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“This is quantum mechanics for real. This is the good stuff , the most mysterious 

aspects of how reality works, set out with crystalline clarity. If you want to 

know how physicists really think about the world, this book is the place to start.”

—Sean Carroll, physicist, California Institute of Technology, and 

author of The Particle at the End of the Universe
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This book is the second volume of the Theoretical Minimum series. 
The first volume, The Theoretical Minimum: What You Need to Know 
to Start Doing Physics, covered classical mechanics, which is the core 
of any physics education. We will refer to it from time to time simply 
as Volume I. This second book explains quantum mechanics and its re-
lationship to classical mechanics. The books in this series run parallel 
to Leonard Susskind’s videos, available on the Web through Stanford 
University (see www.theoreticalminimum.com for a listing). While cov-
ering the same general topics as the videos, the books contain additional 
details, and topics that don’t appear in the videos.
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Preface

Albert Einstein, who was in many ways the father of quan-

tum mechanics, had a notorious love-hate relation with the

subject. His debates with Niels Bohr—Bohr completely ac-

cepting of quantummechanics and Einstein deeply skeptical—

are famous in the history of science. It was generally ac-

cepted by most physicists that Bohr won and Einstein lost.

My own feeling, I think shared by a growing number of physi-

cists, is that this attitude does not do justice to Einstein’s

views.

Both Bohr and Einstein were subtle men. Einstein tried

very hard to show that quantum mechanics was inconsis-

tent; Bohr, however, was always able to counter his argu-

ments. But in his final attack Einstein pointed to something

so deep, so counterintuitive, so troubling, and yet so ex-

citing, that at the beginning of the twenty-first century it

has returned to fascinate theoretical physicists. Bohr’s only

answer to Einstein’s last great discovery—the discovery of

entanglement—was to ignore it.

The phenomenon of entanglement is the essential fact

of quantum mechanics, the fact that makes it so different

from classical physics. It brings into question our entire un-

xi
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derstanding about what is real in the physical world. Our

ordinary intuition about physical systems is that if we know

everything about a system, that is, everything that can in

principle be known, then we know everything about its parts.

If we have complete knowledge of the condition of an auto-

mobile, then we know everything about its wheels, its engine,

its transmission, right down to the screws that hold the up-

holstery in place. It would not make sense for a mechanic to

say, “I know everything about your car but unfortunately I

can’t tell you anything about any of its parts.”

But that’s exactly what Einstein explained to Bohr—

in quantum mechanics, one can know everything about a

system and nothing about its individual parts—but Bohr

failed to appreciate this fact. I might add that generations

of quantum textbooks blithely ignored it.

Everyone knows that quantum mechanics is strange, but

I suspect very few people could tell you exactly in what way.

This book is a technical course of lectures on quantum me-

chanics, but it is different than most courses or most text-

books. The focus is on the logical principles and the goal

is not to hide the utter strangeness of quantum logic but to

bring it out into the light of day.

I remind you that this book is one of several that closely

follow my Internet course series, the Theoretical Minimum.

My coauthor, Art Friedman, was a student in these courses.

The book benefited from the fact that Art was learning the

subject and was therefore very sensitive to the issues that

might be confusing to the beginner. During the course of

writing, we had a lot of fun, and we’ve tried to convey some
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of that spirit with a bit of humor. If you don’t get it, ignore

it.

Leonard Susskind

When I completed my master’s degree in computer science at

Stanford, I could not have guessed that I’d return some years

later to attend Leonard’s physics lectures. My short “career”

in physics ended many years earlier, with the completion of

my bachelor’s degree. But my interest in the subject has

remained very much alive.

It appears that I have lots of company—the world seems

filled with people who are genuinely, deeply interested in

physics but whose lives have taken them in different direc-

tions. This book is for all of us.

Quantum mechanics can be appreciated, to some degree,

on a purely qualitative level. But mathematics is what brings

its beauty into sharp focus. We have tried to make this amaz-

ing body of work fully accessible to mathematically literate

nonphysicists. I think we’ve done a fairly good job, and I

hope you’ll agree.

No one completes a project like this without lots of help.

The people at Brockman, Inc., have made the business end of

things seem easy, and the production team at Perseus Books

has been top-notch. My sincere thanks go to TJ Kelleher,

Rachel King, and Tisse Takagi. It was our good fortune to

work with a talented copy editor, John Searcy.

I’m grateful to Leonard’s (other) continuing education

students for routinely raising thoughtful, provocative ques-

tions, and for many stimulating after-class conversations.

PREFACE



Rob Colwell, Todd Craig, Monty Frost, and John Nash of-

fered constructive comments on the manuscript. Jeremy

Branscome and Russ Bryan reviewed the entire manuscript

in detail, and identified a number of problems.

I thank my family and friends for their kind support and

enthusiasm. I especially thank my daughter, Hannah, for

minding the store.

Besides her love, encouragement, insight, and sense of

humor, my amazing wife, Margaret Sloan, contributed about

a third of the diagrams and both Hilbert’s Place illustrations.

Thanks, Maggie.

At the start of this project, Leonard, sensing my real mo-

tivation, remarked that one of the best ways to learn physics

is to write about it. True, of course, but I had no idea

how true, and I’m grateful that I had a chance to find out.

Thanks a million, Leonard.

Art Friedman
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Prologue

Art looks over his beer and says, “Lenny, let’s play a round

of the Einstein-Bohr game.”

“OK, but I’m tired of losing. This time, you be Artstein and

I’ll be L-Bore. You start.”

“Fair enough. Here’s my first shot: God doesn’t play dice.

Ha-ha, L-Bore, that’s one point for me.”

“Not so fast, Artstein, not so fast. You, my friend, were

the first one to point out that quantum theory is inherently

probabilistic. Heh heh heh, that’s a two-pointer!”

“Well, I take it back.”

“You can’t.”

“I can.”

“You can’t.”

Few people realize that Einstein, in his 1917 paper, ”On the

Quantum Theory of Radiation,” argues that the emission of

gamma rays is governed by a statistical law.

xv
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A Professor and a Fiddler Walk into a Bar

Volume I was punctuated by short conversations between

Lenny and George, fictional personas who were loosely based

on two John Steinbeck characters.The setting for this volume

of the Theoretical Minimum series is inspired by the stories

of Damon Runyon. It’s a world filled with crooks, con artists,

degenerates, smooth operators, and do-gooders. Plus a few

ordinary folks, just trying to get through the day. The action

unfolds at a popular watering hole called Hilbert’s Place.

Into this setting stroll Lenny and Art, two greenhorns

from California who somehow got separated from their tour

bus. Wish them luck. They will need it.

What to Bring

You don’t need to be a physicist to take this journey, but

you should have some basic knowledge of calculus and linear

algebra. You should also know something about the material

covered in Volume I. It’s OK if your math is a bit rusty.

We’ll review and explain much of it as we go, especially the

material on linear algebra. Volume I reviews the basic ideas

of calculus.

Don’t let our lighthearted humor fool you into thinking

that we’re writing for airheads. We’re not. Our goal is to

make a difficult subject “as simple as possible, but no sim-

pler,” and we hope to have a little fun along the way. See

you at Hilbert’s Place.
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Introduction

Classical mechanics is intuitive; things move in predictable

ways. An experienced ballplayer can take a quick look at a

fly ball, and from its location and its velocity, know where

to run in order to be there just in time to catch the ball. Of

course a sudden unexpected gust of wind might fool him, but

that’s only because he didn’t take into account all the vari-

ables. There is an obvious reason why classical mechanics is

intuitive: humans, and animals before them, have been using

it many times every day for survival. But no one ever used

quantum mechanics before the twentieth century. Quantum

mechanics describes things so small that they are completely

beyond the range of the human senses. So it stands to reason

that we did not evolve an intuition for the quantum world.

The only way we can comprehend it is by rewiring our intu-

itions with abstract mathematics. Fortunately, for some odd

reason, we did evolve the capacity for such rewiring.

Ordinarily, we learn classical mechanics first, before even

attempting quantum mechanics. But quantum physics is

much more fundamental than classical physics. As far as we

know, quantum mechanics provides an exact description of

every physical system, but some things are massive enough

xix



xx INTRODUCTION

that quantum mechanics can be reliably approximated by

classical mechanics. That’s all that classical mechanics is:

an approximation. From a logical point of view, we should

learn quantum mechanics first, but very few physics teach-

ers would recommend that. Even this course of lectures—the

Theoretical Minimum series—began with classical mechan-

ics. Nevertheless, in these quantum lectures, classical me-

chanics will play almost no role except near the end, well

after the basic principles of quantum mechanics have been

explained. I think this is really the right way to do it, not

just logically but pedagogically as well. That way we don’t

fall into the trap of thinking that quantum mechanics is basi-

cally just classical mechanics with a couple of new gimmicks

thrown in. By the way, quantum mechanics is technically

much easier than classical mechanics.

The simplest classical system—the basic logical unit for

computer science—is the two-state system. Sometimes it’s

called a bit. It can represent anything that has only two

states: a coin that can show heads or tails, a switch that

is on or off, or a tiny magnet that is constrained to point

either north or south. As you might expect, especially if you

studied the first lecture of Volume I, the theory of classical

two-state systems is extremely simple—boring, in fact. In

this volume, we’re going to begin with the quantum version

of the two-state system, called a qubit, which is far more

interesting. To understand it, we will need a whole new way

of thinking—a new foundation of logic.



Lecture 1

Systems and
Experiments

Lenny and Art wander into Hilbert’s Place.

Art: What is this, the Twilight Zone? Or some kind of fun

house? I can’t get my bearings.

Lenny: Take a breath. You’ll get used to it.

Art: Which way is up?

1.1 Quantum Mechanics Is

Different

What is so special about quantum mechanics? Why is it so

hard to understand? It would be easy to blame the “hard

mathematics,” and there may be some truth in that idea.

But that can’t be the whole story. Lots of nonphysicists are

1



2 LECTURE 1. SYSTEMS AND EXPERIMENTS

able to master classical mechanics and field theory, which

also require hard mathematics.

Quantum mechanics deals with the behavior of objects

so small that we humans are ill equipped to visualize them

at all. Individual atoms are near the upper end of this scale

in terms of size. Electrons are frequently used as objects of

study. Our sensory organs are simply not built to perceive

the motion of an electron. The best we can do is to try

to understand electrons and their motion as mathematical

abstractions.

“So what?” says the skeptic. “Classical mechanics is filled

to the brim with mathematical abstractions—point masses,

rigid bodies, inertial reference frames, positions, momenta,

fields, waves—the list goes on and on. There’s nothing new

about mathematical abstractions.” This is actually a fair

point, and indeed the classical and quantum worlds have

some important things in common. Quantum mechanics,

however, is different in two ways:

1. Different Abstractions. Quantum abstractions are fun-

damentally different from classical ones. For example,

we’ll see that the idea of a state in quantum mechanics

is conceptually very different from its classical counter-

part. States are represented by different mathematical

objects and have a different logical structure.

2. States and Measurements. In the classical world, the

relationship between the state of a system and the re-

sult of a measurement on that system is very straight-

forward. In fact, it’s trivial. The labels that describe
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a state (the position and momentum of a particle, for

example) are the same labels that characterize mea-

surements of that state. To put it another way, one

can perform an experiment to determine the state of a

system. In the quantum world, this is not true. States

and measurements are two different things, and the

relationship between them is subtle and nonintuitive.

These ideas are crucial, and we’ll come back to them again

and again.

1.2 Spins and Qubits

The concept of spin is derived from particle physics. Par-

ticles have properties in addition to their location in space.

For example, they may or may not have electric charge, or

mass. An electron is not the same as a quark or a neutrino.

But even a specific type of particle, such as an electron, is

not completely specified by its location. Attached to the elec-

tron is an extra degree of freedom called its spin. Naively,

the spin can be pictured as a little arrow that points in some

direction, but that naive picture is too classical to accurately

represent the real situation. The spin of an electron is about

as quantum mechanical as a system can be, and any attempt

to visualize it classically will badly miss the point.

We can and will abstract the idea of a spin, and for-

get that it is attached to an electron. The quantum spin

is a system that can be studied in its own right. In fact,

the quantum spin, isolated from the electron that carries it
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through space, is both the simplest and the most quantum

of systems.

The isolated quantum spin is an example of the gen-

eral class of simple systems we call qubits—quantum bits—

that play the same role in the quantum world as logical

bits play in defining the state of your computer. Many

systems—maybe even all systems—can be built up by com-

bining qubits. Thus in learning about them, we are learning

about a great deal more.

1.3 An Experiment

Let’s make these ideas concrete, using the simplest example

we can find. In the first lecture of Volume I, we began by

discussing a very simple deterministic system: a coin that

can show either heads (H) or tails (T ). We can call this a

two-state system, or a bit, with the two states being H and

T . More formally we invent a “degree of freedom” called σ

that can take on two values, namely +1 and −1. The state

H is replaced by

σ = +1

and the state T by

σ = −1.

Classically, that’s all there is to the space of states. The

system is either in state σ = +1 or σ = −1 and there is



1.3. AN EXPERIMENT 5

nothing in between. In quantum mechanics, we’ll think of

this system as a qubit.

Volume I also discussed simple evolution laws that tell

us how to update the state from instant to instant. The

simplest law is just that nothing happens. In that case, if

we go from one discrete instant (n) to the next (n+ 1), the

law of evolution is

σ(n+ 1) = σ(n). (1.1)

Let’s expose a hidden assumption that we were careless

about in Volume I. An experiment involves more than just

a system to study. It also involves an apparatus A to make

measurements and record the results of the measurements.

In the case of the two-state system, the apparatus interacts

with the system (the spin) and records the value of σ. Think

of the apparatus as a black box1 with a window that displays

the result of a measurement. There is also a “this end up”

arrow on the apparatus. The up-arrow is important because

it shows how the apparatus is oriented in space, and its di-

rection will affect the outcomes of our measurements. We

begin by pointing it along the z axis (Fig. 1.1). Initially,

we have no knowledge of whether σ = +1 or σ = −1. Our

purpose is to do an experiment to find out the value of σ.

Before the apparatus interacts with the spin, the window

is blank (labeled with a question mark in our diagrams).

After it measures σ, the window shows a +1 or a −1. By
1“Black box” means we have no knowledge of what’s inside the

apparatus or how it works. But rest assured, it does not contain a cat.
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Spin

up

?

Apparatus

Before Measurement (A)

Spin

up

+1

Apparatus

After Measurement (B)

Z

X

Y

Figure 1.1: (A) Spin and cat-free apparatus before any mea-
surement is made. (B) Spin and apparatus after one mea-
surement has been made, resulting in σz = +1. The spin
is now prepared in the σz = +1 state. If the spin is not
disturbed and the apparatus keeps the same orientation, all
subsequent measurements will give the same result. Coordi-
nate axes show our convention for labeling the directions of
space.

looking at the apparatus, we determine the value of σ. That

whole process constitutes a very simple experiment designed

to measure σ.

Now that we’ve measured σ, let’s reset the apparatus to

neutral and, without disturbing the spin, measure σ again.

Assuming the simple law of Eq. 1.1, we should get the same

answer as we did the first time. The result σ = +1 will be
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followed by σ = +1. Likewise for σ = −1. The same will be

true for any number of repetitions. This is good because it

allows us to confirm the result of an experiment. We can also

say this in the following way: The first interaction with the

apparatus A prepares the system in one of the two states.

Subsequent experiments confirm that state. So far, there is

no difference between classical and quantum physics.

Spin

up

-1

Apparatus

Apparatus Flipped 180°

Z

X

Y

Figure 1.2: The apparatus is flipped without disturbing the
previously measured spin. A new measurement results in
σz = −1.

Now let’s do something new. After preparing the spin

by measuring it with A, we turn the apparatus upside down

and then measure σ again (Fig. 1.2). What we find is that if

we originally prepared σ = +1, the upside down apparatus

records σ = −1. Similarly, if we originally prepared σ = −1,
the upside down apparatus records σ = +1. In other words,
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turning the apparatus over interchanges σ = +1 and σ = −1.
From these results, we might conclude that σ is a degree of

freedom that is associated with a sense of direction in space.

For example, if σ were an oriented vector of some sort, then

it would be natural to expect that turning the apparatus over

would reverse the reading. A simple explanation is that the

apparatus measures the component of the vector along an

axis embedded in the apparatus. Is this explanation correct

for all configurations?

If we are convinced that the spin is a vector, we would

naturally describe it by three components: σz, σx, and σy.

When the apparatus is upright along the z axis, it is posi-

tioned to measure σz.

Spin up

-1 or +1

Apparatus

Apparatus Rotated 90°

    

Z

X

Y

Figure 1.3: The apparatus rotated by 90◦. A new measure-
ment results in σz = −1 with 50 percent probability.

So far, there is still no difference between classical physics
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and quantum physics. The difference only becomes apparent

when we rotate the apparatus through an arbitrary angle,

say π
2
radians (90 degrees). The apparatus begins in the

upright position (with the up-arrow along the z axis). A

spin is prepared with σ = +1. Next, rotate A so that the

up-arrow points along the x axis (Fig. 1.3), and then make a

measurement of what is presumably the x component of the

spin, σx.

If in fact σ really represents the component of a vector

along the up-arrow, one would expect to get zero. Why?

Initially, we confirmed that σ was directed along the z axis,

suggesting that its component along x must be zero. But we

get a surprise when we measure σx: Instead of giving σx = 0,

the apparatus gives either σx = +1 or σx = −1. A is very

stubborn—no matter which way it is oriented, it refuses to

give any answer other than σ = ±1. If the spin really is a

vector, it is a very peculiar one indeed.

Nevertheless, we do find something interesting. Suppose

we repeat the operation many times, each time following the

same procedure, that is:

• Beginning with A along the z axis, prepare σ = +1.

• Rotate the apparatus so that it is oriented along the x

axis.

• Measure σ.

The repeated experiment spits out a random series of plus-

ones and minus-ones. Determinism has broken down, but

in a particular way. If we do many repetitions, we will find
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that the numbers of σ = +1 events and σ = −1 events

are statistically equal. In other words, the average value of

σ is zero. Instead of the classical result—namely, that the

component of σ along the x axis is zero—we find that the

average of these repeated measurements is zero.

Spin

up

-1 or +1

Apparatus

Apparatus Rotated
by an Arbitrary Angle

m^
n^

Ө

Figure 1.4: The apparatus rotated by an arbitrary angle
within the x–z plane. Average measurement result is n̂ · m̂.

Now let’s do the whole thing over again, but instead of

rotating A to lie on the x axis, rotate it to an arbitrary

direction along the unit vector2 n̂. Classically, if σ were a

vector, we would expect the result of the experiment to be

the component of σ along the n̂ axis. If n̂ lies at an angle θ

2The standard notation for a unit vector (one of unit length) is to
place a “hat” above the symbol representing the vector.
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with respect to z, the classical answer would be σ = cos θ.

But as you might guess, each time we do the experiment we

get σ = +1 or σ = −1. However, the result is statistically

biased so that the average value is cos θ.

The situation is of course more general. We did not have

to start with A oriented along z. Pick any direction m̂ and

start with the up-arrow pointing along m̂. Prepare a spin

so that the apparatus reads +1. Then, without disturbing

the spin, rotate the apparatus to the direction n̂, as shown

in Fig. 1.4. A new experiment on the same spin will give

random results ±1, but with an average value equal to the

cosine of the angle between n̂ and m̂. In other words, the

average will be n̂ · m̂.

The quantum mechanical notation for the statistical av-

erage of a quantity Q is Dirac’s bracket notation 〈Q〉. We

may summarize the results of our experimental investigation

as follows: If we begin with A oriented along m̂ and confirm

that σ = +1, then subsequent measurement with A oriented

along n̂ gives the statistical result

〈σ〉 = n̂ · m̂.

What we are learning is that quantum mechanical systems

are not deterministic—the results of experiments can be sta-

tistically random—but if we repeat an experiment many

times, average quantities can follow the expectations of clas-

sical physics, at least up to a point.
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1.4 Experiments Are Never Gentle

Every experiment involves an outside system—an apparatus—

that must interact with the system in order to record a re-

sult. In that sense, every experiment is invasive. This is

true in both classical and quantum physics, but only quan-

tum physics makes a big deal out of it. Why is that so?

Classically, an ideal measuring apparatus has a vanishingly

small effect on the system it is measuring. Classical experi-

ments can be arbitrarily gentle and still accurately and repro-

ducibly record the results of the experiment. For example,

the direction of an arrow can be determined by reflecting

light off the arrow and focusing it to form an image. While

it is true that the light must have a small enough wavelength

to form an image, there is nothing in classical physics that

prevents the image from being made with arbitrarily weak

light. In other words, the light can have an arbitrarily small

energy content.

In quantum mechanics, the situation is fundamentally

different. Any interaction that is strong enough to measure

some aspect of a system is necessarily strong enough to dis-

rupt some other aspect of the same system. Thus, you can

learn nothing about a quantum system without changing

something else.

This should be evident in the examples involving A and

σ. Suppose we begin with σ = +1 along the z axis. If we

measure σ again withA oriented along z, we will confirm the

previous value. We can do this over and over without chang-

ing the result. But consider this possibility: Between suc-

cessive measurements along the z axis, we turn A through
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90 degrees, make an intermediate measurement, and turn it

back to its original direction. Will a subsequent measure-

ment along the z axis confirm the original measurement?

The answer is no. The intermediate measurement along the

x axis will leave the spin in a completely random configura-

tion as far as the next measurement is concerned. There is

no way to make the intermediate determination of the spin

without completely disrupting the final measurement. One

might say that measuring one component of the spin destroys

the information about another component. In fact, one sim-

ply cannot simultaneously know the components of the spin

along two different axes, not in a reproducible way in any

case. There is something fundamentally different about the

state of a quantum system and the state of a classical system.

1.5 Propositions

The space of states of a classical system is a mathematical

set. If the system is a coin, the space of states is a set of

two elements, H and T . Using set notation, we would write

{H, T}. If the system is a six-sided die, the space of states

has six elements labeled {1, 2, 3, 4, 5, 6}. The logic of set the-
ory is called Boolean logic. Boolean logic is just a formalized

version of the familiar classical logic of propositions.

A fundamental idea in Boolean logic is the notion of a

truth-value. The truth-value of a proposition is either true

or false. Nothing in between is allowed. The related set

theory concept is a subset. Roughly speaking, a proposition

is true for all the elements in its corresponding subset and

false for all the elements not in this subset. For example,
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if the set represents the possible states of a die, one can

consider the proposition

A: The die shows an odd-numbered face.

The corresponding subset contains the three elements

{1, 3, 5}.

Another proposition states

B: The die shows a number less than 4.

The corresponding subset contains the states {1, 2, 3}.

Every proposition has its opposite (also called its negation).

For example,

not A: The die does not show an odd-numbered face.

The subset for this negated proposition is {2, 4, 6}.

There are rules for combining propositions into more com-

plex propositions, the most important being or, and, and

not. We just saw an example of not, which gets applied to

a single subset or proposition. And is straightforward, and

applies to a pair of propositions.3 It says they are both true.

Applied to two subsets, and gives the elements common to

both, that is, the intersection of the two subsets. In the die

example, the intersection of subsets A and B is the subset

of elements that are both odd and less than 4. Fig. 1.5 uses

a Venn diagram to show how this works.

3And may be defined for multiple propositions, but we’ll only con-
sider two. The same goes for or.
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The or rule is similar to and, but has one additional

subtlety. In everyday speech, the word or is generally used

in the exclusive sense—the exclusive version is true if one or

the other of two propositions is true, but not both. However,

Boolean logic uses the inclusive version of or, which is true if

either or both of the propositions are true. Thus, according

to the inclusive or, the proposition

Albert Einstein discovered relativity or Isaac Newton was

English

is true. So is

Albert Einstein discovered relativity or Isaac Newton was

Russian.

The inclusive or is only wrong if both propositions are false.

For example,

Albert Einstein discovered America4 or Isaac Newton was

Russian.

The inclusive or has a set theoretic interpretation as the

union of two sets: it denotes the subset containing anything

in either or both of the component subsets. In the die ex-

ample, (A or B) denotes the subset {1, 2, 3, 5}.

4OK, perhaps Einstein did discover America. But he was not the
first.
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1              3              5

2              4              6

Subset A:
Die shows an
odd-numbered
face.

Subset B:
Die shows a
number < 4

Space of States for a Single Die

.

Figure 1.5: An Example of the Classical model of State
Space. Subset A represents the proposition “the die shows
an odd-numbered face.” Subset B: “The die shows a num-
ber < 4.” Dark shading shows the intersection of A and B,
which represents the proposition (A and B). White num-
bers are elements of the union of A with B, representing the
proposition (A or B).

1.6 Testing Classical Propositions

Let’s return to the simple quantum system consisting of a

single spin, and the various propositions whose truth we

could test using the apparatus A. Consider the following

two propositions:

A: The z component of the spin is +1.
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B: The x component of the spin is +1.

Each of these is meaningful and can be tested by orienting

A along the appropriate axis. The negation of each is also

meaningful. For example, the negation of the first proposi-

tion is

not A: The z component of the spin is −1.

But now consider the composite propositions

(A or B): The z component of the spin is +1 or the x

component of the spin is +1.

(A and B): The z component of the spin is +1 and the

x component of the spin is +1.

Consider how we would test the proposition (A or B).

If spins behaved classically (and of course they don’t), we

would proceed as follows:5

• Gently measure σz and record the value. If it is +1,

we are finished: the proposition (A or B) is true. If σz

is −1, continue to the next step.

• Gently measure σx. If it is +1, then the proposition

(A or B) is true. If not, this means that neither σz

nor σx was equal to +1, and (A or B) is false.

5Recall that the classical meaning of σ is different from the quantum
mechanical meaning. Classically, σ is a straightforward 3-vector; σx

and σz represent its spatial components.
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There is an alternative procedure, which is to interchange the

order of the two measurements. To emphasize this reversal

of ordering, we’ll call the new procedure (B or A):

• Gently measure σx and record the value. If it is +1 we

are finished: The proposition (B or A) is true. If σx is

−1 continue to the next step.

• Gently measure σz. If it is +1, then (B or A) is true.

If not, it means that neither σx nor σz was equal to

+1, and (B or A) is false.

In classical physics, the two orders of operation give the same

answer. The reason for this is that measurements can be

arbitrarily gentle—so gentle that they do not affect the re-

sults of subsequent measurements. Therefore, the propo-

sition (A or B) has the same meaning as the proposition

(B or A).

1.7 Testing Quantum Propositions

Now we come to the quantum world that I described earlier.

Let us imagine a situation in which someone (or something)

unknown to us has secretly prepared a spin in the σz = +1

state. Our job is to use the apparatus A to determine

whether the proposition (A or B) is true or false. We will

try using the procedures outlined above.

We begin by measuring σz. Since the unknown agent has

set things up, we will discover that σz = +1. It is unnecessary

to go on: (A or B) is true. Nevertheless, we could test σx
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just to see what happens. The answer is unpredictable. We

randomly find that σx = +1 or σx = −1. But neither of these
outcomes affects the truth of proposition (A or B).

But now let’s reverse the order of measurement. As be-

fore, we’ll call the reversed procedure (B or A), and this time

we’ll measure σx first. Because the unknown agent set the

spin to +1 along the z axis, the measurement of σx is ran-

dom. If it turns out that σx = +1, we are finished: (B or A)

is true. But suppose we find the opposite result, σx = −1.
The spin is oriented along the −x direction. Let’s pause here

briefly, to make sure we understand what just happened. As

a result of our first measurement, the spin is no longer in its

original state σz = +1. It is in a new state, which is either

σx = +1 or σx = −1. Please take a moment to let this idea

sink in. We cannot overstate its importance.

Now we’re ready to test the second half of proposition

(B or A). Rotate the apparatus A to the z axis and mea-

sure σz. According to quantum mechanics, the result will be

randomly±1. This means that there is a 25 percent probabil-

ity that the experiment produces σx = −1 and σz = −1. In
other words, with a probability of 1

4
, we find that (B or A)

is false; this occurs despite the fact that the hidden agent

had originally made sure that σz = +1.

Evidently, in this example, the inclusive or is not sym-

metric. The truth of (A or B) may depend on the order in

which we confirm the two propositions. This is not a small

thing; it means not only that the laws of quantum physics

are different from their classical counterparts, but that the

very foundations of logic are different in quantum physics as

well.
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What about (A and B)? Suppose our first measure-

ment yields σz = +1 and the second, σx = +1. This is of

course a possible outcome. We would be inclined to say that

(A and B) is true. But in science, especially in physics,

the truth of a proposition implies that the proposition can

be verified by subsequent observation. In classical physics,

the gentleness of observations implies that subsequent exper-

iments are unaffected and will confirm an earlier experiment.

A coin that turns up Heads will not be flipped to Tails by

the act of observing it—at least not classically. Quantum

mechanically, the second measurement (σx = +1) ruins the

possibility of verifying the first. Once σx has been prepared

along the x axis, another mesurement of σz will give a ran-

dom answer. Thus (A and B) is not confirmable: the second

piece of the experiment interferes with the possibility of con-

firming the first piece.

If you know a bit about quantum mechanics, you proba-

bly recognize that we are talking about the uncertainty prin-

ciple. The uncertainty principle doesn’t apply only to posi-

tion and momentum (or velocity); it applies to many pairs

of measurable quantities. In the case of the spin, it applies

to propositions involving two different components of σ. In

the case of position and momentum, the two propositions we

might consider are:

A certain particle has position x.

That same particle has momentum p.

From these, we can form the two composite propositions
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The particle has position x and the particle has

momentum p.

The particle has position x or the particle has

momentum p.

Awkward as they are, both of these propositions have mean-

ing in the English language, and in classical physics as well.

However, in quantum physics, the first of these propositions

is completely meaningless (not even wrong), and the second

one means something quite different from what you might

think. It all comes down to a deep logical difference between

the classical and quantum concepts of the state of a system.

Explaining the quantum concept of state will require some

abstract mathematics, so let’s pause for a brief interlude on

complex numbers and vector spaces. The need for complex

quantities will become clear later on, when we study the

mathematical representation of spin states.

1.8 Mathematical Interlude:

Complex Numbers

Everyone who has gotten this far in the Theoretical Mini-

mum series knows about complex numbers. Nevertheless, I

will spend a few lines reminding you of the essentials. Fig.

1.6 shows some of their basic elements.

A complex number z is the sum of a real number and an

imaginary number. We can write it as

z = x+ iy,
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Complex Numbers
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Figure 1.6: Two CommonWays to Represent Complex Num-
bers. In the Cartesian representation, x and y are the hor-
izontal (real) and vertical (imaginary) components. In the
polar representation, r is the radius, and θ is the angle made
with the x axis. In each case, it takes two real numbers to
represent a single complex number.

where x and y are real and i2 = −1. Complex numbers can

be added, multiplied, and divided by the standard rules of

arithmetic. They can be visualized as points on the complex

plane with coordinates x, y. They can also be represented in

polar coordinates:
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z = reiθ = r(cos θ + i sin θ).

Adding complex numbers is easy in component form: just

add the components. Similarly, multiplying them is easy

in their polar form: Simply multiply the radii and add the

angles:

(
r1e

iθ1
) (

r2e
iθ2
)
= (r1r2) e

i(θ1+θ2).

Every complex number z has a complex conjugate z∗ that is
obtained by simply reversing the sign of the imaginary part.

If

z = x+ iy = reiθ,

then

z∗ = x− iy = re−iθ.

Multiplying a complex number and its conjugate always gives

a positive real result:

z∗z = r2.

It is of course true that every complex conjugate is itself a

complex number, but it’s often helpful to think of z and z∗

as belonging to separate “dual” number systems. Dual here

means that for every z there is a unique z∗ and vice versa.
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There is a special class of complex numbers that I’ll call

“phase-factors.” A phase-factor is simply a complex number

whose r-component is 1. If z is a phase-factor, then the

following hold:

z∗z = 1

z = eiθ

z = cos θ + i sin θ.

1.9 Mathematical Interlude:

Vector Spaces

1.9.1 Axioms

For a classical system, the space of states is a set (the set of

possible states), and the logic of classical physics is Boolean.

That seems obvious and it is difficult to imagine any other

possibility. Nevertheless, the real world operates along en-

tirely different lines, at least whenever quantum mechanics

is important. The space of states of a quantum system is not

a mathematical set;6 it is a vector space. Relations between

the elements of a vector space are different from those be-

tween the elements of a set, and the logic of propositions is

different as well.

Before I tell you about vector spaces, I need to clarify the

term vector. As you know, we use this term to indicate an

6To be a little more precise, we will not focus on the set-theoretic
properties of state spaces, even though they may of course be regarded
as sets.
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object in ordinary space that has a magnitude and a direc-

tion. Such vectors have three components, corresponding to

the three dimensions of space. I want you to completely for-

get about that concept of a vector. From now on, whenever

I want to talk about a thing with magnitude and direction

in ordinary space, I will explicitly call it a 3-vector. A math-

ematical vector space is an abstract construction that may

or may not have anything to do with ordinary space. It may

have any number of dimensions from 1 to ∞ and it may

have components that are integers, real numbers, or even

more general things.

The vector spaces we use to define quantum mechanical

states are called Hilbert spaces. We won’t give the mathe-

matical definition here, but you may as well add this term

to your vocabulary. When you come across the term Hilbert

space in quantum mechanics, it refers to the space of states.

A Hilbert space may have either a finite or an infinite number

of dimensions.

In quantum mechanics, a vector space is composed of

elements |A〉 called ket-vectors or just kets. Here are the

axioms we will use to define the vector space of states of a

quantum system (z and w are complex numbers):

1. The sum of any two ket-vectors is also a ket-vector:

|A〉+ |B〉 = |C〉.
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2. Vector addition is commutative:

|A〉+ |B〉 = |B〉+ |A〉.

3. Vector addition is associative:

{|A〉+ |B〉}+ |C〉 = |A〉+ {|B〉+ |C〉} .

4. There is a unique vector 0 such that when you add it

to any ket, it gives the same ket back:

|A〉+ 0 = |A〉.

5. Given any ket |A〉, there is a unique ket −|A〉 such that

|A〉+ (−|A〉) = 0.

6. Given any ket |A〉 and any complex number z, you can

multiply them to get a new ket. Also, multiplication

by a scalar is linear:

|zA〉 = z|A〉 = |B〉.

7. The distributive property holds:

z {|A〉+ |B〉} = z|A〉+ z|B〉
{z + w} |A〉 = z|A〉+ w|A〉.
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Axioms 6 and 7 taken together are often called linearity.

Ordinary 3-vectors would satisfy these axioms except for

one thing: Axiom 6 allows a vector to be multiplied by any

complex number. Ordinary 3-vectors can be multiplied by

real numbers (positive, negative, or zero) but multiplication

by complex numbers is not defined. One can think of 3-

vectors as forming a real vector space, and kets as forming a

complex vector space. Our definition of ket-vectors is fairly

abstract. As we will see, there are various concrete ways to

represent ket-vectors as well.

1.9.2 Functions and Column Vectors

Let’s look at some concrete examples of complex vector spaces.

First of all, consider the set of continuous complex-valued

functions of a variable x. Call the functions A(x). You can

add any two such functions and multiply them by complex

numbers. You can check that they satisfy all seven axioms.

This example should make it obvious that we are talking

about something much more general than three-dimensional

arrows.

Two-dimensional column vectors provide another con-

crete example. We construct them by stacking up a pair

of complex numbers, α1 and α2, in the form

(
α1

α2

)

and identifying this “stack” with the ket-vector |A〉. The

complex numbers α are the components of |A〉. You can add

two column vectors by adding their components:
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(
α1

α2

)
+

(
β1

β2

)
=

(
α1 + β1

α2 + β2

)
.

Moreover, you can multiply the column vector by a complex

number z just by multiplying the components,

z

(
α1

α2

)
=

(
zα1

zα2

)
.

Column vector spaces of any number of dimensions can be

constructed. For example, here is a five-dimensional column

vector:

⎛
⎜⎜⎜⎜⎝

α1

α2

α3

α4

α5

⎞
⎟⎟⎟⎟⎠ .

Normally, we do not mix vectors of different dimensionality.

1.9.3 Bras and Kets

As we have seen, the complex numbers have a dual version:

in the form of complex conjugate numbers. In the same way,

a complex vector space has a dual version that is essentially

the complex conjugate vector space. For every ket-vector

|A〉, there is a “bra” vector in the dual space, denoted by 〈A|.
Why the strange terms bra and ket? Shortly, we will define

inner products of bras and kets, using expressions like 〈B|A〉
to form bra-kets or brackets. Inner products are extremely
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important in the mathematical machinery of quantum me-

chanics, and for characterizing vector spaces in general.

Bra vectors satisfy the same axioms as the ket-vectors,

but there are two things to keep in mind about the corre-

spondence between kets and bras:

1. Suppose 〈A| is the bra corresponding to the ket |A〉,
and 〈B| is the bra corresponding to the ket |B〉. Then
the bra corresponding to

|A〉+ |B〉

is

〈A|+ 〈B|.

2. If z is a complex number, then it is not true that the bra

corresponding to z|A〉 is 〈A|z. You have to remember

to complex-conjugate. Thus, the bra corresponding to

z|A〉

is

〈A|z∗.

In the concrete example where kets are represented by col-

umn vectors, the dual bras are represented by row vectors,
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with the entries being drawn from the complex conjugate

numbers. Thus, if the ket |A〉 is represented by the column

⎛
⎜⎜⎜⎜⎝

α1

α2

α3

α4

α5

⎞
⎟⎟⎟⎟⎠ ,

then the corresponding bra 〈A| is represented by the row

(
α∗
1 α∗

2 α∗
3 α∗

4 α∗
5

)
.

1.9.4 Inner Products

You are no doubt familiar with the dot product defined for

ordinary 3-vectors. The analogous operation for bras and

kets is the inner product. The inner product is always the

product of a bra and a ket and it is written this way:

〈B|A〉.

The result of this operation is a complex number. The ax-

ioms for inner products are not too hard to guess:

1. They are linear:

〈C| { |A〉+ |B〉 } = 〈C|A〉+ 〈C|B〉.
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2. Interchanging bras and kets corresponds to complex

conjugation:

〈B|A〉 = 〈A|B〉∗.

Exercise 1.1:

a) Using the axioms for inner products, prove

{〈A|+ 〈B|} |C〉 = 〈A|C〉+ 〈B|C〉.

b) Prove 〈A|A〉 is a real number.

In the concrete representation of bras and kets by row and

column vectors, the inner product is defined in terms of com-

ponents:

〈B|A〉 =
(
β∗
1 β∗

2 β∗
3 β∗

4 β∗
5

)
⎛
⎜⎜⎜⎜⎝

α1

α2

α3

α4

α5

⎞
⎟⎟⎟⎟⎠

= β∗
1α1 + β∗

2α2 + β∗
3α3 + β∗

4α4 + β∗
5α5. (1.2)

The rule for inner products is essentially the same as for dot

products: add the products of corresponding components of

the vectors whose inner product is being calculated.
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Exercise 1.2: Show that the inner product defined by Eq.
1.2 satisfies all the axioms of inner products.

Using the inner product, we can define some concepts that

are familiar from ordinary 3-vectors:

• Normalized Vector: A vector is said to be normalized

if its inner product with itself is 1. Normalized vectors

satisfy,

〈A|A〉 = 1.

For ordinary 3-vectors, the term normalized vector is

usually replaced by unit vector, that is, a vector of unit

length.

• Orthogonal Vectors: Two vectors are said to be or-

thogonal if their inner product is zero. |A〉 and |B〉 are
orthogonal if

〈B|A〉 = 0.

This is the analog of saying that two 3-vectors are or-

thogonal if their dot product is zero.

1.9.5 Orthonormal Bases

When working with ordinary 3-vectors, it is extremely useful

to introduce a set of three mutually orthogonal unit vectors

and use them as a basis to construct any vector. A simple
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example would be the unit 3-vectors that point along the x,

y, and z axes. They are usually called î, ĵ, and k̂. Each is of

unit length and orthogonal to the others. If you tried to find

a fourth vector orthogonal to these three, there wouldn’t be

any—not in three dimensions anyway. However, if there were

more dimensions of space, there would be more basis vectors.

The dimension of a space can be defined as the maximum

number of mutually orthogonal vectors in that space.

Obviously, there is nothing special about the particular

axes x, y, and z. As long as the basis vectors are of unit length

and are mutually orthogonal, they comprise an orthonormal

basis.

The same principle is true for complex vector spaces. One

can begin with any normalized vector and then look for a

second one, orthogonal to the first. If you find one, then

the space is at least two-dimensional. Then look for a third,

fourth, and so on. Eventually, you may run out of new direc-

tions and there will not be any more orthogonal candidates.

The maximum number of mutually orthogonal vectors is the

dimension of the space. For column vectors, the dimension

is simply the number of entries in the column.

Let’s consider an N -dimensional space and a particular

orthonormal basis of ket-vectors labeled |i〉.7 The label i runs
from 1 to N. Consider a vector |A〉, written as a sum of basis

7Mathematically, basis vectors are not required to be orthonor-
mal. However, in quantum mechanics they generally are. In this book,
whenever we say basis, we mean an orthonormal basis.
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vectors:

|A〉 =
∑
i

αi|i〉. (1.3)

The αi are complex numbers called the components of the

vector, and to calculate them we take the inner product of

both sides with a basis bra 〈j|:

〈j|A〉 =
∑
i

αi〈j|i〉. (1.4)

Next, we use the fact that the basis vectors are orthonormal.

This implies that 〈j|i〉 = 0 if i is not equal to j, and 〈j|i〉 = 1

if i = j. In other words, 〈j|i〉 = δij. This makes the sum in

Eq. 1.4 collapse to one term:

〈j|A〉 = αj. (1.5)

Thus, we see that the components of a vector are just its

inner products with the basis vectors. We can rewrite Eq.

1.3 in the elegant form

|A〉 =
∑
i

|i〉〈i|A〉.



Lecture 2

Quantum States

Art: Oddly enough, that beer made my head stop spinning.

What state are we in?

Lenny: I wish I knew. Does it matter?

Art: It might. I don’t think we’re in California anymore.

2.1 States and Vectors

In classical physics, knowing the state of a system implies

knowing everything that is necessary to predict the future

of that system. As we’ve seen in the last lecture, quantum

systems are not completely predictable. Evidently, quantum

states have a different meaning than classical states. Very

roughly, knowing a quantum state means knowing as much

as can be known about how the system was prepared. In the

last chapter, we talked about using an apparatus to prepare

the state of a spin. In fact, we implicitly assumed that there

35



36 LECTURE 2. QUANTUM STATES

was no more fine detail to specify or that could be specified

about the state of the spin.

The obvious question to ask is whether the unpredictabil-

ity is due to an incompleteness in what we call a quantum

state. There are various opinions about this matter. Here is

a sampling:

• Yes, the usual notion of quantum state is incomplete.

There are “hidden variables” that, if only we could ac-

cess them, would allow complete predictability. There

are two versions of this view. In version A, the hidden

variables are hard to measure but in principle they are

experimentally available to us. In version B, because

we are made of quantum mechanical matter and there-

fore subject to the restrictions of quantum mechanics,

the hidden variables are, in principle, not detectable.

• No, the hidden variables concept does not lead us in

a profitable direction. Quantum mechanics is unavoid-

ably unpredictable. Quantum mechanics is as complete

a calculus of probabilities as is possible. The job of a

physicist is to learn and use this calculus.

I don’t know what the ultimate answer to this question will

be, or even if it will prove to be a useful question. But for our

purposes, it’s not important what any particular physicist

believes about the ultimate meaning of the quantum state.

For practical reasons, we will adopt the second view.

In practice, what this means for the quantum spin of

Lecture 1 is that, when the apparatus A acts and tells us

that σz = +1 or σz = −1, there is no more to know, or
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that can be known. Likewise, if we rotate A and measure

σx = +1 or σx = −1, there is no more to know. Likewise for

σy or any other component of the spin.

2.2 Representing Spin States

Now it’s time to try our hand at representing spin states us-

ing state-vectors. Our goal is to build a representation that

captures everything we know about the behavior of spins.

At this point, the process will be more intuitive than formal.

We will try to fit things together the best we can, based on

what we’ve already learned. Please read this section care-

fully. Believe me, it will pay off.

Let’s begin by labeling the possible spin states along the

three coordinate axes. If A is oriented along the z axis,

the two possible states that can be prepared correspond to

σz = ±1. Let’s call them up and down and denote them by

ket-vectors |u〉 and |d〉. Thus, when the apparatus is oriented

along the z axis and registers +1, the state |u〉 has been

prepared.

On the other hand, if the apparatus is oriented along

the x axis and registers −1, the state |l〉 has been prepared.

We’ll call it left. If A is along the y axis, it can prepare the

states |i〉 and |o〉 (in and out). You get the idea.

The idea that there are no hidden variables has a very

simple mathematical representation: the space of states for

a single spin has only two dimensions. This point deserves

emphasis:
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All possible spin states can be represented in a two-

dimensional vector space.

We could, somewhat arbitrarily,1 choose |u〉 and |d〉 as
the two basis vectors and write any state as a linear super-

position of these two. We’ll adopt that choice for now. Let’s

use the symbol |A〉 for a generic state. We can write this as

an equation,

|A〉 = αu|u〉+ αd|d〉,

where αu and αd are the components of |A〉 along the basis

directions |u〉 and |d〉. Mathematically, we can identify the

components of |A〉 as

αu = 〈u|A〉
αd = 〈d|A〉. (2.1)

These equations are extremely abstract, and it is not at all

obvious what their physical significance is. I am going to

tell you right now what they mean: First of all, |A〉 can

represent any state of the spin, prepared in any manner. The

components αu and αd are complex numbers; by themselves,

they have no experimental meaning, but their magnitudes

do. In particular, α∗
uαu and α∗

dαd have the following meaning:

• Given that the spin has been prepared in the state

|A〉, and that the apparatus is oriented along z, the

1The choice is not totally arbitrary. The basis vectors must be
orthogonal to each other.
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quantity α∗
uαu is the probability that the spin would

be measured as σz = +1. In other words, it is the

probability of the spin being up if measured along the

z axis.

• Likewise, α∗
dαd is the probability that σz would be down

if measured.

The α values, or equivalently 〈u|A〉 and 〈d|A〉, are called

probability amplitudes. They are themselves not probabil-

ities. To compute a probability, their magnitudes must be

squared. In other words, the probabilities for measurements

of up and down are given by

Pu = 〈A|u〉〈u|A〉

Pd = 〈A|d〉〈d|A〉. (2.2)

Notice that I have said nothing about what σz is before it is

measured. Before the measurement, all we have is the vector

|A〉, which represents the potential possibilities but not the

actual values of our measurements.

Two other points are important: First, note that |u〉 and
|d〉 are mutually orthogonal. In other words,

〈u|d〉 = 0

〈d|u〉 = 0. (2.3)
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The physical meaning of this is that, if the spin is prepared

up, then the probability to detect it down is zero, and vice

versa. This point is so important, I’ll say it again: Two

orthogonal states are physically distinct and mutually exclu-

sive. If the spin is in one of these states, it cannot be (has

zero probability to be) in the other one. This idea applies to

all quantum systems, not just spin.

But don’t mistake the orthogonality of state-vectors for

orthogonal directions in space. In fact, the directions up and

down are not orthogonal directions in space, even though

their associated state-vectors are orthogonal in state space.

The second important point is that for the total proba-

bility to come out equal to unity, we must have

α∗
uαu + α∗

dαd = 1. (2.4)

This is equivalent to saying that the vector |A〉 is normalized

to a unit vector:

〈A|A〉 = 1.

