¢) is a linear function, f(xu($))= f(u(<)). In the general case, the
composition law of two functions is not local: f(xu($)) = f(ou(§)) = f(u(§)).

3.2 Conservation of Moyal bracket
The antisymmetrised products of an even number of operators of canonical coordinates and
momenta are c-numbers. These products are invariant under unitary transformations:

ﬂ*’p[ﬁ piz m;’és]ﬂ = ;[il Fiz ...piz"] . (14)

In the phase space, this equation is expressed as:
Ul (&) w u () o oox (&) = &l 4 &2 e x &
- [ﬂj L s ot s,
2 ) (2s)!

[
The summation is over all of the permutations of the indices. The sign is plus or minus,
depending on whether the sequence o is an even or odd permutation of (it,iz...,i2:). The
invariance of the antisymmetrised products of even numbers of operators of canonical
coordinates and momenta constitutes a quantum analogue of the Poincaré theorem on the
conservation of 2n forms in classical Hamiltonian dynamics (Krivoruchenko et al, 2006¢). In
particular,

WA (€)= ng=-1". (15)

The real functions u'() are associated, by virtue of Equation (6), with the Hermitian
operators " . If u'(§) satisfies Equation (15), then the operators " obey the commutation
relations

[u' (@), (0)]=[&', '] = -inI" .
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We are mainly interested in the case in which Y is the evolution operator. Applying a

unitary transformation to the product fg, we obtain the function f({)* () lr—.u(c,r) thatis

associated with the expression *fgtl and the function f(xu($))* g(*u(¢)) associated with

the expression (if’fil)(if’gu) . These operators coincide, so their symbols coincide:

F(E) % 8(0) lemruie,my= f(xu(§)) * g(xu(S)) - (16)

In the first case, the *-product is calculated with respect to { ! and it is calculated with
respect to €' in the second case. Equation (16) shows that the %-product can be calculated
in the original coordinate system prior to the change of the variables, or we can first change
the variables and then compute the *-product. Equation (16) holds separately for the
symmetric and antisymmetric parts of the *-product.

Thus, we can calculate the *-product for any of the unitary equivalent coordinate systems.
Dynamic equations constructed using the summation and multiplication of *-functions are
generally covariant under unitary transformations in phase space. The *-product is not
invariant under canonical transformations.

Example: The classical Liouville equation is covariant under canonical transformations. This
equation, however, is not covariant under unitary transformations. The quantum Liouville
equation, i.e., the Wigner map of the von Neumann equation, is covariant under unitary
transformations and is not covariant under canonical transformations.

3.3 Phase flow generated by an evolution operator
The one-parameter family of the unitary transformations describe the evolution of quantum
systems, and it is usually parameterised in the form

()= exp(-+-97),

where § is the Hamiltonian operator. The functions u'(), defined in Equation (12), acquire
the dependence on the parameter 7, so that we can write u'(§). These functions determine
the quantum phase flow, which is a quantum-mechanical analogue of the phase flow in the
Hamiltonian formalism of classical mechanics.

Equation (13) shows that the evolution of the symbols of the operators in the Heisenberg
representation is completely determined by the functions u'(&7).

We use the term "canonical transformation" in the conventional sense to refer to the
coordinate transformations that preserve the Poisson bracket. The transformations
preserving the Moyal bracket are unitary transformations. These transformations
correspond to the action of a unitary operator in the Hilbert space. The unitary
transformation in the phase space represents the quantum deformation of the canonical
transformation.

Quantum characteristics arise in Heisenberg’s matrix mechanics. Suppose that we have solved
the evolution equations for the operators of the canonical coordinates and momenta in the
Heisenberg representation. These operators evolve according to ' — () = U* (7)r'tU(r) . We
use the earlier assertion that, for any operator f, one can find a function f(¢) through which
f is represented in the form f(r) . The same operator f attime 7 is equal to
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f(r) = W (@) = U (@) f(R)UF) = FEU (OpU()) = f(x(T) -

This equation shows that the operators of the canonical coordinates and momenta are
characteristics that determine the evolution for all of the operators inOp(L*(R")). This
property is fully transferred to the phase space upon deformation quantisation.

3.4 Energy conservation and composition law for trajectories
Energy conservation in the process of evolution means

H(§)= H(xu(§1)), (17)

where H()=Tr[B()$]is the Hamiltonian function of the quantum system. We see that
energy is conserved along quantum characteristics, but not in the geometric sense. The *-
product sign in the argument indicates the non-local nature of the conservation law.

The law of composition of the particle trajectories also has a non-local character:

u(§Ty+1,) = u(xu(§1e),75) -

Such compositions, but without the *-product, are valid for the trajectories of classical
particles. The *-product does not allow considering the motion of particles as movement
along a certain trajectory in the geometrical sense.

3.5 Quantum Hamilton equations
Quantum trajectories can be found by solving Hamilton’s equations, which can be written in
one of four equivalent forms:

0 i _ i
au (§,T) = {§ /H(g)} |§:*u(§,r)

= gi AH(© |§:*u(§,r) (18)
=u'(§1) A H(xu' (§ 7))
=u'(E1) AH(O,

with the initial conditions

uEo=¢.

These equations appear as Wigner’s image of the evolution equations for operators of the
canonical coordinates and momenta in the Heisenberg representation. The equivalence of
the different records of the right-hand side can be verified with the help of the above-
described properties of the *-product, the rules of substitution (Equation (16)), and the
condition of energy conservation (Equation (17)). Note that {{ LHQQY=C'AH(Q)=H(©Q)".

The substitution { =*u(¢,r) in the first line of Equation (18) leads to a modification of the
classical expression for the right-hand side and, correspondingly, to quantum deformation
of the classical phase flow. The value of du'(§1) /8t depends on the phase space coordinate
ui(§, 1), as in classical mechanics, and on the infinite number of partial derivatives of ui(§, )
as a specific manifestation of the quantum non-locality.
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An equivalent form of Equation (18), using a cluster expansion of the *-exponentials, was
given by Osborn & Molzahn (1995). Equation (18) was found independently by
Krivoruchenko & Faessler (2006b).

3.6 Quantum Liouville equation
The functions corresponding to physical observables evolve in the Heisenberg
representation according to the equation

f(E1)=TrBOU O)fh(r)]= f(u($7),0), (19)

while the Wigner function remains constant. The evolution law can be expressed in terms of
Green's function in the phase space as

2n
fen=| (2{7’;@@ 1 F1,0).

With the help of quantum characteristics, a compact expression for Green’s function can be
written as

G(Em,T) = )" 6™ (xu(&1)-17) .

The function f({ 1) obeys the Groenewold evolution equation (Groenewold, 1946)

2 fign= &0 A ), (20)
T

which is the Wigner map of the evolution equation of the operator { in the Heisenberg
representation. The right-hand side can be replaced by the equivalent expressions
fED AHxu(t)) or AG0)AH(Q) le—wuier)-

The solutions to the evolution equations for the quantum characteristics and functions
f(&§ 1) can be represented as a formal power series in the parameter 7 :

W)= 3 TS AHE)AHE) A-HE),
s=0

. @
Ju(E) = Y (ACFE AHEO) AHE) AHE))
s=0 °*

S

Unitary coordinate transformations are canonical to the first order in 7 (Dirac, 1930; Weyl,
1931).

For higher orders, deviations from the canonicity arise (Krivoruchenko & Faessler, 2006b).
Until recently, these deviations were not well understood.! The infinitesimal
transformations generate canonical or unitary global transformations depending on how we

1 In the papers by B. Leaf, ]. Math. Phys. 9, 769 (1968) and T. Curtright and C. Zachos, ]J. Phys. A 32, 771
(1999), erroneous conclusions about the entire coincidence of classical and quantum trajectories can be
found.
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define the multiplication. If this is the usual dot product, then we obtain the canonical
transformations. If this is the *-product, then we obtain unitary transformations.
If an operator 2 commutes with ), then its symbol is preserved in the sense of

A(§)= A(»u( 7)) . The density matrix of a stationary state commutes with §; therefore, in

the Schrédinger representation Wg(&§) = Wg(*u(& -7)) , the Wigner function does not evolve.

In the harmonic oscillator, the quantum trajectory depends linearly on ¢' and coincides

with the classical trajectory. In this case, the *-symbol in the argument of the Wigner
function can be omitted, and we can write Wg(&)=Ws(u(S -7)) for a stationary state and

Ws(§1) = Wg(u(§-7),0) for an arbitrary state.

4. Semiclassical expansion of quantum characteristics

The methods of this section apply to the evolution problem. The most promising
applications appear to be connected to many-body scattering and transport models.

The problem of evolution can by divided into two parts. First, we seek a solution to the
quantum Hamilton equations. Second, we use Equation (19) to find the time-dependent
symbols of the operators. The key issue is an efficient algorithm to calculate the *-functions.
These functions arise in the quantum Hamilton equations and in solving the evolution
problem for functions.

4.1 Semiclassical expansion of *-functions
We consider the semiclassical expansion of f(xu(Sr)) around f(u(¢,7)). The function f(S)

can be represented through its Fourier transform

2n

f©=] (Z‘ir—h’;exp(%m")ﬂn) . @)

Determining how to calculate exp(xU), where U= %r]kuk(gr) , is sufficient. With the help

of Equation (13), we find

exp(xU) = (1 +h2cy + e, + O(hé))exp(ll) ,

where

c =~342UUP%1+3UP%0,
7 48

%=—l—ammmﬂWM+wwﬂuw@+%amﬁuwﬁu+%wﬁmamw)
23040 (23)
+60(LULIP2U)(UP*U) + 20(UUP?U)(UUP?U) + 30(UUP*U)P?U)
1
11520

+

(6UUUUP*U + 45UUUP*U + 30(UUP*U), + 40(UUP*U), + 15UP*U).

The operator P acts as follows:
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AP’B=AuBY, ABP’C=A.B,CM, AP*B=A;B™,
(ABP*C),= A ;B ,,C'"™, (ABP*C),=A B ;,C"™,
ABCP*D=A B ,C D™, ABCDP*E=A,B C,DE™,

where

__0A®©

A .o = - -
(§)/11'“Z>’ 65”...5?5 4

AQ = AQ), T (24)

Osborn & Molzahn (1995) and Gracia-Saz (2004) developed a diagram technique to calculate
Weyl's symbols of composite operators for higher orders of the 7 -expansion. Equation (23)
from Krivoruchenko et al. (2006c), obtained with the use of MAPLE, agrees with the
calculation of Gracia-Saz (2004).

The expansion of f(xu(§ 7)) is now straightforward. We replace 7; —-ihd / ou' and
U —u'(§)0/ u' to obtain

2

FEru(En) = FET) -3 (€)1 )l (G1)™ F(ET)

2 . .
S (61) g €)M F(uEm) 5+ O

The derivatives of f(u({t)) are calculated with respect to u.
As a simple application, one can find a semiclassical expansion of the Weyl symbol for the
finite-temperature density matrix (Wigner, 1932):

W)« expl-"2E))

2 2
- exp(-Hf))(l # S H(), HE) ()™ =~ HE) g HE + O<h4)J.

After the replacement 1/T — it /&, the expression for the Weyl symbol of the evolution
operator $(r)= exp(—éj’)r) is derived.

The evolution operator and its Weyl’s symbol are singular as # — 0. The expansion of the
semiclassically admissible *-functions starts, however, with a classical expression, which is
independent of 7 . The question of what happened to the singularity arises. The answer is

obtained by considering the time-dependent operator f(r)= " (r)ftl(r). The derivatives of
f(r) of order k are expressed in terms of k commutators. Each commutator generates 7 . The
i
n
Therefore the Weyl symbol of §(r) has a classical limit.

commutator [éf’),f] and the high-order terms [éf),[ f),...,[éf),f]...]] are regular as 1 —0.

In transport models, the solutions to the evolution problem are based on solving systems of
ODEs. We now turn our attention to the construction of the ODEs.
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4.2 Semiclassical expansion of quantum Hamilton equations

Suppose we have a system of N particles. The interaction of the particles is described by
some potential. The initial-state wave function is assumed to be known. Consequently, the
initial-state Wigner function is known.

The first step in solving the evolution problem consists of finding the quantum
characteristics, using Equation (18). We expand the solution in powers of Planck's constant

u'(Er)= ih%;(gr) . (25)
r=0

Here, u})({7)is the classical trajectory starting at time 7=0 at ' eR?". The initial conditions

for the quantum corrections r >1at 7 =0 are then set equal to zero. As a result,

”io(éo) = §i/ r= O/ (26)
u (£0)=0, r=>1.

The right side of Equation (18) is the *-function, so we use the decomposition

0

Fixu(§ 1)) =S HOM vue my= 207 E (ttp(§ 7)1, (§7)) - (27)

r=0
If the functions u'(£1) are known, then the functions E (uy(S7),...,u,(ST)) are completely
determined. F!(uy(&1),...,u,(S7)) also depends on the derivatives of uy(&1),..., u, (& 1) with

respect to ¢' . In particular,

Fé(u0)=Fi(u0),

F (g ) = ] (ST (1) - 567t (67) b (ST ™ Fi ) (8)

'%”5(&),%% (E7)"™F! (ug) -

4.3 Jacobi fields
The second line of Equation (28) contains the first- and second-order derivatives of u')(& 1)
with respect to ¢ ! Therefore, we should monitor the evolution of the trajectories and their

derivatives with respect to the initial coordinates

o'u, (& 1)

ach i @)

Tt (67)=
These values determine the decomposition of f(xu(§r)) and determine the high-order

quantum corrections to the phase-space trajectories.
We call these values "Jacobi fields". This term is adopted in Hamiltonian mechanics for the

first-order derivatives of u'((§1), that determine the stability of the systems. The value of
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]io,j(éT) =ou'y(E1) /8¢ is known as the Jacobi matrix, and its determinant is called the

Jacobian. In quantum mechanics, the derivatives of higher orders are involved. In the
following, the number r is called the order of the Jacobi field, the number of lower indices ¢
is called the degree of Jacobi field.

In the notation of Equation (29), the first pair of evolution equations becomes

Zuj(&m)=F (),

S ET) = T (1) - 5 T D (ETIE ™ EDF () 0)

- T GRS T ()

In the first line, the classical Hamilton equations are recognisable. The second and third lines
determine the lowest-order quantum correction to the classical trajectory.
The system in Equation (30) is not yet closed. It needs to be supplemented by the equations

of motion of ]6, j(§7) and ]é/ #(& 7). These equations are obtained by taking the first- and

second-order derivatives of the first equation with respect to the initial coordinates:

0
o —Jo,(§1)=F'(1) 1 Jo (S 1),

; (1)
o ]()]k(§' )= FZ(uO),lnz](l),j(§/T)](Tk(§/T)+F1(”O),I](l),jk(§/T)'

Differentiating Equation (26) on &', we obtain the initial conditions for the Jacobi fields. In
general,

]ir,j(§/0) = 5ij/ r=0,

Jo (E0)=0, r=0,t>2o0r r>1,t>1 2
s / e =bt=d

The coordinates &' enter Equations (30) and (31) as parameters. Thus, we meet a typical
case of first-order ODEs, for the variables u}(S1), ui(S7), ]("), j(§1)and ]6/ #(&T) with the
initial conditions given in Equations (26) and (32).

Here, we show a proof of the statement (Krivoruchenko et al., 2006c) that, in any fixed order
of i, we still have a finite system of first-order ODEs for the variables u.({7) and the
associated Jacobi fields.

4.4 Reduction of the quantum Hamilton equations to a finite system of first-order
ODEs
Let us consider the effect of the *-product. According to Equation (8), each power of # is

accompanied by differentiation. For order /**, expansion of F'(xu(&T)) contains the

derivatives of order 2s at most. Therefore, the Jacobi fields have the highest degree 2s (
1<t<2s).
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This assertion can be strengthened. The number of indices ¢ in reality also depends on the
order r of the Jacobi fields ]ir,jl---it (§7). In the expansion in Equation (13), the derivatives of

the trajectory u')(£7) of order < 2s, the derivatives of the trajectory u';(£7) of order < 2s -
2, .., and the derivatives of the trajectory u', ;({7) of order <2 survive among all of the
derivatives of orders < 2s. The highest-order correction u' (1) has no derivatives. Thus,

the maximum number of lower indices of J'.; ; (§7), involved in the expansion to order

7?5, depends on r and equals 2s—2r (1<t<2s—2r).
Let us consider in more detail the equations of evolution to order 4 for a fixed r<s.
The first part of the ODE system can be written as

0 i _ri
au, =F (ug, Uy, ety Jos J1reer Jpa) » (33)

where the index r takes the values 1 ... s. In the argument for the function on the right-hand
side, we dropped the indices of the trajectories and the Jacobi fields. Note that the time
derivative depends on the Jacobi fields of order r - 1 at most.

The higher-order corrections depend on the lower-order corrections. In the right-hand side

of Equation (33), the Jacobi fields have the following degrees: ]iO,j] .j, (§7) - not more than 2r,
]il,hmj! (§7) - not more than 27 - 2, and so on. In the highest order 7° -term, the maximum
degree of ]iH,hmjt (§ ), entering the right-hand side, is equal to 2s - 2r + 2. The functions

El (g, ty,sthy, Jo, J1,-rJ,-1) do not depend on the variables with #* for r < r’. Equation (33)
clearly allows the determination of the trajectories u((¢1),...,us($ 1), provided that the Jacobi

fields are known.

We now supplement the resulting system (Equation (33)) with the equations of evolution of
the Jacobi fields.

Consider first Equation (33) for r = 0, i.e., the classical Hamilton equations. The right-hand
side depends only on u)(£ 7). Differentiating this equation from one to 2s times, we obtain
evolution equations for the zero-order Jacobi fields of degrees t =1 ... 2s. Equation (33) for r
= 0 and the 2s of these equations form a closed system of ODEs whose solutions are well
defined.

As a next step we consider Equations (33) for r = 1. The right-hand side depends on the

trajectories u({7) and uj(£1) and the Jacobi fields ]io, jrj, (& 7) for t =1, 2. Differentiating
this equation with respect to ' from one to 2s - 2 times, we obtain the evolution equations
for the first-order Jacobi fields ]"1, i (§7) of degrees t =1 ... 25 - 2. After differentiating, the
right-hand side depends on the Jacobi fields IiO,jlmj, (§7) of degrees <2s (=2 + 2s - 2), while

the Jacobi fields | il,]}mj[ (§7) arising from differentiating u, (1) do not have degrees that

are higher than the number of derivatives taken, i.e., not above 2s - 2. Thus, to determine
]il,jp.‘jt (§7), additional information about the zero-order Jacobi fields is not required. From

these equations, we can find u} (1) and ]ilrjl---if (§7) of degreest < 2s-2.
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Further arguments are fairly obvious. We are moving in the direction of increasing the order
of Jacobi fields. Consider the general case. We take the derivatives of Equation (33) from one
to 2s - 2r times and obtain the evolution equations for the order-r Jacobi fields of degrees t =
1..2s5-2r.

g (&)= Gty tysthy Jo T ],) - (34)
or

Consider the right-hand side of Equation (33). It depends on the Jacobi fields | iO,jyuj( (§7) of

degrees <2r. After differentiating one to 2s - 2r times, a dependence on the Jacobi fields
IiO,jlmj, (§7) of degrees <2s (= 2r + 2s - 2r) is acquired. Consequently, for any r, the right-

hand side of Equations (34) depends on the zero-order Jacobi fields of degree 2s at most.
Furthermore, the right-hand side of Equation (33) depends on the first-order Jacobi fields of
degrees <2r - 2. After the differentiation, a dependence on the first-order Jacobi fields of
degrees <25 - 2 (= 2r - 2 + 2s - 2r) occurs in Equation (34). The upper value is also
independent of r.

For a fixed r, Equation (33) depends on the h-order Jacobi fields (i < r) of degrees t< 2r - 2h.

Thus, the evolution equations for the Jacobi fields ]ir,jl---it (§7) of degrees t =1 ... 2s - 2r

contain the trajectory functions u,(§7),...,u,(§7) and the Jacobi fields | ih,jl...jf (§7) of orders

h=0..rand degreest=1...2s - 2h.

The truncation of the expansion at any s provides us with the complete system of first-order
ODE:s for the trajectories and the Jacobi fields. The system is determined by Equations (33)
and (34) with the initial conditions given in Equations (26) and (32).

In terms of the mathematical induction, the above arguments indicate that Equations (33)
and (34) are sufficient to determine the trajectories and the Jacobi fields for some r, provided
that the trajectories and the Jacobi fields of lower orders < r are determined. We have seen
that this is true for r = 0, 1; therefore, it is true for all r.

4.5 Perspectives of transport models
We show the lists of the dynamical variables and the numbers of the independent degrees of
freedom in the decomposition of the quantum Hamilton equations up to the fourth order in 7 :

R Ul (&)
—2n

1 ué(élf)&Ié,,-(élf)llé,jk(éf)
1 (E7)

— 2n(2+3n+2n?%)
nt: ”(i)(’;T)&]6,;(§/T)r]6,jk(§T)rIé,jkr('g'f)r]é,jklnz('g'f)
()& 67 (6T

1 (§7)
— n(18+43n +47n* +20m° +4n*) / 3
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Here, n = 3N, where N is the number of particles. In higher orders, lists of each line are
extended by two units at the expense of the Jacobi fields of higher degrees. A new line
containing the next order correction to quantum trajectory is also added.

Table 1 shows the number of dynamic degrees of freedom for orders #° , > ,and #* for the
potential scattering of a proton (a nucleus) with nuclei. The spin degrees of freedom of the
nucleons are disregarded.

Reaction R0 K2 Kt

2H +2H 24 7 824 499 224

9Be + 9Be 108 647 568 671416 128

p + 238U 1434 1477 494 654 254 426 548 725 264
238 + 238U 2 856 11 660 059 824| 7945116177 770 184

Table 1. The number of dynamical degrees of freedom for the potential scattering of protons
(nuclei) with nuclei of orders #°, #?,and 7*.

As the number of Jacobi fields involved in the dynamics increases rapidly with the
increasing order of the expansion, limitations due to the semiclassical expansion being
restricted by computing power must be considered. Since the mid 1960's, the performance of
computers has doubled approximately every 15 months. Due to technical peculiarities of
processor manufacturing, this regime is expected to continue for 5 - 15 years.

1020
1019
1018

(—238U + 238U [h2]

7/
" 1016 <« + 238U [h2] \6‘6 / ,‘,
8 5 <Be+°Be [h"] N
810 <7
- &7 e
10" 6\)Q// ,'\i\e‘
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10" 2H+ 2H [h* P C
2. “Be+ "Be [h]—
1012 o
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10 2H + 2H [hz]e
1010
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Fig. 1. Computer power in flops (floating points operations) required to simulate the proton-
nucleus and nucleus-nucleus collisions listed in Table 1 as compared with the growth in
power of supercomputers (solid line), personal supercomputers (dashed line) and personal
computers (dot-dashed line) starting from 1990. The orders #* and A* of the simulations
are shown in square brackets.

The theoretical foundations of the transport models used to simulate heavy-ion collisions
were created in the late 1980s - early 1990s (Sorge et al., 1989; Aichelin, 1991; Faessler, 1992;
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Blaettel et al., 1993). Many uncertainties exist in the estimates of the times of the simulations.
We assume that simulations of 238U + 238U collisions with a supercomputer required about
one week in 1990. The calculations are restricted by zero order in the Planck’s constant;
hence, Jacobi fields are not involved. We are dealing with 2856 dynamical degrees of
freedom, as indicated in Table 1, plus the spin degrees of freedom of the nucleons and,
potentially, the number of meson degrees of freedom which depends on the beam energy.
The calculation time appears to grow linearly with the number of degrees of freedom.
Hence, we obtain the estimates shown in Figure 1.

2H + 2H reactions of order i* and 9Be + 9Be reactions of order 7 could be simulated with
supercomputers in 1999. 9Be + 9Be reactions of order /*, p + 28U and 28U + 238U reactions of
order h* should be simulated with supercomputers by 2011 - 2016. A delay will occur, if
computing power is limited to the use of personal supercomputers and computers.

Since the early 1990s, computing power has increased by about five orders of magnitude.
This dramatic rise in computing power makes it possible to include Jacobi fields in the
collision dynamics, to extend beyond the purely classical treatment of phase-space
trajectories, currently adopted in all of the transport models.

5. Averaging over the Wigner function using the Monte Carlo method

The reduction of the evolution problem to the search for quantum trajectories and the
associated Jacobi fields makes it possible to calculate averages using the Monte Carlo
method. The problem becomes a task of statistical physics with the modified rules of
calculations of probabilities and average values.

The average of the observable associated with an operator f at time 7 can be found from the

evolution equation (Equation (19)) for the associated function f({). We then use the

decomposition (Equation (13)). In the Heisenberg representation, the average is determined
by the integral of f(¢) multiplied by the Wigner function, given at the initial time

W(50)=W($)

d2n§
(27n)"

(f&m)=] fuETHWE) - (35)
We partition the phase space R into two regions Q, and Q , so that Q, UQ_=R>", in
which the Wigner function is positive and negative, respectively. Therefore, we have
W(E)=W,(§)-W.(§) with W,(§)=20 in Q.. Outside these regions, the functions W, (<)
vanish. As a next step, we generate events in Q, (i.e., we select the points &' € Q, R™M),

distributed according to the normalised probability densities W, (&) / W, , with

_ A
W, =] AL

First consider the region Q, . We generate 21 + 1 numbers (¢',y) with the values of &'

uniformly distributed in Q, and the value of y uniformly distributed in the interval
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(0, W, max / W.) , where W, max( .(€)) . If the joint probability density of the variables

+ max

(&',y) is given by 8(W,(€) /W, - 1), then the marginal probability density of ' equals

Witnax /W,
W) /W= | B/ W, -y)dy.
0
To obtain a sample {§ia} of events 2 = 1,...,,N. distributed with the probability density
W, (§) / W,, it is straightforward to discard those generated numbers that do not satisfy the
condition W, (&) /W, >y .
Suppose we generated the numbers (¢',y) at some step. If W, (£) /W, >y holds, then we
shift the number N of successful tests by one unit and assign ¢',, =¢&' for a = Ni. Next, we
calculate the quantum trajectory u'(¢, ,,7) and the associated Jacobi fields, find the value of
f(*xu(§,,,7)) in the required order of the % -expansion and store the information. If the
inequality W,({)/ W, >y is not satisfied, then the event is simply discarded, and we
generate the next set of numbers (£',y). The saved values {§ia} are distributed with the
probability density W, (&) /W, . A similar procedure applies to the Q_ region.
Suppose we have generated N+ and N. successful events ¢, , € Q, . To find the average value
of f(§t), the values f(*u($,,, 7)) should be multiplied by W, , divided by the number of
successful tests and summed to give the following;:

(f(E)= *Zf(*u(éwf) Zf(*u('iw ) (36)

+a1 —al

This equation completes the reduction of the quantum evolution problem to the problem of
calculating the statistical averages over an ensemble of quantum characteristics and
associated Jacobi fields.

6. The scattering problem

In the scattering problem, elementary particles and bound states are considered on an equal
footing. We fix the in- and out- scattering states at r=zx0w and define clusters a of
elementary particles and bound states with momenta p,' and p," in the initial and final
asymptotic states, respectively. Wigner functions have the form

W) =TT @rny’s(p - Y pW,

IllElZ " (37)
M/(vut(g):l_[ (2]{7"1) 6 Zpl)w §a

iea

Here, &'=(q",...4",p1,-Py) , €, are the variables of the particles in cluster a. Each cluster

contains Zl particles, in total Z Zl =N. A similar situation holds for the partition of
particles in the final state.
The Wigner functions W,,({) and W,

out

(§) are constructed as products of the asymptotic
Wigner functions of non-interacting elementary particles and bound states. On the right
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sides of Equation (37), W,'(§,)=W,"({,)=1 for elementary particles, while Wigner

functions of bound states must be constructed on the basis of the wave functions of the
bound states of the clusters.

The transition probability is the square modulus of the S-matrix element wg = ‘(out | in>‘2 .In
terms of the Wigner function,

dZn
w;= [ (2nh§)"Wout(*”(§T))Wm(§) : (38)

where n = 3N. The technique described in the previous sections is fully applicable to
Equation (38), and it applies to the scattering problem.

7. Conclusion

In this chapter, we discussed the basic properties of the formalism of deformation
quantisation and its applications to the description of the evolution of many-body systems
in terms of the expansion in powers of the Planck's constant.

We described the dynamics of quantum systems in phase space. In our presentation, a
special role is assigned to quantum trajectories u'(§7), which appear as the Weyl symbols
of the operators of the canonical coordinates and momenta in the Heisenberg representation.
These trajectories differ from the classical trajectories and from the de Broglie - Bohm
trajectories. The transformation of the coordinate system in phase space, associated with
quantum trajectories, preserves the Moyal bracket and does not preserve the Poisson
bracket. In this sense, the quantum trajectories and phase flow, which they define, can be
regarded as a quantum deformation of classical trajectories and phase flow in the formalism
of classical Hamiltonian mechanics. The quantum trajectories satisfy the quantum Hamilton
equations that are infinite-order PDEs.

Deformation quantisation preserves many features of classical Hamiltonian mechanics. The
classical Hamilton's equations are the characteristics equations of the classical Liouville
equation for particle distributions in phase space. Accordingly, the solutions of the
Hamilton equations contain all of the dynamic information needed to determine the time
dependence of all of the observables, including the distribution function.

The same situation occurs in quantum physics. Solutions to the quantum Hamilton
equations define quantum trajectories, which possess all of the properties of characteristics.
As a rule, characteristics satisfy a system of first-order ODEs, for example, the system of
Hamilton’s equations. Characteristics are used further to construct solutions of first-order
PDEs, such as the classical Liouville equation. The peculiarity of quantum mechanics is that
quantum trajectories obey infinite-order PDEs, and they also solve evolution equations that
are infinite-order PDEs.

In the Heisenberg representation, the evolution of the Weyl symbol of operator can be
written as

f&r)= f(xu(§7),0)

The relationships of fundamental interest, such as the one shown above, are formulated in
terms of the *-functions that are not local and form a special class of functionals. To date,
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no effective methods exist for calculating *-functions, with the possible exception of the
expansion in powers of the Planck's constant. We have outlined recipes to eliminate the *-
symbols from the arguments of composite functions using the semiclassical expansion.

For any fixed order of the semiclassical expansion, the quantum characteristics are
constructed by solving a finite system of first-order ODEs. This important circumstance
makes it possible to approach the problem of quantum evolution of complex systems using
numerically efficient ODE integrators. The evolution problem thereby reduces to a
statistical-mechanics problem of constructing an ensemble of the quantum characteristics
and the associated Jacobi fields. After constructing the quantum characteristics, the physical
observables can be found without further recourse to quantum dynamics.

A clear gap exists between the classical dynamics of a particle and its quantum dynamics. In
the first case, we are dealing with a finite number of degrees of freedom. In the second case,
we are dealing per se with field theory and an infinite number of dynamical degrees of
freedom. We see that this gap is filled with the Jacobi fields of higher orders. By increasing
the order of # -expansion, the number of Jacobi fields is growing rapidly. This provides, in
principle, a smooth transition from classical dynamics to quantum dynamics and from
mechanics to field theory.

Quantum characteristics are useful for calculating the evolution of complex quantum
systems - atoms, molecules and nuclei. The main advantage of deformation quantisation is
its proximity to the classical picture of evolution in phase space. Specific quantum effects,
such as coherence and non-localities, appear due to the increase in the number of dynamical
degrees of freedom: Jacobi fields. The method of quantum characteristics allows for the
consistent inclusion of non-localities and coherence in the transport models.
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1. Introduction

Atomic-scale modeling of materials based on first-principles quantum mechanics is playing
an important role in a broad range of sciences, such as chemistry, biology, and geophysics.
Part of our aim in this article is to introduce the usefulness of atomic-scale modeling of
materials to the geoscience field. The structure, dynamics, and evolution of the Earth and
other planets depend on processes that take place deep in their interiors. However, these
interiors are inaccessible to direct observation due to extremely high pressures and
temperatures. Laboratory experiments at high pressures and temperatures can provide
important information on the physical properties of materials that constitute the Earth’s and
planets’ interiors. However, recently, a new tool for materials modeling based on first-
principles quantum mechanics has come into use for probing the properties of planetary
interiors. This method has advanced to the point where it can provide reliable data for
conditions of extreme high pressure and high temperature that experiments cannot achieve.
High-pressure experimental and materials modeling studies regarding the physical
properties of materials were generally presented in separate papers and often with a
publication gap of a couple of years. A recent approach using both high-pressure
experimental data and first-principles materials modeling was successful in discovering
new minerals and predicting the physical properties of many materials at high pressures
and temperatures.

This article provides examples of the synergy between first-principles computation and
high-pressure experiments. First, the argument for the determination of equations of state
for materials used as pressure calibrants in high-pressure experiments is discussed. In this
discussion, the advantages and disadvantages of first-principles materials modeling or high-
pressure experiments are described. It is hoped that the reader can understand the reliability
of both the first-principles materials modeling and the high-pressure experiment. Second,
some approaches to the discovery of new materials and the exploration of their physical
properties at extremely high pressures and temperatures are described.

2. Pressure scale

It is particularly important to know precisely the temperature and pressure conditions of a
system in all scientific fields. However, it is often difficult to determine the temperature and
pressure when they are extremely higher than ambient conditions. The uncertainty of the
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pressure scale at extremely high temperatures has recently become an open question in
earth science. Although “Pressure” is an important index in all science fields, the problem of
the uncertainty of a standard scale for pressure is debated in the small earth science
community. Extreme pressures and temperatures cause various problems for the earth
science discipline. It is known that the Earth’s deep interior reaches high temperatures and
high pressures. Therefore, when we want to know the behavior of materials that constitute
the Earth’s interior, it is necessary to investigate materials at temperatures of up to ~6000 K
and pressures of up to ~400 GPa. This is greatly different from other scientific fields. For
instance, studies at low temperatures are performed quite often in the field of physics,
because generally it is easy to observe the essence of the physical phenomenon.
Furthermore, the Earth’s interior is probed by observing seismic wave velocities, and a
detailed 3D map can be used to investigate it. This is a similar to obtaining a X-ray
computed tomography (CT) scan of the human body. This approach obtains the change in
the elastic properties of the Earth’s interior as a 3D map. Thus, we can determine the elastic
properties of the Earth’s interior as a function of depth (equal to pressure). Our next aim is
to know what type of material corresponds to the elastic property determined by the
mapping of seismic wave velocities. However, earth scientists face a problem at this step. It
is thought that some vast changes in seismic velocities have taken place in the Earth’s
interior because of phase transitions of materials that constitute the Earth. Therefore, the
hypothesized phase transitions have been investigated to determine the pressure at which
they occur (equal to depths) in the laboratory, and this hypothesis has been verified. This
attempt led to the conclusion that the accuracy of the pressure standards used by earth
scientists was not satisfactory. This indicates that the accuracy of the observed mapping of
elastic properties of the Earth’s interior probed by seismic wave velocities is much better
than that of the pressure determined in laboratory experiments. In the past 10 years, this
“Pressure” problem has been debated by not only earth scientists, but also by physicists.
Here, the attempt to research a reliable pressure scale is performed by both an experimental
and theoretical approach. The combination of both approaches leads to an understanding of
the uncertainty of each method, and establishes a new pressure scale that is more reliable
than previous scales. We use a molecular dynamics method based on first-principles
quantum mechanics for the theoretical approach, and use a method of combining a high-
pressure diamond anvil cell apparatus with synchrotron X-ray powder diffraction for the
experimental approach. In particular, the first-principles computation approach has
developed rapidly in recent years and can reliably predict the interesting physical properties
of materials that cannot be investigated by high-pressure experiments. This chapter
introduces the reliability of first-principles computation and a new pressure scale obtained
by combining computational and experimental methods. Moreover, the essential problem of
previous pressure scales is discussed and has been clarified by using the data from our first-
principles computations.

