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Preface

Research in physics, conducted at the end of the 19th Some Preliminary Remarks

century and in the first half of the 20th century, revealed
exceptionally peculiar nature of the laws governing the
behaviour of microparticles-atoms, electrons, and so on.
On the basis of this research a new physical theory called
quantum mechanics was founded.
The growth of quantum mechanics turned out to be quite
complicated' and prolonged. The mathematical part of
the theory, and the rules linking the theory with experi­
ment, were constructed relatively quickly (by the begin­
ning of the thirties). However, the understanding of the
physical and philosophical substance of the mathematical
symbols used in the theory was unresolved for decades.
In Fock's words [il, The mathematical apparatus of non­
relativistic quantum mechanics worked well and was free
of contradictions; but in spite of many successful applica­
tions to different problems of atomic physics the physical
representation of the mathematical scheme still remained
a problem to be solved.
Many difficulties are involved in a mathematical inter­
pretation of the quantum-mechanical apparatus. These
are associated with the dialectics of the new laws, the
radical revision of the very nature of the questions which
a physicist "is entitled to put to nature", the reinterpreta­
tion of the role of the observer vis a vis his surroundings,
the new approach to the question of the relation between
chance and necessity in physical phenomena, and the
rejection of many accepted notions and concepts. Quan­
tum mechanics was born in an atmosphere of discussions
and heated clashes between contradictory arguments.
The names of many leading scientists are linked with
its development, including N. Bohr, A. Einstein,
M. Planck, E. Schrodinger, M. Born, W. Pauli, A. Som­
merfeld, L. de Broglie, P. Ehrenfest, E. Fermi, W. Hei­
senberg, P. Dirac, R. Feynman, and others.
It is also not surprising that even today anyone who
starts studying quantum mechanics encounters some
sort of psychological barrier. This is not because of the
mathematical complexity. The difficulty arises from
the fact that it is difficult to break away from accepted
concepts and to reorganize one's l'attern of thinking
which are based on everyday experience.

Preface 7
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Before starting a study of quantum mechanics, it is
worthwhile getting an idea about its place and role in
physics. We shall consider (naturally in the most general
terms) the following three questions: What is quantum
mechanics? What is the relation between classical physics
and quantum mechanics? What specialists need quantum
mechanics? So, what is quantum mechanics?
The question can be answered in different ways. First
and foremost, quantum mechanics is a theory describing
the properties of matter at the level of microphenomena­
it considers the laws of motion of microparticles. Micro­
particles (molecules, atoms, elementary particles) are
the main "characters" in the drama of quantum me­
chanics.
From a broader point of view quantum mechanics should
be treated as the theoretical foundation of the modern
theory of the structure and properties of matter. In com­
parison with classical physics, quantum mechanics consi­
ders the properties of matter on a deeper and more funda­
mental level. It provides answers to many questions which
remained unsolved in classical physics. For example,
why is diamond hard? Why does the electrical conductivi­
ty of a semiconductor increase with temperature? Why
does a magnet lose its properties upon heating? Unable
to get answers from classical physics to these questions,
we turn to quantum mechanics. Finally, it must be em­
phasized that quantum mechanics allows one to calculate
many physical parameters of substances. Answering the
question "What is quantum mechanics?", Lamb [2] re­
marked: The only easy one (answer) is that quantum mecha­
nics is a discipline that provides a wonderful set of rules
for calculating physical properties of matter.
What is the relation of quantum mechanics to classical
physics? First of all quantum mechanics includes classical
mechanics as a limiting (extreme) case. Upon a transition
from microparticles to macroscopic bodies, quantum­
mechanical laws are converted into the laws of classical
mechanics. Because of this it is often stated, though not
very accurately, that quantum mechanics "works" in the
microworld and the classical mechanics, in the macro­
world. This statement assumes the existence of an isolated
"microworld" and an isolated "macroworld". In actual
practice We can only speak" of microparticles (micro­
phenomena) and macroscopic bodies (macrophenomena).
It is also significant that microphenomena form the basis
of macrophenomena and that macroscopic bodies are
made up of micI'oparticles. Consequently, the transition
from classical physics to quantum mechanics is a transi-
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tion not from one "world" to another, but from a shallower
to a deeper level of studying matter. This means that
in studying the behaviour of microparticles, quantum
mechanics considers in fact the same macroparticles,
but on a more fundamental level. Besides, it must be
remembered that the boundary between micro- and macro­
phenomena in general is quite conditional and flexible.
Classical concepts are frequently found useful when consid­
ering microphenomena, while quantum-mechanical ideas
help in the understanding of macrophenomena. There is
even a special term "quantum macrophysics" which is
applied, in particular, to quantum electronics, to the
phenomena of superfluidity and superconductivity and
to a number of other cases.
In answering the question as to what specialists need
quantum mechanics, we mention beforehand that we
have in mind specialists training in engineering colleges.
There are at least three branches of engineering for which
a study of quantum mechanics is absolutely essential.
Firstly, there is the field of nuclear power and the appli­
cation of radioactive isotopes to industry. Secondly, the
field of materials sciences (improvement of properties
of materials, preparation of new materials with preas­
signed properties). Thirdly, the field of electronics and
first of all the field of semiconductors and laser technology.
If we consider that today almost any branch of industry
uses new materials as well as electronics on a large scale,
it will become clear that a comprehensive training in
engineering is impossible without a serious study of
quantum mechanics.

The aim of this book is to acquaint the reader with The Structure of the Book
the concepts and ideas of quantum mechanics and the
physical properties of matter; to reveal the logic of its
new ideas, to show how these ideas are embodied in the
mathematical apparatus of linear operators and to de-
monstrate the working of this apparatus using a number
of examples and problems of interest to engineering
students.

~ The book consists of three chapters. By way of an intro­
duction to quantum mechanics, the first chapter includes

I a study of the physics of microparticles. Special attention
I has been paid to the fundamental ideas of quantization

and duality as well as to the uncertainty relations. The
first chapter aims at "introducing" the main "character",

s Le. the microparticle, and at showing the necessity of
~ rejecting a number of concepts of classical physics.
1 The second chapter deals with the physical concepts of

quantum mechanics. The chapter starts with an analysis
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of a set of basic experiments which form a foundation
for a system of quantum-mechanical ideas. This system
is based on the concept of the amplitude of transition
probability. The rules for working with amplitudes are
demonstrated on the basis of a number of examples, the
interference of amplitudes being the most important.
The principle of superposition and the measurement
process are considered. This concludes the first stage in
the discussion of the physical foundation of the theory.
In the second stage an analysis is given based on ampli­
tude concepts of the problems of causality in quantum
mechanics. The Hamiltonian matrix is introduced while
considering causality and its role is illustrated using
examples involving microparticles with two basic states,
with emphasis on the example~ofan electron in a magnet­
ic field. The chapter concludes with a section of a general
physical and philosophical nature.
The third chapter deals with the application of linear
operators in the apparatus of quantum mechanics. At the
beginning of the chapter the required mathematical
concepts from the theory of Hermitian and unitary linear
operators are introduced. It is then shown how the physi­
cal ideas can be "knitted" to the mathematical symbols,
thus changing the apparatus of operator theory into the
apparatus of quantum theory. The main features of this
apparatus are further considered in a concrete form in the
framework of the coordinate representation. The transi­
tion from the coordinate to the momentum representation
is illustrated. Three ways of describing the evolution of
microsystems in time, corresponding to the Schrodinger,
Heisenberg and Dirac representation, have been discussed.
A number of typical problems are considered to demon­
strate the working of the apparatus; particular attention
is paid to the problems of the motion of an electron
in a periodic field and to the calculation of the probability
of a quantum transition. "
The book contains a number of interludes. These are
dialogues in which the author has allowed himself free
and easy style of considering ~ certain questions. The
author was motivated to include interludes in the book
by the view that one need not take too serious an attitude
when studying serious subjects. And yet the reader
should take the interludes fairly seriously. They are
intended not so much for mental relaxation, as for help­
ing the reader with fairly delicate questions, which can
be understood best through a flexible dialogue treatment.
Finally, the book contains many quotations. The author
is sure that the "original words" of the founders of quan-



tum mechanics will offer the reader useful additional
information.

The author wishes to express his deep gratitude to Personal Remarks
Prof. I.I. Gurevich, Corresponding Member of the USSR
Academy of Sciences, for the stimulating discussions
which formed the basis of this book. Prof. Gurevich
discussed the plan of the book and its preliminary drafts,
and was kind enough to go through the manuscript. His
advice not only helped mould the structure of the book,
but also helped in the nature of exposition of the material.
The subsection "The Essence of Quantum Mechanics"
in Sec. 16 is a direct consequence of Prof. Gurevich's
ideas. .
The author would like to record the deep impression
left on him by the works on quantum mechanics by the
leading American physicist R. Feynman [3-51. While
reading the sections in this book dealing with the appli­
cations of the idea of probability amplitude, superposi­
tion principle, microparticles with two basic states, the
reader can easily detect a definite similarity in approach
with the corresponding parts in Feynman's "Lectures in
Physics". The author was also considerably influenced
by N. Bohr (in particular by his wonderful essays Atomic
Physics and Human Knowledge [6]), V. A. Fock [1, 7],
W. Pauli [8], P. Dirac [9], and also by the comprehensive
works of L. D. Landau and E. M. Lifshitz [10], D. I. Blo­
khintsev [11], E. Fermi [12], L. Schiff [131.
The author is especially indebted to Prof. M. I. Podgo­
retsky, D.Sc., for a thorough and extremely useful
analysis of the manuscript. He is also grateful to Prof.
Yu. A. Vdovin, Prof. E. E. Lovetsky, Prof. G. F. Druka­
rev, Prof. V. A. Dyakov, Prof. Yu. N. Pchelnikov, and
Dr. A. M. Polyakov, all of whom took the trouble of
going through the manuscript and made a number of
valuable comments. Lastly, the author is indebted to
his wife Aldina Tarasova for her constant interest in the
writing of the book and her help in the preparation of
the manuscript. But for her efforts, it would have been
impossible to bring the book to its present form.



Prelude. Can the System
of Classical Physics
Concepts Be Considered
Logically Perfect?

Participants: the Author and the
Classical Physicist (Physicist of
the older generation, whose
views have been formed on the
basis of classical physics alone).

Author:

Classical Physicist:

Author:
Classical Physicist:

Author:

Classical Physicist:
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He who would study organic existence,
First drives out the soul with rigid
persistence,
Then the parts in his hands he may
hold and class
But the spiritual link is lost, alas!
Goethe (Faust)

It is well known that the basic contents of a physical theory
are formed by a system of concepts which reflect the objectiva
laws of nature within the framework of the given theory. Let us
take the system of concepts lying at the root of classical physics.
Can this system be considered logically perfect?

It is quite perfect. The concepts of classical physics were formed
on the basis of prolonged human experience; they have stood the
test of time.

What are the main concepts of classical physics?
I would indicate three main points: (a) continuous variation

of physical quantities; (b) the principle of classical determinism;
(c) the analytical method of studying objects and phenomena.
While talking about continuity, let us remember that the state of
an object at every instant of time is completely determined by
describing its coordinates and velocities, which are continuous func­
tions of time. This is what forms the basis of the concept of motion
of objects along trajectories. The change in the state of an object
may in principle be made as small as possible by reducing the time
of observation.
Classical determinism assumes that if the state of an object as
well as all the forces applied to it are known at some instant of
time, we can precisely predict the state of the object at any sub­
sequent instant. Thus, if we know the position and velocity of
a freely falling stone at a certain instant, we can precisely tell its
position and velocity at any other instant, for example, at the
instant when it hits the ground.

In other words, classical physics assumes an unambiguous and
inflexible link between present and future, in the same way as
between past and present.

The possibility of such a link is in close agreement with the
continuous nature of the change of physical quantities: for every
instant of time we always have an answer to two questions: "What
are the coordinates of an object"? and, "How fast do they change?"
Finally, let us discuss the analytical method of studying objects
and phenomena. Here we come to a very important point in the
system of concepts of classical physics. The latter treats matter
as made up of different parts which, although they interact with
one another, may be investigated individually. This means that
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Author:

Classical Physicist:

Author:

Classical Physicist:

Author:

Classical Physicist:

Author:

Classical Physicist:
Author:

firstly, the object may be isolated from its environments and treated
as an independent entity, and secondly, the object may be broken
up, if necessary, into its constituents whose analysis could lead
to an understanding of the nature of the object.

I t means that classical physics reduces the question "what
is an object like?" to "what is it made of?"

Yes, indeed. In order to understand any apparatus we must
"dismantle" it, at least in one's imagination, into its constituents.
By the way, everyone tries to do this in his childhood. The same
is applicable to phenomena: in order to understand the idea behind
some phenomenon, we have to express it as a function of time,
Le. to find out what follows what.

But surely such a step will destroy the notion of the object
or phenomenon as a single unit.

To some extent. However, the extent of this "destruction"
can be evaluated each time by taking into account the interactions
between different parts and relation between the time stages of
a phenomenon. It may so happen that the initially isolated object
(a part of it) may considerably change with time as a result of its
interaction with the surroundings (or interaction between parts
of the object). However, since these changes are continuous, the
individuality of the isolated object can always be returned over
any period of time. It is worthwhile to stress here the internal
logical connections among the three fundamental notions of clas­
sical physics.

I would like to add that one special consequence of the "prin­
ciple of analysis" is the notion, characteristic of classical physics,
of the mutual independence of the object of observation and the
measuring instrument (or observer). We have an instrument and
an object of measurement. They can and should be considered
separately. independently from one another.

Not quite independently. The inclusion of an ammeter in
an electric circuit naturally changes the magnitude of the current
to be measured. However, this change can always be calculated
if we know the resistance of the ammeter.

When speaking of the independence of the instrument and the
object of measurement, I just meant that their interaction may be
simply "ignored".

In that case I fully agree with you.
Born has considered this point in [14]. Characterizing the philos­

ophy of science which influenced "people of older generation", he
referred to the tendency to consider that the object of investiga­
tion and the investigator are completely isolated from each other,
that one can study physical phenomena without interfering with
their passage. Born called such style of thinking "Newtonian",
since he felt that this was I"Jflected in "Newton's celestial me­
chanics."

13
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Classical Physicist: Yes, these are the notions of classical physics in general terms.
They are based on everyday commonplace experience and it may
be confidently stated that they are acceptable to our common sense,
Le. are taken as quite natural. I rather believe that the "principle
of analysis" is not only a natural but the only effective method of
studying matter. It is incomprehensible how one can gain a deeper
insight into any object or phenomenon without studying its com­
ponents. As regards the principle of classical determinism, it re­
flects the causality of phenomena in nature and is in full accordance
with the idea of physics as an exact science.

A uthor: And yet there are grounds to doubt the "flawlessness" of clas-
sical concepts even from very general considerations.
Let us try to extend the principle of classical determinism to the
universe as a whole. We must conclude that the positions and
velocities of all "atoms" in the universe at any instant are precisely
determined by the positions and velocities of these "atoms" at the
preceding instant. Thus everything that takes place in the world
is predetermined beforehand, all the events can be fatalistically
predicted. According to Laplace, we could imagine some "super­
being" completely aware of the future and the past. In his Theorie
analytique des probabilites, published in 1820, Laplace wrote [15]:
A n intelligence knowing at a given instant of time all forces acting
in nature as well as the momentary positions of all things of which
the universe consists, would be able to comprehend the motions of the
largest bodies of the world and those of the lightest atoms in one single
formula, provided his intellect were sufficiently powerful to subject
all data to analysis, to him nothing would be uncertain, both past
and future would be present to his eyes. It can be seen that an imagi­
nary attempt to extend the principle of classical determinism to
nature in its entity leads to the emergence of the idea of fatalism,
which obviously cannot be accepted by common sense.
Next, let us try to apply the "principle of analysis" to an investi­
gation of the structure of matter. We shall, in an imaginary way,
break the object into smaller and smaller fractions, thus arriving
finally at the molecules constituting the object. i\J further "breaking­
up" leads us to the conclusion that molecules are made up of atoms.
We then find out that atoms are made up of a nucleus and electrons.
Accustomed to the tendency of splitting, we would like to know
what an electron is made of. Even if we were able to get an answer
to this question, we would have obviously asked next: What are
the constituents, which form an electron, made of? And so on.
We tend to accept the fact that such a "chain" of questions is end­
less. The same common sense will revolt against such a chain
even though it is a direct consequence of classical thinking. .
Attempts were made at different times to solve the problem of
this chain. We shall give two examples here. The first one is based
on Plato's views on the structure of matter. He assumed that
matter is made up of four "elements"-earth, water, air and fire.
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Each of these elements is in turn made of atoms having definite
geometrical forms. The atoms of earth are cubic, those of water
are icosahedral" while the atoms of air and fire are octahedral and
tetrahedral, respectively. Finally, each atom was reduced to tri­
angles. To Plato, a triangle appeared as the simplest and most per­
fect mathematical form, hence it cannot be made up of any con­
stituents. In this way, Plato reduced the chain to the purely mathe­
matical concept of a triangle and terminated it at this point.
The other example is characteristic for the beginning of the 20th
century. It makes use of the external similarity of form between
the planetary model of the atom and the solar system. It is assumed
that our solar system is nothing but an isolated atom of some
other, gigantic world, and an ordinary atom is a sort of "solar
system" for some third dwarfish world for which "our electron"
is like a planet. In this case we admit the existence of an infinite
row of more and more dwarfish worlds, just like more and more
gigantic worlds. In such a system the structure of matter is de­
scribed in accordance with the primitive "chinese box" principle.
The "chinese box" principle of hollow tubes, according to which
nature has a more or less similar structure, was not accepted by
all the physicists of older generations. However, this principle
is quite characteristic of classical physics, it conforms to classical
concepts, and follows directly from the classical principle of anal­
ysis. In this connection, criticizing Pascal's views that the smallest
and the largest objects have the same structure, Langevin pointed
out that this would lead to the same aspects of reality being revealed
at all levels. The universe should then be reflected in an absolutely
identical fashion in all objects, though on a much smaller scale.
Fortunately, reality turns out to be much more diverse and in­
teresting.
Thus, we are convinced that a successive application of the prin­
ciples of classical physics may, in some cases, lead to results which
appear doubtful. This indicates the existence of situations for
which classical principles are not applicable. Thus it is to be
expected that for a sufficiently strong "breaking-up" of matter, the
principle of analysis must become redundant (thus the idea of the
independence of the object of measurement from the measuring
instrument must also become obsolete). In this context the question
"what is an electron made of?" would simply appear to have lost
its meaning.
If this is so, we must accept the relatiVity of the classical concepts
which are so convenient and dear to us, and replace them with some
qualitatively new ideas on the motion of matter. The classical
attempts to obtain an endless detailization of objects and phenom­
ena mean that the desire inculcated in us over centuries "to study
organic existence" leads at a certain stage to a "driving out of the
soul" and a situation arises, where, according to Goethe, "the spiri­
tual link is lost".

15



I'
I; I

Section 1.

Section 2.

Section 3.

Section 4.

Section 5.

Section 6.

Certain Characteristics and Properties of Micro-
particles 18

Two Fundamental Ideas of Quantum Mechanics 25

Uncertainty Relations 34

Some Results Ensuing from the Uncertainty Relations 42

Impossibility of Classical Representation of a Micro-
particle 49

Rejection of Ideas of Classical Physics 55

Interlude. Is a "Physically Intuitive" Model of a
Microparticle Possible? 63



-- f
I

Chapter 1 Physics
of the Microparticles

9

5

3

rl



Section I

I'
, :
!

Microparticles

Spin of a Microparticle

18

Certain Characteristics and
Properties of Microparticles

Molecules, atoms, atomic nuclei and elementary particles
belong to the category of microparticles. The list of
elementary particles is at present fairly extensive and
includes quanta of electromagnetic field (photons) as well
as two groups of particles, the hadrons and the leptons.
Hadrons are characterized by a strong (nuclear) inter­
action, while leptons never take part in strong interac­
tions. The electron t the muon and the two neutrinos (the
electronic and muonic) are leptons. The group of hadrons
is numerically much larger. It includes nucleons (pro­
ton and neutron), mesons (a group of particles lighter
than the proton) and hyperons (a group of particles
heavier than the neutron). With the exception of pho­
tons and some neutral mesons, all elementary particles
have corresponding anti-particles.,
Among properties of microparticles, let us first mention
the rest mass and electric charge. As an example, we note
that the mass m of an electron is equal to 9.1 X 10-28 g;
a proton has mass equal to 1836m, a neutron, 1839m
and a muon, 207m. Pions (n-mesons) have a mass of
about 270m and kaons (K-mesons) , about 970m. The
rest mass of a photon and of both neutrinos is assumed
to be equal to zero.
The mass of a molecule, atom or atomic nucleus is equal
to the sum of the masses of the particles constituting the
given microparticle, less a certain amount known as the
mass defect. The mass defect is equal to the ratio of the
energy that must be expended to break up the micropar­
ticle into its constituent particles (this energy is usually
called the binding energy) to the square of velocity of
light. The stronger the binding between particles, the
greater is the mass defect. Nucleons in atomic nuclei
have the strongest binding-the rnas~ defect for one
nucleon exceeds 10m.
The magnitude of the electric charge of a microparticle
is a multiple of the magnitude of the charge of an elec­
tron, which is equal to 1.6 X 10-19 C (4.8 X 10-10 CGSE
units). Apart from charged microparticles, there also
exist neutral microparticles (for example, photon, neutri­
no, neutron). The electric charge of a complex micro­
particle is equal to the algebraic sum of the charges of
its constituent particles.

Spin is one of the most important specific character­
istics of a microparticle. It may be interpreted as the
angular momentum of the microparticle not related to



its motion as a whole (it is frequently known as the
internal angular momentum of the microparticle). The
square of this angular momentum is equal to ;,,zs (s + 1),
where -s for the given microparticle is a definite integral
or semi-integral number (it is this number which is
usually referred to as the spin), Ii is a universal physical
constant which plays an exceptionally important role
in quantum mechanics. It is called Planck's constant
and is equal to 1.05 X 10-34 J.s Spin s of a photon is
equal to 1, that of an electron (or any other lepton) is

equal, to .~ , while pions and kaons don't have any

spin. * Spin is a specific property of a microparticle. It
does not have a classical analogue and certainly points
to the complex internal structure of the microparticle.
True, it is sometimes attempted to explain the concept
of spin on the 'model of an object rotating around its
axis (the very word "spin" means "rotate"). Such a mode
is descriptive but not true. In any case, it cannot be
literally accepted. The term "rotating microparticle"
that one comes across in the literature does not by any
means indicate the rotation of the microparticle, but
merely the existence of a specific internal angular mo­
mentum in it. In order that this momentum be trans­
formed into "classical" angular momentum (and the object
thereby actually rotate) it is necessary to satisfy the
conditions s ~ 1. Such a condition, however, is usually
not satisfied.
The peculiarity of the angular momentum of a micro-

.. particle is manifested, in particular, in the fact that its
projection in any fixed direction assumes discrete values
lis, Ii (s -1), ... , -lis, thus in total 2s + 1 values.
It means that the microparticle may exist in 28 + 1 spin
states. Consequently, the existence of spin in a micro­
particle leads to the appearance of additional (internal)
degrees of freedom.

If we know the spin of a microparticle, we can predict Bosons and Fermions
its behaviour in the collective of microparticles similar
to it (in other words, to predict the statistical properties
of the microparticle). It turns out that all the micropar-
ticles in nature can be divided into two groups, according

• The definition of spin of a microparticle assumes that spin is
independent of external conditions. This is true for elementary
particles. However, the spin of an atom, for example, may change
with a change in the state of the latter. In other words, the spin
of an atom may change as a result of influences on the atom which
lead to a change in its state.

Sec. 1 19
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Instability of Microparticles

20

to their statistical properties: a group with integral values
of spin or with zero spin, and another with half-integral
spin.
Microparticles of the first group are capable of populating
one and the same state in unlimited numbers. * Moreover,
the more populated is a given state, the higher is the
probability that a microparticle appears in this state.
Such microparticles are known to obey the Bose-Einstein
statistics, in short they are simply called bosons. Micro­
particles of the second group may inhabit the states only
one at a time, if the state under consideration is already
occupied, no other microparticle of the given type can
be accommodated there. Such microparticles obey Fermi­
Dirac statistics and are called fermions.
Among elementary particles, photons and mesons are
bosons while the leptons (in particular, electrons), nu­
cleons and hyperons are fermions. The fact that electrons
are fermions is reflected in the well-known Pauli exclusion
principle.

All elementary particles except the photon, the elec­
tron, the proton and both neutrinos are unstable. This
means that they decay spontaneously, without any exter­
nal influence, and are transformed into other particles.
For example, a neutron spontaneously decays into a pro­
ton, an electron and an electronic antineutrino (n -+ p +
+ e- + v e ). It is impossible to predict precisely at what
time a particular neutron will decay since each individ­
ual act of disintegration occurs randomly. However, by
following a large number of acts, we find a regularity
in decay. Suppose there are No neutrons (N 0 ~ 1) at
time t = O. Then at the moment t we are left with
N (t) = No exp (-tiT:) neutrons, where T is a certain
constant characteristic of neutrons. It is called the life­
time of a neutron and is equal to 103 s. The quantity
exp (-tIT) determines the probability that a given
neutron will not decay in time t.
Every unstable elementary particle is characterized by
its lifetime. The smaller the lifetime of a particle, the
greater the probability that it will decay. For example,
the lifetime of a muon is 2.2 X 10-6 s, that of a positively
charged Jt-meson is 2.6 X 10-8 s, while for a neutral
Jt-meson the lifetime is 10-16 s and for hyperons, 10-10 s.
In recent years, a large number of particles (about 100)
have been observed to have an anomalously small lifetime
of about 10-22-10-23 s. These are called resonances.

* The concept of the state of a microparticle is discussed in Sec. 3
below.
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It is worthnoting that hyperons and mesons may decay
in different ways. For example, the positively charged
n-meson may decay into a muon and a muonic neutrino

It (n + -+ f.-t + + "It), into a positron (antielectron) and elec-
tronic neutrino (:n: + -+ e+ + "e), into a neutral :n:-meson,
positron and electronic neutrino (n + --+ :n:o + e+ + "e).
For any particular :n:-meson, it is impossible to predict
not only the time of its decay, but also the mode of decay
it might "choose". Instability is inherent not only in
elementary particles, but also in other microparticles.
The phenomenon of radioactivity (spontaneous conver­
sion of isotopes of one chemical element into isotopes of
another, accompanied by emission of particles) shows
that the atomic nuclei can also be unstable. Atoms and
molecules in excited states are also unstable; they spon­
taneously returp to their ground state or to a less excited
state.
Instability determined hy the probability laws is, apart
from spin, the second special specific property inherent
in microparticles. This may also be considered as an
indication of a certain "internal complexity" in the
microparticles.
In conclusion, we may note that instability is a specific,
but by no means essential, property of microparticles.
Apart from the unstable ones, there are many stable
microparticles: the photon, the electron, the proton,
the neutrino, the stable atomic nuclei, as well as atoms
and molecules in their ground states.

Looking at the decay scheme of a neutron (n -+ p + Interconversion of Microparticles

+ e- + v:,), an inexperienced reader might presume
that a neutron is made up of mutually bound proton,
electron and electronic antineutrino. Such an assumption
is wrong. The decay of elementary particles is by no
means a disintegration in the literal sense of the word;
it is just an act of conversion of the original particle
into a certain aggregate of new particles; the original
particle is annihilated while new particles are created.
The unfoundedness of the literal interpretation of the
term "decay of particles" becomes apparent when one
considers that many particles can decay in several dif-
ferent ways.
The interconversion of elementary particles turns out
to be much more diverse and complicated if we consider
particles not only in a free,' but also in a bound state.
A free proton is stable, and a free neutron decays accord­
ing to the equation mentioned above. If, however, the
neutron and the proton are not free but bound in an
atomic nucleus, the situation radically changes. Now
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the following equations of interconversion are operative:
n.- p + ~C, P -+- n + n+ (here, n- is a negatively
charged n-meson, the antiparticle of the n +-meson).
These equations very well illustrate that an attempt to
find out whether the proton is a "constituent" of the
neutron, or vice versa is pointless.
Everyday experience teaches us that to break up an
object into parts means to reveal its structure. The idea
of analysis (or splitting) reflects the characteristic feature
of classical methods. When we go over to the micropar­
ticles, this idea still holds to a certain extent: the mole­
cules are made up of atoms, the atoms consist of nuclei
and electrons, the nuclei are made up of protons and
neutrons. However, the idea exhausts itself at this point:
for example, "splitting up" of a neutron or a proton does
not reveal the structure of these particles. As regards
elementary particles, when we say that a particle decays
into parts, it does not mean that these particles constitute
the given particle. This condition itself might serve as
a definition of an elementary particle.
Decay of elementary particles is not the only kind of
interconversion of particles. Equally important is the
case of interconversion of particles when they collide
with one another. As an example, we shall consider some
equations of interconversion during collision of photons
(V) with protons and neutrons:

V+ p.-n+n+, l'+n.-p+n-,
1'+ p.- p+no, ,\,+n.-n+no,
'\' +p.- p + n+ + n-,

l'+n .-n+ nO+ nO,

1'+ p.- p+ p+ PCD-denotes an antiproton)

It should be mentioned here that in ,all the above equa­
tions, the sum of the rest masses of the end particles is
greater than the rest mass of the initial ones. In other
words, the energy of the colliding particles is converted
into mass (according to the well-known relation E = mc2).

These equations demonstrate, in particular, the fruitless­
ness of efforts to break up elementary particles (in this
case, nucleons) by "bombarding" them with other par­
ticles (in this case, photons): in fact, it does not lead to
a breaking-up of the particles being bombarded at, but
to the creation of new particles, to some extent at the
expense of the energy of the colliding particles.
A study of the interconversion of elementary particles
permits us to determine certain regularities. These regu-
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I
', of certalll quantities which play the role of some defimte
; characteristics of certain particles. As a simple example,
~. we take the electric charge of a particle. For any inter-
i conversion of particles, the algebraic sum of electric

charges of the initial and end particles remains the same.
The law of conservation of the electric charge refers to
a definite regularity in the interconversion of particles:
it permits one to summarily reject equations where the
total electric charge is not conserved.

As a more complicated example, we mention the so-called barionic
charge of a particle. It has been observed that the number of nu-
leons during an interconversion of particles is conserved. With the

discovery of antinucleons, it was observed that additional nu­
cleons may be created, but they must be created in pairs with
these antinucleons. So a new characteristic of particles, the barion­
ic charge, was introduced. It is equal to zero for photons, leptons
and mesons, +1 for nucleons, and -1 for antinucleons. This per­
mits us to consider the above-mentioned regularity as a law of
conservation of the total barionic charge of the particles. The law
was also confirmed by the discoveries that followed: the hyperons
were assigned a barionic charge equal to 1 (as for nucleons) and the
antihyperons were given a barionic charge equal to -1 (as for
antinucleons).

While going over from macroparticles to microparticles, Universal Dynamic Variables
one would expect qualitatively di fferent answers to
questions like: Which dynamic variables should be used
to describe the state of the object? How should its motion
be depicted? Answers to these questions reveal to a con-
siderable extent the specific nature of microparticles.
In classical physics, we make use of the laws of conserva­

-tion of energy, momentum and angular momentum. It is
woll known that these laws are consequences of certain
properties of the symmetry of space and time. Thus, the
law of conservation of energy is a consequence of homoge­
neity oj time (independence of the course of a physical
process of the moment chosen as the starting point of
the process); the law of conservation of momentum is
a consequence of the unijormity of space (all points in
space are physically equivalent); the law of conservation
of angular momentum is a consequence of the_ isotropy
of space (all directions in space are physically equivalent).
To elucidate the properties of symmetry of space and
time, we note, for example, that thanks to these pro­
perties, Kepler's laws describing the motion of the plan­
ets around the sun are independent of the position of
the sun in the galaxy, of the orientation in space of the

I
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plane of motion of the planets and also of the century in
which these laws were discovered. The connection between
the properties of symmetry of space and time and the
corresponding conservation laws means that the energy,
momentum and angular momentum can be considered
as integrals of motion, whose conservation is a consequence
of the corresponding homogeneity of time and the homo­
geneity and isotropy of space.
The absence of any experimental evidence indicating
violation of the above-mentioned properties of symmetry
of space and time for microphenomena reveals that such
dynamic parameters as energy, momentum and angular
momentum should retain their meaning when applied
to microparticles. In other words, the connection of these
dynamic variables with the fundamental properties of
symmetry in space and time makes them universal
variables, Le. variables which are "used" while consider­
ing the kind of phenomena occurring in different branches
of physics.
When transferring the concepts of energy, momentum
and angular momentum from classical physics to quan­
tum mechanics, however, the specific nature of the micro­
particles must be taken into account. In this connection
we recall the well-known expressions for energy (E),

momentum (p) and angular momentum (M) of a classical

object, having mass m, coordinate -;, velocity ;;

I,
I,

,!

mv2 -* -+ ---+ -+ -+-+

E= -2-+U (r),p=mv, M =m(r X V). (1.1)

Eliminating the velocity, we get from here the relations
connecting energy, momentum and angular momentllm
of a classical ohject:

If we turn to a microparticle, we can go a bit farther,
(see Sec. 3) and conclude that relations (1.2) and (1.3)
are no longer valid. In other words, the classical connec­
tions between the integrals of motion become useless as
we go over to microparticles (as regards relations (1.1),
they cannot be mentioned at all since the very concept of
the velocity of a microparticle, as we shall see below, is
meaningless). This is the first qualitatively new cir­
cumstance.

(1.2)

(1.3)

p2 -+

E=2:m+ U (r),
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In order to consider the other qualitatively new circum­
stances, we must turn to the fundamental ideas of quan­
tum mechanics, i. e. the idea of quantization of physical
quantities and the idea of wave-particle duality.

The essence of the idea of quantization lies in the
fact that certain physical quantities related to the micro­
particles may assume, under relevant circumstances,
only certain discrete values. These quantities are said
to be quantized.
Thus the energy of any microparticle in a bound state,
like that of an ~lectron in an atom, is quantized. The
energy of a freely moving microparticle, however is
not quantized.
Let us consider the energy of an electron in an atom.
The system of so-ealled energy levels corresponds to a
discrete set of values of electron energy. We consider
two energy levels E 1 and E 2 as shown in Fig. 2.1 (the
values of electron energy are plotted along the vertical
axis). The electron may possess energy E 1 or E 2 and
cannot possess any intermediate energy-all values of
energy E satisfying the condition E 1 < E < E 2 are
forbidden for it*. It should be noted that the discreteness
of energy does not mean in any case that the electron is
"doomed" to remain forever in the initial energy state (for
example on level E1). The electron may go over to another
energy state (level E 2 or any other) by acquiring or
releasing the corresponding amount of energy. Such
a transition is called a quantum transition.
The quantum-mechanical idea of discreteness has a fairly
long history. By the end of 19th century, it was established
that the radiation spectra of free atoms are line spectra
(i.e. they consist of sets of lines) and contain, for every
element, definite lines which form ordered groups (series).
In 1885, it was discovered that atomic hydrogen emits
radiation of frequencies (iln (henceforth we use the cyclic
frequencies (il, related to the normal frequencies v through
the equation (il = 2nv) which may be described by the
formula

(iln = 2ncR ( 1- :2 ), (2.1)

The Idea of Quantization
(Discreteness)

Section 2 Two Fundamental Ideas of
Quantum Mechanics

Fig. 2.1

£

E., e

'i * A specific situation in quantum mechanics is possible in which
one must assume that an electron occupies level £1 as well as level
£2 (see Sec. 10).
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where n are integral numbers 3, 4, 5, ... , c is the
velocity of light, R is the so-called Rydberg constant
(R = 1.097 X 107 m-1). Formula (2.1) was derived by
Balmer, hence the set of frequencies described by this
formula is called the Balmer series. The frequencies of
the Balmer series fall in the visible region of spectrum.
Later (in the beginning of 20th century), additional series
of radiation from atomic hydrogen falling in the ultra­
violet and infrared regions were discovered. The regulari­
ties in the structure of these spectra were identical to the
regularities in the structure of the Balmer series, which
enabled a generalization of formula (2.1) in the following
form:

CJ)n = 2ncR ( ;. - n~ ) . (2.2)

The number k fixes the series (in each series n > k);
k = 2 gives the Balmer series, k = 1, the Lyman series
(ultraviolet frequencies), k = 3, the Paschen series (infra­
red frequencies), and so on.
Regularity in the structure of series was observed not
only in the spectrum of atomic hydrogen, but also in the
spectra of other atoms. It definitely indicated the possibil­
ity of some generalizations. One such generalization
was proposed by Ritz in 1908 in his combination principle,
which states that if the formulae of series are given and
the constants occurring in them are known, any newly
discovered line in the spectrum may be obtained from
the lines already known by means of combinations in the
form of sums and differences. This principle may be
applied to hydrogen in the following way: we write the
so-called spectral terms for different numbers n:

T(n) = 2ncRln2 •

Then each frequency observed in the hrdrogen spectrum
may be expressed as a combination of two spectral terms.
By combining the spectral terms, it is possible to predict
different frequencies.
It is remarkable that at about the same time, the idea
of discreteness arose in another direction (not related
to atomic spectroscopy). This is the case of radiation
within a closed volume or, in other words, black body
radiation. After analyzing the experimental data, Planck
in 1900 proposed his famous hypothesis. He suggested
that the energy of electromagnetic radiation is emitted
by the walls of a cavity not continuously, but in portions
(quanta), the energy of a quantum being equal to

E = nw (2.3)
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where ro is the frequency of radiation and n is a certain
universal constant (it later became known as Planck's
constant). Planck's hypothesis provided an agreement
between the theory and experiment and, in particular,
removed the flaws arising in the previous theory when
passing to higher frequencies. This had been called the
"ultraviolet catastrophe" (see, for example, [17]).