This is a very general principle of quantum mechanics that

extends to all quantum systems: the state of a system is

represented by a unit (normalized) vector in a vector space of

states. Moreover, the squared magnitudes of the components

of the state-vector, along particular basis vectors, represent

probabilities for various experimental outcomes.
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2.3 Along the x Axis

We said before that we can represent any spin state as a

linear combination of the basis vectors |u〉 and |d〉. Let’s try
doing this now for the vectors |r〉 and |l〉, which represent

spins prepared along the x axis. We’ll start with |r〉. As you
recall from Lecture 1, if A initially prepares |r〉, and is then

rotated to measure σz, there will be equal probabilities for

up and down. Thus, α∗
uαu and α∗

dαd must both be equal to
1
2
. A simple vector that satisfies this rule is

|r〉 = 1√
2
|u〉+ 1√

2
|d〉. (2.5)

There is some ambiguity in this choice, but as we will see

later, it is nothing more than the ambiguity in our choice of

exact directions for the x and y axes.

Next, let’s look at the vector |l〉. Here is what we know:

when the spin has been prepared in the left configuration,

the probabilities for σz are again equal to 1
2
. That is not

enough to determine the values α∗
uαu and α∗

dαd, but there

is another condition that we can infer. Earlier, I told you

that |u〉 and |d〉 are orthogonal for the simple reason that, if

the spin is up, it’s definitely not down. But there is nothing

special about up and down that is not also true of right and

left. In particular, if the spin is right, it has zero probability

of being left. Thus, by analogy with Eq. 2.3,

〈r|l〉 = 0

〈l|r〉 = 0.
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This pretty much fixes |l〉 in the form

|l〉 = 1√
2
|u〉 − 1√

2
|d〉. (2.6)

Exercise 2.1: Prove that the vector |r〉 in Eq. 2.5 is orthog-
onal to vector |l〉 in Eq. 2.6.

Again, there is some ambiguity in the choice of |l〉. This is

called the phase ambiguity. Suppose we multiply |l〉 by any

complex number z. That will have no effect on whether it is

orthogonal to |r〉, though in general the result will no longer

be normalized (have unit length). But if we choose z = eiθ

(where θ can be any real number), then there will be no

effect on the normalization because eiθ has unit magnitude.

In other words, α∗
uαu + α∗

dαd will remain equal to 1. Since

a number of the form z = eiθ is called a phase-factor, the

ambiguity is called the phase ambiguity. Later, we will find

out that no measurable quantity is sensitive to the overall

phase-factor, and therefore we can ignore it when specifying

states.

2.4 Along the y Axis

Finally, this brings us to |i〉 and |o〉, the vectors representing
spins oriented along the y axis. Let’s look at the conditions

they need to satisfy. First,

〈i|o〉 = 0. (2.7)
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This condition states that in and out are represented by or-

thogonal vectors in the same way that up and down are.

Physically, this means that if the spin is in, it is definitely

not out.

There are additional restrictions on the vectors |i〉 and
|o〉. Using the relationships expressed in Eqs. 2.1 and 2.2,

and the statistical results of our experiments, we can write

the following:

〈o|u〉〈u|o〉 =
1

2

〈o|d〉〈d|o〉 =
1

2

〈i|u〉〈u|i〉 =
1

2

〈i|d〉〈d|i〉 =
1

2
. (2.8)

In the first two equations, |o〉 takes the role of |A〉 from Eqs.

2.1 and 2.2. In the second two, |i〉 takes that role. These

conditions state that if the spin is oriented along y, and is

then measured along z, it is equally likely to be up or down.

We should also expect that if the spin were measured along

the x axis, it would be equally likely to be right or left. This

leads to additional conditions:

〈o|r〉〈r|o〉 =
1

2

〈o|l〉〈l|o〉 =
1

2
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〈i|r〉〈r|i〉 =
1

2

〈i|l〉〈l|i〉 =
1

2
. (2.9)

These conditions are sufficient to determine the form of the

vectors |i〉 and |o〉, apart from the phase ambiguity. Here is

the result:

|i〉 =
1√
2
|u〉+ i√

2
|d〉

|o〉 =
1√
2
|u〉 − i√

2
|d〉. (2.10)

Exercise 2.2: Prove that |i〉 and |o〉 satisfy all of the con-
ditions in Eqs. 2.7, 2.8, and 2.9. Are they unique in that
respect?

It’s interesting that two of the components in Eqs. 2.10 are

imaginary. Of course, we’ve said all along that the space of

states is a complex vector space, but until now we have not

had to use complex numbers in our calculations. Are the

complex numbers in Eqs. 2.10 a convenience or a necessity?

Given our framework for spin states, there is no way around

them. It’s somewhat tedious to demonstrate this, but the

steps are straightforward. The following exercise gives you

a road map. The need for complex numbers is a general

feature of quantum mechanics, and we’ll see more examples

as we go.
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Exercise 2.3: For the moment, forget that Eqs. 2.10 give us
working definitions for |i〉 and |o〉 in terms of |u〉 and |d〉, and
assume that the components α, β, γ, and δ are unknown:

|i〉 = α|u〉+ β|d〉

|o〉 = γ|u〉+ δ|d〉.

a) Use Eqs. 2.8 to show that

α∗α = β∗β = γ∗γ = δ∗δ =
1

2
.

b) Use the above result and Eqs. 2.9 to show that

α∗β + αβ∗ = γ∗δ + γδ∗ = 0.

c) Show that α∗β and γ∗δ must each be pure imaginary.

If α∗β is pure imaginary, then α and β cannot both be real.
The same reasoning applies to γ∗δ.

2.5 Counting Parameters

It’s always important to know how many independent pa-

rameters it takes to characterize a system. For example,

the generalized coordinates we used in Volume I (referred to

as qi) each represented an independent degree of freedom.

That approach freed us from the difficult job of writing ex-

plicit equations to describe physical constraints. Along sim-

ilar lines, our next task is to count the number of physically

distinct states there are for a spin. I will do it in two ways,

to show that you get the same answer either way.
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The first way is simple. Point the apparatus along any

unit 3-vector2 n̂ and prepare a spin with σ = +1 along that

axis. If σ = −1, you can think of the spin as being oriented

along the −n̂ axis. Thus, there must be a state for every

orientation of the unit 3-vector n̂. How many parameters

does it take to specify such an orientation? The answer is

of course two. It takes two angles to define a direction in

three-dimensional space.3

Now, let’s consider the same question from another per-

spective. The general spin state is defined by two complex

numbers, αu and αd. That seems to add up to four real pa-

rameters, with each complex parameter counting as two real

ones. But recall that the vector has to be normalized as in

Eq. 2.4. The normalization condition gives us one equation

involving real variables, and cuts the number of parameters

down to three.

As I said earlier, we will eventually see that the physical

properties of a state-vector do not depend on the overall

phase-factor. This means that one of the three remaining

parameters is redundant, leaving only two—the same as the

number of parameters we need to specify a direction in three-

dimensional space. Thus, there is enough freedom in the

expression

αu|u〉+ αd|d〉
2Keep in mind that 3-vectors are not bras or kets.

3Recall that spherical coordinates use two angles to represent the
orientation of a point in relation to the origin. Latitude and longitude
provide another example.
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to describe all the possible orientations of a spin, even though

there are only two possible outcomes of an experiment along

any axis.

2.6 Representing Spin States as

Column Vectors

So far, we have been able to learn a lot by using the abstract

forms of our state-vectors, that is, |u〉 and |d〉 and so forth.

These abstractions help us focus on mathematical relation-

ships without worrying about unnecessary details. However,

soon we will need to perform detailed calculations on spin

states, and for that we’ll need to write our state-vectors in

column form. Because of “phase indifference,” the column

representations are not unique, and we’ll try to choose the

simplest and most convenient ones we can find.

As usual, we’ll start with |u〉 and |d〉. We need them to

have unit length, and to be mutually orthogonal. A pair of

columns that satisfies these requirements is

|u〉 =
(

1
0

)
(2.11)

|d〉 =

(
0
1

)
. (2.12)

With these column vectors in hand, it will be easy to create

column vectors for |r〉 and |l〉 using Eqs. 2.5 and 2.6, and for

|i〉 and |o〉 using Eqs. 2.10. We’ll do that in the next lecture,

where these results are needed.



48 LECTURE 2. QUANTUM STATES

2.7 Putting It All Together

We have covered a lot of ground in this lecture. Before mov-

ing on, let’s take stock of what we’ve done. Our goal was to

synthesize what we know about spins and vector spaces. We

figured out how to use vectors to represent spin states, and

in the process we got a glimpse of the kind of information a

state-vector contains (and does not contain!). Here is a brief

outline of what we did:

• Based on our knowledge of spin measurements, we chose

three pairs of mutually orthogonal basis vectors. Pair-

wise, we named them |u〉 and |d〉, |r〉 and |l〉, and |i〉
and |o〉. Because the basis vectors |u〉 and |d〉 repre-
sent physically distinct states, we were able to assert

that they are mutually orthogonal. In other words,

〈u|d〉 = 0. The same holds for |r〉 and |l〉, and also for

|i〉 and |o〉.

• We found that it takes two independent parameters to

specify a spin state, and then we arbitrarily chose one

of the orthogonal pairs, |u〉 and |d〉, as our basis vec-

tors for representing all spin states—even though the

two complex numbers in a state-vector require four real

numbers to specify them. How did we get away with

this? We were clever enough to notice that these four

numbers are not all independent.4 The normalization

constraint (total probability must equal 1) eliminates

one independent parameter, and “phase indifference”

4Please indulge in a self-satisfied grin.
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(the physics of a state-vector is unaffected by its overall

phase-factor) eliminates a second.

• Having chosen |u〉 and |d〉 as our main basis vectors,

we figured out how to represent the other two pairs

of basis vectors as linear combinations of |u〉 and |d〉,
using additional orthogonality and probability-based

constraints.

• Finally, we established a way to represent our main

basis vectors as columns. This representation is not

unique. In the next lecture, we’ll use our |u〉 and |d〉
column vectors to derive column vectors for the two

other bases.

While achieving these concrete results, we got a chance to

see some state-vector mathematics in action and learn some-

thing about how these mathematical objects correspond to

physical spins. Although we will focus on spin, the same

concepts and techniques apply to other quantum systems as

well. Please take a little time to assimilate the material we’ve

covered so far before moving on to the next lecture. As I said

at the beginning, it will really pay off.





Lecture 3

Principles of Quantum
Mechanics

Art: I’m not like you, Lenny. My brain just wasn’t built for

quantum mechanics.

Lenny: Nah, mine wasn’t either. Just can’t really visualize

the stuff. But I’ll tell you, I once knew a guy who thought

just like an electron.

Art: What happened to him?

Lenny: Art, all I’m gonna tell you is that it sure wasn’t

pretty.

Art: Hmm, I guess that gene didn’t fly.

No, we were not built to sense quantum phenomena; not

the same way we were built to sense classical things like

force and temperature. But we are very adaptable creatures

and we’ve been able to substitute abstract mathematics for

51
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the missing senses that might have allowed us to directly

visualize quantum mechanics. And eventually we do develop

new kinds of intuition.

This lecture introduces the principles of quantum me-

chanics. In order to describe those principles, we’ll need

some new mathematical tools. Let’s get started.

3.1 Mathematical Interlude:

Linear Operators

3.1.1 Machines and Matrices

States in quantum mechanics are mathematically described

as vectors in a vector space. Physical observables—the things

that you can measure—are described by linear operators.

We’ll take that as an axiom, and we’ll find out later (in

Section 3.1.5) that operators corresponding to physical ob-

servables must be Hermitian as well as linear. The corre-

spondence between operators and observables is subtle, and

understanding it will take some effort.

Observables are the things you measure. For example,

we can make direct measurements of the coordinates of a

particle; the energy, momentum, or angular momentum of a

system; or the electric field at a point in space. Observables

are also associated with a vector space, but they are not

state-vectors. They are the things you measure—σx would

be an example—and they are represented by linear opera-

tors. John Wheeler liked to call such mathematical objects

machines. He imagined a machine with two ports: an input
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port and an output port. In the input port you insert a vec-

tor, such as |A〉. The gears turn and the machine delivers a

result in the output port. This result is another vector, say

|B〉.
Let’s denote the operator by the boldface letter M (for

“machine”). Here is the equation to express the fact that M

acts on the vector |A〉 to give |B〉:

M|A〉 = |B〉.

Not every machine is a linear operator. Linearity implies a

few simple properties. To begin with, a linear operator must

give a unique output for every vector in the space. We can

imagine a machine that gives an output for some vectors,

but just grinds up others and gives nothing. This machine

would not be a linear operator. Something must come out

for anything you put in.

The next property states that when a linear operator

M acts on a multiple of an input vector, it gives the same

multiple of the output vector. Thus, if M|A〉 = |B〉, and z

is any complex number, then

Mz |A〉 = z |B〉.

The only other rule is that, whenM acts on a sum of vectors,

the results are simply added together:

M{|A〉+ |B〉} = M|A〉+M|B〉.

To give a concrete representation of linear operators, we re-

turn to the row and column vector representation of bra-
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and ket-vectors that we used in Lecture 1. The row-column

notation depends on our choice of basis vectors. If the vector

space is N -dimensional, we choose a set of N orthonormal

(orthogonal and normalized) ket-vectors. Let’s label them

|j〉, and their dual bra-vectors 〈j|.
We are now going to take the equation

M|A〉 = |B〉

and write it in component form. As we did in Eq. 1.3, we’ll

represent an arbitrary ket |A〉 as a sum over basis vectors:

|A〉 =
∑
j

αj|j〉.

Here, we’re using j as an index rather than i so you won’t be

tempted to think that we’re talking about the in spin state.

Now, we’ll represent |B〉 in the same way and plug both of

these substitutions into M|A〉 = |B〉. That gives
∑
j

M|j 〉αj =
∑
j

βj |j 〉.

The last step is to take the inner product of both sides with

a particular basis vector 〈k|, resulting in

∑
j

〈k|M|j 〉αj =
∑
j

βj 〈k |j 〉. (3.1)

To make sense of this result, remember that 〈k|j〉 is zero if

j and k are not equal, and 1 if they are equal. That means

that the sum on the right side collapses to a single term, βk.
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On the left side, we see a set of quantities 〈k|M|j 〉αj . We

can abbreviate 〈k|M|j 〉 with the symbol mkj. Notice that

each mkj is just a complex number. To see why, think of

M operating on |j〉 to give some new ket-vector. The inner

product of 〈k| with this new ket-vector must be a complex

number. The quantities mkj are called the matrix elements

of M and are often arranged into a square N × N matrix.

For example, if N = 3, we can write the symbolic equation

M =

⎛
⎝ m11 m12 m13

m21 m22 m23

m31 m32 m33

⎞
⎠ . (3.2)

This equation involves a slight abuse of notation that would

give a purist indigestion. The left side is an abstract linear

operator and the right side is a concrete representation of it

in a particular basis. Equating them is sloppy but it should

not cause confusion.

Now let’s revisit Eq. 3.1 and replace 〈k|M|j 〉 with mkj.

We get

∑
j

mkjαj = βk. (3.3)

We can write this in matrix form as well. Eq. 3.3 becomes

⎛
⎝ m11 m12 m13

m21 m22 m23

m31 m32 m33

⎞
⎠

⎛
⎝ α1

α2

α3

⎞
⎠ =

⎛
⎝ β1

β2

β3

⎞
⎠ . (3.4)
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You’re probably familiar with the rule for matrix multipli-

cation, but I will remind you just in case. To compute the

first entry on the right, β1, take the first row of the matrix

and “dot” it into the α column:

β1 = m11α1 +m12α2 +m13α3.

For the second entry, dot the second row of the matrix with

the α column:

β2 = m21α1 +m22α2 +m23α3.

And so on. If you are not familiar with matrix multiplication,

run to your computer and look it up right away. It’s a crucial

part of our tool kit, and I will assume you know it from now

on.

There are both advantages and disadvantages to repre-

senting vectors and linear operators concretely with columns,

rows, and matrices (known collectively as components). The

advantages are obvious. Components provide a completely

explicit set of arithmetic rules for working the machine. The

disadvantage is that they depend on a specific choice of basis

vectors. The underlying relationships between vectors and

operators is independent of the particular basis we choose,

and the concrete representation obscures that fact.

3.1.2 Eigenvalues and Eigenvectors

In general, when a linear operator acts on a vector, it will

change the direction of the vector. This means that what
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comes out of the machine will not just be the input vector

multiplied by a number. But for a particular linear operator,

there will be certain vectors whose directions are the same

when they come out as they were when they went in. These

special vectors are called eigenvectors. The definition of an

eigenvector of M is a vector |λ〉 such that

M|λ〉 = λ|λ〉. (3.5)

The double use of λ is admittedly a little confusing. First

of all, λ (as opposed to |λ〉) is a number—generally a com-

plex one, but still a number. On the other hand, |λ〉 is a

ket-vector. Furthermore, it is a ket with a very special rela-

tionship to M. When |λ〉 is fed into the machine M, all that

happens is that it gets multiplied by the number λ. I’ll give

you an example. If M is the 2× 2 matrix

(
1 2
2 1

)
,

then it’s easy to see that the vector

(
1
1

)

just gets multiplied by 3 when M acts on it. Try it out. M

also happens to have another eigenvector:

(
1

−1
)
.



58 LECTURE 3. PRINCIPLES OF QUANTUM MECH

When M acts on this eigenvector, it multiplies the vector

by a different number, namely −1. On the other hand, if M

acts on the vector

(
1
0

)
,

the vector is not simply multiplied by a number. M alters

the direction of the vector as well as its magnitude.

Just as the vectors that get multiplied by numbers when

M acts on them are called eigenvectors of M, the constants

that multiply them are called eigenvalues. In general, the

eigenvalues are complex numbers. Here is an example that

you can work out for yourself. Take the matrix

M =

(
0 −1
1 0

)

and show that the vector

(
1
i

)

is an eigenvector with eigenvalue −i.
Linear operators can also act on bra-vectors. The nota-

tion for multiplying 〈B| by M is

〈B|M.

I will keep the discussion short by telling you the rule for this

type of multiplication. It is most simple in component form.



3.1. INTERLUDE: LINEAR OPERATORS 59

Remember that bra-vectors are represented in component

form as row vectors. For example, the bra 〈B| might be

represented by

〈B| = (
β∗
1 β∗

2 β∗
3

)
.

The rule is again just matrix multiplication. With a slight

abuse of notation,

〈B|M =
(
β∗
1 β∗

2 β∗
3

)⎛⎝ m11 m12 m13

m21 m22 m23

m31 m32 m33

⎞
⎠ . (3.6)

3.1.3 Hermitian Conjugation

You might think that ifM|A〉 = |B〉 then 〈A|M = 〈B |, but if
you do you are wrong. The problem is complex conjugation.

Even when Z is just a complex number, if Z|A〉 = |B〉, it is
not generally true that 〈A|Z = 〈B|. You have to complex-

conjugate Z when going from kets to bras: 〈A|Z∗ = 〈B|.
Of course, if Z happens to be a real number, then complex

conjugation has no effect—every real number is equal to its

own complex conjugate.

What we need is a concept of complex conjugation for

operators. Let’s look at the equation M|A〉 = |B〉 in com-

ponent notation,

∑
i

mjiαi = βj,

and form its complex conjugate,
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∑
i

m∗
jiα

∗
i = β∗

j .

We would like to write this equation in matrix form, using

bras instead of kets. In doing this, we have to remember that

bra-vectors are represented by rows, not columns. For the

result to work out correctly, we also need to rearrange the

complex conjugate elements of the matrix M. The notation

for this rearrangement is M†, as explained below. Our new

equation is

〈A|M† =
(
α∗
1 α∗

2 α∗
3

)⎛⎝ m∗
11 m∗

21 m∗
31

m∗
12 m∗

22 m∗
32

m∗
13 m∗

23 m∗
33

⎞
⎠ . (3.7)

Look carefully at the difference between the matrix in this

equation and the matrix in Eq. 3.6. You will see two differ-

ences. The most obvious is the complex conjugation of each

element, but you can also see a difference in the element in-

dices. For example, where you see m23 in Eq. 3.6, you see

m∗
32 in Eq. 3.7. In other words, the rows and columns have

been interchanged.

When we change an equation from the ket form to the

bra form, we must modify the matrix in two steps:

1. Interchange the rows and the columns.

2. Complex-conjugate each matrix element.

In matrix notation, interchanging rows and columns is called

transposing and is indicated by a superscript T . Thus, the

transpose of the matrix M is
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⎛
⎝ m11 m12 m13

m21 m22 m23

m31 m32 m33

⎞
⎠

T

=

⎛
⎝ m11 m21 m31

m12 m22 m32

m13 m23 m33

⎞
⎠ .

Notice that transposing a matrix flips it about the main di-

agonal (the diagonal from the upper left to the lower right).

The complex conjugate of a transposed matrix is called

its Hermitian conjugate, denoted by a dagger. You could

think of the dagger as a hybrid of the star-notation used in

complex conjugation and the T used in transposition. In

symbols,

M† =
[
MT

]∗
.

To summarize: if M acts on the ket |A〉 to give |B〉, then it

follows that M† acts on the bra 〈A| to give 〈B|. In symbols:

If

M|A〉 = |B〉,

then

〈A|M† = 〈B |.

3.1.4 Hermitian Operators

Real numbers play a special role in physics. The results of

any measurements are real numbers. Sometimes, we mea-

sure two quantities, put them together with an i (forming a
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complex number), and call this number the result of a mea-

surement. But it’s actually just a way of combining two real

measurements. If we want to be pedantic, we might say that

observable quantities are equal to their own complex con-

jugates. That’s of course just a fancy way of saying they

are real. We are going to find out very soon that quantum

mechanical observables are represented by linear operators.

What kind of linear operators? The kind that are the clos-

est thing to a real operator. Observables in quantum me-

chanics are represented by linear operators that are equal to

their own Hermitian conjugates. They are called Hermitian

operators after the French mathematician Charles Hermite.

Hermitian operators satisfy the property

M = M†.

In terms of matrix elements, this can be stated as

mji = m∗
ij.

In other words, if you flip a Hermitian matrix about the main

diagonal and then take its complex conjugate, the result is

the same as the original matrix. Hermitian operators (and

matrices) have some special properties. The first is that their

eigenvalues are all real. Let’s prove it.

Suppose λ and |λ〉 represent an eigenvalue and the corre-

sponding eigenvector of the Hermitian operator L. In sym-

bols,
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L|λ〉 = λ|λ〉.

Then, by the definition of Hermitian conjugation,

〈λ|L† = 〈λ|λ∗.

However, since L is Hermitian, it is equal to L†. Thus, we

can rewrite the two equations as

L|λ〉 = λ|λ〉 (3.8)

and

〈λ|L = 〈λ|λ∗. (3.9)

Now multiply Eq. 3.8 by 〈λ| and Eq. 3.9 by |λ〉. They become

〈λ|L|λ〉 = λ 〈λ|λ〉
and

〈λ|L|λ〉 = λ∗ 〈λ|λ〉.

Obviously, for both equations to be true, λ must equal λ∗. In
other words, λ (and therefore any eigenvalue of a Hermitian

operator) must be real.
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3.1.5 Hermitian Operators and
Orthonormal Bases

We come now to the basic mathematical theorem—I will call

it the fundamental theorem—that serves as a foundation of

quantum mechanics. The basic idea is that observable quan-

tities in quantum mechanics are represented by Hermitian

operators. It’s a very simple theorem, but it’s an extremely

important one. We can state it more precisely as follows:

The Fundamental Theorem

• The eigenvectors of a Hermitian operator are a com-

plete set. This means that any vector the operator

can generate can be expanded as a sum of its eigen-

vectors.

• If λ1 and λ2 are two unequal eigenvalues of a Hermi-

tian operator, then the corresponding eigenvectors are

orthogonal.

• Even if the two eigenvalues are equal, the correspond-

ing eigenvectors can be chosen to be orthogonal. This

situation, where two different eigenvectors have the

same eigenvalue, has a name: it’s called degeneracy.

Degeneracy comes into play when two operators have

simultaneous eigenvectors, as discussed later on in Sec-

tion 5.1.

One can summarize the fundamental theorem as follows: The

eigenvectors of a Hermitian operator form an orthonormal

basis. Let’s prove it, beginning with the second bullet item.
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According to the definition of eigenvectors and eigenval-

ues, we can write

L|λ1〉 = λ1|λ1〉
L|λ2〉 = λ2|λ2〉.

Now, using the fact that L is Hermitian (its own Hermitian

conjugate), we can flip the first equation into a bra equation.

Thus,

〈λ1|L = λ1〈λ1|
L|λ2〉 = λ2|λ2〉.

By now, the trick should be obvious, but I will spell it out.

Take the first equation and form its inner product with |λ2〉.
Then, take the second equation and form its inner product

with 〈λ1|. The result is

〈λ1|L|λ2〉 = λ1〈λ1|λ2〉
〈λ1|L|λ2〉 = λ2〈λ1|λ2〉.

By subtracting, we get

(λ1 − λ2)〈λ1|λ2〉 = 0.

Therefore, if λ1 and λ2 are different, the inner product 〈λ1|λ2〉
must be zero. In other words, the two eigenvectors must be

orthogonal.
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Next, let’s prove that even if λ1 = λ2, the two eigenvec-

tors can be chosen to be orthogonal. Suppose

L|λ1〉 = λ|λ1〉

L|λ2〉 = λ|λ2〉. (3.10)

In other words, there are two distinct eigenvectors with the

same eigenvalue. It should be clear that any linear combi-

nation of the two eigenvectors is also an eigenvector with

the same eigenvalue. With this much freedom, it is always

possible to find two orthogonal linear combinations.

Let’s see how. Consider an arbitrary linear combination

of these two eigenvectors:

|A〉 = α|λ1〉+ β|λ2〉.

Operating on both sides with L, we get

L|A〉 = αL|λ1〉+ βL|λ2〉,

L|A〉 = αλ|λ1〉+ βλ|λ2〉,
and finally

L|A〉 = λ(α|λ1〉+ β|λ2〉) = λ|A〉.

This equation demonstrates that any linear combination of

|λ1〉 and |λ2〉 is also an eigenvector of L, with the same



3.1. INTERLUDE: LINEAR OPERATORS 67

eigenvalue. By assumption, these two vectors are linearly

independent—otherwise, they would not represent distinct

states. We will also suppose that they span the subspace

of eigenvectors of L that have eigenvalue λ. There is a

straightforward process, called the Gram-Schmidt procedure,

for finding an orthonormal basis for a subspace, given a set

of independent vectors that spans the subspace. In plain En-

glish, we can find two orthonormal eigenvectors by writing

them as a linear combination of |λ1〉 and |λ2〉. We outline

the Gram-Schmidt procedure below, in Section 3.1.6.

The final part of the theorem states that the eigenvectors

are complete. In other words, if the space is N -dimensional,

there will be N orthonormal eigenvectors. The proof is easy

and I will leave it to you.

Exercise 3.1: Prove the following: If a vector space is N -
dimensional, an orthonormal basis of N vectors can be con-
structed from the eigenvectors of a Hermitian operator.

3.1.6 The Gram-Schmidt Procedure

Sometimes we encounter a set of linearly independent eigen-

vectors that do not form an orthonormal set. This typi-

cally happens when a system has degenerate states—distinct

states that have the same eigenvalue. In that situation, we

can always use the linearly independent vectors we have, to

create an orthonormal set that spans the same space. The

method is the Gram-Schmidt procedure I alluded to earlier.

Fig. 3.1 illustrates how it works for the simple case of two
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linearly independent vectors. We start with the two vectors
	V1 and 	V2, and from these we construct two orthonormal

vectors, v̂1 and v̂2.

Figure 3.1: The Gram-Schmidt Procedure. Given two lin-
early independent vectors, 	V1 and 	V2, that are not necessar-
ily orthogonal, we can construct two orthonormal vectors, v̂1

and v̂2. 	V2⊥ is an intermediate result used in the construc-
tion process. We can extend this procedure to larger sets of
linearly independent vectors.

The first step is to divide 	V1 by its own length, |	V1|, which
gives us a unit vector parallel to 	V1. We’ll call that unit

vector v̂1, and v̂1 becomes the first vector in our orthonormal

set. Next, we project 	V2 onto the direction of v̂1 by forming

the inner product 〈	V2|v̂1〉. Now, we subtract 〈	V2|v̂1〉 from
	V2. We’ll call the result of this subtraction 	V2⊥. You can see

in Fig. 3.1 that 	V2⊥ is orthogonal to v̂1. Lastly, we divide
	V2⊥ by its own length to form the second member of our
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orthonormal set, v̂2. It should be clear that we can extend

this procedure to larger sets of linearly independent vectors

in more dimensions. For instance, if we had a third linearly

independent vector, say 	V3, pointing out of the page, we

would subtract its projections onto each of the unit vectors

v̂1 and v̂2, and then divide the result by its own length.1

3.2 The Principles

We are now fully prepared to state the principles of quantum

mechanics, so without further ado, let’s do it.

The principles all involve the idea of an observable, and

they presuppose the existence of an underlying complex vec-

tor space whose vectors represent system states. In this lec-

ture, we present the four principles that do not involve the

evolution of state-vectors with time. In Lecture 4, we will

add a fifth principle that addresses the time development of

system states.

An observable could also be called a measurable. It’s

a thing that you can measure with a suitable apparatus.

Earlier, we spoke about measuring the components of a spin,

σx, σy, and σz. These are examples of observables. We’ll

come back to them, but first let’s look at the principles:

• Principle 1: The observable or measurable quantities of

quantum mechanics are represented by linear operators

L.

1In this example, the term out of the page does not mean �V3 is
necessarily orthogonal to the plane of the page. The ability to use
nonorthogonal vectors as a starting point is the main feature of the
Gram-Schmidt Procedure.
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I realize that this is the kind of hopelessly abstract

statement that makes people give up on quantum me-

chanics and take up surfing instead. Don’t worry—its

meaning will become clear by the end of the lecture.

We’ll soon see that L must also be Hermitian. Some

authors regard this as a postulate, or basic principle.

We have chosen instead to derive it from the other

principles. The end result is the same either way: the

operators that represent observables are Hermitian.

• Principle 2: The possible results of a measurement are

the eigenvalues of the operator that represents the ob-

servable. We’ll call these eigenvalues λi. The state for

which the result of a measurement is unambiguously

λi is the corresponding eigenvector |λi〉. Don’t unpack
your surfboard just yet.

Here’s another way to say it: if the system is in the

eigenstate |λi〉, the result of a measurement is guaran-

teed to be λi.

• Principle 3: Unambiguously distinguishable states are

represented by orthogonal vectors.

• Principle 4: If |A〉 is the state-vector of a system, and

the observable L is measured, the probability to ob-

serve value λi is

P (λi) = 〈A|λi〉〈λi|A〉. (3.11)

I’ll remind you that the λi are the eigenvalues of L,

and |λi〉 are the corresponding eigenvectors.
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These brief statements are hardly self-explanatory, and we’ll

need to flesh them out. For the moment, let’s accept the first

item, namely that every observable is identified with a lin-

ear operator. We can already begin to see that an operator

is a way of packaging up states along with their eigenval-

ues, which are the possible results of measuring those states.

These ideas should become clear as we move forward.

Let’s recall some important points from our earlier dis-

cussion of spins. First of all, the result of a measurement

is generally statistically uncertain. However, for any given

observable, there are particular states for which the result is

absolutely certain. For example, if the spin-measuring ap-

paratus A is oriented along the z axis, the state |u〉 always
leads to the value σz = +1. Likewise, the state |d〉 never gives
anything but σz = −1. Principle 1 gives us a new way to look

at these facts. It implies that each observable (σx, σy, and

σz) is identified with a specific linear operator in the two-

dimensional space of states describing the spin.

When an observable is measured, the result is always a

real number drawn from a set of possible results. For exam-

ple, if the energy of an atom is measured, the result will be

one of the established energy levels of the atom. For the fa-

miliar case of the spin, the possible values of any of the com-

ponents are ±1. The apparatus never gives any other result.

Principle 2 defines the relation between the operator repre-

senting an observable and the possible numerical outputs of

the measurement. Namely, the result of a measurement is

always one of the eigenvalues of the corresponding operator.

Thus, each component of the spin operator must have two
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eigenvalues equal to ±1.2

Principle 3 is the most interesting. At least I find it so. It

speaks of unambiguously distinct states, a key idea that we

have already encountered. Two states are physically distinct

if there is a measurement that can tell them apart without

ambiguity. For example, |u〉 and |d〉 can be distinguished by

measuring σz. If you are handed a spin and told that it is

either in the state |u〉 or the state |d〉, to find out which of

the two states is the right one, all you have to do is align A
with the z axis and measure σz. There is no possibility of a

mistake. The same is true for |l〉 and |r〉. You can distinguish

them by measuring σx.

But suppose instead that you are told the spin is in one

of the two states, |u〉 or |r〉 (up or right). There is nothing

you can measure that will unambiguously tell you the spin’s

true state. Measuring σz won’t do it. If you get σz = +1,

it is possible that the initial state was |r〉 since there is a 50

percent probability of getting this answer in the state |r〉. For
that reason, |u〉 and |d〉 are said to be physically distinguish-

able, but |u〉 and |r〉 are not. One might say that the inner

product of two states is a measure of the inability to dis-

tinguish them with certainty. Sometimes this inner product

is called the overlap. Principle 3 requires physically distinct

states to be represented by orthogonal state-vectors, that is,

vectors with no overlap. Thus, for spin states, 〈u|d〉 = 0 but

〈u|r〉 = 1√
2
.

2We have not yet explained what we mean by a “component” of
the spin operator. We will do so shortly.
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Finally, Principle 4 quantifies these ideas in a rule that

expresses the probabilities for various outcomes of an experi-

ment. If we assume that a system has been prepared in state

|A〉, and subsequently the observable L is measured, then the

outcome will be one of the eigenvalues λi of the operator L.

But, in general, there is no way to tell for certain which of

these values will be observed. There is only a probability—

let us call it P (λi)—that the outcome will be λi. Principle 4

tells us how to calculate that probability, and it is expressed

in terms of the overlap of |A〉 and |λi〉. More precisely, the

probability is the square of the magnitude of the overlap:

P (λi) = |〈A|λi〉|2

or, equivalently,

P (λi) = 〈A|λi〉〈λi|A〉.

You might be wondering why the probability is not the over-

lap itself. Why the square of the overlap? Keep in mind

that the inner product of two vectors is not always positive,

or even real. Probabilities, on the other hand, are both pos-

itive and real. So it would not make sense to identify P (λi)

with 〈A|λi〉. But the square of the magnitude, 〈A|λi〉〈λi|A〉,
is always positive and real and thus can be identified with

the probability of a given outcome.

An important consequence of the principles is as follows:

The operators that represent observables are Hermitian.
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The reason for this is twofold. First, since the result of an

experiment must be a real number, the eigenvalues of an

operator L must also be real. Secondly, the eigenvectors that

represent unambiguously distinguishable results must have

different eigenvalues, and must also be orthogonal. These

conditions are sufficient to prove that L must be Hermitian.

3.3 An Example: Spin Operators

It may be hard to believe, but single spins—as simple as

they are—still have a lot more to teach us about quantum

mechanics, and we plan to milk them for all they’re worth.

Our goal in this section is to write down the spin operators

in concrete form, as 2 × 2 matrices. Then, we’ll get to see

how they work in specific situations. We’ll build up our spin

operators and state-vectors shortly. But before we dive into

the details, I’d like to say a little more about how operators

are related to physical measurements. The relationship is a

subtle one, and we’ll say more about it as we go.

As you know, physicists recognize various types of physi-

cal quantities, such as scalars and vectors. It should come as

no surprise, then, that an operator associated with the mea-

surement of a vector (such as spin) has a vector character of

its own.

In our travels so far, we have seen more than one kind of

vector. The 3-vector is the most straightforward and serves

as a prototype. It’s a mathematical representation of an

arrow in three-dimensional space, and is often represented by

three real numbers, written out as a column matrix. Because

their components are real-valued, 3-vectors are not quite rich
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enough to represent quantum states. For that, we need bras

and kets, which have complex-valued components.

What sort of vector is the spin operator σ? It is definitely

not a state-vector (a bra or a ket). It’s not exactly a 3-

vector either, but it does have a strong family resemblance

because it’s associated with a direction in space. In fact, we

will frequently use σ as though it were a simple 3-vector.

However, we’ll try to keep things straight by calling σ a 3-

vector operator.

But what does that actually mean? In physical terms,

it means this: Just as a spin-measuring apparatus can only

answer questions about a spin’s orientation in a specific di-

rection, a spin operator can only provide information about

the spin component in a specific direction. To physically

measure spin in a different direction, we need to rotate the

apparatus to point in the new direction. The same idea ap-

plies to the spin operator—if we want it to tell us about

the spin component in a new direction, it too must be “ro-

tated,” but this kind of rotation is accomplished mathemat-

ically. The bottom line is that there is a spin operator for

each direction in which the apparatus can be oriented.

3.4 Constructing Spin Operators

Now, let’s work out the details of spin operators. The first

goal is to construct operators to represent the components

of spin, σx, σy, and σz. Then we’ll build on those results to

construct an operator that represents a spin component in

any direction. As usual, we begin with σz. We know that σz

has definite, unambiguous values for the states |u〉 and |d〉,
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and that the corresponding measurement values are σz = +1

and σz = −1. Here is what the first three principles tell us:

• Principle 1: Each component of σ is represented by a

linear operator.

• Principle 2: The eigenvectors of σz are |u〉 and |d〉.
The corresponding eigenvalues are +1 and −1. We

can express this with the abstract equations

σz|u〉 = |u〉

σz|d〉 = −|d〉. (3.12)

• Principle 3: States |u〉 and |d〉 are orthogonal to each

other. This can be expressed as

〈u|d〉 = 0. (3.13)

Recalling our column representations of |u〉 and |d〉 from Eqs.

2.11 and 2.12, we can write Eqs. 3.12 in matrix form as

(
(σz)11 (σz)12
(σz)21 (σz)22

)(
1
0

)
=

(
1
0

)
(3.14)

and

(
(σz)11 (σz)12
(σz)21 (σz)22

)(
0
1

)
= −

(
0
1

)
. (3.15)
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There is only one matrix that satisfies these equations. I

leave it as an exercise to prove

(
(σz)11 (σz)12
(σz)21 (σz)22

)
=

(
1 0
0 −1

)
(3.16)

or, more concisely,

σz =

(
1 0
0 −1

)
. (3.17)

Exercise 3.2: Prove that Eq. 3.16 is the unique solution
to Eqs. 3.14 and 3.15.

This is our very first example of a quantum mechanical

operator. Let’s summarize what went into it. First, some ex-

perimental data: there are certain states that we called |u〉
and |d〉, in which the measurement of σz gives unambiguous

results ±1. Next, the principles told us that |u〉 and |d〉 are
orthogonal and are eigenvectors of a linear operator σz. Fi-

nally, we learned from the principles that the corresponding

eigenvalues are the observed (or measured) values, again ±1.
That’s all it takes to derive Eq. 3.17.

Can we do the same for the other two components of spin,

σx and σy? Yes, we can.3 The eigenvectors of σx are |r〉 and
|l〉, with eigenvalues +1 and −1 respectively. In equation

form,

3We are not trying to slip in a political slogan. Really. Just say no
to slogans.
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σx|r〉 = |r〉

σx|l〉 = −|l〉. (3.18)

Recall that |r〉 and |l〉 are linear superpositions of |u〉 and
|d〉:

|r〉 =
1√
2
|u〉+ 1√

2
|d〉

|l〉 =
1√
2
|u〉 − 1√

2
|d〉. (3.19)

Substituting the appropriate column vectors for |u〉 and |d〉,
we get

|r〉 =
(

1√
2
1√
2

)

|l〉 =
(

1√
2−1√
2

)
.

To make Eqs. 3.18 concrete, we can write them in matrix

form:

(
(σx)11 (σx)12
(σx)21 (σx)22

)(
1√
2
1√
2

)
=

(
1√
2
1√
2

)

and
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(
(σx)11 (σx)12
(σx)21 (σx)22

)(
1√
2−1√
2

)
= −

(
1√
2−1√
2

)
.

If you write these equations out in longhand form, they turn

into four easily solved equations for the matrix elements

(σx)11, (σx)12, (σx)21, and (σx)22. Here is the solution:

(
(σx)11 (σx)12
(σx)21 (σx)22

)
=

(
0 1
1 0

)
or

σx =

(
0 1
1 0

)
.

Finally, we can do the same for σy. The eigenvectors of σy

are the in and out states |i〉 and |o〉:

|i〉 = 1√
2
|u〉+ i√

2
|d〉

|o〉 = 1√
2
|u〉 − i√

2
|d〉.

In component form, these equations become

|i〉 =
(

1√
2
i√
2

)

|o〉 =
(

1√
2−i√
2

)
,

and an easy calculation gives
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σy =

(
0 −i
i 0

)
.

To summarize, the three operators σx, σy, and σz are repre-

sented by the three matrices

σz =

(
1 0
0 −1

)

σx =

(
0 1
1 0

)

σy =

(
0 −i
i 0

)
. (3.20)

These three matrices are very famous and carry the name of

their discoverer. They are the Pauli matrices.4

3.5 A Common Misconception

This is a convenient time to warn you about a potential haz-

ard. The correspondence between operators and measure-

ments is fundamental in quantum mechanics. It is also very

easy to misunderstand. Here’s what is true about operators

in quantum mechanics:

1. Operators are the things we use to calculate eigenvalues

and eigenvectors.

2. Operators act on state-vectors (which are abstract math-

ematical objects), not on actual physical systems.

4Along with the 2× 2 identity matrix, they are also quaternions.
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3. When an operator acts on a state-vector, it produces

a new state-vector.

Having said what is true about operators, I want to warn

you about a common misconception. It is often thought that

measuring an observable is the same as operating with the

corresponding operator on the state. For example, suppose

we are interested in measuring an observable L. The mea-

surement is some kind of operation that the apparatus does

to the system, but that operation is in no way the same as

acting on the state with the operator L. For example, if the

state of the system before we do the measurement is |A〉, it
is not correct to say that the measurement of L changes the

state to L|A〉.
To make sense of this, let’s look closely at an example.

Fortunately, the spin example of the previous subsection is

just what we need. Recall Eqs. 3.12:

σz|u〉 = |u〉

σz|d〉 = −|d〉.

In these situations, there is no trap because |u〉 and |d〉 are
eigenvectors of σz. If the system is prepared in, say, the |d〉
state, a measurement will definitely give the result −1, and
the σz operator transforms the prepared state into the cor-

responding post-measurement state, −|d〉. The state −|d〉 is
the same as |d〉 except for a multiplicative constant, so the

two states are really the same. No problems here.



82 LECTURE 3. PRINCIPLES OF QUANTUM MECH

But now let’s review the action of σz on the prepared

state |r〉, which is not one of its eigenvectors. From Eq. 3.19,

we know that

|r〉 = 1√
2
|u〉+ 1√

2
|d〉.

Acting on this state-vector with σz gives the result

σz|r〉 = 1√
2
σz|u〉+ 1√

2
σz|d〉

or

σz|r〉 = 1√
2
|u〉 − 1√

2
|d〉. (3.21)

OK, here is our trap. Despite what you might think, the

state-vector on the right-hand side of Eq. 3.21 is definitely

not the state that would result from a measurement of σz.

That measurement result would be either +1, leaving the

system in state |u〉, or −1, leaving it in state |d〉. Neither
of these results would leave the system state-vector in the

superposition represented by Eq. 3.21.

But surely that state-vector must have something to do

with the measurement result? In fact, it does. We’ll find

part of the answer in Lecture 4, where we’ll see how the new

state-vector allows us to calculate the probabilities of each

possible outcome of the measurement. However, the result of

a measurement cannot be properly described without taking

the apparatus into account as part of the system. What

actually does happen during a measurement is the subject

of Section 7.8.
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3.6 3-Vector Operators Revisited

Now, let’s revisit the idea of a 3-vector operator. I have

called σx, σy, and σz the components of spin along the three

axes, implying that they are the components of some kind

of 3-vector. This is a good time to return to the two notions

of vectors that come up all the time in physics. First, there

is your garden-variety vector in ordinary three-dimensional

space, which we’ve decided to call a 3-vector. As we’ve

seen, a 3-vector has components along the three directions

of space.

The other completely distinct meaning of the term vector

is the state-vector of a system. Thus, |u〉 and |d〉, |r〉 and |l〉,
and |i〉 and |o〉 are state-vectors in a two-dimensional space

of spin states. What about σx, σy, and σz? Are they vectors,

and if so, what kind?

Clearly, they are not state-vectors; they are operators

(written as matrices) that correspond to the three measur-

able components of spin. In fact, these 3-vector operators

represent a new type of vector. They are different both from

state-vectors, and from ordinary 3-vectors. However, be-

cause spin operators behave so much like 3-vectors, it does

no harm to think of them in that way, and that’s what we’ll

do here.

We measure spin components by orienting the apparatus

A along any one of the three axes and then activating it.

But then why not orient A along any axis and measure the

component of σ along that axis? In other words, take any

unit 3-vector n̂ with components nx, ny, and nz, and orient
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the apparatus A with its arrow along n̂. Activating A would

then measure the component of σ along the axis n̂. There

must be an operator that corresponds to this measurable

quantity.

If σ really behaves like a 3-vector, then the component of

σ along n̂ is nothing but the ordinary dot product of σ and

n̂.5,6 Let’s denote that component of σ by σn, so that

σn = 	σ · n̂

or, in expanded form,

σn = σxnx + σyny + σznz. (3.22)

To clarify the meaning of this equation, keep in mind that

the components of n̂ are just numbers. They themselves are

not operators. Eq. 3.22 describes a vector-operator that is

constructed as the sum of three terms, each containing a

numerical coefficient nx, ny, or nz. To be more concrete, we

can write Eq. 3.22 in matrix form:

σn = nx

(
0 1
1 0

)
+ ny

(
0 −i
i 0

)
+ nz

(
1 0
0 −1

)
.

5We’ll start using the notation �σ, except when referring to compo-
nents, such as σx.

6The careful reader may object, because the result of this “ordi-
nary” dot product is a 2 × 2 matrix rather than a scalar, so it’s not
quite ordinary. Perhaps there is some comfort in the fact that the re-
sulting matrix operator corresponds to a vector component, which is a
scalar. It all works out in the end.
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Or even more explicitly, we can combine these three terms

into a single matrix:

σn =

(
nz (nx − iny)

(nx + iny) −nz

)
. (3.23)

What is this good for? Not much, until we find the eigenvec-

tors and eigenvalues of σn. But once we do that, we will know

the possible outcomes of a measurement along the direction

of n̂. And we will also be able to calculate probabilities for

those outcomes. In other words, we will have a complete pic-

ture of spin measurements in three-dimensional space. That

is pretty darn cool, if I say so myself.

3.7 Reaping the Results

We are now positioned to make some real calculations, some-

thing that should make your inner physicist jump for joy.

Let’s look at the special case where n̂ lies in the x–z plane,

which is the plane of this page. Since n̂ is a unit vector, we

can write

nz = cos θ

nx = sin θ

ny = 0,

where θ is the angle between the z axis and the n̂ axis. Plug-

ging these values into Eq. 3.23, we can write

σn =

(
cos θ sin θ
sin θ − cos θ

)
.
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Exercise 3.3: Calculate the eigenvectors and eigenvalues of
σn. Hint: Assume the eigenvector λ1 has the form(

cosα
sinα

)
,

where α is an unknown parameter. Plug this vector into
the eigenvalue equation and solve for α in terms of θ. Why
did we use a single parameter α? Notice that our suggested
column vector must have unit length.