2.1 Overview of first-principles techniques

To begin, a brief introduction of the first-principles quantum mechanics calculation is
described. The first-principles method can predict various physical properties of materials,
which is independent of experimental observations. Although it is best if the Schrodinger
equation can be strictly solved based on quantum mechanics, this approach is impossible
because most materials have many atoms that contain many electrons. Therefore,
simplifications and approximations are needed to solve the interaction with many electrons
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in atoms. Examples based on density functional theory (DFT) are shown. DFT is assumed to
calculate the physical properties of materials using calculated density of electrons. The
reader who wants to achieve a detailed understanding of DFT can turn to several
comprehensive papers (Parr & Yang, 1994; Martin, 2004; Kohanoff, 2006). The reliability of
DEFT calculations depends on the approximation used. A pseudopotential method has been
used in classical DFT calculations. The computational speed of this technique is very fast,
although the first-principles calculations need huge computer power. In the case of the
pseudopotential method, it is assumed that the core electrons play little or no role in the
energetics of the material, which depends almost entirely on the valence electrons. The core
electrons are not handled directly, and these are replaced by the potential function of the
valence electrons. Good results have been obtained in predicting physical properties,
because the influence of core electrons is small. However, there is a significant problem in
estimating physical properties under extremely high-pressure conditions. The material is
compressed at high pressures, and the distance between atoms is shortened. In a word, the
overlap of the adjacent electrons is nonnegligible. It is expected that the influence of not only
valence electrons, but also the core electrons, cannot be disregarded when this overlap
increases. Therefore, it is expected that the pseudopotential method is unsuitable for high-
pressure studies. Recently, the all-electron method has been used to estimate the physical
properties of materials under high pressures instead of pseudopotential methods. Generally,
the all-electron method needs huge computing time, and it is difficult to handle materials
with many atoms and/or complicated chemical composition. We use the Projector
Augmented Wave (PAW) method, because this is a comparatively fast calculation method
in the all-electron approach. In most studies of first-principles calculation, the physical
properties of materials have been estimated in the ground state (at 0 K). However, earth
scientists want to know the behavior of materials at not only high pressures, but also high
temperatures, such as those in the interior of the Earth and other planets. Although it is
possible to extrapolate the physical properties at high temperatures from the ground state,
this approach has a significant error. Therefore, it is necessary to combine a molecular
dynamics method that actually deals with the thermal vibration of atoms to estimate
physical properties at high temperatures. We use a calculation code (Vienna Ab initio
Simulation Package) that combines the first-principles calculation of the all-electron
approach with a molecular dynamics method (Kresse & Hafner, 1993; Kresse & Furthmuller,
1996). It is possible to estimate precisely the physical properties of a material under high
temperatures and pressures using this method. However, there is a problem in that the
maximum number of atoms that can be considered is about several hundred, which is much
smaller than Avogadro’s constant, because this first-principles molecular dynamics method
needs huge computer resources. Moreover, it is almost impossible to calculate the duration
of a second in real time; however, the duration of tens of picoseconds can be treated.
Therefore, it is necessary to estimate thermodynamic parameters under high temperatures
and pressures carefully.

2.2 Reliability of the first-principles calculation

The first-principles calculation is used in various fields, such as physics, chemistry, and
material science, and huge efforts to increase the accuracy of the calculation have been
attempted. Therefore, developments concerning the first-principles technique are very
rapid. However, it is important to determine whether its reliability satisfies our purpose to
estimate precisely the physical properties of materials at high temperatures and pressures.
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For example, it is generally known that the values of the lattice parameters of most crystals
estimated by first-principles calculations have about 1-2% errors compared with
experimental values at ambient conditions. Next, we will consider the reliability of first-
principles calculations under high pressures, which is our subject of interest.

In Figure 1, the relationship between the volume and the pressure of a high-pressure phase
of B2-type sodium chloride (NaCl) is shown. In the case of a crystal that is stable at ambient
conditions, it is better to obtain physical properties by an experimental method compared
with estimations by first-principles calculations. However, there is an advantage of first-
principles calculations to estimate the physical properties of materials that cannot be
recovered at ambient conditions by high-pressure experiments. As the high-pressure phase
of NaCl cannot be quenched at ambient pressures, a complicated method and/or much time
is necessary to obtain good experimental data. In such a case, first-principles calculations
have a significant advantage in estimating the physical properties of materials compared
with experiments. In this chapter, the reliability of first-principles calculations is considered
using the example of the high-pressure phase of NaCl.
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Fig. 1. Comparison of pressure-volume data of B2-type NaCl between high-pressure
experiments and first-principles calculations. Symbols represent the experimental data
calculated by different gold pressure scales. Diamonds, Jamieson et al. (1982); triangles,
Anderson (1989); squares, Takemura (2007) corrected by the ruby scale of Dorogokupets and
Oganov (2007). Lines represent the calculated data by different approximations: orange, Local
Density Approximation (LDA); purple, PW91 (Wang & Perdew, 1991); blue, HSE06 (Paier et
al., 2006); green, AMO05 (Armiento & Mattsson, 2005); red, PBEsol (Perdew et al., 2008).

The volume data for the high-pressure phase of NaCl observed by high-pressure experiments
at pressures higher than 30 GPa are shown in Figure 1. A high-pressure diamond anvil cell
apparatus and a synchrotron X-ray diffraction technique were used to measure volume data at
each pressure increment. NaCl powder was mixed with gold powder where the latter was
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used as the pressure standard (Ono et al., 2006a). The sample was compressed into a thin
pellet, and was sandwiched in the pressure-transmitting medium of magnesium oxide (MgO).
This composite sample was placed into the sample chamber of the high-pressure apparatus. It
is known that the high-pressure diamond anvil cell-type apparatus has the disadvantage that a
significant differential stress is accumulated in the sample chamber during the compression of
the sample. Even if a rare gas is used as the pressure-transmitting medium, the influence of
differential stress is nonnegligible at pressures higher than ~50 GPa (Takemura, 2007). An
alternative approach is annealing the sample using an infrared laser to reduce the differential
stress in the sample chamber at each pressure increment. In Figure 1, three experimental data
sets are plotted at each volume, because the experimental pressure is calculated using the three
proposed pressure scales based on the equation of state for gold (Jamieson et al., 1982;
Anderson, 1989; Takemura, 2007). The colored lines are the volume-pressure curves calculated
by the first-principles approach. Some types of approximation for the exchange-correlation
functional have been proposed. It is necessary to know the exchange-correlation energy
between electrons in the materials when the physical properties of the materials are calculated
based on the DFT method. As it is difficult to strictly determine the exchange-correlation
energy, an approximation must be used. The improvement of the exchange-correlation
functional is important for the reliability of the DFT method. Therefore, the results from the
different approximations for the exchange-correlation functional are shown in Figure 1. One of
the classical approximations is the Local Density Approximation (LDA), where the result is
shown as the orange line. Historically, the LDA was partially successful in predicting the
physical properties of materials. However, a small difference between the LDA results and the
experimental data for the volume-pressure curve of B2-type NaCl is confirmed. For instance, it
is known that the volumes of most crystals calculated by the LDA are slightly smaller than
those measured experimentally. As the estimations for other physical properties have
nonnegligible uncertainties in the LDA method, other approximations were proposed to
improve the exchange-correlation functional. One of the other classical approximations is the
generalized gradient approximation established by Wang & Perdew (1991) (PW91). The results
from the PW91 approximation are also shown as the purple line in Figure 1. In the case of the
PW91 approximation, the calculated volumes are larger than are those from experiments. The
experimental values of B2-type NaCl are plotted in the intermediate region between the LDA
and PWO91 calculations. According to previous studies, we understand that the physical
properties of materials can be predicted qualitatively using classical approximations.
However, it should be noted that further improvements are needed to achieve quantitative
predictions. For the last decade, several new approximations have been suggested to improve
the accuracy of the DFT calculation. The volume-pressure data calculated by several new
approximations are also shown in Figure 1. The results from the new approximations of
HSEOQ6 (Paier et al., 2006), AM05 (Armiento & Mattsson, 2005), and PBEsol (Perdew et al., 2008)
are in excellent agreement with experimental values, especially at low pressures. This indicates
that the computations using the new approximations are likely to produce predictions that are
more reliable for the various physical properties of materials.

2.3 Reliability of high-pressure experiments

Next, we will discuss the reliability of data obtained by high-pressure experiments. The
three experimental data sets using different pressure standards are plotted in Figure 1. The
discrepancy between the different pressure standards increases as the pressure increases.
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Thus, the uncertainty of experimental pressures is significant at extremely high pressures.
The experimental pressure standards using the equations of state for materials have been
determined by a dynamic compression experiment (shock-wave compression experiment)
or a static compression experiment (e.g., diamond anvil cell experiment). Shock-wave
experimental data have frequently been used to establish and verify a pressure standard. It
is useful that the three independent parameters (length, density, and time) can be obtained
from each shock-wave experiment and these parameters can be converted to volume,
temperature, and pressure, which constitute the equation of state of materials. However,
there are a couple of problems in the construction of the equation of state used as the
pressure standard by the shock-wave compression data. One of the problems is that the
error of the experimental data is great, compared with that of static compression
experiments. When the equation of state of a solid is determined and used as the pressure
standard, the data from the shock-wave experiments are used sometimes to analyze small
changes in thermoelastic parameters, whose changes are smaller than the error in the
experimental data. This is quite misleading. Another problem is that there is a significant
problem in that an uncertain parameter, such as the Griineisen constant, is used to estimate
the experimental pressure. The dependence of the Griineisen constant on temperature and
pressure has to be assumed with great uncertainty.

On the other hand, static compression experiments also provide invaluable data to
investigate a pressure standard. Here, we consider the problem of the pressure standards
proposed from previous studies by using the data of the high-pressure phase of NaCl
shown in Figure 1. The experimental data in Figure 1 are plotted by using the pressure
standards that have been frequently used in previous experimental studies. The difference
in pressure data among the different pressure standards indicates the rough size of error
for the pressure standard. A comparison of the first-principles calculation and the high-
pressure experiment data leads to a valuable discussion. It has already been pointed out
that the difference in pressure values obtained by the different approximations used in the
first-principles calculation indicates the rough size of the error of the calculations. At low
pressures, it is clear that the error in the numerical results is remarkably large compared
with the error associated with the experimental data. However, this relationship changes
at high pressures. The magnitude of the error in the experimental data increases as the
pressure increases, and at pressures higher than ~100 GPa, it becomes almost the same
size as the error in the calculation. In addition, this relation is reversed at extremely high
pressures. It is known that the difficulty in obtaining reliable measurements increases as
the pressure increases, and the error in experimental data becomes significant at high
pressures. In the case of the first-principles calculation, the error does not increase as
highly when compared with experiments conducted at extremely high pressures.
Although significant uncertainties at ambient conditions of the first-principles
calculations compared with those of experiments are recognized, the first-principles
calculations can provide invaluable data in high-pressure science, where there is great
difficulty with experimental approaches.

There is another interesting relationship between the calculated and experimental data. At
low pressures, the experimental data are located in the middle of the calculated data. As the
pressure increases, the experimental data based on two pressure standards (Jamieson et al.,
1982; Anderson, 1989) shift to the low-volume side compared with the calculated values.
This indicates that these pressure standards give pressures lower than those from another
standard (Takemura, 2007) corrected by the new ruby scale of Dorogokupets & Oganov
(2007). The pressures from Takemura’s standard are in good agreement with those from the
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first-principles calculations using modern approximations. It is believed that the
compression data for gold reported recently by Takemura (2007) are among the most
reliable. The correction of Takemura’s pressure standard is done by one of the reliable ruby
standards (Dorogokupets & Oganov, 2007). On the other hand, the experimental data that
significantly deviated from the first-principles calculations are based on the old ruby
pressure standards (e.g., Mao et al., 1978; Mao et al., 1986). Their pressure standards based
on the pressure shift in the fluorescence line of the ruby crystal has been used frequently in
many high-pressure studies, especially at ambient and low temperatures. According to the
comparison between our numerical results and experimental data, these old ruby standards
may underestimate the experimental pressure. Recently, the ruby pressure standard has
been revised using experimental data or numerical results by other research groups
(Holzapfel, 2003; Kunc et al, 2003; Dewaele et al., 2004; Chijioke et al., 2005; Dorogokupets &
Oganov, 2007). These studies reported that the old ruby standards have a significant
uncertainty, which is consistent with our study. The underestimation of the old ruby
standards seems to be of the order of 5-10%. Finally, we can confirm that the volume-
pressure data of B2-type NaCl based on the modern pressure standard are in excellent
agreement with those of the first-principles calculations using modern approximations.

2.4 The problem with the Griineisen constant

Some formulas can be used to describe the equation of state for crystals. For instance, the
Mie-Griineisen-Debye formula has been frequently used because it is simple and easy to
apply to various types of systems. Is not there a problem in using this formula? In the Mie-
Griineisen-Debye formula, a thermal pressure (the increase in pressure by heating a solid at
constant volume) is expressed as

By = % AEy, (1)

where AEy, V, and y are the internal energy, the volume, and the Griineisen constant,
respectively. The internal energy is given by the Debye’s model, and the Griineisen constant
is expressed as a function of the volume.
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This expression is the Mie-Griineisen-Debye equation of state. The Griineisen constant used
in the Mie-Griineisen-Debye equation of state has a significant problem. This equation
indicates that the pressure value might have a large error if the Griineisen constant has a
significant uncertainty. In the case of the Mie-Griineisen-Debye equation of state, the
temperature dependence of the Griineisen constant is assumed to be negligible. If the
temperature dependence of the Griineisen constant is nonnegligible, the Mie-Griineisen-
Debye equation of state gives misleading values of pressure in the study of solid crystals.
Therefore, we verified the dependence of the temperature and the pressure on the
Griineisen constant using the first-principles molecular dynamics method (Ono et al., 2008).

The first-principles molecular dynamics method can directly calculate the internal energy,
the volume, and the thermal pressure defined in equation (1), and the dependence of the
temperature and the pressure on the Griineisen constant can also be calculated by using
these values. The pressure dependence of the Griineisen constant included in the Mie-
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Griineisen-Debye equation of state was confirmed and is demonstrated in Figure 2. On the
other hand, the temperature dependence neglected in the Mie-Griineisen-Debye equation
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Fig. 2. Calculated Griineisen parameter. The crosses represent the calculated Griineisen
parameters at 300, 500 and 2000 K using first-principles molecular dynamics calculations.
The solid lines denote the linear fit using the least-squares method.

of state is small at temperatures of up to several hundred degrees. However, the difference
in the dependence between low and high temperatures could not be neglected especially at
temperatures higher than 1000 K. According to this behavior, the Mie-Griineisen-Debye
equation of state can be applied at several hundred degrees at the highest, when it is
constructed using experimental data obtained at low temperatures. In other words, the Mie-
Griineisen-Debye equation of state is not suitable for constructing the equation of state of
solids applied to a wide range of temperatures, and the pressure standard based on the
Mie-Griineisen-Debye equation of state may involve significant uncertainty. According to
Maxwell’s relations in thermodynamics, the temperature dependence of the Griineisen
constant at constant volume is given by

() 2
or )y, T\ olnV Jg

When the temperature is much higher than the Debye temperature, the Dulong-Petit law
suggests that the specific heat (Cy) is almost constant in solids. That is, the temperature
dependence of the Griineisen constant is extremely small at extremely high temperatures.
As the temperature dependence is not small at middle temperatures, it is possible that an
obvious difference in the temperature dependence of the Griineisen constant between low
and high temperatures can be confirmed. It can explain the change in the Griineisen
constant calculated by the first-principles molecular dynamic method. Here, the high-
pressure phase of NaCl, which is a typical crystal constituted by an ionic bond, has been
investigated. It is thought that similar studies for other materials with different bond types,
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such as metals or oxides, should be carried out to understand a general rule for the
temperature dependence of the Griineisen constant of solids at high pressures. It is
extremely dangerous to use the Griineisen constant without understanding its behavior at
high temperatures, because it is one of the most important parameters to establish the
equations of state of solids for not only static compression, but also shock-wave
compression experiments. Indeed, most studies on constructing pressure standards have not
considered this influence of the Griineisen constant.

2.5 New pressure standard obtained by first-principles calculations combined with
high-pressure experimental data

It is difficult to construct a new pressure standard that is more reliable than those proposed
by previous studies using experimental data at high pressures by the first-principles
method, because it is clear that the errors are not negligible in the current first-principles
computations. On the other hand, we have understood that there are serious problems in
determining experimental pressure standards under high pressure because of the
uncertainties of the ruby pressure standard or the Griineisen constant.

Recent approaches to establish a reliable pressure standard employed much previously
reported experimental data obtained with static and the shock-wave compression methods
to determine the parameters of the equation of state. However, a serious problem is
associated with this approach. The previous static compression data used to construct the
equation of state are affected directly or indirectly by the old ruby pressure standard. As
described above, a significant error is confirmed in the old ruby pressure standards (Mao et
al., 1978; Mao et al., 1986), which have been widely used in previous studies. Thus, it is
thought that most static compression experimental data used in the construction of the
equation of state for the pressure standard have nonnegligible errors. Therefore, it should
only be used as fundamental data to construct the equation of state after the problem of the
old ruby pressure standard is solved. In Figure 1, one of the experimental data of B2-type
NaCl is plotted using the new gold pressure values corrected by the new ruby pressure
standard. This is one of the approaches that can be used to avoid the uncertainty of the old
ruby pressure standard. Moreover, it is also clear that the problem with the Griineisen
constant must be solved before previous shock-wave compression experimental data are
used to establish the equation of state for a reliable pressure standard.

Recently, an attempt to understand an internal consistency among some pressure standards
using high-pressure experiments has been reported (Fei et al., 2007), as it is not easy to
construct a reliable pressure standard. This approach in constructing a reliable pressure
standard also has a major problem. Each experimental data set has a different uncertainty
that is dependent on the experimental conditions, such as skill and/or the method. When
these experimental data are combined to analyze the pressure standard, the uncertainties of
each data are accumulated. The most reliable gold pressure standard used in Figure 1 is
established using the compression data of gold reported by Takemura (2007). This
compressibility of gold was obtained using the correction of the nonhydrostatic pressure
conditions for the experimental data of Takemura (2001) and Dewaele et al. (2004). Both
research groups have published many papers concerning the equations of state for solids,
and their experimental data have been cited repeatedly. Although the reliability of their
experimental skills is recognized in the community of high-pressure science, it is necessary
to correct their raw data when we establish a precise pressure standard. This indicates that it
is quite difficult to compare the experimental data reported by different research groups that
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have different levels of experimental skills and use different methods. In other words, the
study of consistency between different pressure standards is difficult without considering
experimental errors, such as the nonhydrostatic condition. Indeed, investigation into the
consistency of pressure standards while considering the error of each experiment is rare.

In order to overcome the difficulties mentioned above, we have performed an alternative
approach of combining high-pressure experimental data and first-principles calculations to
make up for each disadvantage. According to our study, the volume-pressure relation of
B2-type NaCl estimated by first-principles calculations may have nonnegligible errors. The
reliability of high-pressure experimental data obtained at ambient temperatures is better
than that of first-principles calculations if an appropriate correction for the experimental
pressures is done. Therefore, the reliability of the numerical results is improved
considerably if the pressure-volume-temperature data estimated by the first-principles
molecular dynamics calculations are corrected based on the experimental data.

On the other hand, it is known that there is significant uncertainty of the temperature in the
study of the equation of state of solids reported by previous high-pressure experiments. It is
difficult experimentally to determine precisely the thermal pressure and the coefficient of
thermal expansion at high temperatures. In the case of the static compression experiments
using a large volume press apparatus, a thermocouple is used to measure the sample
temperature. The thermocouple indicates the sample temperature using a voltage (EMF)
proportional to the temperature difference between two different metal conductors.
Although the method has been established at ambient pressures, it is thought that a
significant uncertainty is introduced at high pressures. The influence of pressure on the EMF
has to be considered in high-pressure experiments. Indeed, most experimental studies have
not taken into account this pressure effect on EMF. At higher pressures performed using
large volume press experiments, laser-heated diamond anvil cell experiments have often
been performed. In this experimental method, the temperature of the sample is estimated
using the radiation from the sample during heating. It is known that this temperature
measurement has an extremely large error. In addition to the large fluctuation of
temperature (~several hundred K) on heating, the conversion from the spectrum of the
radiation from the sample to sample temperature has a significant uncertainty that concerns
thermal emission. If the sample is an ideal black body, it is simple in that the emissivity is 1.
However, the sample is not a black body. Therefore, it is necessary to know the dependence
of the emissivity on the temperature, pressure, and wavelength of each material to estimate
an accurate temperature from the radiation of the sample. These dependencies under high
pressures and temperatures are uncertain. In the case of the shock-wave compression
experiments, the experimental data might contain large errors because of the problem
concerning the Griineisen constant mentioned above. Thus, there is a significant advantage
in the use of data calculated by first-principles molecular dynamics to know the dependence
of the temperature concerning the equations of state for materials.

From the viewpoint mentioned above, an attempt to establish a reliable equation of state for
a material to construct a new pressure standard has been performed by combining the data
from high-pressure experiments at room temperature with the data from first-principles
molecular dynamics calculations at high temperatures. We have already discussed the
synergy between the high-pressure experiments and the first-principles computations
concerning the equation of state for the high-pressure phase of B2-type NaCl. Recently, a
study on a pressure standard of B2-type NaCl combining both experiments and
computations has been reported (Ono, 2010a). A study on Ta metal has also been reported
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(Ono, 2009). The equations of state of B2-type NaCl and Ta have been revised considerably
by these studies. In contrast, a certain amount of error in the parameters of the equation of
state concerning the temperature was confirmed in the first-principles molecular dynamics
calculations. The error in the calculations is thought to be related to the estimation of the
interaction factor between the electrons. As the first-principles computations clarified the
interesting features of the ruby pressure standard and the Griineisen constant, which are
important factors to determine the precise equation of state for materials, synergy between
first-principles computations and high-pressure experiments is necessary to establish more
reliable pressure standards in future studies.

3. Implications for earth science

It is believed that the Earth’s and terrestrial planets’ interiors consist of oxides and iron
compounds. The physical properties of these minerals are important keys to understand
their structure, composition, and evolution. Recently, the approach of combining high-
pressure experiments with first-principles computations was successful in discovering new
minerals and predicting physical properties of minerals at high pressures and temperatures.
In this section, some interesting topics are introduced.

3.1 High-pressure phase of iron

The stable structure of iron under ambient conditions is body-centered cubic (bcc) Fe (a-Fe).
The phase transition from bcc to the face-centered cubic (fcc) structure (y-Fe) has been
confirmed to occur at a temperature of 1185 K. Under high pressure, the bec-Fe transforms
into the hexagonal close-packed (hcp) structure (e-Fe) (Takahashi and Bassett, 1964), and
this structure seems to be stable over a wide range of pressures and temperatures
approaching those existing in the Earth’s core. It is known that the magnetic and spin states
of iron have a major influence on the physical properties of iron. Although the magnetic
structure of hcp-Fe has been investigated for over four decades, there is an inconsistency
between experimental and theoretical studies. Mossbauer experiments have been
interpreted to show the absence of magnetism in hcp-Fe (Williamson et al., 1972; Nasu et al.,
2002). In contrast, the theoretical study based on DFT has shown that the antiferromagnetic
state is stable at pressures below 50 GPa (Steinle-Neumann et al., 1999). However, it has not
been clearly explained why it is difficult to identify the antiferromagnetic state
experimentally. A first possibility is that the significant hysteresis of the bec-hcp transition
may disturb the magnetic ordering in hcp-Fe; this is because most previous experiments
were performed at low temperatures where the accumulated differential stress in the
sample could not be released. Second, the experimental errors of the Mossbauer technique
used in previous studies were not negligible, because the antiferromagnetic moment
predicted by first-principles calculations is small. Third, the quantum spin fluctuation in
hep-Fe (Mazin et al.,, 2002) is too fast for the time scale of the Mossbauer measurement,
thereby inhibiting detection of a hyperfine field.

We investigated the magnetic properties of hcp-Fe using first-principles calculations to
determine the change in the cell parameters. The antiferromagnetic type II structure (space
group = Pmma) was used in our calculations. The antiferromagnetic type II structure has two
different Fe sites, and their magnetic moments are opposed to each other. Figure 3 shows
the change in the ratio of the cell parameters of hcp-Fe as a function of pressure. In the case
of the antiferromagnetic type II structure, the calculated c/a ratio decreases up to
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Fig. 3. Changes in the ratio of the cell parameters of hcp-Fe. Black circles represent the c/a
ratio from experimental data at room temperature. The red line represents the change in c/a
ratio calculated by the first-principles computations including the spin effect at 0 K. The blue
line represents the calculated ratio without the spin configuration.

approximately 55 GPa, and then increases slightly with increasing pressure. In contrast, the
nonmagnetic type structure without the spin effect shows that the calculated c/a ratio
increases simply with increasing pressure. Experimental data (Ono et al., 2010b) are also
shown in Figure 3. Although the ratio of the cell parameters from our first-principles
calculations is approximately 1% greater than that observed in our experiments, the change
in the ratio from the calculations for the antiferromagnetic type II structure is in good
agreement with the experimental data. The change in the ratio of the metastable
nonmagnetic state calculated without the spin effect is apparently inconsistent with that
observed in experiments. The magnetic moment of the antiferromagnetic state decreased
gradually, with increasing pressure, and reached zero at approximately 55 GPa (Ono et al.,
2010b). The disappearance of the magnetic moment indicates that a magnetic transition
occurred from the antiferromagnetic to the nonmagnetic state. As the spin directions of the
antiferromagnetic state are orientated perpendicular to the c axis in the hexagonal symmetry
cell, and the a axis is less compressible than the c axis, it is therefore clear that a magnetic
transition would induce a change in the rate at which the c/a ratio responds to compression.
Finally, the disagreement between previous experiments and computations was reconciled
by our approach using both first-principles calculations and high-pressure experimental
data. This study indicates that the low-spin hcp-Fe is the most stable phase in the Earth’s
core at pressures of ~350 GPa.

3.2 High-pressure phases of MgSiO;

Seismic measurements infer that the Earth’s interior has two layers, the mantle and the core.
The core is much denser than the mantle, and consists of iron-rich materials. The chemistry
of the mantle can be estimated from information obtained from meteorites and
cosmochemistry. This indicates that the composition of the mantle is close to that of the
universe as a whole, but with a strong depletion of volatile elements, such as hydrogen,



Synergy Between First-Principles Computation and Experiment in Study of Earth Science 103

carbon, and rare gases. According to mineralogy studies, the upper mantle must be
dominated by Mg>SiO4 compounds (Ono, 2008). In contrast, the lower mantle may consist of
MgSiO; and MgO. High-pressure experiments and first-principles calculations show that
MgSiOs in the lower mantle has a perovskite structure. The nature of the D" layer at the base
of the lower mantle is unique. It has quite a variable thickness and a significant seismic
anisotropy. The most plausible explanation is that MgSiOj; transforms from a perovskite to a
CalrOs-type (post-perovskite) structure in this region (Oganov & Ono, 2004). First-principles
computations contributed to the discovery of this new mineral.

At first, the CalrOs-type structure at high pressures was reported by an experimental study
of iron oxide (Fe>Os) (Ono et al., 2004; Ono & Ohishi, 2005). It is known that one of the high-
pressure phases of MgSiO; has an ilmenite-type structure. The ilmenite-type structure is the
same as that of hematite, which is the stable structure of Fe;O; at ambient conditions. Thus,
MgSiOs; may have a transition sequence similar to Fe)Os, and the CalrOs-type structure
observed in Fe;O; may appear in MgSiO; at high pressures. This assumption has been
confirmed by first-principles computations. Finally, a new mineral of MgSiO; has been
confirmed by both first-principles calculations and high-pressure experiments (Oganov &
Ono, 2004). The structure of CalrOs-type MgSiOs determined experimentally is shown in
Figure 4.

Fig. 4. Crystal structure of CalrOs-type (post-perovskite) MgSiOs (JCPDS-0580689). Blue
spheres are Mg atoms. Polyhedra indicate SiOs octahedra. The precise structure was
determined by Rietveld refinement (Ono et al., 2006b).

The existence of CalrOs-type MgSiO; can explain the unique features at the base of the
Earth’s lower mantle (Ono & Oganov, 2005). Although at present the CalrOs-type MgSiOs
phase exists in the Earth’s deep interior, the condition of the Earth in the past was quite
different from that of present Earth. The Earth’s temperature just after its formation was
much higher than it is presently. At higher temperatures, the CalrOs-type MgSiO3 phase
in the D" layer did not exist at the base of the lower mantle, because perovskite-type
MgSiOs is stable deep in the Earth’s mantle (Figure 5). Then, the CalrOs-type MgSiO3
phase appeared during the cooling of the Earth (Ono & Oganov, 2005). The solid inner
core, which consists of iron compounds, also appeared during the cooling stage of the
Earth.
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Fig. 5. Structure of the Earth’s interior. The temperature of the young Earth was higher than
that of the present Earth (Ono & Oganov, 2005).

3.3 High-pressure phases of carbonates

High-pressure polymorphs of carbon-bearing minerals are important to understand the
circulation of carbon in the Earth’s interior. Therefore, phase transitions and physical
properties of high-pressure phases related to carbon have been the object of intense
experimental investigation. High-pressure phases of carbonates are likely to be one of the
host minerals for carbon that are present deep in the mantle. However, significant
discrepancies in the crystal structures of high-pressure carbonates have been reported by
previous high-pressure studies because of experimental difficulties. Recent first-principles
computations solved some of these experimental discrepancies and contributed to the
discovery of several new high-pressure structures.

YM%W

Fig. 6. Crystal structures of high-pressure polymorphs of CaCOs. Left, post-aragonite
CaCOg; right, pyroxene-like phase. Green, blue, and red spheres are Ca, C, and O atoms,
respectively. Blue bonds indicate triangular COs. Red polyhedra indicate CO, tetrahedra.
The structure was predicted by first-principles calculations (Oganov et al., 2006).

Calcium carbonate (CaCQO;) is believed to be a major mineral containing carbon that exists
in the deep interior of the Earth. It is generally known that calcite, which is the stable
structure of CaCOj3 at ambient conditions, transforms to aragonite, which often occurs in



Synergy Between First-Principles Computation and Experiment in Study of Earth Science 105

metamorphic rocks, formed at high pressures and temperatures that correspond to the
Earth’s crust and the uppermost upper mantle. It was unknown whether aragonite
transforms to a new high-pressure phase deep in the mantle. Recently, experimental
observations indicated that aragonite CaCOs transformed into a new structure (post-
aragonite phase) (Ono et al., 2005). The estimation of the crystal structure of this new
CaCO; had significant uncertainty because of the poor quality of the experimental data. In
contrast, the recent approach to determine the unknown crystal structure based on first-
principles computation can provide a powerful tool for high-pressure mineralogy. One of
the successful codes used in this approach is “USPEX” developed by Oganov & Glass
(2008). The computations using the USPEX code solved the unknown structure of the
high-pressure phase of CaCO; (Oganov et al., 2006). This new phase (post-aragonite
CaCO:3) has an orthorhombic symmetry with space group Pmmn, as shown in Figure 6.
This study also predicted the existence of another unknown structure with C222;
symmetry, which had not been observed in previous experimental studies. One of the
interesting features of this new structure is that a change in the coordination number of
the carbon atom is predicted. All CaCOs polymorphs reported in previous studies are
composed of triangular CO; units. In contrast, the new structure has COy tetrahedron
units (Figure 6). After this prediction, high-pressure experiments confirmed the existence
of the C222; structure (pyroxene-like phase) (Ono et al., 2007). The transition pressure
predicted by first-principles calculations (Oganov et al., 2006) is in excellent agreement
with that observed experimentally (Ono et al., 2007). This indicates that the prediction
based on first-principles computations is a powerful tool to investigate the behavior of
high-pressure phases.

4. Conclusion

In conclusion, we considered uncertainties in the computations based on first-principles
quantum mechanics and high-pressure experiments, and introduced a new attempt to
construct a pressure standard based on the equations of state of materials using the synergy
between the first-principles computations and high-pressure experiments. In the present
situation of first-principles calculations, it is difficult for the computation approach to
establish the equation of state for materials that are more reliable than that established by
experimental data. However, the speed of the development in the field of first-principles
calculation is extremely rapid because of the very high demand from many fields, such as
physics, chemistry, life science, medicine, and engineering. Therefore, computations based
on first-principles quantum mechanics will make an important contribution to the problem
of establishing a pressure standard in the near future. Thus, the importance of the
combination of experimental and theoretical approaches increases further, and the
possibility of a significant breakthrough using this synergy can be expected. Indeed, our
approach combining first-principles computations and high-pressure experiments led to a
new insight into the interesting behavior of the high-pressure phase of iron. Furthermore,
the discovery of a new type of iron oxide (Fe;Os) inspired the discovery of a new phase of
MgSiOs, which contributes to understanding the properties of the bottom of the Earth’s
mantle. In the case of carbonate, first-principles computations predicted the structure of new
phases that had not previously been identified experimentally, and helped to identify new
phases in later experiments. Our investigations into carbonates also contributed to
understanding the carbon cycle in the Earth’s interior.
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1. Introduction

A negative muon is a lepton of the second generation with mass number about times
heavier than that of electrons, and has a finite lifetime of 7, =2.197 x 107 sec . This lifetime
is amply long for most experiments. Muon catalyzed fusion (puCF) is a physical phenomenon
in which the negative muon is able to cause fusion at room temperature and thereby
eliminating the need for high temperature plasmas or powerful lasers (Owski, 2007; Imo et
al., 2006; Filchenkov et al., 2005; Filipowicz et al., 2008; Pahlavani & Motevalli, 2008, 2009;
Marshal, 2001; Bystritsky et al., 2006, Nagamine et al., 1987, Nagamine, 2001; Ponomarev,
2001). In comparison with (uCF), hot fusion schemes are made difficulty by the electrostatic
(Coulomb) repulsion between positively charged nuclei. In the two conventional approaches
to control fusion namely, Magnetic Confinement Fusion (MCF) and Inertial Confinement
Fusion (ICF), barrier is partially surmounted by energetic collisions. The particle densities, n
and confinement times, 7 in the plasma, (T >10°K) are typically more than ten orders of
magnitude difference for these two schemes but the product of these quantities required for
d-t fusion is nr >10"sec/ cm® . For the pCF, effectively nz ~ 10% sec/ cm® , but this criterion
does not tell the whole truth because, in pCF the objective is to tunnel through the barrier
without the benefit of kinetic energy. It is known that the d—t fusion by the usual magnetic
or inertia confinement suffering a lot of difficulties and problems causing from tritium
handling, neutron damage to materials and neutron-induced radioactivity, etc.