In 1913, Bohr proposed his theory of the hydrogen
atom. This theory was evolved as a "confluence" of the
planetary atomic model by Rutherford, the Ritz combi­
nation principle, and Plank's ideas of quantization of
energy.
According to Bohr's theory, there exist certain states
in which the atom does not radiate (stationary states).
The energy of these states forms a discrete spectrum,
E I , E 2 , ••• , En' .... The atom emits (absorbs) during
transition frow. one stationary state to another. The
emitted (absorbed) energy is the difference between the
energies of the corresponding stationary states. Thus,
during a transition from the state with energy En to the
state with lower energy Ell' a quantum of radiation with
energy (En - Ell) is emitted. Thus a line with frequency

E n - Ell (2.4)ro = Ii

appears in the spectrum. Formula (2.4) expresses the
well-known Bohr's frequency condition.
In Bohr's theory, the n-th stationary state of hydrogen
atom corresponds to a circular orbit of radius rn along
which the electron revolves around the nucleus. In order
to compute rn , Bohr suggested, firstly, using Newton's
second law for a charge moving in a circle under the
influence of a Coulomb's force:

The Idea of Quantization and
Bohr's Model of Hydrogen Atom

(here m and e are the mass and the charge of an electron,
Vn is the velocity of the electron in the n-th orbit). Sec­
ondly, Bohr suggested the condition of quantization
of the angular momentum of the electron:

mvnrn = nn (2.5b)

By using relations (2.5a) and (2.5b), it is easy to find rn

and Vn:

1i2 e2

rn=-2 n2 , v =- (2.6)me n lin

The energy En of the stationary state consists of kinetic
(Tn) and potential (Un) terms: En = Tn + Un. Assuming

(2.5a)
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that Tn = mv~/2, Un = -e2/r" and using (2.6), we find
that

The negative sign of the energy means that the electron
is in a bound state (energy of a free electron is taken to
be equal to zero).
Substituting the result (2.7) into the frequency relation
(2.4), and comparing the expression thus obtained with
formula (2.2), we may, following Bohr, find an expression
for Rydberg's constant:

me4

E ----n - 2fz2n2 (2.7)

(2.8)

On Quantization of Angular
Momentum

28

Bohr's theory (or the old quantum theory, as it is now
called) suffered from internal contradictions; in order
to determine the radius of the orbit, one had to make
use of relations of different kinds-the classical relation
(2.5a), and the quantum relation (2.5b). In spite of this,
the theory was of great significance as a first step towards
the creation of a consistent quantum theory. Moreover,
the nature of the spectral terms, and, consequently,
the Ritz combination principle, was revealed for the
first time and the calculated value of Rydberg's constant
was in excellent agreement with its empirical value. The
success of the theory proved testimony to the usefulness
of the idea of quantization. Having acquainted himself
with Bohr's calculations, Sommerfeld wrote Bohr a letter,
in which he said:
I thank you very much for sending me your extremely interest­
ing work.... The problem of expressing the Rydberg-Ritz
constant by Planck's has been for some time in my thoughts...
A lthough I am for the present still rather sceptical about
atom models in general, nevertheless the calculation of the
constant is indisputably a great achievement.

We must note that in contrast to energy, the angular
momentum of a microparticle is always quantized. Thus,
the observed values of the square of angular momentum
of a microparticle are expressed by the formula

M2 = fizl (l + 1), (2.9a)

where l is an integer 0, 1, 2, .... If we consider the
angular momentum of an electron in the atom in the
n-th stationary state, the number l assumes values from 0
to n - 1.
In the literature, it is customary to refer to the angular
momentum as simply momentum. Henceforth, we shall
follow this practice.



The projection of the momentum of a microparticle in
a certain direction (let us denote it as z-direction) assumes
the values

M z = nm (2.9b)

where m = --l, -l + 1, ... , 1-1, l. For a given value
of the number l, the number m can assume 2l + 1 discrete
values. We emphasize here that different projections of
the momentum of a microparticle in a given direction
differ from one another by values which are multiples
of Planck's constant.
It was mentioned above that spin is a distinctive "inter­
nal" momentum of a microparticle having a definite
value for a given microparticle. To distinguish it from
the spin momentum, ordinary momentum is called
orbital momentum. Kinematically the spin momentum
is analogous" to the orbital momentum. Naturally, in
order to find the possible projections of the spin momen­
tum we must use a formula of the type (2.9b) (as in the
case of orbital momentum, the projections of the spin
momentum differ from one another by integral multiples
of Planck's constant). If s is the spin of a microparticle
(this number was introduced in Sec. 1), then the pro­
jection of the spin momentum assumes values na, where
a = -s, -s + 1, ... , s - 1, s. Thus, the projection

of the spin of an electron assumes values - ~ and + ~ .
The numbers n, l, m, a considered here determine the
different discrete values of the quantized dynamic vari­
ables (in this case, energy and momentum), and are
called quantum numbers; n is called the principal quantum
number; l, the orbital quantum number; m, the magnetic
quantum number and a, the spin quantum number. There
also exist other quantum numbers.

In spite of the resounding success of Bohr's theory, the
idea of quantization engendered serious doubts in the
beginning. It was notfC8d thittbTs idea was full of inter­
nal contradictions. Thus in his letter to Bohr, Rutherford
[19] wrote in 1913:
...Your ideas as to the mode of origin of the spectrum of
hydrogen are very ingenious and seem to work out well;
but the mixture of Planck's ideas with the old mechanics
makes it very difficult to form a physical idea of what is
the basis of it. There appears to me one grave difficulty in
your hypothesis which I have no doubt you fUlly realise
namely, how does an electron decide what frequency it is
going to vibrate at when it passes from one stationary state
to the other? It seems to me that you would have to assume
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that the electron knows beforehand where it is going to
stop*...
We shall explain the difficulties noticed by Rutherford:
Let an electron occupy level E1 (Fig. 2.1). In order to go
over to the level E2 , the electron must absorb a quantum
of radiation (i.e. a photon) with a definite energy equal
to (E2 - E1)· Absorption of a photon with any other
energy will not result in the indicated transition and is
therefore not possible (for simplicity, we shall consider
only two levels). The question now arises: In what way
does an electron perform a "selection" of the "required"
photon out of the photon flux of different energies falling
on it? In order to "select" the "required" photon, the
electron must be "preViously aware" of the second level,
i.e. as if it had already visited it. However, in order to
visit the second level, the electron must have first absorbed
the "required" photon. This gives rise to a vicious circle.

Further contradictions are observed while considering the jump
of an electron from one orbit in the atom to another. Whatever
the speed at which the transition of the electron from the orbit
of one radius to that of another takes place, it has to last for some
finite period of time (otherwise it would be a violation of the basic
requirements of the theory of relativity). But then it is hard to
understand what the energy of the electron should be during this
intermediate period-the electron no longer occupies the orbit
corresponding to energy E1 and has not yet arrived at the orbit
corresponding to energy E 2 •

Idea of Wave-Particle Duality

It is thus not surprising that at one time efforts were made
to obain an explanation of experimental results without
resorting to the idea of quantization. In this respect,
the famous remarks by Schrodinger about "these damned
quantum jump~", which, of course, were made .in the
heat of· the moment, are worth noting.

However, experience inevitably point~d to the useful­
ness of quantization and no place was left for an
alternative.
In this case, there is just one way out: new ideas must
be introduced, which form a non-contradictory picture
of the whole including the ideas of discreteness. The
idea of wave-particle duality was just such a new physical
concept.

Classical physics acquaints us with two types of motion:
corpuscular and wave motion. The first type is characterized

* The reader should not be confused by the remarks about the
oscillations of electron: uniform motion in a eircle is a super­
position of two harmonic oscillations in mutually perpendicular
directions.
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by a localization of the object in space and the existence
of a definite trajectory of its motion. The second type,
on the contrary, is characterized by delocalization in
space. No localized object corresponds to the motion of
a wave, it is the motion of a medium. In the world of
macrophenomena, the corpuscular and wave motions are
clearly distinguished. The motion of a stone thrown
upward is something entirely different from the motion
of a wave breaking a beach.
These usual concepts, however, cannot be transferred
to quantum mechanics. In the world of microparticles,
the above-mentioned strict demarcation between the two
types of motion is considerably obliterated. The motion
of a microparticle is characterized simultaneously by
wave and corpuscular properties. If we schematically
consider the classical particles and classical waves as two
extreme cases •.of the motion of matter, microparticles
must occupy in this scheme a place somewhere in be­
tween. They are not "purely" (in the classical sense) cor­
puscular, and at the same time they are not "purely"
wavelike; they are something qualitatively different.
It may be said that a microparticle to some extent is
akin to a corpuscle, and in some respect it is like a wave.
Moreover, the extent depends, in particular, on the
conditions under which the microparticle is considered.
While in classical physics a corpuscle and a wave are
two mutually exclusive extremities (either particle, or
wave), these extremities, at the level of microphenomena,
combine dialectically within the framework of a single
microparticle. This is known as wave-particle duality.
The idea of duality was first applied to electromagnetic
radiation. As early as 1917, Einstein suggested that
quanta of radiation, introduced by Planck, should be
considered as particles possessing not only a definite
energy, but also a definite momentum:

, I

E = !iffi,
Jiw

P=-c-' (2.10)

Later (from 1923), these particles became known as
photons.

The corpuscular properties of radiation were very clearly demon­
strated in the Compton effect (1923). Suppose a beam of X-rays
is scattered by atoms of matter. According to dassical concepts,
the scattered rays should have the same wavelength as the incident
rays. However, experiment shows that the wavelength of scattered
waves was greater than the initial wavelength of the rays. More­
over, the difference between the wavelengths depends on the angle

!
:J

j

Sec. 2 31



of scattering. The Compton effect was explained by assuming that
the X-ray beam behaves like a flux of photons which undergo elas­
tic collisions with the electrons of the atoms, in conformity with
the laws of conservation of energy and momentum for colliding
particles. This led not only to a qualitative but also to a quanti­
tative agreement with experiment (see [17]).

In 1924, de Broglie suggested that the idea of duality
should be extended not only to radiation but also to all
microparticles. He proposed to associate with every
microparticle corpuscular characteristics (energy E and
momentum p) on the one hand and wave characteristics
(frequency ffi and wavelength 'A) on the other hand. The
mutual dependence between the characteristics of differ­
ent kinds was accomplished, according to de Broglie,
through the Planck's constant n in the following way:

2nn
E=nffi, P=-",- (2.11)

(the second relation is known as de Broglie's equation).
For photons, relation (2.11) is automatically satisfied
if we substitute ffi = 2nclt,. in (2.10). The boldness of
de Broglie's hypothesis lays in that relation (2.11) was
assumed to be satisfied not only for photons, but gen­
erally for all microparticles, and in particular, for those
which have a rest mass and which were hitherto associated
with corpuscles.
De Broglie's ideas received confirmation in 1927, with
the discovery of electron diffraction. While studying the
passage of electrons through thin foils, Davisson and
Germer (as well as Tartakovsky) observed characteristic
diffraction rings on the detector screen. For "electron
waves" the crystal lattice of the target served as a diffrac­
tion grating. Measurement of distances between diffraction
rings for electrons of a given energy confirmed de Broglie's
formula. ;,
In 1949, Fabrikant and coworkers set up an interesting
experiment. They passed an extremely weak electron
beam through the diffraction apparatus. The interval
between successive acts of passage (between two electrons)
was more than 104 times longer than the time required
for the passage of an electron through the apparatus.
This ensured that other electrons of the beam do not
influence the behaviour of an electron. The experiment
showed that for a prolonged exposure, permitting reg­
istration of a large number of electrons on the detector
screen, the same diffraction pattern was observed as in
the case of regular electron beams. It was thus concluded
that the wave nature of the electrons cannot be explained
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Here k is the wave vector; its direction coincides with
the direction of propagation of the wave, and its magni-

as an effect of the electron aggregate; every single electron
possesses wave properties.

The idea of quantization introduces discreteness, and
discreteness requires a unit of measure. Planck's constant
plays the role of such a measure. It may be said that this
constant determines the "boundary" between microphe­
nomena and macrophenomena. By using Planck's con­
stant, as well as mass and charge of an electron, we may
form the following simple composition having dimensions
of length:

n2

r j =-2=0.53 X 10-8 em (2.12)
me

(note that r1 is the radius of the first Bohr orbit). Accord­
ing to (2.12), a magnitude of about 10-8 em may be consid­
ered as the spatial "boundary" of microphenomena.
This is just abol\~ the linear dimensions of an atom.
If the Planck constant 'Ii were, say, 100 times larger,
then (other conditions being equal) the "limit" of micro­
phenomena would, according to (2.12), have been of the
order of 10-4 em. This would mean that the microphenom­
ena would become much closer to us, to our scale, and
the atoms would have been much bigger. In other words,
matter in this case would have appeared much "coarser",
and classical concepts would have to be revised on a much
larger scale.
As was indicated above, the projections of the momentum
of a microparticle differ from one another by multiples
of 'Ii [see (2.9b)]' Consequently, Planck's constant appears
here as a unit of quantization. If the orbital momentum
is much greater than 'Ii, its quantization may be neglected.
We get in this case the classical angular momentum.
In contrast to the orbital momentum, spin momentum
cannot be very large. It is clear, that it is impossible to
neglect its quantization in principle; hence the spin
momentum does not have a classical analogue (this cir­
cumstance was already indicated in Sec. 1).
Planck's constant is inseparably linked not only with
the idea of quantization, but also with the idea of duality.
From (2.11) it is evident that this constant plays a fairly
important role-it supplies a "link" between the corpuscu­
lar and wave properties of a microparticle. This becomes
quite clear if we rewrite (2.11) in a form permitting us
to take account of the vector nature of momentum:
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The Role of Planck's Constant

Sec. 2 33 ,, .



tude is expressed through the wavelength in the following
way: k = 2n/A. The left-hand sides of equations (2.13)
describe corpuscular properties of a microparticle, and
the right-hand sides wave properties. We note, by the
way, that the form of relations (2.13) indicates the rela­
tivistic invariance of the idea of duality.
Thus, Planck's constant plays two fundamental roles in
quantum mechanics-it serves as a measure of discrete­
ness, and it combines the corpuscular and wave aspects
of the motion of matter. The fact that the same constant
plays both these roles is an indirect indication of the
internal unity of the two fundamental ideas of quantum
mechanics.
In conclusion, we remark that the presence of Planck's
constant in any expression indicates the "quantum-mecha­
nical nature" of this expression. *

Section 3 Uncertainty Relations

Idea 01 Duality and Uncertainty
Relations

Fig. 3.1
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Let us consider an aggregate of a large number of plane
waves (the nature of waves is not important) propagating,
say, along the x-axis. Let the frequencies of the waves be
"spread" over a certain interval ~ffi, and the values of the
wave vector, over an interval ~kx. If all these plane
waves are superimposed on one another, we get a wave
formation limited in space called a wave packet (Fig. 3.1).
The spreading of the wave packet in space (~x) and in
time (M) is determined by the relations

~ffi~t ••f.1,} (3.1)
~kx~x do 1.
These relations are well known in classical physics.
Those acquainted with radio engineering know that for
a more localized signal one must take more plane waves
with different frequencies. In other words, to reduce ~x

and ~t, one must increase ~kx and ~ffi.

Digressing from the wave packet, we shall formally
assume that relations (3.1) are valid not only for classical
waves, but also for wave characteristics of a microparticle.
We stress that this assumption by no means indicates
that we shall in fact model a microparticle in the form of

* The converse statement is not true. It would be incorrect to
attempt, as is sometimes done, to reduce the whole '·csscnce" of
quantum mechanics to the presence of Planck's constant. This
question is considered in [51].
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a wave packet. By considering U) and k x in (3.1) as wave
characteristics of a microparticle and making use of
relations (2.13), it is easy to go over to an analogous
expression for the corpuscular characteristics of a micro­
particle (for its energy and momentum):

~EM ~ ti, (>\.2)

~Px~x ~ n. (.3.;3)

~. These relations were first introduced by Heisenbefg in
1927 and are called uncertainty relations.
Relations (3.2) and (3.3) should be supplemented by the
following uncertainty relation:

~ ~Mx~CPx dt n, (3.4)

where ~CPx is the uncertainty in the angular coordinates
of the microparticle (we consider rotation around the
x-axis) and ~Mx is the uncertainty in the projection of
the momentum on the x-axis. *
By analogy with (3.3) and (3.4), one may write down
relations for other projections of momentum and angular

(J momentum:
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!1P y !1y ~ n, ~Pz~z ~ ti, (3.:3<1)

~My~cpy dt ti, ~Mz~CPz ~ n. (3.4a)

Let us consider relation (3.3). Here ~x is the uncertainty The Meaning of the Uncertainty
in the x-coordinate of the microparticle and ~Px, the Relations
uncertainty in the x-projection of its momentum. The
smaller ~x is, the greater ~Px is, and vice versa. If the
microparticle is localized at a certain definite point x,
then the x-projection of its momentum must have arbi-
trarily large uncertainty. If, on the contrary, the micro-
particle is in a state with a definite value of Px' then it
cannot be localized exactly on the x-axis.
Sometimes the uncertainty relation (3.3) is interpreted
in the following way: it is impossible to measure simulta­
neously the coordinate and momentum of a microparticle
with an arbitrarily high precision; the more accurately
,ve measure the coordinate, the less accurately can the
momentum be determined. Such an interpretation is not
very good since it might lead to the erroneous conclusion
that the essense of the uncertainty relation (3.3) is respon­
sible for limitations associated with the process of measurr-

* Notice that relations (3.4) and (3.4a) are valid only for small
values of the uncertainty in angular coordinate (~cp ~ 2n) or, in
othpr words, for large values of uncertainty in the projection of
the momentum.
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ment. One might be led to assume that a microparticle
itself possesses a definite coordinate as well as a definite
momentum, but the uncertainty relation does not permit
us to measure them simultaneously.
Actually the situation is quite different. The microparticle
itself simply cannot have simultaneously a definite coor­
dinate and a corresponding definite projection of the
momentum. If, for example, it is in a state with a more
definite value of the coordinate, then in this state the
corresponding projection of its momentum is less definite.
From this the actual impossibility of simultaneous mea­
surements of coordinates and momenta of a microparticle
follows naturally. This is a result of the specific character
of the microparticle and is by no means a whim of nature
which makes it impossible for us to perceive all that
exists. Consequently, the sense ot relation (3.3) is not
that it creates certain obstacles to the understanding of
microphenomena, but that itreflects certain peculiarities
of the objective properties ofallicroparticle. The last
remark is, of course, of a general nature: it refers not only
to relation (3.3), but also to other uncertainty relations.
Now let us look at relation (3.2). Let us consider two
different, though mutually supporting interpretations,
of this relation. Suppose that the microparticle is unstable
and that M is its lifetime in the state under consideration.
The energy of the microparticle in this state must have
an uncertainty I1E which is related to the lifetime I1t
through inequality (3.2). In particular, if the state is
stationary (M is arbitrarily large), the energy of the
microparticle will be precisely determined (I1E = 0).
The other interpretation of relation (3.2) is connected
with the measurements carried out to ascertain whether
the microparticle is located at the level E1 or E z. Such
a measurement requires a finite time T which depends on
the distance between the levels (EZ'I- E]):
(E 2 - E 1) T ~ Ii. (3.2a)

It is not difficult to see the connection between these
two interpretations. In order to distinguish the levels E 1
and E 2 , it is necessary that the uncertainty I1E in the
energy of the microparticle should not be greater than
the distance between the levels: I1E ~ (E z - E]). At
the same time the duration of measurement T should
obviously not exceed the lifetime M of the microparticle
in the given state: T ~ M. Consequently, the limiting
conditions, under which measurement is still possible,
are given by

I1E ~ E 2 - Ej1 T ~ I1t.
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By using (3.2), we can arrive at (3.2a) from these rela­
tions.
The uncertainty relations (3.2)-(3.4) show how the con­
cepts of energy, momentum and angular momentum
should be applied in the case of microparticles. Here,
a very important peculiarity of the physics of micro­
particles is revealed: the energy, momentum and the
angular momentum of a microparticle have meaning
only within the limitations imposed by the uncertainty
relations. Heisenberg [20] writes that we cannot inter­
pret processes on an atomic scale in the same way as
processes on a large scale. If we make use of the usual
concepts, their applicability is limited by the uncertainty
relations.
It should, however, be pointed out that the uncertainty
relations do not in any way lead to the above-mentioned
restrictions OD the applicability of classical concepts of
coordinates, momentum, energy, etc. for microparticles.
It would be unfair not to mention the considerable "posi­
tive aspects" of uncertainty relations after having talked
about their "negative aspects". They serve as a working
instrument of the quantum theory. By reflecting the spe­
cific character of the physics of microparticles, the uncer­
tainty relations allow us to obtain fairly important results
through fairly simple means. Some examples are given
in Sec. 4 below.

The method of deriving the uncertainty relations consid­
ered in the beginning of this section might appear too
formal and unconvincing to some readers. There are
various means of deriving uncertainty relations (see, for
example [21]). One such method [which is specifically
applied to relations (3.3)] is based on a consideration of
the phenomena of diffraction of microparticles.
Suppose (Fig. 3.2) a screen with a narrow slit is placed
in the path of a strictly parallel beam of certain micro­
particles with momentum p. Let d be the width of the
slit along the x-axis (the x-axis is perpendicular to the
direction of the beam). Diffraction takes place during
the passage of microparticles through the slit. Let ebe the
angle between the initial direction and the direction
of the first (principal) diffraction peak. The classical
wave theory gives the following well-known relation for
this angle sin e = 'f.ld. Assuming angle e to be sufficient­
ly small, we can rewrite this relation in the following form:

e~ 'A/d (3.5)

If by A we now mean not the classical wavelength, but
the length of the de Broglie wave (i.e. the wave character-

From Diffraction in Microparticles
to Uncertainty Relations

Fig. 3.2
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Uncertainty Relations and the
State of Microparticles.
The Concept of a Complete Set
of Physical Quantities

38

istic of the microparticle), we may rewrite relation (3.5)
in "corpuscular language" by using the expression (2.11):

8 ~ nlpd. (3.5a)

But how we are to understand the existence of the angle
8 in "corpuscular language"? Obviously, it means that
while passing through the slit, the microparticle acquires
a certain momentum !1p", in the direction of the x-axis.
It is easy to see that I1px ~ p8. Substituting (3.5a)
into this, we get I1px ~ Md. By considering the quantity
d as the uncertainty !1x in the x-coordinate of the micro­
particle passing through the slit, we get !1px!1x ~ 11"

i.e. we arrive at the uncertainty relation (3.3). Thus the
attempt to determine in some way the coordinate of
a microparticle in a direction perpendicular to the di­
rection of its motion leads to an uncertainty in the mo­
mentum of the microparticle in that direction, which also
explains the phenomenon of diffraction observed in the
experiment.

In order to describe the state of a classical object it is
necessary to give a definite set of numbers-the coordinates
and the velocity components. In doing this other
quantities, in particular, energy, momentum and angular
momentum of the object will also be determined [see (1.1)1.
The uncertainty relations show that this method of
defining a state is not applicable to microparticles.
Thus, for example, the existence of a definite projection
of momentum in a given direction for a microparticle
means that the position of the microparticle in this
direction cannot be determined unambiguously: according
to (3.3), the corresponding spatial coordinate is character­
ized by an infinitely large uncertainty. The electron
in an atom has a definite energy; moreover its coordinates
are characterized by an uncertainty of t,he order of the
linear dimensions of the atom. This [according to (3.3)]
leads to an uncertainty in the projection of the momentum
of the elect.ron equal to the ratio of Planck's constant
to the linear dimension of the atom.
We now indicate the following situations, fundamental
in quantum mechanics, which arise from the uncertainty
relation: (a) various dynamic variables of a microparticle
are combined in sets of lJimultaneoulJly determined (simul­
taneously measurable) quantities, the so-called complete
sets of quantities; (b) various states of a microparticle
are combined in groups of states corresponding to differ­
ent complete sets of quantities. Each group contains
the states of the microparticle in which the values of
the corresponding complete sets are known (it is custom-
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ary to say that every complete set has its own method of
defining its states).
We shall give examples of the complete sets employed
for determining the states of, say, an electron and a pho­
ton. Each of the sets includes four quantities (because
of this we say that a microparticle like an electron or
a photon has four degrees of freedom). To describe the
states of an electron, the following sets are employed:

x, y, Z, (J (3.6a)

p~., PIi' pz> (J (3.6b)
E, 7, m, (J (3.6c)

(remember that l, m, and (J are orbital, magnetic and
spin quantum numbers, respectively). We emphasize
that the coordinates and the momentum components
of a microparUcle (in this case an electron) fall in differ­
ent complete sets of quantities; these two physical
quantities cannot be measured simultaneously. Hence
the classical relations (1.2) and (1.3) are not valid when
going over to microparticles, since each of these relations
contains the coordinates as well as the momentum.
The set (3.6b) is used, in particular, for a describing the
states of a freely moving electron. Moreover, the energy
of the electron also turns out to be definable: E =
= (p~ + p~ + p;)/2m*. The set (3.6c) is usually employed
for describing the states of an electron in the atom.
To describe the states of a photon, the following sets
are most commonly employed:

k" "y, kz> ex, (3.7a)
E, 211 2 , Mz> P. (3.7b)

Here "x, kif' k z are the projections of the wave vector of
the radiation; ex is the polarization of the photon; M2
and M z are the square of the momentum and the pro­
jection of the momentum of the photon, respectively; P is
a quantum number called the spatial parity. We notice
that as soon as the projections of the wave vector of
radiation are determined, the projections of the photon

momentum are also known (recall that p = nk). The
polarization of a photon may take two values correspond­
ing completely to the two independent polarizations of
a classical wave (thus, for example, one might talk
about a photon having right elliptical polarization).

... In contrast to relation (1.2), the classical relation E = p2/2m
remains valid for a freely moving particle when going over to
microparticles.
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Uncertainty Relations and
Quantum Transitions

40

The spatial parity is a characteristic property of a micro­
particle; it may be considered as an integral of motion
whose conservation is a result of symmetry with respect
to the operation of reflection by a mirror. At a later stage
(see Sec. 20) we shall discuss it in greater detail. Here.
we only mention that parity can assume one of the two
values: +1 and -1.
The set (3.7a) is used for describing the states of photons
corresponding to plane classical waves, in this case the
energy of the photon is also defined (recall that E = nw =
= nck). The states described by the set (3.7a) are called
kcx-statos. The set (3.7b) is employed for describing
the states of photons belonging to spherical classical
waves. We note that just as a spherical wave may be
represented as a superposition of plane waves, the states
of a photon described by the set (3.7b) may be represented
as a "superposition" of states described by the set (3.7a).
The converse statement regarding the representation of
plane waves as a superposition of spherical waves is also
true. Here we have touched upon (for the present just
touched upon) one of the most important and delicate
aspects of the quantum-mechanical description of mat­
ter-the specific character of the "interrelations" between
states of a microparticle described by different complete
sets. This specific character is reflected in the most
constructive principle of quantum mechanics-the prin­
ciple of superposition of states. The superposition of states
will be considered in detail in the second chapter; here
we shall just restrict ourselves to the above-mentioned
remarks.

The main contradiction regarding quantum transitions
indicated in Sec. 2 is essentially overcome by making
use of the idea of duality or, more precisely, the uncer­
tainty relation (3.2). Let us consider transition of an
electron in an atom from level E 1 to level E 2 by absorbing
a photon of energy nw = E 2 - E 1 • We recall that the
contradiction in transition was connected with the
question whether the absorption of the photon precedes
the transition of the electron or vice versa. It is easy
to see that this question simply loses its meaning now.
In fact, if we have a bound electron with energies E}
and E 2 before and after interaction with radiation, respec­
tively, then during the interaction we have one quantum­
mechanical system including both the electron and the
radiation. This system exists for a definite time (while
the interaction with the radiation takes place) and, accord­
ing to (3.2), cannot have any definite energy. Hence
it is meaningless to find out precisely what takes place



ro- in such a system. Strictly speaking, during the interac-
on tion of the electron with the photon there is no electron
lct and no photon, but a single entity which must be treated
,ge as such, without going into details. This example shows
ret that in quantum mechanics a physical process cannot be
VilO infinitely detailed in time. The question ''what follows

what"? cannot always be posed in the case of microphe-
us nomena.*
he

The uncertainty relation (3.2) allows us to introduce and employ
ed a very important concept in quantum theory, the so-called virtual
ng transitions, for explaining quantum transitions. \Ve shall give
:al here a simplified treatment of virtual transitions, but we shall
be give a detailed explanation later in Sec. 6. According to relation
,es (3.2), an electron may go over from level E l to E 2 without getting
ed any energy from outside; what is important is that it should quick-
I). ly return to its initial level E l • Such a "journey" (E l -+ E 2 -+ E l )

of is possible if its duration /:,t is such that the inequality nI /:,t >
so > (E

2
- E l ) is satisfied, because in this case the uncertainty in

st the energy of the electron is greater than the difference in the ener-
te gies of the levels under consideration. Hence it is clear that the
t- statement "the electron occupies level Et may be understood quite
ln specifically-as incessant "transition" of the electron from the
te given state to others with an inevitable return every time to the
st starting level E l . Such transitions cannot be observed experimen-
n- tally, and are called virtual transitions in contrast to the normal
es (real) transitions. During interaction of an electron undergoing
re virtual transitions with radiation, the electron is liable to change-
~d its "residence". For example, it might now occupy level E 2 and will

in future perform virtual transitions not from level El , but from
1S level E 2' If such a thing happens, the electron is said to have ab-
19 sorbed a photon of energy fw) = E 2 - El , and undergone a tran-
r- sition from level E l to E 2• Virtual transitions don't require any
.n expenditure of energy from outside while a real transition cannot
19 occur without expenditure of energy-the energy of the photons-
Le absorbed (or emitted) by electrons during interaction with radia-
le tion.
lS To explain the difference between real and virtual transitions, we-
y note that a real transition from a level E l to another level E 2

r. and back may be broken up into two successive events in time'
'1 (in between, the electron may be experimentally registered in the-

intermediate state E 2 ). However, the virtual transition from level
:- E

l
to E 2 and back cannot be broken up into two events in time-

e both parts of the transition must be considered as a single, indi-
e visible process in time.

e * The anomaly of quantum transition is completely removed by
e considering the principle of superposition of states (see Sec. 10).
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Uncertainty Relation "Number of
Photons-Phase"

Evaluation of Energy of Ground
State of Hydrogen Atom

42

The uncertainty relations used in quantum theory are
by no means exhausted by relations (3.2)-(3.4). As an
example of one more such relation we consider the uncer­
tainty relations for the number of photons and the phase
of the wave.
Let there be a monochromatic radiation of frequency ffi.
On one hand, it may be considered as a collective of
photons each having energy nffi; on the other hand, we
might treat it as a classical electromagnetic wave. Let N
be the number of photons in the volume under considera­
tion and let cI> = ffit be the phase of the classical wave.
The corpuscular characteristic of the radiation (number
of photons N) and its wave characteristic (phase cI»
cannot have definite values simultaneously; there exists
the uncertainty relation
dNdcI> d- 1. (3.8)
In order to arrive at relation (3.8), we start from the
uncertainty relation for energy and time. We recall
that for measuring the energy of a quantum object with
an accuracy dE we must spend time M ~ tildE. If we
take the collective of photons as the quantum object,
we get
dE = nffidN,

where dN is the uncertainty in the number of photons.
During the time dt necessary for measurement of the
energy of the object with an accuracy nffidN, the phase cI>
changes by dcI> = ffiM. Substituting into this the rela­
tion dt d- tilnffidN, we find dcI> d- 11dN, Q.E.D.
Relation (3.8) reflects the dialectically contradictory
unity of corpuscular and wave properties of radiation.
The uncertainty dcI> is small when the wave properties
of radiation are clearly exhibited; in this case the density
of photons is high (N is large) and sq, is the uncertainty
dN. On the other hand, the uncertainty dN is small
when there are a few photons in the aggregate. In this
case the corpuscular properties of radiation are clearly
exhibited and therefore the uncertainty dcI> is large.

Some Results Ensuing from
the Uncertainty Relations

The uncertainty relations serve as very useful working
tools of quantum theory since they permit one to obtain
important results, by fairly simple means.
As an example, we consider the hydrogen atom in its
ground state. We make use of the well-known classical
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€xpression for energy of a charged particle moving in
<I Coulomb field:

(4.1 )

(4.4)

(4.3)

(4.2)

I' from (4.1) by using (4.2),

The values given by (4.4) fully coincide with the results
of the rigorous theory*. Of course such a complete coinci­
dence must be considered to some extent as an accidental
success. Only the order of the quantities should be taken
seriously here. We emphasize that this order can be
evaluated quite simply as follows: it is sufficient first
to simply replace the precise values of the dynamic vari­
ables in expression (4.1) by quantities which characterize
the degree of "blurring" of these variables, Le. by their
uncertainties, and then use the quantum-mechanical
relations connecting the said uncertainties.

where m and e are the mass and charge of the electron,
respectively. In order to use the classical expression (4.1)
in the quantum theory, we consider the quantities p
and I' occurring in it as uncertainties in momentum and
coordinates of the electron, respectively. According to
relation (3.3), these quantities are connected with each
other. We assume pI' ~ Ii, or, simply,

pI' = h.

Eliminating the quantity
we get

[12 t'e 2 p
E(p)=---.

2m h

It is easy to see that the function E (p) has a minimum
for a certain value P = Pl' We denote it as El . The quan­
tity E l may be considered as the energy of the ground

state of the hydrogen atom while the quantity 1'1 = !!...
P1

is the estimate of the linear dimensions of the atom
(in Bohr's theory this is the radius of the first orbit).