Here are the results:

λ1 = 1

|λ1〉 =
⎛
⎝ cos θ

2

sin θ
2

⎞
⎠

and

λ2 = −1

|λ2〉 =
⎛
⎝ − sin θ

2

cos θ
2

⎞
⎠ .

Notice some important facts. First, the two eigenvalues are

again +1 and −1. This should come as no surprise; the ap-

paratus A can only give one of these two answers no matter

which way it points. But it’s good to see this come out of

the equations. The second fact is that the two eigenvectors

are orthogonal.
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We are now ready to make an experimental prediction.

Suppose A initially points along the z axis and that we pre-

pare a spin in the up state |u〉. Then, we rotate A so that it

lies along the n̂ axis. What is the probability of observing

σn = +1? According to Principle 4, and using the row and

column expansions of 〈u| and |λ1〉, the answer is

P (+1) = |〈u|λ1〉|2 = cos2
θ

2
. (3.24)

Similarly, for the same setup,

P (−1) = |〈u|λ2〉|2 = sin2 θ

2
. (3.25)

With this result, we have come nearly full circle. When

introducing spins, we made the claim that if we prepare a

large number of them in the up state and then measure their

component along n̂, at angle θ to the z axis, then the average

value of the measured results would be cos θ—the same result

we would get for a simple 3-vector in classical physics. Does

our mathematical framework give the same result? It had

better! If a theory disagrees with experiment, it’s the theory

that has to leave town. Let’s see how well our theory holds

up so far.

Unfortunately, we need to cheat a little by using an equa-

tion that we will not fully explain until the next lecture. This

is the equation that tells us how to calculate the average

value (also called the expectation value) of a measurement.

Here it is:

〈L〉 =
∑
i

λiP(λi). (3.26)
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It’s worth mentioning that Eq. 3.26 is just a standard formula

for an average value. It’s not unique to quantum mechanics.

To calculate the expectation value of a measurement cor-

responding to the operator L, we multiply each eigenvalue

by its probability, and then sum the results. Of course, the

operator we’re looking at now is just σn, and we already have

all the values we need. Let’s plug them in. Using Eqs. 3.24

and 3.25, along with our known eigenvalues, we can write

〈σn〉 = (+1) cos2
θ

2
+ (−1) sin2 θ

2
or

〈σn〉 = cos2
θ

2
− sin2 θ

2
.

If you remember your trigonometry, this gives

〈σn〉 = cos θ,

which agrees perfectly with experiment. Yes! We’ve done it!

Having come this far, you might want to try your hand

on a slightly more general problem. As before, we start with

the apparatus A pointing in the z direction. But now, once

the spin has been prepared in the up state, we can rotate

A to an arbitrary direction in space for the second set of

measurements. In this situation, ny �= 0. Go ahead and try

it.

Exercise 3.4: Let nz = cos θ, nx = sin θ cosφ, and ny =
sin θ sinφ. Angles θ and φ are defined according to the usual
conventions for spherical coordinates (Fig. 3.2). Compute
the eigenvalues and eigenvectors for the matrix of Eq. 3.23.
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Figure 3.2: Spherical Coordinates. This diagram illus-
trates conventional spherical coordinate labels r, θ, and φ.
It also illustrates the conversion to Cartesian coordinates:
x = r sin θ cosφ, y = r sin θ sinφ, and z = r cos θ.
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You could also try working out a much more elaborate

example involving two directions, n̂ and m̂. In this setup, A
not only ends up in an arbitrary direction; it also starts out

in a (different) arbitrary direction.

Exercise 3.5: Suppose that a spin is prepared so that σm =
+1. The apparatus is then rotated to the n̂ direction and σn

is measured. What is the probability that the result is +1?
Note that σm = σ · m̂, using the same convention we used
for σn.

The answer is the square of the cosine of half the angle be-

tween m̂ and n̂. Can you show it?

3.8 The Spin-Polarization

Principle

There is an important theorem that you can try to prove. I

will call it

The Spin-Polarization Principle: Any state of a

single spin is an eigenvector of some component of the

spin.

In other words, given any state

|A〉 = αu|u〉+ αd|d〉,

there exists some direction n̂, such that

	σ · 	n |A〉 = |A〉.
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This means that for any spin state, there is some orientation

of the apparatus A such that A will register +1 when it

acts. In physics language, we say that the states of a spin

are characterized by a polarization vector, and along that

polarization vector the component of spin is predictably +1,

assuming of course that you know the state-vector.

An interesting consequence of this theorem is that there

is no state for which the expectation values of all three com-

ponents of spin are zero. There is a quantitative way to ex-

press this. Consider the expectation value of the spin along

the direction n̂. Since |A〉 is an eigenvector of 	σ · 	n (with

eigenvalue +1), it follows that the expectation value can be

expressed as

〈	σ · 	n〉 = 1.

On the other hand, the expectation value of the perpendicu-

lar components of σ are zero in the state |A〉. It follows that
the squares of the expectation values of all three components

of σ sum to 1. Moreover, this is true for any state:

〈σx〉2 + 〈σy〉2 + 〈σz〉2 = 1. (3.27)

Remember this fact. We will come back to it in Lecture 6.





Lecture 4

Time and Change

There is a massive, quiet, intimidating man sitting alone at

the end of the bar. His T-shirt says “−1.”

Art: Who is that “Minus One” guy over in the corner? The

bouncer?

Lenny: He’s way more than a bouncer. He’s

THE LAW.

Without him, this whole place would fall apart.

4.1 A Classical Reminder

In Volume I, it took a little more than a page to explain

what a state is in classical mechanics. The quantum version

has taken three lectures, three mathematical interludes, and

according to my rough count, about 17,000 words to get to

the same place. But I think the worst is over. We now

know what a state is. However, just as in classical physics,

93
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knowing the states of a system is only half the story. The

other half involves a rule about how states change with time.

That’s our next job.

Let me just give you a quick reminder about the na-

ture of change in classical physics. In classical physics, the

space of states is a mathematical set. The logic is Boolean,

and the evolution of states over time is deterministic and re-

versible. In the simplest examples we considered, the state-

space consisted of a few points: Heads and Tails for a coin,

{1, 2, 3, 4, 5, 6} for a die. The states were pictured as a set

of points on the page, and the time evolution was just a

rule telling you where to go next. A law of motion consisted

of a graph with arrows connecting the states. The main

rule—determinism—was that wherever you are in the state-

space, the next state is completely specified by the law of

motion. But there was also another rule called reversibility.

Reversibility is the requirement that a properly formulated

law must also tell you where you were last. A good law cor-

responds to a graph with exactly one arrow in and one arrow

out at each state.

There is another way to describe these requirements. I

called it the minus first law, because it underlies everything

else. It says that information is never lost. If two identical

isolated systems start out in different states, they stay in

different states. Moreover, in the past they were also in dif-

ferent states. On the other hand, if two identical systems are

in the same state at some point in time, then their histories

and their future evolutions must also be identical. Distinc-

tions are conserved. The quantum version of the minus first

law has a name—unitarity.
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4.2 Unitarity

Let us consider a closed system that at time t is in the quan-

tum state |Ψ〉. (The use of the Greek letter Ψ [psi] for quan-

tum states is traditional when considering the evolution of

systems.) To indicate that the state was |Ψ〉 at the specific

time t, let’s complicate the notation a bit and call the state

|Ψ(t)〉. Of course, this notation suggests a bit more than just

“the state was |Ψ〉 at time t.” It also suggests that the state

may be different at different times. Thus, we think of |Ψ(t)〉
as representing the entire history of the system.

The basic dynamical assumption of quantum mechanics

is that if you know the state at one time, then the quantum

equations of motion tell you what it will be later. Without

loss of generality, we can take the initial time to be zero

and the later time to be t. The state at time t is given by

some operation that we call U(t), acting on the state at time

zero. Without further specifying the properties of U(t), this

tells us very little except that |Ψ(t)〉 is determined by |Ψ(0)〉.
Let’s express this relation with the equation

|Ψ(t)〉 = U(t)|Ψ(0)〉. (4.1)

The operation U is called the time-development operator for

the system.
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4.3 Determinism in Quantum

Mechanics

At this point, we need to draw some careful distinctions.

We are setting up U(t) in such a way that the state-vector

will evolve in a deterministic manner. Yes, you heard me

correctly—the time evolution of the state-vector is deter-

ministic. This is nice because it provides us with something

we can try to predict. But how does that square with the

statistical character of our measurement results?

As we’ve seen, knowing the quantum state does not mean

that you can predict the result of an experiment with cer-

tainty. For example, knowing that the state of a spin is |r〉
may tell you the outcome of a measurement of σx but tells

you nothing about a measurement of σz or σy. For this rea-

son, Eq. 4.1 is not the same as classical determinism. Clas-

sical determinism allows us to predict the results of experi-

ments. The quantum evolution of states allows us to com-

pute the probabilities of the outcomes of later experiments.

This is one of the core differences between classical and

quantum mechanics. It goes back to the relationship between

states and measurements we mentioned at the very beginning

of this book. In classical mechanics, there’s no real difference

between states and measurements. In quantum mechanics,

the difference is profound.
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4.4 A Closer Look at U(t)

Conventional quantum mechanics places a couple of require-

ments onU(t). First, it requiresU(t) to be a linear operator.

That is not very surprising. The relationships between states

in quantum mechanics are always linear. It goes along with

the idea that the state-space is a vector space. But linearity

is not the only thing that quantum mechanics requires of

U(t). It also requires the quantum analog of the minus first

law: the conservation of distinctions.

Recall from the last lecture that two states are distin-

guishable if they are orthogonal. Being orthogonal, two

different basis vectors represent two distinguishable states.

Suppose that |Ψ(0)〉 and |Φ(0)〉 are two distinguishable states;
in other words, there is a precise experiment that can tell

them apart, and therefore they must be orthogonal:

〈Ψ(0)|Φ(0)〉 = 0.

The conservation of distinctions implies that they will con-

tinue to be orthogonal for all time. We can express this as

〈Ψ(t)|Φ(t)〉 = 0 (4.2)

for all values of t. This principle has consequences for the

time-development operator U(t). To see what they are, let’s

flip the ket-vector Eq. 4.1 to its bra-vector counterpart:

〈Ψ(t)| = 〈Ψ(0)|U†(t). (4.3)
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Notice the dagger that indicates Hermitian conjugation. Now,

let’s plug Eqs. 4.1 and 4.3 into Eq. 4.2:

〈Ψ(0)|U†(t)U(t)|Φ(0)〉 = 0. (4.4)

To examine the consequences of this equation, consider an

orthonormal basis of vectors |i〉. Any basis will do. The

orthonormality is expressed in equation form as

〈i|j〉 = δij,

where δij is the usual Kronecker symbol.

Next, let’s take |Φ(0)〉 and |Ψ(0)〉 to be members of this

orthonormal basis. Substituting into Eq. 4.4 gives

〈i|U†(t)U(t)|j 〉 = 0 (i �= j )

whenever i and j are not the same. On the other hand, if i

and j are the same, then so are the output vectors U(t)|i〉
and U(t)|j 〉. In that case, the inner product between them

should be 1. Therefore, the general relation takes the form

〈i|U†(t)U(t)|j 〉 = δij .

In other words, the operator U†(t)U(t) behaves like the unit

operator I when it acts between any members of a basis

set. From here it is an easy matter to prove that U†(t)U(t)

acts like the unit operator I when it acts on any state. An

operator U that satisfies
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U†U = I

is called unitary. In physics lingo, time evolution is unitary.

Unitary operators play an enormous role in quantum

mechanics, representing all sorts of transformations on the

state-space. Time evolution is just one example. Thus, we

conclude this section with a fifth principle of quantum me-

chanics:

• Principle 5: The evolution of state-vectors with time

is unitary.

Exercise 4.1: Prove that if U is unitary, and if |A〉 and |B〉
are any two state-vectors, then the inner product of U|A〉
and U|B〉 is the same as the inner product of |A〉 and |B〉.
One could call this the conservation of overlaps. It expresses
the fact that the logical relation between states is preserved
with time.

4.5 The Hamiltonian

In the study of classical mechanics, we became familiar with

the idea of an incremental change in time. Quantum mechan-

ics is no different in this respect: we may build up finite time

intervals by combining many infinitesimal intervals. Doing

so will lead to a differential equation for the evolution of

the state-vector. To that end, we replace the time inter-

val t with an infinitesimal time interval ε and consider the

time-evolution operator for this small interval.
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There are two principles that go into the study of incre-

mental changes. The first principle is unitarity:

U†(ε)U(ε) = I . (4.5)

The second principle is continuity. This means that the

state-vector changes smoothly. To make this precise, first

consider the case in which ε is zero. It should be obvious that

in this case the time-evolution operator is merely the unit

operator I. Continuity means that when ε is very small, U(ε)

is close to the unit operator, differing from it by something

of order ε. Thus, we write

U(ε) = I − iεH. (4.6)

You may wonder why I put a minus sign and an i in front

of H. These factors are completely arbitrary at this stage.

In other words, they are a convention that has no content.

I used them with an eye toward the future, when we will

recognize H as something familiar from classical physics.

We will also need an expression for U†. Remembering

that Hermitian conjugation requires the complex conjuga-

tion of coefficients, we find that

U†(ε) = I + iεH†. (4.7)

Now we plug Eqs. 4.6 and 4.7 into the unitarity condition of

Eq. 4.5:

(I + iεH†)(I − iεH) = I .
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Expanding to first order in ε, we find

H† −H = 0

or, in a format that is more illuminating,

H† = H. (4.8)

This last equation expresses the unitarity condition. But it

also says that H is a Hermitian operator. This has great sig-

nificance. We can now say that H is an observable, and has

a complete set of orthonormal eigenvectors and eigenvalues.

As we proceed, H will become a very familiar object, namely

the quantum Hamiltonian. Its eigenvalues are the values that

would result from measuring the energy of a quantum sys-

tem. Exactly why we identify H with the classical concept of

a Hamiltonian, and its eigenvalues with energy, will become

clear shortly.

Let’s return now to Eq. 4.1 and specialize it to the in-

finitesimal case t = ε. Using Eq. 4.6, we find

|Ψ(ε)〉 = |Ψ(0)〉−iεH|Ψ(0)〉.

This is just the kind of equation that we can easily turn into

a differential equation. First, we transpose the first term on

the right side over to the left side, and then divide by ε:

|Ψ(ε)〉 − |Ψ(0)〉
ε

= −iH|Ψ(0)〉.
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If you remember your calculus (see Volume I for a quick

review), you’ll recognize that the left-hand side of this equa-

tion looks exactly like the definition of a derivative. If we

take the limit as ε→ 0, it becomes the time derivative of the

state-vector:

∂|Ψ〉
∂t

= −iH|Ψ〉. (4.9)

We originally set things up so that the time variable was

zero, but there was nothing special about t = 0. Had we

chosen another time and done the same thing, we would

have gotten exactly the same result, namely, Eq. 4.9. This

equation tells us how the state-vector changes: if we know

the state-vector at one instant, the equation tells us what it

will be at the next. Eq. 4.9 is important enough to have a

name. It is called the generalized Schrödinger equation, or

more commonly, the time-dependent Schrödinger equation.

If we know the Hamiltonian, it tells us how the state of an

undisturbed system evolves with time. Art likes to call this

state-vector Schrödinger’s Ket. He even wanted to render

the Greek symbol with little whiskers,1 but I had to draw

the line somewhere.

4.6 What Ever Happened to h̄?

I’m sure you have all heard of Planck’s constant. Planck him-

self called it h and gave it a value of about 6.6×10−34 kg m2 /s.

1OK, not really.
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Later generations redefined it, dividing by a factor of 2π and

calling the result h̄:

h̄ =
h

2π
= 1.054571726 · · · × 10−34 kg m2/s.

Why divide by 2π? Because it saves us from having to write

2π in lots of other places. Considering the importance of

Planck’s constant in quantum mechanics, it seems a little

odd that it hasn’t come up yet. We’re going to correct that

now.

In quantum mechanics, as in classical physics, the Hamil-

tonian is the mathematical object that represents the energy

of a system. This raises a question that, if you are very alert,

may have been a source of confusion. Take a good look at

Eq. 4.9. It doesn’t make dimensional sense. If you ignore

|Ψ〉 on both sides of the equation, the units on the left side

are inverse time. If the quantum Hamiltonian is really to be

identified with energy, then the units on the right side are

energy. Energy is measured in units of joules, or kg ·m2/s2.

Evidently, I’ve been cheating a little bit. The resolution

of this dilemma involves h̄, a universal constant of nature,

which happens to have units of kg ·m2/s. A constant with

these units is exactly what we need to make Eq. 4.9 consis-

tent. Let’s rewrite it with Planck’s constant inserted in a

way that makes it dimensionally consistent:

h̄
∂|Ψ〉
∂t

= −iH|Ψ〉. (4.10)

Why is it that h̄ is such a ridiculously small number? The

answer has much more to do with biology than with physics.
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The real question is not why h̄ is so small; it’s why you are

so big. The units that we use reflect our own size. The

origin of the meter seems to be that it was used to measure

rope or cloth: it’s about the distance from a person’s nose

to his or her outstretched fingers. A second is about as long

as a heartbeat. And a kilogram is a nice weight to carry

around. We use these units because they are convenient,

but fundamental physics doesn’t care that much about us.

The size of an atom is about 10−10 meters. Why so small?

That’s the wrong question. The right one is: Why are there

so many atoms in an arm? The reason is simply that to make

a functioning, intelligent, unit-using creature, you need to

put together a lot of atoms. Similarly, the kilogram is many

times larger than an atomic mass because people don’t carry

around single atoms; they get lost too easily. The same goes

for time, and our long, plodding second. In the end, the

reason that Planck’s constant is so small is that we are so

big and heavy and slow.

Physicists who are interested in the microscopic world are

likely to use units that are more tailored to the phenomena

that they study. If we used atomic length scales, time scales,

and mass scales, then Planck’s constant would not be such an

unwieldy number; it would be much closer to 1. In fact, units

for which Planck’s constant equals 1 are a natural choice

for quantum mechanics, and it’s a common practice to use

them. However, in this book, we will usually retain h̄ in our

equations.
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4.7 Expectation Values

Let’s take a short break to discuss an important aspect of

statistics, namely the idea of an average value or mean value.

We mentioned this idea briefly in the previous lecture, but

now it’s time to take a closer look.

In quantum mechanics, average values are called expecta-

tion values. (In some ways, this is a poor choice of words; I’ll

tell you why later.) Suppose we have a probability function

for the outcome of an experiment that measures an observ-

able L. The outcome must be one of L’s eigenvalues, λi, and

the probability function is P (λi). In statistics, that average

(or mean) value is denoted by a bar over the quantity being

measured. The average of the observable L would be L̄. In

quantum mechanics, the standard notation is different, hav-

ing grown out of Paul Dirac’s clever bra-ket notation. We

represent the average value of L with the notation 〈L〉. We’ll

soon see why the bra-ket notation is so natural, but first let’s

discuss the meaning of the term average.

From a mathematical point of view, an average is defined

by the equation

〈L〉 =
∑
i

λiP(λi). (4.11)

In other words, it is a weighted sum, weighted with the prob-

ability function P.

Alternatively, the average can be defined in an experi-

mental way. Suppose a very large number of identical exper-

iments is made, and the outcomes are recorded. Let’s define
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the probability function in a direct observational manner.

We identify P (λi) as the fraction of observations whose re-

sult was λi. The definition 4.11 is then identified with the

experimental average of the observations. The basic hypoth-

esis of any statistical theory is that if the number of trials

is large enough, the mathematical and experimental notions

of probability and average will agree. We will not question

this hypothesis.

I’ll now prove an elegant little theorem that explains the

bra-ket notation for averages. Suppose that the normalized

state of a quantum system is |A〉. Expand |A〉 in the or-

thonormal basis of eigenvectors of L:

|A〉 =
∑
i

αi|λi〉. (4.12)

Just for fun, with no particular agenda in mind, let’s com-

pute the quantity 〈A|L|A〉. The meaning of this should be

clear: First act on |A〉 with the linear operator L.2 Then,

take the inner product of the result with the bra 〈A|. Let’s
do the first step by letting L operate on both sides of Eq.

4.12:

L|A〉 =
∑
i

αiL|λi〉.

Remember that the vectors |λi〉 are eigenvectors of L. Using
the fact that L|λi〉 = λi |λi〉, we can write

2We would get the same result if we had let L act on 〈A| first.
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L|A〉 =
∑
i

αiλi |λi〉.

The last step is to take the inner product with 〈A|. We do

that by expanding the bra 〈A| in eigenvectors on the right-

hand side, and then using the orthonormality of the eigen-

vectors. The result is

〈A|L|A〉 =
∑
i

(α∗
iαi)λi . (4.13)

Using the probability principle (Principle 4) to identify (α∗
iαi)

with the probability P (λi), we immediately see that the ex-

pression on the right side of Eq. 4.13 is the same as the

expression on the right side of Eq. 4.11. That is to say,

〈L〉 = 〈A|L|A〉. (4.14)

Thus, we have a quick rule to compute averages. Just sand-

wich the observable between the bra and ket representations

of the state-vector.

In the previous lecture (Section 3.5), we promised to ex-

plain how the action of a Hermitian operator on a state-

vector is related to the results of physical measurements.

Armed with our knowledge of expectation values, we can now

keep that promise. If we look back at Eq. 3.21, we see an

example of an operator, σz, acting on state-vector |r〉 to pro-

duce a new state-vector. We can view this equation as half

of the calculation for the expectation value of the measure-

ment σz—the right-hand part of the sandwich, if you will.
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The rest of that calculation involves taking the inner prod-

uct of this state-vector with the dual vector 〈r|. So when σz

acts on |r〉 in Eq. 3.21, it produces a state-vector from which

we can calculate the probabilities of each σz measurement

outcome.

4.8 Ignoring the Phase-Factor

In previous lectures, we said that we can ignore the overall

phase-factor of a state-vector, and promised to explain why

in a later section. Having worked out the rule for averages,

we’ll take a short detour to keep that promise.

What does it mean to “ignore the overall phase-factor”?

It means we can multiply any state-vector by a constant

factor eiθ, where θ is a real number, without changing the

state-vector’s physical meaning. To see this, let’s multiply

Eq. 4.12 by eiθ and call the result |B〉:

|B〉 = eiθ|A〉 = eiθ
∑
j

αj|λj〉. (4.15)

Note that we changed the index in the summation from i to

j to avoid confusion. It’s easy to see that |B〉 has the same

magnitude as |A〉, because eiθ has a magnitude of one:

〈B|B〉 = 〈Ae−iθ|eiθA〉 = 〈A|A〉.

The same pattern of cancellation preserves other quantities

as well. For example, |A〉’s probability amplitudes αj be-

come eiθαj for |B〉, so the probability amplitudes are differ-

ent. However, it’s the actual probability, not the amplitude,
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that has physical meaning. If a system is in state |B〉, and
we perform a measurement, the result will be the eigenvalue

of |λj〉 with probability

α∗
je

−iθeiθαj = α∗
jαj,

which is the same result we would get for state |A〉. Finally,
let’s use the same trick for the expectation value of a Her-

mitian operator L. Applying Eq. 4.14 to state |B〉, we can

write

〈L〉 = 〈B |L|B〉.

Using Eq. 4.15 for |B〉, we get

〈L〉 = 〈Ae−iθ|L|e iθA〉

or

〈L〉 = 〈A|L|A〉.

In other words, L has the same expectation value in state

|B〉 as it does in state |A〉. Promise kept.

4.9 Connections to Classical

Mechanics

The average, or expectation value, of an observable is the

closest thing in quantum mechanics to a classical value. If
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the probability distribution for an observable is a nice bell-

shaped curve, and not too broad, then the expectation value

really is the value that you expect to measure. If a system is

so big and heavy that quantum mechanics is not too impor-

tant, then the expectation value of an observable behaves

almost exactly according to classical equations of motion.

For this reason, it is interesting and important to find out

how expectation values change with time.

First of all, why do they change with time? They change

with time because the state of the system changes with time.

Suppose the state at time t is represented by ket |Ψ(t)〉 and
bra 〈Ψ(t)|. The expectation value of the observable L at time

t is

〈Ψ(t)|L|Ψ(t)〉.

Let’s see how this changes by differentiating it with respect to

t and using the Schrödinger equation for the time derivatives

of |Ψ(t)〉 and 〈Ψ(t)|. Using the product rule for derivatives,

we find that

d

dt
〈Ψ(t)|L|Ψ(t)〉 = 〈Ψ̇(t)|L|Ψ(t)〉+ 〈Ψ(t)|L|Ψ̇(t)〉,

where, as usual, the dot means time derivative. L itself

has no explicit time dependency, so it just comes along for

the ride. Now, plugging in the bra and ket versions of

Schrödinger’s equation (Eq. 4.10), we get

d

dt
〈Ψ(t)|L|Ψ(t)〉 = i

h̄
〈Ψ(t)|HL|Ψ(t)〉 − i

h̄
〈Ψ(t)|LH|Ψ(t)〉
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or, more concisely,

d

dt
〈Ψ(t)|L|Ψ(t)〉 = i

h̄
〈Ψ(t)| [HL− LH] |Ψ(t)〉. (4.16)

If you are used to ordinary algebra, Eq. 4.16 has a strange

appearance. The right-hand side contains the combination

HL−LH, a combination that would ordinarily be zero. But

linear operators are not ordinary numbers: when they are

multiplied (or applied sequentially), the order counts. In

general, when H acts on L|Ψ〉, the result is not the same

as when L acts on H|Ψ〉. In other words, except for spe-

cial cases, HL �= LH. Given two operators or matrices, the

combination

LM−ML

is called the commutator of L with M, and it is denoted by

a special symbol:

LM−ML = [L,M].

It’s worth noticing that [L,M] = −[M,L] for any pair of

operators. Armed with the notation for commutators, we

can now write Eq. 4.16 in a simple form:

d

dt
〈L〉 = i

h̄
〈[H,L]〉 (4.17)

or, equivalently,

d

dt
〈L〉 = − i

h̄
〈[L,H]〉. (4.18)
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This is a very interesting and important equation. It relates

the time derivative of the expectation value of an observable

L to the expectation value of another observable, namely

− i
h̄
[L,H].

Exercise 4.2: Prove that if M and L are both Hermitian,
i[M,L] is also Hermitian. Note that the i is important. The
commutator is, by itself, not Hermitian.

If we assume that the probabilities are nice, narrow, bell-

shaped curves, then Eq. 4.18 tells us how the peaks of the

curves move with time. Equations like this are the closest

thing in quantum mechanics to the equations of classical

physics. Sometimes we even omit the angle brackets in such

equations and write them in a shorthand form:

dL

dt
= − i

h̄
[L,H]. (4.19)

But keep in mind that a quantum equation of this type

should be in the middle of a sandwich, with a bra 〈Ψ| on
one side, and a ket |Ψ〉 on the other. Alternatively, we can

think of it as an equation that tells us how the centers of

probability distributions move around.

Does Eq. 4.19 have a familiar look to it? If not, go back

to Lectures 9 and 10 in Volume I, where we learned about

the Poisson bracket formulation of classical mechanics. On
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page 172, the following equation can be found:3

Ḟ = {F,H}. (4.20)

In this equation, {F,H} is not a commutator; it is a Pois-

son bracket. But still, Eq. 4.20 is suspiciously similar to Eq.

4.19. In fact, there is a close parallel between commutators

and Poisson brackets, and their algebraic properties are quite

similar. For example, if F and G represent operators, both

commutators and Poisson brackets change their sign when

F and G are interchanged. Dirac discovered this, and re-

alized that it represents an important structural connection

between the mathematics of classical mechanics and that of

quantum mechanics. The formal identification between com-

mutators and Poisson brackets is

[F,G] ⇐⇒ ih̄{F,G}. (4.21)

To facilitate comparison with Eq. 4.19, we can substitute the

symbols L and H that we’ve been using in this section.

[L,H] ⇐⇒ ih̄{L,H}. (4.22)

Let’s try and make this identification as clear as possible. If

we start with Eq. 4.19,

dL

dt
= − i

h̄
[L,H],

3Volume I, Lecture 9, Eq. 10. Another one of those elegant French
inventions.
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and then use the identification of Eq. 4.22 to write the clas-

sical analog, the result is

dL

dt
= − i

h̄
(ih̄{L,H})

or

dL

dt
= {L,H},

which matches the pattern of Eq. 4.20 exactly.

Exercise 4.3: Go back to the definition of Poisson brackets
in Volume I and check that the identification in Eq. 4.21 is
dimensionally consistent. Show that without the factor h̄, it
would not be.

Equation 4.21 solves a riddle. In classical physics, there

is no difference between FG and GF. In other words: clas-

sically, commutators between ordinary observables are zero.

From Eq. 4.21, we see that commutators in quantum me-

chanics are not zero, but that they are very small. The clas-

sical limit (the limit at which classical mechanics is accurate)

is also the limit at which h̄ is negligibly small. Therefore, it is

also the limit at which commutators are very small in human

units.

4.10 Conservation of Energy

How can we tell whether something is conserved in quan-

tum mechanics? What do we even mean by saying that an

observable—call it Q—is conserved? At the very minimum,
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we mean that its expectation value 〈Q〉 does not change with
time (unless of course the system is disturbed). An even

stronger condition is that 〈Q2〉 (or the expectation value of

any power of Q) does not change with time.

Looking at Eq. 4.19, we can see that the condition for

〈Q〉 not to change is

[Q,H] = 0.

In other words, if a quantity commutes with the Hamilto-

nian, its expectation value is conserved. We can make this

statement stronger. Using the properties of commutators,

it’s easy to see that if [H,Q] = 0, then [Q2, H] = 0, or

even more generally, [Qn, H] = 0, for any n. It turns out

that we can make a stronger claim: if Q commutes with the

Hamiltonian, the expectation values of all functions of Q

are conserved. That’s what conservation means in quantum

mechanics.

The most obvious conserved quantity is the Hamiltonian

itself. Since any operator commutes with itself, one can write

[H,H] = 0,

which is exactly the condition that H is conserved. As in

classical mechanics, the Hamiltonian is another word for the

energy of a system—it’s a definition of energy. We see that

under very general conditions, energy is conserved in quan-

tum mechanics.
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4.11 Spin in a Magnetic Field

Let’s try out the Hamiltonian equations of motion for a sin-

gle spin. We will first need to specify a Hamiltonian. Where

do we get it from? In general, the answer is the same as in

classical physics: derive it from experiment, borrow it from

some theory that we like, or just pick one and see what it

does. But in the case of a single spin, we don’t have many

options. Let’s start with the unit operator I. Since I com-

mutes with all operators, if it were the Hamiltonian, nothing

would change with time. Remember, the time-dependence of

an observable is given by the commutator of the observable

with the Hamiltonian.

The only other choice is a sum of the spin components.

In fact, that’s exactly what we would get from experimen-

tal observation of a real spin—say an electron’s spin—in a

magnetic field. A magnetic field 	B is a 3-vector—ordinary

vector in space—and is specified by three Cartesian compo-

nents, Bx, By, and Bz. When a classical spin (a charged

rotor) is put into a magnetic field, it has an energy that de-

pends on its orientation. The energy is proportional to the

dot product of the spin and the magnetic field. The quantum

version of this is

H ∼ 	σ · 	B = σxBx + σyBy + σzBz,

where the symbol ∼ means “proportional to.” Remember

that σx, σy, and σz represent the components of the spin

operator in the above quantum version.
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Let’s take a simple example in which the magnetic field

lies along the z axis. In that case, the Hamiltonian is propor-

tional to σz. For convenience, we’ll absorb all the numerical

constants, including the magnitude of the field (but not h̄),

into a single constant ω and write

H =
h̄ω

2
σz . (4.23)

The reason for the 2 in the denominator will become clear

soon.

Our goal is to find out how the expectation value of the

spin varies with time—in other words, to determine 〈σx(t)〉,
〈σy(t)〉, and 〈σz(t)〉. To do this, we just go back to Eq. 4.19,

and plug in these components of L. We get

˙〈σx〉 = − i

h̄
〈[σx,H]〉

˙〈σy〉 = − i

h̄
〈[σy,H]〉

˙〈σz〉 = − i

h̄
〈[σz,H]〉. (4.24)

Plugging in H = h̄ω
2
σz from Eq. 4.23, we get

˙〈σx〉 =
−iω
2
〈[σx, σz]〉

˙〈σy〉 =
−iω
2
〈[σy, σz]〉
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˙〈σz〉 =
−iω
2
〈[σz, σz]〉. (4.25)

The things we are computing on the left side of the equa-

tions are supposed to be real quantities. The factor i in these

equations seems like trouble. Fortunately, the commutation

relations between σx, σy, and σz will save the day. By plug-

ging in the Pauli matrices from Eq. 3.20, it’s easy to verify

that

[σx, σy] = 2iσz

[σy, σz] = 2iσx

[σz, σx] = 2iσy. (4.26)

Each of these equations also has an i, which will cancel the i

in Eqs. 4.25. Notice that the factors of 2 also cancel, resulting

in some very simple equations:

˙〈σx〉 = −ω〈σy〉

˙〈σy〉 = ω〈σx〉

˙〈σz〉 = 0. (4.27)

Does this look familiar? If not, go back to Volume I, Lecture

10. There, we studied the classical rotor in a magnetic field.
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The equations were exactly the same, except that instead of

expectation values, we were studying the actual motion of a

deterministic system. Both there and here, the solution is

that the 3-vector-operator 	σ (or the 3-vector 	L in Volume I)

precesses like a gyroscope around the direction of the mag-

netic field. The precession is uniform, with angular velocity

ω.

This similarity to classical mechanics is very pleasing, but

it’s important to take note of the difference. Exactly what

is precessing? In classical mechanics, it’s just the x and y

components of angular momentum. In quantum mechanics,

it’s an expectation value. The expectation value for a σz

measurement does not change with time, but the other two

expectation values do. Regardless, the result of each individ-

ual measurement of each spin component is still either +1 or

−1.

Exercise 4.4: Verify the commutation relations of Eqs.
4.26.

4.12 Solving the Schrödinger

Equation

The iconic Schrödinger equation that appears on T-shirts

has this form:

ih̄
∂Ψ(x)

∂t
= − h̄2

2m

∂2Ψ(x)

∂x2
+ U(x)Ψ(x).

At this point, let’s not worry about the meaning of the sym-
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bols except to note that it is an equation that tells you how

something changes with time. (The “something” is a repre-

sentation of the state-vector of a particle.)

The iconic Schrödinger equation is a special case of a

more general equation that we’ve already met in Eq. 4.9. It is

part definition and part principle of quantum mechanics. As

a principle, it says that the state-vector changes continuously

with time, in a unitary way. As a definition, it defines the

Hamiltonian, and therefore the observable called energy. Eq.

4.10,

h̄
∂|Ψ〉
∂t

= −iH|Ψ〉,

is sometimes called the time-dependent Schrödinger equa-

tion. Because the Hamiltonian operator H represents en-

ergy, the observable values of energy are just the eigenvalues

of H. Let’s call these eigenvalues Ej and the corresponding

eigenvectors |Ej〉. By definition, the relation between H, Ej,

and |Ej〉 is the eigenvalue equation

H|Ej 〉 = Ej |Ej 〉. (4.28)

This is the time-independent Schrödinger equation, and it’s

used in two different ways.

If we work in a particular matrix basis, then the equation

determines the eigenvectors of H. One puts in a particular

value of the energy Ej and looks for the ket-vector |Ej〉 that
solves the equation.

It is also an equation that determines the eigenvalues Ej.

If you put in an arbitrary value of Ej, in general there will
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not be a solution for the eigenvector. Let’s take a very sim-

ple example: Suppose the Hamiltonian is the matrix h̄ω
2
σz.

Since σz has only two eigenvalues, namely ±1, the Hamil-

tonian also has only two eigenvalues, ± h̄ω
2
. If you put any

other value on the right-hand side of Eq. 4.28, there will not

be a solution. Because the operator H represents energy,

we often call Ej the energy eigenvalues and |Ej〉 the energy

eigenvectors of the system.

Exercise 4.5: Take any unit 3-vector 	n and form the oper-
ator

H =
h̄ω

2
σ · 	n.

Find the energy eigenvalues and eigenvectors by solving the
time-independent Schrödinger equation. Recall that Eq. 3.23
gives σ · 	n in component form.

Let’s suppose we have found all the energy eigenvalues

Ej and the corresponding eigenvectors |Ej〉. We can now use

that information to solve the time-dependent Schrödinger

equation. The trick is to use the fact that the eigenvectors

form an orthonormal basis and then expand the state-vector

in that basis. Let the state-vector be called |Ψ〉 and write

|Ψ〉 =
∑
j

αj|Ej〉.

Since the state-vector |Ψ〉 changes with time and the basis

vectors |Ej〉 do not, it follows that the coefficients αj must
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also depend on time:

|Ψ(t)〉 =
∑
j

αj(t)|Ej〉. (4.29)

Now feed Eq. 4.29 into the time-dependent equation. The

result is

∑
j

α̇j(t)|Ej〉 = − i

h̄
H

∑
j

αj (t)|Ej 〉.

Next, we use the fact that H|Ej 〉 = Ej |Ej 〉 to get

∑
j

α̇j(t)|Ej〉 = − i

h̄

∑
j

Ejαj(t)|Ej〉

or, regrouping,

∑
j

{
α̇j(t) +

i

h̄
Ejαj(t)

}
|Ej〉 = 0.

The final step should be easy to see. If a sum of basis vec-

tors equals zero, every coefficient must be zero. Hence, for

each eigenvalue Ej, αj(t) must satisfy the simple differential

equation

dαj(t)

dt
= − i

h̄
Ejαj(t).

This, of course, is the familiar differential equation for an

exponential function of time, in this case with an imaginary

exponent. The solution is

αj(t) = αj(0)e
− i

h̄
Ejt. (4.30)
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This equation tells us how the αj change with time. It is

quite general and not restricted to spins, provided that the

Hamiltonian does not depend explicitly on time. This is

our first example of the deep connection between energy and

frequency, which recurs over and over throughout quantum

mechanics and quantum field theory. We will return to it

often.

In Eq. 4.30, the factors αj(0) are the values of the coeffi-

cients at time zero. If we know the state-vector |Ψ〉 at time

zero, then the coefficients are given by the projections of |Ψ〉
on the basis eigenvectors. We can write this as

αj(0) = 〈Ej|Ψ(0)〉. (4.31)

Now let’s put the whole thing together and write the full

solution of the time-dependent Schrödinger equation:

|Ψ(t)〉 =
∑
j

αj(0) e
− i

h̄
Ejt |Ej〉.

When we use Eq. 4.31 to replace αj(0), this equation be-

comes

|Ψ(t)〉 =
∑
j

〈Ej|Ψ(0)〉 e− i
h̄
Ejt |Ej〉. (4.32)

Eq. 4.32 can be written in the more elegant form,

|Ψ(t)〉 =
∑
j

|Ej〉〈Ej|Ψ(0)〉 e− i
h̄
Ejt, (4.33)
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which emphasizes that we’re summing over the basis vectors.

You may wonder how we just happen to “know” |Ψ(0)〉. The
answer depends on the circumstances, but usually, we as-

sume we can use some apparatus to prepare the system in a

known state.

Before we discuss the bigger meaning of these equations,

I want to restate them as a recipe. I’ll assume you already

know enough about the system and its space of states to get

started.

4.13 Recipe for a Schrödinger Ket

1. Derive, look up, guess, borrow, or steal the Hamilto-

nian operator H.

2. Prepare an initial state |Ψ(0)〉.
3. Find the eigenvalues and eigenvectors of H by solving

the time-independent Schrödinger equation,

H|Ej 〉 = Ej |Ej 〉.

4. Use the initial state-vector |Ψ(0)〉, along with the eigen-

vectors |Ej〉 from step 3, to calculate the initial coeffi-

cients αj(0):

αj(0) = 〈Ej|Ψ(0)〉.

5. Rewrite |Ψ(0)〉 in terms of the eigenvectors |Ej〉 and
the initial coefficients αj(0):

|Ψ(0)〉 =
∑
j

αj(0)|Ej〉.
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What we’ve done so far is to expand the initial state-vector
|Ψ(0)〉 in terms of the eigenvectors |Ej〉 of H. Why is that
basis better than any other? Because H tells us how things
evolve with time. We will use that knowledge now.

6. In the above equation, replace each αj(0) with αj(t)

to capture its time-dependence. As a result, |Ψ(0)〉
becomes |Ψ(t)〉:

|Ψ(t)〉 =
∑
j

αj(t)|Ej〉.

7. Using Eq. 4.30, replace each αj(t) with αj(0)e
− i

h̄
Ejt:

|Ψ(t)〉 =
∑
j

αj(0)e
− i

h̄
Ejt|Ej〉. (4.34)

8. Season according to taste.

We can now predict the probabilities for each possible

outcome of an experiment as a function of time, and we

are not restricted to energy measurements. Suppose L has

eigenvalues λj and eigenvectors |λj〉. The probability for

outcome λ is

Pλ(t) = |〈λ|Ψ(t)〉|2.
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Exercise 4.6: Carry out the Schrödinger Ket recipe for a
single spin. The Hamiltonian is H = ωh̄

2
σz and the final

observable is σx. The initial state is given as |u〉 (the state
in which σz = +1).

After time t, an experiment is done to measure σy. What
are the possible outcomes and what are the probabilities for
those outcomes?

Congratulations! You have now solved a real quantum me-
chanics problem for an experiment that can actually be car-
ried out in the laboratory. Feel free to pat yourself on the
back.

4.14 Collapse

We’ve seen how the state-vector evolves between the time

that a system is prepared in a given state and the time that

it is brought into contact with an apparatus and measured. If

the state-vector were main focus of observational physics, we

would say that quantum mechanics is deterministic. But ex-

perimental physics is not about measuring the state-vector.

It is about measuring observables. Even if we know the state-

vector exactly, we don’t know the result of any given mea-

surement. Nevertheless, it is fair to say that between obser-

vations, the state of a system evolves in a perfectly definite

way, according to the time-dependent Schrödinger equation.

But something different happens when an observation is

made. An experiment to measure L will have an unpre-

dictable outcome, but after the measurement is made, the

system is left in an eigenstate of L. Which eigenstate? The
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one corresponding to the outcome of the measurement. But

this outcome is unpredictable. So it follows that during an

experiment the state of a system jumps unpredictably to an

eigenstate of the observable that was measured. This phe-

nomenon is called the collapse of the wave function.4

To put it another way, suppose the state-vector is

∑
j

αj|λj〉

just before the measurement of L. Randomly, with probabil-

ity |αj|2, the apparatus measures a value λj and leaves the

system in a single eigenstate of L, namely |λj〉. The entire

superposition of states collapses to a single term.

This strange fact—that the system evolves one way be-

tween measurements and another way during a measure-

ment—has been a source of contention and confusion for

decades. It raises a question: Shouldn’t the act of measure-

ment itself be described by the laws of quantum mechanics?

The answer is yes. The laws of quantum mechanics are

not suspended during measurement. However, to examine

the measurement process itself as a quantum mechanical

evolution, we must consider the entire experimental setup,

including the apparatus, as part of a single quantum sys-

tem. We’ll discuss that topic—how systems are combined

into composite systems—in Lecture 6. But first, a few words

about uncertainty.

4We have not yet explained what a wave function is, but we’ll do
so shortly, in Section 5.1.2.





Lecture 5

Uncertainty and Time
Dependence

Lenny: Good evening, General. Nice to see you again.

The General: Lenny? Is that you? It’s been forever. Well,

a long time anyway. Who’s your friend?

Lenny: His name is Art. Art, shake hands with General

Uncertainty.

5.1 Mathematical Interlude:

Complete Sets of Commuting

Variables

5.1.1 States That Depend On More Than
One Measurable

The physics of a single spin is extremely simple, and that’s

what makes it so attractive as an illustrative example. But

129
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that also means there’s a lot it can’t illustrate. One property

of a single spin is that its state can be fully specified by the

eigenvalue of a single operator, say σz. If the value of σz

is known, then no other observable—such as σx—can also

be specified. As we have seen, measuring either of these

quantities destroys any information we may have had about

the other one.

But in more complicated systems, we may have multiple

observables that are compatible; that is, their values can be

known simultaneously. Here are two examples:

• A particle moving in three-dimensional space. A basis

of states for this system is specified by the position of

the particle, but this takes three position coordinates.

Thus, we have states that are specified by three num-

bers, |x, y, z〉. We will see later that all three spatial

coordinates of a particle can be simultaneously speci-

fied.

• A system composed of two physically independent spins;

in other words, a system of two qubits. Later, we will

see how to combine systems to form bigger systems.

But for now we can just say that the two-spin system

can be described by two observables. Namely, we have

a state in which both spins are up, another in which

both are down, another in which the first is up while

the second is down, and another in which these spins

are reversed. To put it more briefly, we can charac-

terize the two-spin system by two observables: the z

component of the first spin and the z component of

the second spin. Quantum mechanics does not forbid
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simultaneous knowledge of these two observables. In

fact, one can choose any component of one spin and

any component of the other spin. Quantum mechanics

allows simultaneous knowledge of both.

In these situations, we need multiple measurements to fully

characterize the state of the system. For example, in our two-

spin system, we measure each spin separately and associate

these measurements with two different operators. We’ll call

these operators L and M.

A measurement leaves the system in an eigenstate (con-

sisting of a single eigenvector), corresponding to the value

(an eigenvalue) that was measured. If we measure both spins

in a two-spin system, the system winds up in a state that

is simultaneously an eigenvector of L and an eigenvector of

M. We call this a simultaneous eigenvector of the operators

L and M.

The two-spin example gives us something concrete to

think about, but keep in mind that our results will be far

more general—they will apply to any system that is charac-

terized by two different operators. And as you might guess,

there is nothing magic about the number two. The ideas pre-

sented here generalize to larger systems that require many

operators to characterize them.

To work with two different compatible operators, we’ll

need two sets of labels for their basis vectors. We’ll use the

labels λi and μa. The symbols λi and μa are the eigenvalues

of L and M. The subscripts i and a run over all the possible

outcomes of measurements of L and M. We assume that
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there is a basis of state-vectors |λi, μa〉 that are simultaneous

eigenvectors of both observables. In other words,

L|λi , μa〉 = λi |λi , μa〉

M|λi , μa〉 = μa |λi , μa〉.

To make these equations a little less precise but a little easier

to read, I will sometimes leave out the subscripts:

L|λ, μ〉 = λ|λ, μ〉

M|λ, μ〉 = μ|λ, μ〉.

In order to have a basis of simultaneous eigenvectors, the

operators L and M must commute. This is easy to see.

We begin by acting on any of the basis vectors with the

product LM, and then use the fact that the basis vector is

an eigenvector of both:

LM|λ, μ〉 = Lμ|λ, μ〉,
or

LM|λ, μ〉 = λμ|λ, μ〉.