Study of the muon catalyzed fusion reactions is of great interest and carried out in many
laboratories of the world recently (Ishida et al., 1999; Petitjean et al., 1992, 1993; Bystritsky et
al., 2005; Pahlavani & Motevalli, 2008, Bystritsky et al., 2000; Matsuzaki et al., 2001). Muons
can be created by the decay of pion which is generated in the collision of intermediate-
energy proton with target nuclei. In the muon catalyzed fusion process, after injection of
muon in to deuterium and tritium mixture, either dy or a fu atom is formed, with a
probability proportional to the relative concentrations of D and T in the mixture. These
atoms are formed in exited states (Breunlich et al., 1989; Korenman, 1996) and then, due to
cascade processes, de-excite to ground states. The following reactions illustrate direct
formation of muonic dp and tp atoms

u +D—>du+e (4,) 1)
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H +T>tu+e () (2)

where e denotes an electron and A1, and A, are the rate of reactions (1) and (2). The
probability of formation of the dy atom that will reach its 1s ground state is quantified by the
parameter g, , which is a function of target density, ¢ and tritium concentration, C, . Also it
is very sensitive to the du kinetic energy distribution (Menshikov & Ponomarev, 1984;
Czaplinski et al., 1994). The difference between binding energies of fi and dy is about 48.1
eV (Bom et al., 2005). Therefore, the transfer of a muon from dy to a triton is favorable for all
temperatures in the given processes

du+t—tu+d+481eV (1y) 3)

with a rate of 4 ;= 2.8x108¢ (Caffery et al., 1987; Jones et al., 1987; Bystritsky et al., 1980;
Breunlich et al., 1987). The muon mass is about 206.77 times larger than the mass of electron.
Consequently, the size of a muonic hydrogen atom is smaller than the one of the electronic
hydrogen by the same rate approximately. These small muonic atoms can approach other
hydrogen nuclei experiencing reduced Coulomb barrier and then induce d-t fusions. The
process in which a muonic molecule is formed is the most important step in the pCF. The
formation of muonic molecules of hydrogen isotopes and their nuclear reactions have been
the subject of many experimental and theoretical studies (Caffery et al., 1987; Jones et al.,
1987; Bystritsky et al., 1980). In collisions of ty muonic atoms with D, and DT molecules, the
muonic molecules dty are formed during a time interval z,,, < 10 ¥sec (Jones et al., 1983;
Eliezer & Henis, 1994) according to the following resonance reactions

tu+ Dy > (dt),, 42¢ | (Aay-a) @)
tu+ DT = | (di),, 12| (21) Q)
A aty= Aaru-aCa + At Cy (6)

in the excited rotational-vibrational (Jv) state with quantum number J=v=1, where C;sand C;
are concentrations of deuterium and tritium nuclei, respectively. A strong resonance effect
appears due to degeneracy in the excited state of the dty and the electron molecule complex.
The rate of formation of the dty molecules has been found to depend strongly on temperature,
density and on whether collision of the f atom occurs with a D, or a DT molecule (Bom et al.,
2005; Faifman et al., 1996; Ackerbauer et al., 1999).

In fact, the radius of a muonic hydrogen ion (dty) is much smaller (about ~ 200 times) than a
usual electron molecule, therefore the nuclei may tunnel the coulomb barrier with a high
probability and fuse with a rate of = 1012 sec~! (Bogdanova et al., 1982). Resonant formation of
the ddu molecule at very low temperatures was observed in solid and liquid D, targets
(Bogdanova et al., 1982).

Developed methods in this field are based on detailed three-body equations which provide
a correct description of the quantum mechanical three-body systems (Takahashi &
Takatsuka, 2006; Kilic, Karr & Hilico, 2004; Nielsen et al., 2001; Pahlavani, 2010). Theoretical
study of muonic three-body system comprises different theoretical methods, e.g. variational
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methods (Viviani et al. 1998; Frolov, 1993), Born-Oppenheimer approximation (Beckel et al.,
1970; Kilic et al., 2004) and adiabatic expansion (Fano, 1981; Lin, 1995).

The Born-Oppenheimer approach assumes the nuclei to be infinitely heavy with respect to
the negatively charged particle. It should be kept in mind that the following Born-
Oppenheimer approach is the simplest solution to the three-body coulomb system. This
approach is expected to be a poor approximation for calculations of muonic molecule
eigenvalues. In this work, we calculate binding energies of the bound states of the ddu
muonic three-body system molecule using the adiabatic expansion method.

2. Adiabatic expansion approximation for the three-body system

The exact Hamiltonian that describes muonic three-body system can be shown by following
relation:

1 1 _» 1 21z, 2z, 212y

L v _ _ _
= 21111VRl 2m, Re Zm#vr” ‘?ﬂ—ﬁl‘ 77#—1—22‘+‘R1—R2‘

)

where 1 and 2 denote the two nuclei, their position is given by R; and Ry, and the muon
coordinate is 7. The center of mass coordinate Rey is given by

= MRy +myR, +m

7
Rey = = ®)
my +1my +m,

It is convenient to define Jacobi coordinate r and R as follow:

©)

R=R,-R, (10)

where R is the internuclear coordinate and r is the muon coordinate to midpoint between the
two nuclei. In these coordinates (R; r), the Hamiltonian denoted by equation (7) is change to
the following operator:

Heel w2, — Y yoiajovyp-tyr - A% Bh . anH g
2My M 2M 2m ‘?y_Rl‘ 7 Rz‘ ‘ 17 2‘
where
My =my +my +m, (12)
11,1 (13)
M m m,
IR, ”
moomy+my om,
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A== (15)

my +my,

After separation of variables, the non-relativistic Hamiltonian in units of e=#%=m = 1, can

be given by
R 1 Ao 2125
H(@,R)=——(Vg+=V,) -H+—= 16
(0,R) ZM( RFYS ) 177 (16)
where
Hy=—v?, -2 2 17)
2m oo

where 0 represent the five dimensional variable. We use the set 6=(0,®,&,77,9) where
(©,®,p) define the Euler rotation specifying the body-fixed frame with its unit vectors to

coincide with the principal axes of the inertia tensor of a three-body system. The hyper-
spheroidal coordinates & and 7 are easily expressed by the muon-nucleus distances r, r, and

the internuclear distance R,
n=—-—= (-1<7<1) (18)

n+n

£= (1=& <) 19)

The three-body Hamiltonian (16) commutes with the total angular momentum operator for
the three particle system, ], its projection on z-axis, J;, and the total parity operator,
P(R — -R, r —» —r). Eigenfunctions of the Hamiltonian in the total angular momentum

representation reads:
L ] )
\PI]J,M(R’T) = Z Fmp(ng’n)DAl;lrrz((D’®’¢) (20)
-
Adiabatic expansion of radial function, Fn]f’ (R,&,n) is usually written in the form:

N-1

EVREm) =Y Y Wi Ri&m iy RR™ + [k, (ReE )y, (AR (21)
N=1 =0 1=0

where 7/ (R) describe relative motion of the nuclei. Let us consider the Wigner function,

DJ; (®,0,p) which is the eigenstates of J2, J. and R.J/R with the eigenvalues J(J + 1), M and

m (Davydov, 1973). It can be transformed under the inversion as follow:

PD},(®,0,9) = D}y, (® + 7,7~ 0,7~ 9) = (1) "D}y _,,(©,0,9) (22)
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If m=#0, the resultant Wigner functions would be different, and the angular functions consist
both even and odd combinations. It is convenient to specify these combinations as follows:

2] +1 "
Df3(@,0,0) = L[ (41D, (0,0,0) + p(-1) D)y, (0,0,0)] @)
where p=+(-1)! is the eigenvalue of the parity operator:

PD;, = pD, (24)

The functions presented in equation (23) (in bracket) are satisfying the following
orthonormality condition:

T, 2 2z I * ]'p' _
[;sin@do [ "do [ “dp [D},(©,0,9) DY (©,0,0)=5,5, 5,5, (25)

If m = 0, both the Wigner functions in (22) are reduced to the ordinary spherical function
Ym(®, @) so that the dependence of ' disappears and the angular functions satisfying the
conditions (24) and (25) are:

Ym(©,P)

2z

In this case the parity is unambiguously specified by the quantum number J: p=+(-1) . So, our
basis functions have the following structure:

DJf eo(®,0,0) = (26)

2h(R)
R

i (R,©,0,¢,1,0) =Dl (®,0,0)y,,(,m;R) 27)

The wave functions ‘I’Il\’,}im(R,(D,(I),f,n,(/J) describing reactions hu+h, h = (p, d, t) can be
decomposed over the solutions y;, (£,7;R) of the Coulomb two-center problem. y;,(£,7;R)
is the complete set of solutions of the Coulomb two-center problem, therefore

Hyyi(&,m;R)F(9) = E;(R)y;(&,7m;R)F(p) (28)

describing the muon motion around fixed nuclei separated by a distance R. E{(R) is the energy
of a muon in the state i as a function of R. Here we show how to separate the variables through
the use of the ellipsoidal (or, prolate spheroidal) coordinates

VE=1)(1=7)cosp 29)
y =g E )= sing 60

X =

N | >

R
Z=E§77 (1)
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Note that the coordinates &, 7 and ¢ are orthogonal, and we have the first fundamental form

ds® =dx? +dy? + dz* = h3d&® + hydn® + hgdy? (32)
where
2_@2+iz+ﬁ2_1ﬁ 1-72 -
2 \ee) \og) o) a1
2 2 52 g2
hgz[axJ [63/] +[8z] _R[«: —3] o
on on on 4(1-9
2 2 5
2= a—x a—y ﬁ Rﬁ 2 _ .2
i-(5) () (&) e ) -
Thus

2oL | oMk 0 ofhhy 0| o[hh o
hehh,| 05\ he 05 ) on\ h, On) o h, Op

___t ey g pl], Lot 2
_Rz(éznz){ae{(‘f Dag}aq{(l ’7)@,7}(521)(1,,2)6(/)2} (36)

Note that through the coordinate transformation (29-31), we have

h=5E+n) @)

= (=) ©9)

Writing the wave function as ;(&,7;R)F(p) = G(£)H(7)F(p) and changing the variable to

spheroidal coordinates, equation (28) can be separated into following three one-dimensional
equations:

d%F
d(p(f’ ) 4 m2F(p) =0 (39)
i 2 dG(f) _ 22 m2 _
dg{(é e } [Amqé 7% 6EQ_JG(@—O (40)
2
{(l—nz)di(")}(f\—ﬂqn—q2n2— z 2]H(n)—o (41)
n 1-n
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where

R
‘" q(z; +2,) 2

pe—t )

q(z1 — 2,)
Note that A and g are unknown parameters and should be obtained from (40) and (41) as
eigenvalues of the coupled system. Once A and g are obtained, then E can be obtained from
q?=-R2E/2. By substitution of expression (8) into the Schrodinger equation with Hamiltonian
(16) and after averaging over spherical angles (®,®) and the muon state, one obtains the

radial equation

2
ot 2@+ eV o=@~ L 1) -0 (1)

where & =E —E;(«) is the collision energy and E is the total energy of the system and E;()

z, 2
is the ground state energy of muonic atom. VBfo:E—E(w)*‘sz is the potential

corresponding to the Born-Oppenheimer approximation and U, = <i (H-H, - Z1RZz i > is the
adiabatic correction. The adiabatic potential Va4(R) is:
Vaa(R)=Vp_o(R)+U;(R) (45)

The adiabatic potential Va4(R) for the (ddy) muonic three-body molecule is calculated in the
adiabatic expansion method. The adiabatic potential curves and qualitatively similar for
each of muonic molecules and are displayed for the (ddu) muonic molecule in Figure 1.

Results of the calculations of binding energies of the bound states (],v) of the (ddu) muonic

molecule are compared with the results of the other methods used in (Korobov et al., 1992;
Kilic, Karr & Hilico, 2004) and are given in Table 1.

Ad

Stat ’
ates (J,v) (Pahlavani&Motevalli, 2008)

(Korobov et al., 1992) (Kilic, Karr & Hilico, 2004)

(0,0) 325.06 325.0735 325.070540
0,1) 35.79 35.8436 35.844227
(1,0) 226.62 226.6815 226.679792
1,1) 1.73 1.97475 1.974985
(2,0) 86.20 86.4936

Table 1. Binding energies (eV') of the states (J,v) for the ddx muonic molecule.
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Fig. 1. Adiabatic potential curves, V,;(R), corresponding to ddu system (Pahlavani &
Motevalli, 2008).

The calculated binding energies are in good agreement with the previous calculations by
other authors using different methods.

3. Charge-asymmetric three-body system in hyper-spherical elliptic coordinate
system

Study of the nuclear synthesis reaction d—3He at low collision energies (below 1 keV) is of
interest for its applications in nuclear and astrophysics (Belyaev et al., 1995). The relatively
large energy gain as well as the lack of tritons in the initial and neutrons in the final channel
makes this reaction a very attractive source of thermonuclear fusion energy.

The negatively charged energetic muons, after stopping in the D—3He mixture, fuse to d or
3He in order to form the mesic atoms in excited states. After a sequence of cascade
transitions lasting about 10-11 sec at Liquid Hydrogen Density (LHD), mesic atoms are
formed in the ground state (Ponomarev, 1991; Breunlich et al., 1989; Czaplinski et al., 1996).
The three-body molecules, (3Heyd);+ , are formed in collision of (dj) atoms in ground state

with helium atoms via so-called electron conversion process,

++ +
(dpr)y. + 3He‘—"">[(3Heyd) ,e} te (46)

Jv



Quantum Mechanical Three-Body Systems and Its Application in Muon Catalyzed Fusion 117

The molecule dissociates quickly with a rate of about 1012 sec-! to the unbound ground state
either by a well-known predissociation mechanism, via Auger transition or y -emission

prOCeSSeS
(*Heud), i+ (Hew),, (47)
(3Heyd)] 4 g +(*Heu) +e (48)
(*Heud), AN +(Heu) +7 (49)

resulting a hydrogen nucleus and a mesic helium atom. This mechanism leads to transfer
rates of the order 108 sec™1. The asymmetric-charged 3Hepd molecule undergo nuclear fusion
via two different channels,

(3Heyd)l > a+p+ u+14.64 MeV (50)

(3He,ud)] — SLiy+y+16.7 MeV (51)

The muon is released after the fusion and can proceed to cause another fusion. Thus the
muon works as a catalyst and this cycle can be repeated many times during its lifetime.

To test the stability of the mesic 3Heud system, we consider only Coulomb interaction
between particles. As a starting point, we employ the aim of hyperspherical method to solve
the multi-dimensional Schrédinger equation numerically for this three-body system.

HY =(T +V)¥ =E¥ (52)

The wave function, ¥ , can be constructed explicitly by exploiting a specific representation,
namely, the hyper-spherical adiabatic expansion method. Here, T is the kinetic energy in its
enter-of-mass coordinate frame, V is the potential energy, and E is the total energy of the
system. We briefly discuss the general structure of the method and formulate its basic
equations for a three-body system in hyper-spherical elliptic coordinates. The Hamiltonian
of this molecule in Jacobian coordinates (R, r) can be shown by the following equation
(Gusev et al., 1990; Stuchi et al., 2000)

1 o5 1
H:T+V:{2MA(RI-)—A(13)}+V (53)

i 2m;

where M; and m; are reduced masses. It is convenient to define mass-scaled Jacobian

vectors, (¥; and i;),

(54)
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b= (55)
Therefore the kinetic energy of the system can be rewritten as,

T =—i[A(fc,->—A(yi>] (56)

In this relation, u=(m,;ms, m, / )"/ * is an arbitrary coefficient with dimension of mass
and index i=1,2,3 refer to a set of Jacobian coordinates (X;,;). The transformation of
Jacobian coordinates (e.g. (X, ¥; )) in to another set (e.g. (X, , ¥, )), can be done as follows:

X, =—Xcosy—ijsiny (57)
i, =X, siny —j; cosy (58)

where can be regarded as a rotational parameter which is shown by,

m, (m,+ms,,, +m
y = Arctan u(Ma et ) ; 0
Mgt s,

IA
<
IA

(59)

NN

It is convenient to calculate these sets of Jacobian coordinates (¥;, ; ) for mesic three-body,

SHepud system. These three sets should be used as coordinates in configuration space.
Therefore this system contains six dimensions (d=6). In hyperspherical coordinates, (p,Q),

p=+x*+y* represents the size of the system and Q=(Q,,©,), consist of five variables,
where Q, denote a set of two angles defining the shape of the system and Q, refer to a set

of three angles defining the overall orientation of the three-body system. The Hamiltonian,
in this coordinate system, will take the following form:

2
H:_l[[p-SapSa]—AZ}v (60)
2u op’ op) p

where A? is regarded as the square of general angular momentum operator. Our aim is to
solve the eigenvalue equation H¥(p,Q)=E¥(p,Q2) in the adiabatic expansion method. The
idea of adiabatic separability between the hyper-radius p and the hyper-angular variables Q
in three-body systems was first exploited by Macek (Macek, 1968) for studying doubly excited
states of the Helium atom. The wave equation of the system in this method can be defined by:

5
¥(p,Q)=p 23 E(p)P,(p,Q) (61)

Here the quantum number, j characterizes a channel function, the radial functions, Fj(p)
satisfy the system of coupled ordinary differential equations and ¢;(€;p) are angular
functions. For any value of p, these functions form a set of complete orthogonal basis

which satisfy the following relation:
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[Hau —U,(0)] 4,(Q:p)=0 (62)

In this relation, H, is the adiabatic Hamiltonian which is defined by,
1.>
Had:EA +pC (63)

where C=pV is the effective charge of the system. In the first step we try to solve the
differential equation (62), which contains coordinate p as a parameter. The hyper-spherical
elliptic coordinates (77,&)on S (projection of the hyper-sphere p =const. onto shape space)
are induced by conical coordinates on its 3D image. The hyper-spherical elliptic coordinates
(n7,&) are defined in the following intervals (Tolstikhin et al., 1995)

2y <n<2y
V< L2 -2y (64)

The definition of (77,£) resembles the representation of plane elliptic coordinates. In order to

rewrite Eq. (62) in a new set of coordinates, (77,£), it is necessary to define the square of

general angular momentum operator, A” in this set of coordinates,

A? 16 i(cosn—c052)/)i-t-i(cos2y—cosf)i
cosn—cosé| on on o0& o0&
. 4m*sin? 2y 1 . 1 (65)
cosn—cosé&| cosn—cos2y cos2y —cosé

where m is azimuthal quantum number which is the projection of the general angular
momentum along body-fixed axis. The potential energy, V, of the system is the sum of three
inter-particle Coulombian interactions potential,

_ L2 | ZyZe® | ZsZye® _ C(1,€)

"2 23 31 P

1%

(66)

As it was mentioned earlier,C(77,{)=pV, is the effective charge. The inter-particle

distances 1y, , 1,3 and ry; are simply defined by the following relations:

o = \/2/)73\/1 +d* Cos(gjcos(gj —d sin(gjsin(g)

r23:\/'%sin[n+§] (67)
1

3 = \/'%sin(n;é)
2
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. 2m p _ Mg =gy, .

where d" =1+ —— and d° =—¢ are mass related constants respectively. The
Mg+, Mg+ sy,

effective charge C of 3Heud molecule as a function of variables 7 and & is shown in Fig. 2.

The steep spike at (,&)=(-2y,2y),(2y,2y), corresponds to the strong attractive coulomb

singularities of effective charge C and associated to collisions in the pairs du and 3Hep, when
muon is very close to the nucleus. The singular Coulomb repulsion between two positively
charged particles, are represented by the repulsive wall at the neighborhoods of the

(77/{:) = (0/277' _27) .

50+

N
(@)

NN NN NN

o

-25

Effective Charge

0.1

) 0.2
ea 0.2

Fig. 2. Variation of effective charge C as a function of hyper-angular variables -2y <7 <2y
and 2y < <27 -2y for the 3Heud molecule (Pahlavani, Sadeghi, Motevalli & Aqabaei,
2010).

By substituting Egs. (65) and (66) for A* and V into Eq. (62), we obtain a differential
equation for adiabatic Hamiltonian that should be solve with appropriate boundary
conditions. In the case, for infinite small values of p, the solutions of adiabatic Hamiltonian

(62) can be constructed in the following form (Pahlavani & Motevalli, 2008):

®(n,6)=NX(m)Y(S) (68)

where N is the normalization parameter. With some mathematical simplification, one
obtains the following set of ordinary differential equations:
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2 2
{L” —zmcoszy+U(cosn—c052;/)+A}+X(77)=0 (69)
COSy —cos2y

2 2
[f - 2COS 27 11082y —cos )~ A |+ Y (£)=0 (70)
cos2y —cosé

where A is the separation constant and the one-dimensional derivative operators, L7 and
[ are defined as,

L :8i(c0577—c052;/)i (71)
dn dn

If = sd%(coszy cosg) T (72)

The resultant equations are subject to the regularity of boundary conditions and can be
satisfied only for certain values of A and U. The method for solving these set of differential
equations, are very similar to those equations which we presented in our previous work
(Pahlavani & Motevalli, 2008), when we have studied the motion of muon in the two-center
Coulomb problem in prolate spheroidal coordinate system for the symmetric mesic system

ddy. By solving these equations, one obtains the functions @, (7,¢), where n(n) and

n(¢) are quantum numbers correspond to number of zeros of the functions X(7) and
Y (&) that appeared in Egs. (69) and (70). These functions form a set of complete bases and

satisfy the following normalization condition,

27— 27
I 1, & €)1y (1:6) 5 = 8,102y S 73)

where ds is the surface element that can be defined by,

2
ds =

Tcos2y (cosn —cos&)dndé (74)

The results of the calculations are displayed graphically in Fig. 3. The normalization factor
N,y - 1 a function of the rotational parameter, at different quantum numbers n(n) and

n(&) . Calculated values of adiabatic potential U(p) as a function of hyper-radius p have

been shown in Fig. 4. By substituting Eq. (61) into Eq. (52), one can obtain the following set
of ordinary differential equations for radial functions F;(p) :

2
{dl;ﬂLZﬂ{E—U(P)— L }} )+ ZWLE (75)

8up’

where U;(p) is the adiabatic potential and the operator W,(p) has the following form:
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Fig. 3. Variation of normalization parameter N n()n() for the cases: (n . ) =(0,1)and

(

n,n,

) = (0,2) for the 3Hepud molecule (Pahlavani, Sadeghi, Motevalli & Agabaei, 2010).

Adiabatic potential (m.a.u.)

Hyperradius (m.a.u.)

Fig. 4. The adiabatic potential as a function of hyper-radius coordinate for the 3Heud
molecule (Pahlavani, Sadeghi, Motevalli & Aqabaei, 2010).
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ww(m:sz(p)%wW(p) (76)

The above equation is a set of differential equations coupled by the following nonadiabatic
terms:

-

R,(p)= <¢V(Q;p)§p¢K(Q;p)> 7

Sve(p)= <¢V(Q;p)

(32
apztzﬁK(SE;/J)> (78)

where the brackets represent integration over the angular variables Q . The hyperspherical
adiabatic approximation amounts to retaining only one term in Eq. (61) (Macek, 1968). Then
the radial function, F;(p) satisfies the following differential equation

2
{dt;+ z;{E—U(p)— 8/1; ; } . WW}FV(m -0 79)

This approximation turns out to be surprisingly accurate in the sense that in many situations
the non adiabatic couplings in Eq. (75) are rather weak. Subject to this reality and
considering appropriate boundary conditions, we obtain solutions of the differential
equation (79) numerically. Finally, the calculated values of the binding energies of the
bound states (J,v) for the 3Hepd system are compared with available data obtained using

other methods in Table 2.

States (J,v) (Gershtein & (Kravtsov et al., (Hara & Ishihara, (Pahlavani et al.,
Gusev, 1993) 1993) 1989) 2010)
(0,0) 69.96 70.6 70.74 70.879
(1,0) 46.75 48.2 47.90 48.391
(2,0) 9.6 9.346

Table 2. Binding energy Ep (eV) of the bound states (J,v) (the quantum numbers of
rotational-vibrational state) for the 3Hepd molecule.

The Born-Oppenheimer approach assumes the nuclei to be infinitely heavy with respect to
the negatively charged particle. It should be kept in mind that Born-Oppenheimer approach
is the simplest solution to the three-body Coulomb system. Usually, the most accurate
results for the ground state energy levels of mesic three-body molecule were obtained from
variational calculations. Comparison of our result for ] = 0 with the ones obtained by the
available variational calculation (Bogdanova et al., 1982) indicates difference that dose not
exceed 0.2%. One can conclude that this fact supports the validity of adiabatic expansion in
hyper-spherical elliptic coordinates method which have been used.
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4. Muon stripping in the muon catalyzed fusion

The sticking of muons to alpha particles after fusion is an unwanted process and eliminates
muons from the chain of fusion reactions. This process is the main loss mechanism in the
uCF. The probability of forming a muonic helium ion is called initial sticking probability

@d(=0.912%) (Hu, Hale & Cohen, 1994). Where muonic helium ions are formed with an
energy of EZ" =3.47 MeV ( =5.83a.u.) then are slowed down toward thermal energy by

collision with the surroundmg D; and DT molecules (Jones, 1986). During the same time, as
long as the kinetic energy exceeds the appropriate threshold (Effy ~10KeV) , the ay ion can
be stripped as a result of collisions. This process is referred to as reactivation and final

sticking fraction, , that conventionally related to the initial sticking fraction by

wg =2 (1-R) . The reactivation coefficient, R depends upon the stopping power of the

media and several important cross sections. Stripping process can occur through several
channels. Collisions of the (ap):s ions with the surrounding D, and DT molecules during the
slowing down process can result in ay charge transfer, ionization or excitation of the discrete
ay levels. Stripping (charge transfer plus ionization) can also happen from the ay which is
the results of the sticking or collisional excitation processes.

The kinetic of reactivation is described by the various rates in a set of coupled differential
equations. The fraction of stripped muonic helium ions in terms of population probabilities
can be written as

st (t) i
;f = 2 A (W) B (80)
i
where /L(t'r)lp( (t)) are velocity-dependent stripping rates from the individual energy levels

and P(t) are the time dependent population probabilities for the state i of muonic helium

ion. The time-dependent population probabilities for the state i of the muonic helium ion are
determined by

an(t) _
At pap P(t)/q’depop (81)

(i)
where /lpap and A,

respectively. These rates can be given by the following relations:

are the rates of populating and de-populating probability of state i,

pup Z (1(1—>1)+/11—>z +/1d1_)l)P{(t)

z(n >n;) (82)
+ > 20 p P+ Aglmjk”p(t)
i (n <n;) i (n’r =n;)
My =2yt T (MDA 4220+ T APD Z A6

1(n<n) 1(">")
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where Aau, Ay Ade-exs Aexs Astark and Agprip are the Auger de-excitation, radiative, Coulomb de-
excitation, Coulomb excitation, Stark mixing and striping rates, respectively. In general, A is
given by

A=Nov (sect) (84)

where N, v and o are density of surrounded media, relative velocity and cross section for all
processes under consideration, respectively. The time and velocity dependence in Eq. (80)
are coupled through the energy-loss equation for muonic helium ion given by

1/2
dE 2E
au au
F U, S(Ea,u) —(Tna‘u] S(an) (85)
where S = —dE/dx is the stopping power of the surrounding media and m,,, is the mass of

muonic helium ion. The initial conditions are: EW(O):EZL =347MeV, P,(0)=0and the

initial values of populated levels are determined by the initial sticking, P.(0) = @ (i) / @ . The
(t) for n=1,2,..,6 and the I sublevels are treated in detail for n<4. The

reactivation coefficient R is equivalent to the stripping fraction P, (t)at t — o . The intensity

populations P,

1

of X-ray transition in muonic helium ion is another quantity which can be measured
experimentally and calculated along with reactivation coefficient (R). Muons in excited
levels of the au’ may de-excite under X-ray emission. The X-ray spectrum depends not
only on the initial sticking in the atomic levels and the reactivation of the muon but also on
intra-atomic transitions due to inelastic collisions, internal and external Auger effect and
Stark mixing. The photon intensity per sticking event is calculated using

d7;1 -n _ Z Z /1 i'—i) (86)

i'(ny=n")i(n;=n)

The number of X-ray photons emitted per fusion is the most useful quantity that can be
measured experimentally. The X-ray yields for the n' — n transition is given by

Y(n' —>n)= }/n'anw; (87)
The calculation for muon stripping probability from ap* and the intensity of X-ray
transitions have been done by solving a set of coupled differential equations numerically.
The time-dependent population probabilities P;(t) for 1s, 2s, 2p, 3s, 3p, 3d are shown in Fig. 5
for a deuterium-tritium target at density ¢=1.2 L.H.D (L.H.D= Liquid Hydrogen Density = 4.25
x 1022 atoms/cm3). The initial populations of all excited states are seen to drop to 0 during the
stopping time, and only Is orbital stays occupied.

The time-dependent stripping fraction, Py(t) and surviving fraction of the initial kinetic
energy, E/E¢ are shown in Fig. 6. Slowing down of ap* from v,, =583au. to

. ~lau. takes about ty,, ~4x10" " (sec) . This time is longer than the hfetime of the
excited au* states so that the cascade of au* actually takes place during the slowing down
process. The calculated reactivation coefficient, final sticking and the average number of X-
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Fig. 5. The population probabilities P;(t) as a function of time in a D-T target at density
¢@=1.2 L.H.D (Pahlavani & Motevalli, 2008).
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Fig. 6. Stripping fraction, R (heavy solid curve), surviving fraction of initial kinetic energy,
E/Eo (dashed curve) in a D-T target at density ¢ = 1.2 L.H.D (Pahlavani & Motevalli, 2008).
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rays per sticking (K,, K4, K,) as a function of density are shown in Fig. 7 for ¢ <4LHD.
The most K, radiation actually emitted by au* atoms that formed in the ground state. If au*
is formed in the 2p state more than one K, (2p —1s) X-ray expected per sticking. Our
theoretical results for stripping are compared in Table 3 with other theoretical and
experimental data. It is evident that experimental results of the effective sticking probability
are smaller than the theoretical calculations, however, our results agree well with
experiment.

1.0 —— 71—
g4 ——" """ - T T T T T T oo mm e =
| - — = Initial sticking )l
0.8 - Final sticking o
] ——— Reactivation ]
° 0.7 —-—-- X-ray yield (2 — 1) H
= 1 —— Xx-ray yield (3 —=1) |1
§ 0.6 4 \ ----- x-ray yield (4 —1) ™
= ] ]
= (.54 -
@
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© 044 —
n - -
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=z | e
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014 e -
0.0 T ;-...-_-lk---.“;-.--l-f-""ll- T I T T T
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Density(L.H.D)

Fig. 7. The density dependence of initial sticking, @? (%), final sticking, w,(%), reactivation
coefficient, R and K-series X-ray per sticking (K, , K4, K, ) for dtp fusion (K, and K,
multiplied by factor 3) (Pahlavani, Motevalli, 2008).

The density dependence of probability of muon reactivation, final sticking coefficient and
intensity of X-rays emitted by muonic helium ion have been studied numerically. In order to
do this, we consider all reactions that separate muon from muonic helium ion, namely
coulomb excitation and de-excitation, ionization, charge transfer, Stark mixing, radiative
transitions and Auger de-excitation. Using a set of coupled differential equations, the time
dependence of muon reactivation coefficient (R) and surviving fraction of the initial
kinematic energy of au* (E/Eg) in the D-T mixture for different fuel density have been
calculated. The measurement of muonic helium ion X-ray provides an independent method
to test our knowledge about muon reactivation and sticking. Results based on our
calculation shown that the muon reactivation increases when the average number of X-rays
per sticking reduces with increasing density. Our calculated results are in good agreement
with available experimental data (Ishida, Nagamine et al., 1999; Petitjean et al., 1993;
Breunlich et al., 1987; Bossy et al., 1987; Jones, Taylor & Andeson, 1993; Nagamine et al.,
1993; Ishida et al., 2001; Petitjean, 2001) at all.
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Source Reactivation Final sticking (%)
Density =1.2LHD
(Pahlavani & Motevalli, 2008) 0.391 0.555
(Markushin, 1988) -— 0.57 £0.07
(Refelski et al.,1989) 0.36 0.57
(Takahashi, 1987) 0.248 0.664
(Cohen, Hale, Hu, 1996) -—- 0.59
Experimets
PSI (Bossy et al., 1987) - 0.39£0.10
PSI (Breunlich et al., 1987) -—- 0.45+0.05
PSI (Petitjean et al., 1993) --- 0.48+£0.02+0.04
LAMPF (Jones, Taylor & Andeson, 1993) -—- 0.43+0.05+0.06
KEK (Nagamine et al., 1993) -—- 0.51+0.004
RIKEN-RAL, Liquid (Ishida, Nagamine et al., 1999) - 0.434 £0.030
RIKEN-RAL, Solid (Ishida, Nagamine et al., 1999) 0.421+0.030
RIKEN (Ishida et al., 2001) -—- 0.532£0.030
Density =1.45LHD
(Pahlavani, Motevalli, 2008) 0.395 0.551
Experiment
PSI (Petitjean, 2001) - 0.505£0.029

Table 3. The reactivation coefficient, R and final sticking, @s(%) for muonic helium ion in
different densities.

5. Conclusions

The quantum-mechanical three-body problem plays an important role in modern physics by
providing an appropriate description of three-particle systems in presence of Coulomb and
nuclear forces. Developed methods in this field are based on detailed three-body equations
which provide a correct description of the quantum mechanical three-body systems
(Takahashi & Takatsuka, 2006; Kilic, Karr & Hilico, 2004; Nielsen et al., 2001; Pahlavani,
2010). Theoretical study of muonic three-body system comprises different theoretical
methods, e.g. variational methods (Viviani et al. 1998; Frolov, 1993), Born-Oppenheimer
approximation (Beckel et al., 1970; Kilic et al., 2004) and adiabatic expansion (Fano, 1981;
Lin, 1995). In this investigation, we presented an appropriate method that enables us to
study the solutions of Schrodinger equation for 3Heud system. The adiabatic expansion in
hyper-spherical elliptic coordinates has shown a good approach for calculating the adiabatic
potential. Fast convergent of this method led us to obtain precise results for the existence of
the bound states in 3Heud three-body molecule. The obtained results for the adiabatic
potential of this system are comparable with results gathered from other approximation
methods.
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The corresponding eigenvalue problem has been solved and the binding energy of this
system is calculated. The obtained results agreed with the expected values of various
theoretical methods. This approach can be applied for other three-body systems with variety
of masses and charges. The obtained results are of significant importance for experimental
and theoretical investigation of d— 3He nuclear fusion especially at low collision energies.

