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Preface 
 

The volume Some Applications of Quantum Mechanics is intended to serve as a 
reference for Graduate level students as well as researchers from all fields of science. 
Quantum mechanics has been extremely successful in explaining microscopic 
phenomena in all branches of physics. Quantum mechanics is used on a daily basis by 
thousands of physicists, chemists and engineers. There were two revolutions in the 
way we viewed the physical world in the twentieth century: relativity and quantum 
mechanics. In quantum mechanics, the revolution was both profound, requiring a 
dramatic revision in the structure of the laws of mechanics that govern the behavior of 
all particles, be they electrons or photons, and determining the stability of matter itself, 
shaping the interactions of particles on the atomic, nuclear, and particle physics level, 
and leading to macroscopic quantum effects ranging from lasers and 
superconductivity to neutron stars and radiation from the black holes. We have 
always had a great deal of difficulty understanding the worldview that quantum 
mechanics represents. Quantum mechanics is often thought of as being the physics of 
the very small, as seen through its successes in describing the structure and properties 
of atoms and molecules (the chemical properties of matter), the structure of atomic 
nuclei and the properties of elementary particles. But this is true only insofar as the 
fact that peculiarly quantum elects are most readily observed at the atomic level. 
Beyond that, quantum mechanics is needed to explain radioactivity, how 
semiconducting devices (the backbone of modern high technology) work, and the 
origin of superconductivity, what makes a laser function. Although this book does not 
cover all areas of application of quantum mechanics, it is nevertheless a valuable effort 
by an international group of invited authors. I believed that it is necessary to publish 
at least one volume for each type of the enormous applications of quantum mechanics. 
This book is contains sixteen chapters and its brief outline is as follows: 

Chapters one to five provide some methods to solve the Schrodinger equation in 
different areas of science. Chapter six describes the application of quantum mechanics 
in three-body systems, which are mostly used in fusion phenomena as an attractive 
part of nuclear physics. Applications of quantum mechanics in solid-state physics and 
nanotechnology are described well in chapter seven. Chapter eight covers the 
applications of quantum mechanics in biotechnology, for analyzing Ciplatin bounds in 
DNA. A study of a different surface in non-relativistic and relativistic reference frame 
using quantum mechanics is presented in chapter nine. Quantum Hall effect, 



X Preface 
 

superconductivity and related subjects using fractional statistic in quantum mechanics 
are covered in chapter ten. Chemical processes and quantum chemistry are discussed 
in chapter eleven. The application of quantum mechanics in photo electronic 
properties of semiconductors to study the effect of two-photon absorption in solar cells 
is discussed in chapter twelve. Chapter thirteen is related to quantum mechanical 
study of multi electronic systems and their relation to information theory and 
thermodynamical properties of Microsystems. Quantum computing and quantum 
information science are presented as a fresh and attractive research area of applied 
science in chapter fourteen. Chapter fifteen describes the hybrid ab initio quantum 
mechanics applied to investigate the molecular structure of biological macromolecules. 
The final chapter, chapter sixteen, deals with the application of game theory to predict 
the battle of sex using matrix representation of quantum mechanics, accompanied with 
related statistics.  

This collection is written by an international group of invited scientists and researchers 
and I gratefully acknowledge their collaboration in this project. I would like to thank 
Ms. Maja Bozicevic for her valuable assistance in different stages of the project, and the 
InTech publishing team for creating this opportunity for scientists and researchers to 
communicate and publish this book.  

 
Mohammad Reza Pahlavani 

Head of Nuclear Physics Department,  
Mazandaran University, Mazandaran, Babolsar,  

Iran 
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Quantum Phase-Space Transport and
Applications to the Solid State Physics

Omar Morandi
Institute of Theoretical and Computational Physics, Graz University of Technology

Austria

1. Introduction

Quantum modeling is becoming a crucial aspect in nanoelectronics research in perspective of
analog and digital applications. Devices like resonant tunneling diodes or graphene sheets
are examples of solid state structures that are receiving great importance in the modern
nanotechnology for high-speed and miniaturized systems. Differing from the usual transport
where the electronic current flows in a single band, the remarkable feature of this new
solid state structures is the possibility to achieve a sharp coupling among states belonging
to different bands. Under some conditions, a non negligible contribution to the particle
transport induced by interband tunneling can be observed and, consequently, the single
band transport or the classical phase-space description of the charge motion based on the
Boltzmann equation are no longer accurate. Different approaches have been proposed for
the full quantum description of the electron transport with the inclusion of the interband
processes. Among them, the phase-space formulation of quantum mechanics offers a
framework in which the quantum phenomena can be described with a classical language
and the question of the quantum-classical correspondence can be directly investigated. In
particular, the visual representation of the quantummechanical motion by quantum-corrected
phase-plane trajectories is a valuable instrument for the investigation of the particle-particle
quantum coherence. However, due to the non-commutativity of quantum mechanical
operators, there is no unique way to describe a quantum system by a phase-space distribution
function. Among all the possible definitions of quantum phase-space distribution functions,
the Wigner function, the Glauber-Sudarshan P and Q functions, the Kirkwood and the
Husimi distribution have attained a considerable interest (Lee, 1995). The Glauber-Sudarshan
distribution function has turned out to be particularly useful in quantum optics and in the
field of solid state physics and the Wigner formalism represents a natural choice for including
quantum corrections in the classical phase-space motion (see, for example (Jüngel, 2009)).
This Chapter is intended to present different approaches for modeling the quantum transport
in nano-structures based on the Wigner, or more generally, on the quantum phase-space
formalism. Our discussion will be focused on the application of the Weyl quantization
procedure to various problems. In particular, we show the existence of a quite general
multiband formalism and we discuss its application to some relevant cases. In accordance
with the Schrödinger representation, where a physical system can be characterized by a
set of projectors, we extend the original Wigner approach by considering a wider class
of representations. The applications of this formalism span among different subjects: the
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multi-band transport and its applications to nano-devices, quasi classical approximations of
the motion and the characterization of a system in terms of Berry phases or, more generally,
the representation of a quantum system by means of a Riemann manifold with a suitable
connection. We discuss some results obtained in this contexts by presenting the major lines of
the derivation of the models and their applications. Particular emphasis is devoted to present
the methods used for the approximation of the solution. The latter is a particularly important
aspect of the theory, but often underestimated: the description of a system in the quantum
phase-space usually involves a very complex mathematical formulation and the solution
of the equation of motion is only available by numerical approximations. Furthermore,
the approximation of the quantum phase-space solution in some cases is not merely a
technical trick to depict the solution, but could reveal itself to be a valuable basis for a
further methodological investigation of the properties of a system. In the multiband case,
some asymptotic procedures devised for the approximation of the quantum Wigner solution
have shown a very attractive connection with the Dyson theory of the particle interaction,
which allows us to describe the interband quantum transition by means of an effective
scattering process (Morandi & Demeio, 2008). Furthermore, the formal connection between
the Wigner formalism and the classical Boltzmann approach suggests some direct and general
approximations where scattering and relaxation mechanisms can be included in the quantum
mechanical framework.
The chapter is organized as follows. In sec. 2 an elementary derivation of the Wigner
formalism is introduced. The Wigner function is the basis element of a more general theory
denoted by Wigner-Weyl quantization procedure. This is explained in section 3.4 and in
sections 3.1. The sections 3.2 and 3.4 are devoted to the application of the Wigner-Weyl
formalism to the particle transport in semiconductor structures and in graphene. In section 4
an interesting connection between the diagonalization procedure exposed in section 3.1 and
the Berry phase theory is presented. In section 5 a general approximation procedure of the
pseudo-differential force operator is proposed. This leads to the definition of an effective
force field. Its application in some quantum corrected transport model is discussed. Finally, in
section 6, the inclusion of phonon collisions in a quantum corrected kineticmodel is addressed
and the current evolution in graphene is numerically investigated.

2. Definition of the Wigner function

The quantum mechanical motion of a statistical ensemble of electrons is usually characterized
by a trace class function denoted as density matrix. For some practical and theoretical
reasons, as an alternative to the use of the density matrix, the system is often described by the
so-called quasi-density Wigner function, or equivalently, by using the quantum phase-space
formalism. The Wigner formalism, for example, has found application in different areas
of theoretical and applied physics. For the simulation of out-of-equilibrium systems in
solid state physics, the Wigner formalism is generally preferred to the well investigated
density matrix framework, because the quantum phase-space approach offers the possibility
to describe various relaxation processes in an simple and intuitive form. Although the
relaxation processes are ubiquitous in virtually all the real systems involving many particles
or interactions with the environment, from the the microscopical point of view, they are
sometime extremely difficult to characterize. The description of a system where the quantum
mechanical coherence of the particle wave function is only partially lost or the understanding
of how a pure quantum state evolves into a classical object, still constitutes an open challenge
for the modern theoretical solid state physics (see for example (Giulini et al., 2003)). On
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the contrary, when the particles experience many collisions and their coherence length is
smaller than the De Broglie distance, an ensemble of particles can easily be described at
the macroscopic level, by using for example diffusion equations (the mathematical literature
refers to the "diffusive limit" of a particle gas). A strongly-interacting gas becomes essentially
an ensemble of "classical particles" for which position and momentum are well defined
function (and no longer operators) of time. The phase-space formalism, reveal itself to be
a valuable instrument to fill the gap between this two opposite situations. The microscopic
evolution of the system can be described exactly and the close analogy with the classical
mechanics can be exploited in order to formulate some reasonable approximations to cope
with the relaxation effects. Scattering phenomena can be included at different levels of
approximation. The simplest approach is constituted by the Wigner-BGK model, where a
relaxation-time term is added to the equation of motion. A more sophisticated model is
obtained by the Wigner-Fokker-Plank theory, where the collision are included via diffusive
terms. Finally, we mention the Wigner-Boltzmann equation where the particle-particle
collisions are modeled by the Boltzmann scattering operator (see i. e. Jüngel (2009) for a
general introduction to this methods). Furthermore, systems constituted by a gas where
the particles are continuously exchanged with the environment ("open systems") are easily
described by the quantum phase-space formalism. It results in special boundary conditions
for the quasi-distribution function. In this paragraph, we give an elementary introduction
to the Wigner quasi-distribution function and we illustrate some of the properties of the
quantum phase-space formalism. A more general discussion will be given in sec. 3. For
the sake of simplicity, we consider a spinless particle gas, described by the density matrix
ρ(x1, x2), in the presence of a static potential V(r). Following (Wigner, 1932), we define the
quasi-distribution function

f (r,p, t) =
1

(2π)d

∫
Rd

η

ρ
(

r + h̄
η

2
, r− h̄

η

2
, t
)

e−ip·η dη . (1)

Here, d denotes the dimension of the space. The Wigner description of the quantum motion
provides a framework that preserves many properties of the classical description of the
particle motion. The equation of motion for the Wigner function writes (explicit calculation
can be found for example in (Markowich, 1990))

∂ f
∂t

= − p
m
· ∇r f + θ[ f ] , (2)

where m is the particle mass and the pseudo-differential operator θ[ f ] is

θ[ f ] =
1

(2π)d

∫
Rd

η

∫
Rd

p′
D (r,η) ei(p−p′)·η f (r,p′) dη dp′ (3)

=
1

(2π)d

∫
Rd

η

D (r,η) f̃ (r,η)eip·η dη , (4)

with

D (r,η) =
i
h̄

[
U
(

r +
h̄
2
η

)
−U

(
r− h̄

2
η

)]
. (5)

Equation (4) shows that the pseudo-differential operator acts just as a multiplication operator
in the Fourier transformed space r− η. We used the following definition of Fourier transform

3Quantum Phase-Space Transport and Applications to the Solid State Physics
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f̃ = Fp→η [ f ]:

f̃ =
∫

Rd
p

f (r,p)e−ip·η dp

f =
1

(2π)d

∫
Rd

η

f̃ (η,p)eip·η dη .

The remarkable difference between the quantum phase-space equation of motion and the
classical analogous (Liouville equation)

∂ f
∂t

= − p
m
· ∇r f − E(r) · ∇p f , (6)

is constituted by the presence of the pseudo-differential operator θ[ f ] that substitutes the
classical force E = −∇rU. The increasing of the complexity encountered when passing
from Eq. (6) to Eq. (2) is justified by the possibility to describe all the phase-interference
effects occurring between two different classical paths, and thus characterizing completely
the particle motion at the atomic scale. The analogies and the differences between the Wigner
transport equation and the classical Liouville equation have been the subject of many study
and reports (see for example Markowich (1990)). In particular, we can convince ourselves that
in the classical limit h̄ → 0, Eq. (2) becomes Eq. (6), by noting that, formally, we have

lim
h̄→0

θ[ f ] =
1

(2π)d

∫
Rd

η

∫
Rd

p′
iη · ∇rU (r) ei(p−p′)·η f (r,p′) dη dp′

=
1

(2π)d∇rU · ∂

∂p

∫
Rd

η

∫
Rd

p′
ei(p−p′)·η f (r,p′) dη dp′ = ∇rU · ∂

∂p
f (r,p) .

This limit was rigorously proved in (Lions & Paul, 1993) and in (Markowich & Ringhofer,
1989), for sufficiently smooth potentials. From the definition of the Wigner function given by
Eq. (1), we see that the L2(Rd

r ×Rd
p) space constitutes the natural functional space where the

theoretical study of the quantum phace-space motion can be addressed (Arnold, 2008).
The key properties through which the connection between the Wigner formulation of the
quantum mechanics and the classical kinetic theory becomes evident, are the relationship
between the Wigner function and the macroscopic thermodynamical quantities of the particle
ensemble. In particular, the first two momenta of the Wigner distribution, taken with respect
to the p variable, are

n(r, t) =
∫

Rd
p

f (r,p, t) dp (7)

and

J(r, t) = − q
m

∫
Rd

p

p f (r,p, t) dp (8)

where n and J denote the particle and the current density, respectively. More generally, the
expectation value of a physical quantity described classically by a function of the phase-space

A (r,p, t) (relevant cases are for example the total Energy p2
2m + V(r) or the linear momentum

p), is given by

〈A〉 =
∫

Rd
p

A (r,p, t) f (r,p, t) dp dr . (9)

4 Some Applications of Quantum Mechanics
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This equation reminds the ensemble average of a Gibbs system and coincides with the
analogous classical formula.

3. Wigner-Weyl theory

The definition of the Wigner function given in Eq. (1) was introduced in 1932. It appears
as a simple transformation of the density matrix. The spatial variable r of the Winger
quasi-distribution function is the mean of the two points (x1, x2) where the corresponding
density matrix is evaluated (for this reason sometime is pictorially defined by "center of
mass") and the momentum variable is the Fourier transform of the difference between the
same points. The Wigner transform is a simple rotation in the plane x1 − x2, followed
by a Fourier transform. Despite the apparently easy and straightforward form displayed
by the Wigner transformation, its deep investigation, performed by Moyal (1949), revealed
an unexpected connection with the former pioneering work of Weyl (1927), where the
correspondence between quantum-mechanical operators in Hilbert space and ordinary
functions was analyzed. Furthermore, when the Wigner framework was considered as
an autonomous starting point for representing the quantum world, the presence of an
internal logic or algebra, becomes evident. The Lie algebra of the quantum phase-space
framework is defined in terms of the so-called Moyal �−product, that becomes the key tool
of this formalism. The noncommutative nature of the �−product reflects the analogous
property of the quantum Hilbert operators. In this context, following Weyl, by the term
"quantization procedure" is intended a general correspondence principle between a function
A(r, p), defined on the classical phase-space, and some well-defined quantum operator
Â(r, p) acting on the physical Hilbert space (here, in order to avoid confusion, we indicate
by r and p the quantum mechanical position and the momentum operators, respectively).
In quantum mechanics, observables are defined by Hilbert operators. We are interested in
deriving a systematical and physically based extension of the concept ofmeasurable quantities
like energy, linear and orbital momentum. Due to the non-commutativity of the quantum
operators r and p, different choices are possible. In particular, based on the correspondence
A(r, p) → Â(r, p), any other operator that differs from Â(r, p) in the order in which the
operators r and p appear, can in principle been used equally well to define a new quantum
operator. More specifically, at the Schrödinger level, the "position" and the "momentum"
representations are alternative mathematical descriptions of the system, where the position
and momentum operators (r, p) are formally substituted by the operators (r,−ih̄∇r) and(
ih̄∇p,p

)
, respectively. From a mathematical point of view, a clear distinction is made

between position and momentum degrees of freedom of a particle (and which are represented
by multiplicative or derivative operators). This is in contrast to the classical motion described
in the phase-space, where the position and the momentum of a particle are treated equally,
and they can be interpreted just as two different degrees of freedom of the system. As it will
be clear in the following, theWeyl quantization proceduremaintains this peculiarity and, from
the mathematical point of view, position and momentum share the same properties.
The most common quantization procedures are the standard (anti-standard) Kirkwood
ordering, the Weyl (symmetrical) ordering, and the normal (anti-normal) ordering. In
particular, standard (anti-standard) ordering refers to a quantization procedure where, given
a function A admitting a Taylor expansion, all of the p operators appearing in the expansion
of Â (r, p) follow (precede) the r operators. A different choice is made in the Weyl ordering
rule where each polynomial of the p and r variables is mapped, term by term, in a completely

5Quantum Phase-Space Transport and Applications to the Solid State Physics
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ordered expression of r and p. The generic binomial pmrn becomes (see i. e. (Zachos et al.,
2005))

pmrn → 1
2n

n

∑
r=0

(
n
r

)
rrpmrn−r =

1
2m

m

∑
r=0

(
m
r

)
prrnpm−r . (10)

Following Cohen, (Cohen, 1966), one can consider a general class of quantization procedures
defined in terms of an auxiliary function χ(r, p). The invertible map (for avoiding
cumbersome expressions, the symbol of the integral indicates the integration over the whole
space for all the variables)

A (r,p) ≡ Tr
{
Â (r, p) ei(pr+rp)χ(r,p)

}
=

(
h̄
2π

)d ∫ 〈
r′ + ηh̄

2

∣∣∣∣ Â ∣∣∣∣ r′ − ηh̄
2

〉
χ(μ,η)ei(r−r′)·μ−ip·η dμ dη dr′ (11)

defines the correspondence Â (r, p) → A (r,p). Different choices of the function χ describe
different rules of association. In particular, if Â is the density operator ρ̂ (representing a state
of the system), from Eq. (11) we obtain the quantum distribution function f χ. One of the main
advantages in the application of the definition (11) is that the expectation value of the operator
Â (r, p) can be obtained by the mean value of the function A (r,p) under the "measure" f χ

Tr
{
Â (r, p) ρ̂ (r, p, t)

}
=
∫
Aχ (r,p) f χ (r,p, t) dp dr .

As particular cases, it is possible to recover the definition of the most common
quasi-probability distribution functions (classification scheme of Cohen). For example for
χ = e∓i h̄

2 μη we obtain the standard (−) or anti-standard (+) ordered Kirkwood distribution
function. Hereafter, we limit ourselves to consider the case χ = 1, which gives the Weyl
ordering rules. The function f χ becomes the Wigner quasi-distribution

f (r,p) =
1

(2π)d

∫ 〈
r +

ηh̄
2

∣∣∣∣ ρ̂

∣∣∣∣ r− ηh̄
2

〉
e−ip·η dη . (12)

The Weyl-Moyal theory provides the mathematical ground and a rigorous link between
a phase-space function and a symmetrically ordered operator. More into detail, the
correspondence between Â and the function A(r,p) (called the symbol of the operator) is
provided by the mapW [A] = Â (Folland, 1989)(

Âh
)
(x) =W [A] h =

1
(2πh̄)d

∫
A
(

x + y
2

,p
)

h(y) e
i
h̄ (x−y)·p dy dp . (13)

Here, h is a generic function. The inverse ofW is given by the Wigner transform

A(r,p) =W−1 [Â] (r,p) = ∫ KA (r +
η

2
, r− η

2

)
e−

i
h̄ p·η dη , (14)

where KA (x, y) is the kernel of the operator Â. Let us now fix an orthonormal basis ψ = {ψi |
i = 1, 2, . . .}. A mixed state is defined by the density operator Ŝψ(

Ŝψ h
)
(x) =

∫
ρψ(x, x′)h(x′) dx′

6 Some Applications of Quantum Mechanics
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whose kernel is the density matrix. In the basis {ψi}
ρψ(x, x′) = ∑

i,j
ρij ψi(x)ψj(x

′) , (15)

where the overbar means conjugation. The von Neumann equation gives the evolution of the
density operator Ŝψ = Ŝψ(t) in the presence of the Hamiltonian Ĥ:

ih̄
∂Ŝψ

∂t
=
[
Ĥ, Ŝψ

]
(16)

where, as usual, the brackets denote the commutator. The equivalent quantum phase-space
evolution equation can be obtained by applying the Wigner transform. We obtain

ih̄
∂ fψ

∂t
=
[H, fψ

]
� = H � fψ − fψ �H (17)

where the symbol (2πh̄)d fψ(r,p) ≡ Sψ = W−1 [Ŝψ
]
is the Wigner transform of ρψ(x, x′) (see

Eq. (1) and Eq. (12)) and we used the following fundamental property

W−1 [Â B̂] = A � B. (18)

For symbols sufficiently regular, the star-Moyal product � is defined as

A � B ≡ A e
ih̄
2

(←−∇r·−→∇p−←−∇p·−→∇r

)
B

= ∑
n

(
ih̄
2

)n 1
n!
A(r, p)

[←−∇r · −→∇p −←−∇p · −→∇r

]n B(r, p)

= ∑
n

n

∑
k=0

(
ih̄
2

)n (−1)k

n!

(
n
k

)
A(r,p)

(←−∇r · −→∇p

)n−k (←−∇p · −→∇r

)k B(r,p), (19)

where the arrows indicate on which operator the gradients act. The Moyal product can be
expressed also in integral form (that extends the definition (19) to simply L2 symbols):

A � B =
1

(2π)2d

∫
A
(

r− h̄
2
η,p +

h̄
2
μ

)
B (r′,p′) ei(r−r′)·μ+i(p−p′)·η dμ dr′ dη dp′

=
1

(2π)2d

∫
A (r′,p′)B (r +

h̄
2
η,p− h̄

2
μ

)
ei(r−r′)·μ+i(p−p′)·η dμ dr′ dη dp′ .

In particular, if both operators depend only on one variable (r or p), the Moyal product
becomes the ordinary product. For a one-dimensional system the Moyal product simplifies

A � B =
∞

∑
k=0

h̄k

(2i)k ∑
|α|+|β|=k

(−1)|α|
α!β!

(
∂α

r ∂
β
pA
) (

∂α
p∂

β
r B
)

(20)

and

[A,B]� =
∞

∑
k=1,3,5,...

h̄k

(2i)k ∑
0<β<k/2

2(−1)β+1

(k− β)!β!

[(
∂

k−β
r ∂

β
pA
) (

∂
k−β
p ∂

β
r B
)

−
(

∂
k−β
r ∂

β
pB
) (

∂
k−β
p ∂

β
rA
)]

.
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3.1 Generalization of the Wigner-Moyal map
A separable Hilbert space can be characterized by a complete set of basis elements ψi or,
equivalently, by a unitary transformation Θ (defined in terms of the projection of the ψi
set on a reference basis). The class of unitary operators C(Θ) defines all the alternative
sets of basis elements or "representations" of the Hilbert space. Once a representation is
defined, the relevant physical variables and the quantum operator can be explicitly addressed.
Unitary transformations are a simple and powerful instrument for investigating different
and equivalent mathematical formulations of a given physical situation. We study the
modification of the explicit form of the Hamiltonian H (and thus of the equation of motion
(17)), induced by a unitary transformation. We consider a unitary operator Θ̂ and the "rotated"
orthonormal basis ϕ = {ϕi | i = 1, 2, . . .}, where ϕi = Θ̂ ψi. It is easy to verify that the
following property

Θ−1 (r,p) = Θ (r,p) , (21)

holds true, where, according to Eq. (14), Θ (Θ−1) is the Weyl symbol of Θ̂ (Θ̂−1). The
phase-space representation of the state under the unitary transformation Θ̂ will be denoted
by

(2πh̄)d fϕ ≡ W−1
[
Ŝϕ

]
, where

Ŝϕ = Θ̂ Ŝψ Θ̂† . (22)

is the new density operator of the system. Here, the dagger denotes the adjoint operator. By
using Eq. (21) it is immediate to verify that the equation of motion for fϕ is still expressed by

Eq. (17) with the HamiltonianH′ = Θ �H � Θ−1. Explicitly,H′ ≡ W−1
[
Θ̂ Ĥ Θ̂†

]
is given by

H′(r, p) = 1
(2πh̄)2d

∫
Θ
(

r + r′ + r′′
2

,
p + p′ + p′′

2

)
Θ−1

(
r + r′ − r′′

2
,

p + p′ − p′′
2

)
×

H(r′,p′)e
i
h̄ [(r−r′)·p′′−(p−p′)·r′′] dr′ dp′ dr′′ dp′′ . (23)

When passing from the position representation (where the basis elements in the Schrödinger
formalism are the Dirac delta distributions and where Θ̂ is the identity operator), to
another possible representation, the Hamiltonian operator modifies according to formula (23).
Although the mathematical structure of the equation of motion can be strongly affected by
such a basis rotation, the distribution function fϕ is always defined in terms of the classical
conjugated variables of position and momentum. The generality of this approach is ensured
by the bijective correspondence between a generical unitary transformation (describing all the
physical relevant basis transformation) and a frameworkwhere the description of the problem
is a priori in the phase-space.

3.2 Application to multiband structures: graphene
The previous formalism is particularly convenient for the description of quantum particles
with discrete degrees of freedom like spin, pseudo-spin or semiconductor band index. The
mathematical structure, emerged in sec. 3.1, can be used in order to define a suitable set
of r-p-dependent eigenspaces (with a consequent set of projectors) of the "classical-like"
Hamiltonian matrix (that in our case is just the symbol of the Hamiltonian operator).
Consequently, a "quasi-diagonalized" matrix representation of the Wigner dynamics can
be obtained. This special starting point of the phase-space representation, aids to obtain
information on the particle transitions among this countable set of eigenspaces. From a

8 Some Applications of Quantum Mechanics
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Physical point of view, these transitions could represent, case by case, spin flip, jumping of
a particle from conduction to valence band or particle-antiparticle conversion. The analysis
performed in sections 3-3.1 providingEqs. (16)-(23), maintains its validity when Θ̂, Ĥ are n× n
matrices of operators (and, consequently the symbols Θ,H are matrices of functions). This for

example, is the standard situation for the Schrödinger-Hilbert space of the form L2
(

Rd
x;Cn

)
.

The only new prescription is to maintain the order in which the operators and symbols appear
in the formulae. To concretize to our exposition, we apply the phase-space formalism to
graphene and we present the explicit form of the equation of motion.
Graphene is the two-dimensional honeycomb-lattice allotropic form of carbon. Its discovery
stimulated a great interest in the scientific community. In fact, this novel functional material
displays some unique electronic properties (see for example (Neto et al., 2009) for a general
introduction to graphene). In a quite wide range of energy around the Dirac point, electrons
and holes propagate as massless Fermions and the Hamiltonian writes (Beenakker et al., 2008)

Ĥ = Ĥ0 + σ0U(r) , (24)

Ĥ0 = −i vF h̄ σ · ∇r = vFh̄

(
0 −i ∂

∂x − ∂
∂y

−i ∂
∂x + ∂

∂y 0

)
, (25)

which describes the motion of an electron-hole pair in a graphene sheet in the presence of an
external potential U(r). Here, vF is the Fermi velocity, σ =

(
σx , σy, σz

)
indicate the Pauli

vector-matrix and σ0 denotes the identity 2 × 2 matrix. The upper and lower bands are
sometimes denoted by pseudo-spin components of the particle, since the Hamiltonian can
be interpreted as an effective momentum-dependent magnetic field h ∝ σ · ∇r.
The application of the theory exposed in sec. 3.1 leads us to consider the density operator Ŝ ′ ≡
Θ̂ Ŝ Θ̂† where Θ̂ (r,∇r) is a unitary 2× 2 matrix operator. The approach generally adopted
for simplifying the description of a quantum system, is the use of a coordinate framework
where the Hamiltonian is diagonal. The graphene Hamiltonian contains off-diagonal
terms proportional to the momentum. Since position and momentum are non-commuting
quantities, it is not possible to diagonalize Ĥ simultaneously in the position and in the
momentum space. Anyway, up to the zero order in h̄, an approximate (r-p)-diagonalization
of the Hamiltonian can be obtained. We take advantage of the Weyl correspondence principle

and consider the symbol Θ (r,p) ≡ W−1
[

Θ̂
]
. Here, Θ (r,p) is a unitary matrix parametrized

by the r − p coordinates. It can be used in order to diagonalize the Hamiltonian symbol
H = vF σ · p + σ0U(r). With

Θ(p) =
1√
2

⎛⎜⎜⎜⎜⎝
1

px − ipy√
p2x + p2y

px + ipy√
p2x + p2y

−1

⎞⎟⎟⎟⎟⎠ (26)

we have

ΘHΘ† = Λ (27)

where Λ(p) = σzvF |p| + U(r) is the relativistic-like spectrum of the graphene sheet. The
equation of motion for the new Wigner symbol S′ becomes (see (Morandi & Schürrer, 2011)

9Quantum Phase-Space Transport and Applications to the Solid State Physics
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for the details of the calculation)

ih̄
∂S′
∂t

=
[U ′ + Λ(p),S′]� . (28)

The symbol U ′ (r,p) is given by

U ′ (r,p) = Θ � U (r) � Θ† (29)

and writes explicitly as

U ′(r,p) = 1

(2π)2

∫
Θ
(

p +
h̄
2
μ

)
Θ†
(

p− h̄
2
μ

)
U(r′)ei(r−r′)·μ dμ dr′ .

We address explicitly the components of S′, by denoting

S′ ≡ (2πh̄)2
(

f+(r,p) f i(r,p)
f i(r, p) f−(r,p)

)
. (30)

Equation (28) is written in terms of the Moyal commutator and defines implicitly a
non-local evolution operator for the matrix-Wigner function S′. It requires the evaluation of
infinite-order derivatives with respect to the variables r and p. The commutators appearing
in Eq. (28) can be written in integral form as

[
Λ,S′]� =

1

(2π)2

∫ [
Λ
(

p +
h̄
2
μ

)
S′ (r′,p)− S′ (r′,p)Λ

(
p− h̄

2
μ

)]
ei(r−r′)·μ dμ dr′

(31)[U ′,S′]� =
1

(2π)4

∫ [
U ′
(

r− h̄
2
η,p +

h̄
2
μ

)
S′ (r′,p′)− S′ (r′,p′)U ′ (r +

h̄
2
η,p− h̄

2
μ

)]
× ei(r−r′)·μ+i(p−p′)·η dμ dr′ dη dp′ .

(32)

The commutator of Eq. (31) describes the free motion of the electron-hole pairs in the upper
and lower conically shaped energy surfaces. When we discard the external potential U, the
evolution of the particles f + ( f−) belonging to the upper (lower) part of the spectrum is
described by

∂ f±
∂t

= ± 1

(2π)2

∫ [
E
(

p +
h̄
2
μ

)
− E

(
p− h̄

2
μ

)]
f±
(
r′,p

)
ei(r−r′)·μ dμ dr′ . (33)

By expanding up to the leading order in h̄, the previous equation reduces to

∂ f±
∂t

� ±vF
p
|p| · ∇r f± (34)

which is equal to the semi-classical free evolution of the two-particle system in the graphene
band structure. We emphasize that the usual semi-classical prescription vg = ∇pE = vF

p
|p| ,

where vg is the group velocity, is automatically fulfilled. As expected from a physical point of
view, the coupling between the bands arises from the presence of an external field U(r)which
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Fig. 1. Comparison between the classical potential U and the momentum dependent
pseudo-potential U ′.
perturbs the periodic crystal potential. This is described by Eq. (32). In order to illustrate the
main characteristics of the pseudo-potential U ′(r,p), in fig. 1 we depict the first component
[U ′]++ of the matrix U ′, when the external potential U(r) (represented in the sub-plot 1-(a))
is a single barrier. Equation (29) shows that the elements of the 2× 2 matrix U ′ depend both
on the position r and the momentum p. The main corrections to the potential arise around
px = 0, whereas [U ′]++ stays practically identical to U for high values of the momentum
px . This reflects the presence of the singular behavior of the particle-hole motion in the
proximity of the Dirac point (see the discussion concerning this point given in (Morandi &
Schürrer, 2011)). The effective potential [U ′]++ represents the potential "seen" by the particles
located in the upper Dirac cone. For small values of px, the original squared shape of the
potential changes dramatically. The effective potential [U ′]++ becomes smooth and a long
range effective electric field (the gradient of [U ′]++) is produced. Around p = 0, a barrier or,
equivalently, a trap potential becomes highly non-local. It is somehow "spread over the sheet"
and, in the case of a trap, its localization effect is greatly reduced.
The equation of motion (28) reproduces the full quantum ballistic motion of the particle-hole
gas. In the numerical study presented in (Morandi & Schürrer, 2011b), one of the main
quantum transport effects, namely the Klein tunneling, is investigated. The numerical study
of the full Wigner system in the presence of a discontinuous potential is presented in (Morandi
& Schürrer, 2011). The high computational effort required for solving the full ballistic motion
and the need of developing appropriate numerical schemes, limits the practical application
of the exact theory. This becomes particularly constraining in view of the simulation of
real devices containing dissipative effects like, for example, electron-phonon collisions, that
further increase the complexity of the problem. The Wigner formalism is well suited for the
inclusion of weak dissipative effects. The overall theoretical and computational complexity
displayed by the pseudo-spinorial Wigner dynamics, can be reduced by exploiting some
general properties of the system that characterize the application of the multiband Wigner
system to real structures (typically, the presence of fast and slow time scaling can be exploited).
Approximated models or iterative methods can be derived (see (Morandi & Schürrer, 2011)
and (Morandi, 2009) for the application to graphene and to interband diodes, and (Morandi,
2010) for the WKB method in semiconductors).

11Quantum Phase-Space Transport and Applications to the Solid State Physics
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3.3 Application to multiband structures: correction to the classical trajectory in
semiconductors.

We investigate the application of the multiband Wigner formalism to the semiconductor
structures. The study of the particle motion in semiconductors has attracted the scientific
community, e. g., to the sometime anti-intuitive properties of Bloch waves (especially
compared with the classical counterpart). Moreover, the interest has been renewed by the
discovery of the unipolar and bipolar junctions and the final impulse to the semiconductor
research was given by the unrestrainable progress of the modern industry of electronic
devices. An important branch of the semiconductor research is now constituted by the
numerical simulation applied to the particle transport. In particular, the continuous
miniaturization of field effect transistors (length of a MOS channel approaches the ten nm)
imposes the use of a full quantum mechanical (or at least a quantum-correct) model for
the correct reproduction of the device characteristic. Beside the Green function formalism
and the direct application of the Schrödinger approach, the Wigner framework is a widely
employed tool for device simulation. Anyway, most attention is usually devoted to the
interband motion since it is often implicitly assumed that electron motion is supported only
by one single band. This approximation is based on the assumption that the band-to-band
transition probability vanishes exponentially with increasing band gaps (that, for example, in
silicon is around one eV), so that under normal conditions all the multiband effects can be
discarded. However, this assumption is violated in many heterostructures (devices obtained
by connecting semiconductors with different chemical compounds), or when a strong electric
field is applied to a normal diode. In both cases electrons are free to flow from one band to
another. Beside the evident modification of how the device operates (a new channel for the
particle transport becomes available), there is also a more subtle consequence. The application
of a strong electric field for example, is able to provide a strong local modification of the
electronic spectrum. Since high electric fields could induce a strong mixing of the bands,
the Bloch band theory becomes inadequate to describe the particle transport. Even when
the particle does not undergo a complete band transition, its motion becomes affected by the
interference of the other bands. In the following, we show how these problem can be attacked
with the use of the multiband Wigner formalism.
A multiband transport model, based on the Wigner-function approach, was introduced in
(Demeio et al., 2006) and in (Unlu et al., 2004) the multiband equation of motion is derived
by using the generalized Kadanoff-Baym non-equilibrium Green’s function formalism. The
model equations there derived are still too hard to be solved numerically. In order to maintain
easily the discussion of the problem, we consider a simple model, where only two bands,
namely one conduction and one valence band, are retained. We adopt the multiband envelope
function model (MEF) described in Ref. (Morandi & Modugno, 2005). This model is derived
within the k · p framework and is so far very general. In particular, this approach is focused
on the description of the electron transport in devices where tunneling mechanisms between
different bands are induced by an external applied bias U. It has been recently applied to
some resonant diodes showing self-sustained oscillations (Alvaro & Bonilla, 2010). Under this
hypothesis the MEF model furnishes the following Hamiltonian

Ĥ =

⎛⎜⎜⎜⎜⎝
Ec + U(r)− h̄2

2m∗ Δr − h̄
m0

pK · E(r)
Eg

− h̄
m0

pK · E(r)
Eg

Ev + U(r) +
h̄2

2m∗ Δr

⎞⎟⎟⎟⎟⎠ . (35)
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Here, Ec (Ev) is the minimum (maximum) of the conduction (valence) energy band, pk is
the Kane momentum, m0, m∗ are the bare and the effective mass of the electron and U
(E = ∇rU) is the "external" potential which takes into account different effects, like the bias
voltage applied across the device, the contribution from the doping impurities and from the
self-consistent field produced by the mobile electronic charge. According to Eq. (27), the
multiband system is characterized by the matrix

Θ =
1√
2

( √
1+ σ

√
1− σ

−√1− σ
√
1+ σ

)
, (36)

where

σ =
Ω√

P2R + Ω2
,

with Ω (p) = Eg
2 + |p|2

2m∗ PR (r) = −h̄ pk·E (r)
Egm0

and Eg = Ec − Ev is the band gap. The eigenvalues

of the Hamiltonian are H± (r,p) = ±
√

P2R + Ω2 + U. Here we limit ourselves to discuss the
system obtained by expanding the full quantum equation of motion given in Eq. (28) up to the
first order in h̄ (the study of the full quantum system is addressed in (Morandi, 2009)). With
the definition (in order to avoid confusion with the graphene Wigner functions defined in Eq.
(30), we changed the name of the various components of the matrix)

S′ ≡ (2πh̄)3
(

hc(r,p) hcv(r,p)
hcv(r,p) hv(r,p)

)
. (37)

We obtain the following equations of motion

∂hc

∂t
= −∇pH+ · ∇rhc + ∇rH+ · ∇phc − 2ξ 
(hcv) (38)

∂hv

∂t
= −∇pH− · ∇rhv + ∇rH− · ∇phv + 2ξ 
(hcv) (39)

∂hcv

∂t
= − i

h̄

(H+ −H−) hcv + E · ∇phcv + ξ (hc − hv) (40)

where 
 denotes the real part and

ξ =
PR

P2R + Ω2
E · p
m∗ . (41)

Here, hc and hv represent the Wigner quasi-distribution functions of particles in a regime of
strong band-to-band coupling. They differ from the analogous functions based on a direct
application of the projection of the particle motion in the Bloch basis. The system of Eq.
(38)-(40) shows that, up to the zero order in h̄, the Wigner functions hc (hv) follows the

Hamiltonian flux generated by H+ (H−). Furthermore, the term H+ −H− = 2
√

PR
2 + Ω2

in Eq. (40) induces fast-in-time oscillations (whose frequency is of the order of Eg/h̄) which,
up to zero order in h̄, decouple hcv from the slowly varying functions hc and hv . This aspect
is examined in sec. 3.4. We explore the single band limit of Eqs. (38)-(40). From the physical
point of view, we expect that when the electric field goes to zero or the band gap goes to

13Quantum Phase-Space Transport and Applications to the Solid State Physics



14 Will-be-set-by-IN-TECH

infinity, all the multiband corrections become negligible and the dynamics of the electrons in
the conduction band decouples from those in the valence band. It is convenient to define the
parameter Υ = PR

Ω that vanishes in the single band limits E , 1/Eg → 0. When Υ → 0 the
evolution of hc and hv is described by two Liouville equations (one for each band) with the
Hamiltonian

H± = ±
√

PR
2 + Ω2 + U(r) (42)

= ± |p|
2

2m∗ + U(r)± Eg

2

(
1+

Ω
Eg

Υ2
)

+ o
(

Υ2
)
.

Equation (42) shows that the eigenvalues of the Hamiltonian symbol, provide a simple

quantum correction to the classical single band Hamiltonian Hsb = U(r)± |p|2
2m∗ . The particles

follow a new trajectory defined by⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ṙ =
1√

1+
(

PR
Ω

)2 p
m∗

ṗ = −E − 1√
1+
(

Ω
PR

)2 h̄
m0Eg

∇r (E · pk)
. (43)

Similar results can be obtained with H−. Due to the term
√
1+
(

PR
Ω

)2
, the particles move

with a slightly larger effectivemass. Themass correction depends on the classical position and
momentum. This effect could partially compensate the small effective mass values predicted
by the k · p theory in semiconductors with a small band gap like InAs or InSb.

3.4 Study of the band transition, an iterative solution Wigner function
The quasi-diagonal Wigner formalism suggests an interesting analogy between band
transition induced by a constant electric field (usually denoted as Zener transition (Zener,
1934)) and the scattering processes. In sec. 3.3 the analysis of the equation of motion was
restricted to the single band dynamics. In this section, the full many-band dynamics is treated
by means of an iterative procedure. For the sake of simplicity, we consider the two-band
system in the presence of a uniform electric field. We introduce the new momentum variable
p′ = p + E t and we apply the Fourier transformation with respect to the r variable. The Eqs.
(38)-(40) become

∂gc

∂t
= iμ · ∇pH+(t)gc − ξ(t) (gcv + gvc) (44)

∂gv

∂t
= iμ · ∇pH−(t)gv + ξ(t) (gcv + gvc) (45)

∂gcv

∂t
= − i

h̄
2
√

P2R + Ω2(t) gcv + ξ(t) (gc − gv) (46)

∂gvc

∂t
=

i
h̄
2
√

P2R + Ω2(t) gcv + ξ(t) (gc − gv) , (47)

where, in order to avoid confusion, we defined the new unknowns gi = Fr→μ [hi(r,p + E t, t)]
with i = c, v, cv, vc. The time dependence of the coefficients is originated by the definition of

14 Some Applications of Quantum Mechanics



Quantum Phase-Space Transport and Applications to the Solid State Physics 15

−5 −4 −3 −2 −1 0 1 2 3 4 5
−40

−30

−20

−10

0

10

20

30

40

Time

t
2

t
1

A 

G 

D 

E 

C 

F 

B 

H 

S
vc

 

S
v
 

S
c

S
cv

 

Fig. 2. Eigenvalues of the Lmatrix
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Fig. 3. Modulus of the functions gi with i = cv, c, v, vc.

the p′ variable. Explicitly, ∇pH−(t) ≡ ∇pH−
∣∣
p=p′−E t, ξ(t) ≡ ξ(p = p′ − E t), and similar

for the other coefficients.
The system of Eqs. (44)-(47) is a time-dependent eigenvalue problem with perturbation. In
fact, if we define the four component vector G = (gc, gv, gcv, gvc)

t, Eqs. (44)-(47) can be
rewritten as ∂G

∂t = iL(t)G + T(t)G, where L is a diagonal time-dependent matrix and T is
the perturbation. In order to make the subsequent discussion easier, we define the elements

of L by λc = μ · ∇pH+(t), λv = μ · ∇pH−(t), λcv = − 2
h̄

√
P2R + Ω2(t) and λvc = −λcv (the

coefficients of T can be obtained by comparison with Eqs. (44)-(47)). Each function gi can be
identified by the component of G of the unperturbed eigenvector basis (in this case, the simple
canonical basis). The eigenvalues of the matrix L are shown in fig. 2.
If we assume that L(t) and T vary slowly in time, according to well known results of adiabatic
perturbation theory, eigenspaces belonging to different eigenvalues are decoupled as long as
the difference among the eigenvalues is large. In this case, the projections of the solution on
the different eigenspaces evolve independently. Only when the eigenvalues become closer, a
coupling is possible and a transition from one eigenspace to another can be performed. In our
case, a coupling of the eigenspaces is can be observed only around t ≈ t1 and t ≈ t2 (see fig.
2).
For the sake of concreteness, we consider a tunneling transition from the conduction band to
the valence band. This can be described by setting initially all the functions to zero, with the
exception of gc. As it is customary in the time-dependent perturbation theory, we fix the initial
time equal to −∞. The value of gv for t → +∞ gives the measure of the interband tunneling
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induced by E . We write the solution in terms of the Dyson expansion

Gi = ei
∫ t
−∞ L(τ) dτG0 +

∫ t

−∞
ei
∫ t

t′ L(τ) dτT(t′)Gi−1(t′) dt′ (48)

The integral equation (48) can be easily approximated order by order. The second order writes
(we discuss only the valence component of G)

g1v = Jv,cv + Jv,vc , (49)

with

Jv,vc(t) = e
∫ t
−∞ λv(τ) dτ

∫ t

−∞
ξ(t′) e

∫ t′
−∞ λcv(τ)−λv(τ) dτ g1cv(t

′) dt′ (50)

g1cv(t
′) = g0c e

∫ t′
−∞ λc dτ

∫ t′

−∞
ξ(t′′) e−

∫ t′
t′′ (λc−λcv) dτ dt′′ . (51)

where g0c is the initial condition of gc. Similar formula holds for Jv,cv. We have that |λcv(t)−
λc(t)| > Eg, therefore, in a wide gap semiconductor, the only relevant contribution to the
integral is generated in the neighborhood of the minimum of the oscillation frequency (for
t ≈ t1, see fig. 2). Consequently, at t = t1 the gcv function increases sharply (see fig. 3).
The integral in Eq. (50) can be approximated in the same manner. Since the minimum of
|λcv(t)− λv(t)| occurs for t = t2 > t1, g1cv can be considered as constant around t2 and the
integral can be estimated by using the stationary phase approximation.
According to these considerations, the time evolution of the system can be described as
follows. For t < t1 the solution, which initially belongs to the Sc eigenspace (we denote
with Si the eigenspace spanned by the i-th component of G), evolves adiabatically remaining
in Sc. As shown in fig. 3, gc is the only non-vanishing component of the solution G until
t = t1. At t = t1, a very sudden drop of the value of gc is observed, and, correspondingly, the
gcv distribution function increases. This can be interpreted as the creation of an excited state in
the gcv band (visualized with the B point in fig. 2). This excited state "moves" in the Scv band
until, at t = t2, it generates an Sv state, which is described by the gv distribution function. The
term Jv,cv of Eq. (50) is thus associated with the path A− B− C− D indicated in fig. 2. The
particle is initially in the conduction band (represented by the point A) and in B an excited
state is created. It moves towards the point C. There it generates a particle in the valence
band which moves adiabatically (point D). The inverse of the difference of the eigenvalues
(λc − λcv in t1 and λcv − λv in t2) quantifies the strength of the coupling (or the probability of
a transition). The behavior of the function gc can be described with similar arguments. The gc
function describes the states that move from A (initial time) to H (final time). This distribution
undergoes two scattering events, in B (at t = t1) and in E (at t = t2). We note that, at t = 0, no
scattering phenomena can be observed, since the eigenspaces Sc and Sv are always decoupled.
This represents the analogous of the selection rules for the ordinary scattering phenomena.
This iterative procedure resemble very closely the formalism used for the description of the
electron scattering phenomena in semiconductors. In our study of interband transitions, this
analogy used for the description of the Zener phenomenon in term of a tunneling process
where a particle "disappears" from the band where it was initially located, and it "appears"
in a different branch of the band diagram. This behaves similarly to the generation of an
electron-hole pair induced by the absorption of a photon. This procedure has been exposed
more into details in (Morandi & Demeio, 2008). The field dependent case is treated in
(Morandi, 2009).

16 Some Applications of Quantum Mechanics
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4. Berry phase and Wigner-Weyl formalism

In a crystal where the effective Hamiltonian is expressed by a partially diagonalized basis (e.
g. in graphene or in semiconductors), the major particle operators have off-diagonal elements
and the usual definitions of the macroscopic quantities, like for example the mean velocity or
the particle density, no longer apply. The theory of Berry phases offers an elegant explanation
of this effect in terms of the intrinsic curvature of the perturbed band (Bohm et al., 2008; Xiao
et al., 2010). We discuss how it is possible to characterize the Berry phase in a multiband
system by using our kinetic description of the quantum dynamics.
The Berry phase theory cannot be directly applied to the particle evolution in a graphene
sheet for the obvious reason that the Hamiltonian given in Eq. (25) does not contain any
adiabatic variable. Anyway, a Berry-like procedure can be developed if we renounce to treat
rigorously the particle dynamics and some approximations are retained. From the physical
point of view, one of the most interesting properties of the particle-hole pair in graphene is
its pseudo-spinorial character and its connection with the orbital motion. In the momentum
representation, the unperturbed graphene Hamiltonian writes vF σ · p. If we assume that
the particle wave function is represented by a non-spreading wave packet centred around
the position r and the momentum p, we expect due to the Ehrenfest theorem that, in the
presence of a gentle potential U (sufficiently smooth), the center of mass of such wave function
will describe a trajectory r(t),p(t). Sometime this is pictorially visualized by saying that
the particle is confined in a small box located at a certain position r and that the wave
packet moves without spreading along a certain trajectory r(t). If we now assume that in
such situation the graphene Hamiltonian can be approximated by vF σ · p(t), we can treat
the momentum trajectory like an external adiabatic variable. It should be noted that since
a non-trivial trajectory is always generated by a potential U, this term should be explicitly
included in the graphene Hamiltonian as we did in Eq. (24). Anyway, when included, the
Hamiltonian in the momentum space would loose the easy expression vF σ · p (the potential
U generates a sum over all the possible momenta). In the following, we will show that the
multiband Wigner procedure suggests a natural way to treat the Berry phases of the system
for which there is no need to identify in the particle trajectory the "external parameter" of
the Hamiltonian, as indicated by the previous artificial procedure. We define by u± the
orthonormal eigenvectors ofHg,a = vF σ · p. With the Dirac notation

Hg,a(p) |u±(p)〉 = ±vF |p| |u±(p)〉 (52)

we write the solution of the Schrödinger problem

ih̄
∂ |ψ〉

∂t
= Hg,a |ψ〉 (53)

as |ψ〉 = c+(t) |u+(p)〉+ c−(t) |u−(p)〉. A straightforward calculation gives (similar equation
hold true for c−)

ih̄
∂c+(t)

∂t
= −c+(t)

〈
u+(p)

∣∣∣ ∂u+(p)
∂t

〉
− c−(t)

〈
u+(p)

∣∣∣ ∂u−(p)
∂t

〉
+ c+(t)vF |p| . (54)

The adiabatic theory ensures that the second term on the right side of the equation becomes
arbitrarily small in the limit of sufficiently slow-in-time evolution of the momentum p
(quasi-static or adiabatic hypothesis). An introduction to the adiabatic theory containing a
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rigorous proof of this statement presented in a general context, can be found in (Teufel, 2003).
If we assume the initial condition |ψ(t0)〉 = |u+(p)〉, in the adiabatic limit Eq. (54) gives

|ψ(t)〉 = |u+(p(t))〉 eiγ+(t)− i
h̄

∫ t
t0

vF|p(t′)| dt′ , (55)

where the term γ+ is denoted as dynamical phase factor. It can be evaluated by the path
integral, along the p(t)-trajectory of the Berry connection A(ξ)

γ+ =
∫

A++(p) · dp . (56)

The Berry connection is given by

Ars(p) = i
〈
ur(p)|∇pus(p)

〉
; r, s = +,− . (57)

According to the discussion presented in sec. 3.2, the multiband Wigner-Weyl formalism
describes the particle motion by the set of equations (28)-(31)-(32). In order to see the
connection with the Berry phase theory, it is useful to explore the classical limit, or h̄-expansion
of the Wigner-Weyl system. According to Eq. (19), if the external electric potential U(r) is
sufficiently regular, we have

[
Λ(p),S′]� + [U ′,S′]� =

[
A,S′]− ih̄

2
{∇pΛ,∇rS′

}
+ ih̄∇rU · ∇pS′ + o(h̄2) , (58)

where curly brackets denote the anti-commutators. We focus our attention to the first term of
Eq. (58). In particular, A groups all the terms that, originated from the h̄-expansion procedure,
are simple matrix multiplications acting on S′ (all the other are differential operators):

A = Λ +
ih̄
2
[
Θ,∇pΘ

] · ∇rU

=

(
vF |p| 0
0 −vF|p|

)
+

ih̄
2

(
A++ A+−
A−+ A−−

)
· ∇rU (59)

In Eq. (59) we used that the columns of Θ are the eigenvectors ofH (Eq. (24)) and by applying
the definition of Eq. (57), we obtain Aij(p) =

[
Θ(p)∇pΘ(p)

]
ij = ∑k Θik∇pΘkj. Equation

(59) emphasizes the role played by the Berry connection in the kinetic description of the
particle-hole motion. In our formalism, the Berry connection leads to the first correction (in
terms of an h̄ expansion) of the classical of motion. Up to the first order in h̄, the equations of
motion (28) become (the components of S′ are defined in Eq. (30))

∂ f±
∂t

= ±vF
p
|p| · ∇r f± +∇rU · ∇p f± ± i

(
B f i −B f i

)
, (60)

∂ f i

∂t
= iA f i +∇rU · ∇p f i + iB ( f+ − f−

)
, (61)

where overbar means conjugation and

A = − 2vF

h̄
|p|+ 1

2
(A++ −A−−) · ∇rU = − 2vF

h̄
|p|+ 1

|p|2 (p ∧∇rU)z , (62)

B =
1
2

A−+ · ∇rU =
1
2

px + ipy

|p|3 (p ∧∇rU)z . (63)
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Here, (p ∧∇rU)z denotes the out-of-plane component (z-coordinate) of the vector p ∧ ∇rU.
We remark that we use a slightly generalized definition of Berry connection. The standard
Berry theory limits itself to consider the "in band" evolution of the system. This is a direct
consequence of the adiabatic approximation that forbids band transitions. The Wigner-Weyl
formalism, being more general, is not limited to any adiabatic hypothesis and band transition
are allowed. For that reason, besides the diagonal Berry connections A++ and A−−, the
terms A+− and A−+ appear. They are responsible for the particle band transitions (see the
discussion of this point in (Morandi & Schürrer, 2011)).

5. Approximated model for the Wigner dynamics

The numerical solution to the equation of motion for the Wigner quasi-distribution function
has been the subject of many studies (see i.e. (Frensley, 1990)). Often, a strong the similarity
of the shape of the Wigner function with the classical counterpart can be observed. This is
especially true in situations where strong quantum interference effects are not expected, but
sometime also in the presence of sharp barriers and resonant structures. This consideration
is often invoked for justifying the approximation of the θ operator appearing in Eq. (2) with
the classical force term (leading term in the h̄-expansion). Although the h̄-expansion appears
to be the most natural way to proceed, its application encounter many difficulties when
approximations beyond the classical term are concerned. In fact, when applied to realistic
problems, this procedure could generate a proliferation of corrective terms. Their number
could be quite large and, furthermore, it is usually very difficult (sometime impossible) to
ascribe to each term a clear physical meaning. Moreover, the range of validity of such
an expansion, when truncated at a certain order, is questionable. The reason is that, at
the microscopic level, the particle motion is characterized by complex phase-interference
phenomena, which cannot be viewed as a simple refinement of the classical dynamics. Here,
we present a slightly different strategy for approximating the Wigner equation of motion.
The idea is to replace the θ operator, which is the source of the difference between classical
and quantum dynamics, with a more tractable term. The similitude with the classical motion
is exploited by approximating the Wigner evolution equation with a Liouville-like equation,
where the force operator is the "best classical" approximation of the θ operator in the sense of
the L2 norm. We consider the functional

N [ f ] =
∥∥∥∥θ[ f ]− F(r)

∂ f
∂p

∥∥∥∥
L2(Rd

r×Rd
p)

.

Here, the Wigner function is considered as a given function and the pseudo-field F is the
unknown. We choose F such that the previous functional reaches the minimum value. The
function F(r,p) thus provides the closest approximation of θ[ f ] in the L2(Rd

r × Rd
p) norm,

for each function f sufficiently regular. The minimization of N [ f ] is obtained by solving the
variational problem

δFN [ f ] = 0 .

Straightforward calculations show that the minimizing function F is given by

Fj (r) = −i

∫
Rd

η
ηjD (r,η)

∣∣∣ f̃ (r,η)∣∣∣2 dη∫
Rd

η
η2j

∣∣∣ f̃ (r,η)∣∣∣2 dη
. (64)
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Fig. 4. Comparison between the external potential U and the pseudo-potential U∗ =
∫

F dr.

Equation (64) reveals that the calculation of the pseudo-force field in a certain position requires
the knowledge of the potential in the overall r space (via the term D). By computing the
integral, the potential U is evaluated at the positions r± h̄

2η and has a measure proportional

to
∣∣∣ f̃ ∣∣∣2, the spectral power of f in the η−space. As a consequence, the more the p-gradient

of the solution f (r,p) increases, the more the force F becomes non-local and the values of the
potential faraway from r are important. This can be expressed pictorially by saying that, as
compared with a smoother distribution function, an irregular profile of the solution "sees" a
larger spatial region. The approximated quantum-Wigner evolution equation becomes

∂ f
∂t

= − p
m
· ∇r f − F(r) · ∇p f . (65)

This is a nonlinear system where the pseudo-electric field F depends on the solution itself.
In some situations, the nonlinearity can be eliminated and a good approximation of the
field F can be obtained by replacing in Eq. (64) the solution f with the classical Boltzmann
equilibrium distribution at the temperature T

f eq =

√
mkT

π
e
− 1

kT

( |p|2
2m −μ

)
,

where μ is the chemical potential of the particle gas and k the Boltzmann constant. In fig. 4
the comparison of the classical and the pseudo electric field obtained by using the Boltzmann
distribution function is presented. A glance at the figure reveals that, compared with the
bare potential U, the effective pseudo-potential is smoother and extends beyond the support
of U. As a consequence, the particle in the presence of the quantum corrected potential are
decelerated or accelerated before they reach the classical force field −∇rU, making evident
the non-local action of the quantum potential. Furthermore, the snapshot fig. 4-(a) shows
that the maximum value of the effective potential is smaller than the classical one. As a
consequence, particles with energy smaller than the maximum of the potential (but greater
than the maximum of the pseudo-potential) are not reflected by the barrier. This simple
example illustrates how quantum tunneling can be approximatively described by a classical
formalism. Furthermore, in fig. 4-(b) we depict the solution of Eq. (65) in the presence of the
potential U. At the boundary, the Boltzmann distribution is imposed.
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Fig. 5. (a)-(c) Polar plot of the density for current in graphene. (d) Total current.

6. Dissipative effects in the Wigner formalism: electron-phonon collisions in
graphene

As described in the introduction, one of the major advantages of the Wigner formalism is
the possibility to include in a quantum mechanical treatment also some dissipative effects,
or (in the opposite limit) to derive some quantum corrected models for the simulation
of quasi-classical systems. As an example, we apply the results obtained in sec. 5 for
studying the particles evolution in graphene and we include a detailed description of the
electron-phonon scattering phenomena, via a Boltzmann scattering collision operator. An
important property of the pseudo-electric field approximation is the preservation of the
positivity of the quantum-corrected distribution function. Since the Boltzmann collision
operator is defined only for positive functions, positivity preservation becomes a fundamental
property for any Boltzmann quantum-corrected kinetic model (anyway, despite the lack of
theoretical support, some Wigner-Boltzmann solver have been numerically tested (Kosina &
Nedjalkov, 2006)). A semiclassical Boltzmann model with quantum corrections, allows the
study of the relaxation processes dynamically, providing information on the time scale on
which the equilibrium is established.
The phonon system of graphene has already been thoroughly investigated by means of
density functional theory (DFT) and Raman spectroscopy (Piscanec et al., 2004). The phonon
dispersion relations and electron-phonon coupling matrix elements are essential ingredients
for kinetic models of carrier transport in graphene. Results of DFT calculations show that
longitudinal optical (LO) and transversal optical (TO) phonons modes contribute significantly
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to inelastic scattering of electrons in graphene. Because of their short wave vectors these
phonons scatter electrons within one valley. In addition, zone boundary phonons close to
the K-point are responsible for intervalley processes. The Boltzmann equation of motion
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including optical phonon scattering writes

∂ f±
∂t

∓ vF
p
|p| · ∇r f± − F · ∇p f± = ∑

η,j
Cη
±j . (66)

The collision kernel, containing emission and absorbtion processes, is given by

Cη
ij(p) =

1
(2π)2

∫
B

{
Wη

p′jpi f j(p′)[1− f i(p)]−Wη
pip′j[1− f j(p′)] f i(p)

}
dp′ , i, j = ± (67)

where η labels the specific scattering processes, B denotes the first Brillouin zone of graphene
and

Wη
pip′j = sη

p′jpi

[
1+ gη(p− p′)

]
δ(ε i − ε′j − h̄ωη) + sη

pip′j gη(p
′ − p) δ(ε i − ε′j + h̄ωη) . (68)

The delta functions (where we adopt the simplified notation ε i = ε i(p), ε′j = ε j(p
′) and

ωη denotes the energy of the η-th mode) ensure the conservation of the energy during the
scattering processes. The explicit expression of the scattering elements sη

p′jpi, can be found in

(Lichtenberger et al., 2011; Piscanec et al., 2004). According to sec. 3.2, the functions f+ and
f− represent the particle distribution in the upper and in the lower Dirac cone, respectively.
Finally, the gη are the phonon equilibrium distribution functions related to the η-th mode.
Here, for sake of simplicity, we assume that the phonon system is an infinite reservoir at a
constant temperature T. In this hypothesis, the gη can be approximated by the Bose-Einstein
distributions g0η = [exp(h̄ωη/kBT)− 1]−1. The study of the coupled electron-phonon system
is presented in (Lichtenberger et al., 2011). It has been shown that the optical phonons are
in equilibrium only for a low-bias polarization (around 0.1 eV), otherwise hot phonon effects
should be included.
We apply the Boltzmann system given in Eq. (66) to study the transient evolution of the
electron-hole and phonon gas in response on the abrupt change of the applied bias. As initial
datum, for t = 0, we assume that the graphene sheet is in the stationary state for an applied
voltage U equal to 0.01 V. For t > 0 we impose U = 0.1 V. In Fig. 5-d we show the evolution
of the total current at the drain contact for the intrinsic graphene. The simulations reveal the
presence of a current overshoot (approximatively one picosecond after the potential change)
and a subsequent approach to the equilibrium value. The further approach to the equilibrium
is a quite slower process of approximatively 200 picoseconds.
The detailed explanation of the transient current overshoot observed during the first
picosecond requires a deeper analysis of the high non-equilibrium motion of the hot carriers.
The presence of an overshoot in the current evolution is an unexpected phenomenon in
graphene. It is well known that, in this material, the carrier velocity is independent from the
modulus of the momentum. For this reason, we expect that even if some transient phenomena
are able to move the hot carriers toward high values of the momentum, this should not
significantly affect their velocity and consequently the total current of the system. The
overshoot can be explained by analyzing the following two-step process: initially the particles
are ballistically accelerated by the strong external field (the temperature of the particles gas
stays essentially constant). However, after some picoseconds, the scattering processes are able
to transform the kinetic energy of the carriers into thermal energy. During the first picosecond,
the component of the momentum parallel to the external field increases. As a consequence,
the direction of the momentum (and thus the velocity) is turned toward the direction of the
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electric field. In this first part of the dynamics, the motion is essentially ballistic, the particles
share similar momentum direction and group together in the velocity space. This behaviour
is evident from fig. 5 where we depict the polar plot of the angular density of the current. For
t < 0.3 ps the drift term dominates the Boltzmann collision operator. The latter is a nonlinear
operator and its effects on the distribution function depend on the shape of the function itself.
On the contrary, the ballistic operator translates the distribution function over the phase plane
along the Hamiltonian flux and is independent of the distribution. During the overshoot of
the current, the Boltzmann operator is not able to balance the effect of the ballistic term. This
can be seen in fig. 6 where we depict the evolution of the electron distribution function f +

for different times. The first part of the dynamics (fig. 6(a)) is just a rigid translation of f+

towards higher values of the momentum variable. After one picosecond, an enlargement of
the distribution function around its center of mass can be observed. This is a clear signature
of the temperature increase of the system. The friction process occurs only by dissipating the
kinetic energy of the particles by phonon emission. This requires a certain time delay. A closer
look at the density of energy of the carriers explains the reason why the particle gas need a
delay before starting to emit phonons. In fig. 7 we plot the evolution of the energy density
and the total energy of the particles. We see that a peak of high energy particles is present
after 0.3 ps. This peak represents the particles accelerated by the field. Their kinetic energy
increases until they are able to emit optical phonons (whose energy is 196 and 161 eV for Γ and
K phonons respectively). Around an energy of 200 meV, the kinetic energy can be efficiently
dissipated and the distribution reaches a new thermal-like state characterized by a smaller
total current.

6.1 Conclusions
In this Chapter, various approaches based on the Wigner-Weyl formalism, are presented.
In particular, we highlight the existence of a general formalism where in analogy with
the Schrödinger formalism, we use the class of unitary operators in order to define a
class of equivalent quasi-distribution functions. The applications of this formalism span
among different subjects: the multi-band transport in nano-devices, the infinite-order
h̄-approximations of the motion and the characterization of a system in terms of Berry phases
or, more generally, the representation of a quantum system by means of a Riemann manifold
with a suitable connection. The exposition of the theory is completed with some numerical
test and applications to real devices.
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1. Introduction 

Reaction mechanisms are an important tool for chemists in the determination of 
thermodynamic and kinetic properties of chemical reactions.(Hänggi & Borkovec 1990; 
Heidrich 1995; March 1992; Tolman 1925) The mechanisms are integral in the understanding 
of detailed molecular or chemical transitions from one equilibrium state (reactant) to 
another equilibrium state (product). In computational chemistry, the reaction mechanism is 
often represented as a reaction path on the Born-Oppenheimer potential energy surface 
(PES) of the system of interest through construction of a potential energy function of the 
nuclear coordinates.(Bader & Gangi 1975; Lewars 2011; Mezey 1987; Truhlar 2001; Wales 
2003) The PES serves as an important theoretical construct to provide a framework to 
describe the transition between different states in detail. The equilibrium states correspond 
to local minimum on the PES with zero first order derivatives (gradient) in all directions and 
all positive eigenvalues of the second order derivative (Hessian) matrix, excluding rotation 
and translation degrees of freedom. The transition states (TSs), based on the transition state 
theory (TST),(Doll 2005; Eyring 1935; Laidler & King 1983; Pechukas 1981; Truhlar et al. 
1983; Wigner 1938; Yamamoto 1960) are the first order saddle points with zero gradient and 
only one negative eigenvalue of the Hessian matrix. The equilibrium states are often easy to 
identify through experimental or computational studies. Understanding the detailed 
transition process between equilibrium states is of more interest in research, but 
unfortunately is very difficult to study experimentally. On a given PES, one can imagine that 
there could exist an infinite number of possible routes connecting two predefined states on 
that surface. However, not every route has the same weight in elucidating of reaction 
mechanisms. In the static point of view, the minimum energy path (MEP) is the route that 
needs the least amount of potential energy for the system to undergo the transition. The 
MEP connecting two local minima must go through one or more TSs, and is identified as a 
representative reaction path. In the statistical point of view, the minimum free energy path 
(MFEP) is the most probable transition path connects two metastable states. The simulation 
of the systems either through molecular dynamics (MD) or Monte Carlo (MC) sampling on 
the PES could generate an ensemble of transition paths, from which the MFEP can be 
identified. Both an MEP and an MFEP can be used to predict important properties, such as a 
reaction’s kinetic isotope effect. 



 
Some Applications of Quantum Mechanics 

 

28

Although one could generate a reduced PES for complex systems with selected reaction 
coordinates,(Klähn et al. 2005; Shi et al. 2008; Tao et al. 2009a) it is rarely practical to 
construct a reduced PES of a system of interest to identify a reaction path connecting two 
minima. Moreover, reducing a complex multi-dimensional system to a simplified pathway 
is a form of data reduction. This reduction is non-unique and a choice imposed in this 
reduction will affect the quality and applicability of the results. It is more feasible to search 
for the MEP or MFEP directly on a given PES. Given the complexity and high degree of 
freedom of most systems of interest in chemistry, molecular biology and materials science, 
there has been a rapid development in methodologies for reaction pathway identification in 
large systems. As an attempt to reflect the current development and to better understand the 
consequences of specific methodological choices, this chapter reviews the recent progress of 
various methods to identify reaction paths with or without knowing the TS(s) a priori. 
Specifically, it emphasizes the applications of these methods in macromolecular systems.  
It should be noted that identifying saddle points on a PES alone is not the focus of this 
report. This report does not cover the geometry optimization including equilibrium and 
transition structures,(Farkas & Schlegel 2003; Henkelman et al. 2000a; Olsen et al. 2004; 
Schlegel 1982, 2003, 2011) conformational sampling,(Beusen 1996; Leach 1991; Parish 2002) 
or global minimum search methodologies,(Floudas & Pardalos 1996; Horst 1995, 2000; Torn 
1989) which are all important for the studies of computational chemistry and biology. Other 
related topics, including enhanced sampling methods,(Earl & Deem 2005; Hamelberg et al. 
2004; Lei & Duan 2007; Okur et al. 2006; Sugita 1999; Swendsen & Wang 1986; Thomas et al. 
2005; Wen et al. 2004) simulation of nonequilibrium states,(Bair et al. 2002; Cummings & 
Evans 1992; Hoover 1983; Hoover & Hoover 2005; Kjelstrup & Hafskjold 1996; Li et al. 2008; 
Mundy et al. 2000) and minimization methods,(Bonnans 2003; Dennis & Schnabel 1996; 
Fletcher 2000; Gill 1982; Haslinger & Mäkinen 2003; Nocedal 2006; Scales 1985) are not 
covered in this chapter either. The curious readers are welcome to read cited references for 
more information. 

2. PES walking methods 

Without the intention to generate a complete PES, it is logical to develop methods to explore 
the PES by walking along the surface from certain starting points using local information of 
the PES, such as the energy, gradient and even the Hessian.(Hratchian & Schlegel 2005a; 
Schlegel 2003, 2011) In this way, one can start from somewhere on the PES, either reactant, 
product, or TS, and walk uphill or downhill, depending on the starting points to reach the 
adjacent stationary points. The walking trajectories, after successfully reaching these 
stationary points, are the reaction pathways that describe the mechanism of transitions. For 
smaller systems, walking methods may be sufficient to fully understand a given reaction 
mechanism. However, for larger and more complex systems, pathways explored by such 
walking mechanisms are often not reversible, and can show significant hysteresis that 
results in a poor representation of the reaction. 

2.1 Reaction path following methods 
When using mass-weighted Cartesian coordinates, a steepest descent path from the TS 
down to the reactant and product is referred to as the intrinsic reaction coordinate (IRC) 
path.(Fukui 1981; Quapp & Heidrich 1984; Tachibana & Fukui 1980; Yamashita et al. 1981) 
The steepest descent pathway is given by the differential equation 
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where x is the vector of Cartesian coordinates, s is the step size of the path, and g is the 
energy gradient at x. The path obtained by solving this equation is the IRC, when x is mass-
weighted. Numerous methods were developed to locate the TS on a PES.(Baker 1986; 
Banerjee et al. 1985; Bell & Crighton 1984; Cerjan 1981; Ionova & Carter 1993, 1995; Jensen 
1983; Müller & Brown 1979; Peng et al. 1996; Simons & Nichols 1990) The IRC could be 
optimized based on its variational nature.(Bofill & Quapp 2011; Quapp 2008) However, it is 
more applicable for many systems to construct the IRC by solving Eq. (1) from a TS.  
Gonzalez and Schlegel developed the implicit trapezoid method (GS−IRC) for reaction path 
following at second order accuracy.(Gonzalez & Schlegel 1989, 1990) In their initial 
development, the points along the target reaction path are constructed by constrained 
optimization using internal degrees of freedom of the molecules. For each step of 
optimization along the path, the new point is constructed and optimized so that the gradient 
at each point is tangent to the path. Therefore, the resulting path is both continuous and 
differentiable. This initial method is correct to second order in the limit of small step size. 
The same method was later developed up to sixth order accuracy.(Gonzalez & Schlegel 
1991) The GS−IRC method is generally efficient for small systems.  
To improve the computational efficiency, the velocity Verlet algorithm (Verlet 1967) to 
propagate a classical dynamics trajectory was applied to integrate the IRC with a magnitude 
of the velocity damping for each step.(Hratchian & Schlegel 2002) This method is referred as 
the damped velocity Verlet (DVV) algorithm. The time step for each integration step is 
adjusted to ensure that the damped trajectory stays close to the IRC. The DVV-IRC method 
can be considered as running downhill along the PES from TS in a slow motion (by 
damping the velocity at each step). It enjoys the stability of the Verlet integrator and low 
cost of computation since the Hessian does not need to be calculated.  
In their later work, Hratchian and Schlegel introduced an approach using a Hessian based 
predictor-corrector (HPC) integrator to solve Eq. (1).(Hratchian & Schlegel 2004) The HPC 
integrator comprises two steps: the predictor step and the corrector step. The gradient g and 
Hessian H of the system PES are used to calculate the predictor step with second order 
accuracy. Then, the correction of the predicted step is calculated through a modified 
Bulirsch-Stoer algorithm based on the gradient information at the predicted step.(Bulirsch & 
Stoer 1964, 1966a, b) Although, the HPC-IRC method is comparable to GS-IRC with fourth 
order accuracy, calculation of the Hessian at each step can be rather expensive for large 
systems. This bottleneck was resolved by applying a Hessian updating scheme in their later 
development.(Hratchian & Schlegel 2005b) For each step of an IRC calculation, the Hessian 
is not calculated de novo, but updated from the Hessian of the previous step and the change 
of the gradient and step size between two steps. With this scheme, the Hessian only needs to 
be calculated once at the TS, and then is updated at each step of the IRC calculation. This 
HPC-IRC method with Hessian updating has been applied successfully in large protein 
systems using a combined quantum mechanical and molecular mechanical (QM/MM) 
method.(Tao et al. 2010; Tao et al. 2009b; Zhou et al. 2010) In these studies, the inhibition 
mechanism of matrix metalloproteinase 2 (MMP2) by its potent inhibitor, was elucidated in 
great detail using QM/MM methods. The TS of the key reaction in the active site of MMP2 
was identified. The IRC of the reaction including the protein environment was calculated to 
confirm that the reactant and product are connected through the identified TS (Fig. 1). 
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Fig. 1. IRC profile for SB-3CT in the MMP2 active site at the ONIOM(B3LYP/6-
31G(d):AMBER) level of theory. Key bond lengths are in angstroms. (Reprinted with 
permission from ref. (Zhou et al. 2010). Copyright 2010 American Chemical Society.) 

Very recently, Hratchian and Schlegel applied the Euler (first-order) predictor and corrector 
method (EulerPC) using an Euler explicit integrator in the calculation of predicted step. 
(Hratchian et al. 2010) This method avoids the expensive Hessian calculation at the TS and 
updating afterwards. By repeating the evaluation and correction several steps after the 
prediction, the error of the calculation is greatly reduced. The newly developed EulerPC 
method shows comparable accuracy with HPC but with much less computational cost, and 
is tested on several rather large enzymatic systems.(Hratchian & Frisch 2011)  
As a summary, the IRC calculations are becoming practical even for large enzyme systems 
using the QM/MM approach. However, to apply any of the IRC methods listed in this 
section, a well-defined TS structure is necessary to serve as the starting point. For a large 
system, e.g. an enzymatic reaction system, using QM/MM methods may take substantial 
effort in identifying a TS. 

2.2 Uphill walking methods 
By walking uphill from a minimum, one could reach an adjacent TS. Applying a reaction 
path following method on the obtained TS could yield another minimum corresponding to a 
product or intermediate state and a complete reaction pathway could be formed. Simons 
and coworkers developed methods that walk on the PES toward the selected direction 
(either uphill or downhill) using local gradient and Hessian information.(Nichols et al. 1990; 
Simons & Nichols 1990; Taylor & Simons 1985) By applying a local quadratic 
approximation, the PES close to a starting structure x0 can be written as 

 x xF xH x1
0 0 02( )E E   .  (2) 
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where E0, F0 and H0 are the energy, gradient and Hessian at x0, respectively. Vector x is in 
the region around x0, in which the local quadratic approximation is valid. In the attempt to 
walk uphill, the vector with the lowest Hessian eigenvalue will be chosen to define the 
moving direction. The potential energy increases along the chosen direction, but remains at 
minima along the other eigenvectors. For the best computational efficiency, the step size for 
each round of searching is controlled using eigenvalues of the Hessian matrix. After leaving 
the region in which the local quadratic approximation is valid, the Hessian matrix H can be 
recomputed or updated for further calculations. Along the walk, the Hessian eigenvalue of 
the eigenvector, which is being followed may cross with other eigenvalues. This is likely to 
occur when the starting geometry is not within the quadratic approximation region of the 
TS. In such situations, a decision needs to be made to either keep track of the original 
eigenvector, or follow the eigenvector with the lowest eigenvalue after crossing. This 
decision may significantly affect the final TS.  
An algorithm was developed by Ohno and Maeda to find reaction pathways on a PES 
systemically.(Maeda 2003; Ohno 2004; Ohno & Maeda 2006; Yang et al. 2005) In their 
method, the PES around the equilibrium structure (ES) is expanded using reduced normal 
coordinates in terms of normal coordinates Qi with eigenvalues λi,  

 q Q
1
2

i ii . (3) 

The degrees of freedom for translation and rotation are projected out from the normal 
coordinates. In such representation, any constant energy around the ES within the limit of 
harmonic potential gives spherical hypersurface (hypersphere) (Fig. 2). Any structure 
represented on a hypersphere is somewhat distorted from the ES around which the 
hypersphere is constructed. This common feature is referred to as anharmonic downward 
distortions following (ADDF), and is used for a reaction path search by walking uphill 
toward the direction with the local maxima of ADDF. Through a series of hyperspheres with 
different sizes but common origin, different reaction paths may be identified by following 
the local maxima of ADDF on each hypersphere. TS regions or dissociation channels (DC) 
can be identified through the variation of the first order derivatives along these reaction 
paths. Further calculations need to be carried out to precisely determine the real TS 
structures, which may not be on any hypersphere. The reaction path following methods can 
be applied to the TSs to find new ESs. The whole procedure can be repeated for new TSs. 
This is referred as scaled hypersphere search (SHS) method. Theoretically, the SHS method 
can be repeated until all the stationary points and reaction channels are identified for a 
given system. This method provides a means to systematically explore the PES and is 
referred to as global reaction route mapping (GRRM). By applying GRRM, the PESs of 
several small organic molecules were explored with numerous ESs and TSs identified for 
each system.(Maeda & Ohno 2007; Yang et al. 2005) 
Recently, a new GRRM method was developed to search reaction pathways for large flexible 
systems using a microiteration-ADDF (μ-ADDF) technique.(Maeda et al. 2009) The 
microiteration scheme was originally developed for the QM/MM method.(Svensson et al. 
1996; Vreven et al. 2006b; Vreven et al. 2006a; Vreven et al. 2003) For large systems, it may 
not be practical to follow all the ADDF maxima. Instead, two other methods were developed 
by the same authors to follow only large ADDF pathways (lADDF),(Maeda & Ohno 2007) or 
to follow the reverse direction from a point on a very large hypershpere to the sphere center 
with decreasing hypershere radius (double-ended ADDF, or dADDF).(Maeda et al. 2009)  
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Fig. 2. Schematic illustrations of computational procedures for GRRM by the SHS method: (A) 
Though the reference harmonic potential has a constant energy on the scaled hypersphere 
surface, the real potential has some minima on the same surface, which correspond to the 
anharmonic downward distortions indicating the symptoms of chemical reactions. Following 
those minima on different sizes of scaled hypersphere (spheres 1 and 2), reaction routes (paths 
1-3) can be traced from the equilibrium structure (ES) by the SHS method as shown by arrows. 
(B) Starting from an ES, find all reaction routes as energy minima on the scaled hypersphere 
(maxima of anharmonic downward distortions), then continue uphill walking to reach DC or 
TS, and then downhill walking from the TS region to DC or another ES. From each new ES, the 
above procedures for finding DC, TS, and ES should be repeated until no new ES is found. 
This one-after-another approach in the SHS method can be automated, and it enables us to 
perform GRRM within finite processes. (Reprinted with permission from ref. (Ohno & Maeda 
2006). Copyright 2006 American Chemical Society.) 

Both methods were implemented with the μ-ADDF technique. In this new GRRM method, a 
large system is divided into reaction-center and nonreaction-center parts. All the path 
following calculations, including minimizations on scaled hyperspheres, ES and TS 
optimization, and IRC following, are carried out in macroiteration steps. The positions of 
nonreaction-center atoms are optimized during microiteration steps after macroiteration. All 
movements of reaction-center atoms are treated by the GRRM method as in the case without 
microiterations with either exact or updated Hessian. (H2CO)(H2O)100 and (Si6)(C21H17)6 
were examples used to test the stability and efficiency of the new method. Multiple reaction 
pathways were identified in both cases. Thus, the GRRM method with μ-ADDF could serve 
as a powerful tool to explore PESs of reactions in large molecular systems. However, the 
GRRM has not been reported to be applied on protein systems.  

2.3 Combined method for determining reaction path, minima, and TSs 
It is worth noting that Schlegel et al. developed a method to determine TSs, minima and the 
reaction path in a single procedure without calculating the Hessian matrix.(Ayala & Schlegel 
1997) In this method, a starting approximate path is constructed as several (5 to 7) structures 
on PES, and iteratively relaxed until two endpoints reach minima, and one of the middle 
points reaches a TS. The final path is a second order approximation of the steepest descent 
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path. However, this method became impractical for large biological systems, such as 
proteins, because of the computational cost of eigenvector following searches for TSs. 
Nevertheless, this method provides a rigorous means of identifying reaction paths and TSs 
simultaneously. 

2.4 Reduced Hessian methods 
Hessian calculations are important for TS calculations, as well as reaction path following 
methods. However it may not be practical or necessary to calculate a full Hessian for 
macromolecular systems, since a large amount of degrees of freedom are unrelated to the 
reaction of interest. Therefore, these degrees of freedom can be somewhat disregarded. The 
partial Hessian vibrational analysis (PHVA),(Li & Jensen 2002) was developed to 
diagonalize only a subblock of the Hessian matrix to yield vibrational frequencies for 
partially optimized systems. In a recent development of vibrational subsystem analysis 
(VSA), the complexity of Hessian calculation can be reduced by separating a large system 
into an active “subsystem” with the remainder of the system defining the “environment”. 
The environment is kept at a minimum energy with respect to the motion of the subsystem, 
thus an effective Hessian involving only the subsystem needs to be considered.(Woodcock 
et al. 2008) The VSA is an improvement over PHVA, but does entail higher computational 
costs. These reduced Hessian approaches can only work if an adequate subsystem including 
all important atoms for the reaction can be identified. 
By applying the methods introduced in this section, one could locate an IRC on any given 
PES with well-defined TSs. There are certain limitations of these methods, especially for 
large systems with high degrees of freedom. For large systems, the uphill walking methods 
should not be one’s first choice since PESs of such systems are rather complicated and 
rugged, with numerous local saddle points. The downhill walking methods worked very 
well for the listed studies. However, a TS needs to be identified before applying IRC 
calculations. There is always a possibility that the IRC calculated from identified TS does not 
reach the desired reactant or product. It is even more likely that there are multiple TSs that 
exist between the reactant or product. In consideration of these factors, there might be more 
interest to obtain information about reaction pathway rather than TSs, especially for large 
biomolecular systems. Accordingly, the so-called chain-of-states methods were developed to 
obtain a reaction pathway without identifying TSs.  

3. Chain-of-states methods 

In chain-of-states methods, a number of replicas (i.e. states) of a system are used to connect 
two endpoints, and are subject to minimization simultaneously. The first and the last 
replicas usually correspond to the reactant and product, and are often fixed during the 
minimization. For large complex systems, chain-of-states methods can be used to address 
issues relating to hysteresis, free energy, reaction rates, and multiple pathways. In this 
section, various chain-of-states methods to build reaction paths are surveyed. 

3.1 Line integral methods 
Elber and Karplus (EK) developed a method using a line integral representation of a 
discretized path subject to optimization.(Elber 1987) In their method, the objective function 
subject to optimization reads as 
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where jR  is the coordinates of replica j, M is the total number of steps from the starting 

replica 0R  to the final replica MR , 2
1[( ) ]j j jl   R R , and ( )jV R  is the potential energy 

of the system at replica jR . The degrees of freedom of the rigid body, i.e. translation and 

rotation, are projected out from the minimization for replicas with reference to the end 
points of the path. The objective function is subject to non-linear optimization for the final 
reaction path. The method was applied to several systems including the conformational 
change of myoglobin.(Elber 1987) 
Czerminski and Elber then developed the self-penalty walk (SPW) method (Czerminski & 
Elber 1990a) based on original EK formulation. The main development of SPW is the 
addition of repulsion terms for each replica j: 
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repulsion between replica i and j. These repulsive terms can help to prevent the aggregation 
of replicas in the neighborhood of two endpoints where the energies of replicas are lower 
than those close to the TS region. As discussed in their paper, the repulsive terms reflect the 
stiffness of the reaction path and mimic the effect of kinetic energy on the classical trajectory. 
The reaction path calculation of alanine dipeptide isomerization using SPW displayed a 
convergence rate that is 10 times faster than the one using the EK method. The 
conformational change of isobutyryl-ala3-NH-methyl (IAN) between the helix and extended 
chain was also studied. By using the optimal values of parameters in this method, a reaction 
path that is very close to the MEP was obtained for IAN from the calculations with a straight 
line as initial path. In another study, the SPW method was applied to study the diffusion of 
carbon monoxide through leghemoglobin.(Nowak et al. 1991) Three similar but distinct 
diffusion pathways were identified and compared. The barrier heights calculated for the 
three pathways were in the agreement with the proposed model.  
Ulitsky and Elber (UE) proposed a locally updated planes (LUP) method to calculate 
steepest descent paths (SDP) in flexible polyatomic systems.(Ulitsky & Elber 1990) For a 
series of replicas {rk}k=1,M, sk is the unit vector along the gradient for replica rk. The SPD 
satisfies that  s s 0k k

projV V V       , where V is the potential energy. For a 

discretized path, the vector sk is approximated as (rk+1 - rk-1)/| rk+1 - rk-1|. To refine the path 
of each round, the coupled differential equations of all the replicas {(/t)rk(t)=Vproj}k=1,M 
were solved by a fifth order Adams predictor-corrector algorithm.(Gear 1971) The SDP 
could be reached in the limit of t→∞. Choi and Elber later improved the LUP method by a 



 
Reaction Path Optimization and Sampling Methods and Their Applications for Rare Events 

 

35 

gradient updating scheme.(Choi & Elber 1991) The local gradient vector sk is calculated 
based on the initial path, and updated based on new reaction path after every M steps of 
optimization. The authors found that M=20 to be efficient for the helix formation of 
tetrapeptides under their studies. As Choi and Elber pointed out, the final results depend on 
the initial guess. If multiple MEPs exist between two endpoints and the initial guess is not in 
the radius of convergence of a single path, the result may be discontinuous and contain 
segments from different MEPs.  

3.2 Nudged elastic band (NEB) methods 
As pointed by Jónsson, Mills and Jacobesen,(Jónsson et al. 1998) the line integral methods 
suffer from the “corner cutting” problems in which the final paths bypass the TS region, 
leading to overestimated barriers. This problem originates from the fact that elastic forces 
added to replicas have non-zero components perpendicular to the path. The optimization of 
objective functions that include elastic forces will have a tendency to pull replicas off from 
the MEP. In addition, replicas along the final path tend to aggregate around endpoints 
where the potential energies are smaller than the TS region, which is underrepresented in 
the chain. This is because the actual forces of the path pull the replicas downhill against 
elastic forces. To solve these problems, the NEB methods were developed to project out 
perpendicular components of elastic forces and parallel components of the true force with 
respect to the path under minimization.(Henkelman et al. 2000a; Jónsson et al. 1998) 
For a reaction path with N+1 replicas [R0, R1,…,RN], the NEB method is implemented as the 
following: The tangent at the replica i, τi, can be estimated based on adjacent replicas i-1 and 
i+1: 

 1 1

1 1
ˆ i i
i

i i

 

 





R R
R R

  (6) 

The force acting on a replica subject to optimization is  

 F F F //NEB s
i i i

   (7) 

where Fi
  is the sum of the true force perpendicular to the tangent: 

     ˆ ˆi i i i iV V    F R R    (8) 

and F //s
i is the elastic force along the tangent,  

  //
1 1 ˆ ˆs

i i i i i ii k      F R R R R    (9) 

V is the potential energy of the system, k is the elastic force constant. By projecting out the 
elastic force perpendicular to the path, the final path should relax to the MEP in principle.  
One potential problem that the NEB method may encounter is producing kinks along the 
path, mainly in regions where the parallel component of force is large compared with the 
perpendicular component. A new NEB method was developed by Henkelman and Jónsson 
to eliminate the kinks along the path.(Henkelman & Jónsson 2000) In the new 
implementation, the tangent is defined as  
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where Vi is the potential energy of replica i, V(Ri). However, when the replica i is at a 
minimum (Vi+1>Vi<Vi-1) or at a maximum (Vi+1<Vi>Vi-1), the tangent is estimated as  
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1 1 1 1
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 

 
   

   

     
   

  (11) 

where  max
1 1max ,i i i i iV V V V V     , and  min

1 1min ,i i i i iV V V V V     . This 
implementation was motivated by the calculations of finding the MEP from a TS. It is 
always easier to find a MEP by following the PES downhill from a TS rather than going 
uphill from a minimum. Therefore, the local tangent of the path is always defined by the 
higher energy replicas nearby to improve the stability of the calculation. The updated NEB 
method is reported to behave well and remove kinks from the reaction paths.(Henkelman & 
Jónsson 2000) 
Henkelman, Uberuaga and Jónsson (Henkelman et al. 2000b) developed climbing image 
NEB (CI-NEB) by defining the force of the replica with the highest energy imax as 

    max max max max maxˆ ˆ2i i i i iV V    F R R    (12) 

The basic idea is to invert the component of force along the path. Therefore, the 
minimization movement based on a given force will lead this replica toward the saddle 
point, which has the maximum energy along the path but minimum in all other directions. 
In addition, the elastic force constant along the path is scaled linearly on the energy of the 
replicas. Therefore, the replicas around the TS region would be connected through stronger 
elastic bands than those closer to the endpoints. Compared with the regular NEB method, 
the CI-NEB method generates reaction pathways with TS regions better represented, and 
leads to more accurate estimates of reaction barriers. 
Maragakis et al. (Maragakis et al. 2002) proposed the adaptive nudged elastic band approach 
(ANEBA) to search for saddle points. Instead of starting with a large number of replicas, 
three movable replicas are added for the initial round of the NEB calculation. After 
obtaining reasonable convergence, the two replicas that are adjacent to the one with the 
highest energy will serve as endpoints for the next round of NEB calculations after inserting 
new movable replicas in between. This process could be repeated until a well-defined TS is 
identified. The major goal of ANEBA is TS searching, but a reaction path that approximates 
the MEP will be obtained after finding the TS.  
Trygubenko and Wales proposed a doubly nudged elastic band (DNEB) method by 
retaining a portion of perpendicular component of elastic force.(Trygubenko & Wales 2004b; 
Trygubenko & Wales 2004a) The limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-
BFGS) quasi-Newton optimizer was implemented with the DNEB method. One of the 
strategies adapted is gradually projecting the perpendicular component of elastic force until 
the full path is reasonably stable. Then replicas with potential energies above their adjacent 
replicas are subject to an eigenvector-following calculation for TSs. 
Chu et al. (Chu et al. 2003) developed the first superlinear minimizer for the NEB method 
that was based on expanding the adopted basis Newton-Raphsion (ABNR) method (Brooks 
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et al. 1983), and this is available in CHARMM.(Brooks et al. 2009) Other improved 
optimizers,(Alfonso & Jordan 2003; Bergonzo et al. 2009; Galván & Field 2008)  and other 
software packages, such as AMBER,(Case et al. 2005) have efficient implementations of NEB 
as well. 
In general, the NEB methods have been applied in numerous studies, including diffusion 
processes on surfaces,(Ágoston & Albe 2010; Sørensen et al. 1996; Uberuaga et al. 2000; 
Villarba & Jonsson 1994; Yang et al. 2009) nucleation process,(Lutsko 2008) stability of 
nanoparticle,(Vélez et al. 2008) and dissociative adsorption of a molecule on a surface.(Mills 
1995) 
Xie, Liu and Yang adapted the NEB method for enzymatic reactions.(Xie et al. 2004) The 
major development of their method is carefully choosing the degrees of freedom that are 
essential for the reaction. The chosen degrees of freedom were subject for the calculation of 
distances between replicas. The large number of soft and floppy spectator degrees of 
freedoms are, therefore, excluded from the elastic force computation in NEB. The potential 
problem of such selection is discontinuity of contributions from spectator degrees of 
freedoms to the total potential energy. One solution is starting from relatively rigid 
reference systems and keeping position restraints to the environmental atoms throughout 
the NEB calculations. The third alteration is cutting off the elastic band for intermediate 
states from multiple reaction steps to allow them to relax to the minimum. They applied this 
modified NEB method to study the mechanism of enzyme class A β-lactamase, and obtained 
the MEP of the reaction at the active site. With further improvement,(Cisneros et al. 2005; 
Liu et al. 2004) the NEB methods were applied in more enzyme systems to map out the 
detailed MEP of their mechanisms.(Cisneros et al. 2009; Zhao & Liu 2008)  

3.3 Zero temperature string (ZTS) methods 
Similar to NEB, the ZTS method was developed to find the reaction pathway connecting 
two minima on a PES.(Cameron et al. 2010; E et al. 2002, 2007; Ren 2003) In the ZTS method, 
a series of evenly distributed initial states between two endpoints are minimized towards a 
MEP using path gradients and tangent information. Instead of adding spring forces on the 
path to maintain appropriate distances between states, a step is added to evenly redistribute 
the states along the path after each step of minimization. The basics of the ZTS method can 
be summarized as the following. For transitions between two metastable states A and B, the 
MEP is a smooth curve φ* between A and B which satisfies 

    * 0V    (13) 

where  V   is the component of V  perpendicular to φ*. From an arbitrary string φ 
connecting A and B, searching MEP can be realized by evolving φ through 

    u V      (14) 

where u  is the perpendicular component of force with reference to φ. For simplicity, φ is 
parametrized by normalized arc length α, for which α=0 at A and α=1 at B. The Eq. (13) can 
be rewritten as 

   ˆV r      (15) 
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where  

    ˆ ˆ,V V V        (16) 

̂  is the unit tangent factor of φ and scalar field r(α,t) is a Lagrange multiplier determined by 
parameterization. In real applications, the string is discretized into a series of replicas, which 
move according to the first term of the right hand side of Eq. (15). Eq. (15) can be solved using 
ordinary differential equation (ODE) solvers to evolve the string towards a MEP. The 
reparametrization can be carried out after certain number of evolving steps of the string to 
redistribute the replicas to enforce the equal arc length (distance) between adjacent replicas.  
In a further development,(E et al. 2007) the Eq. (15) is rewritten as 

  
_

ˆV r      (17) 

where 
_

ˆ( , )r r V    . Eq. (17) is equivalent to Eq. (15), but avoids a force projection 
operation in the string evolving step for better numerical stability. It is noted that the ZTS 
method does not require the location of minima beforehand to generate an initial string. The 
final converged string should connect two minima, as long as the two endpoints of the 
initial string lie in the attraction basins of the minima (Fig. 3). Based on the framework of the 
ZTS method, the transition path theory was developed to sample the minimum free energy 
path. This theory will be introduced in section 4.3.  
 

 
Fig. 3. Initial string and calculated MEP using the string method with ten images. The empty 
circle indicates the saddle point identified by combining the string method with the 
climbing image technique. (Reprinted with permission from ref. (E et al. 2007). Copyright 
2007, American Institute of Physics.) 

3.4 Growing string methods 
So far, the chain-of-states algorithms introduced in section 3.1−3.3 require an initial path 
composed by series of replicas. The initial paths are usually constructed by linear 
interpolation between two minima. There are two potential drawbacks of these methods 
when applying them in studies involving expensive quantum mechanics (QM) calculations. 
First, the expensive QM calculation needs to be carried out for every replica in each round of 
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optimization from the very beginning of the reaction path calculation until convergence. 
Second, the initial linear interpolation path may include structures with severely 
overlapping atoms, which can cause failure of the QM calculations. The first drawback 
means intensive computation of reaction path optimization. The second drawback simply 
means immediate failure of the chain-of-states calculation. Growing string methods (GSM) 
were proposed (Peters et al. 2004) and are under continuous development to address these 
issues.(Goodrow et al. 2008, 2009, 2010; Quapp 2005, 2009) 
The basic idea is to gradually grow two strings separately from two minima by continuously 
adding replicas to each string until both strings merge. The GSM generally comprises five 
steps.(Goodrow et al. 2008) In step one, two replicas are added along the linear synchronous 
transit path, and placed close to reactant and product, which defines the linear path. The 
reactant and product plus each added replica close to them serve as starting segments of 
two separate strings. In step two, the two string segments are minimized until the norm of 
the orthogonal force of each replica converges to a specified tolerance. After step two, the 
two string segments lie on the steepest descent direction from the frontier replica of each 
segment. In step three, replicas on both string segments are redistributed uniformly in terms 
of arc length, similar to the ZTS. The arc length of the string can be calculated by integrating 
the cubic spline fitted to all the replicas. The rigid body movement needs to be projected out 
for all the replicas with reference to the reactant and product after each round of the 
minimization. In step four, a new replica is added to each string segment along the fitted 
cubic spline. Steps two through four are repeated until the arc length between two frontier 
replicas from the string segments is small enough so that the two string segments can be 
considered a united string. In step five, the joined string is minimized and reparametrized 
with a fixed number of replicas until the sum of the norm of the orthogonal forces on all 
nodes falls under predefined tolerance. Step five is analogous to the ZTS method. One or 
more replicas with maximum energies among their neighbors can be used for TS search 
calculations. The general GSM is illustrated in Fig. 4. 
In various developments, Newton projector,(Quapp 2005) internal coordinate,(Goodrow et 
al. 2008) conjugate gradient method,(Goodrow et al. 2008) and different TS search strategies 
(Goodrow et al. 2009, 2010) are implemented in GSM for better performance.  
The major goal of GSM is improving the calculation efficiency of the ZTS framework for 
systems involving expensive QM calculations. By growing strings stepwise from two 
endpoints instead of minimizing from an initial path with potentially bad geometries, a 
large amount of calculations can be saved from carrying out QM calculations to move the 
fixed number of replicas from initial path to MEP iteratively. The GSM has been applied in 
one study using a model system representation of an enzymatic system (Maresh et al. 2008) 
and some other studies using small models.(Goodrow & Bell 2008; Zheng & Bell 2008a, b) 
The application of GSM directly on protein system has yet to be reported. 

3.5 Conjugate peak refinement (CPR) method 
The CPR method (Fischer 1992; Noé et al. 2006) focuses on finding saddle points along a 
path that connects a predefined reactant (r) and product (p). At the beginning of the CPR 
calculation, the replica with maximum potential energy, y1, is searched along an initial path, 
e.g. linear interpolation between r and p (Fig. 5). Then, the energy is minimized along the 
direction of each conjugate vector to reach the next replica, x1. This replica is added to the 
path, which is represented as (r, x1, p). The procedure is repeated for the partial path (r, x1) 
and (x1, p). If there is only one TS that exists between r and p, the maximum may not  
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Fig. 4. Four snapshots of a growing string on the Muller–Brown potential energy surface. 
(Reprinted with permission from ref. (Peters et al. 2004). Copyright 2004, American Institute 
of Physics.) 
 

 
Fig. 5. Illustration of the conjugate peak refinement (CPR) method. The reactant, product 
and intermediate wells are indicated with r, p and i. (Reprinted from ref. (Fischer 2004), 
Copyright 2004, with permission from Elsevier.) 

exist for one path segment. Therefore the procedure will not be carried out for this specific 
path segment. The procedure is carried out recursively on each new path segment defined 
by newly added replicas, until the root mean square (RMS) of the gradient falls under a 
predefined tolerance for the saddle points by refinement along conjugate vectors. In 
practice, the linear interpolation often produces very poor structures with severe 
overlapping atoms. This could result in extremely high energies and gradients. Therefore, 
certain limitations need to be imposed on atomic movements during refinement. The CPR 
method can possibly identify one or more TSs between r and p through recursive searches 
and refinement. However, a smooth path will be not a direct result from the CPR procedure. 
From identified TSs, steepest descent calculations can be carried out to generate a final MEP 
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between r and p. Implicitly, it is assumed that TSs identified through the CPR method lie on 
the same MEP. Otherwise, the steepest descent calculations from TSs do not necessarily 
generate a continuous path between r and p. The CPR method has been applied to study the 
ligand-binding pathways in myolobins,(Golden & Olsen 2008) several small molecule 
systems (Fischer et al. 1994; Fischer et al. 1995; Verma et al. 1996) as well as large molecules, 
such as proteins.(Blondel et al. 1999; Caflisch et al. 1997; Dutzler et al. 2002; Fischer et al. 
1993; Gruia et al. 2005; Santos et al. 2000) 

3.6 Reference path methods 
In some applications, especially for macromolecules, the convergence to the MEP using 
chain-of-states methods could require a large number of iterations. Reference path methods 
were developed to generate reference reaction paths that are a good approximation to true 
MEPs with fast convergence rates and evenly distributed replicas along the path. Such 
reference paths can be used as an expansion to calculate free energies, reaction rates, or 
kinetic isotope effects. 

3.6.1 Hyperplane projection methods 
Czerminski and Elber (Czerminski & Elber 1989) proposed applying holonomic constraints 
on replica R along a reaction path connecting replicas R1 and R2:  

    1 2R R R R 0     (18) 

where   1 2R R R1        , and α is a parameter that varies from 0 (reactant) to 1 
(product) with small steps. For each α value, the potential energy of the system V(Rα) is 
minimized while keeping the system in the hyperplane defined by Eq. (18). It is necessary to 
project out the rigid body motions from the optimization using either R1 or R2 as reference 
structures. The optimized path satisfies the condition that at any point along the path, only 
one direction may have negative energy curvature, because energy is minimized for all 
degrees of freedom except the direction perpendicular to the hyperplane defined by Eq. (18). 
The Powell conjugate gradient algorithm was applied to optimize the reaction path with 
linear constraints in this method. The conformational change of IAN between the helix and 
extended chain was studied using this method. The lowest energy path of the transition 
identified by the calculation was presented. In addition, the 257 direct transitions between 
112 minima of IAN were also identified and subject to statistical analysis. The same authors 
later introduced another constraint to the path using parameter η: 

 1

1 2

R R
R R R R

0


 
  

 (19) 

where η is the parameter between 0 (reactant) and 1 (product).(Czerminski & Elber 1990b) 
Combining application of α and η constraints, more comprehensive results were presented 
for conformational changes of IAN. 

3.6.2 RPATH/restraint method 
Woodcock et al. implemented the reaction path (RPATH) method with restraints of both 
best-fit root mean square distances (RMSD) and angles on replicas along the pathway. 
(Woodcock et al. 2003) The RMSD restraint forces are defined as 
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where N is the number of replicas, krms is the force constant used to restrain distance 
between adjacent replicas along the reaction pathway, ri is the best-fit RMSD between 
replica i and i+1, and r is the average distance between adjacent replicas. The angle 
energetic penalty term reads 
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The angle θ, illustrated in Fig. 6, defines the deviation of the pathway from linearity. The 
force constant kang controls the rigidity of the pathway. Constant COSMAX determines the 
value of cos(θ) subject to the angle forces.  
 

 
Fig. 6. Definition of angle θ for replica i in RPATH calculation. RMSDi-1,i is the distance 
between replica i-1 and i. It is similar to RMSDi,i+1 and RMSDi-1,i+1.  

The RPATH/restraint method was applied to study the mechanism of chorismate mutase. 
(Woodcock et al. 2003) All protein residues or water molecules that had any atom within 6 Å 
of the substrate were replicated 21 times to build the reaction path. All other atoms within 
the system served as the environment of all the replicas. Starting from a linear interpolation 
pathway, the optimization of the RPATH/restraint calculation was converged within 400 
steps. The reaction barrier obtained from RPATH/restraint calculations was also in good 
agreement with experiments. 

3.6.3 RPATH/constraint method 
Recently, Chu and coworkers (Brokaw et al. 2009) applied an equal distance holonomic 
constraint in the RPATH framework. Given two states of a molecular system with N atoms, 
r0 and rk, a chain of K+1 replicas can be constructed to connect these two states. The distance 
between each pair of adjacent replicas is set to be equal to each other: 

 0 1i Kl l l l               (22) 

Here, Δli is the distance between replica i and i+1. l  is the average distance between 
adjacent replicas. The distance (Δl) can be in any form, including best-fit RMS distance. To 
apply the equal distance constraint defined in Eq. (22), the following scheme is used to 
propagate the reaction path with two ends, r0 and rk, fixed at the initial coordinates.  
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i. Set up and calculate initial average distance, l , for replicas r0(0) through rk(0). The 
superscript “(0)” indicates the optimization iteration step. 

ii. To maintain the equal distance, a set of K coefficients, (λi)(n)(i=0,K-1), are used to update 
the coordinates of each replica i: 

       
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 (23) 

iii. Solve (λi)(n) by setting the first order Taylor expansion of each of ((i)(n+1) - l )(i=0,K-1) 
with respect to (λj)(n) to zero: 
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iv. If any of the values of |(Δli)(n+1)- l  |( i=0,K-1) is greater than a selected tolerance, then 
repeat steps (ii) and (iii). 

After convergence, the RPATH calculation leads to a reaction path composed by K+1 equal 
distance replicas connecting states r0 and rk. 
In the framework of using constraints with RPATH, a kinetic energy potential can be added 
to the potential energy with overall objective functions as a Hamiltonian for path 
optimization. Therefore the optimized path is the so-called minimum Hamiltonian path 
(MHP) instead of MEP. The kinetic energy component in the potential prevents kinks, 
therefore helping maintain the smoothness of the path. This smoothness comes at the cost of 
deviating from the MEP, resulting in higher reaction barriers, but with the benefit as a better 
starting point for free energy studies. 
The RPATH/constraint was applied to study the helix-to-sheet transition of a GNNQQNY 
heptapeptide.(Brokaw et al. 2009) An initial reaction path with 100 replicas was generated. 
Then a stable intermediate was chosen to divide the pathway into two segments in which 
the number of replicas was doubled. Using this divide-and-conquer strategy, a smooth 
reaction pathway with 464 replicas was obtained to describe the transition (Fig. 7). 

4. Free energy sampling of reaction paths for large systems 

The methods introduced in Section 3 provide a framework for determining a minimum 
potential energy pathway connecting two equilibrium states. For biological processes the 
minimum free energy pathway (MFEP) is often more desirable to compute, ensuring that the 
results obtained for the PES are converged, in a thermodynamic sense. Experimental 
observables can be transformed more readily to free energies of the reactant and product 
states.(Hu et al. 2008) Biased sampling methods, such as umbrella sampling (Bartels & 
Karplus 1997; Kästner 2011; Torrie & Valleau 1977; Torrie & Valleau 1974) and 
metadynamics (Bussi et al. 2006; Laio 2002; Laio & Gervasio 2008; Raiteri et al. 2006) have 
been widely applied to sample free energies of the transition path for large systems. Due to 
their high computational cost, the applications of these methods have been limited in 
studies of enzymatic reaction mechanisms using QM/MM methods. However, powerful 
modern computing systems and advanced methodologies make the dynamical simulation 
of enzymatic reactions for free energy profiles much more feasible than a decade ago. In this  



 
Some Applications of Quantum Mechanics 

 

44

 
Fig. 7. An optimized path of the helix-to-sheet transition of a solvated GNNQQNY 
heptapeptide RPATH/constraint. The path contains a total of 464 replicas. Structures of 
selected replicas are shown to illustrate the nature of the transition. (Reprinted with 
permission from ref. (Brokaw et al. 2009). Copyright 2009 American Chemical Society.) 

section, methods for direct simulation of protein systems using QM/MM methods are 
surveyed.  