By equating the derivative dd E (p) to zero, we find
z P

Pl - m~ • This at once gives the required evaluations

Icf. (2.6) and (2.7)]:
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<I< In the rigorous theory the quantity r1 is a characteristic for
the ground state of the hydrogen atom and denotes the distance
from the nucleus at which an electron is most likely to be observed
(see expression (5.4)].
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Estimate of the Energy of
Zero-point Oscillations of an
Oscillator

We shall proceed exactly in the same way as in the
preceding example. The energy of a classical one-dimen­
sional harmonic oscillator is given by the expression

(4.5)

Treating Px and x as uncertainties in the momentum and
coordinate of the oscillating microparticle and using the
equality Px'X = Ii as the uncertainty relation, we get
from (4.5)

(4.6)

Evaluation of the "Blurring" of
the Optical Absorption Band
Edge in the Franz-Keldysh Effect

44

By equating the derivative 3:..- E (PJ to zero we find
dpx

the value of Po = + V mliffi for which the function E (Px)
assumes its minimum value. It is easy to see that this
value is

(4.7)

This result is quite interesting. It shows that in quantum
mechanics the energy of an oscillator cannot vanish;
its minimum value is of the order of liffi. This is the
energy of what is called the zero-point oscillation. We
note that the estimate (4.7) differs from the exact expres­
sion for the energy of the zero-point oscillation just by

1a factor of 1/2 (exact value Eo = 2" liffi).

By taking the zero-point oscillations into account, one
may arrive at the following interesting conclusion: the
energy of the oscillatory motion of atoms in a crystal
does not vanish even at absolute zero.
The zero-point oscillations illustrate a basically general
circumstance: it is impossible to find a microparticle at
the "bottom of the potential well", or, in other words
"a microparticle cannot fall to the bottom of the poten­
tial well". This conclusion does not depend on the form
of the potential well, since it is a direct consequence of
the uncertainty relation: "falling to the bottom of the
well" is connected with the vanishing of momentum and
hence the uncertainty in the momentum of the micro­
particle. In this case, the uncertainty in the coordinate
becomes so large that there is a direct contradiction with
the very fact that the microparticle is in a potential well.

The essence of the effect, investigated in 1958 by Kel­
dysh, and independently by Franz, lies in the following:
in a uniform external electric field, the minimum of the
electron energy in the Conduction band of semiconduc--
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tors shifts downwards on the energy scale, leading to
a "blurring" of the edge of the fundamental optical absorp­
tion band (as a result the absorption of the photons with
energies lower than the forbidden band width becomes
possible) [22]. The value of the shift of electronic states
characterizing the indicated "blurring" may be obtained
in the same way as the preceding evaluations were made.
We make use of the classical expression for the energy
of a charged particle in the electric field of intensity G :

(4.8)

Here m is the effective mass of the electron in the conduc­
tion band. Treating Px and x as uncertainties in the
momentum and coordinate of the electron and using
the equality px·x = n as the uncertainty relation, we
get from (4.8)

E ( ) = pi _ ~en
Px 2m Px'

Next, as usual we equate the derivative -f- E (Px)
Px

to zero and obtain the value Po = - (Y'0enm for which
the function E (Px) assumes its minimum value:

(4.10)

Expression (4.10) gives an estimate of the extent of the
"blurring" of the edge of the fundamental optical absorp­
tion band in the Franz-Keldysh effect.

While postulating the stationary states, Bohr's theory Why does not the Electron Fall
did not explain why, after all, the electron, moving into the Nucleus?

under acceleration, does not radiate and fall into the
nucleus as a result of this. Relation (3.3) explains this
fact. The falling of an electron into a nucleus would
obviously mean a considerable reduction in the uncer-
tainty of its coordinate. Before the hypothetical falling
into the nucleus, the electron is localized within the
limits of the atom, i.e. in a region of space with linear
dimensions n2/me2 ~ 10-8 em [see (4.4)], whereas after
falling into the nucleus it would be localized in a region
with linear dimensions less than 10-12 em. According
to (3.3) a stronger localization of a microparticle in space
is linked with a "blurring" of its momentum. Hence upon
falling into the nucleus, the mean value of the momentum
of the electron must increase, which requires an expendi-
ture of energy. Thus it turns out that effort has to be
made not to "hold" the electron from falling into the
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nucleus, but on the contrary to "force" the electron to be
localized within the nucleus.
In the example of the zero-point oscillations it was
pointed out that the microparticle in a potential well
always possesses a non-zero minimum energy Eo. The
magnitude of Eo depends, in particular, on the spatial
dimensions of the well (or on its width a, which determines
the extent of localization of the microparticle in
space). By taking into account the uncertainty relation,
it is easy to see that

(4.11)

On the "Trajecfory" of
Microparticles
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If a decreases, Eo increases. For sufficiently small a, the
energy Eo may become greater than the depth of the
potential well. It is obvious that such a well will not
hold the microparticle at all.
The falling of an electron into the nucleus corresponds to
a decrease in the width of the potential well from 10-8 cm
to 10-12 cm (and even lower). According to (4.11) the
minimum energy Eo should increase in this case from
10 to 109 eV (and higher). As a result the minimum energy
of the electron turns out to be a few orders higher than
the binding energy of a nucleon in the atomic nucleus
(the latter being not greater than 107 eV). This means
that the electron cannot ever be present in the nuclear
potential well and hence it can by any means be compelled
to be localized within the nucleus, not even by force.
This not only eliminates the problem of "an electroll
falling into the nucleus" but also solves another funda­
mental question: the electron is not one of the constituents
of the atomic nucleus.

In order to draw the trajectory of a particle, it is neces­
sary, strictly speaking, to know the coordinate and mo­
mentum of the particle at every moment of time (in fact,
in order to depict the dependence x (t), it is necessary to

know, for every t, the values x and ~~), Since, according

to the uncertainty relation (3.3), a microparticle canllot
simultaneously possess a defmite coordinate and a definite
projection of the momentum, one can draw the conclusion
that the concept of trajectory in case of microparticle,
strictly speaking, is not applicable.
The rejection of the trajectory concept is connected with
the existence of wave properties in microparticles, which
do not permit one to consider microparticles as classical
corpUScles. The movement of a microparticle along the
x-axis cannot be associated with the differentiable func-
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~ tion x (t) which is so widely used when considering
the mechanics of classical objects. From a known value

, of x of the microparticle at a certain time t, it is impossible
to predict the value of its coordinate at the time t +
+ dt.
As applied to Bohr's theory, this means a rejection of
the very concept of "the orbit of an electron in an atom".
One may speak about the localization of the electron
within the atom as a whole; the orbit requires a much
greater spatial localization. Turning to the problem of
"the electron falling into the nucleus" discussed above,
we can understand the consequence to which such a local­
ization leads. The planetary model of the atom thus
turns out to be just an intermediate step in development
of our concept of the atom. Much later, in the fifties,
Bohr himself amusingly recalled how after one of his
lectures a student came up and asked him "Were there
really idiots who thought that the electron revolves
in an orbit?"

We note that with the rejection of the idea of orbits of the electron
in an atom the contradiction regarding the problems of the in­
stantaneous jump of the electron from one orbit into another, dis-­
cussed in Sec. 2, is automatically eliminated.

There are situations, however, in which one can make
use of the idea of "the trajectory of a microparticle". As an
example we consider the motion of electrons in the kine­
scope of a television set. The momentum of the electron
along the axis of the tube is p = V2meU, where U is
the accelerating voltage. The formation of the electron
beam means a definite localization of the coordinate in
the transverse direction. The degree of this localization
is characterized by the diameter d of the beam. According
to (3.3), there must be an uncertainty in the electron
momentum in a direction perpendicular to the axis of
the beam: !'J.p ~ Md. As a result of this uncertainty, the
electron may deviate from the axis of the beam within
an angle !'J.8 ~ !'J.p/p ~ h/pd. Let L be the path length
of the electron in the kinescope. Then the uncertainty
in the position of the point of impingement of an electron
on the screen will be characterized by the quantity
!'J.x ~ L!'J.8 ~ Lli/pd. Assuming U = 20 kV, d = 10-3 em,
L = 102 em, we get !'J.x ~ 10-5 cm. In this way, the
blurring of the point of impingement due to the uncertain­
ty relation is considerably less than the diameter of the
beam. It is clear that in such cases the motion of the
electron may be treated classically.

I Sec. 4
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The Possibility of a Microparticie
Sub-Barrier Passage (Tunneling
Effect)
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Fig. 4.1

Suppose we have a potential barrier whose height U is
greater than the energy of the particle (Fig. 4.1). We
ask the question: can a particle, situated somewhere
to the left of the barrier, appear after some time to the
right of it, without getting any energy from outside?
Classical mechanics gives a negative answer-a classical
corpuscle cannot pass through the barrier. If this were
to happen, then the total energy of the particle, say,
at the point A in Fig. 4.1 would be less than its potential
energy, which is physically absurd.
Does this ban apply to microparticles as well? It can be
shown that it does not-it is removed by relation (3.2).
Let the microparticle move from infinity to the right
and encounter the potential barrier. Until this encounter
it was in a state of free motion for an infinitely long
time and hence its energy had a definite value. But now
the microparticle interacts with the barrier, or, more
precisely, with the objects which caused the appearance
of the barrier. Suppose the interaction lasts for a time M.
According to (3.2), the energy of the microparticle in
a state of interaction with the barrier is no longer definite
but is characterized by the uncertainty i1E:p Ii/ M.
If this uncertainty is of the order of the height U of the
barrier, the latter stops being an unsurmountable obstacle
for the microparticle. Thus the microparticle may pass
through the potential barrier. This specific quantum effect
is called the tunneling effect. It explains, in particular,
the a-decay of atomic nuclei. It should be noted that
when considering the tunneling effect, the motion of
the microparticle cannot be represented by the dotted
line in Fig. 4.1. The dotted line corresponds to the classic­
al trajectory, while a microparticle does not have a
trajectory. Hence there is no point in trying to
"accuse" the microparticle of having been "under the
potential barrier" at some moment of time.

It has been noted above that the energy of a freely moving micro­
particle is not quantized. This may be easily shown by making
use of the tunneling effect. Suppose a micro particle is located in
a potential well shown in Fig. 4.2. On account of the tunneling
,effect the microparticle may of its own accord leave the potential
well. Consequently, the time for which it stays in the well is not
infinite. If we denote this time as !':.t, it follows from (3.2) that
the energy of the microparticle must have an uncertainty of the
-order tz/ ""t. We reduce the width b of the potential barrier (dotted
line in Fig. 4.2). It is clear that as a result the magnitude of f':..t
will decrease, since the probability of the microparticle leaving
the well will increase. With a decrease in f'>.t, the uncertainty in
the energy of the microparticle, tz/!':.t, will increase. This may be

:Fig. 4.2
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considered as a larger blurring (further broadening) of the energy
levels of the microparticle in the well. In the limiting case of zero
thickness of the barrier, the value of f.,t vanishes, the microparticle
becomes a freely moving particle, and the energy levels broaden up
indefinitely, actually transforming into a continuous energy
spectrum.

Section 5

r

Impossibility of Classical
Representation of a
Microparticle

The process of "breaking up" of objects surrounding us
into smaller and smaller "fractions" leads to micropar­
ticles. Therefore it is but natural to associate micro­
particles first of all with corpuscles. This is also support­
ed by the fact that a microparticle is characterized by
a definite rest mass and a definite charge. For instance,
it is meaningless to speak of a half-electron having half
the mass and half the electric charge of a whole electron.
The very terms "microparticle" and "elementary particle"
reflect the notion of the microparticle as being some
particle (corpuscle).
However, as follows from the preceding discussion, a
microparticle is considerably different from a classical
corpuscle. Firstly it does not have a trajectory which is
an essential attribute of a classical corpuscle. The use of
such corpuscular characteristics as coordinate, momentum,
angular momentum, energy when considering micropar­
ticles is restricted to the framework of the uncertainty
relations. Interconversion of microparticles, spontaneous
decays, the existence of an indestructible intrinsic mo­
ment (spin) and the ability to pass through potential
barriers indicate that microparticles are quite dissimilar
to classical corpuscles.
Wave concepts are radically different from corpuscular
concepts. Hence it is not surprising that the striking
contrast between classical corpuscles and microparticle
is explained by the existence of wave properties in the
latter. Moreover, it is the wave properties which account
for the uncertainty relations and all the consequences
resulting from them. In this respect, the following re­
mark by de Broglie [23] is worth noting: "for a century,
the corpuscular method of analysis in optics was too
much neglected in comparison with the wave method.
Hasn't the converse been the case in the theory of matter?
Haven't we thought too much of the "particle" picture
and neglected the wave aspect far too much?" The question
raised by de Broglie is fully justified. However, an excessive
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A Microparticle Is not a Classical
Corpuscle
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A Microparticle Is not II
Classical Wave

Example 1

Example 2

exaggeration of the wave aspect while considering
microparticles should be avoided. We must remember
that while on one hand a microparticle is not a classical
corpuscle, it is similarly, on the other hand, not a classi­
cal wave.

The analysis of one mistake which is committed quite
often even these days when considering a simplified
account of quantum mechanics is quite instructive.
We shall demonstrate this mistake through two examples.

It is contended that the wave properties of an electron
permit one to derive the conditions for the quantization
of momentum which are postulated in Bohr's theory.
The "derivation" is done in the following way. Let 2:n:rn
be the perimeter of the n-th Bohr's orbit. In this orbit,
an electron moves with de Broglie's wavelength An =
= 2:n:1i/Pn' The basic assumption lies in the fact that
the perimeter of the orbit should contain n wavelengths
An of the electron. Consequently, 2:n:rn = nAn' This
at once gives the desired condition for quantization
of momentum:

(5.1)

It is stated that the wave properties of an electron
permit a very simple derivation of the formula for the
energy levels in a potential well, if we assume that a
definite number of de Broglie half-waves are confined
in the potential well (in analogy with the number of
half-waves contained in the length of a string fixed at
both ends) corresponding to different stationary states.
Designating the width of the one-dimensional poten­
tial well by a, we write a = nAnl2, from which we get
the desired result:

(5.2)
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Both these final results [(5.1) as well as (5.2)] are
correct; they are the same as the result deduced from
strict theory. However, the "derivation" of these formulas
must be considered to be unsound. In both cases in
fact the same fundamental mistake has been committed:
they are based on the wrong assumption that the electron
in a potential well has a definite de Broglie wavelength,
or, in other words, a definite momentum. However,
according to (3.3), the momentum of a microparticle
in a bound state is characterized by the uncertainty
!1p ;:r Ma. Since in the above examples p ~ li/').. ~ Ma,
it follows that the momentum is of the same order of
magnitude as the uncertainty in momentum given by



AHempts to Represent a
Microparlicle as a Symbiosis of a
Corpuscle and a Wave

I'
I relation (3.3). It is clear that in such cases one cannot

speak about any value of the electron momentum (and
correspondingly of its de Broglie wavelength) even ap­
proximately.* These examples demonstrate an obvious
exaggeration of the wave aspect. The identification of
an electron in a potential well with a classical wave
inside a "resonator" is incorrect. The picture of an electron
wave in a "resonator" is the same kind of simplification
as the picture of an electron-ball moving in a classical
orbit. We shall return again to the question of waves
in quantum mechanics; however, it is useful to emphasize
at this stage that by the term "de Broglie wave" we
do not conceal any sort of classical wave. It is just a
reflection in our imagination of the fact that microparti­
cles possess wave properties.

If a microparticle is neither a corpuscle nor a wave,
then may be it is some kind of a symbiosis of a corpuscle
and a wave? Several attempts were made to model such
a symbiosis and thus also to visually demonstrate the
wave-particle duality. One such attempt represents a
microparticle as a formation, limited in space and in
time. This may be the wave packet mentioned in Sec 3.
This may also be just a "scarp" of a wave, often called
a wave train. Another attempt uses a model of a pilot-
wave, according to which a microparticle is some sort
of a "compound" of a corpuscular "core" with a certain
wave which controls the motion of the core.

One of the versions of the pilot wave model is considered by
D. Baum in his book [25]: We first postulate that connected with
each of the "fundamental" particles of physics (e.g. an electron) is a body
existing in a small region of space.... in most applications at the
atomic level the body can be approximated as a mathematical point..
The next step is to assume that associated with this body there is a
wave without which the body is never found. This wave will be assumed
to be an oscillation in a new kind of field, which is represented mathe­
matically by the ,p-field of Schrodinger ... somewhat like the gravita­
tional and the electromagnetic, but having some new characteristics
of its own....
We now assume that the ,p-field and the "body" are interconnected in
the sense that the ,p-jield exerts a new kind of "quantum-mechanical"
force on the body, ... the force is such as to produce a tendency to pull
the body into regions where I ,p I is largest.
If the above tendency were all that were present, the body would even­
tually find itself at the place where the ,p-field had the highest intensity.
We now further assume that this tendency is resisted by random motions

... This question is considered in greater detail in Sec. 23 of this
book. See also [24].
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undergone by the body, motions which are analogous to the Brownian
movement• ... They could, for example, come from random fluctuations
in the ~-field itself. .. ,
Once admitting the existence of these fluctuations, we then see that
they will produce a tendency for the body to wander in a more or less
random way over the whole space accessible to it. But this tendency is
opposed by the "quantum force" which pulls the body into the places
where the ~-field is most intense. The net result will be to produce a
mean distribution in a statistical ensemble of bodies, which favours
the regions, where the 1,jJ-field is most intense• ....
Figure 5.1 illustrates We given model as applied to the passage
of a microparticle through the screen with slits: the ~-wave is diff­
racted on bothithe slits, while the "body" passes through one slit
and is registered on the screen in accordance with the result of the
interference of ~-waves.

l:
It

Fig. 5.1

How to Understand the
Wave-Particle DUlIlityl

It is not denied that such models could appear attrac­
tive at first glance if only because of their intuitive
appeal. It must be emphasized at once, however, that
all these models are baseless. We shall not explain at
this stage the reasons for. worthlessness of the pilot­
wave model considered above, but shall just mention
that it is cumbersome since it uses artificial notions
such as the 'llJ-field which is "to some extent similar
to gravitational end electromagnetic fields", or the
"quantum force" which reflects the interaction of certain
"object" with the 'IjJ-field. The reader will later realize
that the worthlessness of such models is not because
of some specific feature, but because of deep fundamental
reasons. He will understand that any attempt at a literal
interpretation of the wave-particle duality, any attempt
to model a symbiosis of corpuscle and a wave, should
be considered fruitless from the very start. A micrQ~

particle is not a symbiosis of a corpuscle anda-wave.
At present the wave-particle duality is considered as

the potential ability of a microparilcle to exhibit its
different properties depending on external conditions,
in particular, on the conditions of observation. As Fock
[1] wrote, Thus under certain condition~ an atomic object
may exhibit wave properties and under other conditions
corpuscular properties; conditions are al~o po~sible when
both kinds of propertie~ appear simultaneou~ly but not
sharply. We can state that it is potentially po~sible for
an atomic object to manife~t it~elf either ail a wave or as

.a particle or in an intermediate fashion, according to the
external condition prevailing. It is ju~t this potential po~­

il.i~ility of exhibiting various properties inherent in an
dtomic object that constitutes the wave-corpuilcular duality.
Any other, more literal meaning attached to this duality,
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such as a wave-particle model of any kind, is incorrect.
Let us consider a simple example. Let a beam of electrons
pass through a screen with slits and then hit a detector
screen. While passing through the slits, the electrons
realize their wave properties which leads to a distribution
for electrons beyond the slit characteristic of interference.
When impinging on the detector screen, the electrons
exhibit their corpuscular properties-each of them is
registered at a certain point on the screen. It m.ay be
said that the electron passes through the slit as a "wave",
and is registered on the detector screen as a "particle".
In this connection, it is sometimes said that a micro­
particle is a wave under some circumstances, and a micro­
particle is a particle under other circumstances. Such
a treatment of wave-particle duality is incorrect.0Vhat­
ever the conditions, a microparticle is neither a wave,
nor a particle, "not even a symbiosis of a wave and a
particle. It is a quite specific object, capable of exhibiting
corpuscular or wave properties to some extent or other
depending on the circumstances. The understanding of
wave-particle duality as the potential capability of the
microparticle to exhibit different properties in different
external conditions is the only correct one. Hence, in
particular, follows an important conclusion: it is impos­
sible to give a definite visual model of a microparticle.

The absence of a visual model of a microparticle does
not in any way prevent us from using tentative models
quite suitable for representing a microparticle under
different conditions. As an example, let us consider an
electron in an atom.
We recall that the state of an electron in an
atom is described by a set of quantum numbers
n, l, m, cr. A given state is characterized by a definite
energy, while in the particular case of the hydrogen
atom, it depends only on the number n [see (2.7)), and
in a more general case on the numbers nand l. An electron
in an atom isdelocalized in space-its coordinates have
an uncertainty of the order of the size of the atom. Usual­
ly, when considering an electron in an atom, it is custom­
ary to introduce the concept of an electron cloud which
may be interpreted in this case as a tentative image
of the electron. The form and the effective size of an
electron cloud depend on the quantum numbers n, l,
m and, consequently, vary from one state of the electron
in the atom to another.
In order to describe the dimensions and the form of
the electron cloud, we introduce a certain function
un1m (r, 8, Ip) = Unl (r) Zlm (8, Ip), (5.3)

Electron in an Atom
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Fig. 5.2

where r, e, cp are the spherical coordinates of the electron.
The function Unlm is interpreted in the following way:
Unl m (r, e, cp) dV is the probability of finding an electron
in a state with quantum numbers n, l, m in an element
of volume dV in the vicinity of point (r, e, cp). In other

••
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words, Un 1m (r, e, cp) is the corre;ponding probability
density of finding the electron. Remember that dV =
= r 2drdQ, where dQ = sin ededcp is the element of solid
ngle. The function

Wnl (r) dr = Unl (r) r2dr (5.3a)

is thus the probability of finding the electron with quan­
tum numbers n, l at a distance between rand r + dr
from the nucleus.
In Fig. 5.2a are shown forms of functions Wnl (r) for
different states of the electron in a hydrogen atom.
Notice that the functions WIO, W21' W 32 have maxima
corresponding to the radii of first, second and third
orbits in Bohr's theory. Figure 5.2b shows forms of
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, function Zim fo, some states of the electron. Fo' I .~ 0
., (for the so-called s-electron) we have a spherical electron

cloud. For l = 1 (for p-electron) the electron cloud
has a form of either a spindle or a toroid depending on
the quantum number m. Thus in order to imagine an
electron in atom, one may use conventional forms like
the models of a sphere, spindle, toroid, etc. ,
The ground state of the hydrogen atom is characterized
by a spherical electron cloud. Theory shows (see, for
example, [11]) that in this case

wnl(r)=4r:exp(_~). (5.4)
r 1 r 1

The parameter r 1 characterizing the effective radius
of the cloud is determined by relation (4.4); in Bohr's
theory it occurs as the radius of the first orbit.
In conclusion w/iJ note that during quantum transitions in an
atom, there occurs not only a change in energy, but
also a "redistribution" of electron clouds-a change of
their shape and size.

Rejection of Ideas of
Classical Physics

As has been asserted, a transition from macrophenom­
ena to microphenomena presupposes a rejection of the
basic ideas of classical physics. The notion of a strict
continuity in the spectrum of values of physical quanti­
ties is no longer valid, the classical concept of a tra­
jectory is rejected, the principle of classical determinism
is in question. At the root of this viewpoint lie ideas of
quantization (discreteness) and wave-particle duality
which are alien to classical physics.
On the basis of a number of examples that we have consid­
ered, we could see the need to reject the classical principle
of unlimited detailing of objects in space, and of phenom­
ena in time. Thus the question of the internal structure of
elementary particles turns out to be groundless. Like­
wise the efforts towards a detailed development in time
of the process of the quantum jump (quantum transition)
have no meaning.
The concepts of energy. momentum, angular momentum
which are widely used in classical physics are carried over
to quantum mechanics as well. However, these concepts are
now seen differently with a reconsideration of the previous
interconnections, taking into account the possibility of quan­
tization, and the limitations imposed by the uncertainty
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relations. In particular, there arises the question, unknown
to classical physics, of the simultaneous measurement of
physical quantities, and questions about the state and the
methods of describing a state are put in a new light.
In conclusion we stress the impossibility of the classical
interpretation of a microparticle, and the loss of the
clarity of classical physics.

Identity of Microparticles The rejection of the classical individualization of an
object is quite fundamental. In classical mechanics ob­
jects are known to have individuality since it is always
possible in principle to enumerate them and observe
the behaviour of anyone of them. In this case, how­
ever alike two classical objects may be, they are never
identical and can always be distinguished. But in quantum
mechanics two microparticles of the same type should
be treated as absolutely identical. Thus, all electrons
are identical and so are all unexcited hydrogen atoms,
helium nuclei, etc.

Suppose we have several electrons, one of which is "assigned" the
number 1 at the moment of time t = O. Can this electron be identi­
fied after a certain time t? Such an identification could have been
easily done if we could put some "label" on this isolated object.
We could get by without "labelling" this electron if we could sim­
ply keep a watch over the isolated object, i.e. if we could "mentally"
follow it (in our imagination) along its trajectory. This is precisely
what we would have done in the case of isolated classical objects.
However, none of this holds in the case of an electron; it is in
principle impossible to "label" it. Strictly speaking, it has no
trajectory. The electron "isolated" by us at the instant t = 0, cannot
be isolated in actual practice: it does not have the individuality
which would allow it to be identified in the assembly of electrons
after a certain time t. Two electrons are much more "like each
other" than the proverbial "two peas in a poll"; sinctl the latter
are classical objects, they could differ in size or in chemic'll com­
position in some way.

Chance and Necessity in the
Behaviour of a Microparticle

56

It is understood that the identity of microparticles does
not exclude the possibility of their differentiation on
the basis of different states in which these particles
may be found. Two electrons belonging to two different
atoms are, of course, identical but at the same time
distinguishable. The affiliation of an electron to one
atom or another permits its "isolation". However, nothing
changes physically if the electrons interchange places.
It is clear that if such an exchange is possible, for example,
by combining the atoms under consideration into a
molecule, the distinguishability of the electrons vanishes.

LaplaCian determinism excludes the element of chance
from the behaviour of an isolated object; in classical
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mechanics, necessity completely dominates. Because of
this, the laws of classical mechanics are dynamic and
not statistical. The element of chance (and, consequently,
statistical laws also) appear in classical physics only
when considering aggregates of objects or assemblies of
particles.
From this point of view, it is important to stress that
in quantum mechanics we are dealing with a qualita­
tively different situation concerning the behaviour of
individual microparticles: here, elements of necessity,
as well as chance, are present. An excited atom spon­
taneously returns to the ground state without any ex­
ternal influence. This is associated with the spontaneous
transitions of electrons in the atom from one set of energy
levels to another. It is impossible in principle to indicate
precisely when a particular excited atom will return
to its ground state; such a return is a random act.
Precisely in the same way, it is impossihle to predict exactly
when a given elementary particle, for example, a neutron,
will decay spontaneously. In this case also an element

I ~ 0If chance is present.
1,',1,. n addition to elements of chance, there are also pres-
t ent the elements of necessity in the behaviour of a
i( microparticle. As has already been indicated in Sec. 1,

if we have No neutrons at the instant t = 0, No:?> 1,
we can confidently state that at the time t we will be
left with only No exp (-th:) neutrons, • being a constant
called the lifetime of the neutron. Here, the necessity
is obvious. In the case of an individual neutron this
necessity is replaced by a definite probability of keeping
the neutron intact until time t, once it has managed
to survive to time t = O. This probability is equal
to exp (-tl.). It should be noted that this probability
is independent of the time for which the given neutron
has survived up to the time t = O. Necessity is also
manifested in the conservation laws which govern decay
processes as well as the processes of interconversion of
microparticles in general. We may also mention the fact
that there are definite modes of decay; for example,
a free neutron may decay into a proton, an electron and
an electronic neutrino.
The existence of chance as well as necessity in the be­
haviour of an individual microparticle has very im­
portant consequences. It leads to the fact that quantum
mechanics turns out to be in principle a statistical theory
with probability as one of its basic attributes. As Fock
[1] has remarked, in quantum physics the concept of prob­
ability is a primary concept and plays a fundamental
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Virtual Transitions and Virtual
Microparticles

'S8

role. It could be said that the behaviour of an individual
microparticle is random, but the probability of this
behaviour is necessary*. The electronic cloud considered
in Sec. 5 may serve as a good example of this. The oc­
currence of an electron at some point near the nucleus
is a random event, but the probability of its being found
at a given point (r, e, <p) is definite-it is described by
a function of the type (5.3) or, in other words, is deter­
mined by the shape and size of the corresponding electron
cloud.
In the end, we note that the element of chance in the
behaviour of an individual microparticle is due to the
uncertainty relations. In Sec. 4, we concluded on the
basis of relation (3.3) that it is impossible to "aim a
microparticle to hit a given point". In other words, the
registration of a particular electron at some point of
a detector screen is random; we can only speak of the
probability of such a fact. In Sec. 3, we introduced
on the basis of relation (3.2) the concept of the virtual
transitions of a microparticle. It is easy to see that such
transitions also point, towards the existence of randomness
in the behaviour of a microparticle. When discussing
the specific nature of the physics of microparticles, it
is necessary to discuss in greater detail the idea of virtual
transitions and of virtual microparticles associated with
them.

Perhaps there is nothing more alien to classical physics
than the idea of virtual transitions and virtual micro­
particles. The virtual transition of an electron from level
E 2 to level E 1 and back (the transition E 2 -+ E 1 + E

2
)

may be considered as a process in which the electron
emits and absorbs a photon of energy (E2 - E1). Such
a photon is called virtual. In contrast to the photons
participating in real transitions, virtual photons cannot
be observed experimentally. The creatioh of a virtual
photon is not connected with an absorption of energy
from outside, and its annihilation is not connected with
a release of energy. The law of conservation of energy
is not violated since a virtual photon exists for a very
short time I'J.t and, according to uncertainty relation
(3.2), the energy of an electron emitting the virtual
photon is characterized by the uncertainty I'J.E > iiI I'J.t,
which may be of the order of, or greater than, the energy
of the photon (E 2 - E t ). The· emission or absorption
by an electron of virtual photons corresponds, from a

* Here, it is quite appropriate to recall the words of F. Engels:
Necessity emerges from within the framework of randomness.
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physical point of view, to the process in which an electron
undergoes virtual transitions.
Taking into consideration the emission and absorption
of virtual photons by an electron, one may imagine
that each electron is surrounded by a photon cloud.
This "cloud" should be compared with the electron's
own electromagnetic field. Two electrons may exchange
virtual photons. In quantum field theory, the interaction
of electrons is seen as a result of the exchange of virtual
photons between electrons. For this we frequently make
use of Feynman's diagrams, which enable us to consider
the various processes of photon exchange.
Figure 6.1 shows four Feynman's diagrams demonstrating
the scattering of one electron by another. The solid
lines "show" electrons and the dotted one-photons.
The intersections of solid and dotted lines are called
the vertices Qf the diagram. Let us consider the diagram
(a). Here 1 and 2 are the electrons before interaction
with each other (before scattering), AB is a virtual
photon which is exchanged by the electrons during the
process of interaction (note that all the particles indicated
in the diagram by lines connecting two vertices are
virtual); 3 and 4 are the electrons after scattering. Let
us turn to the diagram (b). Here 1 and 2 are electrons
before scattering, AB and CD are virtual photons ex­
changed by the electrons, 3 and 4 are virtual electrons,
5 and 6 are electrons after scattering. The diagram
(c) is of the same type as diagram (b); here the electrons
exchange two photons. The diagram (d) shows one of
the processes in which the electrons exchange three
photons. It is obvious that there is an infinite number
of such diagrams which become more and more complicated
(with the participation of more and more photons).
In order to calculate the probability of scattering of
an electron by an electron, one must consider in principle
the contribution of the various processes indicated by
the various diagrams. Fortunately, the contribution of
different processes is different: it is less if the number
of vertices is greater (Le. if more virtual photons take
part in a process). Theory shows that this contribution
is quantitatively determined by the dimensionless quanti­
ty (e2/tw)n/ 2 , where e is the charge of the electron, c is
the velocity of light, Ii is Planck's constant and n is
the number of vertices in the diagram. Since e2/nc =
= 1/137, it followS that the main contribution to the
scattering of one electron by another must come from
the diagram (a) with two vertices (exchange of one pho­
ton). The four vertices diagrams (b) and (c) (exchange
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of two photons) should provide the next approximation;
their contribution will be two orders of magnitude lower.
Thus, in actual practice there is no need to consider
a very large number of diagrams, it is sufficient to limit
ourselves to diagrams with a relatively small number
of vertices.
Of course, a systematic study of Feynman's diagrams and
calculations based on them is beyond the scope of this
book. These questions are related not to quantum mechan­
ics, but to quantum field theory (quantum electrodynamics)*.
However, a general introduction to the ideas forming
the bases of Feynman's diagrams is quite appropriate
at this point, since they permit us to emphasize the
specific nature of the physics of microparticles and also
demonstrate some fundamental quantum-mechanical prin­
ciples (the latter will be considered below, in particular,
in Sec. 25).
Before ending this discussion on Feynman's diagrams,
we consider the so-called effect of polarization of a vacuum.
Figure 6.2 shows a diagram describing one of the proces­
ses responsible for this effect. A photon is transformed
into a virtual electron-positron pair, which is annihilat­
ed and transformed again into a photon (one of the
solid lines between the vertices of the diagram "shows"
a virtual electron, and the other, a virtual positron).
The members of this pair during their lifetime may
obviously generate virtual photons and, consequently,
new virtual electron-positron pairs, and so on. As a
result of this, the vaeuum turns out to be not "empty"
but "fIlled" with virtual electric charges which must
exercise a screening effect on external (real) charges.
Experimental confirmation of this effect is the best
evidence of the usefulness of our concept of virtual
particles.

As we have already mentioned, the existence of the
element of chance in the behaviour of a microparticle
is one of its most specific properties. As a result of this,
quantum mechanics turns out in principle to be a sta­
tistical theory operating with probabilities. But what
is the reason for the existence of an element of chance
in the behaviour of a microparticle?
This question can be answered as follows: The existence
of chance in microphenomena is explained by the fact
that a microparticle, figuratively speaking, interacts
with all its surroundings. The specific nature of quantum

* A simple and detailed account of Feynman's diagrams is given,
for example, in [26].



mechanics is such that, strictly speaking, not a single
object in it can be considered to be fully isolated, com­
pletely independent of its surroundings. It has been
remarked [27] that the cause of the statistical nature
of quantum mechanics is the same as in classical statis­
tical mechanics, i.e. the existence of a large number
of bonds affecting the motion of the object. A particle
treated as free in quantum mechanics is in fact free
only from influences of a dynamic nature. But it remains
under the influence of random forces which cause quantum
fluctuations in its behaviour, as reflected by the uncertain­
ty relation.
What is the nature of the random influences on a micro­
particle? In quantum fIeld theory, it manifests itself
in an explicit form as the interaction of a microparticle
with a vacuum (recall that a vacuum is not "empty";
it is "filled" ,with virtual charges). It may be said that
a microparticle interacts with its surroundings through
virtual microparticles.
The reader should now find it quite natural to inter­
pret wave-particle duality as the potential ability of
a microparticle to exhibit one kind of property or another,
depending on the external conditions, i.e. on the micro­
particle's surroundings. This envisages a close connection
between the microparticle and its surroundings-in fact,
the very nature of a microparticle is displayed in one
form or another depending on specific conditions and
circumstances.
The impossibility of an unlimited detailization of ob­
jects and phenomena being displayed in quantum me­
chanics should also be explained by the interaction
of a microparticle with its surroundings. This means
that after a certain stage of investigation, physical
objects cannot be considered as being isolated. Here
it is appropriate to recall the statement given in Sec. 3
regarding the discussion on quantum transition: "During
the interaction of an electron with photons there is,
strictly speaking, no electron and no photon but a single
entity which must be considered as such without going
into details."
Quantum mechanics re-establishes the idea acquired
through everyday experience regarding the unity of the
universe and general connections among phenomena.
This idea received a setback in the classical theory.
The sharp boundaries that existed between waves and
particles, particles and fields, object under investigation
and the medium are all obliterated and the concept
of the interconversion of matter is introduced. We fwd
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ourselves in full agreement with the following appro­
priate remark made by Bohm [281: It seems necessary
to give up the idea that the world can correctly be analysed
into distinct parts, and to replace it with the assumption
that the entire universe is basically a single, indivisible
unit. Only in the classical limit can the description in
terms of component parts be correctly applied without
reservations. Wherever quantum phenomena play a signifi­
cant role, we shall find that the apparent parts can change
in a fundamental way with the passage of time, because
of the underlying indivisible connections between them.
Thus, we are led to picture the world as an indivisible,
but flexible and everchanging, unit.