In section 4, the obtained results show that the muon cycle coefficient increases almost
slowly with the density of deuterium and tritium mixture. The energy required to produce a
muon estimated to be about 5000 MeV. Since each deuterium and tritium fusion generates
17.6 MeV, we see that the number of catalysis reactions by a muon should be about 285 to
reach the scientific break-even (1/3 of the commercial break-even). The break-even point is
reached when the fusion process generates as much energy as was initially put in (i.e., the
energy output equals the energy input). The output energy of the number of catalysis
reactions by a muon in it’s lifetime (r, = 2.197 psec), is much smaller than the input energy
required to produce a muon. Therefore, a fusion energy system based on the muon
catalyzed fusion in deuterium and tritium fuel seems to be viable at plasma conditions with
fuel densities about 100 times of L.H.D.
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1. Introduction

Nitrogen is a key dopant in silicon for modern electronics including nanoscale devices
and third generation solar cells. Even at concentration levels as low as 105 cm?3 nitrogen
doping can change drastically the physical properties of silicon wafers. For instance, large
Czochralski silicon (CZ Si) wafers, as well as float zone silicon (FZ Si) wafers for
photovoltaic applications benefit from nitrogen in silicon by increasing wafer toughness.
An exceptional hardening due to nitrogen doping enabled the growth of wider silicon
crystals, in excess of 300 mm in diameter. Nitrogen doped silicon appeared tougher than
its oxygen doped counterpart, which enabled thinner and lighter wafers, thus easier to
handle. The hardness is induced by dislocation locking effect (Sumino et al., 1983; Chiou
et al., 1984; Abe et al., 1884; Murphy et al., 2006), and an increase of the density of as-
grown precipitates which originates from nitrogen-oxygen clusters (Karoui et al., 2004;
Karoui & Rozgonyi, 2004; Nakai et al., 2001; Karoui et. al., 2002). Nitrogen interacts with
point defects such as Si vacancy (V) or Si self-interstitial (I), as well as light impurities
affecting the formation of micro-defects, thereby significantly reducing swirl defects as
well as vacancy related defects known as D-defects, COPs and voids, and improving the
gate oxide integrity (GOI) (von Ammon et al., 1996; Tamatsuka et al., 1999; Ikari et al,,
1999). Nitrogen also dramatically enhances oxygen precipitation by interacting with
oxygen, achieving strong gettering of metallic impurities in the bulk (Ikari et al., 1999; von
Ammon et al., 2001; Shimura & Hockett, 1986; Sun et al., 1992; Aihara et al., 2000). Fourier
Transform Infrared Spectroscopy (FTIR) has been extensively used to identify the atomic
structure of N-related defects and to determine nitrogen concentration in nitrogen doped
FZ (N-FZ) and CZ (N-CZ) Si wafers (Stein, 1983, 1986; Wagner, 1988; Qi et al., 1991; Yang
et al., 1998; Qi et al., 1992). FTIR measurements on N-FZ Si wafers shows that 80% of
nitrogen atoms are paired (N-pairs) and bonded to silicon at concentration much larger
than the solid solubility limit (Stein, 1983). Most nitrogen atoms are coupled by pair and
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are fully coordinated with the Si atoms removing any electrical activity (Brower, 1982;
Stein, 1987). The possible atomic structures for a N-pairs is either in interstitial split
arrangement as suggested by Jones et al. (Jones et al., 1994), or in substitutional position,
occupying either a vacancy (V) or a divacancy (V2), forming nitrogen-vacancy (N-V)
complexes (Stein, 1983, 1985). N-V complexes have been identified by DLTS measurement
(Fuma et al., 1996), platinum diffusion (Quast et al., 2000) and positron annihilation (Shaik
Adam et al., 2001).

As shown in Table 1, the FTIR absorption bands 771 cm-, 967 cm-! at low temperature (< 15
K) and 766 cm1, 963 cm-! at room temperature (RT) relate to the localized modes of N-pairs
(Stein, 1983; Wagner, 1988; Qi et al., 1991 ). Two additional FTIR lines, 551 cm! and 653 cm-!
(RT), have been detected after laser annealing of N-implanted FZ Si and have been
attributed to N subtitutional (Stein, 1985). The absorption coefficient of line 963 cm-is often
used in the calibration curve derived by Itoh et al (Itoh et al., 1985) to measure nitrogen
concentration in N-FZ and N-CZ Si wafers: (1.83£0.24)x1017x owe3 at/cm-3.

In N-CZ Si or O-rich N-FZ Si, some of the grown-in N-pairs interact with oxygen forming
nitrogen-oxygen or nitrogen-vacancy-oxygen complexes (that we will refer later as N-O
complex) hence, reducing the number of N-N centers (Stein, 1986, Wagner, 1988; Qi et al.,
1991; Yang et al., 1998; Qi et al., 1992). N-O complexes form between 400 °C and 700 °C.
Beyond 700° C these complexes dissociate, emitting the oxygen interstitial atom and leaving
the N-pair intact. During subsequent cooling the N-O complexes form again (Wagner, 1988;
Qi et al,, 1991; Qi et al., 1992; Berg Rasmussen et al., 1996). Both N-N and N-O complexes
FTIR response anneal out above 1000°C. N-O complexes are believed to strongly control the
mechanisms of formation of oxygen precipitates and voids in N-doped silicon (Karoui et al.,
2004; Karoui & Rozgonyi, 2004; Nakai et al., 2001; Karoui et. al., 2002; Von Ammon et al.,
2001; Shimura & Hockett, 1986; Stein, 1986; Hara et al., 1989; Rozgonyi et al., 2002). As
shown in Table 1, the formation of N-O defects results in several additional infrared
absorption bands (Wagner, 1988; Qi et al., 1991; Qi et al., 1992). FTIR absorption lines for N-
O defects (at T < 15K) are 806, 815, 1000, 1021, and 1031 em-1. An additional weak line at 739
cm? has been observed at low temperature in FZ Si samples implanted with nitrogen and
oxygen (Berg Rasmussen et al., 1996). The occurrence of these additional infrared (IR) lines
affects the measurement of nitrogen concentration in N-CZ Si. The calibration relationship
derived by Itoh has been revised by Qi et al (Qi et al., 1992) based on FTIR measurements as
follow: (1.83+0.24) x 1017x (owe3 + 1.40801) at/cm-3 (300K) which take into consideration the N-
O complexes to whose have been assigned the 801 cm absorption line. Despite the
technological importance of N-doped Si, little is known about the atomistic structure of N-O
complexes often resulting in an inaccurate evaluation of the nitrogen content in silicon. The
mechanisms by which nitrogen affects O-precipitation and vacancy aggregation in N-doped
silicon remain unclear and direct experimental evidence are still needed. Although, several
papers report on the electronic and atomic structure of N-pairs complexes (Jones et al., 1994;
Ewels, C., 1997; Sawada & Kawakami, 2000; Kageshima & al., 2000; Goss et al., 2003; Karoui
et al., 2003), theoretical studies on N-O complexes atomic structure, stability and vibrational
spectra remain scarce (Ewels, C., 1997). Few of them report on the vibrational spectra of N-
pair (Ewels, C., 1997; Goss et al., 2003; Jones et al., 1994).

Studying the atomic structure and vibrational spectra of nitrogen-oxygen-vacancy
complexes will help us to comprehend how nitrogen, oxygen, and vacancies interact, and
how nitrogen effects oxygen precipitation and void formation during crystal growth and
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wafer processing. Therefore, to correctly assess nitrogen concentration in N-doped Si
crystals. In the present work, we have investigated the formation energy and vibrational
spectra of several structures of major grown-in nitrogen-vacancy-oxygen, using quantum
mechanics Density Functional Theory (DFT) as implemented in DMol3 package (Delley,
1990; 2000) and, the semi-empirical Modified Neglect of Diatomic Overlap Parametric
Method (MNDO) in the restricted Hartree-Fock approximation (UniChem; Dewar et al.,
1985). We will start by presenting the theory behind the quantum mechanics computation of
vibrational spectra (Bernath, 1995; Harris & Bertolucci, 1985; Atkins & Friedman, 2011).
Then we will detail our study followed by results and discussion.

FTIR Measurement (cm-1)

T <15K RT
N-pair 771,967 766, 963
(551, 653, 782, 790)*
N-O 806, 815, 1000, 1021, 1031 801, 810, 996, 1018, 1026
739"

* Detected in N-FZ implanted wafers.

Table 1. Measured FTIR spectra for N-N and N-O defects (Stein, 1983; Wagner, 1988; Qi et
al., 1991; Qi et al., 1992).

2. Experimental measurement of vibrational spectra

Spectroscopy is the study of the interaction of electromagnetic radiation with matter.
Molecules, consisting of electrically charged nuclei and electrons, may interact with the
oscillating electric and magnetic fields of light and absorb the energy carried by the light.
The molecules does not interact with all light that comes its way, but only with light that
carries the right amount of energy to promote the molecule from one discret energy level to
another. The light can be absorbed and a ground state molecule can be promoted to its first
excited vibrational state. When this happen we say that the molecule has made a transition
between the ground state and the first excited vibrational state.

Vibrational spectra are measured by two different techniques, Infrared (IR) spectroscopy and
Raman spectroscopy. In IR spectroscopy, the infrared spectrum of a sample is recorded by
passing a beam of infrared light through the sample. When the frequency of the IR is the
same as the vibrational frequency of a bond, absorption occurs. Examination of the
transmitted light reveals how much energy was absorbed at each frequency (or
wavelength). This can be achieved by scanning the wavelength range using a
monochromator. Alternatively, the whole wavelength range is measured at once using a
Fourier transform instrument, hence the name of Fourier Transform Infrared Spectroscopy
(FTIR). Then, a transmittance or absorbance spectrum is generated using a dedicated
procedure. Analysis of the position, shape and intensity of peaks in this spectrum reveals
details about the molecular structure of the sample. At frequencies corresponding to
vibrational energies of the sample, some light is absorbed and less light is transmitted than
at frequencies which do not correspond to vibrationals energies of the molecule. In order to
compensate for absorption and scattering of the light by the sample cell, the incident light is
split into two beams, one of which goes through the sample, and the other is passed through
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a reference cell. Transmittance is then defined as I;/I; where I is the intensity of light
passing through the sample cell, and I is the intensity of light passing through the reference
cell.

In Raman spectroscopy we do not observe transmitted light but light scattered by the sample.
The scattered light may be observed from any convenient direction with respect to the
incident light. Light of a single frequency, monochromatic light, must be used for a Raman
experiment. This phenomenon in which light of frequency vy is scattered in all directions is
called Rayleigh scattering. A very small fraction of the scattered light is not of frequency vo.
The process which produce light of frequency other than v is called Raman scattering. The
amount of light of frequency less than vo is much greater than that with frequency higher
than vo. The former scattered light radiation is called Stokes radiation and the latter is called
anti-stokes radiation. In Raman spectroscopy, light of greater value than infrared
frequencies is used and we measure the difference between the frequency of the incident
light and the one of the Raman scattered light. The molecular vibrations stimulated in the
Raman process are not necessarily the same as those excited by the absorption of infrared
light. Therefore, the IR and Raman spectra will usually look different and will complement
each other.

What exactly happens at a molecular level?

Infrared Spectroscopy: Infrared absorption spectroscopy deals with vibrations of chemical
bonds. Light of infrared frequencies can generally promote molecules from one vibrational
energy level to another, which allows characterization of atomic bondings and enables
identification of the molecule composition and its atomic structure. These capabilities make
the IR spectroscopy a powerful tool. Only photons that carry the right amount of energy
promote the molecule from one discrete energy level to another.

First we need to describe the permanent dipole moment of a molecule. If two particles of
charges +q and -q are separated by a distance r, the permanent electric dipole moment, y, is
given by:

w=gqr @
Polyatomic molecules with a center of inversion will not have a dipole moment whereas
noncentrosymmetric molecules will usually have one. If we consider a heteronuclear
diatomic molecule vibrating at a particular frequency, the molecular dipole moment also
oscillates about its quilibrium as the two atoms move back and forth. This oscillating dipole
can absorb energy from an oscillating electric field only if the field oscillates at the same
frequency. The absorption of energy from the light wave by the oscillating permanent dipole
is a molecular explanation of IR spectroscopy.
Raman spectroscopy: If a molecule is placed in an electric field, f, a dipole moment, ping , is
induced in the molecule because the nuclei are attracted toward the negative pole of field,
and the electrons are attracted the opposite way. The induced dipole moment is
proportional to the field strength o, which is called the polarizability of the molecule:

Hing = of (©)

All atoms and molecules will have non-zero polarizability even if they have no permanent
dipole moment. A light wave electric field oscillates at a certain point in space according to
the equation:
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f = focos2 vt 3)

where fy is the maximum value of the field, v the frequency, and t is time. The induced
dipole moment in the oscillating field is:

Wing = afocos2mvt (4)

o varies at the natural vibrational frequency of the bond:

a= oy + (Ada)cos2 vyt ®)

where ¢, is the equilibrium polarizability, Ax is its maximum variation, and v is the natural
vibrational frequency. The induced dipole moment is then:

Winq = @ofocos2nvt + (1/2)Aafy[cos2r(v + vo)t + cos2r(v — vo)t] (6)

Eq. 6 shows that the induced dipole moment will oscillate with components of frequency v,
v—vp and v+ vy. The oscillating electric dipole radiates electromagnetic waves of frequency
v (Rayleigh scattering), v— v, (Stokes radiation) and v+ v, (anti-Stokes radiation).

3. Symmetry point groups

3.1 Introduction

Vibrational spectroscopy and molecular orbital theory make extensive use of molecular
symmetry. While it is true that most molecules considered as a whole don't possess any
symmetry, many molecules do have local symmetry. In many instances, only a region
within the molecule i.e. few atoms and its neighbors, needs to be considered to understand
the spectroscopic behavior of this region of the molecule. Studying carefully the symmetry
of the molecule reduces significantly the number of energy levels one must deal with. The
more symmetric the molecule, the fewer different energy levels it has, and the greater
degeneracies of those levels. Symmetry is even powerful than that, because it helps us
decide which transitions between energy levels are possible. That is to say a molecule may
not be able to absorb light even if that light has precisely the correct energy to span two
energy levels of the molecule. The symmetries of the states must be compatible in order that
the molecule may absorb light. The selection rules which tell us which transitions are
possible, will be one of the most important uses of symmetry and will be explained as we
proceed.

3.2 Symmetry operations and molecules

Point symmetry groups are groups whose elements are the symmetry operations of
molecules. This group have all the properties of a group in mathematics. They are called
point groups because the center of mass of the molecule remains unchanged under all
symmetry operations and all of the symmetry elements meet at this point. To determine the
symmetry point group of a molecule is very important, because all symmetry related
properties are dependent on the symmetry point group of the molecule. A symmetry
operation is an operation that leaves an object apparently unchanged. Every object has at
least one symmetry operation: the identity , the operation of doing nothing. To each
symmetry operation there corresponds a symmetry element, the point, line, or plane with
respect to which the operation is carried. There are five types of symmetry operations that
leave the object apparently unchanged and five corresponding types of symmetry element:
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E : The identity operation, the act of doing nothing. The corresponding symmetry element is
the object itself.

Cu : An n-fold rotation, the operation, a rotation by 2/ around an axis of symmetry.

o : A reflection in a mirror plane. When the mirror plane includes the principal axis of
symmetry, it is termed a vertical plane and denoted o;. If the principal axis is perpendicular
to the mirror plane, then the latter symetry element is called a horizontal plane and denoted
on. A dihedral plane, oy, is a vertical plane that bisects the angle between two C; axes that lie
perpendicular to the principle axis.

it An inversion, the operation through a center of symmetry. The inversion operation consists
of taking each point of an object through its center and out to an equal distance on the other
side.

S,: An n-fold improper rotation about an axis of improper rotation. It is a composite operation
consisting of an n-fold rotation followed by a horizontal reflection in a plane perpendicular
to the n-fold axis. Particular cases are S; which is equivalent to a reflection and S; is
equivalent to an inversion.

Lets consider the group Ca, which is, as we will show later, the point group associated with
the N> molecule in Si. Point group Ca, has four members, {E, Cz, o, and i}. E is the identity
operation which leave the molecule unchanged; C; is a n-fold (n=2 here) rotation by 2n/n
(1800 for Cy) around an axis of symmetry; oy, is a reflection in a mirror plane (here a plane
perpendicular to the principal axis Cz). All the symmetry operations of a molecule as a
group can be written in the form of group multification table and they obey all the
properties of a group. The product of any two operations must be a member of the group.
For example the product of two Cz operations is the identity operation E which is indeed a
member of the group. Also C, - oy =i, i is also a member of the group. Table 2 shows the
complete multiplication table for the point group Con.

Con | E G On i
E E Cy Oh 1
C C E i on
ol on i E C
i i Oh G E

Table 2. Multiplication Table for the Point Group Con.
However, to further determine the symmetry properties of molecular orbitals and

vibrational modes we need character tables which will be introduced next.

3.3 Characters and character tables
We can use matrices as representations of symmetry operations. Let's consider the

X1
symmetry group (Ca) of N2 defect. Consider a vector vy (}’1), assuming that the principal
41

axis C; is the z axis, using matrices representations, v; will transform as follow through the

different operations of the group:
1 0 0] [* X1
0 1 Of-|Vi|=1|"n (7)
0 0 1 1z 4
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E %= ®)
-1 0 0 X1 —X
0 -1 0| [M1|=|"D )
0 0 —-11 1z —Z
i w = W (10)

on leaves the x and y coordinates unchanged but changes z to -z:

AR

Ch vy = v, (12)

and C; which correspond to 180° rotation around the z axis leaves the z coordinate
unchanged but changes the x and y coordinates as follow:

cost  sint 0
[—smn cosm 0] [}’1] [ —1 0] [}’1] [3’1] (13)

Rq .V =v, (14)

The four matrices form a mathematical group which obeys the same multiplication table as
the operations. Therefore, each matrix has an inverse matrix just as each operation of a
group has an inverse operation. Using a matrix and its inverse we can perform similarity
transformations with matrices:

B=Q-A-Q (15)

A and B are said to be conjugate just as symmetry operations related by similarity
transformations are said to be conjugate. Through similarity of transformation, we can
define the reducible and irreducible representations of a group. If a matrix representation A
can be transferred to block-factored matrix, a matrix composed of blocks (A1, Az, A3) at the
diagonal and zero in any other position, by similarity transformation, A is called the
reducible representation of the group. If blocks (A1, A2, As) cannot be further transferred to
block-factored matrix through similarity transformation, A;, Az, Aj are called irreducible
representations of the group. The sum of the trace of Aj, Ay, As is called the characters of
this representation. Reducible representations can be reduced to irreducible representations
and irreducible representations cannot be reduced further. The complete list of characters of
all possible irreducible representations of a group is called a character table. There are only a
finite number of irreducible representations for group of finite order. We will see that these
tables are of great importance and usefullness when analysing the vibration modes of
molecules.

The members of a group can be divided into classes. Two members of a group, P and R,
belong to the same class if they are conjugate to each other. As an example, all possible
classes associated with the symmetry group Con(N2) defect are the following;:

- Eisinaclass by itself since ATEA= A-1(EA)= A-1A=E for any operation A of the group.

- Cz: C2'1C2C2= Cz‘l(C2C2) = CZ(E) = Cz
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- PG = Y(Col) = i(an) = Co

- alCGo= o (Caan) = on (1) = C

Hence, for any operation A of the group we have A1 C;A= A1(C;A)= A-1A= C,. In a same
way, based on the multiplication Table 2, we can verify that A-liA= A-1(iA)=A-1A=i and Aloy,
A=A"1(o,A)= A1A=0j. Therefore, we have four classes for the group symmetry Con: {E}, {C2},
{i}, {on}. Each class correspond to an irreducible representation.

We have as much as irreducible representations as classes of operations in the group. The
character of an irreducible representation is the trace, the sum of the diagonal elements, of
the matrix representing the irreducible representation. The sum of the traces equal the
order of the group. All characters of a group are given in a table, Table 3. This table is
divided in several areas. The main part contains the characters. On the left are the names
of the irreducible representations, known as Mulliken symbols. Conventionally, we use
the letters A, B, E, and T (or F in some tables). A and B are one-dimentional. E is two-
dimensional and T is three-dimensional. The dimension of an irreducible representation is
the dimension of any of its matrices. Since the representation of the operation E is always
the identity matrix, the character of E is always the dimension of the irreducible
representation. The difference between A and B is that the character under the principal
rotational operation, C,, is always +1 for A and -1 for B representations. The subscript
1,2,3, etc.,which may be appear with A, B, E or T can be considered arbitrary label. The
subscript ¢ (German word gerade meaning even) means the representation is symmetric
with respect to inversion and, the subscript u (German word ungerade meaning odd) means
that the representation is antisymmetric to inversion. Any p or f orbital is transformed
into minus upon inversion, is therefore a u function. A d orbital is transformed into itself
upon inversion and is therefore, a g function. In a similar way, the superscripts ' and "
denote irreducible representations which are respectively, symmetric and antisymmetric
with respect to reflection through a horizontal mirror plane. The two columns on the right
side of the table contain basis functions for the irreducible representations. The character
table for the point group Con (N2 defect) is as follow (Bernath, 1995; Harris & Bertolucci,
1985)

Con E G i On |

Ag 1 1 1 1 R, X2, 2, z, xy?
B, 1 1 1 -1 R Ry Xz, Yz

Ay 1 -1 1 1 z

By 1 -1 1 -1 XY

Table 3. Character Table for the Point Group Con, : N2 Defect.

3.4 Atomic orbitals and symmetry

One-electron wavefunctions in atoms are called atomic orbitals. Atomic orbitals with 1=0
are called s-orbitals, those with 1 = 1 are called p-orbitals, those with 1 = 2 are called d-
orbitals, and those with 1 = 3 are called f-orbitals. We are mainly interested here to s- and
p-orbitals because the atoms of interest namely nitrogen, oxygen, and Si atoms are
bonded to Si neighbors by sp3 hybrid electron orbital that protrude in a tetrahedral shape.
The s-orbitals are spherically symetrical; the three real orbitals py, py, p. have the same
double-lobed shape, but are aligned with the x-, y-, and z-axes, respectively; they are
shown in Fig. 1.
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4 Z
' %ﬁy y ”
X X X X
S Pz
Px Py

Fig. 1. The s, py, py, pzatomic orbitals.

As stated before, the two columns on the right side of the table contain basis functions for
the irreducible representations. These basis functions have the same symmetry properties as
the atomic orbitals which bear the same names. To understand what a basis function is, let's
go back to the matrix representations for the operations of Cao, (N2 defect). The E operation
does nothing; the C, operation about the z axis leaves the z coordinate of any point
unchanged, but changes the x and y coordinates according to Ry; the oy, is a reflection in the
mirror plane (x,y) L to z (C; axis); and finally the inversion operation i changes each
coordinate into minus itself. The atomic orbitals will obey the same multiplication table as
the operations, Fig. 2:

[ z Character

— ﬁbﬁ :
X

Py

_oh_,ﬂé_,y 1
. )

Fig. 2. Orbital py through the operation of symmetry point group Con.
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We can see that py orbital changes as By irreducible representation through the operations of
the group Con: (E, Co, 1, on) @ (1,-1,-1,1) = {Bu}.

4. Vibrational spectroscopy modeling

4.1 Introduction

In IR spectroscopy, molecules are modeled as an assembly of oscillators which interact with
the electric and magnetic fields of incident light and absorb energy of incident photons. The
total energy of a single molecule, whether in free space or embedded in liquid or solid
material, involves different types of molecule motions and behaviors. Hence, the molecule
energy is decomposed in: (i) translational energy levels, which are related to the movement
of the molecule as a whole. As these levels are very close to each other, they appear
continuous, (ii) rotational energy levels, they implicate rotation of the whole molecule, (iii)
vibrational energy levels, which are due to the vibration of chemical bonds within the
molecule, and (iv) the electronic energy associated to the electrons of the molecule. To better
comprehend the vibrational spectroscopy modeling we will start with diatomic molecules
and then generalize the model to polyatomic molecules.

4.2 The vibration modeling of diatomic molecules

4.2.1 Introduction

The solution of the Schrédinger equation for a diatomic molecule plays an important role in
spectroscopy. In addition, the vibrational spectra of diatomic molecules illustrate most of the
fundamental principles which apply to complicated polyatomic molecules. Diatomic
molecules can be simulated as shown in Fig. 3. The center of mass of a diatomic is defined
such that myr; = m,r,. The moment of inertia of a system is defined as:

1= z m; rf (16)
7

where 1; is the distance of mass m; from the center of mass. For diatomic molecules,

— MM 5 _ 2 17
o 12 = 1 17)
where
mym,
=—2 2 18
/l 7”-1 + ”lz ( )

The quantity u is called the reduced mass and should not be confused with the dipole
moment which has the same symbol.

Center of mass
Fig. 3. Model for diatomic molecules.
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The molecular potential energy of a diatomic molecule increases if the nuclei are displaced
from their equilibrium positions. When the displacement is small, we can express the
potential energy as the first few terms of Taylor series:

av 1/d*v 1/d3v
— Z 240222 ) 434 ... 19
463 V(0)+<dx)0x+2<dx2>0x +6<dx3>0x + (19)

Since we are not interested in the absolute potential energy of the molecule,we can set
V(0) = 0.

4.2.2 Harmonic oscillation

The harmonic oscillator model is one of the most important models in chemical physics, and
has been used extensively in molecular spectroscopy. Provided that the displacement x is
small, the terms in Eq. 19 that are higher than second order may be neglected, so we may
write

1 dazv

V(x) = =kx? k=(-— (20
2 dx?)

This means that the potential energy close to equilibrium is parabolic. It follows that the

hamiltonian for the two atoms of masses m; and m; is

02 dZ 02 dZ 1
Ho__ 4 4 1. @1)
2mydx?  2mydx2 * 2

Therefore, when the potential energy depends only on the separation of the particles, the
hamiltonian can be expressed as a sum, one term referring to the motion of the center of
mass of the system and the other to the relative motion. The former term is of no concern
here as it corresponds to the translational motion of the molecule. The latter term is

R? d* 1

He L )

2pdx; 2
where p is the reduced mass.
A hamiltonian with a parabolic potential energy as in Eq. 23, is characteristic of a harmonic
oscillator. The solutions for the harmonic oscillator is

E=(vig)ho o=y kK @)
2 2r

with v=10,1,2, ... These levels lie in a uniform ladder with separation A, see Fig. 4. The
corresponding wavefunctions are bell-shaped Gaussian functions multiplied by a Hermite
polynomial. In the lowest vibrational state (v = 0), the molecule still has the zero point energy,
Ey = %ha). The vibrational spectra of diatomic molecules usually result from excitation from

the v= 0 to the v= 1 energy levels.

4.2.3 Anharmonic oscillation
The truncation of Taylor expansion of the molecular potential energy in Eq. 20 is only an
approximation , and in real molecules the neglected terms are important, particularly for
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Fig. 4. Harmonic oscillator potential well and energy levels. V = %k(r —re)?.

large displacements from equilibrium. The typical form of the potential is shown in Fig. 5
and because of high excitations it is less confining than a parabola; the energy levels
converge instead of staying uniformly separated. It follows that anhamonic vibration is
increasingly important as the degree of vibrational excitation of a molecule is increased. One
way for coping with anharmonicities is to solve the Schrodinger equation with a potential
energy term that matches the true potential energy over a wide range. One of the most
useful approximation function is the Morse potential :

k
— _ ,—ax)2 — 24
V(x) = hicD (1 — ™) a (ZhCDe) (24)
The parameter D. is the depth of of the minimum of the curve and x =r—7, the
displacement. At small displacement, the Morse and harmonic oscillator potentials coincide.
The quantized energy levels, solution of the Schrodinger equation with the Morse potential
are

2

1 1
E, = (v+—)hw—(v+—) hwx, (25)
2 2
with
a’h
WX, = E

The quantity x, is called the anharmonicity constant. The energy levels at high excitation

converge as v becomes large. The ground state of a Morse potential has a zero-point energy
of

1 1
Ey = Ehw (1 —Exe) (26)
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VA

Dissociation energy (De)

Fig. 5. The Morse potential : V = %the(l — e~a(r=Tre))2

4.2.4 Vibrational selection rule

The selection rules for the vibrational transition v’ « v are based on the electric dipole
transition moment. The selection rules for electric-dipole transitions, specify the specific
optical transitions that occur based on the examination of dipole moment transitions
between the two states of interest. Because the dipole moment p depends on the bond length
R, we can express its variation with displacement of the nuclei from equilibrium as

dp 1(d*n\ |,
- - 27
m ”°+(dx)0x+2<dx2>ox + (27)

where p is the dipole moment when the displacement is zero.

To show a vibrational spectrum, a diatomic molecule must have a dipole moment that
varies with extension. The selection rule for electric dipole vibrational transitions within the
harmonic approximation is Av = +1.

The selection rule for the observation of vibrational Raman spectra of diatomic molecules is
that the molecular polarizability must vary with internuclear separation. The selection rule
for vibrational Raman transitions is the same, Av= +1, as for vibrational absorption and
emission because the polarizability, like the electric dipole moment, returns to its initial
value once during each oscillation. The transitions with Av = +1 give rise to the Stokes lines
in the spectrum, and those with Av = —1 give the anti-Stokes lines. Only the Stoke lines are
normally observed, because most molecules have v = 0 initially.

4.3 Vibration of polyatomic molecules

4.3.1 Normal modes of vibration and symmetry

A diatomic molecule possesses a single vibration. Even at absolute zero this vibration occurs
because the molecule cannot have less than the zero point energy. Polyatomic molecules
undergo much more complex vibrations. However, these motions may be resolved into a
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superposition of a limited number of fundamental motions called normal modes of
vibration. We are interested in the number, types, and symmetries of these modes.

The motion of a single particle in a three dimensional space can be represented by three
coordinates, each one representing a translation of the particle in the X, y, or z direction. The
particle is said to have three degrees of freedom. For a diatomic molecule, since we have two
particles, the system as a whole has six degrees of freedom. Three are translation in the x, y,
or z directions. Two degrees of freedom correspond to rotations about the center of mass.
The rotation about the molecular axis of a linear molecule is undefined because it does not
represent any change of the nuclear coordinates. Only one vibrational degree of freedom is
left, Fig. 6.

.T. .F. o—0—>*

Ty Ty T,

—~
4){ Translation

SN .
Ry

R, (undefined, no change of the nuclear
coordinates)

Rotation

< ._.) .....

Vibration

Fig. 6. Degrees of freedom (six) of a diatomic molecule; only one vibration mode (3*2-5=1).

A nonlinear molecular system containing three particles (e.g water molecule) has nine
degrees of freedom. Three translations, three rotations, and three vibrational degree of
freedom. these three kinds of vibration are the three normal modes of vibration of the
molecule. In general, a non linear molecule with n atoms will have 3n-6 modes of vibration;
a linear molecule will have 3n-5 modes of vibration because there is no rotation about the
molecular axis. Within a molecule, atomic displacements occur at the same frequency and in
phase. Displacement is measured from the equilibrium atomic separation in the ground
state along a normal coordinate. A normal coordinate, g;, is a single coordinate along which
the progress of a single normal mode of vibration can be followed; g; is a mass-weighted
coordinate. The normal coordinates are defined such that the potential energy V and the
kinetic energy K of the molecule are as follow (Harris & Bertolucci, 1985)

V=/2) ha? (28)
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K = (1/2) Z(dqi/dt)z (29)

where A; is a constant. The vibrations that correspond to displacements along these
normal coordinates are called the normal modes of the molecule. In the harmonic
approximation, the ground state vibrational wavefunctions of a molecule is totally
symmetric under all symmetry operations of the molecule. The ground state vibrational
wavefunctions therefore spans the completely symmetric irreducible representations of
the molecular point group.

Each normal mode of vibration will form a basis for an irreducible representation of the
point group of the molecule. This key property which connects the symmetry of normal
modes of vibration to the symmetry point group of the molecule.

Lets consider the SiO molecule which belongs to point group Ci. As we will see
subsequently, this molecule is of particular interest to our study. Ca, character table is given
in Table 4. The operations of the group Cy are (E, C, 6v(xz) and o'v(yz)). The three normal
modes of vibration of Si,O are given in Fig. 7 and are noted vi, vo, v3. We are going now to
study the effect of each operation of the group on the v, vibration.

Coy E G ov(xz) c'v(yz) |

Aq 1 1 1 z X2, 9% 22
B 1 -1 -1 R, xy

A; 1 -1 1 -1 x, Ry Xz

B> 1 -1 -1 +1 Y, R« yz

Table 4. Character Table for the Symmetry Point Group Cpy : SiO molecule.

Fig. 7. v; (symmetric stretching, 517 cm), v, (symmetric bending, 1203 cm,), v,
(asymmetric stretching, 1136 cm!) normal modes of Si»O.7886

The operation E leaves the v3 vibration unchanged so it has the character +1. The C;
operation changes the direction of motion of each atom when the molecule is vibrating in
the normal mode vs. Each atom moves in the opposite direction after performing the C>
operation (Fig. 8). Therefore, the character of C; is -1. Similarly, cv(xz) changes the direction
of motion of the atoms and c'(yz) leaves them unchanged. Hence, they have the character -1
and +1 respectively. In a similar way, we can easily show that v; and v, does not change
through all the group operations. This leads us to the characters table given in Table 5 for
the vibration modes of the Si;O molecule.
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Cov E G ov(xz) G'v(yz)
%1 1 1 1 1
V2 1 1 1 1
V3 1 -1 -1 1

Table 5. Character table for for the normal modes of vibration of SiO (Cay).

If we look at Table 4 and Table 5 we can see that v; changes as A; representation through
the operations of the group, v, as A; and v; as B, Vibration modes v, and v, are
symmetric stretching and symmetric bending modes respectively, while v, is an
asymmetric stretching mode. All three normal modes are infrared active because they have
the same symmetry as zand y.

4.3.2 Selection rules for polyatomic molecules

Non-zero dipole moment transition corresponds to allowed transition, and vice-versa. At
this point, we are interested only in transitions within a given electronic state. The selection
rules are derived from the transition matrix by expressing the matrix element in terms of, in
a first approximation, the harmonic oscillator wavefunctions. The selection rule for
harmonic oscillators are Av= £1. Each normal mode of vibration shall obeys this selection
rule within the harmonic approximation. Moreover, electric dipole transitions can occur
only for normal modes that correspond to a change in the electric dipole moment of the
molecule. The molecular dipole moment depends on an arbitrary displacement as follows:

d 1(d?
u=uo+(—u> qi+—< ”) qi% + - (30)
0

in 0 2 qu

13

where g; are the normal coordinates.

Since, electric dipole transitions occur only for normal modes that correspond to a change in
the electric dipole moment of the molecule, normal modes for which (0p/dq;), # 0 are said
to be infrared active as they can contribute to a vibrational, infrared, absorption, or emission
spectrum. Group theory, as shown before, greatly aids the determination of which modes
are infrared active.

Normal modes for which the polarizability varies as the atoms are displaced collectively
along a normal coordinate i.e. (da/0q;)o # 0, are classified as Raman active as they can
contribute to a Raman spectrum.
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5. Quantum mechanics computation of the equilibrium structure, energy and
vibrational spectra of nitrogen-related complex in nitrogen-doped silicon

5.1 Introduction

In the present work, we have investigated the formation energy and vibrational spectra of
several structures of major grown-in nitrogen-vacancy-oxygen, using quantum mechanics
Density Functional Theory (DFT) as implemented in DMol3 package and, the semi-empirical
Modified Neglect of Diatomic Overlap Parametric Method (MNDO) in the restricted
Hartree-Fock approximation. The defects that are of interests are N-pairs structures either in
interstitial (N2) or substitutional positions coupled to a Si vacancy or a divacancy (VN2 and
V2N3) and N-O complexes formed by the coupling of these N-N centers with a O; or an
oxygen dimer (O,). MNDO calculations were solely performed to compute the IR absorption
band intensities and electric charges of the IR active LVMs obtained by DMol3-DFT, because
not attainable on periodic systems. Performing ab-initio total energy calculations and
normal mode analysis require powerful computational resources. Therefore, all our
calculations have been carried out on various multiprocessor supercomputers: Origin2400
for COMPASS Force field and Fastructure calculations, IBM SP for the DMol3-DFT
calculations and Cray T916 for the MNDO-AM1 calculations.