The eigenvalues λ, μ are of course just numbers and it doesn’t

matter which one appears first when we multiply them. Thus,

if we reverse the order of these operators, and let the opera-

tor ML act on the same basis vector, we get the same result:
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LM|λ, μ〉 = ML|λ, μ〉,

or, more succinctly,

[L,M] |λ, μ〉 = 0, (5.1)

where the right-hand side represents the zero vector. This

result would not be very helpful if it were only true for a

particular basis vector. But the reasoning that leads us to

Eq. 5.1 is valid for any of the basis vectors. That’s enough to

ensure that the operator [L,M] = 0. If an operator annihi-

lates every member of a basis, it must also annihilate every

vector in the vector space.1 An operator that annihilates

every vector is exactly what we mean by the zero operator.

Thus, we prove that if there is a complete basis of simulta-

neous eigenvectors of two observables, the two observables

must commute. It turns out that the converse of this theo-

rem is also true: if two observables commute, then there is

a complete basis of simultaneous eigenvectors of the two ob-

servables. To put it simply, the condition for two observables

to be simultaneously measurable is that they commute.

As we mentioned earlier, this theorem is more general.

One may need to specify a larger number of observables to

completely label a basis. Regardless of the number of ob-

servables that are needed, they must all commute among

themselves. We call this collection a complete set of com-

muting observables.

1Do you see why?
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5.1.2 Wave Functions

Now we’ll introduce a concept called the wave function. For

now, ignore the name; in general, the quantum wave function

may have nothing to do with waves. Later, when we study

the quantum mechanics of particles (Lectures 8–10), we’ll

find out about the connection between wave functions and

waves.

Suppose we have a basis of states for some quantum sys-

tem. Let the orthonormal basis vectors be called |a, b, c, . . .〉,
where a, b, c, . . . are the eigenvalues of some complete set of

commuting observables A,B,C, . . . . Now, consider an arbi-

trary state vector |Ψ〉. Since the vectors |a, b, c, . . .〉 are an

orthonormal basis, |Ψ〉 can be expanded in terms of them:

|Ψ〉 =
∑

a,b,c,...

ψ(a, b, c, . . . )|a, b, c, . . .〉.

The quantities ψ(a, b, c, . . . ) are the coefficients that enter

the expansion. Each of them is also equal to the inner prod-

uct of |Ψ〉 with one of the basis vectors:

ψ(a, b, c, . . . ) = 〈a, b, c, . . . |Ψ〉. (5.2)

The set of coefficients ψ(a, b, c, . . . ) is called the wave func-

tion of the system in the basis defined by the observables

A,B,C, . . . . The mathematical definition of a wave function

is given by Eq. 5.2, which seems formal and abstract, but the

physical meaning of the wave function is profoundly impor-

tant. According to the basic probability principle of quan-

tum mechanics, the squared magnitude of the wave function
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is the probability for the commuting observables to have val-

ues a, b, c, . . . :

P (a, b, c, . . . ) = ψ∗(a, b, c, . . . ) ψ(a, b, c, . . . ).

The form of the wave function depends on which observables

we choose to focus on. That’s because calculations for two

different observables rely on different sets of basis vectors.

For example, in the case of a single spin, the inner products

ψ(u) = 〈u|Ψ〉
and

ψ(d) = 〈d|Ψ〉

define the wave function in the σz basis, while

ψ(r) = 〈r|Ψ〉
and

ψ(l) = 〈l|Ψ〉

define the wave function in the σx basis.

An important feature of the wave function follows from

the fact that the total probability sums to one:

∑
a,b,c,...

ψ∗(a, b, c, . . . ) ψ(a, b, c, . . . ) = 1.
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5.1.3 A Note About Terminology

The term wave function, as used in this book, refers to the

collection of coefficients (also called components) that mul-

tiply the basis vectors in an eigenfunction expansion. For

example, if we expand a state-vector |Ψ〉 as follows,

|Ψ〉 =
∑
j

αj|ψj〉,

where the |ψj〉 are the orthonormal eigenvectors of a Her-

mitian operator, the collection of coefficients αj—the things

we called ψ(a, b, c, . . . ) just above—is what we mean by the

wave function. In situations where the state-vector is ex-

pressed as an integral rather than a sum, the wave function

is continuous rather than discrete.

So far, we have been careful to distinguish the wave func-

tion from the state-vectors |ψj〉, and this is a common con-

vention. However, some authors refer to wave functions as

though they are the state-vectors. This ambiguous use of ter-

minology can be confusing. It becomes less confusing when

you realize that a wave function really can represent a state-

vector. It is reasonable to think of the αj coefficients as the

coordinates of the state-vector in a specific basis of eigen-

vectors. This is similar to saying that a set of Cartesian

coordinates represents a particular point in 3-space relative

to a specific coordinate frame. To avoid confusion, just try

to be aware of which convention is being followed. In this

book, we will generally use uppercase symbols, such as Ψ, to

represent state-vectors, and lowercase symbols, such as ψ, to

represent wave functions.
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5.2 Measurement

Let’s return to the concept of measurement. Suppose we

measure two observables L and M in a single experiment,

and the system is left in a simultaneous eigenvector of these

two observables. As we learned in Section 5.1.1, this means

that L and M must commute.

But what if they don’t commute? Then, in general, it is

not possible to have unambiguous knowledge of both. Later

on, we will make this more quantitative in the form of the

uncertainty principle, Heisenberg’s being a special case.

Let’s go back to our touchstone, the problem of a single

spin. Any observable of a spin is represented by a 2 × 2

Hermitian matrix, and any such matrix has the form

(
r w
w∗ r′

)
,

with the diagonal elements being real and the other two be-

ing complex conjugates. The implication is that it takes ex-

actly four real parameters to specify this observable. In fact,

there is a neat way to write any spin observable in terms of

the Pauli matrices, σx, σy, and σz, and one more matrix: the

unit matrix I. As you recall,

σx =

(
0 1
1 0

)

σy =

(
0 −i
i 0

)
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σz =

(
1 0
0 −1

)

I =

(
1 0
0 1

)
.

Any 2 × 2 Hermitian matrix L can be written as a sum of

four terms,

L = aσx + bσy + cσz + dI ,

where a, b, c, and d are real numbers.

Exercise 5.1: Verify this claim.

The unit operator I is officially an observable because it

is Hermitian, but it’s a very boring one. There is only one

possible value this trivial observable can have, namely 1, and

every state-vector is an eigenvector. If we ignore I, then the

most general observable is a superposition of the three spin

components σx, σy, and σz. Can any pair of spin components

be simultaneously measured? Only if they commute. But it

is easy to calculate the commutators for these spin compo-

nents. Just use the matrix representation to multiply them

in both orders, and then subtract.

The commutation relations we listed in Eqs. 4.26,

[σx, σy] = 2iσz
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[σy, σz] = 2iσx

[σz, σx] = 2iσy,

tell us straightaway that no two spin components can be

simultaneously measured, because the right-hand sides are

not zero. In fact, no two components of the spin along any

axes can be simultaneously measured.

5.3 The Uncertainty Principle

Uncertainty is one of the hallmarks of quantum mechanics,

but it is not always the case that the result of an experiment

is uncertain. If a system is in an eigenstate of an observable,

then there is no uncertainty about the result of measuring

that observable. But whatever the state, there is always

uncertainty about some observable. If the state happens to

be an eigenvector of one Hermitian operator—call it A—

then it will not be an eigenvector of other operators that

don’t commute with A. Thus, as a rule, if A and B do not

commute, then there must be uncertainty in one or the other,

if not both.

The iconic example of this mutual uncertainty is the

Heisenberg Uncertainty Principle, which in its original form

had to do with the position and momentum of a particle.

But Heisenberg’s ideas can be expanded into a much more

general principle that applies to any two observables that

happen not to commute. An example would be two compo-

nents of a spin. We now have all the ingredients necessary

to derive the general form of the uncertainty principle.
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5.4 The Meaning of Uncertainty

We need to be very certain about what we mean by uncer-

tainty if we want to quantify it. Let’s suppose the eigenval-

ues of the observable A are called a. Then, given a state |Ψ〉,
there is a probability distribution P (a) with the usual prop-

erties. The expectation value of A is the ordinary average:

〈Ψ|A|Ψ〉 =
∑
a

aP (a).

Roughly speaking, this means that P (a) is centered around

the expectation value. What we will mean by “the uncer-

tainty in A” is the so-called standard deviation. To compute

the standard deviation, begin by subtracting from A its ex-

pectation value. We define the operator Ā to be:

Ā = A− 〈A〉.

By defining Ā in this way, we have subtracted an expecta-

tion value from an operator, and it’s not completely clear

what that means. Let’s take a closer look. The expectation

value is itself a real number. Every real number is also an

operator, namely an operator proportional to the identity or

unit operator I. To make the meaning clear, we can write Ā

in a more complete form:

Ā = A− 〈A〉I.

The probability distribution for Ā is exactly the same as the

distribution forA except that it is shifted so that the average
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of Ā is zero. The eigenvectors of Ā are the same as those of

A and the eigenvalues are just shifted so that their average

is zero as well. In other words, the eigenvalues of Ā are

ā = a− 〈A〉.

The square of the uncertainty (or standard deviation) of A,

which we call (ΔA)2, is defined by

(ΔA)2 =
∑
a

ā2P (a) (5.3)

or

(ΔA)2 =
∑
a

(a− 〈A〉)2P (a). (5.4)

This may also be written as

(ΔA)2 = 〈Ψ|Ā2|Ψ〉.

If the expectation value of A is zero, then the uncertainty

ΔA takes the simpler form

(ΔA)2 = 〈Ψ|A2|Ψ〉.

In other words the square of the uncertainty is the average

value of the operator A2.
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5.5 Cauchy-Schwarz Inequality

The uncertainty principle is an inequality that says the prod-

uct of the uncertainties of A and B is larger than something

that involves their commutator. The basic mathematical in-

equality is the familiar triangle inequality. It says that in

any vector space, the magnitude of one side of a triangle is

less than the sum of the magnitudes of the other two sides.

For real vector spaces, we derive

|X||Y | ≥ |X · Y | (5.5)

from the triangle inequality,

|X|+ |Y | ≥ |X + Y |.

5.6 The Triangle Inequality and

the Cauchy-Schwarz Inequality

The triangle inequality is motivated, of course, by the prop-

erties of ordinary triangles, but it’s actually far more general

and applies to a large class of vector spaces. You can get the

basic idea by looking at Fig. 5.1, where the sides of the tri-

angle are taken to be ordinary geometric vectors in a plane.

The triangle inequality is just the statement that the sum of

any two sides is bigger than the third side, and the under-

lying idea is that the shortest path between two points is a

straight line. The shortest path between point 1 and point

3 is side Z, and the sum of the other two sides is certainly

bigger.
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Figure 5.1: The Triangle Inequality. The sum of the lengths
of vectors 	X and 	Y is greater than or equal to the length of
vector 	Z. (The shortest path between two points is a straight
line.)

The triangle inequality can be expressed in more than one

way. We’ll start with the basic definition and then massage

it into the form we need. We know that

|X|+ |Y | ≥ |Z|.

If we think of X and Y as vectors that can be added, we can

write the above as

| 	X|+ |	Y | ≥ | 	X + 	Y |.

If we square this equation, it becomes

| 	X|2 + |	Y |2 + 2| 	X||	Y | ≥ | 	X + 	Y |2.
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But the right-hand side can be expanded as

| 	X + 	Y |2 = | 	X|2 + |	Y |2 + 2( 	X · 	Y ).

Why? Because | 	X+ 	Y |2 is just ( 	X+ 	Y ) ·( 	X+ 	Y ). Collecting

these results, we get

| 	X|2 + |	Y |2 + 2| 	X||	Y | ≥ | 	X|2 + |	Y |2 + 2( 	X · 	Y ).

Now, we just subtract | 	X|2 + |	Y |2 from each side and then

divide by 2, leaving us with

| 	X||	Y | ≥ 	X · 	Y . (5.6)

This is another form of the triangle inequality. It says that,

given any two vectors 	X and 	Y , the product of their lengths

is greater than or equal to their dot product. This is no

surprise—the dot product is often defined as

	X · 	Y = | 	X||	Y | cos θ,

where θ is the angle between the two vectors. But we know

that the cosine of an angle always stays in the range −1
to +1, so the right-hand side must always be less than or

equal to | 	X||	Y |. This relationship is true for vectors in two

dimensions, three dimensions, or an arbitrary number of di-

mensions. It’s even true for vectors in complex vector spaces.

It’s generally true for vectors in any vector space, provided
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the length of the vector is defined as the square root of the

vector’s inner product with itself. As we go forward, we plan

to use Inequality 5.6 in the squared form, that is,

| 	X|2|	Y |2 ≥ ( 	X · 	Y )2

or

| 	X|2|	Y |2 ≥ | 	X · 	Y |2. (5.7)

In this form, it’s called the Cauchy-Schwarz inequality.

For complex vector spaces, the triangle inequality takes

a slightly more complicated form. Let |X〉 and |Y 〉 be any

two vectors in a complex vector space. The magnitudes of

the three vectors |X〉, |Y 〉, and |X〉+ |Y 〉 are

|X| =
√
〈X|X〉

|Y | =
√
〈Y |Y 〉

|X + Y | =
√
(〈X|+ 〈Y |)(|X〉+ |Y 〉) (5.8)

We now follow the same steps as we did for the real case:

First write

|X|+ |Y | ≥ |X + Y |.
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Then square it and simplify:

2|X||Y | ≥ |〈X|Y 〉+ 〈Y |X〉|. (5.9)

This is the form of the Cauchy-Schwarz inequality that will

lead to the uncertainty principle. But what does it have to

do with the two observables A and B? We’ll find out by

cleverly defining |X〉 and |Y 〉.

5.7 The General Uncertainty

Principle

Let |Ψ〉 be any ket and let A and B be any two observables.

We now define |X〉 and |Y 〉 as follows:

|X〉 = A|Ψ〉

|Y 〉 = iB|Ψ〉. (5.10)

Notice the i in the second definition. Now, substitute 5.10

into 5.9 to get

2
√
〈A2〉〈B2〉 ≥ |〈Ψ|AB|Ψ〉 − 〈Ψ|BA|Ψ〉|. (5.11)

The minus sign is due to the factor of i in the second defini-

tion in 5.10. Using the definition of a commutator, we find

that

2
√
〈A2〉〈B2〉 ≥ |〈Ψ|[A,B]|Ψ〉|. (5.12)
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Let’s suppose for the moment thatA andB have expectation

values of zero. In that case, 〈A2〉 is just the square of the

uncertainty in A, that is, (ΔA)2, and 〈B2〉 is just (ΔB)2.

Thus we can rewrite Eq. 5.12 as

ΔA ΔB ≥ 1

2
|〈Ψ|[A,B]|Ψ〉|. (5.13)

Reflect on this mathematical inequality for a moment. On

the left side, we see the product of the uncertainties of the

two observables A and B in the state Ψ. The inequality

says that this product cannot be smaller than the right side,

which involves the commutator of A and B. Specifically, it

says that the product of the uncertainties cannot be smaller

than half the magnitude of the expectation value of the com-

mutator.

The general uncertainty principle is a quantitative ex-

pression of something we already suspected: if the commu-

tator of A and B is not zero, then both observables cannot

simultaneously be certain.

But what if the expectation value of A or B is not zero?

In that case, the trick is to redefine two new operators in

which the expectation values have been subtracted off:

Ā = A− 〈A〉

B̄ = B− 〈B〉.

Then repeat the whole process, replacing A and B with Ā

and B̄. The following exercise serves as a guide.
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Exercise 5.2:

1) Show that ΔA2 = 〈Ā2〉 and ΔB2 = 〈B̄2〉.

2) Show that [Ā, B̄] = [A,B].

3) Using these relations, show that

ΔA ΔB ≥ 1
2
|〈Ψ|[A,B]|Ψ〉|.

Later, in Lecture 8, we will use this very general version of

the uncertainty principle to prove the original form of Heisen-

berg’s Uncertainty Principle: The product of the uncertain-

ties of the position and momentum of a particle cannot be

less than half of Planck’s constant.



Lecture 6

Combining Systems:
Entanglement

Art: This is a pretty friendly place after all. Except for

Minus One, I don’t see too many loners.

Lenny: Mingling is only natural at a place like this. And not

just because it’s cramped. Just keep track of your wallet and

don’t get too entangled.

6.1 Mathematical Interlude:

Tensor Products

6.1.1 Meet Alice and Bob

Figuring out how systems combine to make bigger systems

is a large part of what we do in physics. I hardly need to tell

you that an atom is a collection of nucleons and electrons,

each of which could be considered a quantum system in its

own right.

149
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When talking about composite systems, it’s easy to get

bogged down in formal language like System A and System

B. Most physicists prefer lighter-weight, informal language

instead, and Alice and Bob have become near-universal sub-

stitutes for A and B. We can think of Alice and Bob as pur-

veyors of composite systems and laboratory setups of every

description. Their inventory and expertise are limited only

by our imaginations, and they gladly tackle difficult or dan-

gerous assignments like jumping into black holes. They’re

true geek superheroes!

Let’s say that Alice and Bob have provided two systems—

Alice’s system and Bob’s system. Alice’s system—whatever

it is—is described by a space of states called SA, and similarly

Bob’s system is described by a space of states called SB.

Now let’s say that we want to combine the two systems

into a single composite system. Before going any further,

let’s be more specific about the systems we’re starting with.

For example, Alice’s system could be a quantum mechanical

coin with two basis states H and T . Of course, a classical

coin must be in either one state or the other, but a quantum

coin can exist in a superposition:

αH |H
}
+ αT |T

}
.

You’ll notice that I’ve used an unusual notation for Alice’s

ket-vectors. This is to distinguish them from Bob’s kets.

The new notation is intended to discourage us from adding

vectors in Alice’s space SA to vectors in Bob’s space SB.

Alice’s SA is a two-dimensional vector space—it is defined

by the two basis vectors |H}
and |T}.
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Bob’s system might also be a coin, but then again it

might be something else. Let’s assume it’s a quantum die.

Bob’s space of states SB would then be six-dimensional, with

the basis

|1〉
|2〉
|3〉
|4〉
|5〉
|6〉

denoting the six faces of the die. Just like Alice’s coin, Bob’s

die is quantum mechanical, and the six states can be super-

posed in a similar way.

6.1.2 Representing the Combined System

Now imagine that Bob’s and Alice’s systems both exist, and

form a single composite system. The first question is: How

could we construct the state-space—call it SAB—for the com-

bined system? The answer is to form the tensor product of

SA and SB. The notation for this operation is

SAB = SA ⊗ SB.

To define SAB, it is enough to specify its basis vectors. The

basis vectors are exactly what you might expect. The top
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Bob’s state-labels

Alice’s
state
labels

Alice’s
system

Bob’s
system

-

1 2 3 4 5 6

H

T

H1

T1 T2 T3 T4 T5 T6

H2 H3 H4 H5 H6

State-Labels for Combined System SAB

H

Figure 6.1: The basis states of the composite system SAB,
shown as a table. Across the top are the state-labels for
Bob’s die. The state-labels for Alice’s coin are shown on
the left. The state-labels for the combined system are the
table entries. Each combined state-label shows the state of
each of the two subsystems. For example, the state-label H4
denotes a state in which Alice’s coin shows H and Bob’s die
shows 4.
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half of Fig. 6.1 shows a table whose columns correspond to

Bob’s six basis vectors and whose rows correspond to Alice’s

two basis vectors. Each box in the table denotes a basis

vector for the SAB system. For example, the box labeled H4

represents a state in SAB in which the coin shows Heads and

the die shows the number 4. In the combined system, there

are twelve basis vectors altogether.

There are various ways to represent these states symbol-

ically. We could represent the H4 state using explicit nota-

tion, as |H} ⊗ |4〉 or |H}|4〉. Usually, it’s more convenient

to use the composite notation |H4〉. This emphasizes that

we’re talking about a single state with a two-part label. The

left half labels Alice’s subsystem, and the right half labels

Bob’s. The explicit and composite notations both have the

same meaning—they refer to the same state.

Once the basis vectors are listed—in this case, twelve

of them—we can combine them linearly to form arbitrary

superpositions. Thus, the tensor product space in this case

is twelve-dimensional. A superposition of two of these basis

vectors might look like

αh3|H3〉+ αt4|T4〉.

In each case, the first half of the state-label describes the

state of Alice’s coin, and the second half describes the state

of Bob’s die.

Sometimes, we’ll need to refer to an arbitrary basis vector

in SAB. To do that, we’ll use ket-vectors that look like this,

|ab〉,
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or like this,

|a′b′〉.

In this notation, the a or a′ (or whatever the left-hand char-

acter of the label happens to be) represents one of Alice’s

states, and the b or b′ represents one of Bob’s states.

There is one aspect of this notation that is tricky. Even

though our SAB state-labels are doubly indexed, ket-vectors

like |ab〉 or |H3〉 represent a single state of the combined

system. In other words, we’re using a double index to label

a single state. This will take some getting used to. Alice’s

part of the state-label is always on the left and Bob’s part is

always on the right—keeping Alice and Bob in alphabetical

order makes this convention easy to remember.

The rules are the same for more general systems. The

only difference is that the two A-states and the six B-states

would be replaced by NA and NB states respectively, and the

tensor product would have dimension

NAB = NANB.

Systems with three or more components can be represented

by tensor products of three or more state spaces, but we

won’t do that here.

Now that we’ve described Alice’s and Bob’s separate spac-

es SA and SB, as well as the combined space SAB, there’s still

one more bit of notation to set up. Alice has a set of oper-

ators, labeled σ, that act on her system. Bob has a similar
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set for his system, which we can label τ , so we don’t mix

them up with Alice’s. Alice may have several σ operators,

and likewise Bob may have several τ operators. With this

framework in hand, we’re ready to explore composite sys-

tems in greater depth. Later on, in Lecture 7, we’ll explain

how to work with tensor product operators in component

form—expressed as matrices and column vectors.

By now, there should be no doubt in your mind that

quantum physics is different from classical physics, right

down to its logical roots. In this lecture and the next one,

I am going to hit you even harder with this idea. We are

going to discuss an aspect of quantum physics that is so

different from classical physics that, as of this writing, it

has puzzled—and aggravated—physicists and philosophers

for almost 80 years. It drove its discoverer, Einstein, to the

conclusion that something very deep is missing from quan-

tum mechanics, and physicists have been arguing about it

ever since. As Einstein realized, in accepting quantum me-

chanics, we are buying into a view of reality that is radically

different from the classical view.

6.2 Classical Correlation

Before we get to quantum entanglement, let’s spend a few

minutes on what we might call classical entanglement. In the

following experiment, Alice (A) and Bob (B) will get some

help from Charlie (C).

Charlie has two coins in his hands—a penny and a dime.

He mixes them up and holds them out, one in each hand, to
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Alice and Bob, and gives one coin to each of them. No one

looks at the coins and no one knows who has which. Then,

Alice gets on the shuttle to Alpha Centauri while Bob stays

in Palo Alto. Charlie has done his job and doesn’t matter

anymore (sorry, Charlie).

Before Alice’s big trip, Alice and Bob synchronize their

clocks—they have done their relativity homework and ac-

counted for time dilation and all that. They agree that Alice

will look at her coin just a second or two before Bob looks

at his.

Everything proceeds smoothly, and when Alice gets to

Alpha Centauri she indeed looks at her coin. Amazingly,

the instant she looks at it, she immediately knows exactly

what coin Bob will see, even before he looks. Is this crazy?

Have Alice and Bob succeeded in breaking relativity’s most

fundamental rule, which states that information cannot go

faster than the speed of light?

Of course not. What would violate relativity would be

for Alice’s observation to instantly tell Bob what to expect.

Alice may know what coin Bob will see but she has no way

to tell him—not without sending him a real message from

Alpha Centauri, and that would take at least the four years

required for light to make the trip.

Let’s do this experiment many times, either with many

Alice-Bob pairs or with the same pair spread out over time.

In order to be quantitative, Charlie (he’s back now, having

accepted our apology) paints a “σ = +1” on each penny and

a “σ = −1” on each dime. If we assume that Charlie really

is random in the way he shuffles the coins, then the following

facts will emerge:
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• On average, both A and B will get as many pennies as

dimes. Calling the values of A’s observations σA and

B’s observations σB, we can express this fact mathe-

matically as

〈σA〉 = 0

〈σB〉 = 0. (6.1)

• If A and B record their observations and then get to-

gether back in Palo Alto to compare them, they will

find a strong correlation.1 For each trial, if A observed

σA = +1, then B observed σB = −1, and vice versa.

In other words, the product σAσB always equals −1:

〈σAσB〉 = −1.

Notice that the average of the products (of σA and σB) is not

equal to the product of the averages—Eqs. 6.1 tell us that

〈σA〉〈σB〉 is zero. In symbols,

〈σA〉〈σB〉 �= 〈σAσB〉,

or

〈σAσB〉 − 〈σA〉〈σB〉 �= 0. (6.2)

1Actually, it’s a perfect correlation in this example.
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This indicates that Alice’s and Bob’s observations are corre-

lated. In fact, the quantity

〈σAσB〉 − 〈σA〉〈σB〉

is called the statistical correlation between Bob’s and Alice’s

observations. It’s called the statistical correlation even if it is

zero. When the statistical correlation is nonzero, we say the

observations are correlated. The source of this correlation

is the fact that originally Alice and Bob were in the same

location and Charlie had one of each type of coin. The cor-

relation remained when Alice went to Alpha Centauri simply

because the coins didn’t change during the trip. There is ab-

solutely nothing strange about this or about Inequality 6.2.

It is a very common property of statistical distributions.

Suppose you have a probability distribution P (a, b) for

two variables a and b. If the variables are completely uncor-

related, then the probability will factorize:

P (a, b) = PA(a)PB(b), (6.3)

where PA(a) and PB(b) are the individual probabilities for

a and b. (I added subscripts to the function symbols as a

reminder that they could be different functions of their ar-

guments.) It is easy to see that if the probability factorizes

in this fashion, then there is no correlation; in other words,

the average of the product is the product of the averages.

Exercise 6.1: Prove that if P (a, b) factorizes, then the cor-
relation between a and b is zero.



6.2. CLASSICAL CORRELATION 159

Let me use an example to illustrate the kind of situation

that leads to factorized probabilities. Suppose that instead

of a single Charlie, there are two Charlies—Charlie-A and

Charlie-B—who have never communicated. Charlie-B mixes

up his two coins and gives one to Bob—the other one is

discarded.

Charlie-A does exactly the same thing except that he

gives a coin to Alice instead. This is the type of situation that

leads to factorized product probabilities with no correlation.

In classical physics we use statistics and probability the-

ory when we are ignorant about something that is, in princi-

ple, knowable. For example, after mixing up the coins in the

first experiment, Charlie could have made a gentle observa-

tion (a quick peek) and then let Alice and Bob have their

coins. This would have made no difference in the result.

In classical mechanics, the probability distribution P (a, b)

represents an incomplete specification of the system state.

There is more to know—more that could be known—about

the system. In classical physics, the use of probability is

always associated with an incompleteness of knowledge rel-

ative to all that could be known.

A related point is that complete knowledge of a system in

classical physics implies complete knowledge of every part of

the system. It would not make any sense to say that Charlie

knew everything that could be known about the system of

two coins but was missing information about the individual

coins.

These classical concepts are deeply ingrained in our think-

ing. They are the foundation of our instinctual understand-

ing of the physical world, and it’s very hard to get past
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them. But get past them we must, if we are to understand

the quantum world.

6.3 Combining Quantum Systems

Charlie’s two coins formed a single classical system, com-

posed of two classical subsystems. Quantum mechanics also

allows us to combine systems, as we found out in the Math-

ematical Interlude on tensor products (Section 6.1).

Alice and Bob have kindly agreed to provide a variant

of the coin/die system they loaned us for the Interlude on

tensor products. Instead of a coin and a die, the new system

is built up from two spins, meaning that we’ll have a chance

to put our knowledge of single spins to work.

As before, we will sometimes use the oddball notation |a}
to remind us that Alice’s state-vectors are not in the same

state-space as Bob’s, and that we’re not allowed to add them

together. On the other hand, recall that each member of an

orthonormal basis for SAB is labeled by a pair of vectors, one

from SA and one from SB. We will make frequent use of the

notation |ab〉 to label a single basis vector of the combined

system. These doubly indexed basis vectors can be added

together, and we’ll be doing that a lot.

As we explained in the Interlude, labeling a basis vector

with a pair of indices takes some getting used to. You should

think of the pair ab as a single index labeling a single state.

Let’s look at an example. Consider some linear operator

M acting on the space of states of the composite system. As

usual, it can be represented as a matrix. The matrix ele-

ments are constructed by sandwiching the operator between
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basis vectors. Thus, the matrix elements of M are expressed

as

〈a′b′|M|ab〉 = Ma ′b′,ab .

Each row of the matrix is labeled with a single index (a′b′)
of the composite system and each column with (ab).

The vectors |ab〉 are taken to be orthonormal, which

means that their inner products are zero unless both labels

match. This does not mean that a matches b, but rather

that ab matches a′b′. We can also express this idea using the

Kronecker delta symbol:

〈ab|a′b′〉 = δaa′δbb′ .

The right side is zero unless a = a′ and b = b′. If the labels

do match, the inner product is one.

Now that we have the basis vectors, any linear superpo-

sition of them is allowed. Thus, any state in the composite

system can be expanded as

|Ψ〉 =
∑
a,b

ψ(a, b)|ab〉.

6.4 Two Spins

Returning to our example, let’s imagine two spins: Alice’s

and Bob’s. To put it in a context that we can visualize, imag-

ine that the spins are attached to two particles and that the

two particles are fixed in space at two nearby but different

locations.
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Alice and Bob each have their own apparatuses, called

A and B respectively, that they can use to prepare states

and measure spin components. Each can be independently

oriented along any axis.

We are going to need names for the two spins. When

we only had one spin, we simply called it σ, and it had

three components along the x, y, and z axes. Now we have

two spins, and the question is how to label them without

cluttering the symbols with too many sub- and superscripts.

We could call them σA and σB, and the components, σA
x , σ

B
y ,

and so on. For me, that’s just too many subscripts to keep

track of, especially on the blackboard. Instead, I’ll follow the

same convention we used in the Interlude on tensor products.

I’ll call Alice’s spin σ and assign the next letter in the Greek

alphabet, τ , to Bob’s spin. The full sets of components for

Alice’s and Bob’s spins are

σx, σy, σz

and

τx, τy, τz.

According to the principles that we laid out earlier, the space

of states for the two-spin system is a tensor product. We can

make a table of the four states, just as we did in the Interlude.

This time, it’s a 2× 2 square, comprising four basis states.

Let’s work in a basis in which the z components of both

spins are specified. The basis vectors are
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|uu〉, |ud〉, |du〉, |dd〉,

where the first part of each label represents the state of σ,

and the second part represents τ . For example, the first basis

vector |uu〉 represents the state in which both spins are up.

The vector |du〉 is the state in which Alice’s spin is down

and Bob’s spin is up.

6.5 Product States

The simplest type of state for the composite system is called

a product state. A product state is the result of completely

independent preparations by Alice and Bob, in which each

uses his or her own apparatus to prepare a spin. Using ex-

plicit notation, suppose Alice prepares her spin in state

αu|u
}
+ αd|d

}

and Bob prepares his in the state

βu|u〉+ βd|d〉.

We assume each state is normalized:

α∗
uαu + α∗

dαd = 1

β∗
uβu + β∗

dβd = 1. (6.4)
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And in fact these separate normalization equations for each

subsystem play a crucial role in defining product states. If

they did not hold, we would not have a product state. The

product state describing the combined system is

|product state〉 =
{
αu|u

}
+ αd|d

}}⊗{
βu|u

〉
+ βd|d

〉}
,

where the first factor represents Alice’s state and the second

factor represents Bob’s. Expanding the product and switch-

ing to composite notation, the right-hand side becomes

αuβu|uu〉+ αuβd|ud〉+ αdβu|du〉+ αdβd|dd〉. (6.5)

The main feature of a product state is that each subsystem

behaves independently of the other. If Bob does an exper-

iment on his own subsystem, the result is exactly the same

as it would be if Alice’s subsystem did not exist. The same

is true for Alice, of course.

Exercise 6.2: Show that if the two normalization conditions
of Eqs. 6.4 are satisfied, then the state-vector of Eq. 6.5 is
automatically normalized as well. In other words, show that
for this product state, normalizing the overall state-vector
does not put any additional constraints on the α’s and β’s.

I’ll mention here that tensor products and product states

are two different things, despite their similar-sounding names.2

2Sometimes, we’ll use the term tensor product space, or just product
space, instead of tensor product.
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A tensor product is a vector space for studying composite

systems. A product state is a state-vector. It’s one of the

many state-vectors that inhabit a product space. As we will

see, most of the state-vectors in the product space are not

product states.

6.6 Counting Parameters for the

Product State

Let’s consider the number of parameters it takes to specify

such a product state. Each factor requires two complex num-

bers (αu and αd for Alice, βu and βd for Bob), which means

we need four complex numbers altogether. That’s equivalent

to eight real parameters. But recall that the normalization

conditions in Eqs. 6.4 reduce this by two. Furthermore, the

overall phases of each state have no physical significance, so

the total number of real parameters is four. That’s hardly

surprising: it took two parameters to describe the state of a

single spin, so two independent spins require four.

6.7 Entangled States

The principles of quantum mechanics allow us to superpose

basis vectors in more general ways than just product states.

The most general vector in the composite space of states is

ψuu|uu〉+ ψud|ud〉+ ψdu|du〉+ ψdd|dd〉,

where we have used the subscripted symbols ψ (instead of
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α and β) to represent the complex coefficients. Again, we

have four complex numbers, but this time we only have one

normalization condition,

ψ∗
uuψuu + ψ∗

udψud + ψ∗
duψdu + ψ∗

ddψdd = 1,

and only one overall phase to ignore. The result is that

the most general state for a two-spin system has six real

parameters. Evidently, the space of states is richer than just

those product states that can be prepared independently by

Bob and Alice. Something new is going on. The new thing

is called entanglement.

Entanglement is not an all-or-nothing proposition. Some

states are more entangled than others. Here is an example of

a maximally entangled state—a state that’s as entangled as

it can be. It is called the singlet state, and it can be written

as

|sing〉 = 1√
2

(|ud〉 − |du〉).
The singlet state cannot be written as a product state. The

same is true for the triplet states,

1√
2

(|ud〉+ |du〉)
1√
2

(|uu〉+ |dd〉)
1√
2

(|uu〉 − |dd〉),



6.8. ALICE AND BOB’S OBSERVABLES 167

which are also maximally entangled. The reason for calling

them singlet and triplet will be explained later.

Exercise 6.3: Prove that the state |sing〉 cannot be written
as a product state.

What is it about maximally entangled states that is so fas-

cinating? I can sum this up in two statements:

• An entangled state is a complete description of the

combined system. No more can be known about it.

• In a maximally entangled state, nothing is known about

the individual subsystems.

How can that be? How could we know as much as can pos-

sibly be known about the Alice-Bob system of two spins, and

yet know nothing about the individual spins that are its sub-

components? That’s the mystery of entanglement, and I

hope that by the end of this lecture you will understand the

rules of the game, even if the deeper nature of entanglement

remains a paradox.

6.8 Alice and Bob’s Observables

So far, we’ve discussed the space of states of the Alice-Bob

two-spin system, but not its observables. Some of these ob-

servables are obvious, even if their mathematical representa-

tion is not. In particular, using their apparatuses A and B,
Alice and Bob can measure the components of their spins:
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σx, σy, σz

and

τx, τy, τz.

How are these observables represented as Hermitian opera-

tors in the composite space of states? The answer is sim-

ple. Bob’s operators act on Bob’s spin states exactly as they

would if Alice had never shown up. The same goes for Alice.

Let’s review how the spin operators act on the states of a

single spin. First, let’s look at Alice’s spin:

σz|u
}

= |u}
σz|d

}
= −|d}

σx|u
}

= |d}
σx|d

}
= |u}

σy|u
}

= i|d}
σy|d

}
= −i|u}. (6.6)

Of course, Bob’s setup is identical to Alice’s, so we can write

a parallel set of equations showing how the components of τ

act on Bob’s states:
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τz|u〉 = |u〉

τz|d〉 = −|d〉

τx|u〉 = |d〉

τx|d〉 = |u〉

τy|u〉 = i|d〉

τy|d〉 = −i|u〉. (6.7)

Now let’s consider how the operators should be defined when

acting on the tensor product states, |uu〉, |ud〉, |du〉, and |dd〉.
The answer is that when σ acts, it just ignores Bob’s half

of the state label. There are many possible combinations

of operators and states, but I will pick a few at random.

You can fill in the others, or look them up in the appendix.

Starting with Alice’s operators, we find that

σz|uu〉 = |uu〉

σz|du〉 = −|du〉

σx|ud〉 = |dd〉

σx|dd〉 = |ud〉
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σy|uu〉 = i|du〉

σy|du〉 = −i|uu〉

τz|uu〉 = |uu〉

τz|du〉 = |du〉

τx|ud〉 = |uu〉

τx|du〉 = |dd〉

τy|uu〉 = i|ud〉

τy|dd〉 = −i|du〉. (6.8)

Again, the rule is that Alice’s spin components act only on

the Alice half of the composite system. The Bob half is

a passive spectator that does not participate. In terms of

symbols, when σx, σy, or σz acts, Bob’s half of the spin state

does not change. And when Bob’s τ spin operators act,

Alice’s half is similarly passive.

We are being a little loose with our notation. The vectors

of a tensor product space are new vectors, built up from the

vectors of two smaller spaces. Technically, the same is true

for the operators. If we were being pedantic, we would insist

on writing the tensor product versions of σz and τx as σz⊗ I

and I ⊗ τx, respectively, where I is the identity operator.

In fact, we can highlight two important properties of tensor
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product operators by rewriting the equation

σz|du〉 = −|du〉 (6.9)

as

(σz ⊗ I) (|d〉 ⊗ |u〉) = (σz|d〉 ⊗ I|u〉)

= (−|d〉 ⊗ |u〉). (6.10)

This notation is cumbersome, and we’ll usually stick to the

simpler language of Eq. 6.9. However, the language of Eq.

6.10 makes two things clear:

1. A composite operator σz⊗ I is operating on a compos-

ite vector |d〉 ⊗ |u〉 to produce a new composite vector

−|d〉 ⊗ |u〉.

2. Alice’s half (the left half) of the composite operator

only affects her half of the composite vector. Likewise,

Bob’s half of the operator only affects his half of the

vector.

We’ll have more to say about composite operators in the

next section. Furthermore, in Lecture 7, the language of Eq.

6.10 will help us see how to work with tensor products in

component form.
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Exercise 6.4: Use the matrix forms of σz, σx, and σy and
the column vectors for |u} and |d} to verify Eqs. 6.6. Then,
use Eqs. 6.6 and 6.7 to write the equations that were left out
of Eqs. 6.8. Use the appendix to check your answers.

Exercise 6.5: Prove the following theorem:

When any one of Alice’s or Bob’s spin operators acts on a
product state, the result is still a product state.

Show that in a product state, the expectation value of any
component of 	σ or 	τ is exactly the same as it would be in
the individual single-spin states.

This last exercise proves something important about product

states. In a product state, every prediction about Bob’s half

of the system is exactly the same as it would have been in the

corresponding single-spin theory. The same goes for Alice.

An example of this property of product states involves

what I called the Spin-Polarization Principle in Lecture 3.

A useful way to state that principle is:

For any state of a single spin, there is some direction for

which the spin is +1.

As I explained, this means that the expectation values of the

components satisfy the equation

〈σx〉2 + 〈σy〉2 + 〈σz〉2 = 1, (6.11)

which tells us that not all the expectation values can be zero.

This fact continues to hold for all product states. However,



6.8. ALICE AND BOB’S OBSERVABLES 173

it does not hold for the entangled state |sing〉. In fact, for

the |sing〉 state the right-hand side of Eq. 6.11 becomes zero,

as we’ll show next.

Recall that the entangled state |sing〉 is defined as

|sing〉 = 1√
2

(|ud〉 − |du〉).
Let’s look at the expectation values of σ in this state. We

have all the machinery we need to compute them. First, let’s

consider 〈σz〉:

〈σz〉 = 〈sing|σz|sing〉

= 〈sing|σz
1√
2

(|ud〉 − |du〉).
Here is where Eqs. 6.8 come in (along with Exercise 6.4,

which completes this set of equations!). They tell us how σz

acts on each basis vector. The result is

〈sing|σz|sing〉 = 〈sing| 1√
2

(|ud〉+ |du〉)

or

〈σz〉 = 1

2

(
〈ud| − 〈du|

)(
|ud〉+ |du〉

)
.

A quick inspection shows that this is equal to zero. Next,

let’s consider 〈σx〉:
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〈σx〉 = 〈sing|σx|sing〉

= 〈sing|σx
1√
2

(|ud〉 − |du〉)

or

〈σx〉 = 1

2

(
〈ud| − 〈du|

)(
|dd〉 − |uu〉

)
.

Again, this equation gives us zero. Finally, let’s look at 〈σy〉:

〈σy〉 = 〈sing|σy|sing〉

=
1

2

(
〈ud| − 〈du|

)(
i|dd〉+ i|uu〉

)
.

As you may have guessed, we are left with zero once more.

Thus, we have shown that for the state |sing〉,

〈σz〉 = 〈σx〉 = 〈σy〉 = 0,

and indeed all expectation values of σ are zero. Needless to

say, the same is true for the expectation values of τ . Clearly,

|sing〉 is very different from a product state. What does all

this say about the measurements we can make?

If the expectation value of a component of σ is zero, it

means that the experimental outcome is equally likely to be
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+1 or −1. In other words, the outcome is completely uncer-

tain. Even though we know the exact state-vector, |sing〉, we
know nothing at all about the outcome of any measurement

of any component of either spin.

Perhaps this means that the state |sing〉 is somehow

incomplete—that there are details of the system that we were

sloppy about and didn’t measure. After all, earlier we saw

a perfectly classical example in which Alice and Bob knew

nothing about their coins until they actually looked at them.

How is the quantum version different?

In our “classical entanglement” example involving Alice,

Bob, and Charlie, it is perfectly clear that there was more

to know. Charlie could have sneaked a peek at the coins

without changing anything, because classical measurements

can be arbitrarily gentle.

Might there be so-called hidden variables in the quantum

system? The answer is that according to the rules of quan-

tum mechanics, there is nothing to know beyond what is

encoded in the state-vector—in the present case, |sing〉. The
state-vector is as complete a description of a system as it is

possible to make. So it seems that in quantum mechanics, we

can know everything about a composite system—everything

there is to know, anyway—and still know nothing about its

constituent parts. This is the true weirdness of entangle-

ment, which so disturbed Einstein.

6.9 Composite Observables

Let’s imagine a quantummechanical Alice-Bob-Charlie setup.

Charlie’s role is to prepare two spins in the entangled state
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|sing〉. Then, without looking at the spins (remember, quan-

tum measurements are not gentle), he gives one spin to Alice

and one to Bob. Although Alice and Bob know exactly what

state the combined system is in, they can predict nothing

about the outcome of their individual measurements.

But surely knowing the exact state of the composite sys-

tem must tell them something, even if the state is highly

entangled. And in fact it does. However, to understand

what it tells them, we have to consider a wider family of

observables than the ones that Alice and Bob can measure

separately, each using only his or her own detector. As it

turns out, there are observables that can only be measured

by using both detectors. The results of such experiments

can only be known to Alice or Bob if they come together

and compare notes.

The first question is whether Alice and Bob can simulta-

neously measure their own observables. We have seen that

there are quantities that cannot be simultaneously measured.

In particular, two observables that do not commute cannot

both be measured without the measurements interfering with

each other. But for Alice and Bob, it is easy to see that ev-

ery component of σ commutes with every component of τ .

This is a general fact about tensor products. The operators

that act on the two separate factors commute with one an-

other. Therefore, Alice can make any measurement on her

spin and Bob can make any measurement on his, without

either interfering with the other’s experiment.

Let’s suppose Alice measures σz and Bob measures τz,

and then they multiply the results. In other words, they

conspire to measure the product τzσz.
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The product τzσz is an observable that is mathematically

represented by first applying σz to a ket and then subse-

quently applying τz. Keep in mind that these are just the

mathematical operations that define a new operator: they

are different from the act of performing a physical measure-

ment. You don’t need an apparatus to multiply two op-

erators; you just need a pencil and paper. Let’s see what

happens if we apply the product τzσz to the state |sing〉:

τzσz
1√
2

(
|ud〉 − |du〉

)
.

First, using the table in Eqs. 6.8, apply σz:

τzσz
1√
2

(
|ud〉 − |du〉

)
= τz

1√
2

(
|ud〉+ |du〉

)
.

Now, apply τz to get

τzσz
1√
2

(
|ud〉 − |du〉

)
=

1√
2

(
− |ud〉+ |du〉

)
.

Notice that the end result is just to change the sign of |sing〉:

τzσz|sing〉 = −|sing〉.

Evidently, |sing〉 is an eigenvector of the observable τzσz

with eigenvalue −1. Let’s examine the significance of this

result. Alice measures σz and Bob measures τz; when they

come together and compare results, they find they’ve mea-

sured opposite values. Sometimes, Bob measures +1 and
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Alice measures −1. Other times, Alice measures +1 and

Bob measures −1. The product of the two measurements is

always −1.
There should be nothing surprising in this result. The

state-vector |sing〉 is a superposition of two vectors, |ud〉
and |du〉, both of which comprise two spins with opposite

z components. The situation is altogether similar to the

classical example involving Charlie and his two coins.

But now we come to something that has no classical ana-

log. Suppose that instead of measuring the z components of

their spins, Alice and Bob measure the x components. To

find out how their outcomes are correlated, we must study

the observable τxσx.

Let’s act on |sing〉 with this product. Here are the steps:

τxσx|sing〉 = τxσx
1√
2

(
|ud〉 − |du〉

)

= τx
1√
2

(
|dd〉 − |uu〉

)

=
1√
2

(
|du〉 − |ud〉

)

or, more simply,

τxσx|sing〉 = −|sing〉.

Now this is a bit surprising: |sing〉 is also an eigenvector

of τxσx with eigenvalue −1. It is far less obvious from just

looking at |sing〉 that the x components of the two spins
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are always opposite. Nevertheless, every time Alice and Bob

measure them, they find that σx and τx have opposite values.

At this point, you will probably not be surprised to learn that

the same thing is true for the y components.

Exercise 6.6: Assume Charlie has prepared the two spins
in the singlet state. This time, Bob measures τy and Alice
measures σx. What is the expectation value of σxτy?

What does this say about the correlation between the two
measurements?

Exercise 6.7: Next, Charlie prepares the spins in a different
state, called |T1〉, where

|T1〉 = 1√
2

(
|ud〉+ |du〉

)
.

In these examples, T stands for triplet. These triplet states
are completely different from the states in the coin and die
examples. What are the expectation values of the operators
σzτz, σxτx, and σyτy?

What a difference a sign can make!

Exercise 6.8: Do the same for the other two entangled
triplet states,

|T2〉 = 1√
2

(
|uu〉+ |dd〉

)

|T3〉 = 1√
2

(
|uu〉 − |dd〉

)
,

and interpret.
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Finally, let’s consider one more observable. This one can-

not be measured by Alice and Bob making separate measure-

ments with their individual apparatuses, even if they come

together and compare notes. Nevertheless, quantum me-

chanics insists that some kind of apparatus can be built to

measure the observable.

The observable I am referring to can be thought of as the

ordinary dot product of the vector-operators 	σ and 	τ :

	σ · 	τ = σxτx + σyτy + σzτz.