Interlude. Is a "Physically
Intuitive" Model of a
Microparticle Possible?

Participants: (same as in
Prelude).

It may well be that these electrons
Are worlds just like our very own,
With kings and scholars, arts and armies,
A nd memories of ages flown.
And atoms-cosmic systems, spinning
Around a central spinning sphere.
Where things are just like ours, but smaller,
Or nothing like what we have here.
Bryusov (The World of the Electron)

Interlude

A uthor: The impossibility of the classical interpretation of a micro-
particle predetermines a negative answer to the question "Is it
possible to have a "physically intuitive" model for a microparticle?"

Classical Physicist: It is still not clear why a "physically intuitive" model[ of a
particle explaining its various properties including spin, insta­
bility, wave properties, etc. cannot be created. Such a model may
turn out to be complicated. Or, it may be possible that we still
do not know enough about a microparticle to create such a model.
But why can't we believe in the very possibility of~ this model?

A uthor: There are very sound reasons for this. I shall indicate just
two of them. Firstly, any modelling envisages in the long run a
detailization irrespective of whether it is a model of an object
or a process. However, the impossibility of an unlimited detailiza­
tion is characteristic of microparticles and microphenomena, as
we have already mentioned. This important situation was persis­
tently stressed by Bohr. He wrote, in particular (see his article
Quantum Physics and Philosophy-[6]): A new epoch in physical
science was inaugurated, however, by Planck's discovery of the ele­
mentary quantum of action, which revealed a feature of wholeness
inherent in atomic divisibility of mdtter. Indeed, it became clear that
the pictorial description of classical physical theories represents an
idealization valid only for phenomena in the analysis of which all
actions involved are sufficiently large to permit the neglect of the
quantum.... It is appropriate to mention here that this feature
of wholeness indicated by Bohr is closely linked with the identity
of a microparticle. Secondly, as we have already indicated, a char­
acteristic property of microparticles is their inavoidable inter­
action with surroundings leading, in particular, to a dependence
of some of the properties of microparticle on definite external
circumstances. These properties should be treated as certain pos­
sibilities which can be realized depending on the external circum­
stances. One may ask, in what way can these possibilities be re­
flected in the framework of a definite "physically intuitive" model?

Classical Physicist: It must be admitted that these ideas serve as strong arguments
against a "physically intuitive" model of a microparticle. However,
I don't like the very spirit of quantum mechanics which rejects
graphic representations. In my view it introduces subjectiveness
in describing real world. Take, for example, the statement: "The
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electron may present itself as a wave or as a particle, depending
on circumstances". Now, everything depends on circumstances,
especially on the circumstances of observation. Involuntarily, one
gets the idea that the electron is not something objective, but
rather something subjective depending on how we "look" at it.

A uthor: Of course, this is not true. First of all, you overlook the fact
that the electron has quite definite characteristics like rest mass,
electric charge, spin, etc. It is stable and is a fermion. As regards
a "physically intuitive" model of an electron, well, it simply does
not exist. However, in rejecting a "physically intuitive" model
of a microparticle, quantum mechanics in no way sacrifices objec­
tivity in favour of subjectivity. It is just that the electron is a
very complicated physical object, and depending on the external
circumstances, including circumstances of observation, it exhibits
its different aspects, which objectively existed in potential form
(I stress this) even before the observer was born. A sober assessment
of this complex situation is that a "physically intuitive" model
of the electron is not possible.

Classical Physicist: Can one seriously speak about an object without having an
idea of what it looks like? Isn't it strange that we study, for example,
the behaviour of an electron in a crystal while we don't even know
what an electron actually is?

Author: I don't agree that we don't even know what an electron is.
I have just indicated a number of precisely determined characteris­
tics and properties of an electron. More detailed properties of micro­
particles in general and electrons in particular were considered in
the preceding sections of the book (and will be considered in the
following sections). In fact, we know quite a lot about the electron
and know, in particular, about its behaviour in a crystal. This is
evidenced by the large number of semiconducting devices fabricated
and used by us in practice. As you will see, the absence of a "physi­
cally intuitive" model of the electron has in no way turned out
to be a serious obstacle. We may even go a step further and state
that an understanding of natural phenomena in which Planck's
constant plays an important role is possible ~nly through a signif­
icant rejection of a graphic description. By the way, this idea
was given by Heisenberg, in whose works much attention was given
to questions of the use of physically intuitive methods.

Classical Physicist: But by rejecting models, isn't quantum mechanics running
the risk of losing its material basis? Won't we be finally left
with only equations and abstract mathematical symbols?

A uthor: I can understand your doubts. For you, apparently, only the
extremes matter: either graphic models, or mathematical abstrac­
tion. To you, either a model should reflect everything or almost
everything, otherwise it is quite useless. The doubts arising in
your mind' are a consequence of precisely this type of viewpoint.
However, the quantum-mechanical approach to such questions is
mOTe flexible, or rather, dialectical.
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Classical Physicist:
Author:

Classical Physicist:
Author:

Classical Physicist:
Author:

Classical Physicist:
Author:

I don't understand what exactly you mean by that.
I want to stress two points. Firstly, although there is no "phys­

ically intuitive" model for a microparticle, this does not stand
in the way of the "model representations" in quantum mechanics.

That means I was right after all?
This is something different. Quantum mechanics believes that

even the most refined model cannot reflect the specific characteris­
tics of a microparticle. Hence quantum mechanics makes use of
tentative models (tentative images)-sometimes one, sometimes
another, admitting the relativity of every model. The only thing
that is important is that each of the models employed should reflect
some side of the nature of the object or phenomenon. Thus, when
considering electronic transitions through the forbidden band
in a semiconductor, we unhesitatingly imagine electrons as some
kind of corpuscles, which "jump" on the energy scale. When con­
sidering the propagation of electrons through an ideal crystal
lattice we use wave concepts. It is convenient to study the scattering
of electron waves by the elastic waves of a crystal in a "corpuscular
language", using the picture of collisions of corpuscles of two
types-electrons and phonons. Similarly, the image of the electron
cloud used for describing electrons in an atom also serves as a
good example of ~tentative modelling. As you see, modelling in
quantum mechanics is used quite extensively and flexibly. More­
over, all models are not interpreted literally but tentatively.

All right. And what is your second point?
The second point is as follows: Quantum mechanics makes use

of both tentative models and mathematical abstractions on an
equal footing. Just on equal footing I At this point modern physics
breaks off quite radically from classical concepts. Stressing the
great heuristic (and leading) significance acquired by mathematics
in the new physics, which was not the case earlier in the epoch of
the domination of "physically intuitive" concepts, Vavilov [29]
writes: we don't have enough accepted ideas and concepts for a physi­
cally intuitive model interpretation, but logic with its immense per­
spectives represented in mathematical form continues to be valid,
thereby creating order in the new, unexplored world and opening pos­
sibilities for physical predictions.

As a matter of fact, there is nothing definite in all this.;'
To be more precise, there is nothing predetermined beforehand.

The new physics turns to a study of theT objective world, if one
may say so, "without classical prejudices". It flexibly makes use
of different media: models and mathematical abstractions. Figu­
ratively speaking, it is not "alien to anything that is human".
Summing up, we may say that firstly, when studying microphe­
nomena, we do make use of visual models quite extensively. Se­
condly, models are by no means taken literally in quantum
mechanics; their relativeness and arbitrariness are considered.
Thirdly, getting acquainted with microphenomena is based on
the dialectic unity of model conceptI and TTUlthemattcal abstractions.
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Section 7 Some Basic Experiments

,.

Actual Experiments and the
System of Basic Experiments

~8

The concepts of quantum mechanics are based on
a vast collection of experimental data gathered over
a period of more than fifty years at the end of the 19th
century and in the first half of the 20th century. Among
the large number of experiments, a few stand out as
being definite "milestones" and can hence be called deci­
sive. They include the experiments of Lummer and
Pringsheim on black body radiation coupled with Planck's
theoretical works (1900), the experiments of Frank and
Hertz (1914) on inelastic collision of electrons with
atoms, Millikan's experiments (1914) on the photoelectric
effect, confirming the laws predicted ealier by Einstein,
the experiments conducted by Stern and Gerlach (1921)
on the splitting of atomic beams in non-uniform mag­
netic fields, the measurements of wavelengths of X-rays
scattered by matter carried out by Compton (1923),
and the experiments of Davisson and Germer, and Tarta­
kovsky (1927) on electron diffraction*. These experiments
(and many others which did not become so famous)
constitute the foundation on which, over a number of
decades, quantum theory was built, perfected, freed
from various paradoxes, and finally brought to its
present harmonious structure.
Looking now from the position of the existing quantum
theory at the experimental quest which led to it, it
is worth generalizing the actual experimental picture
by omitting the details that do not play a significant
role and trying to conceive the simplest system of basic
experiments which describe the fundamental aspects of
the quantum-mechanical viewpoint. In this section an
attempt has been made to consider such a system of
experiments. This system is built on ,the basis of actual
experiments but one should not look for a one-to-one
correspondence between the basic experiments and actual
experiments conducted at a certain time in a certain
laboratory. Basic experiments must be seen as a sort
of generalization of several actual experiments. Hence,
the experimental details concerning a certain apparatus
or various details of a historical nature do not play
a significant role here.
In our view, resorting to the system of basic experiments
is motivated by two circumstances. Firstly, being free

* A description of these experiments may he found, for example.
in [30].
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Fig. 7.1

Experiment 1 (Microparticles in
an Interferometer)

t.· .: from the detail, of actual experimental re,earche' and
.• their unavoidable "zigzags" and "deadends", such a

system of experiments permits one to isolate the main
events prominently, and clearly show the experimental
foundations of the theory. Secondly, quantum-mechani­
cal ideas have so radically changed our views on the
structure and properties of matter that it would not
be proper to draw final conclusions on the basis of par-
ticular individual experiments (even on "decisive" ex­
periments) but only on their totality. It is essential
to (onsider the totality of experiments as a whole, and
for this purpose it is useful to conceive a system of basic
experiments.

Let us begin by considering the well-known experiment
on the interference of light waves. Figure 7.1 schematically

the simplest interferometer. Here, 1 is a point
source of monochromatic light, 2 is a screen with two
small slits A and B, and 3 is a detector screen registering
the intensity of light impinging it. This intensity is
indicated on the diagram by the curve I(x). The inter­
ference character of the curve I (x) is fairly simply
explained within the framework of classical wave theory
of light: the light wave from source 1 upon reaching
the screen 2 converts the slits A and B into sources
of new light waves, which add up to give on screen 3

characteristic interference pattern of intensity distri­
bution.
We recall that the interference of light was observed

the middle of the 17th century by Grimaldi, and its
explanation on the basis of wave concepts was given
in the beginning of the 19th century by Young. Since
then, the experiment shown in Fig. 7.1 is called Young's
experiment.
One might ask what relation can the phenomenon of
the interference of light, discovered and explained long
ago, have with quantum mechanics? It turns out that
the two are directly related.
Let us gradually reduce the intensity of light from source
1. The illumination of screen 3 as a result will naturally
decrease. However, the interference character of the
curve I(x) will be retained. By increasing the time of
exposure, it is possible in principle to obtain the inter­
ference curve I(x) for even the smallest light intensities.
This is not trivial since with decreasing intensity of
the light beam the number of photons in it will decrease

I ,and so, obviously, a situation should arise when individ­
ual photons will have to be considered in place of
light waves. However, as has been shown experimentally,
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the natu'" 01 the interlerenee eueve lex) obvion'ly re-'lI:
mains unchanged no matter how much the light inten- ~! of 1
sity is decreased. The distribution of the individual scre
photons falling on the detector screen gives the same' dist
interference pattern on the screen as is produced by by
light waves. slit
Moreover, the interference is observed even if at point 1 By
(Fig. 7.1) we place a source of monochromatic electrons but
(all having the same energy). In this case also the in- the
tensity of the electron beam may be reduced indefinitely. was
We can even perform an experiment in which the electrons abll
pass through the interferometer one by one. By studying any
the distribution of the electrons falling on the detector dis1
screen over a sufficiently long exposul'e time we get in
in this case also the characteristic interference pattern doe
[curve I(x)l. Experiments repeated with other micro- slit
particles (protons, neutrons, etc.) lead to similar results. thu
From an observation of the behaviour of microparticles mu:
in the interferometer it should be concluded that, first- by
ly, the phenomenon of interference is inherent in all pas
microparticles and, secondly, it should be explained I1(J
by the properties not of en5embles of microparticles the
but of individual microparticles. reg
We shall try to "follow" the motion of an individual ing
microparticle (say, electron) in the interferometer shown to ;
in Fig. 7.1. The electron emerges from point 1, passes wit
through the slits in screen 2 and is finally registered sag
at a certain point x on screen 3. By repeating the ex- the
periment for a large number of single electrons we notice Ho
two fairly interesting facts. sin~

The first fact is the impossibility of predicting pre- can
cisely at what point x a particular electron will be regis- we
teredo The experimental conditions are the same for each one
electron (remember that the electrons pass through the I all(
interferometer one by one) and yet each electron "behaves of
in its own way"; moreover, one cannot predict the way ass
in which it will behave. This remark applies to every (de
single electron. However, by following a large number slit
of electrons, we observe a pattern in the distribution on
of their incidence on the screen 3, shown by a kind of (WI

the interference curve I(x). Moreover it is immaterial "hE
whether we observe the distribution of the incidences thE
of a large number of single electrons or the distribution thI
of the incidences of electrons from a beam. Thus, the ob'
unpredictability concerning the behaviour of an indiv- Th
idual microparticle is associated with the predictability "hl
concerning the behaviour of a large number of micro- ow
objects. otl
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'The second lact is connected with the specilic nat",e
.~. of the passage of an electron through the slits in the

screen. Let us close slit B; in this case we observe the
distribution of incidences on the screen, as described
by curve /l(X) (Fig. 7.2). Let us open slit B but close
slit A; in this case the distribution /2(X) is observed.
By opening both slits, we do not get the additive distri­
bution /l(X) + /2(X) described by the curve /3(X) in
the diagram but the interference distribution /(x) which
was noted earlier. It is this fact that is especially remark­
able. If we suppose that each electron passes through
anyone of the slits, the appearance of the interference
distribution /(x) forces us to admit that the electron
in some way "perceives" the other slit, otherwise, it
does not matter for an electron passing through one
slit whether the neighbouring slit is open or closed and
thus the distribution of incidences with both slits open
must be described not by the interference curve but
by the additive curve /3(X) = /l(X) + /2(X). The electrons
passing through slit A should give the distribution

~ 11(x), while those passing through slit B should give
~,the distribution 12(x). The detector screen should then
if~register the sum of these distributions. Since it is mean-

'Iingless to talk about the electron "perceiving" we have
i~to admit that the interference distribution /(x) observed
~'with both the slits open is associated with the pas­
; sage of the electron somehow simultaneously through
f the two slits.
ti However, this admission does not simplify matters
il since it is not clear exactly in what way a single electron
~. can pass simultaneously through two slits. Of course,
xwe may assume that the electron at first passes through
~ one slit, then it somehow returns through the other slit

and again passes through the first slit (we get a sort
of loop encompassing both the slits). Finally, we may
assume that near the slits the electron is "spread out"
(delocalized) in space, partially passing through one
slit and partially through the other, and while impinging
on the detector screen, it is again localized in space
(we get a temporary splitting of the electron into two
"halves"). There is no special need to prove that both
the attempts made above to model the passage of electron
through two holes are artificial. This becomes quite
obvious if we turn to more complicated interferometers.
Thus, in Michelson's interferometer, for example, one
"half" of the microparticle will have to move towards
one reflecting mirror and the other "half", towards the
other (in completely the opposite direction).
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Experiment 2 ("Observing" a
Microparticle in the
Interferometer)

Fig. 7.3
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Thus, the interference curve lex) greatly complicates
the problem about the nature of the passage of a micro­
particle through a screen with two slits. If the micro­
particle passes through one slit, then either there should
be no interference, or we must admit that the micro­
particle has a hidden ability to "perceive" the neigh­
bouring slit. The only logical conclusion arising from
the existence of interference is that the microparticle
passes simultaneously through two slits, though the
mechanism of such an unusual passage is not clear.
In such a situation, obviously, a direct experiment
could be helpful. Why shouldn't we try to "spy" on
the electron to see exactly in what wayan electron passes
through the slits in the screen? Such experiments were
actually conducted. Let us see what they led to.

Let us imagine that near the slits A and B of screen 2
we have light sources 4 and photodetectors 5 (Fig. 7.3),
designed for "observing" the passage of electron through
the screen with slits (the photodetectors register light
scattered by the electron). If the electron simultaneously
passes through both the slits both the photodetectors
are activated simultaneously. But if the electron passes
through either one of the slits, only one detector is activat­
ed; in this case we shall also know through which slit I

the given electron passes. '
So, we place an electron source at point 1, switch on
the light sources 4 and watch the photodetectors 5.
We shall assume that the electrons pass through the
apparatus one by one: the source emits an electron only
after the preceding one has reached the detector screen.
What does the experiment show? It always turns out
that only one photodetector (either left or right) is acti­
vated and both photodetectors are never activated
simultaneously. It means that the electron passes not
through two slits but only through .one. Moreover, we
can always indicate the slit through which any electron
passes.
The reader may surmise that to explain interference
we again have to start talking about an electron "per­
ceiving" the neighbouring slit by some secret means,
while passing through a slit. We shall not jump to con­
clusions but shall first carry out the experiment to the
end; we obtain a sufficiently large number of events
of electron incidence on the detector screen 3 and see
how they are distributed. Here, we get a surprise. On
screen 3 we get not the interference curve lex) but the
additive curve I sex).
We repeat the experiment after switching off the light
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sources (thus depriving ourselves of the possibility of
"observing" the passage of the electrons through the
slits). In this case we again observe the interference
curve I(x).
The situation is such that interference occurs when light
sources are switched off and is absent when they are
switched on. As soon as we try to control the process
of passage of electrons through two open slits, the
interference disappears. In other words, our observation
of the behaviour of electrons near the slits destroys the
interference!
A change in the nature of the motion of electrons upon
the switching on of the light sources has a simple physical
explanation: this change is the result of collision of
photons with the electrons "being controlled". In the
process of measurement some influence on the object
under investigation is inevitable. Here only one thing
is important-can this influence be made sufficiently
small? Maybe the experiment considered above was
too crude? Maybe we should somehow try to observe
the electrons more delicately, so that the interference
picture is not destroyed by this.
But how to reduce the influence of a photon on an electron?
It is obvious that a reduction in the light intensity of
the sources would not yield anything-light intensity
is associated with the number of photons in a beam,
thus a reduction in the intensity will simply result
in an increase in the number of "unregistered" electrons.
We must reduce the energy of a single photon. But
for this we shall have to increase the wavelength of
the radiation and this will lead to an increase in the
spatial delocalization of the photon (a photon is local­
ized in space with an accuracy not exceedingffiwaveIength)
and thus for a wavelength exceeding the distance between
the slits the photon will no longer be in a position to
register a particular slit.
But, may be, we could think of some other experiment­
without resorting to the scattering of photons by elec­
trons? For example, isn't it possible to try to construct
an extremely light screen with slits in such away, that
it could move to the left or right upon being struck by
individual electrons? The screen deflects to the left if
an electron passes through the left slit and to the right
if it passes through the right slit (Fig. 7.4). But if the
electron passes through two slits simultaneously, the
screen will not move at all. Thus, we just have to follow
the movement of the screen. It would appear that at least
in principle the aim has been achieved-the required
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delicate experiment has been conceived. But it is mean­
ingless to set up such an experiment. To make sure that
this is so, we recall the uncertainty relation for momen­
tum and coordinate. It follows from this relation that
if the experimental conditions really permit us to register­
the momentum of the screen due to a recoil from the elec­
tron impingement, the same condition must lead to an "­
uncertainty in the position of the screen on the line 00 ~

(Fig. 7.4). Consequently, the shift in such a screen does
not permit one to draw any conclusion on the nature of
passage of an electron through the slits. If, on the other
hand, we fix the position of the screen on the line 00,
then it is easy to see that a measurement of the momen­
tum of its recoil will become impossible.
Several attempts were made to devise such an experiment
in which the passage of electrons through a screen with
slits could be "controlled" without seriously influencing
the electrons themselves (so that the interference is not
destroyed). But all these attempts proved futile. As a
result, we must admit that the above conclusion regarding
the destruction of interference caused by observing the
behaviour of electrons near the slit, is of a fundamental
nature. In other words, the effect of observation (measure­
ment) destroying interference cannot be eliminated in
principle.
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He was going into one room
And by mistake entered another...
Griboiedoff (Gore ot Ouma)

This means we were not able to determine exactly how an
electron passes through a screen with slits-through one slit or
simultaneously through both the slits?

Indeed, we couldn't.
But then experiment 2 did not attain its goal. Was it necessary

to consider it?
Yes, it was. The experiment did not answer the question posed

by us. So what? It just means that the question was not formulated
properly. We see that we cannot question all the phenomena of
nature.

Does the whole idea of the experiment lie in its negative result?
This is not to be ignored. However, as we shall see later, it

also contains a positive result of utmost importance. In fact, we
were looking for one thing, but we found another.

And what is that?
Let us not make haste. We shall first consider our system 8

fundamental experiments to the end.

'jLet us pass a beam of light through a polarizer, say, Experiment 3 (Passage of Photons
a tourmaline crystal. A linearly polarized light beam Through Polarizers)

emerges from the crystal. The direction of polarization of
the beam is determined by the orientation of the polarizer
with respect to the beam (the direction of polarization
coincides with the direction of the axis of the polarizer).
Let us denote the intensity of the linearly polarized light
beam through f.
Further, we place a second polarizer in the path of the
linearly polarized light beam and consider the following
three cases: (a) the axis of the second polarizer is parallel
to the axis of the first; (b) the axis of the second polarizer
is perpendicular to the axis of the first; (c) the axis of
the second polarizer makes an angle a with the axis of the
first. We shall measure the intensity of light emerging
from the second polarizer. In case (a) we get intensity f,
in case (b) we do not get anything, while in case (c) we
get a light beam of intensity f cos2 a, polarized along the
axis of the second polarizer. These cases are shown in
Fig. 7.5, where AA and BB are the directions of the axis of
the first and the second polarizers, respectively.
The above experiment is well known in classical optics.
However, like the Young experiment on interference, it
has a direct relation to quantum mechanics. As in the
case of interference we shall reduce the intensity of the
light beam till the photons pass one by one through our

A Brief Interlude
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set-up. We shall consider the cases illustrated in Pig. 7.5
as applied to single photons.
First of all, we recall that a photon is characterized by
a definite polarization. Moreover, this polarization cor­
responds to the polarization of the classical light wave
from which the photon under consideration has been
"taken". In particular, this means that after the first polar­
izer we shall have linearly polarized (polarized in the
direction of the axis of the polarizer) photons. In the
following we shall "deal" only with these photons and
shall call them "initial photons".
In case (a) the initial photon always passes through the
second polarizer; in case:(b), on the contrary, it never pas­
ses the second polarizer. These results are not unexpected.
But what happens in case (c)? It turns out that in this
case the photon may pass through the second polarizer
or it may not. Moreover, it is absolutely impossible to
predict which of the two alternatives (passing or not pas­
sing) will be realized for a given initial photon. If it so
happens that the photon passes through the second polar­
izer, its polarization will change-it will be polarized
in the direction of the axis of the second polarizer. Thus,
the fate of any particular individual photon is, in prin­
ciple, unpredictable!
Let us assume further that there are N initial photons.
We observe their passage through the second polarizer in
the case (c) and see what happens. We find that if N is
sufficiently large, the number of photons passed can be
predicted fairly accurately; it will be about N cos 2 ex.
In this connection, we recall our earlier remark that the
unpredictability in the behaviour of an individual mi­
croparticle is related to the predictability in the behaviour
of a large number of microparticles (see Experiment 1).
We can say that there is a definite prohaboility of the ini­
tial photon passing through the second polarizer. This
probability is equal to cos 2 ex.
Let us now complicate the experiment. We use the situa­
tion shown in Fig. 7.5 (c) and add yet another (i.e. a
third) polarizer, whose axis is perpendicular to the axis
of the first polarizer. The three-polarizer system under
consideration is shown in Fig. 7.6. Let N be the number
of initial photons (i.e. photons passing through the
first polarizer). After the second polarizer, as we already
know, we shall have N cos 2 ex photons, the polarization of
these photons coinciding with the axis of the second polar­
izer. Analysing further in the same way, we conclude
that after the third polarizer, we must have N cos2 ex sin2 ex
photons; moreover, the polarization of these photons must
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coincide with the axis of the third polarizer. The ex­
periment certainly confirms this conclusion.
There is nothing that appears astonishing in this (that
is, of course, if we assume that our astonishment over the
existence of two unpredictable possible behaviours of an
individual photon has somewhat diminished). And yet
there is something here which contradicts our usual con­
cepts. Let us remove the second polarizer. Then no photons
will be observed after the third polarizer. This creates a
fairly interesting situation. Photons pass through this
apparatus, as if they are "filtered" first through the second
polarizer and then through the third. As a result, we at
first have N photons, then N cos2 a, and we are finally
left with N cos2 a sin2 a photons. We remove one of the
«filters" and thus, it would appear, improve the condi­
tions for passage of photons through the given apparatus.
However, in actufll practice it turns out quite differently­
now the photons do not pass through the apparatus at
all!

We shall consider elastic collisions of microparticles and
use for convenience the centre of mass system for the col­
liding particles. Figure 7.7 shows experimental diagram
related to the system of the centre of mass of the particles.
Here, A and B are particle beams, 1 and 2 are the counters
for scattered particles, deployed on the line perpendicu­
lar to the direction of motion of the particles before col­
lision. Thus, we consider here the scattering of particles
through an angle of 90° in the centre of mass system.
We note that the picture of the process in the centre of
mass system may considerably differ from the analogous
picture in the laboratory system. Thus, for example, in
the laboratory system the counters 1 and 2 may not be on
the same line. Besides, in actual practice only one beam of
particles (for example, particles of type A) may be used
while the particles of the other type (type B) constitute
the stationary target. It is assumed that every time the
experiment in the laboratory system is conducted in such
a way that the diagram shown in Fig. 7.7 is applicable for
the centre of mass system of the particles.
We shall consider different examples as applied to the
above diagram, measuring each time the probability of
scattering of particles by the number of simultaneous acti­
vations of counters 1 and 2.
First example. Particles of type A are a-particles (4He
nuclei), particles of type Bare 3He nuclei; counter 1
registers only a-particles, counter 2, only 3He nuclei.
Let 1IJ be the probability of scattering measured in this
case.

Sec. 7

Experiment 4 (Scattering of
Microparticles by Microparticles)

Fig. 7.7

1j1"
(

I
I

,+. I '. /3

~--~---~
I
I
I
I

L!.Jt.

77

:11'"
II.'
"~'I

',.1·1'

I
i

,I
;



Conclusion

78

Second example. The particles are the same, but now
each counter can register both a-particles and 3He nuclei.
In this case the measured probability of scattering turns
out to be 2w. This result appears quite natural-the doubl­
ing of the probability w is associated with the realization
of the two alternatives shown in Fig. 7.8.
Third example. We replace 3He nuclei by a-particles.
Let the a-particles be scattered now by a-particles. It
would appear that in this case the scattering probability
must be the same (or nearly the same) as in the previous
case, i.e. 2w. The experiment, however, yields quite a
different result, 4w. A "mere" replacement of 3He nuclei
by 4He nuclei has doubled the scattering probability!
Still more unexpected results are observed by taking into
account the spin states of the colliding particles (in the
case of a-particles the question of taking spin into account
did not arise since a-particles do not have spin). In this
connection let us consider scattering of electrons by elec­
trons. We recall that an electron may exist in two spin
states (a = 1/2, -1/2). Electrons Jcreated as a result of
photoelectric emission, for example, appear in one spin
state or the other with same probability. Such electron
beams are termed nonpolarized; half the electrons in
them have a = 1/2 and the other half, a = -1/2. If we
take special measures, we may obtain a polarized electron
beam in which all electrons are in the same spin state.
Having made these remarks, let us now return to the dia­
gram in Fig. 7.7 and continue the list bf examples under
consideration. Moreover, we shall assume that the energies
of the colliding particles are considerably small, hence,
the possibility of an electron ~hanging its spin state upon
collision need not be taken into consideration.
Fourth example. The two electron beams are nonpolarized.
Let the scattering probability measured in this case be We.

Fifth example. The electron beams are pblarized but in
both directions. For example, A-electrons have spin
a = 1/2 and B-electrons, a = -1/2. In this case the
scattering probability turns out to be 2we •

Sixth example. The electron beams are polarized in the
same direction. In this case the counters 1 and 2 are "silent"
-the scattering probability is zero!
As will be seen later, the results of experiments on the
scattering of microparticles reveal fundamental quantum­
mechanical laws.

We have thus considered a system of four fairly simple
experiments. While considering them we emphasized the
unexpectedness of the results, which indicates the impos­
sibility of their classical explanation. The system of basic
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Section 8

experiments could have been enlarged and supplemented
by more complex experiments. However, we shall not do
this. We content ourselves with considering the four ex­
periments, as we think that all the basic principles of
quantum mechanics are fairly :clearly revealed in them.
On the basis of the experiments considered, we move on
to build up in the following sections a system of quantum­
mechanical concepts which essentially expresses the
physical foundations of quantum mechanics.

Amplitudes of Transition
Probabilities (Formulation
of Basic Principles)

We suppose that for a certain microparticle definite
initial and fina~ states (s-state and I-state, respectively)
are considered. The specific characteristics of these states
as well as the nature of the microparticle are immaterial
for the present. As has been pointed out earlier, the tran­
sition of the microparticle between the two given states
has, as a rule, a probabilistic character. We therefore
introduce into the picture the transition probability Ws-f'

In quantum mechanics, apart from transition probability,
the concept of the amplitude 01 the transition probability
(I Is) * is also introduced. Generally speaking, it is a
complex number, the square of whose modulus is equal
to the transition probability:

W,_f= 1<1 I s)1 2• (8.1)

Note that the amplitude of the transition probability is
written so that the initial state is on the right and the
final one on the left (as if it were read from right to left).
Henceforth for brevity we shall call the amplitude of the
transition probability the transition amplitude (and some­
times even more briefly simply the amplitude).
Besides introducing the concept of the transition ampli­
tude, which is of utmost importance to quantum mechan­
ics, we shall devote this section to a formulation of a
number of basic principles in their most general form.
The reader should not be perplexed over the formality of
the exposition in this section. It will be compensated for
in the next section where we shall demonstrate the prin­
ciples indicated in this section using specific examples.
Moreover, among other things, we shall consider the con-

• The treatment of quantum mechanics on the basis of probability
amplitudes is given in books by Feynman [3-5] and'birac [9].

Sec. 8

Introduction to the Concept of
Amplitude of Transition
Probability
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nection between these principles and the experiments
discussed in Sec. 7. This will provide, on one hand, grounds
for the formal description of the principles and, on the
other hand, an explanation of the astonishing experi­
mental results.

We shall indicate four basic rules of working with
transition amplitudes. These rules should be considered
as postulates forming the basis of a system of quantum­
mechanical concept which are in conformity with ex­
periment.
First Rule. We assume (Fig. 8.1(a)) that there are several
physicaUy indistingUishable ways (paths) in which a mi­
croparticle can move from s-state to I-state. In this case,
the resulting transition amplitude is the sum of the ampli­
tudes corresponding to the different modes of transition:

(f I s) = ~ <I I S)i (8.2)
t

(the index i denotes the i-th mode of transition).
Second Rule. We assume (Fig. 8.1(b)) that there are several
final states (f1' 12' ... , Ii' ... ) and that we are consid­
ering the probability of transition to any of these states,
no matter which state it is. In this case, the resulting
transition probability I <I I S) /2 is the sum 01 the tran­
sition probabilities to the various final states:

/</ I S)/2= Lj /<1 I s)i1 2• (8.3)

Third Rule. Let us assume (Fig. 8.1(c)) that the transition
s -+ I takes place through some intermediate state (v­
state). In this case we introduce the idea of the amplitude
of the successive transitions s -+ v and v-+ I (correspond­
ing to the amplitudes <v I s) and <I I v»); the resulting
amplitude is the product of these amplitudes:

<t I s) = <t I V) <v I s) • (8.4)

In other words, if the transition is broken up into succes­
sive steps, the transition amplitude is expressed by the
product of the amplitudes of the separate steps. It should
be noted that if the notation in (8.4) is read from right
to left, then the states will be designated in proper se­
quence: first the initial state, followed by the interme­
diate state and then the final state.
Fourth Rule. Suppose (Fig. 8.1(d)) we have two indepen­
dent microparticles. Suppose one microparticle undergoes a
transition s -+ I and the other simultaneously undergoes a
transition S -+ F. In this case the resulting transition
amplitude for the system of microparticles is given by the
product of the transition amplitudes for the individual

'"



_-jJ;*~ In.icroparticles:
~k <IF IsS) = (f I s) (F I S> . (8.5)

We can see that the second, third and fourth rules ap­
pear quite natural since, together with (8.1), they repre­
sent well-known theorems, i.e. the theorem of addition of
probabilities (second rule) and the theorem of multipli­
cation of probabilities of independent events (third and
fourth rules). Only the first rule, which may be called the
rule 01 addition at amplitudes, appears unusual. In a cer­
tain sense, the entire system of quantum-mechanical con­
cepts is based on the rule of the addition of amplitudes.

Suppose that the transition of a microparticle from the
initial to the final state (s ~ I transition) always takes
place through one of the intermediate states (VI' V 2, •••

• • . , Vi' ... ) (Fig. 8.1(e)). In this case, one or the other
mode of transition s ~ I (one alternative or the other)
is determined by the "participation" of the corresponding
intermediate state in the transition.
We take two different cases. Suppose in the first case the
intermediate state through which a given t'ransition takes

- place is known. This is the case of physically distinguishable
alternatives. To describe this we must combine the second
and the third rules. The transition probability that we
obtain as a result will be of the form

Distinguishable and
Indistinguishable Alternatives.
Interference of Amplitudes

y
I

(8.6)

One might ask: where does the second rule come in if it
only involves the various final states? As a matter of fact,
if we know the intermediate state at which the micropar­
ticle arrives, it may be treated as the final state of the
first step of the transition. We fix the microparticle in this
state and temporarily stop the experiment here. One micro­
particle will be fixed in one state, the others in various
other states, so, a situation with different final states
actually arises. We stress here that distinguishability of
alternatives is connected with the actual existence of differ­
ent final states (even if in the given experiment they
play the role of intermediate states).
In the second case, we don't know the intermediate state
through which a particular transition takes place. This is
the case of physically indistinguishable alternatives.
To describe this case we should combine the first and the
third rules. The resulting transition probability will be
of the form

<I I s) = ~ (f I Vi) (Vi Is).
i

Sec. 8
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The result (8.7) is a specifically quantum-mechanical one.
When it holds, we speak of the interference of amplitudes·
of transitions through different intermediate states. We
emphasize that the interference of amplitudes is possible
only under conditions of the physical indistinguishability
of the alternatives corresponding to the given experiment
(the microparticle is not fixed in the intermediate state,
hence we are actually dealing only with one final state).
Changing over from amplitude in (8.7) to the probability
of transition, we get

/<fls)/2=2,]I<flvi}(Vils)12. (8.8),
The difference between the cases of physically distinguish­
able and indistinguishable alternatives becomes clear
from a comparison of probabilities (8.6) and (8.8). While
in the first case the probabilities of the alternatives are
added, in the second case it is the amplitudes of the pro­
babilities of alternatives which are added.