We have cross-correlated the formation energy, the degree of stability, and the vibrational
spectra of each complex in order to precisely identify their structure (Karoui Sahtout & A.
Karoui, 2010). Calculated vibrational spectra have been compared to experimental spectra
obtained by Fourier-transform infrared spectroscopy.

5.2 Computational method

5.2.1 Chemical reactions and atomic structure of N-pairs and N-O complexes

To simulate the defected crystal structure while preserving the symmetry group of the
diamond structure of the host crystal, we built a periodic cubic system consisting of a
supercell of 64 silicon atoms with the defect located in its center. All N-defects are in their
neutral state. To avoid defect-defect interactions during relaxation, the Si atoms at the
boundaries of the supercell were maintained immobile.

The chemical reactions considered in this study to produce N-pairs either in interstitial or
substitutional position are shown below:

N, +N; >N, R1)
N;+N, > VN, (R2)
N, +V - VN, (R3)

VN, +V - V,N, (R4)

N, +V, > V,N, (R5)

N; and N; are nitrogen atoms in interstitial and substitutional position, respectively, V is a Si
vacancy and V; a Si divacancy.
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The neutral N; has a Cor, symmetry (Fig. 9) with the axis parallel to <110> direction, see Fig.
10 (a), and the N-N center sits symmetrically off the bond center, in an anti-parallel
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Fig. 10. N-Pair defects atomic structure (a, b, ¢) N2 (Can), N2O, N2O»; (d, e, f) VN2 (D2g), VN20,
VN0 (g, hi) VaN2 (Dsa), V2N2O, VoN20».
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configuration, as proposed by Jones et al. (Jones et al., 1994). The four Si-N bonds form a
diamond shape lying in (110) plane. The bond centered interstitial configuration for N> has
been found energetically favorable based on ion channeling, infrared absorption, and
theoretical calculations (Jones et al., 1994).

As shown in Fig. 10 (d), neutral VN> complex is formed by inserting an N-N pair at a
vacancy site in the center of a tetrahedron (Stein, 1986). The central bond of the N-N pair is
aligned along <100> whereas the four N-5i bonds point to the summits of the tetrahedron,
and lie in two perpendicular {110} planes which makes the symmetry group of VN2 of Dag
type, Fig. 11.

Fig. 11. VN2 molecule Structure in Si, symmetry point group D2g and stereographic
projection.

The V2N» complex is created by inserting two N atoms in the vacancy sites of a relaxed
divacancy, see Fig. 10 (g). The divacancy six silicon dangling bonds are fully reconstructed.
V2N has a D3g symmetry (Fig. 13) similar to the ideal divacancy with “breathing” bonding
(Coomer et al., 1999), see Fig. 12.

Pairing model Breathing model Resonant-bond model

Fig. 12. Si divacancy Jahn Teller distortion (Coomer et al., 1999; Watkins & Corbett, 1965).

The N-O complexes object of this study, result from the coupling of a N-N core defect
product of chemical reactions R1 thru R5, with an oxygen interstitial (O;) or an oxygen
dimer (Oy) as shown in the chemical reactions R6 thru R11:

N, +0 — N,0 (Ro)
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N, +0, - N,0, (R7)
VN, +0 — VN,O (R8)
VN, +0, - VN,0, (R9)
V,N, +0 - V,N,O (R10)
V,N, +0, - V,N,0, (R11)

The atomic structures of N>O, VN2O and V2N>O complexes are obtained by adding one O;
atom on the dilated Si-Si bond neighboring the N-N center as shown in Fig. 10 (b), (e), (h).
Indeed, previous investigations on oxygen interstitial in silicon (Umerski, 1993) showed that
oxygen bridges dilated Si bonds preferentially along <111> directions. Likewise, the N2O»,
VN0, and V2N»O; are built by inserting two O; atoms on Si-Si dilated bonds neighboring
the N-pair, Fig. 10 (c), (f), (i).

Fig. 13. VoN» molecule Structure in Si, symmetry point group Dsq and stereographic
projection.

5.2.2 Equilibrium structure and energy of formation

To cut down the computation time, the defected supercells were first relaxed using a
valence force field method with COMPASS potential and then DFT Fastructure program
(Fastructure). This allowed a fast cleanup and optimization of the guessed atomic structure.
Faststructure determines the ground state energies and forces within the Harris functional
(Harris, 1985), an approximate scheme of the DFT scheme of Kohn and Sham (Kohn &
Sham, 1965). For this scheme, the exchange-correlation terms are calculated using the Vosko,
Wilk, Nusair (VWN) parameterization (Vosko et al., 1980) and the radial cutoff was set at
10A. The optimizations of the resulting structures were then performed using DFT program
DMol3. DMol?® utilizes a basis set of numeric atomic functions that are exact solutions to the
Kohn-Sham equations for the atoms (Delley, 1995). For the present study, a doubled
numerical basis set with d-polarization functions, termed DND basis set, was used as it
ensures an accurate description of the bonding environment. This basis set is well
parameterized for nitrogen, oxygen, and Si atoms that are bonded to neighbors by sp3



Application of Quantum Mechanics for Computing the
Vibrational Spectra of Nitrogen Complexes in Silicon Nanomaterials 151

hybrid electron orbital that protrude in a tetrahedral shape. Perdew-Wang functional was
used for the exchange correlation terms. To accelerate the convergence of the self-consistent-
field (SCF) procedures we use the direct inversion of the iterative subspace method (DIIS)
(Pulay, 1980). Integration over the Brillouin-zone and over all occupied orbital is done with
the tetrahedron method(Blochl, 1994) and equispaced Fourier meshes similar to the ones
proposed by Monkhorst and Pack (Monkhorst,1976). Eight k-points and 24 tetrahedra were
used to sample the Brillouin zone. The atomic positions were optimized using the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton optimization algorithm.

For the general chemical reaction X, + Xz — X, the formation energy of the product Xc is
defined as (Nichols, 1989):

Ep(Xc)=E(Xc) + By — E(X2) ~ E(X3) (€

Where E;(Xc) denotes the formation energy of the complex, E(X;) the total energy of the
system containing a reactant or a product, and Epux is the total energy of pure bulk Si
supercell.

All reactants and products involved in reactions R1 through R11, including the Si vacancy
(V) and the Si divacancy (V2) which are important for our study, have been optimized with
the same level of theory and accuracy. As reference, our calculations suggest a formation
energy of 3.89eV for the Si vacancy and 5.80 eV for the divacancy in good agreement with
previously published values (3.31-3.98 eV) for the vacancy (Hull, 1999; Puska et al., 1998)
and 4.4-5.7 eV for the divacancy (Hull, 1999; Pesola, 2000). During relaxation, the neutral Si
divacancy (V2) are usually subject to Jahn-Teller (JT) distortion which lower the symmetry of
the defect from trigonal Dsg to monoclinic Ca, resulting in the “pairing’ or ‘resonant-bond’
structure (Coomer, 1999; Pesola, 2000; Watkins, 1965), see Fig. 12. Our calculations exhibit a
“large pairing’ JT distortion for the relaxed V; rather than a ‘resonant bonding’ distortion, in
line with positron annihilation spectroscopy measurements (Nagai, 2003). The reconstructed
bonds of the divacancy form two co-planar isosceles triangles, the length of the two
congruent sides of the triangles is about 4.44 A, and the base is about 3.54 A long.

5.2.3 Computation of vibrational spectra

The absorption spectrum for each optimized atomic structure was calculated using the
eigenvalue method (Dean & Martin, 1960) implemented in DMol3 package. The eigenvalue
method is sensitive to the accuracy of the calculated electronic structure; therefore
vibrational analysis can be meaningful only when all atomic forces are zero. This is
attainable only when the geometry is optimized at the same level of theory and with the
same basis set used to generate the Hessian.

Since, there is at present no method for calculating the intensities of IR active LVMs for
periodic boundary environment because the Hessian in internal coordinates can not be
evaluated in that case, the LVM intensities were computed using the MNDO method and
the Austin Model1 (AM1) Hamiltonian (Dewar et al., 1985). MNDO works only on
molecular systems therefore a crystal macro-molecule (CMM) has been extracted from the
Dmol3 relaxed supercell. Each CMM contains the N-N core defect in its center surrounded
by 76 silicon, and 74 hydrogen atoms which saturate the dangling bonds at the surface. The
N-N core is totally surrounded by as much Si atoms as possible to properly simulate the
host crystal. Given the fact that the CMM is relatively small, special care was taken to ensure
that the symmetry is not broken for the defect and neighboring silicon atoms.
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MNDO-AM1 method considers only valence electrons in the calculation of the electronic
states, treating the inner-shell electrons together with the nucleus as a core. The electron-
electron, core-core, and core-electron interactions are obtained empirically. We used a
restricted closed-shell wavefunctions, which constrain all molecular orbitals to be either
doubly occupied or empty.

Within DMol® and MNDO-AM1 the LVMs are determined from the Hessian matrix using
the Harmonic Oscillator Approximation. This approach is known to adequately describe the
vibrational behavior of molecules and crystals at low temperature, where only the lowest
vibrational levels are populated and the displacements from equilibrium are small. Usually,
the harmonic vibrational frequencies produced by ab-initio calculations are larger than the
experimentally fundamental lines by 5 to 10%. Both methods neglect the effect of
anharmonicity, which is insignificant at the ground state.

The force constant for each pair of bonded atoms are obtained by diagonalization of the
mass-weighted Hessian matrix element, defined as:

1 S5E
mim; 6X;0X;

mo_
Hi/j—

(32)
Only change in the dipole moment induces measurable IR transitions. For bonds which have
a weak dipole moment the polarizability is usually high and the vibrational states of the
bond are Raman active (RA). These two kinds of activities are not always mutually exclusive
as for non-centrosymmetric molecules (or unit cells), some vibrations can be both Raman
and infrared active.

The IR absorption intensity I; and effective charge ¢; of the ith normal mode are evaluated
from the dipole moment derivatives with respect to the vibrational coordinates q; such that
I; is proportional to e? (Leigh & Szigetti, 1967; Whalley, 1972):

L= g2 (33)
3c” (4rey)

2 2 2742
SRR
oq; aq; og;

where N, is the Avogadro number, c the speed of light, ¢, dielectric constant in vacuum

and p the electrical dipole moment:

p= Zeiqi (35)

The dipole moment derivatives are accurately calculated from the energy gradients S—E

(Galabov & Dudev, 1996)

@ = 6[61—]} where 2—51 = [;;1] (Y|H -pf|¥) (36)
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Where fis the applied electric field, i the wavefunction and H the Hamiltonian.
The calculated IR active modes were compared to the measured low temperature (T < 15K)
FTIR absorption bands since the vibrational spectra are calculated from the ground state
specifically from the minimum energy at 0 K corrected by the zero point energy.

5.3 Results and discussion

5.3.1 Formation energy of N2, VN2, and V>N, complexes

The equilibrium geometries for N-pair defects are summarized in terms of bond length,
bond angle in Table 6. The formation energies are summarized in Table 7. We found that the
formation energy for N (reaction R1) is about -3.95 eV at the ground state showing that N»
is a very stable complex. Being highly exothermic, we believe that chemical reaction R1
occurs at earliest stages of point defect clustering, mainly at high temperature close to the
melting point (1423°C) because of the high mobility of N;. N; has a low diffusion barrier of
0.4 eV (Schultz & Nelson, 2001).

N-N@A)  Si-N@A) (S;;?;e(fg)hbor) £Si-N-Si  /N-Si-N  /Si-N-N
N, 245 1.73,1.76 232,240 90.8 89.2 -
VN, 143 1.80 233,242 1314 - 1144
VN, 355 1.82 2.38,2.35 118 - -

Table 6. N-pair relaxed geometry parameters from DFT-DMol? calculations.

Ei(eV) N2 VN2 VN2 N.O N0 VNO VNO:» VoNO  VoNLO»
DFT DMol3® -3.95  -0.21 -4.62 -0.96 -14 -0.15 +051 -0.70 -0.95
(this work) (R2) (R4)
-1.8 -4.42
®) (RS
Harris functional -4.1 +2.0 -5.2 -0.78 -1.52 +0.08 +0.33  -0.62 -1.31
and VWN -1.0
(Karoui et al.
2003; Sahtout
Karoui,2004)
(Sawada et al., -4.3 -1.4 -4.55
2000) -5.69
(Kagashimaet -3.86 +0.33 -4.07
al., 2000) -3.61
(Goss et al., 3.67 -13 3.7
2003) -3.4
(Kagashima et -0.95
al., 2003)

Table 7. Formation energy of N-N and N-O defects from DFT-DMol? Calculations.
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The formation energy of VN> complex is about - 0.21 eV when formed from N; and N
(reaction R2) and is about -1.8 eV thus more stable, when formed from the coupling of N>
with a Si vacancy (reaction R3). Reaction R2 occurs mainly when N; and Ni coexist i.e. near
melting temperature of Si. Nevertheless, the small energy gain suggests that VN> would
easily dissociate at such high temperature. The formation of VN complexes is more likely to
happen through reaction R3 during the interstitial-substitutional diffusion process of Na
around the void formation temperature. This infers that VN; should intermittently slip back
to N via reaction VN, +I— N, and back to VN, through reaction N,+V — VN, as
suggested in (von Ammon et al., 2001). Though, VN; is a metastable complex, it is also
foreseen as an active complex during crystal growth as it contributes to the formation of
very stable grown-in N-related microdefects such as V,N; (reaction R4 and R5). Indeed, our
calculations show that both reactions forming V>N, complexes are highly exothermic. The
energy gain is about -4.62 eV for R4 and -4.42 eV for R5 revealing the high stability of V>N»
complexes independently of the chemical reaction pathway. The formation of V>N> from the
coupling of VN> with a vacancy is favored over the coupling of N> with a divacancy because
V2 cannot form at high temperature (crystal growth temperature). However, reaction R5
might occur during crystal cooling at temperatures lower than 300°C, the survival
temperature range of V.. Indeed, V, is known to be immobile and stable at room
temperature and to anneal out around 200-300°C. The calculated formation energy for Na,
VN: (R3) and V>N agree with previous work (Sawada et al., 2000; Kagashima et al., 2000;
Goss et al., 2003).

5.3.2 Vibrational spectra of N2, VN2, and V2N, complexes

As shown in Table 8, N interstitial display four vibrational modes among them two are IR
active asymmetric stretching, 779 cm?! and 986 cm, and two Raman active symmetric
stretching (dipole-forbidden), 743 cm and 1084 cm. Since, the symmetry group of Ny is
Car, it has normal modes belonging to the irreducible representations Ag, Bg, Ay, and By; Ag
and B being Raman active, A, and B, IR active. The selection rule for absorption in the IR
spectrum is that the vibration must have the same symmetry as a p-orbital. Choosing z as
the principal axis of symmetry (axis Cy for Ca), 779 cm line transforms as By by the
symmetry operations of the group, which has the same symmetry as px and py orbitals.
Vibrational mode 986 cm! transforms as A, which has the same symmetry as the p, orbital.
The two IR active modes relate to nitrogen. In these modes, the two N atoms are
dynamically coupled and move in the same direction, along [001] and [110] respectively,
see Fig. 14 (a), (b). These two lines match measured FTIR frequencies 771 cm! and 967 cm-1.
The absorption intensity ratio «(779)/a(986) between the two IR modes as given by
MNDO-AM]1, is about 0.78. Lines 1084 and 743 cm! transform as Agand Bg respectively and
are Raman active with the same symmetry as s- and d-orbitals. For these modes, the N
atoms move in opposite directions along [110] and [001], respectively. Our calculated LVMs
for N> agree with reported values by Goss et al (Goss et al., 2003).

VN, complex has two IR active LVMs , 585 cm! and 781 ecm-1, and one Raman active line
997 cml, see Table 9. The symmetry group of VN3 is Dyg which has normal modes belonging
to the irreducible representations Aj, Ay, By, By, and E. A; and By are Raman active; B, and E
are IR and Raman active with E representation doubly degenerate. The 585 cm mode
transforms as B2 and involves an in-phase asymmetric stretching of the two N atoms along
[001]. The 781 cm-! absorption band is doubly degenerate and thus belongs to the E
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Vibrating Frequencies (cm) Intensity Effective .
Symmetry atoms Calculated = Measured (T<15K) (km/mol)! Charge(e)! Activity
N2
(Ca) By N-N 743 0 0 RA
Bu N-N 779 335 0.59 IR
Ay N-N 986 542 0.75 IR
Ag N-N 1084 0 0 RA
N0
O(v1) 666 33 0.18 IR
N-N 750 771,967 1 0.14 IR
N-N 814 (551,653,782,790) 316 059 IR
N-N+
o) 1003 975 1.02 IR
N-N+
Ofvs) 1029 289 0.55 IR
N-N 1137 ~0 ~0 RA
N202
0-O(vi) 658 806,815,1000,1021, 105 0.32 IR
0-O(vi) 665 1031 730" 0 0 RA
N-N 780 ! 0 0 RA
N-N 825 409 0.66 IR
N-N 945 1083 1.07 IR
0-0(v)) 1016 0 0 RA
0-O(vs) 1019 482 0.71 IR
N-N 1027 0 0 RA

1 As given by semi-empirical MNDO-AM1 quantum mechanics calculations on a macro-molecule.

Table 8. Vibrational spectra for Np, N>O and N2O, from DFT-DMol? Calculations.

(d)

e

¢

¢

Fig. 14. (a) N2 779 cm1 N-N asymmetric stretching along [001]; (b) N2 986 cm1 N-N
asymmetric stretching along [110]; (c) N>O: 1003 cm N-N + O (v3) asymmetric stretching;
(d) N202 1019 cm? O (v3) asymmetric stretching.
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Vibrating Frequency (cm) Intensi Effective .
Symmetry atoms s calculatec}ll Measured (T<15K) (km/ mt(})ll) Charge (e) Activity
VN2
(Dx) B N-N 585 107 033 IR
E N(1)! 781 183 043 IR
N(2) 781 183 043 IR
Aq N-N 997 0 0 RA
VN0 771, 967
N-N 578 (551, 653, 782, 790)" 124 0.36 IR
o(v,) 642 ~0 . IR
N(1) 797 141 0.38 IR
N(2) 835 141 0.38 IR
N-N 985 0 0 RA
O(v3) 1049 320 0.57 IR
VN20: N-N 567 121 0.35 IR
IR
O-O(v1) 644 806, 815,1000,1021, ~ 0 - RA
N-N 819 1031, 739 208 0.44 IR
N-N 828 208 0.44 IR
N-N 976 0 0 RA
O-O(vs) 1103 302 0.55 IR
O-O(vs) 1113 0 0 RA

TN(1) and N(2) are respectively, the inner and outer nitrogen atom in the N-N-5i-O-Si branch.

Table 9. Vibrational spectra for VN3, VN2O and VN,O; defects using DFT-DMol3
Calculations.

representation. For this mode, the N atoms are dynamically decoupled moving in opposite
direction along [110] and [ 110] respectively. 781 cm! vibrational mode is close to
measured 782 and 790 cm-1 lines due to unknown defects (Goss et al., 2003) which probably
relate from our calculations to VN, defects. VN3 IR active lines have equivalent strength.
The Raman active mode 997 cm! transforms as A; and involves an in-phase symmetric
stretching of the nitrogen atoms along the principal axis [001]. The calculated frequencies for
VN3 as well as their spectroscopy activity are in accordance with reported values for the Nj-
Ns complex (Goss et al., 2003). The 585 cm-! line matches measured 551 cm-! band detected
in N-implanted and laser annealed FZ Si wafer which was attributed to N-substitutional
(Stein, 1985). We believe that 551 cm! line is due to a localized vibration mode of VN, defect
in N-implanted FZ Si crystals where vacancies are in excess.

V2N2 complex has three degenerate LVMs, each one IR and RA active, 615 cm-1, 625 and 637
cm?, Table 10. The 615 cm line is weak and involves an in-phase asymmetric (IR active
mode) and a symmetric stretching (RA active mode) of the N atoms along the pair axis in
the [111] direction with a small deviation along [100]. In this mode, the N atoms are
dynamically coupled and the Si-N bonds stretch in a same way. The 625 cm! and 637 cm'!
modes involve each one a v, type in-phase asymmetric (IR active mode) and a symmetric
(RA active mode) vibration of the N atoms in the plane perpendicular to the pair axis. VoN»
structure has a D3y symmetry which has normal modes belonging to Aig, Eg Az, Eu
irreducible representation. A1z and Eg are Raman active, and Ay, E, are IR active. E-type
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Vibrating Frequencies (cm™) Intensity Effective ..
Symmetry atoms Calculated Measured (T<15K) (km/mol)  Charge (e) Activity
V2N2 Daa
Eu
E, N-N 615 771, 967 19 0.04 IR, RA
gu N-N 625 (551, 653, 782, 790) 115 0.24 IR, RA
g
E“ N-N 637 236 0.49 IR, RA
g
VaN20
O(vy) 651 43 0.11 IR, RA
N(@) 696 168 041 R
N(1) 709 806, 815, 1000, 1021 172 0.42 IR
N(@2) 731 103’1 73’9* ’ 7201 0.51 IR
N(Q) 819 ’ 201 0.51 IR
O(va) 1068 389 0.63 IR
VaN2O2
0-0(vy) 649 0 0 RA
IR
N-N 729 358 0.6 RA
N-N 810 210 0.46 IR,RA
O-O(v3) 1061 702 0.84 IR,RA

Table 10. Vibrational spectra for VoN», VoN>O and VoN»O; defects from DFT-DMol?
Calculations.

modes are double degenerate. We found that V>N relaxes in Dsq structure, each LVM pair
pertains to the (Ey, Eg) irreducible representations. This in accordance with Cunha et
al.(Cunha, 1993) whose work also reported that a substitutional N> having a Dsq structure
preserve the D3y symmetry during relaxation, while Goss et al. calculations (Goss et al.,
2003) showed that a starting Cs, geometry relaxed in D34 structure. FTIR measured 653 cm-!
line detected in N-implanted FZ Si is close to calculated IR modes for VoN; defect, which
show that this line is generated by localized vibrational modes of N substitutional as stated
by Stein (Stein, 1985). The calculated absorption spectra for N, VN2 and V>N» are shown in
Fig. 15. We can easily see that N, complex bears the highest absorption intensity and that
measured 771 and 967 cm-! lines are IR signature for that defect.

5.3.3 Formation energy of N.O,, VN2O,, Vo.N20, complexes (n=1, 2)

The equilibrium geometries for N-O defects are summarized in terms of bond length, bond
angle in Table 11. When N> captures an O atom, the energy gain is about 0.96 eV for N>O.
When Oy; is trapped by the N-pair (N2O»), the energy gain is about 1.4 eV. Likewise, the
energy gain is about 0.70 eV and 0.95 eV for VoN>O and V2N2Oy, respectively. In contrary,
the chemical reaction forming VN,O (R8) is slightly exothermic (E¢ = - 0.15 eV), and when
capturing an oxygen dimer (R9), the formation energy becomes positive (0.51 eV) meaning
that the so-formed VN>O; is unstable. Although, the chemical reactions which form N2Oy
and VoN2On (n=1,2) are energetically favorable, the limited energy gain render these
complexes unstable at elevated temperature. Upon heating, the oxygen atoms would break
free and easily diffuse in the matrix, leaving the N-pair intact. Indeed, FTIR measurements
have shown a reversible formation and dissociation mechanism between N-N and N-O
complexes upon successive heating and cooling (Wagner et al., 1988; Qi et al., 1992).
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Fig. 15. Vibrational spectra of N, VN, and V>N, complexes from DFT-DMol3 Calculations.
The arrows shows the FTIR measured frequencies.

. e SR Si-Si (A) .
N-N (A) Si-N (A) Si-O (A) (1* neighbor) Z£Si-O-5i
1.70 (0) ,1.72 2.30 (O)
N:O 243 1.74 (sides of the diamond) 1.64 (N), 1.66 2.31-2.38 136
1.68 2.29
N:20» 2.38 1.73 (sides of the diamond 1.64 (N), 1.65 136.6
structure)
2.29-2.42 (O)
VN0 1.44 1.77 (O), 1.80 1.62 (N), 1.64 233.044 141.5
VN:02 1.45 1.77 (0), 1.80 1.61 (N),1.63  2.29-2.42 147
2.33-2.41 (O)
VaN20 3.62 1.77 (0), 1.82 1.61 (N), 1.65 235.2.40 143.6
VoN2O2 — 3.72 1.77 (0),1.79,1.82 1.62(N),1.65  2.34-241 143.5

Table 11. N-O complexes relaxed geometry parameters from DFT-DMol? calculations. (O)
means Si-N bond length in the N-5i-O-5i branch; (N) means Si-O bond length in the N-Si-O-
Si branch.

5.3.4 Vibrational spectra of N,O and N,O, complexes (n=1,2)

Calculated vibrational spectra for N>O displays five IR active LVMs 666, 750, 814, 1003, and
1029 cm-! and one dipole forbidden transitions at 1137 cm-1, see Table 8. These lines shift to
658, 665, 825, 945 and 1019 cm-! for N2O,. The 779 cm-! mode of N shifts to 814 cm-! when
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capturing one O atom (N>O) and to 825 cm? when capturing an oxygen dimer (N2O). This
blue shift can be explain by the shortening of the N-Si bonds as a result of the insertion of
the O atom(s) in the vicinity which causes the N-5Si bond stretching force constant to increase
so the frequency. As for Ny, the 814 cm?! and the 825 cm! modes involve N-N asymmetric
stretching in the [ 110 ] direction, with the highest absorption strength on the nitrogen atom
neighboring the O atom in the N>O complex. These two modes are close to the measured
806 cm and 815 cm FTIR frequencies, ascribed respectively to NNO and NNO» defects
(Jones et al., 1994). The 750 cm! mode is a symmetric stretching of the N atoms in [110]. This
mode has a small strength because of the imbalanced mass due to the O atom in the vicinity
of one N atom. The 1003 cm mode (N2O) combines a Si-O-Si asymmetric stretching of
v; type (Fig. 7) and an in-phase N-N asymmetric stretching along [110] analog to the N, 986
cm? mode, a blue shift of 17 cm-, see Fig. 14 (c). This frequency matches the measured 1000
cm! absorption band. N2 986 cm! wavenumber shifts down to 945 cm! when an oxygen
dimer interacts with N> producing N>O,. As for Ny, this mode involves an N-N asymmetric
stretching along [110]. The 945 and 1003 cm-! frequencies have almost identical strength and
bear the highest absorption intensity. NoO 1029 cm?! mode involves an N-N asymmetric
stretching combined with a vibration of v; type on the O atom. N>O; 1019 cm! mode is of
v5 type and involves only the O atoms, see Fig. 14 (d).

Several low frequency local vibrational modes appeared in our calculations. These modes
are of v, type (Fig. 7) and are entirely due to Si-O stretch. The 666 cm! (N,O) and 658 cm-1
(N2O») vibrational modes are IR active, 665 cm-! (N2O») is Raman active. Our results show
that calculated 814, 1003, 1029 cm-! frequencies for NoO fit (within a margin of less than 1%)
the measured 806, 815, 1000, and 1031 cm! (low temperature) FTIR lines for N-O complexes.
Alike, N>O, 1019 cm-! mode matches the 1021 cm! FTIR line. Measured 1021 cm-! is an IR
signature for NoOz and 1031 em N>O in accordance with what has been suggested by Jones
et al. (Jones et al., 1994) based on FTIR measurements.

N2O defect has been previously theoretically investigated (Ewels, 1997; Jones et al., 1994)
using AIMPRO method and H-terminated cluster of about the same size as the macro-
molecule we used in the MNDO-AM]1 calculations. Some discrepancies have been found in
the AIMPRO calculations especially concerning the O; vibration modes which were found
between the two N modes in contrary to the observation. The O atom has to be displaced
close to the neighboring Si atoms in order to fit the experimental lines.

5.3.5 Vibrational spectra of VN,O, and V2N,0, complexes (n = 1,2)

VN0 and VN2O, complexes have several LVMs ranging from 500 to 1100 cm?, see Table 9.
VN:O has five IR active modes and one Raman active mode. VN, 585 cm! line shifts to 578
cm? for VN>O and involves as for VN, an in-phase asymmetric stretching of the N atoms
along [100]. This mode shifts to 567 cm-! for VN,O,.

The degeneracy due to the Dyg symmetry of VN; is removed by the oxygen atom in the
vicinity of the N-N core, which reduces the symmetry of the defect. As a result, VN, 781 cm-!
frequency splits into two IR active lines, 797 cm* and 835 cm? for VN2O defect. The N atoms
are now dynamically decoupled. Each mode is of v, type, one for each nitrogen atom, the N
atom neighboring the oxygen bearing the highest frequency. 797 cm and 835 cm! lines shift
respectively to 819 cm? and 828 cm! for VN>O, complex. These normal modes involve the N
atoms which are now dynamically coupled and of v, type. The dipole forbidden band 997 cm!
of VN, remains IR inactive for VN,O and VN;O». This frequency shifts to 985 cm! for VN,O
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and to 976 cm! for VN>O.. We observe several additional LVMs involving exclusively the
oxygen atom(s). VN2O 642 cm normal mode is of v, type. This mode becomes doubly
degenerate for VN2O, and shifts to 644 cm? which is IR and Raman active. This frequency
involves two v, symmetric stretching, one on each O atom. The IR active mode is induced by
an in-phase vibration of the two O atoms, while in the RA mode the O atoms move in opposite
direction thus does not induce any change in the dipole moment. All v, IR active modes are
very weak. VN2O has a high frequency mode at 1049 cm? and is caused by a v, type
asymmetric stretching of the O atom. This vibrational frequency shifts to 1103 cm? in VN;O»
complex and include an in-phase v, type vibration of the O atoms. VN>O, has a high
frequency vibrational mode at 1113 cm?! which is Raman active. For this mode, the O atoms
vibrate in opposite directions, each Si-O-Si branch vibration being of v, type. The 1103 and
1113 cm-! frequencies are centered around the well known oxygen interstitial 1107 cm! line of
nitrogen-free CZ silicon; the average shift being + 5 cm-1.

V2N20 defect has six IR active LVMs, Table 10. The degeneracy observed for VN> complex
is removed and the degenerate levels, split into four IR active modes: 696, 709, 731, and 819
cml. The dipole-forbidden transitions for VoN2 due to the D3q symmetry are now allowed
because of the reduced symmetry. Frequencies 696 cm! and 709 cm! involve a vibration of
the outer N atom whereas the 731 cm-! and 819 cm-! lines involve a vibration of the inner N
atom (neighboring the O atom). These LVMs are of v, type and the N atoms are
dynamically decoupled. The frequencies and vibrational intensities of the inner N atom are
higher than those of the outer N atom because of the unbalanced mass center. The VoN,O
complex has a high frequency mode at 1068 cm-! of v, type and involving exclusively the O
atom. The 651 cm! absorption line is a v; symmetric stretching of the O atom and is very
weak.

All degenerated LVMs found for VoN; core defect remain degenerated for VoN>O,, formed
by symmetrically trapping two O atoms. Three are IR and Raman active: 729 cm-1, 810 cm,
and 1061 cml; and one is Raman active: 649 cml. The 729 cm-! and 810 cm-! absorption
modes involve respectively, an in-phase symmetric and asymmetric N-N stretching in [111]
perpendicular to the N-N center axis, similar to VoN3 615 cm-! and 638 cm-! lines. Frequency
649 cm! and 1061 cm! are exclusively oxygen atom related. The 649 cm! mode involves two
dynamically coupled v, LVMs, one for each Si-O-5i branch, in opposite phase. The 1061 cm-
1is induced by two pairs of coupled v, stretching mode, one for each O atom. One pair is
due to a symmetric vibration of the O atoms, therefore does not induce any change in the
dipole moment, while the other pair is an asymmetric movement, and is thus IR active. This
mode bears the highest strength.

Lines 729 cm? (VoN2O2) or 731em? (VoN20O) might be assigned to the measured FTIR
frequency 739 cm-! observed in samples implanted with both N and O atoms and which was
attributed to NNO complex (Berg Rasmussen, 1996). As a matter of fact, ion implantation
creates an excess of vacancies that will couple with nitrogen to form the VoN, complexes
which will subsequently couple with oxygen. These two modes have equivalent strength.
The 810 cm (V2N20,) and 819 ecm-! (V2N2O) frequencies fit the FTIR measured 806 cm! and
815 cm! absorption lines for N-O defects.

5.3.6 Nucleation of extended defects and nitrogen concentration measurement
In order to comprehend how the N-related defects in N-doped Si shape the nucleation and
growth of extended defects, and to accurately assess the nitrogen concentration in N-doped
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silicon, it is necessary to compare the properties of each defect obtained from DFT
calculations to experimental data. This is done by studying the equilibrium structures, and
comparing the calculated vibrational modes with experimental Fourier-transform infrared
spectra.

The high stability of N> and VoN» complexes should explain the strong change observed in
the kinetics of oxygen precipitation and void formation in N-CZ Si as compared to N-free
CZ Si. The formation of V>N> complexes lower the vacancy supersaturation during crystal
cooling. N> might equally reacts with oxygen through reactions R6 and R7 or a silicon
vacancy through reaction R3. Reactions R8 and R9 show that VN, complexes are less able to
react with oxygen but would preferentially react with a Si vacancy (reaction R4) to form the
very stable V>N, defects which will in turn act as nucleation sites for oxygen precipitates.

It appears from this study that V2N>O and V2N2O», complexes equally compete with N>O
and N>O; as nucleation sites for O precipitation. They are the most stable N-O defects since
the capture of O; or O; by N, and V;N» are all exothermic reactions, and the N-pair
complexes (N2 and V;Ny) from which they originate are extremely stable. However, N>O,
defect should be the dominant defect since our results strongly support the assignment of
the FTIR 771 and 967 cm? (15K) local vibrational modes to Ny meaning they are
experimentally detectable. The process formation of N-O complexes is likely to follow the
subsequent chemical pathways: No>—VN2—V2N2—VoNO—-VoN>O; and N2 »N>O—-N20».
Therefore, nitrogen will increase the number of O-precipitates nucleation sites by coupling
with vacancies and oxygen atoms, explaining the high density of as-grown oxygen
precipitates and the decrease in the vacancy supersaturation observed in N-CZ Si.
Consequently, the formation of void will be hindered and their density will decrease
compared to N-free CZ Si. These results combined with our previous results obtained from
molecular mechanics force field calculations (Karoui et al., 2003; Sahtout Karoui et al., 2004)
and experimental measurements (Wright etching, STEM, HRTEM, and Oxygen Precipitates
Profiler) (Karoui et al., 2004a, 2004b, 2002) confirm that N> and V>N are much more likely
to adsorb O atoms than to trap vacancies thus act as nucleation centers for oxygen
precipitation rather than voids. However, N-O complexes might also co-exist in the oxide
layer covered walls of the voids in N-doped Si. Indeed, EDS measurements on N-doped CZ
Si samples showed that voids are covered with an oxide layer as in the case of undoped
crystals (Takahashi et al., 2003).