One might think that a value for this observable can be found

if Bob measures all components of τ, while Alice measures all

components of σ; then they could multiply the components

and add them up. The problem is that Bob cannot simul-

taneously measure the individual components of τ , because

they don’t commute. Likewise, Alice cannot measure more

than one component of σ at a time. To measure 	σ · 	τ , a new

kind of apparatus must be built, one that measures 	σ ·	τ with-

out measuring any individual component. It’s far from ob-

vious how that could be done. Here is a concrete example of

how such a measurement could be carried out: Some atoms

have spins that are described in the same way as electron

spins. When two of these atoms are close to each other—

for example, two neighboring atoms in a crystal lattice—the

Hamiltonian will depend on the spins. In some situations,

the neighboring spins’ Hamiltonian is proportional to 	σ · 	τ .
If that happens to be the case, then measuring 	σ ·	τ is equiv-

alent to measuring the energy of the atomic pair. Measuring

this energy is a single measurement of the composite opera-
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tor and does not entail measuring the individual components

of either spin.

Exercise 6.9: Prove that the four vectors |sing〉, |T1〉, |T2〉,
and |T3〉 are eigenvectors of 	σ ·	τ . What are their eigenvalues?

Take a look at your results from this last exercise. Do

you see why one of these state-vectors is called the singlet,

while the other three are called triplets? The reason is that

if you look at their relation to the operator 	σ · 	τ , the singlet

is an eigenvector with one eigenvalue, and the triplets are all

eigenvectors with a different degenerate eigenvalue.

Here is a good exercise that combines the concept of en-

tanglement with the concepts of time and change from Lec-

ture 4. Use it to review the ideas of unitary time evolution

and the meaning of the Hamiltonian.

Exercise 6.10: A system of two spins has the Hamiltonian

H =
ω

2
	σ · 	τ .

What are the possible energies of the system, and what are
the eigenvectors of the Hamiltonian?

Suppose the system starts in the state |uu〉. What is the
state at any later time? Answer the same question for initial
states of |ud〉, |du〉, and |dd〉.





Lecture 7

More on Entanglement

Hilbert’s Place, summer 1935:

Two scruffy regulars come through the swinging doors, in the

midst of an intense conversation. The one with the wild gray-

ish hair and frayed sweater says, “No, I will not accept your

theory unless you can tell me what the elements of physical

reality are.”

The other one looks around, throws up his hands in obvi-

ous frustration, and says to Art and Lenny, “There he goes

again. Elements of physical reality, EPRs, EPRs, that’s all

he ever thinks about. Albert, stop being obsessive and just

accept the facts.”

“Never! I cannot accept that one can know everything there

is to know about a thing, and still know nothing about its

parts. That’s utter nonsense, Niels.”

“Sorry, Albert. That’s just the way it is. Here, let me buy

you a beer.”

183
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In this lecture, we will look at entanglement in greater depth.

To do that, we’ll need some additional mathematical tools.

First, we’ll find out how to work with tensor products in

component form. Then, we’ll learn about a new operator

called the density matrix. These tools are not inherently

hard to master, but they do require some patience and a fair

amount of index wrangling.

7.1 Mathematical Interlude:

Tensor Products in

Component Form

In Lecture 6, we explained how to form the tensor product of

two vector spaces using the abstract notation of bras, kets,

and operator symbols like σz. How does that translate into

columns, rows, and matrices?

Building tensor products from matrices and column vec-

tors is not hard. The rules are straightforward, as we’ll see

below. The tricky part is understanding why these rules

work—why they allow us to build matrices and column vec-

tors that have the properties we want. We’ll tackle the issue

in two different ways. First, we’ll build composite operators

using the tried-and-true method we developed in Lecture 3.

Then we’ll show you how to build composite operators di-

rectly from their component operators.
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7.1.1 Building Tensor Product Matrices
from Basic Principles

Back in Lecture 3, we showed you how to write any observ-

able M in matrix form, relative to a specific basis. Take a

moment to review Eqs. 3.1 through 3.4. In that section, we

calculated the numerical values mjk of M’s matrix elements

with the expression

mjk = 〈j|M|k〉, (7.1)

where |j〉 and |k〉 represent the basis vectors. Each |j〉, |k〉
combination generates a different matrix element.1

Our plan is to apply this formula to some tensor prod-

uct operators and see what we get. Because of our double-

indexing convention for tensor product basis vectors, the

“sandwiches” in these equations will look a little different

from the ones in Eq. 7.1. On each end of the sandwich, we

will cycle through the basis vectors |uu〉, |ud〉, |du〉, and |dd〉.2
To keep things simple, we’ll use the operator σz ⊗ I as an

example, where I is the identity operator. As we have seen,

σz ⊗ I acts on Alice’s half of the state-vector with σz, and

does absolutely nothing to Bob’s half. Because we are work-

ing in a four-dimensional vector space, the resulting matrix

1In Lecture 3, we happened to write the index j on the left side of
M, and k on the right, the opposite of what we’re doing here. Because
j and k are index variables, this makes no difference as long as we
maintain consistency within a group of equations.

2Of course, we could have used a different set of basis vectors, such
as |rr〉, |rl〉, etc. Doing so would result in a different set of matrix
elements.
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will be 4 × 4. Omitting multiple ⊗ symbols to avoid visual

clutter, we can write the matrix like this:

σz ⊗ I =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈uu|σzI|uu〉 〈uu|σzI|ud〉 〈uu|σzI|du〉 〈uu|σzI|dd〉

〈ud|σzI|uu〉 〈ud|σzI|ud〉 〈ud|σzI|du〉 〈ud|σzI|dd〉

〈du|σzI|uu〉 〈du|σzI|ud〉 〈du|σzI|du〉 〈du|σzI|dd〉

〈dd|σzI|uu〉 〈dd|σzI|ud〉 〈dd|σzI|du〉 〈dd|σzI|dd〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(7.2)

To evaluate these matrix elements, we could allow σz and I

to operate either to the left or to the right. Let’s assume

σz operates to the left and I operates to the right. Since

I does nothing, all we care about is what σz does to the

bra vector on its left. And within that bra vector, σz only

acts on the leftmost (that is, Alice’s) state-label. Using the

rules we’ve already worked out (see Eqs. 6.6 and 6.7), we

can carry out all of these σz operations to obtain a matrix

of inner products:

σz ⊗ I =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈uu|uu〉 〈uu|ud〉 〈uu|du〉 〈uu|dd〉

〈ud|uu〉 〈ud|ud〉 〈ud|du〉 〈ud|dd〉

−〈du|uu〉 −〈du|ud〉 −〈du|du〉 −〈du|dd〉

−〈dd|uu〉 −〈dd|ud〉 −〈dd|du〉 −〈dd|dd〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(7.3)
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Because these eigenvectors are orthonormal, the matrix re-

duces to

σz ⊗ I =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ . (7.4)

How do we write the eigenvectors |uu〉, |ud〉, |du〉, and |dd〉
as column vectors? For now, I’ll just tell you that we’ll

represent |uu〉 and |du〉 as

|uu〉 =

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠ , |du〉 =

⎛
⎜⎜⎝

0
0
1
0

⎞
⎟⎟⎠ . (7.5)

Let’s see what happens when σz⊗I operates on these column

vectors. Applying the matrix to |uu〉 results in
⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠ .

In other words,

(σz ⊗ I)|uu〉 = |uu〉,

just as we expect. What if we apply the same matrix to the

column vector |du〉 in Eqs. 7.5? Carrying out the matrix

multiplication results in −|du〉, just as it should.
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7.1.2 Building Tensor Product Matrices
from Component Matrices

The above method for calculating matrix elements is very

general—it works for all observables. If we need to construct

the tensor product of two operators, and we already know the

matrix elements of the building blocks, we can combine them

directly. Here is the rule for combining 2×2 matrices to form

4× 4 matrices:

A⊗ B =

(
A11B A12B
A21B A22B

)
(7.6)

or

A⊗ B =

⎛
⎜⎜⎝

A11B11 A11B12 A12B11 A12B12

A11B21 A11B22 A12B21 A12B22

A21B11 A21B12 A22B11 A22B12

A21B21 A21B22 A22B21 A22B22

⎞
⎟⎟⎠ . (7.7)

The same pattern works for matrices of any size. This kind

of matrix multiplication is sometimes called the Kronecker

product, a term that only applies to matrices—it’s the matrix

version of the tensor product. The Kronecker product of two

2×2 matrices is a 4×4 matrix, and the pattern is similar for

matrices of arbitrary size. In general, the Kronecker product

of an m×n matrix and a p× q matrix is an mp×nq matrix.

All of this applies perfectly well to column and row vec-

tors, which are just specialized matrices. The tensor product

of two 2 × 1 column vectors is a 4 × 1 column vector. If a

and b are 2 × 1 column vectors, their tensor product looks

like this:
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(
a11
a21

)
⊗

(
b11
b21

)
=

⎛
⎜⎜⎝

a11b11
a11b21
a21b11
a21b21

⎞
⎟⎟⎠ . (7.8)

Let’s see how this works out for Alice and Bob. First, we’ll

construct the four tensor product basis vectors, using |u〉
and |d〉 as building blocks. Recall Eqs. 2.11 and 2.12 from

Lecture 2,

|u〉 =
(

1
0

)

|d〉 =
(

0
1

)
.

If we plug the appropriate combinations of |u〉 and |d〉 into
Eq. 7.8, our four 4× 1 column vectors are

|uu〉 =
(

1
0

)
⊗

(
1
0

)
=

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠

|ud〉 =
(

1
0

)
⊗

(
0
1

)
=

⎛
⎜⎜⎝

0
1
0
0

⎞
⎟⎟⎠

|du〉 =
(

0
1

)
⊗

(
1
0

)
=

⎛
⎜⎜⎝

0
0
1
0

⎞
⎟⎟⎠
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|dd〉 =
(

0
1

)
⊗

(
0
1

)
=

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠ . (7.9)

Next, we’ll use the rule from Eq. 7.7 to combine the operators

σz and τx. Using Eqs. 3.20 to define matrices σz and τx, this

rule gives the tensor product matrix

σz ⊗ τx =

(
1 0
0 −1

)
⊗

(
0 1
1 0

)
=

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

⎞
⎟⎟⎠ .

Let’s compare this result with the product of σx and τz,

σx ⊗ τz =

(
0 1
1 0

)
⊗

(
1 0
0 −1

)
=

⎛
⎜⎜⎝

0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

⎞
⎟⎟⎠ .

Notice that σx⊗τz is not the same as σz⊗τx. That is natural,

because they represent different observables.

So far, so good. But next, we’ll see something a little

more interesting. With the help of a few exercises, we’ll try to

convince you that the Kronecker product really is the tensor

product for matrices—in other words, that Alice’s half of the

matrix only affects her half of the column vector, and likewise

for Bob. This is tricky because of the way the Kronecker

product mixes up the elements of its building blocks.
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As an example, let’s look at how σz ⊗ τx acts on |ud〉.
Translating the abstract symbols into components, we can

write

(σz ⊗ τx)|ud〉 =

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0
1
0
0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠ .

But the column vector on the right-hand side corresponds

to |uu〉 in Eqs. 7.9. Translated back into abstract notation,

this becomes

(σz ⊗ τx)|ud〉 = |uu〉.
This is exactly what we want—a matrix representation of

our abstract operators and state-vectors that replicates their

known behavior.

The following exercise will help crystallize the idea that

the σ-half of σ⊗τ only affects Alice’s half of the state-vector,

and that the τ -half only affects Bob’s. The one after that

provides some practice working out the matrix elements of an

operator, assuming that we already know what the operator

does to each basis vector.

Exercise 7.1: Write the tensor product I⊗τx as a matrix,
and apply that matrix to each of the |uu〉, |ud〉, |du〉, and
|dd〉 column vectors. Show that Alice’s half of the state-
vector is unchanged in each case. Recall that I is the 2 × 2
unit matrix.

Exercise 7.2: Calculate the matrix elements of σz ⊗ τx by
forming inner products as we did in Eq. 7.2.
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The third exercise is a bit tedious, but it really nails things

down. Consider the equation

(A⊗ B) (a⊗ b) = (Aa⊗ Bb). (7.10)

As in Eqs. 7.7 and 7.8, A and B represent 2× 2 matrices (or

operators), and a and b represent 2× 1 column vectors. The

exercise asks you to expand the equation into components

and show that the left side matches the right side.

Exercise 7.3:

a) Rewrite Eq. 7.10 in component form, replacing the sym-
bols A, B, a, and b with the matrices and column vectors
from Eqs. 7.7 and 7.8.

b) Perform the matrix multiplications Aa and Bb on the
right-hand side. Verify that each result is a 4× 1 matrix.

c) Expand all three Kronecker products.

d) Verify the row and column sizes of each Kronecker prod-
uct:

• A⊗ B: 4× 4

• a⊗ b: 4× 1

• Aa⊗ Bb: 4× 4

e) Perform the matrix multiplication on the left-hand side,
resulting in a 4 × 1 column vector. Each row should be the
sum of four separate terms.

f) Finally, verify that the resulting column vectors on the
left and right sides are identical.
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7.2 Mathematical Interlude:

Outer Products

Given a bra 〈φ| and a ket |ψ〉, we can form the inner product

〈φ|ψ〉. As we’ve seen, the inner product is a complex number.

However, there is another kind of product called the outer

product, written

|ψ〉〈φ|.

The outer product is not a number; it is a linear operator.

Let’s consider what happens when |ψ〉〈φ| acts on another ket

|A〉:

|ψ〉〈φ| |A〉.

In these examples, we’re using spacing instead of parenthe-

ses to show the grouping of operations. Remember that all

operations with bras, kets, and linear operators are associa-

tive, which means we’re allowed to group them any way we

like, as long as we keep the same ordering from left to right.3

The action of the outer product operator is very simple and

can be defined as

|ψ〉〈φ| |A〉 ≡ |ψ〉 〈φ|A〉.
3Sometimes we can change left-to-right ordering as well, but that

requires more care.
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In other words, we take the inner product of 〈φ| with |A〉 (the
result is a complex number) and multiply it by the ket |ψ〉.
The bra-ket notation is so efficient that it practically forces

the definition on us. That was the genius of Paul Dirac. It’s

easy to prove that the outer product can also act on bras:

〈B| |ψ〉〈φ| ≡ 〈B|ψ〉 〈φ|.

A special case is the outer product of a ket with its corre-

sponding bra, |ψ〉〈ψ|. Assuming that |ψ〉 is normalized, this

operator is called a projection operator. Here is how it acts:

|ψ〉〈ψ| |A〉 = |ψ〉 〈ψ|A〉

Note that the result is always proportional to |ψ〉. A pro-

jection operator can be said to project a vector onto the

direction defined by |ψ〉. Here are some properties of projec-

tion operators that you can easily prove (remember that |ψ〉
is normalized to 1):

• Projection operators are Hermitian.

• The vector |ψ〉 is an eigenvector of its projection oper-

ator with eigenvalue 1:

|ψ〉〈ψ| |ψ〉 = |ψ〉

• Any vector orthogonal to |ψ〉 is an eigenvector with

eigenvalue zero. Thus, the eigenvalues of |ψ〉〈ψ| are all
either 0 or 1, and there is only one eigenvector with

unit eigenvalue. That eigenvector is |ψ〉 itself.
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• The square of a projection operator is the same as the

projection operator itself:

|ψ〉〈ψ|2 = |ψ〉〈ψ|.

• The trace of an operator (or any square matrix) is de-

fined as the sum of its diagonal elements. Using the

symbol Tr for trace, we can define the trace of an op-

erator L to be

Tr L =
∑
i

〈i |L|i〉,

which is just the sum of L’s diagonal matrix elements.

The trace of a projection operator is 1. This follows

from the fact that the trace of a Hermitian operator is

the sum of its eigenvalues.4

• If we add all the projection operators for a basis sys-

tem, we obtain the identity operator:

∑
i

|i〉〈i| = I. (7.11)

Finally, here is a very important theorem about projection

operators and expectation values. The expectation value of

4A Hermitian matrix M can be diagonalized by a transformation
P†MP, where P is a unitary matrix whose columns are the normalized
eigenvectors of M. The trace of M is invariant under this transforma-
tion. We have not proved this well-known result.
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any observable L in state |ψ〉 is given by

〈ψ|L|ψ〉 = Tr |ψ〉〈ψ| L. (7.12)

Here are the steps to prove it. Pick any basis |i〉. Then, using
the definition of trace, write

Tr |ψ〉〈ψ| L =
∑
i

〈i |ψ〉〈ψ|L|i〉.

The two factors in the summation are just numbers, so we

can reverse their ordering,

Tr |ψ〉〈ψ| L =
∑
i

〈ψ|L|i〉〈i |ψ〉.

Carrying out the sum and using
∑ |i〉〈i| = I, we get

Tr |ψ〉〈ψ| L = 〈ψ|L|ψ〉.

The right side is just the expectation value of L.

7.3 Density Matrices: A New Tool

Up to now, we have learned how to make predictions about

a system when we know the system’s exact quantum state.

But more often than not, we don’t have complete knowledge

of the state. For example, suppose Alice has prepared a spin

using an apparatus oriented along some axis. She gives the

spin to Bob but doesn’t tell him the axis along which the

apparatus was oriented. Perhaps she gives him some partial
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information, such as the fact that the axis was either along

the z axis or the x axis, but she refuses to tell him more than

that. What does Bob do? How does he use this information

to make predictions?

Bob reasons as follows: If Alice prepared the spin in the

state |ψ〉, then the expectation value of any observable L is

Tr |ψ〉〈ψ|L = 〈ψ|L|ψ〉.

On the other hand, if Alice prepared the spin in state |φ〉,
then the expectation value of L is

Tr |φ〉〈φ|L = 〈φ|L|φ〉.

What if there is a 50 percent probability that she prepared

|ψ〉 and a 50 percent probability that she prepared |φ〉? Ob-

viously, the expectation value is

〈L〉 = 1

2
Tr |ψ〉〈ψ|L+

1

2
Tr |φ〉〈φ|L.

All we are doing is averaging over Bob’s ignorance of the

state prepared by Alice.

But now we can combine the terms into a single expres-

sion by defining a density matrix ρ that encodes Bob’s knowl-

edge. In this case the density matrix is half the projection

operator onto |φ〉 plus half the projection operator onto |ψ〉,

ρ =
1

2
|ψ〉〈ψ|+ 1

2
|φ〉〈φ|.
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We’ve now packaged all of Bob’s knowledge of the system

into a single operator ρ. At this point, the rule to compute

expectation values becomes very simple:

〈L〉 = Tr ρL. (7.13)

We can generalize this. Suppose that Alice tells Bob that she

has prepared one of several states—call them |φ1〉, |φ2〉, |φ3〉,
and so on. Moreover, she specifies probabilities P1, P2, P3, . . .

for each of these states. Bob can still package all his knowl-

edge into a density matrix:

ρ = P1|φ1〉〈φ1|+ P2|φ2〉〈φ2|+ P3|φ3〉〈φ3|+ . . . .

Furthermore, he can use exactly the same rule, Eq. 7.13, to

compute the expectation value.

When the density matrix corresponds to a single state, it

is a projection operator that projects onto that state. In this

case, we say that the state is pure. A pure state represents

the maximum amount of knowledge that Bob can have of a

quantum system. But in the more general case, the density

matrix is a mix of several projection operators. We then say

that the density matrix represents a mixed state.

I have used the term density matrix, but strictly speaking,

ρ is an operator. It only becomes a matrix when a basis is

chosen. Suppose we choose the basis |a〉. The density matrix

is just the matrix representation of ρ with respect to this

basis:
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ρaa′ = 〈a|ρ|a′〉.

If the matrix representation of L is La′,a then 7.13 takes the

form

〈L〉 =
∑
a,a ′

La ′,aρa,a ′ . (7.14)

7.4 Entanglement and Density

Matrices

Classical physics also has its notion of pure and mixed states,

although they are not called by those names. Just to illus-

trate, let’s consider a system of two particles moving along

a line. According to the rules of classical mechanics, we can

calculate the orbits of the particles if we know the values

of their positions (x1 and x2) and momenta (p1 and p2) at

a certain instant in time. The state of the system is thus

specified by four numbers: x1, x2, p1, and p2. If we know

these four numbers, we have as complete a description of the

two-particle system as it is possible to have: there is no more

to know. We can call this a pure classical state.

Often, however, we don’t know the exact state, but only

some probabilistic information. That information can be

encoded in a probability density

ρ(x1, x2, p1, p2).

A classical pure state is just a special case of a probability
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density, in which ρ is nonzero at only one point. But more

generally, ρ will be smeared out, in which case we could call

it a classical mixed state.5 When ρ is smeared out, it means

our knowledge of the system state is incomplete. The more

smeared out it is, the greater our ignorance.

One thing should be completely obvious from this exam-

ple: if you know the pure state for the combined two-particle

system, then you know everything about each particle. In

other words, a pure state for two classical particles implies

a pure state for each of the individual particles.

But this is exactly what is not true in quantum mechanics

when a system is entangled. The state of a composite system

can be absolutely pure, but each of its constituents must be

described by a mixed state.

Let’s take a system composed of two parts, A and B. It

could be two spins or any other composite system.

In this case, we will suppose that Alice has complete

knowledge of the state of the combined system. In other

words, she knows the wave function

Ψ(a, b).

There is nothing missing from her knowledge of the combined

system. Nevertheless, Alice is not interested in B. Instead,

she wishes to find out as much as she can about A without

looking at B. She selects an observable L that belongs to

A, and that does nothing to B when it acts. The rule for

5By smeared out, we mean that ρ(x1, x2, p1, p2) will be nonzero for
a range of values of its arguments, not just one value. The greater this
range, the more smeared out ρ becomes.
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calculating the expectation value of L is

〈L〉 =
∑

ab,a ′b′
Ψ∗(a ′b ′)La ′b′,abΨ(ab). (7.15)

So far, this is entirely general. However, if the observable L

is associated only with A, then it acts trivially on the b-index

and we can write the expectation value as

〈L〉 =
∑
a,b,a ′

Ψ∗(a ′b)La ′,aΨ(ab). (7.16)

Now, Alice can summarize all of her knowledge, at least for

the purpose of studying A, in terms of a matrix ρ:

ρaa′ =
∑
b

Ψ∗(a′b)Ψ(ab). (7.17)

Surprisingly, Eq. 7.16 has exactly the same form as Eq. 7.14

for expectation value of a mixed state. Indeed, only in the

very special case of a product state will ρ have the form of

a projection operator. In other words, despite the fact that

the composite system is described by a perfectly pure state,

the subsystem A must be described by a mixed state.

There’s a subtle point about our notation for density ma-

trices that’s worth noticing: in Eq. 7.17, the right-hand in-

dex of ρ, that is, the a′ index, corresponds to the complex

conjugage state-vector Ψ∗(a′b) in the summation. This is a

consequence of our convention

Laa′ = 〈a|L|a ′〉
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for labeling the matrix elements of an operator L. Applying

this convention to

ρ = |Ψ〉〈Ψ|
results in

ρaa′ = 〈a|Ψ〉〈Ψ|a′〉,
or

ρaa′ = Ψ(a)Ψ∗(a′).

7.5 Entanglement for Two Spins

Before leading you further into the world of entanglement,

I’ll give you a simple definition and a quick warm-up exercise.

If Alice only has a single spin in a known state, her density

matrix is defined to be

ρaa′ = ψ∗(a′)ψ(a).

This equation tells you how to calculate an element of Alice’s

density matrix. If we stick with our familiar σz basis, each

index a and a′ can take the values up and down, so Alice has

a 2× 2 density matrix.
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Exercise 7.4: Calculate the density matrix for

|Ψ〉 = α|u〉+ β|d〉.

Answer:
ψ(u) = α; ψ∗(u) = α∗

ψ(d) = β; ψ∗(d) = β∗

ρa′a =

(
α∗α α∗β
β∗α β∗β

)
.

Now try plugging in some numbers for α and β. Make sure
they are normalized to 1. For example, α = 1√

2
, β = 1√

2
.

This simple example is a good way to understand the prop-

erties of density matrices. You can refer back to it as we look

at the more complex example of an entangled state.

Suppose we know the wave function of a composite sys-

tem, for example

ψ(a, b),

but we are only interested in Alice’s subsystem. In other

words, we want to keep track of everything that Alice can

ever measure. Do we have to know the whole wave function?

Or is there some way to get rid of Bob’s variables? The

answer to the latter question is yes; we can capture Alice’s

complete description in terms of a density matrix ρ.

Let’s consider an observable L of Alice’s system. Like

any observable, it can of course be represented as a matrix:
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La′b′,ab = 〈a′b′|L|ab〉.

Remember, for the composite system, the pair ab is really a

single index labeling a basis vector.

When we say, “L is an Alice-observable,” what we mean

is that L does nothing to Bob’s half of the state-label. This

forces some restrictions on the form of L. The idea is to filter

out (set equal to zero) any of L’s matrix elements that have

the effect of changing Bob’s half of the state-label. In other

words, L has the special form

La′b′,ab = La′a δb′b. (7.18)

This simple-looking equation requires some explanation, and

you may want to review the material on tensor products in

component form, in the Interlude on tensor products (Sec-

tion 6.1). The left-hand side of the equation is an element of

a 4× 4 matrix. Each of its two indices can take four distinct

values: uu, ud, du, or dd. What about the right-hand side?

The matrix element La′a also has two indices, but each of

them can take only two distinct values: u or d. In fact, the

same symbol L refers to two different matrices on each side

of Eq. 7.18.

At first glance, it appears as though we have equated a

4 × 4 matrix to a 2 × 2 matrix, and indeed that would be

a problem. However, the factor δb′b makes everything work

out. The term La′a δb′b is an element of the tensor product

of two 2 × 2 matrices, and that tensor product is a 4 × 4
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matrix.6 Here is the way to read Eq. 7.18:

The 4 × 4 matrix La′b′,ab can be factored into a tensor

product of the two 2× 2 matrices La′a and δb′b, where δb′b

is equivalent to the 2× 2 identity matrix.

Now, let’s calculate the expectation value of L (the 4 × 4

version) using the full apparatus of the composite system:

〈Ψ|L|Ψ〉 =
∑

a,b,a ′,b′
ψ∗(a ′, b ′) La ′b′,ab ψ(a, b).

As I warned, there are lots of indices. But it gets simpler if

we use the special form of the matrix L. The factor δb′b in

Eq. 7.18—a Kronecker delta—filters out any elements that

change Bob’s half of the label, and leaves the others intact.

It tells us to set b′ = b to get

〈Ψ|L|Ψ〉 =
∑
a ′,b,a

ψ∗(a ′, b) La ′,a ψ(a, b). (7.19)

For the moment, let’s ignore the sums over a and a′, and
concentrate instead on the sum over b. We encounter the

quantity

ρa′a =
∑
b

ψ∗(a, b) ψ(a′, b). (7.20)

The 2× 2 matrix ρa′a is Alice’s density matrix. Notice that

ρa′a does not depend on any b-index since it has already been

6We could also call it a Kronecker product, since we’re talking about
matrices. The formal distinction is not important for our purposes.
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summed over b. It is purely a function of Alice variables a

and a′. In fact, we only kept the b’s in the equation to make

the example in the next section easier to follow.

We can simplify Eq. 7.19 by plugging in ρa′a from Eq.

7.20. The expectation value of L (the 2 × 2 version) then

becomes

〈L〉 =
∑
a ′a

ρa ′a La,a ′ . (7.21)

In summing over b, we have collapsed a 4 × 4 matrix down

to a 2× 2 matrix. This makes sense. We expect an operator

that acts on the composite system to be a 4× 4 matrix, and

we expect an Alice operator to be 2× 2.

Notice that the right side of Eq. 7.21 is a sum of diagonal

matrix elements. In other words, it’s the trace of the matrix

ρL, which we can write as

〈L〉 = Tr ρL.

The lesson is this: To calculate Alice’s density matrix ρ,

we may need to know the full wave function, including the

dependence on Bob’s variables. But once we know ρ, we can

forget where it came from, and use it to calculate anything

about Alice’s observations. As a simple example, we can use

ρ to calculate the probability P (a) that Alice’s system will

be left in the state a if a measurement is performed. To

determine P (a), we begin with P (a, b), the probability that

the combined system is in state |ab〉. That’s just

P (a, b) = ψ∗(a, b)ψ(a, b).
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By the standard rules of probability, if we sum over b, we get

the probability for a:

P (a) =
∑
b

ψ∗(a, b)ψ(a, b).

This is just a diagonal entry in the density matrix:

P (a) = ρaa. (7.22)

Here are some properties of density matrices:

• Density matrices are Hermitian:

ρaa′ = ρ∗a′a.

• The trace of a density matrix is 1:

Tr(ρ) = 1.

Eq. 7.22 should help make this clear because the left

side is a probability.

• The eigenvalues of the density matrix are all positive

and lie between 0 and 1. It follows that if any eigenvalue

is 1, all the others are 0. Can you interpret this result?

• For a pure state:

ρ2 = ρ

Tr(ρ2) = 1
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• For a mixed or entangled state:

ρ2 �= ρ

Tr(ρ2) < 1

The last two properties give us a clear way to distinguish

mathematically between pure and mixed states. A subsys-

tem of an entangled state (such as Alice’s half of the singlet

state) is considered a mixed state.

It’s worth taking a moment to understand these two prop-

erties a little better. To simplify things, we will assume that

ρ is a diagonal matrix—in other words, all of its off-diagonal

elements are zero. This simplification costs us nothing be-

cause ρ is Hermitian, and it turns out that every Hermitian

matrix can be expressed in diagonal form in some basis.7

Taking the square of a diagonal matrix is quite simple: all

you need to do is square each individual element. Since ρ rep-

resents a mixed state, and the diagonal elements of ρ must

add up to 1, none of the diagonal elements of ρ can equal

1. Otherwise, ρ would represent a pure state. Therefore, ρ

must have at least two positive diagonal elements that are

less than 1. Squaring these elements gives a new matrix ρ2

whose elements are even smaller. This accounts for both of

the mixed-state properties of ρ.

Before you try the next exercises, I’ll mention one more

thing about the trace. It turns out that the trace has many

7As we mentioned earlier, in Section 7.2, a Hermitian matrix M
can be diagonalized by a transformation P†MP, where P is a unitary
matrix whose columns are the normalized eigenvectors of M.
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interesting mathematical properties. One of its more useful

properties is that the trace of a product of two matrices does

not depend on their order of multiplication. In other words,

TrAB = TrBA,

even if

AB �= BA.

I mention this because you will sometimes see the trace of the

density matrix written as Tr Lρ, instead of Tr ρL. These

two expressions are equivalent.

Exercise 7.5:

a) Show that

(
a 0
0 b

)2

=

(
a2 0
0 b2

)
.

b) Now, suppose

ρ =

(
1
3

0
0 2

3

)
.

Calculate
ρ2

Tr(ρ)

Tr(ρ2).

c) If ρ is a density matrix, does it represent a pure state or
a mixed state?
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Exercise 7.6: Use Eq. 7.22 to show that if ρ is a density
matrix, then

Tr(ρ) = 1.

7.6 A Concrete Example:

Calculating Alice’s Density

Matrix

So far, the discussion of density matrices may have been a

little abstract for some readers. Here is a worked-out ex-

ample that should help bring density matrices into sharper

focus. Recall the definition of Alice’s density matrix from

Eq. 7.20:

ρa′a =
∑
b

ψ∗(a, b) ψ(a′, b). (7.23)

Now, consider the state-vector

|Ψ〉 =
1√
2

(
|ud〉+ |du〉

)
.

Notice that two of the basis vectors have a coefficient of 1√
2
,

while the other two have coefficients of zero. The state is

normalized because the sum of the squared coefficients is 1.

Also, all four coefficients happen to be real, which simplifies

the process of complex conjugation.
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Let’s calculate Alice’s density matrix for this state. First,

for all possible inputs a and b, we’ll list the values of ψ(a, b).

Recall that these are just the basis vector coefficients:

ψ(u, u) = 0

ψ(u, d) =
1√
2

ψ(d, u) =
1√
2

ψ(d, d) = 0.

Next, we’ll use these four equations to calculate each element

of Alice’s density matrix by expanding the summation of Eq.

7.23. In the expansion, notice that for every factor of the

form ψ∗(a, b)ψ(a′, b), Bob’s input is the same for both factors.

We discard any terms that do not have this property. This is

what we mean by “setting b′ equal to b in the summation.”

Here is the expansion:

ρuu = ψ∗(u, u)ψ(u, u) + ψ∗(u, d)ψ(u, d) =
1

2

ρud = ψ∗(u, u)ψ(d, u) + ψ∗(u, d)ψ(d, d) = 0

ρdu = ψ∗(d, u)ψ(u, u) + ψ∗(d, d)ψ(u, d) = 0

ρdd = ψ∗(d, u)ψ(d, u) + ψ∗(d, d)ψ(d, d) =
1

2
.

These values are the elements of a 2× 2 matrix:
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ρ =

(
1
2

0
0 1

2

)
. (7.24)

The trace of our matrix is 1. And our density matrix is done.8

Exercise 7.7: Use Eq. 7.24 to calculate ρ2. How does this
result confirm that ρ represents an entangled state? We’ll
soon discover that there are other ways to check for entan-
glement.

Exercise 7.8: Consider the following states:

|ψ1〉 =
1

2

(
|uu〉+ |ud〉+ |du〉+ |dd〉

)
|ψ2〉 =

1√
2

(
|uu〉+ |dd〉

)
|ψ3〉 =

1

5

(
3|uu〉+ 4|ud〉

)
.

For each one, calculate Alice’s density matrix and Bob’s den-
sity matrix. Check their properties.

7.7 Tests for Entanglement

Suppose I gave you a wave function

ψ(a, b)

8Art’s a poet, and he’s not even aware of it.
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for the composite SAB system. How could you tell whether

the corresponding state is entangled? I am not referring

to an experimental test but to a mathematical procedure.

A related question is whether there are varying degrees of

entanglement. If there are, how could you quantify them?

Entanglement is the quantum mechanical generalization

of correlation. In other words, it indicates that Alice can

learn something about Bob’s half of the system by measur-

ing her own. In the classical example of the previous lecture,

I illustrated the idea of correlation using coins. If Alice ob-

serves the coin that Charlie gave her, she not only knows

whether her own coin is a penny or a dime; she also knows

which coin Bob has. That’s the experimental picture. The

mathematical indication of correlation is that the probability

function P (a, b) does not factorize (that is, it does not look

like Eq. 6.3). Whenever the probability distribution does

not factorize, there are nonzero correlations as I described in

Inequality 6.2.

7.7.1 The Correlation Test for
Entanglement

Let’s assume that A is an Alice observable and B is a Bob

observable. The correlation between them is defined in terms

of the average values (also known as the expectation values)

of the individual observables, and of their product. Suppose

that

〈A〉
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〈B〉
〈AB〉

are these expectation values. The correlation C(A,B) be-

tween A and B is defined as

C(A,B) = 〈AB〉 − 〈A〉〈B〉.

Exercise 7.9: Given any Alice observable A and Bob ob-
servable B, show that for a product state, the correlation
C(A,B) is zero.

From this exercise, we can learn something about entan-

glement. If a system is in a state where one can find any

two observables A and B that are correlated—meaning that

C(A,B) �= 0—then the state is entangled. Correlations are

defined to lie in the range −1 to +1. These extreme values

represent the greatest possible negative and positive corre-

lations. The greater the magnitude of C(A,B), the more

entangled is the state. If C(A,B) = 0, then there is no

correlation (and no entanglement) at all.

7.7.2 The Density Matrix Test for
Entanglement

To calculate correlations, you have to know about both Bob’s

part and Alice’s part of the system, along with the system

wave function. But there is another test for entanglement
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that only requires us to know Alice’s (or Bob’s) density ma-

trix. Let’s suppose that the state |Ψ〉 is a product state of

a Bob factor |φ〉 and an Alice factor |ψ}. That means the

composite wave function is also the product of a Bob factor

and an Alice factor:

ψ(a, b) = ψ(a)φ(b).

Now, let’s work out Alice’s density matrix. We use the defi-

nition in Eq. 7.20 to get

ρa′a = ψ∗(a)ψ(a′)
∑
b

φ∗(b)φ(b).

But if Bob’s state is normalized, then

∑
b

φ∗(b)φ(b) = 1,

which makes Alice’s density matrix particularly simple:

ρa′a = ψ∗(a)ψ(a′). (7.25)

Notice that it only depends on the Alice variables. Perhaps

it’s not very surprising that everything we need to know

about Alice’s system is contained in Alice’s wave function.

Now, I’m going to prove a key theorem about the eigen-

values of Alice’s density matrix, under the assumption of

a product state. It is true only for unentangled states and

serves to identify them. The theorem says that for any prod-

uct state, Alice’s (or Bob’s) density matrix has exactly one
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nonzero eigenvalue, and that eigenvalue is exactly 1. We be-

gin the theorem by writing the eigenvalue equation for the

matrix ρ:

∑
a′

ρa′aαa′ = λαa.

In other words, the matrix ρ acting on the column vector

α gives back the same vector multiplied by an eigenvalue λ.

Using the simple form of ρ in Eq. 7.25, we can write

ψ(a′)
∑
a

ψ∗(a)αa = λαa′ . (7.26)

Now, you may notice a couple of things. First, the quantity

∑
a

ψ∗(a)αa

has the form of an inner product. If the column vector α is

orthogonal to ψ, then the left side of Eq. 7.26 is zero. Such

a vector is an eigenvector of ρ with eigenvalue zero.

If the dimension of Alice’s space of states is NA, then

there are NA − 1 vectors orthogonal to ψ. Each one of them

is an eigenvector of ρ with eigenvalue 0. That leaves only one

possible direction for an eigenvector with a nonzero eigen-

value, namely the vector ψ(a). In fact, if we plug in αa =

ψ(a), we do indeed find that it is an eigenvector of ρ with

eigenvalue 1.

To summarize the theorem: If the composite Alice-Bob

system is in a product state, then Alice’s (or Bob’s) density



7.7. TESTS FOR ENTANGLEMENT 217

matrix has one and only one eigenvalue equal to 1, and all

the rest are zero. Moreover, the eigenvector with a nonzero

eigenvalue is nothing but the wave function of Alice’s half of

the system.

In this situation, Alice’s system is in a pure state. All of

Alice’s observations are described as if Bob and his system

never existed and Alice had an isolated system described by

the wave function ψ(a′).
The opposite extreme of a pure state is a maximally en-

tangled state. Maximally entangled states are states of a

combined system in which nothing is known about either

subsystem, even though they are complete descriptions of

the system as a whole—as complete as quantum mechanics

allows. The state |sing〉 is a maximally entangled state.

When Alice calculates her density matrix for a maximally

entangled state, she finds something very disappointing: the

density matrix is proportional to the unit matrix. All the

eigenvalues are equal, and given that they all sum to unity,

each eigenvalue is equal to 1/NA. In other words,

ρa′a =
1

NA

δa′a. (7.27)

Why is Alice disappointed? Go back to Eq. 7.22. This equa-

tion says that the probability for a particular state a is the

diagonal element of ρ, but Eq. 7.27 tells us that all the prob-

abilities are equal. What could be less informative than a

probability distribution so structureless that every possible

outcome is equally probable?
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Maximal entanglement implies a complete lack of infor-

mation about Alice’s subsystem for experiments that only

involve that one subsystem. On the other hand, it implies

a large correlation between Alice’s and Bob’s measurements.

For the singlet state, if Alice measures any component of her

spin, she automatically knows the result Bob would get if

he were to measure the same component of his spin. This is

exactly the kind of knowledge that is precluded in a product

state.

So in each type of state, some things are predictable and

some are not. In a product state, we can make statistical pre-

dictions about measurements made on each separate subsys-

tem, but Alice’s measurements tell her nothing about Bob’s

system. In a maximally entangled state, on the other hand,

Alice can predict nothing about her own measurements, but

she knows a great deal about the relation between her out-

comes and Bob’s.

7.8 The Process of Measurement

We have seen that quantum systems evolve in what look

like irreconcilably different ways: by unitary evolution be-

tween measurements, and by wave function collapse when

measurements take place. This circumstance has led to some

of the most contentious debates and confusing claims about

so-called reality. I’m going to steer away from those debates

and stick to the facts. Once you know how quantum me-

chanics works, you can decide for yourself whether you think

there is a problem.

Let’s begin by noting that every measurement involves
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a system and an apparatus. But if quantum mechanics is

a consistent theory, then it should be possible to combine

the system and apparatus into a single bigger system. For

simplicity let’s take the system to be a single spin. The appa-

ratus A is the same one that we used in the very first lecture.

The window in the apparatus can show three possible read-

ings. The first is blank—it represents the neutral state of

the apparatus before it comes in contact with the spin. The

two other readings record the two possible outcomes of the

measurement: +1 or −1.
If the apparatus is a quantum system (of course, it must

be), then it is described by a space of states. In the simplest

description, the apparatus has exactly three states: a blank

state and two outcome states. Thus, the basis vectors for

the apparatus are

|b}
|+ 1

}
| − 1

}
.

Meanwhile, the basis states of the spin can be taken to be

the usual up and down states:

|u〉
|d〉.

From these two sets of basis vectors, we can build up a com-

posite (tensor product) space of states that has the six basis

vectors
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|u, b〉
|u,+1〉
|u,−1〉
|d, b〉
|d,+1〉
|d,−1〉.

The detailed mechanics of what takes place when system

meets apparatus may be complicated, but we are free to

make some assumptions about how the combined system

evolves. Let’s assume the apparatus starts in the blank state

and the spin starts in the up state. After the apparatus in-

teracts with the spin, the final state (by assumption) is

|u,+1〉.

In other words, the interaction leaves the spin unchanged

but flips the apparatus to the +1 state. We write this as

|u, b〉 → |u,+1〉. (7.28)

Similarly, we can require that if the spin is in the down state,

it flips the apparatus to the −1 state:

|d, b〉 → |d,−1〉. (7.29)
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So by looking at the apparatus after it interacts with the

spin, you can tell what the spin was initially. Now, let’s

assume that the initial spin state is more general, namely

αu|u〉+ αd|d〉.

If we include the apparatus as part of the system, the initial

state is

αu|u, b〉+ αd|d, b〉. (7.30)

This initial state is a product state, specifically a product of

the initial spin state and the blank apparatus state. You can

check that it is completely unentangled.

Exercise 7.10: Verify that the state-vector in 7.30 repre-
sents a completely unentangled state.

Because we know from Eqs. 7.28 and 7.29 how the individual

terms in 7.30 evolve, we can easily determine the final state:

αu|u, b〉+ αd|d, b〉 → αu|u,+1〉+ αd|d,−1〉.

This final state is an entangled state. In fact, if αu = −αd,

it is the maximally entangled singlet state. Indeed, one can

look at the apparatus and immediately tell what the spin

state is: if the apparatus reads +1 ,the spin is up, and if it

reads −1, the spin is down. Moreover, the probability that

the final apparatus shows +1 is
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α∗
uαu.

This number represents a probability—it’s exactly the same

as the original probability that the spin was up. In this de-

scription of a measurement, no collapse of the wave function

takes place. Instead, entanglement between the apparatus

and the system just happens by unitary evolution of the

state-vector.

The only problem is that, in a certain sense, we have

merely delayed the difficulty. It is not very satisfying to

be told that the apparatus “knows” the spin state unless

the experimenter—let’s say Alice—is allowed to look at the

apparatus. Isn’t it true that when she does so, she will col-

lapse the wave function of the composite system? Yes and

no. For all of Alice’s purposes, yes; she will conclude that

the apparatus, and the spin, are in one of the two possible

configurations and will proceed accordingly.

But now let’s bring Bob into the picture. So far, he has

not interacted with the spin, the apparatus, or Alice. From

his point of view, all three form a single quantum system. No

wave function collapse took place when Alice looked at the

apparatus. Instead, Bob says that Alice became entangled

with the other two component systems.

That’s all well and good, but what happens when Bob

looks at Alice? For his purposes, he has collapsed the wave

function. But then there is good old Charlie . . .

Does the last entity to look at the system collapse the

wave function, or does it just get entangled? Or is there
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a last looker? I won’t try to answer these questions, but

what should be apparent is that quantum mechanics is a

consistent calculus of probabilities for a certain kind of ex-

periment involving a system and an apparatus. We use it,

and it works, but when we try to ask questions about the

underlying “reality,” we get confused.

7.9 Entanglement and Locality

Does quantummechanics violate locality? Some people think

so. Einstein railed against the “spooky action at a dis-

tance” (spukhafte Fernwirkung) that he claimed was implied

by quantum mechanics. And John Bell became almost a cult

figure by proving that quantum mechanics is nonlocal.

On the other hand, most theoretical physicists, particu-

larly those who study quantum field theory, which is riddled

with entanglement, would claim the opposite: quantum me-

chanics done correctly ensures locality.

The problem, of course, is that the two groups mean dif-

ferent things by locality. Let’s begin with the quantum field

theorist’s understanding of the term. From this point of

view, locality has only one meaning: it is impossible to send

a signal faster than the speed of light. I will show you how

quantum mechanics enforces this rule.

First, let me expand the definition of Alice’s system and

Bob’s system. So far, I have used the term Alice’s system

to mean some system that Alice carries with her and can do

experiments on. For the rest of this section, I will use the

term to mean something else: Alice’s system consists not

only of some system that she carries, but also the apparatus
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that she uses, and even herself. The same thing, of course,

goes for Bob’s system. The basis ket-vectors

|a}

describe everything that Alice can interact with. Likewise,

the ket-vectors

|b〉

describe everything that Bob can interact with. And the

tensor product states

|ab〉

describe the combination of Alice’s and Bob’s worlds.

We will assume that Alice and Bob may have been close

enough to interact sometime in the past, but at present Alice

is on Alpha Centauri and Bob is in Palo Alto. The Alice-Bob

wave function is

ψ(ab),

and it may be entangled. Alice’s complete description of her

system, her apparatus, and herself is contained in her density

matrix ρ:

ρaa′ =
∑
b

ψ∗(a′b) ψ(ab). (7.31)
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Consider this question: Can Bob, at his end, do anything to

instantly change Alice’s density matrix? Keep in mind that

Bob can only do things that the laws of quantum mechanics

allow. In particular, Bob’s evolution, whatever causes it,

must be unitary. In other words, it must be described by a

unitary matrix

Ubb′ .

The matrix U represents whatever happens to Bob’s system,

whether or not Bob does an experiment. It acts on the wave

function to produce a new wave function, which we’ll call

the “final” wave function:

ψfinal(ab) =
∑
b′

Ubb′ ψ(ab
′).

We can also write the complex conjugate of this wave func-

tion:

ψ∗
final(a

′b) =
∑
b′′

ψ∗(a′b′′) U†
b′′b .

Notice that we added primes to some of the symbols to avoid

mixing them up in the next step. Now, let’s calculate Alice’s

new density matrix. We’ll use Eq. 7.31, but we’ll replace the

original wave functions with the final ones:

ρaa′ =
∑
b,b′,b′′

ψ∗(a′b′′) U†
b′′b Ubb′ ψ(ab

′).
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There are lots of indices flying around now, but the math

isn’t as hard as it looks. In fact, look at how the U matrices

enter through the combination

U†
b′′b Ubb′ .

This combination is just the matrix product U†U. But recall

that U is unitary. This tells you that the product U†U is the

unit matrix δb′′b′ . As before, this amounts to an instruction

to include all the terms where b′′ = b′, and to ignore all the

others. With this simplification, we get

ρaa′ =
∑
b

ψ∗(a′b) ψ(ab).