It is interesting to expand somewhat the fourth rule
regarding the simultaneous transition of two micropar­
ticles. Let us suppose (Fig. 8.2(a» that one microparticle
un lergoes a transition s --+ f through the intermediate
v-state and that another microparticle simultaneously
undergoes the transition S --+ F through the intermediate
V-state. By combining the third and fourth rules we
represent the transition amplitude for the system of mic­
roparticles in the following form:

(fF IsS) = <t I V) (v I s) (F I V) ( V I S) • (8.9)

Let us assume further (Fig. 8.2(b) that both the micro­
particles in the process of their transitions ass through
one and the same intermediate vI-state. Then (8.9) must
take the form

(IF IsS) = (I I VI) (VI I s) (F I VI) (VI .. IS) • (8.10)

Finally, we assume (Fig. 8.2(c) that each microparticle
realizes a number of physically indistinguishable alter­
natives through different intermediate states (VI, V 2 , •••

. . •, Vi)' Moreover, every intermediate state is common
to both the microparticles. In this case generalizing re­
sult (8.10) by combining it with the first rule, we get

<IF I 5S) = 1(f I VI) (VI Is) (F IVi) (VI IS). (8.11)

The interference of amplitudes is destroyed when the
alternatives become distinguishable. We shall show how
this happens by using transitions involvi19 two micro­
particles [by using the result (8.11) l.
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(8.14)

(8.13)

For brevity, we shall call the microparticle undergoing Fig. 8.2

the s -+ f tra?~ition the s-particl: and the one perform.ing 1':"\ ~J:"\ -..t:n
S -+F transItIOn as the S-partIcle. We assume that S- ~ '!:!
particles are used to "control" (observe) through which~
intermediate state the transition of the s-particle takes fa/) S v F
place in each specific case. To exercise this control, we
must have as many final F -states (denoted by F l' F 2' ...

... , F;) as there are intermediate v-states to be "control­
led" and arrange it so that an S-particle passing, for exam-
ple, through the Vi-state, goes just to the Fi-state.
This is schematically shown in Fig. 8.2 (d). Here each ft;
intermediate state appears to be "bound" to a definite'
final F-state. We simply have to watch the final state in
which a "controlled" S-particle appears in each case.
Whereas earlier (in the absence of S -particles) the alter­
natives were indistinguishable, so that it was not known
in each case through which intermediate state the transi- (e)
tion of the s-particle took place, the different alternatives
now become physically distinguishable. An S-particle
observed in any F-state unambiguously indicates the
intermediate state through which a given transition took
place. According to the remarks made above, the use of
S-particles for distinguishing intermediate states must
lead to a destruction of the interference of amplitudes.
Let us verify this now.
If only the S-particle which has passed through the inter­
mediate vcstate comes to the Fi-state, then we have as /.J')
a result (F i 1 Vii) =0 for k=/=i. Using (8.11) we get {C'lJ

from this
(fFi IsS) = <I I Vi) (Vi Is) (Fi I Vi) (Vi IS). (8.12)

Since the Fi-states are the various final states, we get,
according to second rule, the following expression for
the resulting transition probability of the "controlled"
s-particle:

IU / s)1 2 = LJ IUFi I sS)1 2

i

= LJ 1<1/ Vi) (Vi 1S) (Pi IVi) (Vi I S)1 2•
i

If we further assume that the amplitude (F i I S) is the
same for all i (which is often the case in practice), then,
denoting this amplitude by a for brevity, we rewrite
(8.13) in the form

IU I s)1 2 = I a /2 LJ IU IVi) (Vi I s)I 2•
i

{

s
e
e
'Y
t

Thus while result (8.8) is obtained in the absence of S­
particles (in the absence of "control"), we now have the
result (8.14). It is easy to see that it corresponds to (8.6)-
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we destroy the interference of amplitudes by establishing
a "control" over the intermediate states, i.e. by turning
the physically indistinguishable alternatives into distin­
guishable ones.

S . 9 Amplitudes of Transition
ectlon Probabilities

(Demonstration of Basic
Principles)

Using the concept of the transition amplitude and the
rules relating to the amplitudes, let us turn to experiment 1
discussed in Sec. 7. An electron emerges from the initial
s-state, passes through a screen with slits A and B, each
of which corresponds to its intermediate state (A -state
and B-state, respectively) and is finally registered in
its final x-state, i.e. at the point with coordinate x on
the detector screen.
Suppose that slit A is open and slit B is closed. In this
case (x I S) A = (x IA) (A Is). The probability of tran­
sition s -x, i.e. the probability of the electron being
registered at point x of the detector screen, is of the form

I(x I S)A /2= I(x I A) (A I S)/2. (9.1)

We denote this probability by II (x), and recall that this
is how we denoted the distribution of electron incidences
on the detector screen in experiment 1 (Sec. 7) under the
conditions that slit A is open and slit B is closed. For the
probability of an electron being registered at point x
in the case when slit B is open and slit A is closed, we
may write the analogous expression

(9.2)

Now let us open both the slits. Since it is impossible to
indicate through which slit any electron passes (the alter­
natives are indistinguishable), we have,; consequently,

(x I s) = (x I A )(A I s) + (x I B)(B , s). (9.3)

Denoting the transition probability I (x I s) 12 by I (x)
(we denoted the interference curve observed on the detector
screen with both slits open in the same way in Sec. 7),
and taking into account (9.1) and (9.2) we get from this

I(x)= /(x I A) (A / s)+(x I B) (B I s)/%

= Ii (x) +12 (x) + (x I S)A (x I s)1 + (x I s)l (x Ish. (9.4)

It is easy to see that the resulting probability of transi­
tion is not equal to the sum of probabilities of the transi­
tions through slits A and B [I (x) =1= II (x) + 1

2
(x)l.



(9.6)

In addition to the components I I (x) and 1 2 (x), the right­
hand side of expression (9.4) contains two additional terms
caused by the interferen~ of amplitudes. It is these
terms that account for the difference of the interference
curve I (x) from the add itive cmve 1 3 (x) = I I (x) +
+ 12 (x).
Thus, the interference distribution of the electron inci­
dences on the detector screen observed with both the
slits open in experiment 1 in Sec. 7 is a consequence of
the result (9.4), i.e. a consequence of the interference of
the amplitudes of two possible transitions of the electron
from the given initial state to the given final state.

Figure 9.1 depicts schematically the fundamental exper­
iment 2 considered in Sec. 7. Here s is the electron source,
S is the photon source, PI and P 2 are photoelectric coun­
ters which fix the two final states of photons scattered by
electrons in th'e vicinity of slits A and B. To begin with,
we shall assume that the photons scattered in the vicinity
of either of the slits may be registered in the Fl-state as
well as the P 2-state (which corresponds to the use of ra­
diation with a sufficiently large wavelength). In this
case, obviously, the photons don't "control" the passage
of electrons through the screen with slits. We denote the
transition amplitudes thus:
for electrons
(x I A)(A Is) = CPI, (x I B)(B Is) = CP2' (9.5)

for photons (taking into account the symmetry of the
photon transition which can be clearly seen from Fig. 9.1)

(Fi I A) (A I S) = (F2 I B) (B I S) = "'1'
(F21 A)(A 1 S)=(F i / B)(B /,S)="'2'

Using these notations and result (8.11), we write the
following expression for the probability amplitude of
simultaneously registering an electron at point x and
a photon in the Fl-state

(xFI IsS> = CPlll\ + CP21\J2' (9.7)

Correspondingly, for the probability amplitude of simul­
taneously registering the electron at point x and the
photon in the P 2-st3te, we write

(xF2 1 sS) = CPIlP2 + CP2lP!. (9.8)
The probability of an electron being registered at point x,
independent of where the photon is registered, is of the
form (according to second rule from Sec. 8)

I(x I s)1 2 = l(xF1 1sS))2+ l(xF2 / sS)1 2 • (9.9)

Sec. 9

Destruction of Interference of
Amplitudes upon "Controlling"
the Behaviour of a Microparticle
in the Interferometer
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Thus the resulting probability of the electronic transition
s --+ x is made up of two components. The first is the sum
of the probabilities of transitions through slits A and B
(considered separately) multiplied by (I 'ljJ1 [2 + ['ljJ2 1

2).
The second component has an interference character; it is
due to the interference of amplitudes. Because of the
existence of this component, we observe the interference
distribution of the impingements of electrons on the detec­
tor screen.
Thus, when the photons don't "control" the passage of
electrons through a screen with slits, we observe the inter­
ference effect described by the expression (9.10).
Remember that in the example considered here we as­
sumed a sufficiently long wavelength for the radiation.
Let us now reduce the wavelength. This will lead to a
reduction in the probability of a photon scattered by an
electron falling in the "alien" counter (for example, the
probability of a photon scattered near slit A being detect­
ed by counter F 2 ). This means that with a decrease in
the radiation wavelength, the amplitude 1/12 must decrease.
A decrease in the amplitude 1/12 will also decrease the
relative contribution of the interference component as
is seen clearly from (9.10). As a result, the interference
pattern observed on the detector screen gets blurred.
For a sufficiently small radiation wavelength, it is pos­
sible to accurately "control" the passage of electrons
through a screen with slits. In this extreme case a photon
scattered near either of the slits arrives only at its "own"
detector. This means that 1P2 = O. Substituting this
result in (9.10) we get

I(x I s)1 2= /1VtI 2(lcpt 1
2+ I CP21 2). (9.11)

Thus, "control" of the passage of electrons through a
screen with slits leads to a destruction of the interference
amplitudes, and consequently to a disappearance of the
interference distribution of the electrons impingements on
the detector screen. The result (9.11) is in complete accord
with (8.14). "Control" makes the alternatives correspond­
ing to the passage of an electron through different slits
distingUishable.
From this example we see that there is a subtle point
involved in the question of the distinguishability of
alternatives: in addition to the complete indistinguish-
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Substituting (9.7) and (9.8) into this, we find

I(x I s)1 2=(/ qJ11 2+ I qJ21 2) (I 'ljJt/ 2 + I 'ljJ21 2)

+ (qJtqJ~ + qJlqJ2) (1Pt'ljJ~ + ~)N2). (9.10)
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ability and complete distinguishability, there is a con­
tinuous spectrum of intermediate situations which should
be identified with partial distinguishability. The result
(9.11) describes the limiting case of complete indistin­
guishability of the alternatives under consideration
N2 = 0). The opposite extreme case of the complete in­
distinguishability of alternatives envisages equal pro­
babilities for a photon falling on its "own" or the "other"
detector: 1J'1 = 1J'2' In this case it is easy to see that expres­
sion (9.10) assumes the form

I(x I s)1 2=21 'lJJ1/ 21cr1 + cr2 12• (9.12)

Results (9.11) (the squares of the moduli of electron ampli­
tudes are added) and (9.12) (the electron amplitudes them­
selves are added up) are obtained from (9.10) as particular
(limiting) cas~s. The general expression (9.10) describes
the intermediate situation corresponding to partial dis­
tinguishability of the alternatives under consideration,
differing from one another by the magnitude of the inter­
ference component. The less the interference component
is the greater is the degree of distinguishability of alter­
native3.
Thus, distinguishability and indistinguishability are
by no means discrete. Complete indistinguishability is
continuously transformed into complete distinguishability
through intermediate situations corresponding to partial
distinguishability. In Sec. 10 we shall return to the ques­
tion of partial distinguishability from the point of
view of the principle of superposition.*

We turn to experiment 4 of Sec. 7. Let Sl and 8 2 be the
initial states of the colliding microparticles and 11 and 12
be the final states registered by the corresponding counters.
In Sec. 7 we considered the scattering through an angle
of 90° in the centre of mass system of the colliding par­
ticles. For a more general approach, we shall consider
scattering through an angle e. In this case the counters
are arranged along a straight line at an angle e with the
initial direction of the colliding particles-see Fig. 9.2(a)
(the analysis is carried out, as before, in the centre of
mass system of particles).
If upon scattering one microparticle undergoes a transi­
tions1 -11' and theotheratransitions2 -/2 (Fig. 9.2(b)),
the scattering amplitude has the form

Scatfering of Microparticles and
Interference of Amplitudes

~. i, '
i

(9.13)

* Partial distinguishability of alternatives is described in detail
in [31].
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(9.14 )

Suppose that the microparticles are completely distinguish­
able. This may mean, for example, that different kinds of
microparticles, or the same kind of microparticles with
different spin states are colliding. We fIrst consider a situa­
tion when counter 11 registers microparticles from SI only
and counter 12 from S2 only. In this case the probability
of a simultaneous activation of both counters is

Another alternative is also possible: one microparticle
undergoes a transition SI -+ 12 and the other, S2 -+ 11
(Fig. 9.2(c». In this case the scattering amplitude has
the form

1q> (8)1 2 = W1 181) (/21 S2)/2. (9.15)
Second situation: each counter registers any of the micro­
particles participating in the collision (the situation cor­
responds to the second example in experiment 4 of Sec. 7).
We should now consider two possible alternatives. Since
these alternatives are also completely distinguishable
fOF completely distinguishable microparticles, the proba­
bility of simultaneous activation of both counters will
be given in this case by the expression

I q> (8)1 2 + I q> (n-8)1 2 = 1<11 181) (121 52)1 2

+ 1(14181) (/1182)12. (9.16)
For 8 = n/2, we get the probability 21 q> (:rr/2) 1

2-it is
this doubling of probability which we mentioned in the
second example in experiment 4 of Sec. 7.
Further, we assume that the microparticles are completely
indistinguishablJe. This means that microparticles of the
same type and in the same identical state are considered.
Note that the identity of micropartiq]es mentioned in
Sec. 6 is a necessary condition for complete indistinguish­
ability.
If the microparticles are completely indistinguishable,
so are the alternatives shown in Fig. 9.2(b), (c). In this
case we should sum not the probabilities of the alterna­
tives, but their amplitudes. The probability of simultaneous
activation of the counters should be determined by the ex­
pression

W= / rp (8) + cp (n- 8)/2. (9.17)

When applied to the third example in experiment 4 of
Sec. 7 (when we considered the scattering of a-particles 'i~

by a-particles), the result assumes the form

W= / cp(:rr/2)+cp(:rr/2)1 2 =41 cp(:rr/2)/2. (9.18)

(I;

(f)

CD,

,~ -.®---,+'-"-l(0,,,

(tI) CD

Fig. 9.2
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It is this four-fold increase in the probability I cp (:11/2) 1
2

which was observed in the experiment.
Interference of scattering amplitudes is just one of the
consequences of the complete indistinguishability of mic­
roparticles. Another consequence is that the probability
of the simultaneous activation of counters should not
change if we interchange Sl and S2' or, in other words, if
we interchange the scattering amplitudes cp (8) and
cp (n - 8). If we proceed from these consequences, the
probability may be formally written in the form

W = I cp (8) + qJ (n - 8)12. (9.19)

The alternative with the "+" sign (interfering amplitudes
have the same sign) is already familiar to us-it is the
expression (9.17). The other alternative, when the ampli­
tude with opposite signs interfere, is alE:O formally pos­
sible. It is remarkable that nature "employs" this alter­
native as well; this can be verified by studying the results
of experiments on scattering of electrons by electrons.
Thus, we assume that amplitudes with opposite signs in­
terfere:

W e = I qJ (8)-cp (:n-8)1 2 (9.20)

\

and turn to the results of the indicated experiments. For
8 = :n/2, the probability (9.20) vanishes. This corres­
ponds to the sixth example in experiment 4 of Sec. 7.
We recall that th is example concerned the collision of
electrons in the same spin state. It is in this case that we
have two completely indistinguishable alternatives for
the electrons*.
If the colliding electrons are in different spin states (the
fifth example in experiment 4), the alternatives are distin­
guishable. In this case the probability of the activation
of the counters is given (as for distinguishable particles)
by expression (~l.17), which for 8 = :n/2 leads to the famil­
iar result 2 I (P (:n/2) 1

2 • In the case of non-polarized
electron beams (the fourth example in experiment 4),
it should be remembered that the probability of collision
between two electrons in similar spin states is 1/2. From
this, taking (9.20) and (9.16) into account, we get the
following expression for the probability of activation of

* We shall henceforth omit the word "completely", but shall ahays
mean it while speaking of distinguishable and indistinguishable
alternatives. Partial distinguishability will be specially mentioned.
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the counters
1

We =2 1 cp (8)-cp (n-8)1:>.

+ ~ [j cp(8)12+ I cp(n-8)1 21. (9.21)

,I
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Interference of Amplitudes and
Division of Microparticles into
Bosons and Fermions

90

Result (9.21) includes the summing of amplitudes (for
cases characterized by indistinguishable alternatives)
as well as the summing of probabilities (for cases charac­
terized by distinguishable alternatives). For 8 = n/2,
(9.21) gives the probability We = I cp (n/2) /2. This is
half the "classical probability" (i.e. the probability taking
place in the case of indistinguishable alternatives) in
complete agreement with the results of the experiments
considered in Sec. 7.

Thus, we have found that the experiments on the scat­
tering of microparticlesdescribed in Sec. 7 provide a good
experimental background for the concept of the interfer­
ence of amplitudes. Moreover, these experiments indi­
cate the necessity for using not one but two different laws
of interference, (9.17) and (9.20). We shall discuss the
meaning of these two laws, assuming that 8 = n/2.
According to (9.17), we have for a-particles

W = 4 I cp (n/2) 12, (9.22)

and from (9.20) we have for the electrons in the same spin
state

we = O. (9.23) '*
The use of angle 8 = n/2 makes the scattering diagram
symmetrical. If in addition we also take into account
that the electrons are in similar spin states (a-particles
do not have spin), we may conclude that expressions (9.22) ,
and (9.23) describe the probabilities of a~particle pairs ~',.r,
and electron pairs, respectively, appearing in the same 1
state. Comparing this expression with the "classical pro- (
bability" 2 Icp (nIQ) 12 , we can come to the conclusion that
one kind of microparticles (a-particles in this case) exhib-
its a tendency to "populate" a given state densely, while
other microparticles (electrons in this case), on the con-
trary, may "populate" states only one at a time.
The fact that all microparticles in nature are divided,
according to their behaviour in assemblies of similar
particles, into two groups-bosons (with a tendency to
densely "populate" the same state) and fermions ("popu­
lating" the states only one at a time) has already been
mentioned in Sec. 1. Now we see that this fundamental
fact is associated with the existence of two different laws
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for the interference of amplitudes. In the case of bosons,
the amplitudes with like signs interfere; in the case of
fermions, it is the amplitudes with opposite signs that
interfere.

Let us consider an example: there are three atoms emit­
ting photons (81, 82, 83) and three photon counters (f1'

f2' 13)' The amplitude of probability that three transitions
81 -~.j1' 8 2 -+/2' 83 -+/3 take place simultaneously is
<11 181) (f2 182) (f3 183), We assume that the photons
are registered in the same state. We then have 3! = 6
indistinguishable alternatives. Besides the one indicated
above, the remaining fivp amplitudes are given by

<t1 1 82) <12 I 81) <t31 83),
</1 I 81) <t31 82) <12 1 83),

<fa I 81) (f21 82) <11 1 8a),

</1 I 82) (/2 I 83) (f3/ 81),
</1 I 83) (/21 81) <t31 82 ),

Assuming that the amplitude of each transition 8i -+ Ik
is the same (we denote it by a), and taking into account the
indistinguishability of alternatives, we get, for the ampli­
tude of a transition with the emission of three photons,
the expression 3 !aa, and for the probability of the tran­
sition (3! )21 a3 12. If the alternatives were distinguishable
(if distinguishable microparticles were emitted), the
probability would be expressed by 3! I a3

1
2

• Generalizing
these results for the case of n microparticles, we get for
emission probabilities the expressions (n!)21 an 1

2 and
n! 1 an 1

2
, respectively.

Let w" be the probability of the emission of n bosons (pho­
tons in this case) in the same state, and W n the probabil­
ity of the emission of n distinguishable microparticles
in the same state. It is easy to see that

W n = nl W", (9.24)

Consequently, the probability of the combined detection
of n bosons is nl times greater than the probability of the
combined detection of n distinguishable microparticles.
We rewrite the result (9.24), replacing n by n + 1:

wn+1=(n+1)!Wn+t. (9.25)

Dividing (9.25) by (9.24) we get

wn+1Iwn=(n+l) Wn+iIWn' (9.26)

This means that the probability of getting one more boson
in a state where there are already n bosons is (n + 1) times

Bosonic Nature of Photons and
Processes of Spontaneous and
Induced Emission of Light

II' I
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Here we consider a particular state, and (1 I 0) is the
amplitude of the transition:
(unoccupied state) --+ (state with one boson), (n + 1 In>
is the amplitude of the transition:
(state with n bosons) --+ (state with n + 1 bosons). When
applied to amplitudes and not probabilities, result (9.27)
means

greater than the probability of getting one more distinguish­
able microparticle in a state where there are already n.
such microparticles. We note further t bat for d istinguish­
able microparticles the degree of prior "population"
of the state is not important. When applied to hOSOIlS, it
is analogous to the situation when a boson appears in
a state which was not occupied earlier. Hence result (9.26)
may also be interpreted in a different way. The probability
of getting another boson in a state having n bosons is
n + 1 times greater than the probability of a boson appear­
ing in a state which was hitherto unoccupied. In accord­
ance with this interpretation we can rewrite result
(9.26) in the form

1(n + 1 In) 12 = (n + 1) 1(1 10) 12• (9.27)

Let us analyse the result (9.27) by considering photon
emission (emission of light). It is easy to see that the
probability of emission is split into two components:

The component (9.29) describes the probability of spon­
taneous emission of light and the compol).eut (9.30) that
of induced emission of light. In the case of sp'ontaneous emis­
sion, the transitions in a substance (to be more precise,
in the radiating atoms) are spontaneous. They are mutu­
ally unrelated and are independent of external rad iation.
In contrast to spontaneous emission, induced emission
depends on the existence of photons near the rad iating
atom-the more photons there are, the greater is the pro­
bability of induced emission. It turns out that on account
of their hosonic nature, the photons "extract", as it were,
new photons from the substance. To be more prccise,
they stimulate transitions in a substance which lead to
the emission of new photons. We stress that a "stimulated"
photon is created in the same state in which the "stimulat­
ing" photon was.

,
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(n + 1 / n) = V n + 1 (1 / 0).

/(n+1/ s)I~= /(1/ 0)/2,

l(n+11 n)I~= n/(11 0)1 2 •

(9.28)

(9.29)

(9.30) ~1""",',
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Experiment shows that the probability of the absorp­
tion of light by a substance depends upon the number of
photons in tlie radiation. In this respect the process of
absorption of light is an induced process. By using the
analogy with (\3.30) we can write the following expression
for the probability of the annihilation of a photon in a
state having n photons: I (n - 1 I n) I 2 = n 1(0 11) 12 •

We rewrite this result, replacing n by (n + 1):

I (n I n + 1) 12 = (n + 1) 1(0 11) 12 • (9.31)

Comparing (9.31) with (9.27), we conclude that the pro­
babilities of direct and reverse transitions are equal to
Bach other: I (n + 1 In) 12 = I (n 1n + 1) 12 •

Thus, using a specifiC example, we have demonstrated the
so-called principle of microscopic reversibility:

I (f 1 s) 1
2 = I (s I f) 12• (9.32)

When applied to transition amplitudes, this principle
means

Absorption of Light and
Connection Between the
Amplitudes of Direct and
Reverse Transitions

Fig. 9.3

Supplementary Examples

I

<f I s) = (s I f)*. (9.33)

Result (9.33) supplements the set of four rules applicable
to transition amplitudes, which we have considered in
Sec. 8. It may be treated as an additional, fifth rule.

We shall consider two useful examples which demon­
strate the amplitude concepts very clearly.
Scattering of neutrons by a crystal. We shall consider the
scattering of very slow neutrons (with energies of the
order of 0.1 eV and lower) by atomic nuclei. It is well
known that for such low energies, the scattering amplitude
{fl, considered in the centre of mass system for a neutron
and a nucleus, is independent of the scattering angle.
So, it would appear, the scattering probability should
also be isotropic. However, experiments on the scattering
of very slow neutrons by crystals reveal a strong angular
dependence of the scattering probability. A typical curve
is shown in Fig. D.3: sharp peaks are observed against a
smooth background. These peaks are a visual demonstra­
tion of the effect of the interference of amplitudes. We
shall see how this is so.
Suppose a neutron emerges from its initial s-state and is
registered in its final f-state. The intermediate i-state
corresponds to the i-th nucleus in the scattering crystal
lattice. According to the third rule of Sec. 8,

<f I S)i = (f 1i) cp (i Is). (9.34)

We assume that all the N nuclei of the crystal are alike,
have zero spin, and are located strictly at the lattice points.

Sec. 9
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Taking (9.35) into account, the probability of scattering
of the neutron has the form

N

1<1 I s)1 2 = I qJ 12 12J <t I i) (i I s)1 2 • (9.36)
i

In this case it is impossible in principle to indicate pre­
cisely which nucleus causes the scattering of the neutron­
the alternatives corresponding to the scattering by differ­
ently "numbered" nuclei are indistinguishable. Hence,
we must take into account the interference of the ampli­
tudes:

(9.35)

(9.37)

The first term on the right-hand side of (9.37) accounts
for the characteristic interference peaks in Fig. 9.3,
while the second term is responsible for the smooth back­
ground. It is customary to say that the first term de­
scribes the probability of the coherent scattering, and the
second that of the incoherent scattering of neutrons.

On account of the addition of the amplitudes of the scat­
tering at the nuclei, which are distributed in space in a
definite order, a mutual "cancelling" of amplitudes is
possible in some directions and a mutual "enhancement"
in some others; this interference effect is manifested in
the form of sharp peaks for definite scattering angles.
We further assume that nuclei in the crystal have a spin
(let it be equal to 1/2, as for neutrons). In this case we
should distinguish between the amplitude of scattering
by the nucleus with spin inversion (in accordance with
the law of conservation of momentum, the neutron spin
must also be inverted in this case), and without spin inver­
sion of the nucleus (and the neutron), Le. between Xand qJ,
respectively. If the scattering of the colliding micropar­
ticles is accompanied by spin inversion, the corresponding
alternative is distinguishable-it is clear that in such
an act of scattering only that nucleus participates whose
spin has been inverted. Now the probabilities and not
the amplitudes should be summed.
Taking account of the amplitudes qJ and X we can repre­
sent the scattering probability of neutrons from s-state
to f-state in the following form:

N

I (f I s)2 = 1 qJ 12 12J <f I i) (i I s) 12
f

N

+ I X/2 2J I (f 1i) (i I s) 1
2

•
i

N N

(f I S)= 2J (f I S)i= 2J (f I i) qJ(i Is).
i i
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Atomic beam in inhomogeneous fields. Let us assume that
a beam of atoms occupying a certain initial s-state (this
is a definite spin state) passes first through one region of
non-uniform magnetic field (B 1 ), then through another
(B 2 ) and is fmally registered in its final spin state j.
Non-uniform magnetic fields are used here as factors ca­
pable of changing the spin state of the atoms in the beam.
Experiment shows that the probability of the s -+ j tran­
sition is different in the cases when (a) observations are
carried out to find the state of the atoms in the beam be­
tween fields B} and B 2 , and when (b) such observations are
not carried out. The difference in probabilities I <t I s) 12

in these two cases is easily explained if we take into ac­
count that in case (a) the intermediate i-spin states are
fixed each time and, consequently, the alternatives cor­
responding to them are distinguishable; hence:

I (f I s) 12 = 2J,,1 (f I i}(i I s) 12• (9.38)
i

In case (b) the intermediate i-states are not fixed and,
consequently, the alternatives corresponding to them are
indistinguishable. Hence

I (f J s) 12 = 12J (/ I i) (i I s) r (9.39)
i

'I

Fig. 9.4
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FEYNMAN'S PATH INTEGRALS. In conclusion we shall
indicate the possibility of a somewhat unusual formulation
of quantum mechanics, based on amplitude concepts. In the
beginning of this section, we considered an interferometer in
the form of a screen with two slits. There were two indistin­
guishable alternatives corresponding to the two interference
amplitudes. Let us now assume that instead of a screen with
two slits, we have a screen with n slits. The number of alter­
natives (and, correspondingly, amplitudes) will be equal to n.
Further, we place another screen with n slits parallel to the first
screen; the number of alternatives (amplitudes) will rise to n2.
We shall continue this process by placing more and more screens
in the space between the source of microparticles and the detector
screen; moreover, we shall simultaneously keep on increasing the
number of slits in each screen. In the limiting case of an infinitely
large number of screens and an infinitely large number of slits,
we arrive at a situation when the entire space between the source
and detector screen will turn out to be "filled" by different 'paths'
of the microparticle, each corresponding to a definite alternative
and a corresponding definite amplitude (one such path is indicated
in Fig. 9.4(a»). The total amplitude of s ...... x transition is the sum
(more exactly, the integral) over all the possible amplitudes.
Finally, we assume that the system of screens with slits was intro­
duced only fictitiously; in fact there are no screens and the entire
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Superposition of States

In the previous section, while studying the problem of
the probability of the transition of a microparticle from
one state to another, we introduced and discussed the con­
cepts of the transition probability amplitude, distinguish­
able and indistinguishable alternatives of transition,
the interference of amplitudes corresponding to indistin­
guishable alternatives, all of which are specifically quan­
tum-mechanical concepts. on the basis of a number of
examples the reader should convince himself of the im­
portance of the concept of interfering amplitudes, which
gives an explanation of the results of various experiments
with microparticles.
The interference of transition amplitudes is inseparably
linked with one of the most fundamental principles of
quantum mechanics-the principle of superposition of
states, which reflects the specific nature ;.of the "interre­
lations" among the states of a microparticle. We shall
now consider this principle.

Earlier, in Sec. 3, we studied the uncertainty relations.
In this connection it was remarked, in particular, that
the states of a microparticle were combined in groups
each of which contained the definite values of anyone
complete set of physical quantities. We also gave exam­
ples of complete sets of values for an electron and a pho­
ton.
Continuing the discussion commenced in Sec. 3, we shall
introduce notations for the various complete sets: the
a-set, the ~-set, the y-set, etc. In this context we shall
speak of the group of a-states, the group of ~-states, etc.

Section 10

Principle of Superposition of
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space between points s and x il "filled" by all the possible paths.
If we can writethe transition amplitude for each such trajectory,
then the probability of the s -+ x transition may be found as the
square of the modulus of the integral summing up all the given
amplitudes (called the path integrals), In this sense, the quantum­
mechanical motion from s to x is nothing but the superposition of
a set of classical motions (classical trajectories) almost in the

ii same way as indicated in Fig, 9.4(b). The transition from quantum
i~l to classi~al mechanics corresponds to the reduction of the given
Ii superposItion of paths to a certain individual trajectory.

The concept of the motion of a microparticle along classical path
integrals (in other words, through interference of amplitudes cor­
responding to the classical trajectories) is discussed in detail in
Sec. 5.



We suppose that the microparticle is in one of the a­
states. It means that the quantities in the a-set have
definite values. But what can we say about the values of
the quantities in any other complete set, for example, the
~-set? According to the uncertainty relations, the quan­
tities in the 13-set do not have definite values in the state
under consideration. The reader is justified in taking this
as a negative fact. But, fortunately, this is fully "com­
pensated" by a positive circumstance-the principle of
the superposition of states.
According to the principle of 5uperposition, there exists
a link between the states of the microparticle, corre­
sponding to different complete sets: any state from one set
may be represented in the form of a superposition of states
from another set. Thus, for example, a given a-state may
be represented in the form of a superposition of ~-states.
If we arbitrar,,ily adopt the symbol ( I to indicate the
state of a microparticle, the principle of superposition may
be written in the form

(al=2J<Da/3(~I. (10.1)
II

The expression (10.1) appears as an "expansion" of the
given state (a I into the sum of ~-states, the numbers cDa /3
playing the role of coefficients in the expansion. More
concretely, the number <Da/3 is the amplitude of the prob­
ability that we shall obtain values corresponding to
the state (P I while measuring the quantities from the
p-set in the state (a I. In other words, it is the amplitude
of the probability that a microparticle in state (a I may
also be found in the state (P I. If we denote this amplitude
by the usual symbol (a I ~>, expression (10.1) assumes
the following form:

(a I= LJ (a I P> (~ I· (10.2)
13

In the preceding sections we considered the amplitudes of
the transition probability (in short, transition ampli­
tudes). At first glance, the principle of superposition "brings
into play" a new type of amplitudes of probability. Ac­
tually, the above-mentioned expression "(a IP> is the
amplitude of the probability that a microparticle in
state (a I may also be found in state (P I" allows another
obvious interpretation: "(a I P> is the amplitude of the
probability of a microparticle arriving in state (P I,
if it is known that the give~ particle actually exists in
state (a I". In short, the latter statement means that
(a I ~> is the amplitude of the probability with which
any ~-state is "represented" in a given a-state. This pro-
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duces the impression that the amplitudes (a I ~) don't .•·.1 or
have anything to do with any transitions or processes. .'. : to,
Considering this impression, we introduce a new term (rl
for (a I ~)-the amplitude of probability of state (in brief, pr
the amplitude of state). he
The reader must be warned at once that the above impres- It
sion is erroneous. However, in order to be convinced of th
this, we must analyse the process of measurement. Mea- nG
surement in quantum mechanics will be discussed in bJj
Sec. 11. This discussion will necessitate some correction I in
in the above definition of the amplitudes (a I ~ > and ". SI
will enable us to actually reduce the amplitudes of states sil
to the already familiar amplitudes of transitions. tv!
But everything has its own time, and so, for the time being, hf
we shall operate with the concept of "amplitude of state" pc
as an independent concept, without ascertaining the th
practical meaning of, say, the phrase "a particle in state ~-
(a I can also be found in state (~ I". of
As has been noted earlier, the principle of superposition • of
"supplements", as it were, the uncertainty relations; its :,. (c
positive content "compensates" the well-known negative
aspect of these relations. Figuratively speaking, the uncer­
tainty relations indicate the "old" concept which must
be rejected while we go over from macrophenomena to
microphenomena. In particular, they require a rejection
of the simultaneous meai'lurability of all physical quan­
tities characterizing a given object. At the same time,
the principle of superposition indicates the "new" con­
cept which is applicable when considering microparticles;
superposition (10.2) means that if a microparticle is in
a state in which the quantities of the a-set are measurable,
then the value of the quantities in the ~-set may be pre­
dicted with a probability equal to I (a I P>/2.

In classical physics one comes across superposition quite
frequently, the foremost example being ihe well-known
superposition of classical waves. From a mathematical
point of view, the classical superposition and superpo­
sition in quantum mechanics are analogous. This circum­
stance greatly stimulated the development of quantum
theory. At the same time, it certainly complicated the
interpretation of the physical content of theoretically
obtained results since it tempted one to draw erroneous
analogies with classical waves. In the words of Dirac [9]
the assumption of superposition relationships between the
states leads to a mathematical theory in which the equations
that define a state are linear in the unknowns. In conse­
quence of this, people have tried to establish analogies with
systems in classical mechanics, such as Vibrating strings

Superposition in Classical Physics
and Quantum Mechanics
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or membranes, which are governed by linear equations ana
for which, therefore, a superposition principle holds....
(remember the criticism in Sec. 5 of the attempts to re­
present the motion of a bound microparticle with the
help of classical waves in a resonator-author's remarks).
It is important to remember, however, that the superposition
that occurs in quantum mechanics is of an essentially different
nature from any occurring in the classical theory, as is shown
by the fact that the quantum superposition principle demands
indeterminacy in the results of observations.
Speaking of the difference between quantum and clas­
sical superpositions, remember that a superposition of
two classical waves leads to the generation of a new wave
having, of course, new characteristics. However, a super­
position of two states (~l I and (~2 I, characterized by
the values ~l and ~2' respectively, of quantities in the
~-set, by no means leads to a state having any new value
of ~. As an example, let us consider a certain superposition
of states

(a I ~l )(~l I + (a I ~2) (~2 I.
We shall measure the ~-quantity in this state. As a result,
we get every time one of the earlier values, ~l or ~2'

Moreover, it is impossible to accurately predict which of
the two states will be obtained in any particular measure­
ment. We can only indicate the probability of getting ~l

or ~2' These probabilities are equal to I (a I ~l) 1
2 and

I (al ~2) 12, respectively. It is this specific uncertainty in
the results of measurements that determines the funda­
mental difference between quantum and classical super­
positions.
Taking into consideration the quantum-mechanical prin­
ciple of superposition, let us return to the question of
quantum transitions discussed in Sec. 2. Suppose we con­
sider, as before, two energy levels E 1 and E 2 of the micro­
particle. We denote the corresponding states of the par­
ticle in which it has energy E 1 or E 2 (i.e. is on the first
or second level) through (1 I and (21 respectively. Accord­
ing to the principle of superposition, in addition to
states (1 I and (2 I we can also get the state

(fl=(fI1)(11+(/12}(21. (10.3)

Measurement of energy of the microparticle in this state
leads either to the result E 1 or to the result E 2 (as if the
microparticle were on the level E 1 and simultaneously
On the level E 2). The first result is obtained with the
probability I (f 11) 12 , and the second, with the proba­
bility I (f I 2) 12• The possibility of the existence of such

I
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(10.4)

a specific quantum-mechanical situation immediately
removes the basic contradiction of the quantum transi­
tion, mentioned in Section 2. It is sufficient to assume
that an interaction of a microparticle with radiation leads
to a superposition state of the type (10.3). Then the prob­
ability of finding a particle on one energy level or anoth­
er (on its earlier level or on a new one) will be described
simply by the square of the modulus of the corresponding
amplitude of state.