4.1 QM/MM free energy path (FE) and minimum free energy (MFEP) path methods 
QM/MM-FE methods have been pioneered by Yang and coworkers (Zhang et al. 2000) and 
are sequential based approaches for first optimizing an equilibrium geometry on a reaction 
potential energy surface, followed by the calculation of free energies between two states, or 
along a path. (Hu & Yang 2008) The first innovation of their approach involves separating 
the QM and MM parts of the system and optimizing them independently to allow for faster 
convergence. There is no concurrent optimization of the QM and MM energy functions 
making it effective in reducing the number of expensive QM energy and gradient 
evaluations. Starting from a given structure, the coordinates of the MM portion are frozen 
while the QM coordinates are optimized. The MM portion is subsequently minimized while 
the QM portion is held fixed and the process is repeated until convergence is reached for 
each partition. Further simplification is made by using an approximate QM/MM energy 
function for the MM minimization where only Coulombic interactions between the point 
charges of the MM atoms and the QM electrostatic potential (ESP) fitted charges are 
accounted for: 
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    
       (25) 

In order for the approximation to yield a monotonic convergence of the QM/MM energy, 
the MM minimization must be able to approximate the PES closely. It is important to fully 
optimize the reactant and product structure at the same level of theory applied on 
QM/MM-FE calculations.  
From the converged PES obtained through the sequential optimizations, a free energy of 
perturbation is performed: 
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Rc
Aand Rc

Bare different points along the reaction coordinate and ,... MM A represents an 

ensemble average over the MM sub-system with the QM region frozen to the optimized 
coordinates.(Zhang et al. 2000) A major advantage of the QM/MM-FE method over 
previous QM-FE approaches (Chandrasekhar & Jorgensen 1985; Chandrasekhar et al. 1985; 
Jorgensen 1989) is the inclusion of the enzymatic environment in the QM optimization.  
Yang and coworkers (Hu & Yang 2008) have extended the QM/MM-FE method to 
overcome the challenge of having the optimized path be influenced by the initial starting 
conformation. This influence is problematic when solvent effects may be prominent in the 
reaction system, e.g. for solvent exposed active sites. Instead of using MM minimization in 
the sequential optimization scheme, MD sampling is used for obtaining the MM subsystem 
minima. Optimization of the QM region is then performed with a fixed MM conformational 
ensemble. Another key distinction of this so-called QM/MM-MFEP over the original 
QM/MM-FE method is that the optimization function for the QM region is the QM potential 
of mean force 
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instead of the total energy surface. The associated gradient with respect to the i-th QM 
coordinate 
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provides a convenient way to compute the free energy as an ensemble average over the QM 
atoms. The efficiency of the method derives from having a fixed size ensemble of MM 
conformations instead of repetitive sampling at each step. This is achieved through the 
updated QM reference structures of each iteration cycle. A precise potential of mean force 
(PMF) is obtained through optimization with classical numerical schemes. Convergence is 
equally quick, often achieved within 10 steps. 

4.2 Transition path sampling (TPS) methods 
First pioneered by Pratt (Pratt 1986) and developed much further by Chandler and his 
collaborators,(Bolhuis et al. 2002; Bolhuis et al. 2000; Dellago & Bolhuis 2004; Dellago & 
Bolhuis 2009; Dellago et al. 2002) TPS methods are a set of computational techniques to 
determine the transition process between two metastable states of complex systems. TPS 
does not require a reaction path a priori, because no specific or “typical” reaction pathway is 
pursued in TPS methods at all. Instead, a large number of transitions between two 
metastable states (say A and B in Fig. 8) need to be sampled to represent a transition path 
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ensemble (TPE) between these states. The TPE comprises all the dynamical trajectories that 
start from one state and end up in the other, which are called reactive trajectories. It is 
impractical to sample the TPE by starting a dynamics simulation from either A or B in many 
trials and hoping that enough number of trials can overcome the barrier and reach the other 
state. This is simply because the transition between A and B is a rare event, and can only be 
observed in an extremely limited number of trajectories if at all. Instead of this direct 
sampling strategy, the importance sampling methods, such as generalized MC procedures, 
were applied to enhance the sampling efficiency and generate a collection of reactive 
trajectories with a frequency proportional to their probability weight in the TPE.  
Starting from a reactive trajectory, new trajectories can be generated through so-called 
shooting moves (Fig. 8). From initial trajectory, a random frame is selected as the shooting 
point. Then, the velocity of each particle in the shooting point is perturbed. From the 
shooting point with perturbed velocity, the equations of motion are integrated forward and 
backward to obtain a complete trajectory. In a simplified formalism, the new trajectory is 
accepted based on the acceptance probability: 

 ( ) ( )( ) ( )
0[ ( ) ( )] [ ] [ ]n no n

acc A B TP x T x T h x h x   (29) 

 

 
Fig. 8. In the shooting algorithm for deterministic dynamics a new path (green) is generated 
from an old one (black) by first randomly selecting one point on the old path, the shooting 
point. Then, the particle momenta at that point are modified by addition of a small 
perturbation δp. From the point with perturbed momenta the equations of motion are 
integrated forward and backward to obtain a complete trajectory. For small perturbations, 
the new trajectory will be close to the old one near the shooting point but will then rapidly 
diverge from it due to the chaoticity of the underlying dynamics. (With kind permission 
from Springer Science+Business Media: Fig. 8 in ref. (Dellago & Bolhuis 2009).) 

Function hA[x0(n)] indicates that whether the system resides in state A at time 0 in the new 
trajectory: hA[x0(n)] is 1 for 0x A , and 0 otherwise. Function hB[xT(n)] is defined analogously 
to indicate whether the system resides in state B at time T in the new trajectory. According 
to this expression, any new trajectory that is reactive will be accepted. The perturbation 
added to the shooting point can be adjusted to control the acceptance probability and 
optimize the TPE sampling efficiency.(Dellago et al. 1999) To begin path sampling, an initial 
reactive trajectory is required as the starting point. In most studies of rare events, this may 
not be achieved by simply running a long molecular dynamics trajectory starting from either 
metastable state. In practice, the system can be driven from one state to the other artificially. 
Such a trajectory may not carry large statistical weight in the TPE, but will be sufficient as a 
starting point for the sampling procedure.  
A key factor for a successful TPS calculation is the sampling efficiency in the path space. For 
a simple system with only one MEP and one TS in between, the path sampling could 
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converge quickly. However, the PES of a complex system may have multiple reaction 
pathways, with one or more stable intermediate states presenting on each pathway. To 
enhance the sampling efficiency for such a complex system, the TPS with path replica 
exchange (Bolhuis 2008) and multi states transition TPS (Rogal & Bolhuis 2008) were 
developed. Based on the TPS framework, a transition interface sampling (TIS) method 
(Moroni et al. 2004; Van Erp et al. 2003; Vanerp & Bolhuis 2005) was developed to measure 
the positive flux through a series of hypersurfaces in phase space for the calculation of 
reaction rate constants. The TPS and TIS methods were applied to simulate the β-hairpin 
folding,(Bolhuis 2003) base-pair binding of DNA,(Hagan 2003) Trp-cage folding in explicit 
solvent,(Juraszek & Bolhuis 2006) and the reaction mechanism of lactate dehydrogenase. 
(Quaytman & Schwartz 2007) 

4.3 Transition path theory (TPT) 
Most of the reaction path theories are based on the TST,(Eyring 1935; Wigner 1938; 
Yamamoto 1960) with major emphasis on identifying a first order saddle point on the PES as 
the TS. The TS concept is also the foundation for the methods introduced in section 2 and 3. 
The TPS method bypasses the TS identification by sampling the reactive trajectories directly. 
(Bolhuis et al. 2002) Vanden-Eijnden and his coworkers advanced further by proposing TPT. 
(E et al. 2005b; E et al. 2005a; E & Vanden-Eijnden 2006; Maragliano et al. 2006; Metzner et al. 
2006; Ren et al. 2005; Vanden-Eijnden ; Vanden-Eijnden & Venturoli 2009) The TPT is a 
framework to study the transition trajectories between two metastable states and the 
probability density functions of these reactive trajectories. In the TPT framework, the 
reactive trajectories are viewed as a portion of a long trajectory that oscillates between the 
metastable states A and B (Fig. 9). Two important quantities in TPT are probability density 
function and probability current function, which can be defined for a hypothetical long 
trajectory of an overdamped system with friction γi and white noise ηi on compoment xi, as 
the following. For a given position x (neither in A nor in B) and t, the function q(x) defines 
the probability that the trajectory reaches first B rather than A. The probability density to 
observe a reactive trajectory at point x and time t is 

 Z−1e−βV(x)q(x)(1−q(x)) (30) 

where Z is the partition function of the whole trajectory, V(x) is the potential function of the 
system at x. Another quantity of interest is the probability flux of reactive trajectories across 
an isoprobability surface, or isocommittor surface, dividing A and B through x. The flux is 
the vector field with ith component reads 

 ( )1 1
,

( )( ) V x
AB i B i

i

q x
J x Z e k T

x
   




 (31) 

where kB is the Boltzmann factor, T is the temperature. It should be noted that for a system 
in thermodynamic equilibrium, the net flux through any surface is zero. The overall reaction 
rate from A to B can be calculated by integrating the reactive flux through an isocommittor 
surface S dividing A and B: 

 n̂ ( ) ( ) ( )R S R SS
v z J z d z   (32) 

where n̂ ( )S z  is the unit vector perpendicular to S toward B. The TPT is a general theory 
about the rare transition events between metastable states based on reactive trajectories 
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but in configurational space. Similar to the TPS, the concept of reactive trajectories does 
not require the identification of the TS, which is not well defined for many complex 
systems. 
 

 
Fig. 9. Schematic illustration of a long trajectory oscillating between the reactant state A and 
the product state B. The reactive pieces of this trajectory, during which the system travels 
from A to B, are shown in green. (Reprinted with permission from ref. (E & Vanden-Eijnden 
2010). Copyright 2010 Annual Reviews.) 

The method to apply TPT in practice is finite temperature string (FTS) method,(E et al. 
2005b) which is a finite temperature generalization of the ZTS method introduced in section 
3.3. In the FTS method, the concept of string ensemble φω(α) is introduced to have a mean 
value as the string φ(α), where α is a parameter between [0,1]. The string ensemble can 
evolve by the equation 

      ˆt V r     
 

      (33) 

where ̂ is the unit tangent vector along φ, ηω is a white noise with covariance 
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 (34) 

Using isocommitter surface, a transition tube can be defined as certain region around the 
most probable reactive trajectory through isocommitter surfaces between A and B. These 
regions have a significant probability to be visited by reactive trajectories. Of course, there 
could exist more than one transition tube between two metastable states. These may 
correspond to the multiple reaction pathways or mechanisms observed on the PES.  
The free energy associated with isocommitter surface S(α) is given as 

 ( )
( )

( ) ln V q
B S

F k T e d


     (35) 

In this presentation, these hyperplanes serve as reaction coordinates of the transition 
between metastable states. The free energies are a minimum at A and B. There may exist one 
or more maxima between the two metastable states. 
The FTS method has been applied in a couple of biomolecular systems very recently. In one 
study,(Rosta et al. 2011) the mechanism of cleavage of the RNA backbone catalyzed by 
ribonuclease H is elucidated through QM/MM simulations. The converged strings for the 
entire reaction are reported with estimated free energies along the path (Fig. 10). In another 
study,(Ovchinnikov et al. 2011) the conformational change between the prepowerstroke and 
rigor states of myosin VI was simulated using a replica exchange umbrella sampling  

  A
B
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Fig. 10. 2D free energy surface and reaction strings for the complete catalytic reaction with a 
protonated Asp132, obtained by projection onto coordinates Qe = ET probing bond 
formation and breaking and Qp = (PT1a+PT1b)/2+PT2 probing PT steps. The black curve 
shows the initial string; the blue and purple curves show the converged strings for the entire 
reaction and for the final step, respectively. The inset shows a schematic of the active-site 
coordination in the intermediate state. (Reprinted with permission from ref. (Rosta et al. 
2011). Copyright 2011 American Chemical Society.) 

algorithm in a string method framework. The free energy and reaction rate of the transition 
were calculated and found to be consistent with the experimental observation.(De La Cruz 
et al. 2001) 
The harmonic Fourier bead (HFB) approximation proposed by Khavrutskii and his 
coworkers (Khavrutskii et al. 2006; Khavrutskii et al. 2008a; Khavrutskii & Mccammon 2007) 
possesses many similarities with FTS method. The main difference is the representation and 
parametrization of the path by  

 
1

( ) (0) ( (1) (0)) sin( )
P

i
i i i i n

n
q q q q b n  


      (36) 

where α is single progress parameter between 0 and 1, qi is the ith bead, which is the ith 
component of the configuration vector R=(q1,…,q3N), i

nb are the amplitudes of the Fourier 
basis functions. The string or reaction path in HFB can evolve under certain constraints or 
reparametrization, similar to ZTS and FTS, to obtain MEP and MFEP. The HFB method was 
applied to study the conformational transition of the signature peptide of the KcsA ion 
selectivity filter.(Khavrutskii et al. 2008b) A novel hypothesis of the ion selectivity 
mechanism was proposed based on the HFB simulation results. 

4.4 Action based methods 
There is a group of methods that are based on minimization of action functional of transition 
paths. According to the Onsager-Machlup (Onsager & Machlup 1953) and Freidlin-Wentzell 
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theories,(E et al. 2004; Freidlin 1984) the most probable path for the random dynamical 
system is the minimum action path (MAP). The MAP is a more general definition than MEP, 
for MEP is undefined for nongradient systems. For gradient systems with energy 
landscapes, the MAP degenerates with MEP in the high friction limit. Therefore, MEP can be 
obtained through optimization of path action. Olender and Elber (Olender 1997) first 
proposed to minimize a functional, which is called “scalar work” for a trajectory: 

 scalarW V dl   (37) 

where V is the potential energy of the system, dl is a segment of the trajectory. For the 
steepest descent path, Wscalar has a minimum value, where V is parallel to dl along the 
path. More recently, the geometric minimum action method (Vanden-Eijnden & Heymann 
2008) and adaptive minimum action method (Zhou et al. 2008) were developed as two 
action based methods for MEP optimization.  
Some action-based methods are developed to simulate the reaction path. Doniach and his co-
workers (Eastman et al. 2001) proposed reaction path annealing methods to simulate protein 
folding trajectories which are distributed according to the Onsager-Machlup action functional: 

    ( )
( ) exp
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S t
P t

k T

 
  

 

X
X  (38) 

where the action S[X(t)] can be calculated for an overdamped system with friction γ in 
discretization form as 
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M is the mass matrix, V is the potential energy function, and Δt is the time step of the 
trajectories. The reaction path annealing method was employed to simulate the 
conformational changes among the α-helix, β-sheet and the random coil of a seven residue 
peptide from prion-like protein.(Lipfert et al. 2005) 
Faccioli and co-workers developed the dominant reaction path (DRP) method, and applied 
it on numerous systems.(Autieri et al. 2009; Faccioli 2008; Faccioli et al. 2006; Mazzola et al. 
2011; Sega et al. 2007) Their method is based on the Fokker-Planck equation, which defines 
the probability of finding a particle at position x and time t: 

 XX X X
X X X

2

2
1 ( )( , ) ( , ) ( , )
B

U
P t D P t D P t

t k T
    

  
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 (40) 

where D is the diffusion constant, U is the potential energy function for the particle. The 
Boltzmann distribution of probability P(X)~exp(−V(X)/kBT) is a stationary solution of Eq. 
(40). Using a substitution 

 XX X
1
2( ) ( )( , ) ( , )Bk T UP t e t  (41) 

the Fokker-Planck equation can be written in the form of a time dependent Schrödinger 
equation, 
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 X Xˆ( , ) ( , )efft H t
t
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 


 (42) 

where the effective Hamiltonian operator is defined as 

 X2ˆ ( )eff effH D V     (43) 

and the effective potential is defined as 
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A path-integral representation can be obtained as the solution of Eq. (42) subject to the 
boundary conditions as that the system is in state A at time 0, and state B at time T. this 
presentation also allows a switch from the time-dependent Newtonian description to the 
energy-dependent Hamilton-Jacobi (HJ) description. In the HJ framework, the most 
probable trajectory can be obtained by minimizing the target HJ functional 

  X X( )
B

HJ eff effA
B

S dl E V
k T
      (45) 

where X2dl d , γ is the friction, and Eeff is an effective energy parameter, which 

determines the total time of trajectory. In very recent studies, the simulation of reaction 
pathways connecting two boundary states were carried out to search for the dominant 
reaction pathway for folding of a small peptide,(Faccioli et al. 2010) an organic reaction from 
cyclobutene to butadiene,(Beccara et al. 2010) and the folding of tetraalanine at 
semiempirical level of theory.(Beccara et al. 2011) Although the DPR method is still in its 
early stage of development, the current progress demonstrates the efficiency of this method 
in sampling the reaction pathways for rare transition events.  

5. Summary 

The development of reaction path methods to study the mechanism of rare events of high 
dimensional systems has been an active research field for more than two decades. Many 
efficient methods have been developed and applied in numerous applications. The IRC is a 
well defined reaction pathway of the MEP. It plays an important role in explaining reactions 
in complicated systems, especially when the reaction coordinates are not simple order 
parameters. However, one can only generate an IRC after obtaining a TS. In many studies, 
identifying a TS is the bottleneck of the research. In some cases, the IRC generated from a TS 
may not connect with the target reactant and product. For large systems, there may exist 
multiple reaction pathways between the reactant and product. To map out multiple reaction 
pathways through IRC, it is required to identify multiple TSs a priori, which is a very 
challenging task. The chain-of-states methods were developed to simultaneously optimize a 
series of replicas as the representation of the reaction pathway connecting two equilibrium 
states. Starting from an initial guess, the path optimization could lead to a reaction pathway 
that closely resembles the MEP between two equilibrium states. One advantage of the chain-
of-states methods is that no TS is required to generate a reaction path. The replicas with 
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highest energy from reaction path calculations are often subject to a TS search for better 
estimation of the reaction barriers.  
For large systems, special caution is needed when carrying out the IRC calculations or chain-
of-states calculations. To ensure the continuity of the reaction pathways that connect the 
reactant and product, large amounts of spectator degrees of freedom need to be controlled, 
or frozen, during the calculations. This treatment can make the working PES cleaner, but has 
the drawback of ignoring important degrees of freedom that contribute to the free energies, 
which can be directly compared with the experimental observations. Recently, more 
research has been reported to develop methods that sample the reaction pathway directly in 
the transition path space, rather than the phase space. With these developments, multiple 
reaction pathways could potentially be sampled without obtaining TSs for each pathway a 
priori. For rare events with high thermodynamic or kinetic barriers, the efficiency of 
sampling in the reaction path space is higher than the one of sampling in the phase space. 
The free energies could be estimated for each pathway with the sampled ensembles. 
Currently, the reaction path sampling method is still in its early stage of development for 
both theory and sampling techniques. It is clear that advanced computational power, 
theories and sampling techniques are in sight to make the computational study of the 
mechanisms of rare events for large systems more practical and appealing.  

6. Abbreviations 

μ-ADDF, microiteration-ADDF;  
ABNR, adopted basis Newton-Raphsion;  
ADDF, anharmonic downward distortions following;  
ANEBA, adaptive nudged elastic band approach;  
CI-NEB, climbing image NEB;  
CPR, conjugate peak refinement;  
dADDF, double-ended ADDF;  
DC, dissociation channels;  
DNEB, doubly nudged elastic band;  
DRP, dominant reaction path;  
DVV, damped velocity Verlet;  
EK, Elber and Karplus;  
ES, equilibrium structure;  
ESP, electrostatic potential; 
EulerPC, Euler predictor and corrector method;  
FTS, finite temperature string;  
GRRM, global reaction route mapping;  
GS−IRC, Gonzalez and Schlegel IRC;  
GSM, Growing string method;  
HFB, harmonic Fourier bead;  
HJ, Hamilton-Jacobi;  
HPC, Hessian based predictor-corrector;  
IAN, isobutyryl-ala3-NH-methyl;  
IRC, intrinsic reaction coordinate;  
lADDF, large ADDF;  
L-BFGS, limited-memory Broyden-Fletcher-Goldfarb-Shanno;  
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LUP, locally updated planes;  
MAP, minimum action path;  
MC, Monte Carlo;  
MD, molecular dynamics;  
MEP, minimum energy path;  
MFEP, minimum free energy path;  
MHP, minimum Hamiltonian path;  
MMP2, matrix metalloproteinase 2;  
NEB, nudged elastic band;  
ODE, ordinary differential equation;  
PES, potential energy surface;  
PHVA, partial Hessian vibrational analysis;  
PMF, potential of mean force;  
QM, quantum mechanics;  
QM/MM, combined quantum mechanical and molecular mechanical method;  
RMS, root mean square; 
RMSD, root mean square distances;  
RPATH, reaction path;  
SDP, steepest descent path;  
SHS, scaled hypersphere search;  
SPW, self-penalty walk;  
TPE, transition path ensemble;  
TPS, transition path sampling;  
TPT, transition path theory;  
TS, transition state;  
TST, transition state theory;  
UE, Ulitsky and Elber;  
VSA, vibrational subsystem analysis;  
ZTS, zero temperature string. 
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1. Introduction 

Among the equivalent formulations of quantum mechanics, Heisenberg’s matrix mechanics 
and quantum theory, based on the Schrödinger wave equation, are the most technically 
advanced. Since the advent of quantum mechanics, these two schemes have provided the 
mathematical tools and the primary basis for the description of quantum phenomena. The 
path integral method developed by Dirac and Feynman has important advantages in the 
quantisation of gauge theories. We discuss here the formulation of quantum mechanics in 
phase space, known as deformation quantisation.  
Deformation quantisation uses the Wigner-Weyl association rule (Weyl, 1927, 1929, 1931; 
Wigner, 1932) to establish a one-to-one correspondence between the functions in the phase 
space and the operators in the Hilbert space. Wigner’s function appears as the Weyl symbol 
of the density matrix. A consistent dynamical description of the systems with the help of the 
Wigner function leads to deformation quantization. A useful formulation of the Wigner-
Weyl association rule was proposed by Groenewold (1946) and Stratonovich (1957).  
Groenewold introduced a non-commutative associative -product (star-product) of the 
functions in the phase space (Groenewold, 1946). The evolution of the quantum systems is 
determined by the antisymmetric part of the -product (Groenewold, 1946; Moyal, 1949), 
known as the Moyal bracket. The Moyal bracket represents the quantum deformation of the 
Poisson bracket. Deformation quantisation preserves many features of classical Hamiltonian 
dynamics. 
The formulation of deformation quantisation is based on the Wigner function and the Moyal 
bracket (i.e., the -product). The Wigner-Weyl association rule is necessary to prove the 
equivalence of deformation quantisation and the standard formalisms of quantum 
mechanics.  
Extensive literature has reported on the formulation of quantum mechanics in the phase 
space and the -product. We refer the reader to excellent reviews by Bayen et al. (1978a, 
1978b), Carruthers & Zachariasen (1983), Balazs & Jennings (1984), Hillery et al. (1983), 
Karasev & Maslov (1991), and Osborn & Molzahn (1995), where one may find additional 
references. Wigner’s function, as a fundamental object of deformation quantisation, has 
numerous applications in many-body physics, kinetic theory, collision theory, and quantum 
chemistry. Transport models, originally created to simulate chemical reactions, have been 
modified and are widely used to describe heavy-ion collisions. 
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Deformation quantisation does not have many recognised successful applications in 
quantum theory. Recently, attempts have been made to use specific properties of the 
formalism to investigate semiclassical expansion (Osborn & Molzahn, 1995; McQuarrie et 
al., 1998) and to calculate the determinants of one-loop operators in field theory (Pletnev & 
Banin, 1999; Banin et al., 2001) and the high-order corrections to the Bohr-Sommerfeld 
quantisation rule (Gracia-Saz, 2004; Cargo et al., 2005). Potential applications of deformation 
quantisation in transport models are presented in this review.  
Transport models for heavy-ion physics are designed for phenomenological descriptions of 
the complex dynamics of nuclear collisions. Several types of advanced transport models are 
based on the Boltzmann-Uhlenbeck-Ueling equations (BUU) (Blaettel et al., 1993), 
(relativistic) quantum molecular dynamics (QMD/RQMD) (Sorge et al., 1989; Aichelin, 1991; 
Faessler, 1992), or antisymmetrised molecular dynamics (AQMD) (Feldmeier & Schnack, 
1997). These approaches have the correct classical limit and they contain special plug-ins 
and quantum-mechanical attributes, such as Pauli blocking for binary collisions of fermions. 
Numerical solutions are implemented through the distribution of test particles (BUU) or 
centroids of wave packets (QMD, AQMD) for classical trajectories in the phase space. For 
AQMD, the wave packets are antisymmetrised in their parameters. The transport models 
provide a solid basis for a phenomenological description of a variety of complex nuclear 
collisions phenomena. However, quantum coherence effects and non-localities are beyond 
the scope of these models. The internal consistencies of the approximations in the models 
remain a subject of debate, promoting further developments (see, for example, papers by 
Kohler (1995) and Feldmeier & Schnack (1997) and references therein). 
The most striking feature of the transport models is the depiction of the trajectories in the 
phase space, which are test particles or centroids of wave packets. The evolution of the 
system of classical particles can be calculated using standard programs to solve first-order 
ordinary differential equations (ODEs). At the same time, the evolution of wave functions of 
many-body systems is a field-theoretic problem with an infinite number of degrees of 
freedom that cannot be solved either analytically or numerically. 
Any simulation of many-body quantum dynamics must be based on a concept of 
trajectories, which is the only attribute allowing access to an approximate description of 
complex quantum systems. 
The concept of phase-space trajectories arises naturally in the formalism of deformation 
quantisation through the Wigner transformation of the operators of the canonical 
coordinates and momenta in the Heisenberg representation. These trajectories satisfy the 
quantum version of Hamilton’s equations (Osborn & Molzahn, 1995; Krivoruchenko & 
Faessler, 2006b) and are the characteristics by which the time-dependent Weyl’s symbols for 
the other operators can be determined (Krivoruchenko & Faessler, 2006b; Krivoruchenko et 
al., 2006c, 2007). In the classical limit, quantum characteristics reduce to classical trajectories. 
Knowledge of the quantum phase flow, i.e., the quantum trajectories, is equivalent to a 
complete knowledge of the quantum dynamics. 
In this chapter, we provide an introduction to deformation quantisation and demonstrate 
the usefulness of the formalism in solving the evolution problem for many-body systems in 
terms of semiclassical expansion. We show that, in any fixed order of expansion over the 
Planck’s constant, the evolution problem can be reduced to a statistical-mechanics problem 
of calculating an ensemble of quantum characteristics in the phase space and their Jacobi 
fields. In comparison with the corresponding rules of classical statistical mechanics, the 
rules for computing the probabilities and time-dependent averages of observables are 
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modified. The evolution equations represent a finite system of first-order ODEs for quantum 
trajectories in the phase space and the associated Jacobi fields (Krivoruchenko et al., 2006c). 
The method of quantum characteristics allows the consistent inclusion of specific quantum 
effects, such as non-localities and coherence, in the description of the propagation of 
particles in the transport models. 
In the next section, the Wigner-Weyl association rule is described, and the concept of the -
product is introduced using the Groenewold method (Groenewold, 1946). Section 3 is 
devoted to the properties of the quantum characteristics. We explore the transformation 
properties of the canonical variables and functions in phase space under unitary 
transformations in Hilbert space using the Wigner-Weyl correspondence rule. The role of 
quantum characteristics coincides with the role of characteristics in a solution of the classical 
Liouville equation. Section 4 starts from the semiclassical expansion of -functions around 
the normal functions. The results are then applied to the decomposition of the functions of 
the quantum characteristics. Quantum characteristics, when expanded in a power series of 
Planck’s constant, are found by solving a coupled system of ODEs for quantum 
characteristics and the associated Jacobi fields. The numerical methods for solving many-
body scattering problem, including the rule for the calculation of the average values of 
physical observables, are discussed in Section 5. Special features of the scattering problem 
are discussed in Section 6. 
In the field of deformation quantisation, the terminology is not well established. 
Deformation quantisation is synonymous with Weyl-Groenewold quantisation and -
product quantisation. The -product is synonymous with the Moyal product. Wigner’s 
image of an operator is Weyl’s symbol. The Moyal bracket is also known as the sine bracket. 
The quantum Liouville equation is synonymous with the Groenewold equation and is the 
Wigner image of the von Neumann equation. 

2. The Wigner-Weyl association rule, the -product and the Wigner function 

In Hamiltonian formalism, classical systems with n degrees of freedom are described by 2n 
canonical coordinates and momenta 

2n( )i 1 n
1 nξ = q ,...,q ,p ,...,p .R  

The Poisson bracket for these variables takes the simple form 

 { }k l klξ ,ξ = -I . (1) 

The matrix 

n

n

0 -E
I =

E 0
, 

where nE  is the identity matrix, endows the phase space with a symplectic structure. In the 
following, we use the form ijI  to lower and raise the indices, e.g., ji ji

j i ijA = A I , A = I A ,  
where ji

ijI = I  and A  is a vector in the phase space. 
In quantum mechanics, the canonical variables are mapped into operators of the canonical 
coordinates and momenta in a Hilbert space: 
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i 1 n
1 n( ,..., , ,..., ) ( ( ))  2 nOp L Rx q q p p . 

These operators obey the commutation relations 

 k l[ , ]  kl= -i Ix x . (2) 

The operators ( ( )) 2 nOp L Rf  are denoted by Gothic letters, and the functions in phase space 
2nR  are denoted by Latin letters. 

The Wigner-Weyl correspondence iiξ x  extends to arbitrary functions and operators. A 
set of operators ( ( )) 2 nOp L Rf  in the Hilbert space is a set closed under multiplication by c-
numbers and summation. This set forms a vector space V . The elements of its basis can be 
numbered by the phase space coordinates 2niξ R . Typically, the Weyl-Groenewold basis is 
used: 

 k( ) (2 ) ( ) exp( ( ) )
(2 )



2n
n 2n

kn

d η i
ξ = π δ ξ - = - η ξ -

π
B x x . (3) 

The vectors ( )ξ VB  satisfy the following properties: 

 
2n

2n 2n

2n
'

( ) ( ),

( ) 1,
(2 )

( )Tr[ ( ) ] ,
(2 )
[ ( )] 1,

[ ( ) ( )] (2 ) ( '),

[ ( ) ( ) ( )] (2 ) ( )exp( )(2 ) ( ),
2

( )exp( ) ( ) (2 ) ( ') (
2

2n

n

2n

n

n

n n
ξξ

n
ξξ

ξ = ξ

d ξ
ξ =

π

d ξ
ξ ξ =

π
Tr ξ =

Tr ξ ξ' = π δ ξ - ξ
i

Tr ξ ξ' ξ'' = π δ ξ'- ξ π δ ξ - ξ''

i
ξ - ξ' = π δ ξ - ξ












 

 

B B

B

B B f f

B

B B

B B B

B B B



 ),ξ'

 (4) 

where ξξ'  is the Poisson operator 

k l
 
 


kl

ξξ' = -I
ξ ξ'

 . 

In Equation (4), the first line is obvious. The equations in lines two to five are equivalent to 
Equations (4.15) – (4.18) in Groenewold (1946). The last equation can be found, e.g., in 
Krivoruchenko et al. (2006a). The equation in the 6th line is a consequence of the 5th and 7th 
equations.  
The Wigner-Weyl association rule ( ) f ξ f  takes, in the basis ( )ξB , the simple form 
(Groenewold, 1946; Stratonovich, 1957): 

 ) [ ( ) ],f(ξ = Tr ξB f  (5) 
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 ( ) ( ).
(2 ) 

2n

n
d ξ

= f ξ ξ
π

f B  (6) 

In particular, i i i[ ( ) ] ξ = Tr ξr B x . The reciprocal relation i iξ r , defined by the second 
line, also holds.  
The function ( )f ξ  can be interpreted as a coordinate of the operator f  in the basis ( )ξB , and 

[ ( ) ]Tr ξB f can be viewed as the scalar product of ( )ξB  and f . Other operator bases are also 
discussed (Balazs & Jennings, 1984).  
The set ( ( ))2 nOp L R  is closed under the addition and the multiplication of the operators. 

Thus, vector space V  acquires the structure of associative algebra. For any two functions 
( )f ξ  and ( )g ξ , a third function can be constructed (Groenewold, 1946): 

 ( ) ( ) [ ( ) ]f ξ g ξ Tr ξ B fg . (7) 

The operation is called star-product (-product) of ( )f ξ  and ( )g ξ . The explicit form of -
product is as follows 

 ( ) ( ) ( )exp( ) ( )
i

f ξ g ξ = f ξ g ξ
2

  , (8) 

where  ξξ  . The -product splits into symmetric and skew-symmetric parts 

   
 i

f g f g f g
2

 .   (9) 

The skew-symmetric component is known as the Moyal bracket (Groenewold, 1946; Moyal, 
1949). In the classical limit, the Moyal bracket f g  turns into the Poisson bracket 
{ , } ( ) ( )f g f ξ g ξ . 
Weyl’s symbol of the symmetrised product of the operators of the canonical coordinates and 
momenta )( ... s1 2 ii ix x x  coincides with the dot (ordinary) product of the associated canonical 
variables 

2 s1 i( i) i[ ( ) ... ] ...s1 2 ii iTr ξ = ξ ξ ξB x x x , 

which is explicitly symmetric for permutations of the indices. The symmetrised products of 
the Hermitian operators iu  correspond to the symmetrised -products of the associated 

real functions ( ) [ ( ) ]i iu ξ = Tr ξB u : 

( ) )([ ( ) ... ] .   s s1 12 2i ii ii iTr ξ u (ξ) u (ξ) ... u (ξ)B u u u  
The ○-product is not associative. Its order here is not important, because the indices are 
symmetrised. 
Weil’s map from functions to operators was originally formulated in terms of the Taylor 
expansion. Consider the decomposition of a function near zero 

( )1
( )

!

 
 

 s1

s1

s
ii

ii
s=0

f 0
f ξ = ξ ...ξ .

s ξ ... ξ  
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According to the Weyl rule (Weyl, 1927, 1929, 1931), the function ( )f ξ  maps into the 

operator Tf  

T ( )

(0)1
...

!






 

 s1 2

s1

s
ii i

ii
s=0

f

f
=

s ξ ... ξ

f x

x x x
. 

Note that the indices of summation over the coordinate components are automatically 
symmetrised. A simple calculation,  

2

2

T( ) [ ( ) ]

(0

,

)1
!

(0)1
!







 


 





s1

s1

s1

s1

T
s

ii i
ii

s=0
s

ii i
ii

s=0

f ξ = Tr

f
= ξ ξ ... ξ

s ξ ... ξ

f
= ξ ξ ...ξ

s ξ ... ξ

  

B f

 

shows that the Taylor expansion of the product of the operators of the canonical coordinates 
and momenta provides the correspondence rule, completely equivalent to Equation (6). 
Thus, we obtain T Tf (ξ) = f(ξ) f f .  

For any operator ( ( )) 2 nOp L Rf , one may find a function f(ξ)  such that = f( )f x . This 

property shows the completeness of the set of operators of canonical coordinates and 

momenta in ( ( ))2 nOp L R . 

The average value of a physical observable f  is determined by the trace of fr , where r  is 

the density matrix, or by averaging the function f(ξ)  over the Wigner function 

 ( ) [ ( ) ].W ξ = Tr ξB r  (10) 

Because [ ] = 1Tr r , the Wigner function is normalised to unity 

( ) 1
(2 )

2n

n
d ξ

W ξ =
π 

. 

The average value of f  is given by 

 [ ] ( ) ( ) ( ) ( )
(2 ) (2 )  

2n 2n

n n
d ξ d ξ

= Tr = f ξ W ξ = f ξ W ξ
π π

f fr . (11) 

In this case, the -product of ( )f ξ  and ( )W ξ  can be replaced by a dot product, because the 
derivatives of the Poisson operator are reduced to surface integrals and can be omitted. 
Not every normalised function in phase space can be interpreted as the Wigner function. 
The eigenvalues of the density matrix are nonnegative. For each density matrix, one may 

then find a Hermitian matrix 1 / 2r , such that 1 / 2 1 / 2r r r . For any Wigner function ( )W ξ  a 

function 1/2( )W ξ  exists, such that 1/2 1/2( ) ( ) ( )W ξ W ξ W ξ .  
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For a pure state, =|ψ >< ψ|r , and the Wigner function equals ( )W(ξ) =< ψ| ξ |ψ >B . To 

show that the Wigner map, which is described in standard textbooks, is equivalent to 
Equation (5), we first find the mixed matrix elements of the basis vectors of V : 

n

| ( )|

2
2 exp ( )·( ) |

 

       
 

x q,p k

i
p k q x x k

B

,
 

where x and q are the canonical coordinates and k and p  are the canonical momenta. After 
simple transformations, the usual expression then follows: 

( ) | ( )|

| | ( )| |
(2 )

| exp( ) | .
2 2

  

    

      









n n

n

n

W q,p ψ q,p ψ

d xd k
ψ x x q,p k k ψ

π
x i x

d x ψ q xp q ψ

B

B  

Applying the Schwartz inequality to the integral and taking the normalisation condition 

| 1ψ ψ  into account, one obtains the constraint ( ) n n-2 W ξ 2  (Baker, 1958). The value 

of ( )W ξ  is bounded, provided |ψ >  has a finite norm, which is the case for bound states of 

discrete spectrum and wave packets in the continuum. 

3. Quantum trajectories in phase space as characteristics 

One-parameter unitary transformations acting on the operators of the canonical coordinates 
and momenta generate the trajectories in the phase space by Wigner’s association rule. 
Knowledge of these trajectories is equivalent to knowledge of the quantum dynamics. The 
time-dependent symbols of the operators are functions of the trajectories. In this sense, the 
phase-space trajectories play a special role, similar to the role of classical trajectories in 
solving the Liouville equation. 
The Liouville equation is a partial differential equation (PDE). Its general solution can be 
represented by its characteristics. The characteristics of the classical Liouville equation are 
the classical trajectories of the particles. Quantum trajectories solve the Groenewold 
evolution equation. For this reason, we call them "quantum characteristics."  

3.1 Wigner map of unitary transformation 

Consider a unitary transformation acting on the operators '  f f U fU , where 

1  U U UU . The operators of the canonical coordinates and momenta are transformed 

according to the rule i i   ix x' U x U , while their Weyl’s symbols are transformed 
according to the rule 

 ( ) [ ( ) ]. i i iξ ξ' = u ξ Tr ξ iB U x U   (12) 

Thus, unitary transformations in the space n( ( ))2Op L R  generate, through the Wigner 
association rule, a coordinate transformation in the phase space 2nR . Such transformations 
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are not canonical (see below), and we call them "unitary transformations". The 
transformation law of functions under the unitary transformation takes the form 

 

s2

( ) ( ) [ ( ) '] [ ( ) ]

1
[ ( ) ... ]

s!

1
[ ( ) ... ]

s!

1
( ) ... ( )

s!

( (

( )

















  


  


  









s1

2

2

2

s1

s1 2

s1

1

s1 2

s
ii i

ii i
s=0

s
ii i

ii i
s=0

s
ii i

ii i
s=0

f ξ f' ξ Tr ξ Tr ξ

f(0)
Tr

ξ ξ ... ξ

f(0)

= =

=

= Tr
ξ

=

ξ ... ξ

f(0)
u ξ u ξ u ξ

ξ ξ ... ξ
f u

  



B f B U fU

B U x x x U

B x' x' x'

)).ξ

 (13) 

This expression defines a composite -function. The -product here may be substituted by 
the ○-product. The ○-product contains even powers of the Planck's constant in its 
decomposition. Consequently, the expansion around ( ( ))f u ξ  contains even powers of  . 

Provided that ( )u ξ  is a linear function, ( ( )) ( ( ))f u ξ = f u ξ . In the general case, the 

composition law of two functions is not local: ( ( )) ( ( )) ( ( )) f u ξ f u ξ f u ξ .  

3.2 Conservation of Moyal bracket 
The antisymmetrised products of an even number of operators of canonical coordinates and 
momenta are c-numbers. These products are invariant under unitary transformations:  

 1 1] ][ [... ... 2s 2s2 2i ii i i i=U x x x U x x x . (14) 

In the phase space, this equation is expressed as:  

1 1] ][ [( ) ( ) ... ( )

.

...

1
( )

2 (2s)!

2s 2s2 2

2s-1 2s1 2

i ii i i i

s
i ii iσ

σ

u ξ u ξ u ξ = ξ ξ ξ

-i
= - I ...I    
 
 



     
 

The summation is over all of the permutations of the indices. The sign is plus or minus, 
depending on whether the sequence  is an even or odd permutation of (i1,i2,...,i2n). The 
invariance of the antisymmetrised products of even numbers of operators of canonical 
coordinates and momenta constitutes a quantum analogue of the Poincaré theorem on the 
conservation of 2n forms in classical Hamiltonian dynamics (Krivoruchenko et al, 2006c). In 
particular,  

 ( ) ( ) j j iji iu ξ u ξ = ξ ξ = -I . (15) 

The real functions ( )iu ξ  are associated, by virtue of Equation (6), with the Hermitian 
operators ix' . If ( )iu ξ  satisfies Equation (15), then the operators ix'  obey the commutation 
relations 

j ji[ ( ), ( )] [ , ] ijiu u = = -i Ix x x x . 
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We are mainly interested in the case in which U  is the evolution operator. Applying a 
unitary transformation to the product fg , we obtain the function ( , )( ) ( )| ζ u ξ τf ζ g ζ   that is 

associated with the expression U fgU  and the function ( ( )) ( ( ))f u ξ g u ξ    associated with 

the expression    U fU U gU . These operators coincide, so their symbols coincide: 

 ( , )( ) ( )| ( ( )) ( ( ))ζ u ξ τf ζ g ζ = f u ξ g u ξ    .  (16) 

In the first case, the -product is calculated with respect to iζ , and it is calculated with 
respect to iξ  in the second case. Equation (16) shows that the -product can be calculated 
in the original coordinate system prior to the change of the variables, or we can first change 
the variables and then compute the -product. Equation (16) holds separately for the 
symmetric and antisymmetric parts of the -product. 
Thus, we can calculate the -product for any of the unitary equivalent coordinate systems. 
Dynamic equations constructed using the summation and multiplication of -functions are 
generally covariant under unitary transformations in phase space. The -product is not 
invariant under canonical transformations.  
Example: The classical Liouville equation is covariant under canonical transformations. This 
equation, however, is not covariant under unitary transformations. The quantum Liouville 
equation, i.e., the Wigner map of the von Neumann equation, is covariant under unitary 
transformations and is not covariant under canonical transformations. 

3.3 Phase flow generated by an evolution operator  
The one-parameter family of the unitary transformations describe the evolution of quantum 
systems, and it is usually parameterised in the form 

( () exp )

i

τ = - τU H , 

where H  is the Hamiltonian operator. The functions ( )iu ξ , defined in Equation (12), acquire 
the dependence on the parameter τ , so that we can write ( )iu ξ,τ . These functions determine 
the quantum phase flow, which is a quantum-mechanical analogue of the phase flow in the 
Hamiltonian formalism of classical mechanics. 
Equation (13) shows that the evolution of the symbols of the operators in the Heisenberg 
representation is completely determined by the functions ( )iu ξ,τ . 
We use the term "canonical transformation" in the conventional sense to refer to the 
coordinate transformations that preserve the Poisson bracket. The transformations 
preserving the Moyal bracket are unitary transformations. These transformations 
correspond to the action of a unitary operator in the Hilbert space. The unitary 
transformation in the phase space represents the quantum deformation of the canonical 
transformation.  
Quantum characteristics arise in Heisenberg’s matrix mechanics. Suppose that we have solved 
the evolution equations for the operators of the canonical coordinates and momenta in the 
Heisenberg representation. These operators evolve according to i i ( ) ( ) ( ) τ τ τix x U x U . We 
use the earlier assertion that, for any operator f , one can find a function ( )f ξ  through which 
f  is represented in the form ( )f x . The same operator f  at time τ  is equal to 
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( ) ( ) ( ) ( ) ( ) ( ) ( ( ) ( )) ( ( ))     τ τ τ τ f τ f τ τ f τf U fU U x U U xU x . 

This equation shows that the operators of the canonical coordinates and momenta are 
characteristics that determine the evolution for all of the operators in ( ( ))2 nOp L R . This 
property is fully transferred to the phase space upon deformation quantisation. 

3.4 Energy conservation and composition law for trajectories 
Energy conservation in the process of evolution means 

 ( ) ( ( ))H ξ = H u ξ,τ , (17) 

where ( ) [ ( ) ]H ξ = Tr ξB H is the Hamiltonian function of the quantum system. We see that 
energy is conserved along quantum characteristics, but not in the geometric sense. The -
product sign in the argument indicates the non-local nature of the conservation law. 
The law of composition of the particle trajectories also has a non-local character: 

( ) ( ( ) )1 2 1 2u ξ,τ + τ = u u ξ,τ ,τ . 

Such compositions, but without the -product, are valid for the trajectories of classical 
particles. The -product does not allow considering the motion of particles as movement 
along a certain trajectory in the geometrical sense. 

3.5 Quantum Hamilton equations  
Quantum trajectories can be found by solving Hamilton’s equations, which can be written in 
one of four equivalent forms: 

 

( , )

( , )

{ }|

|














i i
ζ u ξ τ

i
ζ u ξ τ

i i

i

u (ξ,τ) = ζ ,H(ζ)
τ

= ζ H(ζ)

= u (ξ,τ) H( u (ξ,τ))

= u (ξ,τ) H(ξ),






 (18) 

with the initial conditions 

i iu (ξ,0) = ξ . 

These equations appear as Wigner’s image of the evolution equations for operators of the 
canonical coordinates and momenta in the Heisenberg representation. The equivalence of 
the different records of the right-hand side can be verified with the help of the above-
described properties of the -product, the rules of substitution (Equation (16)), and the 

condition of energy conservation (Equation (17)). Note that ,i{ ( )} ( ) ( )i iζ ,H ζ = ζ H ζ = H ζ . 

The substitution ( , )ζ u ξ τ  in the first line of Equation (18) leads to a modification of the 
classical expression for the right-hand side and, correspondingly, to quantum deformation 
of the classical phase flow. The value of  iu (ξ,τ) / τ  depends on the phase space coordinate 

iu (ξ,τ) , as in classical mechanics, and on the infinite number of partial derivatives of iu (ξ,τ)  
as a specific manifestation of the quantum non-locality.  
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An equivalent form of Equation (18), using a cluster expansion of the -exponentials, was 
given by Osborn & Molzahn (1995). Equation (18) was found independently by 
Krivoruchenko & Faessler (2006b).  

3.6 Quantum Liouville equation  
The functions corresponding to physical observables evolve in the Heisenberg 
representation according to the equation 

 ( ) Tr[ ( ) ( ) ( )] ( ( ),0) f ξ,τ = τ τ = f u ξ,τB U fU , (19) 

while the Wigner function remains constant. The evolution law can be expressed in terms of 
Green's function in the phase space as 

( ) ( 0)
(2 ) 

2n

n

d η
(ξ,τ) = G ξ,η,τ f η,

π
f . 

With the help of quantum characteristics, a compact expression for Green’s function can be 
written as 

2n( ) (2 ) ( ) nδ uG ξ,η,τ = π (ξ,τ) - η . 

The function ( )f ξ,τ  obeys the Groenewold evolution equation (Groenewold, 1946) 

 ( )





f f(ξ,τ) = (ξ,τ) H ξ
τ

, (20) 

which is the Wigner map of the evolution equation of the operator f  in the Heisenberg 

representation. The right-hand side can be replaced by the equivalent expressions 
( ( ))f(ξ,τ) H u ξ,τ  or ( , )( )|  ζ u ξ τ(ζ,0) Hf ζ  . 

The solutions to the evolution equations for the quantum characteristics and functions 
( )f ξ,τ  can be represented as a formal power series in the parameter  : 

 




s

(...(( ( )) ( )) ( ))
!

( (( ( ) ( )) ( )) ( )).
!





  

  





s
i i

s=0

s

s=0 s

τ
u (ξ,τ) = ξ H ξ H ξ ...H ξ ,

s

τ
f( u(ξ,τ)) ... f ξ H ξ H ξ ...H ξ

s
=

 (21) 

Unitary coordinate transformations are canonical to the first order in   (Dirac, 1930; Weyl, 
1931).  
For higher orders, deviations from the canonicity arise (Krivoruchenko & Faessler, 2006b). 
Until recently, these deviations were not well understood.1 The infinitesimal 
transformations generate canonical or unitary global transformations depending on how we 
                                                                 
1 In the papers by B. Leaf, J. Math. Phys. 9, 769 (1968) and T. Curtright and C. Zachos, J. Phys. A 32, 771 
(1999), erroneous conclusions about the entire coincidence of classical and quantum trajectories can be 
found. 



 
Some Applications of Quantum Mechanics 78

define the multiplication. If this is the usual dot product, then we obtain the canonical 
transformations. If this is the -product, then we obtain unitary transformations. 
If an operator A  commutes with H , then its symbol is preserved in the sense of 

( ) ( ( ))A ξ = A u ξ, . The density matrix of a stationary state commutes with H ; therefore, in 

the Schrödinger representation S S( ) ( ( ))W ξ = W u ξ,- , the Wigner function does not evolve. 

In the harmonic oscillator, the quantum trajectory depends linearly on iξ  and coincides 

with the classical trajectory. In this case, the -symbol in the argument of the Wigner 
function can be omitted, and we can write S S( ) ( ( ))W ξ = W u ξ,-  for a stationary state and 

S S( ) ( ( ),0)W ξ,τ = W u ξ,-  for an arbitrary state.  

4. Semiclassical expansion of quantum characteristics 

The methods of this section apply to the evolution problem. The most promising 
applications appear to be connected to many-body scattering and transport models. 
The problem of evolution can by divided into two parts. First, we seek a solution to the 
quantum Hamilton equations. Second, we use Equation (19) to find the time-dependent 
symbols of the operators. The key issue is an efficient algorithm to calculate the -functions. 
These functions arise in the quantum Hamilton equations and in solving the evolution 
problem for functions. 

4.1 Semiclassical expansion of -functions 
We consider the semiclassical expansion of f( u(ξ, ))  around f(u(ξ, )) . The function f(ξ)  

can be represented through its Fourier transform 

 ( ) exp( ) ( )
(2 ) 

2n
k

kn

d η i
f ξ = η ξ f η

π
. (22) 

Determining how to calculate exp( )U , where ( )


k
k

i
U = η u ξ,τ , is sufficient. With the help 

of Equation (13), we find  

 2 4 6
2 4exp( ) 1 + + + ( ) exp( )   U c c O U , 

where 

 
2 2

1
(2 3 )
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1

(90( ) 60( ) 48( ) 45( )( )
23040

60( )( ) 20( )( ) 30(UUP U)P U)
1

(6 45 30( ) 40( ) 1
11520



2 2
2

2 2 2 2 2 2 2 2
4

2 2 2 2

4 4 4 4
1 2

c = - UUP U + UP U ,

c = UP U UP U + UP U P U + UUP U UP U + UP U UP U

                   + UUP U UP U + UUP U UUP U +

UUUUP U + UUUP U + UUP U + UUP U + 5 ).4UP U

 (23) 

The operator P acts as follows: 



 
Semiclassical Methods of Deformation Quantisation in Transport Theory 79 

( ) ( )

,ijkl2 ,kl 2 ,kl 4
,kl ,k ,l ,ijkl

,ijkl ,ijkl4 4
1 ,ij ,kl 2 ,i , jkl

,ijkl ,ijkl4 4
,i , j ,kl ,i , j ,k ,l

AP B = A B ,  ABP C = A B C ,  AP B = A B ,

ABP C = A B C ,  ABP C = A B C ,

ABCP D = A B C D ,  ABCDP E = A B C D E ,

 

where 

 


 
1 1 s s1 s

1 s 1 ss1

s
j i j i,i ...i

,i ...i , j ...jii

A(ξ)
A(ξ) = ,  A(ξ) = A(ξ) I ...I .

ξ ... ξ
 (24) 

Osborn & Molzahn (1995) and Gracia-Saz (2004) developed a diagram technique to calculate 
Weyl’s symbols of composite operators for higher orders of the  -expansion. Equation (23) 
from Krivoruchenko et al. (2006c), obtained with the use of MAPLE, agrees with the 
calculation of Gracia-Saz (2004). 

The expansion of ( ( ))f u ξ,  is now straightforward. We replace    i
iη -i / u and 

( )  i iU u ξ / u  to obtain 

2

2
4

( ( )) ( ( )) ( ) ( ) ( ) ( ( ))
24

( ) ( ) ( ( )) ( ).
16

ji k ,lm
,l ,m ,ijk

ji ,kl
,kl ,ij

f u ξ,τ = f u ξ,τ - u ξ,τ u ξ,τ u ξ,τ f u ξ,τ

- u ξ,τ u ξ,τ f u ξ,τ + O

 


 


 

The derivatives of ( ( ))f u ξ,τ  are calculated with respect to u.  
As a simple application, one can find a semiclassical expansion of the Weyl symbol for the 
finite-temperature density matrix (Wigner, 1932): 

2 2
,lm ,kl 4

,l ,m ,kl3 2

( )
( ) exp(- )

( )
exp(- ) 1 + ( ) ( ) ( ) ( ) ( ) + ( ) .

24 16



 
  

 

  

H ξ
W ξ

T

H ξ
= H ξ H ξ H ξ H ξ H ξ O

T T T



 

After the replacement 1 / / T iτ , the expression for the Weyl symbol of the evolution 

operator ( ) = exp( )

i

τ - τU H  is derived.  

The evolution operator and its Weyl’s symbol are singular as 0 . The expansion of the 
semiclassically admissible -functions starts, however, with a classical expression, which is 
independent of  . The question of what happened to the singularity arises. The answer is 

obtained by considering the time-dependent operator ( ) ( ) ( )τ τ= τf U fU . The derivatives of 

( )τf  of order k are expressed in terms of k commutators. Each commutator generates  . The 

commutator [ ]

i

,H f  and the high-order terms ] ]. ][ [ [ ..
  
i i i

, ,..., ,H H H f  are regular as 0 . 

Therefore the Weyl symbol of ( )τf  has a classical limit. 
In transport models, the solutions to the evolution problem are based on solving systems of 
ODEs. We now turn our attention to the construction of the ODEs. 
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4.2 Semiclassical expansion of quantum Hamilton equations 
Suppose we have a system of N particles. The interaction of the particles is described by 
some potential. The initial-state wave function is assumed to be known. Consequently, the 
initial-state Wigner function is known. 
The first step in solving the evolution problem consists of finding the quantum 
characteristics, using Equation (18). We expand the solution in powers of Planck's constant 

 r( )


 i 2r i

r=0

u (ξ,τ) = u ξ,τ . (25) 

Here, ( )i
0u ξ,τ is the classical trajectory starting at time 0τ  at 2niξ R . The initial conditions 

for the quantum corrections 1r at 0τ are then set equal to zero. As a result, 

 
i i
0

r

( 0) , 0
( ) 0, 1.

u ξ, = ξ r = ,
u ξ,0 = r

 (26) 

The right side of Equation (18) is the -function, so we use the decomposition  

 ( , )( ( )) { }| ( ( ) ))


  i i 2r i
ζ u ξ τ r 0 r

r=0

F u ξ,τ ζ ,H(ζ) = F u ξ,τ ,...,u (ξ,τ . (27) 

If the functions iu (ξ,τ)  are known, then the functions ( ( ) ))i
r 0 rF u ξ,τ ,...,u (ξ,τ  are completely 

determined. ( ( ) ))i
r 0 rF u ξ,τ ,...,u (ξ,τ  also depends on the derivatives of ( ) )0 ru ξ,τ ,...,u (ξ,τ  with 

respect to iξ . In particular,  

 

( ) ( )
1

( ) ( ) ( ) ( ) ( ) ( ) ( )
24
1

( ) ( ) ( )
16

i i
0 0 0

j ji i k l ,mn i
1 0 1 0 , j ,m 0 ,n 0 0 , jkl1 0

j k ,lm i
,lm 0 0 , jk0

F u = F u ,

F u ,u = u ξ,τ F u - u ξ,τ u ξ,τ u ξ,τ F u

- u ξ,τ u ξ,τ F u .

 (28) 

4.3 Jacobi fields 

The second line of Equation (28) contains the first- and second-order derivatives of 0
iu (ξ,τ)  

with respect to iξ . Therefore, we should monitor the evolution of the trajectories and their 
derivatives with respect to the initial coordinates 

 
1 t 1 t

t i
i r
r , j ... j j j

( )
( )

...


 

u ξ,τ
J ξ,τ =

ξ ξ
.  (29) 

These values determine the decomposition of f( u(ξ, ))  and determine the high-order 

quantum corrections to the phase-space trajectories. 
We call these values "Jacobi fields". This term is adopted in Hamiltonian mechanics for the 

first-order derivatives of 0
iu (ξ,τ) , that determine the stability of the systems. The value of 
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ji i
0, j 0( ) ( ) / J ξ,τ = u ξ,τ ξ  is known as the Jacobi matrix, and its determinant is called the 

Jacobian. In quantum mechanics, the derivatives of higher orders are involved. In the 
following, the number r is called the order of the Jacobi field, the number of lower indices t 
is called the degree of Jacobi field. 
In the notation of Equation (29), the first pair of evolution equations becomes 

 

( ) ( )

1
( ) ( ) ( ) ( ) ( ) ( ) ( )

24
1

( ) ( ) ( )
16






i i
0 0

j ji i k l,mn i
1 0 , j 0,n 0 0 , jkl1 0,m

j k,lm i
0 0 , jk0,lm

u ξ,τ = F u ,
τ

u ξ,τ = u ξ,τ F u - J ξ,τ J ξ,τ J ξ,τ F u
τ

- J ξ,τ J ξ,τ F u .

 (30) 

In the first line, the classical Hamilton equations are recognisable. The second and third lines 
determine the lowest-order quantum correction to the classical trajectory.  
The system in Equation (30) is not yet closed. It needs to be supplemented by the equations 
of motion of ( )i

0, jJ ξ,τ  and ( )i
0, jkJ ξ,τ . These equations are obtained by taking the first- and 

second-order derivatives of the first equation with respect to the initial coordinates:  

 
,k( ) ( ) ( )

( ) ( ) ( ) ( ) + ( ) ( ).






i i k
0, j 0 0, j

i i l m i l
0, jk 0 ,lm 0, j 0,k 0 ,l 0, jk

J ξ,τ = F u J ξ,τ ,
τ

J ξ,τ = F u J ξ,τ J ξ,τ F u J ξ,τ
τ

 (31) 

Differentiating Equation (26) on iξ , we obtain the initial conditions for the Jacobi fields. In 
general, 

 
1 t

i i
r, j j

i
r , j ...j

( 0) 0

( ) 0, 0 2 or 1 1.



  

J ξ, = , r = ,

J ξ,0 = r = ,t r ,t
 (32) 

The coordinates iξ  enter Equations (30) and (31) as parameters. Thus, we meet a typical 

case of first-order ODEs, for the variables ( )i
0u ξ,τ , ( )i

1u ξ,τ , ( )i
0, jJ ξ,τ and ( )i

0, jkJ ξ,τ  with the 

initial conditions given in Equations (26) and (32). 
Here, we show a proof of the statement (Krivoruchenko et al., 2006c) that, in any fixed order 

of  , we still have a finite system of first-order ODEs for the variables ( )i
ru ξ,τ  and the 

associated Jacobi fields. 

4.4 Reduction of the quantum Hamilton equations to a finite system of first-order 
ODEs 
Let us consider the effect of the -product. According to Equation (8), each power of   is 

accompanied by differentiation. For order 2s , expansion of ( ( ))iF u ξ,τ  contains the 

derivatives of order 2s at most. Therefore, the Jacobi fields have the highest degree 2s (
1 2s t ). 
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This assertion can be strengthened. The number of indices t in reality also depends on the 
order r of the Jacobi fields 

1 t

i
r , j ... j ( )J ξ, . In the expansion in Equation (13), the derivatives of 

the trajectory i
0( )u ξ,τ  of order  2s, the derivatives of the trajectory i

1( )u ξ,τ  of order  2s – 

2, ..., and the derivatives of the trajectory i
s 1( )u ξ,τ  of order  2 survive among all of the 

derivatives of orders  2s. The highest-order correction i
s( )u ξ,τ  has no derivatives. Thus, 

the maximum number of lower indices of 
1 t

i
r , j ... j ( )J ξ, , involved in the expansion to order 

2s , depends on r and equals 2 2s r  ( 1 2 2  t s r ). 
Let us consider in more detail the equations of evolution to order 2s  for a fixed r  s.  
The first part of the ODE system can be written as 

 rr 0 1 0 1 -1, ,..., , , ,...,( )



i i
r ru = F u u u J J J

τ
, (33) 

where the index r takes the values 1 ... s. In the argument for the function on the right-hand 
side, we dropped the indices of the trajectories and the Jacobi fields. Note that the time 
derivative depends on the Jacobi fields of order r – 1 at most. 
The higher-order corrections depend on the lower-order corrections. In the right-hand side 
of Equation (33), the Jacobi fields have the following degrees: 

1 t

i
0, j ... j ( )J ξ, - not more than 2r, 

1 t

i
1, j ... j ( )J ξ,  - not more than 2r - 2, and so on. In the highest order 2s -term, the maximum 

degree of 
1 t

i
r 1, j ... j ( )J ξ, , entering the right-hand side, is equal to 2s – 2r + 2. The functions 

r 0 1 0 1 -1r, ,..., , , ,...,( )i
rF u u u J J J  do not depend on the variables with r’ for r < r’. Equation (33) 

clearly allows the determination of the trajectories 0 s( ) )u ξ,τ ,...,u (ξ,τ , provided that the Jacobi 
fields are known.  
We now supplement the resulting system (Equation (33)) with the equations of evolution of 
the Jacobi fields. 
Consider first Equation (33) for r = 0, i.e., the classical Hamilton equations. The right-hand 
side depends only on 0( )iu ξ,τ . Differentiating this equation from one to 2s times, we obtain 
evolution equations for the zero-order Jacobi fields of degrees t = 1 ... 2s. Equation (33) for r 
= 0 and the 2s of these equations form a closed system of ODEs whose solutions are well 
defined. 
As a next step we consider Equations (33) for r = 1. The right-hand side depends on the 
trajectories 0( )iu ξ,τ  and 1( )iu ξ,τ  and the Jacobi fields 

1 t0, ( )i
j ...jJ ξ,  for t = 1, 2. Differentiating 

this equation with respect to iξ  from one to 2s - 2 times, we obtain the evolution equations 

for the first-order Jacobi fields 
1 t1, ( )i

j ...jJ ξ,  of degrees t = 1 ... 2s - 2. After differentiating, the 

right-hand side depends on the Jacobi fields 
1 t

i
0, j ... j ( )J ξ,  of degrees  2s (= 2 + 2s - 2), while 

the Jacobi fields 
1 t

i
1, j ... j ( )J ξ,  arising from differentiating ( )i

1u ξ,τ  do not have degrees that 

are higher than the number of derivatives taken, i.e., not above 2s - 2. Thus, to determine 

1 t

i
1, j ... j ( )J ξ, , additional information about the zero-order Jacobi fields is not required. From 

these equations, we can find 1( )iu ξ,τ  and 
1 t

i
1, j ... j ( )J ξ,  of degrees t   2s - 2. 
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Further arguments are fairly obvious. We are moving in the direction of increasing the order 
of Jacobi fields. Consider the general case. We take the derivatives of Equation (33) from one 
to 2s - 2r times and obtain the evolution equations for the order-r Jacobi fields of degrees t = 
1 ... 2s - 2r. 

 
1 tr , j .. r.j r , ,..., , , ,...( ) ( ),


i i

0 1 0 1 rJ ξ, = G u u u J J J
τ

. (34) 

Consider the right-hand side of Equation (33). It depends on the Jacobi fields 
1 t

i
0, j ... j ( )J ξ,  of 

degrees  2r. After differentiating one to 2s - 2r times, a dependence on the Jacobi fields 

1 t

i
0, j ... j ( )J ξ,  of degrees  2s (= 2r + 2s - 2r) is acquired. Consequently, for any r, the right-

hand side of Equations (34) depends on the zero-order Jacobi fields of degree 2s at most. 
Furthermore, the right-hand side of Equation (33) depends on the first-order Jacobi fields of 
degrees  2r - 2. After the differentiation, a dependence on the first-order Jacobi fields of 
degrees  2s - 2 (= 2r - 2 + 2s - 2r) occurs in Equation (34). The upper value is also 
independent of r.  
For a fixed r, Equation (33) depends on the h–order Jacobi fields (h < r) of degrees t  2r – 2h. 
Thus, the evolution equations for the Jacobi fields 

1 t

i
r , j ... j ( )J ξ,  of degrees t = 1 ... 2s - 2r 

contain the trajectory functions r( ) ( )0u ξ,τ ,...,u ξ,τ  and the Jacobi fields 
1 t

i
h , j ... j ( )J ξ,  of orders 

h = 0 ... r and degrees t = 1 ... 2s – 2h.  
The truncation of the expansion at any s provides us with the complete system of first-order 
ODEs for the trajectories and the Jacobi fields. The system is determined by Equations (33) 
and (34) with the initial conditions given in Equations (26) and (32). 
In terms of the mathematical induction, the above arguments indicate that Equations (33) 
and (34) are sufficient to determine the trajectories and the Jacobi fields for some r, provided 
that the trajectories and the Jacobi fields of lower orders < r are determined. We have seen 
that this is true for r = 0, 1; therefore, it is true for all r. 

4.5 Perspectives of transport models 
We show the lists of the dynamical variables and the numbers of the independent degrees of 
freedom in the decomposition of the quantum Hamilton equations up to the fourth order in  :  

0
0

2
0 0, 0,

1
2

4
0 0, 0, 0, 0,

1 1, 1,

2
2 3 4

: ( )
2

: ( )& ( ), ( )

( )

2 (2 + 3 + 2 )

: ( )& ( ), ( ), ( ), ( )

( )& ( ), ( )

( )

(18 + 43 + 47 + 20 + 4 ) / 3













i

i i i
j jk

i

i i i i i
j jk jkl jklm

i i i
j jk

i

u ξ,τ
n

u ξ,τ J ξ,τ J ξ,τ

u ξ,τ

n n n

u ξ,τ J ξ,τ J ξ,τ J ξ,τ J ξ,τ

u ξ,τ J ξ,τ J ξ,τ

u ξ,τ

n n n n n
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Here, n = 3N, where N is the number of particles. In higher orders, lists of each line are 
extended by two units at the expense of the Jacobi fields of higher degrees. A new line 
containing the next order correction to quantum trajectory is also added. 
Table 1 shows the number of dynamic degrees of freedom for orders 0 , 2 , and 4  for the 
potential scattering of a proton (a nucleus) with nuclei. The spin degrees of freedom of the 
nucleons are disregarded. 
 

Reaction 0 2 4  
2H + 2H 24 7 824 499 224 

9Be + 9Be 108 647 568 671 416 128 
p + 238U 1 434 1 477 494 654 254 426 548 725 264 

238U + 238U 2 856 11 660 059 824 7 945 116 177 770 184 

Table 1. The number of dynamical degrees of freedom for the potential scattering of protons 
(nuclei) with nuclei of orders 0 , 2 , and 4 . 

As the number of Jacobi fields involved in the dynamics increases rapidly with the 
increasing order of the expansion, limitations due to the semiclassical expansion being 
restricted by computing power must be considered. Since the mid 1960's, the performance of 
computers has doubled approximately every 15 months. Due to technical peculiarities of 
processor manufacturing, this regime is expected to continue for 5 - 15 years. 
 

 
Fig. 1. Computer power in flops (floating points operations) required to simulate the proton-
nucleus and nucleus-nucleus collisions listed in Table 1 as compared with the growth in 
power of supercomputers (solid line), personal supercomputers (dashed line) and personal 
computers (dot-dashed line) starting from 1990. The orders 2  and 4  of the simulations 
are shown in square brackets.  

The theoretical foundations of the transport models used to simulate heavy-ion collisions 
were created in the late 1980s - early 1990s  (Sorge et al., 1989; Aichelin, 1991; Faessler, 1992; 
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Blaettel et al., 1993). Many uncertainties exist in the estimates of the times of the simulations. 
We assume that simulations of 238U + 238U collisions with a supercomputer required about 
one week in 1990. The calculations are restricted by zero order in the Planck’s constant; 
hence, Jacobi fields are not involved. We are dealing with 2856 dynamical degrees of 
freedom, as indicated in Table 1, plus the spin degrees of freedom of the nucleons and, 
potentially, the number of meson degrees of freedom which depends on the beam energy. 
The calculation time appears to grow linearly with the number of degrees of freedom. 
Hence, we obtain the estimates shown in Figure 1. 
2H + 2H reactions of order 4  and 9Be + 9Be reactions of order 2  could be simulated with 

supercomputers in 1999. 9Be + 9Be reactions of order 4 , p + 238U and 238U + 238U reactions of 

order 2  should be simulated with supercomputers by 2011 - 2016. A delay will occur, if 
computing power is limited to the use of personal supercomputers and computers.  
Since the early 1990s, computing power has increased by about five orders of magnitude. 
This dramatic rise in computing power makes it possible to include Jacobi fields in the 
collision dynamics, to extend beyond the purely classical treatment of phase-space 
trajectories, currently adopted in all of the transport models. 

5. Averaging over the Wigner function using the Monte Carlo method 

The reduction of the evolution problem to the search for quantum trajectories and the 
associated Jacobi fields makes it possible to calculate averages using the Monte Carlo 
method. The problem becomes a task of statistical physics with the modified rules of 
calculations of probabilities and average values.  
The average of the observable associated with an operator f  at time   can be found from the 

evolution equation (Equation (19)) for the associated function ( )f ξ . We then use the 

decomposition (Equation (13)). In the Heisenberg representation, the average is determined 
by the integral of ( )f ξ  multiplied by the Wigner function, given at the initial time 

( 0) ( )W ξ, W ξ  

 ( ) ( ( )) ( )
(2 ) 

2n

n
d ξ

f ξ,τ = f u ξ,τ W ξ
π

 . (35) 

We partition the phase space 2nR  into two regions +  and - , so that  2n
   = R , in 

which the Wigner function is positive and negative, respectively. Therefore, we have 
( ) ( ) ( )+ -W ξ = W ξ - W ξ  with ( ) 0 W ξ  in  . Outside these regions, the functions ( )W ξ  

vanish. As a next step, we generate events in   (i.e., we select the points 2i n
 ξ R ), 

distributed according to the normalised probability densities ( ) / W ξ W , with 

( )
2

2n

n
d ξ

W = W ξ
( π )  

. 

First consider the region + . We generate 2n + 1 numbers i( , )ξ γ  with the values of iξ  

uniformly distributed in +  and the value of γ  uniformly distributed in the interval 
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max(0, / ) W W , where max max( ( )) 
ξ

W = W ξ . If the joint probability density of the variables 

i( , )ξ γ  is given by ( ( ) / ) θ W ξ W - γ , then the marginal probability density of iξ  equals 

max /

0

( ) / ( ( ) / )
W W

W ξ W = θ W ξ W - γ dγ
 

    . 

To obtain a sample  i
aξ  of events a = 1,…,N+  distributed with the probability density 

( ) / W ξ W , it is straightforward to discard those generated numbers that do not satisfy the 
condition ( ) /  W ξ W γ . 
Suppose we generated the numbers i( , )ξ γ  at some step. If ( ) /  W ξ W γ  holds, then we 
shift the number N+ of successful tests by one unit and assign i i

aξ = ξ  for a = N+. Next, we 
calculate the quantum trajectory ( )i

+ au ξ ,τ  and the associated Jacobi fields, find the value of 
( ( ))+ af u ξ ,τ  in the required order of the  -expansion and store the information. If the 

inequality ( ) /  W ξ W γ  is not satisfied, then the event is simply discarded, and we 
generate the next set of numbers i( , )ξ γ . The saved values  i

aξ  are distributed with the 
probability density ( ) / W ξ W . A similar procedure applies to the   region. 
Suppose we have generated N+ and N- successful events  aξ . To find the average value 
of ( )f ξ,τ , the values ( ( )) af u ξ ,τ  should be multiplied by W , divided by the number of 
successful tests and summed to give the following: 

 
N N

a 1 a 1

( ) ( ( )) ( ( ))
 

 


  

  + a a
W W

f ξ,τ f u ξ ,τ f u ξ ,τ
N N

  . (36) 

This equation completes the reduction of the quantum evolution problem to the problem of 
calculating the statistical averages over an ensemble of quantum characteristics and 
associated Jacobi fields. 

6. The scattering problem 

In the scattering problem, elementary particles and bound states are considered on an equal 
footing. We fix the in- and out- scattering states at τ =  and define clusters  of 
elementary particles and bound states with momenta 'p  and ''p  in the initial and final 
asymptotic states, respectively. Wigner functions have the form 

 

( ) (2 ) ( ) ('

'

)

( ) (2 ) ( ( )'












3
in α i α α

i αα
3

out α i α α
i αα

''

W ξ = π δ '- W ξ ,

W ξ = π δ - )W ξ .

p p

p p
 (37) 

Here, ( )i 1 n
1 nξ = q ,...,q ,p ,...,p , ξ  are the variables of the particles in cluster . Each cluster 

contains 
i

1

  particles, in total 

i

1 N
 

  . A similar situation holds for the partition of 

particles in the final state. 
The Wigner functions ( )inW ξ  and ( )outW ξ  are constructed as products of the asymptotic 

Wigner functions of non-interacting elementary particles and bound states. On the right 
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sides of Equation (37), '( ) ''( ) 1    W ξ W ξ  for elementary particles, while Wigner 

functions of bound states must be constructed on the basis of the wave functions of the 
bound states of the clusters. 

The transition probability is the square modulus of the S-matrix element 
2

fiw = out|in . In 

terms of the Wigner function, 

 ( ( )) ( )
(2 ) 

2n

fi out inn
d ξ

w = W u ξ,τ W ξ
π

 , (38) 

where n = 3N. The technique described in the previous sections is fully applicable to 
Equation (38), and it applies to the scattering problem. 

7. Conclusion 

In this chapter, we discussed the basic properties of the formalism of deformation 
quantisation and its applications to the description of the evolution of many-body systems 
in terms of the expansion in powers of the Planck's constant.  
We described the dynamics of quantum systems in phase space. In our presentation, a 
special role is assigned to quantum trajectories i( )u ξ,τ , which appear as the Weyl symbols 
of the operators of the canonical coordinates and momenta in the Heisenberg representation. 
These trajectories differ from the classical trajectories and from the de Broglie - Bohm 
trajectories. The transformation of the coordinate system in phase space, associated with 
quantum trajectories, preserves the Moyal bracket and does not preserve the Poisson 
bracket. In this sense, the quantum trajectories and phase flow, which they define, can be 
regarded as a quantum deformation of classical trajectories and phase flow in the formalism 
of classical Hamiltonian mechanics. The quantum trajectories satisfy the quantum Hamilton 
equations that are infinite-order PDEs. 
Deformation quantisation preserves many features of classical Hamiltonian mechanics. The 
classical Hamilton's equations are the characteristics equations of the classical Liouville 
equation for particle distributions in phase space. Accordingly, the solutions of the 
Hamilton equations contain all of the dynamic information needed to determine the time 
dependence of all of the observables, including the distribution function.  
The same situation occurs in quantum physics. Solutions to the quantum Hamilton 
equations define quantum trajectories, which possess all of the properties of characteristics. 
As a rule, characteristics satisfy a system of first-order ODEs, for example, the system of 
Hamilton’s equations. Characteristics are used further to construct solutions of first-order 
PDEs, such as the classical Liouville equation. The peculiarity of quantum mechanics is that 
quantum trajectories obey infinite-order PDEs, and they also solve evolution equations that 
are infinite-order PDEs. 
In the Heisenberg representation, the evolution of the Weyl symbol of operator can be 
written as 

( ) ( ( ),0)f ξ,τ = f u ξ,τ . 

The relationships of fundamental interest, such as the one shown above, are formulated in 
terms of the -functions that are not local and form a special class of functionals. To date, 
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no effective methods exist for calculating -functions, with the possible exception of the 
expansion in powers of the Planck's constant. We have outlined recipes to eliminate the -
symbols from the arguments of composite functions using the semiclassical expansion.  
For any fixed order of the semiclassical expansion, the quantum characteristics are 
constructed by solving a finite system of first-order ODEs. This important circumstance 
makes it possible to approach the problem of quantum evolution of complex systems using 
numerically efficient ODE integrators. The evolution problem thereby reduces to a 
statistical-mechanics problem of constructing an ensemble of the quantum characteristics 
and the associated Jacobi fields. After constructing the quantum characteristics, the physical 
observables can be found without further recourse to quantum dynamics.  
A clear gap exists between the classical dynamics of a particle and its quantum dynamics. In 
the first case, we are dealing with a finite number of degrees of freedom. In the second case, 
we are dealing per se with field theory and an infinite number of dynamical degrees of 
freedom. We see that this gap is filled with the Jacobi fields of higher orders. By increasing 
the order of  -expansion, the number of Jacobi fields is growing rapidly. This provides, in 
principle, a smooth transition from classical dynamics to quantum dynamics and from 
mechanics to field theory. 
Quantum characteristics are useful for calculating the evolution of complex quantum 
systems - atoms, molecules and nuclei. The main advantage of deformation quantisation is 
its proximity to the classical picture of evolution in phase space. Specific quantum effects, 
such as coherence and non-localities, appear due to the increase in the number of dynamical 
degrees of freedom: Jacobi fields. The method of quantum characteristics allows for the 
consistent inclusion of non-localities and coherence in the transport models. 
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1. Introduction 

Atomic-scale modeling of materials based on first-principles quantum mechanics is playing 
an important role in a broad range of sciences, such as chemistry, biology, and geophysics. 
Part of our aim in this article is to introduce the usefulness of atomic-scale modeling of 
materials to the geoscience field. The structure, dynamics, and evolution of the Earth and 
other planets depend on processes that take place deep in their interiors. However, these 
interiors are inaccessible to direct observation due to extremely high pressures and 
temperatures. Laboratory experiments at high pressures and temperatures can provide 
important information on the physical properties of materials that constitute the Earth’s and 
planets’ interiors. However, recently, a new tool for materials modeling based on first-
principles quantum mechanics has come into use for probing the properties of planetary 
interiors. This method has advanced to the point where it can provide reliable data for 
conditions of extreme high pressure and high temperature that experiments cannot achieve. 
High-pressure experimental and materials modeling studies regarding the physical 
properties of materials were generally presented in separate papers and often with a 
publication gap of a couple of years. A recent approach using both high-pressure 
experimental data and first-principles materials modeling was successful in discovering 
new minerals and predicting the physical properties of many materials at high pressures 
and temperatures. 
This article provides examples of the synergy between first-principles computation and 
high-pressure experiments. First, the argument for the determination of equations of state 
for materials used as pressure calibrants in high-pressure experiments is discussed. In this 
discussion, the advantages and disadvantages of first-principles materials modeling or high-
pressure experiments are described. It is hoped that the reader can understand the reliability 
of both the first-principles materials modeling and the high-pressure experiment. Second, 
some approaches to the discovery of new materials and the exploration of their physical 
properties at extremely high pressures and temperatures are described. 

2. Pressure scale 

It is particularly important to know precisely the temperature and pressure conditions of a 
system in all scientific fields. However, it is often difficult to determine the temperature and 
pressure when they are extremely higher than ambient conditions. The uncertainty of the 
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pressure scale at extremely high temperatures has recently become an open question in 
earth science. Although “Pressure” is an important index in all science fields, the problem of 
the uncertainty of a standard scale for pressure is debated in the small earth science 
community. Extreme pressures and temperatures cause various problems for the earth 
science discipline. It is known that the Earth’s deep interior reaches high temperatures and 
high pressures. Therefore, when we want to know the behavior of materials that constitute 
the Earth’s interior, it is necessary to investigate materials at temperatures of up to ~6000 K 
and pressures of up to ~400 GPa. This is greatly different from other scientific fields. For 
instance, studies at low temperatures are performed quite often in the field of physics, 
because generally it is easy to observe the essence of the physical phenomenon. 
Furthermore, the Earth’s interior is probed by observing seismic wave velocities, and a 
detailed 3D map can be used to investigate it. This is a similar to obtaining a X-ray 
computed tomography (CT) scan of the human body. This approach obtains the change in 
the elastic properties of the Earth’s interior as a 3D map. Thus, we can determine the elastic 
properties of the Earth’s interior as a function of depth (equal to pressure). Our next aim is 
to know what type of material corresponds to the elastic property determined by the 
mapping of seismic wave velocities. However, earth scientists face a problem at this step. It 
is thought that some vast changes in seismic velocities have taken place in the Earth’s 
interior because of phase transitions of materials that constitute the Earth. Therefore, the 
hypothesized phase transitions have been investigated to determine the pressure at which 
they occur (equal to depths) in the laboratory, and this hypothesis has been verified. This 
attempt led to the conclusion that the accuracy of the pressure standards used by earth 
scientists was not satisfactory. This indicates that the accuracy of the observed mapping of 
elastic properties of the Earth’s interior probed by seismic wave velocities is much better 
than that of the pressure determined in laboratory experiments. In the past 10 years, this 
“Pressure” problem has been debated by not only earth scientists, but also by physicists. 
Here, the attempt to research a reliable pressure scale is performed by both an experimental 
and theoretical approach. The combination of both approaches leads to an understanding of 
the uncertainty of each method, and establishes a new pressure scale that is more reliable 
than previous scales. We use a molecular dynamics method based on first-principles 
quantum mechanics for the theoretical approach, and use a method of combining a high-
pressure diamond anvil cell apparatus with synchrotron X-ray powder diffraction for the 
experimental approach. In particular, the first-principles computation approach has 
developed rapidly in recent years and can reliably predict the interesting physical properties 
of materials that cannot be investigated by high-pressure experiments. This chapter 
introduces the reliability of first-principles computation and a new pressure scale obtained 
by combining computational and experimental methods. Moreover, the essential problem of 
previous pressure scales is discussed and has been clarified by using the data from our first-
principles computations. 

2.1 Overview of first-principles techniques 
To begin, a brief introduction of the first-principles quantum mechanics calculation is 
described. The first-principles method can predict various physical properties of materials, 
which is independent of experimental observations. Although it is best if the Schrödinger 
equation can be strictly solved based on quantum mechanics, this approach is impossible 
because most materials have many atoms that contain many electrons. Therefore, 
simplifications and approximations are needed to solve the interaction with many electrons 
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in atoms. Examples based on density functional theory (DFT) are shown. DFT is assumed to 
calculate the physical properties of materials using calculated density of electrons. The 
reader who wants to achieve a detailed understanding of DFT can turn to several 
comprehensive papers (Parr & Yang, 1994; Martin, 2004; Kohanoff, 2006). The reliability of 
DFT calculations depends on the approximation used. A pseudopotential method has been 
used in classical DFT calculations. The computational speed of this technique is very fast, 
although the first-principles calculations need huge computer power. In the case of the 
pseudopotential method, it is assumed that the core electrons play little or no role in the 
energetics of the material, which depends almost entirely on the valence electrons. The core 
electrons are not handled directly, and these are replaced by the potential function of the 
valence electrons. Good results have been obtained in predicting physical properties, 
because the influence of core electrons is small. However, there is a significant problem in 
estimating physical properties under extremely high-pressure conditions. The material is 
compressed at high pressures, and the distance between atoms is shortened. In a word, the 
overlap of the adjacent electrons is nonnegligible. It is expected that the influence of not only 
valence electrons, but also the core electrons, cannot be disregarded when this overlap 
increases. Therefore, it is expected that the pseudopotential method is unsuitable for high-
pressure studies. Recently, the all-electron method has been used to estimate the physical 
properties of materials under high pressures instead of pseudopotential methods. Generally, 
the all-electron method needs huge computing time, and it is difficult to handle materials 
with many atoms and/or complicated chemical composition. We use the Projector 
Augmented Wave (PAW) method, because this is a comparatively fast calculation method 
in the all-electron approach. In most studies of first-principles calculation, the physical 
properties of materials have been estimated in the ground state (at 0 K). However, earth 
scientists want to know the behavior of materials at not only high pressures, but also high 
temperatures, such as those in the interior of the Earth and other planets. Although it is 
possible to extrapolate the physical properties at high temperatures from the ground state, 
this approach has a significant error. Therefore, it is necessary to combine a molecular 
dynamics method that actually deals with the thermal vibration of atoms to estimate 
physical properties at high temperatures. We use a calculation code (Vienna Ab initio 
Simulation Package) that combines the first-principles calculation of the all-electron 
approach with a molecular dynamics method (Kresse & Hafner, 1993; Kresse & Furthmuller, 
1996). It is possible to estimate precisely the physical properties of a material under high 
temperatures and pressures using this method. However, there is a problem in that the 
maximum number of atoms that can be considered is about several hundred, which is much 
smaller than Avogadro’s constant, because this first-principles molecular dynamics method 
needs huge computer resources. Moreover, it is almost impossible to calculate the duration 
of a second in real time; however, the duration of tens of picoseconds can be treated. 
Therefore, it is necessary to estimate thermodynamic parameters under high temperatures 
and pressures carefully. 

2.2 Reliability of the first-principles calculation 
The first-principles calculation is used in various fields, such as physics, chemistry, and 
material science, and huge efforts to increase the accuracy of the calculation have been 
attempted. Therefore, developments concerning the first-principles technique are very 
rapid. However, it is important to determine whether its reliability satisfies our purpose to 
estimate precisely the physical properties of materials at high temperatures and pressures. 
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For example, it is generally known that the values of the lattice parameters of most crystals 
estimated by first-principles calculations have about 1–2% errors compared with 
experimental values at ambient conditions. Next, we will consider the reliability of first-
principles calculations under high pressures, which is our subject of interest. 
In Figure 1, the relationship between the volume and the pressure of a high-pressure phase 
of B2-type sodium chloride (NaCl) is shown. In the case of a crystal that is stable at ambient 
conditions, it is better to obtain physical properties by an experimental method compared 
with estimations by first-principles calculations. However, there is an advantage of first-
principles calculations to estimate the physical properties of materials that cannot be 
recovered at ambient conditions by high-pressure experiments. As the high-pressure phase 
of NaCl cannot be quenched at ambient pressures, a complicated method and/or much time 
is necessary to obtain good experimental data. In such a case, first-principles calculations 
have a significant advantage in estimating the physical properties of materials compared 
with experiments. In this chapter, the reliability of first-principles calculations is considered 
using the example of the high-pressure phase of NaCl. 
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Fig. 1. Comparison of pressure–volume data of B2-type NaCl between high-pressure 
experiments and first-principles calculations. Symbols represent the experimental data 
calculated by different gold pressure scales. Diamonds, Jamieson et al. (1982); triangles, 
Anderson (1989); squares, Takemura (2007) corrected by the ruby scale of Dorogokupets and 
Oganov (2007). Lines represent the calculated data by different approximations: orange, Local 
Density Approximation (LDA); purple, PW91 (Wang & Perdew, 1991); blue, HSE06 (Paier et 
al., 2006); green, AM05 (Armiento & Mattsson, 2005); red, PBEsol (Perdew et al., 2008). 

The volume data for the high-pressure phase of NaCl observed by high-pressure experiments 
at pressures higher than 30 GPa are shown in Figure 1. A high-pressure diamond anvil cell 
apparatus and a synchrotron X-ray diffraction technique were used to measure volume data at 
each pressure increment. NaCl powder was mixed with gold powder where the latter was 
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used as the pressure standard (Ono et al., 2006a). The sample was compressed into a thin 
pellet, and was sandwiched in the pressure-transmitting medium of magnesium oxide (MgO). 
This composite sample was placed into the sample chamber of the high-pressure apparatus. It 
is known that the high-pressure diamond anvil cell-type apparatus has the disadvantage that a 
significant differential stress is accumulated in the sample chamber during the compression of 
the sample. Even if a rare gas is used as the pressure-transmitting medium, the influence of 
differential stress is nonnegligible at pressures higher than ~50 GPa (Takemura, 2007). An 
alternative approach is annealing the sample using an infrared laser to reduce the differential 
stress in the sample chamber at each pressure increment. In Figure 1, three experimental data 
sets are plotted at each volume, because the experimental pressure is calculated using the three 
proposed pressure scales based on the equation of state for gold (Jamieson et al., 1982; 
Anderson, 1989; Takemura, 2007). The colored lines are the volume–pressure curves calculated 
by the first-principles approach. Some types of approximation for the exchange–correlation 
functional have been proposed. It is necessary to know the exchange–correlation energy 
between electrons in the materials when the physical properties of the materials are calculated 
based on the DFT method. As it is difficult to strictly determine the exchange–correlation 
energy, an approximation must be used. The improvement of the exchange–correlation 
functional is important for the reliability of the DFT method. Therefore, the results from the 
different approximations for the exchange–correlation functional are shown in Figure 1. One of 
the classical approximations is the Local Density Approximation (LDA), where the result is 
shown as the orange line. Historically, the LDA was partially successful in predicting the 
physical properties of materials. However, a small difference between the LDA results and the 
experimental data for the volume–pressure curve of B2-type NaCl is confirmed. For instance, it 
is known that the volumes of most crystals calculated by the LDA are slightly smaller than 
those measured experimentally. As the estimations for other physical properties have 
nonnegligible uncertainties in the LDA method, other approximations were proposed to 
improve the exchange–correlation functional. One of the other classical approximations is the 
generalized gradient approximation established by Wang & Perdew (1991) (PW91). The results 
from the PW91 approximation are also shown as the purple line in Figure 1. In the case of the 
PW91 approximation, the calculated volumes are larger than are those from experiments. The 
experimental values of B2-type NaCl are plotted in the intermediate region between the LDA 
and PW91 calculations. According to previous studies, we understand that the physical 
properties of materials can be predicted qualitatively using classical approximations. 
However, it should be noted that further improvements are needed to achieve quantitative 
predictions. For the last decade, several new approximations have been suggested to improve 
the accuracy of the DFT calculation. The volume–pressure data calculated by several new 
approximations are also shown in Figure 1. The results from the new approximations of 
HSE06 (Paier et al., 2006), AM05 (Armiento & Mattsson, 2005), and PBEsol (Perdew et al., 2008) 
are in excellent agreement with experimental values, especially at low pressures. This indicates 
that the computations using the new approximations are likely to produce predictions that are 
more reliable for the various physical properties of materials. 

2.3 Reliability of high-pressure experiments 
Next, we will discuss the reliability of data obtained by high-pressure experiments. The 
three experimental data sets using different pressure standards are plotted in Figure 1. The 
discrepancy between the different pressure standards increases as the pressure increases.  
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Thus, the uncertainty of experimental pressures is significant at extremely high pressures. 
The experimental pressure standards using the equations of state for materials have been 
determined by a dynamic compression experiment (shock-wave compression experiment) 
or a static compression experiment (e.g., diamond anvil cell experiment). Shock-wave 
experimental data have frequently been used to establish and verify a pressure standard. It 
is useful that the three independent parameters (length, density, and time) can be obtained 
from each shock-wave experiment and these parameters can be converted to volume, 
temperature, and pressure, which constitute the equation of state of materials. However, 
there are a couple of problems in the construction of the equation of state used as the 
pressure standard by the shock-wave compression data. One of the problems is that the 
error of the experimental data is great, compared with that of static compression 
experiments. When the equation of state of a solid is determined and used as the pressure 
standard, the data from the shock-wave experiments are used sometimes to analyze small 
changes in thermoelastic parameters, whose changes are smaller than the error in the 
experimental data. This is quite misleading. Another problem is that there is a significant 
problem in that an uncertain parameter, such as the Grüneisen constant, is used to estimate 
the experimental pressure. The dependence of the Grüneisen constant on temperature and 
pressure has to be assumed with great uncertainty. 
On the other hand, static compression experiments also provide invaluable data to 
investigate a pressure standard. Here, we consider the problem of the pressure standards 
proposed from previous studies by using the data of the high-pressure phase of NaCl 
shown in Figure 1. The experimental data in Figure 1 are plotted by using the pressure 
standards that have been frequently used in previous experimental studies. The difference 
in pressure data among the different pressure standards indicates the rough size of error 
for the pressure standard. A comparison of the first-principles calculation and the high-
pressure experiment data leads to a valuable discussion. It has already been pointed out 
that the difference in pressure values obtained by the different approximations used in the 
first-principles calculation indicates the rough size of the error of the calculations. At low 
pressures, it is clear that the error in the numerical results is remarkably large compared 
with the error associated with the experimental data. However, this relationship changes 
at high pressures. The magnitude of the error in the experimental data increases as the 
pressure increases, and at pressures higher than ~100 GPa, it becomes almost the same 
size as the error in the calculation. In addition, this relation is reversed at extremely high 
pressures. It is known that the difficulty in obtaining reliable measurements increases as 
the pressure increases, and the error in experimental data becomes significant at high 
pressures. In the case of the first-principles calculation, the error does not increase as 
highly when compared with experiments conducted at extremely high pressures. 
Although significant uncertainties at ambient conditions of the first-principles 
calculations compared with those of experiments are recognized, the first-principles 
calculations can provide invaluable data in high-pressure science, where there is great 
difficulty with experimental approaches. 
There is another interesting relationship between the calculated and experimental data. At 
low pressures, the experimental data are located in the middle of the calculated data. As the 
pressure increases, the experimental data based on two pressure standards (Jamieson et al., 
1982; Anderson, 1989) shift to the low-volume side compared with the calculated values. 
This indicates that these pressure standards give pressures lower than those from another 
standard (Takemura, 2007) corrected by the new ruby scale of Dorogokupets & Oganov 
(2007). The pressures from Takemura’s standard are in good agreement with those from the 
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first-principles calculations using modern approximations. It is believed that the 
compression data for gold reported recently by Takemura (2007) are among the most 
reliable. The correction of Takemura’s pressure standard is done by one of the reliable ruby 
standards (Dorogokupets & Oganov, 2007). On the other hand, the experimental data that 
significantly deviated from the first-principles calculations are based on the old ruby 
pressure standards (e.g., Mao et al., 1978; Mao et al., 1986). Their pressure standards based 
on the pressure shift in the fluorescence line of the ruby crystal has been used frequently in 
many high-pressure studies, especially at ambient and low temperatures. According to the 
comparison between our numerical results and experimental data, these old ruby standards 
may underestimate the experimental pressure. Recently, the ruby pressure standard has 
been revised using experimental data or numerical results by other research groups 
(Holzapfel, 2003; Kunc et al, 2003; Dewaele et al., 2004; Chijioke et al., 2005; Dorogokupets & 
Oganov, 2007). These studies reported that the old ruby standards have a significant 
uncertainty, which is consistent with our study. The underestimation of the old ruby 
standards seems to be of the order of 5–10%. Finally, we can confirm that the volume–
pressure data of B2-type NaCl based on the modern pressure standard are in excellent 
agreement with those of the first-principles calculations using modern approximations. 

2.4 The problem with the Grüneisen constant 
Some formulas can be used to describe the equation of state for crystals. For instance, the 
Mie–Grüneisen–Debye formula has been frequently used because it is simple and easy to 
apply to various types of systems. Is not there a problem in using this formula? In the Mie–
Grüneisen–Debye formula, a thermal pressure (the increase in pressure by heating a solid at 
constant volume) is expressed as 

 th thP E
V


   (1) 

where Eth, V, and  are the internal energy, the volume, and the Grüneisen constant, 
respectively. The internal energy is given by the Debye’s model, and the Grüneisen constant 
is expressed as a function of the volume. 
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This expression is the Mie–Grüneisen–Debye equation of state. The Grüneisen constant used 
in the Mie–Grüneisen–Debye equation of state has a significant problem. This equation 
indicates that the pressure value might have a large error if the Grüneisen constant has a 
significant uncertainty. In the case of the Mie–Grüneisen–Debye equation of state, the 
temperature dependence of the Grüneisen constant is assumed to be negligible. If the 
temperature dependence of the Grüneisen constant is nonnegligible, the Mie–Grüneisen–
Debye equation of state gives misleading values of pressure in the study of solid crystals. 
Therefore, we verified the dependence of the temperature and the pressure on the 
Grüneisen constant using the first-principles molecular dynamics method (Ono et al., 2008). 
The first-principles molecular dynamics method can directly calculate the internal energy, 
the volume, and the thermal pressure defined in equation (1), and the dependence of the 
temperature and the pressure on the Grüneisen constant can also be calculated by using 
these values. The pressure dependence of the Grüneisen constant included in the Mie–
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Grüneisen–Debye equation of state was confirmed and is demonstrated in Figure 2. On the 
other hand, the temperature dependence neglected in the Mie–Grüneisen–Debye equation  
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Fig. 2. Calculated Grüneisen parameter. The crosses represent the calculated Grüneisen 
parameters at 300, 500 and 2000 K using first-principles molecular dynamics calculations. 
The solid lines denote the linear fit using the least-squares method. 

of state is small at temperatures of up to several hundred degrees. However, the difference 
in the dependence between low and high temperatures could not be neglected especially at 
temperatures higher than 1000 K. According to this behavior, the Mie–Grüneisen–Debye 
equation of state can be applied at several hundred degrees at the highest, when it is 
constructed using experimental data obtained at low temperatures. In other words, the Mie–
Grüneisen–Debye equation of state is not suitable for constructing the equation of state of 
solids applied to a wide range of temperatures, and the pressure standard based on the 
Mie–Grüneisen–Debye equation of state may involve significant uncertainty. According to 
Maxwell’s relations in thermodynamics, the temperature dependence of the Grüneisen 
constant at constant volume is given by 

 ln1
ln

V

V S

C
T T V
            

 (3) 

When the temperature is much higher than the Debye temperature, the Dulong–Petit law 
suggests that the specific heat (CV) is almost constant in solids. That is, the temperature 
dependence of the Grüneisen constant is extremely small at extremely high temperatures. 
As the temperature dependence is not small at middle temperatures, it is possible that an 
obvious difference in the temperature dependence of the Grüneisen constant between low 
and high temperatures can be confirmed. It can explain the change in the Grüneisen 
constant calculated by the first-principles molecular dynamic method. Here, the high-
pressure phase of NaCl, which is a typical crystal constituted by an ionic bond, has been 
investigated. It is thought that similar studies for other materials with different bond types, 
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such as metals or oxides, should be carried out to understand a general rule for the 
temperature dependence of the Grüneisen constant of solids at high pressures. It is 
extremely dangerous to use the Grüneisen constant without understanding its behavior at 
high temperatures, because it is one of the most important parameters to establish the 
equations of state of solids for not only static compression, but also shock-wave 
compression experiments. Indeed, most studies on constructing pressure standards have not 
considered this influence of the Grüneisen constant. 

2.5 New pressure standard obtained by first-principles calculations combined with 
high-pressure experimental data 
It is difficult to construct a new pressure standard that is more reliable than those proposed 
by previous studies using experimental data at high pressures by the first-principles 
method, because it is clear that the errors are not negligible in the current first-principles 
computations. On the other hand, we have understood that there are serious problems in 
determining experimental pressure standards under high pressure because of the 
uncertainties of the ruby pressure standard or the Grüneisen constant. 
Recent approaches to establish a reliable pressure standard employed much previously 
reported experimental data obtained with static and the shock-wave compression methods 
to determine the parameters of the equation of state. However, a serious problem is 
associated with this approach. The previous static compression data used to construct the 
equation of state are affected directly or indirectly by the old ruby pressure standard. As 
described above, a significant error is confirmed in the old ruby pressure standards (Mao et 
al., 1978; Mao et al., 1986), which have been widely used in previous studies. Thus, it is 
thought that most static compression experimental data used in the construction of the 
equation of state for the pressure standard have nonnegligible errors. Therefore, it should 
only be used as fundamental data to construct the equation of state after the problem of the 
old ruby pressure standard is solved. In Figure 1, one of the experimental data of B2-type 
NaCl is plotted using the new gold pressure values corrected by the new ruby pressure 
standard. This is one of the approaches that can be used to avoid the uncertainty of the old 
ruby pressure standard. Moreover, it is also clear that the problem with the Grüneisen 
constant must be solved before previous shock-wave compression experimental data are 
used to establish the equation of state for a reliable pressure standard. 
Recently, an attempt to understand an internal consistency among some pressure standards 
using high-pressure experiments has been reported (Fei et al., 2007), as it is not easy to 
construct a reliable pressure standard. This approach in constructing a reliable pressure 
standard also has a major problem. Each experimental data set has a different uncertainty 
that is dependent on the experimental conditions, such as skill and/or the method. When 
these experimental data are combined to analyze the pressure standard, the uncertainties of 
each data are accumulated. The most reliable gold pressure standard used in Figure 1 is 
established using the compression data of gold reported by Takemura (2007). This 
compressibility of gold was obtained using the correction of the nonhydrostatic pressure 
conditions for the experimental data of Takemura (2001) and Dewaele et al. (2004). Both 
research groups have published many papers concerning the equations of state for solids, 
and their experimental data have been cited repeatedly. Although the reliability of their 
experimental skills is recognized in the community of high-pressure science, it is necessary 
to correct their raw data when we establish a precise pressure standard. This indicates that it 
is quite difficult to compare the experimental data reported by different research groups that 
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have different levels of experimental skills and use different methods. In other words, the 
study of consistency between different pressure standards is difficult without considering 
experimental errors, such as the nonhydrostatic condition. Indeed, investigation into the 
consistency of pressure standards while considering the error of each experiment is rare. 
In order to overcome the difficulties mentioned above, we have performed an alternative 
approach of combining high-pressure experimental data and first-principles calculations to 
make up for each disadvantage. According to our study, the volume–pressure relation of 
B2-type NaCl estimated by first-principles calculations may have nonnegligible errors. The 
reliability of high-pressure experimental data obtained at ambient temperatures is better 
than that of first-principles calculations if an appropriate correction for the experimental 
pressures is done. Therefore, the reliability of the numerical results is improved 
considerably if the pressure–volume–temperature data estimated by the first-principles 
molecular dynamics calculations are corrected based on the experimental data. 
On the other hand, it is known that there is significant uncertainty of the temperature in the 
study of the equation of state of solids reported by previous high-pressure experiments. It is 
difficult experimentally to determine precisely the thermal pressure and the coefficient of 
thermal expansion at high temperatures. In the case of the static compression experiments 
using a large volume press apparatus, a thermocouple is used to measure the sample 
temperature. The thermocouple indicates the sample temperature using a voltage (EMF) 
proportional to the temperature difference between two different metal conductors. 
Although the method has been established at ambient pressures, it is thought that a 
significant uncertainty is introduced at high pressures. The influence of pressure on the EMF 
has to be considered in high-pressure experiments. Indeed, most experimental studies have 
not taken into account this pressure effect on EMF. At higher pressures performed using 
large volume press experiments, laser-heated diamond anvil cell experiments have often 
been performed. In this experimental method, the temperature of the sample is estimated 
using the radiation from the sample during heating. It is known that this temperature 
measurement has an extremely large error. In addition to the large fluctuation of 
temperature (~several hundred K) on heating, the conversion from the spectrum of the 
radiation from the sample to sample temperature has a significant uncertainty that concerns 
thermal emission. If the sample is an ideal black body, it is simple in that the emissivity is 1. 
However, the sample is not a black body. Therefore, it is necessary to know the dependence 
of the emissivity on the temperature, pressure, and wavelength of each material to estimate 
an accurate temperature from the radiation of the sample. These dependencies under high 
pressures and temperatures are uncertain. In the case of the shock-wave compression 
experiments, the experimental data might contain large errors because of the problem 
concerning the Grüneisen constant mentioned above. Thus, there is a significant advantage 
in the use of data calculated by first-principles molecular dynamics to know the dependence 
of the temperature concerning the equations of state for materials. 
From the viewpoint mentioned above, an attempt to establish a reliable equation of state for 
a material to construct a new pressure standard has been performed by combining the data 
from high-pressure experiments at room temperature with the data from first-principles 
molecular dynamics calculations at high temperatures. We have already discussed the 
synergy between the high-pressure experiments and the first-principles computations 
concerning the equation of state for the high-pressure phase of B2-type NaCl. Recently, a 
study on a pressure standard of B2-type NaCl combining both experiments and 
computations has been reported (Ono, 2010a). A study on Ta metal has also been reported 
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(Ono, 2009). The equations of state of B2-type NaCl and Ta have been revised considerably 
by these studies. In contrast, a certain amount of error in the parameters of the equation of 
state concerning the temperature was confirmed in the first-principles molecular dynamics 
calculations. The error in the calculations is thought to be related to the estimation of the 
interaction factor between the electrons. As the first-principles computations clarified the 
interesting features of the ruby pressure standard and the Grüneisen constant, which are 
important factors to determine the precise equation of state for materials, synergy between 
first-principles computations and high-pressure experiments is necessary to establish more 
reliable pressure standards in future studies. 

3. Implications for earth science 

It is believed that the Earth’s and terrestrial planets’ interiors consist of oxides and iron 
compounds. The physical properties of these minerals are important keys to understand 
their structure, composition, and evolution. Recently, the approach of combining high-
pressure experiments with first-principles computations was successful in discovering new 
minerals and predicting physical properties of minerals at high pressures and temperatures. 
In this section, some interesting topics are introduced. 

3.1 High-pressure phase of iron 
The stable structure of iron under ambient conditions is body-centered cubic (bcc) Fe (-Fe). 
The phase transition from bcc to the face-centered cubic (fcc) structure (-Fe) has been 
confirmed to occur at a temperature of 1185 K. Under high pressure, the bcc-Fe transforms 
into the hexagonal close-packed (hcp) structure (-Fe) (Takahashi and Bassett, 1964), and 
this structure seems to be stable over a wide range of pressures and temperatures 
approaching those existing in the Earth’s core. It is known that the magnetic and spin states 
of iron have a major influence on the physical properties of iron. Although the magnetic 
structure of hcp-Fe has been investigated for over four decades, there is an inconsistency 
between experimental and theoretical studies. Mössbauer experiments have been 
interpreted to show the absence of magnetism in hcp-Fe (Williamson et al., 1972; Nasu et al., 
2002). In contrast, the theoretical study based on DFT has shown that the antiferromagnetic 
state is stable at pressures below 50 GPa (Steinle-Neumann et al., 1999). However, it has not 
been clearly explained why it is difficult to identify the antiferromagnetic state 
experimentally. A first possibility is that the significant hysteresis of the bcc–hcp transition 
may disturb the magnetic ordering in hcp-Fe; this is because most previous experiments 
were performed at low temperatures where the accumulated differential stress in the 
sample could not be released. Second, the experimental errors of the Mössbauer technique 
used in previous studies were not negligible, because the antiferromagnetic moment 
predicted by first-principles calculations is small. Third, the quantum spin fluctuation in 
hcp-Fe (Mazin et al., 2002) is too fast for the time scale of the Mössbauer measurement, 
thereby inhibiting detection of a hyperfine field. 
We investigated the magnetic properties of hcp-Fe using first-principles calculations to 
determine the change in the cell parameters. The antiferromagnetic type II structure (space 
group  Pmma) was used in our calculations. The antiferromagnetic type II structure has two 
different Fe sites, and their magnetic moments are opposed to each other. Figure 3 shows 
the change in the ratio of the cell parameters of hcp-Fe as a function of pressure. In the case 
of the antiferromagnetic type II structure, the calculated c/a ratio decreases up to  
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Fig. 3. Changes in the ratio of the cell parameters of hcp-Fe. Black circles represent the c/a 
ratio from experimental data at room temperature. The red line represents the change in c/a 
ratio calculated by the first-principles computations including the spin effect at 0 K. The blue 
line represents the calculated ratio without the spin configuration. 

approximately 55 GPa, and then increases slightly with increasing pressure. In contrast, the 
nonmagnetic type structure without the spin effect shows that the calculated c/a ratio 
increases simply with increasing pressure. Experimental data (Ono et al., 2010b) are also 
shown in Figure 3. Although the ratio of the cell parameters from our first-principles 
calculations is approximately 1% greater than that observed in our experiments, the change 
in the ratio from the calculations for the antiferromagnetic type II structure is in good 
agreement with the experimental data. The change in the ratio of the metastable 
nonmagnetic state calculated without the spin effect is apparently inconsistent with that 
observed in experiments. The magnetic moment of the antiferromagnetic state decreased 
gradually, with increasing pressure, and reached zero at approximately 55 GPa (Ono et al., 
2010b). The disappearance of the magnetic moment indicates that a magnetic transition 
occurred from the antiferromagnetic to the nonmagnetic state. As the spin directions of the 
antiferromagnetic state are orientated perpendicular to the c axis in the hexagonal symmetry 
cell, and the a axis is less compressible than the c axis, it is therefore clear that a magnetic 
transition would induce a change in the rate at which the c/a ratio responds to compression. 
Finally, the disagreement between previous experiments and computations was reconciled 
by our approach using both first-principles calculations and high-pressure experimental 
data. This study indicates that the low-spin hcp-Fe is the most stable phase in the Earth’s 
core at pressures of ~350 GPa. 