This is exactly the same as Eq. 7.31. In other words, ρaa′

is exactly the same as it was before U acted. Nothing that

happens at Bob’s end has any immediate effect on Alice’s

density matrix, even if Bob and Alice are maximally entan-

gled. This means that Alice’s view of her subsystem (her

statistical model) remains exactly as it was. This remark-

able result may seem surprising for a maximally entangled

system, but it also guarantees that no faster-than-light signal

has been sent.
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7.10 The Quantum Sim: An

Introduction to Bell’s

Theorem

It’s interesting that unitarity played a prominent role in

guaranteeing that no signal can be sent instantaneously. If

U had not been unitary, Alice’s final density matrix would

indeed have been affected by Bob.

What was it, then, that disturbed Einstein so much that

he spoke of spooky action at a distance? To answer this

question, it’s important to understand that he and Bell were

talking about a totally different notion of locality. To illus-

trate this, I am going to invent a computer game. What

my new computer game does is try to fool you into thinking

there is a quantum spin in a magnetic field inside the com-

puter. You get to do experiments to test this possibility. See

Fig. 7.1 for a schematic.

Here’s how it works: Inside the computer, the memory

stores two complex numbers, αu and αd, subject to the usual

normalization rule,

α∗
uαu + α∗

dαd = 1.

At the beginning of the game, the α coefficients are initialized

at some value. The computer then solves the Schrödinger

equation to update the α’s exactly as if they were the com-

ponents of the spin’s state-vector.

The computer also stores the classical three-dimensional

orientation of the apparatus in the form of two angles or a
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Figure 7.1: Quantum Sim. The computer screen displays the
user-controlled orientation of the apparatus. For simplicity,
only the two-dimensional orientation is shown here. The user
can press the M button whenever she or he wants to measure
the spin (not shown). Between measurements, the spin state
evolves according to the Schrödinger equation.

unit vector. The keyboard allows you to set these angles

and change them at will. One more element is stored in the

memory, namely the value (either +1 or −1) representing

the number in the window of the apparatus. The computer

screen shows the apparatus. As the experimenter, you get

to choose how your apparatus will be oriented. There is also
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a measure button M that activates the apparatus.

The final element of the program is a random number

generator that produces the measurement results +1 or −1
with probabilities α∗

uαu and α∗
dαd, respectively. Keep in

mind that random number generators are not really gen-

erators of random numbers; they are random number sim-

ulators. They are based on entirely classical deterministic

mechanisms, using things like the digits of π to generate

numbers. Nevertheless, they are good enough to fool you.

The game begins, and the computer continually updates

the values of αu and αd. You wait as long as you want and

then hit the M button. Then, with the aid of the random

number generator, the game produces an outcome that is

displayed on the screen. Based on this outcome, the com-

puter updates the state by collapse. If the outcome is +1,

the value of αd is reset to zero, and the value of αu is reset to

unity. If the outcome is −1, the value of αd is reset to unity,

and the value of αd is reset to zero. Then, the Schrödinger

equation takes over until you hit M again.

Being a good experimenter, you do many trials and col-

lect statistics, which you compare with quantum mechanical

predictions. If everything works properly, you conclude that

quantum mechanics is the correct description of whatever is

taking place in the computer. Of course, the computer is still

entirely classical, but it simulates a quantum spin without

much difficulty.

Next, let’s try the same thing with two computers, A

and B, simulating two quantum spins. If the spins start

in a product state and never interact, we can simply play
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the game on each of the two computers without any cross

talk. But now, Alice, Bob, and Charlie return to help us

out. Charlie, of course, wants to create an entangled pair.

He begins by connecting the two computers with a cable

to form a single computer, and we assume the cable can

send instantaneous signals. In its memory, the combined

computer now stores four complex numbers,

αuu, αud, αdu, αdd,

and it updates these numbers using the Schrödinger equa-

tion. Each computer screen shows an apparatus. Alice’s

screen shows A and Bob’s screen shows B. Each virtual

apparatus can be independently oriented, and each can be

independently activated by its own M button. When either

M button is pressed, the joint memory (with the aid of the

random number generator) sends a signal to the correspond-

ing apparatus and produces an outcome.

Can this device simulate the quantum mechanics of the

two-spin system? Yes, it can—as long as the cable connect-

ing the computers is not disconnected, and as long as it can

send messages instantaneously. But unless the system is in

a product state and stays in a product state, disconnecting

the two computers will destroy the simulation.

Can we prove this? Again, the answer is yes—and that is

the essential content of Bell’s theorem. Any classical simu-

lation of quantum mechanics that tries to spatially separate

Alice’s and Bob’s apparatuses must have an instantaneous

cable connecting the separate computers with a central mem-

ory that stores and updates the state-vector.
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But doesn’t this mean that locality-violating information

can be sent through the cable? It would, if Alice, Bob, and

Charlie were allowed to do anything that nonrelativistic clas-

sical systems can do.9 But if the only operations that are

allowed are those that simulate quantum operations, then

the answer is no. As we’ve seen, quantum mechanics does

not allow Alice’s density matrix to be affected by Bob’s ac-

tions.

This problem is not a problem for quantum mechanics.

It’s a problem for simulating quantum mechanics with a clas-

sical Boolean computer. That’s the content of Bell’s theo-

rem: The classical computers have to be connected with an

instantaneous cable to simulate entanglement.

7.11 Entanglement Summary

Of all the counterintuitive ideas quantum mechanics forces

upon us, entanglement may be the hardest one to accept.

There is no classical analog for a system whose full state de-

scription contains no information about its individual sub-

components. Nonlocality is surprisingly difficult to even de-

fine. The best way to come to terms with these issues is

to internalize the mathematics. What follows is a compact

summary of what we’ve learned about entanglement. In par-

ticular, we’ve tried to map out the differences between entan-

gled, unentangled, and partially entangled states by creating

“rap sheets” for three specific examples—the singlet state,

a product state, and a “near singlet” state. We hope this

9In other words, systems that permit signals to be sent instantly.
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format will help clarify the mathematical similarities and

differences. Please take some time to review this material

and work the exercises before moving on.

State-Vector Rap Sheet 1

Name: Product State (No Entanglement)

Wanted for: Excessive Locality, Impersonating a Classical
System

Description: Each subsystem is fully characterized. There
are no correlations between Alice’s and Bob’s systems.

State-Vector: αuβu|uu〉+ αuβd|ud〉+ αdβu|du〉+ αdβd|dd〉

Normalization: α∗
uαu + α∗

dαd = 1, β∗
uβu + β∗

dβd = 1

Density Matrix: Alice’s density matrix has exactly one
nonzero eigenvalue, which equals 1. The eigenvector with
this nonzero eigenvalue is the wave function of Alice’s sub-
system. The same goes for Bob.

Wave Function: Factorized: ψ(a)φ(b)

Expectation Values:
〈σx〉2 + 〈σy〉2 + 〈σz〉2 = 1
〈τx〉2 + 〈τy〉2 + 〈τz〉2 = 1

Correlation: 〈σzτz〉 − 〈σz〉〈τz〉 = 0
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State-Vector Rap Sheet 2

Name: Singlet State (Maximum Entanglement)

Wanted for: Nonlocality, Complete Quantum Weirdness

Description: The composite system as a whole is fully char-
acterized. There is no information about Alice’s or Bob’s
subsystems.

State-Vector: 1√
2

(|ud〉 − |du〉)
Normalization: ψ∗

uuψuu + ψ∗
udψud + ψ∗

duψdu + ψ∗
ddψdd = 1

Density Matrix:
Full Composite System: ρ2 = ρ, and Tr(ρ2) = 1.
Alice’s Subsystem: Density matrix is proportional to the unit
matrix, having equal eigenvalues that add up to 1. Hence,
each measurement outcome is equally likely. ρ2 �= ρ, and
Tr(ρ2) < 1.

Wave Function: Not Factorized: ψ(a, b)

Expectation Values:
〈σz〉,〈σx〉,〈σy〉 = 0
〈τz〉,〈τx〉,〈τy〉 = 0
〈τzσz〉,〈τxσx〉,〈τyσy〉 = −1

Correlation: 〈σzτz〉 − 〈σz〉〈τz〉 = −1
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State-Vector Rap Sheet 3

Name: “Near-Singlet” (Partial Entanglement)

Wanted for: Indecision, General Wishy-Washiness, Trou-
ble Telling up from down

Description: There is some information about the compos-
ite system, and some about each subsystem. Incomplete in
each case.

State-Vector:
√
0.6|ud〉 − √0.4|du〉

Normalization: ψ∗
uuψuu + ψ∗

udψud + ψ∗
duψdu + ψ∗

ddψdd = 1

Density Matrix:
Full Composite System: ρ2 �= ρ, and Tr(ρ2) < 1.
Alice’s Subsystem: ρ2 �= ρ, and Tr(ρ2) < 1.

Wave Function: Not Factorized: ψ(a, b)

Expectation Values:
〈σz〉 = 0.2
〈σx〉, 〈σy〉 = 0; 〈τz〉 = −0.2
〈τx〉, 〈τy〉 = 0
〈τzσz〉 = −1
〈τxσx〉 = −2

√
0.24

Correlation: 〈σzτz〉 − 〈σz〉〈τz〉 = −0.96 for this example.
For partially entangled states in general, correlation is be-
tween −1 and +1, but not exactly 0.

Exercise 7.11: Calculate Alice’s density matrix for σz for
the “near-singlet” state.

Exercise 7.12: Verify the numerical values in each rap
sheet.



Lecture 8

Particles and Waves

Art and Lenny have had enough entanglement for now. They’re

ready for something simpler.

Lenny: Hey Hilbert, do you have anything in one dimension?

Hilbert: Let me check. Single dimensions are very popular

lately. Sometimes we run out.

Art: I’d settle for something classical, if that’s all you have.

Hilbert: Not here, friend. We’d lose our license.

Art: Good point.

To the person in the street, quantum mechanics is all about

light being particles and electrons being waves. But up until

now, I’ve hardly mentioned particles, and the only mention

of waves has been the wave function, which so far has had

nothing to do with waves. So when do we get to the “real”

quantum mechanics?

235
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The answer, of course, is that real quantum mechanics

is not so much about particles and waves as it is about

the nonclassical logical principles that govern their behav-

ior. Particle-wave duality is an easy extension of the things

you’ve already learned, as we’ll see in this lecture. But before

we get into the physics, I want to review some mathematics,

some of which is old—it appeared in earlier lectures—and

some of which is new.

8.1 Mathematical Interlude:

Working with Continuous

Functions

8.1.1 Wave Function Review

We’ll be using the language of wave functions in this lecture,

so let’s review some of that material before we dive in. In

Lecture 5, we discussed wave functions as abstract objects,

without explaining what they had to do with either waves

or functions. Before correcting this omission, I will review

what we discussed earlier.

Begin by picking an observable L, with eigenvalues λ and

eigenvectors |λ〉. Let |Ψ〉 be a state-vector. Since the eigen-

vectors of a Hermitian operator form a complete orthonormal

basis, the vector |Ψ〉 can be expanded as

|Ψ〉 =
∑
λ

ψ(λ) |λ〉. (8.1)

As you recall from Sections 5.1.2 and 5.1.3, the quantities
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ψ(λ)

are called the wave function of the system. But notice: the

specific form of ψ(λ) depends on the specific observable L

that we initially choose. If we pick a different observable, the

wave function (along with the basis vectors and eigenvalues)

will be different, even though we’re still talking about the

same state. Therefore, we should qualify the statement that

ψ(λ) is the wave function associated with |Ψ〉. To be more

precise, we should say that ψ(λ) is the wave function in the

L-basis. If we use the orthonormality properties of the basis

vectors,

〈λi|λj〉 = δij,

then the wave function in the L-basis may also be identified

with the inner products (or projections) of the state-vector

|Ψ〉 onto the eigenvectors |λ〉:

ψ(λ) = 〈λ|Ψ〉.

You can think of the wave function in two ways. First of all,

it is the set of components of the state-vector in a particular

basis. These components can be stacked up to form a column

vector:

⎛
⎜⎜⎜⎜⎝

ψ(λ1)
ψ(λ2)
ψ(λ3)
ψ(λ4)
ψ(λ5)

⎞
⎟⎟⎟⎟⎠ .
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Another way to think of the wave function is as a function of

λ. If you specify any allowable value of λ, the function ψ(λ)

produces a complex number. One can therefore say that

ψ(λ)

is a complex-valued function of the discrete variable λ. When

thought of in this way, linear operators become operations

that are applied to functions, and give back new functions.

One last reminder: the probability for an experiment to

have outcome λ is

P (λ) = ψ∗(λ)ψ(λ).

8.1.2 Functions as Vectors

Up until now, the systems we have studied have had finite

dimensional state-vectors. For example, the simple spin is

described by a two-dimensional space of states. For this rea-

son, the observables have had only a finite number of possible

observable values. But there are more complicated observ-

ables that can have an infinite number of values. An example

is a particle. The coordinates of a particle are observables,

but, unlike spin, the coordinates have an infinite number of

possible values. For instance, a particle moving along the x

axis can be found at any real value of x. In other words, x

is a continuously infinite variable. When the observables of

a system are continuous, the wave function truly becomes

a function of a continuous variable. To apply quantum me-

chanics to this kind of system, we have to expand the idea
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of vectors to include functions.

Functions are functions, and vectors are vectors—they

seem like different things, so in what sense are functions

vectors? If you think of vectors as arrows pointing in three-

dimensional space, then they are not the same as functions.

But if you take the broader view of vectors as a set of math-

ematical objects satisfying certain postulates, then functions

can indeed form a vector space. Such a vector space is of-

ten called a Hilbert space after the mathematician David

Hilbert.

Let’s consider the set of complex functions ψ(x) of a sin-

gle real variable x. By complex functions, I mean that for

each x, ψ(x) is a complex number. On the other hand, the

independent variable x is an ordinary real variable. It can

take on any real value from −∞ to +∞.

Now, let’s nail down what we mean when we say “Func-

tions are vectors.” This is not a loose analogy or a metaphor.

With appropriate restrictions (that we’ll come back to), func-

tions like ψ(x) satisfy the mathematical axioms that define

a vector space. We mentioned this idea briefly in Section

1.9.2, and now we’ll make full use of it. Looking back at the

axioms that define a complex vector space (in Section 1.9.1),

we can see that complex functions satisfy all of them:

1. The sum of any two functions is a function.

2. The addition of functions is commutative.

3. The addition of functions is associative.

4. There is a unique zero function such that when you add

it to any function, you get the same function back.
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5. Given any function ψ(x), there is a unique function

−ψ(x) such that ψ(x) + (−ψ(x)) = 0.

6. Multiplying a function by any complex number gives a

function and is linear.

7. The distributive property holds, which means that

z[ψ(x) + φ(x)] = zψ(x) + zφ(x)

[z + w]ψ(x) = zψ(x) + wψ(x),

where z and w are complex numbers.

All of this implies that we can identify the functions ψ(x)

with the ket-vectors |Ψ〉 in an abstract vector space. Not sur-

prisingly, we can also define bra vectors. The bra vector 〈Ψ|
corresponding to the ket |Ψ〉 is identified with the complex

conjugate function ψ∗(x).
To use this idea effectively, we’ll need to generalize some

of the items in our mathematical tool kit. In earlier lec-

tures, the labels that identified wave functions were mem-

bers of some finite discrete set—for example, the eigenvalues

of some observable. But now the independent variable is

continuous. Among other things, this means that we cannot

sum over it using ordinary sums. I think you know what

to do, though. Here are function-oriented replacements for

three of our vector-based concepts, two of which you will

easily recognize:

• Integrals replace sums.
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• Probability densities replace probabilities.

• Dirac delta functions replace Kronecker deltas.

Let’s look at these items more closely.

Integrals Replace Sums: If we really wanted to be rigor-

ous, we would begin by replacing the x axis by a discrete set

of points separated by a very small distance ε, and then take

the limit ε → 0. It would take several pages to justify each

step. But we can avoid this trouble by a few intuitive defini-

tions, such as replacing sums with integrals. Schematically,

this concept can be written as

∑
i

→
∫

dx.

For example, if we want to compute the area under a curve,

we divide the x axis up into tiny segments and then add up

the areas of a large number of rectangles, exactly as we do

in elementary calculus. When we let the segments shrink to

zero size, the sum becomes an integral.

Let’s consider a bra 〈Ψ| and a ket |Φ〉 and define their

inner product. The obvious way to do this is to replace the

summation in Eq. 1.2 with an integral. We define the inner

product to be

〈Ψ|Φ〉 =
∫ ∞

−∞
ψ∗(x)φ(x)dx. (8.2)
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Probability Densities Replace Probabilities: Later,

we will identify

P (x) = ψ∗(x)ψ(x)

as a probability density for the variable x. Why a probability

density and not just a probability? If x is a continuous vari-

able, then the probability that it will have any exact value is

typically zero. A more useful question to ask is: What is the

probability that x lies between two values, x = a and x = b?

Probability densities are defined so that this probability is

given by an integral:

P (a, b) =

∫ b

a

P (x) dx =

∫ b

a

ψ∗(x)ψ(x) dx.

Because the total probability should be 1, we can define a

normalized vector by∫ ∞

−∞
ψ∗(x)ψ(x) dx = 1. (8.3)

Dirac Delta Functions Replace Kronecker Deltas: So

far, this should be very familiar. The Dirac delta function

may be less so. The delta function is the analog of the Kro-

necker delta, δij. The Kronecker delta is defined to be 0 for

i �= j and 1 for i = j. But it can also be defined another way.

Consider any vector Fi in a finite dimensional space. It is

easy to see that the Kronecker delta satisfies
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∑
j

δijFj = Fi.

That’s because the only nonzero term in the sum is the one

where j = i. Within the summation, the Kronecker symbol

filters out all the F ’s except Fi. The obvious generalization is

to define a new function that has similar filtering properties

when used inside an integral. In other words, we want a new

entity

δ(x− x′)

with the property that, for any function F (x),∫ ∞

−∞
δ(x− x′) F (x′)dx′ = F (x). (8.4)

Eq. 8.4 defines this new entity, called the Dirac delta func-

tion, which turns out to be an essential tool in quantum

mechanics. But despite its name, it isn’t really a function

in the usual sense. It is zero whenever x �= x′, but when

x = x′ it is infinite. In fact it is just infinite enough that the

area under δ(x) equals 1. Roughly speaking, it is a function

that is nonzero over an infinitesimal interval ε, but on that

interval it has the value 1/ε. Thus, its area is 1, and, more

importantly, it satisfies Eq. 8.4. The function

n√
π
e−(nx)2
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Figure 8.1: Dirac Delta Function Approximations. These
approximations are based on n√

π
e−(nx)2 and plotted for in-

creasing values of n.
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approximates the delta function reasonably well as n be-

comes very large. Fig. 8.1 plots this approximation for in-

creasing values of n. Even though we stop at n = 10, a very

small value, notice that the graph has already become very

narrow and sharply peaked.

8.1.3 Integration by Parts

Before discussing linear operators, we’ll take a short detour

to remind you of a technique called integration by parts. It’s

fairly simple, and indispensable for our purposes. We’ll be

using it again and again. Suppose we take two functions,

F and G, and consider the differential of their product FG.

We can write

d(FG) = FdG+GdF

or

d(FG)−GdF = FdG.

Taking the definite integral gives us

∫ b

a

d(FG)−
∫ b

a

GdF =

∫ b

a

FdG

or

FG
∣∣∣b
a
−

∫ b

a

GdF =

∫ b

a

FdG.
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This is the standard formula that you may remember from

calculus. But in quantum mechanics the limits of integration

tend to span the entire axis, and our wave functions must

go to zero at infinity to be properly normalized. Therefore,

the first term of this expression will always evaluate to zero.

With that in mind, we can use a simplified version of inte-

gration by parts:∫ ∞

−∞
F
dG

dx
dx = −

∫ ∞

−∞

dF

dx
Gdx.

This form is correct as long as F and G go to zero appropri-

ately at infinity, so that the boundary term becomes zero.

You will do yourself a big favor if you just memorize this pat-

tern: Switch the derivative from one factor of the integrand

to the other at the cost of a minus sign.

8.1.4 Linear Operators

Bras and kets are half the story in quantum mechanics; the

other half is the concept of linear operators and, in particu-

lar, Hermitian operators. This raises two questions:

• What is meant by a linear operator on a space of func-

tions?

• What is the condition for a linear operator to be Her-

mitian?

The concept of a linear operator is simple enough: it’s a

machine that acts on a function and gives another function.
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When it acts on the sum of two functions, it gives the sum

of the individual results. When it acts on a complex numer-

ical multiple of a function, it gives the same multiple of the

original result. In other words, it is (surprise!) linear.

Let’s look at some examples. One simple operation we

can perform on a function ψ(x) is to multiply it by x. That

gives a new function xψ(x), and you can easily check that the

action is linear. We’ll represent the “multiply by x” operator

with the symbol X. By definition, then,

X ψ(x ) = xψ(x ). (8.5)

Here’s another example. Define D to be the differentiation

operator:

D ψ(x ) =
dψ(x )

dx
. (8.6)

Exercise 8.1: Prove that X and D are linear operators.

This, of course, is a minute subset of the possible linear op-

erators that can be constructed, but we will soon see that X

and D play a very central role in the quantum mechanics of

particles.

Now, let’s consider the property of Hermiticity. A con-

venient way to define a Hermitian operator is through its

matrix elements, by sandwiching it between a bra and a ket.

You can sandwich an operator L in two different ways:
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〈Ψ|L|Φ〉
or

〈Φ|L|Ψ〉.

In general, there is no simple relation between these two

sandwiches. But in the case of a Hermitian operator (for

which, by definition, L† = L) there is a simple relation: the

two sandwiches are complex conjugates of each other:

〈Ψ|L|Φ〉 = 〈Φ|L|Ψ〉∗.

Let’s see whether the operators X and D are Hermitian.

Recalling that

X ψ(x ) = xψ(x ),

and using the inner product formula Eq. 8.2, we can write

〈Ψ|X|Φ〉 =
∫

ψ∗(x )xφ(x )dx

and

〈Φ|X|Ψ〉 =
∫

φ∗(x )xψ(x )dx .

Because x is real, it’s easy to see that these two integrals are

complex conjugates of each other, and therefore that X is

Hermitian.
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What about the operator D? In this case, the two sand-

wiches are

〈Ψ|D|Φ〉 =
∫

ψ∗(x )
dφ(x )

dx
dx (8.7)

and

〈Φ|D|Ψ〉 =
∫

φ∗(x )
dψ(x )

dx
dx . (8.8)

To determine if D is Hermitian, we need to compare these

two integrals and see if they are complex conjugates of each

other. In this form, it’s a bit difficult to tell. The trick is to

do the second integral by parts. As we explained, integration

by parts allows you to switch the derivative from one factor

in the integrand to the other, as long as you change the sign

at the same time. Therefore, the integral in Eq. 8.8 can be

rewritten as

〈Φ|D|Ψ〉 = −
∫

ψ(x )
dφ∗(x )
dx

dx . (8.9)

Now, we just need to compare the two expressions in Eqs. 8.7

and 8.9, which turns out to be easy. Because of the minus

sign, it’s clear that they are definitely not complex conju-

gates of each other. Instead, their relationship is captured

by

〈Ψ|D|Φ〉 = −〈Φ|D|Ψ〉∗,

which is the diametric opposite of what we wanted. Unlike

the X operator, D is not Hermitian. Instead, it satisfies
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D† = −D.

An operator with this property is called anti-Hermitian.

Although anti-Hermitian and Hermitian operators are

opposites, it’s very easy to go from one to the other. All

you have to do is multiply by the imaginary number i or

−i. Therefore we can use D to construct an operator that is

Hermitian, namely

−ih̄D.

If we look at the action of this new Hermitian operator on

wave functions, we find that

−ih̄Dψ(x ) = −i h̄ dψ(x )
dx

. (8.10)

Keep this formula in mind. It will soon play a leading role

in defining a very important property of particles—their mo-

mentum.

8.2 The State of a Particle

In classical mechanics, the “state of a system” means every-

thing you need to know to predict the system’s future, given

the forces acting on it. That, of course, means the positions

of all the particles comprising the system, as well as the mo-

menta of those particles. From a classical perspective, the

instantaneous positions and momenta are entirely indepen-

dent variables. For example, for a particle of mass m moving
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along a one-dimensional axis x, the momentary state of the

system is described by the pair (x, p). The coordinate x is

the location of the particle, and p = mẋ is its momentum.

Taken together, these two variables define the phase space

of the system. If we also know the force on the particle as

a function of its position, Hamilton’s equations permit us to

calculate its position and momentum at all later times. They

define a flow through the phase space.

Given this, one might guess that the quantum state of

a particle would be spanned by a basis of states labeled by

position and momentum:

|x, p〉.

The wave function would then be a function of both vari-

ables:

ψ(x, p) = 〈x, p|Ψ〉.

However, this is incorrect. We’ve already seen that things

that would be simultaneously knowable in classical physics

may not be in quantum mechanics. Different components of

a spin, say σz and σx, are an example. One cannot know

both components simultaneously; therefore, one does not

have states in which both components are specified. The

same is true for x and p: specifying both values is too much.

Whether we’re talking about spins (σz, σx) or positions and

momenta (x, p), the incompatibility is ultimately an experi-

mental fact.
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What then can we know about the particle on the x axis,

if not x and p? The answer is x or p; for according to the

mathematics of position and momentum operators, the two

do not commute. But I emphasize that this is not something

you could have predicted in advance; it is the distillation of

many decades of experimental observations.

If the position of a particle is an observable, there must

be a Hermitian operator associated with it. The obvious

candidate is the operator X. The first step in understanding

this fundamental connection between the intuitive concept

of position and the mathematical operator X is to work out

the eigenvectors and eigenvalues of X. The eigenvalues are

the possible values of position that can be observed, and the

eigenvectors represent the states of definite position.

8.2.1 The Eigenvalues and Eigenvectors
of Position

The obvious next question is: What are the possible out-

comes of measuring X, and what are the states in which it

has a definite (predictable) value? In other words, what are

its eigenvalues and eigenvectors? We’ll start with X. The

eigen-equation for X is

X|Ψ〉 = x0|Ψ〉,

where the eigenvalue is denoted by x0. In terms of wave func-

tions, this becomes

xψ(x) = x0ψ(x). (8.11)
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This last equation seems strange. How can x times a function

be proportional to the same function? On the face of it, this

seems impossible. But let’s pursue it. We can rewrite Eq.

8.11 in the form

(x− x0)ψ(x) = 0.

Of course, if a product is zero, then at least one of the factors

must be zero. But the other factors may be different from

zero. Thus, if x �= x0, then ψ(x) = 0. That’s a very strong

condition. It says that for a given eigenvalue x0, the function

ψ(x) can be nonzero at only one point, namely at

x = x0.

For an ordinary continuous function this condition would be

deadly: no sensible function can be zero everywhere except

at one point, and be nonzero only at that point. But that is

exactly the property of the Dirac delta function

δ(x− x0).

Evidently, then, every real number x0 is an eigenvalue of X,

and the corresponding eigenvectors are functions (we often

call them eigenfunctions) that are infinitely concentrated at

x = x0. The meaning of this is clear: the wave functions

ψ(x) = δ(x− x0)
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represent states in which the particle is located right at the

point x0 on the x axis.

It of course makes a lot of sense that the wave function

representing a particle known to be at x0 is zero everywhere

except at x0. How could it be otherwise? But it is gratifying

to see the mathematics confirm this intuition.

Consider the inner product of a state |Ψ〉 and a position

eigenstate |x0〉:

〈x0|Ψ〉.

Using Eq. 8.2, we get

〈x0|Ψ〉 =
∫ ∞

−∞
δ(x− x0)ψ(x).

By the definition of delta functions given in Eq. 8.4, this

integral evaluates to

〈x0|Ψ〉 = ψ(x0). (8.12)

Because this is true for any x0, we can drop the subscript

and write the general equation

〈x|Ψ〉 = ψ(x). (8.13)

In other words, the wave function, ψ(x), of a particle moving

in the x direction is the projection of a state-vector |Ψ〉 onto
the eigenvectors of position. We will also refer to ψ(x) as

the wave function in the position representation.
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8.2.2 Momentum and Its Eigenvectors

Position is intuitive; momentum is less so, particularly in

quantum mechanics. It will only be later that we see the

connection between the operator that we identify with mo-

mentum and the familiar classical concept of mass times ve-

locity. But I assure you that we will make the connection.

For now, let’s take the abstract mathematical route. The

momentum operator in quantum mechanics is called P, and

it is defined in terms of the operator −iD:

−iD = −i d
dx

.

As we saw earlier in Eq. 8.10, we need the factor −i to make

this operator Hermitian.

We could just define P to be −iD, but if we did, we

would run into a problem later when we connect these ideas

to those of classical physics. The reason should be clear—

there’s a dimensional mismatch. In classical physics, the

units of momentum are mass times velocity—in other words,

mass times length divided by time (ML/T ). On the other

hand, the operatorD has units of inverse length, or 1/L. The

resolution of the mismatch is provided by Planck’s constant

h̄, which has units of ML2/T. The correct relation between

P and D is therefore

P = −i h̄D (8.14)

or, in terms of its action on wave functions,

Pψ(x ) = −i h̄ dψ(x )
dx

. (8.15)
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Quantum physicists often use units in which h̄ is exactly one,

and in that way simplify the equations. As tempting as it is,

we won’t do that here.

Let’s work out the eigenvectors and eigenvalues of P. The

eigen-equation in abstract vector notation is

P|Ψ〉 = p|Ψ〉, (8.16)

where the symbol p is an eigenvalue of P. Eq. 8.16 can also be

expressed in terms of wave functions. Using the identification

P = −i h̄ d

dx
,

we can write the eigen-equation as

−ih̄dψ(x)
dx

= pψ(x)

or

dψ(x)

dx
=

ip

h̄
ψ(x).

This is a type of equation that we’ve run into before. The

solution has the form of an exponential:

ψp(x) = Ae
ipx
h̄ .

The subscript p is just a reminder that ψp(x) is the eigen-

vector of P with the specific eigenvalue p. It is a function of

x, but it is labeled by an eigenvalue of P.
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The constant A multiplying the exponential is not deter-

mined by the eigenvector equation. That’s nothing new; the

eigenvalue equation never tells us the overall normalization

of the wave function. As a rule, we fix the constant by requir-

ing the wave function to be normalized to unit probability.

An example that goes all the way back to Section 2.3 is the

eigenvector of the x component of spin:

|r〉 = 1√
2
|u〉+ 1√

2
|d〉.

The factor 1/
√
2 is there to make sure the total probability

is 1.

Normalizing the eigenvectors of P is a more subtle oper-

ation, but the result is simple. The factor A is only slightly

more complicated than in the spin case. To save time, I will

tell you the answer and leave it for you to prove later. The

correct factor is A = 1/
√
2π. Thus,

ψp(x) =
1√
2π

e
ipx
h̄ . (8.17)

A point of some interest follows from Eqs. 8.13 and 8.17. The

inner product of a position eigenvector |x〉 and a momentum

eigenvector |p〉 has a very simple and symmetric form:

〈x|p〉 =
1√
2π

e
ipx
h̄

〈p|x〉 =
1√
2π

e
−ipx
h̄ . (8.18)
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The second equation is simply the complex conjugate of the

first. These results are easy to verify if you keep in mind that

|x〉 is represented by a delta function. I’d like to mention two

important points before moving further:

1. Eq. 8.17 represents a momentum eigenfunction in the

position basis. In other words, although it represents

a momentum eigenstate, it is a function of x, and not

an explicit function of p.

2. We’ve been using the symbol ψ for both position and

momentum eigenstates. A mathematician might not

approve of using the same symbol for two different

functions, but physicists do it all the time. ψ(x) is just

the generic symbol for whatever function we happen to

be discussing.

At this juncture, we begin to get a glimmer of why the wave

function is called the wave function. What you should notice

is that the eigenfunctions (wave functions representing eigen-

vectors) of the momentum operator have the form of waves—

sine waves and cosine waves, to be precise. In fact, we can

now see one of the most fundamental aspects of the wave-

particle duality of quantum mechanics. The wavelength of

the function

e
ipx
h̄

is given by
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λ =
2πh̄

p

because the value of the function is unchanged if we add 2πh̄
p

to the variable x:

e
ip(x+2πh̄

p )

h̄ = e
ipx
h̄ e2πi = e

ipx
h̄ .

Let’s pause for a moment to discuss the importance of this

connection between momentum and wavelength. It’s not

just important: in many ways, it is the relationship that

defined twentieth-century physics. Over the last hundred

years, physicists have primarily been concerned with uncov-

ering the laws of the microscopic world. This has meant

figuring out how objects are built out of smaller objects.

The examples are obvious: molecules are made from atoms;

atoms from electrons and nuclei; nuclei from protons and

neutrons. These subnuclear particles are constructed out of

quarks and gluons. And the game goes on as scientists search

for ever smaller and more hidden entities.

All of these objects are too small to see with the best

optical microscopes, let alone the naked eye. The reason is

not just that our eyes are insufficiently sensitive. The more

important fact is that eyes and optical microscopes are sensi-

tive to the visible spectrum, which comprises wavelengths at

least a few thousand times longer than the size of an atom.

As a rule, you can’t resolve objects much smaller than the

wavelength you’re using to look at them. For this reason, the

story of twentieth-century physics was in large part a quest
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for smaller and smaller wavelengths of light—or any other

kind of wave. In Lecture 10, we will discover that light of a

given wavelength is composed of photons whose momentum

is related to the wavelength by exactly the relation

λ =
2πh̄

p
.

The implication is that to probe objects of ever smaller size

one needs photons (or other objects) of ever larger momen-

tum. Large momentum inevitably means large energy. It’s

for that reason that the discovery of the microscopic proper-

ties of matter required increasingly powerful particle accel-

erators.

8.3 Fourier Transforms and the

Momentum Basis

The wave function ψ(x) has the important role of determin-

ing the probability for finding the particle at position x:

P (x) = ψ∗(x)ψ(x).

As we will see, no experiment can determine both the posi-

tion and momentum of a particle simultaneously. But if we

forego determining anything about the position, momentum

can be measured precisely. The situation is quite analogous

to that of the x and z components of a spin. Either value

can be measured, but not both.
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What is the probability that a particle has momentum

p if we choose to measure it? The answer is a straightfor-

ward generalization of the principles laid down in Lecture

3. The probability that a momentum measurement will give

momentum p is

P (p) = | 〈P|Ψ〉 |2. (8.19)

The entity 〈P|Ψ〉 is called the wave function of |Ψ〉 in the

momentum representation. Naturally, it is a function of p

and is denoted by a new symbol:

ψ̃(p) = 〈P|Ψ〉. (8.20)

It is now clear that there are two ways to represent a state-

vector. One way is in the position basis and the other is

in the momentum basis. Both wave functions—the position

wave function ψ(x) and the momentum wave function ψ̃(p)—

represent exactly the same state-vector |Ψ〉. It follows that

there must be some transformation between them such that

if you know ψ(x), the transformation produces ψ̃(p), and vice

versa. In fact, the two representations are Fourier transforms

of each other.

8.3.1 Resolving the Identity

We are about to see the great power of the Dirac bra-ket

notation in simplifying complicated things. First, let’s recall

an important idea from earlier lectures. Suppose we define

an orthonormal basis of states through the eigenvectors of
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some Hermitian observable. Call the basis vectors |i〉. In
Lecture 7, I explained a very useful trick, and now we are

going to see just how useful it is. It’s called resolving the

identity. The trick given in (Eq. 7.11) is to write the identity

operator I (the operator that acts on any vector to give the

same vector) in the form

I =
∑
i

|i〉〈i |.

Because momentum and position are both Hermitian, the

sets of vectors |x〉 and set |p〉 each define basis vectors. By

replacing summation with integration we discover two ways

to resolve the identity:

I =

∫
dx |x 〉〈x | (8.21)

and

I =

∫
dp|p〉〈p|. (8.22)

Let’s suppose that we know the wave function of the abstract

vector |Ψ〉 in the position representation. By definition, it is

equal to

ψ(x) = 〈x|Ψ〉. (8.23)

Now suppose we want to know the wave function ψ̃(p) in

the momentum representation. Here are the steps laid out

in detail:
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• First, use the definition of the momentum-representation

wave function:

ψ̃(p) = 〈p|Ψ〉.

• Now, insert the unit operator between the bra- and

ket-vectors, in the form given in Eq. 8.21:

ψ̃(p) =

∫
dx〈p|x〉〈x|Ψ〉.

• The expression 〈x|Ψ〉 is just the wave function ψ(x),

and 〈p|x〉 is given to us by the second equation of Eqs.

8.18:

〈p|x〉 = 1√
2π

e
−ipx
h̄ .

• Putting it all together, we find that

ψ̃(p) =
1√
2π

∫
dxe

−ipx
h̄ ψ(x). (8.24)

This equation shows us exactly how to transform a given

wave function in the position representation into the cor-

responding wave function in the momentum representation.

What is it good for? Suppose the position wave function

for some particle is known; however, the goal of your exper-

iment is to measure the momentum, and you want to know
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the probability of observing momentum p. The procedure is

to first calculate ψ̃(p) by using Eq. 8.24 and then compute

the probability

P (p) = ψ̃∗(p)ψ̃(p).

It’s just as easy to go the other way. Suppose we know

ψ̃(p) and wish to recover ψ(x). This time, we use Eq. 8.22

to resolve the identity. Here are the steps (notice that they

look suspiciously similar to the earlier ones):

• First, use the definition of the position-representation

wave function:

ψ(x) = 〈x|Ψ〉

• Now, insert the unit operator between the bra- and

ket-vectors, in the form given in Eq. 8.22:

ψ(x) =

∫
dp〈x|p〉〈p|Ψ〉.

• The expression 〈p|Ψ〉 is just the wave function ψ̃(p),

and 〈x|p〉 is given to us by Eqs. 8.18. But this time,

it’s the first of the two equations.

〈x|p〉 = 1√
2π

e
ipx
h̄ .
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• Putting it all together, we find that

ψ(x) =
1√
2π

∫
dpe

ipx
h̄ ψ̃(p).

Let’s take another look at the two equations for going back

and forth from position to momentum. Notice how symmet-

rical they are. The only asymmetry is that one equation

contains e
ipx
h̄ and the other contains e

−ipx
h̄ :

ψ̃(p) =
1√
2π

∫
dxe

−ipx
h̄ ψ(x)

ψ(x) =
1√
2π

∫
dpe

ipx
h̄ ψ̃(p). (8.25)

The relation between the position and momentum represen-

tations summarized by Eqs. 8.25 is that they are reciprocal

Fourier transforms of one another. In fact, these are the

central equations in the field of Fourier analysis. I want you

to notice how easy it was to derive those equations using

Dirac’s elegant notation.

8.4 Commutators and Poisson

Brackets

Earlier, in Lecture 4, we formulated two important principles

about commutators. The first had to do with the connec-

tion between classical mechanics and quantum mechanics;
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the second had to do with uncertainty. I now will finish up

this very long lecture by showing you what these principles

have to do with X and P.

We’ll start with the connection between commutators

and classical physics. As you may recall, we found that

commutators have a great similarity to Poisson brackets, a

relationship we made explicit in Eq. 4.21. If we plug in the

operator symbols L and M that we’ve been using in this

lecture, we get

[L,M] ⇐⇒ ih̄{L,M}, (8.26)

and we’re reminded that the equations for quantum motion

strongly resemble their classical equivalents. This suggests

that we may learn something by computing the commutator

of the observables X and P. Fortunately, this is easy to do.

First, let’s see what the product XP does when it acts

as an operator on an arbitrary wave function ψ(x). Recalling

Eqs. 8.5 and 8.15, we can write

Xψ(x ) = xψ(x)

Pψ(x ) = −ih̄dψ(x)
dx

.

Together, these equations tell us how the product XP acts

on ψ(x):

XPψ(x ) = −i h̄x dψ(x )
dx

(8.27)

Now, let’s try it with X and P in the opposite order:
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PXψ(x ) = −i h̄ d
(
xψ(x )

)
dx

.

To calculate this last expression, we just use the standard

rule for differentiating the product xψ(x). Using this rule,

it’s easy to see that

PXψ(x ) = −i h̄x dψ(x )
dx

− i h̄ψ(x ). (8.28)

Now, we’ll subtract Eq. 8.28 from Eq. 8.27 to show how the

commutator acts on the wave function:

[X,P]ψ(x ) = XPψ(x )−PXψ(x )

or

[X,P]ψ(x ) = i h̄ψ(x ).

In other words, when the commutator [X,P] acts on any

wave function ψ(x), all it does is multiply ψ(x) by the num-

ber ih̄. We can express this by writing

[X,P] = i h̄. (8.29)

This in itself is extremely important. The fact that X and P

don’t commute is the key to understanding why they are not

simultaneously measurable. But things get even more inter-

esting when we compare this equation with Equivalence 8.26,

which relates commutators to classical Poisson brackets. In
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fact, Eq. 8.29 suggests that the corresponding classical Pois-

son bracket is

{x, p} = 1,

which is exactly the classical relation between coordinates

and their conjugate momenta (see Volume I, Lecture 10, Eq.

8). Ultimately, it is this connection that explains why the

quantum concept of momentum is connected to the classical

concept.

Using the general uncertainty principle from Lecture 5,

we can now specialize to the case

[X,P] = i h̄.

and

ΔXΔP ≥ h̄

2
.

We’ll do that in the next section.

Now let’s recall the second principle involving commuta-

tors. In Lecture 4, we found that two observables L and M

cannot be determined simultaneously unless they commute.

If they don’t commute, you cannot measure L without in-

terfering with a measurement of M. It is not possible to find

simultaneous eigenvectors of two noncommuting observables.

This led to the general uncertainty principle.
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8.5 The Heisenberg Uncertainty

Principle

And now, ladies and gentlemen, here’s what you’ve all been

waiting for. At long last: the Heisenberg Uncertainty Prin-

ciple.

The Heisenberg Uncertainty Principle is one of the most

famous results of quantum mechanics: it not only asserts

that the position and momentum of a particle cannot be

simultaneously known, but it also provides an exact quan-

titative limit for their mutual uncertainties. At this point,

I suggest that you revisit Lecture 5, where I explained the

general uncertainty principle. We did all the work there, and

now we get to reap the benefits.

As we’ve seen, the general uncertainty principle puts a

quantitative limit on the simultaneous uncertainties of two

observables A and B. This idea was captured in Inequality

5.13:

ΔA ΔB ≥ 1

2
|〈Ψ|[A,B]|Ψ〉|.

Now let’s apply this principle directly to the position and

momentum operatorsX and P. In this case, the commutator

is just a number and its expectation is that same number.

Replacing A and B with X and P gives

ΔX ΔP ≥ 1

2
|〈Ψ|[X,P]|Ψ〉|,

and replacing [X,P] with ih̄ results in
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ΔX ΔP ≥ 1

2
|i h̄〈Ψ|Ψ〉|.

But 〈Ψ|Ψ〉 equals 1, and the end result is

ΔX ΔP ≥ 1

2
h̄.

No experiment can ever beat this limitation. You can try

your best to determine a particle’s momentum and position

simultaneously in a reproducible manner, but no matter how

careful you are, the uncertainty in the position times the

uncertainty in the momentum will never be less than 1
2
h̄.

As we saw in Section 8.2.1, the wave function of an eigen-

state ofX is highly concentrated about some point x0; in this

eigenstate, the probability is also perfectly localized. On the

other hand, the probability P (x) for a momentum eigenstate

is uniformly spread over the entire x axis. To see this, let’s

take the wave function in Eq. 8.17 and multiply it by its

complex conjugate:

ψ∗
p(x)ψp(x) =

( 1√
2π

e
−ipx
h̄

)( 1√
2π

e
ipx
h̄

)
=

1

2π
.

The result is completely uniform, with no peaks anywhere

on the x axis. Evidently, a state with definite momentum is

completely uncertain in its position.

Fig. 8.2 illustrates the definition of uncertainty for the

position variable x. In the top half of the figure, you can

see that the uncertainty Δx is a measure of how spread out

the function is in relation to its expectation value 〈x〉. The
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label d shows the deviation of one point in relation to 〈x〉;
this may be a positive or negative quantity. The uncertainty

Δx is the result of an averaging process over all possible d’s

and characterizes the function as a whole. To prevent the

positive d’s from canceling the negative ones, each d value is

squared during this averaging process.

The bottom half of Fig. 8.2 shows how the calculation

can be simplified by shifting the origin to coincide with 〈x〉.
The numerical value of Δx is unchanged by this shift.

Figure 8.2: Uncertainty Basics. Top: 〈x〉 to right of ori-
gin. Deviations d may be positive or negative. Overall un-
certainty Δx (> 0) derived from the average value of d2.
Bottom: Origin shifted right, 〈x〉 = 0, Δx has same value.





Lecture 9

Particle Dynamics

Art and Lenny expected some action at Hilbert’s Place. But

all the state-vectors were absolutely still—frozen, you might

say.

Lenny: This is boring, Art. Doesn’t anything ever happen

around here? Hey Hilbert, why is this joint so still?

Hilbert: Oh, don’t worry. Things will pick up as soon as the

Hamiltonian gets here.

Art: The Hamiltonian? He sounds like a real operator.

9.1 A Simple Example

The first two volumes of the Theoretical Minimum series

have largely focused on two questions. The first is: What do

we mean by a system and how do we describe the momentary

states of a system? As we’ve seen, the classical and quantum

answers to this question are very different. Classical phase

273
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space—the space of coordinates and momenta—is replaced

in quantum theory by the linear vector space of states.

The second big question is: How do states change with

time? In both classical mechanics and quantum mechan-

ics, the answer is according to the minus first law. In other

words, states change so that information and distinctions

are never erased. In classical mechanics, this principle led

to Hamilton’s equations and Liouville’s theorem. Earlier, in

Lecture 4, I explained how in quantum mechanics this law

led to the principle of unitarity, which in turn led to the

general Schrödinger equation.

Lecture 8 was all about the first question: How do we

describe the state of a particle? Now, in the current lecture,

we come to the second question, which we might rephrase:

How do particles move in quantum mechanics?

In Lecture 4, I laid out the basic rules for how quan-

tum states change with time. The essential ingredient is the

Hamiltonian H, which in both classical and quantum me-

chanics represents the total energy of a system. In quantum

mechanics, the Hamiltonian controls the time evolution of a

system through the time-dependent Schrödinger equation:

ih̄
∂|Ψ〉
∂t

= H|Ψ〉. (9.1)

This lecture is all about the Original Schrödinger Equation—

the equation that Schrödinger wrote down to describe a quan-

tum mechanical particle. The Original Schrödinger Equation

is a special case of Eq. 9.1.

The motion of ordinary (nonrelativistic) particles in clas-

sical mechanics is governed by a Hamiltonian, equal to the
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kinetic energy plus the potential energy. We will soon come

to the quantum version of this Hamiltonian, but first let’s

look at a Hamiltonian that’s even simpler.

We’ll start with the simplest Hamiltonian I can think of.

In this case, the Hamiltonian operator H is a fixed constant

times the momentum operator P:

H = cP. (9.2)

This example is rarely written down, though it turns out to

be quite instructive. The constant c is a fixed number. Is cP

a reasonable Hamiltonian for a particle? Yes it is, and in a

moment we’ll find out what kind of particle it describes. For

now, just notice that Eq. 9.2 is different from what we might

expect for a nonrelativistic particle. In other words, it’s not

P2/2m. This simpler example is worth exploring first, just

to see how the mathematical apparatus works.