In order to finally convince ourselves that the quantum­
mechanical principle of superposition has in fact nothing
in common with the classical superposition we turn to
expression (10.2) and see how it changes upon the tran­
sition to classical physics. Since in classical physics all
the quantities can be simultaneously measured, they form
together one "complete set". Considering that the superposi- .1..·.•.
tion bonds described by relation (10.2) operate between .
different complete sets, we arrive at the conclusion that
in the classical case such bonds simply do not exist and, .~
consequently, all formally composed amplitudes of statesf
must be taken as being equal to zero:

(ex I ~) = o.
In quantum mechanics condition (10.4) also exists, but
only "within the limits" of the given complete set (for
states belonging to the same set). Thus, for example,

(exi I exj) = 0, if i =1= j. (10.5)

The amplitude of a state is equal to zero if and only if
the two corresponding states are mutually independent
(if an object is in one of these states, it cannot be found
in the other). Such states are called mutually orthogonal.
In this respect all the states of a classical particle are
mutually orthogonal, while in quantum ,mechanics only
the states belonging to the same complete set are orthog­
onal and the states belonging to different sets are non­
orthogonal. This last fact is reflected in the principle of
superposition of states.
The idea of mutually orthogonal states permits us to
define more precisely the concept of complete and partial
distinguishability. For this purpose it is convenient to
make use of the above-mentioned example of the scatter­
ing of microparticles of one type by one another. Since
such particles are identical, their distinguishability is
determined by the distinguishability of states (states
{"1 I and (82 I; see Sec. 9). We recall that in Sec. 9 we dis­
cussed, in particular, microparticles of the same kind
but in different spin states, as examples of completely

Mutually Orthogonal States;
Total and Partial Distinguishability
<If States
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distinguishable microparticles. We thus tacitly assumed
that different spin states are completely distinguishable.
We can now clearly indicate the criterion of complete and
partial distinguishability of states: if (Sl I S2) = 0, the
states (Sl I and (S2 \ are completely distinguishable;
there are no superposition bonds between them. But if
(Sl I S2) =1= 0, the states under consideration are partially
distinguishable. In other words, orthogonality of states
is the criterion of their complete distinguishability.
Suppose we are considering scattering of two bosons of
the same type. The result (9.16) will hold good if the
initial states are mutually orthogonal (let these states
be (al I and (a

2
I). The result (9.17) will be valid if the

initial states are similar (say, (al I and (al I). Both these
results are just two extreme cases corresponding to com­
plete distinguishability and complete indistinguishability
of microparticles, respectively. However, different inter­
mediate situations corresponding to partial distinguish­
ability are possible, when the initial states of microparti­
cles are a superposition of several mutually orthogonal
states:

(S1 I = (S1 I(1) (a1 \ + (S1 1(2) (a2 I,
(S2 1= (S2 I (1)(a1 I+ (S2 I (2) (a2 I. (10.6)

It can be shown (see [31]) that in this case the probability
of simultaneous activation of detectors is determined by
the expression

I!V= I cp(El) 12 + I cp(n-El) 1
2

+ I (S1\ S2) 12 [cp(El)cp*(n-El),+cp*(El)cp(n-El)]. (10.7)

For I (Sl I S2) 12 + 0, the result (10.7) turns into (9.16)
(we come to the limiting case of complete distinguish­
ability). For I (Sl I S2) 12 + 1, the result (10.7) turns into
(9.17) (we come to the limiting case of complete indistin-
guishability) .
Thus, we find that the question of the complete and par-
tial distinguishability of alternatives in quantum mechan­
ics is closely linked with the quantum-mechanical prin­
ciple of superposition, more precisely, with the mutual
orthogonality or non-orthogonality of states.

The different states corresponding to the same complete Basic States
set of quantities are called basic states (eigenstates).
The amplitudes of elementary states satisfy the condition

(ai I aj) = {jij, (10.8)

where {jij is the so-called Kronecker delta symbol; it is
equal to zero for i =I=- j and unity for i = j. The expres-
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sion (10.8) is called the condition of orthonormalization of
basic states. It is obtained by taking into consideration
{1O.5) and the fact that the probability of getting the
value at in the state (at I is obviously equal to unity.
The important property of the system of basic states is
its completeness: any state may be expanded in a system
-of elementary states.
Basic states may be selected in different ways depending
-on the complete set under consideration. Thus, different
systems of basic states may be used: {(at J}, {(~t I},
etc. It is said that different representations are possible.
For a more general approach, the principle of superposi­
tion of states signifies the fact that any state (f I of a
microparticle may be expanded in any system of basic
states:

(f I = ~ (f I at) (ai I,
i

(10.9)...........
<I I = ~ (f I ~i) <~i I,

i

The principle of superposition permits an explanation
-of the results of experiment 3 in Sec. 7. Using this prin­
ciple, we shall consider the passage of individual photons
through the system of three polarizers shown in Fig. 7.6.
We denote the state of polarization of a photon after the
first polarization by (s I. According to the principle of
superposition, the state (s I may be considered as a super­
position of the basic states (1 , and (2 I, corresponding
to two independent polarizations of the photon-along
and perpendicular to the axis of the second polarizer,
respectively:

(ql = (311)(1/ + (s/ 2)(2/ (10.10)
"{note that in this example, the system of basic states con-

tains only two states). The amplitudes of the states may
be written in this case in the form (3 I 1 ) = cos a and
(3 I 2> = sin a. Thus,

(3 I = cos a (1 [ + sin a (2 I. (10.11)

The second polarizer lets through photons from the state
(1 I only. Since according to 00.11) the state (1 I is

"represented" in state (s I with a probability cos 2 a,
out of N photons only N cos2 a photons will pass through
the second polarizer. Moreover, all the photons that pass
will appear in the state (1 I (i.e. they will be polarized
along the axis of the second polarizer). Thus, in front of
the second polarizer, the photon exists as if partially in

Superposition of States and
Passage of Photons Through
Polarizers
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the state (1 I and partially in the state (2 I. At the instant
when the photon passes through the polarizer, this "dual­
ity" vanishes. In some cases a photon exists in the state
(2 I and so cannot pass through the polarizer, while in
some other cases it is in the state (1 I and can thus pass
through the polarizer. Further, for any individual photon
it is impossible to predict in which state it will appear
(hence it is impossible to predict whether a given photon
will pass through the polarizer or not).
While studying the passage of photons through the third
polarizer, we proceed in a similar way. The state (1 I is
expanded into a system of basic states (1' I and (2' I
corresponding to a polarization of photon along or perpen­
dicular to the axis of the third polarizer:

(1 I = sin a (1' [ + cos a (2' I. (10.12)

The third poll'!,rizer lets through photons in the state (1' I
only. This state is "represented" in the state (1 I with a
probability sin2 a. Hence out of N cos2 a photons only
N cos2 a sin2 a photons will pass through the third po­
larizer, all these photons being in the state (1' [.
If we now remove the second polarizer, then in place of
(10.11) and (10.12) we get

(81= (.9\1')(1' 1+ (8\2')(2' l, (10.13)

where, as can be easily seen, (.9 11') = 0 and (3 I 2' > = 1,
so that (3 I = (2' I. Naturally, in this case, at the outlet
of the system of polarizers no photons are observed at all.

Let the transition from state (.'lIto state (f \ take place
through certain intermediate v-states. We suppose that
the microparticle is not fixed in the intermediate state so
that a case of physically indistinguishable alternative
takes place. In this case, as \Ve know, the transition ampli­
tude (f I 8) is given by the expression

(f I s) = ~ (f IVi) (Vi Is), (10.14)
i

where (f I Vi) and (Vi I 3> are the amplitudes of the re­
spective transitions. The intermediate v-states must be
completely distinguishable, since otherwise there is no
point in introducing the concept of distinguishable or
indistinguishable alternatives, since the very concept of
alternatives loses its meaning. Consequently, the v-states
must form a system of mutually orthogonal basic states.
Taking this into consideration, we make use of the prin­
ciple of superposition and express the state (f I in the form

(f I = ~ (f 1Vi) (Vi I, (10.15)
i

Sec. 10
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"Mechanics of Quantum
Mechanics"

where the amplitudes (/ I Vi) are essentially the ampli­
tudes of the states (the bar is used to distinguish the ampli­
tude of the state from the transition amplitude (/ I Vi ».
If superposition (10.15) exists, there is actually no need to
perform a transition from (8 'to (/ I. Since the state (/ I
is a superposition of states (Vi I, it is sufficient to simply
accomplish transitions from the state (8 I to each of the
states (Vi I· This means that the transition amplitude
(/ 1 8) is a superposition of the transition amplitudes
(Vi I 8):

(f I s) = L (f I Vi) (Vi Is). (10.16)
f

Comparing (10.16) and (10.14) we conclude that

(f IVi)=(j I Vi). (10.17)

This means that at the level of mathematical apparatus,
we have accomplished a reduction of the amplitudes of
the states to transition of amplitudes. In other words, the
amplitudes of the states in fact play the same role in the
apparatus of quantum mechanics as the transition ampli­
tudes. Incidentally, we have also established that rela­
tions (10.14) and (10.15) are closely related to each other
and hence the effect of the interference of transition ampli­
tudes and the principle of the superposition of states are
directly interrelated.
In conclusion, we mention an important method which
is widely applied in quantum mechanics. It is easy to
see that if we delete the sign of the initial and final states
in the expression for the interference of amplitudes, we
automatically obtain the superposition expression for
the undeleted state. Thus, if in (10.14) we delete [8)
on the left- and right-hand sides of the equation, we obtain
the superposition expression (10.11) for the state (/ I
(note that in addition to the symbol ( /' the symbol I )
is used for denoting a state).

We shall demonstrate the basic methods reflecting, in
Feynman's words, the "mechanics of quantum mechan­
ics". Let us delete the state (/ I from the left- and right­
hand sides of equation (10.14). This gives
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Let us further assume that some apparatus converts
state 18 ) into some other state 18'). We express this in
the general form as

104

A 18) = /s').

(10.18)

(10.19)
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II' We shall say that the operator A has acted on the state

1.9 >giving rise to state Is'). We shall apply the operator A
to both sides of equation (10.18). Using (10.19), we get

Is') = 2: A I Vi) (Vi I s) (10.20)
i

Further, in place of the state (1 Ideleted earlier, we restore
the state (vi I belonging to the system of basic states:

(10.21)

(the notation (Vi I A I Vi) should be taken as (v, I vi ),
where I vi) = A I Vi ». Finally, we rewrite (10.14), re­
placing 1.9) by 1.9'):

<f Is') = ~ (f IVj) (Vj I Sf) (10.22)
i

Substituting (10.21) into (10.22) we get

(f I A I s) = .LJ .LJ <f I vi) (Vi I A I Vi)(vi Is).
j i (10.23)

Summarizing the methods demonstrated above, we write
the equations obtained so far and leave it to the reader to
follow the logic and appreciate the beauty of the trans­
formations:

(f I s) = (/ Is),

<f I s) = .LJ <f I vi) (Vi Is),
i

I s) = .LJ I Vi) (Vi Is),
i

A I s) = 2J A I Vi) (Vi Is),
i

(Vi I A I s) = ~ (Vi I A I Vi) (Vi Is),
t

~ (/ I Vj) (Vi I A I s)
j

= ~ 2J <f I vi) (Vi I A I Vi) (Vi Is),
j i

(f I A I s) = ~ 2j (f IVj) (Vi I A I Vi) (Vi Is).
j i

!I
i
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Finally, we assume that operator A acts on the state I .9),
and is followed by operator B. If the reader has mastered
the logic of the "mechanics of quantum mechanics" (it
Would have been more accurate to call it the "algebra of
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quantum mechanics"), he will at once surmise that

<t I BA Is)
= ~ ~ ~ (f I v,,) (v" I B I Vj) (Vj I A IVi) (Vi I s) (10.24)

" j i

(the notation (/ I BA I 8) should be taken as (/ I 8"),
where I 8") = B Is') and 18') = A 18».
This formal structure of the mathematical "manipula­
tions" is characteristic for quantum mechanics. In what
follows, this structure will assume a definite meaning on
the basis of definite examples. Here it has been given in
its most general form, which also allows us to follow its
internal logic. We emphasize that the basis of this struc­
ture is the idea of quantum-mechanical interference (super­
position) and the use of a certain system of basic states in
terms of which the expansions are carried out.

Section II Measurement in Quantum
Mechanics

The Origin of the Superposition
of States and the Meaning of the
Amplitudes of States

The question of carrying out measurements in quantum­
mechanical systems and an interpretation of the results
so obtained is rightly considered to be very complicated,
requiring even today further research. We shall not give
a detailed analysis of the problem of quantum-mechani­
cal measurements, but shall try to describe a number of
fundamental statements which have been explained
clearly, and demonstrate them using some examples*.

Suppose that a microparticle is in a certain state (ex I·
According to the principle of superposition, the state
(ex I may be expanded in terms of any system of basic
states, for example, in the {(~i 1} system:.

'\1
(ex I = ~ (ex I ~i) (~i I·

i

(11.1)

106

The numbers (ex I ~i) in the superposition (11.1) are
essentially the amplitudes of the states (~i lor, more
accurately, the amplitudes of the probabilities with
which the various basic states (~i I are "represented" in
the state (ex [.
The reader who has read the previous section is already
familiar with all this. It is appropriate now to make
things more precise.

* The problem of measurement in quantum mechanics has been
dealt with, in particular, in [2, 28, 32].
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Firstly, we shall note that any definite superposition of
states in a microparticle arises as a result of its inter­
action with the surroundings. The latter may be some
macroscopic body (which is either produced artificially
or is a part of the natural external conditions). This macro­
scopic body is referred to as the analyzer. The expression
(11.1) should be interpreted in the following way: as
a result of the interaction with a particular analyzer (in
this case, we may speak of a ~-analyzer), a microparticle
lying in state (ex I is transformed into the superposition

state >-J (ex I ~i) (~i I. Taking into account the quantum-
i

mechanical nature of the superposition state, it may be said
that by interacting with the ~-analyzer, the microparticle
in some sense is "transformed" at once into all the states
(~i I· Here, the amplitude (ex I ~i) should be treated as
the amplitude caused by the indicated interaction of the
transition (ex I + (~i [. The quantity I (ex I ~i) 12 is the
probability of finding the microparticle finally in just
the (~i I state.
One can anticipate at least three questions from the reader.
First question: What do we really mean by the expression
"the microparticle is at once transformed into all the
(~i I states"? The answer to this question will be given
below in the subsection "Potentialities and their realiza­
tion in the measuring process". Here, we just remark
that although the microparticle is "simultaneously trans­
formed into all the (~i I states" as a result of its interac­
tion with the ~-analyzer, it can be found in principle each
time in only one ~-state. Hence it may be said that no
confusion arises. By the way, the reader has already come
across a similar situation when considering experiments 1
and 2 in Sec. 7. Here we once again remind the reader
that quantum-mechanical logic does not always have
a corresponding graphic model.
Second question: If the amplitude of state is really the
transition amplitude, what about the definitions of am­
plitudes of states given in Sec. 10? Answering this qu.estion
we recall the following definition given in Sec. 10:
"(ex I B) is the probability amplitude of a microparticle
existing in state (ex I being also registered in state (B I".
In this definition the word "existing" should be replaced
by a more accurate word "existed", since after interaction
with the analyzer the microparticle no longer exists in
the state (ex I. Now the word "also" becomes redundant.
The definition then assumes the following form: "(ex I B)
is the amplitude of probability of a microparticle that
existed in state (ex I being registered in state (~I". Reg-
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Examples of Analyzers
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istering is a kind of measuring process and (a i P> plays
the role of the amplitude of the transition (a I + (P I
which takes place in this process. Here we remark that
in the above-mentioned interaction of the microparticle
with the analyzer is just one part of the measuring process.
A more detailed treatment of the measuring process will
be given at a later stage.
Third question: It was agreed earlier (see Sec. 8) to read
the transition amplitudes from right to left. If (a I Pi>
is also transition amplitude, it should also be read in the
reverse direction (from left to right). Isn't it confusing?
Actually, if we strictly follow the condition of writing
the preceding states to the right of the ones that follow,
then (11.1) should be written as

'lL..J I Pi) (Pi Ia) = I a). (iLia)
i

However, such a notation, as a rule, is not used. Hence
we decided to allow some inconsistency, and in order to
avoid possible confusion in this connection we shall in
future retain the term amplitude of state along with the
term transition amplitude. When using both these terms
the reader must remember that from the point of view
of physical meaning, the amplitude of state is nothing
but the transition amplitude (this has already been shown
from a mathematical point of view in the previous section).

The reader has in fact already come across analyzers
each time the interference of transition amplitudes was
considered. We shall give a few examples.
First example: [see (9.3)l-the analyzer is a screen with
two slits. It gives rise to the superposition

(8 I = (8 I A)(A I + (8 I B >(B I. (11.2)

Second example: [see (9.35)l-the analyzer is a crystal
lattice consisting of nuclei of the same type with zero
spin. It generates the superposition

]V

(8 I = ~ (8 I i) cp (i /.
i

Third example: [see (9.39)l-the analyzer is a nonuniform
magnetic field B1• It gives rise to the superposition

(81 = 2.j (8 I i) (i I. (11.4)
i

It may be said that an analyzer, generating a certain
superposition of states, in fact ensures the emergence of
indistinguishable alternatives. Moreover, the number of
alternatives is equal to the number of basic states in the
given st'perposition. In the first example this number is
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1
just equal to two (i.e. to the number of slits in the screen);
in the second example, it is equal to the number of nuclei
in the crystal, while in the third example it is equal to the
number of spin states (Le. to 2s + 1, if s is the spin of the
atom).

The process of measurement in quantum mechanics
consists of three successive stages: (1) a preparatory stage
when the microparticle is "prepared" in a certain state
(ex I, considered below as the initial state; (2) a working

!tage in which the "prepared" microparticle interacts
with a certain analyzer and goes over to the superposition
!tate, and (3) a registering stage in which the microparticle
is registered in one of the basic states forming the super­
position. In this stage the microparticle interacts with
some macroscopic body, capable of changing its state
under the influence of the microparticle. This macroscopic
body is called the detector.
If for the sake of simplicity we do not consider the pre­
paratory stage, the abstract "scheme" of the measurement
process may be written in the following way:

1 " l 2
{sl ~L;<S!~i)<~tl~<~i" (11.5)

i

The Essence of Measuring
Process

r
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Here the arrow 1 corresponds to the working stage, and
the arrow 2 to the registering stage.
The basic elements of the measuring instrument (measur­
ing apparatus) are thus the analyzer and the detector.
The role of the analyzer has already been explained. We
shall now consider the role of the detector. Figuratively
speaking, its role boils down to "spying" on how the micro­
particle "behaves itself" in the superposition state which
was created by the analyzer. If we make use of the above
examples of analyzers, this "spying" could provide an
answer to the question: Which slit did a particular elec­
tron pass through? Which nucleus of the crystal lattice
scattered a particular neutron? What is the spin state of
a particular atom? The reader who is familiar with the
results of similar "spying" (in particular, with the results
of the experiment 2 in Sec. 7) may foresee that an "inter­
vention" by the detector leads to the destruction of the
superposition of states. The detector registers the micro­
particle each time in one of the states which constitute
the superposition. This is done at the expense of the destruc­
tion of superposition. From the point of view of the ideas
Considered in Sees. 8 and 9, this means that the detector
converts indistinguishable alternatives into distinguish­
able ones and thus destroys the interference of the tran­
sition amplitudes.
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Some Peculiarities of the
Quantum-Mechanical Measuring
Process

110

We separate from the "scheme" (11.5) the registering
stage corresponding to the interaction of the micropar­
ticle with the detector:

(11.6)

It is often said that a "scheme" of the type (11.6) de­
scribes a "construction" of the superposition ~ (.'I I ~i ) (~i I

i
to the state (~i I. This process is also known as "reduction
of the wave packet".
Thus, while the analyzer creates a definite superposition
of states, the detector destroys it by confining this super­
position of states to one of the states constituting it.
It is obvious that if the "scheme" (11.5) is tried on a
single microparticle, it is difficult to say anything about
getting any u"leful information. It is necessary to repeat
the measuring process for a sufficiently large number of
microparticles. In this case the observer may find out,
firstly, the values of the quantities of the ~ -set encoun­
tered in practice, and, secondly, the frequency with which
the microparticle is found in one ~-state or another.
This allows us to experimentally determine, firstly, the
spectrum of the values of the quantities in a ~ -set and,
secondly, the probabilities I (8 I ~i > 12•

In the first place we note that the process of measure­
ment has a radical influence on a microparticle. It is
enough to point out that a change in the initial state of
the microparticle in the measuring process is a circum­
stance of fundamental importance. It is well known
that while carrying out measurements with macroscopic
bodies it is possible to isolate the object to a certain
extent from the means of measurement. In quantum
mechanics this is in principle impossible ,to do so. In
other words, it is impossible to neglect" the interaction
of the microparticle with its surroundings.
The "scheme" of the measuring process, and more concrete­
ly that part which is described by expression (11.6),
is a demonstration of the existence of the element of
chance in the behaviour of a microparticle. Indeed, it is
impossible to predict unambiguously in which ~ -state
a certain microparticle will be finally found.
The impossibility of a graphic representation of the
first stage of the process (when the analyzer creates. a
superposition of states) or the final stage (when the de­
tector "confines" this superposition to a single state) is.
also a specific feature of the quantum-mechanical measur­
ing process. Thus, obviously, in the first stage ot the
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process of measurement it must not be assumed that
a microparticle is literally "spread" over various states
of superposition (for example, that it passes partially
through one slit and partially through the other in the
well-known two-slit experiment). Similarly, it is impos­
sible to assume that as soon as a detector is activated
(as soon as the act of registering occurs) the microparticle
which is spread over various states suddenly assembles
itself in one of these states. It should be noted that the
treatment of final stage of the measuring process gave
rise to many arguments. Supporters of a model (classical)
interpretation of microparticles and microphenomena
naturally were at a loss when they tried to visualize
a "reduction of wave packets". Inasmuch as the states
making up a superposition may be spread in space, in
this case the "reduction of a wave packet" should actually
indicate a mo:rp.entary spatial localization of the micro­
particle. In particular, the following example was exten­
sively used. A wave packet interacts with a semitranspar­
ent mirror (the mirror plays the role of analyzer), is
partially reflected and partially transmitted (which cor­
responds to a spreading of the microparticle into the two
states comprising the superposition). Detectors are placed
in the path of each of the wave packets. It is known that
each time only one detector is activated. Suppose that
at a certain instant the detector placed in the path of the
reflected part of the wave packet is activated. This means
that the other part of the wave packet momentarily
disappears from that part of the space where the unacti­
vated detector is placed, and reappears in front of the
second detector the moment before the act of registra­
tion. The absurdity of such "behaviour" of the micro­
particle, which, by the way, "cannot know" which detector
is activated in a given case, is quite obvious.
Persisting in the efforts to retain the classical interpre­
tation, attempts are sometimes made to turn to the clas­
sical interpretation of superposition. Such an interpreta­
tion assumes that the microparticle after interaction with
the analyzer, will actually appear in one of the basic
states. The role of the detector is simply reduced to
revealing the accomplished fact, i.e. in which basic state
the microparticle appears upon interaction with the ana­
lyzer. Now everything appears very easy: activation of
the detector in the example cited above reveals the fact
that the given wave packet upon interaction with the
mirror was reflected and not transmitted.
However, such a course has already been precluded. It is
enough to remind the reader of the argument put for-
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ward in the discussion of experiment 1 in Sec. 7. If it
were possible to assume that a microparticle passes
through one slit in the screen in some cases and through
the other in some other cases, then, as has been remarked
earlier, we would not have observed the interference
pattern on the detector screen. In other words, the classi­
cal concept of superposition of states is equivalent to
a destruction of superposition. It must be admitted that
until the detector registers the micropa:rticle, the latter
exists in the supposition state 2J (8 IBi ) (B i I and not
in any of the states (~i I. As to the question of how this
can be visu,.Uy represented, we simply have to give up
looking for an answer. It may be said that a discussion
of quantum-mechanical measuring process (especially
the problem of "reduction of a wave packet") gives a
specially convincing proof of fundamental impossibility
of a classical interpretation of the microparticle.

A detector in a quantum-mechanical measuring instru-
ment is, as a rule, a macroscopic system in a state which
is so unstable that a microscopic influence, or the influ­
ence of the microparticle, is enough1to change it. In order
to be "seen" by an observer, the- microparticle causes
a complete "catastrophe", an "explosion" on the scale
of microphenomena.
Examples of such "catastrophes" include events like the
formation of a droplet in Wilson's cloud chamber, or
a bubble in a bubble chamber, chemical processes involv­
ing photoemulsion grains, avalanche processes of genera­
tion of secondary electIons in a photomultiplier, etc.
The "observable" microparticle might perish in the
"catastrophe" caused by it (as, for example, in the case
of the registration of a photon in a photomultiplier or of
an electron on a detector screen). However, an even
more interesting situation is possible when. a microparticle
"entrusts" the task of causing the catastrophe to other
microparticles. Thus, for example, in Wilson's chamber,
the electron "under observation" creates various ions in
its wake each of which in turn serves as a centre for the
condensation of the supersaturated vapour filling the
chamber. It is these ions that cause the "catastrophes"
which the observer sees as mist droplets. A multitude of
such droplets forms the track which is left by the electron
"under observation". We emphasize that an electron
track is nothing but a multitude of successively occurring
microscopic events, a totality of "catastrophes" on the
level of microphenomena.
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, When disCussing the idea of quantum-mechanical
~ principle of superposition we come to a situation which

is analogous to the one encountered when discussing the
idea of wave-particle duality (see Sec. 5). In both cases,
a visual (classical) interpretation is not possible. In

I
·; both cases we come to a problem connected with poten­
;, tialities and with their realization.

I The possibility and the actuality are the well-known
categories of materialistic dialectics. The contradiction
that exists between them disappears every time a possi-
bility is realized in one way or the other. Every particu­
lar situation is characterized by a set of possibilities
out of which only one is realized. The realization process
is irreversible; as soon as it is accomplished, the initial
situation qualitatively changes (one of the possibilities
is realized at the expense of all the other possibilities).
The possibility that has been realized corresponds to
a new situation 'with new possibilities. The process of
resolving the contradictions between the possible and
the actual thus turns out to be endless.
In classical mechanics (as also in all theories of dynamic
type) the problem of distinguishing between the possible

) and the actual does not arise because of the absence of the
i J elements of chance in such theories. This problem arises
i in theories of statistical type. The basically statistical
, nature of quantum mechanics (where, as has been men­
; tioned earlier, an element of chance is present in the
i

.~ behaviour of an individual object) indicates the impor-
t tance of the problem of the possible and the actual when
1 considering microparticles and microphenomena.

It is from this point of view of resolution of contradiction
~ between the possible and the actual that the measuring
I' process in quantum mechanics should be considered.

The presence of a microparticle in the superposition state
corresponds to a situation where the microparticle is
characterized by a definite set of possibilities. The quan­
tum-mechanical principle of superposition of states
should be interpreted in this way only. In the interaction
process of a microparticle with the detector [in the process
(11.6)], the above-mentioned resolution of distinction
between the possible and the actual takes place, the
superposition of probabilities is destroyed and is replaced
by one of the alternatives realized. It may be said that
the "formula" of measuring process [formula (11.6)] is the

. mathematical expression for the process in which the dia­
lectical contradiction between the possible and the actual
is resolved. The nature of this resolution is that of an
tn-eversible and uncontrollable jump.

Sec. 11

Potentialities and Their
Realization in the Measuring
Process

113
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Before concluding this section, it should be stre"ed thar
the problems of the interference of amplitudes, the super- I Sa
position of states and of measurement are not isolated I on
from one another, but form a single entity. Taking this M,
into consideration, we recommend that the reader should
pause a little, go back and read through Secs. 7-11 once Par

again, in order to get a general idea about the physical Rei

foundations of quantum mechanics.
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Interlude. Are These the
Same Waves?, Or, Again
on Waves in Quantum
Mechanics

Participants: the Author and the
Reader.

Call it then, what thou wilt­
Call it bliss! Hearl! Love! God!
I have no name to give it!
Feeling is all in all:
The Name is sound and smoke,
Obscuring Heaven's clear glow.
Goethe (Faust)

Reader:

Author:

Reader:

Author:

Reader:

Author:
Reader:

Author:
Reader:

Author:

I would like to return to the question of classical superposition.
Sometimes I get a seditious idea: what is wrong with such a super­
position? In any case it explains the interference effect more clearly
than the superposition of amplitudes. I have due regard for the
structure of quantum-mechanical concepts based on working with
probability amplitudes, but still this idea keeps on haunting me
from time to time.

Classical superposition certainly does explain interference.
But what about the result of the experiment involving "spying"
on the behaviour of a microparticle in the interferometer (for
example, in the case of a screen with slits)? The experiment indi­
cates a destruction of interference. Classical interference does not
explain this destruction.

But suppose it were possible to give a classical interpretatioB
of the destruction of the interference pattern?

No, such an interpretation is impossible in principle. This
inference can be drawn from a consideration of the problem of the
"reduction of a wave packet". A classical interpretation of the
microparticle is impossible, and hence a classical interpretation of
the interference observed in experiments with microparticles is
also excluded.

This means that the de Broglie waves have nothing in common
with classical waves?

At least they are not classical waves.
Consequently, the diffraction of electrons is also not associated

with classical wave processes?
Of course, it is not.
In that case it is quite surprising that one so often comes acrosS

the term "wave" in quantum mechanics: "wave-particle duality",
"de Broglie waves", "wave function", "wave equation", etc. Even
quantum mechanics itself is sometimes called wave mechanics.

Terminology is created under definite historical circumstances;
it is not always quite correct. It is possible that the term "wave"
is used too often and even without justification when considering
microphenomena. We have become accustomed to treating inter­
ference as a specific wave phenomenon. Hence it is not surprising
that when in 1927 experimenters observed interference patterns in
experiments involving electrons, they immediately started using
the term "electron waves". Actually electron interferenfle has a more
"subtle" origin;:'it arises because, generally speaking, the proba-
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Reader:

Author:

Reader:

Author:

Reader:

Author:

Reader:

Author:

Reader:

\

bility laws of nature don't follow the law of addition of proba­
bilities, but require the summing of probability amplitudes. At
first, of course, this was not known. And meanwhile the rather
erroneous terminology took root in the literature.

And what about wave quantities such as the electron wave
vector or its wavelength? They also appear in mathematical expres­

sions.
They are wave characteristics of a microparticle, but are by

no means parameters of any classical wave.
But we also have the classical light waves, or, in other words,

photon waves. Aren't the wave vector and the wavelength the
parameters of a wave in this case also?

Here we have a qualitatively different situation. You have
raised quite an important question. We recall that photons are
bosons and hence have a tendency to densely "populate" states.
Suppose we are considering a photon state characterized by the

quantities k, w, ex (ex is the photon polarization). This state is called
the kex-state. Suppose there is only one photon in this state. We
don't have any classical wave yet. But suppose this state is "popu­
lated" by more and more photons. In the limiting case of a sufficient­
ly large number of photons, we shall get a classical light wave
whose parameters coincide with the characteristics of the photon
state. We can now speak of the parameters of the classical wave,

Le. of the wave vector k, frequency w, polarization ex. A peculiar
"transformation" of the wave characteristics of a photon into the
parameters of a wave has taken place. It must be emphasized that
this is the result of an accumulation of photons in one state. The
classical wave has been generated as a collective effect.
In the case of electrons, however, such a collective effect is in
principle impossible. Electrons are fermions and hence can only
"populate" states one at a time. Consequently, classical electronic
(and in general fermionic) waves simply can not exist.

I think now I understand the position of waves in quantum me­
chanics. But if I am not mistaken, classical int'erference (classical
superposition) may take place in boson ensembles.

You are right. By the way, that is the reason why the inter­
ference of light was discovered long before the interference of
electrons.

It turns out that there are two kinds of interference phenomena
in nature: classical interference resulting from a summation of
waves, and quantum-mechanical interference where the proba-
bility amplitudes are summed. ~

In normal conditions, the classical interference (if we are talking ..l..·../f•.'.•...•
of an ensemble of bosons) "masks" the quantum-mechanical inter- •••
ference. But in the case of electrons, for example, this "masking"
does not take placll. In this respect we have a "pure" situation.

Since any mention of waves in quantum mechanics is valid



Causality in Quantum
Mechanics

The impossibility of predicting exactly how a certain
microparticle will behave in the measuring process at one
time gave rise to talk of "indeterminacy" in quantum
mechanics. In particular, it was suggested that causality
is absent in microphenomena and in its place the uncon­
trollable event reigns. In time these ideas were replaced
by a deeper understanding of the specific nature of time
development of processes involving microparticles. The
complaints about the indeterminacy of quantum mechanics
proved grou~dless. It was realized that causality in
microphenomena certainly is present although it is consid­
erably different from the classical determinism whieh
is characteristic for "old physics".

In quantum mechanics the principle of causality refers
to the possibilities of the realization of events (proper­
ties). In other words, in quantum mechanics it is not
individually realized events that are causally related,
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only for bosons and that too only when they "populate" the states
fairly densely, don't you think it would be worthwhile to water
down the "wave terminology" a bit?

A uthor: I would prefer not to uproot the established terminology. First
of all, it is not the terminology itself that is important but rather
the meaning concealed behind it. However, if there is a choice, then
one must certainly choose the most appropriate term. That is why
we are using here the term "probability amplitude" instead of
"wave function". The former is more appropriate, though the latter
is used more frequently.

Reader: I have already pointed out that so far, you have said nothing
about the wave function, although it is widely used in all books
on quantum mechanics.

A uthor: For the same reason we shall also introduce the wave function
at a later stage. In fact we have already introduced it since the
"wave function" and "probability amplitude" are terms describing
the same thing. However, when speaking of the physical founda­
tions of quantum mechanics, it is better to use the term "probabil­
ity amplitude". We can go over to the wave function when we
consider the mathematical apparatus of the theory.
In conclusion I would like to stress that it is not the terms that
are important, but the way they are used. We can use the term
"wave" for a microparticle, but we must not forget its specific
nature. Here it is worthwhile recalling the remark made in Sec. 5
about the impropriety of using the model of a classical wave in
a resonator for a bound electron.