3.2 High-pressure phases of MgSiO3 
Seismic measurements infer that the Earth’s interior has two layers, the mantle and the core. 
The core is much denser than the mantle, and consists of iron-rich materials. The chemistry 
of the mantle can be estimated from information obtained from meteorites and 
cosmochemistry. This indicates that the composition of the mantle is close to that of the 
universe as a whole, but with a strong depletion of volatile elements, such as hydrogen, 
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carbon, and rare gases. According to mineralogy studies, the upper mantle must be 
dominated by Mg2SiO4 compounds (Ono, 2008). In contrast, the lower mantle may consist of 
MgSiO3 and MgO. High-pressure experiments and first-principles calculations show that 
MgSiO3 in the lower mantle has a perovskite structure. The nature of the D layer at the base 
of the lower mantle is unique. It has quite a variable thickness and a significant seismic 
anisotropy. The most plausible explanation is that MgSiO3 transforms from a perovskite to a 
CaIrO3-type (post-perovskite) structure in this region (Oganov & Ono, 2004). First-principles 
computations contributed to the discovery of this new mineral. 
At first, the CaIrO3-type structure at high pressures was reported by an experimental study 
of iron oxide (Fe2O3) (Ono et al., 2004; Ono & Ohishi, 2005). It is known that one of the high-
pressure phases of MgSiO3 has an ilmenite-type structure. The ilmenite-type structure is the 
same as that of hematite, which is the stable structure of Fe2O3 at ambient conditions. Thus, 
MgSiO3 may have a transition sequence similar to Fe2O3, and the CaIrO3-type structure 
observed in Fe2O3 may appear in MgSiO3 at high pressures. This assumption has been 
confirmed by first-principles computations. Finally, a new mineral of MgSiO3 has been 
confirmed by both first-principles calculations and high-pressure experiments (Oganov & 
Ono, 2004). The structure of CaIrO3-type MgSiO3 determined experimentally is shown in 
Figure 4. 
 

 
Fig. 4. Crystal structure of CaIrO3-type (post-perovskite) MgSiO3 (JCPDS-0580689). Blue 
spheres are Mg atoms. Polyhedra indicate SiO6 octahedra. The precise structure was 
determined by Rietveld refinement (Ono et al., 2006b). 

The existence of CaIrO3-type MgSiO3 can explain the unique features at the base of the 
Earth’s lower mantle (Ono & Oganov, 2005). Although at present the CaIrO3-type MgSiO3 
phase exists in the Earth’s deep interior, the condition of the Earth in the past was quite 
different from that of present Earth. The Earth’s temperature just after its formation was 
much higher than it is presently. At higher temperatures, the CaIrO3-type MgSiO3 phase 
in the D layer did not exist at the base of the lower mantle, because perovskite-type 
MgSiO3 is stable deep in the Earth’s mantle (Figure 5). Then, the CaIrO3-type MgSiO3 
phase appeared during the cooling of the Earth (Ono & Oganov, 2005). The solid inner 
core, which consists of iron compounds, also appeared during the cooling stage of the 
Earth. 
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Fig. 5. Structure of the Earth’s interior. The temperature of the young Earth was higher than 
that of the present Earth (Ono & Oganov, 2005).  

3.3 High-pressure phases of carbonates 
High-pressure polymorphs of carbon-bearing minerals are important to understand the 
circulation of carbon in the Earth’s interior. Therefore, phase transitions and physical 
properties of high-pressure phases related to carbon have been the object of intense 
experimental investigation. High-pressure phases of carbonates are likely to be one of the 
host minerals for carbon that are present deep in the mantle. However, significant 
discrepancies in the crystal structures of high-pressure carbonates have been reported by 
previous high-pressure studies because of experimental difficulties. Recent first-principles 
computations solved some of these experimental discrepancies and contributed to the 
discovery of several new high-pressure structures. 
 

  
Fig. 6. Crystal structures of high-pressure polymorphs of CaCO3. Left, post-aragonite 
CaCO3; right, pyroxene-like phase. Green, blue, and red spheres are Ca, C, and O atoms, 
respectively. Blue bonds indicate triangular CO3. Red polyhedra indicate CO4 tetrahedra. 
The structure was predicted by first-principles calculations (Oganov et al., 2006). 

Calcium carbonate (CaCO3) is believed to be a major mineral containing carbon that exists 
in the deep interior of the Earth. It is generally known that calcite, which is the stable 
structure of CaCO3 at ambient conditions, transforms to aragonite, which often occurs in 
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metamorphic rocks, formed at high pressures and temperatures that correspond to the 
Earth’s crust and the uppermost upper mantle. It was unknown whether aragonite 
transforms to a new high-pressure phase deep in the mantle. Recently, experimental 
observations indicated that aragonite CaCO3 transformed into a new structure (post-
aragonite phase) (Ono et al., 2005). The estimation of the crystal structure of this new 
CaCO3 had significant uncertainty because of the poor quality of the experimental data. In 
contrast, the recent approach to determine the unknown crystal structure based on first-
principles computation can provide a powerful tool for high-pressure mineralogy. One of 
the successful codes used in this approach is “USPEX” developed by Oganov & Glass 
(2008). The computations using the USPEX code solved the unknown structure of the 
high-pressure phase of CaCO3 (Oganov et al., 2006). This new phase (post-aragonite 
CaCO3) has an orthorhombic symmetry with space group Pmmn, as shown in Figure 6. 
This study also predicted the existence of another unknown structure with C2221 
symmetry, which had not been observed in previous experimental studies. One of the 
interesting features of this new structure is that a change in the coordination number of 
the carbon atom is predicted. All CaCO3 polymorphs reported in previous studies are 
composed of triangular CO3 units. In contrast, the new structure has CO4 tetrahedron 
units (Figure 6). After this prediction, high-pressure experiments confirmed the existence 
of the C2221 structure (pyroxene-like phase) (Ono et al., 2007). The transition pressure 
predicted by first-principles calculations (Oganov et al., 2006) is in excellent agreement 
with that observed experimentally (Ono et al., 2007). This indicates that the prediction 
based on first-principles computations is a powerful tool to investigate the behavior of 
high-pressure phases. 

4. Conclusion 

In conclusion, we considered uncertainties in the computations based on first-principles 
quantum mechanics and high-pressure experiments, and introduced a new attempt to 
construct a pressure standard based on the equations of state of materials using the synergy 
between the first-principles computations and high-pressure experiments. In the present 
situation of first-principles calculations, it is difficult for the computation approach to 
establish the equation of state for materials that are more reliable than that established by 
experimental data. However, the speed of the development in the field of first-principles 
calculation is extremely rapid because of the very high demand from many fields, such as 
physics, chemistry, life science, medicine, and engineering. Therefore, computations based 
on first-principles quantum mechanics will make an important contribution to the problem 
of establishing a pressure standard in the near future. Thus, the importance of the 
combination of experimental and theoretical approaches increases further, and the 
possibility of a significant breakthrough using this synergy can be expected. Indeed, our 
approach combining first-principles computations and high-pressure experiments led to a 
new insight into the interesting behavior of the high-pressure phase of iron. Furthermore, 
the discovery of a new type of iron oxide (Fe2O3) inspired the discovery of a new phase of 
MgSiO3, which contributes to understanding the properties of the bottom of the Earth’s 
mantle. In the case of carbonate, first-principles computations predicted the structure of new 
phases that had not previously been identified experimentally, and helped to identify new 
phases in later experiments. Our investigations into carbonates also contributed to 
understanding the carbon cycle in the Earth’s interior. 
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1. Introduction 

A negative muon is a lepton of the second generation with mass number about times 
heavier than that of electrons, and has a finite lifetime of 62.197 10 sec

  . This lifetime 
is amply long for most experiments. Muon catalyzed fusion (μCF) is a physical phenomenon 
in which the negative muon is able to cause fusion at room temperature and thereby 
eliminating the need for high temperature plasmas or powerful lasers (Owski, 2007; Imo et 
al., 2006; Filchenkov et al., 2005; Filipowicz et al., 2008; Pahlavani & Motevalli, 2008, 2009; 
Marshal, 2001; Bystritsky et al., 2006, Nagamine et al., 1987; Nagamine, 2001; Ponomarev, 
2001). In comparison with (μCF), hot fusion schemes are made difficulty by the electrostatic 
(Coulomb) repulsion between positively charged nuclei. In the two conventional approaches 
to control fusion namely, Magnetic Confinement Fusion (MCF) and Inertial Confinement 
Fusion (ICF), barrier is partially surmounted by energetic collisions. The particle densities, n 
and confinement times,  in the plasma, ( 810T K ) are typically more than ten orders of 
magnitude difference for these two schemes but the product of these quantities required for 
d−t fusion is 14 310 sec/n cm  . For the μCF, effectively 25 310 sec/n cm  , but this criterion 
does not tell the whole truth because, in μCF the objective is to tunnel through the barrier 
without the benefit of kinetic energy. It is known that the d−t fusion by the usual magnetic 
or inertia confinement suffering a lot of difficulties and problems causing from tritium 
handling, neutron damage to materials and neutron-induced radioactivity, etc.  

Study of the muon catalyzed fusion reactions is of great interest and carried out in many 
laboratories of the world recently (Ishida et al., 1999; Petitjean et al., 1992, 1993; Bystritsky et 
al., 2005; Pahlavani & Motevalli, 2008, Bystritsky et al., 2000; Matsuzaki et al., 2001). Muons 
can be created by the decay of pion which is generated in the collision of intermediate-
energy proton with target nuclei. In the muon catalyzed fusion process, after injection of 
muon in to deuterium and tritium mixture, either dμ or a tμ atom is formed, with a 
probability proportional to the relative concentrations of D and T in the mixture. These 
atoms are formed in exited states (Breunlich et al., 1989; Korenman, 1996) and then, due to 
cascade processes, de-excite to ground states. The following reactions illustrate direct 
formation of muonic dμ and tμ atoms 

 ( )dD d e       (1) 
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 ( )   tT t e       (2) 

where e  denotes an electron and d  and t  are the rate of reactions (1) and (2). The 
probability of formation of the dμ atom that will reach its 1s ground state is quantified by the 
parameter 1sq , which is a function of target density, φ and tritium concentration, tC . Also it 
is very sensitive to the dμ kinetic energy distribution (Menshikov & Ponomarev, 1984; 
Czaplinski et al., 1994). The difference between binding energies of tμ and dμ is about 48.1 
eV (Bom et al., 2005). Therefore, the transfer of a muon from dμ to a triton is favorable for all 
temperatures in the given processes 

 48.1 ( )dtd t t d eV       (3) 

with a rate of 82.8 10dt    (Caffery et al., 1987; Jones et al., 1987; Bystritsky et al., 1980; 
Breunlich et al., 1987). The muon mass is about 206.77 times larger than the mass of electron. 
Consequently, the size of a muonic hydrogen atom is smaller than the one of the electronic 
hydrogen by the same rate approximately. These small muonic atoms can approach other 
hydrogen nuclei experiencing reduced Coulomb barrier and then induce d–t fusions. The 
process in which a muonic molecule is formed is the most important step in the μCF. The 
formation of muonic molecules of hydrogen isotopes and their nuclear reactions have been 
the subject of many experimental and theoretical studies (Caffery et al., 1987; Jones et al., 
1987; Bystritsky et al., 1980). In collisions of tμ muonic atoms with D2 and DT molecules, the 
muonic molecules dtμ are formed during a time interval 810 secdt 

 
(Jones et al., 1983; 

Eliezer & Henis, 1994) according to the following resonance reactions 

  2 2 ( )dt dJt D dt d e 
         (4) 

   2 ( )dt tJt DT dt t e 
         (5) 

 dt dt d d dt t tC C        (6) 

in the excited rotational–vibrational (Jν) state with quantum number J=ν=1, where Cd and Ct 
are concentrations of deuterium and tritium nuclei, respectively. A strong resonance effect 
appears due to degeneracy in the excited state of the dtμ and the electron molecule complex. 
The rate of formation of the dtμ molecules has been found to depend strongly on temperature, 
density and on whether collision of the tμ atom occurs with a D2 or a DT molecule (Bom et al., 
2005; Faifman et al., 1996; Ackerbauer et al., 1999). 

In fact, the radius of a muonic hydrogen ion (dtμ) is much smaller (about ≈ 200 times) than a 
usual electron molecule, therefore the nuclei may tunnel the coulomb barrier with a high 
probability and fuse with a rate of ≈ 1012 sec−1 (Bogdanova et al., 1982). Resonant formation of 
the ddμ molecule at very low temperatures was observed in solid and liquid D2 targets 
(Bogdanova et al., 1982). 

Developed methods in this field are based on detailed three-body equations which provide 
a correct description of the quantum mechanical three-body systems (Takahashi & 
Takatsuka, 2006; Kilic, Karr & Hilico, 2004; Nielsen et al., 2001; Pahlavani, 2010). Theoretical 
study of muonic three-body system comprises different theoretical methods, e.g. variational 
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methods (Viviani et al. 1998; Frolov, 1993), Born-Oppenheimer approximation (Beckel et al., 
1970; Kilic et al., 2004) and adiabatic expansion (Fano, 1981; Lin, 1995). 

The Born-Oppenheimer approach assumes the nuclei to be infinitely heavy with respect to 
the negatively charged particle. It should be kept in mind that the following Born-
Oppenheimer approach is the simplest solution to the three-body coulomb system. This 
approach is expected to be a poor approximation for calculations of muonic molecule 
eigenvalues. In this work, we calculate binding energies of the bound states of the ddμ 
muonic three-body system molecule using the adiabatic expansion method. 

2. Adiabatic expansion approximation for the three-body system 

The exact Hamiltonian that describes muonic three-body system can be shown by following 
relation: 

 
1 2

1 22 2 1 2

1 2 1 2 1 2

1 1 1
2 2 2R R r

z z z z z z
H

m m m r R r R R R

 

  

         
  
      (7) 

where 1 and 2 denote the two nuclei, their position is given by R1 and R2, and the muon 
coordinate is rμ. The center of mass coordinate RCM is given by 

 1 1 2 2

1 2
CM

m R m R m r
R

m m m
 



 


 

  
 (8) 

It is convenient to define Jacobi coordinate r and R as follow: 

 1 2
2

R R
r r


 

 
   (9) 

 2 1R R R 
  

 (10) 

where R is the internuclear coordinate and r is the muon coordinate to midpoint between the 
two nuclei. In these coordinates (R; r), the Hamiltonian denoted by equation (7) is change to 
the following operator: 

 1 22 2 2 1 2

1 2 1 2

1 1 1( / 2 )
2 2 2CMR R r r

T

z z z z z z
H

M M m r R r R R R
 

 

           
  
      (11) 

where 

 1 2TM m m m    (12) 

 
1 2

1 1 1
M m m

   (13) 

 
1 2

1 1 1
m m m m
 


 (14) 



 
Some Applications of Quantum Mechanics 

 

112 

 1 2

1 2

m m
m m

 



 (15) 

After separation of variables, the non-relativistic Hamiltonian in units of 1e m   , can 
be given by 

 2 1 2
1

1ˆ( , ) ( )
2 2R r

z z
H o R H

M R


        (16) 

where 

 2 1 2
1

1 2

1
2 r

z z
H

m r r
      (17) 

where ô  represent the five dimensional variable. We use the set ˆ ( , , , , )o      where 
( , , )   define the Euler rotation specifying the body-fixed frame with its unit vectors to 
coincide with the principal axes of the inertia tensor of a three-body system. The hyper-
spheroidal coordinates  and  are easily expressed by the muon-nucleus distances r1, r2 and 
the internuclear distance R, 

 1 2 ( 1 1)r r
R

 
     (18) 

 1 2 (1 )r r
R

 
     (19) 

The three-body Hamiltonian (16) commutes with the total angular momentum operator for 
the three particle system, J, its projection on z-axis, Jz, and the total parity operator, 

( , )P R R r r   . Eigenfunctions of the Hamiltonian in the total angular momentum 
representation reads: 

 , ( , ) ( , , ) ( , , )
J

p JpJp
mJ M Mm

m J

R r F R D  


     (20) 

Adiabatic expansion of radial function, ( , , )Jp
mF R    is usually written in the form: 

 
1

1 1
0

1 0 0
( , , ) ( ; , ) ( ) ( ; , ) ( )

N
Jp JpJp

m Nlm klmNlm klm
N l l

F R R R R dk R R R
    

  
              (21) 

where ( )Jp
i R  describe relative motion of the nuclei. Let us consider the Wigner function, 

( , , )Jp
MmD    which is the eigenstates of J2, Jz and R.J/R with the eigenvalues J(J + 1), M and 

m (Davydov, 1973). It can be transformed under the inversion as follow: 

 ,( , , ) ( , , ) ( 1) ( , , )J J J m J
Mm Mm M mPD D D     

            (22) 
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If 0m  , the resultant Wigner functions would be different, and the angular functions consist 
both even and odd combinations. It is convenient to specify these combinations as follows: 

 ,
2 1( , , ) ( 1) ( , , ) ( 1) ( , , )
4

Jp m J J J
Mm Mm M m

J
D D p D  

 
              (23) 

where ( 1)Jp     is the eigenvalue of the parity operator: 

 Jp Jp
Mm MmPD pD  (24) 

The functions presented in equation (23) (in bracket) are satisfying the following 
orthonormality condition: 

 
' '

' ' ' '' '

2 2 *
0 0 0

sin [ ( , , )] ( , , )Jp J p
Mm JJ pp MM mmM m

d d d D D
  

                 (25) 

If m = 0, both the Wigner functions in (22) are reduced to the ordinary spherical function 
( , )JMY    so that the dependence of ' disappears and the angular functions satisfying the 

conditions (24) and (25) are: 

 , 0
( , )

( , , )
2

JMJp
M m

Y
D 


 

    (26) 

In this case the parity is unambiguously specified by the quantum number J: p=+(-1)J . So, our 
basis functions have the following structure: 

 
( )

( , , , , , ) ( , , ) ( , ; )
Jp
jmJp Jp

jmMmMjm

R
R D R

R


             (27) 

The wave functions ( , , , , , )Jp
Mjm R       describing reactions hμ+h, h = (p, d, t) can be 

decomposed over the solutions ( , ; )jm R    of the Coulomb two-center problem. ( , ; )jm R    
is the complete set of solutions of the Coulomb two-center problem, therefore 

 1 ( , ; ) ( ) ( ) ( , ; ) ( )i i iH R F E R R F         (28) 

describing the muon motion around fixed nuclei separated by a distance R. Ei(R) is the energy 
of a muon in the state i as a function of R. Here we show how to separate the variables through 
the use of the ellipsoidal (or, prolate spheroidal) coordinates 

 2 2( 1)(1 ) cos
2
R

x       (29) 

 2 2( 1)(1 ) sin
2
R

y       (30) 

 
2
R

z   (31) 
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Note that the coordinates ,   and   are orthogonal, and we have the first fundamental form 

 2 2 2 2 2 2 2 2 2 2ds dx dy dz h d h d h d           (32) 

where 

 
2 2 2 2 2

2
2

1
4 1

yx z R
h


   

        
                      

 (33) 

 
2 2 2 2 2

2
2
1

4 1
yx z R

h


   

        
                      

 (34) 

   
2 2 2 2

2 2 21 1
4

yx z R
h  

  
      

                 
 (35) 

Thus 

2 1 h h h h h h

h h h h h h
     

          

           
                          

 

 
2 2 2

2 2
2 2 2 2 2 2

4 ( 1) (1 )
( ) ( 1)(1 )R

  
       

                             
 (36) 

Note that through the coordinate transformation (29-31), we have 

 1 ( )
2
R

r     (37) 

 2 ( )
2
R

r     (38) 

Writing the wave function as ( , ; ) ( ) ( ) ( ) ( )i R F G H F       and changing the variable to 
spheroidal coordinates, equation (28) can be separated into following three one-dimensional 
equations: 

 
2

2
2
( ) ( ) 0d F

m F
d

 


   (39) 

 
2

2 2 2
2

( )( 1) ( ) 0
1

d dG m
A q q G

d d
    

  

  
             

 (40) 

 
2

2 2 2
2

( )(1 ) ( ) 0
1

d dH m
A q q H

d d
    

  

  
            

 (41) 
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where 

 
1 2( )
R

q z z
 


 (42) 

 
1 2( )
R

q z z
 


 (43) 

Note that A and q are unknown parameters and should be obtained from (40) and (41) as 
eigenvalues of the coupled system. Once A and q are obtained, then E can be obtained from 
q2=-R2E/2. By substitution of expression (8) into the Schrödinger equation with Hamiltonian 
(16) and after averaging over spherical angles ( , ) 

 

and the muon state, one obtains the 
radial equation 

 
2

2 2
1 ( 1)( ) ( ) ( ) ( ) 0

2 2
J J

B O ii i
d J J

R V R U R R
M dR MR

  
       

 (44) 

where ( )iE E    is the collision energy and E is the total energy of the system and ( )iE   

is the ground state energy of muonic atom. 1 2( )B O
z z

V E E
R    

 

is the potential 

corresponding to the Born-Oppenheimer approximation and 1 2
1(i

z z
U i H H i

R
  

 
is the 

adiabatic correction. The adiabatic potential VAd(R) is: 

 ( ) ( ) ( )Ad B O iV R V R U R   (45) 

The adiabatic potential VAd(R) for the (ddμ) muonic three-body molecule is calculated in the 
adiabatic expansion method. The adiabatic potential curves and qualitatively similar for 
each of muonic molecules and are displayed for the (ddμ) muonic molecule in Figure 1. 
Results of the calculations of binding energies of the bound states  ,J   of the (ddμ) muonic 
molecule are compared with the results of the other methods used in (Korobov et al., 1992; 
Kilic, Karr & Hilico, 2004) and are given in Table 1. 
 

(Kilic, Karr & Hilico, 2004) (Korobov et al., 1992)Ad 
(Pahlavani&Motevalli, 2008)

States ( , )J   

325.070540  325.0735  325.06  (0 ,0)  

35.844227  35.8436  35.79  (0 ,1)  

226.679792  226.6815  226.62  (1 ,0)  

1.974985  1.97475  1.73  (1 ,1)  

--- 86.4936  86.20  (2 ,0)  

Table 1. Binding energies (eV ) of the states ( , )J  for the dd muonic molecule. 
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Fig. 1. Adiabatic potential curves, ( )AdV R , corresponding to dd  system (Pahlavani & 
Motevalli, 2008). 

The calculated binding energies are in good agreement with the previous calculations by 
other authors using different methods. 

3. Charge-asymmetric three-body system in hyper-spherical elliptic coordinate 
system 

Study of the nuclear synthesis reaction d−3He at low collision energies (below 1 keV) is of 
interest for its applications in nuclear and astrophysics (Belyaev et al.,1995). The relatively 
large energy gain as well as the lack of tritons in the initial and neutrons in the final channel 
makes this reaction a very attractive source of thermonuclear fusion energy. 

The negatively charged energetic muons, after stopping in the D−3He mixture, fuse to d or 
3He in order to form the mesic atoms in excited states. After a sequence of cascade 
transitions lasting about 10−11 sec at Liquid Hydrogen Density (LHD), mesic atoms are 
formed in the ground state (Ponomarev, 1991; Breunlich et al., 1989; Czaplinski et al., 1996). 

The three-body molecules,  3
J

He d


, are formed in collision of (dμ) atoms in ground state 

with helium atoms via so-called electron conversion process, 

  3 3
1( ) ,

J
m

s J
d He He d e e


 

     
 (46) 
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The molecule dissociates quickly with a rate of about 1012 sec−1 to the unbound ground state 
either by a well-known predissociation mechanism, via Auger transition or  -emission 
processes 

    3
1

J
p

sJ
He d d He


    (47) 

    3 3
1

J
A

J s
He d d He e     (48) 

    3 3
1

J

J s
He d d He      (49) 

resulting a hydrogen nucleus and a mesic helium atom. This mechanism leads to transfer 
rates of the order 108 sec−1. The asymmetric-charged 3Heμd molecule undergo nuclear fusion 
via two different channels, 

  3 14.64
J

He d p MeV       (50) 

  3 5 16.7
J

He d Li MeV      (51) 

The muon is released after the fusion and can proceed to cause another fusion. Thus the 
muon works as a catalyst and this cycle can be repeated many times during its lifetime. 

To test the stability of the mesic 3Heμd system, we consider only Coulomb interaction 
between particles. As a starting point, we employ the aim of hyperspherical method to solve 
the multi-dimensional Schrödinger equation numerically for this three-body system. 

 ( )H T V E       (52) 

The wave function,  , can be constructed explicitly by exploiting a specific representation, 
namely, the hyper-spherical adiabatic expansion method. Here, T is the kinetic energy in its 
enter-of-mass coordinate frame, V is the potential energy, and E is the total energy of the 
system. We briefly discuss the general structure of the method and formulate its basic 
equations for a three-body system in hyper-spherical elliptic coordinates. The Hamiltonian 
of this molecule in Jacobian coordinates (R, r) can be shown by the following equation 
(Gusev et al., 1990; Stuchi et al., 2000) 

 1 1( ) ( )
2 2i i

i i
H T V R r V

M m

 
       

 

   (53) 

where iM  and im  are reduced masses. It is convenient to define mass-scaled Jacobian 
vectors, ( ix

  and iy
 ), 

 i
i i

M
x R




  (54) 
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 i
i i

m
y r




   (55) 

Therefore the kinetic energy of the system can be rewritten as, 

  1 ( ) ( )
2 i iT x y


    
   (56) 

In this relation, 3
1/2( / )d totHe

m m m m  is an arbitrary coefficient with dimension of mass 
and index i=1,2,3 refer to a set of Jacobian coordinates ( ix

 , iy
 ). The transformation of 

Jacobian coordinates (e.g. ( 1x
 , 1y

 )) in to another set (e.g. ( 2x
 , 2y

 )), can be done as follows: 

 2 1 1cos sinx x y   
    (57) 

 2 1 1sin cosy x y  
    (58) 

where can be regarded as a rotational parameter which is shown by, 

 
3

3

( )
tan ; 0

2
d He

d He

m m m m
Arc

m m
   

  
   
  

 (59) 

It is convenient to calculate these sets of Jacobian coordinates ( ix
 , iy
 ) for mesic three-body, 

3Heμd system. These three sets should be used as coordinates in configuration space. 
Therefore this system contains six dimensions (d=6). In hyperspherical coordinates, ( , )  , 

2 2x y    represents the size of the system and 0( , )s    , consist of five variables, 
where s  denote a set of two angles defining the shape of the system and 0  refer to a set 
of three angles defining the overall orientation of the three-body system. The Hamiltonian, 
in this coordinate system, will take the following form: 

 
2

5 5
2

1
2

H V 
   

    
         

 (60) 

where 2  is regarded as the square of general angular momentum operator. Our aim is to 
solve the eigenvalue equation ( , ) ( , )H E       in the adiabatic expansion method. The 
idea of adiabatic separability between the hyper-radius   and the hyper-angular variables   
in three-body systems was first exploited by Macek (Macek, 1968) for studying doubly excited 
states of the Helium atom. The wave equation of the system in this method can be defined by: 

 
5
2( , ) ( ) ( , )F 


   


      (61) 

Here the quantum number, j characterizes a channel function, the radial functions, ( )jF   
satisfy the system of coupled ordinary differential equations and ( ; )j   are angular 
functions. For any value of  , these functions form a set of complete orthogonal basis 
which satisfy the following relation: 
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  ( ) ( ; ) 0adH U       (62) 

In this relation, Had is the adiabatic Hamiltonian which is defined by, 

 21
2adH C    (63) 

where C V  is the effective charge of the system. In the first step we try to solve the 
differential equation (62), which contains coordinate   as a parameter. The hyper-spherical 
elliptic coordinates ( , )  on S (projection of the hyper-sphere .const   onto shape space) 
are induced by conical coordinates on its 3D image. The hyper-spherical elliptic coordinates 
( , )   are defined in the following intervals (Tolstikhin et al., 1995) 

2 2      

 2 2 2       (64) 

The definition of ( , )   resembles the representation of plane elliptic coordinates. In order to 
rewrite Eq. (62) in a new set of coordinates, ( , )  , it is necessary to define the square of 

general angular momentum operator, 2  in this set of coordinates, 

   2 16 cos cos2 cos2 cos
cos cos

   
     

     
          

 

 
2 24 sin 2 1 1

cos cos cos cos2 cos2 cos
m 
     

 
     

 (65) 

where m is azimuthal quantum number which is the projection of the general angular 
momentum along body-fixed axis. The potential energy, V, of the system is the sum of three 
inter-particle Coulombian interactions potential, 

 
2 22

2 3 3 11 2

12 23 31

( , )Z Z e Z Z eZ Z e C
V

r r r
 


     (66) 

As it was mentioned earlier, ( , )C V   , is the effective charge. The inter-particle 
distances 12r , 23r  and 31r  are simply defined by the following relations: 

12
3

1 cos cos sin sin
2 2 2 22

r d d
    


                 
       

 

 23
1

sin
4

r
  


   
 

 (67) 

31
2

sin
4

r
  


   
 
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where 
3

2
1

d He

m
d

m m
  


 and 

3

3

d He

d He

m m
d

m m
 



 are mass related constants respectively. The 

effective charge C of 3Heμd molecule as a function of variables   and   is shown in Fig. 2. 
The steep spike at ( , ) ( 2 ,2 ),(2 ,2 )       , corresponds to the strong attractive coulomb 
singularities of effective charge C and associated to collisions in the pairs dμ and 3Heμ, when 
muon is very close to the nucleus. The singular Coulomb repulsion between two positively 
charged particles, are represented by the repulsive wall at the neighborhoods of the 
( , ) (0,2 2 )     .  

 
Fig. 2. Variation of effective charge C as a function of hyper-angular variables 2 2      
and 2 2 2       for the 3Heμd molecule (Pahlavani, Sadeghi, Motevalli & Aqabaei, 
2010). 

By substituting Eqs. (65) and (66) for 2  and V into Eq. (62), we obtain a differential 
equation for adiabatic Hamiltonian that should be solve with appropriate boundary 
conditions. In the case, for infinite small values of  , the solutions of adiabatic Hamiltonian 
(62) can be constructed in the following form (Pahlavani & Motevalli, 2008): 

 ( , ) ( ) ( )N X Y      (68) 

where N is the normalization parameter. With some mathematical simplification, one 
obtains the following set of ordinary differential equations: 
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  
2 22 cos 2 (cos cos2 ) 0

cos cos2
m

L U A X    
 

 
      

  
 (69) 

  
2 22 cos 2 (cos2 cos ) 0

cos2 cos
m

L U A Y    
 

 
      

  
 (70) 

where A is the separation constant and the one-dimensional derivative operators, L  and 
L  are defined as, 

 8 (cos cos2 )d d
L

d d
  

 
   (71) 

 8 (cos2 cos )d d
L

d d
  

 
   (72) 

The resultant equations are subject to the regularity of boundary conditions and can be 
satisfied only for certain values of A and U. The method for solving these set of differential 
equations, are very similar to those equations which we presented in our previous work 
(Pahlavani & Motevalli, 2008), when we have studied the motion of muon in the two-center 
Coulomb problem in prolate spheroidal coordinate system for the symmetric mesic system 
ddμ. By solving these equations, one obtains the functions      ,n n    , where  n  and 

 n   are quantum numbers correspond to number of zeros of the functions  X   and 

 Y   that appeared in Eqs. (69) and (70). These functions form a set of complete bases and 
satisfy the following normalization condition, 

                    
2 2 2

2 2
, ,n n n n n n n nds

  
        

     
 

   
     (73) 

where ds is the surface element that can be defined by, 

  
2

cos cos
4 cos2

ds d d
    


   (74) 

The results of the calculations are displayed graphically in Fig. 3. The normalization factor 
( ) ( )n nN   , is a function of the rotational parameter, at different quantum numbers  n   and 

 n  . Calculated values of adiabatic potential  U   as a function of hyper-radius   have 
been shown in Fig. 4. By substituting Eq. (61) into Eq. (52), one can obtain the following set 
of ordinary differential equations for radial functions ( )jF  : 

 
2

2 2
152 ( ) ( ) ( ) 0

8
d

E U F W F
d   


   

 

         
   

  (75) 

where ( )jU   is the adiabatic potential and the operator ( )jW    has the following form: 
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Fig. 3. Variation of normalization parameter    n nN   for the cases:    , 0,1n n   and 

   , 0,2n n    for the 3Heμd molecule (Pahlavani, Sadeghi, Motevalli & Aqabaei, 2010). 

 
Fig. 4. The adiabatic potential as a function of hyper-radius coordinate for the 3Heμd 
molecule (Pahlavani, Sadeghi, Motevalli & Aqabaei, 2010). 
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 ( ) 2 ( ) ( )d
W R S

d    


   (76) 

The above equation is a set of differential equations coupled by the following nonadiabatic 
terms: 

 ( ) ( ; ) ( ; )R      



  


 (77) 

 
2

2( ) ( ; ) ( ; )S      



  


 (78) 

where the brackets represent integration over the angular variables  . The hyperspherical 
adiabatic approximation amounts to retaining only one term in Eq. (61) (Macek, 1968). Then 
the radial function, ( )jF   satisfies the following differential equation 

 
2

2 2
152 ( ) ( ) 0

8
d

E U W F
d    
 

         
   

 (79) 

This approximation turns out to be surprisingly accurate in the sense that in many situations 
the non adiabatic couplings in Eq. (75) are rather weak. Subject to this reality and 
considering appropriate boundary conditions, we obtain solutions of the differential 
equation (79) numerically. Finally, the calculated values of the binding energies of the 
bound states ( , )J   for the 3Heμd system are compared with available data obtained using 
other methods in Table 2. 
 

(Pahlavani et al., 
2010) 

(Hara & Ishihara, 
1989) 

(Kravtsov et al., 
1993) 

(Gershtein & 
Gusev, 1993) 

 States ( , )J   

70.879  70.74  70.6  69.96   (0 ,0)  

48.391  47.90  48.2  46.75   (1 ,0)  

9.346  --- 9.6  ---  (2 ,0)  

Table 2. Binding energy EB (eV) of the bound states ( , )J   (the quantum numbers of 
rotational-vibrational state) for the 3Heμd molecule. 

The Born–Oppenheimer approach assumes the nuclei to be infinitely heavy with respect to 
the negatively charged particle. It should be kept in mind that Born–Oppenheimer approach 
is the simplest solution to the three-body Coulomb system. Usually, the most accurate 
results for the ground state energy levels of mesic three-body molecule were obtained from 
variational calculations. Comparison of our result for J = 0 with the ones obtained by the 
available variational calculation (Bogdanova et al., 1982) indicates difference that dose not 
exceed 0.2%. One can conclude that this fact supports the validity of adiabatic expansion in 
hyper-spherical elliptic coordinates method which have been used. 



 
Some Applications of Quantum Mechanics 

 

124 

4. Muon stripping in the muon catalyzed fusion 

The sticking of muons to alpha particles after fusion is an unwanted process and eliminates 
muons from the chain of fusion reactions. This process is the main loss mechanism in the 
μCF. The probability of forming a muonic helium ion is called initial sticking probability 

0( 0.912%)S   (Hu, Hale & Cohen, 1994). Where muonic helium ions are formed with an 

energy of 3.47 ( 5.83 . .)in inE MeV v a u    then are slowed down toward thermal energy by 
collision with the surrounding D2 and DT molecules (Jones, 1986). During the same time, as 
long as the kinetic energy exceeds the appropriate threshold ( 10 )thE KeV  , the αμ ion can 
be stripped as a result of collisions. This process is referred to as reactivation and final 
sticking fraction, s that conventionally related to the initial sticking fraction by 

0(1 )S S R   . The reactivation coefficient, R depends upon the stopping power of the 
media and several important cross sections. Stripping process can occur through several 
channels. Collisions of the (αμ)1s ions with the surrounding D2 and DT molecules during the 
slowing down process can result in αμ charge transfer, ionization or excitation of the discrete 
αμ levels. Stripping (charge transfer plus ionization) can also happen from the αμ which is 
the results of the sticking or collisional excitation processes.  

The kinetic of reactivation is described by the various rates in a set of coupled differential 
equations. The fraction of stripped muonic helium ions in terms of population probabilities 
can be written as 

  ( )( )
( ) ( )strip i

istrip
i

dP t
v t P t

dt
 . (80) 

where  ( ) ( )i
strip v t  are velocity-dependent stripping rates from the individual energy levels 

and ( )iP t  are the time dependent population probabilities for the state i of muonic helium 
ion. The time-dependent population probabilities for the state i of the muonic helium ion are 
determined by 

 ( )( )( ) ( ) iii
pop i depop

dP t
P t

dt
    (81) 

where ( )i
pop  and ( )i

depop are the rates of populating and de-populating probability of state i, 
respectively. These rates can be given by the following relations: 
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'
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( ) ( )( ) ( )

( )
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( ) ( )
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( ) ( )
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i i i ii i i
pop raAu de ex i

i n n

i ii i
ex Starki i

i n n i n n
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 



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 

  

 



 

   

 
 (82) 

  ' ' '' '

' ' '
' ' '

( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )i i ii i i

i i i i i i i ii i i i
ra exstrip Audepop de ex Stark

i n n i n n i n n

         


  

         (83) 
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where λAu, λra, λde−ex, λex, λStark and λstrip are the Auger de-excitation, radiative, Coulomb de-
excitation, Coulomb excitation, Stark mixing and striping rates, respectively. In general, λ is 
given by 

 1(sec )N v    (84) 

where N, v and σ are density of surrounded media, relative velocity and cross section for all 
processes under consideration, respectively. The time and velocity dependence in Eq. (80) 
are coupled through the energy-loss equation for muonic helium ion given by 

    
1/2

2dE E
v S E S E

dx m
 

  


 
     

 
 (85) 

where S = −dE/dx is the stopping power of the surrounding media and m  is the mass of 

muonic helium ion. The initial conditions are: (0) 3.47inE E MeV   , (0) 0stP  and the 

initial values of populated levels are determined by the initial sticking, 0 0(0) ( ) /i s sP i  . The 
populations ( )iP t  for 1,2,...,6n  and the l sublevels are treated in detail for 4n  . The 
reactivation coefficient R is equivalent to the stripping fraction ( )stP t at t  . The intensity 
of X-ray transition in muonic helium ion is another quantity which can be measured 
experimentally and calculated along with reactivation coefficient (R). Muons in excited 
levels of the   may de-excite under X-ray emission. The X-ray spectrum depends not 
only on the initial sticking in the atomic levels and the reactivation of the muon but also on 
intra-atomic transitions due to inelastic collisions, internal and external Auger effect and 
Stark mixing. The photon intensity per sticking event is calculated using 

 ( )

( ) ( )
( )

i i

i in n
ra i

i n n i n n

d
P t

dt








  
    (86) 

The number of X-ray photons emitted per fusion is the most useful quantity that can be 
measured experimentally. The X-ray yields for the n n  transition is given by 

 ( ) n n sY n n      (87) 

The calculation for muon stripping probability from αμ+ and the intensity of X-ray 
transitions have been done by solving a set of coupled differential equations numerically. 
The time-dependent population probabilities Pi(t) for 1s, 2s, 2p, 3s, 3p, 3d are shown in Fig. 5 
for a deuterium–tritium target at density φ=1.2 L.H.D (L.H.D≡ Liquid Hydrogen Density = 4.25 
× 1022 atoms/cm3). The initial populations of all excited states are seen to drop to 0 during the 
stopping time, and only 1s orbital stays occupied. 

The time-dependent stripping fraction, Pst(t) and surviving fraction of the initial kinetic 
energy, E/E0  are shown in Fig. 6. Slowing down of αμ+  from 5.83 . .v a u   to 

1 . .v a u  takes about 114 10 (sec)stopt   . This time is longer than the lifetime of the 
excited αμ+ states so that the cascade of αμ+ actually takes place during the slowing down 
process. The calculated reactivation coefficient, final sticking and the average number of X- 
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Fig. 5. The population probabilities Pi(t) as a function of time in a D–T target at density 
φ=1.2 L.H.D (Pahlavani & Motevalli, 2008). 

 
Fig. 6. Stripping fraction, R (heavy solid curve), surviving fraction of initial kinetic energy, 
E/E0 (dashed curve) in a D–T target at density φ = 1.2 L.H.D (Pahlavani & Motevalli, 2008). 
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rays per sticking ( , , )K K K    as a function of density are shown in Fig. 7 for 4LHD  . 
The most K  radiation actually emitted by αμ+ atoms that formed in the ground state. If αμ+ 
is formed in the 2p state more than one (2 1 )K p s   X-ray expected per sticking. Our 
theoretical results for stripping are compared in Table 3 with other theoretical and 
experimental data. It is evident that experimental results of the effective sticking probability 
are smaller than the theoretical calculations, however, our results agree well with 
experiment. 

 
Fig. 7. The density dependence of initial sticking, 0(%)s , final sticking, (%)s , reactivation 
coefficient, R and K-series X-ray per sticking ( , , )K K K   for dtμ fusion ( K  and K  
multiplied by factor 3) (Pahlavani, Motevalli, 2008). 

The density dependence of probability of muon reactivation, final sticking coefficient and 
intensity of X-rays emitted by muonic helium ion have been studied numerically. In order to 
do this, we consider all reactions that separate muon from muonic helium ion, namely 
coulomb excitation and de-excitation, ionization, charge transfer, Stark mixing, radiative 
transitions and Auger de-excitation. Using a set of coupled differential equations, the time 
dependence of muon reactivation coefficient (R) and surviving fraction of the initial 
kinematic energy of αμ+ (E/E0) in the D–T mixture for different fuel density have been 
calculated. The measurement of muonic helium ion X-ray provides an independent method 
to test our knowledge about muon reactivation and sticking. Results based on our 
calculation shown that the muon reactivation increases when the average number of X-rays 
per sticking reduces with increasing density. Our calculated results are in good agreement 
with available experimental data (Ishida, Nagamine et al., 1999; Petitjean et al., 1993; 
Breunlich et al., 1987; Bossy et al., 1987; Jones, Taylor & Andeson, 1993; Nagamine et al., 
1993; Ishida et al., 2001; Petitjean, 2001) at all. 
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Final sticking (%) ReactivationSource

  1.2Density LHD

0.555  0.391(Pahlavani & Motevalli, 2008)

0.57 0.07  ---(Markushin, 1988) 

0.57  0.36(Refelski et al.,1989) 

0.664  0.248(Takahashi, 1987) 

0.59  ---(Cohen, Hale, Hu, 1996) 

  Experimets 
0.39 0.10  ---PSI (Bossy et al., 1987) 

0.45 0.05  ---PSI (Breunlich et al., 1987) 

0.48 0.02 0.04   ---PSI (Petitjean et al., 1993) 

0.43 0.05 0.06   ---LAMPF (Jones, Taylor & Andeson, 1993) 

0.51 0.004  ---KEK (Nagamine et al., 1993) 

0.434 0.030  ---RIKEN-RAL, Liquid (Ishida, Nagamine et al., 1999) 

0.421 0.030   RIKEN-RAL, Solid (Ishida, Nagamine et al., 1999) 

0.532 0.030  ---RIKEN (Ishida et al., 2001) 

  1.45Density LHD  

0.551  0.395  (Pahlavani, Motevalli, 2008) 

  Experiment 
0.505 0.029  ---PSI (Petitjean, 2001) 

Table 3. The reactivation coefficient, R and final sticking, ωs(%) for muonic helium ion in 
different densities. 

5. Conclusions 

The quantum-mechanical three-body problem plays an important role in modern physics by 
providing an appropriate description of three-particle systems in presence of Coulomb and 
nuclear forces. Developed methods in this field are based on detailed three-body equations 
which provide a correct description of the quantum mechanical three-body systems 
(Takahashi & Takatsuka, 2006; Kilic, Karr & Hilico, 2004; Nielsen et al., 2001; Pahlavani, 
2010). Theoretical study of muonic three-body system comprises different theoretical 
methods, e.g. variational methods (Viviani et al. 1998; Frolov, 1993), Born-Oppenheimer 
approximation (Beckel et al., 1970; Kilic et al., 2004) and adiabatic expansion (Fano, 1981; 
Lin, 1995). In this investigation, we presented an appropriate method that enables us to 
study the solutions of Schrodinger equation for 3Heμd system. The adiabatic expansion in 
hyper-spherical elliptic coordinates has shown a good approach for calculating the adiabatic 
potential. Fast convergent of this method led us to obtain precise results for the existence of 
the bound states in 3Heμd three-body molecule. The obtained results for the adiabatic 
potential of this system are comparable with results gathered from other approximation 
methods. 
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The corresponding eigenvalue problem has been solved and the binding energy of this 
system is calculated. The obtained results agreed with the expected values of various 
theoretical methods. This approach can be applied for other three-body systems with variety 
of masses and charges. The obtained results are of significant importance for experimental 
and theoretical investigation of d− 3He nuclear fusion especially at low collision energies. 

In section 4, the obtained results show that the muon cycle coefficient increases almost 
slowly with the density of deuterium and tritium mixture. The energy required to produce a 
muon estimated to be about 5000 MeV. Since each deuterium and tritium fusion generates 
17.6 MeV, we see that the number of catalysis reactions by a muon should be about 285 to 
reach the scientific break-even (1/3 of the commercial break-even). The break-even point is 
reached when the fusion process generates as much energy as was initially put in (i.e., the 
energy output equals the energy input). The output energy of the number of catalysis 
reactions by a muon in it’s lifetime (τμ = 2.197 μsec), is much smaller than the input energy 
required to produce a muon. Therefore, a fusion energy system based on the muon 
catalyzed fusion in deuterium and tritium fuel seems to be viable at plasma conditions with 
fuel densities about 100 times of L.H.D. 

6. References 

Ackerbauer, P. et al. (1999). Nucl. Phys. A, Vol. 652, pp. 311 
Beckel, C.L. et al. (1970). Chem. Phys., Vol. 53, pp. 3681 
Belyaev, V.B. et al. (1995). Nucleonica, Vol. 40, pp. 3 
Bogdanova, L. et al. (1982). Zh. Eksp. Teor. Fiz. Vol. 83, pp. 1615 
Bom, V.R. et al. (2005). J. Exper. Theor. Phys., Vol. 100, pp. 663 
Bossy, H. et al. (1987). Phys. Rev. Lett., Vol. 59, pp. 2864 
Breunlich, W.H. et al. (1989). Annu. Rev. Nucl. Part. Sci., Vol. 39, pp. 311 
Breunlich, W.H. et al. (1987). Phys. Rev. Lett., Vol. 58, pp. 329 
Bystritsky, V.M. et al. (2006). Eur. Phys. J. D, Vol. 38, pp. 455 
Bystritsky, V.M. et al. (2005). Phys. Rev. A, Vol. 71, pp. 032723 
Bystritsky, V.M. et al. (2000). Eur. Phys. J. D, Vol. 8, pp. 75 
Bystritsky, V.M. et al. (1980). Phys. Lett. B Vol. 94, pp. 476 
Caffery, A.J. et al. (1987). Muon Catal. Fusion, Vol. 1, pp. 53 
Cohen, J.S.; Hale, G. M. & Hu, C-Y. (1996). Hyp. Interact., Vol. 101/102, pp. 349 
Czaplinski, W. et al. (1994). Phys. Rev. A, Vol. 50, pp. 525 
Czaplinski, W. et al. (1996). Z. Phys. D, Vol. 37, pp. 283 
Davydov, A.S., Quantum Mechanics, 2nd edn. (Science, Moscow, 1973), Sects. 43, 44, 109, 118 

(in Russian) 
Demin, D.L. et al. (1996). Hyp. Interact. Vol. 101/102, pp. 13 
Eliezer, S. & Henis, Z. (1994). Fusion Technology, Vol. 26, pp. 46 
Faifman, M.P. et al. (1996). Hyp. Interact., Vol. 101/102, pp. 179 
Fano, U. (1981). Phys. Rev. A, Vol. 24, pp. 2402 
Filchenkov, V.V. et al. (2005). Hyp. Interact., Vol. 163, pp. 143 
Filipowicz, M. et al. (2008). Eur. Phys. J. D, Vol. 47, pp. 157  
Frolov, A.M. (1993). J. Phys. B, Vol. 26, pp. L845 
Gershtein, S.S. & Gusev, V.V. (1993). Hyp. Interact., Vol. 82, pp. 185 
Gusev, V.V. et al. (1990). Few-Body Syst., Vol. 9, pp. 137 



 
Some Applications of Quantum Mechanics 

 

130 

Hara, S. & Ishihara, T. (1989). Phys. Rev. A, Vol. 39, pp. 5633 
Hu, C-Y. ; Hale, G.M. & Cohen, J.S. (1994). Phys. Rev. A, Vol. 49, pp. 4481 
Imo, H. et al. (2006). Phys. Lett. B, Vol. 632, pp. 192 
Ishida, K. & Nagamine, K. et al. (1999). RIKEN Rev., Vol. 20, pp. 3 
Ishida, K. et al. (2001). Hyp. Interact., Vol. 138, pp. 225 
Jones, S.E. et al. (1987). Muon Catal. Fusion Vol. 1, pp. 21 
Jones, S.E. et al. (1983). Phys. Rev. Lett. Vol. 51, pp. 1757 
Jones, S.E. (1986). Nature, Vol. 321, pp. 127 
Jones, S. E.; Taylor, S.F. & Andeson, A.N. (1993). Hyp. Interact., Vol. 82, pp. 303 
Kilic, S. ; Karr, J.P. & Hilico, L. (2004). Phys. Rev. A, Vol. 70, pp. 042506 
Knowles, P.E. et al. (1996). Hyp. Interact. Vol. 101/102, pp. 21 
Korobov, V.I. et al. (1992). Muon Catal. Fusion, Vol. 7, pp. 63 
Korenman, G.Y. (1996). Hyp. Interact. Vol. 101/102, pp. 81 
Kravtsov, A.V.; Mikhailov, A.I. & Savichev, V.I. (1993). Hyp. Interact., Vol. 82, pp. 205 
Lin, C.D. (1995). Phys. Rep., Vol. 257, pp. 1 
Macek, J. (1968). J. Phys. B, Vol. 1, pp. 831 
Marshal, G.M. (2001). Hyp. Interact., Vol. 138, pp. 203  
Markushin, V.E. (1988). Muon Catal. Fusion, Vol. 3, pp. 395 
Menshikov, L.I. & Ponomarev, L.I. (1984). JETP Lett. Vol. 39, pp. 663 
Matsuzaki, T. et al. (2003). Phys. Lett. B, Vol. 557, pp. 176 
Matsuzaki, T. et al. (2004). Prog. Theor. Phys. Suppl. Vol. 154, pp. 225 
Matsuzaki, T. et al. (2001). Nucl. Instrum. Meth. Phys. Res. A, Vol. 465, pp. 365 
Nagamine, K. et al. (1987). Muon Catal. Fusion, Vol. 1, pp. 137 
Nagamine, K. (2001). Hyp. Interact., Vol. 138, pp. 5 
Nagamine, K. et al. (1993). Hyp. Interact., Vol. 82, pp. 343 
Nielsen, E. et al. (2001) Phys. Rep., Vol. 347, pp. 373 
Owski, A.A. (2007). Eur. Phys. J. D, Vol. 41, pp. 483 
Pahlavani, M.R. & Motevalli, S.M. (2008). Acta Phys. Pol. B, Vol. 39, pp. 683 
Pahlavani, M.R. & Motevalli, S.M. (2009). Acta Phys. Pol. B, Vol. 40, pp. 319 
Pahlavani, M.R. & Motevalli, S.M. (2008). Appl. Sci., Vol. 10, pp. 199 
Pahlavani, M.R.; Sadeghi, M.; Motevalli, S.M. & Aqabaei, Y. (2010). Mod. Phys. Lett. A, Vol. 

25, No. 5, pp. 389 
Petitjean, C. et al. (1993). Hyp. Interact., Vol. 82, pp. 273 
Petitjean, C. (1992). Nucl. Phys. A, Vol. 543, pp. 79c 
Petitjean, C. (2001). Hyp. Interact., Vol. 138, pp. 191 
Ponomarev, L.I. (2001). Hyp. Interact., Vol. 138, pp. 15 
Ponomarev, L.I. (1991). Contemp. Phys., Vol. 31, pp. 219 
Refelski, H. et al. (1989). Prog. Part. Nucl. Phys., Vol. 22, pp. 297 
Stuchi, T.J. et al. (2000). Phys. Rev. A, Vol. 62, pp. 6 
Takahashi, H. (1987). Muon Catal. Fusion, Vol. 1, pp. 237 
Takahashi, S. & Takatsuka, K. (2006). J. Chem. Phys., Vol. 124, pp. 144101 
Tolstikhin, O.I. et al. (1995). Phys. Rev. Lett., Vol. 74, pp. 3573 
Viviani, M. et al. (1998). Nucl. Phys. A, Vol. 631, pp. 111c 



6 

Application of Quantum Mechanics  
for Computing the Vibrational Spectra of  

Nitrogen Complexes in Silicon Nanomaterials 

Faouzia Sahtout Karoui1 and Abdennaceur Karoui2 

1Department of Computer Science, ISCAE,  
University of Manouba, Manouba 

2Department of Natural Science and Mathematics,  
Shaw University, Raleigh NC 

1Tunisia  
2USA 

1. Introduction 

Nitrogen is a key dopant in silicon for modern electronics including nanoscale devices 
and third generation solar cells. Even at concentration levels as low as 1015 cm-3 nitrogen 
doping can change drastically the physical properties of silicon wafers. For instance, large 
Czochralski silicon (CZ Si) wafers, as well as float zone silicon (FZ Si) wafers for 
photovoltaic applications benefit from nitrogen in silicon by increasing wafer toughness. 
An exceptional hardening due to nitrogen doping enabled the growth of wider silicon 
crystals, in excess of 300 mm in diameter. Nitrogen doped silicon appeared tougher than 
its oxygen doped counterpart, which enabled thinner and lighter wafers, thus easier to 
handle. The hardness is induced by dislocation locking effect (Sumino et al., 1983; Chiou  
et al., 1984; Abe et al., 1884; Murphy et al., 2006), and an increase of the density of as-
grown precipitates which originates from nitrogen-oxygen clusters (Karoui et al., 2004; 
Karoui & Rozgonyi, 2004; Nakai et al., 2001; Karoui et. al., 2002). Nitrogen interacts with 
point defects such as Si vacancy (V) or Si self-interstitial (I), as well as light impurities 
affecting the formation of micro-defects, thereby significantly reducing swirl defects as 
well as vacancy related defects known as D-defects, COPs and voids, and improving the 
gate oxide integrity (GOI) (von Ammon et al., 1996; Tamatsuka et al., 1999; Ikari et al., 
1999). Nitrogen also dramatically enhances oxygen precipitation by interacting with 
oxygen, achieving strong gettering of metallic impurities in the bulk (Ikari et al., 1999; von 
Ammon et al., 2001; Shimura & Hockett, 1986; Sun et al., 1992; Aihara et al., 2000). Fourier 
Transform Infrared Spectroscopy (FTIR) has been extensively used to identify the atomic 
structure of N-related defects and to determine nitrogen concentration in nitrogen doped 
FZ (N-FZ) and CZ (N-CZ) Si wafers (Stein, 1983, 1986; Wagner, 1988; Qi et al., 1991; Yang 
et al., 1998; Qi et al., 1992). FTIR measurements on N-FZ Si wafers shows that 80% of 
nitrogen atoms are paired (N-pairs) and bonded to silicon at concentration much larger 
than the solid solubility limit (Stein, 1983). Most nitrogen atoms are coupled by pair and 
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are fully coordinated with the Si atoms removing any electrical activity (Brower, 1982;  
Stein, 1987). The possible atomic structures for a N-pairs is either in interstitial split 
arrangement as suggested by Jones et al. (Jones et al., 1994), or in substitutional position, 
occupying either a vacancy (V) or a divacancy (V2), forming nitrogen-vacancy (N-V) 
complexes (Stein, 1983, 1985). N-V complexes have been identified by DLTS measurement 
(Fuma et al., 1996), platinum diffusion (Quast et al., 2000) and positron annihilation (Shaik 
Adam et al., 2001). 
As shown in Table 1, the FTIR absorption bands 771 cm-1, 967 cm-1 at low temperature (< 15 
K) and 766 cm-1, 963 cm-1 at room temperature (RT) relate to the localized modes of N-pairs 
(Stein, 1983; Wagner, 1988; Qi et al., 1991 ). Two additional FTIR lines, 551 cm-1 and 653 cm-1 
(RT), have been detected after laser annealing of N-implanted FZ Si and have been 
attributed to N subtitutional (Stein, 1985). The absorption coefficient of line 963 cm-1 is often 
used in the calibration curve derived by Itoh et al (Itoh et al., 1985) to measure nitrogen 
concentration in N-FZ and N-CZ Si wafers: (1.83±0.24)x1017x 963 at/cm-3. 
In N-CZ Si or O-rich N-FZ Si, some of the grown-in N-pairs interact with oxygen forming 
nitrogen-oxygen or nitrogen-vacancy-oxygen complexes (that we will refer later as N-O 
complex) hence, reducing the number of N-N centers (Stein, 1986; Wagner, 1988; Qi et al., 
1991; Yang et al., 1998; Qi et al., 1992). N-O complexes form between 400 oC and 700 oC. 
Beyond 700o C these complexes dissociate, emitting the oxygen interstitial atom and leaving 
the N-pair intact. During subsequent cooling the N-O complexes form again (Wagner, 1988; 
Qi et al., 1991; Qi et al., 1992; Berg Rasmussen et al., 1996). Both N-N and N-O complexes 
FTIR response anneal out above 1000oC. N-O complexes are believed to strongly control the 
mechanisms of formation of oxygen precipitates and voids in N-doped silicon (Karoui et al., 
2004; Karoui & Rozgonyi, 2004; Nakai et al., 2001; Karoui et. al., 2002; Von Ammon et al., 
2001; Shimura & Hockett, 1986; Stein, 1986; Hara et al., 1989; Rozgonyi et al., 2002). As 
shown in Table 1, the formation of N-O defects results in several additional infrared 
absorption bands (Wagner, 1988; Qi et al., 1991; Qi et al., 1992). FTIR absorption lines  for N-
O defects (at T < 15K) are 806, 815, 1000, 1021, and 1031 cm-1. An additional weak line at 739 
cm-1 has been observed at low temperature in FZ Si samples implanted with nitrogen and 
oxygen (Berg Rasmussen et al., 1996). The occurrence of these additional infrared (IR) lines 
affects the measurement of nitrogen concentration in N-CZ Si. The calibration relationship 
derived by Itoh has been revised by Qi et al (Qi et al., 1992) based on FTIR measurements as 
follow: (1.83±0.24) x 1017x (963 + 1.4801) at/cm-3 (300K) which take into consideration the N-
O complexes to whose have been assigned the 801 cm-1 absorption line. Despite the 

technological importance of N-doped Si, little is known about the atomistic structure of N-O 
complexes often resulting in an inaccurate evaluation of the nitrogen content in silicon. The 
mechanisms by which nitrogen affects O-precipitation and vacancy aggregation in N-doped 
silicon remain unclear and direct experimental evidence are still needed. Although, several 
papers report on the electronic and atomic structure of N-pairs complexes (Jones et al., 1994; 
Ewels, C., 1997; Sawada & Kawakami, 2000; Kageshima & al., 2000; Goss et al., 2003; Karoui 
et al., 2003), theoretical studies on N-O complexes atomic structure, stability and vibrational 
spectra remain scarce (Ewels, C., 1997). Few of them report on the vibrational spectra of N-
pair (Ewels, C., 1997; Goss et al., 2003; Jones et al., 1994). 
Studying the atomic structure and vibrational spectra of nitrogen-oxygen-vacancy 
complexes will help us to comprehend  how nitrogen, oxygen, and vacancies interact, and 
how nitrogen effects oxygen precipitation and void formation during crystal growth and 
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wafer processing. Therefore, to correctly assess nitrogen concentration in N-doped Si 
crystals. In the present work, we have investigated the formation energy and vibrational 
spectra of several structures of major grown-in nitrogen-vacancy-oxygen, using quantum 
mechanics Density Functional Theory (DFT) as implemented in DMol3 package (Delley, 
1990; 2000) and, the semi-empirical Modified Neglect of Diatomic Overlap Parametric 
Method (MNDO) in the restricted Hartree-Fock approximation (UniChem; Dewar et al., 
1985). We will start by presenting the theory behind the quantum mechanics computation of 
vibrational spectra (Bernath, 1995; Harris & Bertolucci, 1985; Atkins & Friedman, 2011). 
Then we will detail our study followed by results and discussion.  
 

 FTIR Measurement (cm-1) 
15T K  RT  

N-pair                   771, 967                                        766, 963 
                                  (551, 653, 782, 790)* 

  
N-O 806, 815, 1000, 1021, 1031                   801, 810, 996, 1018, 1026 

739* 
* Detected in N-FZ implanted wafers. 

Table 1. Measured FTIR spectra for N-N and N-O defects (Stein, 1983; Wagner, 1988; Qi et 
al., 1991; Qi et al., 1992). 

2. Experimental measurement of vibrational spectra 

Spectroscopy is the study of the interaction of electromagnetic radiation with matter. 
Molecules, consisting of electrically charged nuclei and electrons, may interact with the 
oscillating electric and magnetic fields of light and absorb the energy carried by the light. 
The molecules does not interact with all light that comes its way, but only with light that 
carries the right amount of energy to promote the molecule from one discret energy level to 
another. The light can be absorbed and a ground state molecule can be promoted to its first 
excited vibrational state. When this happen we say that the molecule has made a transition 
between the ground state and the first excited vibrational state.  
Vibrational spectra are measured by two different techniques, Infrared (IR) spectroscopy and 
Raman spectroscopy. In IR spectroscopy, the infrared spectrum of a sample is recorded by 
passing a beam of infrared light through the sample. When the frequency of the IR is the 
same as the vibrational frequency of a bond, absorption occurs. Examination of the 
transmitted light reveals how much energy was absorbed at each frequency (or 
wavelength). This can be achieved by scanning the wavelength range using a 
monochromator. Alternatively, the whole wavelength range is measured at once using a 
Fourier transform instrument, hence the name of Fourier Transform Infrared Spectroscopy 
(FTIR). Then, a transmittance or absorbance spectrum is generated using a dedicated 
procedure. Analysis of the position, shape and intensity of peaks in this spectrum reveals 
details about the molecular structure of the sample. At frequencies corresponding to 
vibrational energies of the sample, some light is absorbed and less light is transmitted than 
at frequencies which do not correspond to vibrationals energies of the molecule. In order to 
compensate for absorption and scattering of the light by the sample cell, the incident light is 
split into two beams, one of which goes through the sample, and the other is passed through 
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a reference cell. Transmittance is then defined as Is/Ir where Is is the intensity of light 
passing through the sample cell, and Ir is the intensity of light passing through the reference 
cell. 
In Raman spectroscopy we do not observe transmitted light but light scattered by the sample. 
The  scattered light may be observed from any convenient direction with respect to the 
incident light. Light of a single frequency, monochromatic light, must be used for a Raman 
experiment. This phenomenon in which light of frequency 0 is scattered in all directions is 
called Rayleigh scattering. A very small fraction of the scattered light is not of frequency 0. 
The process which produce light of frequency other than 0 is called Raman scattering. The 
amount of light of frequency less than 0 is much greater than that with frequency higher 
than 0. The former scattered light radiation is called Stokes radiation and the latter is called 
anti-stokes radiation. In Raman spectroscopy, light of greater value than infrared 
frequencies is used and we measure the difference between the frequency of the incident 
light and the one of the Raman scattered light. The molecular vibrations stimulated in the 
Raman process are not necessarily the same as those excited by the absorption of infrared 
light. Therefore, the IR and Raman spectra will usually look different and will complement 
each other. 
What exactly happens at a molecular level? 
Infrared Spectroscopy: Infrared absorption spectroscopy deals with vibrations of chemical 
bonds. Light of infrared frequencies can generally promote molecules from one vibrational 
energy level to another, which allows characterization of atomic bondings and enables 
identification of the molecule composition and its atomic structure. These capabilities make 
the IR spectroscopy a powerful tool. Only photons that carry the right amount of energy 
promote the molecule from one discrete energy level to another.  
First we need to describe the permanent dipole moment of a molecule. If two particles of 
charges +q and -q are separated by a distance r, the permanent electric dipole moment, , is 
given by: 

  =  (1) ݎݍ

Polyatomic molecules with a center of inversion will not have a dipole moment whereas 
noncentrosymmetric molecules will usually have one. If we consider a heteronuclear 
diatomic molecule vibrating at a particular frequency, the molecular dipole moment also 
oscillates about its quilibrium as the two atoms move back and forth. This oscillating dipole 
can absorb energy from an oscillating electric field only if the field oscillates at the same 
frequency. The absorption of energy from the light wave by the oscillating permanent dipole 
is a molecular explanation of IR spectroscopy. 
Raman spectroscopy: If a molecule is placed in an electric field, f, a dipole moment, ind , is 
induced in the molecule because the nuclei are attracted toward the negative pole of field, 
and the electrons are attracted the opposite way. The induced dipole moment is 
proportional to the field strength , which is called the polarizability of the molecule: 

 ୧୬ୢ = f  (2) 

All atoms and molecules will have non-zero polarizability even if they have no permanent 
dipole moment. A light wave electric field oscillates at a certain point in space according to 
the equation: 
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 ݂ = ଴݂ܿ2ݏ݋(3) ݐ 

where f0 is the maximum value of the field,  the frequency, and t is time. The induced 
dipole moment in the oscillating field is: 

 ୧୬ୢ =  ଴݂ܿ2ݏ݋(4)  ݐ 

 varies at the natural vibrational frequency of the bond: 

  = ଴ + ()ܿ2ݏ݋଴(5)  ݐ 

where ଴ is the equilibrium polarizability,  is its maximum variation, and ଴ is the natural 
vibrational frequency. The induced dipole moment is then: 

 ୧୬ୢ = ଴ ଴݂cos2t + (1 2)f଴ሾcos2(+ ଴)t + cos2( − ଴)tሿ⁄  (6) 

Eq. 6 shows that the induced dipole moment will oscillate with components of frequency , 
− ଴ and + ଴. The oscillating electric dipole radiates electromagnetic waves of frequency 
 (Rayleigh scattering),  − ଴ (Stokes radiation) and  + ଴ (anti-Stokes radiation).  

3. Symmetry point groups 

3.1 Introduction 
Vibrational spectroscopy and molecular orbital theory make extensive use of molecular 
symmetry. While it is true that most molecules considered as a whole don't possess any 
symmetry, many molecules do have local symmetry. In many instances, only a region 
within the molecule i.e. few atoms and its neighbors, needs to be considered to understand 
the spectroscopic behavior of this region of the molecule. Studying carefully the symmetry 
of the molecule reduces significantly the number of energy levels one must deal with. The 
more symmetric the molecule, the fewer different energy levels it has, and the greater 
degeneracies of those levels. Symmetry is even powerful than that, because it helps us 
decide which transitions between energy levels are possible. That is to say a molecule may 
not be able to absorb light even if that light has precisely the correct energy to span two 
energy levels of the molecule. The symmetries of the states must be compatible in order that 
the molecule may absorb light. The selection rules which tell us which transitions are 
possible, will be one of the most important uses of symmetry and will be explained as we 
proceed.  

3.2 Symmetry operations and molecules 
Point symmetry groups are groups whose elements are the symmetry operations of 
molecules. This group have all the properties of a group in mathematics. They are called 
point groups because the center of mass of the molecule remains unchanged under all 
symmetry operations and all of the symmetry elements meet at this point. To determine the 
symmetry point group of a molecule is very important, because all symmetry related 
properties are dependent on the symmetry point group of the molecule. A symmetry 
operation is an operation that leaves an object apparently unchanged. Every object has at 
least one symmetry operation: the identity , the operation of doing nothing. To each 
symmetry operation there corresponds a symmetry element, the point, line, or plane with 
respect to which the operation is carried. There are five types of symmetry operations that 
leave the object apparently unchanged and five corresponding types of symmetry element: 
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E : The identity operation, the act of doing nothing. The corresponding symmetry element is 
the object itself. 
Cn : An n-fold rotation, the operation, a rotation by 2/n around an axis of symmetry. 
 : A reflection in a mirror plane. When the mirror plane includes the principal axis of 
symmetry, it is termed a vertical plane and denoted v. If the principal axis is perpendicular 
to the mirror plane, then the latter symetry element is called a horizontal plane  and denoted 
h. A dihedral plane, d, is a vertical plane that bisects the angle between two C2 axes that lie 
perpendicular to the principle axis. 
i: An inversion, the operation through a center of symmetry. The inversion operation consists 
of taking each point of an object through its center and out to an equal distance on the other 
side. 
Sn: An n-fold improper rotation about an axis of improper rotation. It is a composite operation 
consisting of an n-fold rotation followed by a horizontal reflection in a plane perpendicular 
to the n-fold axis. Particular cases are S1 which is equivalent to a reflection and S2 is 
equivalent to an inversion. 
Lets consider the group C2h which is, as we will show later, the point group associated with 
the N2 molecule in Si. Point group C2h has four members, {E, C2, h and i}. E is the identity 
operation which leave the molecule unchanged; C2 is a n-fold (n=2 here) rotation by 2/n 
(180o for C2) around an axis of symmetry; h is a reflection in a mirror plane (here a plane 
perpendicular to the principal axis C2). All the symmetry operations of a molecule as a 
group can be written in the form of group multification table and they obey all the 
properties of a group. The product of any two operations must be a member of the group. 
For example the product of two C2 operations is the identity operation E which is indeed a 
member of the group. Also ܥଶ ∙ ௛ = ݅, i is also a member of the group. Table 2 shows the 
complete multiplication table for the point group C2h. 
 

C2h E C2 h i 
E E C2 h i
C2 C2 E i h 
h h i E C2 
i i h C2 E

Table 2. Multiplication Table for the Point Group C2h.  

However, to further determine the symmetry properties of molecular orbitals and 
vibrational modes we need character tables which will be introduced next. 

3.3 Characters and character tables 
We can use matrices as representations of symmetry operations. Let's consider the 

symmetry group (C2h) of N2 defect. Consider a vector ݒଵሬሬሬሬԦ ൭ݔଵݕଵݖଵ൱, assuming that the principal 

axis C2 is the z axis, using matrices representations, ݒଵሬሬሬሬԦ will transform as follow through the 
different operations of the group: 

 ൥1 0 00 1 00 0 1൩ ∙ ൥ݔଵݕଵݖଵ൩ = ൥ݔଵݕଵݖଵ൩  (7) 
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 E         . ݒଵሬሬሬሬԦ   =         ݒଵሬሬሬሬԦ (8) 

 ൥−1 0 00 −1 00 0 −1൩ ∙ ൥ݔଵݕଵݖଵ൩ = ൥−ݔଵ−ݕଵ−ݖଵ൩ (9) 

  i         . ݒଵሬሬሬሬԦ           =      -ݒଵሬሬሬሬԦ  (10) 

h leaves the x and y coordinates unchanged but changes z to -z: 

 ൥1 0 00 1 00 0 −1൩ ∙ ൥ݔଵݕଵݖଵ൩ = ൥   (11)			ଵ൩ݖ−ଵݕଵݔ

 h         . ݒଵሬሬሬሬԦ   =         -ݒଶሬሬሬሬԦ  (12) 

and C2 which correspond to 180o rotation around the z axis leaves the z coordinate 
unchanged but changes the x and y coordinates as follow: 

 ൥ ݏ݋ܿ ݊݅ݏ ݊݅ݏ−0 ݏ݋ܿ 00 0 1൩ ∙ ൥ݔଵݕଵݖଵ൩ = ൥−1 0 00 −1 00 0 1൩ ∙ ൥ݔଵݕଵݖଵ൩ = ൥−ݔଵ−ݕଵݖଵ ൩  (13) 

 R          .  ݒଵሬሬሬሬԦ   = ݒଶሬሬሬሬԦ  (14) 

The four matrices form a mathematical group which obeys the same multiplication table as 
the operations. Therefore, each matrix has an inverse matrix just as each operation of a 
group has an inverse operation. Using a matrix and its inverse we can perform similarity 
transformations with matrices: 

ܤ  = ܳିଵ ∙ ܣ ∙ ܳ  (15) 

A and B are said to be conjugate just as symmetry operations related by similarity 
transformations are said to be conjugate. Through similarity of transformation, we can 
define the reducible and irreducible representations of a group. If a matrix representation A 
can be transferred to block-factored matrix, a matrix composed of blocks (A1, A2, A3) at the 
diagonal and zero in any other position, by similarity transformation, A is called the 
reducible representation of the group. If blocks (A1, A2, A3) cannot be further transferred to 
block-factored matrix through similarity transformation, A1, A2, A3 are called irreducible 
representations of the group. The sum of the trace of A1, A2, A3 is called the characters of 
this representation. Reducible representations can be reduced to irreducible representations 
and irreducible representations cannot be reduced further. The complete list of characters of 
all possible irreducible representations of a group is called a character table. There are only a 
finite number of irreducible representations for group of finite order. We will see that these 
tables are of great importance and usefullness when analysing the vibration modes of 
molecules.  
The members of a group can be divided into classes. Two members of a group, P and R, 
belong to the same class if they are conjugate to each other. As an example, all possible 
classes associated with the symmetry group C2h(N2) defect are the following: 
- E is in a class by itself since A-1EA= A-1(EA)= A-1A=E for any operation A of the group. 
- C2: C2-1C2C2= C2-1(C2C2) = C2(E) = C2  
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- i-1C2i = i-1(C2i) = i(h) = C2 
- h -1C2h = h -1(C2h) = h (i) = C2 
Hence, for any operation A of the group we have A-1 C2A= A-1(C2A)= A-1A= C2. In a same 
way, based on the multiplication Table 2, we can verify that A-1iA= A-1(iA)=A-1A=i and A-1h 
A=A-1(hA)= A-1A=h. Therefore, we have four classes for the group symmetry C2h: {E}, {C2}, 
{i}, {h}. Each class correspond to an irreducible representation. 
We have as much as irreducible representations as classes of operations in the group. The 
character of an irreducible representation is the trace, the sum of the diagonal elements, of 
the matrix representing the irreducible representation. The sum of the traces equal the 
order of the group. All characters of a group are given in a table, Table 3. This table is 
divided in several areas. The main part contains the characters. On the left are the names 
of the irreducible representations, known as Mulliken symbols. Conventionally, we use 
the letters A, B, E, and T (or F in some tables). A and B are one-dimentional. E is two-
dimensional and T is three-dimensional. The dimension of an irreducible representation is 
the dimension of any of its matrices. Since the representation of the operation E is always 
the identity matrix, the character of E is always the dimension of the irreducible 
representation. The difference between A and B is that the character under the principal 
rotational operation, Cn, is always +1 for A and -1 for B representations. The subscript 
1,2,3, etc.,which may be appear with A, B, E or T can be considered arbitrary label. The 
subscript g (German word gerade meaning even) means the representation is symmetric 
with respect to inversion and, the subscript u (German word ungerade meaning odd) means 
that the representation is antisymmetric to inversion. Any p or f orbital is transformed 
into minus upon inversion, is therefore a u function. A d orbital is transformed into itself 
upon inversion and is therefore, a g function. In a similar way, the superscripts ' and " 
denote irreducible representations which are respectively, symmetric and antisymmetric 
with respect to reflection through a horizontal mirror plane. The two columns on the right 
side of the table contain basis functions for the irreducible representations. The character 
table for the point group C2h (N2 defect) is as follow (Bernath, 1995; Harris & Bertolucci, 
1985)  
 

C2h E C2 i h   
Ag 1 1 1 1 Rz x2, y2, z, xy2 
Bg 1 1 1 -1 Rx, Ry xz, yz 
Au 1 -1 1 1 z  
Bu 1 -1 1 -1 x, y  

Table 3. Character Table for the Point Group C2h : N2 Defect. 

3.4 Atomic orbitals and symmetry 
One-electron wavefunctions in atoms are called atomic orbitals. Atomic orbitals with l=0 
are called s-orbitals, those with l = 1 are called p-orbitals, those with l = 2 are called d-
orbitals, and those with l = 3 are called f-orbitals. We are mainly interested here to s- and 
p-orbitals because the atoms of interest namely nitrogen, oxygen, and Si atoms are 
bonded to Si neighbors by sp3 hybrid electron orbital that protrude in a tetrahedral shape. 
The s-orbitals are spherically symetrical; the three real orbitals px, py, pz have the same 
double-lobed shape, but are aligned with the x-, y-, and z-axes, respectively; they are 
shown in Fig. 1.  



Application of Quantum Mechanics for Computing the  
Vibrational Spectra of Nitrogen Complexes in Silicon Nanomaterials 139 

 
Fig. 1. The s, px, py, pz atomic orbitals. 

As stated before, the two columns on the right side of the table contain basis functions for 
the irreducible representations. These basis functions have the same symmetry properties as 
the atomic orbitals which bear the same names. To understand what a basis function is, let's 
go back to the matrix representations for the operations of C2h (N2 defect). The E operation 
does nothing; the C2 operation about the z axis leaves the z coordinate of any point 
unchanged, but changes the x and y coordinates according to R; the h is a reflection in the 
mirror plane (x,y)  to z (C2 axis); and finally the inversion operation i changes each 
coordinate into minus itself. The atomic orbitals will obey the same multiplication table as 
the operations, Fig. 2: 

 

 
Fig. 2. Orbital py through the operation of symmetry point group C2h. 
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We can see that py orbital changes as Bu irreducible representation through the operations of 
the group C2h : (E, C2, i, h) : (1,-1,-1,1) ≡ {Bu}. 

4. Vibrational spectroscopy modeling 

4.1 Introduction 
In IR spectroscopy, molecules are modeled as an assembly of oscillators which interact with 
the electric and magnetic fields of incident light and absorb energy of incident photons. The 
total energy of a single molecule, whether in free space or embedded in liquid or solid 
material, involves different types of molecule motions and behaviors. Hence, the molecule 
energy is decomposed in:  (i) translational energy levels, which are related to the movement 
of the molecule as a whole. As these levels are very close to each other, they appear 
continuous, (ii) rotational energy levels, they implicate rotation of the whole molecule, (iii) 
vibrational energy levels, which are due to the vibration of chemical bonds within the 
molecule, and (iv) the electronic energy associated to the electrons of the molecule. To better 
comprehend the vibrational spectroscopy modeling we will start with diatomic molecules 
and then generalize the model to polyatomic molecules. 

4.2 The vibration modeling of diatomic molecules 
4.2.1 Introduction 
The solution of the Schrödinger equation for a diatomic molecule plays an important role in 
spectroscopy. In addition, the vibrational spectra of diatomic molecules illustrate most of the 
fundamental principles which apply to complicated polyatomic molecules. Diatomic 
molecules can be simulated as shown in Fig. 3. The center of mass of a diatomic is defined 
such that ݉ଵݎଵ = ݉ଶݎଶ. The moment of inertia of a system is defined as: ܫ =෍݉௜௜ ௜ଶ (16)ݎ

where ݎ௜ is the distance of mass ݉௜ from the center of mass. For  diatomic molecules,  ܫ = ݉ଵ݉ଶ݉ଵ + ݉ଶ ௘ଶݎ ≡ ݎ௘ଶ (17)

where 

 ≡ ݉ଵ݉ଶ݉ଵ +݉ଶ (18)

The quantity  is called the reduced mass and should not be confused with the dipole 
moment which has the same symbol. 
 

 
Fig. 3. Model for diatomic molecules.  
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The molecular potential energy of a diatomic molecule increases if the nuclei are displaced 
from their equilibrium positions. When the displacement is small, we can express the 
potential energy as the first few terms of Taylor series: 

(ݔ)ܸ = ܸ(0) + ൬ܸ݀݀ݔ൰଴ ݔ + 12ቆ݀ଶܸ݀ݔଶቇ଴ ଶݔ + 16ቆ݀ଷܸ݀ݔଷቇ଴ ଷݔ + ⋯ (19)

Since we are not interested in the absolute potential energy of the molecule,we can set ܸ(0) = 0. 

4.2.2 Harmonic oscillation 
The harmonic oscillator model is one of the most important models in chemical physics, and 
has been used extensively in molecular spectroscopy. Provided that the displacement x is 
small, the terms in Eq. 19 that are higher than second order may be neglected, so we may 
write 

(ݔ)ܸ = ଶݔ12݇ 	 ݇ = ቆ݀ଶܸ݀ݔଶቇ଴ (20)

This means that the potential energy close to equilibrium is parabolic. It follows that the 
hamiltonian for the two atoms of masses m1 and m2 is 

ܪ = − ଶ2݉ଵ ݀ଶ݀ݔଵଶ − ଶ2݉ଶ ݀ଶ݀ݔଶଶ + ଶ (21)ݔ12݇

Therefore, when the potential energy depends only on the separation of the particles, the 
hamiltonian can be expressed as a sum, one term referring to the motion of the center of 
mass of the system and the other to the relative motion. The former term is of no concern 
here as it corresponds to the translational motion of the molecule. The latter term is 

ܪ = − ℏଶ2 ݀ଶ݀ݔଶଶ + ଶ (22)ݔ12݇

where  is the reduced mass. 
A hamiltonian with a parabolic potential energy as in Eq. 23, is characteristic of a harmonic 
oscillator. The solutions for the harmonic oscillator is 

ܧ = ൬+ 12൰ℏ 	  = 12ඥ݇ ⁄  (23)

with  = 0,1,2,… These levels lie in a uniform ladder with separation ℏ, see Fig. 4. The 
corresponding wavefunctions are bell-shaped Gaussian functions multiplied by a Hermite 
polynomial. In the lowest vibrational state ( = 0), the molecule still has the zero point energy, ܧ଴ = ଵଶ ℏ. The vibrational spectra of diatomic molecules usually result from excitation from 
the  = 0 to the  = 1 energy levels.  

4.2.3 Anharmonic oscillation 
The truncation of Taylor expansion of the molecular potential energy in Eq. 20 is only an 
approximation , and in real molecules the neglected terms are important, particularly for  
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Fig. 4. Harmonic oscillator potential well and energy levels. V = ଵଶ k(r − rୣ)ଶ. 

large displacements from equilibrium. The typical form of the potential is shown in Fig. 5 
and because of high excitations it is less confining than a parabola; the energy levels 
converge instead of staying uniformly separated. It follows that anhamonic vibration is 
increasingly important as the degree of vibrational excitation of a molecule is increased. One 
way for coping with anharmonicities is to solve the Schrodinger equation with a potential 
energy term that matches the true potential energy over a wide range. One of the most 
useful approximation function is the Morse potential : 

(ݔ)ܸ = ℏܿܦ௘(1 − ݁ି௔௫)ଶ 	 ܽ = ൬ ݇2ℏܿܦ௘൰ (24)

The parameter De is the depth of of the minimum of the curve and ݔ = ݎ −  ௘ theݎ
displacement. At small displacement, the Morse and harmonic oscillator potentials coincide. 
The quantized energy levels, solution of the Schrodinger equation with the Morse potential 
are 

ܧ = ൬+ 12൰ℏ߱ − ൬ + 12൰ଶ ℏ߱ݔ௘ (25)

with 

௘ݔ߱ = ܽଶℏ2  

The quantity ݔ௘ is called the anharmonicity constant. The energy levels at high excitation 
converge as  becomes large. The ground state of a Morse potential has a zero-point energy 
of 

଴ܧ = 12ℏ߱ ൬1 − ௘൰ (26)ݔ12

 = 0
 = 1
 = 2 

 = 3

re r 

ħ 

V
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Fig. 5. The Morse potential : ࢂ = ૚૛ℏࢋࡰ܋(૚ −  ૛((ࢋ࢘ି࢘)ࢇିࢋ

4.2.4 Vibrational selection rule 
The selection rules for the vibrational transition 	ᇱ ←   are based on the electric dipole 
transition moment. The selection rules for electric-dipole transitions, specify the specific 
optical transitions that occur based on the examination of dipole moment transitions 
between the two states of interest. Because the dipole moment  depends on the bond length 
R, we can express its variation with displacement of the nuclei from equilibrium as 

 = ଴ + ൬݀݀ݔ൰଴ ݔ + 12ቆ݀ଶ݀ݔଶቇ଴ ଶݔ + ⋯ (27)

where ଴ is the dipole moment when the displacement is zero.  
To show a vibrational spectrum, a diatomic molecule must have a dipole moment that 
varies with extension. The selection rule for electric dipole vibrational transitions within the 
harmonic approximation is  = ±1. 
The selection rule for the observation of vibrational Raman spectra of diatomic molecules is 
that the molecular polarizability must vary with internuclear separation. The selection rule 
for vibrational Raman transitions is the same,  = ±1, as for vibrational absorption and 
emission because the polarizability, like the electric dipole moment, returns to its initial 
value once during each oscillation. The transitions with ∆ = +1 give rise to the Stokes lines 
in the spectrum, and those with  ∆ = −1 give the anti-Stokes lines. Only the Stoke lines are 
normally observed, because most molecules have  = 0 initially. 

4.3 Vibration of polyatomic molecules 
4.3.1 Normal modes of vibration and symmetry 
A diatomic molecule possesses a single vibration. Even at absolute zero this vibration occurs 
because the molecule cannot have less than the zero point energy. Polyatomic molecules 
undergo much more complex vibrations. However, these motions may be resolved into a 

 = 0 

 = 1 = 2 

 = 3

re r 

Dissociation energy (De)
V
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superposition of a limited number of fundamental motions called normal modes of 
vibration. We are interested in the number, types, and symmetries of these modes. 
The motion of a single particle in a three dimensional space can be represented by three 
coordinates, each one representing a translation of the particle in the x, y, or z direction. The 
particle is said to have three degrees of freedom. For a diatomic molecule, since we have two 
particles, the system as a whole has six degrees of freedom. Three are translation in the x, y, 
or z directions. Two degrees of freedom correspond to rotations about the center of mass. 
The rotation about the molecular axis of a linear molecule is undefined because it does not 
represent any change of the nuclear coordinates. Only one vibrational degree of freedom is 
left, Fig. 6. 
 

 
Fig. 6. Degrees of freedom (six) of a diatomic molecule; only one vibration mode (3*2-5=1). 

A nonlinear molecular system containing three particles (e.g water molecule) has nine 
degrees of freedom. Three translations, three rotations, and three vibrational degree of 
freedom. these three kinds of vibration are the three normal modes of vibration of the 
molecule. In general, a non linear molecule with n atoms will have 3n-6 modes of vibration; 
a linear molecule will have 3n-5 modes of vibration because there is no rotation about the 
molecular axis. Within a molecule, atomic displacements occur at the same frequency and in 
phase. Displacement is measured from the equilibrium atomic separation in the ground 
state along a normal coordinate. A normal coordinate, qi , is a single coordinate along which 
the progress of a single normal mode of vibration can be followed; qi is a mass-weighted 
coordinate. The normal coordinates are defined such that the potential energy V and the 
kinetic energy K of the molecule are as follow (Harris & Bertolucci, 1985)  ܸ = (1 2⁄ )෍ߣ௜௜ ௜ଶ (28)ݍ

x 

y 
z 

Tx Ty Tz

Translation

Vibration 

x 

y 
z

Rx 
Ry Rz (undefined, no change of the nuclear 

coordinates) 
Rotation 



Application of Quantum Mechanics for Computing the  
Vibrational Spectra of Nitrogen Complexes in Silicon Nanomaterials 145 

K = (1 2⁄ )෍(dq୧ dt⁄ )ଶ୧  (29)

where ߣ௜ is a constant. The vibrations that correspond to displacements along these 
normal coordinates are called the normal modes of the molecule. In the harmonic 
approximation, the ground state vibrational wavefunctions of a molecule is totally 
symmetric under all symmetry operations of the molecule. The ground state vibrational 
wavefunctions therefore spans the completely symmetric irreducible representations of 
the molecular point group. 
Each normal mode of vibration will form a basis for an irreducible representation of the 
point group of the molecule. This key property which connects the symmetry of normal 
modes of vibration to the symmetry point group of the molecule. 
Lets consider the Si2O molecule which belongs to point group C2v. As we will see 
subsequently, this molecule is of particular interest to our study. C2v  character table is given 
in Table 4. The operations of the group C2v are (E, C2, v(xz) and 'v(yz)). The three normal 
modes of vibration of Si2O are given in Fig. 7 and are noted 1, 2, 3. We are going now to 
study the effect of each operation of the group on the 3  vibration. 
 

C2v E C2 v(xz) 'v(yz)   
A1 1 1 1 1 z x2, y2, z2 

B1 1 1 -1 -1 Rz  xy 

A2 1 -1 1 -1 x, Ry xz

B2 1 -1 -1 +1 y, Rx yz 
 

Table 4. Character Table for the Symmetry Point Group C2v : Si2O molecule. 

 

 
 

Fig. 7. 1  (symmetric stretching, 517 cm-1), 2  (symmetric bending, 1203 cm-1,), 3  
(asymmetric stretching, 1136 cm-1) normal modes of Si2O.78,86  

The operation E leaves the 3 vibration unchanged so it has the character +1. The C2 

operation changes the direction of motion of each atom when the molecule is vibrating in 
the normal mode 3. Each atom moves in the opposite direction after performing the C2 
operation (Fig. 8). Therefore, the character of C2 is -1. Similarly, v(xz) changes the direction 
of motion of the atoms and 'v(yz) leaves them unchanged. Hence, they have the character -1 
and +1 respectively. In a similar way, we can easily show that 1  and 2  does not change 
through all the group operations. This leads us to the characters table given in Table 5 for 
the vibration modes of the Si2O molecule. 
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Fig. 8. Application of C2 operation on the normal mode 3 of Si2O.  

 
C2v E C2 v(xz) 'v(yz) 
1

 1 1 1 1 
2

 1 1 1 1 
3

 1 -1 -1 1 

Table 5. Character table for for the normal modes of vibration of Si2O  (C2v). 

If we look at Table 4 and Table 5 we can see that 1  changes as A1 representation through 
the operations of the group, 2  as A1 and 3  as B2. Vibration modes 1  and 2  are 
symmetric stretching and symmetric bending modes respectively, while 3  is an 
asymmetric stretching mode. All three normal modes are infrared active because they have 
the same symmetry as z and y.  

4.3.2 Selection rules for polyatomic molecules 
Non-zero dipole moment transition corresponds to allowed transition, and vice-versa. At 
this point, we are interested only in transitions within a given electronic state. The selection 
rules are derived from the transition matrix by expressing the matrix element in terms of, in 
a first approximation, the harmonic oscillator wavefunctions. The selection rule for 
harmonic oscillators are ∆ = ±1. Each normal mode of vibration shall obeys this selection 
rule within the harmonic approximation. Moreover, electric dipole transitions can occur 
only for normal modes that correspond to a change in the electric dipole moment of the 
molecule. The molecular dipole moment depends on an arbitrary displacement as follows: 

 = ଴ + ൬݀݀ݍ௜൰଴ ௜ݍ + 12ቆ݀ଶ݀ݍ௜ଶቇ଴ ௜ଶݍ + ⋯ (30)

where ݍ௜ are the normal coordinates. 
Since, electric dipole transitions occur only for normal modes that correspond to a change in 
the electric dipole moment of the molecule, normal modes for which (߲ ⁄௜ݍ߲ )଴ ≠ 0 are said 
to be infrared active as they can contribute to a vibrational, infrared, absorption, or emission 
spectrum. Group theory, as shown before, greatly aids the determination of which modes 
are infrared active.  
Normal modes for which the polarizability varies as the atoms are displaced collectively 
along a normal coordinate i.e. (߲ ⁄௜ݍ߲ )଴ ≠ 0, are classified as Raman active as they can 
contribute to a Raman spectrum. 
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5. Quantum mechanics computation of the equilibrium structure, energy and 
vibrational spectra of nitrogen-related complex in nitrogen-doped silicon 

5.1 Introduction 
In the present work, we have investigated the formation energy and vibrational spectra of 
several structures of major grown-in nitrogen-vacancy-oxygen, using quantum mechanics 
Density Functional Theory (DFT) as implemented in DMol3 package and, the semi-empirical 
Modified Neglect of Diatomic Overlap Parametric Method (MNDO) in the restricted 
Hartree-Fock approximation. The defects that are of interests are N-pairs structures either in 
interstitial (N2) or substitutional positions coupled to a Si vacancy or a divacancy (VN2 and 
V2N2) and N-O complexes formed by the coupling of these N-N centers with a Oi or an 
oxygen dimer (O2). MNDO calculations were solely performed to compute the IR absorption 
band intensities and electric charges of the IR active LVMs obtained by DMol3-DFT, because 
not attainable on periodic systems. Performing ab-initio total energy calculations and 
normal mode analysis require powerful computational resources. Therefore, all our 
calculations have been carried out on various multiprocessor supercomputers: Origin2400 
for COMPASS Force field and Fastructure calculations, IBM SP for the DMol3-DFT 
calculations and Cray T916 for the MNDO-AM1 calculations.  
We have cross-correlated the formation energy, the degree of stability, and the vibrational 
spectra of each complex in order to precisely identify their structure (Karoui Sahtout & A. 
Karoui, 2010). Calculated vibrational spectra have been compared to experimental spectra 
obtained by Fourier-transform infrared spectroscopy.  

5.2 Computational method 
5.2.1 Chemical reactions and atomic structure of N-pairs and N-O complexes 
To simulate the defected crystal structure while preserving the symmetry group of the 
diamond structure of the host crystal, we built a periodic cubic system consisting of a 
supercell of 64 silicon atoms with the defect located in its center. All N-defects are in their 
neutral state. To avoid defect-defect interactions during relaxation, the Si atoms at the 
boundaries of the supercell were maintained immobile. 
The chemical reactions considered in this study to produce N-pairs either in interstitial or 
substitutional position are shown below: 

 2i iN N N   (R1) 

 2i sN N VN    (R2) 

 2 2N V VN    (R3) 

 2 2 2VN V V N    (R4) 

 2 2 2 2N V V N    (R5) 

Ni and Ns are nitrogen atoms in interstitial and substitutional position, respectively, V is a Si 
vacancy and V2 a Si divacancy. 
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The neutral N2 has a C2h symmetry (Fig. 9) with the axis parallel to <110> direction, see Fig. 
10 (a), and the N-N center sits symmetrically off the bond center, in an anti-parallel  
 

 
Fig. 9. N2 Molecule Structure in Si, symmetry point group C2h and stereographic projection. 

 

(a) 
 

(b) 
 

(c) 

(d) (e) 
 

(f) 

(g) (h) 
 

(i) 

Fig. 10. N-Pair defects atomic structure (a, b, c) N2 (C2h), N2O, N2O2; (d, e, f) VN2 (D2d), VN2O, 
VN2O2; (g, h,i) V2N2 (D3d), V2N2O, V2N2O2. 
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configuration, as proposed by Jones et al. (Jones et al., 1994). The four Si-N bonds form a 
diamond shape lying in (110) plane. The bond centered interstitial configuration for N2 has 
been found energetically favorable based on ion channeling, infrared absorption, and 
theoretical calculations (Jones et al., 1994).  
As shown in Fig. 10 (d), neutral VN2 complex is formed by inserting an N-N pair at a 
vacancy site in the center of a tetrahedron (Stein, 1986). The central bond of the N-N pair is 
aligned along <100> whereas the four N-Si bonds point to the summits of the tetrahedron, 
and lie in two perpendicular {110} planes which makes the symmetry group of VN2 of D2d 
type, Fig. 11.  
 

 
Fig. 11. VN2 molecule Structure in Si, symmetry point group D2d and stereographic 
projection. 

The V2N2 complex is created by inserting two N atoms in the vacancy sites of a relaxed 
divacancy, see Fig. 10 (g). The divacancy six silicon dangling bonds are fully reconstructed. 
V2N2 has a D3d symmetry (Fig. 13) similar to the ideal divacancy with “breathing” bonding 
(Coomer et al., 1999), see Fig. 12.  
 
 

Jahn-Teller distortion Jahn-Teller distortion

D3dC2h C2h 

Pairing model Resonant-bond model Breathing model

 

Fig. 12. Si divacancy Jahn Teller distortion (Coomer et al., 1999; Watkins & Corbett, 1965).  

The N-O complexes object of this study, result from the coupling of a N-N core defect 
product of chemical reactions R1 thru R5, with an oxygen interstitial (Oi) or an oxygen 
dimer (O2) as shown in the chemical reactions R6 thru R11: 

 2 2N O N O    (R6) 
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 2 2 2 2N O N O    (R7) 

 2 2VN O VN O   (R8) 

 2 2 2 2VN O VN O    (R9) 

 2 2 2 2V N O V N O   (R10) 

 2 2 2 2 2 2V N O V N O    (R11) 

The atomic structures of N2O, VN2O and V2N2O complexes are obtained by adding one Oi 
atom on the dilated Si-Si bond neighboring the N-N center as shown in Fig. 10 (b), (e), (h). 
Indeed, previous investigations on oxygen interstitial in silicon (Umerski, 1993) showed that 
oxygen bridges dilated Si bonds preferentially along <111> directions. Likewise, the N2O2, 
VN2O2 and V2N2O2 are built by inserting two Oi atoms on Si-Si dilated bonds neighboring 
the N-pair, Fig. 10 (c), (f), (i).  
 

 
Fig. 13. V2N2 molecule Structure in Si, symmetry point group D3d and stereographic 
projection. 

5.2.2 Equilibrium structure and energy of formation 
To cut down the computation time, the defected supercells were first relaxed using a 
valence force field method with COMPASS potential and then DFT Fastructure program 
(Fastructure). This allowed a fast cleanup and optimization of the guessed atomic structure. 
Faststructure determines the ground state energies and forces within the Harris functional 
(Harris, 1985), an approximate scheme of the DFT scheme of Kohn and Sham (Kohn & 
Sham, 1965). For this scheme, the exchange-correlation terms are calculated using the Vosko, 
Wilk, Nusair (VWN) parameterization (Vosko et al., 1980) and the radial cutoff was set at 
10Å. The optimizations of the resulting structures were then performed using DFT program 
DMol3. DMol3 utilizes a basis set of numeric atomic functions that are exact solutions to the 
Kohn-Sham equations for the atoms (Delley, 1995). For the present study, a doubled 
numerical basis set with d-polarization functions, termed DND basis set, was used as it 
ensures an accurate description of the bonding environment. This basis set is well 
parameterized for nitrogen, oxygen, and Si atoms that are bonded to neighbors by sp3 
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hybrid electron orbital that protrude in a tetrahedral shape. Perdew-Wang functional was 
used for the exchange correlation terms. To accelerate the convergence of the self-consistent-
field (SCF) procedures we use the direct inversion of the iterative subspace method (DIIS) 
(Pulay, 1980). Integration over the Brillouin-zone and over all occupied orbital is done with 
the tetrahedron method(Blöchl, 1994) and equispaced Fourier meshes similar to the ones 
proposed by Monkhorst and Pack (Monkhorst,1976). Eight k-points and 24 tetrahedra were 
used to sample the Brillouin zone. The atomic positions were optimized using the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton optimization algorithm.  
For the general chemical reaction A B CX X X  , the formation energy of the product XC is 
defined as (Nichols, 1989):  

 ( ) ( ) ( ) ( )f C C bulk A BE X E X E E X E X     (31) 

Where ( )f CE X  denotes the formation energy of the complex, ( )E Xi  the total energy of the 
system containing a reactant or a product, and Ebulk is the total energy of pure bulk Si 
supercell. 
All reactants and products involved in reactions R1 through R11, including the Si vacancy 
(V) and the Si divacancy (V2) which are important for our study, have been optimized with 
the same level of theory and accuracy. As reference, our calculations suggest a formation 
energy of 3.89eV for the Si vacancy and 5.80 eV for the divacancy in good agreement with 
previously published values (3.31-3.98 eV) for the vacancy (Hull, 1999; Puska et al., 1998) 
and 4.4-5.7 eV for the divacancy (Hull, 1999; Pesola, 2000). During relaxation, the neutral Si 
divacancy (V2) are usually subject to Jahn-Teller (JT) distortion which lower the symmetry of 
the defect from trigonal D3d to monoclinic C2h  resulting in the ‘pairing’ or ‘resonant-bond’ 
structure (Coomer, 1999; Pesola, 2000; Watkins, 1965), see Fig. 12. Our calculations exhibit a 
‘large pairing’ JT distortion for the relaxed V2 rather than a ‘resonant bonding’ distortion, in 
line with positron annihilation spectroscopy measurements (Nagai, 2003). The reconstructed 
bonds of the divacancy form two co-planar isosceles triangles, the length of the two 
congruent sides of the triangles is about 4.44 Å, and the base is about 3.54 Å long.  

5.2.3 Computation of vibrational spectra 
The absorption spectrum for each optimized atomic structure was calculated using the 
eigenvalue method (Dean & Martin, 1960) implemented in DMol3 package. The eigenvalue 
method is sensitive to the accuracy of the calculated electronic structure; therefore 
vibrational analysis can be meaningful only when all atomic forces are zero. This is 
attainable only when the geometry is optimized at the same level of theory and with the 
same basis set used to generate the Hessian.  
Since, there is at present no method for calculating the intensities of IR active LVMs for 
periodic boundary environment because the Hessian in internal coordinates can not be 
evaluated in that case, the LVM intensities were computed using the MNDO method and 
the Austin Model 1 (AM1) Hamiltonian (Dewar et al., 1985). MNDO works only on 
molecular systems therefore a crystal macro-molecule (CMM) has been extracted from the 
Dmol3 relaxed supercell. Each CMM contains the N-N core defect in its center surrounded 
by 76 silicon, and 74 hydrogen atoms which saturate the dangling bonds at the surface. The 
N-N core is totally surrounded by as much Si atoms as possible to properly simulate the 
host crystal. Given the fact that the CMM is relatively small, special care was taken to ensure 
that the symmetry is not broken for the defect and neighboring silicon atoms.  
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MNDO-AM1 method considers only valence electrons in the calculation of the electronic 
states, treating the inner-shell electrons together with the nucleus as a core. The electron-
electron, core-core, and core-electron interactions are obtained empirically. We used a 
restricted closed-shell wavefunctions, which constrain all molecular orbitals to be either 
doubly occupied or empty.  
Within DMol3 and MNDO-AM1 the LVMs are determined from the Hessian matrix using 
the Harmonic Oscillator Approximation. This approach is known to adequately describe the 
vibrational behavior of molecules and crystals at low temperature, where only the lowest 
vibrational levels are populated and the displacements from equilibrium are small. Usually, 
the harmonic vibrational frequencies produced by ab-initio calculations are larger than the 
experimentally fundamental lines by 5 to 10%. Both methods neglect the effect of 
anharmonicity, which is insignificant at the ground state.  
The force constant for each pair of bonded atoms are obtained by diagonalization of the 
mass-weighted Hessian matrix element, defined as: 
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Only change in the dipole moment induces measurable IR transitions. For bonds which have 
a weak dipole moment the polarizability is usually high and the vibrational states of the 
bond are Raman active (RA). These two kinds of activities are not always mutually exclusive 
as for non-centrosymmetric molecules (or unit cells), some vibrations can be both Raman 
and infrared active. 
The IR absorption intensity Ii and effective charge ei of the ith normal mode are evaluated 
from the dipole moment derivatives with respect to the vibrational coordinates qi such that 
Ii is proportional to ei2 (Leigh & Szigetti, 1967; Whalley, 1972):  
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where 0N is the Avogadro number, c the speed of light, 0  dielectric constant in vacuum 
and p the electrical dipole moment: 
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The dipole moment derivatives are accurately calculated from the energy gradients 
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Where f is the applied electric field,   the wavefunction and H the Hamiltonian.  
The calculated IR active modes were compared to the measured low temperature (T < 15K) 
FTIR absorption bands since the vibrational spectra are calculated from the ground state 
specifically from the minimum energy at 0 K corrected by the zero point energy.  

5.3 Results and discussion 
5.3.1 Formation energy of N2, VN2, and V2N2 complexes 
The equilibrium geometries for N-pair defects are summarized in terms of bond length, 
bond angle in Table 6. The formation energies are summarized in Table 7. We found that the 
formation energy for N2 (reaction R1) is about -3.95 eV at the ground state showing that N2 
is a very stable complex. Being highly exothermic, we believe that chemical reaction R1 
occurs at earliest stages of point defect clustering, mainly at high temperature close to the 
melting point (1423oC) because of the high mobility of Ni. Ni has a low diffusion barrier of 
0.4 eV (Schultz & Nelson, 2001). 
 

 N-N (Å) Si-N (Å ) Si-Si (Å) 
(1st neighbor) Si-N-Si N-Si-N Si-N-N 

N2 2.45 1.73,1.76 2.32, 2.40  90.8 89.2 - 
VN2 1.43 1.80 2.33, 2.42 131.4 - 114.4 
V2N2 3.55 1.82 2.38, 2.35 118 - - 

Table 6. N-pair relaxed geometry parameters from DFT-DMol3 calculations. 

 
Ef(eV) N2 VN2 V2N2 N2O N2O2 VN2O VN2O2 V2N2O V2N2O2 
          
DFT DMol3 

(this work) 
-3.95 -0.21 

(R2) 
 -1.8 
(R3) 

-4.62 
(R4) 
-4.42 
(R5) 

-0.96 -1.4  -0.15 +0.51 -0.70 -0.95 

          
Harris functional 
and VWN 
(Karoui et al. 
2003; Sahtout 
Karoui,2004)  

- 4.1 +2.0 -5.2 
-1.0 

-0.78 -1.52 +0.08 +0.33 -0.62 -1.31 

          
(Sawada et al., 
2000)  

-4.3  -1.4 -4.55 
-5.69 

      

          
(Kagashima et 
al., 2000)  

-3.86 +0.33 -4.07 
-3.61 

      

          
 (Goss et al., 
2003)  

-3.67 -1.3 -3.7 
-3.4 

      

          
(Kagashima et 
al., 2003)  

       -0.95  

Table 7. Formation energy of N-N and N-O defects from DFT-DMol3 Calculations. 
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The formation energy of VN2 complex is about - 0.21 eV when formed from Ni and Ns 
(reaction R2) and is about -1.8 eV thus more stable, when formed from the coupling of N2 
with a Si vacancy (reaction R3). Reaction R2 occurs mainly when Ni and Ns coexist i.e. near 
melting temperature of Si. Nevertheless, the small energy gain suggests that VN2 would 
easily dissociate at such high temperature. The formation of VN2 complexes is more likely to 
happen through reaction R3 during the interstitial-substitutional diffusion process of N2 
around the void formation temperature. This infers that VN2 should intermittently slip back 
to N2 via reaction 2 2VN I N   and back to VN2 through reaction 2 2N V VN   as 
suggested in (von Ammon et al., 2001). Though, VN2 is a metastable complex, it is also 
foreseen as an active complex during crystal growth as it contributes to the formation of 
very stable grown-in N-related microdefects such as V2N2 (reaction R4 and R5). Indeed, our 
calculations show that both reactions forming V2N2 complexes are highly exothermic. The 
energy gain is about -4.62 eV for R4 and -4.42 eV for R5 revealing the high stability of V2N2 
complexes independently of the chemical reaction pathway. The formation of V2N2 from the 
coupling of VN2 with a vacancy is favored over the coupling of N2 with a divacancy because 
V2 cannot form at high temperature (crystal growth temperature). However, reaction R5 
might occur during crystal cooling at temperatures lower than 300oC, the survival 
temperature range of V2. Indeed, V2 is known to be immobile and stable at room 
temperature and to anneal out around 200-300oC. The calculated formation energy for N2, 
VN2 (R3) and V2N2 agree with previous work (Sawada et al., 2000; Kagashima et al., 2000;  
Goss et al., 2003).  