All studied structures of N-O complex have IR active lines falling around measured 806 and
815 cm-! (15K) lines : 814 cm! (N0), 825 cm! (N203), 819 cm! (V2N20), 810 cm? (VoN20»),
797 cm? and 835 cm? (VN20), 819 cm? and 828 cm! (VN2O»). Therefore, the absorption
intensity of lines 806 cm! and 815 cm-! (15K) have to be taken into account when evaluating
nitrogen concentration in N-CZ Si or O-rich N-FZ Si wafers. So, a more accurate calibration
relationship for [N] measurement in N-CZ Si or O-rich N-FZ Si would be:

[N] = (1.83+0.24)x 1017x [01957 + Olgos + Og15] at/cm3 (T<15K) (37)

[N] = (1.83 + 0.24)X 1017X [CX963 + Olgo1 + aglo] at/Cm‘3 (at 300K) (38)

This is in agreement the experimental calibration curve proposed by Qi et al. (Qi et al., 1992)
based on FTIR measurements. For N-implanted O-rich FZ wafer the absorbance of 653 cm-1
line has to be considered in the calibration formula because of the important excess of
vacancy created during the implantation process. These absorption bands were found to be
due to localized vibration modes of substitutional nitrogen (Stein, 1985) and appear from
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this study to actually relate to VoN> complexes, therefore the nitrogen calibration curve for
N-implanted FZ-Si wafers would be:

[N] = (1.83 + 0.24)x 1017x [0195; + 053 ] at/cm3 (T<15K) (39)

5.4 Conclusions

To comprehend the effect of nitrogen doping on vacancy aggregation, oxygen precipitation,
and nitrogen concentration measurement in silicon, we have theoretically investigated using
density functional theory (DMol3) and semi-empirical MNDO-AM1 method, the atomic
structure, formation energy, and vibrational spectra of several dominant N-related
complexes. The focus was on N-pairs occupying either an interstitial or a substitutional
position and the associated N-O complexes consisting of bridging one or two oxygen
interstitial atoms on the first Si-Si bond neighboring the N-N center. We found a good
correlation between the degree of stability of the defect, the IR active energy levels foreseen
by the symmetry of the defect and the calculated and measured IR active modes. We found,
in agreement with an earlier theoretical study, that N; + N; » N, and VN, +V — V,N, are
highly exothermic chemical reaction thus are very stable complexes. Both complexes are
believed to chiefly form and coexist during crystal growth. The VN, complex is a metastable
species playing a central role in the formation of very stable V>N, defects. The N-O
complexes formed from N, and V>N, defects that is N2O, and VoN»O,, (n=1, 2) are the most
stable among studied N-O complexes suggesting that they act as nucleation centers for
oxygen precipitation. It is likely that vacancy concentration during crystal growth is affected
by the following chemical reaction pathway N>—>VN>—VoN>—V>N>O—VoN>O, which
decreases the vacancy supersaturation, delaying the onset of vacancy clustering and
lessening the void density.

Our results strongly support the assignment of 771 cm? and 967 cm (T<15K) absorption
bands to N pairs in split interstitial positions. Our calculations show that 551 cm-! line and
653 cm! detected in N-implanted FZ Si crystals relates to nitrogen substitutional and are
caused by the vibration of VN> and V>N> complexes. Unexplained measured 782 and 790 cm-
1 FTIR lines probably relate to VN defects. Our DFT calculations on N-O complexes show
that N>O and N>O; complexes best match the FTIR absorption bands measured for N-O
complexes. N2Or, VNO, and V2N2O, (n =1, 2) have IR absorption bands around measured
806 cm? and 815 cm! lines and all relate to nitrogen vibrations. We found that FTIR 1021
cm? absorption band is an IR signature for N>O» and that 1000 cm! and 1031 cm! relate to
N>O vibrations. The 739 cm! line measured in N implanted FZ Si wafers originates from
V2N20 or VoN20; vibrations.

The degree of stability and matching infrared vibrational spectra suggest that N>O,, as well
as VoN2O, complexes develop during crystal growth and wafer annealing and that both act
as nucleation site for oxygen precipitates. The increase in the number of nucleation sites due
to nitrogen-vacancy-oxygen coupling explain the high density of grown-in oxygen
precipitates and the delay in void formation observed in N-doped Si crystals.

Since all studied N-O complexes have normal modes falling around 806 cm and 815 cm-1
(T<15K) measured FTIR lines, these absorption bands have to be considered in the [N]
calibration relationship for N-CZ and O-rich N-FZ Si, [N] = (1.83 + 0.24)x 1017 [ogg7 +
Ogos + Ogy5] at/cm? (T<15K). For N-FZ implanted wafer the absorbance of 653 cm -!line
which relate to VoN2 have to be considered in the calibration formula because of the
important excess of vacancy existing in implanted wafers.
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1. Introduction

Since the discovery of the double helix structure by Watson and Crick, deoxyribo-nucreic
acid (DNA) has been the most important substance in molecular biology. DNA consists of
base, sugar and phosphoric acid. There are four kinds of base in natural DNA, adenine (A),
cytosine (C), guanine (G) and thymine (T) as shown in Figure 1.

Guanine (G) Adenine (A)

Cytosine (C) Thymine (T)

Fig. 1. The chemical structures of base pair (GC and AT pair), where the broken lines
represents the hydrogen bond.

From the view of chemistry, DNA is one of the most remarkable examples for self-assembled
materials existing in nature. It is said that the phosphoric acid has hydrophilic properties. This
is why DNA is stable in aqueous phase. Moreover, there are two kinds of interaction which
stabilizes the whole structures of DNA base pairs. These interactions are the driving force of
self-assemble which leads to beautiful double helix structure. Structures of double-stranded
DNA are stable in aqueous solution, because there are two kinds of interaction between
Watson-Crick nucleobases. The first is the hydrogen bonding between nucleobases, where an
A-T and a G-C base pairs have two and three hydrogen bonds per pair, respectively. The
second is a base stacking interaction caused by -1t interaction between the base pairs. This
type of interaction mainly originates from the van der Waals forces.
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Hydrogen bond is important factor for interaction within DNA base pair. Many theoretical
studies have computed the hydrogen bonding energy between nucleobases in a base pair.
According to the most accurate computation up to date, hydrogen bonding energies of an
adenine-thymine (AT) pair and a guanine-cytosine (GC) pair are about 60 and 110 kJ/mol,
respectively [1, 2].

One of the most important topics in the hydrogen bonding between DNA bases is the proton-
transfer (PT) reaction. In 1963, Lowdin proposed the possibility of a proton-tunneling model
in the DNA base pairs [3]. He also suggested a simultaneous double proton-transfer (DPT) in
AT and GC pairs, which may cause a mutation in the structure of DNA. The process of DNA
mutation through proton-transfer (PT) may be estimated by computational chemistry using
small molecular model systems such as several DNA base pairs. In particular, two types of
the PT reaction in a GC pair (illustrated in Figure 2) have been studied extensively. One is a
single proton-transfer (SPT) reaction, in which a hydrogen atom moves from N; of guanine
(N1 (G)) to N3 of cytosine (N3 (C)) as a proton. Thus, the SPT reaction causes ion pair G-C* to
form, where the proton donor G becomes negative and the proton acceptor C becomes
positive. The other is the DPT reaction, in which two hydrogen atoms (one hydrogen atom is
located at N1 (G)-H...Njs (C), the other is located at O (G)...H-N4 (C)) move to the other side
of each hydrogen bond, which results in G'C* pair (G" and C” represent an isomer of guanine
and cytosine, respectively). In the original DNA base pair, the DPT reaction does not affect
the sum of charges on each base. Unfortunately, there is very little evidence to confirm the
existence of proton-transferred base pairs at room temperature by experiments, because it is
difficult to determine the position of each hydrogen atom in nucleobases accurately. In this
circumstance, theoretical simulations can help one to understand whether or not the PT
reactions occur in DNA base pair.

Fig. 2. Proton-transfer reaction between guanine-cytosine (GC) pair.

In order to understand the transition probability to the product or the dynamics simulation
of PT reaction, we need the potential energy surface (PES) of the proton between base pair.
Since the PES should be drawn within the error of chemical accuracy (1 kcal/mol= 4.2
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kJ/mol), we use the quantum chemical approach to obtain the potential energy of the
proton. The quantum chemical methods (e.g. Hartree-Fock (HF), post-HF theories and
density functioanl theory (DFT)) are derived from the Schrodinger equation or Kohn-Sham
equation. Since the introduction of the program package such as GAUSSIAN, the quantum
chemical approaches have recently been a powerful tool to investigate the molecular
properties which include the PES.

Many theoretical studies have investigated the PT reactions in AT and GC pairs. Florian et
al. investigated the energetics of the PT reactions in GC and AT pairs [4, 5]. They reported
that the GC pair was more stable than its DPT product (G*C*) by 10 kcal/mol, and the
barrier height was estimated to be 14-20 kcal/mol. The DPT reaction would occur rather
than the SPT reaction because the SPT reaction causes the charge separation, forming no
stable product in the ground state. As an approach to the PES of proton between base pair,
Villani has investigated the PES of the protons between AT and GC pair [6] and we also
performed the dynamics simulation in semi-classical method [7].

However, these PT reactions can occur easily in the presence of chemical modification of
nucleobases such as metal complex binding or ionization of GC pair [8]. We take a cisplatin
([Pt(NHs)2Cl>]) bound GC pair as an example of metal complex bound DNA base pair [9, 10].
Since cisplatin was discovered by Rosenberg et al. in 1969 [11], Pt complexes have received
much attention for their effects as antitumor drugs. Cisplatin distorts the structure of DNA by
making a bridged structure with N7 of guanine (G) or adenine (A). It causes a cell disorder that
leads to apoptosis of the living cell. Because cisplatin contains only 11 atoms, it has been a
good target for study by quantum chemistry and has been investigated from both the
experimental and theoretical viewpoints. Experimentally, it is known that the bridged
structure consists of 65% 1,2-d (GpG) (denoted as cis-G-Pt-G), 25% 1,2-d (ApG) (cis-G-Pt-A),
and the rest is other bridged structures [12]. Nevertheless, the existence of 1,2-d (ApA) (cis-A-
Pt-A) is difficult to confirm. The distorted DNAs are observed in X-ray analysis at 1.65-2.50 A
resolutions and in NMR experiments. These structures can be freely taken from the protein
databank (PDB). We draw the whole structure of DNA and cisplatin bound DNA in Figure 3.

RN, i
Normal B-DNA Distorted DNA
(PDBID:1AGH) (PDBID:1KSB)

Fig. 3. Observed structure of normal DNA (B-type) and distorted structure by cisplatin.
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From theoretical aspects, cisplatin has many interesting topics such as a ligand substitution,
a hydration reaction, differences with transplatin and DNA binding. Ligands of cisplatin
become NHj3 and/or H>O by hydration reactions, depending on the pH of the solution. Note
that the ligands of cisplatin in the human body are recognized as NHs. In view of the DNA
binding, there have been many studies of the reaction between cisplatin and DNA bases. In
particular, Burda’s group [13, 14] assumed [cis-Pt(NH3)2(N7-G(or A)),(N7-G(or A))]?* as the
bridging structures and estimated binding energies of Pt-G and Pt-A. They found that the
binding of base pair to the Pt atomtend to occur in the order of cis-G-Pt-G, cis-G-Pt-A, and
cis-A-Pt-A. The angle of N7-Pt-Ny was about 90° for all cases. They confirmed that these
bridges were stabilized by a hydrogen bond between G (or A) and a ligand of the Pt atom,
such as HO and/or NHj. Furthermore, reactions between cisplatin and two DNA purine
bases (such as 1,2-d (GpG), 1,2-d (GpA)) were studied. Their calculated results of reaction
barriers and the reaction constants of substitution reactions reproduced the experimental
data well. There are two possible influences of Pt-DNA formation: (1) global structural
changes, such as the distortion of the DNA duplex structure, or (2) local structural changes,
such as a DNA mutation because of proton-transfer reactions. The former case is very hard
to tackle with full quantum chemistry computation, because such a system is too huge study
with currently available computational resource. For the latter case, the DNA mutation can
be estimated using small molecular systems such as several DNA base pairs.

In this chapter, we will discuss the possibilities of simultaneous single proton transfers in
one or two base pair(s). In Section 2, we will introduce a quantum chemical calculation
methods, which we used on the basis of the quantum mechanics. As an application to the
DNA-systems, we discuss the possibility of proton-transfer reactions in GC pair in Section 3
& 4. In Section 5, we give the concluding remarks.

2. A brief introduction to the quantum chemical calculations

In this section, we briefly explain the quantum chemical approaches used in this chapter.
There are two main methods in the filed of quantum chemistry. The former is ab initio
calculation, which is mainly used in Section 3. The latter is density functional theory (DFT),
which is used in Section 4. Because of the limitation in this chapter, for the reader who
wants to know the detail of the theory, we refer some textbooks for the quantum chemical
approaches [15, 16].

2.1 Ab initio theory

The field of quantum chemistry starts from solving the Schrodinger equation for the
electrons in the molecule. Because nuclei are much heavier than electrons, we can
approximate that the electrons moves in the field of fixed nuclei. Then the Schrodinger
equation for the electrons becomes equation (1).

1 Z 1
Helec‘{l: Z_Ev,uz_kgz_riﬁ_ Zri \P:Eelec\y/ (1)
u
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where A (and B in (2)), p (and v) represent the position of nuclei and electrons, respectively.
Note here that we chose the “atomic unit” in which we set m=h=e=1 for simplicity. This
approximation, called Born-Oppenheimer approximation, is central to quantum chemistry.
The total energy Eyowar includes the repulsion between fixed nuclei, i.e.,
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As a wave function W for the electrons, quantum chemists adopt the Slater determinant
shown in (3).

Pa(X1)  P(x1) - @(xq)
W= 3 oWy (xa X x), By = (2N)12 (/’k1§Xz) (ka.(xz) (pkN.(XZ) . o)
7 : : ‘. :
Pa(Xn) Po(xy) - ov(xy)

The variable x; denotes both the coordinate r and its spin state (a or B). (2N)!'1/2 is a
normalization factor. This determinant satisfies the requirement called antisymmetry
principle, where a sign of the wave function is changed by interchanging positions of a pair
of electrons. In the quantum chemical calculation, each molecular orbital can be described as
the linear combination of atomic orbitals (LCAO) yn(r) such as

r) = chﬂ(k(r) . “)
&

Our goal is to minimize the Eeec=<W | Helec | ¥> subject to the constraint that the trial wave
function must be orthonormalized by using a variational method. This scheme is called as
“Hartree-Fock(HF) theory”. HF theory is categolized into the mean field theory. The
working equation is given by
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where the fourth term arise from the antisymmetry principle and is referred as exhange
contribution. Within the LCAO approach, above nonlinear coupled equations result in a
following secular equation,

FC =¢SC, (6)

where F and S are so-called Fock and Overlap matrices. The matrix elements are given by
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where Hy and Vi, are one- and two-electron matrix elements, respectively, and ymn is the
density matrix. Since the two-electron term depends on the input density matrix, the HF
equation is solved self-consistently.

HF theory covers 99.5% of the total energy of the whole molecule. However, the remaining
0.5% (equals to the order of 1-10 kcal/mol for small molecules) is quite important in the field
of chemistry. To reach this accuracy, we have to consider the “electron correlation” which is
the interaction between electrons. There are so many approaches (post-HF theories) to obtain
the electron correlation energy. The most frequently used theory for application is the second
order of Mpller-Plesset (MP2) theory which is the perturbation theory for the dynamical
electron correlation. This method is efficient when the HF theory gives the good results.
Moreover, the computational cost is the lowest among the post-HF theories. In Section 3, we
adopted this theory to obtain the PES of the proton between guanine and cytosine.

2.2 Density functional theory

The DFT is derived from the Hohenberg-Kohn theorem, which consists of two theorems: (1)
The ground state electron density po(r) of a many electron system in the presence of an
external potential uniquely determines the external potential. (2) The functional E[p] for the
ground state energy is minimized by the ground state electron density py, i.e. E[po]<E[p] for
every trial electron density p. When we determine @i(r) as a molecular orbital, as we derived
the HF equation in previous paragraph, the total electron density can be determined as

Noee
P = 1 mF. ®)

1

This summation for variable i runs to the number of occupied molecular orbitals No... Kohn-
Sham equation can be written as follows:

(_VZZ_Z 24 +VH(r)+vXC(r)J¢’i(f):gi‘ﬂi(r)’ ©

where Vy is the Hartree potential which expresses the Coulomb interaction between two
electrons. The term vxc[p] is “exchange-correlation” potential which replaces the effect from
the exchange of electrons used in the HF & post-HF theories. Since the equation (9) is similar to
the equation (5), DFT can be used by the same procedure, i.e. LCAO approxach, as the HF
theory. Although DFT includes the electron correlation effects through the empirical
correlation potential, the computational cost is much lower than post HF methods. However,
no one knows the exact formulation for the correlation potential so far. To obtain the
exchange-correlation energy, many types of model exchange-correlation functional have been
proposed. Among them, Becke proposed the exchange-correlation functional which includes
the HF exchange energy. This method is often called “hybrid functional”. In Section 4, we used
“mPW1PW91“, one of the hybrid functionals. The detailed expressions are given in ref 17.

2.3 ONIOM method

The computational cost of ab inito or DFT is over O(N3) where N denotes the number of
atoms. Therefore, it is necessary to reduce the computational cost for larger sized molecules
which is discussed in this chapter.
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ONIOM, which is the abbreviation of “our own n-layered integrated molecular orbital and
molecular mechanics” proposed by Morokuma et al. [18], is one of the candidates for the
approximate ways of this problem. ONIOM is a kind of the hybrid methods for quantum
mechanics/molecular mechanics (QM/MM) calculation, which is de facto standard of
biophysical simulations. This method divides the whole molecule into two (or more) parts
in order to enable us to compute different level of theories, i.e.,

Eoniom = Elliii"e —Et+ Eﬁ?gi“ . (10)
When we choose the QM (ab initio or DFT) as the higher level calculation and molecular
mechanics (MM) as the lower level, we can perform the QM/MM like calculations with this
method. In the ONIOM calculation, we replace the boundary atom with a hydrogen atoms.

Figure 4 shows the simple scheme for ONIOM calculations. The potential function of MM
Ewmu are generally written as follows:

v,
Ey = z K,(r- req)2 + z KG(H—H‘,_,,])2 + Z 7”[1 +cos(ng—y)]
bonds angles dihedrals
Aj By q;
+ 2[7’] + _ + 7‘/]
i<j 7’,']1'2 Ti? &t

(11)

These terms are the stretch (bonds), bend (bond angles), torsional (dihedral angles) and non-
bonded interactions (van der Waals interaction and Coulomb interaction). The constants req,
0eq, Y are obtained by geometry optimization with quantum chemical calculation. We also
have to determine the parameter K., Kq, Vi, Ajj, Bj. The variable g; is called as “MM charge”
which depends on the computational models. We used this scheme in Section 4.

Real molecule

Select the
model region

Model molecule

Lower level calculation Higher level calculation

Fig. 4. An image of ONIOM scheme. In general, the region in orange is computed by the

lower level theory such as molecular mechanics (MM). The region in blue is for higher level
theory such as ab initio or DFT.
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3. Local change in a cisplatin bound GC pair

3.1 Computational details

Firstly, we focused on the proton-transfer reaction between a GC pair. We simplified the
model to the system which consists of one GC pair and cisplatin, i.e. [Pt(NH;3)3GC]?+.
Geometry optimizations were first performed by the MP2 method. As the platinum is a
heavy element, we have to consider the relativistic effect. In order to reduce the
computational cost, we adopted an effective core potential (ECP) which implicitly includes
the relativistic effect. As a typical ECP, we used the LanL2DZ basis function (We here
denote this set of calculation as “MP2/LanL2DZ"). Later hydrogen bonding energy was
calculated at those optimized structures with correction of a basis set superposition by the
counterpoise method. All calculations were performed by GAUSSIANO3 [19]. The hydrogen
bond lengths, energies, induced charges and all possible proton transfer reactions among
the bases were calculated.

3.2 Local changes of properties in platinum complex bound GC pair

In this subsection, we compared neutral GC pair with the platinum complex bound GC pair.
Especially, we focused on the hydrogen bonding energy, hydrogen bonding length and IR
spectra. First, we summarized the results of the optimization in Table 1.

Hydrogen bonding energy Hydrogen bonding length [in A]

[keal /mol] 06(G)-N4(C) Ni(G)-N3(C) Na(G)-0x(C)
GCpair  27.2 298 2.93 285
Pt+GC 314 3.06 291 2.90

Table 1. Summary of the change caused by the coordination of platinum complex.

Hydrogen bond length and energy: The major difference between normal GC pair and
platinum complex bound GC pair is the length between Os(G) and Ny(C). This is caused by
Pt2* cation which attracts the Og(G). As a result, the hydrogen bond length Os(G)-N4(C)
becomes larger. On the other hand, the hydrogen bond length N1(G)-N3(C) is not affected by
the platinum complex binding. The hydrogen bond energy of the base pairs is given by the
energy difference between [Pt(NH3)3G]?* + C and [Pt(NH3)sGC]2*. The results show that the
hydrogen bond energy increases by 4 kcal/mol by Pt complex formation.

Changes in IR spectra: Next, the vibrational analyses were performed by MP2/LanL2DZ at
the optimized structure obtained by the same method. The GC pair has three peaks of N-H
stretching modes related to the hydrogen bonds. We defined three N-H stretching modes
Os...H-Ny, N1-H...N3 and N»-H...O; as stretch1, stretch 2 and stretch 3, respectively.

Figure 5 shows the results of peak shifts before and after the Pt binding. In the case of N-H
stretch between Og (G)-N4 (C), about 250 cm-! blue shift was observed and the intensity
became lower. This means the hydrogen bonding becomes distant and weaker. In the case of
N-H stretch between N (G)-O2 (C), on the other hand, about 300 cm! red shift was observed
and the intensity became higher showing that the hydrogen bonding becomes stronger.
These shifts can be explained by the hydrogen bonding length. In the case of N-H stretch
between N1 (G)-Ns (C), about 400 cm-! red shift was observed. From these results, it was
found that the additional hydrogen bond between the H atom of the ligand and Os of G
affects the stability of the complex.
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Fig. 5. IR spectra of GC pair and platinum complex bound GC pair. The peak numbers

correspond to the N-H stretching modes.

3.3 Potential energy surface of proton

The other hydrogen bonds become closer because of the electrostatic interaction induced by
the Pt binding. Especially, N1 (G) and N3 (C) become closer and the potential energy curve of
the hydrogen atom between them has a double minimum. Next we proceed to investigate a
feature of local changes at the hydrogen bonds by observing the PES as a function of
positions of H atoms in order to understand the peak shifts. The GC pair has three hydrogen
bonds: Os...H-Ny, Ni-H...N3 and N»-H...O,, respectively. We focused on the two protons:
Qg...H-Ny and N1-H...N3, which were concerned with the SPT or DPT reactions as shown in
the introduction. We obtained an energy of optimized geometryV(x,y) as a function of bond
length O¢-H (x) and Ni-H (y). We fitted the PES as the following equation.

V= Y Cix'y/, (12)
ij
i+j<6

where Cj is the expansion coefficient. We used the PES of normal GC pair computed by Villani
[6]. We draw the PESs as shown in Figure 6 and listed the expansion coefficients in Table 2.
There are explicit differences in PESs after the Pt binding. In the normal GC pair, two local
minima were found, which correspond to the DPT reaction. On the other hand, Os-H are fixed
near the global minimum, Ni-H has two minima in the platinum complex bound GC pair. The
former is near Ni-H=1.10 and the latter is near Ni-H=1.70, respectively, which corresponds to
SPT reaction. It was confirmed that its energy difference and energy barrier are very small.

3.4 Proton-transfer reaction in Pt+GC pair
We show the existence of the structure that undergoes SPT reaction between N; (G) and N3
(C), which is hereafter denoted as a G-C* pair. The barrier of the DPT reaction, which occurs
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Fig. 6. The potential energy surface of two protons in (a) normal GC pair (b) platinum
complex bound GC pair. The unit of the number is kcal/mol.

j=0 =1 j=2 j=3 j=4 j=5 j=6
i=0 693530  -20913.1 384570  -35870.0 183153  -4867.65 527.568
i=1 -6004.82  -9088.74 8023.79  -444278 1219.89  -131.039 -
i=2 143204  4568.72  -124622 394393  -524822 - -
i=3 143769  -2318.65 161.588  -17.1170 - - -
i=4 779529 692153 125530 - - - -
i=5 -2195.60  -85.3225 - - - - -
i=6 251.950 - - - - - -

Table 2. Expansion coefficients of Cj in platinum complex bound GC pair.

in normal GC pair, is 15.2 kecal/mol, which gives the similar result to Florian’s work [5]. On
the other hand, there is no DPT structure of the cisplatin bound GC pair. Figure 7 sketches
the optimized structures of the GC and GC* pairs, and the transition state (TS). It is
confirmed that all of the structures keep their planarity, even after the Pt complex binding
and proton transfer. Nevertheless, the distances between the atoms involved in hydrogen
bond vary significantly as shown in Table 3. The hydrogen bond of Os—Nj increases by 0.15
A due to the influence of the “additional” hydrogen bond between Og and the ligand of
cisplatin. The other hydrogen bonds shrink because of the electrostatic interaction induced
by the Pt binding, as discussed below. In particular, the hydrogen bond between N (G) and
O: (C) decreases by 0.19 A. There is a weak dependence of the ligands in these distances of
hydorgen bonds for the GC pair. On the other hand, a stronger dependence is found for the
distance between bases of G-C+ pair. Os—Ny, N1-N3, and N>—O» distances in G-C* pair are
shortened by 0.05, 0.08, and 0.02 A compared with the normal GC pair, respectively. These
facts indicate that all of the hydrogen bonds become stronger in comparison with the normal
GC pair. In what follows, we examine where these differences arise.
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Fig. 7. The reaction diagram for proton-transfer reaction in GC pair. (a) normal GC pair (b)
platinum complex bound GC pair. In (a), double proton-transfer reaction occurred, and in
(b), single proton-transfer reaction occurred.

Pt + GC TS Pt +GC+ Experimental
O6-Ny 3.06 2.80 277 2.79
N1-Ns 291 2.64 2.88 2.88
N2-O, 2.72 2.77 2.94 2.84

Table 3. Hydrogen bonding length in Pt+GC pairs (in A)

Charge distributions: The natural bond orbital (NBO) charges of atoms associated with
hydrogen bonds and Pt-G coordination, listed in Table 4, shows that in the GC pair the
charge on O of G increases by interaction with the ligand of Pt. The hydrogen bond
strength between a ligand and Os of G influence the charge of Os, which leads to the
difference in the whole hydrogen bonds. The NBO charge on Pt decreases. Therefore, a
charge transfer takes place mainly from the guanine and partially from the cytosine to the Pt
atom. Such a charge transfer leads to a decrease in the charge on N; in guanine and an
increase in the charges on all H atoms between the bases. The foregoing discussion gives
clues for the reasons why the hydrogen bonds are strengthened: (i) the charge transfer
mainly from Og of G to the Pt and H atoms, and (ii) additional formation of a hydrogen
bond between L; and Os of G, as pointed out above. Strong dependences of the ligand on
the charge of Pt, N7, and Og are found. In the platinum bound GC pair, only a small
influence is observed in the Mulliken charges on the atoms in C, whereas the changes are
more significant in the G-C* pair. The charges on all the heavy elements except for Os
increase compaired to the GC pair. Moreover, strong influences of the ligand on the charge
are found for Pt, N7, Og, as well as Ni. For further understanding of the interactions among
the Pt atom, ligands, and the bases, the sum of the NBO charge on the bases and the ligands
are listed in Table 5. As a reference, the total charges in the unbound case is estimated
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Pt-G

coordination Hydrogenbond1 |Hydrogenbond2 |Hydrogen bond 3
Atom Pt Ny O H: Ny N1 H, N3 N> Hs O,
GC 0722 -0.44 |-057 048 -0.86 |(-0.81 047 -0.64 |-090 046 -0.56

Pt+GC |047 -0.63 |-0.60 046 -0.89 |-0.80 050 -0.67 |-0.87 050 -0.57
Pt+G-C+ |0.74 -053 |-0.61 047 -070 |-038 051 -054 |-069 045 -0.32

a: Estimated from [Pt(NHs)4]?* as a reference.

Table 4. NBO charges calculated by MP2/LanL.2DZ

G C Ligands Pt
GC pair -0.026 0.026 1.389 0.611
Pt(NH3)sGC 0.273 0.125 0.910 0.692
Pt(NH;);G-C* -0.444 0.886 0.881 0.686

Table 5. Sum of NBO charge

using [Pt(NHs)4]2*. In the normal GC pair, both G and C are almost neutral. In contrast,
both G and C in the platinum bound GC pair are positive due to the charge transfer from
the bases mainly to the Pt atom. As for the G-C* pair, however, G and C become negative
and positive, respectively. Note here that C includes the hydrogen atom that initially
belongs to the G in the GC pair as a result of SPT from G to C. Since the charge on the Pt
atom increases, charge transfer from G to the ligands of cisplatin accompanies the SPT
reaction.

3.5 Summary of section 3

We have numerically elucidated the changes in the hydrogen bonds of the base pairs due to
Pt complex formation by means of MP2 theory. For the platinum bound GC pair, the
hydrogen bonding energy exceeds by 3-10 kcal/mol than GC pair without platinum
complex. The hydrogen bond between Os—Nj is lengthened, whereas the other hydrogen
bonds are shortened. These observations are explained by a rearrangement of the charge
distribution. In this section, we revealed that the binding of platinum complex causes a
single proton-transfer (SPT) reaction between N; (G) and N3 (C) in the GC pair. Note here
that the SPT reaction does not occur in the GC pair itself, while double proton-transfer
(DPT) does. Its reaction barrier decreases from 15-20 kcal/mol of the DPT reaction without
the Pt complex to 1.5-3 kcal/mol of the SPT reaction with the Pt complex. The structure that
underwent the SPT reaction is as stable as the original structure.

4. Global and local change of GC pairs by coordination of platinum complex

In stacked two GC pairs, althogh DPT reactions can occur independently. However, these
reactions hardly take place because of high energy barriers as seen in one GC pair [20]. For
further research, it is natural to study what happens when two or more base pairs are
stacked. For the simplicity, we hereafter denote a “G-C* pair” (the product of SPT reaction in
GC pair) as a “G*C pair”.
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4.1 Computational details

Modeling: We first define two types of model systems: the “two base pair” (2bps) model
and the “four base pair” (4bps) model. The former consists of two base pairs and cisplatin
without the backbone molecules, such as sugar and phosphate groups, while the latter
consists of four base pairs and the backbone molecules so that it includes the effects of both
the backbone molecules and base stacking.

The 2bps model is small enough to compute with the full quantum chemistry calculation.
Density functional theory (DFT) was adopted and the modified Parr-Wang functional
(mPW1PWO91) was chosen as an exchange-correlation functional, because the functional is
modified to better describe the hydrogen bonding. For the calculations described in this
chapter, the Stuttgart/Dresden ECPs were used for the Pt atom and the 6-31G (d, p) basis
for the other atoms.

ONIOM method: To investigate the effects of DNA stacking, the backbone and counter
cations, we proceeded to the 4bps model by ONIOM method introduced in Section 2.3. We
here treated two of the four base pairs as the higher layer and the rest as the lower layer. We
utilized the method used in the 2bps model for the higher level calculation and the universal
force fields (UFF) for the lower level calculation in ONIOM cacluation. We took the initial
structure 1,2-d (CpXipXopT) from PDB (PDBID:1A84), where X; and X; are purine moieties
bound to the Pt complex so that there are three patterns of X; and Xo. The ligands of the
cisplatin were assumed as NHj3, as in the human body. We also assumed that the Pt atom
binds to N7 of G and A. To keep the whole system neutral, we added sodium atom at every
POy molecule as the counter cation.

4.2 2bps model

Figure 8 shows the all optimized geometries of the three types of model molecules: cis-(CG)-
Pt-(GC), cis-(CG)-Pt-(AT) and cis-(TA)-Pt-(AT). The structure of cis-(CG)-Pt-(GC) was
distorted in comparison with those in the DNA because of repulsion between the two Og
atoms. Although one of the GC pairs keeps a planar structure, the other GC pair was greatly
distorted. We distinguish them by referring to the former planar pair as the “(GC), pair”
and the latter distored pair as the “(GC)q pair”. This distortion may lead to the stabiity of
whole system in cis-(CG)-Pt-(GC). Hereafter, we will describe the structure of the 2bps
model in the form cis-(GC),-Pt-(GC)q4. Unlike the structures of cis-(GC)p-Pt-(GC)q, all base
pairs in the cis-(CG)-Pt-(AT) and cis-(TA)-Pt-(AT) almost keep their planarity.

We evaluated the binding energy of cisplatin and the base pair. To estimate the hydrogen
bonding energy, we assumed a two-step reaction: (1) [Pt (NH3)4]2* + By-B", -> [Pt (NHs)s
Bp B'p]** + NHj (reaction energy: AE1) (2) [Pt (NHsz)s B, B'p]2* + Bg B’ -> [cis-Pt (NH3)2 B,
B’p Bq Bq]?* + NH; (reaction energy: AE»), where By is A or G, B’ represents the
complementary base of Bx (x = p, d). Results are shown in Table 6. Comparing the AE;
values, the binding energy of Pt-(GC) is much higher than that of Pt-(AT), by 30 kcal /mol.
AE; is larger than AE; because of the Coulomb repulsion between the original [Pt (NH;)3
By, Bp]?* and the additional base pair. Moreover the bases are likely to bind to the Pt
complex in the order cis-(CG)-Pt-(GC), cis-(CG)-Pt-(AT) and cis-(TA)-Pt-(AT). In
particular, the binding energy of the cis-(TA)-Pt-(AT) is remarkably low compared with
those of cis-(CG)-Pt-(GC) and cis-(CG)-Pt-(AT). These results support both experimental
evidence and the tendencies of the models studied by Burda and Leszyczynski [13], as
mentioned in the introduction.
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Fig. 8. The optimized structures of the 2bps models: (a) cis-(CG)p-Pt-(GC)q, (b) cis-(CG)-Pt-
(AT), and (c) cis-(TA)-Pt-(AT).

B,=G, B=G B,=G, B=A Bi=A, B,=G Bi=A, B=A
AE; 461 (47.9) 46.1 (47.9) 14.7 (16.4) 14.7 (16.4)
AE, 245 (259) 6.9 (82) 38.2 (41.7) 24 (4.9)
Total ~ 70.5 (73.8) 52.9 (56.1) 52.9 (56.1) 17.1 (21.3)

a: The “2bps model” was used.
b: The optimized NH; and [Pt(NHs)4]?* is used for energy calculation.
c: The numbers in parentheses represent the energy including zero-point energy.