The Specific Nature of the
Quantum-Mechanical Concept of
Causality

117Sec. 12 I
I

~ .... "b



The Manifestation of Causality in
Microphenomena

but only the possibilities of the realization of these
events. This is the essence of the quantum-mechanical
meaning of causality. As Pauli stated in his Nobel
lecture, ., .the statements of quantum mechanics are dealing
only with p033ibilitie3, not with actualities. They have
the form, 'This i3 not possible', or 'Either this or that is
possible', but they can never 3ay, ';that will actually happen
then and there.
Considering the specific nature of the quantum-mechanical
meaning of causality, we stress the difference between
possible and realized events in quantum mechanics. We
also emphasize the objective nature of possibilities deter­
mined by the properties of the microparticles and the
external conditions.
Since possible and actually realized events are identical
in classical mechanics, it is clear that upon a transition
from the quantum to the classical description of the
world, the causal relation between the possible events
mnst be converted into causal relation between realized
events. In this sense the quantum-mechanical principle
of causality is a generalization of the principle of classical
determinism-it turns into the latter when going over
from microphenomena to macrophenomena.

One may ask: If in quantum mechanics it is not the
realized events but rather the possibilities of their real­
ization that are causally related, then how can the observer
make use of such a causality? In an experiment one always
has to deal with events that have been realized.
The answer to this question is as follows: the observer
must repeat a set of similar acts of measurements (for
this he must have a sufficiently large number of similar
microparticles, ensuring each time the same external
conditions for each of them). In each act of measurement
a random value of the quantity being., measured will
be realized. However, a set of these random values will
allow us to find the law of distribution and the mean value
of the quantity, which can be predicted a priori. The
existence of a causal relationship between possible events
is expressed through the possibility of such predictions.
We shall consider an example. Let the quantities of the
p-set be measured in the (ex I state. By carrying out a large
number of identical measurements, the observer gets
a whole set of values ~ 17 P2' ~3' •••• Having got N
values, the mean value may be determined:
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(~) = N L.J Pi. (12.1 )



(12.3)

(12.2)

For computing (~> we must use the relation

Suppose that the observer decides to repeat his observa­
tions the next day (or the next year). He will get a cer­
tain set of values ~~,~;, ~;, .... The new set of values
will be different from the old set, yet the new mean
value determined by a formula of the type (12.1) will
be close to the mean value <~ >obtained earlier (provided,
{)f course, that N is sufficiently large). This means that
there was no need for the observer to toil on the second
day. The mean value could be predicted on the basis
{)f the previous day's measurements.
Moreover, the value (~> could have been computed before­
hand without carrying out any measurement. True, for
this the observer would have to have known the ampli­
tudes (ex. I ~i > in the superposition

We assume that the reader has already understood the
·crux of the problem. This lies in the fact that the causal
relationship among possible events signifies a causal
relationship among the probabilities of the realization
{)f these events. In short, prediction in quantum mechan­
ics has a probability character! In order to predict the
·quantity (~> in the state <ex. I, we must know the proba­
bility I <ex. I ~i > 12 of the realization of values ~i in the
.given state. But if these probabilities are not known
beforehand one must collect the corresponding statistics
{)f the measurements of ~-quantities which allow us to
find the required probability.

Summing up the remarks made above, we quote Fock's
words: The probability of a given behaviour of an object
.in given external conditions is determined by the internal
properties of the individual object and by the nature of
these external conditions. It is a number characterizing

tl :the potential possibilities of this or that behaViour of the
{)bject. This possibility manifests itself in the frequency
{)f occurrence of the given behaViour of the object; the relative
frequency is its numerical measure. The probability thus
belongs to the individual object and characterizes its poten­
:tial possibilities; at the same time, to determine its numeT i­
cal value from experiment one must have the statistics of

) . l'ealization of these possibilities, so that many repetitions
O1f the experiment are necessary.
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Causality in Statistical Theories

Statistical Nature of Quantum
Mechanics

120

It has already been remarked in Sec. 6 when discussing
the problem of necessity and chance in microphenomena.
that quantum mechanics is a statistical theory. Hence,
the question of causality in quantum mechanics may be
seen first of all from the point of view of the manifesta­
tion of causality in general in statistical theories (as
statistical mechanics, physical kinetics, microscopic
electrodynamics).
In any statistical theory necessity and chance appear as
dialectical categories. The relationship between them is
that of unity and conflict of opposites. The velocities
of molecules in a gas are random (any instantaneous
velocity distribution of molecules is random) but the
average velocity of a molecule can always be determined.
The incidence of any electron passing through a screen
with slits at any particular point of the detector screen
is random, but the resulting interference pattern can
always be determined. Necessity, like chance, is present.
in every statistical theory. It expresses causal relation- .
ships. Consequently, causality in statistical theories leads
to necessity in these theories.
While in dynamic theories necessity dominates, thus
making exact predictions of the values of physical quanti­
ties possible, it appears in statistical theories through
distribution laws which give only the probabilities of
various values of physical quantities.
As an additional (quite important) manifestation of
necessity in statistical theories, we mention the conserva­
tion laws. It is well known that conservation laws may
be seen as exclusion principles. From this point of view,
the role of conservation laws in statistical theories is
fairly obvious: they serve as conditions which reduce
the probability of definite processes to zero.

When treating quantum mechanics .as a statistical
theory, one must remember that it occupies a special
place among these theories. Within the framework of
classical physics the laws describing the behaviour of
large number of objects are of statistical nature, while
the laws relating to the behaviour of an individual object
are dynamic. By considei'ing the element of chance in the
behaviour of a single object, quantum mechanics places
itself in a special position-that of a statistical theory of an
individual object. That is why we earlier called quantum
mechanics a statistical theory in principle.
This circumstance predetermines the specific nature of
statistical ensembles in quantum mechanics.

According to Fock [1], the elements of statistical collectives
considered in quantum mechanics, are not the microobjects
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'hemselves, but the results of experimen's with them, a defini­
te experimental arrangement corresponding to a definite
collective.
Previously We considered an example in which measure­
ments of quantities in the ~-set were carried out on
a microparticle in the state <CG I. A large number of
repeated measurements gives a certain set of numbers ~1'

~2' ~3' • • • • This set of numbers is an example of sta­
tistical ensemble in quantum mechanics. Looking at the
expression (12.3) we may conclude that 1 (CG I ~i) 12 plays
the role of a distribution function for the given statistical
ensemble. By changing the experiment (for example, by
going over to the measurement of quantities in the '\'-set)
the observer will be dealing with another statistical en­
semble '\'1' '\'2' '\'3' .... It follows from this that it is
in fact possible to have several statistical ensembles
corresponding to a single microparticle.
Classical and quantum-mechanical ensembles, as can be
easily seen, are different in nature. In classical physics
a statistical ensemble is made up of a set of many objects,
while in quantum mechanics, it is the set of the many
possible ways of realizing properties of a microparticle,
that forms an ensemble. Any change in the conditions
will lead to a new ensemble. In particular, this difference
manifests itself in that in classical physics averaging is
performed over different states of the system, whereas
in quantum mechanics we speak of mean values in a
given state in the system (thus, in the example cited
above, we spoke about the mean value (~) in the <CG 1­
state).
Naturally, in quantum theory we also have to carry out
averaging over different states and consider statistical
ensembles formed by a set of microparticles. Such pro­
blems, however, are beyond the scope of quantum mecha­
nics itself and form a separate discipline called quantum
statistics. Quantum statistics deals with two types of
statistical ensembles and in this sense it is a doubly sta­
tistical theory.

Consider the following amplitude of state:

Cj (t) = (s (t) I j). (12.4)

This is the probability amplitude of finding a micropar­
ticle in its basic j-state while it is located in the s-state
at time t (at time t the detector is activated and thus
the microparticle is observed in some particular state).
The causal relationship among the probabilities of realiz­
ing events, which is a characteristic property of quantum
mechanics, must be manifested in the existence of a mu-

Sec. 12

Quantum-Mechanical Equatiol?
Expressing the Principle of
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tual relationship between amplitudes considered at the
moments of time t and t + 11t. Taking into account the
principle of superposition we express the relationship
between amplitudes as a linear equation

(On the right-hand side the sum is taken over all the
basic states.) The expansion coefficients Vij (t, i1t) fo1'
small values of i1l will be represented in the form

i
V ij (t, /l.t) = 6ij +Jj H ij (t) M. (12.6)

1

'I
ij

o
(I
t

d

(12.5)Cdt+i1t)=~Vij(t, M)Cj(t)
t

This representation is justified by the fact that for i1l +- 0
the coefficient V ij will obviously be transformed into
6ij (6ij is the Kronecker delta symbol).
Substituting (12.6) into (12.5), we get

- in Ci (t-'-- ~~-Cdt) = ~ Hij (t) Cj (t). (12.7)
.; ,

In the limit as I1t + 0 we find the equation

- in :r Cdt) = ~ H ij (t) Cj (t).
j

(12.8)
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This is the fundamental quantum-mechanical equation
representing the principle of causality. Here Hij are
certain matrix elements describing the physics of the
problem under consideration.

The matrix Hij is called the Hamiltonian matrix.
We make the following remarks concerning the Hamilto­
nian matrix:
1. The time dependence of the Hamiltonian matrix
reflects the dependence of physical conditions on time
(for example, a microparticle situated "in a magnetic
field which varies with time). If the conditions do not
change, the matrix does not depend on time.
2. If the Hamiltonian matrix is diagonalized (only its
diagonal elements are non-zero) then in this case the
elements of the matrix have a simple physical meaning:
they are the possible values of the energy of the micro­
particle*. Because of this the Hamiltonian matrix may
also be called the energy matrix.
3. The elements of the Hamiltonian matrix satisfy the
relation

(12.9)

* This remark will be explained later (see Sec. 13).
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I This relation is associated with the fact that the probab­
ility of the presence of a microparticle in at least one
of the basic states obviously cannot change with time
(the probabilities Lj CiCt). In order to prove this rela­
tion, we shall proceed from the equation

d~ ~ CiGt=O. (12.10)

Taking into account that

d ~ C C* ~ de i C* ~ C dq
dtLJ i i=LJdt i+LJ iat,
iii

and using expression (12.8), we find that equation (12.10)
assumes the form

~ Lj (Hij - Hit) CjGt = 0, (12.11)
i .i

from which the result (12.9) follows directly.
Finally, we note that from (12.9) one can deduce that the
diagonal elements of the Hamiltonian matrix are real
numbers. This circumstance is in conformity with the
above-mentioned role of the diagonal elements as values
of the energy of a microparticle.

The answer to this question may be given by consider­
ing expression (12.8) for the basic quantum-mechanical
equation. The gist of the answer is as follows. Firstly,
we must choose a set of basic states {(i I}; secondly, we
must find the form of the Hamiltonian matrix considered
in the system of chosen basic states. After this we can
make definite predictions by using equation (12.8).
It is ospecially simple to consider cases when the number
of basic states is equal to two. We can further simplify
these by assuming that the Hamiltonian matrix is inva­
riant with time. In Sees. 13 and 14 we shall consider such
cases. The use of equation (12.8) which forms the basis
of a causal description of microphenomena will be de­
monstrated by particular examples.

What Are the Requirements for a
Causal Description of Phenomena
in Quantum Theory?

Section 13 Microparticles with Two
Basic States

The number of basic states of a microparticle is usually Examples of Microparticles with
greater than two. However, there are situations when it is Two Basic States

possible to consider only two basic states. Taking an
example already familiar to the reader we shall consider
the passage of a photon through a polarizer. The photon
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(13.1)

The Role of Non-Diagonal
Elements in the Hamiltonian
Matrix
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is in a state ",ith definite momentum nk (and definite

energy like). In this case we shall only consider the pos­
sible changes in the polarization of the photon. Hence, one
may speak of just two basic states of the photon, having
in mind its polarization states.
So, every time when we talk about a microparticle with
two basic states, it is assumed that we only consider
the possible changes in some particular "parameter"
of the microparticle (for example, its polarization). All
the other "parameters" are assumed to be known. We shall
now cite some examples where one can speak of a micro­
particle with two basic states. These states are denoted
by (1 I and (2 I, respectively.
The ammonia molecule consists of one nitrogen atom and
three hydrogen atoms. The nitrogen atom does not lie in
the plane passing through the hydrogen atoms (for brevi­
ty, we shall call this plane the H-plane). The state (1 I
corresponds to the nitrogen atom being on one side of the
H-plane, and the state (2 I corresponds to this atom being
on the other side of the H-plane.
The hydrogen molecule is made up of two protons and two
electrons, the spin states of the latter being different.
Suppose we single out one of these spin states. Then the·
basic state (1 I may be defined as the state of the mole­
cule in which the electron with the singled out spin
is localized near one proton, and the state (2 I as the
state with the localization of this electron near the other
proton. Moreover, the second electron is localized each
time near the corresponding "vacant" proton (the possibi­
lity of the localization of both electrons near one proton
need not be considered in view of the strong Coulomb­
repulsion between electrons).

We represent an arbitrary state (.'I I of a microparticle
in the form of a superposition of basic "states (1 I and
(2 I:

(s I = (s I 1) (1 I + (s I2 ) (2 I,
or, taking into account relation (12.4),

{s I = Cd1 I + C2 (2 [.

According to (12.8), the amplitudes C1 and C2 satisfy
the system of equations

-in ~ Cl=HuCl+H12C2, }
(13.2)

-in d~ C2=H21Cl+H22C2'
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We shall cOiisider two cases:
First case. The non-diagonal elements H 12 and H 21 are
equal to zero (the Hamiltonian matrix is diagonalized).
In this case the system of equations (13.2) splits into two
independent equations

-in ~ Ct =H11Ct , -in ~ C2 =H22C2 • (13.3)

It follows from (13.3) that if at a certain time the micro­
particle is, for example, in the state (1 \, it will never
appear in the state (2 \. Here, the basic states (1 \ and
(2 I are in fact the stationary states of the microparticle

characterized by the energy values H ll and H 22 respecti­
vely.
Second case. The non-diagonal elements H 12 and H 21 are
non-zero. In this case, we have a system of two mutually
related equations [system (13.2)]. Hence if at a given
moment the microparticle is, for example, in the state
(1 \, it may appear in the state (2 I at another instant of
time. The presence of non-diagonal elements in the
Hamiltonian matrix means the existence of transitions
of the microparticle within various basic states.
While considering examples of microparticles with two
basic states, we note that in the ammonia molecule, the
nitrogen atom undergoes transitions changing its posi­
tion with respect to the H-plane. The protons in the
hydrogen molecule "exchange" electrons. Note that this
very "exchange" of the electron pair forms the basis of
a chemical bond. It may be said that a valency bond
between two atoms arises as a result of each of these
atoms "contributing for common use" one electron. It is
these "shared" electrons that are responsible for the
appearance of a bond between the atoms.

1)

fy

2)

.-Iz ....



, ,

'I!

A Brief Interlude

Reader:

Author:

Reader:
Author:

~You understand, and ate acquainted with Latin, without
doubtJ

-Yes; but act as if I were not acquainted with it.

Molier (The Cit Turned Gentleman)

Earlier, in Sec. 10, it was stated that "if an object IS III one
basic state, it cannot be found in another basic state". Isn't this
in contradiction with the possibility just mentioned of transitions.
between basic states?

In Sec. 10, we were talking about the principle of superposition
of states. During the course of the discussion we did not take into
account the possibility of the development in time of transition
between the states giving rise to the superposition.

Please clarify this.
First of all, let us expand (13.1) in the following form:

(s (t) I = C1 (t) (1 I + C 2 (t) (2 I. (13.1a)

't'
",

126

We have the microparticle in the superposition state (s (t) /. If
the detector is activated at time t, the microparticle will be found
in the state (1 1 or (2 I, the probability of these events being
I CI (t) 12 and I C 2 (t) 12, respectively. It is significant that one­
event excludes the other-this is what we mean by the statement
you quoted.

Reader: I understand the crux of the matter. If the microparticle is
found, for example, in the state (1 I at time t, this excludes the
possibility of its being found in the state (2 I at the same time.
However, the microparticle may be found in the state (2 I at
another instant of time.

A uthor: It is important that the non-diagonal elements of the Hamil-
tonian matrix should be non-zero in this case. Otherwise, if you
find the microparticle in the state (1 I, you will never find it in
the state (2 I.

Reader: I understand that the superposition states and transitions
between basic states are different "subjects".

A uthor: That is true but don't forget that when considering transitions
we should take into acount not only the nondiagonality of the
Hamiltonian matrix, but also the superposition relation (13.1a).
In this case, everything depends on the nature of the time depen­
dence of the amplitudes C1 and C 2• In one case it so happens that
I Cl l2 and 1 C2 12 do not vary with time; in this case there are nC}
transitions between the basic states. In the other case I C1 12 and
I C2 1

2 vary with time and then we do have transitions. In short,
the question of the nature of the time dependence of the amplitudes­
C1 and C2 requires a more detailed consideration.

1
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We shall consider two cases exhibiting the time depen­
dence of the amplitudes C1 and C2 •

First case. The non-diagonal elements of the Hamilto­
nian matrix are equal to zero. By solving equation (13.3),
we find

C1 (t) = Ct (0) exp (iH utln),

C2 (t) = C2 (0) oxp (iH22 tln).

This is the nature of the dependence on time of the ampli­
tudes describing stationary states.
From (13.4) it can be seen that the probability of finding
the microparticle in any basic state is invariant in time:

(13.5)

If at time t = 0 the microparticle is in the state (1 I,
then I C1 (t) I~, = 1 and I C2 (t) 12 = O. As expected, the
lifetime of a microparticle in a stationary state turns out
to be indefinitely long.
Second case: The non-diagonal elements of the Hamilto­
nian matrix are different from zero. We assume that we
can put*

H u =H22 =Eo• (13.6)

Besides, if we assume that non-diagonal elements of the
Hamiltonian matrix are real and take (12.9) into account,
we can denote

Change of Amplitudes of State
in Time

(13.7)

(13.8)

I By u,ing (13.6) and (13.7) we 'ew,i'e (13.2) in 'he fo1'Irl

:1' -in ~ Ct =EoCt -AC2 , }

- in~ C2 = EoC2 -ACttdt

This system of equations is equivalent to the following
system:

- in ~ (Ct +C2 ) = (Eo-A) (C t +C2 ), }

-iii ~ (Ct- C2)=(Eo+A) (Ct -C2 ) •

... This can be done if the problem under consideration is character
ized by a certain symmetry; thus in the example with the ammonia
molecule, the states (1 I and (2 I correspond to positions of the
nitrQgen atom which are symmetrical with respect to the H-plane.
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Fig. 13.t

Oiagonalization of the
:Hamiltonian Matrix
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The solutions of the latter system are of the form

C j +C2 = a exp [i (Eo-A) trn]

C j - C2 = bexp [i (Eo + A) tlli]

from which we obtain

Cdt) = ~ exp [i (Eo-A) tlli]

+ ~exp [i (Eo+A) tlli] , (1a.9a)

C2 (t) = 1- exp [i (Eo - A) tlli]

- ~ exp [i (Eo +A) tlli]. (13.9b)

Suppose that at t = 0 the microparticle is in the state
(1 I. Then C1 (0) = 1 and C2 (0) = 0, from which a =
= b = 1. In this case expressions (13.9) assume the form

C j (t) = exp (iEot/li) cos (Atlli) , (13.10a)

C2 (t) = - i exp (iEot/li) sin (Atm). (1a.1 Ob)

From these expressions it is obvious that the probability
of the microparticle remaining in the state (1 I at time t
is equal to

I C1 (t) 12 = cos2i(At/li) , (13.ita)

and the probability of its appearing at time t in the
state (2 [ is equal to

1 C2 (t) 12 ----,- sin2 (Atlli). (13.11b)

It is useful to compare (13.5) and (13.11). While in the
first case the probabilities 1 C1 12 and I C2 [2 are inva­
riant in time, their dependence on time in the second
case is quite obvious. The time dependence of the pro­
babilities 1 C1 (t) /2 and I C2 (t) 12 determiaed by relations
(13.11) is shown in Fig. 13.1.

Let us compare the expressions for C1 + Cz and C1 ­

- C2 , obtained in the previous section, with (13.4).
This comparison allows us to conclude that the amplitu­
des C1 + C2 and C1 - C2 describe the stationary states
of the microparticle with energies equal to Eo - A
and Eo + A, respectively. Further, we introduce a new
pair of basic states

1
(I 1= VZ «11-(2[),

(111= ~z«1I+(21)
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[it is easy to see that if the states (1 I and (2 I satisfy
the orthonormalization condition (10.8), the states (I I
and (II I also satisfy this conditionl. By using (13.12),
we rewrite (13.1) in the form

(13.13)
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It can be seen from here that a transition from the basic
states (1 I and (2 I to the basic states (I I and (II I
corresponds to a transition from amplitudes C1 and C2

to amplitudes (C1 - C2)IV2 and (C1 + C
2
)IV2. Since

the latter describe the stationary states of the micro­
particle, it follows that the transition under considera­
tion is associated with a diagonalization of the Hamilto­
nian matrix.

Thus, suppose we have a certain microparticle under cer­
tain external conditions. Let us choose a certain system
of basic states. The attempt is usually made to choose
basic states which have a clear physical meaning (as we
did, for example, in the case of the ammonia molecule
or the hydrogen molecule). The basic states chosen on
the basis of such considerations lead, in the general case,
to a Hamiltonian matrix whose non-diagonal elements are
different from zero (the microparticle undergoes transi­
tions between the basic states). Further, it is possible
to go over to a new system of basic states for which the
Hamiltonian matrix is diagonal. The new basic states
describe the stationary states of the microparticle; the
elements of the diagonalized Hamiltonian matrix are
essentially the values of the energy in these states.

In the general case the non-diagonal elements of the General Case
Hamiltonian matrix are different from zero and so the
simplifying conditions (13.6) and (13.7) are not applicable.
In this case one must solve not the simplified system of
equations (13.8), but the more general system of equa-
tions (13.2) for a microparticle with two basic states.
We suggest that the reader, if he so desires, solves the
system (13.2) himself, assuming for the sake of simplicity
that the Hamiltonian matrix is invariant in time*.
We shall limit ourselves here giVing some results.
The energy of the stationary states of a microparticle is

• Such a solution is given, for example, in [3].

Sec. 13 129

... 5



determined by the expression
--,,.,,--=------,,-----

E - Jf ll +H 22 + -. /( H ll -H 22 )2+ H H
1, II - 2 - V 2 i2 2i' (13.14)
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(13.15)
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·1 Example of the Ammonia
Molecule

130

The basic states (I I and (II I corresponding to these
energy values are expressed in terms of the elementary
states (1 1 and (2 I describing the equation system (13.2)
in the following manner:

(I 1= ad1 1+ bi (2 I, }
(II I = a2 (1 I+ b2 (2 I,
where

I a i 1
2 + I bi 1

2 = 1 a2 1
2 + I b2 1

2 = 1, }
ai/bi = H i2/(EI - H u ),

a2/b2= H 2i/(En - H 22 ).

It can be easily seen that if Hll = H 22 = Eo and H 12 =
= H 21 = - A, the result (13.14) gives E r ,I1 = Eo +
+ A, the superpositions (13.15) turn into (13.12). In
other words, we arrive at the simplified case of the non­
diagonal Hamiltonian matrix discussed above in detail.
But if H 12 = H 21 = 0, the result (13.14) gives E r = HUt
Ell = H 22-we arrive at the case of the diagonal Hamil­
tonian matrix (I I = (1 I, (II 1= (2 I).

,We recall that the basic states (1 I and (2 1 of the
ammonia molecule were chosen using graphic physical
considerations: they correspond respectively to the posi­
tion of the nitrogen atom on one side of the H~plane

and on the other. Since these positions are symmetrical,
we may take JIll = JI22 - Eo. Assuming further that
the elements H 12 and JI 21 are real (JI12 = H 21 - -A),
which, as it turns out, does not involve the loss of gene­
rality in this case, we arrive at the situation to which
the simplified system of equation" (13.8) corresponds.
It follows from this that the energy levels of a molecule
are essentially Eo + A and Eo - A. We emphasize
that if no transitions took place between the states (1 I
and (2 I, there would have been only one level Eo in
place of the levels Eo + A and Eo - A. It would have
been doubly degenerate since there would be two states
corresponding to it. It may be said that transitions be­
tween the states (1 I and (2 I (associated with "pushing"
of the nitrogen atom through the H-plane) correspond
to a removal of degeneracy, Le. to a splitting of the
level Eo into two levels Eo + A and Eo - A.
Further, let us assume that the ammonia molecule is
placed in a static electric field with intensity ~ which



By using (13.14), we obtain the following expressions
for the energy Jevels of the molecule in a static electric
field:

E1=Eo+ VA2+~2d2, En=Eo- -VA2+e2d2. (13.19)

Figure 13.2 shows the qualitative dependence of the
energy levels of ammonia molecule on the field intensity.
It can be easily seen that the effect of "throwing" the
nitrogen atom through the H-plane is important for
relatively small fleld intensities. In strong fields, when
the levels diverge considerably, this effect becomes in­
signiflcant.

---"-.------- ------

The Hamiltonian Matrix for an
Electron in a Magnetic Field

(13.18)

The Electron in a
Magnetic Field

It is well known that the projection of the electron spin
momentum in any direction may assume only two values
(-1iI2 and +1iI2). This allows us to treat the electron
as a microparticle with two basic states. The problem
of an electron in a magnetic field is of great practical
interest. Besides, this problem is also quite interesting
from a methodical point of view: its analysis enables
one to get acquainted with not only the general nature
of a system with two basic states, or, in other words,
the two-level system, through a physically suggestive
example, but also with the general approach to the analy­
sis of such systems.

Let us first fix the direction of the coordinate axes
(including the direction of the z-axis). For the basic
states (1 I and (2 I we choose states for which the pro­
jections of the electron spin on the z-axis are equal to nlZ

Section 14

is perpendicular to the H-plane. Denoting the electric
dipole moment of the molecule by d, we write

Hl1=Eo+~d, H22=Eo-~d. (1;-U7)

Now the positions of the nitrogen atom on either side of
the H-plane are no longer physically symmetrical (Hu =F Fig. 13.2
;:/= H 22). Assuming that H 12 = H 21 = -A as before,
we write the system of equations (13.2) for the case under E
consideration:

-;I,:, C,~(E,-I td)C,~AC" }

-in d~ c 2 = -AC 1 +(Eo-ed)C2 •
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and -fi/2, respectively. We switch on a static magnetic
field (we denote the value of the magnetic induction
by B) and consider the following two cases.
First case: the magnetic field is directed along the z-axis
{B x = By = 0). In this case the basic states (1 I and
(2 I are stationary; the state (1 I has energy -f-tB z and
the state (2 I has energy f-tB z (f-t denotes the magnetic
moment of the electron). The amplitudes C1 and C'I.
satisfy two independent equations of the type (13.3):

I-
n
C
E
t:

The Hamiltonian matrix of the electron is of the form

"Ji del B C-l -=-11 1dt r z , (14.1)

(14.2)

I
v
i
\

,Second case: the magnetic field is in an arbitrary direction.
In the first place, we note that irrespective of the direc­
tion of the field (in other words, irrespective of the choice
-of the direction of the coordinate axes) the energy levels
·of the electron are determined by the expressions -f-tB
and f-tB; while in the previous case we had to take B =
= B z, in this case we must have B = (B~ + B~ +
+ BD1/ 2• Thus

E1 = -f-t VB~+B~+b'~, En=f-t VB~+B~+1:f;.
(14.3)

Note that

E1=-Eu · (14.4)

:Further we make use of relation (13.14). By taking (14.4)
:into account, we may assume that H ll +·H22 = O. As
.a result, by combining (14.3) and (12.9', we get

(14.5)

(14.6)

We shall assume a linear relationship between the ele­
ments of the Hamiltonian matrix and the field. It turns
.out that this fairly natural assumption allows us to
derive the following relations from (14.5): H ll = -f-tB z'
H 22 = f-tB z' H21 = Hi2 = -f-t (Bx + iB y). Thus, the
Hamiltonian matrix of an electron in a magnetic field

"has the following general form:

. ',. [ -f-tBz -f-t(Bx-iBII)l
.un = (B +'B ) B J .:" , -f-t x l iJ f-t z
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Fig. 14.1

Projection Amplitudes-

(14.8)

(14.7)

(14.11)

}

It can be easily seen that when B x = By = 0, the
matrix (14.6), as expected, coincides with the matrix
(14.2).
By using (14.6) we write the system of equation (13.2) for
the case under consideration:

- i'n tt C t = _. ,.![BzCt + (Bx - iBy ) C2 ],

-in :r C2 = -",,[(Bx+iBy)Ct-·BzC21.

a l = cos (8/2) exp (-ilp/2);

bi = sin (8/2) exp (ilp/2).

Thus, we have determined the amplitudes of the proba­
bilities that the electron has its spin directed along the
Z-axis (amplitude aI) or in the opposite direction (ampli­
tUde bI ) by assuming that the electron spin is directed
along the field (Le. in the direction determined by the
'angles 8 and lp).

where, as we recall, (1 I and (2 I are the states in which
the projections of the electron spin on the z-axis are
equal to nl2 and -nl2, respectively, and the coefficients
al and bi are determined by the relations (13.16):

at/bt = H t2 /(E 1-H11 ), /a t I2 +/btl2 =1. (14.9)

By using (14.6) we write

H 11 = -""Bz = -""Bcose, }
H

t2
= -I-t (Bx - iBy ) = -""B sin eexp (- ilp). (14.10)

Substituting (14.10) into (14.9), we find that

ai/bi = sin e exp (--ilp)/(1 - cos e).
Taking into account that I al 12 + 1 bz 12 = 1, we arrive
at the following final result:

In conclusion, we note that although the above argument
was conducted for the case when the Hamiltonian matrix
is invariant in time, the results (14.6) and (14.7) are
valid even when the magnetic field varies with time.

Let the direction of the magnetic field be determined by
the polar angle e and azimuth lp (Fig. 14.1). We shall
assume that t~e electron spin is directed along the field;
consequently, the electron is in the stationary state
(I I with energy E1 = -""B. According to (13.15), the
state (I I can be represented as a superposition:
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(14.13)

(14.15)

(14.14)

I;1
.;j

~

p,

Note that (14.11) does not contain the magnetic induc~

tion B. It is obvious that the result (14.11) must be valid
in the limiting case B -+ O. In other words: we may exclu­
de the field from consideration and interpret (14.11) in
the following way. It is clear that the direction of the
electron spin is determined by the angles 8 and cp. In
this case the amplitude of the probability that the electron
spin is along the z-axis is al and the amplitude of the
probability that the electron spin is in the opposite
direction is b1 • Expression (14.8) should be treated in this
case as an expansion of the spin state (8, cp I in terms
of the spin states (z I and (-z I:
{8, cp I= cos (8/2) exp ( - icp/2) (z I

+sin(8/2)exp(icp/2)(-zl. (14.12)

The amplitudes of the states occurring in (14.12)

(8, cp Iz) = cos (8/2) exp (-iqJ/2);

(8, (pi - z) = sin (8/2) exp (icp/2)

are called projection amplitudes.
By using projection amplitudes, we may predict the
result of the following experiment. Let an electron beam,
polarized in a direction given by the angles 8 and cp,
pass through some "filter" which only allows through
electrons whose spin is along the z-axis. In this case the
amplitude of probability of an electron passing through
the apparatus (through the "filter") is (8, cp I z). The
projection amplitude here plays the role of the amplitude
of the electron transition from the state (8, cp I to the
state (z I.

Precession of the Electron Spin Let the direction of the electron spin be given by the
angles 8 and cp (the electron is in the state (8, cp I). This
state can be represented in the form" of superposition
(14.12) of the states (z I and (-z l Suppose that at
time t = 0 we switch on a magnetic field B which is
directed along the z-axis. Now the states (z I and (-z I
become stationary states. Using this, we write [see (13.4)]

(8, cplz)=CdO)exp(-i/-tBzt/n), }
'<8, cpl-z)=C2(0)exp(i/-tBzt/n).
Comparing (14.14) with (14.13), we conclude that
C t (0) = cos (8/2) exp ( - icp/2);

C~ (0) = sin (8/2) exp (icp/2).,
It follows from this that in time t after the magnetic field
has been switched on the projection amplitUdes assume
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(14.16)

; <e, CP(t)l-z)=sin(8/2)exp[~ (cp+2~tBzt/n)J

I.,i,'.. Thus, the switching on of a magnetic fIeld along the
, z-axis does not change the polar angle 8 but changes the

azimuth cp, the change in cp being proportional to the

i'.,"", time interval t which elapses after switching on the
, field. This means that the spin of an electron precesses
, around the z-axis (around the direction of magnetic
I field) with a constant angular velocity. It can be easilyI seen that the angular velocity of the spin precession is
i given by the relation

I ill = 2~Bz/n. (14.17)
!

We move one step further by ignoring coordinate axes.
Suppose that at time t = 0 the direction of electron spin
forms an angle 8 with the direction of the magnetic field.
This angle will remain constant with time, but the
electron spin will precess around the field direction with
an angular velocity

(i) = 2~lB/!1. (14.17a)

We further suppose that the magnetic field is varying
with time (in the general case, both the direction and

the magnitude of the vector B-'> are varying). A change in
the field leads to a corresponding change in the electron
spin precession: a change in the magnitude of the magne­
tic field results in a change in the angular velocity of
precession, while a change in the direction of the field
causes a change in the direction around which the pre­
cession takes place.
A knowledge of the precession enables one to predict
changes in the electronic state over a given period of
time. We shall consider a simple example (Fig. 14.2).
Suppose that at the instant t = 0 the field is directed-along the z-axis [vector B (0)1, and the elect~onspin is
in the zy-plane and forms an angle 80 with the direction
of the field. Thus the initial state of the electron
<8 (0), cp (0) I is determined by the angles 8 (0) = 80

and cp (0) = n/2. We shall assume that the magnitude
of the field does not change with time, but that the direc­
tion of the field changes. Suppose after time h = nn/2ItB

the field becomes directed along the y-axis [vector B (t1)

.in Fig. 14:21. What will be the state of the electron at the

Sec. 14

Fig. 14.2

z.

135'



Generalization of the Problem of
an Electron in a Magnetic Field
to an Arbitrary Two-Level System

time t1? It is clear that if the field direction had remained
unchanged, the end point of the electron spin vector,
while precessing around the z-axis, would have described
a semicircle during the time nnl2ltB, thus shifting from
point SI to point S2. If we take into account the variation
in field direction, we shall find that it has shifted not
to the point S2 but to the point S3. Consequently, the
required state of the electron (8 (tl), cP (tl) I would be
determined by the angles 8 (tl) = n/2 - 80 and cP (tl) =
= n/2.

According to Feynman [3], it is interesting that the
mathematical ideas we have just gone over for the spinning
electron in a magnetic field can be applied to any two­
state system. That means that by making a mathematical
analogy to the spinning electron, any problem about two­
state systems can be solved by pure geometry .... If we can
solve the electron problem in general, we have solved all
two-state problems. Let us clarify these remarks.
We shall consider some two-level system with the basic
states {1 I and (2 I. We assign some vector to each state
of the microparticle. A choice of the basic states {1 I
and {2 I in this case is equivalent to a choice of the
z-axis (as if these two states correspond to the two z­
projections of the electron spin). Suppose that the micro­
particle is in the state {s (0) I at the initial moment
of time. We assign to this state a vector whose direction
is determined by the angles 8 (0) and cP (0):

{s (0) I +-+ (8 (0), cP (0) I. (14.18)

In order to find the angles 8 (0) and cP (O)~we must Expand
the state (s (0) I in terms of the basic states {1 I and
{2 I and use for the coefficients of expansion expression
(14.13) for the projection amplitudes. This expansion
is of the form

{8 (0)1 = cos [8 (0)/2J expl[ _ iCPJ(0)/2j!{11 "

+sin [8 (0)/2J exp [icp (O)/2J!{2/. (14.19)

Further, let us turn to the Hamiltonian matrix of the
microparticle. First of all we shift the zero point of the
energy in such a way that it is located precisely half-way
between the two energy levels or, in other words, so
that the condition (14.4) is satisfied. In this case

8 11 +822 =0. (H.~O)
->-

We now formally introduce a vector ItB (it is in no way
associated with any magnetic field!) such that its projec­
tions on the coordinate axes (remember that the axes
are determined by the choice of the basic states) satisfy



d.,
d
n
n
t
e
e

e
g

~

l

j

i
t

I
I
t

the conditions

H 11 = -lJBz, H 12 = -f-l(Bx-iBy). (14.21)

By using (14.21) we determine

ro=2f-l(B:+B~+B~)1IZ/Jz. (14.22)

In order to solve this two-level problem, Le. in order
to determine the change in the (s I-state during certain
time t, we must consider the precession of the vector

~

(8, cp I around the direction B with an angular velocity ro.
lf the Hami~tonian matrix is time dependent, both the

direction of B and the magnitude of the angular velocity
of precession will change accordingly. After a time t,
the microparticle will be in the state (s (t) I, defined by
the angles 8 (t) and cp (t), which may be determined if we
know the initial values 8 (0) and cp (0) and the precession
(in exactly th'e same way as was done in the example
given at the end of the preceding subsection). The transi­
tion from the angles 8 (t) and cp (t) to the required final
state (s (t) I is accomplished by using the familiar super­
position:

(8 (t) I= cos [8 (t)/2] exp [ - icp (t)/2] (11

+sin [8 (t)/2] exp [icp (t)/2] (21. (14.23)

Applying these remarks to the example of the ammonia
molecule considered in Sec. 13, we must shift the zero
point of the energy by an amount Eo, and go over (for
the sake of convenience) from the basic states (1 I and
(2 I to the basic states (I I and (II I. As a result, we get
in place of (13.18) the following system of equations:

- ih :t CI = ACI +edC II, }

d • (14.24)
- ih(F Cn = edC l -ACn .