5.3.2 Vibrational spectra of N2, VN2, and V2N2 complexes 
As shown in Table 8, N2 interstitial display four vibrational modes among them two are IR 
active asymmetric stretching, 779 cm-1 and 986 cm-1, and two Raman active symmetric 
stretching (dipole-forbidden), 743 cm-1 and 1084 cm-1. Since, the symmetry group of N2 is 
C2h, it has normal modes belonging to the irreducible representations Ag, Bg, Au, and Bu; Ag 
and Bg being Raman active, Au and Bu IR active. The selection rule for absorption in the IR 
spectrum is that the vibration must have the same symmetry as a p-orbital. Choosing z as 
the principal axis of symmetry (axis C2 for C2h), 779 cm-1 line transforms as Bu by the 
symmetry operations of the group, which has the same symmetry as px and py orbitals. 
Vibrational mode 986 cm-1 transforms as Au which has the same symmetry as the pz orbital. 
The two IR active modes relate to nitrogen. In these modes, the two N atoms are 
dynamically coupled and move in the same direction, along [001]  and [110] respectively, 
see Fig. 14 (a), (b). These two lines match measured FTIR frequencies 771 cm-1 and 967 cm-1. 
The absorption intensity ratio (779) (986)   between the two IR modes as given by 
MNDO-AM1, is about 0.78. Lines 1084 and 743 cm-1 transform as Ag and Bg respectively and 
are Raman active with the same symmetry as s- and d-orbitals. For these modes, the N 
atoms move in opposite directions along [110] and [001], respectively. Our calculated LVMs 
for N2 agree with reported values by Goss et al (Goss et al., 2003).  
VN2 complex has two IR active LVMs , 585 cm-1 and 781 cm-1, and one Raman active line  
997 cm-1, see Table 9. The symmetry group of VN2 is D2d which has normal modes belonging 
to the irreducible representations A1, A2, B1, B2, and E. A1 and B1 are Raman active; B2 and E 
are IR and Raman active with E representation doubly degenerate. The 585 cm-1 mode 
transforms as B2 and involves an in-phase asymmetric stretching of the two N atoms along 
[001]. The 781 cm-1 absorption band is doubly degenerate and thus belongs to the E  
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 Symmetry Vibrating 
atoms 

Frequencies (cm-1) Intensity  
(km/mol)1 

Effective 
Charge(e)1 Activity Calculated Measured (T<15K) 

N2    

 
 
771, 967 
(551,653,782,790)* 

 
 
 
 
 
 
 
 
806,815,1000, 1021, 
1031, 739* 

   
(C2h) Bg N-N 743 0 0 RA 
 Bu N-N 779 335 0.59 IR 
 Au N-N 986 542 0.75 IR 
 Ag N-N 1084 0 0 RA 
       
N2O       
  O(1) 666 33 0.18 IR 
  N-N 750 19 0.14 IR 
  N-N 814 316 0.59 IR 

  N-N+ 
O(3) 

1003 975 1.02 IR 

  N-N+ 
O(3) 

1029 289 0.55 IR 

  N-N 1137 ~0 ~0 RA 
       
N2O2       
  O-O(1) 658 105 0.32 IR 
  O-O(1) 665 0 0 RA 
  N-N 780 0 0 RA 
  N-N 825 409 0.66 IR 
  N-N 945 1083 1.07 IR 
  O-O (3) 1016 0 0 RA 
  O-O(3) 1019 482 0.71 IR 
  N-N 1027 0 0 RA 

1 As given by semi-empirical MNDO-AM1 quantum mechanics calculations on a macro-molecule. 

Table 8. Vibrational spectra for N2, N2O and N2O2 from DFT-DMol3 Calculations.  

 

(a) 

N
N

 (b)   

(c) 

N(1)
N(2) 

O 

 (d) 

O
O 

 

Fig. 14. (a) N2 779 cm-1  N-N asymmetric stretching along [001]; (b) N2 986 cm-1 N-N 
asymmetric stretching along [110]; (c) N2O: 1003 cm-1 N-N + O (3) asymmetric stretching; 
(d) N2O2 1019 cm-1 O (3)  asymmetric stretching. 
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  Symmetry Vibrating 
atoms 

Frequency (cm-1) Intensity 
(km/mol)

Effective 
Charge (e) Activity calculated Measured (T<15K) 

VN2    

 
 
771, 967 
(551, 653, 782, 790)* 

 
 
 
 
 
 
 
 
806, 815, 1000, 1021, 
1031, 739* 

   
(D2d) B2 N-N 585 107 0.33 IR 

 E N(1)1 

N(2)1  
781 
781 

183 
183 

0.43 
0.43 

IR 
IR 

 A1 N-N 997 0 0 RA 
       
VN2O       
  N-N 578 124 0.36 IR 
  O( 1 ) 642 ~ 0 - IR 
  N(1) 797 141 0.38 IR 
  N(2) 835 141 0.38 IR 
  N-N 985 0 0 RA 
  O(3) 1049 320 0.57 IR 
       
VN2O2  N-N 567 121 0.35 IR 

  O-O(1) 644 ~ 0 - IR 
RA 

  N-N 819 208 0.44 IR 
  N-N 828 208 0.44 IR 
  N-N 976 0 0 RA 
  O-O(3) 1103 302 0.55 IR 
  O-O(3) 1113 0 0 RA 

1 N(1) and N(2) are respectively, the inner and outer nitrogen atom in the N-N-Si-O-Si branch. 

Table 9. Vibrational spectra for VN2, VN2O and VN2O2 defects using DFT-DMol3 
Calculations. 

representation. For this mode, the N atoms are dynamically decoupled moving in opposite 
direction along [ 1 10 ] and [ 1 10 ] respectively. 781 cm1 vibrational mode is close to 
measured 782 and 790 cm-1 lines due to unknown defects (Goss et al., 2003) which probably 
relate from our calculations to VN2 defects. VN2 IR active lines have equivalent strength. 
The Raman active mode 997 cm-1 transforms as A1 and involves an in-phase symmetric 
stretching of the nitrogen atoms along the principal axis [001]. The calculated frequencies for 
VN2 as well as their spectroscopy activity are in accordance with reported values for the Ni-
Ns complex (Goss et al., 2003). The 585 cm-1 line matches measured 551 cm-1 band detected 
in N-implanted and laser annealed FZ Si wafer which was attributed to N-substitutional 
(Stein, 1985). We believe that 551 cm-1 line is due to a localized vibration mode of VN2 defect 
in N-implanted FZ Si crystals where vacancies are in excess.  
V2N2 complex has three degenerate LVMs, each one IR and RA active, 615 cm-1, 625 and 637 
cm-1, Table 10. The 615 cm-1 line is weak and involves an in-phase asymmetric (IR active 
mode) and a symmetric stretching (RA active mode) of the N atoms along the pair axis in 
the [111] direction with a small deviation along [100]. In this mode, the N atoms are 
dynamically coupled and the Si-N bonds stretch in a same way. The 625 cm-1 and 637 cm-1 

modes involve each one a 3 type in-phase asymmetric (IR active mode) and a symmetric 
(RA active mode) vibration of the N atoms in the plane perpendicular to the pair axis. V2N2 
structure has a D3d symmetry which has normal modes belonging to A1g, Eg, A2u, Eu 
irreducible representation. A1g and Eg are Raman active, and A2u, Eu are IR active. E-type  
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  Symmetry Vibrating 
atoms 

Frequencies (cm-1) Intensity 
(km/mol) 

Effective 
Charge (e) Activity Calculated Measured (T<15K) 

V2N2 D3d    
 
771, 967 
(551, 653, 782, 790)* 

 
 
 
 
 
 
 
806, 815, 1000, 1021, 
1031, 739* 

   

  Eu 
Eg N-N 615 19 0.04 IR, RA 

 

Eu  
Eg N-N 625 115 0.24 IR, RA 

Eu  
Eg N-N 637 236 0.49 IR, RA 

 V2N2O       
  O( 1 ) 651 43 0.11 IR, RA 
  N(1) 696 168 0.41 R 
   N(1) 709 172 0.42 IR 
   N(2) 731 201 0.51 IR 
   N(2) 819 201 0.51 IR 
   O(3) 1068 389 0.63 IR 
V2N2O2       
   O-O( 1 ) 649 0 0 RA 

   N-N 729 358 0.6 IR 
RA 

   N-N 810 210 0.46 IR,RA 
   O-O( 3 ) 1061 702 0.84 IR,RA 

Table 10. Vibrational spectra for V2N2, V2N2O and V2N2O2 defects from DFT-DMol3 
Calculations. 

modes are double degenerate. We found that V2N2 relaxes in D3d structure, each LVM pair 
pertains to the (Eu, Eg) irreducible representations. This in accordance with Cunha et 
al.(Cunha, 1993)  whose work also reported that a substitutional N2 having a D3d structure 
preserve the D3d symmetry during relaxation, while Goss et al. calculations (Goss et al., 
2003) showed that a starting C3v geometry relaxed in D3d structure. FTIR measured 653 cm-1 
line detected in N-implanted FZ Si is close to calculated IR modes for V2N2 defect, which 
show that this line is generated by localized vibrational modes of N substitutional as stated 
by Stein (Stein, 1985). The calculated absorption spectra for N2, VN2 and V2N2 are shown in 
Fig. 15. We can easily see that N2 complex bears the highest absorption intensity and that 
measured 771 and 967 cm-1 lines are IR signature for that defect. 

5.3.3 Formation energy of N2On, VN2On, V2N2On complexes (n=1, 2) 
The equilibrium geometries for N-O defects are summarized in terms of bond length, bond 
angle in Table 11. When N2 captures an O atom, the energy gain is about 0.96 eV for N2O. 
When O2i is trapped by the N-pair (N2O2), the energy gain is about 1.4 eV. Likewise, the 
energy gain is about 0.70 eV and 0.95 eV for V2N2O and V2N2O2, respectively. In contrary, 
the chemical reaction forming VN2O (R8) is slightly exothermic (Ef = - 0.15 eV), and when 
capturing an oxygen dimer (R9), the formation energy becomes positive (0.51 eV) meaning 
that the so-formed VN2O2 is unstable. Although, the chemical reactions which form N2On 
and V2N2On (n=1,2) are energetically favorable, the limited energy gain render these 
complexes unstable at elevated temperature. Upon heating, the oxygen atoms would break 
free and easily diffuse in the matrix, leaving the N-pair intact. Indeed, FTIR measurements 
have shown a reversible formation and dissociation mechanism between N-N and N-O 
complexes upon successive heating and cooling (Wagner et al., 1988; Qi et al., 1992).  
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Fig. 15. Vibrational spectra of N2, VN2 and V2N2 complexes from DFT-DMol3 Calculations. 
The arrows shows the FTIR measured frequencies. 

 

 N-N (Å) Si-N (Å) Si-O (Å) Si-Si (Å) 
(1st neighbor) Si-O-Si 

N2O 2.43 1.70 (O) ,1.72 
1.74 (sides of the diamond) 1.64 (N), 1.66 2.30 (O) 

2.31-2.38 136 

N2O2 2.38 
1.68 
1.73 (sides of the diamond 
structure) 

1.64 (N), 1.65 
2.29 

136.6 

VN2O 1.44 1.77 (O), 1.80 1.62 (N), 1.64 2.29-2.42 (O) 
2.33-2.44 141.5 

VN2O2 1.45 1.77 (O), 1.80 1.61 (N), 1.63  2.29-2.42 147 

V2N2O 3.62 1.77 (O), 1.82 1.61 (N), 1.65 2.33-2.41 (O) 
2.35-2.40 143.6 

V2N2O2 3.72 1.77 (O), 1.79, 1.82 1.62 (N), 1.65 2.34-2.41 143.5 

Table 11. N-O complexes relaxed geometry parameters from DFT-DMol3 calculations. (O) 
means Si-N bond length in the N-Si-O-Si branch; (N) means Si-O bond length in the N-Si-O-
Si branch. 

5.3.4 Vibrational spectra of N2O and N2O2 complexes (n=1,2) 
Calculated vibrational spectra for N2O displays five IR active LVMs 666, 750, 814, 1003, and 
1029 cm-1 and one dipole forbidden transitions at 1137 cm-1, see Table 8. These lines shift to 
658, 665, 825, 945 and 1019 cm-1 for N2O2. The 779 cm-1 mode of N2 shifts to 814 cm-1 when 
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capturing one O atom (N2O) and to 825 cm-1 when capturing an oxygen dimer (N2O2). This 
blue shift can be explain by the shortening of the N-Si bonds as a result of the insertion of 
the O atom(s) in the vicinity which causes the N-Si bond stretching force constant to increase 
so the frequency. As for N2, the 814 cm-1 and the 825 cm-1 modes involve N-N asymmetric 
stretching in the [ 110 ] direction, with the highest absorption strength on the nitrogen atom 
neighboring the O atom in the N2O complex. These two modes are close to the measured 
806 cm-1 and 815 cm-1 FTIR frequencies, ascribed respectively to NNO and NNO2 defects 
(Jones et al., 1994). The 750 cm-1 mode is a symmetric stretching of the N atoms in [110]. This 
mode has a small strength because of the imbalanced mass due to the O atom in the vicinity 
of one N atom. The 1003 cm-1 mode (N2O) combines a Si-O-Si asymmetric stretching of 
type(Fig. 7) and an in-phase N-N asymmetric stretching along [110] analog to the N2 986 
cm-1 mode, a blue shift of 17 cm-1, see Fig. 14 (c). This frequency matches the measured 1000 
cm-1 absorption band. N2 986 cm-1 wavenumber shifts down to 945 cm-1 when an oxygen 
dimer interacts with N2 producing N2O2. As for N2, this mode involves an N-N asymmetric 
stretching along [110]. The 945 and 1003 cm-1 frequencies have almost identical strength and 
bear the highest absorption intensity. N2O 1029 cm-1 mode involves an N-N asymmetric 
stretching combined with a vibration oftype on the O atom. N2O2 1019 cm-1 mode is of 

3  type and involves only the O atoms, see Fig. 14 (d).  
Several low frequency local vibrational modes appeared in our calculations. These modes 
are of  type (Fig. 7) and are entirely due to Si-O stretch. The 666 cm-1 (N2O) and 658 cm-1 
(N2O2) vibrational modes are IR active, 665 cm-1 (N2O2) is Raman active. Our results show 
that calculated 814, 1003, 1029 cm-1 frequencies for N2O  fit (within a margin of less than 1%) 
the measured 806, 815, 1000, and 1031 cm-1 (low temperature) FTIR lines for N-O complexes. 
Alike, N2O2 1019 cm-1 mode matches the 1021 cm-1 FTIR line. Measured 1021 cm-1 is an IR 
signature for N2O2 and 1031 cm-1 N2O in accordance with what has been suggested by Jones 
et al. (Jones et al., 1994) based on FTIR measurements. 
N2O defect has been previously theoretically investigated (Ewels, 1997; Jones et al., 1994) 
using AIMPRO method and H-terminated cluster of about the same size as the macro-
molecule we used in the MNDO-AM1 calculations. Some discrepancies have been found in 
the AIMPRO calculations especially concerning the Oi vibration modes which were found 
between the two N modes in contrary to the observation. The O atom has to be displaced 
close to the neighboring Si atoms in order to fit the experimental lines.  

5.3.5 Vibrational spectra of VN2On and V2N2On complexes (n = 1,2) 
VN2O and VN2O2 complexes have several LVMs ranging from 500 to 1100 cm-1, see Table 9. 
VN2O has five IR active modes and one Raman active mode. VN2 585 cm-1 line shifts to 578 
cm-1 for VN2O and involves as for VN2, an in-phase asymmetric stretching of the N atoms 
along [100]. This mode shifts to 567 cm-1 for VN2O2.  
The degeneracy due to the D2d symmetry of VN2 is removed by the oxygen atom in the 
vicinity of the N-N core, which reduces the symmetry of the defect. As a result, VN2 781 cm-1 
frequency splits into two IR active lines, 797 cm-1 and 835 cm-1 for VN2O defect. The N atoms 
are now dynamically decoupled. Each mode is of 3 type, one for each nitrogen atom, the N 
atom neighboring the oxygen bearing the highest frequency. 797 cm-1 and 835 cm-1 lines shift 
respectively to 819 cm-1 and 828 cm-1 for VN2O2 complex. These normal modes involve the N 
atoms which are now dynamically coupled and of 3 type. The dipole forbidden band 997 cm-1 
of VN2 remains IR inactive for VN2O and VN2O2. This frequency shifts to 985 cm-1 for VN2O 
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and to 976 cm-1 for VN2O2. We observe several additional LVMs involving exclusively the 
oxygen atom(s). VN2O 642 cm-1 normal mode is of 1  type. This mode becomes doubly 
degenerate for VN2O2 and shifts to 644 cm-1 which is IR and Raman active. This frequency 
involves two 1  symmetric stretching, one on each O atom. The IR active mode is induced by 
an in-phase vibration of the two O atoms, while in the RA mode the O atoms move in opposite 
direction thus does not induce any change in the dipole moment. All 1  IR active modes are 
very weak. VN2O has a high frequency mode at 1049 cm-1 and is caused by a 3  type 
asymmetric stretching of the O atom. This vibrational frequency shifts to 1103 cm-1 in VN2O2 
complex and include an in-phase 3  type vibration of the O atoms. VN2O2 has a high 
frequency vibrational mode at 1113 cm-1 which is Raman active. For this mode, the O atoms 
vibrate in opposite directions, each Si-O-Si branch vibration being of 3 type. The 1103 and 
1113 cm-1 frequencies are centered around the well known oxygen interstitial 1107 cm-1 line of 
nitrogen-free CZ silicon; the average shift being ± 5 cm-1. 
V2N2O defect has six IR active LVMs, Table 10. The degeneracy observed for V2N2 complex 
is removed and the degenerate levels, split into four IR active modes: 696, 709, 731, and 819 
cm-1. The dipole-forbidden transitions for V2N2 due to the D3d symmetry are now allowed 
because of the reduced symmetry. Frequencies 696 cm-1 and 709 cm-1 involve a vibration of 
the outer N atom whereas the 731 cm-1 and 819 cm-1 lines involve a vibration of the inner N 
atom (neighboring the O atom). These LVMs are of 3  type and the N atoms are 
dynamically decoupled. The frequencies and vibrational intensities of the inner N atom are 
higher than those of the outer N atom because of the unbalanced mass center. The V2N2O 
complex has a high frequency mode at 1068 cm-1 of 3  type and involving exclusively the O 
atom. The 651 cm-1 absorption line is a 1  symmetric stretching of the O atom and is very 
weak.  
All degenerated LVMs found for V2N2 core defect remain degenerated for V2N2O2, formed 
by symmetrically trapping two O atoms. Three are IR and Raman active: 729 cm-1, 810 cm-1, 
and 1061 cm-1; and one is Raman active: 649 cm-1. The 729 cm-1 and 810 cm-1 absorption 
modes involve respectively, an in-phase symmetric and asymmetric N-N stretching in [111] 
perpendicular to the N-N center axis, similar to V2N2 615 cm-1 and 638 cm-1 lines. Frequency 
649 cm-1 and 1061 cm-1 are exclusively oxygen atom related. The 649 cm-1 mode involves two 
dynamically coupled 1  LVMs, one for each Si-O-Si branch, in opposite phase. The 1061 cm-

1 is induced by two pairs of coupled 3  stretching mode, one for each O atom. One pair is 
due to a symmetric vibration of the O atoms, therefore does not induce any change in the 
dipole moment, while the other pair is an asymmetric movement, and is thus IR active. This 
mode bears the highest strength. 
Lines 729 cm-1 (V2N2O2) or 731cm-1 (V2N2O) might be assigned to the measured FTIR 
frequency 739 cm-1 observed in samples implanted with both N and O atoms and which was 
attributed to NNO complex (Berg Rasmussen, 1996). As a matter of fact, ion implantation 
creates an excess of vacancies that will couple with nitrogen to form the V2N2 complexes 
which will subsequently couple with oxygen. These two modes have equivalent strength. 
The 810 cm-1 (V2N2O2) and 819 cm-1 (V2N2O) frequencies fit the FTIR measured 806 cm-1 and 
815 cm-1 absorption lines for N-O defects.  

5.3.6 Nucleation of extended defects and nitrogen concentration measurement 
In order to comprehend how the N-related defects in N-doped Si shape the nucleation and 
growth of extended defects, and to accurately assess the nitrogen concentration in N-doped 
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silicon, it is necessary to compare the properties of each defect obtained from DFT 
calculations to experimental data. This is done by studying the equilibrium structures, and 
comparing the calculated vibrational modes with experimental Fourier-transform infrared 
spectra.  
The high stability of N2 and V2N2 complexes should explain the strong change observed in 
the kinetics of oxygen precipitation and void formation in N-CZ Si as compared to N-free 
CZ Si. The formation of V2N2 complexes lower the vacancy supersaturation during crystal 
cooling. N2 might equally reacts with oxygen through reactions R6 and R7 or a silicon 
vacancy through reaction R3. Reactions R8 and R9 show that VN2 complexes are less able to 
react with oxygen but would preferentially react with a Si vacancy (reaction R4) to form the 
very stable V2N2 defects which will in turn act as nucleation sites for oxygen precipitates.  
It appears from this study that V2N2O and V2N2O2 complexes equally compete with N2O 
and N2O2 as nucleation sites for O precipitation. They are the most stable N-O defects since 
the capture of Oi or O2 by N2 and V2N2 are all exothermic reactions, and the N-pair 
complexes (N2 and V2N2) from which they originate are extremely stable. However, N2On 
defect should be the dominant defect since our results strongly support the assignment of 
the FTIR 771 and 967 cm-1 (15K)  local vibrational modes to N2’ meaning they are 
experimentally detectable. The process formation of N-O complexes is likely to follow the 
subsequent chemical pathways: N2VN2V2N2V2N2OV2N2O2 and N2 N2ON2O2. 
Therefore, nitrogen will increase the number of O-precipitates nucleation sites by coupling 
with vacancies and oxygen atoms, explaining the high density of as-grown oxygen 
precipitates and the decrease in the vacancy supersaturation observed in N-CZ Si. 
Consequently, the formation of void will be hindered and their density will decrease 
compared to N-free CZ Si. These results combined with our previous results obtained from 
molecular mechanics force field calculations (Karoui et al., 2003; Sahtout Karoui et al., 2004) 
and experimental measurements (Wright etching, STEM, HRTEM, and Oxygen Precipitates 
Profiler) (Karoui et al., 2004a, 2004b, 2002)  confirm that N2 and V2N2 are much more likely 
to adsorb O atoms than to trap vacancies thus act as nucleation centers for oxygen 
precipitation rather than voids. However, N-O complexes might also co-exist in the oxide 
layer covered walls of the voids in N-doped Si. Indeed, EDS measurements on N-doped CZ 
Si samples showed that voids are covered with an oxide layer as in the case of undoped 
crystals (Takahashi et al., 2003). 
All studied structures of N-O complex have IR active lines falling around measured 806 and 
815 cm-1 (15K) lines : 814 cm-1 (N2O), 825 cm-1 (N2O2), 819 cm-1 (V2N2O), 810 cm-1 (V2N2O2), 
797 cm-1 and 835 cm-1 (VN2O), 819 cm-1 and 828 cm-1 (VN2O2). Therefore, the absorption 
intensity of lines 806 cm-1 and 815 cm-1 (15K) have to be taken into account when evaluating 
nitrogen concentration in N-CZ Si or O-rich N-FZ Si wafers. So, a more accurate calibration 
relationship for [N] measurement in N-CZ Si or O-rich N-FZ Si would be:  

 ሾNሿ = 	 (1.83 ± 0.24)x	1017x	ሾଽ଺଻ 	+ 	଼଴଺ 	+ 	଼ଵହሿ  at/cm-3 (T<15K) (37) 

 ሾNሿ = 	 (1.83 ± 0.24)x	1017x	ሾଽ଺ଷ 	+ 	଼଴ଵ 	+ 	଼ଵ଴ሿ  at/cm-3  (at 300K) (38) 

This is in agreement the experimental calibration curve proposed by Qi et al. (Qi et al., 1992) 
based on FTIR measurements. For N-implanted O-rich FZ wafer the absorbance of 653 cm-1 

line has to be considered in the calibration formula because of the important excess of 
vacancy created during the implantation process. These absorption bands were found to be 
due to localized vibration modes of substitutional nitrogen (Stein, 1985) and appear from 
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this study to actually relate to V2N2 complexes, therefore the nitrogen calibration curve for 
N-implanted FZ-Si wafers would be: 

  ሾNሿ = 	 (1.83 ± 0.24)x	1017x	ሾଽ଺଻ 	+ 	଺ହଷ	ሿ  at/cm-3  (T<15K)  (39) 

5.4 Conclusions 
To comprehend the effect of nitrogen doping on vacancy aggregation, oxygen precipitation, 
and nitrogen concentration measurement in silicon, we have theoretically investigated using 
density functional theory (DMol3) and semi-empirical MNDO-AM1 method, the atomic 
structure, formation energy, and vibrational spectra of several dominant N-related 
complexes. The focus was on N-pairs occupying either an interstitial or a substitutional 
position and the associated N-O complexes consisting of bridging one or two oxygen 
interstitial atoms on the first Si-Si bond neighboring the N-N center. We found a good 
correlation between the degree of stability of the defect, the IR active energy levels foreseen 
by the symmetry of the defect and the calculated and measured IR active modes. We found, 
in agreement with an earlier theoretical study, that 2i iN N N   and 2 2 2VN V V N   are 
highly exothermic chemical reaction thus are very stable complexes. Both complexes are 
believed to chiefly form and coexist during crystal growth. The VN2 complex is a metastable 
species playing a central role in the formation of very stable V2N2 defects. The N-O 
complexes formed from N2 and V2N2 defects that is N2On and V2N2On (n=1, 2) are the most 
stable among studied N-O complexes suggesting that they act as nucleation centers for 
oxygen precipitation. It is likely that vacancy concentration during crystal growth is affected 
by the following chemical reaction pathway N2VN2V2N2V2N2OV2N2O, which 
decreases the vacancy supersaturation, delaying the onset of vacancy clustering and 
lessening the void density. 
Our results strongly support the assignment of 771 cm-1 and 967 cm-1 (T<15K) absorption 
bands to N2 pairs in split interstitial positions. Our calculations show that 551 cm-1 line and 
653 cm-1 detected in N-implanted FZ Si crystals relates to nitrogen substitutional and are 
caused by the vibration of VN2 and V2N2 complexes. Unexplained measured 782 and 790 cm-

1  FTIR lines probably relate to VN2 defects. Our DFT calculations on N-O complexes show 
that N2O and N2O2 complexes best match the FTIR absorption bands measured for N-O 
complexes. N2On, VN2On and V2N2On (n = 1, 2) have IR absorption bands around measured 
806 cm-1 and 815 cm-1 lines and all relate to nitrogen vibrations. We found that FTIR 1021 
cm-1 absorption band is an IR signature for N2O2 and that 1000 cm-1 and 1031 cm-1 relate to 
N2O vibrations. The 739 cm-1 line measured in N implanted FZ Si wafers originates from 
V2N2O or V2N2O2 vibrations.  
The degree of stability and matching infrared vibrational spectra suggest that N2On as well 
as V2N2On complexes develop during crystal growth and wafer annealing and that both act 
as nucleation site for oxygen precipitates. The increase in the number of nucleation sites due 
to nitrogen-vacancy-oxygen coupling explain the high density of grown-in oxygen 
precipitates and the delay in void formation observed in N-doped Si crystals.  
Since all studied N-O complexes have normal modes falling around 806 cm-1 and 815 cm-1 
(T<15K) measured FTIR lines, these absorption bands have to be considered in the [N] 
calibration relationship for N-CZ and O-rich N-FZ Si, ሾNሿ = 	 (1.83 ± 0.24)x	1017x	ሾଽ଺଻ 	+	଼଴଺ 	+	଼ଵହሿ  at/cm-3  (T<15K). For N-FZ implanted wafer the absorbance of 653  cm -1 line 
which relate to V2N2 have to be considered in the calibration formula because of the 
important excess of vacancy existing in implanted wafers. 
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1. Introduction 

Since the discovery of the double helix structure by Watson and Crick, deoxyribo-nucreic 
acid (DNA) has been the most important substance in molecular biology. DNA consists of 
base, sugar and phosphoric acid. There are four kinds of base in natural DNA, adenine (A), 
cytosine (C), guanine (G) and thymine (T) as shown in Figure 1. 
 

 
Fig. 1. The chemical structures of base pair (GC and AT pair), where the broken lines 
represents the hydrogen bond. 

From the view of chemistry, DNA is one of the most remarkable examples for self-assembled 
materials existing in nature. It is said that the phosphoric acid has hydrophilic properties. This 
is why DNA is stable in aqueous phase. Moreover, there are two kinds of interaction which 
stabilizes the whole structures of DNA base pairs. These interactions are the driving force of 
self-assemble which leads to beautiful double helix structure. Structures of double-stranded 
DNA are stable in aqueous solution, because there are two kinds of interaction between 
Watson–Crick nucleobases. The first is the hydrogen bonding between nucleobases, where an 
A-T and a G-C base pairs have two and three hydrogen bonds per pair, respectively. The 
second is a base stacking interaction caused by π-π interaction between the base pairs. This 
type of interaction mainly originates from the van der Waals forces. 
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Hydrogen bond is important factor for interaction within DNA base pair. Many theoretical 
studies have computed the hydrogen bonding energy between nucleobases in a base pair. 
According to the most accurate computation up to date, hydrogen bonding energies of an 
adenine-thymine (AT) pair and a guanine-cytosine (GC) pair are about 60 and 110 kJ/mol, 
respectively [1, 2]. 
One of the most important topics in the hydrogen bonding between DNA bases is the proton-
transfer (PT) reaction. In 1963, Löwdin proposed the possibility of a proton-tunneling model 
in the DNA base pairs [3]. He also suggested a simultaneous double proton-transfer (DPT) in 
AT and GC pairs, which may cause a mutation in the structure of DNA. The process of DNA 
mutation through proton-transfer (PT) may be estimated by computational chemistry using 
small molecular model systems such as several DNA base pairs. In particular, two types of 
the PT reaction in a GC pair (illustrated in Figure 2) have been studied extensively. One is a 
single proton-transfer (SPT) reaction, in which a hydrogen atom moves from N1 of guanine 
(N1 (G)) to N3 of cytosine (N3 (C)) as a proton. Thus, the SPT reaction causes ion pair G-C+ to 
form, where the proton donor G becomes negative and the proton acceptor C becomes 
positive. The other is the DPT reaction, in which two hydrogen atoms (one hydrogen atom is 
located at N1 (G)-H…N3 (C), the other is located at O6 (G)…H-N4 (C)) move to the other side 
of each hydrogen bond, which results in G*C* pair (G* and C* represent an isomer of guanine 
and cytosine, respectively). In the original DNA base pair, the DPT reaction does not affect 
the sum of charges on each base. Unfortunately, there is very little evidence to confirm the 
existence of proton-transferred base pairs at room temperature by experiments, because it is 
difficult to determine the position of each hydrogen atom in nucleobases accurately. In this 
circumstance, theoretical simulations can help one to understand whether or not the PT 
reactions occur in DNA base pair. 
 

 
Fig. 2. Proton-transfer reaction between guanine-cytosine (GC) pair.  

In order to understand the transition probability to the product or the dynamics simulation 
of PT reaction, we need the potential energy surface (PES) of the proton between base pair. 
Since the PES should be drawn within the error of chemical accuracy (1 kcal/mol= 4.2 
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kJ/mol), we use the quantum chemical approach to obtain the potential energy of the 
proton. The quantum chemical methods (e.g. Hartree-Fock (HF), post-HF theories and 
density functioanl theory (DFT)) are derived from the Schrödinger equation or Kohn-Sham 
equation. Since the introduction of the program package such as GAUSSIAN, the quantum 
chemical approaches have recently been a powerful tool to investigate the molecular 
properties which include the PES. 
Many theoretical studies have investigated the PT reactions in AT and GC pairs. Florian et 
al. investigated the energetics of the PT reactions in GC and AT pairs [4, 5]. They reported 
that the GC pair was more stable than its DPT product（G*C*）by 10 kcal/mol, and the 
barrier height was estimated to be 14–20 kcal/mol. The DPT reaction would occur rather 
than the SPT reaction because the SPT reaction causes the charge separation, forming no 
stable product in the ground state. As an approach to the PES of proton between base pair, 
Villani has investigated the PES of the protons between AT and GC pair [6] and we also 
performed the dynamics simulation in semi-classical method [7]. 
However, these PT reactions can occur easily in the presence of chemical modification of 
nucleobases such as metal complex binding or ionization of GC pair [8]. We take a cisplatin 
([Pt(NH3)2Cl2]) bound GC pair as an example of metal complex bound DNA base pair [9, 10]. 
Since cisplatin was discovered by Rosenberg et al. in 1969 [11], Pt complexes have received 
much attention for their effects as antitumor drugs. Cisplatin distorts the structure of DNA by 
making a bridged structure with N7 of guanine (G) or adenine (A). It causes a cell disorder that 
leads to apoptosis of the living cell. Because cisplatin contains only 11 atoms, it has been a 
good target for study by quantum chemistry and has been investigated from both the 
experimental and theoretical viewpoints. Experimentally, it is known that the bridged 
structure consists of 65% 1,2-d (GpG) (denoted as cis-G-Pt-G), 25% 1,2-d (ApG) (cis-G-Pt-A), 
and the rest is other bridged structures [12]. Nevertheless, the existence of 1,2-d (ApA) (cis-A-
Pt-A) is difficult to confirm. The distorted DNAs are observed in X-ray analysis at 1.65–2.50 Å 
resolutions and in NMR experiments. These structures can be freely taken from the protein 
databank (PDB). We draw the whole structure of DNA and cisplatin bound DNA in Figure 3. 
 

 
Fig. 3. Observed structure of normal DNA (B-type) and distorted structure by cisplatin. 
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From theoretical aspects, cisplatin has many interesting topics such as a ligand substitution, 
a hydration reaction, differences with transplatin and DNA binding. Ligands of cisplatin 
become NH3 and/or H2O by hydration reactions, depending on the pH of the solution. Note 
that the ligands of cisplatin in the human body are recognized as NH3. In view of the DNA 
binding, there have been many studies of the reaction between cisplatin and DNA bases. In 
particular, Burda’s group [13, 14] assumed [cis-Pt(NH3)2(N7-G(or A)),(N7-G(or A))]2+ as the 
bridging structures and estimated binding energies of Pt-G and Pt-A. They found that the 
binding of base pair to the Pt atomtend to occur in the order of cis-G-Pt-G, cis-G-Pt-A, and 
cis-A-Pt-A. The angle of N7-Pt-N7 was about 90° for all cases. They confirmed that these 
bridges were stabilized by a hydrogen bond between G (or A) and a ligand of the Pt atom, 
such as H2O and/or NH3. Furthermore, reactions between cisplatin and two DNA purine 
bases (such as 1,2-d (GpG), 1,2-d (GpA)) were studied. Their calculated results of reaction 
barriers and the reaction constants of substitution reactions reproduced the experimental 
data well. There are two possible influences of Pt-DNA formation: (1) global structural 
changes, such as the distortion of the DNA duplex structure, or (2) local structural changes, 
such as a DNA mutation because of proton-transfer reactions. The former case is very hard 
to tackle with full quantum chemistry computation, because such a system is too huge study 
with currently available computational resource. For the latter case, the DNA mutation can 
be estimated using small molecular systems such as several DNA base pairs. 
In this chapter, we will discuss the possibilities of simultaneous single proton transfers in 
one or two base pair(s). In Section 2, we will introduce a quantum chemical calculation 
methods, which we used on the basis of the quantum mechanics. As an application to the 
DNA-systems, we discuss the possibility of proton-transfer reactions in GC pair in Section 3 
& 4. In Section 5, we give the concluding remarks. 

2. A brief introduction to the quantum chemical calculations 

In this section, we briefly explain the quantum chemical approaches used in this chapter. 
There are two main methods in the filed of quantum chemistry. The former is ab initio 
calculation, which is mainly used in Section 3. The latter is density functional theory (DFT), 
which is used in Section 4. Because of the limitation in this chapter, for the reader who 
wants to know the detail of the theory, we refer some textbooks for the quantum chemical 
approaches [15, 16]. 

2.1 Ab initio theory 
The field of quantum chemistry starts from solving the Schrödinger equation for the 
electrons in the molecule. Because nuclei are much heavier than electrons, we can 
approximate that the electrons moves in the field of fixed nuclei. Then the Schrödinger 
equation for the electrons becomes equation (1). 

 2
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1 1
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where A (and B in (2)), μ (and ν) represent the position of nuclei and electrons, respectively. 
Note here that we chose the “atomic unit“ in which we set m=ћ=e=1 for simplicity. This 
approximation, called Born-Oppenheimer approximation, is central to quantum chemistry. 
The total energy Etotal includes the repulsion between fixed nuclei, i.e., 
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As a wave function Ψ for the electrons, quantum chemists adopt the Slater determinant 
shown in (3). 
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The variable xi denotes both the coordinate r and its spin state (α or β). (2N)!-1/2 is a 
normalization factor. This determinant satisfies the requirement called antisymmetry 
principle, where a sign of the wave function is changed by interchanging positions of a pair 
of electrons. In the quantum chemical calculation, each molecular orbital can be described as 
the linear combination of atomic orbitals (LCAO) χn(r) such as 

 ( ) ( )k k
k

C r r . (4) 

Our goal is to minimize the Eelec=<Ψ|Helec|Ψ> subject to the constraint that the trial wave 
function must be orthonormalized by using a variational method. This scheme is called as 
“Hartree-Fock(HF) theory“. HF theory is categolized into the mean field theory. The 
working equation is given by 

   
 

   
   

* *2

occ occ

' ' ' '
2

2 ' '
j j i jA

i j i i
AA j j

Z
d d
   

   
 

      
    

   
r r r r

r r r r r
r R r r r r

, (5) 

where the fourth term arise from the antisymmetry principle and is referred as exhange 
contribution. Within the LCAO approach, above nonlinear coupled equations result in a 
following secular equation, 

 FC SC , (6) 

where F and S are so-called Fock and Overlap matrices. The matrix elements are given by 
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where Hkl and Vklmn are one- and two-electron matrix elements, respectively, and γmn is the 
density matrix. Since the two-electron term depends on the input density matrix, the HF 
equation is solved self-consistently. 
HF theory covers 99.5% of the total energy of the whole molecule. However, the remaining 
0.5% (equals to the order of 1-10 kcal/mol for small molecules) is quite important in the field 
of chemistry. To reach this accuracy, we have to consider the “electron correlation“ which is 
the interaction between electrons. There are so many approaches (post-HF theories) to obtain 
the electron correlation energy. The most frequently used theory for application is the second 
order of Møller-Plesset (MP2) theory which is the perturbation theory for the dynamical 
electron correlation. This method is efficient when the HF theory gives the good results. 
Moreover, the computational cost is the lowest among the post-HF theories. In Section 3, we 
adopted this theory to obtain the PES of the proton between guanine and cytosine. 

2.2 Density functional theory 
The DFT is derived from the Hohenberg-Kohn theorem, which consists of two theorems: (1)  
The ground state electron density ρ0(r) of a many electron system in the presence of an 
external potential uniquely determines the external potential. (2) The functional E[ρ] for the 
ground state energy is minimized by the ground state electron density ρ0, i.e. E[ρ0]≤E[ρ] for 
every trial electron density ρ. When we determine φi(r) as a molecular orbital, as we derived 
the HF equation in previous paragraph, the total electron density can be determined as 

 2( ) | ( )|
occN

i
i

  r r . (8) 

This summation for variable i runs to the number of occupied molecular orbitals Nocc. Kohn-
Sham equation can be written as follows: 
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where VH is the Hartree potential which expresses the Coulomb interaction between two 
electrons. The term vXC[ρ] is “exchange-correlation“ potential which replaces the effect from 
the exchange of electrons used in the HF & post-HF theories. Since the equation (9) is similar to 
the equation (5), DFT can be used by the same procedure, i.e. LCAO approxach, as the HF 
theory. Although DFT includes the electron correlation effects through the empirical 
correlation potential, the computational cost is much lower than post HF methods. However, 
no one knows the exact formulation for the correlation potential so far. To obtain the 
exchange-correlation energy, many types of model exchange-correlation functional have been 
proposed. Among them, Becke proposed the exchange-correlation functional which includes 
the HF exchange energy. This method is often called “hybrid functional“. In Section 4, we used 
“mPW1PW91“, one of the hybrid functionals. The detailed expressions are given in ref 17. 

2.3 ONIOM method 
The computational cost of ab inito or DFT is over O(N3) where N denotes the number of 
atoms. Therefore, it is necessary to reduce the computational cost for larger sized molecules 
which is discussed in this chapter. 
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ONIOM, which is the abbreviation of “our own n-layered integrated molecular orbital and 
molecular mechanics“ proposed by Morokuma et al. [18], is one of the candidates for the 
approximate ways of this problem. ONIOM is a kind of the hybrid methods for quantum 
mechanics/molecular mechanics (QM/MM) calculation, which is de facto standard of 
biophysical simulations. This method divides the whole molecule into two (or more) parts 
in order to enable us to compute different level of theories, i.e., 

 large small small
ONIOM low highlowE E E E   . (10) 

When we choose the QM (ab initio or DFT) as the higher level calculation and molecular 
mechanics (MM) as the lower level, we can perform the QM/MM like calculations with this 
method. In the ONIOM calculation, we replace the boundary atom with a hydrogen atoms. 
Figure 4 shows the simple scheme for ONIOM calculations. The potential function of MM 
EMM are generally written as follows: 
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These terms are the stretch (bonds), bend (bond angles), torsional (dihedral angles) and non-
bonded interactions (van der Waals interaction and Coulomb interaction). The constants req, 
θeq, γ are obtained by geometry optimization with quantum chemical calculation. We also 
have to determine the parameter Kr, Kθ, Vn, Aij, Bij. The variable qi is called as “MM charge“ 
which depends on the computational models. We used this scheme in Section 4. 
 

 
Fig. 4. An image of ONIOM scheme. In general, the region in orange is computed by the 
lower level theory such as molecular mechanics (MM). The region in blue is for higher level 
theory such as ab initio or DFT. 
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3. Local change in a cisplatin bound GC pair 

3.1 Computational details 
Firstly, we focused on the proton-transfer reaction between a GC pair. We simplified the 
model to the system which consists of one GC pair and cisplatin, i.e. [Pt(NH3)3GC]2+. 
Geometry optimizations were first performed by the MP2 method. As the platinum is a 
heavy element, we have to consider the relativistic effect. In order to reduce the 
computational cost, we adopted an effective core potential (ECP) which implicitly includes 
the relativistic effect. As a typical ECP, we used the LanL2DZ basis function (We here 
denote this set of calculation as “MP2/LanL2DZ“). Later hydrogen bonding energy was 
calculated at those optimized structures with correction of a basis set superposition by the 
counterpoise method. All calculations were performed by GAUSSIAN03 [19]. The hydrogen 
bond lengths, energies, induced charges and all possible proton transfer reactions among 
the bases were calculated. 

3.2 Local changes of properties in platinum complex bound GC pair 
In this subsection, we compared neutral GC pair with the platinum complex bound GC pair. 
Especially, we focused on the hydrogen bonding energy, hydrogen bonding length and IR 
spectra. First, we summarized the results of the optimization in Table 1. 
 

 Hydrogen bonding energy Hydrogen bonding length [in Å] 

  [kcal/mol] O6(G)-N4(C) N1(G)-N3(C) N2(G)-O2(C) 

GC pair 27.2 2.98 2.93 2.85 

Pt + GC 31.4 3.06 2.91 2.90 

Table 1. Summary of the change caused by the coordination of platinum complex. 

Hydrogen bond length and energy: The major difference between normal GC pair and 
platinum complex bound GC pair is the length between O6(G) and N4(C). This is caused by 
Pt2+ cation which attracts the O6(G). As a result, the hydrogen bond length O6(G)-N4(C) 
becomes larger. On the other hand, the hydrogen bond length N1(G)-N3(C) is not affected by 
the platinum complex binding. The hydrogen bond energy of the base pairs is given by the 
energy difference between [Pt(NH3)3G]2+ + C and [Pt(NH3)3GC]2+. The results show that the 
hydrogen bond energy increases by 4 kcal/mol by Pt complex formation. 
Changes in IR spectra: Next, the vibrational analyses were performed by MP2/LanL2DZ at 
the optimized structure obtained by the same method. The GC pair has three peaks of N-H 
stretching modes related to the hydrogen bonds. We defined three N-H stretching modes  
O6…H-N4, N1-H…N3 and N2-H…O2 as stretch1, stretch 2 and stretch 3, respectively. 
Figure 5 shows the results of peak shifts before and after the Pt binding. In the case of N-H 
stretch between O6 (G)-N4 (C), about 250 cm-1 blue shift was observed and the intensity 
became lower. This means the hydrogen bonding becomes distant and weaker. In the case of 
N-H stretch between N2 (G)-O2 (C), on the other hand, about 300 cm-1 red shift was observed 
and the intensity became higher showing that the hydrogen bonding becomes stronger. 
These shifts can be explained by the hydrogen bonding length. In the case of N-H stretch 
between N1 (G)-N3 (C), about 400 cm-1 red shift was observed. From these results, it was 
found that the additional hydrogen bond between the H atom of the ligand and O6 of G 
affects the stability of the complex. 
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Fig. 5. IR spectra of GC pair and platinum complex bound GC pair. The peak numbers 
correspond to the N-H stretching modes. 

3.3 Potential energy surface of proton 
The other hydrogen bonds become closer because of the electrostatic interaction induced by 
the Pt binding. Especially, N1 (G) and N3 (C) become closer and the potential energy curve of 
the hydrogen atom between them has a double minimum. Next we proceed to investigate a 
feature of local changes at the hydrogen bonds by observing the PES as a function of 
positions of H atoms in order to understand the peak shifts. The GC pair has three hydrogen 
bonds: O6…H-N4, N1-H…N3 and N2-H…O2, respectively. We focused on the two protons: 
O6…H-N4 and N1-H…N3, which were concerned with the SPT or DPT reactions as shown in 
the introduction. We obtained an energy of optimized geometryV(x,y) as a function of bond 
length O6-H (x) and N1-H (y). We fitted the PES as the following equation. 

 V(x,y)= 
,

6

ji
ij

i j
i j

C x y

 

 , (12) 

where Cij is the expansion coefficient. We used the PES of normal GC pair computed by Villani 
[6]. We draw the PESs as shown in Figure 6 and listed the expansion coefficients in Table 2. 
There are explicit differences in PESs after the Pt binding. In the normal GC pair, two local 
minima were found, which correspond to the DPT reaction. On the other hand, O6-H are fixed 
near the global minimum, N1-H has two minima in the platinum complex bound GC pair. The 
former is near N1-H=1.10 and the latter is near N1-H=1.70, respectively, which corresponds to 
SPT reaction. It was confirmed that its energy difference and energy barrier are very small.  

3.4 Proton-transfer reaction in Pt+GC pair 
We show the existence of the structure that undergoes SPT reaction between N1 (G) and N3 
(C), which is hereafter denoted as a G-C+ pair. The barrier of the DPT reaction, which occurs  
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Fig. 6. The potential energy surface of two protons in (a) normal GC pair (b) platinum 
complex bound GC pair. The unit of the number is kcal/mol. 

 

 j=0 j=1 j=2 j=3 j=4 j=5 j=6 

i=0 6935.30 -20913.1 38457.0 -35870.0 18315.3 -4867.65 527.568 

i=1 -6004.82 -9088.74 8023.79 -4442.78 1219.89 -131.039 - 

i=2 14320.4 4568.72 -1246.22 394.393 -52.4822 - - 

i=3 -14376.9 -2318.65 161.588 -17.1170 - - - 

i=4 7795.29 692.153 -12.5530 - - - - 

i=5 -2195.60 -85.3225 - - - - - 

i=6 251.950 - - - - - - 

Table 2. Expansion coefficients of Cij in platinum complex bound GC pair. 

in normal GC pair, is 15.2 kcal/mol, which gives the similar result to Florian’s work [5]. On 
the other hand, there is no DPT structure of the cisplatin bound GC pair. Figure 7 sketches 
the optimized structures of the GC and G-C+ pairs, and the transition state (TS). It is 
confirmed that all of the structures keep their planarity, even after the Pt complex binding 
and proton transfer. Nevertheless, the distances between the atoms involved in hydrogen 
bond vary significantly as shown in Table 3. The hydrogen bond of O6N4 increases by 0.15 
Å due to the influence of the “additional” hydrogen bond between O6 and the ligand of 
cisplatin. The other hydrogen bonds shrink because of the electrostatic interaction induced 
by the Pt binding, as discussed below. In particular, the hydrogen bond between N2 (G) and 
O2 (C) decreases by 0.19 Å. There is a weak dependence of the ligands in these distances of 
hydorgen bonds for the GC pair. On the other hand, a stronger dependence is found for the 
distance between bases of G-C+ pair. O6N4, N1N3, and N2O2 distances in G-C+ pair are 
shortened by 0.05, 0.08, and 0.02 Å compared with the normal GC pair, respectively. These 
facts indicate that all of the hydrogen bonds become stronger in comparison with the normal 
GC pair. In what follows, we examine where these differences arise. 



Metal-Assisted Proton Transfer in  
Guanine-Cytosine Pair: An Approach from Quantum Chemistry 

 

177 

 
Fig. 7. The reaction diagram for proton-transfer reaction in GC pair. (a) normal GC pair (b) 
platinum complex bound GC pair. In (a), double proton-transfer reaction occurred, and in 
(b), single proton-transfer reaction occurred. 

 

 Pt + GC TS Pt + G-C+ Experimental 

O6-N4 3.06 2.80 2.77 2.79 

N1-N3 2.91 2.64 2.88 2.88 

N2-O2 2.72 2.77 2.94 2.84 

Table 3. Hydrogen bonding length in Pt+GC pairs (in Å) 

Charge distributions: The natural bond orbital (NBO) charges of atoms associated with 
hydrogen bonds and Pt-G coordination, listed in Table 4, shows that in the GC pair the 
charge on O6 of G increases by interaction with the ligand of Pt. The hydrogen bond 
strength between a ligand and O6 of G influence the charge of O6, which leads to the 
difference in the whole hydrogen bonds. The NBO charge on Pt decreases. Therefore, a 
charge transfer takes place mainly from the guanine and partially from the cytosine to the Pt 
atom. Such a charge transfer leads to a decrease in the charge on N1 in guanine and an 
increase in the charges on all H atoms between the bases. The foregoing discussion gives  
clues for the reasons why the hydrogen bonds are strengthened: (i) the charge transfer 
mainly from O6 of G to the Pt and H atoms, and (ii) additional formation of a hydrogen 
bond between L1 and O6 of G, as pointed out above. Strong dependences of the ligand on 
the charge of Pt, N7, and O6 are found. In the platinum bound GC pair, only a small 
influence is observed in the Mulliken charges on the atoms in C, whereas the changes are 
more significant in the G-C+ pair. The charges on all the heavy elements except for O6 
increase compaired to the GC pair. Moreover, strong influences of the ligand on the charge 
are found for Pt, N7, O6, as well as N1. For further understanding of the interactions among 
the Pt atom, ligands, and the bases, the sum of the NBO charge on the bases and the ligands 
are listed in Table 5. As a reference, the total charges in the unbound case is estimated 
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Pt-G 
coordination 

Hydrogen bond 1 Hydrogen bond 2 Hydrogen bond 3 

Atom  Pt N7 O6 H1 N4 N1 H2 N3 N2 H3 O2 

GC 0.72a -0.44 -0.57 0.48 -0.86 -0.81 0.47 -0.64 -0.90 0.46 -0.56 

Pt+GC  0.47 -0.63 -0.60 0.46 -0.89 -0.80 0.50 -0.67 -0.87 0.50 -0.57 

Pt+G-C+ 0.74 -0.53 -0.61 0.47 -0.70 -0.38 0.51 -0.54 -0.69 0.45 -0.32 

a: Estimated from [Pt(NH3)4]2+ as a reference. 

Table 4. NBO charges calculated by MP2/LanL2DZ 

 

 G C Ligands Pt 

GC pair -0.026 0.026 1.389 0.611 

Pt(NH3)3GC 0.273 0.125 0.910 0.692 

Pt(NH3)3G-C+ -0.444 0.886 0.881 0.686 

Table 5. Sum of NBO charge 

using [Pt(NH3)4]2+. In the normal GC pair, both G and C are almost neutral. In contrast, 
both G and C in the platinum bound GC pair are positive due to the charge transfer from 
the bases mainly to the Pt atom. As for the G-C+ pair, however, G and C become negative 
and positive, respectively. Note here that C includes the hydrogen atom that initially 
belongs to the G in the GC pair as a result of SPT from G to C. Since the charge on the Pt 
atom increases, charge transfer from G to the ligands of cisplatin accompanies the SPT 
reaction.  

3.5 Summary of section 3 
We have numerically elucidated the changes in the hydrogen bonds of the base pairs due to 
Pt complex formation by means of MP2 theory. For the platinum bound GC pair, the 
hydrogen bonding energy exceeds by 310 kcal/mol than GC pair without platinum 
complex. The hydrogen bond between O6N4 is lengthened, whereas the other hydrogen 
bonds are shortened. These observations are explained by a rearrangement of the charge 
distribution. In this section, we revealed that the binding of platinum complex causes a 
single proton-transfer (SPT) reaction between N1 (G) and N3 (C) in the GC pair. Note here 
that the SPT reaction does not occur in the GC pair itself, while double proton-transfer 
(DPT) does. Its reaction barrier decreases from 15-20 kcal/mol of the DPT reaction without 
the Pt complex to 1.5–3 kcal/mol of the SPT reaction with the Pt complex. The structure that 
underwent the SPT reaction is as stable as the original structure. 

4. Global and local change of GC pairs by coordination of platinum complex 

In stacked two GC pairs, althogh DPT reactions can occur independently. However, these 
reactions hardly take place because of high energy barriers as seen in one GC pair [20]. For 
further research, it is natural to study what happens when two or more base pairs are 
stacked. For the simplicity, we hereafter denote a “G-C+ pair“ (the product of SPT reaction in 
GC pair) as a “G*C pair“. 
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4.1 Computational details 
Modeling: We first define two types of model systems: the “two base pair” (2bps) model 
and the “four base pair” (4bps) model. The former consists of two base pairs and cisplatin 
without the backbone molecules, such as sugar and phosphate groups, while the latter 
consists of four base pairs and the backbone molecules so that it includes the effects of both 
the backbone molecules and base stacking. 
The 2bps model is small enough to compute with the full quantum chemistry calculation. 
Density functional theory (DFT) was adopted and the modified Parr–Wang functional 
(mPW1PW91) was chosen as an exchange–correlation functional, because the functional is 
modified to better describe the hydrogen bonding. For the calculations described in this 
chapter, the Stuttgart/Dresden ECPs were used for the Pt atom and the 6-31G (d, p) basis 
for the other atoms.  
ONIOM method: To investigate the effects of DNA stacking, the backbone and counter 
cations, we proceeded to the 4bps model by ONIOM method introduced in Section 2.3. We 
here treated two of the four base pairs as the higher layer and the rest as the lower layer. We 
utilized the method used in the 2bps model for the higher level calculation and the universal 
force fields (UFF) for the lower level calculation in ONIOM cacluation. We took the initial 
structure 1,2-d (CpX1pX2pT) from PDB (PDBID:1A84), where X1 and X2 are purine moieties 
bound to the Pt complex so that there are three patterns of X1 and X2. The ligands of the 
cisplatin were assumed as NH3, as in the human body. We also assumed that the Pt atom 
binds to N7 of G and A. To keep the whole system neutral, we added sodium atom at every 
PO4- molecule as the counter cation. 

4.2 2bps model 
Figure 8 shows the all optimized geometries of the three types of model molecules: cis-(CG)-
Pt-(GC), cis-(CG)-Pt-(AT) and cis-(TA)-Pt-(AT). The structure of cis-(CG)-Pt-(GC) was 
distorted in comparison with those in the DNA because of repulsion between the two O6 
atoms. Although one of the GC pairs keeps a planar structure, the other GC pair was greatly 
distorted. We distinguish them by referring to the former planar pair as the “(GC)p pair” 
and the latter distored pair as the “(GC)d pair”. This distortion may lead to the stabiity of 
whole system in cis-(CG)-Pt-(GC). Hereafter, we will describe the structure of the 2bps 
model in the form cis-(GC)p-Pt-(GC)d. Unlike the structures of cis-(GC)p-Pt-(GC)d, all base 
pairs in the cis-(CG)-Pt-(AT) and cis-(TA)-Pt-(AT) almost keep their planarity.  
We evaluated the binding energy of cisplatin and the base pair. To estimate the hydrogen 
bonding energy, we assumed a two-step reaction: (1) [Pt (NH3)4]2+ + Bp-B´p -> [Pt (NH3)3 
Bp B´p]2+ + NH3 (reaction energy: ΔE1) (2) [Pt (NH3)3 Bp B´p]2+ + Bd B´d -> [cis-Pt (NH3)2 Bp 
B´p Bd B´d]2+ + NH3 (reaction energy: ΔE2), where Bx is A or G, B´x represents the 
complementary base of Bx (x = p, d). Results are shown in Table 6. Comparing the ΔE1 
values, the binding energy of Pt-(GC) is much higher than that of Pt-(AT), by 30 kcal/mol. 
ΔE1 is larger than ΔE2 because of the Coulomb repulsion between the original [Pt (NH3)3 
Bp B´p]2+ and the additional base pair. Moreover the bases are likely to bind to the Pt 
complex in the order cis-(CG)-Pt-(GC), cis-(CG)-Pt-(AT) and cis-(TA)-Pt-(AT). In 
particular, the binding energy of the cis-(TA)-Pt-(AT) is remarkably low compared with 
those of cis-(CG)-Pt-(GC) and cis-(CG)-Pt-(AT). These results support both experimental 
evidence and the tendencies of the models studied by Burda and Leszyczynski [13], as 
mentioned in the introduction. 



 
Some Applications of Quantum Mechanics 

 

180 

 
Fig. 8. The optimized structures of the 2bps models: (a) cis-(CG)p-Pt-(GC)d, (b) cis-(CG)-Pt-
(AT), and (c) cis-(TA)-Pt-(AT). 

 

 B1=G, B2=G B1=G, B2=A B1=A, B2=G B1=A, B2=A 

E1 46.1 (47.9) 46.1 (47.9) 14.7 (16.4) 14.7 (16.4) 

E2 24.5 (25.9) 6.9 (8.2) 38.2 (41.7) 2.4 (4.9) 

Total 70.5 (73.8) 52.9 (56.1) 52.9 (56.1) 17.1 (21.3) 

a: The “2bps model” was used. 
b: The optimized NH3 and [Pt(NH3)4]2+ is used for energy calculation. 
c: The numbers in parentheses represent the energy including zero-point energy. 

Table 6. Energy differences of substitution reaction (in kcal/mol) 

Why cisplatin prefers guanine to adenine: Figure 9 shows the reason why cisplatin prefers 
guanine to adenine. It is known that cisplatin attacks to major groove of DNA base. Guanine 
has N7 and O6 which attract positive charge. On the other hand, adenine has amino group in 
N6. One of H atoms in amino group prevent positive charge from attacking to major groove. 
If cisplatin binds to adenine, this amino group has to be rotated which needs much energy. 
Thus, cisplatin prefers guanine to adenine. Table 6 shows this tendency exactly. Therefore, 
we will focus on the models of cis-(CG)p-Pt-(GC)d and cis-(CG)-Pt-(AT) in further 
discussion. 
 

 
Fig. 9. The major groove of GC and AT pair where cisplatin attacks. In the case of AT pair, 
amino group of N6(A) prevents cisplatin from attacking to N7. 



Metal-Assisted Proton Transfer in  
Guanine-Cytosine Pair: An Approach from Quantum Chemistry 

 

181 

Proton-transfer reactions in 2bps model: Next, we discuss the possibility of multiple proton-
transfer reactions in these systems. Here we depict a restricted two-dimensional potential 
energy surface (PES) of two different hydrogen atoms between N1 (Gp/d) and N3 (Cp/d) in 
figure 10, where the geometry except for the two hydrogen atoms is fixed. The rigid PES used 
here is very rough approximation, because it does not consider the effect of structure 
relaxation. Nevertheless, it is at least useful to intuitively understand the proton transfer 
reactions between bases. In this subsection, we depicted this PES in order to confirm whether 
proton-transferred structures exist or not two stacked base pairs. The origin of the PESs are at 
the center of both hydrogen bonds, and the PESs were plotted every 0.05 Å. From this figure, 
it shown that there are three possible minima, at the points marked as X in the figures. No 
two simultaneous SPT reactions are found because the potential energy of cis-(CG*)p-Pt-
(G*C)d is very high as shown in ▲. We here confirmed that one SPT reaction can occur even 
in two GC pairs. Figure 11 shows the results of geometry optimization of cis-(CG)p-Pt-(GC)d, 
cis-(CG*)p-Pt-(GC)d and cis-(CG)p-Pt-(G*C)d, where G* again means the guanine donating a 
proton. This result is similar to the SPT reaction in one GC pair calculation described in 
previous subsections, where the reaction barrier is about 5–6 kcal/mol. The difference of the 
energy barrier between cis-(CG*)p-Pt-(GC)d and cis-(CG)p-Pt-(G*C)d is because of the 
difference in their planarity. A structure of two simultaneous SPT, cis- (CG*)p-Pt-(G*C)d, 
cannot be found, as expected from the potential surface depicted in figure 10. 
Next, the sum of charges obtained by the natural bonding orbital (NBO) is analyzed. Table 7 
lists the results of the sum of the NBO charges. Every part of cis-(CG)p-Pt-(GC)d has a 
positive charge, but both Cp and Cd are almost neutral. When the SPT reaction occurs, the  
 

 
Fig. 10. (a) Definitions of variables in a 2bps model of cis-(CG)p-Pt-(GC)d. Only the hydrogen 
atoms surrounded by the dotted line in each GC pair were moved. (b) The potential energy 
surface of hydrogen atoms. The numbers on each axis represent the distance between N1 (G) 
and the hydrogen atom (in Å). The origin is set at the point where both hydrogen atoms are 
at the middle of the hydrogen bonding. 
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Fig. 11. The reaction diagram for single proton transfer (SPT) between N1 (G) and N3 (C) of 
the 2bps model of cis-(CG)-Pt-(GC). The numbers in kcal/mol in the figure denote relative 
energies measured from cis-(CG)p-Pt-(GC)d. 

 
 cis-(CG)p-Pt-(GC)d cis-(CG*)p-Pt-(GC)d cis-(CG)p-Pt-(G*C)d 
Gp or G*p 0.26 –0.43 a 0.25 
Gd or G*d 0.24 0.25 –0.44 a 
Cp 0.10 0.58 b 0.33 
Cd 0.10 0.32 0.58 b 
Pt 0.73 0.69 0.70 
Ligands 0.59 0.58 0.58 

a: The sum does not contain the H atom transferred to the N3 of C. 
b: The sum contains the H atom transferred from G.  

Table 7. Sum of the charges by natural bond orbital (NBO) analysis 

whole charge of a proton donor G* becomes negative. On the other hand, both Cp and Cd 
become positive after the SPT reaction. The proton donor G* is negative whereas a proton 
acceptor C is positive. It is expected that these Coulomb repulsions of Cp and Cd and of Gp 
and Gd prevent further SPT reactions from cis-(CG)p-Pt-(G*C)d and (CG*)p-Pt-(GC)d. In 
particular, this change of charge distribution can be seen in the case of trans-(CG)1-Pt-(GC)2, 
in which the two guanines become negative while the two cytosines become positive. 
The SPT reaction between N1 and N3 of the GC pair also occurs in cis-(CG)-Pt-(AT). The 
result is similar to the one GC pair shown in Section 3.4. The structure is not distorted in  
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spite of the SPT reaction between the GC pair. Then, we must know the possibilities of 
further proton transfers in the AT pair. These pairs have two hydrogen bonds N6 (A)-O4 (T) 
and N1 (A)-N3 (T). We show a restricted two-dimensional potential energy surface in Figure 
12, where variables r1 and r2 denote the distances N6-H and N1-H, and the other geometries 
are fixed. Figure 12 shows two local minima, both cis-(CG)-Pt-(AT) and cis-(CG*)-Pt-(AT). 
This implies that a multiple SPT reactions can occur in cis-(CG)-Pt-(AT). Nevertheless, the 
energy difference between local minima is so large that the proton-transfer reaction may not 
occur at room temperature. The tendency does not change even after the SPT reaction took 
place in the GC pair. Table 8 summarizes the possibilities for multiple proton-transfer 
reactions in all the systems. 
 

 
Fig. 12. Definitions of variables in the 2bps model of the cis-(CG)-Pt-(AT). The numbers in 
the contour plots represent the energy in kcal/mol. 

 

  cis-(CG)p-Pt-(GC)d

(CG)p / (GC)d None SPT between N1 and N3

None 0 6.2

SPT between N1 and N3 5.7 N/A (not available)

 cis-(CG)-Pt-(AT)

GC / AT None DPT (N1 and N3), (N6 and O4) 

None 0 17.5

SPT between N1 and N3 –1.0 15.2

Table 8. The differences of energy in “2bps. model” molecules (in kcal/mol)  
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Note that the SPT reaction occurs in platinum-bound GC pair, and the DPT reaction 
occurs in AT pair. The DPT reaction can also be found even after the SPT reaction between 
N1 (G) and N3 (C) has occurred. The SPT reaction in the AT pair cannot occur, because the 
Pt complex binding increases the distance between N1 (A) and N3 (T). In every case of the 
DPT reactions, the product of DPT reaction becomes more unstable than the original 
structure. 

4.3 4bps models 
Our calculations elucidated that SPT structures of the cis-(CG)-Pt-(GC) type can exist even in 
4bps models. Two different optimized structures are shown in Figure 13, which shows one 
planar GC and one distorted GC pair as well as the 2bps model of cis-(CG)-Pt-(GC). We also 
found that the backbone and stacking bases do not change their postion much from their 
original geometry during the SPT reaction. 
We extracted the higher layer, i.e., the 2bps and Pt complex, from the 4bps model to 
investigate the energy differences between cis-(CG)p-Pt-(GC)d and (CG*)p-Pt-(GC)d or cis-
(CG)p-Pt-(G*C)d. The energies of these model molecules are assumed to be approximately 
those of their higher layer. The energetics of (CG)p-Pt-(GC)d and (CG*)p-Pt-(GC)d are  
 

 
Fig. 13. The optimized structures of the 4bps models of (a) cis-(CG)p-Pt-(GC)d, (b) cis-(CG*)p-
Pt-(GC)d, and (c) cis-(CG)p-Pt-(G*C)d. Atoms depicted with balls are set to higher layer and 
with wires are set to lower layer in ONIOM calculations. 
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shown in Table 9. From this table, the energy differences between the original structure and 
the proton-transferred structures are estimated as 3-3.5 kcal/mol. From these results, the 
reaction energy of the SPT reaction is estimated to be lower than the case of 2bps model. 
 

cis-(CG)p-Pt-(GC)d 0 

cis-(CG*)p-Pt-(GC)d + 3.2 

cis-(CG)p-Pt-(G*C)d + 3.0 

a: We set the energy of cis-(CG)p-(GC)d without sodium atoms as 0. 

Table 9. The differences of energy in “4bps model” molecules (in kcal/mol) 

We next compared the optimized structure with experimental data from the protein data bank 
(PDBID: 1A84, 1AU5 and 1KSB) as summarized in Table 10. The hydrogen bond lengths of 
1A84 and the optimized structure show poor agreement with each other, where the distance 
between (O6)d and (N4)d is about 3.3 Å in the former, which is too large to form hydrogen 
bonds. Except for this result, the optimized 4bps model of cis-(CG)p-Pt-(GC)d agrees well with 
the experimental data in the coordination Pt-G and the error is within 0.05 Å. On the other 
hand, the error of the hydrogen bond length is significant, e.g., the hydrogen bond length of 
(O2)p-(N2)p is 2.75 Å for the 4bps model of cis-(CG)p-Pt-(GC)d and 2.96 Å for 1AU5. This is 
because the energies of cis-(CG*)p-Pt-(GC)d and cis-(CG)p-Pt-(G*C)d are as stable as those of cis-
(CG)p-Pt-(GC)d so that the mean of these structures may be observed in the experiment 
because of the low energy barrier of the SPT reaction. Indeed, the error is improved when the 
structures of cis-(CG*)p-Pt-(GC)d and cis-(CG)p-Pt-(G*C)d are taken into account. In this case, it 
is possible that the dynamic fluctuations may dominate the structure of the system. 
 

 
cis-(CG)p-  Pt-
(GC)d 

cis-(CG*)p-  Pt 
-(GC)d 

cis-(CG)p-  Pt -
(G*C)d 

1A84 1AU5 1KSB 

Pt-G coordination 
aPt-Gp 2.04 2.03 2.04 2.05 1.96 2.01 
aPt-Gd 2.04 2.04 2.03 2.05 1.98 2.01 
bGp-Pt-Gd 89.4 91.4 89.6 90.1 87.4 88.6 
Gp-Pt-L1-Gd 53.7 58.6 63.3 40.8 –1.4 56.9 
Gp-Pt-L2-Gd 69.2 69.5 64.6 72.9 –17.5 55.3 
Hydrogen bond length 
(O6)p-(N4)p 2.84 2.62 2.85 2.97 2.73 2.76 
(N1)p-(N3)p 2.85 2.77 2.87 3.01 2.96 2.86 
(O2)p-(N2)p 2.73 2.92 2.79 2.91 2.87 2.91 
(O6)d-(N4)d 2.82 2.92 2.65 3.28 2.80 2.83 
(N1)d-(N3)d 2.81 2.84 2.76 2.99 2.71 2.89 
(O2)d-(N2)d 2.75 2.74 2.96 2.59 2.96 2.85 

a: The distance Pt-G is defined as the distance between Pt and N7 of guanine. 
b: The angle Gp-Pt-Gd is defined as N7 (Gp)-Pt-N7 (Gd). 
c: The unit of distance is angstrom, the unit of angle is degree. 

Table 10. Selected lengths of optimized geometries and the experimental data from the 
protein databank 
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For further research, it is also necessary to discuss the possibilities of proton-transfer in 
larger system. In such systems, it is necessary to consider not only the optimized structure 
but also structural fluctuations. The mean structure between the original and the SPT 
structures may be observed at room temperature. The dynamic effects will be investigated 
in our future work. 

4.4 Summary of section 4 
The binding affinity of cisplatin to base pairs were in the following order in our calculation, 
cis-(CG)-Pt-(GC), cis-(CG)-Pt-(AT), and cis-(TA)-Pt-(AT), when complementary base pairs 
were taken into account. From their energetics, the structure of cis(TA)-Pt-(AT) is expected 
to be notfound at room temperature. The SPT reaction can occur in systems that consist of 
two base pairs and cisplatin. The reaction barrier is as low as 6–7 kcal/mol, which is similar 
to the case of one GC pair with cisplatin, and the SPT structure is as stable as the original 
structure. From these results, it is possible that the coordination of cisplatin to DNA causes a 
mispairing of the GC pair that leads to a mutation of the DNA. The SPT reaction causes this 
in one of the GC pairs. On the other hand, two simultaneous SPT structures like cis-(CG*)-
Pt-(G*C) are forbidden. This is explained by the analysis of charge distributions. After one 
SPT reaction occurs, the proton donor G becomes negative and the proton acceptor C 
positive. At the same time, the other C also becomes positive through electrostatic effect 
from virtically stacked base pair that under went SPT reaction. Therefore, the subsequent 
SPT reaction from the other G is forbidden by Coulomb repulsion. The SPT reaction 
between G and C can occur with cis-(CG)-Pt-(AT). This result is similar to the case of one 
GC pair. 
By using the ONIOM method, the SPT reaction is also shown to occur in the system 
consisting of cisplatin and four base pairs containing the backbone molecules (4bps model). 
Without the effects of the backbone and the stacking base pairs, the structure of cis-(CG)p-Pt-
(GC) d is so distorted that we cannot expect it to describe the actual structure in the DNA. 
The optimized structure of the 4bps cis-(CG)-Pt-(GC) model agrees with results from NMR 
experiments in view of the Pt-G coordination, but not of the hydrogen bond length. Because 
the structures of cis-(CG*)p-Pt-(GC) d and cis-(CG)p-Pt-(G*C) d are as stable as the original 
one, their mean structures may be observed in experiments. 

5. Conclusion 

We investigated the change of proton-transfer reactions in DNA base pairs caused by the 
coordination of cisplatin by density functional theory (DFT) and ONIOM method. When the 
cisplatin binds to GC pair, the structure undergoes intermolecular proton transfer from G to 
C (denoted as G*C pair) resulting in an increase of the bonding energy by 3-10 kcal/mol. 
This renders the structure to be metastable due to (a) successive processes of charge transfer 
from G to cisplatin thereby stabilizing the GC and G*C pairs and (b) an additional hydrogen 
bond between G and the ligand of Pt atom. From the energetics of two base pairs with the 
cisplatin, it is theoretically confirmed that the Pt complex is likely to bind in the following 
order: cis-(CG)-Pt-(GC), cis-(CG)-Pt-(AT), cis-(TA)-Pt-(AT).The Pt atom is expected to bind 
to the N7 site of G and A. This result supports the experimental evidence, where the 
structure cis-A-Pt-A is seldom observed at room temperature. The single proton-transfer 
reaction occurs in one of the two GC pairs. No simultaneous single proton-transfer reaction 
can occur in both base pairs. Two different single proton-transferred structures (cis-(CG*)d-
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Pt-(GC)p and cis-(CG)d-Pt-(G*C)p, where * means a proton donor of G) are as stable as the 
original structures (CG)d-Pt-(GC)p. The same tendency was observed with cis-(CG*)-Pt-(AT). 
In contrast to cisplatin, multiple single proton-transfer reactions may occur in the system 
consisted of two base pairs with transplatin. The optimized structure agrees with the 
experimental data for Pt-G coordination except for the hydrogen bond length. 
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1. Introduction

Quantum theory in curved spaces has received much attention over the years. It has been
applied in the study of black holes and large scales structures in the universe as well as
in the study of the Casimir effect, e.g. However, transferring our existing formulations of
quantum theory to curved spaces is not straightforward and any approach will be hampered
with a number of issues (1). Nanostructures provide an experimental arena which potentially
can provide direct evidence for the interplay between geometry and quantum theory. The
ability to manufacture micro- and nanosized surfaces has open up new vistas which should
be utilized in order to get a firmer grip on the quantum theory of particles living on these
curved structures.
In the following a brief account of the most widely accepted formulation (the
’standard’ formulation) of Shrödinger theory on surfaces and linear structures in ordinary
three-dimensional Euclidean space is given. We then apply this framework to derive a
quantum theory on the catenoid in three-dimensional Euclidean space. This will highlight
some important features connectedwith the interplay between quantum theory and geometry.
Then follows a partial framework for an alternative formulation of Shrödinger theory
on a surface in which we utilize the unique conformal properties of two-dimensional
surfaces. Even though most work connected with quantum theory on structures embedded
in three-dimensional Euclidean space so far have been concerned with surfaces, wire
structures are also of great obvious interest. Next we therefore point to the possible
importance of employing ideas from supersymmetric quantum mechanics in order to
enhance our understanding of these structures. Workers in the field of quantum mechanics
on lower-dimensional structures in flat space have mainly concerned themselves with
Shrödinger theory. In the remaining part of this brief account we will concern ourselves
with Dirac theory on surfaces in three-dimensional Euclidean space. We look at differences
between the first and second order formulations, and device the proper framework for
formulating Dirac theory on surfaces and linear structures in a way which makes contact
with the standard formulation of Shrödinger theory on these structures. We then explore
different issues, including the question of whether it is ’sufficient’ to employ an intrinsically
defined quantum theory in a surface compared to the standard approach in the context of
Dirac theory. This issue should be of particular relevance when formulating effective theories
for charge carriers in graphene. No effort has been made to provide an exhaustive list of
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references. Those references which are cited, and the references they contain, are those which
have been of particular importance for this author.

2. Dimensional reduction

Quantum mechanics has come to age. We can claim that its basic formulation, either in the
form of the canonical quantization procedure or in terms of the Dirac quantization program, is
well understood in the sense that its formulation is transparent, even though its consequences
continue to surprise and baffle us all. However, this claim is only true as long as the theory
is formulated in an Euclidean space which is charted with Cartesian coordinates. It was
early recognized in the Dirac quantization programe that problems generally arise when
non-Euclidean coordinates are used (2). This is a signal that the interplay between quantum
theory and geometry is a deep and fundamental one. This interplay took center stage in
physics when it was shown that black holes radiate (3). Curved spacetime geometries are not
of immediate importance for quantum theory in the laboratory setting, but curved surfaces
and linear structures are. The Casimir effect (4) is a well known example which proves
this. Aspects of the challenges met in quantum theory in ’exotic’ space-times might therefore
also appear in more everyday settings. The coordinate challenge in the Dirac quantization
program (e.g.) definitely does since curved surfaces in ordinary space can generally not be
completely charted with Cartesian coordinates. The most generally accepted adaption of the
canonical quantization procedure to curved surfaces and linear structures was developed in
(5–7). What follows is a brief account of this adaptation. Wewill not systematically discuss the
Dirac quantization procedure and possible adaptations of it to lower dimensional structures
in space in this exposition, but we will briefly comment on an important aspect of the latter in
Section 4.
Consider a smooth two dimensional static surface S in ordinary three dimensional space.
We follow the parametrization in (6) and chart the three dimensional embedding space with
coordinates Xi. We write the metric as (6; 8)

ds2 = −dt2 + Gij(Xi)dXidXj + (dX3)2 =

= −dt2 + Gab(xa)dxadxb + (dx3)2 , (1)

where Gab(xa) is the metric in the surface S defined by coordinates xa. We assume that we
can define a normal vector field �N everywhere on S . The coordinate direction x3 is assumed
to be along �N in the immediate vicinity of S . Our conventions will be such that indices at the
beginning of the alphabet will refer to the coordinates in the surface xa, while indices in the
middle of the alphabet refer to the global coordinates Xi. It follows that (8)

Gab(X
i) = gab(x

a)− 2Kab(x
a)x3 + Kk a(xa)gkm(x

a)Km b(x
a)(x3)2 (2)

G(Xi) = detGab(X
i) = g(xa)(1− 8M(xa)x3 + (2K(xa) + 8M(xa)2)(x3)2 + ...) (3)√

G(Xi) ≡
√
g(xa)ξ(Xi) , ξ(Xi) = 1− 4M(xa)x3 + K(xa)(x3)2 + ... (4)

where gab(xa) is the induced metric in the surface, g(xa) = detgab(xa) and Ki j(xa) is the
extrinsic curvature tensor associated with S . K = detKi j and M(xa) ≡ Gij(Xi)Kij(Xi) is the
mean curvature in S .
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Central to the approach developed in (5–7) is the assumption of the presence of forces which
constrain the particle to S . It is assumed that these forces act everywhere normal to S and that
they can be derived from a potential Vλ(X3). λ is a parameter which measures the strength
of the potential. The Schrödinger equation describing an electrically neutral particle in the
embedding space within this framework is then given by (we use units such that c ≡ h̄ ≡ 1)

i∂tψ = − 1
2m
Gij∇i(∇jψ) +Vλ(X3) . (5)

m denotes the particle mass. In order to derive a quantum theory in S we need to dimensionally
reduce the Schrödinger equation. We therefore decompose the covariant derivative in a
coordinate gauge invariant manner as a sum of one part which acts along the surface(||), and
one part which acts normal to the surface (⊥)

∇i = ∇||i +∇⊥i . (6)

The purely kinetic term in the Schrödinger equation can then be written

Gij∇i∇jψ ≡ (∇2
|| +∇2

⊥)ψ = (∂a∂aψ + Gab Γc ab∂cψ) + (∂3∂3ψ + Gab Γ3 ab∂3)ψ . (7)

In the last relation we have used the coordinate gauge Eq.(1). Γi jk represents the Christoffel
symbols of the second kind. We will assume that the wave function is normalizable in the
three dimensional embedding space, such that the norm is given by

N =
∫
d3X

√
G|ψ|2 =

∫
d3x

√
g|χ|2 . (8)

Probability conservation requires that ψ(Xi) = ξ(xi)−1/2χ(xi). We use this relation to
compute the kinetic term and rewrite the Schrödinger equation in terms of χ. Clearly,

lim
x3→0

∇2
||ψ = ∇2

||χ . (9)

We also find that

lim
x3→0

∇2
⊥ψ = lim

x3→0

1√
G

∂3(
√
G∂3ψ) = lim

x3→0
ξ−1∂3(ξ∂3(ξ

−1/2χ)) ≡ ∂23χ−V0χ . (10)

Using these relations we find in the limit x3 → 0 that the Schrödinger equation becomes

i∂tχ = − 1
2m

∇2
||χ−

1
2m

∂23χ +V0χ +Vλχ , (11)

where V0 is given by (6)

V0 = − 1
2m

(M2 − K) . (12)

We see that an effective potential has emerged depending on scalars characterizing the
extrinsic curvature of S . V0 is clearly non-positive on any surface. If χ is separable into one
part which is independent of x3 and one part which only depends on this coordinate we have
effectively deduced a quantum theory in the surface S . This program can also be adapted to
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linear structures by continuing the dimensional reduction procedure above. The result is (6)

− h̄2

2m
∂2xψ− h̄2

8m
κ2(x)ψ = Eψ . (13)

x is the coordinate along the structure, and κ(x) is its local curvature. We will later return to
this result in Section 5.

3. The catenoid

Let us apply the dimensional reduction approach above to a concrete surface. We will
in particular consider the catenoid surface (9). This is a classical minimal surface. It can
conceivably be realized in a bilayer of honeycomb lattices with radially arranged dislocations
or in bilayer graphene (10). We choose the following parametrization for the catenoid
x = R cosh(z/R) cos φ, y = R cosh(z/R) sin φ and z = z, with φ ∈ [0, 2π] where x, y, z
represents the canonical Cartesian coordinates in ordinary three-dimensional space (Fig. 1).
The local radius ρ = R cosh(z/R) and the metric is thus given by

gρρ =
ρ2

ρ2 − R2 , gφφ = ρ2. (14)

x

y

r

r sin 

r cos 

z

Fig. 1. A two-dimensional section (catenoid) of a three dimensional worm hole geometry
with its axis along z and the throat radius R.
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It is interesting to note that slices of a wormhole geometry is geometrically equivalent to a
catenoid. In cylindrical coordinates (z, r, φ) a two-dimensional section of a wormhole is given
by (11)

z(r) = ±b0 ln
[
r
b0

+

√
r2

b20
− 1

]
, (15)

with l = ±
√
r2 − b20. The spatial part of the wormhole geometry is given by the following

expression (11)
ds2 = dl2 + (b20 + l

2)(dθ2 + sin2 θdφ2) , (16)

where l ∈ [−∞,+∞], θ ∈ [0,π] and φ ∈ [0, 2π]. b0 is the shape function of the wormhole [in
general b = b(l) and for l = 0, b = b(0) = b0 = const. represents the radius of the throat of
the wormhole]. Here l is a radial coordinate measuring proper radial distance; θ and φ are
the spherical polar coordinates. Here we will consider the slice θ = π/2 which represents an
equatorial section of the wormhole geometry (at constant coordinate time). For this particular
slice we thus get the following line element

ds2 = dl2 + (b20 + l
2)dφ2, (17)

which is precisely equivalent to the line element on a catenoid (since l2 = r2 − b20)

ds2 =
r2

r2 − b20
dr2 + r2dφ2. (18)

Note that if we consider any other section of the three dimensional wormhole, say for θ = θ0,
the line element will change to

ds2 =
r2

r2 − b20
dr2 + a2r2dφ2 , (19)

where a2 = sin2 θ0, and (obviously) a2 ∈ [0, 1]. For the catenoid this will only mean a
rescaling of the radius of the catenoid at the throat (the circle with least local radius) from
R to aR. The line element Eq.(19) corresponds to a catenoid with x = aR cosh(z/aR) cos φ,
y = aR cosh(z/aR) sin φ and z = z. Thus all θ-sections of the physical wormhole at constant
time coordinates represent a catenoid with radius aR. The catenoid with the biggest radius
corresponds to the equatorial section θ = π

2 and the one with zero radius to the section θ = π.
Returning to the catenoid and focusing on the (z, φ) coordinates (instead of (ρ, φ)), the line
element is given by

ds2 = cosh2(z/R)dz2 + R2 cosh2(z/R)dφ2, (20)

with the principal curvatures given by

κ1 =
1
R
sech2(z/R), κ2 = − 1

R
sech2(z/R). (21)

This implies that the mean curvature M = (κ1 + κ2)/2 = 0 (meaning that the surface
is a minimal surface) and the Gaussian curvature K = κ1κ2 = −(1/R2)sech4(z/R). The
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corresponding curvature induced potential on a catenoid is then given by

V(z) = − h̄2

2m0
(H2 − K) = − h̄2

2m0R2
sech4(z/R). (22)

Note that for a2 � 1 the potential becomes very deep at the origin. The corresponding
Schrödinger equation is given by

− h̄2

2m0R cosh2(z/R)

[
R

∂2ψ

∂z2
+

1
R

∂2ψ

∂φ2

]
− h̄2

2m0R2
sech4(z/R)ψ = Eψ, (23)

or simplifying

− R ∂2ψ

∂z2
− 1
R

∂2ψ

∂φ2
− sech2(z/R)

R
ψ =

2m0R
h̄2

cosh2(z/R)Eψ. (24)

Using the cylindrical symmetry along the z-axis we set ψ = eimzΦ. We thus get the following
equation for Φ

Φzz −
m2

R2
Φ +

sech2(z/R)
R2

Φ +
2m0E cosh2(z/R)

h̄2
Φ = 0. (25)

Defining a dimensionless length ζ = z/R and energy ε = 2m0ER2/h̄2 we get the following
effective Schrödinger equation

−Φζζ +V(ζ)Φ(ζ) = 0, (26)

where the potential now reads

V(ζ) = [m2 − ε cosh2(ζ)]− sech2(ζ). (27)

This potential form 	= 0 bears some similarity to the corresponding geometric potential for the
physical wormhole (12). Note that in the ground state (ε = 0, also called a critically bound state
(13)) V(ζ) becomes the reflectionless Bargmann’s potential (14) and the Schrödinger equation
becomes the hypergeometric equation with the ground state wavefunction (the ’Goldstone
mode’) given by Φ(ζ) = sech(ζ). This result is remarkable since this implies that the catenoid
surface enables complete transmission across it for a quantum particle. This does not seem
to be the case for the physical wormhole geometry (12). For non-zero values on ε the above
potential is an inverted double well potential shown in Fig. 2.
Let us consider Eq.’s(26-27) in some more detail. We see in particular that

lim
ζ→±∞

|V| → ∞ . (28)

This behavior of the potential at infinity is strange since the geometry on the catenoid in these
regions approaches the usual Euclidean one. This feature can be traced to the coordinates
used since the proper length per unit in the ζ direction diverges when ζ → ±∞. This can be
remedied by introducing another set of coordinates on the catenoid.
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- 2 - 1

0.5

- 0.5

- 1

1 2

- 1.5

V(  )

Fig. 2. The inverted double well potential V(ζ) with m = ±1 and ε = 0.1.

Quantum theory in curved spaces is generally a challenge since the theory is not generally
covariant. Classical quantum theory is not even Lorentz invariant. This puts a severe
constraint on the coordinate system in which one wishes to describe the physics in order to
be able to extract the physical content of the theory. This challenge was even central in the
early days of general relativity theory itself in connection with the physical interpretation
of the Schwartzshild metric, e.g. Just like as in general relativity theory one is usually
safe concerning the physical interpretation, as well as the definitions of physical quantities,
when the manifold in question is asymptotically Minkowski (Euclidean). In such asymptotic
regions we expect on physical grounds to rederive the usual flat space physical results. The
asymptotic properties thus in some sense anchor the curved region and its physics to reality,
as we know it. The catenoid is in this sense an asymptotic Euclidean object, thus making this
manifold a space anchored to ’reality’.
The catenoid surface can in some sense be perceived as a deformation of the plane.
Considering briefly the two-dimensional Schrödinger equation in the plane in polar
coordinates we get the Bessel equation. Clearly, the boundary condition at the origin is
suspect here. However, in our case we can as a first approximation consider a deformation
of the plane in a region around the origin. In the deformed region the Schrödinger equation
will generally be very complicated but the solutions of it must nevertheless be matched to
the Bessel functions which survive sufficiently far from the deformed region. This reasoning
goes ad verbum through also on the catenoid even though we here, in addition to curvature
corrections, also have a topology change when compared to the plane since not any closed
curve on the catenoid surface is null homotopic. Hence, we should seek coordinates on the
catenoid such that the Schrödinger equation gives rise to the Bessel equation in the asymptotic
region on the catenoid. The coordinates should thus in particular result in a metric which is
reminiscent of polar coordinates at infinity. It is possible to find such coordinates if one covers
the entire catenoid manifold with two coordinate patches. One patch covers the region ζ > 0,
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the other ζ < 0. In the upper part we choose the new radially directed coordinate as

η+ = eζ − 1 ; ζ > 0 . (29)

In the lower part we correspondingly choose

η− = −(e−ζ − 1) ; ζ < 0 . (30)

Clearly η+ = η− at ζ = 0. The invariant line-element can then be written as

ds2 =
((η± ± 1)2 + 1)2

4(η± ± 1)4
(dη±)2 +

1
4
(
(η± ± 1)2 + 1

η± ± 1
)2dφ2 . (31)

In the limit η± → ±∞ the metric can be written as

ds2 =
1
4
(dη±)2 +

1
4
(η±)2dφ2 . (32)

Hence, the asymptotic form of this metric is very similar to the Euclidean metric expressed in
ordinary polar coordinates. Indeed, they are exactly the same something which is easily seen
by a simple rescaling of the radial coordinates. These new coordinates should therefore be
well suited to explore the physical states of a quantum particle on the catenoid.
Let us now consider the Schrödinger equation (26). In terms of the new coordinates we have
in particular that

∂2ζ Φ = (η± ± 1)∂±((η± ± 1)∂±Φ) , (33)

cosh u = ±1
2
(
(η± ± 1)2 + 1

η± ± 1
) . (34)

This gives rise to identical expressions for the Schrödinger equation in the two coordinate
patches. In the upper patch the equation is explicitly given by

∂2+Φ +
1

(η+ + 1)
∂+Φ +

[
ε

4
− (m2 − ε/2)

(η+ + 1)2
+
1
4
(

ε

(η+ + 1)4
+

16
((η+ + 1)2 + 1)2

)

]
Φ = 0 .(35)

Clearly, letting η+ → ∞ we easily get the Bessel equation, which is well behaved at infinity.
The stationary Schrödinger equation, and assuming a well defined energy E eigenvalue
problem, is formally given by

(−∇2 +V)Ψ = EΨ . (36)

Hence, we have that

V − E = −
[

ε

4
− (m2 − ε/2)

(η+ + 1)2
+
1
4

(
ε

(η+ + 1)4
+

16
((η+ + 1)2 + 1)2

) ]
. (37)

In the asymptotic region we find that

lim
η+→∞

V = E− 1
4

ε > 0 . (38)
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We have plotted the potential for m = 0 and ε = 2 in Fig. 3. Note that in this s-channel the
potential becomes negative sufficiently close to the origin.

3

2

1

-1

0.4 0.8

m= 0

V(    )

Fig. 3. The potential V(η+) with m = 0 and ε = 2.

Clearly, the constant part of the potential can be renormalized to zero without any physical
consequences. Hence, the renormalized potential Vr can be taken to be

Vr − E = −
[
− (m2 − ε/2)

(η+ + 1)2
+
1
4

(
ε

(η+ + 1)4
+

16
((η+ + 1)2 + 1)2

) ]
. (39)

4. Conformal deformations

The framework derived in (5–7) has become a standard one for analyzing quantummechanics
on surfaces and one-dimensional structures. The resulting theory is a theory framed in curved
spaces. As such it is often difficult to deal with both from a purely computational perspective
as well as also from an interpretational perspective. On the computational side the kinetic
part of the Schrödinger equation will very often be highly complicated function of the metric
tensor. This will typically give rise to complicating second order derivative terms which mix
the spatial coordinates. The often lack of an ’asymptotically’ flat region of a given surface
(e.g.) often gives rise to all sorts of interpretational issues which also often appear in quantum
theories in curved spaces (1). Our treatment of the catenoid above highlight this issue in
particular. Here we sketch a framework which might be of utility in resolving some of these
issues. We emphasize that it is a sketch which is presented, and not a complete and polished
framework.
We entertain the following idea. It is well known that every open, connected and smooth
surface in three-dimensional Euclidean space is conformally flat. Physically we can picture
this as it is always possible to deform S in such a way that the local geometry, all the time
expressed in the same coordinates, has a conformally flat form all the way to the point when S
has become a two-dimensional plane P. We call such a process a conformal deformation of S. The
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Schrödinger equation is not invariant under conformal transformations. Hence, is it possible
in general to re-express the quantum theory on a given surface S on the two-dimensional plane
P using conformal techniques in such away as to bypass (some of) the issuesmentioned above
which arises in the more physically motivated dimensional reduction framework? We show
that it is possible to reformulate the two-dimensional quantum theory on S in the plane such
that it can be looked upon as standard free two-dimensional Schrödinger theory coupled to
an external potential. The wave-function on P couples to a new potential VP which exhibits a
vector field �W and a scalar fieldW, both of a purely geometric origin on S

VP = − h̄2

2m
(�W · ∇P +W) . (40)

∇P denotes the metric compatible connection on P. Hence, certain computational issues is
bypassed by this approach since the theory is formulated in a flat space which in Cartesian
coordinates will give rise to a ’trivial’ kinetic operator. The formulation will also be easier to
interpret both because of the non-existing intrinsic curvature in the plane and its vanishing
extrinsic curvature, and because VP can be treated as a completely external potential not
associated with the space P in which the theory is formulated. This might enhance our
understanding of the physical picture on S.
We consider a smooth two-dimensional surface S in ordinary three-dimensional Euclidean
space. In the present work we will focus on open surfaces. We will briefly deal with compact
surfaces at the end of this section. We will repeat some of the mathematical technicalities from
section 2 in order to fix the needed notation. We assume that we can define a normal vector
field �N everywhere on S. We will choose coordinates in the embedding space in such a way
that one coordinate basis vector is always parallel to �N in the vicinity of S. We will denote the
associated coordinate by x3 in the following and the coordinates on S by x1, x2. We denote
the metric tensor induced on S by GSab such that the indices refer to the coordinates in S. In
the dimensional reduction approach it is assumed that the quantum particle is constrained
to S by a constraining potential VSλ where λ is a measure of the strength of the potential. It
is assumed that the constraining forces always act along �N. In order to derive a theory on S
we decompose the connection ∇ in the three-dimensional Euclidean space into a component
acting solely in the surface ∇S and a component ∇⊥ acting along the normal vector

∇ = ∇S +∇⊥ . (41)

The potential VSλ can be thought of as an infinite well potential such that S is sandwiched
between two potential ’walls’ (6). In the limit when the width Δx3 of the potential well goes
to zero, when the particle is literally forced to follow the surface S, we get (6)

lim
Δx3→0

∇2
⊥ = ∂23 −VS(x1, x2) . (42)

In these calculations coordinates are chosen such that G3i = 0 , G33 = 1 , ; i 	= 3. The
Schrödinger equation can then be written as

i∂tχS = − h̄2

2m
∇2
SχS −

h̄2

2m
∂23χS +VSχS +VSλχS . (43)
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If this equation is separable we are left with a theory in the surface S. The theory in S carries
with it a ’memory’ of the three-dimensional embedding space through the potential VS.
Any two-dimensional metric can locally be written in a conformally Euclidean form. This
means explicitly that there exists a coordinate transformation, a conformal diffeomorphism D :
(x1, x2) → (X1,X2) such that

ds2S = GSijdxidxj

≡ ω2(X1,X2)((dX1)2 + (dX2)2) ≡ ω2ds2P ≡ GPijdXidXj . (44)

Here ds2S and ds
2
P are the metrics on S and P respectively, and ω2(X1,X2) is a positive definite

scalar function. We will be concerned with the situation when the metric ds2S on S undergoes
a point wise conformal transformation T such that

T : ds2S → Ω2(X1,X2)ds2S ≡ ds2P . (45)

Ω2(X1,X2) is a positive definite function. In the case when none of the coordinates are
periodic this represents deformations of S to a plane. We will primely assume this picture
in the following. Physically we will picture the transformation T as either an adiabatic or
an instantaneous one in order not to perturb the quantum system out of the quantum state it
exhibits on S. For definiteness assume here an instantaneous process such that Ω = ω−1.
The normal vector field �N is assumed normal to the surface during the complete deformation
process. Hence, the system of coordinates defined by (X1,X2, x3) does therefore represent
comoving isothermal coordinates. We also assume that the external confining potential Vλ

always has a form such that the resulting force acting on the particle is along �N. We will
furthermore assume that the particle never escapes the surface; we will assume conservation
of probability during the deformation process, i.e. This implies in particular that the integral
of the probability density on S must equal the same integral over the plane. If we denote the
wave-function on P by χP it follows that∫

S
dS

√
GS|χS|2 =

∫
S
dS

√
GP|χP|2 , (46)

where GS = det(GSij), GP = det(GPij). Since T : GP = Ω4GS, it follows that

χS = ΩχP . (47)

Hence, the wave-function must transform with conformal weight equal unity under the
restricted class of conformal transformations which we deal with in this work. There
exist previous studies in the literature of the properties of the Schrödinger equation under
conformal transformations. Interestingly, these have to our knowledge only been concerned
with space-time or space conformal transformations and not conformal transformations
restricted to (hyper-) surfaces.
Two metric compatible connections ∇S and ∇P on two conformally related metrics ds2S and
ds2P are related by

∇Piωb = ∇Siωj − Ck ijωk (48)
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where ωk is some one-form, and

Ck ij = 2δk (i∇Pj) lnΩ− GPijGP kl∇Pl lnΩ . (49)

It follows that
∇2
S = Ω2(∇2

P + GP
ijCc ij∇Pc) (50)

and

∇2
S(χS) = ∇2

S(ΩχP) = Ω2(Ω∇2
PχP +Vi∇PiχP +VχP) , (51)

where

Vi = 2GP ji∇PjΩ + GP jkCi jkΩ , (52)

V ≡ ∇2
PΩ + GP ijCk ij∇PkΩ . (53)

The extrinsic curvature of S is KjSi = ∇SiNj. It follows that

KSij = KPij + C3 ijN3 . (54)

Identify P with the two-dimensional Euclidean plane. We then have that

KPij ≡ 0⇒
{
KS = det(KSij) = det(C3 ij)
MS = tr(KSij) = −tr(C3 ij)

(55)

where
C3 ij = (δ3 i∇Pj + δ3 j∇Pi) lnΩ . (56)

The (C3 ij)-matrix is explicitly given by

(Ca bc) =

⎛⎝ 0 0 C3 13
0 0 C3 23

C3 31 C3 32 0

⎞⎠ . (57)

Hence
KS = 0 , MS = 0 . (58)

We note that this also implies that GijPC
3
ij∇P3 = 0 since GijP is diagonal. We then get the highly

non-trivial result that the potential VS transforms to zero under conformal deformations to P.
Consequently, the Schrödinger equation on P reads

i∂tχP = − h̄2

2m
Ω2∇2

PχP −
h̄2

2m
∂23χP −

h̄2

2m
(�W · ∇P +W)χP +VPλχP , (59)

where
Wi ≡ Ω−1Vi , W ≡ Ω−1V . (60)

We assume that we can separate the motion orthogonal to the surface from the motion in
the surface. We will also assume stationary states such that the time-dependent part of the
wave-equation can be written as a simple exponential ∼ e−iEt where we identify E with the
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total energy of the states. Hence, Eq. (59) can be decomposed into

− h̄2

2m
∇2
||χP +

1
Ω2 (E− κ2 +VP)χP = 0 , (61)

− h̄2

2m
∂23χPχP +VPλχP = κ2χP (62)

where we have defined VP ≡ − h̄2
2m (

�W · ∇P +W) and introduced a separation constant κ. This
constant can naturally be identified with the momentum in the direction perpendicular to the
surface.
Clearly, the set of equations above can be interpreted as describing a particle interacting with
two potentials. Equation (61) is in general simpler than Eq. (43). Even though Eq. (61) like Eq.
(43) in addition to the second order kinetic terms also exhibits first order differential operator
terms contained in the VP-potential it will not contain differential operator cross terms as Eq.
(43) in general will exhibit. Furthermore, note that the potentials W and �W are functions of
Ω. Since Ω does not describe P we can interpret these terms as external potentials which are
applied to P in very much the same fashion as VPλ.
In the analysis above we have for simplicity assumed that P is identified with the
two-dimensional plane. Clearly, P must not by necessity be identified with the plane in
order to have a target manifold P with vanishing intrinsic curvature. One natural example
which is also of practical importance is the straight tube. Clearly, when P is a curved
surface (with non-vanishing extrinsic curvature, but with vanishing intrinsic curvature) the
effective geometric potential on Pwill becomemore complicated compared to the exact planar
situation. This is easily seen from the transformation property of VS under a conformal
deformation. From the expression for KSij in terms of KPij and Ck ij it follows that the
transformed of the potential VS will exhibit products between the extrinsic curvature tensor
on P and C3 ij-terms. Hence, changing the topology of S away from the planar one (every
closed curve is null homotopic) will alter the induced potential on S in a fundamental way.
Let us summarize. In (5–7) a physically motivated framework for dealing with quantum
mechanics on surfaces and linear structures in ordinary three dimensional Euclidean space
were developed. Here we have attempted to reformulate this framework for quantum
mechanics on surfaces into a framework on the two-dimensional plane. On the plane a
quantum particle is shown to interact with an external potential VP in addition to the external
potential VPλ which constrains the particle to the plane. Clearly, the conformal formulation
presented in this work represents a priori a simplification computation wise. It also represents
an interesting tool in the analysis of quantum mechanics on a given surface. The form of
the geometric potential on the plane provides an immediate physical insight. Considering
momentum eigen-states it follows that states with opposite sign interacts differently with the
geometry since �W · ∇P ⇒ −�W · ∇P when ∇P ⇒ −∇P. Hence, a non-trivial geometry on S
might lift a degeneracy which is present on the plane provided �W 	= 0. An analogy to the
motion of an electrically charged particle moving on the plane with a magnetic field piercing
the plane is immediate. Hence, the class of surfaces defined by �W 	= 0 is thus interesting to
consider further in order to build a general physical picture of quantum dynamics on surfaces.
The tentative framework presented here might furthermore also help shed light on a
fundamental problem connected with the understanding of quantum mechanics on surfaces
following Dirac’s quantization prescription (2). It is well known that the Dirac quantization
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scheme does not produce an unique expression for the induced quantum geometric potential
VS (15–17). It is claimed that this result is not related to improper choice of coordinates, but
emerges solely due to operator ordering issues (15). Interestingly, considering a plane P it
follows that no geometric potential of the kind stemming from the dimensional reduction
approach will get induced. The coupling to the external potential VP should not imply any
operator ordering issues of the kind reported in (15). An unique theory should consequently
ensue. However, the quantum theory on P is conformally related to a quantum theory on a
certain surface S where the very same quantization procedure will not give rise to a unique
theory. This apparent ’contradiction’ between the ’P−’ and the ’S−pictures’ of the theory
might thus hold a key for resolving the disturbing discrepancy in the quantum formulation of
classical mechanics on surfaces following from Dirac’s prescription.

5. Supersymmetric quantum mechanics

Let us turn to one-dimensional structures living in ordinary three-dimensional Euclidean
space. On such strutures the effective theory stemming from the dimensional reduction
approach is given by Eq. (13). Ideas from supersymmetry was incorporated into
one-dimensional quantum mechanics by E. Witten in (18). This approach leads to a natural
notion of isospectral deformations, deformations of the potential in the Schrödinger equation
such that that the energy spectrum is identically preserved. It would be interesting to apply
this approach to our subject. This should mean that we can set out with a particular linear
configuration in space which is described by the local curvature of the structure κ(x) (x
denotes some coordinate along the structure). From this it should then be possible to generate
another potential appearing in the Schrödinger equation which in our context must be related
to another curvature configuration κ̂(x); to another linear structure in space, i.e. This line of
approach, as the one in the previous section, has not been pursued in the previous literature. It
seems to represent a promising approach in the work of getting a deeper understanding of the
relation between quantum physics and geometry. Let us initiate this study by some relatively
straightforward considerations. We will assume that the reader has a basic understanding of
supersymmetric quantum mechanics. The recent book (19) represents a nice introduction to
the subject. We will follow the notation in that book in the following.
Isospectral deformations in supersymmetric quantum mechanics are connected to the
problem of generating another superpotential Ŵ(x), which gives rise to a new partner
potential V̂+(x), from a given superpotentialW(x) and partner potential V+(x) such that

V̂+(x) = Ŵ2 + Ŵ ′ = V+(x) = W2 +W ′ . (63)

′ indicates differentiation with respect to the space variable. From the knowledge of Ŵ(x) a
new physical potential V̂−(x) can be constructed

V̂−(x) = Ŵ2 − Ŵ ′ , (64)

which give rise to the same spectrum as the initial one generated by V−(x). In the literature
the only type of deformation that has been studied so far has the form (19)

W(x) → Ŵ(x) = W(x) + f (x) . (65)
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f (x) is some function to be determined from the condition Eq. (63). Finding the explicit
expression for f (x) is straightforward. Inserting Eq. (65) into Eq. (63) we get

d
dx
f (x) + 2W(x) f (x) + f 2(x) = 0 . (66)

This is the Riccati equation. Further making the substitution f (x) = 1/y(x) we get

d
dx
y(x)− 2W(x)y(x) = 1 . (67)

This equation is easily integrated and we find

f (x;λ) =
e−

∫
2W(x)dx

λ−
∫
e−

∫
2W(x)dxdx

. (68)

λ is an integration constant. We note that letting λ → ∞ ⇒ f (x;λ) → 0 results in the
identity deformation Ŵ(x) = W(x). The result Eq. (68) has been taken in the literature as
an expression for the most general deformation of W(x) stemming from Eq. (63) when a
deformation scheme of the kind in Eq. (65) is employed (19). Let us now identify the physical
potential V− with the potential in Eq. (13)

V−(x) = − h̄2

8m
κ2(x) . (69)

This gives the following equation for the superpotential

Fig. 4. The effecetive potential V̂−(x) on the circle with λ = 0.5.

− dW
dx

+W2 + κ2 = 0 . (70)
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This is also a Riccati equation. It can be connected to ordinary second order differential
equations by the substitution

W =
1

U(x)
dU(x)
dx

. (71)

In terms of U(x) Eq.(70) reads
d2U
dx2

+ κ2(x)U = 0 . (72)

Let us consider the circle which is well understood in quantum theory. We can set κ2 = 1
without loss of generality. We then easily get

U = A0 sin(ωx) + B0 cos(ωx) (73)

where ω is some constant. Let us for simplicity set A0 = 0 and ω = 1. Then we get

W = − tan(x) . (74)

We are then in position to compute the deformed physical potential V̂−(x). We find that

V̂−(x) = Ŵ2 − Ŵ ′ =

= (− tan(x) +
1

λ cos2(x)− 1)
)2 − (− 1

cos2(x)
+

2 cos(x) sin(x)
(λ cos2(x)− 1)2

) . (75)

This potential is graphed in Fig. (4) with λ = 0.5. The potential exhibits singularities. It is not
strictly non-positive but can also take positive values. When this happens the corresponding
curvature κ̂ appears to be imaginary. This last feature is clearly unphysical. However, we
have only probed a particular solution of a vast solution space and physically acceptable
deformations might very well exist. A more systematic study of the circle is left for future
research.
Another configuration which is natural to study, and which also is easily tractable by
analytical means, is a straight line which has a bent part somewhere along it. A model for
such a structure is captured by a curvature function given by

κ2 = 1− tanh2(x) . (76)

κ2 is graphed in Fig. (5). This gives rise to U-functions given by

U(x) = C1P1
2 (
√
5−1)(tanh(x)) + C2Q 1

2 (
√
5−1)(tanh(x)) (77)

where the P- and Q-functions denote the Legendre functions. The deformed superpotential
can formally be written

Ŵ =
1

U(x)
dU(x)
dx

+
1

λU2 − 1
. (78)

From this expression we can deduce an infinite family of new linear structures as we did
above. However, the study of this deformation is also left for the future. It is hoped that
the relative easy one apparently can derive new physically realizable linear structures from
known ones as demonstrated here will inspire more studies along these lines.
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Fig. 5. The curvature κ2 = 1− tanh2(x).