Table 6. Energy differences of substitution reaction (in kcal/mol)

Why cisplatin prefers guanine to adenine: Figure 9 shows the reason why cisplatin prefers
guanine to adenine. It is known that cisplatin attacks to major groove of DNA base. Guanine
has N7 and Og which attract positive charge. On the other hand, adenine has amino group in
Ns. One of H atoms in amino group prevent positive charge from attacking to major groove.
If cisplatin binds to adenine, this amino group has to be rotated which needs much energy.
Thus, cisplatin prefers guanine to adenine. Table 6 shows this tendency exactly. Therefore,
we will focus on the models of cis-(CG)p-Pt-(GC)q and cis-(CG)-Pt-(AT) in further
discussion.

o — _ amino group

@9 ® 9 )
J
GC pair AT pair

Fig. 9. The major groove of GC and AT pair where cisplatin attacks. In the case of AT pair,
amino group of Ne(A) prevents cisplatin from attacking to Ny.
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Proton-transfer reactions in 2bps model: Next, we discuss the possibility of multiple proton-
transfer reactions in these systems. Here we depict a restricted two-dimensional potential
energy surface (PES) of two different hydrogen atoms between Ni (Gp/q) and N3 (Cp/q) in
figure 10, where the geometry except for the two hydrogen atoms is fixed. The rigid PES used
here is very rough approximation, because it does not consider the effect of structure
relaxation. Nevertheless, it is at least useful to intuitively understand the proton transfer
reactions between bases. In this subsection, we depicted this PES in order to confirm whether
proton-transferred structures exist or not two stacked base pairs. The origin of the PESs are at
the center of both hydrogen bonds, and the PESs were plotted every 0.05 A. From this figure,
it shown that there are three possible minima, at the points marked as X in the figures. No
two simultaneous SPT reactions are found because the potential energy of cis-(CG*),-Pt-
(G*C)q is very high as shown in A. We here confirmed that one SPT reaction can occur even
in two GC pairs. Figure 11 shows the results of geometry optimization of cis-(CG)p-Pt-(GC)q,
cis-(CG*)p-Pt-(GC)q and cis-(CG)p-Pt-(G*C)q, where G* again means the guanine donating a
proton. This result is similar to the SPT reaction in one GC pair calculation described in
previous subsections, where the reaction barrier is about 5-6 kcal/mol. The difference of the
energy barrier between cis-(CG*)p-Pt-(GC)q and cis-(CG)p-Pt-(G*C)q is because of the
difference in their planarity. A structure of two simultaneous SPT, cis- (CG*),-Pt-(G*C)q,
cannot be found, as expected from the potential surface depicted in figure 10.

Next, the sum of charges obtained by the natural bonding orbital (NBO) is analyzed. Table 7
lists the results of the sum of the NBO charges. Every part of cis-(CG)p-Pt-(GC)q has a
positive charge, but both C, and Cq4 are almost neutral. When the SPT reaction occurs, the
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Fig. 10. (a) Definitions of variables in a 2bps model of cis-(CG),-Pt-(GC)q4. Only the hydrogen
atoms surrounded by the dotted line in each GC pair were moved. (b) The potential energy
surface of hydrogen atoms. The numbers on each axis represent the distance between N (G)
and the hydrogen atom (in A). The origin is set at the point where both hydrogen atoms are
at the middle of the hydrogen bonding.
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cis-(CG)p-Pt-(GC)d
0 kcal/mol

)
Gis-(CG*)p-Pt-(GC)d Gis-(CG)p-Pt-(G*C)d
+5.7 keal/mol +6.2 keal/mol
Fig. 11. The reaction diagram for single proton transfer (SPT) between N; (G) and N3 (C) of

the 2bps model of cis-(CG)-Pt-(GC). The numbers in kcal/mol in the figure denote relative
energies measured from cis-(CG)p-Pt-(GC)a.

cis-(CG),-Pt-(GC)q cis-(CG*),-Pt-(GC)a cis-(CG),-Pt-(G*C)a
GporG*, 026 -0.43a 0.25
GaorG* 024 0.25 -044a
C, 0.10 0.58b 0.33
Ca 0.10 0.32 0.58b
Pt 0.73 0.69 0.70
Ligands 0.59 0.58 0.58

a: The sum does not contain the H atom transferred to the N3 of C.
b: The sum contains the H atom transferred from G.

Table 7. Sum of the charges by natural bond orbital (NBO) analysis

whole charge of a proton donor G* becomes negative. On the other hand, both C, and Cq4
become positive after the SPT reaction. The proton donor G* is negative whereas a proton
acceptor C is positive. It is expected that these Coulomb repulsions of C, and C4 and of G,
and Gq prevent further SPT reactions from cis-(CG)p-Pt-(G*C)q and (CG*)p-Pt-(GC)q. In
particular, this change of charge distribution can be seen in the case of trans-(CG):-Pt-(GC),,
in which the two guanines become negative while the two cytosines become positive.

The SPT reaction between N and N3 of the GC pair also occurs in cis-(CG)-Pt-(AT). The
result is similar to the one GC pair shown in Section 3.4. The structure is not distorted in
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spite of the SPT reaction between the GC pair. Then, we must know the possibilities of
further proton transfers in the AT pair. These pairs have two hydrogen bonds Ng (A)-O4 (T)
and Ny (A)-N3 (T). We show a restricted two-dimensional potential energy surface in Figure
12, where variables r1; and 12 denote the distances Ng¢-H and Ni-H, and the other geometries
are fixed. Figure 12 shows two local minima, both cis-(CG)-Pt-(AT) and cis-(CG*)-Pt-(AT).
This implies that a multiple SPT reactions can occur in cis-(CG)-Pt-(AT). Nevertheless, the
energy difference between local minima is so large that the proton-transfer reaction may not
occur at room temperature. The tendency does not change even after the SPT reaction took
place in the GC pair. Table 8 summarizes the possibilities for multiple proton-transfer
reactions in all the systems.

2 :
8 T ® -ﬁ_" cis-(CG)-Pt-(AT)  cis-(CG*)-Pt-(AT)

AT pawr

Fig. 12. Definitions of variables in the 2bps model of the cis-(CG)-Pt-(AT). The numbers in
the contour plots represent the energy in kcal/mol.

cis-(CG)p-Pt-(GC) 4

(CG)p / (GC)q None SPT between N and N3

None 0 6.2

SPT between N; and N3 57 N/ A (not available)
cis-(CG)-Pt-(AT)

GC/ AT None DPT (N; and N3), (Ne and Oy)

None 0 17.5

SPT between N7 and N3 -1.0 15.2

Table 8. The differences of energy in “2bps. model” molecules (in kcal /mol)
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Note that the SPT reaction occurs in platinum-bound GC pair, and the DPT reaction
occurs in AT pair. The DPT reaction can also be found even after the SPT reaction between
N1 (G) and N3 (C) has occurred. The SPT reaction in the AT pair cannot occur, because the
Pt complex binding increases the distance between N; (A) and N3 (T). In every case of the
DPT reactions, the product of DPT reaction becomes more unstable than the original
structure.

4.3 4bps models

Our calculations elucidated that SPT structures of the cis-(CG)-Pt-(GC) type can exist even in
4bps models. Two different optimized structures are shown in Figure 13, which shows one
planar GC and one distorted GC pair as well as the 2bps model of cis-(CG)-Pt-(GC). We also
found that the backbone and stacking bases do not change their postion much from their
original geometry during the SPT reaction.

We extracted the higher layer, i.e.,, the 2bps and Pt complex, from the 4bps model to
investigate the energy differences between cis-(CG),-Pt-(GC)q and (CG*)p-Pt-(GC)q or cis-
(CG)p-Pt-(G*C)q. The energies of these model molecules are assumed to be approximately
those of their higher layer. The energetics of (CG),-Pt-(GC)q and (CG¥),-Pt-(GC)q are
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Fig. 13. The optimized structures of the 4bps models of (a) cis-(CG),-Pt-(GC)q, (b) cis-(CG*),-
Pt-(GC)q, and (c) cis-(CG)p-Pt-(G*C)a. Atoms depicted with balls are set to higher layer and
with wires are set to lower layer in ONIOM calculations.
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shown in Table 9. From this table, the energy differences between the original structure and
the proton-transferred structures are estimated as 3-3.5 kcal/mol. From these results, the
reaction energy of the SPT reaction is estimated to be lower than the case of 2bps model.

cis-(CG),-Pt-(GC)q 0
cis-(CG*),-Pt-(GC)q +32
cis-(CG)p-Pt-(G*C)q +3.0

a: We set the energy of cis-(CG),-(GC)4 without sodium atoms as 0.

Table 9. The differences of energy in “4bps model” molecules (in kcal/mol)

We next compared the optimized structure with experimental data from the protein data bank
(PDBID: 1A84, 1AU5 and 1KSB) as summarized in Table 10. The hydrogen bond lengths of
1A84 and the optimized structure show poor agreement with each other, where the distance
between (Og)q and (Ny)q is about 3.3 A in the former, which is too large to form hydrogen
bonds. Except for this result, the optimized 4bps model of cis-(CG)p-Pt-(GC)q agrees well with
the experimental data in the coordination Pt-G and the error is within 0.05 A. On the other
hand, the error of the hydrogen bond length is significant, e.g., the hydrogen bond length of
(O2)p-(N2)p is 2.75 A for the 4bps model of cis-(CG),-Pt-(GC)q and 2.96 A for 1AUS. This is
because the energies of cis-(CG*)p-Pt-(GC)4 and cis-(CG)p-Pt-(G*C)q4 are as stable as those of cis-
(CG)p-Pt-(GC)q so that the mean of these structures may be observed in the experiment
because of the low energy barrier of the SPT reaction. Indeed, the error is improved when the
structures of cis-(CG*),-Pt-(GC)q and cis-(CG)p-Pt-(G*C)q4 are taken into account. In this case, it
is possible that the dynamic fluctuations may dominate the structure of the system.

— D el — o
cis-(CG)p- Pt- cis-(CG*)p- Pt cis-(CG),- Pt 1A84 1AU5  1KSB

(GC)q -(GQ)q (G*Q)q

Pt-G coordination

aPt-G, 2.04 2.03 2.04 2.05 1.96 2.01
aPt-Gq 2.04 2.04 2.03 2.05 1.98 2.01
bGp-Pt-Gd 894 914 89.6 90.1 87.4 88.6
Gp-Pt-L1-Gq 53.7 58.6 63.3 40.8 -14 56.9
Gp-Pt-Lo-Gq 69.2 69.5 64.6 729 -17.5 55.3
Hydrogen bond length

(O6)p-(N4)p 2.84 2.62 2.85 297 2.73 2.76
(N1)p-(N3)p 2.85 2.77 2.87 3.01 2.96 2.86
(02)p-(N2)p 2.73 2.92 2.79 291 2.87 291
(O6)d-(Ng)a 2.82 292 2.65 3.28 2.80 2.83
(N1)a-(N3)a 2.81 2.84 2.76 2.99 2.71 2.89
(02)a-(N2)a 2.75 2.74 2.96 2.59 2.96 2.85

a: The distance Pt-G is defined as the distance between Pt and Ny of guanine.

b: The angle G,-Pt-Ga is defined as N7 (Gp)-Pt-N7 (Ga).

c: The unit of distance is angstrom, the unit of angle is degree.

Table 10. Selected lengths of optimized geometries and the experimental data from the
protein databank
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For further research, it is also necessary to discuss the possibilities of proton-transfer in
larger system. In such systems, it is necessary to consider not only the optimized structure
but also structural fluctuations. The mean structure between the original and the SPT
structures may be observed at room temperature. The dynamic effects will be investigated
in our future work.

4.4 Summary of section 4

The binding affinity of cisplatin to base pairs were in the following order in our calculation,
cis-(CG)-Pt-(GC), cis-(CG)-Pt-(AT), and cis-(TA)-Pt-(AT), when complementary base pairs
were taken into account. From their energetics, the structure of cis(TA)-Pt-(AT) is expected
to be notfound at room temperature. The SPT reaction can occur in systems that consist of
two base pairs and cisplatin. The reaction barrier is as low as 6-7 kcal/mol, which is similar
to the case of one GC pair with cisplatin, and the SPT structure is as stable as the original
structure. From these results, it is possible that the coordination of cisplatin to DNA causes a
mispairing of the GC pair that leads to a mutation of the DNA. The SPT reaction causes this
in one of the GC pairs. On the other hand, two simultaneous SPT structures like cis-(CG*)-
Pt-(G*C) are forbidden. This is explained by the analysis of charge distributions. After one
SPT reaction occurs, the proton donor G becomes negative and the proton acceptor C
positive. At the same time, the other C also becomes positive through electrostatic effect
from virtically stacked base pair that under went SPT reaction. Therefore, the subsequent
SPT reaction from the other G is forbidden by Coulomb repulsion. The SPT reaction
between G and C can occur with cis-(CG)-Pt-(AT). This result is similar to the case of one
GC pair.

By using the ONIOM method, the SPT reaction is also shown to occur in the system
consisting of cisplatin and four base pairs containing the backbone molecules (4bps model).
Without the effects of the backbone and the stacking base pairs, the structure of cis-(CG),-Pt-
(GC) q is so distorted that we cannot expect it to describe the actual structure in the DNA.
The optimized structure of the 4bps cis-(CG)-Pt-(GC) model agrees with results from NMR
experiments in view of the Pt-G coordination, but not of the hydrogen bond length. Because
the structures of cis-(CG*),-Pt-(GC) 4 and cis-(CG),-Pt-(G*C) 4 are as stable as the original
one, their mean structures may be observed in experiments.

5. Conclusion

We investigated the change of proton-transfer reactions in DNA base pairs caused by the
coordination of cisplatin by density functional theory (DFT) and ONIOM method. When the
cisplatin binds to GC pair, the structure undergoes intermolecular proton transfer from G to
C (denoted as G*C pair) resulting in an increase of the bonding energy by 3-10 kcal/mol.
This renders the structure to be metastable due to (a) successive processes of charge transfer
from G to cisplatin thereby stabilizing the GC and G*C pairs and (b) an additional hydrogen
bond between G and the ligand of Pt atom. From the energetics of two base pairs with the
cisplatin, it is theoretically confirmed that the Pt complex is likely to bind in the following
order: cis-(CG)-Pt-(GC), cis-(CG)-Pt-(AT), cis-(TA)-Pt-(AT).The Pt atom is expected to bind
to the N7 site of G and A. This result supports the experimental evidence, where the
structure cis-A-Pt-A is seldom observed at room temperature. The single proton-transfer
reaction occurs in one of the two GC pairs. No simultaneous single proton-transfer reaction
can occur in both base pairs. Two different single proton-transferred structures (cis-(CG*)q-
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Pt-(GC)p and cis-(CG)q-Pt-(G*C)p, where * means a proton donor of G) are as stable as the
original structures (CG)4-Pt-(GC)p. The same tendency was observed with cis-(CG*)-Pt-(AT).
In contrast to cisplatin, multiple single proton-transfer reactions may occur in the system
consisted of two base pairs with transplatin. The optimized structure agrees with the
experimental data for Pt-G coordination except for the hydrogen bond length.
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1. Introduction

Quantum theory in curved spaces has received much attention over the years. It has been
applied in the study of black holes and large scales structures in the universe as well as
in the study of the Casimir effect, e.g. However, transferring our existing formulations of
quantum theory to curved spaces is not straightforward and any approach will be hampered
with a number of issues (1). Nanostructures provide an experimental arena which potentially
can provide direct evidence for the interplay between geometry and quantum theory. The
ability to manufacture micro- and nanosized surfaces has open up new vistas which should
be utilized in order to get a firmer grip on the quantum theory of particles living on these
curved structures.

In the following a brief account of the most widely accepted formulation (the
‘standard” formulation) of Shrodinger theory on surfaces and linear structures in ordinary
three-dimensional Euclidean space is given. We then apply this framework to derive a
quantum theory on the catenoid in three-dimensional Euclidean space. This will highlight
some important features connected with the interplay between quantum theory and geometry.
Then follows a partial framework for an alternative formulation of Shrodinger theory
on a surface in which we utilize the unique conformal properties of two-dimensional
surfaces. Even though most work connected with quantum theory on structures embedded
in three-dimensional Euclidean space so far have been concerned with surfaces, wire
structures are also of great obvious interest. Next we therefore point to the possible
importance of employing ideas from supersymmetric quantum mechanics in order to
enhance our understanding of these structures. Workers in the field of quantum mechanics
on lower-dimensional structures in flat space have mainly concerned themselves with
Shrodinger theory. In the remaining part of this brief account we will concern ourselves
with Dirac theory on surfaces in three-dimensional Euclidean space. We look at differences
between the first and second order formulations, and device the proper framework for
formulating Dirac theory on surfaces and linear structures in a way which makes contact
with the standard formulation of Shrodinger theory on these structures. We then explore
different issues, including the question of whether it is ‘sufficient’ to employ an intrinsically
defined quantum theory in a surface compared to the standard approach in the context of
Dirac theory. This issue should be of particular relevance when formulating effective theories
for charge carriers in graphene. No effort has been made to provide an exhaustive list of
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references. Those references which are cited, and the references they contain, are those which
have been of particular importance for this author.

2. Dimensional reduction

Quantum mechanics has come to age. We can claim that its basic formulation, either in the
form of the canonical quantization procedure or in terms of the Dirac quantization program, is
well understood in the sense that its formulation is transparent, even though its consequences
continue to surprise and baffle us all. However, this claim is only true as long as the theory
is formulated in an Euclidean space which is charted with Cartesian coordinates. It was
early recognized in the Dirac quantization programe that problems generally arise when
non-Euclidean coordinates are used (2). This is a signal that the interplay between quantum
theory and geometry is a deep and fundamental one. This interplay took center stage in
physics when it was shown that black holes radiate (3). Curved spacetime geometries are not
of immediate importance for quantum theory in the laboratory setting, but curved surfaces
and linear structures are. The Casimir effect (4) is a well known example which proves
this. Aspects of the challenges met in quantum theory in ‘exotic” space-times might therefore
also appear in more everyday settings. The coordinate challenge in the Dirac quantization
program (e.g.) definitely does since curved surfaces in ordinary space can generally not be
completely charted with Cartesian coordinates. The most generally accepted adaption of the
canonical quantization procedure to curved surfaces and linear structures was developed in
(5-7). What follows is a brief account of this adaptation. We will not systematically discuss the
Dirac quantization procedure and possible adaptations of it to lower dimensional structures
in space in this exposition, but we will briefly comment on an important aspect of the latter in
Section 4.

Consider a smooth two dimensional static surface S in ordinary three dimensional space.
We follow the parametrization in (6) and chart the three dimensional embedding space with
coordinates X!. We write the metric as (6; 8)

ds? = —dt* + Gy(X')dX'dX) + (dX%)? =

= —df? + G (x")dx"dx? + (dx3)?, 1)

where G, (x?) is the metric in the surface S defined by coordinates x?. We assume that we
can define a normal vector field N everywhere on S. The coordinate direction x3 is assumed
to be along N in the immediate vicinity of S. Our conventions will be such that indices at the

beginning of the alphabet will refer to the coordinates m the surface x”, while indices in the
middle of the alphabet refer to the global coordinates X'. It follows that (8)

Gap(X7) = gap(x") — 2K (x7)x® + KK 4 (x) g (x")K™ 4 (x7) (x%)2 (2
G(X') = detG(X') = g(x")(1 — 8M(x")x® + (2K(x") +8M(x)*)(x3)2 +..)  (3)
\/G(X1) g(x)E(XT), E(XT) =1 — 4M(x")x® + K(x") (x3)? + ... (4)

where g,;,(x%) is the induced metric in the surface, g(x*) = detg,(x?) and K’ j(x?) is the

extrinsic curvature tensor associated with S. K = detKZ and M(x%) = G (Xi)Kij(Xi) is the
mean curvature in S.
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Central to the approach developed in (5-7) is the assumption of the presence of forces which
constrain the particle to S. It is assumed that these forces act everywhere normal to § and that
they can be derived from a potential V; (X3). A is a parameter which measures the strength
of the potential. The Schrodinger equation describing an electrically neutral particle in the
embedding space within this framework is then given by (we use units such thatc = 1 = 1)

0 = —ﬁcﬁvi(v}w) + Vo (X3). @)

m denotes the particle mass. In order to derive a quantum theory in S we need to dimensionally
reduce the Schrodinger equation. We therefore decompose the covariant derivative in a
coordinate gauge invariant manner as a sum of one part which acts along the surface(||), and
one part which acts normal to the surface (L)

Vi=Vi+Vi. (6)
The purely kinetic term in the Schrodinger equation can then be written

GV Vi = (V] + V)P = (399 + G T dcp) + (%939 + G T3 d3)yp.  (7)

In the last relation we have used the coordinate gauge Eq.(1). T’ jk represents the Christoffel
symbols of the second kind. We will assume that the wave function is normalizable in the
three dimensional embedding space, such that the norm is given by

N= [@xVClpP = [dxglx?. ®)

Probability conservation requires that ¥(X!) = &(x')~1/2x(x). We use this relation to
compute the kinetic term and rewrite the Schrodinger equation in terms of . Clearly,

lim V‘lp VHX 9)

x3—0

We also find that

1
lim V29 = lim ——d3(VG3%y) = lim & 1a5(Fas (¢ /2 32y —V, 10
Jim Vig = lim 5(VGOy) = lim £7105(205(¢1%x)) = Bx — Vox- (10)

Using these relations we find in the limit x> — 0 that the Schrodinger equation becomes

0ty = —2 ||X 837( + Vox + Vax, (11)

where V) is given by (6)
_ 1 2
Vo = —5 - (M* = K). (12)

We see that an effective potential has emerged depending on scalars characterizing the
extrinsic curvature of S. Vj is clearly non-positive on any surface. If x is separable into one
part which is independent of x> and one part which only depends on this coordinate we have
effectively deduced a quantum theory in the surface S. This program can also be adapted to
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linear structures by continuing the dimensional reduction procedure above. The result is (6)

2 _
- %axl/f s (x)p =Ey. (13)

x is the coordinate along the structure, and «(x) is its local curvature. We will later return to
this result in Section 5.

3. The catenoid

Let us apply the dimensional reduction approach above to a concrete surface. We will
in particular consider the catenoid surface (9). This is a classical minimal surface. It can
conceivably be realized in a bilayer of honeycomb lattices with radially arranged dislocations
or in bilayer graphene (10). We choose the following parametrization for the catenoid
x = Rcosh(z/R)cos¢, y = Rcosh(z/R)sin¢g and z = z, with ¢ € [0,271] where x,y,z
represents the canonical Cartesian coordinates in ordinary three-dimensional space (Fig. 1).
The local radius p = R cosh(z/R) and the metric is thus given by

[ 2
80 = 7 Rz 800 = a4

Fig. 1. A two-dimensional section (catenoid) of a three dimensional worm hole geometry
with its axis along z and the throat radius R.
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It is interesting to note that slices of a wormhole geometry is geometrically equivalent to a

catenoid. In cylindrical coordinates (z, 7, ¢) a two-dimensional section of a wormhole is given

by (11)

72

z(r) = £boIn i
0

r
T + 1|, (15)

with [ = 4/r2 — b3. The spatial part of the wormhole geometry is given by the following
expression (11)

ds? = dI? + (b 4 12)(d6? + sin® 0d¢?) , (16)
where | € [—o0,+00], 0 € [0, 77] and ¢ € [0,27]. by is the shape function of the wormhole [in
general b = b(l) and for | = 0,b = b(0) = by = const. represents the radius of the throat of
the wormhole]. Here I is a radial coordinate measuring proper radial distance; 6 and ¢ are
the spherical polar coordinates. Here we will consider the slice § = 71/2 which represents an
equatorial section of the wormhole geometry (at constant coordinate time). For this particular
slice we thus get the following line element

ds? = dI* 4 (b + 12)d¢?, (17)
which is precisely equivalent to the line element on a catenoid (since 2= b%)

2

2 _ 12
r+ — b

ds? = dr? + r*d¢?. (18)

Note that if we consider any other section of the three dimensional wormhole, say for 6 = 6y,
the line element will change to

2

ds? = r
T 22
r# — b

dr* + a*r’d¢?, (19)

where a2 = sin? 6, and (obviously) a> € [0,1]. For the catenoid this will only mean a

rescaling of the radius of the catenoid at the throat (the circle with least local radius) from
R to aR. The line element Eq.(19) corresponds to a catenoid with x = aRcosh(z/aR) cos ¢,
y = aRcosh(z/aR) sin¢ and z = z. Thus all f-sections of the physical wormhole at constant
time coordinates represent a catenoid with radius aR. The catenoid with the biggest radius
corresponds to the equatorial section § = 7 and the one with zero radius to the section 6 = 7.
Returning to the catenoid and focusing on the (z,¢) coordinates (instead of (p, ¢)), the line
element is given by

ds? = cosh®(z/R)dz?> + R? cosh?(z/R)d¢?, (20)
with the principal curvatures given by
I .2 1 .2
S Esech (z/R), 1= —Esech (z/R). (21)
This implies that the mean curvature M = (x; + x)/2 = 0 (meaning that the surface

is a minimal surface) and the Gaussian curvature K = xjx, = —(1/R2)sech*(z/R). The
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corresponding curvature induced potential on a catenoid is then given by

h2 2

h
V(z) = _%(H2 —K)= —Wsech‘l(z/R). (22)

Note that for 4> < 1 the potential becomes very deep at the origin. The corresponding
Schrodinger equation is given by

hz aZIIJ 1 aZl/) hz . B
~ 2mgRcosh?(z/R) [Rﬁ * Ew} ~ amgR2 SN /Ry = Ey, (23)

or simplifying

Pp 10  sech’(z/R) ~ 2mgR
“RoZ ~Ragt R P = hg cosh?(z/R)E. (24)

Using the cylindrical symmetry along the z-axis we set ¢ = e"?®. We thus get the following
equation for ®

2 2 2
" sech”(z/R) o4 2mgyE cosh”(z/R)

(bZZ - ﬁ R2 h2

@ =0. (25)

Defining a dimensionless length { = z/R and energy € = 2myER?/ n? we get the following
effective Schrodinger equation

— P +V(Q)P(0) =0, (26)
where the potential now reads
V(Q) = [m* — e cosh®(g)] — sech? (). 27)

This potential for m # 0 bears some similarity to the corresponding geometric potential for the
physical wormhole (12). Note that in the ground state (¢ = 0, also called a critically bound state
(13)) V(Z) becomes the reflectionless Bargmann’s potential (14) and the Schrédinger equation
becomes the hypergeometric equation with the ground state wavefunction (the ‘Goldstone
mode’) given by ®(g) = sech({). This result is remarkable since this implies that the catenoid
surface enables complete transmission across it for a quantum particle. This does not seem
to be the case for the physical wormhole geometry (12). For non-zero values on € the above
potential is an inverted double well potential shown in Fig. 2.

Let us consider Eq.’s(26-27) in some more detail. We see in particular that

lim |V|— 0. (28)
{—=+oo
This behavior of the potential at infinity is strange since the geometry on the catenoid in these
regions approaches the usual Euclidean one. This feature can be traced to the coordinates
used since the proper length per unit in the { direction diverges when { — =+co. This can be
remedied by introducing another set of coordinates on the catenoid.
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Fig. 2. The inverted double well potential V() with m = £1 and € = 0.1.

Quantum theory in curved spaces is generally a challenge since the theory is not generally
covariant. Classical quantum theory is not even Lorentz invariant. This puts a severe
constraint on the coordinate system in which one wishes to describe the physics in order to
be able to extract the physical content of the theory. This challenge was even central in the
early days of general relativity theory itself in connection with the physical interpretation
of the Schwartzshild metric, e.g. Just like as in general relativity theory one is usually
safe concerning the physical interpretation, as well as the definitions of physical quantities,
when the manifold in question is asymptotically Minkowski (Euclidean). In such asymptotic
regions we expect on physical grounds to rederive the usual flat space physical results. The
asymptotic properties thus in some sense anchor the curved region and its physics to reality,
as we know it. The catenoid is in this sense an asymptotic Euclidean object, thus making this
manifold a space anchored to 'reality’.

The catenoid surface can in some sense be perceived as a deformation of the plane.
Considering briefly the two-dimensional Schrodinger equation in the plane in polar
coordinates we get the Bessel equation. Clearly, the boundary condition at the origin is
suspect here. However, in our case we can as a first approximation consider a deformation
of the plane in a region around the origin. In the deformed region the Schrodinger equation
will generally be very complicated but the solutions of it must nevertheless be matched to
the Bessel functions which survive sufficiently far from the deformed region. This reasoning
goes ad verbum through also on the catenoid even though we here, in addition to curvature
corrections, also have a topology change when compared to the plane since not any closed
curve on the catenoid surface is null homotopic. Hence, we should seek coordinates on the
catenoid such that the Schrodinger equation gives rise to the Bessel equation in the asymptotic
region on the catenoid. The coordinates should thus in particular result in a metric which is
reminiscent of polar coordinates at infinity. It is possible to find such coordinates if one covers
the entire catenoid manifold with two coordinate patches. One patch covers the region ¢ > 0,
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the other < 0. In the upper part we choose the new radially directed coordinate as
nt=e—1;7>0. (29)
In the lower part we correspondingly choose
N =—(et—1);7<0. (30)
Clearly 7 =~ at { = 0. The invariant line-element can then be written as

(02412 L 1 141

2 _ +y2 1 272
ds® = ORI (dn™) +4( R ) de”. (31)
In the limit 7™ — 4o the metric can be written as
1 1
ds? = 2 (dn®)* + (%) ?dg” (32)

Hence, the asymptotic form of this metric is very similar to the Euclidean metric expressed in
ordinary polar coordinates. Indeed, they are exactly the same something which is easily seen
by a simple rescaling of the radial coordinates. These new coordinates should therefore be
well suited to explore the physical states of a quantum particle on the catenoid.

Let us now consider the Schrodinger equation (26). In terms of the new coordinates we have
in particular that

RP = (1 £1)3+((n* £1)9+®), (33)
1, (nt+1)2+1
Coshu:ii(%). (34)

This gives rise to identical expressions for the Schrodinger equation in the two coordinate
patches. In the upper patch the equation is explicitly given by
e (m?—e/2)

0P+ |- — +1( S 16
(r+1) " 4 (t+12 T4+t (P +1)2+1)2

D+ )| ® =0.(35)
Clearly, letting 77 — oo we easily get the Bessel equation, which is well behaved at infinity.
The stationary Schrodinger equation, and assuming a well defined energy E eigenvalue
problem, is formally given by

(-V2+V)¥ = EY. (36)

Hence, we have that

7_5_(7712—6/2) 1 € 16
YoE=a (77++1)2+4<(f7++1)4+((f1++1)2+1)2)]' 37

In the asymptotic region we find that

1
lim V=E— ¢>0. (38)

nt—oo
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We have plotted the potential for m = 0 and € = 2 in Fig. 3. Note that in this s-channel the
potential becomes negative sufficiently close to the origin.

A +
A Ve

-1

Fig. 3. The potential V(") withm = 0and € = 2.

Clearly, the constant part of the potential can be renormalized to zero without any physical
consequences. Hence, the renormalized potential V; can be taken to be

B (m?—¢e/2) 1 € 16
[ I TR +1(<n++1>4+<<n++1>2+1>2”' )

4. Conformal deformations

The framework derived in (5-7) has become a standard one for analyzing quantum mechanics
on surfaces and one-dimensional structures. The resulting theory is a theory framed in curved
spaces. As such it is often difficult to deal with both from a purely computational perspective
as well as also from an interpretational perspective. On the computational side the kinetic
part of the Schrodinger equation will very often be highly complicated function of the metric
tensor. This will typically give rise to complicating second order derivative terms which mix
the spatial coordinates. The often lack of an “asymptotically” flat region of a given surface
(e.g.) often gives rise to all sorts of interpretational issues which also often appear in quantum
theories in curved spaces (1). Our treatment of the catenoid above highlight this issue in
particular. Here we sketch a framework which might be of utility in resolving some of these
issues. We emphasize that it is a sketch which is presented, and not a complete and polished
framework.

We entertain the following idea. It is well known that every open, connected and smooth
surface in three-dimensional Euclidean space is conformally flat. Physically we can picture
this as it is always possible to deform S in such a way that the local geometry, all the time
expressed in the same coordinates, has a conformally flat form all the way to the point when S
has become a two-dimensional plane P. We call such a process a conformal deformation of S. The
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Schrodinger equation is not invariant under conformal transformations. Hence, is it possible
in general to re-express the quantum theory on a given surface S on the two-dimensional plane
P using conformal techniques in such a way as to bypass (some of) the issues mentioned above
which arises in the more physically motivated dimensional reduction framework? We show
that it is possible to reformulate the two-dimensional quantum theory on S in the plane such
that it can be looked upon as standard free two-dimensional Schrédinger theory coupled to
an external potential. The wave-function on P couples to a new potential Vp which exhibits a
vector field W and a scalar field W, both of a purely geometric origin on $

2

Vp:—;—m(W~Vp+W). (40)
Vp denotes the metric compatible connection on P. Hence, certain computational issues is
bypassed by this approach since the theory is formulated in a flat space which in Cartesian
coordinates will give rise to a “trivial’ kinetic operator. The formulation will also be easier to
interpret both because of the non-existing intrinsic curvature in the plane and its vanishing
extrinsic curvature, and because Vp can be treated as a completely external potential not
associated with the space P in which the theory is formulated. This might enhance our
understanding of the physical picture on S.
We consider a smooth two-dimensional surface S in ordinary three-dimensional Euclidean
space. In the present work we will focus on open surfaces. We will briefly deal with compact
surfaces at the end of this section. We will repeat some of the mathematical technicalities from
section 2 in order to fix the needed notation. We assume that we can define a normal vector
field N everywhere on S. We will choose coordinates in the embedding space in such a way
that one coordinate basis Vector is always parallel to N in the vicinity of S. We will denote the
associated coordinate by x3 in the following and the coordinates on S by x!, x2. We denote
the metric tensor induced on S by Gg,;, such that the indices refer to the coordmates inS. In
the dimensional reduction approach it is assumed that the quantum particle is constrained
to S by a constraining potential V5, where A is a measure of the strength of the potential. It
is assumed that the constraining forces always act along N. In order to derive a theory on S
we decompose the connection V in the three-dimensional Euclidean space into a component
acting solely in the surface Vg and a component V| acting along the normal vector

V=Vs+V,. (41)

The potential Vg, can be thought of as an infinite well potential such that S is sandwiched
between two potential ‘walls’ (6). In the limit when the width Ax3 of the potential well goes
to zero, when the particle is literally forced to follow the surface S, we get (6)

lim VL =% — Vs(x!, x?). (42)
Ax3—0
In these calculations coordinates are chosen such that G3; = 0, Gsz3 = 1,;i # 3. The

Schrodinger equation can then be written as

. >
idtxs = — vs)(s m3§XS + Vsxs + Vsaxs- (43)
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If this equation is separable we are left with a theory in the surface S. The theory in S carries
with it a ‘'memory’ of the three-dimensional embedding space through the potential Vs.