How do we represent this example in terms of wave func-

tions ψ(x) in the position basis? We’ll start by plugging

our operators into the time-dependent Schrödinger equation

(Eq. 9.1):

ih̄
∂ψ(x, t)

∂t
= −cih̄∂ψ(x, t)

∂x
.

Notice that we’re now writing ψ as a function of both x and

t. Canceling the ih̄ terms gives us

∂ψ(x, t)

∂t
= −c∂ψ(x, t)

∂x
, (9.3)
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which is a pretty simple equation. In fact, any function of

(x− ct) is a solution. By “function of (x− ct),” I mean any

function that depends not on x and t separately, but only on

the combination (x−ct). To see how this works, just consider

an arbitrary function ψ(x − ct) and look at its derivatives.

If you take the partial with respect to x, you just get

∂ψ(x− ct)

x

because the derivative of (x− ct) with respect to x is 1. But

if you take the partial with respect to t, you get

−c∂ψ(x− ct)

∂t
.

It’s clear that this combination of derivatives satisfies Eq.

9.3; therefore any function of this form solves the Schrödinger

equation.

Now, let’s see how a function ψ(x− ct) behaves. What does

it look like? How does it evolve with time? Suppose we start

by looking at a snapshot at t = 0. We can call the snapshot

ψ(x) because it tells us what ψ looks like at every point in

space at the specific time t = 0. Of course, we don’t want

just any function of (x− ct). We want the total probability∫ ∞

−∞
ψ∗(x)ψ(x)dx

to equal 1. In other words, we want ψ(x) to fall off nicely

to zero at infinity so that the integral doesn’t blow up. Fig.



9.1. A SIMPLE EXAMPLE 277

Figure 9.1: Fixed Shape Wave Packet Moving at Fixed Speed
c

9.1 shows ψ(x) schematically. With these characteristics, it

makes sense to call ψ(x) a wave packet.

Now that we’ve described the snapshot ψ(x) at t = 0,

what happens if we let time move forward? As t increases,

the wave packet keeps the exact same shape. Every feature

of the complex-valued function ψ(x, t) moves with uniform

velocity c to the right.1

I had a reason for giving the name c to our constant—the

symbol c often stands for the speed of light. So is this par-

ticle a photon? No, not really. But our description of this

hypothetical particle is pretty close to the correct descrip-

tion of a neutrino that moves at the speed of light. (Real

1This includes both the real and the imaginary parts of ψ(x).
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neutrinos probably move at a speed that is immeasurably

smaller than the speed of light.) This Hamiltonian would be

a very good description of a one-dimensional neutrino except

for one problem: the particle described by our wave function

can only move to the right. To round out this description,

we would have to add another possibility—that the particle

could also move to the left!2

Our right-going zaxon3 has another oddball feature—its

energy can be either positive or negative. This is because

the P operator, as a vector, can take on positive or negative

values. In general, the energy of a particle with negative

momentum is negative, and the energy of a particle with

positive momentum is positive. I won’t say more about this

except that the problem of negative energy for this kind of

particle was solved by Dirac, who used it to establish the

theoretical basis for antiparticles. For our purposes, we can

ignore this issue and simply allow the energy of our particle

to be either positive or negative.

Since the wave function of our particle moves rigidly

down the x axis, so does the probability distribution. As

a result, the expectation value of x moves in exactly the

same way, which is to say that it moves to the right with

velocity c. That’s the essential quantum mechanics of this

system. However, there is another important thing to keep

in mind. When we said the velocity c is a fixed constant, we

2Our right-going particles remind me of Dr. Seuss’s classic story
“The Zax,” and I’m tempted to call them “right-going zaxons.” There’s
no telling how the story would have turned out if Theodor Geisel had
known more about neutrinos.

3There. I’ve said it.
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weren’t kidding. Our particle can only exist in a state where

it moves at this particular velocity. It can never slow down

or speed up.

How does this compare with the classical description of

such a particle? Starting with the same Hamiltonian, a clas-

sical physicist would just write Hamilton’s equations. With

H = cP, Hamilton’s equations are

∂H

∂p
= ẋ

and

∂H

∂x
= −ṗ.

Carrying out the partial derivatives, these become

∂H

∂p
= ẋ = c

and

∂H

∂x
= −ṗ = 0.

Thus, in the classical description of our particle, the momen-

tum is conserved, and the position moves with fixed velocity

c. In the quantum mechanical description, the whole proba-

bility distribution and the expectation value move with ve-

locity c. In other words, the expectation value of position

behaves according to the classical equations of motion.
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9.2 Nonrelativistic Free Particles

Only massless particles can move at the velocity of light, and

I might add, they can only move at that velocity. All known

particles other than photons and gravitons are massive and

can move at any velocity less than c. When they move with a

velocity much less than c, they are said to be nonrelativistic

and their motion is governed by ordinary Newtonian mechan-

ics, at least classically. The earliest application of quantum

mechanics was to the motion of nonrelativistic particles.

I showed earlier (in Lectures 4 and 8) that Poisson brack-

ets play the same mathematical role in classical mechanics as

commutators do in quantum mechanics. Written with these

constructs, the classical and quantum mechanical equations

of motion are almost identical in form. In particular, the

Hamiltonian comes into play in the same way with Poisson

brackets as it does with commutators. So, if you want to

write down the quantum mechanical equations of a system

whose classical physics you already know, it’s very reason-

able to try using the classical Hamiltonian, translated into

operator form.

For a nonrelativistic free particle, the natural Hamilto-

nian to try is p2/2m. When we say the particle is free, what

we really mean is that no forces are acting on it, and there-

fore we can ignore potential energy. All we care about is the

kinetic energy, which is defined as

T =
1

2
mv2.

As you recall, the momentum for a classical particle is
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p = mv.

The Hamiltonian is just the kinetic energy, which we can

write in terms of the momentum p. This gives us

H =
1

2
mv2 =

p2

2m

for the Hamiltonian of a classical nonrelativistic free parti-

cle. Unlike the right-going zaxon of the previous example,

the energy of this particle does not depend on its direction

of motion. That’s because the energy is proportional to p2

rather than p itself. So we’ll start with a particle whose en-

ergy is p2/2m and work out the Schrödinger equation (the

original one that Schrödinger discovered) for a free particle.

Our plan is to follow the same process we used in the

previous example, using the Hamiltonian to write a time-

dependent Schrödinger equation. As usual, the left side of

the equation is

ih̄
∂ψ

∂t
.

We’ll derive the right-hand side by rewriting the classical

Hamiltonian—the kinetic energy—as an operator. The clas-

sical kinetic energy is

p2/2m.

The quantum version replaces p with P:
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H = P2/2m.

What is the meaning of this? As we’ve seen, the operator P

is defined as

P = −ih̄ ∂

∂x
.

The square of P is just the operator that you get by allowing

P to act twice in succession. Thus,

P2 = (−ih̄ ∂

∂x
)(−ih̄ ∂

∂x
),

or

P2 = −h̄2 ∂2

∂x2
,

and the Hamiltonian becomes

H = − h̄2

2m

∂2

∂x2
.

Finally, if we equate the left- and right-hand sides of the

time-dependent Schrödinger equation, we get

ih̄
∂ψ

∂t
=
−h̄2

2m

∂2ψ

∂x2
. (9.4)

This is the traditional Schrödinger equation for an ordinary

nonrelativistic free particle. It is a particular kind of wave

equation, but, in contrast to the previous example, waves
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of different wavelength (and momenta) move with different

velocities. Because of this, the wave function does not main-

tain its shape. Unlike the zaxon wave function, it tends to

spread out and fall apart. This is shown schematically in

Fig. 9.2.

Figure 9.2: Typical Wave Packet for a Nonrelativistic Free
Particle. Top: The initial wave packet is compact and highly
localized. Bottom: Over time, the wave packet moves to the
right and spreads out.

9.3 Time-Independent

Schrödinger Equation

We are going to solve the time-dependent Schrödinger equa-

tion for nonrelativistic free particles, but first we need to
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solve the time-independent version. The time-independent

equation is essentially the eigenvector equation for the Hamil-

tonian,

H|Ψ〉 = E|Ψ〉,

written explicitly in terms of the wave function ψ(x):

− h̄2

2m

∂2ψ(x)

∂x2
= Eψ(x). (9.5)

It’s very easy to find a complete set of eigenvectors that

satisfy this equation. In fact, momentum eigenvectors do

the job. Let’s try the function

ψ(x) = e
ipx
h̄ (9.6)

as a possible solution. Carrying out the derivatives, we find

that this function is indeed a solution to Eq. 9.5, as long as

we set

E = p2/2m. (9.7)

This should come as no surprise—after all, E represents an

energy eigenvalue in Eq. 9.5.

Exercise 9.1: Derive Eq. 9.7 by plugging Eq. 9.6 into Eq.
9.5.

As we saw in Section 4.13, every solution to the time-independent

Schrödinger equation allows us to construct to a time-dependent
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solution. All we need to do is multiply the time-independent

solution—in this case e
ipx
h̄ —by e−iEt

h̄ = e−i p2t
2mh̄ . Thus, a com-

plete set of solutions can be written as

ψ(x, t) = exp
i(px− p2t

2m
)

h̄
.

Any solution is a sum, or integral, of these solutions:

ψ(x, t) =

∫
ψ̃(p)

(
exp

i(px− p2t
2m

)

h̄

)
dp.

You can start with any wave function at t = 0, find ψ̃(p) by

Fourier transform, and let it evolve. The shape will change

because the waves for different p values travel at different

velocities. But, as we will soon see, the overall wave packet

will travel at velocity 〈p/m〉 just as a classical particle would.
This simple general solution has an important implica-

tion. Among other things, it says that the momentum-

representation wave function changes with time in a very

simple way:

ψ̃(p, t) = ψ̃(p) exp
i(px− p2t

2m
)

h̄
.

In other words, only the phase changes with time, while the

magnitude remains constant. What makes this so interesting

is that the probability P (p) does not change at all with time.

This, of course, is a consequence of momentum conservation,

but it only holds if there are no forces acting on the particle.
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9.4 Velocity and Momentum

So far, I haven’t explained the connection between the oper-

ator P and the classical notion of momentum—namely, mass

times velocity, or

v = p/m. (9.8)

What do we mean by the velocity of a quantum mechanical

particle? The simplest answer is that we mean the time

derivative of the average position 〈Ψ|X|Ψ〉:

v =
d〈Ψ|X|Ψ〉

dt

or, more concretely, in terms of wave functions,

v =
d

dt

∫
ψ∗(x, t) x ψ(x, t).

Why does 〈Ψ|X|Ψ〉 vary with time? Because ψ depends on

time, and in fact we know just how. The time dependence of

ψ is governed by the time-dependent Schrödinger equation.

We could use that fact to work out how 〈Ψ|X|Ψ〉 varies with
time. I’ve done it this way—by brute force—and it takes sev-

eral pages. Fortunately, the abstract methods you learned in

earlier lectures make it easier; in fact, we have already done

most of the work in Lecture 4. In fact, before we proceed,

I recommend that you review Lecture 4, especially Section

4.9, from the beginning to the appearance of Eq. 4.17. To

restate Eq. 4.17,
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d

dt
〈L〉 = i

h̄
〈 [ H,L ] 〉.

In words: the time derivative of the expectation value of any

observable L is given by i/h̄ times the expectation value of

the commutator of the Hamiltonian with L. Applying this

principle to the velocity v, we find that

v =
i

2mh̄
〈 [ P2,X ] 〉. (9.9)

Now, all we have to do is compute the commutator of P2

and X. A couple of simple steps shows that

[ P2,X ] = P[ P,X ] + [ P,X ]P. (9.10)

This relation can be confirmed by expanding each commu-

tator and spotting some obvious cancellations.

Exercise 9.2: Prove Eq. 9.10 by expanding each side and
comparing the results.

The last step uses the standard commutation relation

[ P,X ] = −i h̄.

Substituting this into Eq. 9.10 and plugging that result into

Eq. 9.9, we find that

v =
〈P〉
m
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or, perhaps more familiarly,

〈P〉 = mv . (9.11)

We have proved exactly what we set out to prove: the mo-

mentum is equal to the mass times the velocity, or, more

exactly, the average momentum equals the mass times the

velocity.

To get a better idea of what this means, let’s suppose

the wave function has the form of a packet, or fairly narrow

lump. The expectation value of x will be approximately at

the center of the lump. What Eq. 9.11 tells us is that the

center of the wave packet travels according to the classical

rule p = mv.

9.5 Quantization

Before moving on to the subject of forces in quantum me-

chanics, I want to pause and discuss what we have done. We

started with a well-known and well-trusted classical system—

the free particle—and quantized it. We can codify this pro-

cedure as follows:

1. Start with a classical system. This means a set of co-

ordinates x and momenta p. In our example, there was

only one coordinate and one momentum, but the pro-

cedure is easy to generalize. The coordinates and mo-

menta come in pairs, xi and pi. The classical system

also has a Hamiltonian, which is a function of the x’s

and p’s.
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2. Replace the classical phase space with a linear vec-

tor space. In the position representation, the space

of states is represented by a wave function ψ(x) that

depends on the coordinates—in general, all of them.

3. Replace the x’s and p’s with operatorsXi and Pi . Each

Xi acts on the wave function to multiply it by xi. Each

Pi acts according to the rule

Pi → −i h̄ ∂

∂xi
.

4. When these replacements are made, the Hamiltonian

becomes an operator that can be used in either the

time-dependent or time-independent Schrödinger equa-

tion. The time-dependent equation tells us how the

wave function changes with time.The time-independent

form allows us to find the eigenvectors and eigenvalues

of the Hamiltonian.

This procedure of quantization is the means by which the

classical equations of a system converted to quantum equa-

tions. It has been used over and over, in fields ranging from

the motion of particles to quantum electrodynamics; there

have even been (not so successful) attempts to quantize Ein-

stein’s theory of gravity. As we saw in one simple case, the

procedure guarantees that the motion of expectation values

is closely related to classical motion.

All of this raises a “chicken and egg” question: Which

comes first—classical theory or quantum theory? Should
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the logical starting point of physics be classical or quantum

mechanical? I think the answer is obvious. Quantum me-

chanics is the real description of nature. Classical mechanics,

while beautiful and elegant, is nevertheless an approxima-

tion. Roughly speaking, it holds true when wave functions

maintain their shape as packets. Sometimes, we’re lucky

and the quantum theory of a system can be guessed—and

that’s all it is, a guess—by starting with a familiar clas-

sical system and quantizing it. Sometimes this works. The

quantum motion of electrons, deduced from the classical me-

chanics of particles, is a case in point. Quantum electrody-

namics, deduced from Maxwell’s equations, is another. But

sometimes there is no classical theory to use as a starting

point. The spin of a particle has no real classical counter-

part. And the quantization of general relativity has largely

failed. Quantum theory is probably much more fundamental

than classical theory, which generally should be understood

as an approximation.

That being said, I will now continue to quantize the mo-

tion of particles, but this time incorporating the effects of

forces.

9.6 Forces

The world would be a dull place if all particles were free.

Forces are what make particles do interesting things, such as

assembling themselves into atoms, molecules, chocolate bars,

and black holes. The force on any given particle is the sum

total of the forces exerted on it by all the other particles in

the universe. In practice, we usually assume that we know
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what all the other particles are doing and replace their effect

by a potential energy function for the particle that we are

studying. This much is true in both classical and quantum

mechanics.

The potential energy function is denoted by V (x). In clas-

sical mechanics it’s related to the force on a particle by the

equation

F (x) = −∂V

∂x
.

If the motion is one-dimensional, the partial derivative can

be replaced by an ordinary derivative, but I will leave it as

is. If we then combine this equation with Newton’s second

law, F = ma, we get

m
d2x

dt2
= −∂V

∂x
.

In quantum mechanics, we proceed differently; we write a

Hamiltonian and solve the Schrödinger equation. Incorpo-

rating the potential energy into this program is straightfor-

ward. The potential energy V (x) becomes an operator V

that gets added to the Hamiltonian.

What kind of operator is V? The answer is easiest to

express if we think in the language of wave functions rather

than in terms of abstract bras and kets. When the operator

V acts on any wave function ψ(x), it multiplies the wave

function by the function V (x).

V|Ψ〉 → V (x)ψ(x).
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Just as in classical mechanics, once forces are included, the

momentum of a particle is not conserved. In fact, Newton’s

laws of motion can be stated in the form

dp

dt
= F

or

dp

dt
= −∂V

∂x
. (9.12)

The rules of quantization require us to add V(x ) to the

Hamiltonian,4

H =
P2

2m
+V(x ), (9.13)

and modify the Schrödinger equations in the obvious way:

ih̄
∂ψ

∂t
=

−h̄2

2m

∂2ψ

∂x2
+ V (x)ψ

Eψ =
−h̄2

2m

∂2ψ

∂x2
+ V (x)ψ. (9.14)

What effect does this have? The additional term certainly

affects the way ψ changes with time. That of course must

be so if the average position of a wave packet is to follow

a classical trajectory. To check our reasoning, let’s see if

it does. First of all, does Eq. 9.11 still hold? It should,

4Technically, this is true for free particles as well. However, in the
case of free particles we set V (x) equal to 0.
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because the connection between momentum and velocity is

unaffected by the presence of forces.

Because a new term has been added to H, there will be a

new term in the commutator of X and H. Potentially, that

could modify the expression for velocity in Eq. 9.9, but it’s

easy to see that this doesn’t happen. The new term involves

the commutator of X with V(x ). But multiplying by x and

multiplying by a function of x are operations that commute.

In other words,

[X,V(x )] = 0.

Therefore, the connection between velocity and momentum

is unaffected by forces in quantum mechanics, as is the case

in classical mechanics.

The more interesting question is: Can we understand the

quantum version of Newton’s law? As stated above, this law

can be written as

dp

dt
= F.

Let’s calculate the time derivative of the expectation value of

P. Again, the trick is to commute P with the Hamiltonian:

d

dt
〈P〉 = i

2mh̄
〈[P2,P]〉+ i

h̄
〈[V,P]〉. (9.15)

The first term is zero because an operator commutes with

any function of itself. To compute the second term, we’ll use
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an equation that we haven’t proved yet:

[V(x ),P] = i h̄
dV (x )

dx
. (9.16)

Plugging Eq. 9.16 into Eq. 9.15, we get

d

dt
〈P〉 = −〈dV

dx
〉.

Now, let’s prove Eq. 9.16. Letting the commutator act on a

wave function, we can write

[V(x ),P]ψ(x ) = V (x )(−i h̄ d

dx
)ψ(x )− (−i h̄ d

dx
)V (x )ψ(x ).

(9.17)

This is easily simplified and results in Eq. 9.16. Thus, we

have shown that

d

dt
〈P〉 = −〈dV

dx
〉, (9.18)

which is the quantum analog of Newton’s equation for the

time rate of change of momentum.

Exercise 9.3: Show that the right-hand side of Eq. 9.17
simplifies to the right-hand side of Eq. 9.16. Hint: First ex-
pand the second term by taking the derivative of the product.
Then look for cancellations.
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9.7 Linear Motion and the

Classical Limit

You might think we have proved that the expectation value

of X exactly follows the classical trajectory. But what we’ve

actually proved is quite different. This difference exists be-

cause the average of a function of x is not the same as the

function of the average of x. If Eq. 9.18 had read

d

dt
〈P〉 = −dV (〈x 〉)

d〈x 〉 [This is wrong ]

(and, let me emphasize, it does not), then indeed we would

say that the average position and momentum satisfy the clas-

sical equations. But in reality the classical equations are only

approximations, good whenever we can replace the average

of dV/dx by the function of the average of x. When is it

reasonable to do this? The answer is whenever the V (x)

varies slowly compared to the size of the wave packet. If V

varies rapidly across the wave packet, the classical approx-

imation will break down. In fact, in that situation a nice,

narrow wave packet will get broken up into a badly scattered

wave that has no resemblance to the original wave packet.

The probability function will also get scattered. Then you’ll

have no choice but to solve the Schrödinger equation.

Let’s look at this point more closely. Mathematically,

we’ve made no assumptions about the shapes of our wave

packets. But we have tacitly thought of them as being nicely

shaped functions with a single maximum, smoothly trailing

off to zero in the positive and negative directions. This con-
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dition, though not explicit in our mathematical assumptions,

does have a real impact on whether a particle behaves the

way classical mechanics would lead us to expect.

Figure 9.3: Bimodal (Two-Humped) Function, Centered at
x = 0. Note that 〈x〉 = 0, but Δx > 0.

To illustrate this point, let’s consider a slightly “weird”

wave packet. Fig. 9.3 shows a bimodal wave packet (having

two maxima), centered at the origin of the x axis. Now, let’s

consider some function of x, say F (x), where F represents

force. The expectation value of F (x) is not the same as the

function F of the expectation value of x. In other words,

〈F (x)〉 �= F (〈x〉).

The right-hand side is a function of the center of the wave

packet. It is not the same as the left-hand side, which corre-
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sponds to our results from the previous section—〈F (x)〉 has
the same form as the right-hand side of Eq. 9.18.5

Let me give you an example where these two expressions

could be extremely different. Suppose that F is equal to x

squared:

F = x2.

And suppose the wave packet looks like Fig. 9.3. What’s the

expectation value of x? It’s zero, and so is F (〈x〉), because
F (0) = 02 = 0. On the other hand, what is the expectation

value of x2? It’s greater than zero. So when a wave packet

is not a nice, single bump that is mainly characterized by its

center, it’s not always true that the time rate of change of the

momentum is the force evaluated at the expectation value of

x. It’s only when the wave function is concentrated over a

fairly narrow range that the expectation value of F (x) is the

same as F (〈x〉). So we have cheated a little in saying our

quantum equation of motion looks classical. That depends

on the wave packet being coherent and well localized.

Everything else being equal, when the mass of a particle

is large, the wave function tends to be very well concen-

trated. If there are no very sharp spikes in the potential

function V (x), then it will be a good approximation to re-

place 〈F (x)〉 with F (〈x〉). When V (x) has spikes, however,

the wave packet tends to break up. For example, suppose we

have a nice wave packet moving to the right, and it hits a

point structure, like an atom, with a potential function sim-

5Recall that −〈dVdx 〉 represents force in that equation.
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ilar to Fig. 9.4. The wave packet will spread out and disinte-

grate. If, on the other hand, it hits a very smooth potential,

then it will go through the smooth potential, moving more or

less according to the classical equations of motion. We don’t

expect quantum mechanics to reproduce classical mechanics

in every possible circumstance. We expect it to reproduce

classical mechanics in circumstances where it should—where

the particles are heavy, the potentials are smooth, and noth-

ing causes the wave function to disintegrate or scatter.6

�����

Figure 9.4: Spiky Potential Function. Potential functions
with sharp peaks tend to cause wave functions to scatter.
The smaller these features are in relation to the wave packet,
the more the wave packet will scatter, and the less “classical”
it will become.

What physical situations lead to “bad potentials” that

break up the wave function? Suppose a potential has fea-

6Not as eloquent as Garrison Keillor’s tagline, but true all the same.
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tures that have a certain size associated with them. Think of

Fig. 9.4 on steroids, with lots of large, closely packed spikes.

Suppose we call the size of these features δx, and that δx is

significantly smaller than the incoming particle’s uncertainty

in position:

δx < Δx.

If the sharp features of V (x) exist on a scale that is much

smaller than the size of the incoming wave packet, the packet

will break into a lot of little pieces. Each one will scatter off

in a different direction. Roughly speaking, when the fea-

tures of the potential are shorter than the wavelength of the

incoming particle, the wave function will tend to break up.

Let’s say you take a bowling ball and ask, “What is Δx?”

We can use the uncertainty principle to gain some intuition

about this question. Typically, Δp × Δx is bigger than h̄.

But in many reasonable cases it’s of order h̄:

ΔpΔx ∼ h̄.

Now, p is about as concentrated as it can be, but for an or-

dinary macroscopic object, the uncertainty relation is pretty

much saturated—the left-hand side is roughly equal to h̄.

The reasons for this are very complicated, and I won’t go

into them here. Instead, let’s assume this is true and work

out the implications. What is Δp? It’s mΔv, which gives us

mΔvΔx ∼ h̄.
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Rearranging the symbols, we can then write

ΔvΔx ∼ h̄

m

or

Δx ∼ h̄

mΔv
.

Now, if I put a bowling ball on the ground, I know very well

that the uncertainty in its velocity is not very big. As the

ball gets heavier and heavier, you might expect the uncer-

tainty in velocity to get smaller and smaller. But, in any

case, the right-hand side has an m in the denominator, and

regardless of Δv, as m gets smaller, Δx will get bigger. And

in particular, it will tend to get bigger than the features in

the potential.

In the quantum mechanical limit where m is very small

and Δx tends to be big, the wave function will move under

the influence of a ragged potential, which it sees as being

much sharper and more featured than the wave function it-

self. That’s when the wave function breaks up. On the other

hand, as m gets very large, Δx gets small. For a large bowl-

ing ball, the wave packet might be very concentrated. When

it moves through a spiky potential, this tiny wave function

encounters a potential whose features are (comparatively)

very broad. Moving through broad smooth features does

not break the wave function into pieces. Large masses and

smooth potentials characterize the classical limit. A particle

with low mass, moving through an abrupt potential, behaves

like a quantum mechanical system.
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What about electrons? Are they massive enough to be-

have classically? The answer depends on the interplay be-

tween the potential and the mass. For example, if you have

two capacitor plates separated by a centimeter, with a smooth

electric field between them, then the electron will move across

the gap like a nice, coherent, almost classical particle. On

the other hand, the potential associated with the nucleus of

an atom always has a sharp feature in it. If an electron wave

packet hits this potential, it will scatter all over the place.

Before leaving this topic, I’d like to mention minimum-

uncertainty wave packets. These are wave packets where

ΔxΔp is equal to h̄/2 (as opposed to being greater). In other

words, in these cases, ΔxΔp is as small as quantum mechan-

ics allows. These wave packets have the form of a Gaussian

curve, and they’re often called Gaussian wave packets. Over

time, they spread out and flatten. Such wave packets are not

that common, but they do exist. A bowling ball at rest is a

good approximation. In Lecture 10, we’ll see that the ground

state of a harmonic oscillator is a Gaussian wave packet.

9.8 Path Integrals

Classical Hamiltonian mechanics focuses on the step-by-step

incremental changes in the state of a system. But there is

another way to formulate mechanics—the Principle of Least

Action—in which the focus is on entire histories. For a par-

ticle, this means looking at the full trajectory of the particle

from some initial time to some final time. The content of

the two approaches is the same, but the emphasis is differ-
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ent. Hamiltonian mechanics zeros in on some instant and

tells you how the system changes between that instant and

the next. The least action principle steps back and takes a

global look. One can imagine nature sampling all possible

trajectories and picking the one that minimizes the action

between a pair of fixed initial and final points.7

Quantum mechanics also has a Hamiltonian description

that concentrates on incremental changes. It’s called the

time-dependent Schrödinger equation, and it’s very general.

As far as we know, it can be used to describe all physical

systems. Still, it seems fair to ask, as Richard Feynman did

almost seventy years ago, whether there is a way to look at

quantum mechanics that pictures whole histories. In other

words, is there a formulation that parallels the Principle of

Least Action? I will not explain Feynman’s path integral

description in detail in this lecture, but just to whet your

appetite I’ll give you a hint of how it works.

First, let me very briefly remind you of the classical least

action principle as I explained it in Volume I. Suppose that

a classical particle starts at position x1 at time t1 and arrives

at position x2 at time t2 (Fig. 9.5). The question is: What

is the trajectory that it took between t1 and t2?

According to the least action principle, the actual trajec-

tory is the one of minimum action. Action is of course a tech-

nical term, and it stands for the integral of the Lagrangian

between the end points of the trajectory. For simple systems,

7Strictly speaking, the principle should be called the Principle of
Stationary Action. Actual trajectories are stationary points of the ac-
tion and not always minima. For our purposes, this fine point is not
important.
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Figure 9.5: Classical Trajectory. This shows one path a
particle may take when moving from point 1 (x1, t1) to point
2 (x2, t2). To keep things simple, the ẋ axis, representing the
particle’s velocity in the x direction, is not shown.

the Lagrangian is the kinetic energy minus the potential en-

ergy. Thus, for a particle that moves in one dimension, the

action is

A =

∫ t2

t1

L(x, ẋ)dt (9.19)

or
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Figure 9.6: First Step Toward Quantizing the Trajectory.
Break the particle’s path into two equal parts (equal in time,
that is). The particle has the same starting and ending
points, but now its trajectory passes through the interme-
diate point x.

A =

∫ t2

t1

(
mẋ2

2
− V (x)

)
dt.

The idea is to try out all possible trajectories connecting the

two end points, and calculate A for each one of them. The
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Figure 9.7: Further Steps Toward Constructing the Path
Integral. Keeping the same starting and ending points, break
the path up into a large number of equally sized segments.

winner is the one that has the least action.8,9

Now, let’s turn to quantum mechanics. The idea of a

well-defined trajectory between two points makes no sense

in quantum mechanics because of the uncertainty principle.

8That’s how it works conceptually, anyway. In practice, the Euler-
Lagrange equations provide a shortcut, as explained in Volume I.

9To keep our diagrams simple, we don’t display an ẋ axis even
though the Lagrangian clearly depends on ẋ.
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However, a question that we can ask is: Given that a particle

starts out at (x1, t1), what is the probability that it will show

up at (x2, t2) if an observation of its position is made?

As always in quantum mechanics, the probability is the

square of the absolute value of a complex amplitude. The

global version of quantum mechanics asks:

Given that a particle starts out at (x1, t1), what is the

amplitude that it will show up at (x2, t2)?

Let’s call that amplitude C(x1, t1; x2, t2) or, more simply, just

C1,2. The initial state of the particle is |Ψ(t1)〉 = |x1〉. Over

the time interval between t1 and t2, the state evolves to

|Ψ(t2)〉 = e−iH(t2−t1)|x1〉. (9.20)

The amplitude to detect the particle at |x2〉 is just the inner
product of |Ψ(t2)〉 with |x2〉. Its value is

C1,2 = 〈x2|e−iH(t2−t1)|x1〉. (9.21)

In other words, the amplitude to go from x1 to x2 over the

time interval t2− t1 is constructed by sandwiching e−iH(t2−t1)

between the initial and final positions. To simplify the for-

mula, let’s define t2 − t1 to be t. Then the amplitude is

C1,2 = 〈x2|e−iHt|x1〉. (9.22)

Now, let’s break the time interval t into two smaller intervals

of size t/2 (see Fig. 9.6). The operator e−iHt can be written
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as the product of two operators:

e−iHt = e−iHt/2e−iHt/2. (9.23)

By inserting the identity operator in the form

I =

∫
dx|x〉〈x|, (9.24)

we can rewrite the amplitude as

C1,2 =

∫
dx〈x2|e−iHt/2|x〉〈x|e−iHt/2|x1〉. (9.25)

This form of the equation looks more complicated, but has

a very interesting interpretation. Let me put it in words.

The amplitude to get from x1 to x2 over time interval t is

an integral over an intermediate position x. The integrand is

the amplitude to go from x1 to x over the time interval t/2

multiplied by the amplitude to go from x to x2 over another

time interval t/2.

Fig. 9.6 shows the same idea in visual terms. Classically,

to go from x1 to x2, the particle must pass through an inter-

mediate point x. But in quantum mechanics the amplitude to

go from x1 to x2 is an integral over all possible intermediate

points.

We can carry this idea further and divide the time in-

terval into a great many tiny intervals, as illustrated in Fig.

9.7. I won’t write out the complicated formulas, but the idea

should be clear. For each tiny time interval, say of size we

include a factor

e,
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e−iεH .

Then, between each pair of factors, we insert the identity

so that the amplitude C1,2 becomes a multiple integral over

all the intermediate locations. The integrand is built from

products of expressions with the form

〈xi|e−iεH |xi+1〉.

If we define U(ε) as

U(ε) = e−iεH ,

then we can write the entire product as

〈x2|UN |x1〉

or

〈x2|UUUU . . . |x1〉.

In this equation, U appears N times as a factor, where N

is the number of epsilon steps. We can then insert identity

operators between the U ’s.

Such an expression can be called the amplitude for the

given path. But the particle does not travel along a par-

ticular path. Instead, in the limit of a large number of in-

finitesimal time intervals, the amplitude is an integral over
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all possible paths between the end points. The elegant fact

that Feynman discovered is that the amplitude for each path

bears a simple relation to a familiar expression from classical

mechanics—the action for that path. The exact expression

for each path is

eiA/h̄,

where A is the action for the individual path.

Feynman’s formulation can be summarized by a single

equation:

C1,2 =

∫
paths

eiA/h̄. (9.26)

The path integral formulation is not merely an elegant math-

ematical trick; it has real power. In fact, it can be used to

derive both Schrödinger equations, and all the commutation

relations of quantum mechanics. But it really comes into its

own in the context of quantum field theory, where it is the

principal tool for formulating the laws of elementary particle

physics.





Lecture 10

The Harmonic Oscillator

Art: I think I see it, Lenny. The whole picture is slowly com-

ing into focus. Minus One, General Uncertainty, entangled

pairs, the Hamiltonian—even the degenerates. What’s next?

Lenny: Oscillations, Art. Vibrations. You’re a fiddler—play

us a last tune tonight. Something with good vibes.

Of all the ingredients that go into building a quantum de-

scription of the world, two stand out as especially fundamen-

tal. The spin, or qubit, of course is one of them. In classical

logic, everything can be built out of yes-no questions. Sim-

ilarly, in quantum mechanics, every logical question boils

down to a question about qubits. We spent a lot of time

in earlier lectures learning about qubits. In this lecture,

we’ll learn about the second basic ingredient of quantum

mechanics—the harmonic oscillator.

The harmonic oscillator isn’t a particular object like a

hydrogen atom or a quark. It’s really a mathematical frame-

work for understanding a huge number of phenomena. This

311
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concept of the harmonic oscillator also exists in classical

physics, but it really comes to the fore in quantum theory.

One example of a harmonic oscillator is a particle moving

under a linear restoring force; for example, the iconic weight

on the end of a spring. An idealized spring satisfies Hooke’s

law: the force on the displaced mass is proportional to the

distance it has been displaced. We call the force a restoring

force because it pulls the mass back toward the equilibrium

position.

Another example is a marble rolling back and forth at the

bottom of a bowl, with no energy being lost to friction. What

characterizes these systems is a potential energy function

that looks like a parabola:

V (x) =
k

2
x2. (10.1)

The constant k is called the spring constant. If we recall

that the force on an object is minus the gradient of V, we

find that the force on the object is

F = −kx. (10.2)

The negative sign tells us that the force acts opposite to the

displacement and pulls the mass back toward the origin.

Why are harmonic oscillators so prevalent in physics? Be-

cause almost any smooth function looks like a parabola close

to a minimum of the function. Indeed, many kinds of sys-

tems are characterized by an energy function that can be

approximated by a quadratic function of some variable rep-

resenting a displacement from equilibrium. When disturbed,
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these systems will all oscillate about the equilibrium point.

Here are some other examples:

• An atom situated in a crystal lattice. If the atom

is displaced slightly from its equilibrium position, it

gets pushed back with an approximately linear restor-

ing force. This motion is three-dimensional and really

consists of three independent oscillations.

• The electric current in a circuit of low resistance often

oscillates with a characteristic frequency. The math-

ematics of circuits is identical to the mathematics of

masses attached to springs.

• Waves. If the surface of a pond is disturbed, it sends

out waves. Someone watching at a particular location

will see the surface oscillate as the wave passes by. This

motion can be described as simple harmonic motion.

The same goes for sound waves.

• Electromagnetic waves. Just like any other wave, a

light wave or a radio wave oscillates when it passes you.

The same mathematics that describes the oscillating

particle also applies to electromagnetic waves.

The list goes on and on but the math is always the same.

Just to have an example in mind, let’s picture the oscillator

as a weight hanging from a spring. Needless to say, we hardly

need quantum mechanics to describe an ordinary weight and

spring, so let’s imagine a very tiny version of this same sys-

tem and then quantize it.
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10.1 The Classical Description

Let’s use y to denote the height of the hanging weight. We’ll

choose the origin so that the weight is at y = 0 when it’s

in equilibrium—that is when the weight is hanging at rest.

To study this system classically, we can use the Lagrangian

method that we learned about in Volume I. The kinetic and

potential energies are 1
2
mẏ2 and 1

2
ky2 respectively.

As you recall, the Lagrangian is the kinetic energy minus

the potential energy:

L =
1

2
mẏ2 − 1

2
ky2.

First, we’ll put the Lagrangian into a certain standard form

by changing from y to another variable that we will call x.

This coordinate is not something new. It still represents the

displacement of the mass. By switching from y to x, we’re

just making a convenient change of units. Let’s define the

new variable as

x =
√
m y.

In terms of x, the Lagrangian becomes

L =
1

2
ẋ2 − 1

2
ω2x2. (10.3)

The constant ω is defined as ω =
√

k
m

and happens to be

the frequency of the oscillator.
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By making this change of variables, we can describe every

oscillator in exactly the same form. In this form, oscillators

are distinguished from each other only by their frequency ω.

Now, let’s use Lagrange’s equations to work out the equa-

tions of motion. For this one-dimensional system, there is

only one Lagrange equation, namely

∂L

∂x
=

d

dt

∂L

∂ẋ
. (10.4)

Carrying out these operations on Eq. 10.3, we find that

∂L

∂ẋ
= ẋ. (10.5)

This is called the canonical momentum conjugate to x. Dif-

ferentiating with respect to time gives

d

dt

∂L

∂ẋ
= ẍ, (10.6)

and now we have the right-hand side of Eq. 10.4. Turning

to the left-hand side, we find that

∂L

∂x
= −ω2x. (10.7)

Setting the left and right sides (Eqs. 10.7 and 10.6) of the

Lagrange equation equal to each other, we get

−ω2x = ẍ. (10.8)
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This equation is, of course, equivalent to F = ma. Why is

there a minus sign? Because the force is a restoring force—

its direction is opposite to the direction of the displacement.

By now you have seen this type of equation enough to know

that the solution contains sines and cosines. The general

solution is

x = A cos(ωt) +B sin(ωt), (10.9)

which shows us that ω is indeed the frequency of the oscil-

lator. When we differentiate twice, we pull out a factor of

ω2.

Exercise 10.1: Find the second time derivative of x in Eq.
10.9, and thereby show that it solves Eq. 10.8.

10.2 The Quantum Mechanical

Description

Now, let’s return to our microscopic version of the weight-

and-spring system—let’s say no bigger than a single molecule.

At first, this seems ridiculous. How could we ever build a

spring that small? But in fact nature provides all sorts of

microscopic springs. Many molecules consist of two atoms—

for example, a heavy atom and a light one. There are forces

holding the molecule in equilibrium with the atoms separated

by a certain distance. When the light atom is displaced,

it will be attracted back to the equilibrium location. The
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molecule is a miniature version of the weight-and-spring sys-

tem, but is so small that we have to use quantum mechanics

to understand it.

Having worked out the classical Lagrangian, let’s try to

build a quantum mechanical description of our system. The

first thing we need is a space of states. As we’ve seen, the

state of a particle moving on a line is represented by a wave

function ψ(x). There are many possible system states, and

each one is represented by a different wave function. A func-

tion ψ(x) is defined in such a way that ψ∗(x)ψ(x) is the

probability density (the probability per unit interval) to find

the particle at position x:

ψ∗(x)ψ(x) = P (x).

In this equation, P (x) represents the probability density. We

now have a sort of kinematics—a specification of what the

system states are.

Can ψ(x) be any function at all? Aside from the require-

ment that it must be continuous and differentiable, the only

extra condition is that the total probability of finding the

particle at any position must be 1:

∫ +∞

−∞
ψ∗(x)ψ(x)dx = 1. (10.10)

This would not seem to be much of a restriction. Whatever

the right-hand side of this equation is, we could always mul-

tiply ψ by some constant to make the integral equal to 1—

unless the integral is either zero or infinity. Since ψ∗(x)ψ(x)
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is positive, we don’t have to worry about zero, but infinity

is a different matter altogether; there are lots of functions

that would make the integral in Eq. 10.10 blow up. The

conditions for a sensible wave function thus include the re-

quirement that ψ falls to zero fast enough that the integral

converges. Functions that meet this condition are called nor-

malizable.

There are two questions we might ask about our harmonic

oscillator:

• How does the state-vector change as a function of time?

To answer this question, we need to know the Hamil-

tonian.

• What are the oscillator’s possible energies? These are

also determined by the Hamiltonian.

So to know anything useful we need the Hamiltonian. Fortu-

nately, we can derive it from the Lagrangian, and I’ll remind

you how in a moment. But first recall that the canonical

momentum conjugate to x is defined as ∂L/∂ẋ.1 Combining

this with Eq. 10.5, we get

p =
∂L

∂ẋ
= ẋ.

Using the straightforward definition from classical mechan-

ics, we find that the Hamiltonian for the harmonic oscillator

is

1This idea is explained in Volume I.
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H = pẋ− L,

where p is the canonical momentum conjugate to x, and L
represents the Lagrangian.2 We could work directly from

this definition, but instead we’ll take a shortcut. Because

the Lagrangian is the kinetic energy minus the potential en-

ergy, the Hamiltonian is the kinetic energy plus the potential

energy—in other words, the total energy. The Hamiltonian

for the oscillator can therefore be written

H =
1

2
ẋ2 +

1

2
ω2x2.

So far, so good, but we’re not quite finished. We’ve expressed

kinetic energy in terms of velocity; in quantum mechanics,

however, we need to represent our observables as operators,

and we don’t have a velocity operator. To take care of this,

we’ll have to recast things in terms of position and canoni-

cal momentum, which does have a standard operator form.

Rewriting the Hamiltonian in terms of canonical momentum

is easy because

p =
∂L

∂ẋ
= ẋ,

which allows us to write

H =
1

2
p2 +

1

2
ω2x2. (10.11)

2We don’t need to use a summation sign because there’s only one
degree of freedom.
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That’s the classical Hamiltonian. We can now turn it into a

quantum mechanical equation by reinterpreting x and p as

operators, defined by their action on ψ(x). As we’ve done be-

fore, we’ll use the boldface symbols, X and P, to distinguish

our quantum operators from their classical counterparts, x

and p. From previous lectures, we know exactly how these

operators work. X just multiplies the wave function by the

position variable:

X|ψ(x )〉 =⇒ xψ(x ).

And P takes the same form it does for other one-dimensional

problems:

P|ψ(x )〉 =⇒ −i h̄ d

dx
ψ(x ).

Now, we can figure out the action of the Hamiltonian on a

wave function by letting P act twice on the wave function.

This is the same procedure we followed in Lecture 9. In other

words,

H|ψ(x )〉 =⇒ 1

2

(−i h̄ ∂

∂x

(−i h̄ ∂ψ(x)
∂x

))
+

1

2
ω2x2ψ(x),

or

H|ψ(x )〉 =⇒ − h̄2

2

∂2ψ(x )

∂x 2
+

1

2
ω2x 2ψ(x ). (10.12)

We’re using partial derivatives because in general ψ also de-

pends on another variable, time. Time is not an operator and
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does not have the same status as x, but the state-vector does

change with time, and we therefore treat time as a param-

eter. The partial derivative indicates that we’re describing

the system “at a fixed time.”

10.3 The Schrödinger Equation

Eq. 10.12 shows how the Hamiltonian operates on ψ. Now,

let’s put it to work. As we said in the previous section, one of

its jobs is to tell you how the state-vector changes with time.

So let’s write out the time-dependent Schrödinger equation:

i
∂ψ

∂t
=

1

h̄
Hψ.

Substituting for H using 10.12, we get

i
∂ψ

∂t
= − h̄

2

∂2ψ

∂x2
+

1

2h̄
ω2x2ψ. (10.13)

This equation says that if you know ψ (both the real and

imaginary parts) at some particular time, you can predict

what it will be at a future time. Notice that the equation is

complex—it contains i as a factor. This means that even if ψ

starts out being real-valued at time t = 0, it will very shortly

develop an imaginary part. Any solution ψ must therefore

be a complex function of x and t.

You can solve this equation in a number of ways. For

example, you can solve it numerically on a computer. Start

with a known value of ψ(x) and update it slightly by calcu-

lating the derivative. Once you have the derivative, calcu-

late how ψ(x) changes in a small increment of time. Then,
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add this incremental change to ψ(x) and keep doing it over

and over. It turns out that ψ(x) will do some interesting

things—it will move around somehow. In fact, under certain

circumstances, it will form a wave packet that moves around

very much like a harmonic oscillator.

10.4 Energy Levels

The other thing you can do with the Hamiltonian is calcu-

late the energy levels of the oscillator, by finding the energy

eigenvectors and eigenvalues. As we learned in Lecture 4,

once you know these eigenvectors and eigenvalues, you can

figure out the time dependence without solving any differ-

ential equations. That’s because you already know the time

dependence of each energy eigenvector. You may want to

review the Schrödinger’s Ket recipe we gave in Section 4.13.

For now, let’s concentrate on finding the energy eigen-

vectors themselves, using the time-independent Schrödinger

equation:

H|ψE 〉 = E |ψE 〉.

The subscript E indicates that ψE is the eigenvector for a

particular eigenvalue E. This equation defines two things:

the wave functions ψE(x) and the energy levels E. Let’s

make things less abstract by expanding H using Eq. 10.12:

− h̄2

2

∂2ψE(x)

∂x2
+

1

2
ω2x2ψE(x) = EψE(x). (10.14)

To solve this equation, we must:
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• Find the allowable values of E that permit a mathe-

matical solution.

• Find the eigenvectors and possible eigenvalues of the

energy.

This is a little trickier than you might think. There turns

out to be a solution to the equation for every value of E,

including all the complex numbers, but most solutions are

physically absurd. If we just start at some point and solve

the Schrödinger equation by making little incremental steps,

we will almost always find that ψ(x) grows or “blows up”

as x becomes large. In other words, we may be able to find

solutions to the equation, but only very rarely will we find a

normalizable solution.

In fact, for most values of E, including all the complex

numbers, the solutions of Eq. 10.14 grow exponentially as x

approaches ∞, −∞, or both. This type of solution makes

no physical sense; it tells us that there is an overwhelm-

ing probability that the oscillator coordinate is infinitely far

away. Clearly, we want to impose some condition that gets

rid of such solutions. So let’s impose one:

Physical solutions of the Schrödinger equation must be

normalizable.

This is a very powerful constraint. In fact, for almost

all values of E, there are no normalizable solutions. But for

certain very special values of E such solutions do exist, and

we will find them.



324 LECTURE 10. THE HARMONIC OSCILLATOR

10.5 The Ground State

What is the lowest possible energy level for a harmonic oscil-

lator? In classical physics, the energy can never be negative

because the Hamiltonian has an x2 term and a p2 term; to

minimize energy, we just set p and x equal to zero. But

in quantum mechanics, that’s asking too much. The uncer-

tainty principle says that you can’t set both x and p equal

to zero. The best you can do is find a compromise state in

which x and p are not too spread out. Because you have

to compromise, the lowest possible energy will not be zero.

Neither p2 nor x2 will be zero. Because the operators X2

and P2 can have only positive eigenvalues, the harmonic os-

cillator has no negative energy levels, and in fact, it has no

state with zero energy either.

If all the energy levels of a system must be positive, there

must be a lowest allowable energy and a wave function to go

with it. This lowest energy level is called the ground state

and is denoted by ψ0(x). Keep in mind that the subscript

0 does not mean that the energy is zero; it means that it is

the lowest allowable energy.