6. The Dirac equation

Let us turn to the Dirac equation. We start our discussion by considering the Dirac equation
in a (3+1)-dimensional curved space-time. We apply a curved space-time formalism from the
very outset in order to clearly exhibit general computational details which are not readily
available elsewhere, but which are of fundamental importance in the discussion of the Dirac
equation on general surfaces in three dimensional Euclidean space. Due to the spinor
structure the Dirac equation is most easily formulated relative to a local vier-bein field. The
massive equation relative to a given viel-bein field eA a (capital latin letters denote viel-bein
components while lower capital latin letters denote coordinate indices) is in general given by
(1)

(γA(∂A − ΓA) +m)Ψ ≡ (γADA +m)Ψ = 0 . (79)

Ψ represents the Dirac spinor field, and m represents the rest mass of the particle. The
γA-matrices obey locally the Clifford algebra {γA,γB} = 2ηAB with ηAB = diag(−1, 1, 1, 1) =
eA aeBa. The matrix valued spin connection ΓA is explicitly given by

Γi = −1
4

γAγBeA j(∂ieBj − eB kΓkji) . (80)

ΓλνA represents the Christoffel symbols of the second kind. The current jA ≡ ΨγAΨ, where
Ψ = Ψ†γ0 († signifies Hermitian conjugation), is covariantly conserved ∇AjA = 0. The Dirac
field is normalized with respect to the canonical integration measure. When eiAΓi = 0 we
define Da = ∇a. We are primarily interested in the second order form of the Dirac equation
in order to make a direct comparison with Schrödinger theory on a two-dimensional surface
S, or on a linear structure. However, let us begin with the first order formulation of the Dirac
equation.
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We may compute the Dirac equation in our coordinate system X relative to an orthonormal
tetrade frame so that

ω0 = dt (81)

ω1 = G1/211 dx
1 (82)

ω2 = G1/222 dx
2 (83)

ω3 = dx3 . (84)

The beins may therefore be read off from the knowledge of the metric. Hence, under a
change of coordinates from x to X probability conservation requires that the Dirac spinor
ψ(X) → ψ(X)ξ−1/2 as for the Schrödinger field. We assume for simplicity that the surface has
vanishing intrinsic curvature. We parametrize the surface by Cartesian coordinates. It is then
easy to show that

Γ3 = 0 (85)

Γi =
i
2

εijKiiσj · I (86)

where i = 1, 2 is summed and I is the identity for 4 spinor indices. We are now in a position
to construct the covariant derivative explicitly. Since Γ3 = 0 one sees that this is unnecessary
however; there will be no contribution from the spin connection to the geometrical terms. We
may therefore proceed to separate the Dirac equation into parallel and perpendicular parts.
We have

(γADA +m)(ψ(X)ξ−1/2) = 0 (87)

where A = 0, ..., 3. Pulling ξ through the derivative we have

(γADA +
1
2

γ3TrK+m+O(x3)3)ψ(X) = 0 . (88)

We shall assume that the equation is separable and write

ψ(x) = φ⊥(x
3)φ||(x

1, x2, t)ψ̂ (89)

where ψ̂ is a constant, four-component spinor. For later convenience we shall also define
ψ⊥ = φ⊥ψ̂, ψ|| = φ||ψ̂, and A

0 = A0⊥(x
3) + A0||(x

1, x2, t) and m = m+ Δm(x3). We then easily
see that

φ−1|| (γ0D||
0 + γiDi +

1
2

γ3TrK+m)φ||ψ̂ =

−φ−1⊥ (γ0(−ieA⊥0 ) + γ3∂3 + Δm(x3) + ...O(x3))φ⊥ψ̂ . (90)

The usual argument for the separation of these equations is that the left-hand side is only a
function of x1, x2, t while the right-hand side is only a function of x3; thus both sides must
be equal to some separation constant k. However, this is not quite correct owing to the terms
...O(x3)3 which contain the curvature Kij, which is a function of x1, x2. However, we are
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assuming that the excursion into x3 are small owing to the physics of the problem; thus we
shall for the time being adopt the standard procedure and neglect these higher-order terms.
To eliminate x3 from the problem we identify A⊥0 with a squeezing potential A⊥0 = λ

e x
3, so

that nontrivial solutions, given by the vanishing of the determinant of the operator on the
right-hand side of Eq.(90), are characterized by

φ⊥(x
3) ∼ exp(−(

λ

2
(x3)2 + kx3)−

∫
dx3m(x3)) . (91)

The first term in the exponential falls off like a Gaussian function, i.e., a δ function in the limit
of infinite λ. The presence of a nonzero separation constant spoils this falloff by introducing a
straightforward exponential decay with characteristic length k−1. The mass parameter m(x3),
which is initially at least linear in x3, will also give rise to a Gaussian falloff. Thus increasing
the coupling of this parameter will also have the desired effect of squeezing the system. The
residual Dirac equation in the surface S is thus

(γADA +
1
2

γ3TrK+ (m− k))ψ|| = 0 . (92)

We have managed to derive a theory in a surface but with a number of assumptions and
approximations. Let us next turn to the second order form of the Dirac equation.
We derive the second order form of the Dirac equation by ’squaring’ the first order Dirac
equation (20)

(γBDB −m)(γADA +m)Ψ = 0 (93)

⇒ (γBγADBDA −m2)Ψ = 0 . (94)

Utilizing the algebraic identity

γBγA =
1
2
({γB,γA}+ [γB,γA]) , (95)

and the fundamental Clifford algebra, we can write the second order Dirac equation as

((ηBA +
1
2
[γB,γA])DBDA −m2)Ψ = 0 . (96)

Note that it is not possible to extract a term corresponding to the antisymmetric part above
in a purely bosonic scalar theory like the Schrödinger theory. The antisymmetric part can be
written as

1
2
[γB,γA]DBDA =

1
4
[γB,γA][DB,DA] . (97)

The commutator between the connection components is per definition proportional to the
components of the Riemannian curvature tensor RABCD

[DB,DA] =
1
8
RBACD[γC,γD] . (98)

Relative to the local viel-bein it is furthermore always straightforward to locally decompose
the kinetic operator D2 = ηABDBDA into a tangential surface component D2

||, an normal
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component D2
⊥ as well as a time component. Since

1
8
[γB,γA]RBACD[γC,γD] =

1
2
RBACDγAγBγCγD (99)

the squared Dirac equation can thus be written as

(−D2
t + D

2
|| + D

2
⊥ +

1
8
RABCDγAγBγCγD −m2)Ψ = 0 . (100)

In the dimensional reduction approach (6) one introduces a set of coordinates adapted to the
lower dimensional structure S such that the normal field to the surface is always parallel to
the tangent vector field to one of the coordinates. D2

⊥ will act in this direction. If one assumes
that the dynamic equation in question is separable in parts depending on the coordinates
in the surface and the perpendicular coordinate respectively one derives a theory which is
living solely in the surface. The corresponding result in Schrödinger theory exhibits a scalar
potential which depends on the Gaussian and mean curvatures.
Since we are considering a theory which is living in a space with vanishing intrinsic curvature
it follows that Eq. (100) reduces to Schrödinger theory by triviality if we neglect any spin-orbit
interactions stemming from the presence of the position dependent spin connection. This
conclusion stands out in sharp contrast to the conclusions drawn from our elaborations of the
first order form of the Dirac equation. Does this conclusion hold if we follow the intrinsically
(2+1)-dimensional approach in which one defines the theory in the surface without taking
the embedding space into account? This approach is employed in most current treatments of
graphene, e.g. Let us explore this issue.
The standard theory for the charge carriers in graphene in the intrinsically (2+1)-dimensional
approach is formulated in a three dimensional Minkowski space with the dynamic equation
equal the standard three dimensional Dirac equation. We choose the 4× 4-representation
of the γA-matrices because the alternative 2× 2-representation, which is available in
(2+1)-dimensions, breaks parity invariance (8). In order to adapt this formulation to curved
space we simply make the theory generally covariant in the usual fashion. Then the second
order formulation is again Eq. (100) but with no D2

⊥-term. The resulting theory will be valid at
low energies and in principle on large molecules. In the case of graphene it is well known that
aU(1)-gauge field which couples to the Dirac spinor is induced on curved surfaces due to the
intrinsic curvature (se (21) e.g.). We neglect this field in the following. However, we cannot
discard the intrinsic curvature tensor contribution as we could in the dimensional reduction
approach. Working in (2+1)-dimensions and taking the symmetries of the curvature tensor
into account it follows from some algebraic manipulations that

RABCDγAγBγCγD = −2R , (101)

where R is the Ricci curvature scalar in the static surface. In two-dimensional surfaces the Ricci
scalar equals twice the Gaussian extrinsic curvature R = 2K. Clearly, this Ricci contribution
will add to the effective geometrically induced potential in a surface formed from graphene.
Inserting the relation Eq. (101) into Eq. (100) we rederive the classical Lichnerowicz formula
for the Dirac operator (22).
Let us make a direct comparison with Schrödinger theory by looking at the low energy limit
of the intrinsic massive Dirac theory. We neglect all the spin-connection terms. Without these
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terms the Dirac equation reduces to

(−∂2t +∇2
|| −

1
2
K−m2)ψ = 0 , (102)

where ψ is assumed to be a definite spin-state, and ∇|| is the usual covariant derivative
acting on a scalar function. We assume energy-eigenstates and denote the total energy of the
particle by E. The equation above then takes the following form to first order in a standard
1/m-expansion (reinstating h̄)

Ecψ ≡ (E−m)ψ = (− h̄2

2m
∇2
|| +

h̄2

2m
K)ψ . (103)

This is the Schrödinger equation corresponding to the second order Dirac equation, and Ec is
the classical energymeasure. An effective potentialVD has emerged. It is given by (reinstating
h̄)

VD =
h̄2

2m
K . (104)

Comparing VD and VS we see a huge formal difference. Schrödinger theory predicts a
negative, or an attractive, potential on any curved surface. However, the sign of K is not
restricted. Hence, contrary to Schrödinger theory, intrinsic second order Dirac theory predicts
both attractive as well as repulsive geometrically induced quantum potentials depending on
the surface in question.
In (23) it was pointed out that on a carbon nanotube the winding states in the angular direction
will give rise to an effective mass. It is straightforward to see how this will work in our case.
Consider first the massless Dirac theory with m = 0. This theory does not have a natural
low energy limit and the relation between the Dirac and the Schrödinger approaches becomes
highly problematic in general. However, assume a perfectly straight carbon nanotube with
an intrinsic geometry given by ds2 = dz2 + R2dθ2, where −∞ ≤ z ≤ +∞ and θ ∈ [0, 2π〉.
Assuming momentum eigen-states in the angular direction ψ ∼ einθ (where n represents
integers) Eq. (102) (with m = 0) becomes

(−∂2t + ∂2z −
1
2
K− (

n
R
)2)ψ = 0 , |n| ∈ 0, 1, 2, 3, ... . (105)

Clearly, the last term in Eq. (105) can be identified as a mass parameter so that

m =
|n|
R

. (106)

Since R is on the nanoscale, 1/m so defined (n 	= 0) is an effective parameter which can be
used in the series expansion leading to Eq. (103). Of course, this scheme can also be employed
in the dimensional reduction scheme. The effective theory then becomes

Ecψ = (− 1
2m

∂2z +
1

2mR2
(n2 − 1))ψ . (107)

Here m is the ordinary rest mass of the particle. These results can be utilized as tools to
discriminate between the dimensional reduction scheme and the intrinsic Dirac approach. Let
us pursue this topic a little bit further.
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Assume that the ends of a straight carbon nanotube is welded to two metal slabs (20). Let us
for simplicity neglect the physics at the welding areas such that we can assume a free Dirac
theory in the metal and the welding areas. Since K = 0 on the tube the Dirac theory implies
that a current with all the electrons in the lowest winding state n = 0 can be transmitted
from one of the metal pieces and through the tube without backscattering (reflection). This
is not the case according to the dimensional reduction approach. The n = 0 states will
form bound states implying a net reduction in the net current in the tube. Clearly, when
n = ±1 the dimensional reduction approach also implies a vanishing net potential. However,
the dominant transmission channel should correspond to the lowest lying winding mode
n = 0 due to the relatively large mass scale in the system. Hence, to leading order the two
formulations will imply different currents through a straight carbon nanotube connecting
two metal slabs. This argument is a very simple one, but the conclusion is robust. In
particular, even though one cannot neglect the physics in the welding areas in general (24) the
relative difference between the dimensional reduction and the intrinsic Dirac approaches can
nevertheless be deduced since the effective potential on the tube in the dimensional reduction
picture scales as 1/R2. Hence, making the very reasonable assumption that the physics in the
welding areas is the same for tubes with differing radii the presence of a geometry induced
potential can be extracted. Clearly, for a tube with a large radius R→ ∞ the effective potential
will vanish while it blows up as R → 0. The intrinsic Dirac theory will not exhibit a similar
scaling behavior in any state. Furthermore, note that the effective potential in Eq. (107)
changes sign at n2 = 1. Hence, for |n| ≥ 2 the effective potential becomes repulsive. If
real, these differences should be readily observable experimentally.
Of course, the discussion above is not confined to graphene. It should be valid for any surface.
As another application let us briefly consider the rolled up nanotubes (RUNTs) discussed in
(25). RUNTs are generally made of bi- or multilayer thin films of various materials. A flat thin
filmmight, due to the relaxation of the elastic stresses, curl up and form a RUNT described by
an Archimedes spiral. Physically it has the same symmetries as the straight carbon nanotubes
considered above, but instead of curling up to form a closed cylinder the film curls to form a
structure similar to a book scroll. In (25) the charge carriers were described as an exact two
dimensional electron gas within the dimensional reduction framework. Clearly, the Gaussian
curvature on the Archimedes spiral vanishes, but not the mean curvature. It was shown in
(25) that the non-vanishingmean curvature will result in a number of atomic-like bound states
in the spiral surface. The number of bound states equals the number of windings of the spiral.
How does this relate to an an intrinsic Dirac theory description? In thin films we are not
dealing with massless theory so that m 	= 0 in Eq. (102). We are therefore not dependent
upon either a doped material, nor a periodic structure in order to deduce a low energy limit
as on the fullerenes. We can thus employ Eq. (103) directly. Hence, no geometric potential
will appear on the RUNT, and consequently no bound states, since K = 0. Just as with the
straight carbon nanotube above, measuring for the existence or non-existence of bound states
on rolled up nanotubes could prove a veritable tool for discriminating between the different
descriptions of quantum mechanics on surfaces.
Even though much work have been done on the quantum mechanics on many different
surfaces a complete analytical analysis of quantum mechanics on the simple torus is still
missing, even though this surface is an important one. Next we will therefore provide some
basic equations as a start for such an analysis.
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We will assume the following parametrization of the torus

x = (c+ a cos v) cos u , (108)

y = (c+ a cos v) sin u , (109)

z = a sin v , (110)

where u, v ∈ [0, 2π〉. a signifies the ’small’ radius and c the ’big’ radius of the torus such
that c > a. The coordinates are depicted in Fig. (6). The geometry on the torus can then be
expressed as

ds2 = (c+ a cos v)2du2 + a2dv2 ≡ A2du2 + a2dv2 . (111)

The extrinsic curvature is explicitly given by

Fig. 6. The torus. The letters denote the angular coordinates.

K =
cos v

a(c+ a cos v)
. (112)

Let us consider stationary quantum energy eigenstates on the torus. Due to the
non-dependence of the u-coordinate in the metric we also consider momentum eigenstates in
the u-direction. We call these states winding states when this momentum is non-zero. Hence,
we assume that the wave-function is on the form

Φ ∼ e−iEteimuA−1/2W(v) , m ∈ {0,±1,±2, ....} (113)

where W is a function to be determined by the wave-equation. With this ansatz the
wave-equation reduces, quite remarkably, to the simple form

(− ∂2

∂v2
+Ve(v)− E2)W(v) = 0 , (114)
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where the effective potential Ve is given by

Ve(v) = −(
1
4
(∂vA)2 + a2m2)A−2 +

1
2
A−1∂2vA

=
−a2

(c+ a cos v)2
((
sin v
2

)2 −m2)− a cos v
2(c+ a cos v)

− cos v
2a(c+ a cos v)

. (115)

A plot of the effective potential is provided in Fig. (7). If the contribution from the extrinsic
curvature is discarded in the expression for the effective potential it still has the same
qualitative form as in Fig. (7).

Fig. 7. The effective potential Ve with m = ±1 in the interval u ∈ [0, 4π]. It has the same
qualitative features irrespective of the parameter values. Negative energy states seemingly
exist only for states with m ∈ {0,±1,±2}.

Let us finally make a brief comment on Dirac theory on linear structures. Clearly, neglecting
the spin-connection the extrinsically defined theory will reproduce Schrödinger theory as in
the case of surfaces. Considering an intrinsically defined theory the second order formulation
in Eq. (100) is again valid. However, now the Riemann curvature tensor is trivially identically
zero when we consider static linear structures since the geometry will be time independent.
This means that intrinsically defined fermions on static linear structures will not experience
a spin induced potential. However, note that if the structure exhibits a time dependent
geometry this is no longer true. This is easily seen already on the algebraic level since now the
right hand side of Eq. (101) is non-zero with changed overall sign

RABCDγAγBγCγD = 2R . (116)

This sign flip is induced by the Clifford algebra. Explorations of the implications of this change
of sign is left for future work.
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7. Conclusion

In this brief account of quantum mechanics on surfaces we introduced the reader to
the dimensional reduction approach which is currently the most widely accepted method
to construct quantum theories on surfaces and linear structures embedded in ordinary
three-dimensional Euclidean space. We generalized this framework to accommodate Dirac
theory. We studied quantum theory on explicit geometries; the catenoid in Schrödinger theory
and the cylinder in Dirac theory. In addition we presented novel approaches to the study of
the interplay between quantum physics and geometry in the form of a conformal approach to
defining quantum theory on a surface and by applying ideas from supersymmetric quantum
mechanics. Both of these approaches need further elaboration and refinements, but it is the
hope of this author that this material might inspire other workers in the field to pursue these
new avenues.
This account of quantum mechanics on surfaces also makes an effort to put our subject at the
center stage of current physics research. Quantum theory on surfaces might in particular be
important in order to get a complete understanding of graphene. We have shown that there
is a major discrepancy between the formulation of Dirac theory on surfaces depending on
whether one employs an extrinsic or an intrinsic approach. One immediate consequence is
that the intrinsic theory implies a new effective scalar potential proportional to the Gaussian
curvature in the surface, while the extrinsic approach implies the usual potential stemming
from the dimensional reduction approach (6). The new potential emerges due to the Clifford
algebra andwill thus not be present in any scalar theory defined on surfaces. We also looked at
the low energy limit of the intrinsic Dirac theory and derived an effective potential VD which
corresponds to the effective potential stemming from the Schrödinger (or the Dirac) theory in
the extrinsic approach (VS). Clearly, while VS is strictly non-positive the potential stemming
from the low energy intrinsic Dirac theory VD can carry any sign depending on the surface in
question. Graphene is described by the massless Dirac equation near the Dirac points. Hence,
near these points the charge carriers might respond very differently to the graphene surface
geometry than one would expect from Schrödinger theory. This insight might be of great
importance in the modeling of the charge carriers on graphene with consequent experimental
and technical implications. We considered one particular technical implication for a system
composed of a carbon nanotube bridging two metal slabs. We also considered a particular
rolled up nanotube in the same vain with qualitatively the same conclusions as with the
carbon tube. We emphasize that we have ignored the effect of the spin-connection. This will
induce spin-orbit couplings which will add motion dependent potentials. The effect of these
can be very pronounced (26). Clearly, much more work needs to be done in this field, but it is
work which apparently has potential to further advance recent discoveries in physics.
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1. Introduction

The properties of quantum systems at equilibrium are mainly displayed by the very nature of
the particles involved. As for example, distinguishable particles behave in a quite different
manner of indistinguishable bosons, which in turns behave very different from the also
indistinguishable fermions. Among the standard methods of statistical mechanics to handle
with quantum systems at equilibrium is included the way of counting the accessible states to a
given particle (1). Thus, the thermodynamical probability Ω comprising the set of possibilities
for a system of N particles to populate the available states will depend on the type of particle
being considered, as shown in Table 1. The method for calculating Ω consists in supposing
the existence of a number of energy levels, labeled by and index j, each level having energy
ε j and containing a total of nj particles. Besides, it is assumed that each level contains gj
distinct sublevels, all of which having the same energy. The value of gj associated with level
j is called the "degeneracy" of that energy level. Any number of bosons can occupy the same
sublevel, while the Pauli exclusion principle states that only one fermion can occupy any one
of the sublevels. Classical behavior emerges when the density is relatively low, which is more
common at high temperatures; in such cases, both fermions and bosons behave as if they
were classical particles. After identifying what kind of particles we are taking into account,
we use counting methods and combinatorial analysis to calculate the expected number nj
of those particles in level j with energy ε j. This is done by first calculating the number Ωj
of ways of distributing particles among the sublevels gj of an energy level j and taking the
product of the ways that each individual energy level can be populated to find the so called
thermodynamical probability Ω. Once we have Ω, it is a standard task to find the statistical
distribution for nj.
In this chapter, the counting method is extended to handle with equilibrium as well as
nonequilibrium quantum systems, in order to obtain the new thermodynamical probability
emerging from these situations. Also, systems only slightly out of equilibrium are considered,
such that a well defined temperature can be assigned to them, and the new results are pointed,
which take into account eventual experimentally detectable changes in their statistical
properties.
Another method to handle with equilibrium systems is to take advantage of the Boltzmann
factor, which establishes that, given two levels a and b whose energies are Ea and Eb,

9



2 Will-be-set-by-IN-TECH

(1) (2) (3)

◦ ◦
◦ ◦

◦ ◦
◦◦

◦◦
◦◦

a)

(1) (2) (3)

◦ ◦
◦ ◦

◦ ◦ (b)

Table 1. Configurations of M = 3 accessible states for a) N = 2 indistinguishable bosons,
Ω = 6 and b) N = 2 indistinguishable fermions, Ω = 3. (1) denotes the first available state,
(2) and (3) denote the second and third available state, respectively.

respectively, the number na of particles in state a with energy Ea is given by

na = pa exp(−βEa), (1)

where pa is a constant indicating the occurrence of probability for state a. The following
condition is thus assumed to be satisfied:

naPMB(Ea→b) = nbPMB(Eb→a), (2)

where PMB(Ea→b) stands for the Maxwell-Boltzmann (MB) distribution accounting for the
transition rate from state a to another state b. This method will be heuristically used later to
obtain a generalized statistics for both equilibrium and nonequilibrium situations concerning
quantum systems.

1.1 Quons, anyons, and generalized statistics
The concept of particles with fractional statistics, called anyons, has been studied with
increasing interest, now finding applications in, for example, quantum Hall effect (2) and
superconductivity (3). Anyons are generally expected to be observed in two space dimensions
for a system whose wave function behavior of multiparticle under the exchange of particles
obeys Ψ(q1, q2, q3, q4, ...) = exp(iπα)Ψ1(q2, q1, q3, q4, ...), where {q} represents generalized
coordinates and α is a real number defining the statistics. For bosons and fermions, α = 0 and
1, respectively, and α is any real number for anyons. Since the concept of anyons was proposed
(4; 5), there have been several approaches trying to understand its properties, including
a q-deformed bosonic algebra (6) and certain ad hoc conjectures aiming to generalize the
Bose-Einstein and Fermi-Dirac distributions (7). Without being exhaustive, it is worthwhile to
mention at least a few attempts to achieve a generalized anyonic statistics. As for example, an
interesting generalization of the Pauli exclusion principle can be advanced, without explicit
reference to spatial dimension (8). This is remarkable, since anyons was generally accepted to
exist only in two dimensions. The generalization as proposed in Ref.(8) consists on defining a
statistical interaction gαβ given by

Δdα = −∑
β

gαβΔNβ (3)

where dα is the one-particle Hilbert space dimension, and ΔNβ is an allowed change of the
particle number Nβ at fixed size and boundary conditions. Thus, for bosons it is required
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gαβ = 0, while for fermions the exclusion principle requires gαβ = δαβ. Based on the
thermodynamical limit, further requirements must be imposed, such as the independency
of the number of particles and the rationality of gαβ. According to the author, at a fixed
particle numbers the counting state thus leads to the following size of the Hilbert space of
many particle states:

∏
a

(da + Na − 1)!
Na!(da − 1)!

, (4)

with dB = da and dF = da + Na − 1 for the Fock space dimensions of bosons and Fermi,
respectively.
We find another interesting proposal for generalizing Bose-Einstein and Fermi-Dirac statistics
in (9), where the distribution function for the number of anyons in a given state j is postulated
at once as

Nj =
γ

exp
[

β
(

εj − μ
)]
− f (α)

. (5)

The parameter μ characterizes the particle reservoir in the same way that β characterizes
the thermal reservoir, γ = 2s + 1 denotes the multiplicity of states and f (α) generalizes
the statistics, since f (α) = 0, 1,−1 recovers the Boltzmann, Bose-Einstein and Fermi-Dirac
statistics and, for anyons, it is expected that f (α) can assume any real number.
Although the interesting problem of what is exactly the distribution function for anyons in and
out of equilibrium remains opened, the above studies provide some clues to this question. It
is my purpose, in the remainder of this chapter, to show how to deep our understanding of
anyons by looking for some reasons to justify their behavior in a manner that sounds plausible.

2. Generalized thermodynamical probability

It is possible to provide a formula taking into account more general behavior than that
presented by fermions and bosons, as I show in the following, although, regarding to
equilibrium situations, it is not clear at the present if nature allows for such anyons . The

general problem we have to solve is that of obtaining the number Ω of ways that nj balls can
be distributed into gj boxes, each box having capacity to accommodate p balls. This number
is given by (10)

Ωp =
[nj/(p+1)]

∑
k=0

(−1)kCkgj × C
nj−k(p+1)
gj+nj−k(p+1)−1, (6)

where Cmn = n!
m!(n−m)! and the brackets [nj/(p + 1)] in the upper limit indicate the integer

taken from nj/(p + 1). As for example, if nj = 2 and p = 1, then [2/3] = 0; if nj = 5 and
p = 2, then [5/2] = 2, and so on. This relation can also be written as

Ωp =
gj!

(gj − 1)!

[nj/(p+1)]

∑
k=0

(−1)k
(gj + nj − 1− k(p+ 1)!
k!(gj − k)![(nj − k(p+ 1)]!

. (7)

From Eq.(6) it is easy to verify the number of configurations displayed in Tab.I: for the case
of bosons, nj = p = 2, gj = 3, and the summation is limited to k = 0, thus resulting Ω =
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C2
4 = 6; for the case of fermions, p = 1, such that in the summation k = 0, 1,thus resulting

Ω = ∑1
k=0(−1)kCk3 × C2−2k

4−2k = 3. Proceeding in a general manner, from Eq.(6) we can recover
the statistics corresponding to the case p = 1, Fermi-Dirac (FD) distribution and p = nj,
Bose-Einstein (BE) distribution. For instance, taking p = nj in Eq.(6), the upper limit [nj/(nj+
1)] implies k = 0, and it is straightforward to obtain the BE statistics:

Ωj
BE = C0

gj × C
nj
gj+nj−1 =

(gj + nj − 1)!
nj!(gj − 1)!

, (8)

from which we obtain the thermodynamical probability for all the j levels:

ΩBE = ∏
j

Ωj
BE = ∏

j

(nj + gj − 1)!
nj!(gj − 1)!

. (9)

Following the standard route (11), since the maxima of ΩBE and ln ΩBE occur at the same
value, we choose to maximize this latter function, which is subject to the constraints ∑j nj = N
and ∑j njεj = E. Using Lagrange multipliers λ and β to form the function

f (nj) = ln ΩBE + λ(∑
j
nj − N) + β(∑

j
njεj − E), (10)

and the the Stirling formula ln n! ∼= n ln n− n for the factorials, we take the derivative with
respect to nj, setting the result to zero and solving for nj, to find the Bose–Einstein distribution:

njBE =
gj

exp(λ + βEj)− 1
. (11)

From thermodynamics, we know that β = 1/kT, k being the Boltzmann constant, T the
temperature, and that λ is related to the chemical potential by λ = −βμ, thus being zero
for a photon gas. Similarly, when we take p = 1 and use the closed relation

[nj/2]

∑
k=0

(−1)k
(gj + nj − 1− 2k)!
k!(gj − k)!(nj − 2k)!

=
(gj − 1)!

nj!(gj − nj)! , (12)

it is straightforward to write

ΩFD = ∏
j

gj!
nj!(gj − nj)! . (13)

The same standard procedure now leads to

njFD =
gj

exp
[

β(Ej − μ)
]
+ 1

, (14)

where the parameter of constraint λ = −βμ was written explicitly. Note that Eq.(6)
generalizes the concept of indistinguishable particles, and it is possibly a valid starting point
to study the statistics of particles whose behavior at equilibrium at temperature T is neither
that of bosons nor that of fermions. However, finding a closed relation like that of Eq.(12), for
Eq.(7) giving a general capacity p, which would allow one to obtaining a general formula for
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the thermodynamical probability Ωp, remains an opened problem. Of course, once we have
such a closed relation, we can apply the standard methods to deduce a generalized occupation
number np. I hope the readers can consider this problem interesting enough to pursue further.
Another way to derive Eq.(11) and Eq.(14) for a gas of photons (μ = 0) is the following. Let Ea
and Eb the energy of state a and b, respectively, for a two state system of distinguishable
particles. As discussed in the introduction of this Chapter, the maxwell-Boltzmann
distribution, Eq.(1), implies that, in equilibrium,

na
nb

=
PMB(Ea)
PMB(Eb)

= exp [−β(Ea − Eb)] , (15)

where nb and na are the number of distinguishable particles in state b and a, respectively.
Now, if we consider indistinguishable particles, as for example bosons, the "Bose-Einstein"
rate indicated by PBE(Ea→b) for one particle to make a transition from one state (a) to another
(b) and vice-versamust obey

PBE(Ea→b) = (1 + nb)PMB(Ea→b), (16)

PBE(Eb→a) = (1 + na)PMB(Eb→a), (17)

with nb, na = 0, 1, 2... We can assign the following meaning to Eq.(16) and Eq.(17): The
transition rate governed by BE statistics, being proportional to the MB distribution, makes
the probability to one bosonic particle goes from state a to state b (from state b to state a ) to
increase with the occupation number of state b (a). As the equilibrium is assumed, we can
write

naPBE(Ea→b) = nbPBE(Eb→a). (18)

From Eqs(16)-(18), we find

na
(1 + na)

exp (−βEa) =
nb

(1 + nb)
exp (−βEb) . (19)

If we now put nb
(1+nb)

exp (−βEb) = F(β) and solve to na we find, after changing the subindex
a to BE,

nBE =
1

F(β) exp (βE)− 1
, (20)

which has the same form as Eq.(11).
Proceeding in the same way, it is straightforward to rederive Eq.(14), for fermions, by this
method. We only need to change Eq.(16) and Eq.(17) by these ones:

PFD(Ea→b) = (1− nb)PMB(Ea→b), (21)

PFD(Eb→a) = (1− na)PMB(Eb→a), (22)

with na, nb = 0, 1. We must interpret Eq.(21) and Eq.(22) by saying that the probability for
one fermion to populate the state b (a) is either proportional to the Boltzmann factor if in state

219Quantum Statistics and Coherent Access Hypothesis



6 Will-be-set-by-IN-TECH

b (a) there is no particle, or zero if in state b (a) there exists another fermion. Now, writing
naPFD(Ea→b) = nbPFD(Eb→a) and using Eqs.(21),(22) we obtain

nFD =
1

F(β) exp (βE) + 1
, (23)

which is the same form as Eq.(14).
A heuristic argument can be developed, based on the proceedings which lead to the BE and FD
statistics above, to deduce a generalized distribution function. Bearing in mind Eq.(7) for the
generalized thermodynamical probability, we must note that it allows for some fraction p/N
of the total number N of particles to populate a given available state. Thus, once the allowed
fraction is attained for a certain level, the probability for any anyon making a transition to that
level must be zero. With this reminds, consider the following generalization of Eqs.(16)-(17)
and Eq.(21)-(22):

PANY(Ea→b) = (γ− f nb)PMB(Ea→b), (24)

PANY(Eb→a) = (γ− f na)PMB(Eb→a), (25)

where na, nb = 0, 1, ..p, and PANY(Eb→a) stands for the rate of transition from state b to
state a governed by the anyonic statistics. Here γ and f are real parameters whose meaning
will be cleared in the following. To interpret both Eqs.(24) and (25), we must say that the
probability for one anyon to make a transition to state b is proportional to the MB factor, and
this probability suddenly becomes zero if the fraction f nb of particles attains the maximum γ

value for a given state b. Eq.(25) can be interpreted in a similar way. If we now require, as it
was done previously for the other transition rates, that in equilibrium we must have

naPANY(Ea→b) = nbPANY(Eb→a), (26)

we can combine Eq.(24)-(26) and use Eq.(15) to obtain, after proceeding in the very same way
as we did previously:

nANY =
γ

g(β) exp (βE) + f
, (27)

Eq.(27) generalizes the FD statistics and becomes the FD distribution when, of course, f = 1,
which means that transitions only occur for states with no particle.
Consider now the case when the transition rates are given by PANY(Ea→b) = (γ +
f nb)PMB(Ea→b), PANY(Eb→a) = (γ + f na)PMB(Eb→a) which generalize Eqs.(16) and (17). It
is straightforward to obtain, now

nANY =
γ

g(β) exp (βE)− f (28)

Note that the corresponding interpretation of these transition rates must be that the anyons
now, being different from those governed by Eq.(27), have increasing probability to populate
a given state when the fraction f becomes larger. We see, thus, that is possible to derive, on
sound grounds, generalized statistics for anyons at equilibrium.
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3. Nonequilibrium systems and coherent access hypothesis

Nonequilibrium situations require a little bit of complexification, since a given particle can
now act as if it is populating more than one state at once. To convince that this is so it is enough
to remind that any initially pure state can be described, using the completeness relation, as a
superposition of each state physically accessible to the particle. I call this new situation as
coherent access hypothesis (12).

3.1 Coherent access for bosons
As we saw from the preceding Section, Tab.1, to define a microstate in statistical mechanics,
i.e., a given configuration, it is necessary to take into account the (in)distinguishability of the
particles, which gives rise to different configurations. In nonequilibrium situation, to calculate
all the possible configurations I now take into account, beside this characteristic, this another
one: the possibility to the particle simultaneously access more than one state, or, to avoid
eventual difficulties related to interpretations matter inherent to the quantum formalism, the
possibility to the particle to coherently access the available states. This situation is shown in
Tab. 2 for the case of p = gj considering two identical particles having two accessible states
(gj = 2). Note that if the particles were distinguishable, the corresponding configuration
would be different.

(1) (2) (12)

◦ ◦
◦ ◦

◦ ◦
◦◦

◦◦
◦◦

Table 2. A system out of equilibrium composed by two particles having two accessible states.
(1) denotes the first available state, (2) denotes the second available state, and (12) denotes
the coherent access to both states.

Comparing Tab.I and Tab.II, we see that, clearly, the nonequilibrium situation requires a new
strategy for counting microstates. We can represent this new strategy to count, as shown in
Tab.2, by the following sequences. The number between parentheses indicates the state to be
occupied, while the letter following the parenthesis indicates the corresponding occupation
by the particle a, which is identical to all the others: (1)a(2)a(12); (1)a(2)(12)a; (1)(2)a(12)a;
(1)aa(2)(12); (1)(2)aa(12); (1)(2)(12)aa. The first sequence corresponds to one particle
accessing the first available state and the other particle accessing the second available state,
with no coherent access by both particles; the second sequence corresponds to one particle
accessing the first state and the other one accessing coherently the states (1) and (2), and so
on. As the sequence must initiate by a number, and existing three possible number of states,
1, 2, and 12, there will remain 3− 1 numbers plus two letters a (particles) to be set in whatever
order (permutation). Therefore, the number of unrepeated sequences is

Ω∗ = 3× (3− 1 + 2)!
2!3!

= 6, (29)
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where I have put a superscript (∗) to remind that we are treating with nonequilibrium
situation. Proceeding in a general manner, for gj sublevels with N∗j particles, the number
Ω∗
j of unrepeated sequences is

Ω∗
j =

Gj(Gj + N∗j − 1)!

Gj!N∗j !
=

(Gj + N∗j − 1)!

(Gj − 1)!N∗j !
, (30)

where Gj = ∑
gj
k=1 C

k
gj is the number of possible sequences formed from gj, and Cmn = n!/(n−

m)!m!. Taking as example the configuration given by Tab.2, where gj = 1, Nj = 2,Gj =

∑2
k=1 C

k
2, thus Gj = C1

2 + C
2
2 = 3; then

Ω∗
j =

(3 + 2− 1)!
(3− 1)!2!

= 6, (31)

which is the number of sequences given in (1)a(2)a(12); (1)a(2)(12)a; (1)(2)a(12)a;
(1)aa(2)(12); (1)(2)aa(12); (1)(2)(12)aa, corresponding to Tab.2. Therefore, the
nonequilibrium thermodynamical probability Ω∗

j for a given macrostate j is

Ω∗
j =

(Gj + N∗j − 1)!

(Gj − 1)!N∗j !
. (32)

Also, as Gj = ∑
gj
k=1 C

k
gj = C1

gj + ∑
gj
k=2 C

k
gj , and C1

gj = gj, letting Lgj = ∑
gj
k=2 C

k
gj , then Eq.(32)

can be rewritten and used to compose the thermodynamical probability Ω∗ = ∏
j

Ω∗
j :

Ω∗ = ∏
j

(gj + Lgj + N∗j − 1)!

(gj + Lgj − 1)!N∗j !
. (33)

From Eq.(33) we can see that the only changing in the thermodynamical probability is the
appearance of the factor Lgj modifying the degeneracy gj, the number of macrostates Ω∗

j ,
and also the thermodynamical probability and, consequently, the entropy S of the system, as
should be, since S = k ln Ω∗. Remarkably, note the similarity between Eq.(33) and Eq.(4),
provided that we identify dj = gj + Lgj.
We can easily verify that Eq.(32) gives rise to a BE-like statistics, with gj replaced by Gj. That
this is so can be checked proceeding by analogy with the equilibrium situation, as indicated
previously (1): First, we take the ln from both sides of Eq.(32). Second, we use the Stirling
formula for factorials. Third, we differentiate with respect to N∗j and use ∂ ln Ω∗

j /∂N∗j = ε∗j ,
where ε∗j generalizes ε j = βEj, β = 1/kT, finding

N∗j /Gj =
1

exp(ε∗j )− 1
. (34)

Therefore, we see that the Bose-Einstein statistics is corrected, since the equality Gj = gj and
ε∗j = ε j will be valid only when the complete equilibrium is reestablished.
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Since we are treating with nonequilibrium systems, a fundamental point to be addressed is,
then, what is the meaning of temperature here, and how temperature enters in these formulas.
To apply these formulas, we can think that the system is bring into contact with a reservoir at
a well defined temperature T. As will be discussed later, the reservoir, even at idealized zero
temperature, will drive the system to a complete mixture of states at the end of the so-called
decoherence time τD (19). As a consequence, in a time scale shorter than that for occurring
the thermalization between the system and the reservoir, the coherence of the system will be
lost, implying its incapacity to access, coherently, every possible state, thus recovering the
usual BE distribution. Although the temperature of the reservoir is well defined for all times,
the temperature for the system is not. However, as I stressed before, we can think of taking
the system only slightly out of equilibrium, such that we can correct its temperature using an
expansion up to few orders in ε∗j and requiring that ε∗j → ε j = βEj when the equilibrium is
restated.
Thus, by expanding ε∗j in power series of ε j, which formally can be written as

ε∗j = ε∗0 +
(

∂ε∗j
∂ε j

)
ε0

ε j +
1
2!

(
∂2ε∗j
∂ε2
j

)
ε0

ε2
j +

1
3!

(
∂3ε∗j
∂ε3
j

)
ε0

ε3
j ..., (35)

and requiring that ε∗j → ε j = βEj when the equilibrium is restated, gives ε∗(0) = ε∗0 = 0

and
(

∂ε∗j
∂ε j

)
ε0j

= 1, such that the first order correction to the Bose-Einstein distribution can be

explicitly written as

N∗j /Gj =
1

exp
[

βE+ α1 (βE)2
]
− 1

, (36)

where I have truncated the power series up to second order and put 1
2!

(
∂2ε∗j
∂ε2
j

)
ε j=0

. Note

that, from this approach, the net effect stemming from the nonequilibrium on a given system
is the increasing in the degeneracy, which in turn increases the available states given by Ω.
Also note that for systems only slightly out of the equilibrium, the energy emitted should
be slightly different from that corresponding to the system in equilibrium. I call attention to
the fact that some experiments, see Ref.(16), seem to point for the importance of the BE-like
statistics given by Eq.(36), which modifies the Boltzmann factor.
I now briefly discuss a point deserving further investigation, which regards to Fermi-Dirac
statistics (p = 1) for particles out of equilibrium. Take for example Table III, which shows the
total of Ω = 6 possibilities of occupation for N = 2 fermions having M = 3 available states.
The situation now is more complicated than that for bosons, since, for example, when the first
and second state is being coherently accessed by one fermion, indicated by (12) in Table III,
the other fermions cannot populate states labeled using either number 1 or 2; in this case, as
shown in Tab. III, when one fermion is in (12) state, the other one only can exist in state (3).
It remains a challenge to find the corresponding thermodynamical probability Ω for gj states
and nj fermions, and thus, the mean occupation number for fermions out of equilibrium, as
was done in Eq.(36), for bosons.
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(1) (2) (3) (12) (13) (23) (123)

◦ ◦
◦ ◦
◦ ◦

◦ ◦
◦ ◦

◦ ◦
Table 3. Configurations of M = 3 accessible states for N = 2 indistinguishable fermions. (1)
denotes the first available state, (2) and (3) denote the second and third available state,
respectively. (12) represents the first and second state being coherently populated, (123)
represents the three available states being coherently populated, and so on.

3.2 Coherent access for fermions
Because the plain difficulty in obtaining Ω for fermions out of equilibrium, as pointed above,
another route for this purpose must be in order. Thus, let us focus our attention on the
partition function, which, by definition, is defined as a sum in all microstates (ms):

Z = ∑
ms

exp(−βE), (37)

where β = 1/kT, and E is the energy of the system, which can also be written using the
number of particles ni in the state of i−th energy ε(i) of the system as E = ∑i niε(i). In this

case, the total number of particles is simply N = ∑i ni.
For an out of equilibrium system consisting of fermions, I introduce the coherent access
hypothesis to several states, which consists in maintaining the same form as that of Eq.(37),
but replacing ∑i niε(i) by ∑ij... nij...ε(i, j, ...), which, for fermions, implies i �= j �= ..., and nkl
is either zero or one and must be interpreted as being the fermion coherently accessing the
energy levels ε(k) and ε(l). For example, as discussed in the beginning of this Section and
represented in Table III, ε(k, l) represents the coherent access related to the energy levels k and
l, and ε(1, 2) represents, for example, the states (1) and (2) being coherently populated by a
single fermion. On the other hand, if we are taking into account bosons, there is no constraint
on ∑ij... nij...ε(i, j, ...), and of course nkl = 0, 1, 2,... is the number of bosons coherently accessing
the energy levels ε(k) and ε(l).
For what follows, I am assuming that the partition function preserves its form given by
Eq.(37) even at the nonequilibrium situation. To demonstrate this, I make use of this following
postulate, which is valid for equilibrium situation: that two systems, in contact with a third
one, as for example a reservoir at temperature T, act independently of each other while both
the systems exchange energy with the reservoir. Once this postulated is maintained, it is
straightforward to proceed the demonstration (1), and, for sake of completeness, let us briefly
outline the steps leading to this result. To this end, consider a system composed by two
subsystems A and B. The probability for this composed system to be in the energy state E∗A+B
is PA+B(E∗A+B), where the superscript (*) is to remind us that the system is out of equilibrium.
If, as usual, the interaction energy can be neglected, thus the energy of the composed system
is E∗A+B = E∗A + E∗B, and

PA+B(E∗A+B) = PA(E∗A) + PB(E
∗
B) (38)
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is the probability for the composed system to be in a particular state such that the subsystem
A has an energy E∗A, and, at the same time, the subsystem B has an energy E∗B. Now, suppose
that these two subsystems is put in contact with a third system, for example, a reservoir at
temperature T. While persisting the nonequilibrium situation (and even after that, indeed),
the two subsystems A and B act independently of each other, with both subsystems eventually
exchanging energy with the reservoir. Besides, the energy exchanged with the reservoir by a
given subsystem does not influence the energy that the other subsystem can exchange with
this same reservoir. This assumption, valid for two systems in equilibrium with a reservoir,
is here assumed to be valid also when the equilibrium was not reached. Therefore, as I am
assuming these events as independent, it can be writen

P(E∗A+B) = P(E∗A)P(E
∗
B). (39)

Differentiating Eq.(39) with respect to E∗A and E∗B and equating this result we obtain
(dP/dE∗ = P′)

P′A(E
∗
A)PB(E

∗
B) = PA(E∗A)P

′
B(E

∗
B). (40)

Next, separating the variables and equating the result to a constant, we have

P′A(E
∗
A)

PA(E∗A)
=
P′B(E∗B)
PB(E∗B)

= −β∗ (41)

where β∗ is a constant independent from either E∗A or E∗B. Of course, in the equilibrium
situation we must have β∗ → β = 1/kT. From Eq.(41) follows, therefore, our desired result

P(E∗) = exp(−β∗E∗)
Z∗ , (42)

where the partition function for the nonequilibrium situation is Z∗ = ∑
ms

exp(−β∗E∗) and the

index were dropped given the validity of Eq.(42) for the two subsystems.
Thus, according to Eq.(42), if P(ε∗j = β∗E∗j ) is the probability for a given system out of the
equilibrium is in a particular microstate whose configuration is described by ε∗j = β∗E∗j , then

P(ε∗j ) =
exp(−ε∗j )

Z∗ . (43)

Now, using Eq.(35) and requiring that ε∗j → βEj when the equilibrium is restated, Eq.(43) can
now be written as

P(ε∗j ) =
1
Z∗ exp

[
−βEj − α1

(
βEj

)2 − α2

(
βEj

)3
+ α3

(
βEj

)4
...
]

, (44)

where the other constants were renamed for convenience as 1
n!

∂nε∗j
∂εnj

= αn−1. Such a state of

affairs giving origin to an infinite number of free parameters was studied in Refs. (14; 15) in
a different context. I will turn to this point in the next Section. Note that for systems only
slightly out of the equilibrium this last equation can be written as

P(ε∗) = 1
Z∗ exp

[
−βE− α1 (βE)2

]
, (45)
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where I have dropped out the index i. As stressed before, some experiments seem to point for
the importance of this last term, which modifies the Boltzmann factor (16). Eq.(45) applies
as well as for bosons and fermions just eventually changing the parameter α1 accounting
for the difference in the occupation number for this two particles. It is to be noted that, in
order to obtain an equation for the nonequilibrium fermions similar to that of Eq.(36), we
must find the nonequilibrium partition function Z∗ considering the fermionic nature of the
particles, with the occupation number in Table Ib being replaced by the occupation number
for out of equilibrium fermions as indicated in Table III. Unfortunately, this is also not an
easy task, demanding additional efforts. Notwithstanding, Eq.(45) shows several applications,
and exploring its experimental consequences would be a promising road to follow. Besides,
following another route yet using Eq.(45), it is possible to find an occupation number for
nonequilibrium fermions similar to Eq.(36), as desired. To this end, consider the following
reasoning: since the equilibrium is slightly disturbed, it is reasonable to assume that Eq.(45),
instead of Eq.(1), must be used to calculate the transition rates. Consider then a two state
system of distinguishable particles. Let Ea and Eb the energy of state a and b, respectively. The
MB-like distribution, Eq.(45), implies that

n∗a
n∗b

=
PMB(ε∗a )
PMB(ε∗b )

= exp
{
−β(Ea − Eb)− α1

[
(βEa)2 − (βEb)

2
]}

, (46)

where n∗b and n∗a are the number of distinguishable particles in state b and a, respectively.
Eq.(46) thus corrects the usual rate of population of the two states. Now, if the equilibrium
is only slightly disturbed, we can assume that the transition rate from a to b is nearly the
transition rate from b to a, i.e.,

n∗a PMB(ε∗a→b) ≈ n∗bPMB(ε∗b→a), (47)

where I have indicated the single particle transition rate from state a to b as PMB(ε∗a→b).
By applying the same reasoning for two identical fermions as it was done previously - see
Eq.(16)-(23), we can write to the rate PFD(ε∗a→b) for one particle to make a transition from one
state (a) to another (b) and vice-versa as

PFD(ε∗a→b) = (1− n∗b )PMB(ε∗a→b), (48)

PFD(ε∗b→a) = (1− n∗a )PMB(ε∗b→a), (49)

where n∗b and n∗a is to be reminded as the nonequilibrium number of fermions which are either
zero or one. By the same told, I am assuming that similar to Eq.(47) we can write

n∗a PFD(ε∗a→b) ≈ n∗bPFD(ε∗b→a). (50)

From Eqs(47)-(50), we find

n∗a
(1− n∗a ) exp

[
−βEa − α1 (βEa)2

]
≈ n∗b

(1− n∗b )
exp

[
−βEb − α1 (βEb)

2
]

,
. (51)
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If we now put n∗b
(1−n∗b )

exp[−βEb−α1(βEb)
2]

, = F(β) and solve to n∗a we find, after changing the
subindex a to FD,

n∗FD ≈
1

F(β) exp
[

βE+ α1 (βE)2
]
+ 1

, (52)

which is similar to Eq.(36), for bosons out of equilibrium. In fact, it is straightforward to
rederive Eq.(36) by this method, provided we assume n∗a PBE(ε∗a→b) ≈ n∗bPBE(ε

∗
b→a) and use,

now, PFD(ε∗a→b) = (1 + n∗b )PMB(ε
∗
a→b) and PFD(ε∗b→a) = (1 + n∗a )PMB(ε∗b→a), instead of

Eqs.(48)-(49).
For a simple, yet illuminating application of Eq.(45), consider N two-level systems at
equilibrium at temperature T1 with energies E1 = ε and E2 = −ε. Then, when this system
is bring to a slightly different temperature T2, we expect that Eq.(45) describes the route to
thermalization. In view of Eq.(45) we can write

Z∗ =
1

∑
n=−1

exp
[
−βEn − α1 (βEn)2

]
(53)

= 2 exp[−α1 (βε)2] cosh (βε) , (54)

such that the N-particle partition function is Z∗ = Z∗N :

Z∗ = 2N exp[−Nα1 (βε)2] coshN (βε) , (55)

from which all the relevant experimental quantities can be deduced. As for example, the
internal energy is

U∗ = − ∂ lnZ∗
∂β

= −Nε tanh(βε) + 2Nα1βε2, (56)

and the specific heat

C =
∂U∗
∂T

= Nk(βε)2 cosh−2(βε)− 2Nkα1 (βε)2 , (57)

where it is to remind that α1 (βε)2 	 1, the correction 2Nkα1 (βε)2 being very small.

4. Connection with entropic forms

As discussed in Section II, since the thermodynamical probability Ω was modified to Ω∗
to take into account the coherent access, a natural question emerging is what is the best
entropic form related to Ω∗. I note that, depending on the choice, we will face with different
implications. Once there is a plenty of entropic forms at our disposal, let us take as examples
two of them: the Boltzmann-Gibbs (SBG) and the Tsallis (Sq) entropies. As is well known,
while the first entropy is extensive, i.e. SBG(A + B) = SBG(A) + SBG(B), the second one in
general is not, i.e., Sq(A+ B) �= Sq(A) + Sq(B) if q �= 1.
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Let us begin by the Boltzmann-Gibbs entropy, assuming for now that the only effect of the
nonequilibrium is to increase the degeneracy of the system, as seen in Section II. We shall see
that is possible to relate Eq.(44), and thus Eq.(45), either with an extensive or nonextensive
entropic form (15). To see how this can be accomplished, I again proceed in analogy with
what was done previously, taking advantage of Lagrange multipliers. Thus, given the
density operator ρ of the system and the Boltzmann constant k, we want to maximize the
Boltzmann-Gibbs entropy

SBG = −ktrρ ln ρ, (58)

where tr stands for the trace operation, subjected to the constraints given by the moments〈
(ΔE)n

〉
= trρHn, (59)

where n = 0, 1, 2, 3, ... Note that for n = 0 the constraint is just the normalization condition
trρ = 1, while for n = 1 the constraint becomes the mean energy

〈
(ΔE)n

〉
=trρH, which are,

in general, the two constraints used in the maximization procedures of the entropy. We thus
multiply each constraint by the undetermined Lagrange multiplier βn, adding the result to
Eq.(58). After varying ρ, we will obtain

tr

(
1 +

∞

∑
n=0

βnHn + ln ρ

)
δρ = 0. (60)

Since all the variations are independent and δρ is arbitrary, the extended (non-Maxwellian)

distribution ln ρ = −1− ∞
∑
n=0

βnHn follows, or, equivalently,

ρ = Z−1 exp(−
∞

∑
n=1

βnHn), (61)

where the partition function is Z =trexp(− ∞
∑
n=1

βnHn). In the energy representation where

H |E〉 = E |E〉, Eq.(61) reads

P(E) = Z−1 exp(−
∞

∑
n=1

βnEn)

= Z−1 exp
(
−β1E+ β2E2 + β3E3 + β4E4...

)
(62)

where Z = ∑E exp(− ∞
∑
n=1

βnEn) and I have used P(E) =trρ |E〉 〈E|. The Lagrange multipliers

βk are formally obtained from βk = − ∂ lnZ
∂Ek , considering Ek = Yk as independent variables.

The equality between Eq.(62) and Eq.(44) is guaranteed, provided that β1 = β; βn = αn−1βn.
Therefore, according to the present view, nonequilibrium systems remains extensive, although
requiring a posteriori knowledge of the variance (second central moment), the coefficient of
skewness (third central moment), the kurtosis (fourth central moment), and so on, thus giving
rise to a virtually infinite number of free parameters. However, instead of using infinite
parameters, we could just use a single one by redefining a new ensemble fully determined by
this single parameter. An aesthetically appealing way to do so is to expand Eq.(44) in terms of
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the Tsallis entropic index (13). To do this, consider the following expanded form of Eq.(44):

P(ε∗j ) =
1
Z∗ exp

[
−βEj − (1− q)

2

(
βEj

)2 − (1− q)2

3

(
βEj

)3
+ ...

]
, (63)

where in general αn = (q−1)n−1

n . This is equivalent to the statement that the old ensemble
which depended of β, {αn} and Ej becomes now a function of only β, q and Ej. Eq.(63) can be
rewritten as

P(ε∗j ) =
1
Z∗ exp

{
1

1− q

[
(1− q) βEj − (1− q)2

2

(
βEj

)2 − (1− q)3

3

(
βEj

)3 − ...

]}
, (64)

where it is easily recognized the expanded form of the logarithm function ln(1− x) = −x−
x2

2 − x3

3 − x4

4 − ... , x = (1− q)βEj, such that Eq.(64) becomes

P(ε∗j ) =
1
Z∗

[
1− (1− q) βEj

] 1
(1−q) , (65)

which is the q-distribution stemming from the extremization of Tsallis entropy,

Sq = k

1−∑
j
pqj

q− 1
, (66)

when considering a family of constraints determined by the q-expectation value of the energy

〈E〉q =
∑
j
pqj Ej

∑
j
pqj

, (67)

besides the norm constraint ∑
j
pj = 1. Therefore, a complete formal agreement between

Tsallis and Boltzmann-Gibbs entropies is possible. This formal equivalence gives rise to an
important issue related to a possible pseudononextensivity of the entropy used to describe
a given system, since this agreement suggest that nonextensivity can be removed by adding
new constraints.

5. Coherent access and decoherence time

In Section II I mentioned that equilibrium destroys the possibility of the system to coherently
access all the available states, thus preventing us to experimentally observe results diverging
from BE and FD distributions - see Eqs.(36),(52) and (57). In this Section it is briefly
discussed possible experiments to be done in order to measure deviation from the equilibrium
distributions.
To understand how the coherent access capacity of the system is lost even before the reservoir
to compel the system to the equilibrium, it will be instructive to analyze in some detail the
decoherence time concept. As I mentioned before, there is a relevant time scale, much less
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than that necessary to the system to acquire the thermal equilibrium, given by the decoherence
time, which has been extensively studied (17–20). For sake of the clarity, I will briefly
present the decoherence induced by the environment interpretation (19). In the so-called
Caldeira-Leggett model (21), as proposed initially by Feynman and Vernon (22), a massive
quantum system of interest and its environment are represented by a single Hamiltonian.
The massive system is represented by a single quantum oscillator, while the environment is
modeled as a thermal bath consisting of a set of N oscillators, the coupling occurring via
position coordinates. The master equation for the density operator derived by Caldeira and
Leggett from this model, in the position representation ρ(x, x′, t) and in the high temperature
limit, is

·
ρ = − i

h̄
[H, ρ]− γ (x− x′)

(
∂ρ

∂x
− ∂ρ

∂x′
)
− 2mγkBT

h̄2 (x− x′)2 ρ (68)

where H is the Hamiltonian for the particle, γ is the relaxation rate, m is the mass of the
system, kB is the Boltzmann constant, T is the temperature of the heat bath and Δx =
x − x′ is the typical separation from two peaks of the density matrix ρ(x, x′, t) in the
phase state representation of a quantum superposition; x and x′ standing for the diagonal
and off-diagonal position of the peak, respectively. In the above equation, the first term
corresponds to the unitary von Neumann evolution, while the second term is responsible
for dissipation. The third term, having a classical counterpart related to Brownian motion, is
the most important for our purposes, since it is responsible for eliminating the off-diagonal
terms, thus destroying the quantum coherence, or in other words, the coherent access capacity
of the system. For example, for a coherent superposition of two Gaussians, its evolution,
according to Eq.(68), will initially present four peaks, two on the diagonal (x = x′) and two
off the diagonal (x �= x′). While dissipation is governed in a time scale given by the second
term, decoherence is governed by the last term which, being proportional to the square of
the difference between diagonal and off diagonal terms, it will be dominant for large Δx,

eliminating the off-diagonal terms at the rate
·
ρ ∼= −τDρ, which implies ρ ∼ exp(−t/τD),

where τD is the decoherence time

τD ≡ h̄2

2mγkBT (Δx)
2 . (69)

Therefore, this model provides an indicative to the time scale for the coherent access to work
and thus for the emergence of the Bose-Einstein and Fermi-Dirac statistics. Besides, it sheds
light on the problem of nonexisting superpositions of macroscopic objects: as shown in Ref.
(19), according to Eq.(69) it is enough for 1g of matter at room temperature T = 300 K
and separation of 1cm to the decoherence be destroyed in τD ∼ 10−21s, even considering
relaxations times of the order of the age of the Universe. However, as I are arguing,
superposition is the core of the coherent access hypothesis. I shall, therefore, concentrate
the attention on systems composed of relatively few particles. For instance, Bose-Einstein
condensates (BEC) for N atoms at very low temperature indeed is a good candidate to observe
deviations from Bose-Einstein statistics in accordance with Eq.(36). To be specific, considering,
for example, a relaxation rate γ ∼ 1s−1taken from the average time of condensates of N
atoms of rubidium-87 at 10−7K (23), then assuming Δx ∼ 1μm, which is much greater than
the atom size, the decoherence time will be scaled as τD ∼ N−1s. For typical N, around
102 − 106, we see that the decoherence time is high enough to be experimentally measured,
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thus allowing the system to coherently populate the accessible states. Therefore, we can expect
that BEC slightly out of equilibrium would emit radiation whose statistics, differing from that
of Bose-Einstein, should agree with the predictions given by Eq.(36).

6. Conclusions

Generalized statistics as well as nonequilibrium thermodynamics, being an open subject
under current investigation, provides us with several techniques to study the statistical
properties of systems. In this Chapter I study possible ways to introduce generalized statistics
in both equilibrium and nonequilibrium situations. Also, I developed a new approach to
study a nonequilibrium system. This new approach consists in extending the counting
methods taken from combinatorial analyses to include the possibility for a system out of
equilibrium to act as if it is accessing more that one state at once, a hypothesis I named by
coherent access. As a consequence of the coherent access hypothesis, the process of counting
how the particles access the available states of a physical system is modified. According
to this hypothesis, the statistics resulting from the spectrum of emission of systems out of
equilibrium is different from the Bose-Einstein statistics, being this difference in principle
experimentally detectable. I then pointed out that coherent access is inhibited at the time scale
of the decoherence time, and I explored situations found in Bose-Einstein condensates (BEC)
which can be suited to demonstrate the validity of the coherent access hypothesis. Finally,
I note that, although BEC systems were mentioned, the above reasoning must be valid for
whichever systems having a sufficiently high decoherence time for preserving the coherent
access.
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1. Introduction

What is the importance of the concept of information measure in quantum mechanics? To
answer, it is necessary to try to establish the importance of the concept of information, which
is a general concept and perfectly applicable to any case. For example: What do they have
in common codes used to send messages from a communications satellite and the bases of a
DNA molecule? How does the second law of Thermodynamics and Communication, to the
extent that is possible to speak of the entropy of a musical score? Why the intricate problems
of probability is related to the way we express ourselves orally or in writing? The answer
to all is information and the fact that one concept can link different ideas so reveals its great
generality and power.
Until the forties, had not been defined information as a scientific term, and this definition
was quite new, different from all the common meanings, and precisely because they were
described with sufficient accuracy for mathematicians and engineers in telecommunications,
the concept became more and more fascinating to the scientific community. The word began
to regain some of its meanings that had fallen into disuse. The idea of information as an active
agent, i.e. something that informs the material world in a manner similar to the messages of
the genes that instruct the cellular machinery to build an organism.
This information emerged as a universal principle operating in the world that shapes,
which specifies the special character of living forms, and even help determine, by means of
special codes, forms of human thought. Thus, the information covers the disparate fields of
computers, Communications Technologies, Physics, Biology, Chemistry, Mathematics, among
others.
The information became a scientific concept when it began the era of electronic
communication. Scientists were largely what their nineteenth-century predecessors did with
the concept of energy. They turned it in theory, gave laws, festooned as usual equations and
stripped it of vagueness and mystery. In its pure form, the information theory was discovered
by engineer Claude E. Shannon. His most notable achievements were in the transmission
of color television, the design of radar systems for warning and recovery of intact messages
coming from a communications satellite. Shannon, of Bell Telephone Laboratories, presented
the world in two papers published in Bell System Technical Journal in July and October 1948.
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In essence, the Shannon articles contain a set of theorems dealing with the problem of fast
delivery, economical and efficient messages from one place to another. But the vast and
fascinating implications of Shannon’s work focused on the fact that he managed to explain
the concept of information with such logic and precision that can be placed within a formal
framework of ideas.
By treating information in terms of clearly defined but totally abstract, Shannon was able to
generalize and apply laws established not just for a few types of information, but for everyone,
anywhere. Although his essays may seem rather abstract and technical in the first reading,
provide new ways to analyze any system or process in which exchange messages.
Shannon trials dealing with issues involving shared intellectual concerns: order, disorder,
error and control error, and realization of potential possibilities, uncertainty and limitations.
Scientists still wonder why the processes of nature manifest such order, where the state would
most likely be uncertainty and chaos, a surrender to the forces of disorder that seem so
overwhelming universal and so natural. This is considered one of the great paradoxes of
science related to the philosophical question of why exists something instead of nothing? In his
essays, Shannon proved that contrary to what might be expected, a part of a message can
persist in the middle of the all of a random disorder or noise.
The most amazing thing was that Shannon’s expression for the amount of information, the
first accurate measurement, scientific, satisfying the first definition of the twentieth century
was shaped like an equation created many years ago, in the nineteenth century, to a law of
physics peculiar and very elusive: the entropy, thereby Shannon established an equivalence
between entropy and information, fully applicable to any system or process.
This is one of the few theories that have a well defined birth in time, having a birthday and
has a parent. The father’s name was Claude E. Shannon and the article gives rise to the
Information Theorywas published in 1948. Entitled “A Mathematical Theory of Communication”
Shannon (1948) and appeared in Bell System Technical Journal Bell System company. It is
curious that this theory has a birth so timely, because usually all important creations are
collective creations. In 1998 celebrated fifty years of Information Theory and practice around
the world appeared special issues in journals, commemorative symbols that demonstrate all
that changed in a very short period of time. Of all the articles published were collected on the
occasion of fifty years a series of studies which linked to Telecommunications and, of course,
also in Mathematics, Statistics, Economics, Linguistics, Quantum Theory, Astrophysics,
Atomic Physics, Genetics, Molecular Biology, Neural Networks and a number of areas that
were originally outside the Shannon model.
In the mid 80’s, part of the scientific community thought of combining information theory
with Quantum Mechanics which led to the emergence of a new branch has been extended
to include the until then unexplored territory of the transmission and processing quantum
states, as well as the study of quantum information and its relationship with traditional forms
of information. We could ask us why this did not happen before?, because some time ago has
been accepted quantum principles as the foundation of Modern Physics. Until recently it we
was thought the information in terms purely classical and Quantum Mechanics played only a
minor role in the design of processing equipment and in setting limits on the rate at which we
could send information by certain types of channels.
At a more fundamental level, it has become clear that an Information Theory based on
the principles of Quantum Mechanics, expands and complements the Classical Information
Theory Vedral (2002). In addition to the quantum generalizations of classical notions such
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as sources, channels and codes, this new theory includes two complementary types of
quantifiable data: classical information and quantum entanglement.
Finally, the purpose of this chapter is to present the idea that can improve our understanding
of Nature by not only analyzing the behavior exclusively in terms of matter and energy,
even at the level of elementary particles, but the study by the techniques and methods of
modern physics and chemistry, integrate concepts and tools that allow us to comprehensively
investigate the behavior of natural systems in order to deepen our understanding of them
to incorporate information measures that take into account concepts such as entanglement,
known since the early days of QuantumMechanics, for which, however, there are nomeasures
in classical theories.

2. Informational flows

During the study of quantum systems, is common to use phrases like “suppose the system is
in state n”, on the understanding that the state |n〉 is an eigenestate of a set of operators that
commute with each other and that this specification is sufficient for our purposes. However
a physical system, does not necessarily to be fulfilled this condition, i.e. not necessarily
characterized by a wave function as ψn(x) = 〈x | n〉, it may be that we are interested in
quantum ensemble, consists in turn by various subensembles, each one characterized by a
wave function ψ1,ψ2,ψ3, . . .. For that, it is necessary to use a simple and elegant theory called
density matrix, see for example Fano (1957); McWeeny (1960); Davidson (1976).
Then the description of a physical system in terms of a density matrix is the most general
quantum description available; this formalism includes as particular case the description of
pure states. To establish what it is a pure state in terms of the density matrix, we notice that if
the system is in a state |p〉, then only in this state is done mixing, so the contribution to it from
any other state |q〉 is null (q �= p). Therefore the pure state is defined by the conditions

wi = δpi (1)

and the density matrix is reduced to

ρ̂ = ∑
i

wi |i〉 〈i| = ∑
i

δpi |i〉 〈i| = |p〉 〈p| , (2)

this is consistent with the projector state |p〉:
ρ̂ |p〉 〈p| = P̂p (3)

And now, if we consider the density matrix in coordinate representation about pure state ψ(x)
is

ρ(x′, x) =
〈

x′
∣∣ |p〉 〈p| |x〉 = ψp(x′)ψ∗p(x), (4)

from this is straightforward to show that

ρ̂ = |p〉 〈p| |p〉 〈p| = |p〉 〈p| , (5)

so the density matrix of a pure state is idempotent:

ρ̂2 = ρ̂. (6)

This is property that is used to define a pure state.
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As an algebraic relation between matrices is also valid for its eigenvalues, the eigenvalues of
ρ̂ of a density matrix of a pure state satisfy the equation ρ̂2 = ρ̂′ so this values can be only 0
and 1. As trρ̂ = 1, only one of the eigenvalues can be 1, so that its diagonal representation the
density matrix of the pure state |p〉 has a 1 in the diagonal element (pp) and other elements
are zero.
In the case of a mixture that is true trρ̂2 ≤ 1 an the equation (6) implies that equality will be
only when the system is a pure state. This permit us define the degree of impurity a mixture
as I = 1− trρ̂2 = tr(ρ̂− ρ̂2) = trρ̂(1− ρ̂), this result represents the expected value of 1− ρ̂
and 0 for a pure state and tends to a value of 1 with increasing impurity (when trρ̂2 � 1).1

For a pure state |p〉, we have〈
Â
〉
= trρ̂Â = tr |p〉 〈p| Â = 〈p| Â |p〉 ,

thus recover the expected value definition used in the quantum mechanics of pure states:〈
Â
〉
= 〈p| Â |p〉 .

We use these results to show that the superposition that characterizes a pure state is consistent.
To show this, consider the state |ψ〉, we express the pure state as the superposition

|ψ〉 = ∑
n

qn |n〉 ; (7)

the density matrix is given by

ρ̂ = |ψ〉 〈ψ| = ∑
n,m

qnq∗m |n〉 〈m| = ∑
n=m

|qn|2 |n〉 〈n|+ ∑
n �=m

qnq∗m |n〉 〈m| . (8)

The group of diagonal elements can be represented as

∑
n
|qn|2 |n〉 〈n| = ∑

n
|qn|2 ρ̂n,

the sum is incoherent (without interference) contributions from each of the pure states |n〉,
with the density matrix ρ̂n = |n〉 〈n|, the other terms in the expression for ρ̂ constitutes
the contribution of interference between the states |n〉 and |m〉, If the superposition was
inconsistent these terms may not appear. In summary, understanding it with due care, we
could say that the superposition is a property relative to a pure state (with respect to a base),

1 The equation (6) can be written as

∑ w2
n |n〉 〈n| = ∑ wn |n〉 〈n| ,

allows us to establish that w2
n = wn, i.e. a density matrix weights can only contain 0 or 1. But as the

condition on the trace implies that only one of these weights may be different from zero, the condition
(6) of idempotency is necessary and sufficient to define a pure state.
At the end opposite the pure case corresponds to a situation where the total lack of information on the
possible status of any of the subsystems leads to assign equal weight to all of them, which gives, if the
mixture has a total of N components, wn

1
N . In this case we obtain

trρ̂2 =
N

∑
n=1

w2
n =

N

∑
n=1

1
N2 =

1
N
.

For N −→ ∞ this amount can be taken arbitrarily small values.
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it is irreducible to a mixture (as well as in the first case is consistent, while the second is
incoherent).
Moreover, the uncertainty of a quantum system can be determined from the collection of
probabilities pi(A) of an observable A by von Neumann entropy, von Neumann (1955)

S(A) = −
n

∑
i=1

pi(A) ln pi(A), (9)

where ∑n
i=1 pi(A) = 1 y pi(A) correspond to the elements of a diagonalized density matrix,

and will be a maximum when p1(A) = p2(A) = · · · = pi(A) = 1/n, with this condition
Smax(A) = ln n, and for a pure estate S(A) = 0. Then, within the context of Quantum
Chemistry, we consider a pure state as one whose values of the reduced density matrix,
fulfilled with the condition 1/p11(A) = 1/p22(A) = · · · = 1/pnm(A). This condition
only be satisfied by a monodeterminantal methodologies, such as Hartree-Fock or Density
Functional Theory. In this perspective, has been used the Shannon entropy as a measure
of correlation in atomic systems Ziesche (1995). Moreover it is important to notice that the
Shannon entropy, S(�r) = − ∫

ρ(�r) ln ρ(�r)d�r is not equal or equivalent to the von Neumann
entropy, S(ρ) = −Tr{ρ ln ρ}. To show this, consider an observable A found in the state ρ,
whose expected value is

〈A〉 = −tr{ρ, A}, (10)

then if the state is described by a density matrix ρ, the corresponding entropy of that state is

S(ρ) = −tr{ρ ln ρ}, (11)

while the entropy of the observable is given by

S(ρ, A) = −tr{(ρ, A) ln(ρ, A)}, (12)

therefore the entropies S(ρ) and S(ρ, A) are not equal or equivalent. The Shannon entropy
determines the classical information of the system and is defined in terms of an observable,
while von Neumann entropy determines the quantum information of the system and is
defined in terms of a density matrix.
Both entropies are subject to

S(ρ) ≤ S(ρ, A) (13)

and will be equal if and only if [ρ, A] = 0. That is, only when the values of the observables
commute with their density matrix.
From the definition of the uncertainty of a quantum system characterized by its density matrix
and using different definitions we can define the following entropies

H(A) = −
n

∑
i=1

m

∑
j=1

Pi,j(A,B) ln
m

∑
j=1

Pi,j(A, B), (14)

H(A | B) = −
n

∑
i=1

m

∑
j=1

Pi,j(A,B) ln Pi,j(A | B), (15)

H(A, B) = −
n

∑
i=1

m

∑
j=1

Pi,j(A,B) ln Pi,j(A, B), (16)

H(A : B) =
n

∑
i=1

m

∑
j=1

Pi,j(A, B) ln
Pi,j(A, B)

∑n
i=1 Pi,j(A, B)∑m

j=1 Pi,j(A, B)
, (17)
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which, in previous studies have shown the use of von Neumannmarginal entropies applied to
simple chemical processes, Flores & Esquivel (2008); Flores (2010), where Pi,j(A, B) is the joint
probability, i.e. the probability from a collection of events (Ai, Bj) ∈ ξ, where ξ is the a set of
probabilities obtain form first order density matrix, we can establish which is the probability
that a random event occurs with a set of probabilities {A}i when a event {B}j occurs this is
given by

P
{
(Ai, Bj) ∈ ξ

}
=

n,m

∑
i,j∈ξ

Pi,j(A,B) =
n

∑
i=1

m

∑
j=1

Pi,j(A, B) = 1. (18)

Also, we can define the marginal probability of the set {A} as

P(A) =
m

∑
j=1

Pi,j(A, B) (19)

and the conditional probability P(A | B) as

P(A | B) =
∑n

i=1 ∑m
j=1 Pi,j(A,B)

∑n
i=1 Pi,j(A, B)

. (20)

In all cases, the marginal probabilities are subject to

n

∑
i=1

m

∑
j=1

Pi,j(A,B) =
n

∑
i=1

P(A) =
n

∑
i=1

m

∑
j=1

P(A | B) = 1. (21)

The equations (14-17) are interrelated. For example,

H(A, B) = H(A) + H(B | A) = H(B) + H(A | B) (22)

and
H(A : B) = H(A)− H(A | B) = H(B)− H(B | A). (23)

this equations have been classified as a informational balance Guiaşu (1977). The equations
(14-17) are generally represented by the following mnemonic diagram shown in Figure (1).

Fig. 1. Relationship between the informational entropies.

The informational entropies have the following properties:

1. The joint entropy and mutual entropy are invariants operationally:

H(A, B) ≡ H(B, A)

and
H(A : B) ≡ H(B : A).
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2. The conditional entropy always is positive, H(A | B) ≥ 0, consequently

H(A : B) ≤ H(B)

and will be equal if and only if B is a function of A, B = f (A).

3. Subadditivity,
H(A, B) ≤ H(A) + H(B),

will be equal if and only if A and B are independent variables.

4. As H(A | B) ≤ H(A). Consequently H(A : B) ≥ 0 and will be equal if and only if A and
B are independent variables.

5. Strong subadditivity,

H(A, B,C) + H(B) ≤ H(A, B) + H(B,C).

6. The conditioning reduces the entropy

H(A | B,C) ≤ H(A | B).

In this case, we can determine themaximum amount of information allows us to quantify each
Eqns. (14-17), for which we use the probability distribution that maximizes entropy, which in
this case is ∑n

i=1 Pi,j(A, B) = 1/n + m, ∑n
j=1 Pi,j(A, B) = 1/m + n and ∑n

i=1 ∑m
j=1 Pi,j(A, B) =

1/n + 1/m, with which we obtain

Hmax(A) = −
(

n + m
nm

)
ln

(
1+ nm

n

)
, (24)

Hmax(A | B) = −
(

n + m
nm

)
ln

(
n + m

n(1+ nm)

)
, (25)

Hmax(A, B) = −
(

n + m
nm

)
ln

(
n + m

nm

)
, (26)

Hmax(A : B) =
(

n + m
nm

)
ln

(
n + m

(1+ nm)2

)
. (27)

To calculate the informational entropies is necessary to construct the density matrix of the
system of interest with the purpose of having a collection of probabilities, in this case are
obtained from the density matrix of first order, in this context there is ample number of
population analysis techniques allow us to obtain these values, for example Reed et al (1985);
Löwdin (1955); Bruhn et al. (2006). In previous work Flores & Esquivel (2008); Carrera et al
(2010); Flores (2010) have shown that the population analysis of Weinhold Reed et al (1985)
and the Lowdin-Davidson Bruhn et al. (2006) this population analysis follows this criteria:

1. Are orthonormal orbitals of maximum occupancy, obtained from sub-blocks of atomic
symmetry of the density matrix of first order, located on each atom.

2. Being orthogonal occupations are never negative and sum correctly to the number of
electrons.

3. The obtained atomic blocks reflect the most compact description of the density around the
isolated atom to which they correspond.
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4. The density of natural atomic orbitals is v-representable by obtaining atomic block the first
order density matrix and correspond to the potential generated by the Hamiltonian of the
isolated atom.

5. The blocks obtained from first-order density matrix reflect intrinsic properties of the wave
function and therefore do not have a strong dependence on the choice of the base.

6. Are rotationally invariant, which is appropriate to define the subsystems A and B used to
calculate each one of the entropies.

7. Unlike the occupation numbers of Löwdin are not delocalized throughout the molecular
orbital and the transform as irreducible representations of the molecular point group and
this allow us the study of atomic subsystems and their interaction.

In this chapter, we present a new application of these entropies, that consist in determinate the
informational flows and their trajectories of a system that is involved in a chemical process. To
do this, start by defining the information amount that a pair of subsystems can be exchanged,
i.e.

H(A)− H(B) = −
n

∑
i=1

m

∑
j=1

Pi,j(A, B) ln
m

∑
j=1

Pi,j(A, B) +
n

∑
i=1

m

∑
j=1

Pi,j(A, B) ln
n

∑
i=1

Pi,j(A, B),

= −
n

∑
i=1

m

∑
j=1

Pi,j(A, B) ln

(
∑m

j=1 Pi,j(A,B)

∑n
i=1 Pi,j(A,B)

)
. (28)

From this result we notice that the difference H(A) − H(B) represent the amount of
information that a pair of subsystems can be exchanged in a process.
Similarly, we can define what level of conditioning that will have the amount of information
exchanged, i.e.:

H(A | B)− H(B | A) = −
n

∑
i=1

m

∑
j=1

Pi,j ln
∑m

j=1 Pi,j(A, B)

∑n
i=1 Pi,j(A, B)

. (29)

Notice that H(A)− H(B) ≡ H(A | B)− H(B | A), henceforth denote this result as H(ȦB).
In applying the above result to a chemical process, we can interpret H(ȦB) as the amount of
information transferred in the system. This quantity has the following properties

H(ȦB) = −
n

∑
i=1

m

∑
j=1

Pi,j(A, B) ln
∑m

j=1 Pi,j(A,B)

∑n
i=1 Pi,j(A,B)

=

⎧⎨⎩
{A} > {B} ⇒ H(ȦB) < 0
{A} ≡ {B} ⇒ H(ȦB) = 0
{A} < {B} ⇒ H(ȦB) > 0

. (30)

We can interpret this result as follows, if H(ȦB) > 0, informational flow is given in the form
{A} → {B}, if H(ȦB) < 0, the informational flow {B} → {A}, while if H(ȦB) ≡ 0 imply
that the informational flow is completely equivalent in both directions, i.e. {A} ↔{ B}, so it
is then convenient to define the net flow of information as H(ȦB) = ‖H(A)− H(B)‖.
As in the case of informational entropy, in this case we can also determine the maximum flow
of information, taking into account the probability distributions that maximize this flow to
obtain

Hmax(ȦB) =
∣∣∣∣n + m

nm
ln

n
m

∣∣∣∣ . (31)
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3. Informational trajectories

In previous section we defined the amount of information that a system can be exchanged,
either between the subsystems that constitute or their environment and other interesting point
to study is the possible informational trajectory that follow the amount of information that
the subsystems interchanged. To do this, we return the definition informational flow that we
defined in the previous section, H(ȦB), which allows us to establish or determine the amount
of information that a pair of subsystems can exchange with each other, however, it is also
important to determine what would be the trajectory that these informational flows.
To do this, is necessary define the informational trajectory that follow the informational flow,

H( �AB) =
∫

C
H(ȦB)dP(A, B), (32)

which has explicit form,

H( �AB) =
∫

C
H(ȦB)H′(ȦB)d(AB), (33)

i.e.

H( �AB) = −
∫

C

⎡⎣ n

∑
i=1

m

∑
j=1

Pi,j(A, B) ln

(
∑m

j=1 Pi,j(A,B)

∑n
i=1 Pi,j(A,B)

)
(

1
∑n

i=1 Pi,j(A, B)
− 1

∑m
j=1 Pi,j(A,B)

)]
dP(A, B), (34)

the last equation can be written explicitly as follow

H( �AB) = −
∫

C

⎡⎣∑n
i=1 ∑m

j=1 Pi,j(A, B)
[
∑n

i=1 Pi,j(A, B)−∑m
j=1 Pi,j(A, B)

]
∑n

i=1 Pi,j(A, B)∑m
j=1 Pi,j(A,B)

ln

(
∑m

j=1 Pi,j(A, B)

∑n
i=1 Pi,j(A, B)

)]
dP(A, B), (35)

notice that ∑n
i=1 ∑m

j=1 Pi,j(A,B)
∑n

i=1
= P(A | B) and ∑n

i=1 ∑m
j=1 Pi,j(A,B)
∑m

j=1
= P(B | A), so

H( �AB) = −
∫

C
(P(B | A)− P(A | B)) ln

∑m
j=1 Pi,j(A,B)

∑n
i=1 Pi,j(A,B)

dP(A, B), (36)

this integral, is subject to

H( �AB) =

⎧⎪⎨⎪⎩
∑n

i=1 Pi,j(A, B) ≡ ∑m
j=1 Pi,j(A, B); H( �AB) = 0

∑n
i=1 Pi,j(A, B) > ∑m

j=1 Pi,j(A, B); H( �AB) > 0

∑n
i=1 Pi,j(A, B) < ∑m

j=1 Pi,j(A, B); H( �AB) > 0
. (37)

This would imply that any process, physical, chemical, physicochemical, has a positive
informational trajectory which is related to a corresponding flow and informational exchange,
so we could postulate the following axiom, Any system that is subject to a natural process
exchanges information.
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As in the flow of information, we can obtain the maximum informational trajectory, using the
probability distributions that maximize the flow,

Hmax( �AB) =
∫

C

(
n2 −m2

nm

)
ln

( n
m

)
d(n,m), (38)

=

(
n2

2
+

m2

2

)[
1
2
ln

(m
n

)
+ 1

]
, (39)

and

Hmax( �BA) =

(
n2

2
+

m2

2

)[
1
2
ln

( n
m

)
+ 1

]
, (40)

the maximum trajectory Hmax( �AB) is subject to the follow conditions

Hmax( �AB) =

⎧⎪⎨⎪⎩
n > m ⇒ Hmax( �AB) > 0
n ≡ m ⇒ Hmax( �AB) ≡ 1
n < m ⇒ Hmax( �AB) > 0

. (41)

4. Informational flows and informational trajectories in chemical processes

Within the context of quantum chemistry, one of the principal interests is sorting systems or
chemical processes, in general, this is accomplished by using certain models and approaches
in order to obtain and quantify certain parameters of the system or process and to give
a physical interpretation of what is possibly happening. Generally, these parameters are:
energy, electron density, molecular electrostatic potential, Laplacian of the Density, Molecular
or Atomic charges, Chemical Reactivity Parameters (like Hardness, Softness, Chemical
Potential, Electrophilicity Parr & Yang (1989), Frequencies, among others.
Reactivity parameters we use in this work are defined as Parr & Yang (1989):

η =
1
2

(
∂μ

∂N

)
ν

=
1
2

(
∂2E
∂N2

)
ν

,

S =
1
2η

=

(
∂N
∂μ

)
ν

and

μ =

(
∂E
∂N

)
ν

,

where μ is the chemical potential, N is the number of particles in the system, E is the total
energy of the system and ν is the external potential. These parameters of reactivity, can be
approximated by the Koopmans theorem and finite differences as

η =
I − A
2

=
ELUMO− EHOMO

2
,

where I is the firts ionization potential and A is the electronic affinity, ELUMO is the energy
of Lowest Unoccupied Molecular Orbital and EHOMO is he energy of the Highest Occupied
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Molecular Orbital, with this approximation we can calculate the softness and the chemical
potential,

S =
1
2η

and

μ =
ELUMO + EHOMO

2
.

Under this scheme, in this section show that by applying this parameters and the
informational entropies to describe a chemical process its possible obtain trends, which,
through its interpretation enable us to establish a link between the parameters commonly
obtained with respect to information of the system, we intend to show that changes in the
amount of information system are also related to changes in the two principal parameters in
the context of the Quantum Chemistry: the electron density and the energy.
In the next section we present some applications concerning the applications of the entropies
informational, informational flows and informational trajectories. In each of the examples
presented here we used Gaussian 03 program Gaussian (2003), for the electronic occupation
probability we used the program NBO 5.0 Glendening et al (2004) and finally the isosurfaces
of the molecular electrostatic potential and the Laplacian of the density were obtained with
MOLDEN program Schaftenaar & Noordik (2000).

4.1 Dissociation of HCl
In previous work Flores & Esquivel (2008); Esquivel et al (2009) have shown that changes in
the informational entropies are associated with physical and chemical changes of a system,
such as electron density, atomic charges, molecular electrostatic potential, normal modes of
vibration, among others.
In this section we show some applications of informational flows and informational paths
Eqns. (28) and (37), presented in such processes. In this case, we present the results for the
dissociation HCl, which were calculated with B3LYP/6-311G.
In the Figure 2(a), shows the energy profile of the process of dissociation of the HCl in which
we see that the equilibrium internuclear distance is 1.3 Å, and energy is -460.77606 Hartrees. In
the Figures 2(b), 3(c) and 3(d) shows the contour surfaces of molecular electrostatic potential
at a distance of 1.3 Å, and 4.0 Å, respectively.
From these figures we can notice several important aspects regarding the set of parameters
used to characterize this process: i) trends obtained only allow us to get an idea of what is
happening in this process based on it, apply or guess that’s what happens in the process, and
ii) The parameters used, the cases do not necessary represent some of the critical points that
may be important to better classify the system and thus seek to identify some important aspect
of it.
In the Figures 3(e) - 3(g) present the trends of informational entropy, which were obtained
with the Eqn. (14), previously reported Flores & Esquivel (2008), in these trends we define the
set {A} as the natural atomic probabilities of hydrogen atom and the set {B} as the set natural
atomic probabilities of chlorine atom. In the Figure 3(e) we present the trends of H(A) and
H(B) in which we can see that H(A) has a minimum in R = 0.45 Å, and a local maximum
in the trend H(B) in the same internuclear distance, to compare trends of the charge density
(Figure 2(b)) in this Figure we notice that the change in the curvature trend occurs in the
same internuclear distance in both trens of the subsystems, this change of curvature can be
attributed to the instability of the system, however, could also say that from this equilibrium
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internuclear distance the system starts stabilized due to a redistribution of electron density,
which can be viewed through the contour map of the Laplacian Density, see Figures 3(a)-3(b).
At a distance of 0.65 Å, the entropy H(A) have a maximum which can be attributed at the
beginning in the redistribution of electron density of hydrogen atom which would schedule
at the beginning of stabilization of the molecular system to reach equilibrium internuclear
distance this is reflected in an abrupt change in the slope of the trend of the entropy. While in
the case of the tendency of the entropy H(B), notice how it behaves the chlorine atom in the
molecular environment shows a maximum at 1.3 Å, this corresponds to minimum energy, this
is agree with a thermodynamic interpretation of the systems. We can also say that in this case,
the behavior of the entropy H(A) show a inflexion points in the trend are associated with the
physical and chemical changes that occur in this process.
Moreover, in the Figure 3(f), shows the trends of the conditional entropy, which we can
interpret them as follows how the hydrogen atom are conditionated by the presence of chlorine atom
or in a more general form, how the subsystem {A} is conditionated by the presence of the subsystem
{B}, notice the generality of this interpretation, because is it a guideline for board a discussion
theme fundamental in the modern chemistry, What is an atom in a molecule? Parr et al (2005), Is
possible that through the application of the conditional von Neumann informational entropies
we can give a opinion to respect.
In the trends of the informational entropies, we can notice that H(A) trend, have basically, the
same structure of the H(A | B) and H(A,B), see Figures 3(g). This leads us to hypothesize that
the hydrogen atom, which plays an important role in the process of this nature, for example,
in a natural process, this subsystem has primary responsibility for carrying out a transfer
of density. With this context, basically recovered several interpretations of the concepts and
descriptions commonly used in Chemistry.
Finally, in the Figure 3(h) shows the trends of the flow of information and informational
trajectory integral, notice that in this case, both trends have the same structure, this implied
that in this process, the trajectory and informational flow depend of the electron density that
the subsystems can be transferred to each other, in both cases, the critical points of these trends
are the same critical points observed in the trends of informational entropy, Eqns. (14) - (17),
which can be attributed to charge transfer process.
Furthermore, in the trends of H(A,B) and H(A : B), Figure 3(g), find that the mutual entropy,
H(A : B), the measure information that subsystems share increase this allows us to establish
the nonclassical behavior of this system, because from a classical interpretation, we hope that
in the limit when R −→ ∞, classically, the subsystems should not be any interaction between
them, however, the entropy H(A : B) shows that the subsystems A y B present a nonclassical
types of interaction that is evident when the classical interactions decrease, this is, notice that
H(A : B) �= 0, while the total information system H(A,B) �= H(A) + H(B) and observe
that it tends to a constant value. This behavior could be considered as possible evidence of
quantum nonlocality Aspect (2007), i.e. evidence shows a strong correlation between pairs of
subsystems, which can be separated by an arbitrarily large distance without communication
(known) between them. This allows us to incorporate concepts of quantum mechanics such
as entanglement, teleportation, among others.
In experimental field, the entanglement of the systems has been determined by ion trap
Molmer & Sorensen (1999); Cirac & Zoller (1995); Sorensen & Molmer (1999); Kreuter et al
(2004); Schlosser (2001); Monroe et al (1995), by photons Molmer & Sorensen (1999); Tittel et al
(1998), phonons Jian-Wei et al (2000), by NMR Ladd et al (2002); Braunstein et al (1999). This
property has also been applied to quantum cryptography Beveratos et al (2002); Jenneweinm
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et al (2000); Gisin et al (2002). In such experiments have been used primarily: Ca, Be and
Mg. For this circumstance, it is interesting to analyze the processes of dissociation of these
systems in order to determine if they have quantum behavior as described above. Notice that
these systems are clustered on the block “s” of the periodic table, this permit us establish the
hypothesis that it is possible to find a quantum behavior in the other elements of the block
and try to determine if this property have a periodical pattern that allows us to predict if a
chemical system will manifest some type of quantum behavior.
In the following example, we show the characterization of a simple chemical reaction, which is
characterized with concepts of modern chemistry, such as; internuclear equilibrium distances,
variation of the subsystems charges, normal modes of vibration, as well as concepts of
chemical reactivity, such as hardness, softness, chemical potential. In this example, we show,
quantitatively, the dependence of the flow of information and the informational trajectory
with the charge density of the subsystems, the internuclear distances, and so on.
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Fig. 3. Trends in informational entropies in the process of dissociation of HCl, LAP
(Laplacian of Electron Density), MEP (Molecular Electrostatic Potential).

4.2 Process H2 + H− −→ H2 + H−
For this case study, we use the method UMP2 with the function basis set 6-311++G** to find
the transition state structure. The IRC and each point of the reaction path were also obtained
with the same method and function basis set, in each point of the path we verified the wave
function stability Seeger & Pople (1977); Bauernschmitt & Ahlrichs (1996). The nomenclature
used for this reaction is: HHout + Hin −→ HHin + Hout. Fromwhich, it is possible to generate
two analysis. In the first case, selecting the set {A} = H and the set {B} = HinHout, and in
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the second analysis is possible take; {A} = HHout y {B} = Hin. In this case we just present
the firts of them.
In the Figure 4(a) presents the energy profile for this reaction. In which we observe a transition
structure that has a maximum, equilibrium internuclear distances at this point are 0.91808 Å,
and the energy is -1.63778 Hartrees.
In the Figures 4(b), 4(c) and 4(d) correspond to the trends of the equilibrium internuclear
distances, changes in the electronic population of each subsystem, the normal mode of
vibration for this process, changes in hardness and softness of the system, which are chemical
parameters are related to chemical reactivity.
In the Figures 5(c) - 6(b) we present the trends of the informational entropies, Eqns. (14-17),
for this process. In this case two possible combinations were analyzed to generate the sets
that allow us to define the joint probability, in the first case was selected set of probabilities of
occupation {A} how H2 subsystem and the set {B} with the occupation probabilities of Hin.
In the Figure 5(c) we shows the H(A) trend, Eqn. (14), which basically shows how is the
informational behavior of the H atom, which is directly involved in the process of rupture and
formation of the chemical bond. In this figurewe notice that froma distance RX > −1.4, H(A)
exhibits a change of curvature, which is attributed to the beginning of the process of breaking
of the chemical bond, and can be visualized by isosurfaces of the molecular electrostatic
potential, Figures 6(c) - 6(f), in which there is a decrease of the charge density in the central
part of the H2 molecule. In the coordinate RX = −0.4, the H(A) trend shows a change in
curvature, this change is associated with the process of breaking and formation of chemical
bond, see Figures 6(g) - 6(j), where are the maps of molecular electrostatic potential, from such
maps, we can observe a redistribution of electron density in the bond zone of the H2 molecule,
where a decrease in electron density, which is due to a decrease in the internuclear distance of
the hydrogen atom which increases the interactions between these systems.
A similar behavior can be observed by comparing the trend of the normal modes of vibration
of the system in Figure 4(d), which when compared with the trend of H(A) we notice an
excellent agreement with the normal mode of vibration, both trends have a two maximum in
RX = −0.4 and RX = 0.4, these maximawe have attributed to a transition state zone Esquivel
et al (2009).
As in the case of the dissociation process of HCl, we notice that H(A,B) �= H(A) + H(B),
Figure 6(a), and H(A : B) �= 0, Figure 6(b), the first result allows us to interpret a new
way this kind of results and processes, on the one hand, urges us to leave the classic way of
interpreting this type of process, i.e., an even though the subsystems are physically separated
and in principle there any known interaction between them, either chemistry or physics, these
systems preserve some classical types of interaction. Such results allow us to issues and
philosophical implications of QuantumMechanics, for example, if we accepts the result could
be concluded that the interpretation of the results of this process using QuantumMechanics is
inconsistent with local realistic interpretation. This has important consequences. For example
must be concluded that quantum systems do not have objective properties, pre measure
whose values are simply revealed by the experiment. In the Copenhagen interpretation is
accepted contextuality that is inferred here as a fact of Nature, so the value assigned to A,
depends if you are determined jointly with B.
There has been a large number of experiments to verify the Bell inequalities Bell (1966), are
fulfilled or violated Tittel et al (1998); Aspect (2007); Timothy et al (2007). Generally considered
that experiments have shown that the Bell inequalities are violated, and therefore local realism
has been refuted in experiments. Notice carefully the nature of this results because imply
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a metaphysical dilemma Is it valid or not local realism in nature?, which is resolved through
empirical issue that has been classified in experimental metaphysics. In some way, the only
precedent in physics of this situation was the EPR theorem Einstein et al (1935).
The reason for the popularity of the Bell inequalities lies in the fact that they can lead the
experimental field, which opens the way for long discussions on the fundamental problems
of Quantum Mechanics (determinism vs. indeterminism, location vs. holism, objectivity vs.
subjectivity, etc.) leave the realm of speculation to go to the empirically verifiable (or refutable
as desired). However, the fact is that here the discussions and disagreements persist, and there
is good reason for it. Accepting the validity of the quantum description, the proposed scheme
is to reject outright the existence of hidden variables, and return with it to indeterminism, or
consider the final theory is deterministic, but not necessarily local.
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Fig. 4. Parameters characterizing the process H2 + H− −→ H2 + H−.

One of the most valuable aspects of each of the above figures is that the informational
entropies permit us define clearly, there are areas where physical and chemical changes
involved in this process. This leads us to establish the following hypothesis; in any natural
process, there is an exchange of matter, energy and information.
The Figure 7(a) show a contour map which shows as the subsystems exchange information
among themselves. In this figure we notice that approximately 1.2,1.2 coordinates correspond
to the area where the flow of information is greatest, when comparing this region with
the equilibrium internuclear distances Figure 4(b) we can establish a rank in the reaction

248 Some Applications of Quantum Mechanics



Flows of Information and Informational Trajectories in Chemical Processes 17

 0.33

 0.335

 0.34

 0.345

 0.35

 0.355

 0.36

 0.365

 0.37

 0.375

 0.38

 0.385

-2.5 -2 -1.5 -1 -0.5  0  0.5  1  1.5  2  2.5

H
ar

dn
es

s

RX

(a) Hardness

 1.3

 1.32

 1.34

 1.36

 1.38

 1.4

 1.42

 1.44

 1.46

 1.48

 1.5

-2.5 -2 -1.5 -1 -0.5  0  0.5  1  1.5  2  2.5

S
of

tn
es

s

RX

(b) Softness

 1.1196

 1.1198

 1.12

 1.1202

 1.1204

 1.1206

 1.1208

 1.121

 1.1212

 1.1214

 1.1216

 1.1218

-2.5 -2 -1.5 -1 -0.5  0  0.5  1  1.5  2  2.5

H
(A

)

RX

(c) H(A)

 2.401

 2.4015

 2.402

 2.4025

 2.403

 2.4035

 2.404

 2.4045

-2.5 -2 -1.5 -1 -0.5  0  0.5  1  1.5  2  2.5

H
(B

)

RX

(d) H(B)

 2.095

 2.096

 2.097

 2.098

 2.099

 2.1

 2.101

 2.102

 2.103

-2.5 -2 -1.5 -1 -0.5  0  0.5  1  1.5  2  2.5

H
(A

|B
)

RX

(e) H(A | B)

 0.814

 0.815

 0.816

 0.817

 0.818

 0.819

 0.82

 0.821

-2.5 -2 -1.5 -1 -0.5  0  0.5  1  1.5  2  2.5

H
(B

|A
)

RX

(f) H(B | A)

Fig. 5. Trends of informational entropies, using {A} = {H} and {B} = HinHout in the
process H2 + H− −→ H2 + H−.

coordinate of −0.5 < RX < 0.5, which when compared with the trend of the normal modes
of vibration, Figure 4(d), we notice that this is the same range in are the peaks we define
the transition zone, also in this range we can say that the charge transfer occurs between the
subsystems, see Figure 4(c), this leads us to infer that the area defined by the maximum flow
of information is the area where important physical and chemical changes involved in this

249Flows of Information and Informational Trajectories in Chemical Processes



18 Will-be-set-by-IN-TECH

 3.216

 3.217

 3.218

 3.219

 3.22

 3.221

 3.222

 3.223

 3.224

-2.5 -2 -1.5 -1 -0.5  0  0.5  1  1.5  2  2.5

H
(A

,B
)

RX

(a) H(A, B)

 0.3

 0.301

 0.302

 0.303

 0.304

 0.305

 0.306

 0.307

-2.5 -2 -1.5 -1 -0.5  0  0.5  1  1.5  2  2.5

H
(A

:B
)

H(A:B)

(b) H(A : B)

    H

    H

    H

(c) RX = -2.49852

    H

    H

    H

(d) RX = -2.39853

    H

    H

    H

(e) RX = -2.29854

    H

    H

    H

(f) RX = -2.19858

    H

    H

    H

(g) RX = -1.49883

    H

    H

    H

(h) RX = -1.39883

    H

    H

    H

(i) RX = -1.29884

    H

    H

    H

(j) RX = -1.19884

    H

    H

    H

(k) RX = 0.00000
(Transition State)

Fig. 6. Trends of H(A,B), H(A : B) using {A} = {H} and {B} = Hin Hout and the Molecular
Electric Potential in different points of the reaction coordinate in the process
H2 + H− −→ H2 + H−.
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process is carried out and while the flow of information in the −0.5 < RX < 0.5 is maximum,
the trajectory informational, Figure 7(b), decreases when the internuclear distance increases.
This same behavior leads to the conjecture that when carrying out a physical or chemical
process exist gradients of information, this gradients must be associated with the electronic
distribution system, therefore, in Figure 8(a) we present a contour map representing the
variation of subsystems charges with respect to information flow. Using this figure we try
to relate the informational content of the subsystems that are involved in this process with
the charge density from which we notice that when the charge density of the subsystem A, is
approximately the values 1.13 < NA < 1.16 and B of the subsystem at 1.84 < NB < 1.87,
thereby when there are major differences in charges between the subsystems is when we
observe the flow of information between the subsystems is maximal.
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Fig. 7. Contour maps of the informational flow and informational trajectories in the process
H2 + H− −→ H2 + H−.

Also, notice that this flow is not constant during the process and is associated with the
difference of the charge densities of the various subsystems which leads us to infer that there
must be gradients of information which in turn must be related to the charge density of the
subsystems, and in Figures 8(a) and 8(b) shows the contour maps showing the change of the
charge density of the subsystems with the flow and informational trajectory. This also leads
us to establish a conjecture about the existence of gradients of information. This permit us
relate these gradients information changes with some parameters of chemical reactivity such
hardness and softness.
In Figures 8(c) and 8(d) we present maps of the variation of hardness respect to the flow of
information and informational trajectory. Figure 8(c) shows the surface that relates the change
in hardness, softness in the information flow, in this case we notice that with the coordinates
0.36 < η < 0.385 and 1.3 < S < 1.33 we define the area where the information flow is
maximum, this area also is an area of −0.25 < RX < 0.25, see Figures 5(a) and 5(b) thereby
in this range of the intrinsic reaction coordinate important chemical and physical changes
occurs, such as charge transfer which is closely related to the process of break and formation
of a chemical bond.
Finally, with this example we have tried to link information from a system that is subjected
to a process with the physical and chemical changes. Thus, we have linked the concept of
information, which is an epistemological concept completely with ontological concepts and
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Fig. 8. Contour maps of the informational flow and informational trajectories in the process
H2 + H− −→ H2 + H−.

the solution concepts or interpretation of the results allows us feedback on these concepts in
ontological terms, according to the author, abstract and more general.
By other part, is probable that today do not exist a ortodoxical definition of what actually is the
information, beyond that presented by Shannon and its guidelines, criteria, characterization of
it, among other things, the interpretation and the relationship with other concepts such as:
energy, electron density, chemical reactivity parameters and many others need be discussed
to try of establish a formal relation between concepts.
So, there is no doubt that both knowledge and the praxis and reality as knowledge
scientific understanding and also, is it clear that information concept and the model itself is
interdisciplinary or transdisciplinary. The concept and moreover, the model itself, promotes
a systematic relation with causal analogies and parallelism with scientific knowledge, which
transcends the framework of the source domain and extend in various directions, thus making
the knowledge acquires an unusual resonance, as this, we believe it is feasible to complement
the explanations of natural processes and natural systems.
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This model is not intended that the manner of the old school, that using metaphysical
substance, the particularities of the processes reveal themselves to us in the end as a
progressivemanifestation of homogeneous order or a unitary whole and absolute. It is simply
to promote and implement a partnership scheme which promises analog route and cover
knowledge in a way easier.
Thereby, one of the first goals of the Information Theory that can be invoked to find the link
to Modern Chemistry is that through such a link is possible to restore a space for dialogue
in this branch of science that in some cases lost or greatly reduced mended because the large
number of specialized topics and concepts, thereby, with this scenario is possible consolidate
a new vanguard line of research.

5. Conclusion

As the reader will appreciate the above discussion, Information Theory allows us to postulate
that in any macroscopic system can identify an attribute inherent in its nature the electron
density, energy and entropy. Each of them has a clear and precise physical meaning and its
definition is accompanied by an operational rule to quantify it, that is, assigning numerical
values. Thus we speak of universal axioms that govern natural processes.
However, we can make the question of what is now known about the informational entropy,
which is related to the informational content of a classical or quantum observables and the
same. So is there a universal axiom of incontrovertibly establish the relationship between
information system with observables?
Thus, the study of physical processes and systems relatively simple physicochemical located
within a general outline more or less well understood. But obtaining results that can compare
with the experiment is a not a goal yet, in our point of view, it is therefore necessary to
understand and apply a theory general enough to try to describe, explain and understand
the behavior of natural systems.
For complex systems, like a biological, geophysical, or juts systems constitutes by a large
particle number. We think that we are very far from being able to offer a convincing theory.
Finally we can say that now days the interest shifts to the study of systems far from
equilibrium or complex processes that interact around through the exchange of matter, energy
and information.
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1. Introduction 

The photoelectric effect has been utilized in a wide range of optoelectronic sensors and solar 
energy conversion devices. To respond to today’s colossal energy demand there is a need for 
doing better than using this effect via the utilization of simple semiconductor homojunction 
based devices, since such structures cannot use all photons available for conversion into 
electricity. Actually, it is the inefficient response of the material to the various solar photons 
and the behaviour of photo-generated carriers that bar photovoltaic (PV) cells from fully 
harvesting the solar energy impinging on its surface. It is well known that there is no 
semiconductor that can be deployed for making a simple and low cost p-junction based 
solar cell that converts the entire solar spectrum. Hence, the development of efficient 
photovoltaic devices has been going through various technology pathways, one of which 
has led to a variety of multi-junction and cell stacks, i.e., tandem cells; each sub-cell is 
dedicated to converting a portion of the solar spectrum. Moreover, the conventionally 
chosen three sub-cell tandem scheme is being extended to stacks with larger number of sub-
cells, regardless of the viability of the production technology. 
During the last five decades, several theoretical PV energy conversion efficiency thresholds 
have been established, each being for one type of PV device design. However, none has been 
reached in spite of the deployed tremendous efforts; the implementation turns out to be 
challenged by some specific constrains. High efficiencies attained thus far incorporated 
advances in material refinement, sophisticated cell design, state of the art fabrication 
technologies, and more importantly a relatively good understanding of the complicated and 
intertwined physics of charge carrier generation, recombination, and transport. However, 
for making new generation of high efficiency solar cells, new physics and technology 
paradigms have to be discovered. Current barriers to high conversion efficiencies are due to 
current understanding of the physics of photoelectric effect and related phenomena. 
Breaking those barriers, which would impact photovoltaic technologies, needs refinement of 
the physics of photoelectric effect with consideration of new materials and new device 
designs. For instance, development of “ideal” third generation solar cells requires 
understanding of the early stage of light-matter interaction mechanisms that occur at the 
nanoscale domains and the related quantum effects. Actually, the improved understanding 
of these phenomena is repositioning the used linear photoelectric effect occurring in 
homogenous and continuous planar shallow structure to one that occurs in a volumic 
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structure with nanoscale features. These induce rather non-linear effects entangled with 
quantum effects. Additionally, a precise account of the charge carriers within the cell has to 
be accomplished. Inclusive to that need are (i) the improvement of photon absorption over a 
wider spectral range by adequately engineering the semiconductor optical properties, (ii) 
immediate use of photo-generated electron-hole pairs, (iii) the local charge carrier separation 
and collection, and (iv) transport to remote electric contacts; all of which should be studied 
at the nanoscale level. 
As the quantum processes and the discrete nature of electron transitions are fundamental to 
photoelectric effect, this chapter focuses on (i) reviewing light-matter interaction quantum 
processes that are directly or indirectly involved in the photoelectric effect, (ii) discussing 
those that are useful for third generation PV cells, and (iii) highlighting recent research 
results by the author. Fundamental quantum processes initiated by photon absorption and 
their contribution to the solar energy conversion will be reviewed in connection to the 
electron energy structure of the absorber material. New ideas relevant to absorbers within 
third generation solar cells will be presented. The nature of light-electron interaction is 
scrutinized and elementary processes of light absorption, atom excitation, atom ionization, 
photon excess energy dissipation, emitted charge carrier pairs, carrier transport and/or 
recombination are discussed in terms of exchanged energy, momentum transfer and 
photon-electron interactions in nanometer and atomic scales. We will assess the major losses 
that have quantum bearings and elucidate their effects on third generation solar cells. We 
will present a novel solution, which employs two-photon absorption . This is a cooperative 
non-linear process that occurs in two sequential stages. It employs two photons, that have 
an energy lower than the semiconductor bandgap. The two-photon absorption produces a 
net optical transition between valence and conduction bands through an Intermediary 
energy Band (IB) laying within the bandgap of the host material. Photoelectric effect 
employing two photon processes is a research area of strong scientific interest that drives 
science and technology research towards making new solar cells among third generation. 
We will delve into the reasons as to why the two-photon absorption is still not optimally 
used to make efficient solar cells. In single-photon absorption by indirect semiconductors, 
phonon cascades are usually involved. The energy and momentum conservation during 
such photon absorption sequence obligates one to look at the thermodynamics of a solar 
device and the factors of thermalization, a major effect that reduces the quantum efficiency 
of the photoelectric effect. The processes and factors controlling the two-photon absorption, 
which involves virtual or real intermediate states, are presented. Next, quantum 
phenomenon involved in nanostructured PV device operation is electron tunnelling through 
energy barriers that spatially separates confined electronic states.  
The second part of the chapter will present modelling of new materials that are designed to 
promote two photon absorption processes in solar cells. The studied system is a circular 
chain of QDs embedded in nanostructured material, a set of QD chains attached to the inner 
walls of pores in porous silicon (Karoui & Kechiantz, 2011). Confinement of electron wave-
functions breaks the initially continuous electron energy spectrum into discrete energy 
levels. There are some apparent differences of this effect in QDs and the well understood 
atom systems, although the underlying physics is the same. We will discuss these 
differences in relation to their relevance to the studied nanostructured PV material. It is 
argued that while decaying beyond the potential barrier associated with the QD-host 
material interface, electron wave-functions penetrate into the host material, which enables 
overlapping of confined electron wave-functions. We will show how a wave-function that 
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spills over the interface enables creation of energy bands in the host solid out of the energy 
levels of the QDs embedded in the nanostructured PV system. 
It should be noted that the intention of this chapter is neither to report on a mere quantum 
mechanics calculation, nor to give an account on photoelectric applications, but to bridge the 
gap between the physical quantum processes driving the photoelectric effect. This has been 
mostly over simplified in conventional PV applications. It has become known that modern PV 
device engineering focuses on increasing efficiency of those devices thereby targeting the 65% 
limit defined by Luque and Marti. This high goal appears to require the use of nanostructured 
semiconductor systems. In that context, the optoelectronic quantum processes can no longer be 
neglected. Therefore, to obtain the most out of the photoelectric effect and overcome the new 
challenge of 65% conversion efficiency, one needs to deepen the physics knowledge on these 
processes and put them into the context of real material systems and devices. Detailed 
experimental and theoretical studies related to those quantum processes occurring in the 
presented novel PV design will be published by the author of this chapter. 