Any two-dimensional metric can locally be written in a conformally Euclidean form. This
means explicitly that there exists a coordinate transformation, a conformal diffeomorphism D :
(x1,x?) = (X', X?) such that

dS% = Gsl‘]‘dxidxj

= WX, X2)((dX")? + (dX2)?) = wdsh = GpydX'dX/ . (44)

Here ds% and ds% are the metrics on S and P respectively, and w? (X!, X?) is a positive definite
scalar function. We will be concerned with the situation when the metric ds% on S undergoes
a point wise conformal transformation 7 such that

T :ds: — Q*(XY, X?)ds? = ds%. (45)

0O?(X',X?) is a positive definite function. In the case when none of the coordinates are
periodic this represents deformations of S to a plane. We will primely assume this picture
in the following. Physically we will picture the transformation 7 as either an adiabatic or
an instantaneous one in order not to perturb the quantum system out of the quantum state it
exhibits on S. For definiteness assume here an instantaneous process such that Q = w1,
The normal vector field N is assumed normal to the surface during the complete deformation
process. Hence, the system of coordinates defined by (X!, X2, x%) does therefore represent
comoving isothermal coordinates. We also assume that the external confining potential V)
always has a form such that the resulting force acting on the particle is along N. We will
furthermore assume that the particle never escapes the surface; we will assume conservation
of probability during the deformation process, i.e. This implies in particular that the integral
of the probability density on S must equal the same integral over the plane. If we denote the
wave-function on P by xp it follows that

[, 48V/Gslxs? = [ dsv/CrlxeP, (46)
where Gg = det(Gg;;), Gp = det(Gpy;). Since T : Gp = Q*Gg, it follows that

Xs =Qxp. (47)

Hence, the wave-function must transform with conformal weight equal unity under the
restricted class of conformal transformations which we deal with in this work. There
exist previous studies in the literature of the properties of the Schrédinger equation under
conformal transformations. Interestingly, these have to our knowledge only been concerned
with space-time or space conformal transformations and not conformal transformations
restricted to (hyper-) surfaces.

Two metric compatible connections Vg and Vp on two conformally related metrics ds% and
dsl% are related by

Vpiwp = Vsiwj — C* jjewy (48)
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where wy is some one-form, and

Ckij =26 ;Vp; InQ — Gp;;Gp ' Vp In Q. (49)
It follows that -
Vs =0V + GplICt;;Vpe) (50)
and
Vi(xs) = Vi(Qxp) = Q*(QVxp + V'Vpixp + Vxp), (51)
where
vi= 2Gp jinjQ + Gp jkci ij/ (52)
V=ViQ+GplckvpQ. (53)

The extrinsic curvature of S is K]S =V siNJ. It follows that
Ksij = Kpij + C N3 . (54)

Identify P with the two-dimensional Euclidean plane. We then have that

o Ks = det(KSij) = det(C3 1])

Kpl] =0= {Ms = tr(KSi]‘) = 7tr(C3 ij (55)

where
C?ij=(8°Vp;j+6° ;Vp)InQ. (56)

The (C3 ij)-matrix is explicitly given by
0 0 Cp
(Ch)=| 0 0 Cn|. (57)
C3 3 0

Hence

Ks =0, Mg =0. (58)

We note that this also implies that G}ZC3 ijVp3 = O since Gg is diagonal. We then get the highly
non-trivial result that the potential Vg transforms to zero under conformal deformations to P.
Consequently, the Schrodinger equation on P reads

. 2 n? n o
0 xp = —ﬁQZV%XP - ﬁaém - ﬂ(w “Vp+W)xp+ Vprxe., (59)
where ‘ '
w=avi, w=7lv. (60)

We assume that we can separate the motion orthogonal to the surface from the motion in
the surface. We will also assume stationary states such that the time-dependent part of the
wave-equation can be written as a simple exponential ~ e *Ef where we identify E with the
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total energy of the states. Hence, Eq. (59) can be decomposed into

1’ 1
—5 - Vixe+ oz (E— &+ Vp)xp =0, (61)
7o 2
5 93XPXP + VPAXP = KXP (62)
where we have defined Vp = — % (W - Vp+ W) and introduced a separation constant x. This

constant can naturally be identified with the momentum in the direction perpendicular to the
surface.

Clearly, the set of equations above can be interpreted as describing a particle interacting with
two potentials. Equation (61) is in general simpler than Eq. (43). Even though Eq. (61) like Eq.
(43) in addition to the second order kinetic terms also exhibits first order differential operator
terms contained in the Vp-potential it will not contain differential operator cross terms as Eq.
(43) in general will exhibit. Furthermore, note that the potentials W and W are functions of
Q. Since ) does not describe P we can interpret these terms as external potentials which are
applied to P in very much the same fashion as Vp,.

In the analysis above we have for simplicity assumed that P is identified with the
two-dimensional plane. Clearly, P must not by necessity be identified with the plane in
order to have a target manifold P with vanishing intrinsic curvature. One natural example
which is also of practical importance is the straight tube. Clearly, when P is a curved
surface (with non-vanishing extrinsic curvature, but with vanishing intrinsic curvature) the
effective geometric potential on P will become more complicated compared to the exact planar
situation. This is easily seen from the transformation property of Vs under a conformal
deformation. From the expression for Kg;; in terms of Kp;; and ck ij it follows that the
transformed of the potential Vs will exhibit products between the extrinsic curvature tensor
on P and C3 ij-terms. Hence, changing the topology of S away from the planar one (every
closed curve is null homotopic) will alter the induced potential on S in a fundamental way.
Let us summarize. In (5-7) a physically motivated framework for dealing with quantum
mechanics on surfaces and linear structures in ordinary three dimensional Euclidean space
were developed. Here we have attempted to reformulate this framework for quantum
mechanics on surfaces into a framework on the two-dimensional plane. On the plane a
quantum particle is shown to interact with an external potential Vp in addition to the external
potential Vp, which constrains the particle to the plane. Clearly, the conformal formulation
presented in this work represents a priori a simplification computation wise. It also represents
an interesting tool in the analysis of quantum mechanics on a given surface. The form of
the geometric potential on the plane provides an immediate physical insight. Considering
momentum eigen-states it follows that states with opposite sign interacts differently with the
geometry since W - Vp = —W - Vp when Vp = —Vp. Hence, a non-trivial geometry on S
might lift a degeneracy which is present on the plane provided W # 0. An analogy to the
motion of an electrically charged particle moving on the plane with a magnetic field piercing
the plane is immediate. Hence, the class of surfaces defined by W # 0 is thus interesting to
consider further in order to build a general physical picture of quantum dynamics on surfaces.
The tentative framework presented here might furthermore also help shed light on a
fundamental problem connected with the understanding of quantum mechanics on surfaces
following Dirac’s quantization prescription (2). It is well known that the Dirac quantization
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scheme does not produce an unique expression for the induced quantum geometric potential
Vs (15-17). It is claimed that this result is not related to improper choice of coordinates, but
emerges solely due to operator ordering issues (15). Interestingly, considering a plane P it
follows that no geometric potential of the kind stemming from the dimensional reduction
approach will get induced. The coupling to the external potential Vp should not imply any
operator ordering issues of the kind reported in (15). An unique theory should consequently
ensue. However, the quantum theory on P is conformally related to a quantum theory on a
certain surface S where the very same quantization procedure will not give rise to a unique
theory. This apparent ‘contradiction” between the 'P—’" and the 'S—pictures’ of the theory
might thus hold a key for resolving the disturbing discrepancy in the quantum formulation of
classical mechanics on surfaces following from Dirac’s prescription.

5. Supersymmetric quantum mechanics

Let us turn to one-dimensional structures living in ordinary three-dimensional Euclidean
space. On such strutures the effective theory stemming from the dimensional reduction
approach is given by Eq. (13). Ideas from supersymmetry was incorporated into
one-dimensional quantum mechanics by E. Witten in (18). This approach leads to a natural
notion of isospectral deformations, deformations of the potential in the Schrédinger equation
such that that the energy spectrum is identically preserved. It would be interesting to apply
this approach to our subject. This should mean that we can set out with a particular linear
configuration in space which is described by the local curvature of the structure x(x) (x
denotes some coordinate along the structure). From this it should then be possible to generate
another potential appearing in the Schrodinger equation which in our context must be related
to another curvature configuration #(x); to another linear structure in space, i.e. This line of
approach, as the one in the previous section, has not been pursued in the previous literature. It
seems to represent a promising approach in the work of getting a deeper understanding of the
relation between quantum physics and geometry. Let us initiate this study by some relatively
straightforward considerations. We will assume that the reader has a basic understanding of
supersymmetric quantum mechanics. The recent book (19) represents a nice introduction to
the subject. We will follow the notation in that book in the following.

Isospectral deformations in supersymmetric quantum mechanics are connected to the
problem of generating another superpotential W(x), which gives rise to a new partner
potential V. (x), from a given superpotential W (x) and partner potential V. (x) such that

Vi(x) =W?>+ W =V (x) = W2+ W', (63)

" indicates differentiation with respect to the space variable. From the knowledge of W(x) a
new physical potential V_ (x) can be constructed

V_(x) =W - W, (64)

which give rise to the same spectrum as the initial one generated by V_(x). In the literature
the only type of deformation that has been studied so far has the form (19)

W(x) — W(x) = W(x) + f(x). (65)
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f(x) is some function to be determined from the condition Eq. (63). Finding the explicit
expression for f(x) is straightforward. Inserting Eq. (65) into Eq. (63) we get

2 f) + 2W @) () + L) = 0. (66)

This is the Riccati equation. Further making the substitution f(x) = 1/y(x) we get

()~ 2W(y() = 1. 67)

This equation is easily integrated and we find
e~ J2W(x)dx

A— [‘ e~ I ZW(x)dxdx ' (68)

f(xA) =

A is an integration constant. We note that letting A — oo = f(x;A) — 0 results in the
identity deformation W(x) = W(x). The result Eq. (68) has been taken in the literature as
an expression for the most general deformation of W(x) stemming from Eq. (63) when a
deformation scheme of the kind in Eq. (65) is employed (19). Let us now identify the physical
potential V_ with the potential in Eq. (13)

2
V_(x) = —S—mKZ(x). (69)

This gives the following equation for the superpotential

" ¥ (x)

7.5
5
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Fig. 4. The effecetive potential V_(x) on the circle with A = 0.5.
dW

—E+w2+x2:o. (70)
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This is also a Riccati equation. It can be connected to ordinary second order differential
equations by the substitution
1 du(x)

W= U(x) dx @)
In terms of U(x) Eq.(70) reads

@eu +x2(x)U =0 (72)

dx? o

Let us consider the circle which is well understood in quantum theory. We can set x> = 1
without loss of generality. We then easily get

U = Apsin(wx) + By cos(wx) (73)
where w is some constant. Let us for simplicity set Ag = 0 and w = 1. Then we get
W = —tan(x). (74)

We are then in position to compute the deformed physical potential V_ (x). We find that

A

V_(x) = W? -

A

W' =
v
Acos2(x) —1)

1 2 cos(x) sin(x)
~cos?(x) | (Acos?(x) —1)

)2 = (

= (—tan(x) +

5)- (75)

This potential is graphed in Fig. (4) with A = 0.5. The potential exhibits singularities. It is not
strictly non-positive but can also take positive values. When this happens the corresponding
curvature & appears to be imaginary. This last feature is clearly unphysical. However, we
have only probed a particular solution of a vast solution space and physically acceptable
deformations might very well exist. A more systematic study of the circle is left for future
research.

Another configuration which is natural to study, and which also is easily tractable by
analytical means, is a straight line which has a bent part somewhere along it. A model for
such a structure is captured by a curvature function given by

x? =1 — tanh?(x). (76)
«2 is graphed in Fig. (5). This gives rise to U-functions given by
U(x) = C1P%(\f571>(tanh(x)) + CzQ%(ﬁil)(tanh(x)) (77)

where the P- and Q-functions denote the Legendre functions. The deformed superpotential
can formally be written
1 du(x) 1

U(x) dx a1
From this expression we can deduce an infinite family of new linear structures as we did
above. However, the study of this deformation is also left for the future. It is hoped that
the relative easy one apparently can derive new physically realizable linear structures from
known ones as demonstrated here will inspire more studies along these lines.

W= (78)
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0 5 s 10

Fig. 5. The curvature k2 = 1 — tanh?(x).

6. The Dirac equation

Let us turn to the Dirac equation. We start our discussion by considering the Dirac equation
in a (3+1)-dimensional curved space-time. We apply a curved space-time formalism from the
very outset in order to clearly exhibit general computational details which are not readily
available elsewhere, but which are of fundamental importance in the discussion of the Dirac
equation on general surfaces in three dimensional Euclidean space. Due to the spinor
structure the Dirac equation is most easily formulated relative to a local vier-bein field. The
massive equation relative to a given viel-bein field e4 * (capital latin letters denote viel-bein
components while lower capital latin letters denote coordinate indices) is in general given by
@

(Y204 —Ta) +m)¥ = (v Dp +m)¥ = 0. (79)
Y represents the Dirac spinor field, and m represents the rest mass of the particle. The
yA-matrices obey locally the Clifford algebra {y4,v8} = 2548 with 43 = diag(—1,1,1,1) =
ea "ep,. The matrix valued spin connection I' 4 is explicitly given by

1 .

Ij=— EWAWBEA I(9iepj — e *Tj;) (80)
T'\ya represents the Christoffel symbols of the second kind. The current ]A = ¥94Y, where
¥ = ¥790 (+ signifies Hermitian conjugation), is covariantly conserved V 4j4 = 0. The Dirac
field is normalized with respect to the canonical integration measure. When e’AF = 0 we

define D, = V,. We are primarily interested in the second order form of the Dirac equation
in order to make a direct comparison with Schrédinger theory on a two-dimensional surface
S, or on a linear structure. However, let us begin with the first order formulation of the Dirac
equation.
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We may compute the Dirac equation in our coordinate system X relative to an orthonormal
tetrade frame so that

W = dt (81)
w! = G}{?dx! (82)
o = GYf2dx? (83)
w® =dxd. (84)

The beins may therefore be read off from the knowledge of the metric. Hence, under a
change of coordinates from x to X probability conservation requires that the Dirac spinor
$(X) — p(X)& /2 as for the Schrodinger field. We assume for simplicity that the surface has
vanishing intrinsic curvature. We parametrize the surface by Cartesian coordinates. It is then
easy to show that

T3=0 (85)
i
1",- = Eeiniiaj i (86)

where i = 1,2 is summed and [ is the identity for 4 spinor indices. We are now in a position
to construct the covariant derivative explicitly. Since I'; = 0 one sees that this is unnecessary
however; there will be no contribution from the spin connection to the geometrical terms. We
may therefore proceed to separate the Dirac equation into parallel and perpendicular parts.
We have

(Y"Da+m)((X)g712) =0 (87)

where A = 0, ..., 3. Pulling ¢ through the derivative we have
1
(vAD4 + E73Tr1<+m+0(x3)3)¢(x) =0. (88)
We shall assume that the equation is separable and write

P(x) = ¢ () (', 2%, 1) (89)

where 1 is a constant, four-component spinor. For later convenience we shall also define
V=919, P = ‘P\Hi’r and A? = A(i(x3) + Aﬂ (x!,x2,t) and m = m + Am(x®). We then easily
see that

_ i 1 N
P 1(70D(‘J‘ +9'D; + E’fTrK +m)py =

—¢7 (Y (—ieAy) + 7705 + Am(x®) +..0(x*))p . (90)

The usual argument for the separation of these equations is that the left-hand side is only a
function of x!,x2,t while the right-hand side is only a function of x3; thus both sides must
be equal to some separation constant k. However, this is not quite correct owing to the terms

..0(x%)® which contain the curvature Kjj, which is a function of x!,x%. However, we are
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assuming that the excursion into x3 are small owing to the physics of the problem; thus we
shall for the time being adopt the standard procedure and neglect these higher-order terms.
To eliminate x> from the problem we identify Ay~ with a squeezing potential Aj = %x3, SO
that nontrivial solutions, given by the vanishing of the determinant of the operator on the

right-hand side of Eq.(90), are characterized by

0L ~ exp(—(GP +) = [ (). a

The first term in the exponential falls off like a Gaussian function, i.e., a ¢ function in the limit
of infinite A. The presence of a nonzero separation constant spoils this falloff by introducing a
straightforward exponential decay with characteristic length k1. The mass parameter m(x%),
which is initially at least linear in x3, will also give rise to a Gaussian falloff. Thus increasing
the coupling of this parameter will also have the desired effect of squeezing the system. The
residual Dirac equation in the surface S is thus

(YD 4 + %73Tr1<+(m—k))1/;” =0. (92)

We have managed to derive a theory in a surface but with a number of assumptions and
approximations. Let us next turn to the second order form of the Dirac equation.

We derive the second order form of the Dirac equation by ’squaring’ the first order Dirac
equation (20)

(v?Dg —m)(yADp +m)¥ =0 (93)
= (vBy2 DDy —m*)¥ =0. (94)
Utilizing the algebraic identity
1
vt =S+ 1P, (95)

and the fundamental Clifford algebra, we can write the second order Dirac equation as
1
(1" + 3 [2F,7"))DpDs — m*)¥ = 0. (96)

Note that it is not possible to extract a term corresponding to the antisymmetric part above
in a purely bosonic scalar theory like the Schrodinger theory. The antisymmetric part can be
written as

1 1
5[5, 1DpDA = (7%, 7"][Dp, D4l 97)

The commutator between the connection components is per definition proportional to the
components of the Riemannian curvature tensor R 4pcp

1
[Dp,Da] = gReacp [, ~P]. (98)

Relative to the local viel-bein it is furthermore always straightforward to locally decompose
the kinetic operator D> = y4BDyD,4 into a tangential surface component Dﬁ, an normal
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component Di as well as a time component. Since

1

g[ B Y4 Rpacp 7S, 7P =

1
ERBACD'YA'YB'YC'YD (99)

the squared Dirac equation can thus be written as
1
(—Df +Dfi + D3 + gRABCD'yA'yB'yC'yD - m*)¥ =0. (100)

In the dimensional reduction approach (6) one introduces a set of coordinates adapted to the
lower dimensional structure S such that the normal field to the surface is always parallel to
the tangent vector field to one of the coordinates. Di will act in this direction. If one assumes
that the dynamic equation in question is separable in parts depending on the coordinates
in the surface and the perpendicular coordinate respectively one derives a theory which is
living solely in the surface. The corresponding result in Schrodinger theory exhibits a scalar
potential which depends on the Gaussian and mean curvatures.

Since we are considering a theory which is living in a space with vanishing intrinsic curvature
it follows that Eq. (100) reduces to Schrodinger theory by triviality if we neglect any spin-orbit
interactions stemming from the presence of the position dependent spin connection. This
conclusion stands out in sharp contrast to the conclusions drawn from our elaborations of the
first order form of the Dirac equation. Does this conclusion hold if we follow the intrinsically
(2+1)-dimensional approach in which one defines the theory in the surface without taking
the embedding space into account? This approach is employed in most current treatments of
graphene, e.g. Let us explore this issue.

The standard theory for the charge carriers in graphene in the intrinsically (2+1)-dimensional
approach is formulated in a three dimensional Minkowski space with the dynamic equation
equal the standard three dimensional Dirac equation. We choose the 4 X 4-representation
of the 'yA—matrices because the alternative 2 X 2-representation, which is available in
(2+1)-dimensions, breaks parity invariance (8). In order to adapt this formulation to curved
space we simply make the theory generally covariant in the usual fashion. Then the second
order formulation is again Eq. (100) but with no D -term. The resulting theory will be valid at
low energies and in principle on large molecules. In the case of graphene it is well known that
a U(1)-gauge field which couples to the Dirac spinor is induced on curved surfaces due to the
intrinsic curvature (se (21) e.g.). We neglect this field in the following. However, we cannot
discard the intrinsic curvature tensor contribution as we could in the dimensional reduction
approach. Working in (2+1)-dimensions and taking the symmetries of the curvature tensor
into account it follows from some algebraic manipulations that

Rapcpr?9P7%9P = —2R, (101)

where R is the Ricci curvature scalar in the static surface. In two-dimensional surfaces the Ricci
scalar equals twice the Gaussian extrinsic curvature R = 2K. Clearly, this Ricci contribution
will add to the effective geometrically induced potential in a surface formed from graphene.
Inserting the relation Eq. (101) into Eq. (100) we rederive the classical Lichnerowicz formula
for the Dirac operator (22).

Let us make a direct comparison with Schrodinger theory by looking at the low energy limit
of the intrinsic massive Dirac theory. We neglect all the spin-connection terms. Without these
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terms the Dirac equation reduces to

1
(—3F + V7 - E1<—mZ)1p:o, (102)
where ¢ is assumed to be a definite spin-state, and V|| is the usual covariant derivative
acting on a scalar function. We assume energy-eigenstates and denote the total energy of the
particle by E. The equation above then takes the following form to first order in a standard
1/m-expansion (reinstating 7)

_ W,

This is the Schrodinger equation corresponding to the second order Dirac equation, and E; is
the classical energy measure. An effective potential Vp has emerged. It is given by (reinstating
h)
hz
Vp = %K . (104)

Comparing Vp and Vs we see a huge formal difference. Schrodinger theory predicts a
negative, or an attractive, potential on any curved surface. However, the sign of K is not
restricted. Hence, contrary to Schrodinger theory, intrinsic second order Dirac theory predicts
both attractive as well as repulsive geometrically induced quantum potentials depending on
the surface in question.
In (23) it was pointed out that on a carbon nanotube the winding states in the angular direction
will give rise to an effective mass. It is straightforward to see how this will work in our case.
Consider first the massless Dirac theory with m = 0. This theory does not have a natural
low energy limit and the relation between the Dirac and the Schrodinger approaches becomes
highly problematic in general. However, assume a perfectly straight carbon nanotube with
an intrinsic geometry given by ds?> = dz? + R?d6?, where —co < z < +co and 6 € [0,27).
Assuming momentum eigen-states in the angular direction ¥ ~ ¢ (where n represents
integers) Eq. (102) (with m = 0) becomes

1 n

(fa%+a§ffz<f(R

5 =0, |n€0,1,2,3,... (105)

Clearly, the last term in Eq. (105) can be identified as a mass parameter so that

m= % (106)

Since R is on the nanoscale, 1/m so defined (n # 0) is an effective parameter which can be

used in the series expansion leading to Eq. (103). Of course, this scheme can also be employed
in the dimensional reduction scheme. The effective theory then becomes

1

1

(n* =1))p. (107)

Here m is the ordinary rest mass of the particle. These results can be utilized as tools to
discriminate between the dimensional reduction scheme and the intrinsic Dirac approach. Let
us pursue this topic a little bit further.
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Assume that the ends of a straight carbon nanotube is welded to two metal slabs (20). Let us
for simplicity neglect the physics at the welding areas such that we can assume a free Dirac
theory in the metal and the welding areas. Since K = 0 on the tube the Dirac theory implies
that a current with all the electrons in the lowest winding state # = 0 can be transmitted
from one of the metal pieces and through the tube without backscattering (reflection). This
is not the case according to the dimensional reduction approach. The n = 0 states will
form bound states implying a net reduction in the net current in the tube. Clearly, when
n = £1 the dimensional reduction approach also implies a vanishing net potential. However,
the dominant transmission channel should correspond to the lowest lying winding mode
n = 0 due to the relatively large mass scale in the system. Hence, to leading order the two
formulations will imply different currents through a straight carbon nanotube connecting
two metal slabs. This argument is a very simple one, but the conclusion is robust. In
particular, even though one cannot neglect the physics in the welding areas in general (24) the
relative difference between the dimensional reduction and the intrinsic Dirac approaches can
nevertheless be deduced since the effective potential on the tube in the dimensional reduction
picture scales as 1/R?. Hence, making the very reasonable assumption that the physics in the
welding areas is the same for tubes with differing radii the presence of a geometry induced
potential can be extracted. Clearly, for a tube with a large radius R — oo the effective potential
will vanish while it blows up as R — 0. The intrinsic Dirac theory will not exhibit a similar
scaling behavior in any state. Furthermore, note that the effective potential in Eq. (107)
changes sign at n? = 1. Hence, for |n| > 2 the effective potential becomes repulsive. If
real, these differences should be readily observable experimentally.

Of course, the discussion above is not confined to graphene. It should be valid for any surface.
As another application let us briefly consider the rolled up nanotubes (RUNTs) discussed in
(25). RUNTs are generally made of bi- or multilayer thin films of various materials. A flat thin
film might, due to the relaxation of the elastic stresses, curl up and form a RUNT described by
an Archimedes spiral. Physically it has the same symmetries as the straight carbon nanotubes
considered above, but instead of curling up to form a closed cylinder the film curls to form a
structure similar to a book scroll. In (25) the charge carriers were described as an exact two
dimensional electron gas within the dimensional reduction framework. Clearly, the Gaussian
curvature on the Archimedes spiral vanishes, but not the mean curvature. It was shown in
(25) that the non-vanishing mean curvature will result in a number of atomic-like bound states
in the spiral surface. The number of bound states equals the number of windings of the spiral.
How does this relate to an an intrinsic Dirac theory description? In thin films we are not
dealing with massless theory so that m # 0 in Eq. (102). We are therefore not dependent
upon either a doped material, nor a periodic structure in order to deduce a low energy limit
as on the fullerenes. We can thus employ Eq. (103) directly. Hence, no geometric potential
will appear on the RUNT, and consequently no bound states, since K = 0. Just as with the
straight carbon nanotube above, measuring for the existence or non-existence of bound states
on rolled up nanotubes could prove a veritable tool for discriminating between the different
descriptions of quantum mechanics on surfaces.

Even though much work have been done on the quantum mechanics on many different
surfaces a complete analytical analysis of quantum mechanics on the simple torus is still
missing, even though this surface is an important one. Next we will therefore provide some
basic equations as a start for such an analysis.
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We will assume the following parametrization of the torus

x = (c+acosv)cosu, (108)
y = (c+acosv)sinu, (109)
z =asinv, (110)

where u,v € [0,27). a signifies the 'small’ radius and c the 'big’ radius of the torus such
that ¢ > a. The coordinates are depicted in Fig. (6). The geometry on the torus can then be
expressed as

ds®> = (c + acosv)?du® + a’dv* = A%du® + a®dv? . (111)

The extrinsic curvature is explicitly given by

Fig. 6. The torus. The letters denote the angular coordinates.

Cos v
K= —/——7-—. 112
a(c+acosv) (112)

Let us consider stationary quantum energy eigenstates on the torus. Due to the
non-dependence of the u-coordinate in the metric we also consider momentum eigenstates in
the u-direction. We call these states winding states when this momentum is non-zero. Hence,
we assume that the wave-function is on the form

b ~ e—iEteimuA—l/Zw(v) , me {0,+1,£2,...} (113)

where W is a function to be determined by the wave-equation. With this ansatz the
wave-equation reduces, quite remarkably, to the simple form

62

(=552 T Ve(v) - E2)W(v) =0, (114)
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where the effective potential V; is given by
Vi(o) = —(i(avAV +am2) A2 4 %A‘laz%A

—g2 sinv
= (( > )2—”12)—2(

(c+acosv)?

acosv Cos v
c+acosv) 2a(c+acosv)’

(115)

A plot of the effective potential is provided in Fig. (7). If the contribution from the extrinsic
curvature is discarded in the expression for the effective potential it still has the same
qualitative form as in Fig. (7).
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1.0

0.5

T T T T T T T T T T T T T T T T

T

Fig. 7. The effective potential Ve with m = %1 in the interval u € [0,47]. It has the same
qualitative features irrespective of the parameter values. Negative energy states seemingly
exist only for states with m € {0, +1, £2}.

Let us finally make a brief comment on Dirac theory on linear structures. Clearly, neglecting
the spin-connection the extrinsically defined theory will reproduce Schrodinger theory as in
the case of surfaces. Considering an intrinsically defined theory the second order formulation
in Eq. (100) is again valid. However, now the Riemann curvature tensor is trivially identically
zero when we consider static linear structures since the geometry will be time independent.
This means that intrinsically defined fermions on static linear structures will not experience
a spin induced potential. However, note that if the structure exhibits a time dependent
geometry this is no longer true. This is easily seen already on the algebraic level since now the
right hand side of Eq. (101) is non-zero with changed overall sign

Rapcpr? 987 9P = 2R. (116)

This sign flip is induced by the Clifford algebra. Explorations of the implications of this change
of sign is left for future work.
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7. Conclusion

In this brief account of quantum mechanics on surfaces we introduced the reader to
the dimensional reduction approach which is currently the most widely accepted method
to construct quantum theories on surfaces and linear structures embedded in ordinary
three-dimensional Euclidean space. We generalized this framework to accommodate Dirac
theory. We studied quantum theory on explicit geometries; the catenoid in Schrodinger theory
and the cylinder in Dirac theory. In addition we presented novel approaches to the study of
the interplay between quantum physics and geometry in the form of a conformal approach to
defining quantum theory on a surface and by applying ideas from supersymmetric quantum
mechanics. Both of these approaches need further elaboration and refinements, but it is the
hope of this author that this material might inspire other workers in the field to pursue these
new avenues.

This account of quantum mechanics on surfaces also makes an effort to put our subject at the
center stage of current physics research. Quantum theory on surfaces might in particular be
important in order to get a complete understanding of graphene. We have shown that there
is a major discrepancy between the formulation of Dirac theory on surfaces depending on
whether one employs an extrinsic or an intrinsic approach. One immediate consequence is
that the intrinsic theory implies a new effective scalar potential proportional to the Gaussian
curvature in the surface, while the extrinsic approach implies the usual potential stemming
from the dimensional reduction approach (6). The new potential emerges due to the Clifford
algebra and will thus not be present in any scalar theory defined on surfaces. We also looked at
the low energy limit of the intrinsic Dirac theory and derived an effective potential Vp which
corresponds to the effective potential stemming from the Schrodinger (or the Dirac) theory in
the extrinsic approach (Vs). Clearly, while Vg is strictly non-positive the potential stemming
from the low energy intrinsic Dirac theory Vp can carry any sign depending on the surface in
question. Graphene is described by the massless Dirac equation near the Dirac points. Hence,
near these points the charge carriers might respond very differently to the graphene surface
geometry than one would expect from Schrodinger theory. This insight might be of great
importance in the modeling of the charge carriers on graphene with consequent experimental
and technical implications. We considered one particular technical implication for a system
composed of a carbon nanotube bridging two metal slabs. We also considered a particular
rolled up nanotube in the same vain with qualitatively the same conclusions as with the
carbon tube. We emphasize that we have ignored the effect of the spin-connection. This will
induce spin-orbit couplings which will add motion dependent potentials. The effect of these
can be very pronounced (26). Clearly, much more work needs to be done in this field, but it is
work which apparently has potential to further advance recent discoveries in physics.
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1. Introduction

The properties of quantum systems at equilibrium are mainly displayed by the very nature of
the particles involved. As for example, distinguishable particles behave in a quite different
manner of indistinguishable bosons, which in turns behave very different from the also
indistinguishable fermions. Among the standard methods of statistical mechanics to handle
with quantum systems at equilibrium is included the way of counting the accessible states to a
given particle (1). Thus, the thermodynamical probability () comprising the set of possibilities
for a system of N particles to populate the available states will depend on the type of particle
being considered, as shown in Table 1. The method for calculating () consists in supposing
the existence of a number of energy levels, labeled by and index j, each level having energy
¢j and containing a total of n; particles. Besides, it is assumed that each level contains g;
distinct sublevels, all of which having the same energy. The value of g; associated with level
j is called the "degeneracy" of that energy level. Any number of bosons can occupy the same
sublevel, while the Pauli exclusion principle states that only one fermion can occupy any one
of the sublevels. Classical behavior emerges when the density is relatively low, which is more
common at high temperatures; in such cases, both fermions and bosons behave as if they
were classical particles. After identifying what kind of particles we are taking into account,
we use counting methods and combinatorial analysis to calculate the expected number #;
of those particles in level j with energy ¢;. This is done by first calculating the number Q;
of ways of distributing particles among the sublevels g; of an energy level j and taking the
product of the ways that each individual energy level can be populated to find the so called
thermodynamical probability (). Once we have (), it is a standard task to find the statistical
distribution for n;.

In this chapter, the counting method is extended to handle with equilibrium as well as
nonequilibrium quantum systems, in order to obtain the new thermodynamical probability
emerging from these situations. Also, systems only slightly out of equilibrium are considered,
such that a well defined temperature can be assigned to them, and the new results are pointed,
which take into account eventual experimentally detectable changes in their statistical
properties.

Another method to handle with equilibrium systems is to take advantage of the Boltzmann
factor, which establishes that, given two levels a and b whose energies are E; and Ej,
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Table 1. Configurations of M = 3 accessible states for a) N = 2 indistinguishable bosons,
Q) = 6 and b) N = 2 indistinguishable fermions, () = 3. (1) denotes the first available state,
(2) and (3) denote the second and third available state, respectively.

respectively, the number n, of particles in state a with energy E, is given by

na = paexp(—BEa), (1)

where p, is a constant indicating the occurrence of probability for state a. The following
condition is thus assumed to be satisfied:

naPpp(Eq—sp) = 1y Py (Ep—a), 2)

where Pyp(E; ;) stands for the Maxwell-Boltzmann (MB) distribution accounting for the
transition rate from state a to another state b. This method will be heuristically used later to
obtain a generalized statistics for both equilibrium and nonequilibrium situations concerning
quantum systems.

1.1 Quons, anyons, and generalized statistics

The concept of particles with fractional statistics, called anyons, has been studied with
increasing interest, now finding applications in, for example, quantum Hall effect (2) and
superconductivity (3). Anyons are generally expected to be observed in two space dimensions
for a system whose wave function behavior of multiparticle under the exchange of particles
obeys Y(q1, 92, 93, q4, ---) = exp(ina)¥1(q2, 91, 93, 94, ---), where {q} represents generalized
coordinates and « is a real number defining the statistics. For bosons and fermions, « = 0 and
1, respectively, and « is any real number for anyons. Since the concept of anyons was proposed
(4; 5), there have been several approaches trying to understand its properties, including
a g-deformed bosonic algebra (6) and certain ad hoc conjectures aiming to generalize the
Bose-Einstein and Fermi-Dirac distributions (7). Without being exhaustive, it is worthwhile to
mention at least a few attempts to achieve a generalized anyonic statistics. As for example, an
interesting generalization of the Pauli exclusion principle can be advanced, without explicit
reference to spatial dimension (8). This is remarkable, since anyons was generally accepted to
exist only in two dimensions. The generalization as proposed in Ref.(8) consists on defining a
statistical interaction g, given by

Ady = =) gupANg (3)
B

where dy is the one-particle Hilbert space dimension, and ANj is an allowed change of the
particle number Npg at fixed size and boundary conditions. Thus, for bosons it is required
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gup = 0, while for fermions the exclusion principle requires g, = J,p. Based on the
thermodynamical limit, further requirements must be imposed, such as the independency
of the number of particles and the rationality of g,5. According to the author, at a fixed
particle numbers the counting state thus leads to the following size of the Hilbert space of
many particle states:

(dg + N, —1)!
) 4
IZI Na!(dg —1)! )
with dp = d; and dr = d; + N; — 1 for the Fock space dimensions of bosons and Fermi,

respectively.

We find another interesting proposal for generalizing Bose-Einstein and Fermi-Dirac statistics
in (9), where the distribution function for the number of anyons in a given state j is postulated
at once as

N; = i . )
exp [ﬁ (ej - V)] — fla)

The parameter u characterizes the particle reservoir in the same way that § characterizes
the thermal reservoir, v = 2s + 1 denotes the multiplicity of states and f(«) generalizes
the statistics, since f(a) = 0,1, —1 recovers the Boltzmann, Bose-Einstein and Fermi-Dirac
statistics and, for anyons, it is expected that f(«) can assume any real number.
Although the interesting problem of what is exactly the distribution function for anyons in and
out of equilibrium remains opened, the above studies provide some clues to this question. It
is my purpose, in the remainder of this chapter, to show how to deep our understanding of
anyons by looking for some reasons to justify their behavior in a manner that sounds plausible.

2. Generalize