There is a very useful mathematical theorem that helps

identify the ground state. We won’t prove it here, but it is

very simple to state:

The ground-state wave function for any potential has no

zeros and it’s the only energy eigenstate that has no

nodes.

So all we have to do to find the ground state of our har-

monic oscillator is to find a nodeless solution for some value
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of E. It doesn’t matter how we find it—we can use mathe-

matical tricks, make guesses, or just ask the professor. Let’s

use the latter method. (I’ll play the role of the professor.)

Figure 10.1: Harmonic Oscillator Ground State

Here is a function that works:

ψ(x) = e−
ω
2h̄

x2

. (10.15)

This function is shown schematically in Fig. 10.1. As you

can see, it’s concentrated near the origin, where we expect

the lowest energy state to be concentrated. It goes to zero

very quickly as it moves away from the origin, so the integral

of the probability density is finite. And, importantly, it has

no nodes. So it has a chance of being our ground state.

Let’s see if we can figure out what the Hamiltonian does

to this function. The first term of the Hamiltonian (the left

side of Eq. 10.14) tells us to apply the operator
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− h̄2

2

∂

∂x2

to ψ(x). Let’s calculate that term, one derivative at a time.

The first step is

∂ψ(x)

∂x
= − ω

2h̄
(2x)e−

ω
2h̄

x2

,

which simplifies to

∂ψ(x)

∂x
= −ω

h̄
xe−

ω
2h̄

x2

.

When we take the second derivative, there will be two terms

because of the product rule:

∂2ψ(x)

∂x2
= −ω

h̄
e−

ω
2h̄

x2

+
ω2

h̄2 x
2e−

ω
2h̄

x2

.

Let’s plug this result back into Eq. 10.14, and at the same

time replace ψ on the right side with our guess, e−
ω
2h̄

x2
:

h̄

2
ωe−

ω
2h̄

x2 − 1

2
ω2x2e−

ω
2h̄

x2

+
1

2
ω2x2e−

ω2

2h̄
x2

= Ee−
ω
2h̄

x2

.

After canceling the terms proportional to x2e−
ω
2h̄

x2
, we dis-

cover the remarkable fact that solving the Schrödinger equa-

tion just reduces to solving

h̄

2
ωe−

ω
2h̄

x2

= Ee−
ω
2h̄

x2

.
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As you can see, the only way we can solve this equation is to

set the energy E equal to ωh̄
2
. In other words, we’ve found not

only the wave function but also the value of the ground-state

energy. Calling the ground-state energy E0, we can write

E0 =
ωh̄

2
. (10.16)

The ground-state wave function, meanwhile, is just the Gaus-

sian function the professor gave us:

ψ0(x) = e−
ω
2h̄

x2

.

He’s a clever fellow, that professor.

10.6 Creation and Annihilation

Operators

Over the course of these lectures, we have seen two ways of

thinking about quantum mechanics. They go all the way

back to Heisenberg and Schrödinger. Heisenberg liked alge-

bra, matrices, and, had he known what to call them, linear

operators. Schrödinger, by contrast, thought in terms of

wave functions and wave equations, the Schrödinger equa-

tion being one famous example. Of course, the two ways of

thinking are not contradictory; functions form a vector space

and derivatives are operators.

So far, in our study of the harmonic oscillator we have fo-

cused on functions and differential equations. But the more

powerful tool in many cases—particularly for the harmonic
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oscillator—is the operator method. It reduces the entire

study of wave functions and wave equations to a very small

number of algebraic tricks, which almost always involve the

commutation relations. In fact, whenever you see a pair of

operators, my advice is to figure out their commutator. If

the commutator is a new operator that you haven’t seen be-

fore, find its commutator with the original pair. That’s when

the fun happens.

Obviously, this advice can lead to an unending chain of

boring computations. But once in a while you may get lucky

and find a set of operators that close under commutation.

Whenever that happens, you’re in business; as we will see,

operator methods have tremendous power.

Now, let’s apply this approach to our harmonic oscillator.

We begin with the Hamiltonian expressed in terms of the

operators P and X:

H =
P2 + ω2X2

2
. (10.17)

To figure out the rest of the energy levels, we’ll use some

tricks. The idea is to cleverly use the properties of X and

P (in particular, the commutation relation [X,P] = i h̄) to

construct two new operators, called creation and annihila-

tion operators. When a creation operator acts on an energy

eigenvector (or eigenfunction), it produces a new eigenvector

that has the next higher energy level. An annihilation opera-

tor does just the opposite: it produces an eigenvector whose

energy is one level lower than the energy of the eigenvector

it started with. So, roughly speaking, the thing that they

create and annihilate is energy. They’re also called raising
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and lowering operators. But remember: operators act on

state vectors, not on systems. To see how these operators

work, let’s rewrite the Hamiltonian in the form

H =
1

2
(P2 + ω2X2). (10.18)

This is a classical as well as a quantum mechanical Hamil-

tonian, and it would be just as correct to use the lowercase

symbols p and x. However, we’re using the boldface P andX

because we plan to focus on the quantum mechanical Hamil-

tonian.

Let’s start by doing a manipulation that is correct for

classical physics but will require some modification for quan-

tum mechanics. In the parentheses above, we have a sum of

squares. Using the formula

a2 + b2 = (a+ ib)(a− ib),

it seems that we can rewrite the Hamiltonian as

H “ = ”
1

2
(P+ iωX)(P− iωX), (10.19)

and that’s almost correct. Why almost? Because quantum

mechanically, P and X do not commute, and we need to be

careful about the order of operations. Let’s expand our fac-

tored expression and see how it might differ from the original

Hamiltonian in Eq. 10.18. Keeping careful track of the order

of factors, we can expand the expression as follows:
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1

2
(P+ iωX)(P− iωX) =

1

2
(P2 + iωXP− iωPX− i2ω2X2)

=
1

2
(P2 + iω(XP−PX)− i2ω2X2)

=
1

2
(P2 + iω(XP−PX) + ω2X2)

=
1

2
(P2 + ω2X2) +

1

2
iω(XP−PX).

Look at the right-hand set of parentheses in the final line.

We have seen that expression before—it’s the commutator

of X and P. In fact, we already know its value:

(XP−PX) = [X,P] = i h̄.

Thus, the expression for our factored Hamiltonian becomes

1

2
(P2 + ω2X2) +

1

2
iωi h̄

or

1

2
(P2 + ω2X2 )− 1

2
ωh̄.

In other words, the factored expression we started out with

in Eq. 10.19 is actually smaller than the Hamiltonian by ωh̄
2
.

To recover the actual Hamiltonian, we need to add the ωh̄
2

back in:

H =
1

2
(P+ iωX)(P− iωX) +

ωh̄

2
.
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Rewriting the Hamiltonian this way and that way may seem

like an exercise in futility, but trust me, it’s not. First of

all, the last term is just an additive constant that adds the

numerical value ωh̄
2
to every energy eigenvalue. We can ignore

it for now. Later, after we’ve solved the rest of the problem,

we can add it back in. The guts of the problem are found

in the expression (P + iωX)(P − iωX). It turns out that

these two factors, (P + iωX) and (P − iωX), have some

very remarkable properties. In fact, they are the raising and

lowering operators (or creation and annihilation operators)

that I told you about earlier. For now, these are just names,

but as we go along we’ll see that the names were well chosen.

The obvious definitions would be

a− = (P− iωX)

for the lowering operator, and

a+ = (P+ iωX)

for the raising operator. But history sometimes preempts

the obvious. Historically, the raising and lowering operators

have been defined with an extra factor in front of them. Here

are the official definitions:

a− =
i√
2ωh̄

(P− iωX), (10.20)

a+ =
−i√
2ωh̄

(P+ iωX), (10.21)
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If we use these definitions, the Hamiltonian starts to look

very simple:

H = ωh̄(a+a− + 1/2). (10.22)

There are only two properties of a+ and a− that we need

to know. The first is that they are Hermitian conjugates of

each other. That follows from their definitions. The other

property is what really gives them juice. The commutator

of a+ and a− is

[a−, a+] = 1.

This is easy to prove. First, we use the definitions to write

[a−, a+] =
1

2ωh̄
[(P− iωX),P+ iωX)]

The next step is to use the commutation relations [X,X] = 0,

[P,P] = 0, and [X,P] = i h̄. Apply these to the above

equation, and you will quickly find that [a−, a+] = 1.

We can make the Hamiltonian in Eq. 10.22 even simpler

by defining a new operator,

N = a+a−,

called the number operator. Once again, this is just a name,

but as we’ll see, it’s a very good name. Stated in terms of

the number operator, the Hamiltonian becomes

H = ωh̄(N+ 1/2). (10.23)
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So far, all we’ve done is define some symbols, a+, a−, and
N, that make the Hamiltonian look deceptively simple; it’s

not clear that we are actually any closer to figuring out the

energy eigenvalues. To proceed further, let’s recall my earlier

advice: whenever you see two operators, commute them. In

this case, we already know one commutator:

[a−, a+] = 1. (10.24)

Next, let’s find the commutator of the raising and lowering

operators with the number operator N. We’ll do this by

brute force. Here are the steps:

[a−,N] = a−N−Na− = a−a+a− − a+a−a−.

Now, we’ll combine the terms in the form

[a−,N] = (a−a+ − a+a−)a−.

This looks complicated until we notice that the expression

in the parentheses is just [a−, a+], which just happens to be

1. Using this fact to simplify, we get

[a−,N] = a−.

We can do the same thing with a+ and N. The result is

almost the same except for the sign. Here is the whole list

of commutators in one neat package:
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[a−, a+] = 1

[a−,N] = a−

[a+,N] = −a+. (10.25)

This is what you might call a commutator algebra: a set of

operators that closes under commutation. Commutator al-

gebras have wonderful properties that make them one of the

theoretical physicist’s favorite tools. We are now going to see

the power of this commutator algebra in the iconic example

of the harmonic oscillator, using it to find the eigenvalues

and eigenvectors of N. Once we know these, we can imme-

diately read off the eigenvalues of H from Eq. 10.23. The

trick is to use a kind of induction procedure: we begin by

supposing we have an eigenvalue and eigenvector of N. Call

the eigenvalue n and the eigenvector |n〉. By definition,

N|n〉 = n|n〉.

Now, let’s consider a new vector, obtained by acting on |n〉
with a+. Let’s prove that the result is a different eigenvector

of N, with a different eigenvalue. Again, we accomplish this

by straightforward application of the commutation relations.

We’ll start by writing the expression N(a+|n〉) in a slightly

more complicated form,

N(a+|n〉) = [a+N− (a+N−Na+)]|n〉.

The expression in brackets on the right-hand side is the same

as Na+, with the term a+N added and then subtracted. But
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notice that the expression in parentheses is the last of the

commutators from Eqs. 10.25. If we plug that in, we get

N(a+|n〉) = a+(N+ 1)|n〉.

The last step is to use the fact that |n〉 is an eigenvector of

N with eigenvalue n. That means we can replace (N + 1)

with (n+ 1):

N(a+|n〉) = (n + 1)(a+|n〉). (10.26)

As always, when we run on autopilot, we have to keep our

eyes open for interesting results. Eq. 10.26 is interesting. It

says that the vector a+|n〉 is a new eigenvector of N with

eigenvalue (n+1). In other words, given the eigenvector |n〉,
we have discovered another eigenvector whose eigenvalue is

increased by 1. All of this can be summarized by the equa-

tion

a+|n〉 = |n + 1〉. (10.27)

Obviously, we can do this again and again to find the eigen-

vectors |n+2〉, |n+3〉, and so on. Remarkably, we find that

if there is an eigenvalue n, there must be an infinite sequence

of eigenvalues above it, spaced by integers. The name raising

operator seems well chosen.

What about the lowering operator? Not surprisingly, we

find that a−|n〉 produces an eigenvector whose eigenvalue is

one unit lower:

a−|n〉 = |n − 1〉. (10.28)
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This suggests that there must be an unending sequence of

eigenvalues below n, but that can’t be correct. We already

know that the ground state has positive energy, and because

H = ωh̄(N+1/2) the downward sequence must end. But the

only possible way it can end is for there to be an eigenvector

|0〉 such that when a− acts on it, the result is zero. (We

should not confuse |0〉 with the zero vector.3) Symbolically,

this can be expressed as

a−|0〉 = 0. (10.29)

Being the lowest energy state, |0〉 is the ground state, and its

energy is E0 = ωh̄/2. It is an eigenvector of N with an eigen-

value 0. We often say that the ground state is annihilated

by a−.
So you see, the abstract construction of a+, a−, and N

paid off. It allowed us to find the entire spectrum of har-

monic oscillator energy levels without solving a single diffi-

cult equation. This spectrum consists of the energy values,

En = ωh̄(n+ 1/2)

= ωh̄ ( 1/2, 3/2, 5/2, . . . ). (10.30)

This quantization of harmonic oscillator energy levels was

one of the first results of quantum mechanics, and arguably

the most important. The hydrogen atom is a wonderful ex-

ample of quantum mechanics, but it is, after all, just the

3The 0 vector is the vector whose components are all zero. The
vector |0〉, on the other hand, is a state-vector with nonzero compo-
nents.
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hydrogen atom. The harmonic oscillator, on the other hand,

shows up everywhere, from crystal vibrations to electric cir-

cuits to electromagnetic waves. The list goes on. Even

macroscopic oscillators, like a child on a swing, have quan-

tized energy levels, but the presence of Planck’s constant in

Eq. 10.30 means that the spacing between levels is so tiny

that they are completely undetectable.

The unending spectrum of positive energy levels for a

harmonic oscillator is sometimes called a tower, and some-

times called a ladder. It is illustrated schematically in Fig.

10.2.

10.7 Back to Wave Functions

This exercise has amply demonstrated the remarkable power

of operator algebras, and the operator method is indeed re-

markable. But it’s also very abstract. Is it useful in helping

us find wave functions, which are more concrete and easier

to visualize? Absolutely.

Let’s begin with the ground state. We just saw in Eq.

10.29 that the ground state is the unique state that is annihi-

lated by a−. Now, let’s rewrite Eq. 10.29 in terms of the po-

sition and momentum operators, and the ground-state wave

function ψ0(x):

i√
2ωh̄

(P− iωX)ψ0(x ) = 0,

or, dividing by the constant factor,

(P− iωX)ψ0(x ) = 0.
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Figure 10.2: Harmonic Oscillator Energy Level Ladder. En-
ergy levels are evenly spaced. a+ and a− raise and lower the
energy level respectively. N has a lower limit of zero (the
ground state), but no upper limit.

If we now replace P with −ih̄ d
dx
, we get a first-order differ-

ential equation that is much simpler than the second-order

Schrödinger equation:

dψ0

dx
= −ωx

h̄
ψ0(x).

This is a simple differential equation that you can easily
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solve. Or, you can just check that the ground-state wave

function

e−
ω
2h̄

x2

in Eq. 10.15 solves it. Calculating the wave functions for

the excited (nonground) states is even easier—we don’t even

have to solve any equations. Let’s go up the ladder to n =

+1. We can do that by applying a+ to the ground state.

Let’s call the wave function of this new state ψ1(x).

To avoid dragging the constant −i/√2ωh̄ around in our

calculations, we’ll just drop it in our definition of a+. This

only affects the numerical coefficient. The resulting equation

is

ψ1(x) = (P+ iωX)ψ0(x )

or

ψ1(x) =
(− ih̄

∂

∂x
+ iωx

)
e−

ω
2h̄

x2

.

Factoring out the i, we get

ψ1(x) = i
(− h̄

∂

∂x
+ ωx

)
e−

ω
2h̄

x2

.

The “hardest” part of working this out is performing an easy

derivative of e−
ω
2h̄

x2
. Here is the result:

ψ1(x) = 2iωxe−
ω
2h̄

x2

,
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or

ψ1(x) = 2iωxψ0(x).

The only important difference between ψ0 and ψ1 is the pres-

ence of the factor x in ψ1. This has an effect: it causes the

wave function of the first excited state to have a zero, or

node, at x = 0. This is a pattern that continues as we go up

the ladder: each successive excited state has an additional

node. We can see this pattern emerge by calculating the sec-

ond excited state at n = 2. All we have to do is apply a+

again:

ψ2(x) = i
(− h̄

∂

∂x
+ ωx

)(
xe−

ω
2h̄

x2)
.

We can see right away that the ωx term will result in an ωx2

term. The − ∂
∂x
, meanwhile, will result in two terms because

of the product rule for derivatives. One of these terms will

come from the exponential (producing another ωx). The

other will come from taking the derivative of x. It’s clear

that what we’ll end up with is a quadratic polynomial. If we

work out these derivatives, the resulting wave function is

ψ2(x) = (−h̄+ 2ωx2)e−
ω
2h̄

x2

.

And so it goes, all the way up the ladder. We can see another

pattern here: each eigenfunction is a polynomial in x multi-

plied by e−
ω
2h̄

x2
. Because the exponential goes to zero faster
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than any of these polynomials grows, each eigenfunction ap-

proaches zero asymptotically as x goes to plus or minus in-

finity. Also, because the degree of each polynomial is one

greater than the degree of the previous one, each eigenfunc-

tion has one more zero than the previous one.4 This also ex-

plains why successive eigenfunctions alternate between being

symmetric and antisymmetric. Specifically, eigenfunctions

with polynomials of even degree are symmetric, while those

with polynomials of odd degree are antisymmetric. The

polynomials in this sequence are very well-known. They’re

called the Hermite polynomials. The ground-state eigen-

function e−
ω
2
x2
, which appears in all of these higher-energy

eigenfunctions, is symmetric in x.

Fig. 10.3 displays the eigenfunctions for several differ-

ent energy levels. Each successive eigenfunction oscillates

more rapidly than the one before it. This corresponds to

an increase in momentum. The more rapidly the wave func-

tion oscillates, the greater the momentum of the system. At

higher energy levels, the wave function also becomes more

spread out. In physical terms, this means the mass is mov-

ing farther from the equilibrium point, and moving faster.

These eigenfunctions contain another important lesson.

Although they approach zero asymptotically (quite rapidly)

they never quite reach zero. That means there is a small

but finite chance of finding the particle “outside the bowl”

that defines its potential energy function. This phenomenon,

4It turns out that these zeros occur for real values of x, but that’s
not obvious from what we’ve seen. In a physical sense, the zeros seem a
little weird, because they are points where the moving mass will never
be found, even though it’s merrily whizzing back and forth.
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known as quantum tunneling, is completely unknown in clas-

sical physics.

10.8 The Importance of

Quantization

We’ve climbed a high mountain in these lectures, but it’s not

the last mountain. Looking out from the present vantage

point, we can get a glimpse of the enormous landscape of

quantum field theory. That’s material for another book. Or

maybe three. But still, we can see a bit of the terrain from

where we are.

Consider the example of electromagnetic radiation in a

cavity, as shown in Fig. 10.4. In this context, a cavity is

a region of space bracketed by a pair of perfectly reflecting

mirrors that keep the radiation bouncing endlessly back and

forth. Think of the cavity as a long metallic tube that the

radiation can travel along in both directions.

There are many wavelengths that can fit into the cavity.

Let’s consider waves of length λ. Like all waves, these waves

oscillate, very much like a mass on the end of a spring. But

it’s important not to get confused here: the oscillators are

not masses attached to springs. What’s really oscillating

are the electric and magnetic fields. For each wavelength,

there is a mathematical harmonic oscillator describing the

amplitude or strength of the field. That’s a lot of harmonic

oscillators all running simultaneously. Fortunately, however,

they all oscillate independently, so we can focus our attention

on waves of one particular wavelength and ignore all the
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ψ0 (x) ψ 2
0 (x)

ψ1 (x) ψ 2
1 (x)

ψ2 (x) ψ 2
2 (x)

ψ3 (x) ψ 2
3 (x)

ψ4 (x) ψ 2
4 (x)

ψ20(x) ψ 2
20(x)

Figure 10.3: Harmonic Oscillator Eigenfunctions. Ampli-
tudes are shown on the left, probabilities on the right. The
higher-energy wave functions oscillate more rapidly and are
more spread out.
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Figure 10.4: Electromagnetic Radiation in a Cavity

others.

There is only one important number associated with a

harmonic oscillator—namely, its frequency. You probably

already know how to calculate the frequency of a wave of

length λ:

ω =
2πc

λ
.

In classical physics, of course, the frequency is just the fre-

quency. But in quantum mechanics, the frequency deter-

mines the quantum of energy of the oscillator. In other

words, the energy contained in waves of length λ has to be

(n+ 1/2)h̄ω.

The term (1/2)h̄ω is not important for our purposes. It’s

called the zero-point energy, and we can ignore it. If we do,

the energy of waves of length λ becomes

2πh̄c

λ
n,

where n can be any integer from zero on up. In other words,
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the energy of an electromagnetic wave is quantized in indi-

visible units of

2πh̄c

λ
.

For a classical physicist this is very odd. No matter what

you do, the energy always comes in unbreakable units.

You may already know that these units are called pho-

tons. In fact, photon is just another name for the quantized

unit of energy in a quantum harmonic oscillator. But we

can also describe the same facts another way. Being indivis-

ible, photons can be thought of as elementary particles. A

wave excited to its nth quantum state can be thought of as

a collection of n photons.

What is the energy of a single photon? That’s easy. It’s

just the energy that it takes to add one more unit, namely

E(λ) =
2πh̄c

λ
.

Here, we can see something that has dominated physics for

well over a century: the shorter the wavelength of a photon,

the higher its energy. Why would a physicist be interested in

making short-wavelength photons, given that they are costly

in energy? The answer is to see more clearly. As discussed

in Lecture 1, to resolve an object of a given size, you must

use waves of that size or smaller. To see a human figure, a

wavelength of a few inches is good enough. To see a tiny

speck of dust, you may need visible light of a much smaller

wavelength. To resolve the parts of a proton, the wavelength

must be smaller than 10−15 meters, and the corresponding
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photons must be very energetic. In the end, it all goes back

to the harmonic oscillator.

On that note, my friends, we conclude this volume of the

Theoretical Minimum series. I look forward to seeing you in

Special Relativity.
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Pauli Matrices

σz =

(
1 0
0 −1

)

σx =

(
0 1
1 0

)

σy =

(
0 −i
i 0

)
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Action of Spin Operators

|u〉 =

(
1
0

)
⇐⇒ σz|u〉 = |u〉

σx|u〉 = |d〉
σy|u〉 = i|d〉

|d〉 =

(
0
1

)
⇐⇒ σz|d〉 = −|d〉

σx|d〉 = |u〉
σy|d〉 = −i|u〉

|r〉 =

(
1√
2

1√
2

)
⇐⇒ σz|r〉 = |l〉

σx|r〉 = |r〉
σy|r〉 = −i|l〉

|l〉 =

(
1√
2
−1√

2

)
⇐⇒ σz|l〉 = |r〉

σx|l〉 = −|l〉
σy|l〉 = i|r〉

|i〉 =

(
1√
2
i√
2

)
⇐⇒ σz|i〉 = |o〉

σx|i〉 = i|o〉
σy|i〉 = |i〉

|o〉 =

(
1√
2
−i√

2

)
⇐⇒ σz|o〉 = |i〉

σx|o〉 = −i|i〉
σy|o〉 = −|o〉
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Change of Basis

|r〉 =
1√
2
|u〉+ 1√

2
|d〉

|l〉 =
1√
2
|u〉 − 1√

2
|d〉

|i〉 =
1√
2
|u〉+ i√

2
|d〉

|o〉 =
1√
2
|u〉 − i√

2
|d〉

Spin Component in the n̂ Direction

Vector Notation

σn = 	σ · n̂

Component Form

σn = σxnx + σyny + σznz

More Concretely

σn = nx

(
0 1
1 0

)
+ ny

(
0 −i
i 0

)
+ nz

(
1 0
0 −1

)

Combined in a Single Matrix

σn =

(
nz (nx − iny)

(nx + iny) −nz

)
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Spin Operator Multiplication

Tables

A word about notation: Table 3 below uses the symbol i in

two different ways. Inside a ket, such as |io〉, it is part of a
state-label—io signifies “in-out.” But when i appears outside

of a ket symbol, as in i|oo〉, it signifies the unit imaginary

number.

Table 1: Up-Down Basis

2-Spin Eigenvectors

|uu〉 |ud〉 |du〉 |dd〉
σz |uu〉 |ud〉 −|du〉 −|dd〉
σx |du〉 |dd〉 |uu〉 |ud〉
σy i|du〉 i|dd〉 −i|uu〉 −i|ud〉
τz |uu〉 −|ud〉 |du〉 −|dd〉
τx |ud〉 |uu〉 |dd〉 |du〉
τy i|ud〉 −i|uu〉 i|dd〉 −i|du〉
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Table 2: Right-Left Basis

2-Spin Eigenvectors

|rr〉 |rl〉 |lr〉 |ll〉
σz |lr〉 |ll〉 |rr〉 |rl〉
σx |rr〉 |rl〉 −|lr〉 −|ll〉
σy −i|lr〉 −i|ll〉 i|rr〉 i|rl〉
τz |rl〉 |rr〉 |ll〉 |lr〉
τx |rr〉 −|rl〉 |lr〉 −|ll〉
τy −i|rl〉 i|rr〉 −i|ll〉 i|lr〉

Table 3: In-Out Basis

2-Spin Eigenvectors

|ii〉 |io〉 |oi〉 |oo〉
σz |oi〉 |oo〉 |ii〉 |io〉
σx i|oi〉 i|oo〉 −|ii〉 −|io〉
σy |ii〉 |io〉 −|oi〉 −|oo〉
τz |io〉 |ii〉 |oo〉 |oi〉
τx i|io〉 −i|ii〉 i|oo〉 −i|oi〉
τy |ii〉 −|io〉 |oi〉 −|oo〉
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200–201

observables in, 167–175
product states, 163–165
representing, 151–155
tensor products and, 150–155
See also Entanglement

Composite vectors, composite 
operators and, 171

Conservation of distinctions,  
97–99

Conservation of energy, 114–115
Conservation of overlaps, 99
Continuity, 100–101
Continuous functions, 236–250

functions as vectors, 238–245
integration by parts, 245–246
linear operators, 246–250
wave functions and, 236–238

Correlation
of near-singlet state, 234
of product state, 232
of singlet state, 233

Correlation test for entanglement, 
213–214

Creation operators, 327–337
Crystal lattice, atom in, 313

Degeneracy, 64
Density matrices, 184, 196–199

calculating, 210–212
entanglement and, 199–202
of near-singlet state, 234
notation for, 201–202
of product state, 232
properties of, 207
for single spin, 202–203
of singlet state, 233

two-spin system and, 203–217, 
231

Density matrix test for 
entanglement, 214–218

Determinism
in classical physics, 94
in quantum mechanics, 9–11, 96

Dirac, Paul, 105, 113, 194, 278
Dirac delta functions, 241, 242–245, 

253
Dirac’s bracket notation, 11
Distributive property, 26
Dot product, 30, 31, 144, 180
Down states, 219–221
Dual number systems, 23

Eigen-equation, 256
Eigenfunctions, 253

alternation between being 
symmetric and antisymmetric, 
340–341

for energy levels, 341, 343
harmonic oscillator, 341, 343

Eigenstate, collapse of the wave 
function and, 126–127

Eigenvalues, 56–59, 70, 71–72
of density matrix, 207, 215–217
energy, 121, 322–323
of Hermitian operators, 62–63
of operators, 80
of position, 252–254
of spin operator, 76, 77–78

Eigenvectors, 56–59, 70
of annihilation operator, 328
of creation operator, 328
defined, 57
energy, 121, 322–323
of Hermitian operator, 64–67
of momentum, 255–260
of operators, 80
of position, 252–254
of projection operator, 194
simultaneous, 131–133
of spin operator, 76, 77–80

Einstein, Albert, 155, 175, 223, 227
Electric current, 313
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Electromagnetic radiation in cavity, 
342–345

Electromagnetic waves, 313
Electrons, 2, 149, 259, 301

spin of, 3–4, 116, 180, 290
wave packets and, 301
waves and, 235

Energy
composite operator and, 180–181
conservation of, 114–115
creation and annihilation 

operators and, 328–337
frequency and, 123
harmonic oscillator and, 314–316, 

317–319
of particle with negative 

momentum, 278
of photon, 345
See also Hamiltonian

Energy eigenvalues, 121, 322–323
Energy eigenvectors, 121, 322–323
Energy levels

eigenfunctions for, 341, 343
harmonic oscillators and, 322–323, 

336–337, 338
Entangled states, 165–167
Entanglement, 149–181

Bell’s Theorem and, 227–231
classical, 155–160
combining quantum systems, 

160–161
composite observables, 175–181
correlation test for, 213–214
density matrices and, 184, 

199–202, 210–212
density matrix test for, 214–218
entangled states, 165–167
example: calculating a density 

matrix, 210–212
locality and, 223–226
of near-singlet state, 234
observables and, 167–175
process of measurement and, 

218–223
of product state, 163–165, 232
of singlet state, 233

summary of, 231–234
tests for, 212–218
for two spins, 161–163, 202–210

Euler-Lagrange equations, 305n
Expectation values, 87–88, 91, 

105–108
change over time in, 109–114
conservation of, 115
correlation test for entanglement 

and, 213–214
for density matrix, 198
of entangled state, 172–175
of near-singlet state, 234
particle dynamics and, 278–279
of product state, 232
of projection operator, 195–196
of singlet state, 233
in spin over time, 116–119

Experiments
apparatus and, 5–13
invasiveness of, 12–13
probabilities for outcomes of (see 

Probabilities for experimental 
outcomes)

two-state system, 4–11

Feynman, Richard, 302, 309
Forces, 290–294
Fourier transforms, 260–261, 265, 

285
Frequency

energy and, 123
of harmonic oscillator, 344–345

Functions
Dirac delta, 241, 242–245, 253
Gaussian, 327
normalizable, 318
potential, 291, 297–298
probability, 105–106, 213, 295
as vectors, 238–245
vector space, 27–28
zero, 239
See also Continuous functions; 

Eigenfunctions; Wave functions
Fundamental theorem of quantum 

mechanics, 64
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Gaussian curve, 301
Gaussian function, 327
Gaussian wave packets, 301
General Schrödinger equation, 102, 

274
General uncertainty principle, 

146–148, 268, 269–270
Gluons, 259
Gram-Schmidt procedure, 67–69
Gravitons, 280
Ground states, 324–327

annihilation of, 336
wave functions for, 337–339

Hamiltonian, 99–102
canonical momentum and, 

319–320
conservation of, 115
entanglement and, 181
for harmonic oscillator, 318–320, 

321, 322–323, 324–326, 329–
334, 336

motion of particles and, 274–278
nonrelativistic free particles and, 

280–283
quantum, 101, 103
spin in magnetic field, 116–119
time evolution of system and, 274

Hamiltonian operator, Schrödinger 
ket and, 124

Hamilton’s equations, 274, 279
Harmonic oscillator, 311–346

annihilation operators, 327–337
classical description, 314–316
creation operators, 327–337
energy levels, 322–323
ground state, 324–327
prevalence in physics, 311–313
quantization and, 342–346
quantum mechanical description, 

316–321
Schrödinger equation, 321–322
wave functions, 337–342

Harmonic oscillator energy level 
ladder/tower, 337, 338

Heisenberg, Werner, 327

Heisenberg Uncertainty Principle, 
139–140, 148, 269–271

Hermite, Charles, 62
Hermite polynomials, 341
Hermitian

density matrices as, 207, 208
momentum as, 262
position as, 262
projection operators as, 194

Hermitian conjugation/conjugate, 
59–61, 62, 63, 65, 97–98, 100, 
332

Hermitian matrix, 62, 137–138, 
195n, 208

Hermitian observable, 262
Hermitian operators, 52, 101, 112, 

138, 255
action on state-vector, 107–108
in composite space of states, 168
eigenvector of, 139, 236, 262
expectation value of, 109
linear operators as, 70, 73–74, 

246–250
orthonormal bases and, 64–67
orthonormal edge vectors of, 136
overview, 61–63
particles and, 252
trace of, 196

Hilbert, David, 239
Hilbert spaces, 25, 239
Hooke’s law, 312
Hydrogen atom, 336–337

Identity, resolving, 261–264
Identity operator, from projection 

operators, 195
Inner products, 28–29, 30–32, 193
Integrals, replacing sums, 240, 241
Integration by parts, 245–246

Kets (ket vectors), 28–30
axioms of, 25–27
composite systems and, 153–154
inner product, 30–32
Schrödinger, 124–126

Kinematics, 317
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Kronecker delta, 205
replaced by Dirac delta functions, 

241, 242–245
Kronecker product, 188–192, 205n
Kronecker symbol, 98, 161

Lagrange equation, 314–316
Lagrangian, 302–303, 314–316, 318, 

319
Law of evolution, 5
Least action principle, 301–305
Linearity, 27, 53
Linear motion, 295–301
Linear operators, 52–69, 246–250

eigenvalues, 56–59
eigenvectors, 56–59
Gram-Schmidt procedure, 67–69
Hermitian conjugation, 59–61
Hermition operators, 61–63
Hermition operators, orthonormal 

bases and, 64–67
machines and matrices, 52–56
observables and, 69–70, 73
outer product as, 193–196
properties of, 53
time-development operator, 97

Liouville’s theorem, 274
Locality

defined, 223–224
Einstein vs. Bell and, 227
entanglement and, 223–226

Lowering operators (annihilation 
operators), 327–337

Machines, matrices and, 52–56
Magnetic field, spin in, 116–119
Mathematical concepts

complete sets of commuting 
variables, 129–136

complex numbers, 21–24
continuous functions, 236–250
functions as vectors, 238–245
integration by parts, 245–246
linear operators, 52–69, 246–250
outer products, 193–196
tensor products, 149–155

tensor products in component 
form, 184–192

vector spaces, 24–34
Matrices

4 ⋅ 4, 188
machines and, 52–56
Pauli, 80, 118, 137
tensor product, building, 185–192
2 ⋅ 2, 188 [is this entry out of 

lexical sequence?]
Matrix elements, 55
Matrix multiplication, 56, 59
Matrix notation, transposing in, 

60–61
Maximally entangled state, 217, 221
Maxwell’s equations, 290
Mean value, 105
Measurables, states that depend on 

more than one, 129–133
Measurement, 137–139

apparatus and, 5–11, 219–223
collapse of the wave function and, 

126–127
multiple, 129–133
operators and, 80–82
process of, 218–223
states and, 2–3

Minimum-uncertainty wave packets, 
301

Minus first law, 94, 274
quantum version of, 94–95, 97

Mixed states, 198, 199–200
composite system and, 200–201
density matrices and, 208–209

Momentum
canonical, 315, 318–320
connection between quantum and 

classical physics, 268
eigenfunctions and, 341
eigenvectors of, 255–260
forces and, 292–294
Heisenberg Uncertainty Principle 

and, 269
proposition for, 20–21
velocity and, 286–288, 293
wavelength and, 259–260
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Momentum basis, 260–265
Momentum operator, 255–257
Momentum representation, of wave 

function, 260–265
Motion of particles. See Particle 

dynamics
Multiplication

of column vector, 28
of complex numbers, 23
matrix, 56, 59
vector, 26

Near-singlet state
correlation, 234
density matrix, 234
description of, 234
entanglement status of, 234
expectation values, 234
normalization, 234
state-vector, 234
wave function, 234

Negation, 14
Neutrino, 3

moving at speed of light,  
277–278

Newton’s law, 291, 292
quantum version of, 293–294

Nonlocality, 231
Nonrelativistic free particles, 

280–283
Normalizable functions, 318
Normalization

of near-singlet state, 234
of product state, 232
of singlet state, 233

Normalized vector, 32, 40
not rule, 14
Number operator, 332–333

Observables
complete set of commuting, 133
composite, 175–181
composite system, 167–175
defined, 52
linear operators and, 69–70, 73
multiple, 130–131

Observations, collapse of the wave 
function and, 126–127

Operator method
harmonic oscillator and, 328–337
wave functions and, 337–342

Operators
3-vector, 75, 83–85, 119
annihilation, 327–337
anti-Hermitian, 250
commutators and, 328, 334
composite, 171, 180–181
creation, 327–337
Hamiltonian, 124
Hermitian (see Hermitian 

operators)
identity, 195
linear (see Linear operators)
measurement and, 80–82
misconception regarding, 81–82
momentum, 255–257
number, 332–333
projection, 194–195
spin, 74–80
state-vectors and, 80–81
time-development, 95, 97–99
time-evolution, 99–102
unitary, 95, 97–99
zero, 133

Original Schrödinger equation,  
274

nonrelativistic free particle and, 
281–283

or rule, 14, 15, 19
Orthogonal basis vectors, 48
Orthogonal states, 39–40, 97
Orthogonal state-vectors, 70, 72
Orthogonal vectors, 32, 64–67, 70
Orthonormal bases, 32–34

Gram-Schmidt procedure, 67–69
Hermitian operators and, 64–67

Outer products, 193–196
Overlap, 72, 73

Parameters, counting, 45–47
Partial derivatives, time and, 

320–321
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Particle dynamics, 273–309
example, 273–279
forces, 290–294
linear motion and classical limit, 

295–301
nonrelativistic free particles, 

280–283
path integrals, 301–309
quantization, 288–290
time-independent Schrödinger 

equation, 283–285
velocity and momentum, 286–288

Particle moving in three-dimensional 
space, measuring, 130

Particles, 235–236
coordinates of, 238
Heisenberg Uncertainty Principle 

and, 269–271
Hermitian operators and, 252
wave function and probability for 

finding position of, 260–265
Particles, state of, 250–260

eigenvalues and eigenvectors of 
position, 252–254

momentum and its eigenvectors, 
255–260

Particle-wave duality, 236
Path integrals, 301–309
Pauli matrices, 80, 118, 137
Phase ambiguity, 42
Phase-factors, 24, 42, 46, 108–109
Phase indifference, 47, 48–49
Photons, 260, 277, 280, 345–346
Planck’s constant, 102–104, 148, 

255, 337
Poisson brackets, 280

commutators and, 112–114, 265–268
Polarization vector, 91
Polar representation of complex 

number, 22–23
Position

eigenvalues and eigenvectors of, 
252–254

Heisenberg Uncertainty Principle 
and, 269

proposition for, 20–21

Position representation, of wave 
function, 260–262, 263–265

Potential functions, 291
spiky, 297–298

Precession, of spin in magnetic field, 
119

Principle of Least Action, 301–305
Principle of Stationary Action, 302n
Probabilities for experimental 

outcomes, 8, 19, 48–49, 70, 
72–73, 87–90, 238, 306

replaced by probability densities, 
241, 242

Schrödinger ket and, 124–126
Probability

entanglement and, 206–207, 222
wave function and, 260–261, 264, 

270
Probability amplitudes, 39, 108–109
Probability density, 199, 317, 325

replacing probabilities, 241, 242
Probability distribution, 110, 112, 

213
in classical mechanics, 158–159
particle dynamics and, 278–279
uncertainty and, 140–141

Probability function, 105–106, 213, 
295

Product states, 163–165
correlation, 232
counting parameters for, 165
density matrix, 232
density matrix test for 

entanglement and, 215–218
description of, 232
entanglement status, 232
expectation values, 232
normalization, 232
state-vector, 232
wave function, 232

Projection operators, 194
properties of, 194–195

Propositions
classical, 13–16
classical, testing, 16–18
quantum, testing, 18–21
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Pure states, 198, 199–200
composite system and, 200–201
density matrices and, 207–209, 

217

Quantization, 288–290
importance of, 342–346

Quantum abstractions, 2
Quantum electrodynamics, 290
Quantum field theory, 342

path integrals and, 309
Quantum Hamiltonian, 101, 103
Quantum mechanics

as calculus of probabilities, 36
classical mechanics vs., 2–3
conservation of energy and, 

114–115
focus of, 1–3
fundamental theorem of, 64
Planck’s constant and, 102–104
testing propositions of, 18–21

Quantum mechanics, principles of, 
69–74, 99

3-vector operators, 83–85
application, 85–90
operators, measurement and, 

80–82
spin operators, 74–75
spin operators, constructing, 

75–80
spin-polarization principle, 90–91

Quantum Sim, 227–231
Quantum spins, 3–4, 36–37, 227, 

229–230
Quantum states, 35–49

along the x axis, 41–42
along the y axis, 42–45
counting parameters, 45–47
incompleteness of, 36
representing spin states as column 

vectors, 47
spin states, 37–40
states and vectors, 35–37

Quantum systems, combining, 
160–161

Quantum tunneling, 341–342

Quarks, 3, 259, 311
Qubits, 3–4, 5, 311

measuring system of two, 130–131

Raising operators (creation 
operators), 327–337

Real numbers, quantum mechanics 
and, 61–63

Reversibility, 94
Row vectors, bras and, 29–30

Schrödinger, Erwin, 327
Schrödinger equations

generalized (see Time-dependent 
Schrödinger equation)

original, 274, 281–283
path integrals and, 309
solving, 119–124
spin state evolution and,  

227–230
time-dependent (see Time-

dependent Schrödinger 
equation)

for time derivatives, 110–112
time-independent, 120–121, 124, 

283–285, 286, 289
Schrödinger ket, 124–126
Schrödinger’s Ket, 102
Sets, Boolean logic and, 13–16
Simultaneous eigenvectors, 131–133
Singlet state, 166–167, 181

correlation, 233
density matrix, 233
description of, 233
entanglement status of, 233
expectation values, 233
normalization, 233
state-vector, 233
wave function, 233

Space of states, 4–5, 13, 16, 24, 25, 
37, 40, 44, 71, 94, 124, 150–151, 
160, 162, 165, 166, 167–168, 
216, 219, 238, 274, 289, 317

Speed of light, particles moving at, 
277–278

Spherical coordinates, 89–90
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Spin
3-vector operators and, 83–85
along the x axis, 41–42
along the y axis, 42–45
density matrix for, 202–203
expectation values of, 87–88, 91
interaction with apparatus,  

5–13
in magnetic field, 116–119
number of distinct states for, 

45–47
quantum, 3–4, 36–37, 227, 

229–340
uncertainty principle and, 20
See also Qubits; Two spins

Spin components, simultaneous 
measurement of, 138–139

Spin operators, 74–75
constructing, 75–80

Spin-Polarization Principle, 90–91, 
172

Spin states
as column vectors, 47
representing, 37–40
Schrödinger’s equation and 

evolution of, 227–230
Spring constant, 312
Standard deviation, 140, 141
State

of apparatus, 219–220
change over time, 94, 274
maximally entangled, 217, 221
measurement and, 2–3
mixed (see Mixed states)
near-singlet (see Near-singlet 

state)
of particles, 250–260
pure (see Pure states)
quantum (see Quantum states)
in quantum mechanics, 2
singlet (see Singlet state)
that depend on more than one 

measurable, 129–133
triplet, 166–167, 179, 181
unambiguously distinct, 70, 72

State-labels, for composite system, 
152, 153, 154, 160–161

State of system, in classical vs. 
quantum physics, 21, 273–274

State space, Boolean logic and, 
13–16

State-vectors, 70
action of Hermitian operator on, 

107–108
as complete description of system, 

175
evolution of with time, 99
of near-singlet state, 234
operators and, 80–81
phase-factor and, 108–109
physical properties of, 46
of product state, 163–165, 232
representing spin states using, 

37–40
of singlet state, 233
time derivative of, 102
time evolution of, 95–96
wave functions and, 136
See also Bras (bra vectors); Kets 

(ket vectors); Singlet state; 
Triplet states

Statistical correlation, 158
Subset, 13, 14, 15–16
Sums, integrals replacing, 240
Symmetric eigenfunctions, 340–341
Systems

number of parameters 
characterizing, 45–47

quantum, combining, 160–161
See also Composite systems; Two-

spin system

Tensor products, 149–155, 165, 176
Tensor products in composite form, 

184–192
building tensor product matrices 

from basic principles, 185–187
building tensor product matrices 

from component matrices, 
188–192
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Tests for entanglement, 212–218
Time

change in expectation values over, 
109–114

conservation of distinctions and, 
97–99

determinism and, 96
partial derivatives and, 320–321
time-evolution operator, 99–102
unitarity, 95, 98–99
See also Schrödinger equations

Time dependence, 116, 125, 286, 
322. See also Uncertainty

Time-dependent Schrödinger 
equation, 102

harmonic oscillation and, 321–323
particle dynamics and, 274, 

275–276, 289, 302
solving, 120, 121–124
state of system and, 126

Time derivatives, 102
Schrödinger equation for, 110–112

Time-development operator, 95
conservation of distinctions and, 

97–99
Time evolution, 274

determinism and, 96
entanglement and, 181
unitary operators and, 98–99

Time-evolution operator, 99–102
Time-independent Schrödinger 

equation, 120–121, 124
particle dynamics and, 283–285, 

286, 289
Trace

of density matrix, 206, 207, 209
of projection operator, 195, 196
properties of, 209

Trajectories, path integrals, 301–309
Transposing, 60–61
Triangle inequality, 142–146
Triplet states, 166–167, 179, 181
Truth-value, 13–14
Two spins, 161–181

entanglement for, 202–210

Two-spin system
Bell’s theorem and, 230–231
density matrix of, 202–212, 

214–218, 226, 231
Two-state system, experiment on, 

4–11

Uncertainty
Cauchy-Schwarz inequality, 142
defined, 140–141
triangle inequality and Cauchy-

Schwarz inequality, 142–146
Uncertainty principle, 20, 139–140, 

146–148
Heisenberg, 139–140, 148

Unitarity, 95, 98–99, 100
Unitary evolution, 218, 222, 225
Unitary matrix, 225
Unitary operators, 95, 97–99
Unitary time evolution, 181
Unit matrix, 137

density matrix and, 217
Unit (normalized) vector, 32

state of system and, 40
Unit operator, as observable, 138
Up states, 71, 87–88, 219–220, 

221–222

Vector addition, 26
Vectors

basis (see Basis vectors)
column, 27–28, 29, 47, 49
concept of, 24–25
functions as, 238–245
normalized, 32, 40
orthogonal, 32, 64–67, 70
polarization, 91
quantum states and, 35–37
row, 29–30
three-(3-vector), 25, 27, 32–33, 

74–75, 83
unit, 32, 40
See also Bras (bra vectors); 

Eigenvectors; Kets (ket 
vectors)
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Vector space, 24–34
axioms, 24–27
bras, 28–30
column vectors, 27–28
functions and, 27–28, 239–240
inner products, 30–32
kets, 28–30
orthonormal bases, 32–34
tensor product as, 165
triangle inequality and, 142–146

Velocity
momentum and, 286–288, 293
of quantum mechanical particle, 

286–288
Venn diagram, 14, 16

Wave functions, 134–135, 236–238
action of Hamiltonian on, 320–321
calculating density matrices and, 

206–207
collapse of, 126–127
entanglement and, 212–213
ground-state, 324–327
locality and, 225–226
measurement and collapsing, 218, 

222–223
momentum and, 255–259
momentum representation, 

260–265

of near-singlet state, 234
operator method and, 337–342
position representation, 254, 

260–262, 263–265
of product state, 232
representing particles, 253–254
of singlet state, 233
state-vectors and, 136

Wavelength, momentum and, 
259–260

Wave packets, 295–301
bimodal, 296–297
Gaussian, 301
harmonic oscillation and, 322
minimum-uncertainty, 301
moving at fixed speed, 276–277
for nonrelativistic free particle, 

283
Waves, 235–236

harmonic oscillator and, 313
Wheeler, John, 52

x axis, spins along, 41–42

y axis, spins along, 42–45

Zaxon, 278
Zero function, 239
Zero operator, 133
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