2. Quantum mechanics aspects of solar energy conversion 

2.1 Interaction photon-solids 
2.1.1 The energy-moment space in semiconductors 
The electron energy-momentum (E-k) relationship is well known to be fundamental for 
obtaining the physical properties of solids. It governs many optical and electronic related 
phenomena in solids, in particular photoelectric related processes. This relationship is very 
sensitive to the periodicity of the crystal potential in which the electron propagates. The (E-
k) relationship is obtained in the one-electron approximation by solving the Schrodinger 
equation for electron in effective periodic crystal field. The crystal periodic field 
renormalizes the electron momentum and defines a new complex energy-momentum (E-k) 
relationship, given in Brillouin zone, that essentially differs from the simple parabolic energy-
momentum relationship shown in Figure 1(a) for free electron with em  the electron mass in 
the free space. Figure 1(b) and (c) show the very well-known energy-momentum for Si and 
GaAs, respectively, to remind the complexity of the energy band structure of solids. The (E-
k) relationship is a multifold function of momentum, since the same momentum refers to 
different electron energies. The (E-k) is chiefly parabolic near the crystal lattice symmetry 
points ( , , ,...L X ) only, but the concavity variation is characteristic, in a first order 
approximation, of crystal symmetry in these points and the band energy variation in the 
vicinity of the considered point. This variation commensurate with the electron effective mass.  
Because Pauli Exclusion principle limits the occupation of the same energy-momentum-spin 
electronic state to one electron, some energy bands are completely filled with electrons while 
others are either empty or partially filled in the vicinity of the symmetry points as shown in 
Figure 1(b) and (c). Like free electrons, in the vicinity of the symmetry points, the energy and to 
be conserved even though the interaction with other particles, in the solid, can be very 
strong and can occur in stages. All interactions are bound by the complex (E-k) relation.  
Changes in electron energy-momentum (E-k) relationship in solids are essentially quantum 
mechanical effects, and can be found by solving the Schrödinger Equation. 

2.1.2 Absorption and emission, direct and indirect electron transitions 
Engineering semiconductors that fully absorb the entire energy of incident photons over the 
entire solar spectrum constitute an ambitious goal. This can be at best approached by 
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nanotechnology and used for  by third generation PV cells. To better utilize the photoelectric 
effect, solid state fundamental processes must be addressed individually at various time, 
space, and energy scales. These basically include photon absorption and emission and 
subsequent electron-hole generation, recombination, separation, and collection. Additionally, 
other processes such as the involvement of phonon cascades, surface plasmons and 
polarons,…  must be taken into account for nanoscale investigations, Single or cascade of 
such processes move electrons from one energy level to another, which brakes the 
equilibrium of the electronic system and leads to a cascade of other processes that ultimately 
bring the system back to its thermodynamic equilibrium. 
The blue arrows and red curly-arrows in Figure 1(b) and (c) illustrate photon absorption 
resulting in the electron transfer from the valence band into the conduction band. The reverse 
process is the electron transfer from the conduction band into the valence band, which results 
in photon emission (illustrated by green arrows and red curly-arrows in Figure 1(b) and (c)).  
 

 
     (a)              (b)            (c) 

Fig. 1. Electron energy-momentum (E-k) relationship and electron transitions in: a) the free 
space; b) the indirect bandgap silicon; c) the direct bandgap GaAs. 

Since photon momentum is very small compared to that of electron, the momentum 
conservation allows only electron transitions between energy levels with practically no 
electron momentum variation (thus the same wave vector) in the Brillouin zone. The 
vertical blue and green arrows display such direct electron transitions in Figure 1(c) for a 
direct bandgap semiconductor, here GaAs. When there is not an empty state that enables 
photon induced electron transition with momentum conservation, phonon assistance is 
required to ensure momentum conservation. Indirect electron transitions must involve both 
phonon and photon, as illustrated in Figure 1(b), where dotted curly-arrows represent 
phonons. 

2.1.3 Radiative and non-radiative recombination 
Charge Carrier Recombination is the electron-hole annihilation in semiconductors, where the 
electron returns from the high-energy electronic state to an empty low-energy electronic 
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state, for instance from the conduction band to the valence band Radiative recombination 
results in photon emission with conservation of both energy and momentum. However, 
recombination can also happen without photon assistance, which is known as non-radiative 
recombination. For instance, phonon can assist recombination through impurity related levels 
within the semiconductor bandgap. 
Recombination is very important in photovoltaics and for other optoelectronic devices as well. 
While photon absorption generates photocurrent, electron-hole recombination suppresses the 
photocurrent and generates dark current in these devices. Both absorption and recombination 
processes may become dominant and even complex in low cost photovoltaic materials, where 
a wide range of defects usually are tolerated, and in semiconductor structures when multi-
particle processes like Auger recombination assist electron relaxation. 

2.1.4 Shockley–Read–Hall (SRH) recombination 
Single and cluster impurities in the crystal either in interstitial or in lattice positions promote 
electron transition between bands passes through the energy level created within the band 
gap. During transition of charge carriers from valence band to conduction band, and vice-
versa, the carriers take available states and most often those created by impurities. In 
satisfying the energy and momentum conservation across the entire process, the impurity 
state can absorb differences in momentum between the carriers. The process of generation 
and recombination via impurity levels is the dominant in indirect bandgap materials, such 
as silicon. This process can also be significantly important and dominate the charge carrier 
dynamics in direct bandgap materials particularly for very low carrier densities. The excess 
energy is dissipated in the form of lattice vibrations (absorbed phonon by the material give 
away their energy in the form of thermal energy). Impurities and crystal point defects and 
clusters create energy levels within the band gap. Figure 2 shows the known energy levels in 
silicon (Sze & Irvin, 1968) generated by metal impurities and crystal point defects. Light 
elements and neighbors to the periodic table fourth column mostly induce shallow levels, 
which are used beneficially as dopants, whereas transition metals for instance induce deep 
level traps. The latter actively participate in non-radiative carrier recombination and thus 
are detrimental charge carriers killers. 
 

 
Fig. 2. Discrete energy levels of different impurities in Si energy bandgap. (Sze & Irvin, 1968) 

2.1.5 Auger recombination 
This type of recombination contributes to the loss of electrons promoted to the conduction 
band by photon absorption. Under certain conditions this recombination becomes dominant  
thereby degrading the overall conversion efficiency of PV cells and photo-sensors. 
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Auger recombination is a non-radiative process that involves three mobile carriers two of 
which recombine and while vanishing they transfer their energy to a third carrier, the latter 
will continue to reside in the same band as a bound electron. Figure 4 illustrates the Auger 
recombination of photo-generated holes in p-type doped Si. Auger recombination process is 
controlled by majority carriers (here holes) since the recombination rate is proportional to 

2np , where n and p are respectively the electron and hole concentrations. The energy 
transferred to the third carrier increases its energy without ascension to a higher energy band. 
The stored energy by the third carrier is then lost to thermal vibrations (phonons). This 
process is fast and involves three-particle interaction, the third is involved at a high-energy 
unstable state. The process is effective in non-equilibrium conditions, when the carrier 
density is very high, that is either in heavily doped semiconductor or under high injection 
levels. The green arrow in Figure 3 (b) represents the electron-hole annihilation while the red 
dashed arrow shows the energy transferred to another electron in the valence band. The blue 
arrow displays electron transition to a higher energy state in the valence band, which 
generates a “hot” hole. The readiness of the third particle for Auger Recombination makes 
the probability of this process rather low. The probability being proportional to 2np , as stated 
above in the case of p-type semiconductor, shows that Auger recombination rate swiftly 
grows with carrier density. This feature makes the Auger recombination a determinant factor 
in heavily doped solar cells, in particular in the device active zone and the surface as well as 
under concentrated sunlight irradiation when the density of injected or generated carriers is 
very large (Sinto & Swanson , 1987). For instance, when the density of photo-carriers is above 

18 310 cm  (Dziewior & Shmid, 1977, Svantesson & Nilsson, 1979). Auger process becomes 
very effective and dominates the recombination rate in high quality silicon solar cells 
(Green, 1984), which achieved the highest records of conversion efficiencies , and more as 
the cell efficiency is increased. Hence, device designs that alleviate Auger recombination at 
surface and interfaces must be thought out, particularly for concentration solar cells. 
 

 
Fig. 3. Photo-generated holes in p-type Si (a), and Auger recombination of that hole (b). 

2.2 Major quantum energy losses during carrier photo-generation and transport 
For developing high efficiency PV devices one must find new approaches for absorbing the 
entire energy of incident photons, preventing internal losses, and collecting all produced 
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electrons. It is well known that there is a slate of energy losses inside and outside the device 
and the major internal losses have quantum origin. Hence, during the past two decades 
quantum mechanics has been extensively used for devising new generation of solar cells 
that minimize those losses. For that purpose, fundamental optoelectronic processes in 
semiconductors have been revisited aiming at fully exploiting the photon energy available 
in the solar spectrum as well as the handling of generated charge carriers in the PV devices. 
As we investigate the photoelectric effect at the nanoscale level, the generation and transport 
of charge carriers are looked at in details with the associated quantum effects. 

2.2.1 Energy excess of photo-generated electrons, and thermalization 
The fundamental solid state physics mechanisms that are responsible for energy losses in 
solar cell are shown in Fig. 4. The internal losses are basically due to the due to the "misfits" 
of energy-wavevector of incident photons with the electronic band structure characteristic of 
the material used to make the PV device.  The problem is further aggravated as the misfit 
extends over the entire solar spectrum and thus difficult to correct. Radiative and non-
radiative electron transitions between electronic states steadily take place along electron 
diffusion paths towards the p-n junction. The photoelectron intra-band relaxation processes, 
which involve thermal photons and phonons, become abundant as the electronic levels 
within conduction and valence energy bands become dense. Interactions of the material 
with the photons impinging the PV device surface involves extracted electrons, 
intermittently produced photons, and phonons, all of which occur via a cascade of radiative 
and non-radiative intra-band transitions that causes electron and hole thermalization in 
conduction and valence bands, respectively.  
 

 
Fig. 4. Photoelectron excess energy leading to energy loss processes in a solar cell made of 
one p-n-junction; a. High energy photon absorbed, b. photons that have energy exactly 
equal to the absorber bandgap, c. low energy photons that are usually transmitted, 1. 
Thermalization via intraband transitions, 2. Absorption without loss, 3. Electronic energy 
loss during transition through depletion region (i.e., separation of e-h pair). 

The three main fundamental processes of energy loss in solar energy conversion devices are 
schematically shown in Fig. 4. Photon absorption (a. and b. photons) usually produces 
electrons (electrons of type 1. or 2.) whose energy is larger than or equal to the energy they 
contribute into the electricity generated by the solar cell. Because the photoelectrons (1.) are 
in a non-equilibrium thermodynamic state with the electronic system and the crystal lattice, 
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they swiftly lose the excess energy through thermalization in intra-band inelastic scattering 
and collision processes with equilibrium electrons and phonons. The arrows attached to 
electrons labeled (1.) in Fig. 4 illustrate such intra-band electron relaxation processes 
(thermalization). Also there is a wide range of low-energy solar photons (pin pointed with 
the arrow labeled (3.) that do not have enough energy for transferring electrons from the 
valence band into the conduction band; these photons are conventionally transmitted 
through the material. However, low energy photons (c.) can still promote transitions of type 
(3.) through levels in the bandgap or participate in two photon absorption mechanism. 
Because photoelectron generation uses less than the absorbed energy, intra-band loss 
mechanisms are unavoidable. After intra-band thermalization the photo-generated electron 
still retains more energy than what it uses in contributing to the output electricity. The 
photoelectron loses the difference of these energies during electron-hole separation, shown 
in Fig. 4 by the arrow labeled (4.), while transiting through the space charge region.  
Figure 5 elucidates the impact of the internal losses using the AM1.5 solar irradiance 
impinging a silicon PV device. The usable energy under Shockley-Queisser limit is 31% of 
the incident light over the entire spectrum. The convertible energy amount is in regions (1.) 
and (2.) of Figure 4, which are the result of the effective absorption corresponding to (1.) and 
(2.). Likewise the converted amount by the state of the art silicon cell is 25% occurs in the 
same region of the spectrum. High energy photons in the Near-UV-Vis are absorbed at the 
material surface leading to a high recombination rate at the surface, and a significant loss  
 

 
Fig. 5. Solar energy density as a function of the wavelength (AM1.5). Portions that cannot be 
converted by silicon single p-n homojunction solar cell is represented by greyed areas (1.), 
for photons that have energy lower than the bandgap, and (2.) for high energy photons, as a 
result of losses at the level of photon-solid interactions.  
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labeled (5.) in Fig. 4, this is evaluated to about 8%. Surface passivation has been used to reduce 
the surface recombination. These loss mechanisms result in a sizable amount of solar energy 
that cannot be converted in electricity in conventional single p-n-junction solar cells. several 
energy losses that do not have a quantum origin are also significant and undesirable but 
difficult to avoid. These are out of the scope of this chapter; nevertheless, it is useful to quickly 
overview them. Let’s start with light reflection at the solar cell surface. Silicon reflectance 
reaches 31% in the visible range and more than 50% in the UV. Methods have been developed 
to reduce such losses, which consist in increasing the optical path at the surface by engaging a 
multiple reflection process. Silicon surface texture, nitrogen annealed and etched silicon 
(Karoui & Zhang, 2002), and sprayed porous silicon proved to be effective and low cost 
methods for reducing reflection losses. However, a non-resolvable loss by reflection remains, 
this is labeled in Fig. 5; and is evaluated to about 8% of the total incident energy. 
The second loss stems from the emission of blackbody radiation by solar cells. The 
equilibrium temperature of a cell in operation leads to blackbody radiation emission. The 
temperature baseline is that of the surrounding. As the temperature of the cell increases 
during absorption of sunlight, the cell blackbody radiation increases and ultimately attains 
thermodynamic equilibrium with the incident radiation, leading to a temperature roughly 
between 80 and 95°C. The blackbody emitted radiation energy is lost to the ambient and 
thus cannot be converted to electricity by the cell. The loss by silicon cell via blackbody 
radiation can reach 70-80% incoming solar radiation energy. 
The third category of loss is accidental. It arises when dissipation of electric energy from a 
PV cell array into low performing cells occurs. In this case the energy is dissipated within 
such cells in thermal form, which increases the temperature of the cell and thus the 
blackbody radiation. Henceforth, the associated blackbody loss is increased. Such loss is 
referred to as hot spot within a cell array. It leads the PV cell to operate at lower conversion 
efficiency or possibly to a catastrophic breakdown of the cell and the cell array. 

2.2.2 Phonon assisted electron transitions and phonon bottleneck effect limiting 
charge carrier recombination in quantum dots 
Phonon quantum energy is very small relative to semiconductor energy bandgap. This 
makes phonon assistance in electron interband transitions of in direct and ideal 
semiconductors likely, because of energy conservation. However, in real life 
semiconductors, decorated extended defects (e.g., dislocations,...) single and clusters of point 
defects (i.e., dissolved impurities, vacancies, self-interstitials,…) spread in the bulk and at 
the surface generate states and energy levels within energy bandgap. These energy levels 
are discrete and spatially localized in such non-ideal semiconductors. Both thermal photons 
and phonons can assist photon initiated electron inter-band transitions between such levels 
if energy difference between initial and final levels is small and the separation between 
these defects is low such it prevents any screening. Moreover, cascades of alternating 
phonon assisting and tunneling electron transitions can result in non-radiative inter-band 
electron-hole recombination. 
Impurities, point defects, crystalline extended defects and their interactions have been 
assessed during the last three decades. In that respect, silicon is probably the most 
diagnosed semiconductor. For cost reasons, conventionally used photovoltaic materials are 
of much lower quality than microelectronic and optoelectronic materials. Acceptable energy 
level concentrations, and impurity states have been the focus for both academia and 
photovoltaic industry. Sufficiently efficient silicon solar cells have shown a certain tolerance 
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margin for impurities and charge carrier lifetime killers in the bulk and at the surface and 
have defined the baseline for low cost material growth technologies. In such materials non-
radiative recombinations are dominant.  
Intensity of non-radiative recombination increases with the defect electronic density of 
states associated with precipitates, decorated dislocations, vacancies, the hardly controllable 
dissolved impurities (in interstitial or substitution sites) etc., both in the bulk material and at 
the surface. Radiative inter-band transitions are only possible in solar cells made from ultra-
clean materials. Shockley and Queisser have applied this property of clean semiconductors 
for evaluating limiting conversion efficiency in the best conventional one-junction solar cell 
(Shockley & Queisser , 1961). More recently, Luque and Marti have used the same property 
of clean semiconductors for evaluating the utmost conversion efficiency limits of IB solar 
cells (Luque & Marti, 1997). This is discussed in more details in the following sections. 
Consecutive emissions of optical phonons is the main mechanism of photoelectron 
thermalization. The energy of an optical phonon in silicon is roughly about meV50 . The 
characteristic time of such intra-band relaxation is about 1210 s  for photoelectrons in 
conventional solar cells. However, in dye or quantum dot (QD) sensitized solar cells, the 
relaxation process of photoelectrons may become slower. Such cells exploit the sensitizer 
discrete energy levels to enable additional photoelectron generation in the host material. The 
reduction of photoelectron relaxation, known as the “phonon bottleneck” effect in QDs, results 
from the lack of optical phonons that match separation of discrete energy levels in QDs 
(Guyot-Sionnest et al., 1999; Sun et al., 2006). The “phonon bottleneck” could be favorable 
for photovoltaic devices like solar cells and infrared and terahertz photodetectors operating 
at room temperature (Zibik et al, 2009) since radiative transitions dominate photoelectron 
relaxation in such QDs. 

2.3 Solar energy conversion limits 
2.3.1 Limiting factors for photon conversions and device inherent losses 
It is important to contain the photoelectric efficiency under certain conversion limit. This  
essentially depends on the way the photoelectric effect is exploited and hence the device 
design and the type of used material. Furthermore, fabrication technologies involve 
detrimental factors to the exploitation of the photoelectric effect. The various fundamental 
limits for photon energy conversion will be debated, namely those of thermodynamics 
origin, detailed balance limit defined by Shockley and Queisser, and the new limit defined 
by Luke and Marti. The quantum mechanics based discussion will focus on the generation 
of charge carrier pairs as well as their recombination and how the photon energy can be 
better used to increase the quantum efficiency of PV devices. Electronic confinement in 
nanofeatures have become essential for third generation solar cells, thus needs extensive 
clarification. We will look at how the confinement affects light absorption and the overall 
conductivity, as these are key matters for high efficiency solar cells. 

2.3.2 Photon recycling through optical and electronic transition cascades 
The “photon recycling” terminology refers to transformation dynamics of absorbed photon-
mode-fluxes through photovoltaic and optical sensor devices. Energetic photon generates 
electron-hole pair, which in turn produces new photon after the pair recombines radiatively. 
Because the new photon has energy above or equal to the band gap, it can create another 
electron-hole pair by re-absorption elsewhere in the cell, and so on and so forth. The 
“recycled photon” looks like a “virtual photon” in Feynman diagrams. Similar diagrams for 
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photon-solid interactions relevant to photovoltaics and “photon recycling” processes are 
presented in Figure 6, where:  
- the dashed curled line represents the “photon recycling” process, 
- the light blue and green arrows are incoming absorbed photons and the orange and 

dark blue are emitted photons exiting the PV device, 
- CBC and VBC are contacts to conduction and valence bands, respectively, and 
- the solid and the dashed brown double-line arrows represent the electron and hole 

currents, respectively. 
At the end of recycling one can obtain one of the following mechanisms: a) incoming photon 
yields photocurrent; b) electron injected from a contact yields dark current and another 
photon emission; c) incoming photon causes emission of another photon, with a frequency 
corresponding to energy adjusted to the bandgap, and  d) injected electron or hole through 
CBC and VBC are contacts to conduction and valence bands, respectively, are absorbed and 
energy is dissipated in the device. The recycling can be either initiated by photon absorption 
or charge carrier injection and ends either: 
- when the built-in field breaks the generated pair and separates the electron in conduction 

band from the hole in valence band so that the electrode linked to the conduction band 
(CBC) in n-doped region absorbs the electron and the electrode linked to the valence band 
(VBC) in p-doped region absorbs the hole, that is case (a) in Fig. 6. The net result is a 
separation of electron-hole pairs. The minority carrier currents are shown in Fig. 6 with a 
brown double-line arrow, solid for the electrons and dashed for the holes.  

- or with production of a photon that exits the device, cases (b) and (c) in Fig. 6. 
Also electron (or hole) injection from the solar cell electrode (into the device) initiates the 
“photon recycling” process, without requiring incoming photons. The injected electron 
contributes into the dark current but only when a photon induced by the “recycling” exits 
the cell as shown in Figure 6 (c). Otherwise the electrode absorbs the earlier injected electron 
as it is shown in Figure 6 (d). 
 

 
Fig. 6. Feynman-like diagrams for various electron-photon processes in a PV cell. Single and 
double arrows represent photon and electron, respectively. The periodic path represents the 
recycling processes of absorption/emission and generation/recombination of photons and 
electrons, which occurs while the particles propagate in the solid. 

2.3.3 Shockley-Queisser limit 
For evaluation of the photovoltaic conversion maximum efficiency, Shockley and Queisser 
have developed a thermodynamic approach based on the detailed balance principle 
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(Shockley & Queisser , 1961). They have considered the ideal case of solar cells made of 
perfect materials bestowed with radiative inter-band transitions only. Shockley and 
Queisser arrived at the paradigm that consisted in equalizing the photo-current and dark-
current to the net flux of incoming and emitted photons (Shockley & Queisser , 1961). The 
most important idealization conditions they have considered are: 
- non-radiative interband transitions are prohibited, 
- the semiconductor structure is thick enough to ensure full absorption of incoming 

photons that are able to induce interband transitions in the absorber, 
- carrier mobility is infinite so that the quasi-Fermi levels FC and FV exist, respectively, in 

the conduction band for electrons and in the valence band for holes, and 
- contacts are ideal so that one of ohmic contacts absorbs only electrons from the 

conduction band and the other absorbs only holes from the valence band. 
Dominance of radiative transitions in inter-band transitions maintains electron-hole pairs 
through “photon recycling”. This is schematically illustrated in form of “Feynman-like 
diagrams” in Figure 6. 
In their hallmark model, Shockley and Quiesser have used ideal semiconductor materials 
where only radiative electron inter-band transitions are possible, thereby enabling the 
development of the detailed balance principle. Fermi’s Golden Rule application to electron 
transitions leads to the same matrix elements for direct and opposite electron transitions in 
solids so that each photon absorption induced electron transition has its radiative 
recombination counterpart. The balance of these processes depends on the occupation of the 
relevant electronic states. The detailed balance principle claims that the net of direct electron 
transitions between two energy levels equals to the net of opposite electron transitions if the 
sub-system of the levels is in thermodynamic equilibrium. Shockley and Queisser have 
shown that, because of intra-band relaxations, the “photon recycling” dynamics brings 
photon modes traveling long enough within the ideal semiconductor material into the 
thermodynamic equilibrium distribution of photon modes emitted by the “black body” 
material; so that the ideal PV cell emits “black body” modes, regardless of material and solar 
cell structure. Figure 6 shows that the net of photon fluxes emitted from and incoming into 
the solar cell equals to the net of dark- and photocurrents. One can easily estimate the 
photocurrent, the dark current, and the conversion efficiency of ideal solar cell. Figure 7 
displays conversion efficiencies of single-junction based solar cells under normal illumination 
condition (1 sun) and under full solar light (theoretically possible) as a function of the 
absorber bandgap (Shockley & Queisser , 1961). The chart shows the Shockley-Quiesser 
limits for both illumination conditions. 
The Shockley-Quiesser detailed balance theory estimates the lowest bound for all 
recombination processes throughout the device. This lowest bound defines the limit of 
attainable value of the dark current, which is the recombination rate integrated over the 
device volume confined within the electron diffusion length. This limit is important because 
it estimates the potential of the dark current reduction in devices by cleaning materials and 
improving the device structure. 

2.3.4 Luque-Marti limit for quantum dot intermediate band solar cells 
The foundation of Intermediary Band (IB) within semiconductor bandgap is very attractive 
for high efficiency solar cells. In principle, it can be applied for any semiconductor base 
material, but the benefit differs for one material to another. Formation of IB enables 
absorption of low energy photons on top of the conventional band to band absorption of  
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Fig. 7. Limiting efficiency of one-junction conventional solar cells.  

photons with energy equal or higher than the bandgap. As shown in Fig. 5, low energy 
photons that are not converted by conventional silicon solar cells represent a major loss, 
which justifies the endeavor of modifying silicon to become an IB enabled material. 
IB solar cells indeed promise very high conversion efficiency, higher than multi-junction 
solar cells. New solar cells can use IB states to enable absorption of low energy photons and 
promote more electronic transitions. This results in producing additional photocurrent and 
subsequently, a significant increase of solar cell efficiency. However, IB may also induce 
more recombination of electrons and holes in solar cells (Kechiantz et al., 2007; Kurtz et al., 
2005). Because the Shockley-Queisser theory has not considered photogeneration and 
recombination processes through IB states, Luque and Marti adapted the Shockley-Queisser 
theory to model IB based solar cell throughput. Guyot-Sionnest et al., (1999) have evaluated 
the conversion efficiency of ideal IB solar cells in the framework of a new theory. 
The IB can be composed by modification of a host semiconductor. A variety of routes can be 
employed, such as embedding quantum dots (QDs) in a host semiconductor (Marti et al., 
1999). An idealized model for the electron energy band diagram in IB solar cell and the 
associated optoelectronic mechanisms is shown in Figure 8(a). Like in conventional solar 
cells, absorption of high energy photons brings electrons from the valence band (VB) to the 
conduction band (CB). Likewise, absorbed low energy photons move electrons from the VB 
into IB and from IB into the CB ,  either in synch or differed sequences, depending on the 
occupation of the states within the IB. The net result is a two-photon absorption with a 
displacement of an electron from VB to CB.  
Luque and Marti have optimized IB energy levels within the bandgap of the base material to 
match solar spectrum. The matching leads to the utmost net VB-CB electron transitions. The 
red curve in Fig. 8 (b) displays Luque-Marti limit for conversion efficiency of IB solar cells; 
the indicated parameter is the higher among energy gaps from VB to IB and from IB to CB. 
These conversion efficiency curves have been calculated for ideal cells with the following 
ideal conditions:  
- a quasi-Fermi level, FI , exists for electrons in IB states, and 



 
Some Applications of Quantum Mechanics 

 

270 

 
Fig. 8. (a) Energy band diagram of IB solar cell and (b) cell efficiency limits for various IB 
materials (modified chart in Ref. of Luque & Marti, 2010). Materials with the same bandgap 
used to make a tandem cell (a completely different cell design) would lead to much lower 
efficiency limit, as shown with the blue curve. 

- no carrier can be extracted from IB into n- and p-doped regions other than by radiative 
interband transition to continuous bands either VB or CB. 

Experiments have confirmed that missing either of the above requisites reduces the 
efficiency of IB solar cells (Alguno et al., 2006; Luque et al., 2004; Jolley et al., 2010). Also 
electron transitions through IB must have large matrix elements and solar cells must contain 
high concentration of IB states for maximizing the generation of additional photocurrent. 
The red curve in Figure 8(b) exhibits the maximum conversion efficiency for IB solar cells, 
which is 8 points larger than that for the ideal two-junction tandem solar cells (blue curve). 
This significant difference is essentially due to a difference in IB solar cell concepts 
compared to its multi-junction counterpart. While both concepts increment the high energy 
photon conversion by the low-energy photons in the solar spectrum for achieving higher 
conversion efficiency, the resulting photovoltages are dissimilar. The multi-junction solar cells 
exploit single-photon absorptions in an array of p-n-junctions connected in series. As the IB 
solar cells collect current from concurrent processes, the photovoltage can be approached by 
that of two cells with different bandgaps connected in parallel. In reality, the photovoltage 
precept is rather more complex. Besides, when an IB cell is shone with concentrated sunlight, 
nonlinear effects driven by the two low-energy photon absorption become significant, which 
essentially increase the generation of additional photocurrent in single p-n-junction solar cells 
(Sun et al., 2006). 

2.4 High efficiency solar cells 
2.4.1 Down- and up-conversion of solar photon energy 
Figure 9 exhibits Si absorption coefficient spectrum and solar energy losses in conventional 
silicon solar cells. About 10% of incoming solar photons under AM1.5 condition has energy 
above 3.2 eV . These ultraviolet photons are absorbed in ultra-shallow region, about 10 nm   
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Fig. 9. (a) Absorption coefficient in Si and (b) spectral balance of main losses of solar energy 
in a one-junction solar cell. 

thick in silicon, called the cell dead region because the recombination at the surface 
eradicates photo-generated carriers.  
About 10% of incoming solar photons shown in Fig. 5 have energy above 2.5 eV ; which is 
in excess of the energy needed for generating two electron-hole pairs in conventional silicon 
solar cells (Green, 1998). However, these photons lose most of their energy (in excess of Eg) 
through intra-band thermalization, as shown in Fig. 9 (b). The down-conversion consists in 
directly splitting the incoming high energy photons into two lower-energy photons or for 
that matter converting primary optical phonons in low-energy photons. The down-conversion 
has two features, (i) utilization of the excess energy to better match the absorber bandgap 
leading to more electron hole pairs, and (ii) low energy photons have longer absorption 
depth and electron-hole pairs can be collected in other areas of the cell. Both features lead to 
generation of more photoelectrons away from the dead region (Baumgartner et al., 2010). 
Also photons with energy lower than the bandgap, represented with small arrow (c.) in Fig. 
8, can be used to generate additional photo-carriers in solar cells. Sequenced transitions of 
two of such photons may, indeed, result in a net ascension of electron to the conduction 
band. Under some conditions, the most probable path for the electronic system to return to 
its fundamental state is a radiative transition directly to the valence band. The net effect is 
the production of a photon of higher energy than the initial ones; this is called up-conversion. 
When up-converted, photon energy matches semiconductor bandgap and hence enables 
generation of additional photocurrent in solar cells. Noteworthy, the up-conversion is 
essentially non-linear quantum mechanical effect that gains from sunlight concentration. 

2.4.2 Intermediate band for nanostructured silicon materials 
Intermediate band (IB) solar cell concept exploits the up-conversion. It uses two low-energy 
photons for generation of additional photocurrent in solar cells (Luque & Marti, 1997). The 
detailed balance theory of ideal single p-n junction solar cells allows estimation of 
conversion efficiency limit of 31% using conventional single-photon absorption mode 
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(Shockley & Queisser , 1961) and  63% efficiency limit for operation in IB-mode (Luque & 
Marti, 1997). Such large gain in conversion efficiency will be discussed in more details 
below. 
Like impurity states, QD confined states are easily transformed to fast recombination 
centers. However, there are experiments that show Type-II QDs made from indirect 
bandgap materials do not degrade electron–hole recombination lifetime (relative to that of 
host semiconductor without QDs). The reason stems in the spatial separation of carriers in 
such QDs. Photo-carriers have much longer lifetime in indirect bandgap materials used in 
commercial solar cells because phonons must absorb excess momentum, which delays 
electron–hole recombination. For historical and technical reasons silicon materials have 
gained incredible advances in material growth and processing. As a consequence, fabricated 
Si devices have low defect concentration that otherwise degrade carrier lifetime. For 
instance, electron–hole recombination lifetime can reach  100 s   in CZ Si wafers and 
epitaxial films and more than 10 ms in float zone silicon. Enhancing photon absorption of 
indirect band material by hosting specifically designed quantum dots (QDs) opens new 
opportunities for the foundation of intermediary band (IB) states.  
Our choice lies far from standard approaches to PV cell design; we believe that the indirect 
bandgap silicon, which has poor absorption over the solar spectrum, has a lot of room for 
improvement through the set-up of an IB.  Furthermore, single junction IB cell offers room 
for significant design optimization. 
2.4.2.1 Two approaches to Intermediate Band solar cells  
Both IB solar cell concept and the above mentioned requisites (listed in section 2.3.4) do not 
presume a specific location of IB states in the cell. There are at least two ways for 
incorporating materials featuring IB(s) in a PV device, which are (i) within the depletion region 
(Luque & Marti, 2010) and (ii) outside the depletion region (Sun et al., 2006) of a p-n junction 
solar cell. Figure 10 (b) displays the energy band diagram of IB solar cell that has type-II 
QDs imbedded outside the depletion region (Sun et al., 2006) in contrast to the pioneering 
scheme of IB solar cells, Fig. 10 (a), where QDs are sandwiched within the depletion region 
between p- and n-doped layers (Luque & Marti, 2010). Recent experiments with InAs QDs 
embedded in the built-in electric field of depletion layer  sandwiched between n- and p-
doped GaAs layers have demonstrated that photovoltage of such IB solar cells is lower than 
in the reference GaAs solar cell (Luque & Marti, 2010). It was proposed that the reason was 
the overwhelming thermal generation of carriers in InAs QDs. Perhaps InAs/GaAs is not  
 

 
Fig. 10. Two strategies for IB formation in one-junction solar cell: (a) IB within the depletion 
region (Luque & Marti, 2010); and (b) IB outside the depletion region (Sun et al., 2006). 
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the best material system for making IB solar cells (Sun et al., 2006). It has then become clear 
that QDs within the depletion region enhance the dark current. 
The recently proposed IB scheme proposed by Sun et al. (2006), see Figure 10 (b), where 
type-II QDs are placed outside the depletion zone of the cell p-n junction offers the 
advantage that such QD configuration does not generate additional leakage current. The 
leading reason is the remoteness of QDs from built-in electric field. This key property 
isolates confined holes from that field. While holes cannot escape from QDs they still reach 
the p layer without assistance (for instance from photons, etc….). In the meantime p-n 
junction separates all mobile photo-carriers generated within a distance less than the carrier 
diffusion length from the junction and with states either in the VB or in the CB. Such 
separation includes also photo-carriers transferred trough QD confined states to the 
continuous bands.  
Another important advantage of type-II QDs is the energy band alignment, which results in 
a potential barrier for majority carriers and a potential well for minority carriers. Such an 
alignment is shown in Fig. 10 (b) along with carrier transitions and flows. The potential 
barrier separate carriers photo-generated within the QDs, and hence suppress electron-hole 
recombination through QDs (Sun et al., 2006). Charge segregation by the QD built-in barrier 
is an essential feature for irradicating electron-hole recombination in QDs. Energy 
conversion in IB solar cells strongly depends on the separation of electron and hole quasi-
Fermi levels (Kurtz et al., 2005), while recombination through QDs may result in lining-up 
those quasi-Fermi levels. Hence, it has been argued that QDs confined states can easily turn 
into fast recombination centers. Likewise, impurities incorporated in GaInNAs solar cells 
exhibit such conversion into recombination centers (Zibik et al, 2009), whereby the quasi-
Fermi level is affixed to the impurity energy level and subsequently the carrier 
recombination is enhanced. As a result, the photovoltage is degraded to a level lower than 
expected for GaInNAs solar cells. 
Figure 11 shows that sunlight concentration leads to the rise of additional photo-induced 
potential barrier around type-II QDs in valence band for the new "off-field QDs" strategy 
(Sun et al., 2006) thereby constituting a new type of IB solar cells. Additionally, such photo-
induced barrier suppresses recombination activity of QDs, which results in a more effective 
two-photon absorption in QDs. Above some value of sunlight concentration the 
photoelectron generation dominates the recombination in QDs so that the photocurrent 
generation and the conversion efficiency of such IB solar cell become higher than in the 
reference solar cell become higher than of a reference cell made of same material and a 
conventional single p-n junction (Luque et al., 2004).  
2.4.2.2 Design of IB solar cell  
As the characteristic dimension of solar cell active zones is falling in the nanometer scale, 
quantum phenomena like the electronic confinement in nanofeatures come to play. These 
must be adequately used for developing modern electronic and optoelectronic devices and 
more so the vital third generation solar cells. A detailed understanding of fundamental 
quantum processes taking place in charge carriers and phonon systems generated within 
such electronic nanostructures is required. Moreover, those quantum processes must be 
consolidate with other effects that might otherwise hinder the sought high efficiency 
devices. 
Quantum properties of low-dimensional structured materials are very attractive for 
designing unique solar cells (Aroutiounian et al., 2001; Nozik, 2002; Luque & Hegedus, 2003;  
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Fig. 11. Irradiation-induced barrier εL (dashed line) and conversion efficiency η/ηSi (solid 
line) as a function of sunlight concentration Xsun, where η is the conversion efficiency of Ge 
QD based solar cell and ηSi is the efficiency of the reference solar cell (Sun et al., 2006). The 
reference cell is a Si PN homojunction. The Ge QD induce an IB in the host material outside 
a similar PN junction. 

Tsakalakos, 2008), in particular, IB solar cells with QDs (Marti et al., 2000) QDs imbedded in 
conventional solar cells introduce resonant energy levels that can be configured to compose 
a narrow band in the host material band gap (Luque & Marti, 2010). Although silicon is an 
excellent semiconductor for microelectronics, its indirect bandgap made it inefficient for 
light absorption, for this matter compare for instance Si absorption coefficient to that of 
GaAs in Fig. 12. Traditional silicon solar cell design uses at least 150 m  thick wafers to 
allow capturing enough sunlight. The used substrate is 15 to 20 times thicker than its III-V 
counter-part. Because of the low absorption and the use of massive material, silicon is in fact 
not ideal for photovoltaics, and since this expensive material has taken the largest segment 
in industrial photovoltaic, solar electricity remained a very expensive commodity.  The poor 
absorption makes thick crystalline silicon based PV not apt for further development and cost 
reduction. However, nanotechnology is being explored to remedy to the silicon fundamental 
issue of low light absorption. The wide-range of processing knowledge attained during the 
formidable development of microelectronics, for which silicon still constitutes the base 
material, can be indeed utilized to compensate the drawbacks of poor light absorption. Also 
PV silicon suffers from a second problem that is related to the absorption band edge. Wide 
bandgap semiconductors use more efficiently energy of incident photons as they enable the 
photocurrent to generate higher photovoltage, whereas the narrower bandgap materials lead 
to more loss via thermalization of the energy in excess of the bandgap. Silicon bandgap width  
is considered in the midrange of a host of semiconductors used in photovoltaics. 
Nevertheless, the loss of high energy excess by thermalization remains considerable in silicon 
and a solution must be provided. 
The large amount of loss practically obstructs one from obtaining high efficiency silicon 
photovoltaic devices. Industry has been struggling, indeed, for improving silicon solar cell  
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Fig. 12. Direct bandgap (GaAs) versus indirect bandgap material (Si) absorption coefficient. 

efficiency at a fraction of percent leaps, while they are getting closer to the theoretical limit. 
After decades of R&D the fabrication of silicon homojunction solar cells reached its best and 
has proven to be extremely robust. However, the quantitative assessment of the effect of the 
bandgap width given in Figs. 4, 5, and 9 shows the shortcomings of the use of silicon in 
photovoltaics. The main hurdles for PV silicon  are the bandgap value, the indirect type and 
consequently the low light absorption. This explains the efficiency limits over which the PV 
industry is confronted. Fabrication processes can only be refined for lowering cost and 
increasing their yield, without adding energy conversion efficiency points that the business 
is craving of.  
However, indirect band gap materials like Ge type-II QD/Si are attractive for IB based solar 
cells (Sun et al., 2006). This provides an opportunity to overcome the efficiency limitation 
the current industry is suffering from. Noteworthy is the very slow electron-hole 
recombination property of IB enabled Si material, which can be exploited for achieving 
higher efficiency. The large band discontinuities and the real-space indirect fundamental 
bandgap at the interface in type II Ge QDs embedded in Si are favorable, indeed, for the 
reduction of carrier recombination. For instance, electron inter-band recombination lifetime 
is extended to 1 μs in type II Ge QDs in Si (Fukatsu, 1997). Also up to 0.3 eV conduction 
band offset is possible in this system, which depends on the strain at the interface and the 
composition of Si spacers (Schaffler, 1997), hence it can be tuned by controlling the strain. 
Simple tuning can be done by isoelectronic impurities such as Sn, C. The, small C atoms 
compensate the strain induced by Ge (Schmidt & Eberl, 2000). But the most favorable 
feature offered by Ge QD, although Ge is an indirect band gap material, is the large cross-
sections for photon absorption (Boucaud et al., 1999). Of equal importance is the 
compatibility of Ge material with Si based technologies, leading to a lower cost integration 
of Ge in production processes than with other materials.  
Luque-Marti concept of IB solar cells does not put limits in the choice of IB material systems 
and structure. Transition-metal impurities in substitutional positions in III-V compounds 
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have been under consideration. Narrow energy band predicted in the Brillouin zone of 
Ga4As3Ti compound is shown in Fig. 13, (Wahnon & Tablero , 2002) where an IB. 
 

 
Fig. 13. Transition metal (Ti) induced IB in energy band of III–V compounds, Ga4As3Ti 
(Wahnon & Tablero , 2002). 

Layers of alloys with large lattice parameter mismatch is another group suitable for IB (Yu et 
al.,2003). A relatively small fraction of substitute atoms like nitrogen in III-V compounds 
and oxygen in II-VI compounds, which are more electronegative than the isovalent host 
atoms, are used to generate specific features in the electronic structure of such alloys. Figure 
14 (a) displays energy band structure of Zn0.88Mn0.12Te with oxygen in substitutional sites, 
for which one can see the IB right in the middle of the bandgap. 
As grown porous silicon (PS) and sensitized PS are the next material systems with unique IB 
potential for photovoltaic that are proposed by the author and will be studied in the second 
part of this chapter. 

3. Intermediary band enabled silicon for nanostructured PV devices 

3.1 Introduction 
The currently sought cost reduction of silicon solar cells compels for searching new 
paradigms for designing solar cells capable of outperforming the widely used silicon solar 
cells. Hence, modifiers that can make more efficient optoelectronic processes in silicon are 
desired, while the cost of these substitutes must remain low. Thin film PS is one of such 
alternatives with a wide range of quasi-classical and quantum properties that can be 
utilized beneficially for developing the sought new photovoltaic paradigms. 

3.2 Quantum properties of nanostructured porous silicon 
Electrochemically generated PS constitute a class of complex materials featuring a wide 
range of possible functionalization. PS chemical composition and surface states vary in a 
myriad of ways due to fluctuations of etching parameters and exposure of the open surface 
to chemicals. These appear manageable though. For instance, the size of pores and inner  
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Fig. 14. (a) Band structure of Zn0.88Mn0.12OxTe1-x with x=0.01 oxygen, exhibiting an IB and (b) 
the corresponding density of states (Yu et al., 2003). 

walls can be deliberately designed to be from a few nm to hundreds; the wall structures can 
vary from nano- to micro-size and they can contain silicon crystallites and silicon 
amorphous phases. Porous silicon showed strained silicon phase, that was interpreted based 
on Raman shift as embedded in oxide (Karoui, 2010). Radiative recombination showed a 
surface composition that is sensitive to the ambient (Karoui & Zhang, 2010). Potentially, 
pores may be filled with nanoparticles, or clusters of impurities of other materials attached 
with physical or chemical bonds to the inner wall surface. Such complexity also provides PS 
with some useful properties. For instance, QDs can enable PS with electron energy IB. QD 
sensitized PS is a unique new material system studied by the author for making new solar 
cells (Karoui & Kechiantz, 2011). For the quantum effects come to play, the electron 
wavelength must be comparable to the feature size of the considered system, e.g. in QD 
arrays. Interference of interacting electrons confined in so small volume of a QD may result 
in quantum effects like Coulomb blockade of electron current through that volume and 
conductance oscillation. These have been observed in devices like the single electron 
transistor (SET) (Aleiner et al., 2002). Coulomb blockade enables very strong control of 
electron transport through SET channel so that the gate switches from insulating state to 
conducting with one electron charge accuracy (Ai et al., 2010).  
Likewise, modified PS that has pore size in the range of several deca-nanometers can 
behave as a quantum system if the characteristic size of the modifier (here QDs) is 
comparable with the electron wavelength in that material. Electron energy bands in solids 
arise from initially discrete energy levels of a very large number of atoms. Each of these N 
atoms contributes an electronic state so that the initial s and p atomic levels shown in Fig. 
15 are twice N-fold degenerate, considering the two spin states. Reduction of the distance 
between initially separated atoms brings the orbitals closer, which enables electron 
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tunneling between neighbor atoms. Furthermore, reduction of inter-atomic distance 
increases electron interaction in neighboring orbitals, and makes overlapping of electron 
orbitals possible. In the meantime, interference of interacting electrons enables coherence 
of their quantum states. This liberates electrons, initially confined around isolated atoms; 
as a result initial atomic levels are no longer degenerated and are transformed into 
continuous bands. As the interatomic distances are brought to an optimal value, electron 
correlation gets stronger and the bands get wider. The well-known diagram given in Fig. 
15 illustrates the transformation of energy levels of an atomic assembly into energy bands 
of the henceforth formed solid. At the atomic spacing R0 the energy of the assembly is 
minimal and thus R0 is the equilibrium interatomic distance at which the assembly 
becomes stable. 
 

 
Fig. 15. Merging atomic levels into energy bands in solids. 

3.3 Functionalization of porous silicon and size effects 
The discrete energy spectrum of Ge QDs buried in crystalline Si modifies the host crystal 
physical properties. Modification of a host semiconductor with QDs produces material with 
electronic and optical properties that essentially depend on the size, strain and composition 
of QDs. However, many other factors like composition of a cap deposited onto a QD layer, 
separation distance between QDs, strain driven material inter-diffusion at the interface, etc., 
contribute in the modification of the host material electronic structure. While small QDs are 
more sensitive to material inter-diffusion, quality interfaces are required for effective charge 
carrier confinement in small (less than 10 nm) Ge QDs at room temperature (Derivaz et al., 
2002). Nanofabricated Ge QDs and the underlying physics have become subjects of 
thorough investigation for clarifying many new features as these material systems offer 
humongous potential for using them in making photodetectors, lasers, quantum computers, 
etc. (Halsall et al., 2004; Meyer et al., 1999). Some of those features have been briefly 
discussed below. Noteworthy, the behavior of Ge QDs buried in Si system has shown the 
great potential for building an IB enabled material by embedding Ge QDs in the PS material 
pores and to control the characteristics of the generated IB. 
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The understanding of the role of discrete levels in quantum dots and associated electron 
standing wave-functions, the bunching of energy discrete levels into bands, the origin of 
splitting of these levels in relation to the coherency of the electron wave tunneling, etc… are 
crucial for the design of the IB enabled materials. The coherent tunnelling of quasi-confined 
Bloch wave functions in a finite array of quantum dots (for instance Ge QD attached to inner 
surfaces of grooves and cavities in porous silicon in the herein discussed case) will emerge 
as a main mode for charge transfer between QDs and the host material. Carrier tunnelling 
through critical spacing and its quantum mechanical origin and the coherency of tunnelling 
waves will be discussed based on calculated electron probability. The quantum levels for 
QD assemblies and effect of inter-particle transparency, akin to the bunching of atomic 
levels into energy bands discussed above will be appear, they will depend on the coupling 
between QDs within the QD array.  

3.3.1 Strain induced separation of confined charges 
It was reported (Fukatsu, 1997) that diffusion of Ge and the onset of the strain in the Si cap 
layer may cause spatial separation of confined carriers, i.e., separated holes and electrons. 
Large mismatch in lattice constants and difference in thermal expansion coefficients enables 
Si substrate to strain Ge QDs and favors self-assembly of Ge type-II QDs (Lee & Wang , 
1994). Most of the band offset occurs in the valence band so that such QDs confine only 
holes. Square-based pyramidal shape (side ≈100 nm at the base) Ge QDs exhibited intraband 
absorption at around 300 meV (Boucaud et al., 1999), the authors attributed it to bound-to-
continuum transitions in the valence band. The density of these QDs was about 2×109 cm−2 
and they exhibited an in-plane absorption cross-section of about 2×10−13 cm2. However, 
filling the ground state with electrons saturates intraband absorption in those QDs. The use 
of a virtual substrate, which is a thick buffer layer on graded SiGe, results in a different in-
plane lattice constant of the add-on layer due to relaxation. Virtual substrates change the 
strain configuration in Ge QDs (Fromherz et al., 1994). The Ge1-xSix / Si interface layer may 
become partly strain-free alloy. The new configuration can favor also electron confinement 
in SiGe buffer layer near Ge QDs so that the structure spatially separates electrons and holes 
in QDs (Meyer et al., 1999). Inter-subband absorption experiments confirmed such 
confinement of electron-hole pairs in Ge QDs (Lee & Wang , 1994). 
It was reported that free-standing hut clusters of pure Ge are formed at 500°C (Denker et al., 
2003) by self-assembling Ge on Si (001) substrate. Photoluminescence characteristic line of 
these huts is more than 120 meV below the band gap of unstrained bulk Ge, which suggests 
that a cap Si layer compressively strains huts of pure Ge. The results indicate that the 
photoluminescence originates by indirect transitions of electrons confined in Si substrate (in 
the QD vicinity) to holes confined in the strained Ge islands. An activation energy of 40 meV 
ensures that these electrons remain confined around Ge type-II QDs, which is very close to 
the energy of electron-hole bounding in a neutral exciton (Denker et al., 2003). 

3.3.2 Control of QD shape and their density by ultrathin oxide layer 
Ultrathin dielectric layer on the inner walls of PS enables the control of QD density. It was 
reported that 1.2 nm thick SiO2 covering Si substrate allows production of Ge QDs  at a 
density of 2 to 5×1011 cm-2 (Derivaz et al., 2002). These dots are hemispherical with 10 nm 
average size. Based on the RHEED pattern the authors reported that the crystallographic 
orientations for deposited Ge QDs and the silicon substrate were the same. This points out 
to the local transfer of the substrate crystallographic order to the add-on material layer. The 
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transfer can occur through (i) small Si inclusions in the SiO2 layer or (ii) the local re-order of 
the oxide layer (largely dependent on the interface stress relief mode). The spatial extent of 
these processes dictate the mode of self-assembling and the periodicity of the QD array.  

3.3.3 Interface QD and host semiconductor 

3.3.3.1 Inter-diffusion of Si and Ge at the QD/host material interface 
Various techniques are used to fabricate small Ge QDs (smaller than 10 nm) on Si substrates. 
The most popular is the self-assembled QDs (Konle et al., 2003). Usually capping self-
assembled Ge QDs with thin Si or oxide layer follows the formation of quantum dot arrays 
(Meyer et al., 1999). However, surface segregation and elastic strain relaxation drive QDs 
above the onset of plasticity to change shape and become flatter. Diffusion of Ge in silicon 
increases the lateral size of QDs and reduces their height, which may occur along with possible 
volume loss during the capping. Indeed, the composition of QDs may change during the 
capping process and even dissolve completely in the surrounding material. More importantly, 
the capping can induce a strong strain resulting in modification of the QD energy band 
structure within the QD and in its vicinity. Scanning tunneling spectroscopy study of silicon 
cap layer showed that deformation of the cap by Ge QDs reduces the band gap of the strained 
parts of Si cap at the surface (Meyer et al., 1999). The understanding of such reduction is 
connected to coupling dimer bonds, i.e., Si atoms in the cap and the Ge in the QDs, to stretch in 
the presence of surface strain. Such stretch reduces overlapping of p-orbitals in the dimers and 
hence bonding and antibonding splitting of Si p-states may occur. The strain distribution 
around nanoparticles enables diffusion of Si away from the strained surface regions on top of 
the Ge nanoparticles. Meanwhile, Ge diffuses towards regions with higher tensile strain, 
which is one (or the main) driving force for self-assembling of Ge QDs (Tersoff et al., 1996).  
Photoluminescence from Ge QDs on Si substrate displays about the same recombination 
spectral line, which spreads over 0.75–0.9 eV energy range, akin of the high Ge content Si1-

xGex QDs and quantum wells on silicon (Miyazaki & Fukatsu, 1999). The broadness of the 
line indicates significant inter-diffusion between Si and Ge QDs because small particles are 
very sensitive to the strain. Such inference is also consistent with recently reported 
theoretical and experimental results of Seok & Kim (2001). The effect of material diffusion 
must be taken into account in case Ge QD sensitization of PS. 
3.3.3.2 Interface transparency 
Even in the case of best silicon wafer cleaning via oxide removal, a few silicon oxide 
monolayers and some amount of chemically or physically adsorbed impurity atoms may still 
remain. The problem is even more acute for cleaning pore walls in PS (Arenas et al., 2008; Hao 
et al., 1994). When functionalizing PS with Ge, the remaining oxygen at the surface reacts 
with Ge during deposition of Ge into the pores of PS. This may result in the encapsulation of 
Ge QDs incrusted onto the PS walls within a few monolayers of mixture of GeO2 and SiO2. 
Such a layer around a QD constitute an oxide shell (Prabhakaran & Ogino, 1995) that 
physically separates the dots from the pore wall or other dots. The layer quality determines 
the transparency of QD-Si or QD-QD interfaces to electrons clinging onto inner walls of pores. 
3.3.3.3 Germanium quantum dot-oxide interface 
3.3.3.3.1 Decomposition of GeO2 

Electron transport trough Ge QDs incrusted in PS depends on composition of the interface 
oxide layer. Thus it is essential to precisely know the composition and other properties of 



 
Quantum Mechanics Design of Two Photon Processes Based Solar Cells 

 

281 

the oxide shell. While SiO2 and GeO2 have similar electronic structure, their band gaps are 
different, 9.0eV and 6.1eV, respectively (Lin et al., 2010). Moreover, unlike SiO2, GeO2 lattice 
poorly matches with Ge lattice, is less stable than SiO2 on Si, and is soluble in warm water 
(Prabhakaran & Ogino, 1995; Hovis et al., 1999). Decomposition of isolated GeO2 into GeO 
does not take place below 700oC, however, GeO2 covering Ge dot core has tendency to loose 
O and transforms to GeO interfacial layer even below 500°C (Prabhakaran et al., 2000). Any 
thermal processing deteriorates GeO layers. It desorbs with about 2eV activation energy into 
volatile GeO (Wang et al., 2010). This chemical behavior ultimately ends thinning the oxide 
shell. Ultimately, the thinning stabilizes at a certain thermodynamic equilibrium governed 
by desorption wells of O atoms and GeO complex out of the GeO2 layer.  

3.3.3.3.2 Dangling bonds at Ge/GeO2 interface 

Tracers 73Ge and 18O isotopes have revealed that interfacial reaction of GeO2 with Ge 
generates oxygen vacancies and makes Ge/GeO2 interfacial region oxygen deficient (Wang 
et al., 2011). Desorption of GeO occurs due to reaction of GeO2 with the oxygen vacancies at 
the GeO2 surface after diffusion of these vacancies through GeO2 layer from Ge/GeO2 
interface to GeO2 surface. Such diffusion is accompanied with the generation of a huge 
amount of interface states and defects (Kita et al., 2008). Distribution of generated dangling 
bonds increases from the middle of the bandgap towards conduction and valence band 
edges like the U-shape distribution of states at Si/SiO2 interface. However, energy levels of 
Ge dangling bonds at Ge/GeO2 interface are below the Ge valence-band maximum Ev, 
which makes them always negatively charged (Weber et al., 2007). The dangling bonds are 
acceptor-like and build-up a negative fixed charge at the interface (Afanas'ev et al., 2005). 
Such negative fixed charge repels electrons from interface. The repulsion is so strong that it 
prevents layer inversion (Dimoulas et al., 2006).  
Both fixed charge and dangling bonds significantly degrade electron transport across the 
interface Ge QD-Si and between Ge QD-QD clinging onto inner walls of pores in PS. 
3.3.3.3.3 Ge/GeO2 interface passivation Oxygen instead of Hydrogen 

The specific feature of Ge/GeO2 structures is that its straightforward passivation with 
hydrogen is ineffective because interstitial hydrogen atoms act only as acceptors near 
Ge/GeO2 interface (Weber et al., 2007). Repulsion of negatively charged hydrogen from 
negatively charged interface defects prevents hydrogen passivation of the dangling bonds. 
As a result, annealing in hydrogen leaves a high density of interface states in Ge/GeO2 
structure though it removes dangling bonds associated with Ge crystal surface atoms 
(Dimoulas et al., 2006).  
It is interesting that high-pressure oxidation at 550oC may stabilize Ge/GeO2 interface, 
suppress GeO desorption, and reduce to 11 1 22 10 eV cm   the interface density of states 
(DOS) in the middle of the bandgap (Lee et al., 2009; Matsubara et al., 2008). This is a good 
example that solves numerous problems like suppression of GeO desorption but passivation 
of dangling bonds at Ge/GeO2 interface still persists. That is a problem that remains to be 
solved for obtaining to obtain a working for Ge QD IB PS structures. The problem needs to 
be solved by further improvement of fabrication technology. 

3.3.4 Quantum mechanics model of QD incrusted in porous silicon pores 
Identical QDs clinging onto cylindrical pore walls in an ideal PS can be modeled, in a first 
approximation, as a periodic necklace-like circular chain of QDs, see Fig. 16. Let 1r  be the 
radius of the pore and 2r  the inner radius of the chain so that the thickness of the chain is  
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Fig. 16. QD rings inside porous material; in this work SiGe QDs in PS. 

 1 2r r . The sketch in Fig. 17 illustrates such model, where the chain and the pore 
geometry are with perfect surface of inner Si walls.  
One must take into account that few monolayer silicon dioxide layers always cover Si 
surfaces, even in clean silicon samples. Thus , aside from PS surface composition, Si QDs 
end-up being covered with an oxide shell. This natural oxidation ensures that the PS 
nanostructure is always covered by an oxide layer as shown in blue in Fig. 17(a). 
Furthermore, TEM imaging showed that oxide shell in PS separates the Si dots from the Si 
pore wall and from other dots.  
 

 
Fig. 17. Model of regular necklace-like circular chains of identical QDs clinging onto 
cylindrical pore walls in PS, Cross section showing one pore of the PS material and a set of 
Ge nanodots. The pink lines represent the transparency QD/Host material interfaces to 
electrons, while the yellow ones represent the transparency of QD/QD separation gaps. 

3.3.4.1 Analytical model of QD incrusted in porous silicon pores 
We have used polar coordinates  ,r . QDs are 0 1r  wide and the chain consists of 0n  QDs 
so that 0 02 n  . 
Since QDs are “artificial atoms”, they are expected to have similar energy band formation 
mechanism for all electronic states confined in an ensemble of closely packed QDs. However, 
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unlike infinite solids, a small number of QDs can be closely packed within a single pore in PS. 
Again, interaction and interference of quasi-confined electron waves results in coherence of 
electron states within such small chain of QDs, which behaves as an “artificial molecule”.  
Pore walls separate these artificial molecules from each other in PS, leading to a periodic 
array with symmetry specific to each direction. An artificial crystal is schematically shown 
in Fig. 17. Such functionalization scheme of PS is new, and has never been studied yet 
neither experimentally nor theoretically. The work is intended for photovoltaic applications, 
and will be published elsewhere. 
3.3.4.2 Electron and hole wave functions 

The simplified model assumes the effective mass approximation and null electron potential 
in QDs so that  , 0V r    for 2 1r r r  . Schrödinger Equation (SE) in cylindrical 
coordinates, which reflects the symmetry of the physical model, for the electron and hole 
wave functions in such chain of QDs embedded in the PS can be written as follows: 

    
2 2 2

* 2 2 2
1 1 , , , ,

2
r r z E r z

r r rm r z
 



                  

  (1) 

where:  
- E  and *m are the electron (hole) energy and effective mass; 
-  , ,r z  is the electron (hole) wave function;  
r ,   and z  are the radial, angular and axial components of cylindrical coordinates so that 

0r   and 0 2   . Solution for equation (1) allows separation of variables, which 
reduces that equation to a set of ordinary differential equations for angular    , 
radial  R r  , and axial components of the wave functions.  The entire wavefunction can be 
written as: 
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where: 
- m is the angular momentum quantum number;  
- k  is the radial momentum wave number; it relates to the electron energy E as 

2 * 22k m E  ,  mJ kr , and Ym (kr ) are the first and second kind Bessel functions of 
order m, 

- zk  is the axial momentum wave number, 
- a  and b  are the integration constants, and  
- mkC  is the integration constant that represents the amplitude of the wave function in 

the chain of QDs with respect to that in Si walls of PS. 
The boundary condition for electron and hole wave functions is  2 , , 0r z   at the inner 
surface of the chain inside the pore (QD-vacuum), where 2r r . Such condition reduces the 
electron and hole wave functions within the chain of QDs, 2 1r r r  , to: 
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The energy band offset at Ge/Si interface is mainly in the valence band. This results in Ge 
QDs type-II energy band alignment in Si, which ensures that electron and hole wave 
functions meet different boundary conditions at the Ge/Si interface.  

3.3.4.3 Boundary conditions and secular equation  
3.3.4.3.1 For holes 

We have already illustrated (in section 3, which  is about quantum features of 
nanostructured porous materials) that the close proximity of atoms and the discrete 
relationship of their energy levels result in the band formations in solids. The same occurs 
with “artificial molecules” by the Ge QDs ring located inside a pore of PS matrix. If QDs are 
close enough, the discrete energy levels may form energy bands in the chain of QDs. 
Transparency of the interface (oxide) layer between QDs controls the phase relationship and 
induces coherent electron wave functions in QDs. The coherence removes QD discrete 
energy level degeneracy in the chain and bunches the split sublevels into one energy band. 
The electron tunneling probability P is a parameter that characterizes transparency of the 
barrier located on the ultrathin interface between Ge QDs to electrons, with 0 < P < 1 , where 
the limit P = 0 refers to total opacity of QD-QD interface, i.e., V    , and P = 1 refers to 
completely transparent interface, i.e., V = 0;   V being the barrier height. The transparency 
parameter (tunneling probability) exponentially decays with the square root of barrier 
height so that  2~ lnV P  . Since tunneling probability is reciprocal to the resistivity, we can 
attain experimentally the transparency parameter by using nanoscale analysis of electrical 
resistivity, for instance, by Scanning Kelvin Probe. Semi-transparent interface (oxide) layer 
between Ge QDs at angle 0n  , where n  is an integer, adds an angular dependent 
potential barrier  V  in Schrodinger Equation for the angular component of the wave 
function, 

      
022

2
0*

1 ln
4 d n

V P n
m



 
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where d  is the effective thickness (in angular units) of the barrier layer thickness between 
Ge QDs; and  0n    is a delta-function. Such semi-transparent potential barrier yields 
discontinuity at angles 0n  at the interface between Ge QDs so that the logarithmic 
derivative of the wave function jumps by  2ln 2 dP  , 
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  
 
      

 
 (5) 

In the above equation, the angular term of the wave function,    , is invariant with 
respect to 0  angle (rotation about the pore axis shown in Fig.17). Such invariance leads to 
Bloch theorem, that is mathematically expressed as follows: 

      0 0exp in         (6) 

where, n is limited, however, as compared to Kronig-Penney model. 
The continuity of wave function at 0 ,    0 00 0       , and the jumping of its 
derivative at the interface combined with the above equations yield a secular equation. The 
roots of this equation is a set of discrete values for the angular quantum number m : 
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where the integer n  is within the interval 00 2n    .  
The hole wave function must swiftly decay for 1r r  region (from Ge/Si interface into Si 
bulk material) since the finite potential barrier of the energy band offset at Ge/Si interface 
confines holes within the chain of Ge QDs,  
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- *
Sim  is the effective mass of holes in Si, 

-  mK r is the order m  modified Bessel function of second kind, which is also called 
MacDonald function, and 

- vE  is the energy band offset in the valence band. 
The boundary condition requires continuity of the wave functions and their derivatives at 
Ge/Si interface that is at 1r r . Application of these requirements to equations (3) and (8) 
yields secular equation that determines a set of discrete energy levels for confined holes 
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where the radial momentum (wave number k ) is related to the hole energy E  as 
2 2 *2E k m  ; and the angular quantum number m  must be determined from equation (7). 

3.3.4.3.2 For electrons 

The chain of Ge QDs  incrusted in PS allows electron confinement, for instance, if the Si/Ge 
interface is opaque for electron transport. However, such confinement becomes a virtual 
“confinement” in case of ultrathin oxide layer that electrons easily pass through so that the 
electron wave functions expand from the chain into Si. Such interface adds a radial potential 
barrier in Schrodinger Equation for the radial component of the wave function  

      
2

2
1*

1 ln
4 d

V r P r r
rm

 
  (10) 

dr is the effective thickness of the barrier layer thickness between Ge QDs and Si wall. Such 
semi-transparent potential barrier yields discontinuity at radius 1r  at the interface between 
Ge QDs and Si wall so that the logarithmic derivative of the wave function jumps by 
 2ln 2 dP r . 
The continuity of electron wave function requires the continuity for both angular and radial 
components of the wave functions. Hence for the radial component one obtains the 
following boundary condition:  
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where the angular quantum number m  is obtained from equation (7), as indicated above. 
The discontinuity of the electron wave function derivatives at the interface 1r adds one more 
condition for recognition of two unknown parameters, b and mkC , in equation (2) for the 
electron wave function: 
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 (12) 

3.3.4.4 Results and discussion 
3.3.4.4.1 Virtual “confinement” in conduction band 

The continuity of the electron wave functions and the derivative jump at the interface (i..e, at 
r1) determine two secular equations. Hence two integration constants, b and Cmk , of electron 
wave function can be determined. Whereas equation (9) yields discrete roots and thus 
discrete momentum wave numbers k , equations (11) and (12) yield continuous values 
of b (integration constant) and mkC , as functions of radial momentum wave number k  (and 
hence electron energy E ). Therefore, energy solutions for electron localization can exist within 
the chain of QDs, as equations (11) and (12) do not impose any restriction on the allowed 
values of electron momentum k . 
In the case of total opacity of Ge/Si interface, 0P  , equation (7) yields integer angular 
quantum number m , and equation (12) that yields the following simpler equation 

       1 2 1 2 0m m m mY k r J k r J k r Y k r  , which is very close to  1 2sin 0k r kr  . It gives a 
discrete set of energy states shown in Fig. 18 for electrons confined in the chain of Ge 
QDs. 
 

 
Fig. 18. Schematic diagram of energy bands for the chain of identical QDs clinging onto 
cylindrical pore walls in porous silicon.  
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where 1, 2, 3,...kn  . Here kn  is the principal quantum number for electron confinement 
along the radius of the QD chain. The principal quantum number is related to the radial 
momentum k. 
Schematic diagram of energy bands for the chain of identical QDs clinging onto the 
cylindrical inner walls of a pore in PS. Green regions represent band edges, separating the 
Ge bandgap. Red lines are the resonant electronic states in conduction band and the blue 
lines are the hole confined blue lines are the hole confined states in the valence band. The 
textured bar is semi-transparent oxide. 
Energy levels associated to confined states in Ge dots, with an interface opaque to charge 
carrier transfer, are visible in Fig. 18 (a), as bleu lines for holes and red for electrons. For 
comparison the host material energy bands are added. Likewise, Fig.18 (b) shows these 
levels extending to the silicon (virtual states) due to the semi-transparent interface QD-Si 
walls. Insets show charge carrier probability related to QD virtual states as a function of the 
transparency of interface layer barrier (bleu is for higher transparency value). In the case of 
semi-transparent Ge/Si interface, 0 1P  , solutions of the secular equations (11) and (12) 
produce a continuous energy spectrum for electrons in the chain of  QDs. However, in 
contrast to electrons in the bulk Si, the amplitude of wave functions is very small in the 
chain for about all electronic states,  
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Only for resonant energies that are close to values given by equation (13), the amplitude of 
electron wave functions is large in the chain 
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Figure 19  shows that E  is small (narrow lineshape) with RE is very high.  
It is worth mentioning that the resonance can occur (i) even between distant Ge QDs in the 
chain and (ii) even in the case of opaque Ge/Ge interface between QDs due to the electronic 
coupling through the silicon pore walls. Such “virtually confined” electronic states must 
also promote electron percolation between QDs. The amplitude of the “virtually confined” 
electronic waves is so large in Ge QDs that the probability to find electron with energy RE  
in QDs is huge compared to that in the same QD-size volume of silicon. Such contrast in 
amplitudes makes difficult electron escape from “virtually confined” resonant states of QDs 
into Si and makes easy the opposite transitions. 
Large amplitude of electron resonance modes increases probability of two low-energy 
photon absorption in PS because such absorption is proportional to the electron wave 
function amplitude in the chain of QDs in PS. 
3.3.4.4.2 Confinement in valence band 

The roots of the secular equation (9) is a set of discrete energy levels E  for holes confined in 
the chain of QDs, 2 2 *2E k m  . This transcendental equation is the secular equation of the  
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Fig. 19. Square of the amplitude of electron density 2
nkC  as a function of radial momentum 

1kr  in the chain of QDs. Interface opacity is 0.5P   and QD size is 1 2 10r r nm  .  

system; it can be solved numerically using a non-linear solver. Approximate roots can be 
found  graphically the zeros of the characteristic function (the term on the left side of the 
equation). 
In the case of opacity interface layer between QDs for hole transport, 0P  , each of these 
levels is 0n  time degenerated; here 0n  is the number of Ge QDs within the chain. However, 
the degeneracy is removed as the interface transparency increases, 0 1P  . In this case, 
the discrete energy levels split and give rise to narrow energy bands totaling 0n  electronic 
states very close in each band.  
Because the energy E does not have an explicit dependence on the angular quantum number 
m, one could conclude that angular confinement of holes would not influence their energy. 
In fact, k  implicitly depends on the angular quantum number m  because equation (7) 
determines allowed values of m  for the secular equation (9), which creates implicit 
dependence of k as well as energy 2 2 *2E k m  on the angular quantum number m. Crossing 
of the blue curve with energy axis in Figure 20 (a) shows the solution of equation (9) for 
m=400. The red dashed lines point out the solution of the secular equation (9) for m within the 
range 10 to 100 for which the curve overlap. One can see that the lowest value of energy E  
for 400m   increases up to 33 meV compare to that for 10m   and 100m   . Calculation has 
showed that this result depends on the ratio  1 2 1 0( )r r r   of QD radial to angular sizes.  
 Solution of Equation (7) yields a series of discrete values for angular quantum numbers m 
for each integer n  from the interval 00 n n  , where 0 02n   . Figure 20 (a) displays 
this series of angular quantum numbers m  as a function of the integer n  for the chain of  

0 100n   Ge QDs inserted in a cylindrical pore of PS. In the case of opaque interface layer 
between the chain of QDs, calculation results in the same m  for all integer values of n , 
which means 0n -fold degeneration of these confined electronic states, 0 100n  . The red 
dashed line in Figure 20 (a) displays such solution. Even a weak transparency of the 
interface layer between QDs breaks degeneration and splits of the degenerate states into 
narrow energy bands. The width of the bands depends on the interface transparency P of 
the interface layer between QDs. The blue curve in Figure 20 (a) displays the removing of 

0n -fold degeneracy and the splitting into the band in the case of interface transparency P  
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Fig. 20. (a) Eigenvalues obtained by solving the secular equation (9) graphically. Red lines 
point to the roots for the m within 10 to 100 range, in which case the eigenvalues are about 
the same. Blue curve is the characteristic function of the secular equation for 400m  .  
(b) Splitting of degenerated confined states in the chain of Ge QDs clinging onto pore walls 
in PS. Null intra-chain transparency (between QDs) to electrons shows non-dependence of 
the angular momentum quantum with the phase number. This results in a full 
degenerescence of the energy levels. 

equal to 0.3. Noteworthy, the angular quantum numbers m  of those 0n -split states are not 
integer, 0 100n  , as all 100 states cluster within narrow interval of close numerical values 
88.5 100m  .  

Calculations show that the reduction of QD angular size 0 , which increases the number 
0n of QDs in the chain, 0 02n   , increases the numerical value of the first m  in the sets 

of allowed angular quantum numbers. Because the first m  determines the order of the 
Bessel functions in equation (9) the reduction of 0  may also increase the energy of ground 
confined state in the valence band of Ge QDs. Though the bands are still confined in the 
valence band of the chain, they also extend into the Si walls because the wave functions 
decay into Si along a hole tunneling depth. Transparency P of the interface layer between 
the Si wall and the chain of Ge QDs determines the depth of the band extension into silicon. 
The salient features of the split bands are (i) within the silicon bandgap, and (ii) extend from 
the chain of Ge QDs into the Si walls. Both are very favorable features for two low-energy 
absorption and IB operation of such bands in PS. 
3.3.4.4.3 Density of states 

The density of states (DOS) in the chain of Ge QDs is the sum of delta-functions over all 
discrete energy levels,    

1
2

k

k

n
n

E E E 


  . The splitting into bands removes 

degeneration of states and also transforms the DOS  E  in the chain of Ge QDs. The 
transformation depends on the transparency P of the interface layer between QDs. Figure 
21 (a) displays evolution of the density  E  of states per pore per meV in the confined band 
split by the interface layer transparency, 0.14P  , in the chain of 0n  QDs, ( 0 100n  ) all 
QDs are considered identical. The Ge QD thickness, which is along the pore radius, 
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1 2r r r    is varied from 5nm  to 3nm . All QDs have the same angular size 1 0r  .equal to 

1 02 r n . The area limited by dark green trapezoids is the same, 0 100n  , for all r  
thicknesses because initially all confined states have the same 0n -fold degeneration. The 
base of green trapezoids is the widths of the split bands. Figure 21 (a) shows that reduction 
of the QD thickness r  increases the density  E  of states and reduces the width of the 
split bands. The dashed red and green lines illustrate such dependence on the radial 
thickness r of QDs for two ultimate split energies in the band, which refer to angular 
quantum numbers 88m   and 100m  , respectively. 
 

 
Fig. 21. (a) Density of confined states  E  (per pore per meV) in the split band. The inset is 
an enlargement of the electron density function of energy for nanodot thickness of 3 % of the 
pore radius. (b) The density of confined electronic states (per pore per meV) in PS for a QD 
normal  size distribution. 

The density of the band states in PS could be large as it is related to the large density of 
pores. The appearance of energy band with large density of confined electronic states in PS 
is very important for efficient IB solar cell applications. Evidently, properties and potential 
of such IB in PS are highly sensitive to the ability of controlling the size distribution of Ge 
QDs in PS (Sun et al., 2005; Abd Rahim et al., 2010). 
Fabrication of Ge QDs in PS inevitably imbeds different size Ge QDs into the pores. 
Depending on the dispersion their contribution in the density of electronic  
states in PS becomes a weighted function of the dispersion. In case of Gaussian  
(normal) distribution of QD thicknesses (radial parameter), the weight function is 

     22 2
101 2 exp 2r r     

, where 10r  is the mean thickness and   is the dispersion 

of QDs. The dark blue curve in Figure 21 (b) displays the density of confined states in PS for 
normal distribution of QD thicknesses that 10 4r nm  and 0.2nm  . The scale of dark 
green trapezoids is reduced by 0.08  times for eye guide. One can compare two cases and see 
that even a small dispersion of QD thicknesses in PS, 0.2nm   , expands the distribution 
of states into a wider energy band. The dispersion also reduces 0.08  times the maximal 
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DOS, which occurs at the mean thickness, 10 4r nm . Note that the area under both curves 
are the same as the total number 0n  of Ge QDs in the chain. 
The density  E  of states shown in Figure 21 (b) is a skewed Gaussian; compare with the 
normal distribution (Gaussian) shown in blue (fitted to the actual DOS). The peak of the 
fitted DOS is at 62.5 meV and the dispersion is 4.85 meV. 

4. Summary 

As most of the third generation photovoltaic devices and the used materials are 
nanostructured, quantum phenomena turn out to be effective. Hence, they must be taken in 
consideration when designing such devices. Likewise, light-matter interaction quantum 
processes can be directly or indirectly involved in the photoelectric effect; they are 
numerous and complex. Therefore, as we move into nanoscale photovoltaic materials 
targeting higher efficiency solar cells, these processes need extreme attention. 
In this chapter we put the emphasis on detailed mechanisms involved in the photoelectric 
effect in semiconductors. Silicon great relevance for technology calls for more research to 
overcome the main hurdle related to its indirect bandgap. Also the involvement of a wide 
range of fundamental processes in connection to the photoelectric effect makes the 
discussion on Si and Ge indirect semiconductor interesting for this quantum mechanics 
chapter complexity. We have reviewed fundamental quantum processes taking place in 
electron and phonon systems in a semiconductor, independent of the device consideration. 
We then have discussed those systems in nanostructured materials and heterostructures. We 
have evoked and used (E-k) energy-momentum dispersion relationship in semiconductors, 
which is essentially of quantum origin, results in different energy gaps and electron effective 
masses. These vary with the symmetry points in semiconductor energy-momentum space. 
Most of the quantum processes involved in the photoelectric effect, which are initiated by 
photon absorption, have been reviewed in relation to the energy band structure of the 
absorber. Hence, we  described the quantum nature of photon absorption and photon 
emission processes resulting in electron-hole generation and recombination in solids. 
Because photon energy is transferred in a discrete form, generated photoelectron has higher 
energy than it may contribute in the produced electricity. We assessed the major losses in 
solar cells and have singled out those that have quantum bearings. We discussed various 
mechanisms for carrier generation and recombination with consideration of the energy 
exchange and the net conversion. This led to discussing the thermalization, photon recycling 
aspect occurring in reality in the course of photoelectric effect processes etc. Ultimately, we 
went through the net produced charge carrier subsequent to photon absorption or charge 
carrier injection and recycling. 
We went through the three main conceptual limitations of solar energy conversion, namely: 
the second law of thermodynamics, the Shockley-Queisser,  and the Luque-Marti limits. It is 
necessary to take into account these three physical limitations if one is to exploit every 
available portion of photon energy in the solar spectrum. Thereafter, we have looked at the 
physics of multispectral devices known to give the highest efficiency records and compared 
it to the more recent concept proposed by Luque. For that matter, we analyzed the energy 
band structure of materials that have an Intermediary Band. We then have compared two 
published schemes for the generation of IB materials and their use in optoelectronic and 
photovoltaic devices. For the first, the IB is located within the electronic p-n junction, while 



 
Some Applications of Quantum Mechanics 

 

292 

for the second, which is a newer concept, the IB material is outside that region. The first 
appeared to practically turn QDs intended to enable the IB in recombination centers that 
degrade the conversion efficiency instead of increasing it. In the newer scheme, the IB 
material is located outside the electric field within the depletion region, with the intention of 
preventing charge carrier recombination. In that case the IB material is simply an absorber 
with an enhanced absorption in the energy range lower than the bandgap. In essence, this is 
in line with the goal of using IB in photovoltaic devices, that is to generate additional 
photocurrent while the conventional photocurrent resulting from the VB-CB band to band 
transitions remains intact. 
After clarification of the photoelectric effect fundamental aspects and the routes for high 
efficiency solar cells, one of the author’s approaches to make IB enabled materials was 
unveiled. It is based on the functionalization of porous silicon with Ge quantum dots. The IB 
enabled PS solar cells is a new idea that the author (Karoui & Kechiantz, 2011) has been 
studying experimentally and theoretically through modelling. The author’s modeling 
methodology of the intermediate band enabled porous silicon for solar cells was then 
summarized and some results have been discussed. 
A simple model of QDs necklace-like chain of identical QDs has been put together. The 
chain is constituted of a regular distribution of QDs, all dots clinging into the pores of PS 
material. The Schrodinger equation was solved for a single chain in a circular pore, in the 
effective mass approximation. We realized that this system is described by two essential 
parameters i.e., angular momentum and radial momentum quantum numbers. We 
determined the hole and electron wave functions and energy levels in the chain of QDs. The 
energy spectrum of such system appeared to depend on transparency of the interface layer 
between the chain of QDs and Si wall, and on transparency of the interface layer between 
QDs in the chain.  
We have discussed the interface transparency factors. For that purpose we looked at 
published literature about the composition of oxide cap layers, the physical properties such 
as dangling bond, the layer formation and decomposition, etc. We have analysed the 
interface layer material properties for Ge-QD-chain/Si-walls material system. The interface 
layers of such system is a solid solution of SiO2, GeO2, and GeO oxides. The composition, 
structure, and thickness of the interface, which determine its transparency, depend on 
fabrication technology. To be noted, if the interface is totally impermeable to electrons, the 
width at half-maximum E  of the electron wave function vanishes and the electron energy 
spectrum becomes discrete. Remarkably, even for extremely small values of interfaces 
transparency, electrons from the cavity walls (i.e., host material) spill over the QDs, which 
results in a continuous component in the energy spectrum. However, most wave functions 
of such electrons vanish in the Ge QDs, while some resonant modes grow large. These 
resonant electronic states are “virtually confined” in QDs, they easily accommodate 
electrons from pore walls of PS. 
We then showed that Ge QDs introduce a narrow band of evanescent electronic states that 
being confined in the chain material; these states also expand into the pore wall of the host 
material due to the quantum mechanics tunnelling. In case of valence band in 
Ge(QD)/Si(wall) material system, the narrow band of evanescent states is aligned with the 
Si bandgap, which gives them a potential for being effective within the IB enabled PS 
material. The density of such IB states is an important parameter for efficient performance of 
IB PS solar cells. We have shown that IB density in PS may be large if the thickness of pore 
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walls is comparable with electron tunnelling depth into PS. Our calculation has revealed 
that the discrete energy spectrum of confined holes is highly sensitive to electron 
transparency of the interface layer between QDs in the chain. While an opaque interface 
layer, which completely separates QDs from each other, yields a degenerated discrete 
spectrum. A semi-transparent interface layer removes such degeneration and widens the 
discreet spectrum into a narrow IB.  
In the valence band of Ge QDs, the confined states induce narrow energy bands lined within 
the Si bandgap. These Ge valence band states spill over and decay in the PS, whereas 
conduction band resonant electronic states extend from Si into the Ge QDs, even if the 
interface between Ge and Si is semi-transparent for charge carriers. The salient features of 
the split bands are (i) lining up with the silicon band gap, and (ii) extension from the chain 
of Ge QDs into the Si walls. Both are essential properties for the absorption of two low-
energy photons via the IB. Such properties are desirable for Ge QD modified PS based solar 
cells. The chosen material system put forward an electronic structure that is efficient with 
respect to electron transitions induced by low energy photons. 
Because QDs grown in PS inevitably have a random size distribution, their contribution into 
the density of electronic states is a weighted function of the size (thickness and breadth) 
dispersion. We have calculated the density of IB electronic states in PS and studied the size 
dispersion effect on the DOS in IB. Our study has shown that Gaussian size distribution of 
QD yields a non-Gaussian distribution of density of states in IB, this result is owing to the 
quantum confinement in the chain of QDs.  
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1. Introduction 

The application of information-theoretic concepts and techniques to the study of quantum 
multielectronic systems is presently attracting the attention of numerous researchers in 
several fields. This area of inquiry is shedding new light on the conceptual foundations of 
physics and is also at the core of the new field of Quantum Information Theory, which 
foresees important technological developments through concepts such as “entanglement”, 
“teleportation” and “quantum computation”. In line with these developments we present in 
this Chapter a review of the recent advances performed in our laboratories to study selected 
molecular processes and mesoscopic systems at the nanoscopic scale by employing 
information theory concepts to show  significant advances of Information Theory applied to 
chemistry by use of Shannon entropies through the localized/delocalized features of the 
electron distributions allowing a phenomenological description of the course of elementary 
chemical reactions by revealing important chemical regions that are not present in the 
energy profile such as the ones in which bond forming and bond breaking occur. Further, 
the synchronous reaction mechanism of a SN2 type chemical reaction and the non-
synchronous mechanistic behavior of the simplest hydrogenic abstraction reaction were 
predicted by use of Shannon entropies analysis. These studies have shown that the 
information-theoretical measures provide evidence to support the concept of a continuum of 
transient of Zewail and Polanyi for the transition state rather than a single state, which is 
also in agreement with other analyses. Although information entropies have been employed 
in quantum chemistry, applications in large chemical systems are very scarce. For 
nanostructures, we have been able to show that IT measures can be successfully employed 
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to analyse the growing behaviour of PAMAM dendrimers supporting the dense-core model 
against the hollow-core one.  

2. Essentials of information theory: Classical and quantum 

Information theory of quantum many-body systems is at the borderline of the 
development of physical sciences, in which major areas of research are interconnected, 
i.e., physics, mathematics, chemistry, and biology. Therefore, there is an inherent interest 
for applying theoretic-information ideas and methodologies to chemical, mesoscopic and 
biological systems along with the processes they exert. In this Section we briefly present 
the theory of the two possible levels, classical (Shannon, Fisher, complexity, etc) and 
quantum (von Neumann and other entanglement measures). The theoretic-information 
analyses presented here have been scarcely considered in the literature until recently and 
reveal important reactivity aspects of elementary chemical reactions which are not 
accessible by other theoretical methodologies. Therefore, we present important concepts 
of Information Theory along with the natural atomic probabilities employed for the 
calculation of the entropies.  

2.1 Shannon information theory 
The uncertainty in a collection of possible observables Ai with corresponding probability 
distribution pi(A) is given by its Shannon entropy H(A) (Shannon and Weaver, 1949): 

    ( ) lni i
i

H A p A p A   (1) 

This measure is suitable for systems described by classical physics, and is useful to measure 
uncertainty of observables but it is not suitable for measuring uncertainty of the general 
state of a quantum system. It is the von Neumann entropy which is appropriate to measure 
uncertainty of quantum systems since it depends on the density matrix (see below). 
Suppose that we have two sets of discrete events Ai and Bj with the corresponding 
probability distributions, pi(A)  and pj(B). The relative entropy between these two 
distributions is defined as 

    
 

( ) ln i
i

ii

p A
H A B p A

p B
   (2) 

This function, also known as Kullback-Leibler entropy (Kullback and Leibler, 1951; Raju et 
al, 1990) is a measure of the ‘‘distance’’ between pi(A)  and pj(B), even though, strictly 
speaking, it is not a mathematical metric since it fails to be symmetric: 

 ( ) ( )H A B H B A  (3) 

Another important concept derived from relative entropy concerns the gathering of 
information. When one system learns something about another, their states become 
correlated. How correlated they are, or how much information they have about each other, 
can be quantified by the mutual information. The Shannon mutual information between two 
random variables A and B, having a joint probability distribution pij(A,B)  and marginal 
probability distributions  



Quantum Information-Theoretical Analyses of  
Systems and Processes of Chemical and Nanotechnological Interest 

 

299 

        , ,i ij j ji
j i

p A p A B and p B p B A    (4) 

is defined as 

 
 : ( ) ( ) ( , )

( , )
( , )ln

( ) ( )
ij

ij
i jij

H A B H A H B H A B

p A B
p A B

p A p B

  


 (5) 

where H(A,B) is the joint entropy defined as 

  , ( , )ln ( , )ij ij
ij

H A B p A B p A B   (6) 

which measures the uncertainty about the whole system AB.  
The mutual information H(A:B) can be written in terms of the Shannon relative entropy. In 
this sense it represents a distance between the distribution p(A,B) and the product of the 
marginals    p A p B As such, it is intuitively clear that this is a good measure of 
correlations, since it shows how far a joint distribution is from the product one in which all 
the correlations have been removed, or alternatively, how distinguishable a correlated state 
is from a completely uncorrelated one. So we have 

  : ( ) ( ) ( )H A B H p AB p A p B     (7) 

Suppose that we wish to know the probability of observing B if A has been observed. This is 
called a conditional probability and is given by 

    
( , ) ( , )

( ) ( )
ij ji

ij ji
j i

p A B p B A
p A B and p B A

p B p A
   (8) 

Hence the conditional entropy is, 

 

( , )
( ) ( , )ln

( )

( , )ln ( )

ij
ij

jij

ij ij
ij

p A B
H A B p A B

p B

p A B p A B

 

 




 (9) 

This quantity, being positive, tells us how uncertain we are about the value of B once we have 
learned about the value of A. Now the Shannon mutual information can be rewritten as 

  : ( ) ( )H A B H A H A B   (10) 

and the joint entropy as 

  , ( ) ( )H A B H B H A B   (11) 

Hence, the Shannon mutual information, measures the quantity of information conveyed 
about the random variable A(p(B)) through measurements of the random variable B(p(A)). 
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Note also that, unlike the Shannon relative entropy, the Shannon mutual information is 
symmetric. Besides, according to the properties of the logarithmic functions (Jensen 
inequality) it can be established that entropy is a concave function, 

ln lni i i i i i ip x p x p x x     meaning that mixing probability distributions increases 
entropy, whereas the relative entropy is a convex function, 

ln lni i
i i

ii

x xx x aa
         
  i.e., mixing decreases the distance between states (less 

distinguishable). 
The difference between classical and quantum entropies can be seen in the fact that 
quantum states are described by a density matrix ρ (and not just probability vectors). The 
density matrix is a positive semidefinite Hermitian matrix, whose trace is unity. An 
important class of density matrices is the idempotent one, i.e., ρ= ρ2 . The states these 
matrices represent are called pure states. When there is no uncertainty in the knowledge of 
the system its state is then pure. Another important concept is that of a  composite quantum 
system, which is one that consists of a number of quantum subsystems. When those 
subsystems are entangled it is impossible to ascribe a definite state vector to any one of 
them, unless we deal with a bipartite composite system. The most often cited entangled 
system is the Einstein-Podolsky-Rosen state (EPR) (Einstein et al., 1935: Bell, 1987), which 
describes a pair of two photons. The composite system is described by  

 1 2 2 1
1 2

2

( ) ( ) ( ) ( )
Ψ( , )

                which represents the spin directions along the 

z axis that can either be up or down. We can immediately see that neither of the photons 
possesses a definite state vector, then if a measurement is made on one photon, let say in the 
up state, then the other photon will be in the down state. This “assignment” cannot be 
applied to a general composite system unless its general state is written in a diagonal 
decomposable form, which not only is mathematically convenient, but also gives a deeper 
insight into correlations between the two subsystems. According to quantum mechanics the 
state vector of a composite system, consisting of subsystems A and B, is represented by a 
vector belonging to the tensor product of the two Hilbert spaces A BH H . The general state 
of this system can be written as a linear superposition of products of individual states: 

    AB
mn m n

m n

c A B     (12) 

Where {ξm(A); m=1 to M} and {ψn(B); n=1 to N} are the  basis of the subsystems A and B, 
respectively. This state can always be decomposed in the Schmidt diagonal form: 

    AB
l l l

l

A B     (13) 

Where  l A  and  l B  are orthonormal bases for A and B, respectively. Note that in this 
form the correlations between the two subsystems are completely revealed. If A is found in 
the state  p A , for example, then the state of B is in the  p B  state. This is clearly a 
multistate generalization of the EPR-state mentioned earlier. 
In order to understand the correlation between two subsystems in a joint pure state we point 
out that the reduced density matrices of both subsystems, written in the Schmidt 
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decomposed state above, are diagonal and have the same positive spectrum. In particular, 
the overall density matrix is given by 

 ( ) ( ) ( ) ( )n m n m n m
nm

A A B B         (14) 

whereas the reduced ones are 

 2

( ) ( )

( ) ( )

A n n
n

m m m
m

B B

A A

   

  








 (15) 

and in analogous way  

 2 ( ) ( )B n n n
n

B B     (16) 

It is important to note that a N-dimensional subsystem can then be entangled with no more 
than N orthogonal states of another one. Schmidt decomposition is, in general, not practical 
for more than two entangled subsystems since for say n entangled systems is uncertain to 
know at the same time a general state such that by observing the state of one of the 
subsystems we could instantaneously know the state of the other n-1. Clearly, involvement 
of n-subsystems complicates the analysis and produces an even greater mixture and 
uncertainty. The same reasoning applies to mixed states of two or more subsystems (i.e., 
states whose density operator is not idempotent), for which we cannot have the Schmidt 
decomposition in general.  
When two subsystems become entangled, the composite state can be expressed as a 
superposition of the products of the corresponding Schmidt basis vectors. From Eq. (13) it 
follows that the ith vector of either subsystem has a probability of |λ|2 associated with it. 
We are, therefore, uncertain about the state of each subsystem, the uncertainty being larger 
if the probabilities are evenly distributed. Since the uncertainty in the probability 
distribution is naturally described by the Shannon entropy, this classical measure can also 
be applied in quantum theory. In an entangled system this entropy is related to a single 
observable. The general state of a quantum system, is described by its density matrix ρ. Let 
the observables ai and bj, pertaining to the subsystems A and B, respectively, have a discrete 
and non degenerate spectrum, with probabilities  pi(A) and pj(B)  In addition, let the joint 
probability be pij(A,B). Then 

 
   

   

( ) ln

, ln ,

i i
i

ij ij
ij j

H A p A p A

p A B p A B

 

 



 
 (17) 

and similarly for H(B). 
An indication of correlation is that the sum of the uncertainties in the individual subsystems is 
greater than the uncertainty in the total state. Hence, the Shannon mutual information is a 
good indicator of how much the two given observables are correlated. However, this quantity, 
as it is inherently classical, describes the correlations between single observables only.  
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2.2 Quantum information theory 
The quantity that is related to the correlations in the overall state as a whole is the von 
Neumann mutual information which depends on the density matrix. The von Neumann 
entropy (von Neumann, 1955), may be considered as the proper quantum analog of the 
Shannon entropy (Wehrl, 1978) for a system described by a density matrix ρ, and is defined as 

    lnS Tr     (18) 

The Shannon entropy is equal to the von Neumann entropy only when it describes the 
uncertainties in the values of the observables that commute with the density matrix, i.e., if ρ 
is a mixed state composed of orthogonal quantum states, otherwise  

   ( )S H A   (19) 

where A is any observable of a system described by ρ. This means that there is more 
uncertainty in a single observable than in the whole of the state (Vedral, 2002).  
Let ρA and ρB be the reduced density matrices of subsystems A and B, respectively, and let ρ 
be the matrix of a composite system, then the entropies of two subsystems are somewhat 
analogous to its classical counterpart, but instead of referring to observables it is related to 
the two states which are bounded by the following Araki-Lieb (1970) inequality  

          A B A BS S S S S         (20) 

Physically, the left-hand side implies that we have more information (less uncertainty) in an 
entangled state than if the two states are treated separately, hence by treating the 
subsystems separately the correlations (entanglement) are being neglected. Also, equality in 
the left-hand side holds when both systems are independent for ρA, i.e., if the composite 
system is in a pure state, then S(ρ)=0, and from the right-hand side it follows that 
S(ρA)=S(ρB) (Schmidt decomposition Eq. (13)).  
As in the classical case, two important relations can be established (Wehrl, 1978), namely, 
the entropies of independent systems add up 

      A B A BS S S       (21) 

Further, concavity reflects the fact that mixing states increases uncertainty, i.e. 

   ( )i i i iS S      (22) 

According to the definition of the Shannon mutual information which relates only two 
observables, a quantum analog can be defined which measures the correlation between 
whole subsystems. The von Neumann mutual information between two subsystems A  and 

B  of a joint state AB  is defined a 

        :A B A B ABS S S S        (23) 

As in the case of the Shannon mutual information this quantity can be interpreted as a 
distance between two quantum states, the correlated joint state ( AB ) and the uncorrelated 
one A B  , which may be represented through a relative entropy 
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    :A B AB A BS S       (24) 

Hence, the relative quantum entropy is an important quantity to classify and quantify 
quantum correlations (Wehrl, 1978; Vedral, 2002). This measure (Eq. 24) possesses important 
properties. It is invariant to unitary transformations (the distance between states can not be 
affected under a change in the basis)  

    S S U U U U      (25) 

Partial tracing over a part of the system produces a loss of information and hence the 
subsystems are more difficult to distinguish 

    S Tr Tr S     (26) 

Therefore, the relative entropy decreases under any combination of these two operations 
which means that quantum distinguishability never increases. 
In order to determine the properties of any good measure of entanglement we have to 
establish that a bipartite state is “disentangled” if it is in a separable form 

 A B
AB i i i

i

      (27) 

These are the most general states that can be created by local operations and classical 
communication, Eqs (25) and (26), which contain no quantum correlations as entanglement can 
only be created through global operations (Wehrl, 1978; Vedral, 2002). Then in order to quantify 
entanglement is necessary to establish the following: (i) For a disentangled state (separable), the 
measure of entanglement should be zero, E(ρ)=0, (ii) under any local unitary transformations 
there is only a change of basis, which is completely reversible for the given entangled state, and 
then a change of basis should not change the amount of entanglement, i.e., 

 ( ) ( )A B A BE E U U U U       (28) 

Finally, local operations, classical communication and tracing of an ensemble σ which is 
transformed into subsystems σi with probabilities pi, can not increase the expected 
entanglement. i.e.,  

 ( ) ( )i i
i

E p E   (29) 

In summary we can conclude that in order to quantify quantum correlations between 
entangled subsystems, a good measure of quantum correlation has to be non-increasing 
under local operations (acting separately on A and B), and hence the only way the 
subsystems become entangled and gain information about each other is by interacting. We 
will return to this important conclusion in section 2.3. 

2.3 Natural atomic probabilities in information theory 
We have recently shown (Carrera et al., 2010) that there is an information-theoretic 
justification for performing Lowdin symmetric transformations (Löwdin, 1970) on the 
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atomic Hilbert space, to produce orthonormal atomic orbitals of maximal occupancy for the 
given wavefunction, which are derived in turn from atomic angular symmetry subblocks of 
the density matrix, localized on a particular atom and transforming to the angular symmetry 
of the atoms. This alternative information derivation (Carrera et al., 2010)  was achieved by 
minimizing the entropy deficiency between the joint density ρAB (a reduced first density 
matrix of a composite fermionic system of the subsystems A and B) with respect to the 
atomic independent subsystems A  and B , such that 

   : ( ( ) 1) 0AB A B ABS Tr          (30) 

according to the constraint 

 ( ) 1ABTr    (31) 

The advantages of these kind of atoms-in-molecules (AIM) approaches (Reed &  Weinhold, 
1983; Davidson, 1967) ) are that the resulting natural atomic orbitals are N- and v-
representables (Carrera et al., 2010), positively bounded, and rotationally invariant (Reed et 
al., 1985; Bruhn et al., 2006). An analogous information-theoretic approach was derived 
(Nalewajski, 2003) in relation with the Hirshfeld stockholder partitioning of the molecular 
electron density in Cartesian space (Hirshfeld, 1977). 

2.4 Hilbert space partitioning in molecular fragments 
We have proposed (Flores-Gallegos & Esquivel, 2008) that a molecule might be considered as a 
system formed by atomic subsystems, which could be studied through atomic or molecular 
fragments by means of natural atomic probabilities (Carrera et al., 2010). These probabilities 
are obtained by diagonalizing the atomic blocks (one center local transformation) of the 
molecular density matrix which transforms as angular symmetry representations of the 
isolated atoms, the resulting orthonormal orbitals are thus naturally optimal for the atom in 
the molecular binding environment. Then, the whole set of diagonalized atomic orbitals is 
symmetrically orthogonalized as to remove the interatomic overlap, while preserving the 
atom-like character of the orbitals as nearly as possible (Reed et al., 1985). Thus, the natural 
atomic probabilities are obtained by local unitary transformations and partial tracing of the 
molecular density matrix which should decrease the entanglement (Eqs. 26 and 29) by losing 
information between subsystems. The resulting density matrix is atomic-block diagonal and its 
spectral decomposition reduces to the atomic angular symmetry instead of the irreducible 
representation of the symmetry point group of the molecule, hence it can not be reduced to a 
convex sum of independent subsystems, and therefore its entanglement is not zero. It has been 
discussed that marginal density matrices with trace-class operators may have their own 
diagonal representations in terms of orthonormal and complete states in their respective 
subspaces which do not have marginal (subsystem) probabilities of the composite probability 
and as a result, the conditional entropies may be negative (Rajagopal et al., 2002); Cerf & 
Adami, 1997). In this study we have restricted ourselves to the study of a class of entropies (H-
type) which possess marginal probabilities of molecular fragments. Thus, we may define 
atomic density operators through natural atomic probabilities in Cartesian space 

 2( ) ( )A
ilm ilm

ilm

p A A   (32) 
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And then we may define molecular fragments in an analogous way 

 
1

( )
M

M

A

A 


   (33) 

In Hilbert space we may define a measure of quantum correlations between molecular 
fragments for a bipartite system through natural atomic probabilities and their joint 
probability. As we mentioned before, in the study of a bipartite system decomposed 
through a Schmidt orthogonalization, there are no more than N states that might be 
entangled (Eqs. 15 and 16). In the natural atomic decomposition scheme we employ there 
are m states pertaining to molecular fragment A, i.e., {pi(A); i= 1 to m} with n states 
corresponding to molecular fragment B: { pj(B); j= 1 to n}, thus, we may define the joint 
entropy through global operations by correlating m x n states as providing that the 
following constraints are met: 

 ( , ) ( ) ( ) ( / ) 1ij i j ij
i j i j i

P A B P A P B P A B        (34) 

And the marginal probabilities are written as 

 
( , )

( | )
( , )

ij
ij

ij
i

P A B
P A B

P A B



 (35) 

We are now in position of using definitions of section 2.1, related to the von Neumann 
entropies, taking into account that in our natural atomic scheme of probabilities, equality in 
Eq. (19) holds, and instead of referring to observables we deal with subsystems (molecular 
fragments), that is why von Neumann entropies are adequate for our study, though we keep 
the H-terminology to emphasize the orthogonal and commuting properties of the subspaces 
we are dealing with. It is easy to show that all relations concerning to H(A), H(B), H(A,B), 
H(A:B) and H(A|B) are fulfilled with the definitions above (Eqs 1-11), along with some 
useful inequalities which follow immediately from definitions in Sec 2.1, i.e., 

 

( ) 0
( | ) 0
( | ) ( )
( , ) ( ) ( )
( : ) 0
( : ) ( : )
( , ) ( , )
( , ) ( : )

H A
H A B
H A B H A
H A B H A H B
H A B
H A B H B A
H A B H B A
H A B H A B




 





 (36) 

3. Chemical processes 

Theoretic-information measures of the Shannon type have been employed to describe the 
course of the simplest hydrogen abstraction and the identity SN2 exchange chemical 
reactions (Esquivel et al., 2009). For these elementary chemical processes, the transition state 
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is detected and the bond breaking/forming regions are revealed. A plausibility argument of 
the former is provided and verified numerically. It is shown that the information entropy 
profiles posses much more chemically meaningful structure than the profile of the total 
energy for these chemical reactions. Results support the concept of a continuum of transient 
of Zewail and Polanyi for the transition state rather than a single state, which is also in 
agreement with reaction force analyses. Furthermore, the information-theoretic description 
of the course of these elementary chemical reactions allowed a phenomenological 
description of their chemical behavior by use of Shannon entropic measures in position and 
momentum spaces. Interestingly, the analyses also revealed their synchronous/ 
asynchronous mechanistic behavior (Esquivel et al., 2010).  

3.1 Phenomenological description of elementary chemical reactions 
The prediction, from first principles, of the structure and energetics of molecules when 
exerting physical changes such as dissociations or chemical reactions, constitutes a major 
activity of theoretical/computational chemistry. Such an endeavour has not been an easy 
one though, involving several research areas which have provided solid grounds and fertile 
soil for theories and models that have pervaded over the years in ongoing research efforts 
that have been thoroughly discussed in the literature (Hoffman et al., 2003). We will briefly 
review here some of the ones that have brought up the need of characterizing chemical 
processes in terms of physical phenomena such as charge depletion/accumulation, bond 
breaking/forming, path reaction-following etc.  
In an attempt to understand the stereochemical course of chemical reactions, calculations of 
potential energy surfaces have been carried out extensively at various levels of 
sophistication (Schlegel, 1988). Within the broad scope of these investigations, particular 
interest has been focused on extracting information about the stationary points of the energy 
surface. Considering the Born-Oppenheimer approximation, minima on the N-dimensional 
potential energy surface for the nuclei can be identified with the classical picture of 
equilibrium structures of molecules and saddle points can be related to transition states and 
reaction rates. Since the formulation of transition-state (TS) theory (Eyring, 1935; Wigner, 
1939), a great effort has been devoted to developing models for characterizing the TS, which 
is assumed to govern the height of a chemical reaction barrier, so that any insights into the 
nature of the TS are likely to provide deeper understanding of the chemical reactivity. 
Computational quantum chemistry has sidestepped the inherent problems by managing 
rigorous mathematical definitions of “critical points” on a potential energy hypersurface, 
and hence assigned to equilibrium complexes or transition states. Within this approach, 
minima and saddle points have been fully characterized through the first and second 
derivatives of the energy (gradient and Hessian) over the nuclei positions. That is, if there is 
more than one minimum on a continuous energy surface, a family of paths can be obtained 
that connect one minimum to the other and if the highest energy point on each path is 
considered, the TS can be defined then as the lowest of these maxima along the reaction 
path, and a minimum for all displacements perpendicular to that path, i.e., a first-order 
saddle point. The eigenvector corresponding to the single negative eigenvalue of this critical 
point is the transition vector. It is so that the steepest-descent path from the saddle point to 
either of the two minima (reactants or products) follows this vector. Since the minima and 
the transition state are well defined points on the energy surface, it is possible to define a 
unique reaction path, though it would depend on the particular choice of the coordinate 
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system. This problem was solved by defining an intrinsic reaction path independently of the 
coordinate system by appealing to classical mechanics in which the motion equations are the 
simplest in mass-weighted Cartesian coordinates (Fukui, 1981). Then an intrinsic reaction 
coordinate (IRC) can be defined as the path traced by a classical particle moving with 
infinitesimal velocity from a saddle point down to the minima and the IRC is unique in 
virtue of the classical equations of motion which should be the same in any coordinate 
system. In mass-weighted coordinates the IRC and the steepest-descent path are the same. 
Several computational techniques which calculate energy gradients and Hessians have been 
developed to follow such reaction paths (González & Schlegel, 1990; Peng et al., 1996; Fan &  
Ziegler, 1992; Safi, 2001; Pople et al., 1978; González-García et al., 2006; Ishida, et al. 1977; 
Schmidt, et al. , 1985; Baskin et al., 1974). 
Notwithstanding that critical points of the energy surface are useful mathematical features 
for analyzing the reaction-path, their chemical or physical meaning remains uncertain 
(Shaik, et al., 1994). Chemical concepts such as the reaction rate and the reaction barrier have 
been thoroughly studied and yet, the pursuit for understanding the TS structure represents 
a challenge of physical organic chemistry. The many efforts to achieve the latter have 
produced chemically useful descriptions of the TS such as the one provided by Hammond 
and Leffler (Hammond, 1955; Leffler, 1953). Hammond postulated that two points on a 
reaction profile that are of similar energy will also be of similar structure. This allowed 
predictions regarding the structure of the transition state to be made in highly exothermic 
and endothermic reactions. Leffler generalized the idea to the entire range of reaction 
exothermicities by considering the TS as a hybrid of reactants and products whose character 
is intermediate between these two extremes. These ideas remain as a very practical tool for 
analyzing chemical reactions now referred as to the Hammond-Leffler postulate which 
generally states that the properties of the TS are intermediate between reactant and product 
and are related to the position of the TS along the reaction coordinate. 
With the advent of femtosecond time-resolved methods the aforementioned theories have 
turned out to be more relevant at the present time. Since the seminal studies of Zewail and 
co-workers (Zewail, 1988, 1990, 2000a, 2000b), femtochemistry techniques have been applied 
to chemical reactions ranging in complexity from bond-breaking in diatomic molecules to 
dynamics in larger organic and biological molecules, providing new insights into the 
understanding of fundamental chemical processes, on Zewail’s words: “chemistry on the 
femtosecond time scale, can be defined as the field of chemical dynamics concerned with the 
very act of breaking or making a chemical bond. On this time scale the molecular dynamics 
are “frozen out”, and thus one should be able to observe the complete evolution of the 
chemical event, starting from time zero, passing through transition states, and ultimately 
forming products”. Although most femtochemistry studies deal with excited-state 
processes, ground-state processes have been studied as well. One of the most promising 
techniques, the anion photodetachment spectra (Bradforth, 1993), has made possible the 
direct observation of transition states. In order to explain the experimental results of the 
femto-techniques it would be necessary to complement the existing chemical reactivity 
theories with electronic density descriptors of the events taking place in the vicinity of the 
transition-state region, where the chemical bonds are actually being formed or destroyed. 
In connection with the above, there are a number of studies in the literature which have 
employed a variety of descriptors either to study the TS structure or to follow the course of 
the chemical reaction path. For instance, Shi and Boyd performed a systematic analysis of 
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model SN2 reactions in order to study the TS charge distribution in connection with the 
Hammond-Leffler postulate (Shi &  Boyd, 1991). Bader et al developed a theory of reactivity 
based solely on the properties of the charge density by employing the properties of the 
Laplacian of the density so as to align the local charge concentrations with regions of charge 
depletion of the reactants by mixing in the lowest energy excited state of the combined 
system to produce a relaxed charge distribution corresponding to the transition density 
(Bader & MacDougall, 1985). By studying the time evolution of a bimolecular exchange 
reaction Balakrishnan & Sathyamurthy (1989) showed that information-theoretic entropies 
in dual or phase space rised to a maximum in a dynamical study. Following the course of 
two elementary SN2 reactions, Ho et al showed that theoretic-information measures were 
able to reveal geometrical changes of the density which were not present in the energy 
profile, although the transition states were not apparent from the study (Hô et al., 2000). In 
an attempt to build a density-based theory of chemical reactivity, Knoerr and Eberhart 
(2001), reported correlations between features of the quantum mechanically determined 
charge density and the energy-based measures of Shaik and collaborators to describe the 
charge transfer, stability, and charge localization accompanying an SN2 reaction (Shaik et al., 
1992). Moreover, Tachibana (2001) was able to visualize the formation of a chemical bond of 
selected model reactions by using the kinetic energy density to identify the intrinsic shape of 
the reactants, the TS and the reaction products along the course of the IRC, hence realizing 
Coulson’s conjecture (1991) in that the physical meaning of the probability density might be 
related with the energy density. The reaction force of a system’s potential energy along the 
reaction coordinate has been employed to characterize changes in the structural and/or 
electronic properties in chemical reactions (Toro-Labbé, et al., 2009; Toro-Labbé et al., 2007; 
Murray  et al., 2009; Jaque et al., 2009) . The Kullback–Leibler information deficiency has 
been evaluated along molecular internal rotational or vibrational coordinates and along the 
intrinsic reaction coordinate for several SN2 reactions (Borgoo et al., 2009). 
Notwithstanding that there has been a great interest in the last twenty years in applying 
Information Theory (IT) measures to the electronic structure of atoms and molecules (Gadre, 
2003; Koga &  Morita, 1983; Ghosh et al., 1984; Angulo &  Dehesa, 1992; Antolín et al., 1993; 
Angulo, 1994; Massen & Panos, 1998; Ramirez et al., 1998; Nalewajski &  Parr, 2001; Nagy, 
2003; Romera &  Dehesa, 2004; Karafiloglou & Panos, 2004; Sen, 2005; Parr et al. , 2005; 
Guevara et al., 2005; Shi &  Kais, 2005; Chatzisavvas et al., 2005; Sen &  Katriel, 2006; Nagy, 
2006; Ayers, 2006; Martyusheva &  Seleznev, 2006; Liu, 2007), it has not been clearly assessed 
whether theoretic-information measures are good descriptors for characterizing chemical 
reaction parameters, i.e., the stationary points of the IRC path (the TS and the equilibrium 
geometries of the complex species) and the bond breaking/forming regions. The purpose of 
the study was to perform a phenomenological description of two selected elementary 
chemical reactions by following their IRC paths with the purpose of analyzing the 
behaviour of the densities in position and momentum spaces, at the vicinity of the TS, and 
also at the regions of bond forming/breaking that are not visible in the energy profile, by 
use of the Shannon entropies in conjugated spaces. In order to witness the density changes 
exerted by the molecular structures and link them with the theoretic-information quantities 
during the chemical processes, we will employ several charge density descriptors such as 
the Molecular Electrostatic Potential (MEP) and some reactivity parameters of Density 
Functional Theory (DFT), the hardness and the softness. The chemical probes under study 
are the simplest hydrogen abstraction reaction 2 2H  H  H H     and the identity SN2 
reaction 4 4H  CH  CH Ha b

 
   . 
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The central quantities under study are the Shannon entropies in position and momentum 
spaces (Shannon, 1948), which are  analogous to Eq. (1) for the case of  the continuous 
variable distributions, ( ) r  and ( ) p : 

 3( )ln ( )rS d   r r r  (37) 

 3( )ln ( )pS d   p p p  (38) 

where ρ(r) and γ(p) denote the molecular electron densities in the position and momentum 
spaces, each normalized to unity. The Shannon entropy in position space Sr behaves as a 
measure of delocalization or lack of structure of the electronic density in the position space 
and hence Sr is maximal when knowledge of ρ(r) is minimal and becomes delocalized. The 
Shannon entropy in momentum space Sp is largest for systems with electrons of higher 
speed (delocalized γ(p)) and is smaller for relaxed systems where kinetic energy is low. 
Entropy in momentum space Sp is closely related to Sr by the uncertainty relation of 
Bialynicki-Birula and Mycielski (1975), which shows that the entropy sum ST=Sr+Sp, is a 
balanced measure and cannot decrease arbitrarily. For one-electron atomic systems it may 
be interpreted as that localization of the electron’s position results in an increase of the 
kinetic energy and a delocalization of the momentum density, and conversely.  
In connection with the behaviour of the Shannon entropies above discussed, we expect a 
simple theoretic-information description of the TS in terms of localized/delocalized 
distributions. Considering that there is no variational principle for any quantum-mechanical 
property other than the energy, deriving a direct relation between the TS and the Shannon 
entropies as functionals of the electron densities seems not practical and surely beyond the 
scope of the present work. Instead, we present a plausible physical argument to link both 
quantities: on mathematical grounds the TS represents a first-order saddle point connecting 
two minima in a topological sense, and physically it represents a maximum in the "potential 
energy” surface (PES) within the space of all possible nuclear configurations corresponding to 
the energetically easiest passage from reactants to products constrained to the Born-
Oppenheimer approximation. In this sense, TS structure posses (locally) the highest potential 
energy among all possible chemical structures in that path at the expense of a minimum 
kinetic energy. Since the transition state theory (Eyring, 1935; Wigner, 1938) is essentially 
based on the assumption that atomic nuclei behave according to classic mechanics, the 
presumption for the TS being represented by a chemical structure with a minimum kinetic 
energy, which corresponds with a highly localized momentum density (locally), seems 
justified. Simultaneously, the TS will require a highly delocalized density in position space for 
the uncertainty principle to be satisfied. In this sense the Shannon entropies, as logarithmic 
descriptors of the electron density distributions in the combined phase space (normalized to 
unity), would correspond to extrema on the entropy profile at the vicinity of the TS, provided 
that the densities are adequately represented in the chemical space. 
The MEP represents the molecular potential energy of a proton at a particular location near 
a molecule (Politzer & Truhlar, 1981), say at nucleus A. Then the electrostatic potential , VA , 
is defined as  
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where ( ) r  is the molecular electron density and ZA is the nuclear charge of atom A, located 
at RA. Generally speaking, negative electrostatic potential corresponds to an attraction of the 
proton by the concentrated electron density in the molecules from lone pairs, pi-bonds, etc… 
(coloured in shades of red in standard contour diagrams). Positive electrostatic potential 
corresponds to repulsion of the proton by the atomic nuclei in regions where low electron 
density exists and the nuclear charge is incompletely shielded (coloured in shades of blue in 
standard contour diagrams). 
We have also evaluated some reactivity parameters that may be useful to analyze the 
chemical reactivity of the processes. Parr and Pearson (1983), proposed a quantitative 
definition of hardness () within conceptual DFT: 

 
 

1 1
2 2 v rS N

      
  (40) 

where 
 r

E
N 

     
 is the electronic chemical potential of an N electron system in the 

presence of an external potential (r), E is the total energy and “S” is called the softness 
within the context of DFT. Using finite difference approximation, Eq. (39) would be  

  1 121 ( )
2 2 2

N N NE E E I A
S

    
    (41) 

where EN, EN-1 and EN+1 are the energies of the neutral, cationic and anionic systems; and I 
and A, are the ionization potential (IP) and electron affinity (EA), respectively. Applying 
Koopmans’ theorem (Koopmans, 1933; Janak, 1978), Eq. (4) can be written as:  

 1
2 2

LUMO HOMO

S
 




   (42) 

where  denotes the frontier molecular orbital energies. In general terms, hardness and 
softness are good descriptors of chemical reactivity, the former measures the global stability 
of the molecule (larger values of η corresponds to less reactive molecules), whereas the S 
index quantifies the polarizability of the molecule (Ghanty &  Ghosh, 1993; Roy et al., 1994; 
Hati, & Datta, 1994; Simon-Manso & Fuenteaelba, 1998), thus soft molecules are more 
polarizable and possess predisposition to acquire additional electronic charge (Chattaraj et 
al., 2006). The chemical hardness “η” is a central quantity for use in the study of reactivity 
and stability, through the hard and soft acids and bases principle (Pearson, 1963; 1973; 1997). 
However, in many cases, the experimental electron affinity is negative rather than positive, 
an such systems pose a fundamental problem; the anion is unstable with respect to electron 
loss and cannot be described by a standard DFT ground-state total energy calculation. To 
circumvent this limitation, Tozer and De Proft have introduced an approximate method to 
compute this quantity, requiring only the calculation of the neutral and cationic systems 
which does not explicitly involve the electron affinity (Tozer & De Proft, 2005): 

 
2
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    (43) 
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where I is obtained from total electronic energy calculations on the N-1 and N electron 
systems at the neutral geometry 1N NI E E    and all energy quantities have to be 
calculated by continuum approximations such as the local exchange-correlation functionals 
(GGA) to avoid integer discontinuities. Nevertheless, it has been observed that expression 
(43) does still work reasonably well with hybrids, such as B3LYP (Tozer & De Proft, 2005). 
The authors have shown that this approximate method (Eq. 43) provided reasonable 
estimates for the electron affinities of systems possessing metastable anions, such as the case 
of CH4 with large negative experimental electron affinity (-7.8 eV). We have employed Tozer 
and De Proft approach for computing the hardness of the SN2 ionic complex in order to test 
this approximation in a process departing from the ground-state requirement such as the 
IRP (Intrinsic Reaction Process) of a chemical reaction (De Proft, 2008). 
The electronic structure calculations performed in the present study were carried out with the 
Gaussian 03 suite of programs (Frisch et al., 2004). Reported TS geometrical parameters for the 
abstraction (Johnson, 1994), and the SN2 exchange reactions were employed (Shi & Boyd, 1989). 
Internal reaction coordinate (IRC) calculations (González & Schlegel, 1989) were performed at 
the MP2 (UMP2 for the abstraction reaction) level of theory with at least 35 points for each one 
of the reaction directions (forward/reverse) of the IRC path. Then, a high level of theory and a 
well balanced basis set (diffuse and polarized orbitals) were chosen for determining all the 
properties for the chemical structures corresponding to the IRC path according to the strategy 
followed in Esquivel et al., 2009. The hardness and softness chemical parameters were 
calculated by use of Eqs. (42) and (43) and the standard hybrid B3LYP (UB3LYP for the 
abstraction reaction) functional (Tozer & De Proft, 2005). Molecular frequencies corresponding 
to the normal modes of vibration depend on the roots of the eigenvalues of the Hessian (its 
matrix elements are associated with force constants) at the nuclei positions of the stationary 
points. We have found illustrative to calculate these values for the normal mode associated 
with the TS (possessing one imaginary frequency or negative force constant) which were 
determined analytically for all points of the IRC path at the MP2 (UMP2 for the abstraction 
reaction) level of theory (Frisch, 2004). The molecular information entropies in position and 
momentum spaces for the IRC path were obtained by employing software developed in our 
laboratory along with 3D numerical integration routines (Pérez-Jordá & San-Fabián, 1993; 
Pérez-Jordá et al., 1994), and the DGRID suite of programs (Kohout, 2007). The bond 
breaking/forming regions along with electrophilic/nucleophilic atomic regions were 
calculated through the MEP by use of MOLDEN (Schaftenaar & Noordik, 2000). Atomic units 
are employed throughout the Chapter unless otherwise is stated. 

3.1.1 Radical abstraction reaction 

The reaction 2 2H  H  H H     is the simplest radical abstraction reaction involving a 
free radical (atomic hydrogen in this case) as a reactive intermediate. This kind of reaction 
involves at least two steps (SN1 like): in the first step a new radical is created by homolysis 
and in the second one the new radical recombines with another radical species. Such 
homolytic bond cleavage occurs when the bond involved is not polar and there is no 
electrophile or nucleophile at hand to promote heterolytic patterns. When the bond is made, 
the product has a lower energy than the reactants and it follows that breaking the bond 
requires energy. Evidence has been presented (Esquivel et al., 2010) which shows that the 
two step mechanism observed for this type of reaction is completely characterized by an 
asynchronous behaviour but yet “concerted”. 
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Our calculations for this reaction were performed at two different levels, the IRC was 
obtained at the UMP2/6-311G level and all properties at the IRC path were obtained at the 
QCISD(T)/6-311++G** level of theory. As a result of the IRC, 72 points evenly distributed 
between the forward and reverse directions of the reaction were obtained. A relative 
tolerance of 1x10-5 was set for the numerical integrations (Pérez-Jordá & San-Fabián, 1993; 
Pérez-Jordá et al., 1994).  
In Fig. 1, the energy profile for the process is depicted against the intrinsic reaction 
coordinate (RX) which shows the symmetric behavior of the IRC path. Also, in Fig. 1 we 
have depicted the entropy sum, which shows the exact opposite behavior as that of the 
energy, i.e., the TS represents a chemical structure with a localized density in the combined 
space of position and momentum (dual or phase space), which corresponds to a more 
delocalized position density with the lowest kinetic energy (more localized momentum 
density) among all the structures at the vicinity of the IRC path (see below). In this way the 
saddle point might be characterized by IT in the entropy hyper-surface. 
 

 
Fig. 1. Total energy values (dashed line) in a.u. and the entropy sum (solid line) for the IRC 
path of 2 2H  H  H Ha b

     

The Shannon entropies in position and momentum spaces for the abstraction reaction are 
depicted in Fig. 2 in order to characterize their critical points at the IRC path by use of 
several density descriptors discussed below. At first glance, we may note from Fig. 2 that the 
position entropy possesses a local maximum at the TS and two minima at its vicinity, 
whereas the momentum entropy possesses a minimum at the TS with two maxima at its 
vicinity, hence we observe that both quantities behave in opposite ways, i.e., the Shannon 
entropy in position space shows larger values toward the reactant/product complex 
( H H-Ha b

 or H -H Ha b
 ) and tends to decrease toward the TS region. In contrast, the 

momentum entropy increases as the intermediate radical ( Ha
 ) approaches the molecule, 

reaching maxima at the vicinity of the TS. This behaviour is interpreted as follows: the 
position entropy values are smaller at the vicinity of the TS region as compared with the 
ones at the reactive complex region (towards reactants and products) since the densities of 
the chemical structures are globally more localized at the TS region (see Fig. 1 in connection  
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Fig. 2. Shannon entropies in position (solid line) and momentum (dashed line) spaces for the 
IRC path of 2 2H  H  H Ha b

      

with the entropy sum), which is the zone where the important chemical changes take place. 
On the perspective of the momentum entropy, we may note that it is minimal at the TS 
which is linked to a more localized momentum density possessing the lowest kinetic energy 
value (maximum at the potential energy surface). At the reactive complex regions, 
momentum entropy values are larger than at the TS and therefore the corresponding kinetic 
energies are larger too, hence reproducing the typical potential energy surface shown in Fig. 1.  
In Fig. 3, the bond distances (in Angstroms) between the entering/leaving hydrogen 
radicals and the central hydrogen atom are depicted. This clearly shows that in the vicinity 
of the TS a bond breaking/forming chemical situation is occurring since the Rin is elongating 
at the right side of the TS and the Rout is stretching at the left side of the TS. It is worth  
 

 
Fig. 3. Shannon entropy in momentum space (solid line) and the bond distances R(H0-Hin) 
(dashed line for the entering hydrogen) and R(H0-Hout) (dotted line for the leaving 
hydrogen) in Angstroms for the IRC path of 2 2H  H  H Ha b

     
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noting that the chemical process does not happen in a concerted manner, i.e., the homolytic 
bond breaking occurs first and then the molecule stabilizes by forming the TS structure 
which is clearly observed in the Fig. 3. As the incoming radical approaches the molecule the 
bond breaks, at the same location where the position entropy is minimum and the 
momentum entropy is maximum, then the TS is reached and the new molecule is formed 
afterwards. This is in agreement with the discussion above with regard to the two step 
mechanism characterizing this reaction. 
The non-polar bond pattern characteristics of homolytic bond-breaking kind of reactions has 
been studied through the dipole moment of the molecules at the IRC path (Esquivel et al., 
2009). This is indeed observed in Fig. 4, where these values along with the ones of the 
momentum entropy are depicted for comparison purposes. At the TS the dipole moment is 
zero, and the same is observed as the process tends to the reactants/products in the reaction 
path, reflecting the non-polar behavior of the molecule in these regions. However, it is also 
interesting to observe from this property, how the molecular densities get distorted, 
reaching maximal values at the vicinity of the TS, where the position entropies are minimal, 
i.e., at the bond breaking/forming regions the complex exerts its largest distortion, 
molecular geometry gets rigid where the position density is more localized. Once more, we 
may observed from Fig. 4 that the energy reservoirs for the bond cleavage occur earlier (or 
later depending on the direction of the reaction) at the IRC path as observed from the 
maxima of the momentum entropies. We will refer to these chemical regions as to bond 
cleavage energy reservoirs (BCER) in what follows.  
 

 
Fig. 4. Shannon entropy in momentum space (solid line) and the dipole moment values in 
Debye (dashed line) for the IRC path of 2 2H  H  H Ha b

    .  

In Fig. 5 the eigenvalues of the Hessian for the normal mode associated with the TS along 
the path of the reaction are depicted along with the momentum entropy values for 
comparison purposes. These Hessian values represent the transition vector “frequencies” 
which show maxima at the vicinity of the TS and a minimal value at the TS. Several features 
are worth mentioning, the TS corresponds indeed to a saddle point, maxima of the Hessian 
correspond to high kinetic energy values (largest “frequencies” for the energy cleavage 
reservoirs) since they fit with maximal values in the momentum entropy profile, and the 
Hessian is minimal at the TS, where the kinetic energy is the lowest (minimal molecular  
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Fig. 5. Shannon entropy in momentum space (solid line) and the eigenvalues of the Hessian 
(dashed line) for the IRC path of 2 2H  H  H Ha b

    . It should be noted that negative 
values actually correspond with imaginary numbers (roots of negative force constants) so 
that the negative sign only represents a flag. 

frequency) and it corresponds to a minimal momentum-entropy value. Furthermore, the 
transition state of a reaction is commonly identified by the presence of a negative force 
constant for one normal vibrational mode corresponding with an imaginary frequency. The 
work of Zewail and Polanyi in transition state spectroscopy has led to the concept of a 
reaction having a continuum of transient, a transition region rather than a single transition 
state (Zewail, 1988; 1990; 2000a; 2000b; Polanyi  & Zewail, 1995). It is worth mentioning that 
the results of the present study show indeed the existence of such a region between the 
BCER, before and after the TS. This is in agreement with reaction force, F(R), studies (Toro-
Labbé, et al., 2009; Toro-Labbé et al., 2007; Murray  et al., 2009; Jaque et al., 2009) where the 
reaction force constant, κ(R), also reflects this continuum, showing it to be bounded by the 
minimum and the maximum of F(R), at which κ(R) = 0. 
The chemical reactivity behavior of the reaction has also been analyzed through density 
descriptors such as the hardness and softness (Esquivel et al., 2009). From a DFT conceptual 
point of view, chemical structures with maximal hardness (minimal softness) possess low 
polarizability and hence are less propense to acquire additional charge (less reactive). These 
structures are found at the BCER regions, they are maximally distorted, with highly 
localized position densities (Esquivel et al., 2009).  

3.1.2 Hydrogenic identity SN2 exchange reaction 
Continuing with the study of elementary chemical reactions it is of interest to analyze a 
typical nucleophilic substitution (SN2) reaction since its chemical process involves only one 
step in contrast with the two-step SN1 reaction. In the anionic form, the SN2 mechanism can 
be depicted as Y− + RX → RY + X− , which is characterized by being kinetically of second 
order (first order in each of the reactants; the nucleophile Y−and the substrate RX, where X− 
is the nucleofuge or leaving atom). For identity SN2 reactions X=Y. It was postulated that the 
observed second order kinetics is the result of passage through the well-known Walden 
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inversion transition state where the nucleophile displaces the nucleofuge (leaving group) 
from the backside in a single concerted reaction step. Evidence has been presented (Esquivel 
et al., 2010) which shows that the one step mechanism observed for this type of reaction is 
indeed characterized by its synchronous and concerted behaviour.  
The 4 4H  CH  CH Ha b

 
    represents the typical identity SN2 reaction and we proceed 

with the calculations as follows: since diffuse functions are important to adequately 
represent anionic species (Shi &  Boyd, 1991), we have performed calculations for the IRC at 
the MP2/6-311++G** level of theory, which generated 93 points evenly distributed between 
the forward and reverse directions of the IRC. Then, all entropies and geometrical 
parameters at the IRC path were calculated at the QCISD(T)/6-311++G** level of theory 
which has been reported to be adequate for this kind of reactions (Glukhovtsev et al., 1995). 
A relative tolerance of  1x10-5 was set for the numerical integrations (Pérez-Jordá & San-
Fabián, 1993; Pérez-Jordá et al., 1994). 
 

 
Fig. 6. Shannon entropies in position (solid line) and momentum (dashed line) spaces for the 
IRC path of the SN2 reaction at the QCISD(T)/6-311++G** level. 

A comparison between the entropy sum (see Fig. 7) and the energy shows that both 
quantities behave in an opposite manner, although the entropy sum shows much more 
structure at the vicinity of the TS region as compared to the energy profile (Esquivel et al., 
2009). The nature of the richer structure observed for the entropy sum (as compared with 
the energy) was revealed through the position and momentum entropies depicted in Fig. 6 
which show a TS structure  characterized by a delocalized position density and a localized 
momentum density, i.e., corresponding with a structurally relaxed structure with low 
kinetic energy. In contrast, as compared with the TS; the reactive complex toward 
reactants/products show more localized position densities with less localized momentum 
densities, i.e., the chemical structures at these regions are structurally distorted and  
posses more kinetic energy as compared with the TS. At the vicinity of the TS, at around  
|RX| ≈ 1.7, critical points for both entropies are observed, minima/maxima for the 
position/momentum entropies, respectively. Thus, ionic complex at these regions 
characterize position densities which are highly localized and with highly delocalized 
momentum densities and high kinetic energies. At first glance, it seems likely that these  
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Fig. 7. Shannon entropy in momentum space (solid line) and the bond distance Ra (dotted 
line), corresponding to the    Ha-C distance, and Rb (dashed line) corresponding to the (C-Hb) 
distance for the IRC path of  the SN2 reaction. In the side frame: detail of the minima 
observed for the bond distances at RX ≈ -0.3. Distances in Angstroms. 

regions correspond with BCER where bond breaking may start occurring. Two more 
features that are worth noting is that both entropies show inflection points at |RX| ≈ 1.0 and 
maxima at |RX| ≈ 0.5, regions where the entropy sum shows more defined structure (see 
Fig. 7), change of curvature and maxima, respectively (Esquivel et al., 2009). We will come 
back later to these observations in connection with other properties.  
In order to support our observations above we find instructive to plot the distances between 
the incoming hydrogen (Ha) and the leaving hydrogen (Hb) in Fig. 7. Distances show the 
stretching/elongating features associated with the bond forming/breaking situation that we 
have anticipated before. In contrast with the previous analyzed abstraction reaction, the SN2 
reaction occurs in a concerted manner, i.e., the bond breaking/forming starts taking place at 
the same time, in a gradual and more complicated manner as we explain below. An 
interesting feature which might be observed from Fig. 7 is that whereas the elongation of the 
carbon-nucleofuge (C-Hb) bond (Rb) changes its curvature significantly at RX ≈ -1.7 (forward 
direction of the reaction) the stretching of the nucleophile-carbon (Ha-C) bond (Ra) does it in 
a smooth way, posing the argument that bond breaking is occurring first, due to the 
repulsive forces that the ionic molecule exerts as the nucleophile approaches which 
provokes the breaking of the carbon-nucleofuge to happen as the molecule starts liberating 
its kinetic energy (decrease of the momentum entropy). In this sense is that the reaction 
occurs in a concerted manner, i.e., the bond-breaking/dissipating-energy processes 
occurring simultaneously. At the near vicinity of the TS, around RX ≈ -0.3, we observe small 
changes for both interatomic distances revealed through minima in the amplified picture, 
where it is apparent that repulsive forces occur at the TS. Moreover, the analysis of the 
internal angle between Ha-C-H along with the Shannon entropy in position space for 
comparison purposes. Thus, the internal angle shows clearly that the molecule starts 



 
Some Applications of Quantum Mechanics 

 

318 

exerting the so called “inversion of configuration” at around RX ≈ -1.7, where the 
nucleophile starts displacing the nucleofuge from the backside in a single concerted reaction 
step. This starts occurring at the BCER regions (see above). 
Fig. 8 shows the repulsive effect we mentioned before in connection with the interatomic 
distances (Fig. 7) by noting that the leaving atom Hb is gaining nucleophilic power (negative 
MEP). The TS state which is not depicted shows a half and half electrophilic/nucleophilic 
character among the atoms, where the charge is evenly distributed throughout the molecule. 
 

 
Fig. 8. The MEP contour lines in the plane of Ha-C-Hb (Ha stands for the nucleophilic atom 
and Hb is the nucleofuge, on bottom and top, respectively) showing positive MEP 
(nucleophilic regions) and negative MEP (electrophilic regions) at RX ≈ -0.3 for the SN2 
reaction.  

The SN2 reaction is an excellent probe to test the polar bond pattern characteristic of 
heterolytic bond-breaking (with residual ionic attraction because of the ionic nature of the 
products) which should be reflected through the dipole moment of the molecules at the IRC 
path (note that the origin of the coordinate system is placed at the molecules’s center of 
nuclear charge). This is indeed observed in Fig. 9, where these values along with the ones of 
the momentum entropy are depicted for comparison purposes. At the TS the dipole moment 
is zero showing the non polar character of the TS structure with both nuclephile/nucleofuge 
atoms repelling each other evenly through its carbon bonding. At this point the 
momentum/position entropies are minimal/maximal reflecting the low kinetic energy 
feature of the chemically relaxed TS structure. As the reactive complex approach the 
reactants/products regions the dipole moment increases monotonically reflecting the polar 
bonding character of the ionic complex with a significant change of curvature at the TS 
vicinity at around |RX| ≈ 1.0 (a change of curvature was already noted for all entropies at 
the same region). In going from reactants to products it is evident that the inversion of the 
dipole moment values reflects clearly the inversion of configuration of the molecule (this 
reaction starts with a tetrahedral sp3 carbon in the methyl molecule and ends with a 
tetrahedral sp3 in the product), which is an inherent feature of SN2 reactions.  
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Fig. 9. Shannon entropy in position space (solid line) and the total dipole moment (dotted 
line) for the IRC path of  the SN2 reaction. Dipole moment in Debye. 

It is interesting to note that as in the case of the hydrogenic abstraction reaction, the 
eigenvalues of the Hessian (Esquivel et al., 2009) for the normal mode associated with the TS 
along the IRC path show maxima at the BCER and reach their minimal value at the TS. This 
again validates the concept of a continuum of transient of Zewail and Polanyi, i.e., a 
transition region rather than a single transition state (see above).  

3.2 Reaction mechanisms 
A reaction mechanism represents a sequence of elementary steps by which overall chemical 
change occurs, describing in detail what it takes place at each stage of a chemical 
transformation, such as the bonds that are being formed or broken, and in what order. The 
chemical course of a reaction also accounts for the order in which molecules react, either by 
single- or multi-step conversions, and provides information about the structure of the 
transition state, reactive complexes, kinetics, catalysis, and stereochemistry. In this section 
we present a theoretical ab initio study which presents evidence obtained from Shannon 
theoretic-information concepts in position and momentum spaces that allow a conceptual 
description of the course of two elementary chemical reactions, revealing all the expected 
physical transformations predicted for synchronous (one-step) and non-synchronous (two-
step) reaction mechanisms. 
Dewar (1984) has employed intuitive arguments along with numerical evidence to put 
forward the notion of “synchronicity being normally prohibited for multibond processes”, 
which is in contrast with the widely accepted Woodward-Hoffman rules (Woodward & 
Hoffmann, 1969) that establish that multibond “allowed” reactions must be synchronous, 
i.e., all the bond-forming and bond-breaking processes taking place simultaneously. 
Furthermore, it has been asserted (Bernasconi, 1992) that a principle for non-perfect 
synchronization might be derived from the realization that the majority of elementary 
reactions involve more than one concurrent molecular process such as bond 
formation/cleavage, delocalization/localization of charge, etc. and that often these 
processes have made unequal progress at the transition state. For instance, one bond 
mechanisms are predominant in elementary processes of organic chemistry and most 
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chemists believe these take place in a synchronous manner. Recently, the simplest 
prototypical hydrogen exchange reaction (Chandra, 1996) and a variety of other radical 
exchange reactions have been examined (Chandra, 1999)  by use of ab initio methods to 
conclude that despite the fact that these reactions are chemically classified as being 
concerted (taking place in a single kinetic step) their bond-cleavaging processes are slightly 
more advanced than the bond-forming ones, proceeding by a two-stages mechanism 
(Dewar, 1984), and therefore they show asynchronous features. 
There has been an increasing interest in the recent years to analyse the electronic structure of 
atoms and molecules by applying Information Theory (IT) (Gadre, 2003; Koga &  Morita, 1983; 
Ghosh et al., 1984; Angulo &  Dehesa, 1992; Antolín et al., 1993; Angulo, 1994; Massen & Panos, 
1998; Ramirez et al., 1998; Nalewajski &  Parr, 2001; Nagy, 2003; Romera &  Dehesa, 2004; 
Karafiloglou & Panos, 2004; Sen, 2005; Parr et al. , 2005; Guevara et al., 2005; Shi &  Kais, 2005; 
Chatzisavvas et al., 2005; Sen &  Katriel, 2006; Nagy, 2006; Ayers, 2006; Martyusheva & 
Seleznev, 2006; Liu, 2007 These studies have shown that information-theoretic measures are 
capable of providing simple pictorial chemical descriptions of atoms and molecules and the 
processes they exert through the localized/delocalized behaviour of the electron densities in 
position and momentum spaces. In a recent study (Esquivel et al., 2009), we have provided 
with evidence which supports the utility of the theoretic-information measures in position and 
momentum spaces to detect the transition state and the stationary points of elementary 
chemical reactions so as to reveal the bond breaking/forming regions of the simplest hydrogen 
abstraction and the identity SN2 exchange chemical processes, thus providing evidence of the 
concept of a reaction having a continuum of transient of Zewail and Polanyi and also in 
agreement with reaction force analysis (see above). 
The purpose of the present study is to follow the IRC path of the simplest hydrogen 
abstraction reaction 2 2H  H  H Ha b

     and the exchange identity SN2 reaction 
4 4H  CH  CH Ha b

 
   , with the purpose of performing a phenomenological 

description of two selected elementary chemical reactions with different mechanistic courses 
by use of Shannon theoretic-information measures in both conjugated spaces, position and 
momentum. 
Abstraction reactions proceed by homolysis and can be characterized by a mechanism being 
kinetically of first order (SN1 like). These kind of reactions involve a two-step mechanism, 
which initiates with the formation of a new radical created by homolysis and continues with 
the recombination of the new radical with another radical species. Such homolytic bond 
cleavage occurs when the bond involved is non polar and there is no electrophile or 
nucleophile at hand to promote heterolytic patterns. When the bond is made, the product 
has a lower energy than the reactants and it follows that breaking the bond requires energy. 
In contrast, the hydride-exchange reactions proceed by a SN2 mechanism which is 
characterised by being kinetically of second order (first order in each of the reactants: the 
nucleophile and the nucleofuge atoms). It has been postulated that the observed second 
order kinetics is the result of passage through the well-known Walden inversion transition 
state where the nucleophile displaces the nucleofuge (leaving group) from the backside in a 
single concerted reaction step. 
The reaction 2 2H  H  H Ha b

     is the simplest radical abstraction reaction involving a 
free radical, H  or Ha b

  , as a reactive intermediate (reaction A) whereas the 
4 4H  CH  CH Ha b

 
    is a typical SN2 identity exchange reaction (reaction B), where 

Ha


 represents the incoming nucleophile and Hb


 stands for the leaving nucleofuge. The 
electronic structure calculations performed in this study were carried out with the Gaussian 
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03 suite of programs (Frisch et al., 2004). The reported TS geometrical parameters for the 
abstraction (Johnson, 1994), and the SN2 exchange reactions (Shi & Boyd, 1989) were 
employed. Calculations for the  structures of the internal reaction path were performed by 
use of the IRC method at the MP2/6-311++G** (UMP2//6-311G for the abstraction reaction) 
level of theory. As a result of the latter, 72/93 points (chemical structures) evenly distributed 
on the forward and reverse directions of the IRC paths were obtained for the A/B reactions, 
respectively. Finally, a higher level of theory (QCISD(T)) and a properly balanced basis set 
(6-311++G**) were chosen for both reactions to calculate the Shannon entropies of all 
chemical structures at the IRC paths. The molecular Shannon information entropies were 
obtained by employing software developed in our laboratory along with 3D numerical 
integration routines (Pérez-Jordá & San-Fabián, 1993; Pérez-Jordá et al., 1994), and the 
DGRID suite of programs (Kohout, 2007). 
For reaction A (Fig. 2), both entropies possess richer structure at the vicinity of the TS as 
compared with the energy profile (which only shows one maximum at this point). By close 
inspection of Fig. 2, we note that the position entropy possesses a local maximum at the TS 
and two minima at its vicinity, whereas the momentum entropy decreases abruptly so as to 
reach a global minimum at the TS with two maxima at its vicinity. 
The chemical picture proceeds in this way: as the intermediate radical ( Ha

 ) approaches the 
molecule at the TS region, the molecular density exerts important changes so as to undergo 
the homolysis. This represents a physical situation where the density in position space gets 
localized in preparation for the bond rupture, which in turn results in a local increase of the 
kinetic energy. This provides explanation for well the known fact that bond breaking 
requires energy. Next, the bond is formed and as a consequence, the TS structure shows 
lower kinetic energy than the reactant/product complex ( H H-Ha b

 or H -H Ha b
 ). 

Interestingly, from an information-theoretic perspective all of the above can be analogously 
described as observed in Fig. 2: as the radical intermediate approaches the TS region, the 
position entropies turn minimal when the position densities become localized and the 
corresponding momentum densities get delocalized (higher kinetic energies). Then at the 
TS, when the chemical structure relaxes, the position/momentum density gets 
delocalized/localized where the position/momentum entropy shows a local maximum/ 
minimum. The process occurs in two steps in the way the reaction dictates, and this also 
might be observed from the theoretic-information context by closely examining the 
entropies behaviour at the proximity of the TS. That is, the bond breaking process requires 
energy which should in turn be dissipated by relaxing the structure at the TS, and we note 
from Fig. 2 that this is indeed the case in that maxima for the momentum entropy are 
located before minima of the position entropy (depending on the direction of the process), 
i.e., reactive complexes gain the necessary energy for bond cleavage at BCER (bond cleavage 
energy regions and then get localized as we described above. Next, the homolysis provokes 
energy/density relaxation of the molecules toward the TS which is also observed from the 
Shannon entropies as explained before. 
For reaction B (Fig. 6), again both Shannon entropies show richer structure as compared to 
the total energy profile (which only possesses one maximum at the TS). By examining Fig. 6 
we note that the position entropy profile features a maximum at the TS along with two 
minima at its vicinity, whereas the profile of the momentum entropy shows a global 
minimum at the TS with two maxima at its vicinity. It seems likely that these particular 
regions correspond with BCER where bond breaking is supposed to occur. It is interesting to 
note that for both entropies the BCER are located at the same IRC coordinate, in contrast 



 
Some Applications of Quantum Mechanics 

 

322 

with the two-stages mechanism of reaction A, and this may be indicative of the single step 
mechanism that characterizes the SN2 process, which highlights the localized/delocalized 
combination of the position/momentum densities at this particular position of the IRP. At 
this point, it is interesting to associate the one step mechanism of this reaction to the 
chemical events that take place. While the nucleophile approaches the molecule the 
nucleofuge leaves it at unison, i.e., bond forming and bond breaking must occur in a 
concerted and synchronous manner. Both of these actions increase the energy of the 
combination: bond breaking requires energy (momentum density becomes delocalized and 
its corresponding entropy increases, and so its kinetic energy) as does overcoming the 
repulsion between the incoming ionic-complex (nucleophile) into close contact with the 
carbon's bonding shell (position density becomes localized and its corresponding entropy 
decreases). As the reaction process goes forward, the energy increases until a significant 
bonding begins to occur between the nucleophile and the molecule (increasing the position 
entropy and delocalizing its density). This releases enough energy to balance the energy 
required to break the carbon-nucleofuge bond (low kinetic energy structure with a highly 
localized momentum density). Then the transition state is reached. It is worth mentioning 
that the abrupt changes apparently observed for the Shannon entropies in both reactions 
(Figs. 2 and 6) are largely due to the significant changes exerted by the densities at the 
vicinity of the TS within the BCER (Esquivel et al., 2009).  

4. Nanostructured materials 

On the perspective of much larger molecules, Shannon Information Theory (IT) has been 
employed to analyze the growing behavior of nanostructures (Esquivel, 2009b). Shannon 
entropies in position and momentum spaces require costly and time-consuming 
computations as the size of the molecules increases in contrast with information entropies 
in Hilbert space, which are shown to be highly advantageous for analyzing large 
molecules. Thus, ab initio electronic structure calculations at the Hartree-Fock level of 
theory were performed to characterize the initial steps towards growing nanostructured 
molecules of Polyamidoamine (PAMAM) dendrimers, starting from the monomers, 
dimers, trimers, tetramers up to generations G0 (with 84 atoms), G1 (228 atoms), G2 (516 
atoms), and G3 (1092 atoms). Shannon and Kullback entropies in Hilbert space were 
employed to provide theoretic-information evidence of the validity of the dense-core 
model of PAMAM precursors and dendrimers G0 through G3. Furthermore, marginal H-
type von Neumann informational entropies (Flores-Gallegos &  Esquivel, 2008) have been 
employed (Esquivel, 2010b) to provide evidence of the validity of the dense-core model of 
dendrimers. 

4.1 Information-theoretical analysis of selected PAMAM dendrimers 
Since their introduction in 1985 by Tomalia  (Tomalia et al., 1985) dendrimers have attracted 
much attention because of their fascinating structure and unique properties (Newkome et 
al., 1996; Fréchet & Tomalia, 2001) Dendrimers are globular, size monodisperse 
macromolecules in which all bonds emerge radially from a central focal point or core with a 
regular branching pattern and with units that repeat and contribute to a branch point. They 
are defined by three components: a central core, an internal dendritic structure (the 
branches), and an exterrnal surface with functional surface groups. Not all regularly 
branched molecules are dendrimers because properties of the dendritic state (Fréchet & 
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Tomalia, 2001), such as core encapsulation (Hecht &  Fréchet, 2001). Several applications for 
dendrimers have been proposed in the literature (Tomalia et al., 1990), with potential 
applications in biology as mimetic systems of enzymes or redox proteins (Liu & Breslow, 
2003), in medicine for drug delivery, gene therapy, and biochemical sensors (Zeng & 
Zimmerman, 1997)., in optoelectronics for transduction of signals or light-harvesting devices 
(Vögtle, 2000) and in nanoscience as building units in self-assembled systems or 
functionalized with groups for molecular recognition and signaling (Fréchet, 2002). Among 
these, Poly(amido)amine or PAMAM dendrimers are among the most studied families of 
dendrimers. These organic dendrimers contain tertiary amines as branching points, i.e., the 
respective branching multiplicity is 2. The core multiplicity varies; the original PAMAM 
dendrimers were synthesized from an amine core and thus had a 3-fold multiplicity 
(Newkome et al., 1996; Liu & Breslow, 2003) whereas recently, ethylenediamine-core 
PAMAMs became more common and these have a 4-fold multiplicity (Jockush et al., 1999) 
where the typical end-groups are primary amines. 
A number of review articles on dendrimers have been reported (Ballauff, 2001;  Newkome, 
2001). Most of the work was motivated by a dendrimer-model of a hollow core and hence by 
a dense shell. This model became popular since the work of de Gennes and Hervet (1983) in 
which they presented the first theoretical treatment of dendrimers where they obtained a 
density profile with a global minimum at the center and a monotonic density increasing 
towards the periphery of the dendrimer. On the other hand, Lescanec and Muthukumar 
(1990) used a kinetic growth algorithm to find, in contrast with precvious studies (de 
Gennes & Hervet, 1983), density profiles that decreased monotonically towards the edge of 
the molecule. They were the first to show that a dendritic structure made up from flexible 
bonds should exhibit its maximum density at the center of the molecule becoming in the so-
called dense-core model.  
A great deal of progress in the understanding of the conformations of dendrimers has been 
achieved through computer simulations at various levels of description, from the 
microscopic (atomistic) to the oversimplified ones with different methodologies: Monte-
Carlo (MC), molecular dynamics (MD), and Brownian dynamics (BD) (Allen & Tildesley, 
1987). Recently, Maitli et al (2004), performed a systematic series of fully atomistic MC-MD 
simulations on PAMAM-ethylenediamine (PAMAM-EDA) cored dendrimers from G0 
through G11, to characterize the structure and properties of these molecules. On the 
electronic structure (ES) side, only a few Hartree-Fock (HF) and density functional theory 
(DFT) studies have addressed to study some aspects of low order generation dendrimers 
(Tarazona-Vasquez &  Balbuena, 2004a; 2004b). However, ab initio studies of the ES type 
addressing the structural properties of PAMAM dendrimers of higher generations are very 
scarce. The issue is not a simple one since these molecules possess an enormous number of 
energetically permissible conformations and a large number of atoms (EDA-PAMAM 
dendrimers grow from 84 atoms for G0 up to 294852 atoms for G11) which are beyond the 
present capabilities for the ES packages and present computers. 
In recent imvestigations (Esquivel et al., 2009b; 2010b) we have shown that despite the 
limitations of quantum chemistry methods, it is possible to apply information.theory and 
chemical concepts to elucidate some of the structural features of dendrimers. The focus was 
on supporting the validity of the core-dense model for dendrimers from a theoretic 
information point of view. Besides, the growing behavior of PAMAM precursors and some 
low generations of its dendrimers was revealed by employing selected properties of soft 
physics matter along with chemical reactivity parameters of dendrimers. 
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It is known that flexible-chain dendrimers, although being chemically regular structures, do 
not assume regular shapes. To quantitatively evaluate the deviation from spherical 
symmetry, we calculated the shape of the precursors and dendrimers through the principal 
moments of inertia Ix, Iy and Iz which are calculated through the eigenvalues of the shape 
tensor G describing the mass distribution: 

 (1 / )[ ( )( )
N

pq i pi p qi q
i

G M m   r R r R  (44) 

where p,q = x,y,z, and rpi is the position of the ith atom relative to the Rp components of the 
center of mass of the molecule, M is the mass of the molecule and mi is the mass of the atom. 
The sum of three eigenvalues (Ix, Iy and Iz) is an invariant of the shape tensor G, giving 

2
gR , which is the mean-square radius of gyration that provides a quantitative 

characterization of the dendrimer size. The ratio of these three principal moments is a 
measure of eccentricity (minor-major axes ratio) of the shape ellipsoid of the dendrimers and 
hence the shape of the dendrimer can be assessed from the values of the ratio of the three 
principal moments of inertia of the molecules Iz/Iy and Iz/Ix. Rudnick and Gaspari (1986) 
introduced a better definition of asphericity frequently used in the literature as  

 2
2
1

1 3
I

I
    (45) 

where Ii are the respective invariants of the gyration tensor and are given by 

 1 x y zI I I I    (46) 

and 

 2 x y x z y zI I I I I I I    (47) 

Technical details concerning the electronic structure calculations for the present study have 
been amply discussed (Esquivel et al., 2009b; 2010b). So that, the values of the three 
principal moments of inertia (Eqs. 46 and 47) were tabulated (see Esquivel, et al, 2010) along 
with the radius of gyration and the asphericity factor. Figure 10 shows the radius of gyration 
(Eq. 44), for the different G0-precursors and the G0 dendrimer. From the Figure (and Table 2 
in Ref. 96) we may assess the size of the dendrimers through the radius of gyration. As 
expected, Rg values show a constant increasing trend in going from the monomers up to the 
G0-dendrimer.  
On the side of the chemical reactivity of the precursors and dendrimers we have also 
evaluated some parameters that might be useful to analyze the chemical properties. In the 
context of conceptual DFT we have defined several properties in subsection 2.1 (Eqs. (40) to 
(43)), in particular hardness () and softness (S), which are good descriptors of chemical 
reactivity, the former measures the global stability of the molecule (larger values of η means 
less reactive molecules), whereas the S index quantifies the polarizability of the molecule 
(Ghanty & Ghosh, 1993; Roy et al., 1994), thus soft molecules are more polarizable and 
possess predisposition to acquire additional electronic charge (Chattaraj et al., 2006). It has 
been noted in Ref. Esquivel et al, 2010 that hardness values show a decreasing tendency as 
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Fig. 10. The softness “S” (empty boxes) and the radius of gyration Rg (solid boxes) values for 
the G0-precursors and G0-PAMAM generation. 

the molecules are sizely bigger, which means that as the size of the precursor increases 
toward G0 the polarizability of the molecules increases, i.e., their corresponding densities 
tend to be more delocalized. Further, it is known that less compact molecules are more 
polarizable, with low hardness values and hence more reactive, and this is indeed the case 
when comparing the softness values with the size of the molecules through the radius of 
gyration Rg in Figure 10. 

4.2 Information-theoretical analysis of selected PAMAM dendrimers 
Next, we examine the Shannon information entropies in real space, Eqs (37) and (38). In 
Figure 11 the entropy sum (Sr+Sp) and the energy are depicted for the PAMAM G0-
precursors and dendrimer G0. It is apparent from Fig. 11 that the total entropy follows the 
opposite behavior as the energy, i.e., as the size of the molecules increases so does the 
entropy sum. It is also interesting to note that the total entropy distinguishes the different 
polymeric structures in that isoelectronic systems possess the same entropy value and so 
does the energy.  

4.3 Information-theoretical entropies in hilbert space 
We have recently shown (Carrera, E. M. et al., 2010) that there is an information-theoretic 
justification for performing Löwdin symmetric transformations (Löwdin, 1970; Reed & 
Weinhold, 1983; Davidson, 1967). on the atomic Hilbert space, to produce orthonormal 
atomic orbitals of maximal occupancy for the given wavefunction, which are derived in turn 
from atomic angular symmetry subblocks of the density matrix, localized on a particular 
atom and transforming to the angular symmetry of the atoms. The advantages of these kind 
of atoms-in-molecules (AIM) approaches (Reed et al., 1985; Bruhn et al., 2006) are that the 
resulting natural atomic orbitals are N-representables, positively bounded, and rotationally 
invariant. We have recently shown (Flores-Gallegos & Esquivel, 2008) that the corresponding 
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Fig. 11. Shannon entropy sum form Eqs. 1 and 2 (empty boxes) and the Energies in a.u. 
(solid boxes) for the PAMAM polymeric precursors at the HF/3-21G* level. 

 “natural atomic probabilities” (NAP) (Carrera, E. M. et al., 2010) are useful to define von 
Neumann information  entropies in Hilbert space which might be able to measure  
entanglement in the context of Quantum Information Theory (Wehrl, 1978; Vedral, 2002).  
The uncertainty of a probability distribution pi(A) is measured through the Shannon entropy 
(Shannon, 1948) in Hilbert space Eq. (1). The relative entropy between two probability 
distributions pi(A) and pi(B) is defined through the Kullback-Liebler entropy (Kullback & 
Leibler, 1951) in Eq. (2) where the pi(A) (and pi(B) ) in Eqs. (1) and (2) can be determined by 
use of natural atomic probabilities (Carrera et al., 2010; Flores-Gallegos & Esquivel, 2008). 
While Eq. (13) represents a distance from a reference probability which is not symmetrized. 
Finally, we investigated the information entropies in Hilbert space in connection with the 
growing behavior of PAMAM dendrimers. It is important to mention that whereas Shannon 
entropies in real space represent costly and time consuming calculations, Hilbert space 
entropies do not pose additional computational efforts as to the theoretic-information 
analyses concerns, of course the obtaining of the wave functions and the NAP values 
represent a challenge for electronic structure calculations and the present computation 
capabilities available to us. Thus, we have performed the necessary calculations for 
analyzing additional structures, the trimer conformations T2 trhough T4, along with G1 
through G3 dendrimers (G1 with 228 atoms, G2 with 516 atoms, and G3 with 1092 atoms). 
In Figure 12 we have depicted the Shannon entropy H(A) for all the PAMAM G0-precursors 
along with the G0 through G3 dendrimers. This measure allows to determine the global 
information content of the systems and consequently we may observe from Fig. 12 that H(A) 
shows an increasing behavior as the size of the precursors and dendrimers increases. This 
again supports the above discussed dense-core model of dendrimers as bigger molecules 
show more uncertainty in Hilbert space, which corresponds to less compact densities in real 
space and hence to more delocalized electronic distributions.  
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Fig. 12. Shannon entropy in Hilbert space, H(A) from Eq. (1) (empty boxes), and the total 
Energy values in a.u. (solid boxes) for the G0-precursors and generations G0 through G3. 

Furthermore, in Figures 13 and 14 we have plotted the H(A) values along with the Kullback-
Leibler relative entropy in Hilbert space, Eqs. (1) and (2), respectively. The H(A|B) measure 
represents a distance measure from a reference probability distribution, which in this case 
we have set for the EDA molecule (which is embedded in all the structures). We may 
observe from the Fig. 14 that as the molecules depart from EDA the Hilbert information 
distance increases in a monotonically fashion which reflects the core-dense growing behavior 
 

 
Fig. 13. Shannon entropy in Hilbert space, H(A) from Eq. (1) (empty boxes), and the total 
Energy values in a.u. (solid boxes) for the G0-precursors and generations G0 through G3. 
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Fig. 14. Kullback-Leibler entropy in Hilbert space, H(A|B) from Eq. (2) (empty boxes), and 
the total Energy values in a.u. (solid boxes) for the G0-precursors and generations G0 
through G3. 

of dendrimers by simply measuring the information distance between EDA and the 
increasingly bigger molecules. Assuming that dendrimers follow a hollow-core model of 
growth and hence a dense shell model, the H(A|B)  trend would have been just the 
opposite.  
Figures 13 and 14 show the ability of these quantum measures to reveal and corroborate two 
simple facts already discussed in the literature (Löwdin, 1970): (i) the validity of the core-
dense model witnessed by the mutual von Neumann entropy of the marginal type, as the 
H(A|B) Hilbert distance increases monotonically in going from the precursors to higher 
generation dendrimers, and (ii) the global information content of the systems, H(A), which 
increases monotonically as one would expect from a thermodynamic point of view 
(entropy). A particular feature that may be noted from Figure 13 is the capacity of H(A) of 
measuring the atomic and electronic content of the systems, regardless of its conformational 
structure, which is characteristic of the energy. The relevancy of these results might be 
assessed by considering that the equivalent information in real space implied the calculation 
of position and momentum space entropies of the Shannon type which, taking into account 
the size of the systems (1023 atoms for G3 dendrimer), represents indeed a formidable task 
to compute, even by taking into consideration that the integration quadratures were guided 
by promolecular grids (Esquivel et al., 2009b). Ongoing research is being undertaken in our 
laboratories to extend the study to higher generation PAMAM dendrimers mainly on the 
side of the Hilbert space framework. 

5. Concluding remarks 

We have shown throughout this Chapter that phenomenological description of chemical 
phenomena is readily acesible through Information Theory concepts of the Shannon type. 
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Moreover, it is worth mentioning that other recently published results have extended these 
ideas to more intrincated processes involving a three-center insertion reaction (Esquivel et 
al., 2010c), and in a more comprehensive manner in elementary chemical reactions and 
conformeric analysis through the local information measure of Fisher (López Rosa et al, 
2010; Esquivel et al., 2011) and also by use of statistical complexity measures and planes 
(Esquivel et al., 2010d; 2011b). Furthermore, we have extended the scope of the analyses to 
quantum information concepts to measure the entanglement for the dissociation of diatomic 
molecules (Esquivel et al., 2011c). 
Throughout these studies in several areas of chemistry and also in nanostructured systems, 
we believe that information science may conform a new scientific language to explain 
essential aspects of chemical phenomena (and presumably biological too). These new 
aspects are not accessible through any other standard methodology in quantum chemistry, 
allowing to reveal intrincated mechanisms in which chemical phenomena occur. This 
envisions a new area of research that looks very promising as a standalone and robust 
science. The purpose of our research is to provide fertile soil to build this nascent scientific 
area of chemical inquiry through information-theoretical concepts which we have named 
Quantum Information Chemistry. 
The following aspects are to be distinguished from the studies:  
i. We have assessed the utility for the theoretic-information measures of the Shannon type 

to characterize elementary chemical reactions. Through these chemical probes we were 
capable to observe the basic chemical phenomena of the bond breaking/forming 
showing that the Shannon measures are highly sensitive in detecting these chemical 
events not revealed by the energy profile. Furthermore, the transition state of a reaction 
is commonly identified by the presence of a negative force constant for one normal 
vibrational mode corresponding with an imaginary frequency. However the work of 
Zewail and Polanyi in transition state spectroscopy has led to the concept of a reaction 
having a continuum of transient, a transition region rather than a single transition state 
(Zewail, 1988; 1990; 2000a; 2000b; Polanyi  & Zewail, 1995). It is worth mentioning that 
the results of the present study show indeed the existence of such a region between the 
BCER, before and after the TS. This is in agreement with reaction force, F(R), studies 
(Toro-Labbé, et al., 2009; Toro-Labbé et al., 2007; Murray  et al., 2009; Jaque et al., 2009) 
where the reaction force constant, κ(R), also reflects this continuum, showing it to be 
bounded by the minimum and the maximum of F(R), at which κ(R) = 0. 

ii. We have also shown (Esquivel et al., 2010)  that theoretic-information measures of the 
Shannon type posses the capability of revealing the hidden structure of the chemical 
reactions through phenomenological concepts (Esquivel et al., 2009) which permit to 
unveil the asynchronous/synchronous mechanistic behavior which characterize 
reactions A and B, respectively. Furthermore, it is worth mentioning that the chemical 
phenomena treated here are largely invisible for most of the standard density 
descriptors, and certainly not accessible from the energy profile. We believe that this 
kind of studies may serve to provide with more specific information as to nourish 
chemical reactivity theories which pursue a full conceptual prediction of the TS 
structure from basic chemical principles (Shaik et al., 1992). On the other hand, it is our 
contention that these observations might be amenable of experimental verification 
through photodetachment techniques in the femtosecond time scale (Zewail, 1988, 1990, 
2000a, 2000b). 
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iii. Throughout this investigation we have employed selected density descriptors which 
show numerical evidence which supports the dense-core model of dendrimers Besides, 
from a information-theoretical perspective, it was shown that Shannon entropies 
defined in real space as well as in Hilbert space are capable of revealing the dense core 
growing behavior of dendrimers, by showing that bigger molecules possess more 
delocalized electronic distributions in such a way to span their molecular distributions 
as the molecular size increases. 
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1. Introduction 

In recent years, quantum computing and quantum information science have become one of 
the most important and attractive research areas in a variety of disciplines, e. g., 
mathematics, information science, physics, chemistry, etc1. These new kinds of technologies 
are predicted to be much more advantageous compared with the classical computers and 
classical information science and the benefit obtained by these technologies is assumed to be 
beyond measure in our every-day life. For instance, quantum computers are predicted to be 
able to solve mathematical problems that today’s fastest computers could not solve in years. 
In particular, entanglement or entangled state plays a key role for quantum computing and 
quantum information processing. For example, arbitrary quantum states of two-level system 
can be teleported through classical communication with the help of maximally entangled 
Bell state from one place to other macroscopic distant places (quantum teleportation)2, 
which has no counterpart in classical mechanics. As opposed to the quantum teleportation, 
classical information can be teleported by using the maximally entangled Bell state 
(superdense coding)3. Needless to say, entanglement is also an essential ingredient in 
quantum computing1. 
At present, theoretical investigations of the mechanism of quantum computing and 
quantum information science have become mature although some of the important 
theoretical problems, e. g., definition of entanglement degree of multipartite systems, have 
not yet been solved and are still controversial. Yet, one can say that we are now reaching a 
stage of experimental realizations of quantum computing and quantum information 
processing proposed and investigated theoretically and numerically. To apply quantum 
computing and quantum information processing to realistic quantum systems, a number of 
microscopic quantum systems have been proposed. Just to mention a few, cavity quantum 
electrodynamics (cavity QED)4, trapped ions5 - 7, neutral atoms trapped in optical lattices8, 
nuclear magnetic resonance (NMR)9, 10, superconducting circuits11, silicon-based nuclear 
spin12, diamond-based quantum computer13, 14 are some of the promising candidates of 
quantum computing devices. 
However, investigation of utilization of molecular internal degrees of freedom for quantum 
computing and quantum information science, in particular, electronic, vibrational, and 
rotational degrees of freedom, is still in its infancy. Although molecules are also quantum 
systems, very few chemists have yet examined how to use molecular internal degrees of 
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freedom for quantum computing and quantum information science from the chemical 
viewpoint. The pioneering numerical investigation of usage of molecular vibrational states 
for constructing elementary quantum gates was reported by de Vivie-Riedle and coworkers 
at the beginning of this century15. Later on, they have stick to pursuing “molecular 
vibrational” quantum computing in a number of papers16 - 21. Soon after their works, some of 
the other research groups have extended their works and have proposed new ideas of 
quantum computing and quantum information science22 - 30. The purpose of many of these 
works is to numerically construct elementary gate pulses using optimal control theory 
(OCT)31. Instead of using tailored laser pulses, Teranishi and coworkers have developed a 
quantum computation scheme to process arbitrary quantum gate operations by using the 
free propagation of the wavepacket of I2 molecule32. Anyway, OCT that has originally 
stemmed from the necessity of control of chemical reactions has become one of the main 
procedures for constructing the quantum gates. 
Although the “vibrational” quantum computers are the mainstream for the investigations of 
molecular quantum computing, two-qubit system consisting of one vibrational and one 
rotational modes of molecules has also been investigated by several researchers33, 34. In33, 
single- and two- qubit operations, e. g., NOT and CNOT gates, within rotational and 
vibrational states of a diatomic molecule using strong-field molecular alignment is 
proposed. Numerical calculations of IR quantum gate pulses for 12C16O molecule using a 
genetic algorithm instead of employing OCT have been investigated by Momose and 
coworkers34. 
Another possibility is to use intermolecular states instead of the intramolecular states 
mentioned above. In35, one of the methods of realizing quantum phase gate and generation 
of entanglement rotational modes of two polar molecules coupled by dipole-dipole 
interaction has been proposed. Unlike their research, we have numerically constructed 
several universal gates and applied them to the Deutsch-Jozsa algorithm36. 
On the other hand, attempts of experimental realizations of quantum computers using 
molecular internal degrees of freedom have also begun to be done in recent years. For 
example, Vala and coworkers experimentally demonstrated the Deutsch-Jozsa algorithm 
for three-qubit functions by utilizing pure coherent superposition states of Li2 
rovibrational eigenstates37. Rovibrational wave-packet manipulation using phase- and 
amplitude- modulated midinfrared femtosecond laser pulses for 12C16O and 14N16O 
molecules have been investigated experimentally and numerically by Momose and 
coworkers for the purpose of applying their techniques to quantum computing38. Ohmori 
and coworkers experimentally demonstrated coherent control of wavepacket interference, 
wavepacket interferometry, using vibraiontal wavepackets of I2 molecule with the aim of 
retrieving quantum information such as amplitudes and phases of eigenfunctions 
involved in the wavepacket39 – 43.  
This present situation mentioned above implies that the research of quantum computing 
using molecular internal degrees of freedom is gradually attracting many physical chemists 
and chemical physicists in quite recent years. 
Interesting aspects of molecules compared with physical systems such as atoms, photons, 
electron spins, nuclear spins, etc. are that they possess a variety of quantum mechanical 
internal degrees of freedom. If we restrict ourselves only to two-qubit systems, several kinds 
of combinations of modes can be considered. The two-qubit combination studied most 
frequently is vibrational-vibrational qubit combination as mentioned above. Since the 
investigation of molecular quantum computers is still immature, we predict that there will 
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be a number of unsolved problems up to now and recommend chemists to investigate 
molecular quantum computing in more detail in the future although many of the chemists 
including us have already contributed to the improvement of the molecular quantum 
computers. For example, we may expect that scalable quantum computing using many 
internal degrees of freedom will be realized in the future. 
The present chapter is organized as follows. In Section 2, we first introduce some of the basic 
concepts of quantum computers for the convenience of those who are not familiar with 
quantum computers. One of the most important quantum algorithms, Deutsch-Jozsa 
algorithm, is also explained shortly. Then, for this chapter to be self-contained, OCT will 
briefly be reviewed because molecular quantum computing strongly relies on OCT as 
mentioned above. In Section 3, our development of free-time and fixed end-point optimal 
control theories (FRFP-OCTs) without and with dissipation is presented and the theory and 
the algorithm are applied to entanglement generation and maintenance. One will find that 
the FRFP-OCT is more convenient and advantageous than the conventional fixed end-point 
optimal control theory (FIFP-OCT). Finally, Section 4 is devoted to concluding remarks. 

2. Quantum algorithms 

2.1 Quantum gates 
Quantum gates are the counterparts of logic gates of classical computer circuits. The 
definition of operations of the classical single bit logic gates is given by truth table. For 
example, the operation of NOT gate is to flip the bits: 0 1  and 1 0 .  
In what follows, we list some of the most important quantum gates that are usually used in 
quantum circuits: 

Hadamard gate: 
1 11
1 12dmH
 

   
 for single-qubit gate, 

NOT gate: 
0 1
1 0

NOT
 

  
 

 for single-qubit gate, 

CNOT (controlled-not) gate: 

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

CNOT

 
 
 
 
 
 

 for two-qubit gate, 

ID gate: 
1 0
0 1

ID
 

  
 

 for single-qubit gate, 

Z gate: 
1 0
0 1

Z
 

   
 for single-qubit gate, 

/8  gate: 
1 0
0 exp( / 4)

T
i

 
  
 

 for single-qubit gate, 

phase gate: 
1 0
0

S
i

 
  
 

 for single-qubit gate, 
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Toffoli gate: 

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

TU

i
i

 
 
 
 
 
   
 
 
 
 
  

 for three-qubit gate. 

For processing the quantum computation, the two-level unitary gates such as shown above 
must be universal48. Here, the term “universal” means that one can implement an arbitrary 
two-level unitary transformation on the space of arbitrary numbers of qubits. For example, 
using the Gray codes, it has been proven that single qubit and CNOT gates are universal1. It 
should be emphasized that the gobal unitary transformations such as CNOT gate cannot be 
reduced to the direct product of two single-qubit gates. Therefore, if the total Hamiltonian 
can be reduced to the product of two single-qubit unitary transformations, it is impossible to 
perform universal quantum computation and quantum information processing. 

2.2 Deutsch-Jozsa algorithm 
So far, several quantum algorithms have been proposed which outperform the 
corresponding classical algorithms. These include the Grover’s algorithm, Shor’s algorithm, 
the quantum Fourier transform, the Deutsch-Jozsa algorithm, etc.1. For example, the Shor’s 
algrorithm is a quantum algorithm for integer factorization51. On a quantum computer, to 
factor an integer N, Shor’s algorithm takes polynomial time in logN, specifically O((logN)3), 
demonstrating that integer factorization is in the complexity class BQP. This is exponentially 
faster than the best-known classical factoring algorithm. 
For instance, the flowchart of the two-state Deutsch-Jozsa algorithm is shown in Fig. 1. In 
short, the story of the Deutsch-Jozsa algorithm is as follows. Let us assume two persons, 
Alice and Bob. Alice holds the so-called query register while Bob holds the so-called answer 
register. First, they come close together and they make some promises before they go far 
apart from each other. When they are close together, Alice promises to send the number 0 or 
1 to Bob and he promises to calculate some function f and to send her the answer 0 or 1. At 
this time, Bob promises to use two kinds of functions f. That is, he sends her the same 
number for all the numbers that he obtains from her (constant function) or he sends 0 for 
half of the numbers that he obtains from her and 1 for the remaining half (balanced 
function). After that, they go far apart from each other. The purpose of this algorithm is that 
Alice must clarify whether the function f that Bob applies is constant or balanced, which is 
contained in the oracle denoted by Uf. It is known that classically the algorithm scales as 

(2 )nO , while quantum-mechanically it scales as ( )O n , where n is the number of qubit 
registers that Alice holds. This demonstrates the significant speedup of quantum parallelism 
compared with classical algorithms, in particular, when n is very large. In other words, the 
advantage of quantum parallelism is obtained when the quantum circuit becomes very 
large. 
In the flowchart of Fig. 1, the initial state of the whole Hilbert space is 00 . First, Bob 
applies the NOT gate and the transition 00 01  occurs. Bob then applies the Hadamard  
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MeasurementV
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 0 0 1 

 0 0 1  

 1 0 1 

 1 0 1  

 
Fig. 1. The two-state Deutsch-Jozsa algorithm 

gate HdmR and Alice the Hadamard gate HdmV. At this moment, the state of the whole 
system becomes 00 01 10 11   . To this quantum superposition state, the unitary 
transformation, the so-called oracle, 

 : , , ( )fU x y x y f x  , (1) 

is applied. Here,   denotes addition modulo 2. The rule of Eq. (1) must be applied for all 
four possible definitions of f. According to the four definitions, Uf is defined by the four 
operations (i) ~ (iv) in Fig. 1. Alice then applies the Hadamard transformation HdmV. If she 
recognizes that she obtains the state 0  by her own measurement, f is constant, while f is 
balanced if she obtains the state 1 . These states can be distinguished by measuring her 
own qubit as shown in Fig. 1. 
In Fig. 1, the subscripts of the first and the second entries for elementary quantum gates 
refer to control bit and target bit, respectively. Here, the abbreviations, V, and R, stand for 
vibrational and rotational states, respectively. 

2.3 Optimal control theory (OCT): General theory and application to molecular 
quantum computers 
As already mentioned in Section 1, to process quantum computing, it is necessary to tailor 
elementary gate laser pulses appropriately. This particularly holds for molecules. This is 
because unlike spins molecular modes of internal degrees of freedom are essentially 
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“qudits”, not “qubits.”  In this section, we will briefly review conventional OCT and multi-
target OCT (MTOCT). For more details, we recommend the readers to refer to 52, 53.  
If the purpose is just to drive one specific wave function ( )i t  to the desired wave function 

( )T  at the fixed time t = T, the objective functional to be maximized is given by52 

 

 

 

2 2
0 0

00

( ) ( ) ( )

2Re ( ) ( ) ( ) ( ) ( )

T
i

T
i f i

J T T E t dt

T T t i H V E t t dt
t

 

   

  

        





, (2) 

where 0H  is the zero-th order Hamiltoinian, V  is the potential energy,   is the transition 
dipole moment, ( )E t  is the laser pulse to be optimized, and T is the fixed final time of the 
laser pulse. The second term restricts the laser intensity, where 0  is usually called the 
penalty factor. ( )f t  is the Lagrange multiplier for ( )i t . 
To incorporate the effect of slow turn-on and turn-off of the laser pulses adequate for 
practical experimental tailoring, the penalty factor in Eq. (2) is replaced by53 

  2
0 0

( )
( )

T E t
dt

s t
  , (3) 

where 

 2( ) sin ( / )s t t T . (4) 

In this case, the optimized external field is expressed as 

  
0

( )( ) Im ( ) ( ) ( ) ( )i f f i
s t

E t t t t t    


  . (5) 

Although the above formalisms may be applicable to tailoring the gate laser pulses for any 
quantum control problems, they are not appropriate for tailoring general-purpose global gate 
pulses that are required for quantum computing. In other words, the given gate pulse has to 
process the given quantum gate for any input states and the corresponding output states. In 
this case, one of the best choices is to resort to multi-target optimal control theory 
(MTOCT)54. For MTOCT, the objective functional to be maximized is given by 

 

 

 

22
0 0

1

00

( )
( ) ( )

( )

2Re ( ) ( ) ( ) ( ) ( )

z T
MTOCT ik fk

k

T
ik fk fk ik

E t
J T T dt

s t

T T t i H V E t t dt
t

 

   



  


       
 

 



, (6) 

where z is the number of control targets, k denotes the number of targets ranging from 1 to z, 
( )fk T  is the k-th target at time t = T, ( )ik t  is the wavefunction of the system of the k-th 

target, and ( )fk t  is the Lagrange multiplier for ( )ik t . In this case, the optimal external 
field reads 
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  
0 1

( )( ) Im ( ) ( ) ( ) ( )
z

ik fk fk ik
k

zs t
E t t t t t    

 
   . (7) 

The number of the control targets z has to be chosen as follows. Recently, de Vivie-Riedle 
and coworkers17 proposed a method for phase-correct and basis-set-independent quantum 
gates in order to perform the correct universal quantum computing. As far as we know, 
their work is the first one where the phase correction was taken into account adequately. 
The requirement of the phase-correct quantum gate is that, for example, the NOT operation 
for the superposition state, 

   500 01 10 11 01 00 11 10 ie        , (8) 

must be optimized in addition to the following four conventional pure basis state 
optimizations, 

100 01 ie  , 

201 00 ie  , 

310 11 ie  , 

 411 10 ie  . (9) 

If we do not impose the requirement of Eq. (8), the superposition state will evolve as: 

 31 2 400 01 10 11 01 00 11 10ii i ie e e e         , (10) 

which is not the correct NOT operation, because in general 1 2 3 4      . Likewise, we 
must impose additional constraints for the other quantum gates we have in mind. As de 
Vivie-Riedle and coworkers pointed out17, the phase correction of quantum gates is one of 
the key issues for the implementation of quantum algorithms. Therefore, for two-qubit 
systems, z has to be more than 4. 
There are two methods to measure the gate fidelities: the average transition probability 
given by 

 
2

1

1 ( ) ( )
z

ik fk
k

P T T
z




  , (11) 

and the fidelity expressed as  

 
2

2
1

1 ( ) ( )
z

ik fk
k

F T T
z




  . (12) 

The average transition probability cannot take into account the phase relation between 
( )ik T  and ( )fk T , while the fidelity can. If one uses the average transition probability, the 

phase correction cannot be determined, while the fidelity is useful for clarifying the phase 
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correction. Therefore, we must define the laser pulses that have the largest fidelity as the 
optimal gate pulses.  

3. Free-time and fixed end-point optimal control theory (FRFP-OCT) 

In a series of our publications55, 56, we have found that the entanglement generation in 
general quantum systems crucially rely on the strength of entangling interactions among 
distinct quantum systems. We have stressed that if the entangling interactions are strong, 
the maximally entangled state can be created in a short time. This in turn implies that if 
the strength of the entangling interactions is weak, long laser fields are necessary for 
creating the maximally entangled states. Approximately, the time duration of the laser 
pulses by which the maximally entangled states can be created is inversely proportional 
to the strength of the entangling interaction. Therefore, it can easily be recognized that we 
need a new OCT that works well even if we do not know the necessary time duration of 
the laser pulses to create the maximally entangled state efficiently because the actual 
entangling interactions are usually much more complicated in molecular systems. If this is 
the case, the necessary OCT will become free-time and fixed end-point optimal control 
theory (FRFP-OCT) since the optimal temporal duration of the laser pulses is not known 
exactly in advance. Currently, OCT in quantum systems proposed so far has been limited 
to the fixed-time and fixed end-point optimal control theory (FIFP-OCT)57. Consequently, 
we have constructed one of the versions of FRFP-OCTs that can optimize the objective 
functional and the temporal duration of the laser pulses simultaneously58, 59. One of the 
advantages of our theory is that one does not need to try various final fixed times to 
achieve the best control of quantum dynamics. To demonstrate the utility of our theory it 
has been applied to the optimization of laser pulses that can create maximally entangled 
states efficiently, but it may also be applied to various physical and chemical quantum 
control problems.  
On the other hand, realistic quantum systems that we observe experimentally and calculate 
theoretically are always interacting with surrounding environment by way of entangling 
interactions. If the whole quantum system is the sum of the system of our interest and the 
huge surrounding environment, the quantum state is maintained in pure state (no 
decoherence). However, the surrounding environment is traced out and our attention is 
paid only to our small quantum system, our system becomes mixed state (decoherence). 
This can be easily verified by using, e. g., the von-Neumann entropy used to measure 
entanglement degree of the pure state of composite systems. In many quantum control 
problems, the decoherence is unfavorable and should be suppressed. 
Quantum computing and quantum information science are also not exceptions. It was 
pointed out that the decoherence might become one of the crucial obstacles for quantum 
computers and entanglement generation and manipulation because quantum information 
processing must be performed in pure states in most cases60, 61. Therefore, to achieve 
accurate quantum computing and quantum information processing in the quantum system 
in contact with the surrounding environment, it is crucial to maintain the coherence by 
external active manipulation of the target quantum system.  
At present, there are two methods to suppress decoherence that are proposed theoretically. 
One of these is to utilize quantum error correcting code62, 63. The other promising and 
efficient method of preventing decoherence is the so-called bang-bang control by shining 
repetitive intense laser pulses on the target quantum system64. 
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Although the methods mentioned above are proposed to be applied to simple two-level 
quantum systems (qubits), most quantum systems are composed of many eigenstates 
(qudits), e. g., molecular internal degrees of freedom. Therefore, the analytical approaches 
of the error correcting code and the bang-bang control cannot easily be extended to qudits 
such as molecular modes. If this is the case, one has to resort to other methods for the 
purpose of decoherence suppression of the realistic molecular systems. One of the 
advantageous methods will be to OCT and apply it to concrete calculations of realistic 
multi-level quantum systems in order to control the dissipative quantum dynamics most 
efficiently. 
In fact, OCT for dissipative quantum dynamics has attracted much attention in recent years. 
This is because it is possible to construct laser pulses that can manipulate quantum 
dynamics efficiently in the presence of the surrounding environment and because it is 
difficult to predict by intuition what kind of laser pulses are the most appropriate for 
achieving the target dissipative quantum dynamics. OCT for the dissipative quantum 
dynamics has been developed and improved by many researchers. For example, the OCT 
for dissipative quantum systems was constructed in a fully systematic and rigorous fashion 
by Cao and coworkers for the first time65. However, their theory can only be applied to the 
weak response regime. Almost at the same time, the OCT in the strong response regime was 
developed in terms of the Liouville-space density matrix66. Ohtsuki and coworkers 
developed a monotonically convergent algorithm for dissipative quantum systems67 and 
applied their theory to the control of wavepacket dynamics under the influence of 
dissipation68. Recently, there have appeared several numerical applications of OCT in 
realistic dissipative media for a variety of purposes. For example, simulations of molecular 
quantum computers using the vibrational modes of molecules including dissipation have 
been performed by Ndong and coworkers27. Seideman and coworkers have applied 
dissipative OCT to manipulate rotational wavepacket dynamics in a dissipative 
environment69, 70. From the experimental viewpoint, dissipative OCT was used for the 
quantum control of I2 in the gas phase and in condensed phase solid Kr matrix71. 
Also for the quantum control in the dissipative environment, only FIFP-OCTs have been 
developed. Dissipative quantum dynamics can be regarded as on of the most time-sensitive 
processes. The reason is that the decoherence rate   governs the decoherence degree versus 
time. Therefore, FRFP-OCT also has a significant importance for dynamical control of 
dissipative quantum dynamics. If this is the case for the quantum system under 
investigation, the equation of motion should be replaced by, e. g., the Liouville-von 
Neumann equation in the framework of the density matrix representation. Consequently, 
one of the main purposes here is to generalize FRFP-OCT suitable only for pure states to 
mixed state FRFP-OCT following the general Master equation in both Markov approximation 
and without any approximations. 

3.1 FRFP-OCT in pure state 
We assume that the quantum system of our interest is separated from the surrounding 
environment so that our system can adequately be described by the Schrödinger equation. 
The objective functional of our problem to be maximized is just given by 

 
2

( )i fJ T   , (13) 
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where ( )i t  is time-dependent wavefunction at time t and ( )i T  is the time-dependent 

wavefunction at the target final time t = T. On the other hand, f  is the final target 

wavefunction at time t = T. Our purpose is to maximize the objective function, J, at some 
time T. Note that we do not fix T while J should be maximized. This kind of problem has not 
yet been investigated in control problems in quantum mechanics so far. It should be noticed 
that the objective functional given by Eq. (13) is different from that of the optimal control 
theory investigated so far. In the conventional FIFP-OCT, the objective functional is usually 
given by 

 
2 2

0
( ) ( )

T
i fJ T E t dt     , (14) 

where ( )E t  is the external laser fields and   is usually called penalty factor that is added to 
minimize the strength of the external laser fields. Defining the objective functional as Eq. 
(14) and adding the constraints that the system obeys, Rabitz and coworkers proposed, e. g., 
monotonically convergent OCT52.  
Let us now derive the quantum mechanical FRFP-OCT that is necessary, e. g., for 
entanglement generation as mentioned above. First, we introduce real time t and fictitious-
time  , which are related by the following equality: 

 ( )t T   , (15) 

where   is a dimensionless parameter that ranges from zero to unity  In addition, we have 
included the implicit dependence of T on dimensionless parameter   in Eq. (15). The time-
dependent equation for ( )i t  is given by the conventional real-time Schrödinger equation: 

  ( ) ˆ ( ) ( )i
i

t
i H E t t

t


 
   



 , (16) 

where Ĥ  is the zero-th order Hamiltonian and ( )E t 
  is the laser-molecule interaction. 

Using the relationship of Eq. (15) for Eq. (16), we obtain 

  ( ) ˆ ( ) ( ) ( )i
ii H E T


   


 

   


 . (17) 

We may call Eq. (17) as fictitious-time Schrödinger equation. 
Usually, the objective functional to be maximized or minimized is constrained by some of 
the factors, e. g., the equation of dynamics that the problem in mind follows. In this case, we 
can add such constraints into Eq. (17) using Lagrange multipliers and we obtain the new 
objective functional, 

 2 1

0
ˆ ˆ( 1) 2Re ( ) ( ) ( ) ( )

( )i f f i
i

J H E T d
T

      
 

              
    





 

 
1

0

( )( )T
T

d
  





 . (18) 
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Then, we introduce the variational principle for Eq. (18). In order for Ĵ  to be maximized, we 
can deduce the following equations: 

 ( ) ˆ ( ) ( ) ( )i
ii H E T


   


 

   


  

subject to the initial condition 

 ( 0)i i    , (19) 

where i  is the initial given state. 

 
( ) ˆ ( ) ( ) ( )f

fi H E T


   


 
   



  

subject to the initial condition 

 ( 1)f f    , (20) 

 ( ) 2 ˆIm ( ) ( ) ( )T
f iH E

     


        




 

subject to the initial condition 

 ( 1)( 1) 2Re ( 1)
( 1)

i
T i f f T

  
 

         
   

, (21) 

When Eqs. (19)~(21) are satisfied, we have 

 
1

0
ˆ ( ) ( ) ( 0) ( 0)TJ d g E T            , (22) 

where we have defined 

  2( ) Im ( ) ( ) ( )f ig T       


. (23) 

If the correction of the laser amplitude ( )E   is represented as ( )E  , we define 

 ( ) ( )E g    . (24) 

On the other hand, if we defined the correction of ( )T   as ( )T  , we choose 

 ( ) ( 0)TT     . (25) 

When Eqs. (24) and (25) are inserted into Eq. (22), we obtain 

 
1 2 2
0

ˆ ( ) ( 0)TJ d g       . (26) 
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If both   and   are positive, it is expected that the objective reaches maximum 
monotonically as is clearly understood from Eq. (26). On the other hand, if both   and   
are negative, it is expected that the objective reaches minimum monotonically. 
Based on the above equations, we have constructed the following FRFP-OCT in pure state 
following the Schrödinger equation. In what follows, the superscript (j) is used to denote the 
quantities for the j-th iteration. 
i. One chooses initial guess external fields (0)( )E   and nominal T(0) that is the final time of 

quantum dynamics. Here and in the following, the superscript (j) is used to denote the 
quantity of the j-th iteration. In addition, the trial positive parameters   and   are 
given because our purpose is to maximize Eq. (13). 

ii. The Schrödinger equation, Eq. (19), is propagated forwardly in time from 0   to 1   
and the obtained wavefunction ( )( )j

i   is stored. At the same time, the objective 

functional 
2( )( ) ( )jj

fiJ T    is calculated. 

iii. Equations (20) and (21) are propagated backwardly in time from 1   to 0   and the 
wavefunction ( )( )j

f   is stored. In addition, ( 0)T    is calculated. 

iv. Using Eqs. (24) and (25), the laser amplitude ( )( )jE   and ( )jT  are updated as follows, 

 ( 1) ( )( ) ( ) ( )j jE E g      , (27) 

and 

 ( 1) ( ) ( 0)j j
TT T      . (28) 

v. One sets the convergence criterion   and if the following criterion 

 ( 1) ( )j jJ J     (29) 

is met, the calculation is terminated. 
vi. If the convergence is not sufficient, one updates ( )( )jE   and ( )jT  to ( 1)( )jE   and ( 1)jT  , 

and loops back to the step (ii). 
To show how our theory works concretely by showing calculation results, we have applied 
the above algorithm to tailoring optimal laser pulses that can create the maximally 
entangled Bell states between NaCl and NaBr molecules coupled by dipole-dipole 
interaction. One of the calculation examples is shown in Fig. 2. 
In Fig. 2, we show the numerical results for the optimization of the quantum transfer 

 0,0 0,0 1,1 / 2   with the nominal T(0) = 300 ps. From panel (a), we can see that the 
rate of the monotonic convergence of the transition probability is better for FRFP-OCT than 
that for FIFP-OCT. In addition, the finally obtained transition probability is better for FRFP-
OCT. On the other hand, from panel (b), it is seen that the temporal duration of the laser 
pulse becomes longer with the optimization iteration. This reflects the fact that the longer 
temporal duration of the laser pulse is more favorable than the shorter one because the 
nominal T(0) was too short to reach a high transition probability. It is clear from panels (d) 
and (f), the maximally entangled Bell state cannot be created by both FRFP-OCT and FIFP-
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OCT. This is because the tailored laser pulses have a short temporal duration so that it is 
difficult to reach the maximally entangled state as mentioned above. However, it is clearly 
seen that FRFP-OCT has attained much higher transition probability than FIFP-OCT has (see 
panel (f)). The optimal time duration of the laser pulse obtained by FRFP-OCT was 327.95 
ps. It is expected that the behaviors shown in these figures are also universal to controls of 
other physical and chemical phenomena. 
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Fig. 2. (a) trasition probability versus iteration number, (b) temporal durationof the 
optimized laser pulse versus iteration number, (c) optimized laser pulse with  and  being 
equal to 162 10  a.u. and 0.0 a.u., respectively, (d) population transfer for panel (c), (e) 
optimized laser pulse with  and  being equal to 2x10-16 a.u. and 2x1011 a.u., respectively, 
and (f) population transfer for panel (e). The nominal T(0) was set to he 300 ps. The 
intermolecular distance R is equal to 5.0 nm. In this figure, the target transition 

 0,0 0,0 1,1 / 2   was optimized. 

From the above numerical results, we can conclude that our FRFP-OCT is much more 
efficient than the conventional FIFP-OCT because the temporal duration of the laser pulse 
can also be optimized accurately, which makes OCT more flexible. 

3.2 FRFP-OCT in dissipative media 
Next, we are interested in the situation where the quantum system of interest is affected by 
the surrounding environment so that it is necessary to describe the quantum system in the 
density-matrix representation. In such a case, we start from the assumption that the 
objective functional to be maximized is simply given by 

 ˆ ˆ( )J W T , (30) 
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where ˆ( )t  represents the time-dependent reduced density matrix at time t, ˆ( )T  is the 

time-dependent reduced density matrix at the target final time t = T, and Ŵ  is the objective 

reduced density matrix. The notation in Eq. (30), ˆB̂ C  for arbitrary matrices B̂  and Ĉ , is 

defined by 

  †ˆ ˆˆ ˆB C Tr B C . (31) 

Equation (31) measures the degree of closeness between the matrices B̂  and Ĉ . Then, our 
purpose is to maximize the objective function, J, at some time T. Note that we do not fix T 
while J should be maximized. It should be noticed that the objective functional given by Eq. 
(30) is different from that of the conventional FIFP-OCT. In the theory, the objective 
functional is usually given by67 

 2
0

1ˆ ˆ( ) ( )
T

J W T E t dt
A

  
, (32) 

where ( )E t  is the external laser field and the positive constant A  is the penalty factor to 
weigh the significance of the pulse fluence. Because of this difference, our derivation of the 
OCT in dissipative media is also quite different from theirs.  
For the FRFP-OCT, we will again introduced the fictitious time defined by Eq. (15). In real 
time, the time-dependent equation for the reduced density matrix, ˆ( )t , is expressed as: 

  0
ˆ( ) ˆ ˆ ˆˆ ˆ ˆ ˆ( ) ( )el

t
i L L t i t

t
 

   


  , (33) 

where  

 0 0
ˆ̂ ˆˆ ˆ( ) , ( )L t H t     ,     ˆ̂ ˆˆ ˆ( ) ( ) ( ), ( )el elL t t H t t     , (34) 

and ˆ̂  is the damping operator due to the interaction between the system of interest and the 
surrounding environment. 0Ĥ  is the zeroth-order Hamiltonian and ˆ ( ) ( )elH t E t 

  is the 
laser-molecule interaction with   being the transition dipole moment. Using the 
relationship of Eq. (15) for Eq. (33), we obtain the so-called fictitious time Master equation, 

  0
ˆ( ) ˆ ˆ ˆˆ ˆ ˆ ˆ( ) ( ) ( )eli L L i T
     



   


  . (35) 

When the objective functional to be optimized is constrained by some equations, we should 
sum up such constraints into Eq. (30) using Lagrange multipliers. Then, we obtain the 
following new objective function, 

 
 1

00

1

0

ˆ ˆ ˆˆ ˆ ˆ ˆˆ ˆˆ( 1) ( ) ( ) ( ) ( )
( )

( )( )

el

T

i
J W L L i T d

T

T
d

        
 

  


         
  











  (36) 
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For J  to be maximized, it is possible to deduce the following equations by applying 
variational principle to Eq. (36): 

 0
ˆ( ) ˆ ˆ ˆˆ ˆ ˆ ˆ( ) ( ) ( )eli L L i T
     



   


   

subject to the initial condition 

 0
ˆˆ( 0) W    , (37) 

where 0Ŵ  is the initial fixed reduced density matrix, 

 †0
ˆ( ) ˆ ˆ ˆˆ ˆ ˆ ˆ( ) ( ) ( )eli L L i T
     



   


   

subject to the initial condition 

 ˆˆ( 1) W    , (38) 

where the superscript, † , denotes Hermitian conjugation, 

 0
( ) ˆ ˆ ˆˆ ˆ ˆ ˆˆ( ) ( ) ( )T

el
i

L L i
      



   





 

subject to the initial condition 

 1 ˆ ˆ( 1) ( 1) /
( 1)T W

T
    


    


. (39) 

When Eqs. (37) - (39) are satisfied, we have 

 
1

0
( ) ( ) ( 0) ( 0)TJ d g E T            , (40) 

where we have defined 

 
ˆ̂ ( ) ˆˆ( ) ( ) ( ) ( )

( )
elLi

g T
E

     






. (41) 

Note that ( )g   is real. If the correction to the laser amplitude ( )E   is expressed as ( )E  , 
we define 

 ( ) ( )E g    . (42) 

On the other hand, if we define the correction to ( )T   as ( )T  , we put 

 ( 0) ( 0)TT      . (43) 

By inserting Eqs. (42) and (43) into Eq. (40), we obtain 

 
1 2 2
0

( ) ( 0)TJ d g        . (44) 
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From this equation, it is clear that if   is negative and   is positive, the objective function 
reaches a maximum monotonically. On the other hand, if   is positive and   is negative, 
the objective functional reaches minimum monotonically. Here, it should be noted that the 
units of   and   are Wcm-2 and fs2, respectively. 
From the above derivation, we have constructed the following FRFP-OCT in dissipative 
media following the Master equation. In what follows, the superscript (j) is used to denote 
the quantity for the j-th iteration.  
i. An initial guess is selected for the external field (0)( )E   and initial T(0) that is the final 

time of the quantum dynamics. In addition, the trial negative and positive parameters, 
  and  , are given because our purpose is to maximize Eq. (30). 

ii. The Master equation of Eq. (37) is propagated forward in time from 0   to 1   and 
the obtained density matrix ( )ˆ ( )j   is stored. At the same time, the objective function 

( ) ( )ˆ ˆ ( 1)j jJ W     is calculated. 

iii. Equations (38) and (39) are propagated backward in time from 1   to 0   and the 
density matrix ( )ˆ ( )j   is stored. At the same time, ( 0)T    is calculated. 

iv. The laser amplitude ( )( )jE   and the temporal duration of the external field ( )jT  are 
updated as follows, 

 ( 1) ( )( ) ( ) ( )j jE E g      , (45) 

and 

 ( 1) ( ) ( 0)j j
TT T      . (46) 

v. One sets the convergence criterion   and when the following criterion 

 ( 1) ( )j jJ J     (47) 

is met, the calculation is terminated. 
vi. If the convergence criterion of Eq. (47) is not satisfied, ( )( )jE   and ( )jT  are updated to 

( 1)( )jE   and ( 1)jT  , respectively, and loop back to step (ii). 
To apply the theory and the algorithm developed above and demonstrate numerical tests, 
we will employ the vibrational degrees of freedom of carbon monoxide adsorbed on the 
copper (100) surface, CO/Cu(100). In this case, the total Hamiltonian Ĥ  in the absence of 
the laser fields is expressed as 

 0
ˆ ˆ ˆH H V  , (48) 

where 0Ĥ  is the kinetic energy operator and V̂  is the potential energy operator defined in 
the next section. When we introduce three coordinates r, Z, and X for CO stretch, CO-
surface stretch, and frustrated translation modes, respectively, 0Ĥ  is given by 

 
2 2 2 2 2 2

0 2 2 2
ˆ

2 2 2CO CO CO
H

m mr Z X
  

   
  

   , (49) 
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where the masses are 

 6.856C O
CO

C O

m m
m m

  


 amu, 27.995CO C Om m m    amu. (50) 

The eigenstates and eigenenergies of the Hamiltonian, Ĥ , are calculated from 

 ˆ , , , ,r Z X n r Z XH n n n E n n n , (51) 

where we have used the abbreviation , ,r Z Xn n n n  and nE  is the eigenenergy of the 

state n . Here, rn , Zn , and Xn  denote the quanta of vibrational modes, CO stretch, CO-
surface stretch, and frustrated translation, respectively. 
The Liouville-von Neumann equation in the Markov approximation in the energy 
representation is explicitly expressed as 

    
1 1

( ) ( ) ( ) ( ) ( ) ( )
N N

nn
z ni in ni in i n ii n i nn

i i

d t i
E t t t t t

dt


      
 

       
 (52) 

for the diagonal elements (populations) of the reduced density matrix and 

  
1

( ) ( ) ( ) ( ) ( ) ( )
N

mn
mn mn z mi in mi in m n mn

i

d t i
i t E t t t t

dt


       


    
 (53) 

for the off-diagonal elements (coherences). Here, we have defined the energy gap, 

  /nm n mE E    . (54) 

The total dephasing rate is given by 

   *

1
/ 2

N

mn m i n i m n
i

   


     , (55) 

where *
m n   is the pure dephasing rate and m n  is the population transfer rate from the 

state m to the state n. The values of these parameters were taken from 78. For the pure 
dephasing rate, we have taken into account * * *

(0,0,0) (1,0,0) (1,0,0) (2 ,0,0) (0,0,0) (2,0,0) / 4       
with values taken from Table IV of 72. For the same reason as mentioned in 72, the precise 
values of the pure dephasing rates are of no concern in the present calculations.  
To check the mixedness of the reduced density matrix in the Hilbert space of our interest 
(CO stretch and CO-surface stretch modes), we explicitly define it by 

  2mixedness 1 ( )frustTr t  , (56) 

where frustTr  denotes the trace over the frustrated translation mode that is of no concern. 

Note that we can apply our algorithm to other types of Master equations in addition to the 
Liouville-von Neumann equation mentioned above. 
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We have investigated the configuration of the CO/Cu(100) system shown in Fig. 3. We have 
taken into account two layers of copper atoms and in each layer the nearest nine Cu atoms 
in the same manner as in 73.  
 

 
Fig. 3. Schematic of the dissipative CO/Cu(100) system used to apply FRFP-OCT in 
dissipative  media. The Solid circles represent Cu atoms. 

The purpose here is two-folds. First, we shall tailor the optimal laser pulses that create 
maximally entangled Bell state  0,0,0 1,1,0 / 2  from the separable state 0,0,0 . Of 
course, this is of fundamental importance for quantum computing and quantum 
information science. Second, we assume that the maximally entangled state, 
 0,0,0 1,1,0 / 2 , is prepared at t = 0 fs. We shall examine by what kinds of laser 
pulses this state is maintained in the presence of dissipation. That is, our target transition is 
   0,0,0 1,1,0 / 2 0,0,0 1,1,0 / 2   . This problem seems to be important to 
study in detail because it may be necessary to maintain some specific entangled sates during 
other processes in large-scale quantum computers composed of many qubits. Because the 
effect of decoherence generally seems to be negligible in low temperatures, it may be 
difficult to show the influence of dissipation on the optimal control. Therefore, we shall 
mainly present numerical results at high temperatures in the following.  
In Fig. 4, we show the case where the initial temporal duration of the laser pulse, T(0), is 1000 
fs. The maximum transition probability is attained at T = 996.219 fs, as shown in panel (c). In 
this case, the incident laser pulse has a shape quite different from that of the other cases. As 
is clear from panel (a), the laser amplitude from the initial time t = 0 fs to around the time t = 
800 fs is quite small (~4 MVcm-1). Therefore, we can hardly observe the population transfer 
due to the laser pulse. Instead, we can see a significant population transfer from the state 
0,0,0  to the state 0,0,1  because of the large population transfer rate, 

(0,0,0) (0,0,1)1 / 3.3   ps. This transition represents the absorption of the single reservoir 
quantum by the frustrated translation mode. From the time t = 800 fs to the optimal final 
time T = 996.219 fs, the amplitude of the optimized laser pulse is quite large (~60 MVcm-1) so 
that a significant population transfer from the state 0,0,0  to the target state 1,1,0  takes 
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place and coherence between the states, 0,0,0  and 1,1,0 , builds up during this period. 

These trends are reasonable because if the transition to the target state 1,1,0  occurred 
much earlier as the result of intense laser pulses, the damping of the population of the state 
1,1,0  to other states and the decoherence could be quite significant, which would lead to 

much larger mixedness and a lower transition probability.  
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Fig. 4. (a) optimized laser pulse with  and β being equal to -1.755 x109 Wcm-2 and 5.851 x 
102 fs2, respectively, (b) population transfer induced by the optimized laser pulse of panel 
(a), (c) temporal duration of the optimized laser pulse versus iteration number. The initial 
T(0) was set to be 1000 fs. The temperature was 300 K. The target transition 

 0,0,0 0,0,0 1,1,0 / 2   was optimized. 

When the initial temporal duration, T(0), is 1000 fs and the temperature is 300 K, we observe 
that the temporal duration becomes a little bit longer, T = 1040.56 fs, as can be seen in Fig. 5. 
The transition probability and the mixedness at the final time are 66.3430% and 0.50711 for 
the free-time case and are 65.8890% and 0.50515 for the fixed-time case, respectively. In both 
the free-time and fixed-time cases, the shape of the optimized laser pulses is interesting 
(here, we do not show the results for the fixed-time case). For the initial half time of total 
duration, the amplitude of the laser pulse is strong. In the middle of the temporal duration, 
it becomes weak. After that, the amplitude of the laser pulse becomes stronger with time. 
This tendency can be explained as follows. Because it is known that the population of the 
state 0,0,0  can be excited to the state 0,0,1  during the time evolution because of the  
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Fig. 5. (a) optimized laser pulse with  and β being equal to -1.755 x109 Wcm-2 and 5.851 x 
102 fs2, respectively, (b) population transfer induced by the optimized laser pulse of panel 
(a), and (c) temporal duration of the optimized laser pulse versus iteration number. The 
initial T(0) was set to be 1000 fs. The temperature was 300 K. The target transition 
   0,0,0 1,1,0 / 2 0,0,0 1,1,0 / 2    was optimized. 

dissipative effect as mentioned above, the population of the state 0,0,0  has to increase for 
the initial half time of total duration using the large intensity of the laser pulse. During this 
period, almost all the population of the state 1,1,0  contributes to the population increase 

of the state 0,0,0 . For the last half period of the total duration, because of the large 

intensity of the laser pulse, almost all the population of the state 0,0,0  is excited to the 

state 1,1,0 , as in the cases shown above, and the optimized laser pulse tries to recover the 

initial maximally entangled state,  0,0,0 1,1,0 / 2 , as much as possible. The reason 
for the lengthening of the temporal duration compared with the initial guess is that the 
additional time duration required by the initial recovery of the state 0,0,0  was absent for 

the target transition  0,0,0 0,0,0 1,1,0 / 2   shown in Fig. 4. 
Figure 6 shows the case where T(0) is 1000 fs and the temperature is 10 K. Comparing panel (a) 
with panel (a) of Fig. 5, the pulse shapes are rather similar although the temperatures are quite 
different. However, because of their small difference, the optimized laser pulse in Fig. 6  
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Fig. 6. (a) optimized laser pulse with  and β being equal to -1.755 x109 Wcm-2 and 2.340 x 
101 fs2, respectively, (b) population transfer induced by the optimized laser pulse of panel 
(a). The initial T(0) was set to be 1000 fs. The temperature was 10 K. The target transition 
   0,0,0 1,1,0 / 2 0,0,0 1,1,0 / 2    was optimized. 

creates the population of the state 0,0,0  as much as possible until around t = 200 fs. Unlike 
panel (b) of Fig. 5, that of Fig. 6 does not show any significant change of population of the 
state 0,0,0  during the period when the laser pulse is almost off (from around t = 200 fs to 
around t = 900 fs). This is also due to the small population transfer rate, 

(0,0,0) (0,0,1)1 / 85300.0   ps. Therefore, the transition probability is much larger and the 
mixedness is much smaller than in the case of Fig. 5. That is, the transition probability and 
the mixedness at the final time are 86.9429% and 0.22626 for the free-time case and are 
86.7598% and 0.23058 for the fixed-time case, respectively. In addition, the optimal temporal 
duration is also longer than the initial guess: T = 1041.12 fs. The reason is the same as that 
for Fig. 5. 

4. Concluding remarks 

In the present chapter, we have reviewed our recent main theoretical and numerical 
contributions to the development of molecular quantum computing and quantum 
information science. In particular, we have paved a new way for extending the conventional 
FIFP-OCT to FRFP-OCT. 
Now, quantum computing and quantum information science have become an unshakeable 
important research topics, ranging among a variety of disciplines. However, some basics of 
the theoretical aspects have not yet been solved and are still debatable. For instance, the 
definition of multipartite entanglement degree in pure and mixed states is still discussed in 
the recently published papers. In addition, scalability and decoherence of quantum states in 
quantum computers have gradually become obvious to be extremely challenging with the 
rapid development of experiments and theories. At the same time, the experimental 
realization of quantum computers based on the theories is also very important in order to 
extremely outperform the present-day classical computers. Although there are a number of 
experimental data for physical systems, at present there are few experimental evidences for 
molecules which chemists are interested in. Therefore, we suspect that there may be a 



 
Some Applications of Quantum Mechanics 

 

356 

number of rooms for improvement in molecular quantum computers. We chemists hope 
that molecular quantum computing will be investigated in more detail from the chemical 
viewpoint in future. In particular, we expect that our and other’s theoretical and numerical 
results will provide important guides to experimental realization of quantum computers 
and quantum information processing. 
Although we have applied our FRFP-OCT to two specific control problems as shown in 
Section 3, the theory is so general that it may be possible to apply it to a variety of quantum 
control problems with and without dissipation in future. An experimental application of 
FRFP-OCTs developed by us for the first time could be expected in the same manner as 
closed-loop quantum learning control experiments74 - 77. 
Finally, as for the recent advancement of free-time and fixed end-point multi-target optimal 
control theory, the readers are referred to 78. 
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1. Introduction 

To understand the functional mechanisms of biological macromolecular systems, 
investigations of both the three-dimensional geometric and electronic structures are 
important. Accordingly, quantum mechanical (QM) calculations are essential to obtain the 
properties relevant to the electronic structures of the macromolecular systems. However, 
because of the high computational costs, only a few hundred atoms can be included in the 
usual ab initio QM calculations. Therefore, even though biological macromolecular systems 
include a huge number of atoms, isolated QM model calculations have been performed to 
date, in which only the reaction centres are considered. However, this may lead to serious 
misunderstandings of the properties relevant to the electronic structures of the 
macromolecular systems.  
To overcome these problems, the ab initio QM calculation is combined with a molecular 
mechanics (MM) calculation method; this is referred to as a QM/MM calculation. In this 
strategy, the QM calculation is adopted for the active site (QM regions), and for the 
remainder of the system, the MM calculation is adopted (MM regions). This QM/MM 
methodology was originally developed by Warshel and Levitt (Warshel&Levitt, 1976), and 
since their pioneering work, great progress has been made in the development of QM/MM 
algorithms and their applications to biological systems (Bruice&Kahn, 2000; Field, 2002; 
Field et al., 1990; Gao et al., 2006; Lin&Truhlar, 2007; Mulholland, 2005; Ryde, 2003; 
Senn&Thiel, 2007, 2009).  
In this chapter, we discuss some useful QM/MM schemes and their recent applications to 
analyze the functional mechanisms of biological macromolecular systems. Here, we will 
utilize three molecular systems as examples of applications of QM/MM calculations to 
biological macromolecules. We will also introduce the theoretical background to investigate 
the functional mechanisms in proteins, such as electron transfer. 

2. Energy schemes of QM/MM calculations 

In the QM/MM calculation, the entire system is separated into the QM and MM regions, as 
shown in figure 1. Since the QM and MM atoms interact with each other, the total energy 
can be written as follows: 



 
Some Applications of Quantum Mechanics 

 

360 

        ES QM   MM    QM /MM .E E E E    (1) 

Here, E (ES), E (QM), E (MM), and E (QM/MM) represent the energy of the entire system, 
the energy of the QM region, the energy of the MM region, and the interaction energy 
between the QM and MM regions, respectively. In this section, we discuss how to merge the 
energies that were evaluated by each of the QM and MM calculation programs.  
 

MM

QM

Fig. 1. Division of the entire system (ES) into the QM (pink) and MM (light blue) regions.  

2.1 Additive scheme 
The additive scheme can integrate the QM and MM interactions, and this is referred to as a 
hybrid QM/MM calculation. The energy of the entire system in the additive scheme, Eadditive 
(ES), is given by the following equation: 

        QM MM QM/MM
additive ES QM   MM    QM, MME E E E   . (2) 

The superscript of E represents the evaluation method of the system. One can define the 
QM/MM interaction energy, EQM/MM (QM, MM), as  

 
 

     QM/MM QM/MM QM/MM
elec

QM/MM

bond vdW

QM, MM  

 QM, MM   QM, MM   QM, MM

E

E E E  
. (3) 

Here, the subscript of E represents the type of interaction. For example, elec represents an 
electronic interaction, bond represents a bond interaction, and vdW represents a van der 
Waals interaction.  
One can calculate the electronic interaction in the QM Hamiltonian with an MM partial 
charge as follows: 

  /
elec

ˆ QM, MM   .
N M L M

QM MM

ii

Q qq
H  

    
 

 
 r R R R

 (4) 

The first term on the right hand side of eq. (4) represents the coulomb interactions between 
the electron density at the ri and the effective partial charges (q) of MM atoms at their 
position R, and the second term represents the coulomb interactions between the effective 
partial charges (q) of MM atoms at their positions R and the QM nuclear charges (Q) at 
their positions R(figure 2). Therefore, the effects of the partial charges of MM atoms are 
considered as an external electrostatic field (i.e., one-electron integral term), and this can 
polarize the electronic structure of the QM region. The consideration of the effects of the 
environments (MM region) in the QM calculation is a merit of the additive scheme, and is 
impossible in the subtractive scheme (described in the next subsection). This advantage is 
clearer in some polarizable systems, such as a transition metal binding protein contained in 
the system.  
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Fig. 2. Energy calculation by additive and subtractive schemes.  

2.2 Subtractive scheme 
In the subtractive scheme, the energy of the entire system is calculated by three steps. First, 
the energy of the entire system is calculated by the MM calculation. Second, the energy of 
the QM region is calculated by the QM calculation. Finally, to correct the double counted 
energy, the energy of the QM region is calculated by the MM calculation. From these steps, 
the energy of the entire system, Esub (ES), is given in the following form: 

        QM MM
subtractive ES ES   QM    QMMME E E E   . (5) 

The superscript of E represents the evaluation method (QM or MM) of the system, and the 
region on which the calculation is performed is described in parentheses. An advantage of 
the subtractive scheme is the simplicity of the energy calculation (figure 2).  
Table 1 shows the advantages and disadvantages of the two calculation schemes. The 
overpolarization problem is discussed in the next section.  
 

 Additive 
scheme 

Subtractive 
scheme 

advantage Polarizability in QM Hamiltonian Simplicity 

disadvantage Overpolarization Exclusion of polarizability in QM 
Hamiltonian. 

Table 1. Comparison of additive and subtractive schemes 

2.3 Treatment of a covalent bond located on the boundary between the QM and MM 
regions 
Note that a problem occurs in the case where a covalent bond crosses the boundary between 
the QM and MM regions. In most biological systems, the active site contains several amino 
acid residues, which are connected to other amino acid residues of the protein. Therefore, 
termination of the QM region should be required (for example, the side chain of an amino 
acid residue is assigned to the QM region, and terminates at the C). Since the QM 
calculation system should be self-consistent with the QM Hamiltonian, several methods 
have been developed to control the boundary region between the QM and MM regions. 
Among these methods, the link atom method is generally used (Lin&Truhlar, 2005). In this 
method, the boundary atoms between the QM and MM regions are capped by a hydrogen 
atom, which is called a link atom, along the bond direction between the QM and MM atoms 
at a distance of ~1 Å. These new atoms are considered in the QM calculations. Although an 
advantage of this method is its simplicity, overpolarization problems occur, since this 
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method introduces artificial atoms that are located too close to the boundary MM atoms 
(Lin&Truhlar, 2005; Senn&Thiel, 2009). 
This problem is more serious when one uses a large basis set that can describe an electronic 
structure more flexibly, such as plane waves (Senn&Thiel, 2009). Therefore, to overcome the 
overpolarization issue, several schemes have been developed. In one method (Field, 2002; 
Field et al., 1990), the charges of the MM atoms were not computed in the one-electron 
integrals. In another (Reuter et al., 2000), the charges of the MM atoms were not included in 
the one-electron integrals. In yet another strategy (Amara&Field, 2003; Eichinger et al., 
1999), the Gaussian functions at the positions of the MM atoms that are located close to the 
QM region were introduced.  
To resolve the disadvantages of the link atom method, the Generalized Hybrid Orbitals 
(GHO) method was developed. GHO is a major method to overcome the disadvantages of 
the link atom method, and originated from the Local Self-Consistent Field (LSCF) method 
(Amara et al., 2000; Assfeld&Rivail, 1996; Ferre et al., 2002; Gao et al., 1998; Monard et al., 
1996; Pu et al., 2004; Thery et al., 1994). In this scheme, the "auxiliary" and "active" orbitals 
are located on the MM boundary atoms, respectively. By incorporating the active orbital, 
which is directed towards the QM boundary atoms, within the SCF calculation, the valency 
of the QM subsystem is satisfied, while the auxiliary orbitals are fixed during the SCF 
calculation. 

2.4 Software for QM/MM calculations 
In this section, we introduce several QM/MM calculation software packages. Various QM 
calculation packages, such as Gaussian (Frisch et al., 2003), include the MM module in the 
QM/MM calculation. In addition, several MM calculation packages, such as AMBER (Case 
et al., 2005) and CHARMM (Woodcock et al., 2007), can calculate QM/MM schemes by 
using the included QM modules. The merit of these calculation program packages is simple, 
and only one calculation job is needed to perform the QM/MM calculation. However, such 
calculation packages have some restrictions. For examples, in the Gaussian, it is impossible 
to perform high-level statistical calculation schemes, such as umbrella sampling. On the 
other hand, AMBER can only perform semi-empirical QM calculations, but not the first 
principle QM calculations.  
To avoid such problems, several interface programs were developed, including ChemShell 
(Sherwood et al., 2003), QoMMM (Harvey, 2004), and PUPIL (Torras et al., 2008). With these 
types of methodologies, one can perform QM/MM calculations effectively and couple them 
to statistical sampling schemes. For example, extended conformational sampling schemes 
are also available by using molecular dynamics simulations implemented in MM packages, 
and algorithms to find optimal reaction paths and stationary points on the potential energy 
surface (PES) are also available, by using the program modules implemented in the QM 
packages. 
Recently, in our laboratory, a new QM/MM interface program was developed by 
connecting the AMBER (Case et al., 2005) and GAMESS (Schmidt et al., 1993) packages 
(Kang et al., 2009). Thereby, one can couple various levels of QM calculations, such as 
Hartree-Fock, density functional theory (DFT), and more advanced schemes, with 
conformational sampling and free energy estimation techniques, such as a standard 
molecular dynamics (MD) calculation, replica exchange MD, and potential mean force 
(PMF). 
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The roles of the interface program are i) to control the sequence of steps for the QM/MM 
optimization and the MD simulation, and ii) to exchange information between the two 
programs. At the first stage of a calculation cycle, a single-point calculation is performed in 
GAMESS concerning the coordinate set of a system. This yields two types of forces: i) the 
forces on the QM atoms from the QM–QM and QM–MM interactions, and ii) the forces on 
the MM atoms derived from the QM–MM interactions. To calculate the second force, the 
contribution from the QM atoms to the MM atoms is calculated, by integrating the 
interaction between the partial charges of the MM atoms and the electron density at each 
grid point of the quantum region, as shown in equation (6).  

 QM
3 .

N
j

j ij i
i ij

q
F dq

r
 r  (6) 

Here, qj is the partial charge of an MM atom, and N is the total number of electron density 
points. Here, dqi designates a small volume on the electron density grid, dqi = idxdydz. With 
respect to the coordinate set, AMBER calculates (1) forces from van der Waals (vdW) 
interactions between all atoms of the system, and (2) forces on MM atoms from MM–MM 
interactions. The interface program combines the calculated forces. This step requires the 
mapping of the relationship between the QM and MM atoms, since the atom labeling in one 
program package may differ from that in the other one. In order to reduce the overhead cost 
of this process (in particular, the required computational time would increase when treating 
solvated biological macromolecules; i.e., the number of atoms included in the calculation 
system could exceed 100,000 atoms), we employ a combination of a UNIX shell and C 
programming.  
For combining the QM and MM calculations, we should mention another use of (advanced) 
QM calculations (such as Coupled Cluster); i.e., the development of effective potentials for 
MM calculations. A recently developed scheme can be applied to a wide range of 
interactions. For example, the description of cation- interactions, such as the complex of 
Na+ and an aromatic ring, was difficult to achieve using conventional MM potentials. The 
new scheme mentioned above enabled us to perform accurate MD simulations involving a 
cation- interaction that is present in the catalytic site of an enzyme (Hagiwara et al., 2009a; 
Hagiwara et al., 2011). 

3. Application 1: A copper binding protein, azurin 

3.1 Azurin 
Biological systems possess various types of metalloenzymes, which are involved in 
biological functions such as electron transfer, metal storage, dioxygen binding, substrate 
turnover, and protein structure configuration (Holm et al., 1996). An important application 
of QM/MM methods for metalloenzymes is to investigate the electronic structures of the 
active sites in blue copper proteins (Paraskevopoulos et al., 2006; Ryde&Olsson, 2001; Ryde 
et al., 2000; Sinnecker&Neese, 2006; Solomon, 2006), which function in electron transfer (ET) 
through the bound Cu ion(s) (Gray et al., 2000). X-ray crystallographic analyses have been 
reported for such enzymes, including azurin, plastocyanin, and stellacyanin. The common 
features of the active site are one-cysteine coordination and two-histidine coordination to 
the copper centres, forming an approximate trigonal plane, and their coordination 



 
Some Applications of Quantum Mechanics 

 

364 

environments are completed with weak axial ligand(s) (Gray et al., 2000; Paraskevopoulos et 
al., 2006).  
Azurin includes a five-coordinated copper, and possesses methionine (Met) and the 
backbone carbonyl oxygen of glycine (Gly) as weak axial ligands (figure 3). Stellacyanin and 
plastocyanin have a four-coordinated copper site coordinated with glutamine (Gln) and Met 
as weak axial ligands, respectively. These weak coordinative bonds are presumed to 
contribute critically to the redox potential related to electron transfer, thereby regulating the 
biological functions. Thus, blue copper proteins have been used as standard 
metalloenzymes to examine the accuracy of calculations (Ryde&Olsson, 2001; Ryde et al., 
2000; Solomon, 2006; Solomon et al., 2004). 
 

Fig. 3. The three-dimensional structures of azurin and its Cu-binding site. 

3.2 Evaluation of QM/MM calculations: Spin polarization 
The above-mentioned QM/MM schemes, the additive (termed simulation A here) and 
subtractive (simulation B) schemes, were adopted by exploiting our interface program that 
connects QM and MM calculation engines implemented in parallel supercomputers (see 
section 2.4) (Hagiwara et al., 2009d; Kang et al., 2009). An advantage of this strategy is that 
the interface program enables us to compare the results of QM/MM calculations using 
distinct schemes; thus, the long-range effects on the copper active site were evaluated in this 
theoretical analysis. Here, an ab inito DFT calculation was utilized as the QM part in the 
following QM/MM calculations.  
The QM/MM calculations were evaluated by a comparison to the experimental data, as 
follows. The singly occupied molecular orbital (SOMO) of the copper binding site of blue 
copper proteins is known as an antibonding feature, as a combination of a Cu 3d-orbital and 
a cysteine sulphur 3p-orbital (Solomon, 2006; Solomon et al., 2004; Sugiyama et al., 2005). In 
simulations A and B, the 128 - and 127 -spin orbitals are occupied, and the SOMOs of 
simulations A and B were found in the 126 -spin orbitals, as shown in figure 4a and b, 
respectively. The Cu 3d-orbital and the cysteine sulphur 3p-orbital contribute to the SOMO 
in both simulations A and B, while some differences in the orbital patterns are seen at the 
Gly45 and His117 residues (figure 4).  
The electron density of the S atom in Cys112 is significantly delocalized onto the copper d-
orbital (this was confirmed by the calculation of the Mulliken charge of the S atom) (Kang et 
al., 2009), resulting in a large spin density on the S atom. In simulation A, the spin 
polarization is significantly improved (49.9%), as compared to simulation B (56.8%), since 
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the former calculation result (simulation A) exhibits better agreement with the spectroscopic 
experiment; i.e., 45% S 3p-orbital character was experimentally observed in the SOMO of 
azurin (George et al., 2003; Solomon et al., 2004). This result indicates that the explicit 
inclusion of an electrostatic interaction by the QM Hamiltonian is essential for the accurate 
evaluation of the copper site. 
 

 
Fig. 4. SOMOs of simulations A (panel a) and B (panel b).  

3.3 Evaluation of the QM/MM calculation: Three-dimensional geometrical structure 
Next, with respect to the three-dimensional geometrical structure, the atomic distances 
relevant to the Cu coordination are shown in Table 2. It was pointed out that the intense X-
ray beam reduced the blue copper site during data collection, and thus ambiguities still 
remain in the experimental data. Accordingly, computational investigations are crucial to 
elucidate the outstanding electronic and geometrical features of the weak axial Cu–
S(Met121) and Cu–O(Gly45) ligands and the relatively strong Cu–S(Cys112) ligand observed 
in azurin.  
For the Cu–S(Met121) coordination, a comparison of simulations A and B shows almost the 
same Cu–S(Met121) distances of ~3.5 Å, indicating that in the QM/MM energy schemes, the 
weak Cu–S(Met121) coordination is somewhat insensitive to the polarization effect. Note 
that for the Cu–O(Gly45) distance (2.75–3.16 Å in the crystal structures), Hasnain and co-
workers obtained the remarkably short distances of 2.55 and 2.49 Å, using the ONIOM 
module in the Gaussian package as a QM/MM program, in the presence and absence of the 
electrostatic energy term in the QM Hamiltonian, respectively (Paraskevopoulos et al., 2006). 
Thus, the results of the above-mentioned calculations showed much better agreement with 
the experimental data (Table 2).  
 

Distance Xtala Simulation A Simulation B ONIOMb 
Cu-O(Gly45) 2.95 3.01 2.81 2.55 (2.49) 
Cu-S(Met121) 3.16 3.49 3.50 3.53 (3.41) 
Cu-S(Cys112) 2.27 2.20 2.24 2.17 (2.17) 
Cu-N(His117) 1.98 2.00 2.10 2.01 (2.03) 
Cu-N(His46) 2.06 2.03 1.93 1.99 (2.01) 

a. Experimental data of the crystal structure (Nar et al., 1991) 
b. EE (ME) optimized geometries (Paraskevopoulos et al., 2006) 

Table 2. Comparison of the three-dimensional geometrical structures of the active site of 
azurin. 
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In addition, significantly different Cu–O(Gly45) distances, 3.0 and 2.8 Å, were found 
between the calculated structures for simulations A and B, respectively, indicating that this 
weak axial Cu–O(Gly45) coordination is sensitive to the treatment of the electrostatic 
interaction in the QM Hamiltonian. This is a distinctive feature between the Cu–S(Met121) 
and Cu–O(Gly45) bonds. Note here that the Cu–O(Gly45) bond is fairly well polarized, 
whereas the Cu–S(Met121) bond is just slightly polarized (this was confirmed by the 
calculation of the Mulliken charges) (Kang et al., 2009). 
Next, with respect to the electronic structures of the active site of azurin, the molecular 
orbitals (MOs) that predominantly include the electrons involved in S(Met121)/O(Gly45) 
atoms were compared between simulations A and B. Here, note that O(Gly45) is included in 
a peptide group of the protein backbone, and that the electrons of the atom are delocalized 
onto the peptide group. Therefore, the contributions of the delocalized electrons should be 
summed up for the peptide groups of the protein backbone.  
As a result of the analysis, for the Cu–S(Met121) coordination, the highest occupied 
molecular orbitals (HOMOs) of the electrons, which are the 128 MOs in both models, were 
revealed to include the electrons of the S(Met121) atoms predominantly in both models, and 
they are equivalent to each other. The energy difference between the two HOMOs is as 
small as 1.8 kcal/mol, which can be considered to be marginal (figure 5a).  
On the other hand, for the Cu–O(Gly45) coordination, the 96 orbital of the  electron in 
simulation A corresponds to the 97 orbital of the  electron in simulation B, which 
predominantly includes the electrons of the peptide group involving O(Gly45). The energy 
difference between the two MOs is 8.6 kcal/mol; this value is definitely larger than that of 
S(Met121) (figure 5b). Thus, it is likely that the energy level of the electrons of O(Gly45) is 
shifted through the electrostatic interactions in the QM Hamiltonian, indicating that this 
polarized coordinative bond is sensitive to the environment surrounding the copper active site. 
 

Fig. 5. Examples of the MOs and their energy levels obtained from those of LUMOs, which 
are common in both calculation results. Panels (a) and (b) represent HOMOs and 96  MOs, 
respectively.  

3.4 Effect of the long-range interaction 
The results indicated that the treatment of the electrostatic interactions of the metal site, the 
surrounding protein moiety, and the solvent in the QM Hamiltonian is important for an 
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accurate description of the electronic structure and the geometry of the blue copper site in 
azurin. Thus, it is suggested that the electronic structures of active sites are actually modulated 
by the surrounding regions through long-range electrostatic interactions, resulting in 
contributions to the biological functions of metalloenzymes, such as electron transfer. 
In addition, for the other issues, such as the evaluation of solvent effects on the electronic 
structures of biological macromolecular systems, the QM/MM calculation schemes are also 
useful. For example, with respect to a DNA-protein complex, the recognition mode between 
the DNA and PU.1 (a transcriptional factor protein) influences the solvent accessibility 
(accessible surface area) of the DNA bases, through masking by the protein. The QM/MM 
calculations revealed that the differences in the solvent accessibilities of the DNA bases are 
closely relevant to the MO energy levels of the bases, which may contribute to the regulation 
of the biological functions of the molecular systems, such as the reactivity of each base 
(Hagiwara et al., 2010b).  

4. Application 2: A transition metal binding protein, cytochrome c oxidase 

4.1 CuA site of cytochrome c oxidase  
Cytochrome c oxidase (CcO), which is the terminal enzyme of the electron transport system, 
reduces an oxygen molecule to water, thereby generating the proton concentration gradient 
between the matrix and the intermembrane space of mitochondria or the periplasmic space 
of bacteria (proton pumping). The CuA site of CcO (figure 6) receives electrons from 
cytochrome c, thereby providing the electrons with heme a. This triggers various chemical 
reactions occurring from the reduced state in CcO, which are cooperatively induced, 
followed by oxygen binding (Kaila et al., 2010; Namslauer&Brzezinski, 2004; Papa et al., 
2004). Thus, the CuA site acts as the “gate” of the subsequent cooperative reactions in CcO. 
The CuA site possesses two Cu ions and six coordinated ligands (figure 6). These two Cu 
ions were found to form a covalent bond characterized by a mixed-valence state (DeBeer  
 

 
Fig. 6. Geometric structure of bovine CcO (a), and CuA site of CcO. Panel (c) is a schematic 
depiction of the CuA site.  
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George et al., 2001; Gamelin et al., 1998; Kroneck et al., 1988, 1989), which produces a lower 
reorganization energy and a higher electron transfer rate than those of the blue Cu proteins, 
such as plastocyanin and azurin (DeBeer George et al., 2001). In bovine CcO, the distances of 
Cu-S (Met207) and Cu-O (the Glu198 backbone) are slightly longer than the other covalent 
bonds, and thus the S and O atoms are referred to as the axial-coordinated atoms.  

4.2 Controversial experimental data involving discrepancies  
Each of the Cu-binding sites of plastocyanin and azurin also possesses an axial Met ligand, 
and the functional roles of the Cu-binding sites in the blue Cu proteins were considered to 
be similar to those of the CuA site in CcO (Covello&Gray, 1990; DeBeer George et al., 2001). 
In plastocyanin and azurin, this Met residue is important to control their reduction 
potentials (Berry et al., 2003; Garner et al., 2006). By analogy to the blue Cu proteins, Met207 
of the bovine CcO may also be involved in regulating the electron transfer rate. In fact, this 
Met is highly conserved in various CcO proteins (Paumann et al., 2004).  
However, several distinct experimental results were reported. For example, in the 
engineered azurin, in which the CuA site was incorporated to mimic that of CcO, the roles of 
the Met residue were analyzed by measuring the redox potentials of several mutants 
(Hwang et al., 2005; Robinson et al., 1999). This analysis revealed only slight changes in the 
redox potential of the mutants. In contrast, significant changes in the redox potential were 
observed in the Met mutants of the bacterial CcO enzymes. In fact, for the CcO from 
Rhodobacter sphaeroides, the replacement of the axial Met with Leu remarkably increased the 
redox potential, by 118 mV (Wang et al., 2002; Zhen et al., 2002). With respect to the Thermus 
thermophilus ba3 oxidase, systematic mutagenesis studies of the CuA site revealed various 
ranges of redox potentials in the mutants (Ledesma et al., 2007).  
In this manner, the experimental results relevant to the CuA site were apparently 
controversial and also involved some discrepancies. In addition, the intense X-ray beam 
used for the structural analysis reduces the metal binding site during the data collection, 
thereby delocalizing the electron density of the transition metal binding site. Thus, the X-ray 
structure of the CuA site may also include some ambiguities, which is a similar case to that 
of azurin, as discussed below. These led to some difficulties in the detailed and accurate 
elucidation of the functional roles of the axial ligands in the CuA site.  

4.3 Electronic structure of CuA site 
To clarify the functional roles of the amino acid residues in the CuA site, intensive theoretical 
analyses have been performed, and some were coupled to experiments, such as 
spectroscopic measurements. In a recent QM/MM analysis of the CuA site, experimental 
artifacts were found in its atomic coordinates. The conformation involving the artifacts was 
improved in the theoretical analysis, and then explicit solvent water molecules were 
arranged in the calculation model. The accurate descriptions of the electronic structure of 
the active site were intended to elucidate the functional roles of the axial ligands, where 
some experimental discrepancies were found, as mentioned above. As a consequence, an 
interesting feature was revealed in the electronic structure of the CuA site of CcO, which 
may be closely relevant to the roles of the axial residues (Kang et al., 2011). This finding is 
briefly discussed in this section.  
In the CuA structure of bovine CcO, a steric clash exists between C of Met207 and C of 
Cys196, which may be derived from the above-mentioned ambiguity of the 
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crystallographic analysis. Accordingly, for the structural improvement, extended 
sampling techniques coupled to QM/MM geometry optimization were adopted for the 
CuA site of bovine CcO. Thereby, the steric clash was completely removed without 
inducing any structural transitions, as compared with the crystallographic electron 
density distribution map of the CuA site. Thus, such computational methodologies are 
indispensable to minimize the experimental artefacts induced by the X-ray beam in 
transition metal binding proteins.  
The following section includes some descriptions of the electronic structure obtained by the 
QM/MM calculations, and comparisons with experimental data: the SOMO of the oxidized 
state of the CuA site contains Cu and S (Cys) atomic orbitals (figure 7). In this hybrid 
QM/MM calculation of bovine CcO, the two Cu and S atoms of the CuA site exhibited 47 % 
and 45 % spin densities, respectively (Kang et al., 2011). On the other hand, to minimize the 
difficulties in the experimental analysis of the CuA site of CcO, Hay et al. incorporated the 
two Cu ions and the coordinated amino acid residues into azurin, to mimic the original CuA 
structure and the function of CcO (Hay et al., 1996). With respect to this engineered azurin, 
DeBeer George et al. performed Cu L-edge and S K-edge X-ray absorption spectroscopic 
(XAS) experiments. This analysis revealed that the d-orbitals of the Cu atom (44 %) and the 
p-orbitals of the S atom (46 %) predominantly occupy the SOMO of the CuA site (DeBeer 
George et al., 2001).  
In this manner, the results of the hybrid QM/MM calculation of CcO are quite consistent 
with the experimental data. In previous studies, similar comparisons were performed with 
respect to the calculated and experimental data, using the engineered azurin for both 
analyses (Xie et al., 2008). The above-mentioned QM/MM calculation results are better than 
the previous ones, in comparison with the experimental data.  
 

Fig. 7. SOMO of the CuA site obtained by hybrid QM/MM calculations of CcO.  

Next, to evaluate the effects of the axial Met residue, a simple model was also calculated. 
This model was composed of only the atoms involved in the CuA site where the Met residue is 
excluded. The results were compared with the above-mentioned QM/MM calculations of the 
CuA site involving CcO in the calculation model. This analysis revealed that the axial Met 
ligand increases the energy of an MO that predominantly contains the Cu dzx orbital, 
whereas the other MO energy levels were influenced to a much lower extent (please note 
that the local coordinate system, such as dzx, depends on the calculation programs used in 
the analysis, and thus is not substantial) (Kang et al., 2011).  
This elevation of the energy level of the Cu dzx orbital can be understood by the 
hybridization of the atomic orbitals between the Cu ion and the S atom of the axial ligand, as 
shown in figure 8. Thus, from the view of the electronic structure of the CuA site, the role of 
the axial Met ligand may be the selective modulation of the energy level of a Cu d orbital. 
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Fig. 8. Hybridization of the 3pz of the S atom of the axial ligand Met residue and dxz of the 
Cu ion. 

4.4 Inner-sphere reorganization energy of CuA site 
Furthermore, the inner-sphere reorganization energy, which is one of the factors to 
determine the electron transfer rate in the Marcus theory, was calculated within the 
framework of the QM/MM calculation, and compared with the experimental data (Kang et 
al., 2011).  
The Marcus theory gives the relationship between the electron transfer rate and the 
reorganization energy, as follows (Marcus&Sutin, 1985; Moser et al., 1992): 
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Here, |HDA| is the electronic coupling between the initial and final states, kB is the 
Boltzmann constant, and ħ is the reduced Planck constant, which is defined as the Plank 
constant divided by 2. The G0 represents the standard Gibbs free energy change, and the 
 represents the reorganization energy, which is the sum of the inner-sphere and outer-
sphere reorganization energies. In this report, the inner-sphere reorganization energy is 
evaluated by using the following equation, as mentioned previously (Gorelsky et al., 2006; 
Kelterer et al., 2001) : 

    i g oxidized g reduced g reduced g oxidizedchg reduced chg oxidized
E E E E     

    . (8) 

Here, E represents the energy of the QM region, involving the electrostatic interaction 
energy between the MM1 and QM regions. The subscript, chg, refers to the charge state of 
the system. The other subscript, g, refers to the geometry of the redox site, which is obtained 
by the geometric optimization of the hybrid QM/MM calculations. Thus, each E value 
should be obtained by QM/MM geometry optimization.  
The following two calculation models were used to evaluate the axial Met residue in terms 
of the inner-sphere reorganization energy: A) QM-Met and B) MM-Met. Model A is the 
same as the QM/MM model that was described above. In model B, the axial Met residue 
was removed from the QM region (i.e., the Met residue was incorporated into the MM 
region), and the atomic partial charges of the Met reside were set to zero.  
The computational (model A) and experimental values of the inner-sphere reorganization 
energy were consistent (i.e., 228 and 250 meV, respectively). Next, the comparison of the two 
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computational models revealed that the inner-sphere reorganization energy of model A is 
larger than that of model B, by as little as 44 meV. This indicates that the axial Met residue 
does not significantly perturb the electron transfer rate of the CuA site of bovine CcO. In fact, 
the mutant in which the Met residue is replaced with Leu exhibited a lower electron transfer 
rate than that of the wild type, by ten-fold (Wang et al., 2002), which seems to be 
quantitatively consistent with the above-mentioned calculation result. Therefore, it is 
concluded that the axial Met residue may be the fine-modulator of the electron transfer rate 
of the CuA site.  

4.5 Use of techniques in information science 
In this manner, the hybrid QM/MM calculations indicated that the axial Met ligand 
functions as a fine-modulator of the electronic structure (see 4.3) and the electron transfer 
rate (see 4.4) of the CuA site of bovine CcO. Still, one cannot solve the above-mentioned 
experimental discrepancy in the differences of the redox potentials of the CuA site, 
depending on the species. The X-ray structure of the axial Met residue of bovine CcO is 
shown in figure 9. The Met backbone is located in a short turn structure between an -helix 
and a -sheet that form a rigid conformation, and thereby, the residue side chain is also 
fixed together with the Cu-coordination of the S atom. To solve the experimental 
discrepancy, the structural changes of the CuA sites were examined with respect to the 
mutants of oxidases from various species, by combining amino acid multiple sequence 
alignment and computer modeling techniques.  
 

Fig. 9. The axial Met residue (Met207) in the crystal structure of bovine CcO.  

The amino acid sequence alignment of the CcOs revealed that the Rhodobacter and bovine 
oxidases (large changes were observed in their redox potential values) possess inserted 
modular structures close to the CuA sites, whereas the Thermus thermophilus ba3 oxidase and 
the engineered azurin (small changes in the redox potentials) do not. In fact, in the crystal 
structures of the Rhodobacter and bovine oxidases, the axial Met residues contact the inserted 
modular structural elements. In contrast, in the crystal structures of Thermus thermophilus ba3 
oxidase and the engineered azurin, the Met residues can apparently move more flexibly, 
and so the replacement of the Met residue may cause only small perturbations of the 
properties relevant to the CuA sites. Computer-assisted structural modeling of the various 
mutants confirmed these findings (Kang et al., 2011).  
Thus, the use of information science techniques (bioinformatics) is also crucial to perform 
thereotical analyses employing ab inito QM/MM electronic structure calculations of 
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biological macromolecular systems. The development of methodologies in both fields is 
required, and the methodologies should be unified to analyze biological systems.  

4.6 Double-stratified architecture of the CuA site 
On the other hand, with respect to the Cu-coordinated Cys/His residues, their replacement 
influenced the geometric and electronic structures of the CuA site much more drastically 
(Hwang et al., 2006; Zhen et al., 2002; Zickermann et al., 1997), resulting in structural 
disruptions and significant increases in the redox potential (Zhen et al., 2002). For instance, 
the replacement of each cysteine residue (the mixed valence state) with serine in the 
engineered azurin (C112S and C116S) induced the different electronic states (i.e., the C112S 
mutation induced two distinct Cu centres, each of which is type II, while the C116S 
mutation induced one Cu centre, which is type I or II depending on pH) (Hwang et al., 
2006). Thus, these Cys/His residues play a critical role in establishing the geometric and 
electronic structures of the CuA site.  
In this manner, the functional roles of the amino acid residues of the CuA site have been 
revealed. The two Cys/His residues build the fundamental geometric and electronic 
structures of the CuA site; together, these are considered as the “platform” of the CuA 
structure, since the replacements of those residues exert critical effects on the CuA system 
(figure 10). In contrast, the axial Met ligand functions in the fine modulation of the electronic 
structure of the “platform”; thereby, this residue may regulate the electron transfer rates 
from Cyt c to heme a, thus inducing the various subsequent cooperative reactions occurring 
in CcO (figure 10) (Kang et al., 2011).  
 

Fig. 10. The double-stratified architecture of the CuA site, as proposed in this chapter. 

This means that the CuA site forms the double-stratified architecture, comprising the 
platform (i.e., Cu2, Cys S atoms, His N atoms) and its fine-modulators (Met S and O atoms). 
This is not trivial. In fact, the weakly coordinated axial Met ligand in the active site of native 
(wild type) azurin seems to act as a member of the “platform” residues (see 4.1). In addition, 
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the critical roles of the axial Met residues in the CuA sites had been proposed for the 
oxidases and the engineered azurin, as mentioned in section 4.2; this suggests that the Met 
ligand is a member of the “platform” residues. However, it has been concluded that the Met 
ligand is not a “platform” residue, but a “fine-modulator”, on the basis of the analysis using 
ab initio QM/MM electronic structure calculation and computer modeling techniques 
coupled to multiple sequence alignment.  
This type of hierarchical structure relevant to the function may be widely utilized in biological 
systems. For example, some protein structures seem to be established by a similar architecture; 
i.e., fundamental folds are common in various proteins, and the addition of specific inserted 
modular elements into such fundamental folds leads to new biological functions of the 
proteins in molecular evolution. Such multi-stratified architecture and molecular evolution can 
be found in various biological systems, as observed in the CuA sites of various oxidases.  

5. Application 3: Novel catalytic reaction mechanism revealed by QM/MM 
molecular dynamics simulation 

5.1 Aminoacyl-tRNA synthetases 
Aminoacyl-tRNA synthetases (aaRSs) are responsible for the correct attachment of their 
cognate amino acid to the 3’-end of the specific tRNA (aminoacylation). Thereby, these 
enzymes are critical for the conversion of the nucleotide sequences of mRNAs into the 
amino acid sequences of proteins, in the translational process of every known organism. 
Translational fidelity is determined by the accuracy with which specific amino acids are 
attached to their appropriate tRNAs. This reaction proceeds as follows: first, an amino acid 
is activated to an aminoacyl adenylate by ATP transfer, with the generation of 
pyrophosphate; second, the amino acid moiety of the aminoacyl adenylate is transferred to 
the 3’-end of the specific tRNA.  
The aaRSs are divided into classes I and II, according to their primary and tertiary 
structures, and are further subdivided into subclasses, a, b and c, within each class 
(Sankaranarayanan&Moras, 2001). The class I aaRSs are characterized by the nucleotide 
binding (Rossmann) fold on which the active site is located, whereas the active sites of the 
class II aaRSs comprise a characteristic seven-stranded  sheet with flanking  helices 
(Cusack et al., 1990; Eriani et al., 1990). 
As mentioned above, the fidelity of translation is assured by the strict discrimination of 
cognate from non-cognate amino acids. However, for the leucine, isoleucine, valine, 
threonine, alanine and phenylalanine systems, which each share structural similarity to 
some other systems, their cognate enzymes, i.e., the leucyl- (LeuRS), isoleucyl- (IleRS), valyl- 
(ValRS), threonyl- (ThrRS), alanyl- (AlaRS) and phenylalanyl- (PheRS) tRNA synthetases, 
have difficulties in the strict discrimination of their specific amino acids, thus producing 
mis-activated amino acids or mis-aminoacylated tRNAs.  
For example, when isoleucine is replaced with valine in the IleRS system, the error rate is 
approximately 1 in 5 (Pauling, 1957). This is caused by the similarity in the chemical 
structures of the amino acids, and results in misactivated amino acids or 
misaminoacylated tRNAs (Fukai et al., 2000; Fukunaga et al., 2004; Fukunaga&Yokoyama, 
2006; Lincecum et al., 2003; Mursinna et al., 2001; Nureki et al., 1998; Silvian et al., 1999; 
Zhai&Martinis, 2005).  
To avoid such incorrect products, these enzymes catalyse editing reactions. Two types of 
editing, pre-transfer editing and post-transfer editing, correct mis-activated amino acids and 
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mis-aminoacylated tRNAs, respectively. A misactivated amino acid is hydrolysed to the 
amino acid and AMP by the pre-transfer editing pathway, and a mis-aminoacylated tRNA is 
hydrolysed to the amino acid and tRNA by the post-transfer editing pathway (Fukai et al., 
2000; Fukunaga et al., 2004; Fukunaga&Yokoyama, 2005; Lincecum et al., 2003; Mursinna et 
al., 2001; Nordin&Schimmel, 2002; Nureki et al., 1998; Sankaranarayanan&Moras, 2001; 
Silvian et al., 1999; Zhai et al., 2007). In this manner, the overall error occurring in the above-
mentioned isoleucine system is thus reduced to only 1 in 40,000 (Freist et al., 1985). 

5.2 QM/MM molecular dynamics simulation 
Ab initio QM/MM molecular dynamics (MD) simulation is a state-of-the-art theoretical 
methodology in current computer simulation techniques for huge molecular systems. To 
investigate the mechanism of the post-transfer editing reaction by the class Ia Thermus 
thermophilus leucyl-tRNA synthetase (LeuRS) complexed with valyl-tRNALeu, hybrid 
QM/MM MD simulations were performed coupled to ab initio DFT calculations as the QM 
simulation (Hagiwara et al., 2010a).  
Several possible reaction pathways were explored by combining umbrella sampling 
techniques with hybrid QM/MM MD simulations to obtain the PESs of the reaction 
pathways, and the calculated activation barrier led us to identify the most preferable 
reaction pathway. The result obtained was consistent with the biochemical experimental 
data, and thus a novel enzymatic reaction mechanism was revealed by the theoretical 
strategy, as discussed below.  
In contrast, reaction pathway exploration by experimental techniques is very difficult. Even 
if such methodologies are available to identify the enzymatic mechanisms, theoretical 
approaches are also indispensable to elucidate the electronic structure changes of the active 
site of the enzymatic systems. This is a recent successful case.  
figure 11 depicts the entire calculation system of the LeuRS•valyl-tRNALeu complex, 
including solvent water molecules (in total ~165,000 atoms), as well as the active site of the 
editing reaction (Hagiwara et al., 2009b; Hagiwara et al., 2009c). To obtain the PES relevant 
to the enzymatic reaction, an adiabatic mapping approach was adopted. This method is 
based upon conformational/configurational sampling by QM/MM MD simulation and 
QM/MM geometry optimization. The role of the QM/MM MD simulation is the 
enhancement of such sampling.  
 

 

Fig. 11. The entire model system and the active site of the editing reaction in the 
LeuRS•valyl-tRNALeu complex. The arrow points to the nucleophilic water.  
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The reaction space was divided into windows, each defined by a particular set of values of 
the reaction coordinate variables, and then, for each window, a QM/MM MD simulation 
was performed, followed by a geometry optimization. Both the MD simulations and 
geometry optimizations were performed with functions that constrained the reaction 
coordinate variables, to keep them close to their window reference values. The final PESs 
were then reconstructed from the energies of the geometrically optimized structures, but 
without the constraint energy terms. 

5.3 Editing mechanism: A novel enzymatic reaction by a hybrid ribozyme/protein 
catalyst 
This computational analysis revealed that the water molecule that acts as the nucleophile in 
the editing reaction is activated by a 3’-hydroxyl (3’-HO) group at the 3’-end of tRNALeu, 
and that the O2’ atom of the leaving group of the substrate is capped by one of the water’s 
hydrogen atoms. This was shown to be consistent with experimental data. Thus, it is the 
tRNA itself, and not the protein, that drives the editing reaction. Unexpectedly and 
surprisingly, editing was found to be a ribozymal self-cleavage reaction.  
The protein does, however, have an important stabilizing effect on certain high-energy 
intermediates along the reaction path, and thereby plays a critical role in promoting the 
reaction and providing specificity in ligand recognition. These results led us to call the 
LeuRS•valyl-tRNALeu complex a “hybrid ribozyme/protein catalyst”, which is more 
efficient than the ribozyme alone (Hagiwara et al., 2010a).  
Furthermore, examinations of previously reported structural and biochemical data revealed 
that this RNA-driven catalytic mechanism seen in the LeuRS•valyl-tRNALeu complex appears 
to be quite widespread, as it occurs in the deacylation and peptidyl-transferase reactions of the 
ribosome as well as the editing reactions in the other class (class II) of aaRSs. The existence of 
hybrid ribozyme/protein catalysts, exemplified by the LeuRS editing mechanism, also 
provides insight into the types of transitional forms that could have been important in the 
RNA world hypothesis for the origin of life (Cusack et al., 1990; Eriani et al., 1990).  
In this manner, by employing hybrid QM/MM MD simulations, we found a new biological 
catalyst. This system is distinct from conventional RNA•protein complexes such as the 
group I intron: the proteins (aaRSs) directly contribute to the reaction through hydrogen-
bonding with RNA moieties, thus stabilizing the high-energy intermediates. Recently, a 
similar theoretical analysis of the editing mechanism was conducted by employing our 
fully-solvated structural model (figure 11), and the author reported almost the same reaction 
mechanisms as described above (Boero, J. Phys. Chem., 115, 12276, 2011). In this report, an 
additional possible initial reaction pathway was proposed; however, this process is not 
feasible, as shown in the previous study (see Simulations 2 and 4 in Hagiwara, et al., 2010a). 
The difference (artefact) could be due to the insufficient QM regions lacking the crucial 
atoms, the functional used in the calculations (see Tuckerman, et al., 2006), etc.  

5.4 Dynamic electronic structure rearrangements in hybrid ribozyme/protein catalysis 
The dynamic changes that occur in the electronic structure of the catalytic site were 
investigated in the hybrid ribozyme/protein catalysis by the LeuRS•valyl-tRNALeu complex. 
As a result of this theoretical analysis, dramatic, functionally important rearrangements of the 
MOs were observed (Kang et al.). We will briefly describe these dynamic rearrangements of 
the electronic structure in the biological macromolecular systems.  



 
Some Applications of Quantum Mechanics 

 

376 

 

Fig. 12. Increasing the energy level of the MO predominantly contains the p-orbital of the 
nucleophilic water molecule, in the editing reaction by the LeuRS•valyl-tRNALeu complex. 
The left and right panels represent the initial and transition states, respectively, in the 
editing reaction. In the initial state of the editing reaction, the orbital that would be reactive 
for the bond formation is not HOMO, but HOMO-14. In fact, the energy level of HOMO-14 
is elevated as the enzymatic reaction proceeds (i.e., nucleophilic attack occurs). In the 
transition state, this MO becomes HOMO, which leads to the formation of a new covalent 
bond between the water and the carbonyl group.  

Two changes are particularly noteworthy. One concerns the MO that contains a contribution 
from the nucleophile (a water molecule). It initially has a much lower energy than the 
HOMO, but it is activated as the reaction proceeds until it becomes the reactive HOMO 
(figure 12). The other involves the reactive LUMO with anti-bonding character, which 
emerges in the bond rupture that leads to the products. 
We refer to these processes as the dynamic induction of the reactive HOMO (DIRH) and 
LUMO (DIRL), respectively. Interestingly, the induction of the reactive HOMO is enhanced 
by the formation of a low-barrier hydrogen bond (LBHB), which represents a novel role for 
LBHBs in enzymatic systems. 
Previous reports of computational studies of enzymatic reactions have discussed the 
electronic structures of the catalytic sites in terms of frontier orbital theory (FOT). However, 
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the above-mentioned DIRH/DIRL are unusual, in that we have highlighted the dynamic 
rearrangements of the MOs that are relevant to catalysis along the reaction path.  
In small compound systems, the reactive HOMO and LUMO are already present in the 
reactant structures, since the majority of the atoms are directly relevant to the chemical 
reaction, and so dramatic rearrangements in the MOs are not required. By contrast, in the 
complex environment of a biological macromolecule, the reactive HOMO and LUMO are 
much more likely to be hidden, and so these systems must implement the DIRH and DIRL 
mechanisms that expose them.  
Therefore, DIRH and DIRL are probably widespread in the reactions of complex and flexible 
molecular species, such as enzymes, and thus their analysis should be an essential part of 
the investigation of many reaction mechanisms. In this manner, state-of-the-art 
methodologies in computational science are essential to facilitate the elucidation of these 
complex electronic processes. 

6. Conclusion 

In this chapter, we introduced two QM/MM schemes, the additive and subtractive schemes, 
and discussed their advantages and disadvantages. We then showed three types of 
examples of their applications to biological macromolecular systems. Here, the ab inito DFT 
calculation was utilized as the QM part. In the first application, we compared the calculation 
results using the two schemes, to evaluate the effects of the long-range electrostatic 
interactions to the QM Hamiltonian (i.e., the effects of polarizability). As a consequence, the 
additive scheme was found to be more reliable to reproduce the experimental data. 
Therefore, it was concluded that the environmental structures of the protein and solvent 
water molecules crucially affect the geometric and electronic structures of the active site of a 
protein. Thereby, biological macromolecular systems may regulate the properties of their 
active sites.  
In the second application, a computational technique that extensively explored the 
conformational space (involving hybrid QM/MM calculations) was important to remove the 
incorrect structures (e.g. steric clashes) included in the experimental structure. Utilizing the 
corrected atomic coordinates of the CuA site of CcO, the functional roles of the axial Met 
ligand were investigated, where some properties related to the Met residue showed 
experimental discrepancy. A comparison of the electronic structure obtained using the 
hybrid QM/MM calculation of CcO with that of a simple model system lacking the axial 
Met ligand revealed that the effect of this Met residue is not significant, but “selective”.  
Thus, the axial Met ligand was theoretically found to be a fine modulator of the electronic 
structure of the CuA site, although the experimental data were controversial concerning the 
role of this residue. This fine modulation may contribute to a more effective oxygen 
reduction process, by optimizing the electron transfer reaction to the environment. In this 
manner, hybrid QM/MM approaches are crucial to resolve the experimental discrepancy 
related to the electronic properties of biological macromolecules.  
In the final application, we showed an example of a hybrid QM/MM MD simulation that 
was used to elucidate the editing mechanism of the LeuRS•valyl-tRNALeu complex. The 
results of this analysis revealed a novel biological catalyst, a hybrid ribozyme/protein 
enzyme. In this catalysis, the dynamic rearrangement of the electronic structures was 
discovered. Thus, hybrid QM/MM MD simulation is currently one of the most powerful 
theoretical methodologies to elucidate the functional mechanisms of enzymatic systems.  
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1. Introduction 

Real life situations where there are strategies to be chosen in order to obtain a profit can be 
reproduced by games, so game theory is a way to describe the evolution of possible 
scenarios where players can select a scheme of play. Game theory takes importance in many 
areas, such as people decisions making, where their choices do affect others benefit (Davis, 
1970; Myerson, 1991). It is to remark that the principles of game theory were initiated by 
trying to understand the behavior of economic strategies, however Von Neumann presented 
the concept of modern game theory in 1944 (Von Neumann & Morgenstern, 1947). 
Quantum mechanics is a tool that creates another point of view for the traditional game 
theory due to multiple strategies offered for the players, whom possibilities are numerously 
expanded in contrast of classical ones (Eisert & Wilkens, 2000). There are also games where 
the player who uses quantum strategies, enhances his payoffs or even always wins against a 
player who only uses classical moves (Meyer, 1999). It is to remark that there are plenty of 
applications for quantum game theory such as quantum cryptography and computation, 
economics and biology (Piotrowski & Sladkowski, 2003; Hanauske et al.,2009). 
The Battle of the Sexes game is a largely analyzed problem, based on two players: Alice and 
Bob and their choice about an activity for a Saturday night with each other. It is pretty 
important to remark that both want the best possible payoff in the decision, so the game can 
be developed normally, otherwise it would not be our case. Alice, really loves Opera, but 
wants to be with Bob; Bob likes Football but he wants to have Alice’s company along the 
activity. This game has a lot of applications in real life scenarios such as the spread of some 
type of genes from a reproduction between two organisms (Dawkins, 2006); another 
interesting application is neuroeconomics (Montague & Berns, 2002), where brain studies 
have been done in order to incite neurons to choose either to “work” for a reward or to 
“shirk” (Glimcher, 2003). 

2. Classical analysis 

The global idea of the model used in this section is taken from Richard Dawkins’ Battle of 
the Sexes Model, however the specific method implemented is taken from a worksheet 
made by Frank Wang (Wang, 2010), due to its facility to be developed in a computer algebra 
software such as Maple. 
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2.1 Method ܯ஺ and ܯ஻ are payoff matrixes for Alice and Bob, respectively. Where ܯ஺௜௜ is the payoff 
matrix of a female player using strategy ݅ against a male playing strategy ݆; and ܯ஻௜௝ is the 
payoff matrix for a male playing ݅ against a female who plays ݆. ݔ௜ is the proportion of 
females playing ݅; and ݕ௜ is the proportion of males playing strategy ݅. As here we 
considerate two possible strategies whose proportions satisfy: ݔଵ + ଶݔ = 1; and the same 
applies for ݕ௜. In order to reduce the number of variables, we describe ݔଶ and ݕଶ in terms of ݔଵ and ݕଵ, respectively. 

(ݐ)ଵݔ  =  (1) (ݐ)ݔ

(ݐ)ଶݔ  = 1 −  (2) (ݐ)ଵݔ

We substitute (1) in (2): 

(ݐ)ଶݔ  = 1 −  (3) (ݐ)ݔ

(ݐ)ଵݕ  =  (4) (ݐ)ݕ

(ݐ)ଶݕ  = 1 −  (5) (ݐ)ଵݕ

(4) in (5) to get a simpler equation for y: 

(ݐ)ଶݕ  = 1 −  (6) (ݐ)ݕ

The relevant fitness functions are defined as: ݂(ݔ, (ݕ = (ݐ)ଵݕ	ଵଵܣ)	(ݐ)ଵݔ + (ݐ)ଵݕ	(ݐ)ଵݔ	ଵଵܣ൫−	(ݐ)ଶݕ	ଵଶܣ + (ݐ)ଶݕ	(ݐ)ଵݔ	ଵଶܣ + (ݐ)ଵݕ	(ݐ)ଶݔ	ଶଵܣ +  ,(൯(ݐ)ଶݕ	(ݐ)ଶݔ	ଶଶܣ
,ݔ)݃ (7) (ݕ = (ݐ)ଵݔ	ଵଵܤ)	(ݐ)ଵݕ + (ݐ)ଵݕ	(ݐ)ଵݔ	ଵଵܤ൫−	(ݐ)ଶݔ	ଵଶܤ + (ݐ)ଶݔ	(ݐ)ଵݕ	ଵଶܤ + (ݐ)ଵݔ	(ݐ)ଶݕ	ଶଵܤ +  ;(൯(ݐ)ଶݔ	(ݐ)ଶݕ	ଶଶܤ

The appropriate replicator equations in terms of the previously defined fitness functions are: 

    
, ,

d x t
f x y

dt
  

(8) 
    

, ;
d y t

g x y
dt

  

In order to find the equilibrium values for ݔ and ݕ, we remove time-dependence by solving 
(9) when the derivatives are zero, hence  x t x  and  y t y . Then we solve the resulting 
system of two equations and two variables. In order to make the stability analysis, we search 
for a solution with the form: 

    ,x t x t   
(9) 

    ;y t y t   
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where ݔ and ݕ are the equilibrium values previously found; (ݐ)ߝ  and (ݐ)ߟ  are introduced as 
small perturbations respect to the equilibrium values. Now, we substitute (9) in equations 
(8). We can neglect the squares of ߟ and ߝ and their product because their result is very 
small. So we can define the following simplifications in order to be replaced on the resulting 
replicator equations. (ݐ)ߟ	(ݐ)ߝ = 	0, 

ଶ(ݐ)ߝ  = ଶ(ݐ)ߟ (10) ,0 = 0; 
The replicator equations are finally linear, so them can be analytically solved. From these 
solutions we can observe if the equilibrium values are stable.  
An alternative method consists on the Jacobian’s use and the computation of its eigenvalues, 
where the stability depends on the resulting sign of the real part of the eigenvalues. 
However, when the eigenvalues are pure imaginary numbers, the Jacobian method is not 
appropriate for the stability analysis. In this last case, we use the method of the vector field 
for the replicator equations; which is graphically implemented. 

2.2 Standard case 
The previously shown method will be illustrated using three possible examples of the 
traditional battle of the sexes game: 
a. Dawkins example. 
b. Wikipedia’s example1. 
c. Wikipedia’s example 

2.2.1 Dawkins model by Frank Wang 
This first example is taken from a Maple worksheet designed by Frank Wang, based on 
Richard Dawkins’ Battle of the Sexes Model presented on Chapter 9 of the celebrated book 
titled “Selfish Gene”. The classical payoff matrices for this scenario are: ܣ = ቂ2 05 −5ቃ, 

ܤ (11) = ቂ2 50 15ቃ ; 
According with these payoff matrices, the corresponding fitness functions are: ݂(ݔ, (ݕ = (ݐ)ଵݕ	2)		(ݐ)ଵݔ − (ݐ)ଵݕ	(ݐ)ଵݔ	2 − (ݐ)ଵݕ	(ݐ)ଶݔ	5 +  ,((ݐ)ଶݕ	(ݐ)ଶݔ	5

,ݔ)݃ (12) (ݕ = (ݐ)ଵݔ	൫2		(ݐ)ଵݕ + (ݐ)ଶݔ	5 − (ݐ)ଵݕ	(ݐ)ଵݔ	2 − (ݐ)ଵݕ	(ݐ)ଶݔ	5 −  ;൯(ݐ)ଶݕ	(ݐ)ଶݔ	15
which are reduced to:  ݂(ݔ, (ݕ = (ݐ)ݕ	8)	(ݐ)ݔ − 5)	(−1 +  ,((ݐ)ݔ

,ݔ)݃ (13) (ݕ = ൫−1		(ݐ)ݕ2	− + (ݐ)ݔ	(6	൯(ݐ)ݕ	 − 5). 
                                                                 
1 Wikipedia – Battle of the Sexes (game theory) 
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With the previous found fitness, the replicator equations take the form: ݀	ݐ݀(ݐ)ݔ = (ݐ)ݕ	8)	(ݐ)ݔ	 − 5)	൫−1 +  ,൯(ݐ)ݔ
ݐ݀(ݐ)ݕ	݀ (14) = ൫−1		(ݐ)ݕ	2− + (ݐ)ݔ	(6	൯(ݐ)ݕ	 − 5). 

In order to find the equilibrium values, we remove time dependence for x and y, making (ݐ)ݔ = (ݐ)ݕ	and ݔ = 	and we obtain: 0 ;ݕ = ݔ	ݕ	8−	 + ݔ	5 + ݕଶݔ	8 −  ଶݔ	5
(15) 0 = ݔ	ݕ	12 − ଶݕ	ݔ	12 − ݕ	10 +  ଶݕ	10

Solving these last equations, we get: ሼݔ = 0, ݕ = 0ሽ, ሼݔ = 1, ݕ = 0ሽ, ሼݔ = 0, ݕ = 1ሽ,  
 ൜ݔ = 56 , ݕ = 58ൠ , ሼݔ = 1, ݕ = 1ሽ. (16)

In order to make the stability analysis, we use the non-trivial equilibrium values and the 
following small perturbations around these values: 

(ݐ)ݔ = 56 +  (ݐ)ߝ
(ݐ)ݕ (17) = 58 +  (ݐ)ߟ

The resulting replicator equations are: ݀݀ݐ (ݐ)ߝ	 = 	൬−109 ൰ (ݐ)ߟ	 + ൬163 ൰ (ݐ)ߝ	(ݐ)ߟ	 +  ,ଶ(ݐ)ߝ	(ݐ)ߟ		8
ݐ݀݀ (18) (ݐ)ߟ	 = 	 ൬4516൰ (ݐ)ߝ	 − (ݐ)ߝ	(ݐ)ߟ	3 −  ;ଶ(ݐ)ߟ	(ݐ)ߝ	12

and using (10), we obtain the following linear equations: ݀݀ݐ (ݐ)ߝ	 = −109  ,(ݐ)ߟ	
ݐ݀݀ (19) (ݐ)ߟ	 = 4516  ;(ݐ)ߝ	

The solution for the last system of equations is: ൜(ݐ)ߝ = ଵܥ sin ൬54 √2 ൰ݐ + ଶܥ cos ൬54 √2 ൰ݐ , =(ݐ)ߟ 98 √2 ଵܥ−) cos ൬54 √2 ൰ݐ ଶܥ	+ sin ൬54 √2 (൰ݐ ൠ (20)
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About the stability analysis, we observe that the small perturbations are oscillating functions 
without damping. It is to say that the perturbations never end, and therefore the equilibrium 
values are instable. It is worthwhile to note that in this case the Jacobian has eigenvalues 
that are pure imaginary numbers, so it is necessary to use the vector field method in order to 
see the results. The subsequent vector field plot is: 

 

 
Fig. 1. Vector Field plot of the results. 

We can observe that the trajectories in the phase plane are closed curves around the non-
trivial equilibrium point, considered as a center. We can also make a numerical solution for 
the replicator equations, whose results are graphically shown: 

 

   
Fig. 2. a) Numerical solution for Alice’s, b) Numerical solution for Bob’s, c) Alice’s and Bob’s 
results plotted together with an extended time. 

The three previous graphs are the time series for the player’s proportions. The following 
graph is the phase plane for x and y: 
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Fig. 3. Phase plane of the solutions. 

2.2.2 Wikipedia case 1 
The following example is taken from Wikipedia, where is referred as case 1. In this 
scenario, Alice and Bob receive pays only when both of them meet at the Opera, where 
Alice gets 3 and Bob 2; or at the football match, where Alice gets 2 and Bob 3. Also, both 
Alice and Bob receive no pay when they go to the wrong places either Opera or Football. 
It is to considerate the case where Alice receives a small payoff for going alone to the 
Opera and Bob for attending to the football match, but this will be analyzed in section 
2.2.3. The previous scenario is shown on the following matrices, for Alice and Bob 
respectively:  ܣ = ቂ3 00 2ቃ, 

ܤ (21) = ቂ2 00 3ቃ ; 
Applying matrices at (21) in the method previously shown, the solutions obtained are: 

 ሼݔ	 = 	0, 	ݕ = 	0ሽ, ሼݔ	 = 	1, 	ݕ = 	0ሽ, ሼݔ	 = 	0, 	ݕ = 	1ሽ, ቄݔ	 = ଷହ , 	ݕ = ଶହቅ , ሼݔ	 = 	1, 	ݕ = 	1ሽ. (22) 

Following the steps presented in the method, the following linear equations are shown, 
which came from replicators equations: ݀݀ݐ (ݐ)ߝ	 = 65  ,(ݐ)ߟ	

ݐ݀݀ (23) (ݐ)ߟ	 = 65  ;(ݐ)ߝ	
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Finally we can find the solutions for the previous system (23): 

 ቄ(ݐ)ߝ = ௧	݁ିలఱ	ଵܥ	 	+ ,௧	݁లఱ	ଶܥ	 (ݐ)ߟ = ௧	݁ିలఱ	ଵܥ−	  ௧ቅ (24)	݁లఱ	ଶܥ	+

From the previous solution we can deduce that both strategies meets at a specific point. A 
vector field plot is made:  
 

 
 

Fig. 4. Vector field plot. 

Numerical solutions in the phase plane for both strategies are: 
 

   
 

Fig. 5. a), b) Alice's and Bob's trajectories in the phase plane respectively, c) superposed 
graphs with a longer time period. 

Figure 5 shows the evolution in time of the solutions obtained. The following graph is the 
phase plane for x and y: 
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Fig. 6. Phase plane for x and y. 

2.2.3 Wikipedia case 2 
It’s presented a possible modification for the previous case. Here, Alice receives a small pay 
for attending the Opera alone; likewise, Bob gets a positive payment for going to the football 
match without Alice. The amount received in both cases will be taken as 1; for the other 
possible situations, the payoffs keep being the same: ܣ = ቂ3 10 2ቃ, 

ܤ (25) = ቂ2 01 3ቃ ; 
Using replicator’s equation in the method presented, the equilibrium values obtained for the 
system are: 

ሼݔ	 = 	0, 	ݕ = 0ሽ, ሼݔ = 1, ݕ = 0ሽ, ሼݔ = 0, ݕ = 1ሽ, ൜ݔ = 34 , ݕ = 14ൠ , ሼݔ = 1, 	ݕ = 	1ሽ. (26)

Using equations (10) and the non-trivial equilibrium values, the following linear equations 
are found:  ݀݀ݐ (ݐ)ߝ	 = 34  ,(ݐ)ߟ	

ݐ݀݀ (27) (ݐ)ߟ	 = 34  ;(ݐ)ߝ	
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which led to the solutions for (ݐ)ߝ and (ݐ)ߟ: ൜(ݐ)ߝ = ଵܥ ݁ଷସ ௧ + ଶܥ ݁ିଷସ ௧, (ݐ)ߟ = ଵܥ ݁ଷସ ௧ − ଶܥ ݁ିଷସ ௧ൠ (28)

In order to understand the stability analysis, a vector field plot of the solutions is made: 

 

 
 
Fig. 7. Vector field plot. 

Player’s proportions on time’s evolution are plotted in the next graphs: 

 

   
 
Fig. 8. a) Alice’s proportion on time, b) Bob’s strategy proportion, c) Alice’s and Bob’s time 
proportions. 
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From the previous three graphs is possible to observe the convergence. It is also presented a 
phase plane graph of the solutions: 

 

 
 
Fig. 9. Phase plane graph of the solution. 

2.3 Burning money case 
Allowing one of the players to “burn” money is really an interesting idea, remarking that 
both Alice and Bob are rational and pretend to have the best possible reward. In this work 
Alice will have the chance of burning money, while Bob plays only with selecting between 
opera or football match. The idea of burning money is presented as a game that helps 
understand weakly dominated strategies, modifying the normal game in order to let the 
players make a rational elimination by knowing that the other player eliminates strategies 
too. This case is presented in by Herbert Gintis (Gintis, 2009). The case proposed on section 
2.2.2 can be taken as an un-burning money case. 

2.3.1 Burning money case 
The difference for this case is the possibility for one player (Alice) to “burn” money; that is 
to say, the player can have a negative payment by destroying some of her stuff, hence 
changing the strategies used by each player. In this case this option will be for Alice, who 
loses 2 points in each possible payment; while Bob keeps having the same payment: ܣ = ቂ 2 −2−2 −1ቃ, 

ܤ (29) = ቂ1 00 4ቃ ; 
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With the given matrices and the established method, equilibrium values for the system are 
found: 

ሼݔ	 = 	0, 	ݕ = 0ሽ, ሼݔ = 1, ݕ = 0ሽ, ሼݔ = 0, ݕ = 1ሽ, ൜ݔ = 45 , ݕ = 15ൠ , ሼݔ = 1, 	ݕ = 	1ሽ. (30)

Simplifying by (10) from the replicator’s equation obtained in the method, we get: ݀݀ݐ (ݐ)ߝ	 = 45  ,(ݐ)ߟ	
ݐ݀݀ (31) (ݐ)ߟ	 = 45  ;(ݐ)ߝ	

The solutions for this system are: ൜(ݐ)ߝ = ଵܥ ݁ିସହ ௧ + ଶܥ ݁ସହ ௧, (ݐ)ߟ = ଵܥ− ݁ିସହ ௧ + ଶܥ ݁ସହ ௧ൠ (32)

With the results obtained, it is possible to make a stability analysis and generate a vector 
field plot, which led us observe the specific point where the solution converges: 

 
 

 
 
 

Fig. 10. Vector field plot 

Plotting the proportions obtained over time, we can see that both Alice’s and Bob’s 
converge. 
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Fig. 11. a) Numerical solution for Alice’s, b) Numerical solution for Bob’s, c) Alice’s and 
Bob’s results plotted together with an extended time. 

The three previous graphs are the time series for the player’s proportions. The following 
graph is the phase plane for x and y: 
 

 
Fig. 12. Phase plane graph 

3. Quantum game 

Quantum mechanics has been applied to different games such as Prissioner Dilema (Eisert 
et al., 1999), hawk and dove game (López, 2010) and battle of the sexes game (Frackiewicz, 
2009). Several versions for the battle of the sexes game have been proposed from quantum 
game theory (Neto, 2008; Du et al., 2001; Frackiewicz, 2009), however the conception of this 
work is to present the wider variety of strategies that a classical analysis. The method 
implemented is shown using quantum circuits, where operators can be understood as 
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quantum gates that transform the initial states in order to obtain the payoff matrices for both 
Alice and Bob. Three possible scenarios are presented, however only the first one is used in 
this work:  

 

 
a) 

 

 
b) 

 

 
c) 

 

Fig. 13. Quantum circuit for quantum Battle of the Sexes Game: a) open loop case with non-
entangled initial states, b) closed loop with non-entangled initial states, c) closed loop with 
entangled initial states. 
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3.1 Method 
The method that will be used through this section is a formalization of the quantum circuit 
shown in Figure 13a), which corresponds to the open loop case with non-entangled initial 
states. The quantum gate named J in Figure 13a), has the form: 

ܬ  = ݁೔೨మ 	஼⨂஼, (33) 

where 

ܥ = ቂ 0 1−1 0ቃ , ܥ	⨂ܥ = ൦0 0 0 10 0 −1 00 −1 0 01 0 0 0൪ , 2߁݅	 ܥ	⨂ܥ =
ێێۏ
ێێێ
ۍێ 0 0 0 12 0߁	ܫ	 0 −12 ߁	ܫ	 00 −12 ߁	ܫ	 0 012 ܫ ߁ 0 0 0 ۑۑے

ۑۑۑ
(34) .ېۑ

Then, J takes the form: 

ܬ =
ێێۏ
ێێێ
ۍێێ cos ൬12߁൰ 0 0 ܫ sin ൬12߁൰0 cos ൬12߁൰ ܫ− sin ൬12߁൰ 00 ܫ− sin ൬12߁൰ cos ൬12߁൰ ܫ0 sin ൬12߁൰ 0 0 cos ൬12߁൰ ۑۑے

ۑۑۑ
ېۑۑ
 (35)

The possible strategies are represented by the following Kets: 

ۧܨܨ| = ൦1000൪ , ܱۧܨ| = ൦0100൪ , ۧܨܱ| = ൦0010൪ , |ܱܱۧ = ൦0001൪ (36)

where, F refers to Football and O to Opera. 
The action of the quantum gate J over the Kets |ۧܨܨ and |ܱܱۧ is: 

ܬ ∙ ۧܨܨ| =
ێێۏ
ۍێێ cos ൬

ܫ൰00߁12 sin ൬12߁൰ۑۑے
ېۑۑ , ܬ ∙ |ܱܱۧ =

ێێۏ
ܫۍێێ sin ൬

12 ݏ݋൰00ܿ߁ ൬12߁൰ ۑۑے
(37) ېۑۑ

The quantum gates associated with Alice and Bob are given respectively by: 

஺ܷ = ቂ ܽ ܾ−തܾ തܽቃ    ,  ܷ஻ = ቂ ܿ ݀−݀̅ ܿ̅ቃ (38)

and the tensor product between these, is: 
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஺ܷ⨂ ܷ஻ = ൦ ܽܿ ܽ݀ ܾܿ ܾ݀−ܽ݀̅ ܽܿ̅ −ܾ݀̅ ܾܿ̅−തܾܿ −ܾ݀തതതത തܽܿ തܽ݀തܾ݀̅ −തܾܿ̅ − തܽ݀̅ തܽܿ̅൪ (39)

The action of combined quantum gate (39), over the Kets presented at (37) is: 

(ܷ஺⨂	ܷ஻)	(ܬ ∙ (ۧܨܨ| =
ێێۏ
ێێێ
ۍێێ ܽܿ cos ൬12߁൰ + ܫ ܾ݀ sin ൬12߁൰−ܽ݀̅ cos ൬12߁൰ + ܾ̅ܿ	ܫ 	sin ൬12߁൰−തܾܿ cos ൬12߁൰ + 	ܫ തܽ݀	 sin ൬12߁൰തܾ݀̅ cos ൬12߁൰ + ܫ തܽܿ̅ sin ൬12߁൰ ۑۑے

ۑۑۑ
ېۑۑ
 (40) 

(ܷ஺⨂	ܷ஻)	(ܬ ∙ |ܱܱۧ) =
ێێۏ
ێێێ
ۍێێ ܫ ܽܿ sin ൬12߁൰ + ܾ݀ cos ൬12߁൰−ܫ	ܽ݀̅ sin ൬12߁൰ + 	ܾܿ̅ 	cos ൬12߁൰−ܫ	തܾܿ sin ൬12߁൰ +	 തܽ݀	 cos ൬12߁൰ܫ തܾ݀̅ sin ൬12߁൰ + തܽܿ̅ cos ൬12߁൰ ۑۑے

ۑۑۑ
ېۑۑ
 (41)

According with the Figure 13a), the next step is to take the Hermitian transpose of the 
quantum gate J, and the result is the following: 

றܬ =
ێێۏ
ێێێ
ۍێێ cos ൬12߁ത൰ 0 0 ܫ− sin ൬12߁ത൰0 cos ൬12߁ത൰ ܫ sin ൬12߁ത൰ 00 ܫ sin ൬12߁ത൰ cos ൬12 ത൰߁ ܫ−0 sin ൬12߁ത൰ 0 0 cos ൬12߁ത൰ ۑۑے

ۑۑۑ
ېۑۑ
 (42)

The last step in the quantum circuit is the action of the quantum gate shown in (42) over the 
Kets given at (40) and (41): 

 

† ((   ) ( ))

1 1 1 1 1 1cos cos    sin    sin cos    sin
2 2 2 2 2 2
1 1 1 1 1cos ( cos    sin ) sin cos
2 2 2 2 2

A BJ U U J FF

ac I bd I bd I ac

ad I bc I bc

 

                                    
              
                         
   





     

1
   sin

2
1 1 1 1 1 1sin ( cos    sin ) cos cos    sin
2 2 2 2 2 2

1 1 1 1 1Isin cos    sin  cos cos
2 2 2 2 2

I ad

I ad I bc bc I ad

ac I bd bd

      
  

                                  
            

                       
         

1
   sin

2
I ac

 
 
 
 
 
 
 
 
 
 

              

 (43) 
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றܬ ∙ ((ܷ஺⨂	ܷ஻)	(ܬ ∙ |ܱܱۧ))
=
ێێۏ
ێێێ
ۍێێ cos ൬12߁ത൰ ൬ܫ	ܽܿ sin ൬12߁൰ + 	ܾ݀	 cos ൬12 ൰൰߁ 	 ܫ−	 sin ൬12߁ത൰ ൬ܫ	 തܾ݀̅ sin ൬12߁൰ +	 തܽܿ̅ 	cos ൬12߁൰൰cos ൬12߁ത൰ ൬−ܫ	ܽ݀̅ sin ൬12߁൰ + 	ܾܿ̅ 	cos ൬12߁൰൰ + ܫ sin ൬12߁ത൰ ൬−ܫ	 തܾܿ sin ൬12߁൰ +	 തܽ݀	 cos ൬12߁൰൰ܫ sin ൬12߁ത൰ ൬−ܫ	ܽ݀̅ sin ൬12߁൰ + 	ܾܿ̅ 	cos ൬12߁൰൰ + cos ൬12߁ത൰ ൬−ܫ	 തܾܿ sin ൬12߁൰ +	 തܽ݀	 cos ൬12߁൰൰− sin ൬12߁ത൰ ൬ܫ	ܽܿ sin ൬12߁൰ + 	ܾ݀	 cos ൬12߁൰൰ 	cos ൬12 ത൰߁ ൬ܫ	 തܾ݀̅ sin ൬12߁൰ +	 തܽܿ̅ 	cos ൬12߁൰൰ ۑۑے

ۑۑۑ
ېۑۑ
 (44)

Finally a measurement is made over the final states (43) and (44), from which is possible to 
build the payment operators and the expected payments for Alice and Bob. 
In figures 13b) and 13c), the quantum circuits are depicted as closed loops, where the 
feedback is implemented by special quantum gates that assume the role of “decision 
makers”, it is to say, special quantum gates that transform the expected payments into new 
possible initial states and new quantum gates: UA and UB. 

3.2 Simple cases 
In this section some models presented by J.J. de Farias Neto in his work titled “Quantum 
Battle of the Sexes Revisited”. These cases are a combination of different values for ߛ and 
different initial states, either non-entangled or entangled. In the first case, ߛ = 0 and the 
initial state is non-entangled. It will be initially made for |ܱܱۧ: 

 (   ) OO A BE U U OO    (45) 

Replacing values from equation (44), we obtain: 

 OO

bd
bc

E
ad
ac

 
 
 
 
 
 

 (46) 

The resulting payoffs for Alice and Bob are: 

 

2 2 2 2

2 2 2 2

2

2

A

B

P b d a c

P b d a c

 

 

 (47) 

Likewise for |ۧܨܨ, the final state is given by: 

 (   ) FF A BE U U FF    (48) 

Substituting equation (43), we get: 
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ிிۧܧ| = ቎ ܽܿ−ܽ݀̅−തܾܿതܾ݀̅ ቏ (49)

The outcomes in this case are: 

஺ܲ = 2|ܾଶ݀ଶ| + |ܽଶܿଶ|  
(50) ஻ܲ = |ܾଶ݀ଶ| + 2|ܽଶܿଶ| 

The second model maintains ߛ = 0, but the initial state is now entangled; hence the |ܧ௜ۧ has 
the form: 

௜ۧܧ| = 12√2( ۧܨܨ| + |ܱܱۧ) (51)

Replacing values for |ۧܨܨ and |ܱܱۧ, we obtain the initial state: 

௜ۧܧ| = ێێۏ
ۍێێ
ۑۑے2√20012√12

(52) ېۑۑ

The final state is given by the following equation: 

 หܧ௙ൿ = (ܷ஺⨂	ܷ஻) 	 ∙  ௜ۧ (53)ܧ|

Substituting, the final state has the form: 

หܧ௙ൿ =
ێێۏ
ێێێ
ۍێ 12√2ܽܿ + 12√2ܾ݀−12√2ܽ݀̅ + 12√2ܾܿ̅− 12√2തܾܿ + 12√2തܽ݀12√2തܾ݀̅ + 12√2തܽܿ̅ ۑۑے

ۑۑۑ
ېۑ
 (54)

Alice and Bob’s payoffs are, respectively 

஺ܲ = 32 (ܽܿ + ܾ݀)	൫ തܽܿ̅ + തܾ݀̅൯ 
(55) 

஻ܲ = 32 (ܽܿ + ܾ݀)	൫ തܽܿ̅ + തܾ݀̅൯ 
Another case is proposed by J.J. de Farias, where he defines a new initial state: 

௜ۧܧ| = 12√2( ۧܨܨ|ܫ + |ܱܱۧ) (56)
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By replacing values for the initial state previously given, we obtain: 

௜ۧܧ| = 12√2൮ܫ ൦1000൪ + ൦0001൪൲ (57)

In (53), we replace the initial state, obtaining: 

หܧ௙ൿ =
ێێۏ
ێێێ
ۍێ ܫ 12√2ܽܿ + ܫ−2ܾ݀√12 12√2ܽ݀̅ + ܫ−2ܾܿ̅√12 12√2തܾܿ + 12√2തܽ݀ܫ 12√2തܾ݀̅ + 12√2തܽܿ̅ ۑۑے

ۑۑۑ
ېۑ
 (58)

The outcome for Alice and Bob are: 

஺ܲ = −32 ܫ) തܾ݀̅ + തܽܿ̅)(−ܽܿ +  (ܾ݀ܫ
(59) 

஻ܲ = −32 ܫ) തܾ݀̅ + തܽܿ̅)(−ܽܿ +  (ܾ݀ܫ
The following case is a modification of the previous one. Here, the initial state is modified 
and has the form: 

௜ۧܧ| = 12√2( ۧܨܨ| + (60) (ܱܱۧ|ܫ

By replacing the respective Kets, we get:  

௜ۧܧ| = 12√2൮൦1000൪ + ܫ ൦0001൪൲ (61)

The final state of the system is given by: 

หܧ௙ൿ =
ێێۏ
ێێێ
ۍێ 12√2ܽܿ + ܫ 12√2ܾ݀−12√2ܽ݀̅ + ܫ 12√2ܾܿ̅− 12√2തܾܿ + ܫ 12√2തܽ݀12√2തܾ݀̅ + ܫ 12√2തܽܿ̅ ۑۑے

ۑۑۑ
ېۑ
 (62)

Alice and Bob’s rewards are shown ahead: 
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஺ܲ = −32 ൫ܫ തܾ݀̅ + തܽܿ̅൯(−ܽܿ +  (ܾ݀ܫ
(63) 

஻ܲ = −32 ܫ) തܾ݀̅ + തܽܿ̅)(−ܽܿ +  (ܾ݀ܫ
3.2.1 Dawkins model 
The same model for the classical analysis is presented, and so are the describing matrices: 

஺ܯ  = ቂ2 05 −5ቃ (64) 

஻ܯ  = ቂ2 50 15ቃ (65) 

Payments for Alice and Bob are: 

(66) 

 

(67)
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3.2.2 Wikipedia case 1 
Like in section 2.2.2, the possible payments for both Alice and Bob has the form:  

஺ܯ  = ቂ3 00 2ቃ (68) 

஻ܯ  = ቂ2 00 3ቃ (69) 

From the method established, the payoff matrices for Alice and Bob are presented in an 
extended form: 
 
 
 

(70) 

 
 

(71)

 

3.2.3 Wikipedia case 2 
The values proposed in section 2.2.3 of the classical analysis are shown again for both Alice 
and Bob: 

஺ܯ  = ቂ3 10 2ቃ (72) 

஻ܯ  = ቂ2 01 3ቃ (73) 
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The expected payoff for Alice and Bob are: 
 

(74) 

 

(75)

 

3.3 Burning money case 
This section has the same assumptions made for the classical analysis. The burning money 
case is analyzed in order to find the payment matrices for Alice and Bob. The un-burning 
money case is presented in section 3.2.2, but with different values as reward. 

3.3.1 Burning money 
Here, Alice can have a negative reward due to the assumption of burning money as a 
possible strategy that modifies the outcomes of the game, while Bob plays using only two 
strategies to choose from. This is shown on the following matrices: 

஺ܯ  = ቂ 2 −2−2 −1ቃ ஻ܯ, = ቂ1 00 4ቃ (76,77) 
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The payoffs for Alice and Bob are: 
 
 

(78) 

 

(79)

 

4. Conclusion 

In this work, we made a classical and quantum analysis of the Battle of the Sexes game. The 
classical analysis was based on the model proposed by Frank Wang, using ordinary 
differential equations and the corresponding stability analysis; while the quantum scheme 
was based on the method introduced by Neto (Neto, 2008) using quantum circuits with 
quantum gates for two qubits. Both quantum and classical analysis were implemented using 
computer algebra software, specifically Maple. 
From the results obtained along this work, it is possible to observe that the quantum version 
has more versatility than the classical one, due to the effect of quantum superposition, the 
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quantum entanglement and the complexity of the payment operators from which resulted 
expected payments with more engineering possibilities. It is to remark that the burning 
money case could be analyzed using different reasoning methods, which may lead to 
specific solutions such as guaranteeing other player's final choice (Ginitis, 2009). 
As a future investigation trend we propose the application of the Yang-Baxter operators 
(Zhang et al., 2005), which will play the role of the quantum gate J, hence generating 
completely different but more physically implementable quantum operators and expected 
payoffs. 
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1. Introduction

The contemporary fundamental physics has been based fully on phenomenological models
starting from the Copenhagen quantum mechanics proposed by Bohr in 1927 (1). However,
the Copenhagen model was criticized strongly by Einstein and collaborators (2) from the point
of view of ontological interpretation of matter world, i.e., from the grounds on which the
whole physical concept was based by Galileo and Newton. Einstein called the attention (with
the help of a Gedankenexperiment) to the fact that immediate interaction between different
matter objects (in principle between different measuring devices) at great mutual distances
was required in Bohr’s theory (the effect being unacceptable from the ontological point of view
and denoted now usually as entanglement). However, the criticism of Einstein was refused
strongly by Bohr (3). And the physical community has accepted fully Bohr’s arguments (that
the rules in microworld differ from those of macroworld) even if Einstein did not changed his
standpoint till the end of his life, having been aware of the correctness of his conclusion (see
also (4)).
Later (on the basis of Bohm’s paper (5)) two different quantum alternatives were considered,
i.e., the Copenhagen alternative and the so called hidden-variable theory. Some differences
between these two alternatives started to be discussed when Bell (6) derived his famous
inequalities. These inequalities should have been valid for some combinations of four
probabilities of the passage of two particles with opposite spins through two polarizers; the
original EPR (Einstein-Podolsky-Rosen) Gedankenexperiment having been slightly modified.
To obtain the given inequalities Bell had to assume for individual probabilities to be rather
strongly mutually correlated; and it has been believed that the given inequalities have been
valid in the framework of the hidden-variable theory. It was, therefore, expected that their
violation (or not) in an experiment might have helped in deciding between the two given
quantum alternatives.
As to the original Gedankenexperiment of Einstein it was based on the coincidence detection
measurement of two decay objects emitted in a decay of an unstable particle and going
in opposite directions. The basic proposal of this experiment was then modified to be
possible actually to perform it. And the coincidence transmission probabilities of two photons
having opposite spins and running in opposite directions through two polarizers were being
established: ∥∥∥< −− |β −−− o−−− |α −− >

∥∥∥
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where the axes of individual polarizers were deviated by angles α and β from some common
zero position. The corresponding measurements were performed in the seventieth years of
the past century and ended practically in 1982 (see (7)) with the following results:
- the inequalities of Bell’s combinations of coincidence probabilities have been violated;
- the measured values of individual coincidence probabilities have fulfilled approximately the
Malus law (see Sec. 4 of this chapter);
and both the results have been interpreted as decisive support for the Copenhagen quantum
mechanics.
However, the given conclusion has been based on several mistakes. Both the quantum
alternatives (starting from the same Schrödinger equation) have been regarded as two
different interpretations of one common theoretical model. In fact each of these interpretations
has been based on discrepant sets of assumptions, representing two fully diverse theories (see
Sec. 2).
It has been then possible to show further that in the interpretation of the experimental results
gained on the basis of the EPR experiments mainly two mistakes have played important roles
(8) (see also (9; 10)):

(i) It has been believed all the time that Bell’s inequalities have held in the framework of
hidden-variable theory. However, they were based on the assumption holding only in the
framework of classical physics, which means that no quantum alternative may be excluded
on the basis of the results of EPR experiments (see Sec. 3).
(ii) As to the measured Malus law it was argued by Belinfante (11) that a very different
result should be obtained in the performed coincidence EPR experiments. However, also this
argument has been based on mistaking assumption (see Sec. 4).
It follows, therefore, that contrary to common conviction any of two quantum alternatives
cannot be excluded on the basis of the results of EPR experiments. Even if the hidden-variable
theory should be at least partially preferred (the lower limit not having been overpassed, see
Sec. 3), one must look for other ways how to decide between them.
And it has been possible to demonstrate that the hidden-variable theory being practically
equivalent to the Schrödinger equation (Bohr’s deforming assumptions not having been
added) should be preferred not only to the Copenhagen alternative but also to the classical
physics:

(i) The Copenhagen quantum mechanics is to be practically excluded as it involves some
important internal contradictions (as it will be shown in Sec. 5) that have been interpreted
until now as quantum paradoxes.
(ii) There are also some experimental data that are in clear contradiction to the predictions of

Copenhagen quantum mechanics; see Sec. 6.
(iii) And finally, the basic solutions of Schrödinger equation (determined always with the

help of one Hamiltonian eigenfunction only) give the same results as classical physics, which
prefers this equation (or hidden-variable theory) to be applied to the whole matter reality
(microscopic as well as macroscopic); see Sec. 7.
The physical interpretation of Schrödinger equation was strongly influenced by the
requirements put by Bohr on the shape of corresponding Hilbert space. If the physical content
is to remain undeformed the Hilbert space must consist at least of two individual subspaces
being bound by evolution operator as it was shown already by Lax and Phillips (12; 13) in
1967 and as it will be discussed in Sec. 8.

410 Some Applications of Quantum Mechanics
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The evolution of physics in the last centuries was strongly influenced by the philosophical
ideas that started to influence any thinking of human society from the beginning of
the modern age and differed fundamentally from the earlier ontological thinking. The
corresponding story will be mentioned in Sec. 9.
Main conclusions and consequences will be then summarized in the last section (Sec. 10).

2. Two quantum alternatives and corresponding assumptions

It is possible to say that the Copenhagen quantum mechanics has been based in principle on
four following assumptions:

• first, it is the validity of time-dependent Schrödinger equation (14)

ih̄
∂

∂t
ψ(x, t) = Hψ(x, t), H = − h̄2

2m
�+ V(x) (1)

where Hamiltonian H represents the total (kinetic and potential) energy of a given physical
system and x represents the coordinates of all matter objects;

• physical quantities are expressed as the mean values of corresponding operators at time t:

A(t) =
∫

ψ∗(x, t) Aop ψ(x, t)dx (2)

where functions ψ(x, t) represent vectors and Aop operators in some Hilbert space, the
structure of which having been left unspecified (in the framework of this assumption);

• in the Copenhagen alternative the corresponding Hilbert space has been then required to
be spanned on one set of Hamiltonian eigenfunctions ψE(x):

HψE(x) = EψE(x); (3)

• any vector of such a Hilbert space has represented a so called "pure" state of a
corresponding physical system, which has meant that the mathematical superposition
principle (holding in any Hilbert space) has been interpreted in physical sense.

While the Hilbert space has remained unspecified in the second assumption, the first two
assumptions have been shared also by the hidden-variable theory. However, to get the
whole assumption set belonging to the hidden-variable theory the third and fourth earlier
assumptions must be refused and substituted by:

• the Hilbert space must be adapted to a given physical problem, consisting of some
mutually orthogonal subspaces and being at least doubled in comparison to the third
assumption in the preceding assumption set, if the original physical interpretation of
Schrödinger time-dependent solution is to be conserved;

• only the vectors of orthogonal basis of extended Hilbert space (represented in principle by
eigenfunctions of the Hamiltonian) may be interpreted as "pure" states; any superposition
represents always a "mixed" state.

The given quantum alternatives represent, therefore, two quite different theories. They cannot
be interpreted in any case as two mere different interpretations of one common mathematical
model. Only the Schrödinger equation is shared commonly, its solutions being interpreted
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in quite different ways. In the Copenhagen quantum mechanics the time evolution of any
physical system is described as time reversible. In the hidden-variable theory the evolution is
irreversible; the former third assumption being refused and the Hilbert space being suitably
chosen (i.e., extended) in full agreement with the time-dependent solutions of Schrödinger
equation (see Sec. 8).

3. Assumption in Bell’s inequalities

It was believed since 1964, even if any more detailed analysis was not performed, that the
assumption needed for the derivation of Bell inequalities corresponded to the hidden-variable
theory. However, it has been shown later (see, e.g., (9)) that the given assumption has
corresponded to the classical physics and it has not been possible to attribute it to any
quantum alternative.
We shall describe now shortly the essence of the corresponding mistake. As already
mentioned the given experiment has consisted in the measurement of coincidence
transmission probabilities of two photons having opposite spins and running in opposite
directions through two polarizers:∥∥∥< −− |β −−− o−−− |α −− >

∥∥∥
Introducing some rather strong correlation conditions between individual transmission
probabilities aj and bk Bell (6) (see also (15)) has derived the following inequalities

B = a1b1 + a2b1 + a1b2 − a2b2 ≤ 2 (4)

holding for any two pairs of orientations of both the polarizers (4 different combinations).
The inequalities (4) have been then attributed to the hidden-variable alternative (without any
deeper analysis). However, the given assumption has been much stronger and has eliminated
practically the possibility for photon spins to influence the values of individual transmission
probabilities, which corresponds to the original proposal of the given Gedankenexperiment
by Einstein.
Any individual probability in the given experiment should be determined in principle by
three different parameters: position of the photon source, photon spin direction and polarizer
orientation. And the influence of two last parameters has been excluded when the assumption
(leading to Bell’s inequalities) has been applied to. The given inequalities were derived,
of course, in other ways, too; see, e.g., Ref. (15), where instead of one assumption of Bell
several weaker assumptions have been made use of. And when some assumptions have
corresponded to the hidden-variable alternative one of these assumptions has held always
in the classical physics only (see, e.g., (16)).
The given situation may be represented more clearly when the individual probabilities aj and
bk are substituted by operators representing individual measurement acts and acting in two
different subspaces (corresponding to individual polarizers) of the whole Hilbert space

H = Ha ⊗Hb. (5)

It holds for the expectation values of these operators (see (17))

0 ≤ |〈aj〉|, |〈bk〉| ≤ 1 .

412 Some Applications of Quantum Mechanics



Einstein-Bohr Controversy After 75 Years, its Actual Solution and Consequences 5

Eq. (4) represents then the definition of Bell’s operator B. And it may be immediately seen
that it holds < B∗B > ≤ 16 and/or < B > ≤ 4, which represents the highest possible
limit. However, Bell’s operator B may exhibit different limits according to basic assumptions
concerning the relations holding between individual operators.
According to chosen commutation relations between aj and bj three different limits may be
obtained (see (9)):

|B| ≤ 2, 2
√

2 or 2
√

3.

The first limit corresponds to the classical case, when all operators aj and bk commute
mutually, i.e., if

[aj, bk] = 0 , [a1, a2] = [b1, b2] = 0.

The second limit corresponds to the hidden-variable theory, when only the operators
belonging to different subspaces commute (no interaction at distance or no entanglement),
i.e., if

[aj, bk] = 0 and [a1, a2] 	= 0, [b1, b2] 	= 0 .

And finally, the third limit (and actually the highest one (18)) corresponds to the case when
the interaction at distance exists and the operators from different Hilbert subspaces do not
commute mutually, i.e., if

[aj, bk] 	= 0 , [a1, a2] 	= 0, [b1, b2] 	= 0 .

Only the classical alternative has been, therefore, excluded by the results of EPR experiment.
As to the hidden-variable theory it does not contradict the results of EPR experiments
(obtained, e.g., by Aspect et al. (7)); the value 2

√
2 not having been overpassed. It is,

of course, also the Copenhagen quantum mechanics that has not been excluded at least in
principle. And further arguments should be made use of to decide with certainty which of
the quantum alternatives represents really the description of microscopic physical reality; see
Secs. 5 and 6.

4. Malus law and EPR coincidence experiment

One of the arguments supporting the Copenhagen quantum mechanics was added by
Belinfante (11) as already mentioned. He tried to express the coincidence probability in
the EPR polarization experiment as a function of (α − β). It would be possible easily if the
individual dependencies a(α) and b(β) for single transmission probabilities were known; α
and β being the angles between photon spin (or photon polarization) and polarizer axis.
However, in fact only the transmission of unpolarized light through two polarizers have been
measured

o−−− |α −−− |β −− >
∥∥∥

and the so called generalized Malus law has been approximately obtained

M(α− β) = (1− ε)cos2(α− β) + ε

where ε represents very small correction. And Belinfante came to the given statement for the
coincidence measurement when he put quite arbitrarily a(α) = cos2 α and b(β) = cos2 β,
which cannot correspond to real conditions; i.e., the Malus formula holding approximately
for a polarizer pair was applied to each polarizer. And there is not any reason to expect for
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coincidence measurements the values of the angle dependencies differing significantly from
the Malus law, as required by Belinfante.
The given mistake has not represented, of course, the main argument for the then conclusion.
This argument followed primarily from the violation of Bell’s inequalities. However,
Belinfante contributed probably rather strongly to it. In fact the approximate Malus law can
be easily obtained in the given EPR experiment if the probabilistic functions a(α) and b(β) are
suitably chosen in agreement with reality (19). And the second experimental result obtained
in 1982 (see Sec. 1) could not represent in principle any contribution to the solution of the
given controversy.

5. Copenhagen alternative and internal discrepancies

The Copenhagen quantum mechanics has ascribed to the physical reality some properties
that are denoted usually as paradoxes (wave-particle duality, tunnel phenomenon, non-local
interaction or entanglement, a.s.o.). However, these paradoxes followed practically from some
contradictions contained in the corresponding mathematical model. And it is possible to
introduce at least three contradictions which may be denoted as decisive (see also (9)):

• Already the former fourth assumption itself (see Sec. 2) concerning the superposition
principle has represented very important discrepancy, which has concerned the existence
of discrete states in Schrödinger equation. It is evident that if the given assumption
has been added all mathematical superpositions in the corresponding Hilbert space
should have represented physical states fully equivalent to basic ones (i.e., to pure
states) and no quantized (discrete) states might exist in principle in experimental reality.
The given problem has been removed in the hidden-variable theory when only basis
vectors corresponding to Hamiltonian eigenstates have represented "pure" states and any
superposition of theirs has represented a statistical "mixture" (see also Sec. 7).

• The former third assumption has played then important role in the other discrepancy.
Already in 1933 Pauli (20) showed that in such a case it was necessary for the
corresponding Hamiltonian to have continuous energy spectrum from −∞ to +∞, which
disagreed with the fact that the energy was defined as positive quantity, or at least limited
always from below; the existence of discrete states having been excluded, too.

• In 1964 Susskind and Glogover (21) showed then in addition that in disagreement with
necessary requirements the exponential phase operator E = e−iωΦ (where Φ was the
phase) was not unitary, as it held E †E u0 ≡ 0 for any state of zero energy if the third
assumption was involved. It indicated that the given Hilbert space was not complete to
represent the evolution of a corresponding physical system quite regularly.

Many attempts have been done during the 20th century to remove the last two deficiencies.
The reason of having been unsuccessful may be seen in the fact that practically in all these
attempts both these shortages were regarded and solved as one common problem. The
corresponding solution has been obtained only recently (see Refs. (22; 23)) when it has been
shown that it is necessary to remove two mentioned shortages one after the other.
The criticism of Pauli may be removed if the Hilbert space is extended in the accord to the
time-dependent Schrödinger equation. E.g., as to the simple system of two free colliding
particles it has had to be doubled in comparison to the former third assumption (see Sec. 2)
as proposed by Lax and Phillips (12; 13). In this case the corresponding Hilbert space must
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consist of two mutually orthogonal subspaces (H = Δ− ⊕ Δ+); being mutually related with
the help of evolution operator and each of them being spanned on one basis of Hamiltonian
eigenfunctions. The incoming or outgoing states of two particles must belong always to the
different orthogonal subspaces.
As to the criticism of Susskind and Glogower the Hilbert space (extended already to
solve Pauli’s problem) should be further doubled and formed by combining two mutually
orthogonal subspaces corresponding to systems with opposite angular momentums. These
subspaces must be bound together by adding the action of exponential phase operator to
link together the vacuum states (corresponding to minimum energy in individual subspaces),
as it was proposed in principle already by Fain (24) also in 1967; see (22; 23). Some other
points concerning the Hilbert space corresponding to the Schrödinger equation (or to the
hidden-variable theory) will be mentioned in Sec. 8.

6. Experimental data and two quantum theories

The Copenhagen alternative has been often denoted as supported by different experimental
data. However, in all such cases only the assumptions corresponding to the Schrödinger
equation (i.e., to the hidden-variable theory) have been practically tested; without the last
two assumptions (forming Copenhagen alternative) having been taken into account. And
therefore, none of two quantum alternatives may be excluded on the basis of the experiments
practically available until now.
And it has been shown in the preceding that practically the same has held also in the case
of EPR experiment. Also the original statement of Belinfante that the two given quantum
alternatives has had to lead to different predictions has been shown as mistaking (see Sec. 4).
Having discovered this fact many years ago it was quite natural for us to ask: When in the
EPR experiment the same predictions might be obtained for the so different physical concepts,
would it not be possible to find an experiment where the predictions would be different? And
after a preliminary theoretical analysis the measurement of light transmission through three
polarizers seemed to represent suitable way.
The corresponding experiments have been performed and the results (see Refs. (25; 26))
have been obtained being fundamentally different from the predictions of the Copenhagen
quantum mechanics as may be seen from Figs. 1 and 2 taken from Ref. (26); see also (9; 27; 28).
In Fig. 1 the pairs of angles α and β giving the smallest coincidence probabilities for a chosen
α have been shown; angle α having been represented on horizontal axis and corresponding
angle β on vertical axis.
The values of light transmission through the polarizer triple for the given angle pairs (shown
in Fig. 1) are represented by individual points on dashed line in Fig. 2. The full line represents
then the prediction of the standard theory based on the Copenhagen quantum alternative. It
may be seen that the existence of two maximums is predicted just where the experimental
data show two deep minimums. Predictions similar to the obtained results may follow from
the phenomenological polarization theory of Stokes (see (26)) but sufficient agreement with
data may be hardly obtained on such a basis.
It is possible to say that the given results have opened also a way to a more realistic theory
of polarization phenomena. The polarization process should be interpreted probably as a
complex process; consisting practically at least of two main different successive steps: the
influence of the enter layer and of the whole medium of a given polarizer. The given problem
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Fig. 1. The pairs of angles α and β (used for the measurement shown in Fig. 2)

0

0.0005

0.001

0.0015

0.002

0.0025

0 20 40 60 80 100 120 140 160 180

tr
an

sm
is

si
on

 in
te

ns
ity

alpha

Fig. 2. Light transmission through three polarizers (for α − β pairs shown in Fig. 1);
experimental data - points on dashed line; quantum-mechanical prediction - full line.
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has been studied already theoretically on such a basis by us; however, definite results have
not yet been gained.

7. Schrödinger equation and classical physics

As already mentioned the hidden-variable theory has been practically identical with the
Schrödinger equation when any other conditions deforming the physical interpretation of
original solutions have not been added. And one should ask what is to be understood under
the term of hidden variables. Especially it is necessary to answer the question whether some
hidden variables exist in the solutions of Schrödinger equation.
The problem concerning the hidden variables in the Schrödinger equation was discussed since
the beginning of the Copenhagen quantum mechanics; their existence was, however, refused
by von Neumann in 1932 (29). Even if G.Hermann (30) showed already in 1935 that the proof
of von Neumann was to be denoted as circle proof the corresponding discussion was renewed
only after D. Bohm (5) showed that some parameter existed already in the solution of the
simplest Schrödinger equation. However, the actual meaning of such parameters remained
unclear.
To answer the question what is the actual essence of "hidden variables" one must ask what
is the assumption basis on the grounds of which the Schrödinger equation may be derived,
when at least in some cases the predictions identical with classical ones may be obtained (14).
And the answer has been given by Hoyer (31) and Ioannidou (32) who have shown that it
has been possible to derive it if the set of all basic solutions of Hamilton equations has been
considered together with the set of all statistical superpositions of these solutions, limited only
by a rather weak condition.
It is then necessary to distinguish between the basic solutions of Eq. (1) and their
superpositions, when the basic solutions (or states) are given by

ψb
E(x, t) = ψE(x)e

−iEt

where ψE(x) is eigenfunction of corresponding Hamiltonian (see Eq. (3)). The basic solutions
of Schrödinger equation (characterized always by one Hamiltonian eigenfunction only)
represent the so called "pure" states and correspond to individual solutions of the Hamilton
equations. It does not hold in opposite direction in the case when discrete states are involved
(33). In such a case only a limited subset of solutions of Hamilton equations may represent
pure states in the quantum alternative.
The Schrödinger equation is linear differential equation and consequently any superposition
of basic states represents its solution, too. These superpositions must be interpreted, however,
always as "mixed" states; never as "pure" states. And the parameters characterizing a concrete
statistical distribution of corresponding basic states have been denoted earlier as hidden
parameters. They may be in principle represented by the function α(E) having continuous as
well as discrete parts that fulfills the condition ΣE|α(E)|2 = 1 if all solutions are normalized
to unit value. The corresponding statistical combination (mixed state) is then represented by
the solution of Schrödinger equation:

ψ(x, t) = ∑
E

α(E)ψb
E(x, t)
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where each basic (pure) state conserves the corresponding energy value E. The average energy
of the corresponding superposition equals ∑E |α(E)|2E and is also conserved. It follows on
the basis of the mentioned derivation of Schrödinger equation from Hamilton equation that
the function |α(E)|2 should fulfill some limiting condition (e.g., corresponding to Boltzmann
statistics, see (31)) if the mentioned equivalence between Schrödinger equation and classical
physics is to hold.
As to the Hilbert space the vectors of which may represent the time dependent solutions of
Schrödinger equation it must contain always at least two different subspaces (each spanned
on one set of Hamltonian eigenvectors) enabling to represent corresponding time flow. These
subspaces must be mutually related with the help of evolution operator U(t) = e−Ht defining
the passage from one subspace to the other (see also Sec. 5). In the case of discrete Hamiltonian
energy spectrum this pair of subspaces may form the infinite chain of identical pairs related
by evolution operator (for more details see (22; 23)). If the system consists of a greater number
of interacting objects each of the given subspaces may have a more complicated structure.
All basic (or pure) states are represented by mutually orthogonal vectors forming the
basis of individual subspaces and corresponding to states that may be described also by
Hamilton equations. Any mixed state (superposition of basic states) corresponds then to a
statistical distribution of classical states, and the values |α(E)|2 represent the corresponding
probabilities of individual states. It means that the hidden-variable theory (or the Schrödinger
equation) can supersede also the classical physics if one admits that macroscopic physical
systems exhibit discrete energy values, too; the fact being fully acceptable but experimentally
unverifiable.
However, a given basic physical state is not fully determined by total energy value E . The
other value that is conserved during the evolution is angular momentum L which cannot
be usually uniquely defined in an initial state. It is, of course, possible to choose the
coordinate system in which the components < L1>=< L2>= 0 and the given state may
by represented by a superposition containing states with different values of < L3 >. In a
two-particle system the given value may be substituted by their minimal mutual distance q
during the evolution and the given superposition is characterized (in addition to α(E) ) also
by the function α(q); see also the end of Sec. 8.

8. Schrödinger equation and corresponding Hilbert space

All solutions of Schrödinger equation may be represented by the vectors of Hilbert space.
It must have, however, the corresponding structure as mentioned in preceding. We shall
demonstrate basic characteristics of this space with the help of the physical system consisting
of two zero-spin particles which represents the smallest system exhibiting time evolution. Its
behavior in the center-of-mass system may be described by Schrödinger equation (1) with the
Hamiltonian

H =
p2

j

2m
+ V(qj) (6)

where m is the reduced mass of the given particle pair and qj and pj are the operators
of relative coordinates and momentum components of one particle (in the center-of-mass
system); they are assumed to fulfill the following relations

[qj, pk] = iδjk, [pj, pk] = [qj, qk] = 0. (7)
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Introducing two other operators

Q = q2
j , R =

1
2
{pj, qj} (8)

and assuming V(qj) = V(Q) (i.e., the mutual potential between particles depends on their
distance only) one can write further

i[H, qk] =
pk
m

, i[H, pk] = −2qk
dV(Q)

dQ
, (9)

i[H, Q] =
2
m

R, i[H, R] = 2H −V(Q)− Q
dV(Q)

dQ
. (10)

It is also possible to introduce angular-momentum operators fulfilling relations

Li = ε ijk[qj, pk], [Li, H] = 0; (11)

and further operator L:
L = L2

i , [L, Li] = [L, H] = 0. (12)

The basic properties of a given physical system are characterized by the expectation values of
the operators < H> and < L>; and the basic space orientation by expectation values < Lj >.
Any time-dependent solution of the Schrödinger equation may be then represented uniquely
by one trajectory in the corresponding Hilbert space. And it may be suitable to choose the
special coordinate system in which < L1 >=< L2 >= 0 (or < q3 >= 0) and further also
< q1>= 0 and < p2 >= 0 if <R>= 0.
As to the structure of corresponding Hilbert space there is a significant difference between the
solutions belonging to continuous or discrete spectra of Hamiltonian. We shall start with the
continuous spectrum. In this case the instantaneous states with negative (positive) < R >
values represent incoming (outgoing) states belonging to two different Hilbert subspaces
(both being spanned on the full set of the same Hamiltonian eigenfunctions). And it is
necessary to assume that these subspaces are mutually orthogonal as the given states are
physically well distinguishable. It is also useful to define the time operator T fulfilling the
condition

i[H, T] = 1 (13)

with the expectation value t = 0 corresponding to the state characterized by < R>= 0. The
whole trajectory may be obtained when the evolution operator

U(t) = e−iHt (14)

is applied to this initial state; the incoming (outgoing) states corresponding to negative
(positive) values of t.
To obtain a reasonable description of an evolving physical system it is necessary always to
hold limQ→∞ V(Q) = 0 . If the system consists of two free particles there is one-to-one
correspondence between the operators T and R that may be specified for some concrete shapes
of V(Q) (34). And for a given Hamiltonian any time-dependent trajectory is uniquely defined
by the function ψ(x, 0); being fully determined by the values of q2(0) and p1(0) when the
mentioned coordinate system has been made used of.
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The corresponding mathematical model describes suitably usual collision experiments.
However, in the given experiments (for any energy value E from the continuous spectrum)
the collision behavior may be described only as a statistical combination of the states
with different values of q2(0). The frequency of these individual collision events is then
proportional to the values of impact parameter (distance of initial momentum direction from
system mass center) that must be derived from the values obtained at a time tQ < 0
(expectation value of the operator T ) for which < V(Q) > may be fully neglected against
<H>.
If the influence of potential energy decreases monotony with Q it is possible to assume for
sufficiently high values of |tQ| that the particle moves along a straight line that may be
uniquely determined for any state characterized by the values of q2(0) and p1(0). And the
distance of this straight line from the parallel one going directly through the corresponding
coordinate center corresponds then to the original impact parameter for the given pair
of colliding particles. And it is possible to assume further that these impact parameters
will be equally distributed in the plane perpendicular to the given direction and that the
corresponding value of the impact parameter b will represent the weight of the corresponding
state in the given experiment.
In the given coordinate system the straight line corresponding to initial momentum transects
the q2-coordinate at the value

y =
q2(tQ) p1(tQ) − q1(tQ) p2(tQ)

p1(tQ)
(15)

and it holds also
b
y

=
p1(tQ)

p(tQ)
.

The numerator in Eq. (15) represents one component of angular momentum. And if one takes
into account that the angular momentum component commutes with Hamiltonian (and is
conserved during the evolution) it holds further

b =
|L3|

p(tQ)

or

b = |q2(0)| p(0)
p(tQ)

where p(tQ) may be derived immediately from the corresponding energy E determined with
the help of values p(0) = |p1(0)| and q2(0) . The frequency of a state characterized by the
values of q2(0) and p1(0) in the given experiment is then proportional to the value of b. It
means that the states corresponding to very small values of |q2(0)| become more frequent for
an attractive potential and less frequent for a repulsive one.
The given weight of states characterized by the value q2(0) in the statistical distribution
is important in the case when the interaction between colliding particles is mediated by
forces at distance (e.g., Coulomb forces) as the density of states at small values of |t| may be
significantly influenced by the corresponding shape of potential dependence at small mutual
distances. In the case of contact forces between colliding particles (which may concern strong
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interactions) one may regard corresponding tracks as linear in the whole length (before the
proper collision process).
The preceding considerations have concerned the case when the Hamiltonian spectrum has
been continuous. The situation is more complex in the case of discrete Hamiltonian spectrum
as the zero value of <R> repeats during periodical time evolution; four zero values existing
already in any period. Each period may be then represented by two pairs of subspaces
corresponding to positive and negative values of < R > which continuously repeat and
may form an infinite series where individual states are characterized by different expectation
values of operator T. More suitable operators than R (represented now by goniometric type
functions) may be introduced in the case of special shapes of V(Q); see (34).

9. Physical science and ontological thinking

The human thinking in the preceding century was undoubtedly rather strongly influenced
also by the progress of physical research, which was often being connected with the
phenomenistic ideas of the Copenhagen quantum mechanics. The corresponding ideas
differed fundamentally from the earlier ontological concept proposed by Aristotle and
developed further by Thomas Aqu. in the Middle Ages, from which G. Galileo and I. Newton
started when the basis of classical physics was built up and the theoretical background was
formulated further by W.R. Hamilton (1805-65); and the whole modern civilization has been
based in principle fully on it.
However, this train of thought started to change from the beginning of the modern age.
The initial impulse was given probably by Occam’s razor when the simplicity started to be
decisively preferred in explaining the reality that might be often very complex. The decisive
step was done, however, by R. Descartes who refused practically any ontology by his "Cogito,
ergo sum"; the human thinking started to decide practically about the real existence on the
basis of different observed phenomena without any deeper ontological analysis. The given
phenomenism started to influence strongly also the physical science when L. Boltzmann
declared the rise of uniform distribution in the systems consisting of many particles (i.e., the
phenomenistic feature) as basic natural law in 1867. A further important step occurred when
N. Bohr based the atom theory on two phenomenological postulates in 1913, but mainly when
he proposed the Copenhagen quantum mechanics in 1927. And since Bohr’s victory in the
controversy with Einstein in 1935 the corresponding phenomenistic approach asserted oneself
in the western world practically in all regions of human thinking and knowledge.
As to the microscopic physics region the given research has been divided practically into
two different branches. One part of physicists has continued in the research on the earlier
ontological basis without taking the conclusions of Copenhagen alternative practically into
account when they looked for the solutions of Schrödinger equation based on the same
Hamiltonian as the classical physics; any additional deforming assumptions having not been
added.
The other (lesser) part of these physicists has looked then mainly for arguments to persuade
the human community about the validity of quantum paradoxes. This part of physicists
was making use of the successes of modern research based on the solutions of Schrödinger
equation often as the decisive support of their conviction, without respecting the fact that
any of the assumptions added by Bohr (see Sec. 2) has not been taken into account when
only solutions of Schrödinger equation have been looked for and directly interpreted. In

421Einstein-Bohr Controversy After 75 Years, Its Actual Solution and Consequences



14 Will-be-set-by-IN-TECH

such a case the existence of the correspondingly extended Hilbert space (as described in
Sec. 8) has been automatically assumed in the interpretation of physical processes; no
deformation according to Bohr’s assumptions has been applied to the corresponding solutions
of Schrödinger equation.
It follows from the presented results that the phenomenistic approach has brought the human
knowledge to misleading conclusions. It should be abandoned and the common human
thinking should return again to the earlier ontological approach in studying the matter world.
It might open the new way to deeper understanding not only of the fundamental structure of
matter, but also of other problems of human kind.

10. Conclusion

Let us introduce yet the short summary of all previous results:
The Copenhagen quantum mechanics may be denoted as falsified on the basis of logical
contradictions as well as of experimental data (light transmission through a polarizer triple).
Schrödinger equation itself (or hidden-variable theory) should be preferred not only to the
Copenhagen quantum mechanics but also to the classical physics; it may be applied to the
whole matter reality (microscopic as well as macroscopic).
The basic solutions of Schrǒdinger equation (characterized by one Hamiltonian eigenfunction
only) fulfill always classical properties. It does not hold in opposite direction in the case
of discrete Hamiltonian spectrum; some solutions of Hamilton equations having not any
quantum counterpart.
There are not in principle any hidden variables in the Schrödinger equation. In the case of
superposition solutions only the statistical distribution of potential energy corresponding to
individual basic states must be defined with the help of the distribution of some physical
quantities in a suitable time instant.
Superposition solutions do not represent any of the so called pure states. They must be always
interpreted as mixed states. There is not any gap between microscopic and macroscopic world.
Any superposition represents always the set of states that may be interpreted classically (or
ontologically).
And finally, one must stress that in the given controversy Einstein was right. The purely
phenomenological accession to the physical reality should be refused and the ontological
approach to physical problems again strongly preferred. The physics (and all science) is to
become again serious problem of human knowledge and not a mere game deciding between
different phenomenologically based attitudes (comp., e.g., (4)).
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