This system is convenient for drawing the analogy with
the electron in a magnetic field. Comparing (14.24)
and (14.7), we find that the quantity A corresponds to
-f-lB z and the quantity ed to -/.-lBx· Consequently,
we have to consider the precession of the vector describing
the state (s I of the molecule in the "magnetic field" which
is made up of two components: a constant component
along the z-axis, associated with the effect of the "throw­
ing" of a nitrogen atom through the H-plane, and a com­
ponent along the x-axis, associated with the electric
field. The latter component may, obviously, vary with
time.
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PAULI SPIN MATRICES. In conclusion, we shall mention the
Pauli spin matrices which are wirlely used in the quantum me­
chanics of two-level systems. These matrices are of the form

By using these matrices, we can rewrite the expression for the
elements of Hamiltonian matrix of all electron in a magnetic fICld
(14.6) in the fOllowing form:

[01J
ax = 1 ° ; [

1
a Z
~ .0 UJ-1 . (14.25)

(14.26)

t
(
~

t
I

1

By considering ax, aY, OX as components of some matrix vector ;,
we can rewrite (14.26) in a form which is independent of the choice
(If the coordinate axes:

--> -->
Hij= -!L0ijB. (14.27)

Pauli spin matrices are useful because any second-order matrix
(in particular, the Hamiltonian matrix of any microparticle with
two basic states) may be represented as a superposition of these
matrices. The Pauli spin matrices introduced for an electron in
a magnetic field have proved to be convenient for considering a
wide range of two-level problems. This is not surprising when we
-consider the possibility, discussed above, of generalizing the pro­
blem of an electron in a magnetic field to arbitrary two-level sys­
tems.

Section 15 The Wave Function

At the very outset, let us make it clear that this section
hardly adds anything new to the physical foundations
of quantum mechanics considered in this chapter. In
fact, we are already able to summarize the physical
aspects of the theory and go over to its mathematical side,
based on the use of linear operators. However, before
doing so, it is worthwhile to introduce the concept of
the wave junction. Wave functions are widely used in
the existing literature on quantum mechanics; hence
it is important that the reader should be aware of the
"position" of the wave function in the above description
of amplitUde concepts. Until now, the wave function,
being essentially the amplitude of state, existed in this
picture in an implicit form; we shall now make it explicit.
Besides, one must remember that while changing over
to the mathematical apparatus of quantum mechanics,
it is more convenient to use the wave function rather
than the amplitude of state.
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Let (x I be the state of a microparticle corresponding The Wave Function as the
to its localization at a point in space with the coordinate x Amplitude of State

(for simplicity we consider the one-dimensional case).
Then (s I x> may be considered as the probability ampli-
tude that a microparticle in the state (s I has the coordi-
nate x.
However, we must make this a little more precise. When
considering the probability of any spatial localization of
a microparticle, we must take into account the continuity
in the variation of a spatial coordinate. Hence, instead
of the probability of finding a microparticle precisely
at the point x, we must consider the probability of find­
ing it on the interval from x to x + dx. Denoting this
probability by dws (x), we have

dws (x) = I (s I x) 12 dx. (15.1)

Consequently" the quantity (s I x> is, strictly speaking,
not the amplitude of probability, but the amplitude oj
probability density.
In literature, the quantity (s 1 x> is referred to as the
wave junction and is expressed, for example, by 'ljJs (x).
Thus,

\jJs (x) = (s I x>. (15.2)

Using (15.2) we can rewrite (15.1) as

dws (x) = l1\1s (x) J
2 dx. (15.3)

It follows from (15.3) that 11\1. (x) 12 is the probability
density of finding a microparticle with the state (s\
at the point x.
From a mathematical point of view, the wave function in
\jJ. (x) is a parametric function, the parameters being the
quantities which are precisely defined in the state (s \.
Taking into account the earlier remarks on the structure
of amplitudes of states, we may state that the quantities
of one complete set serve as the argument for the wave
function, its parameter being the quantities of another set.
It is often said that the wave function 'IjJ. (x) is an eigen­
junction of the quantities of the s-set, given in the repre­
sentation determined by the quantities of the x-set (or
simply, in the x-representation).

Wave functions are frequently used in practice in the Generalization of the Concept of
x-representation (coordinate representation). However, the Wave Function

apart from the x-representation, other representations are
obviously also possible. In this connection, the concept
of the wave function must be generalized:
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The function tPa (~) is the eigenfunction of the quantities
of the a-set, given in the ~-representation. If the values
of the ~-set change discretely, 'Pa. (~) is the amplitude of
the probability that the state (~ I is represented in the
state (a I. In the case of continuously changing values
of the ~ -set, ~la (~) is the amplitude of the given probabi­
lity density.
By giving the wave function tPa (~) we give the exact
values of the quantities in the a-set and probable values
of the quantities in the ~-set. Correspondingly, by giving
the function CPa (y) we give the exact values of the a-set
and probable for the values of the y-set. It could be said
that the function tPa. (~) describes the state (a I in the
~-representation, while the function CPa. (y) describes the
same state, but in the y-representation. The fact that
different functions tP ... (~) and cp:'(y) are used for describing
the same state (a I indicates that there must be some
connection between them. This connection is expressed
through the principle of superposition of states. Assuming
that y-values change discretely, we can write

1

~

1
';

I

C
';

,

(15.5)

It can be easily seen that (15.5) is the expression for the
superposition of amplitudes of states:

(15.5a)

If the y-values vary continuously, we get in place of (15.5)

(15.6)

Let us consider the eigenfunction of the quantities of a
certain set given in the representation ()Lthe quantities
of the same set. If these quantities change discretely, we
have, according to (10.8),

(15.7)
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If, however, the quantities vary continuously, we get in
place of (15.7)

'Y.~(a)=(')(a-a'). (15.8)

where (') (a - a') is the so-called Dirac delta junction,
which is a generalization of the Kronecker's symbol for
the case of continuously varying quantities.*
• The delta function is discussed in detail, for example. in [t3}.
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The delta function is determined in the following way:

Strictly speaking, it is impossible to plot the function
6 (a - a') because it would involve drawing an infinite­
ly narrow and infinitely high peak at the point a = a'
with a finite "area" under it equal to unity. One of the
most important properties of the delta function, which
can be easily derived from its definition (15.9), can be
written as follows:

where f (a) is a bounded function, continuous at the
point a = a';

Assuming that the a-values are discrete and the ~-va- Condition of Orthonormalizatioll
lues vary continuously we rewrite (15.6) in the form of Eigenfunctions

'I'c<;(aj)= 51pa,(~)<1>Il(aj)d~. (15.11)

By using (9.33). we can write

<1>f:l (aj) = 1p~. (~). (15.12)
]

From (15.12) and (15.7), we obtain from (15.11) the
condition for the orthonormalization of the eigenfunction8
"'I%i (~):

51pa; (~) 1pcij (~) d~ = 6i /. (15.13)

If the a-quantities vary continuously. we must use (15.8)
instead of (15.7). In this case the condition of orthonor­
malization of the eigenfunctions assumes the form
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o(a-a')==O at a*a';

00

i f (a) 6 (a-a') da = f (a'),
-00

00

r ' I'J 6 (a - a ) da = 1. (15.9)

;(15.10)

51pa (~) 1P~ (~) d~ = 6 (a-a'). (15.14)

As an example, we consider the case of a freely moving The Wave Function of a Freely
microparticle. For simplicity, we assume that it has Moving Microparticle

zero spin. The wave function in coordinate (three-dimen-
sional) representation has the form*

.... ........ -3/2 ........
1p-+ (r) = (Po Ir) = (2nli) exp (iporlli)1 (15.15)

Po

where Po is the momentum of the microparticle and -; is

its spatial coordinate. The function 1p-.. (;:) is an eigen-
Po

... We shall derive this result later (see Sec. 20).
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(15.17)
1 •

6(~)=2JT J exp(i~~)d~
+00

crease g. This will bring the points A in the figure closer to a = 0,
and raise the point B on the ordinate axis. In the limit as g --+ 00

we get an infinitely narrow and high peak whose integral is
equal to unity. This is just the delta function. Thus, 0 (a) =
= lim sin (ga)/na. We can easily get (15.17) from this since

(g~oo) .

f{

sin (ga)/na = _1_ r exp (ia~) d~.
2n J

-f{

~ --+ -+ -)0 -+ 3/2 ~-+

{fJ-. (p) = (roIp) = (p I ro)* = (2:n:nF exp (- tpro;n)·
To

(15.16)

(the quantities ~ and ~ represent the components of the­
spatial coordinate and the momentum of the micro­
particle).

The function CP-+ (P) is an eigenfunction of the coordinate
To

of the microparticle given in the momentum represen-
tation.
It can be seen from (15.15) and (15.16) that the states of
a freely moving microparticle are described by wave
functions in the form of plane waves (in coordinate or
momentum space).

The functions '¢-+ (;:) and Cp-+ (p) satisfy the condition
])0 . To '

(15.14) of orthonormalization. This can be verified by
using the integral representation of the delta function*

function of the momentum, given in the coordinate
representation. It describes the state in which the momen­
tum components of a microparticle have definite values,
while the spatial coordinates may be assigned only pro­
bable values.
Switching over from the coordinate to the momentum
representation and making use of (9.33) we get

Fig. 15.1

* Let us consider the function sin (ga)/ITa (Fig. 15.1). Irrespective
00

_~P~+-1-~~~~~~ of the value of parameter g, j do. sin (ga)/na = 1. Let us in-
-00



Section 16 Quantum Mechanics as a
Qualitative Leap in Man's
Knowledge of the Laws of
Nature

)

Of course it IS impossible to distinguish sharply between
natural philosophy and human culture. The physical
sciences are, in fact, an integral part of our civilization,
not only because our ever-increasing mastery of the forces
of nature has so completely changed the material conditions
of life, but also because the study (If these sciences has con­
tributed so much to clarify the background of our own
existence.

N. Bohr

Although quantum mechanics deals with microparticles,
its significance is by no means limited to microphenome­
na. In our endless quest for understanding and perfecting
our knowledge of the laws of nature, quantum mechanics
represents an important qualitative leap. Without a com­
prehension of the importance, and radical (we could even
say revolutionary) nature of this leap, it is impossible
to understand the modern physical picture of the world.
In this section, an attempt has been made to look at
quantum mechanics from this point of view. This may
serve as a logical conclusion to the chapter, which has
been devoted to the physical foundations of this astonish­
ing theory.

The expression "crazy theory" as one which is "crazy "Crazy Ideas"
enough to be true" was once coined by Bohr. This expres-
sion reflects the stunning impression produced on Bohr's
contemporaries by the astonishing physical discoveries
made at the beginning of the 20th century, discoveries
which could not be confined within the framework of
classical concepts. It became obvious that an explanation
of these discoveries required radically new ideas and a new
approach.
In Sec. 2 we considered two fundamental ideas of quantum
mechanics-the idea of discreteness and the idea of duality.
Returning, in our imagination, to the beginning of the
century, we could call the first idea "incomprehensible"
and the second, "not properly understood". The intro­
duction of discreteness to the physical picture of the
world led to incomprehensible and, apparently, logically
controversial quantum "jumps". The idea of duality,
which asserts the specific nature of microparticles, elimi­
nated the contradiction of quantum "jumps" by suggest­
ing a "manoeuvring" between the "particle" and the
"wave" concepts. But the meaning of the wave concept
introduced here remained in fact unclear for a very long
time. These two "absurd" ideas led to the emergence of
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The Essence of Quantum
Mechanics

144

the extravagant "uncertainty relations" which resulted
in a different outlook on even such fundamental con­
cepts as "energy", "momentum" and "angular momen­
tum".
Quantum mechanics was born under circumstances of
a significant breaking up of physical traditions. It called
for a rejection of many usual and accepted notions such
as the strict continuity of the spectra of values of physical
quantities, the trajectory as an essential attribute of the
motion of an object, Laplace determinism as the basic
form of expression of the principle of causality, the possi­
bility of an infinite detailization of the structure of an
object or of a phenomenon with respect to time, the
possibility of distinguishing between two objects, however
similar to each other, under any circumstances, the belief
that it is always possible, at least in principle, to disre­
gard the measuring instrument when conducting any
measurements, etc. (all these questions have been analys­
ed in detail in the preceding sections).
It is difficult to recall any other period in the history
of physics when such a serious and large-scale revision
of physical concepts was carried out. According to Bohr,
... the new lesson which has been impressed upon physicists
stresses the caution with which all usual conventions must be
applied as soon as we are not concerned with everyday expe­
rience... In the study of atomic phenomena we have
repeatedly been taught that questions which were believed
to have received long ago their final answers had most unex­
pected surprises in store for us.

The revision of the concepts and the rejection of many
accepted notions could well be considered as a "negative
aspect" of quantum mechanics. Let us now consider its
"positive aspect".
If we try to summarize the main positiv~ knowledge im­
parted by quantum mechanics to man: in his search for
learning about his surroundings, the following two impor­
tant points stand out:
First: quantum mechanics showed that the basic laws of
nature are not dynamic but are statistical, and that the
probabilistic form of causality is the fundamental form
while the classical determinism is just its limiting (degene­
rate) case.
Second: quantum mechanics revealed that probability in
nature should not be dealt with as in classical statistical
theories. It was found that in certain cases it is not the
probabilities of events that should be summed, but rather
the amplitudes of these probabilities. This leads to the
interference of probability amplitudes.
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flo Thus we empha,;'. firstly the probabili3tte eharacter oj
I, '.~. the laws of nature (the pre-eminence of statistical laws)
I r and, secondly, the special relations among the probabilities,

which assume not only the summation of the latter, but
also the specific interference effects. In our view, it is in
this that the main importance of the information one gets
from quantum mechanics is to be found.
As Born pointed out in [14], the statistical methods found
wider applicability with the development of physics.
As regards modern physics, it is completely based on sta­
tistical foundations. In Born's view, it is the quantum
theory that established the closest links between statistics
and the basic aspects of physics. This should be considered
as an important event in the history of human knowledge,
with consequences reaching far beyond the limits of science.
It is sometimes said that the fundamental difference be­
tween quantum mechanics and classical mechanics is
determined by \ the statistical nature of the former and
dynamic nature of the latter. Upon careful consideration,
this apparently bland and irrefutable statement turns
out to be incorrect. While revealing the pre-eminence of
statistical laws in physics, quantum mechanics shows
at the same time that dynamic laws with their unique
predictions are, as a matter of fact, a special (degenerate)
case of probability laws. In this respect not only quantum
mechanics, but classical mechanics as well, must be,
strictly speaking, formulated in the language of probabil­
ities*. The qualitative difference between quantum me­
chanics and classical mechanics (or classical physics in
general) depends on how the relations among probabilities
are considered. It has been mentioned in [27] that the
main difference between quantum mechanics and classical
mechanics does not lie in the statistical nature of the
former. It lies in the fact that it is not the probability
but its amplitude, the wave function, that is of primary
importance in quantum mechanics. This leads to the
interference of probabilities, an effect which does not
have an analogy in classical mechanics.
Developing the above ideas, let us single out the follow­
ing points: (a) the special interrelations among quantum­
mechanical states and the resulting specific nature of
quantum-mechanical description of phenomena; (b) the

* This point of view is systematically analysed in [27], where it
is stated, in particular, that Feynman's concepts of path integrals
in fact converts the principle of least action into the principle of
maximum probability, i.e. it proves that the fundamental dynamic
Principle is essentially statistical in nature.
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specific nature of the application of probabilities in
quantum mechanics; (c) the special role of interference
in quantum mechanics; (d) the complementarity principle
as a logical foundation of quantum mechanics, and (e) the
dialectical nature of quantum mechanics. We shall con­
sider these questions one by one.

According to Feynman, one of the most outstanding
achievements of quantum mechanics lies in the fact that
it allows so much to be extracted from so little.
The reader has already found out how much can be
achieved from the phenomenon of interference of ampli­
tudes (see Sec. 9), on the basis of the principle of super­
position of states (see Sec. 10), and from a consideration
of the simplest quantum-mechanical systems, Le. micro­
particles with two basic states (see Secs. 13, 14). The
relative formal simplicity of the description of microphe­
nomena is connected with the specific nature of this
description. Remember that for a quantum-mechanical
description we must know firstly the basic states and,
secondly, the Hamiltonian matrix, which reflects the
physics of the phenomena under consideration. A simplifi­
cation in the description can be achieved because of the
following two circumstances.
Firstly, it is important that the number of basic states,
and consequently the number of elements of the Hamilto­
nian matrix required for describing a definite phenome­
non, should not be large. Thus, in the examples given
in Secs. 13 and 14, this number was equal to two. Here
the contradiction regarding the diversity in the possible
states of the microparticle does not arise, since according
to the principle of superposition either of them may be
represented in the form of some superposition of basic
states. The principle of superposition itself is the deciding
factor, which permits us to manage usually with a small
number of states selected as the basic "states. As Dirac
wrote [9], ... in departing from the determinacy of the classi­
cal theory a great complication is introduced into the descrip­
tion of Nature, which is a highly undesirable feature. This
complication is undeniable, but it is offset by a great
simplification prOVided by the general principle of superpo­
sition of states....
It has been noted earlier (see Sec. 10) that in classical
physics all states of a particle should be considered as
mutually orthogonal, or, in other words, as basic states.
Because of this, the above-mentioned simplifying situa­
tion is impossible here in principle.
Secondly, the relative simplicity of superposition relations
allows us to draw analogies among microparticles having
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the same number of basic states and reduce all the real
problems in practice to a consideration of the two-level
problem, three-level problem, etc. It has been shown
in Sec. 14 how an arbitrary problem with two basic states
can be reduced formally to the problem of an electron
in a magnetic field.
Of course, it cannot be deduced from all this that in
general "quantum mechanics is simpler than classical
mechanics". Certainly it is simpler in the above-mentioned
sense. However, it has sufficient problems of its own,
especially problems connected with a rational choice of
the system of basic states and with finding the form of the
Hamiltonian matrix. It is hardly necessary to recount
all the difficulties which invariably result from the
necessity of departing from graphic representations of
accustomed concepts. That is the way things are. Hence
it wouldn't be wise to say that "quantum mechanics is
simple!". And 'yet one must remember that the peculiar
relations that exist among different states of a micropar­
ticle and appear in the specific principle of superposition
of states considerably simplify the quantum-mechanical
description of phenomena.

Quantum mechanics forces us to take a fresh look at
the well-known theorem of addition of probabilities for
incompatible events. We have to consider not only the
incompatibility but also the distinguishability of the
events. This is where the novelty of the approach lies.
It is well known that in the probability theory used in
classical physics, as well as in engineering, it is always
implied that events are distinguishable.
In order to demonstrate the specific nature of the applica­
tion of probability in quantum mechanics, we make use
of the example considered in Secs. 9 and 10 of the scatter­
ing of bosons of the same type by each other. We recall
the notations introduced in these sections: lp (8) =
= </1 1 81} </2 I 8 2 }-the probability amplitude of one event
(one transition), lp (n - 8) = </2 I Sl} <Ii 1 S2 }-the proba­
bility amplitude of the other event, w - the probability
of simultaneous activation of both detectors. Since
microparticles of the same type are scattered by each
other, the question of their distinguishability leads to
the distinguishability of the initial states <81 I and (S2 I.
In this connection three cases may be isolated:
First case. The events are completely indistinguishable.
This means that the initial states are the same, and

(16.1)

Probability in Quantum
Mechanics
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In this case, we get [see (9.17)]

w=lep(8)+ep(n-8)12. (16.2)
Second case. The events are partially distinguishable. This
means that the amplitude (SI I S2) satisfies the condition

0< I (SI I S2) 1<1. (16.3)

In this case, we get [see (10.7)]

w = I ep (8) 1
2+ I ep (n - 8) 12

+ I (s{ I S2) 12[ep (8) ep* (n - 8) + ep* (8) ep (n - 8)]. (16.4)

Third case. The events are completely distinguishable.
This means that the amplitude (.'11 I S2) satisfies the
condition

(SI I S2) = O. (16.5)

This gives us [see (9.16)]

IV = I ep (8) 12+ I ep (n -- 8) 12• (16.6)

Thus we find that the theorem of the addition of proba­
bilities "holds" only in the third of the above-mentioned
cases, i.e. in the case of completely distinguishable
events. From (16.5) it follows that the states (.~1 I and
(S2 I must be mutually orthogonal* in this case. In the
remaining cases the theorem of the addition of probabili- I
ties does not hold. If the events are completely indistin- \
guishable, the amplitudes of the probabilities should be
summed. But if the events are partially distinguishable, ..
we must use the more complicated relation (16.4). When
deriving this relation, both the law of the addition of
amplitudes and the theorem of the addition of probabili­
ties have been used in the same way as in Sec. 9 when
deriving (9.10).
It can be easily seen that the result (16.4) based on the
addition of probabilities as well as the addition of ampli­
tudes is the most general one. When the condition (16.5)
is satisfied, it at once leads to the "purely" classical case
of addition of probabilities while condition (16.1) is
fulfilled "purely" in the case of addition of amplitudes
of probabilities.
It should be emphasized that the very possibility of the
existence of the general result (16.4) is caused by the
presence of superposition bonds between the states (S1 I

* It is worthwhile mentioning here that the mutual orthogonality
of all states of a classical object stipulates a complete distinguish­
ability of events and, as a result, leads to the theorem of ·addition
of probabilities.
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and ("2 I [see (10.6) in this connection]. Thus we track
the active connection between the quantum-mechanical
principle of superposition of states and the specific nature
of the application of probability in quantum mechanics.
The superposition relations among states and the inter­
ference of probability amplitudes have the same physical
nature.

We draw the reader's attention to the following fact.
In order to explain the interference results in experiments
with microparticles (for example, the interference pattern
on the detector-screen in Experiment 1 of Sec. 7), we can
formally proceed in two different ways. One way corres­
ponds to the "conservation" in quantum mechanics of
the theorem of the addition of probabilities for any incom­
patible events. This way, however, requires a comparison
of the microparticle with some classical wave. The other
way corresponds to the addition of probability amplitudes.
In this case an explanation of interference results no
longer requires the introduction of any visual wave
model.
The specific nature of microparticles, which has been
discussed in detail in the preceding sections, precludes
the first way and so puts the question of interference and
wave processes in a new light. Before the appearance of
quantum mechanics, interference was always considered
as an example of a typical wave effect. If a characteristic
interference pattern was observed in any experiment,
it was considered sufficient evidence to draw conclusions
on the presence of waves. In this sense, wave" were consid­
ered as being "primary", and interference as being se­
condary. Quantum mechanics shows that the reverse order
of emphasis is more correct.
In revealing that the probability laws of nature involve
the addition of probability amplitudes and not of the
probabilities themselves, quantum mechanics revealed
the fundamental role of interference in physical phenome­
na. Simultaneously, it showed that classical wave proces­
ses need not essentially be at the root of an interference
pattern. In the general case, interference is a specifically
quantum-mechanical effect associated with the addition
of probability amplitudes.
Traditions, however, die hard. This explains attempts to
"translate" the interference of probability amplitudes
into the graphic language of classical waves, which
inevitably leads to a definite misuse of wave terminology
(see the above interlude "Are these the same waves?").
In a number of cases the "translation" into wave language
is not justified even from a formal point of view. For
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example, the division of microparticles into fermions and ­
bosons, which is such an important consequence of the
interference of amplitudes, is fairly difficult to explain
on the basis of wave processes. The analysis of the process
of the destruction of interference of amplitudes in the
measuring process ("the reduction of the wave packet")
directly indicates the impropriety of using classical wave
concepts when considering microphenomena. All this
indicates that an explanation of interference obviously
does not come within the framework of the traditional
wave model.
By the way, the last fact may be taken as the starting
point for a generalization of the very concept of "wave
process". Such a generalization assumes a transition from
visual classical waves with real amplitudes to some sort
of generalized waves with complex amplitudes. The classi­
cal waves must appear as an extreme (degenerate) case of
such generalized waves. In other words, quantum-mechan­
ical interference may be used for an extension of the
framework of the accepted wave picture (which, incident­
ally, is invariably accompanied by rejection of a graphic
representation) and for creating a theory for the general­
ized wave processes which would reflect not only the
probability nature of physical laws but also the special
relations among probabilities in nature.
By demonstrating the fundamental nature of the pheno­
menon of interference, quantum mechanics naturally
arises an interest in the study of this phenomenon in
different branches of physics. In our view, it raises definite
hopes that modern physics, stimulated by the effect of
interference, will develop in future into a study of the
interference of effects in the fields of both microphenomena
and macrophenomena.
The idea of "addition" (summation, accumulation) of
different phenomena is familiar to u8.1n a way, this can
be compared with the "addition of probabilities". It is
likely that quantum mechanics tells us (indicates in its
own way) that such a picture is the result of a certain
"averaging", approximation or simplification of a finer
and better pictne in which we "add up" not the effects
themselves, but something different (corresponding to
probability amplitudes in the language of quantum
mechanics), thereby arriving at the phenomenon of inter­
ference of effects.
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A Brief Interlude

11lIerlude

Fairy tales, though oft untrue,
Teach good lads a thing or two.

Pushkin

Reader: It is not clear what you wanted to say in the last sentences
which, though quite eloquent, are tentative. Please explain them,
if possible.

A uthor: Gladly. Let us take a definite example. It is well known that
if a substance is placed in a condenser, its optical properties will
change under the influence of the external electric field. Such effects
are called electro-optical effects. If the substance is subjected to
a light field of sufficient intensity (generated, say, by a high-power
laser), the optical properties change in this case also. These effects
are called nonlinear optical effects. It so happens that if a condenser
field and an intense light field are simultaneously switched on, then
in addition to the familiar electro-optical and nonlinear optical
effects we observe qualitatively different effects which may be
explained only as a unique interference of electro-optics and non­
linear optics. This is an example of the interference of effects.

Reader: But can one perceive in this example any tendency towards the
development of modern physics?

A uthor: Let us take another example, that of a laser. We shall not dis-
cuss the principle of its working here; it is just sufficient to mention
that it is based on some nonlinear effect, called the saturation effect.
Let us take another instrument, the second-harmonic generator
(that is what a transformer of coherent light which doubles the
frequency is called in quantum mechanics). We shall simply state
that this instrument also is based on the principle of nonlinear
optical effect called the generation of second harmonics. Thus, the
laser produces coherent light of a definite frequency, while the
second-harmonic generator partially transforms the frequency of
this light. We can say that we first use the saturation effect and
then the effect of second-harmonic generation. Such is a general situa­
tion corresponding to a simple "summing" of these effects. Now,
suppose that both these effects are used simultaneously. In order
to do so, we must place a special crystal, which causes a trans
formation of the frequency of light passing through it, inside the
la~er (or, more precisely, inside the resonator of the laser). Here,
we are speaking of a qualitatively different situation corresponding
to the interference of two nonlinear optical effects. It is quite signifi­
cant that this and other similar situations have been increasingly
drawing the attention of specialists engaged in the field of quan­
tum electronics. Intraresonator generation of second harmonic
is already being put into practice; it has been proved that it can
ensure a more effective transformation of optical frequency.

Reader: This really sounds interesting. It is possible that some tendency
is indicated here. But what has:this got to do with quantum me­
chanics?
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Author: When studying reality on a fundamental level, quantum mechan-
ics highlighted some important points. It showed that the question
of interference is deeper than it was considered, and that this ques­
tion can be posed independently of wave questions; and finally,
that interference is an example of qualitatively new interrelations,
Le. relations which obviously have more prospects than the tra­
ditional interrelations corresponding to a simple summing, adding,
or accumulation.
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The dialectical nature of quantum mechanics is reflected
in its very initial principles. In this connection the
principle of complementarity, put forth by Bohr, is of
special interest. This principle forms in fact the logical
foundation of the entire system of quantum-mechanical
ideas.
The essence of the principle of complementarity lies in
the following: it is stated that in any experiment with
microparticles, the observer gets information not about
the "properties of the particles themselves" but about
the properties of the particles associated with some par­
ticular situation including, among other things, the meas­
uring instruments. The information about the object
obtained under some definite conditions should be consid­
ered as complementary to the information obtained under
different conditions. Essentially, the information obtained
under different circumstances cannot be added, accumu­
lated or combined into a single picture; it reflects various
sides (complementing one another) of a single reality,
to wit the object under investigation. The principle of
complementarity finds a direct expression, in particular,
in the idea of wave-particle duality and in the uncertainty
relations.
According to Bohr, the term 'complementarity' is used
in order to stress that in the contrasting phenomena we have
to do with equally essential aspects of all; well-defined know­
ledge about the object (N. Bohr, "On the Notions of Causal­
ity and Complementarity") .
.. .In atomic physics the word 'complementarity'is used to
characterize the relationship between experiences obtained
by different experimental arrangements and visualizable
only by mutually exclusive ideas... (N. Bohr, "Natural
Philosophy and Human Cultures") .
.. .Evidence obtained under different experimental conditions
cannot be comprehended within a single picture, but must
be regarded as complementary... (N. Bohr, "Discussion
with Einstein on Epistemological Problems in Atomic
Physics").



In quantum physios, however, evidence about atomic
objects obtained by different experimental arrangements
exhibits a novel kind of complementary relationship. Indeed,
it must be recognized that such evidence which appears con­
tradictory when eombination into a single picture is attempt­
ed, exhausts all conceivable knowledge about the object
(N. Bohr, "Quantum Physics and Philosophy").
We advise the reader to carefully read the words of Bohr
once again. Thus, data about a microparticle may be
"graphically interpreted" only on the basis of "ideas mutu­
ally excluding one another". In this sense they cannot
be added in a simple way, and "cannot be contained in
a single picture". Various data have "peculiar" (the reader
must not let this epithet go unnoticed) relations with one
another, hence the term "complementarity". The peculi­
arity of the "complementarity" relations lies in the fact
that data "complementary" to one another may be ob­
tained only "under different experimental conditions".

The specific nature of quantum-mechanical ideas,
emphasized frequently in the foregoing, and their somewhat
unusual logic rests to a considerable extent on the prin­
ciple of complementarity. A microparticle is neither a cor­
puscle, nor a wave, but still we employ both these images,
which mutually exclude each other, for describing a micro­
particle. Just imagine the situation: the corpuscle and
wave pictures are used for describing an object which is
neither a corpuscle, nor a wave, nor even a symbiosis of
them! Naturally, this could give rise to a ticklish
question: Doesn't this mean an alienation of the image
from the object, which is fraught with a transition to the
position of subjectivism? A negative answer to this ques­
tion is given by the principle of complementarity itself.
From the position of this principle, pictures mutually
excluding one another are used as mutually complementary
pictures, adequately representing various sides of the
objective reality called the microparticle. According to
Bohr, this point is of great logical consequence, sin'ce it is
only the circumstance that we are presented with a choice
of either tracing the path of a particle or obserVing inter­
ference effects, which allows us to escape from the paradox­
ical necessity of concluding that the behaviour of an electron
or a proton should depend on the presence of a slit in the
diaphragm through which it could be proved not to pass.

It is true that dialectical nature is inherent in every
physical science to some extent. Still it may be stated that
classical physics, because of the very style of its philo­
sophy (unambiguous predictions in theories of dynamic
type, the approach to any object as a "combination" of

The Dialectical Nature of
Quantum Mechanics

153



certain "details", and to any phenomenon as a succession
of certain elementary events, etc.) is drawn towards
metaphysics. In this sense the significance of quantum
mechanics cannot be overestimated. It has convincingly
shown that a higher level of knowledge of the laws of
nature is inevitably linked with a deeper and more serious
knowledge and application of the methods of materialistic
dialectics.
In considering the cases in which the dialectical character
of quantum mechanics is especially manifested, we single
out two points which appear most important to us.
These are the statement of relations of dialectical type
and the application of the categories of dialectics.
Statement of Relations of Dialectical Type. Simple accu­
mulation, or summation of data, properties and concepts
are characteristic (we shall say that summation relations
are characteristic) of a metaphysical method. These rela­
tions to a considerable extent form the logical foundations
of classical physics. Quantum mechanics lays emphasis on
relations of a qualitatively different, dialectical type,
like the relations of complementarity and relations of inter­
ference. Thus, it shows that data about an object, strictly
speaking, do not simply add up but complement one ano­
ther, that the probabilities of different events, strictly
speaking, are not summed, but interfere with one another.
We have discussed these specific relations above when
considering the principle of complementarity and the spe-
cific nature of the application of probability in quantum
mechanics. When evaluating complementarity and inter- >~.'
ference as new relations, or new interrelations correspond- fI, ,
ing to a higher level of knowledge of the laws of nature,"

'/:
it can't be denied that quantum mechanics really deter-
mines the direction for the development of modern physics.
Application of the Categories ot Materialistic Dialectics.
In classical theories of dynamic typ(j' the concepts of
necessity and chance, possibility and actuality do not
appear as dialectical categories. Necessity here is abso­
lutely (metaphysically) the opposite of chance. The latter
is simply banished from the theory, which immediately
leads to an identification of the concepts of the possibility
and actuality. As dialectical categories, relations among
which is unity and struggle of opposites, these con­
cepts appear in statistical theories, primarily in quan­
tum mechanics. It is essential that in quantum mechanics
the dialectical categories of necessity and chance, possib­
ility and actuality are applied not only to the ensembles
of objects but also to an individual microparticle. The
application ,of dialectical categories in quantum mechanics
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has been considered throughout this book when discuss­
ing certain questions. We remind the reader that an
analysis of the problem of causality in quantum mechanics
could be accomplished only on the basis of the dialectical
categories of necessity and chance. An explanation of the
quantum-mechanical superposition of states and its
destruction in the process of measurement was made pos­
sible only by using the dialectical categories of possibility
and actuality.
In conclusion, we: note that quantum mechanics has clearly
demonstrated the dialectical struggle between form and
content. In Bohr's words, the lesson we have hereby received
would seem to have brought us a decisive step further in the
neverending struggle for harmony between content and form,
and taught us once again that no content can be grasped
without a formal frame and that any form, however useful
it has hitherto ,proved, may be found to be too narrow to com­
prehend new experience.
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Interlude. Do Quantum­
Mechanical Concepts
Contradict Our Common
Sense?

In this unusual discussion the
author is joined by two
physicists (Bohr and Cooper) and
two Iiterateurs (Dobrolyubov and
Perrault).
Excerpts from the following
works have been used in the
discussion: N. Bohr, "Natural
philosophy and human cultures"
in "Atomic Physics and Human
Knowledge", 1958; N. Bohr,
"The Unity of Knowledge",
1955; N. A. Dobrolyubov, "What
Is Oblomovshchina?" 1948;
L. N. Cooper, "An Introduction
in the Meaning and Structure of
Physics", 1968; C. Perrault, "The
Sunshine Book" 1946.

Common sense is that layer of prejudice we ac­
quire before we are 16.
A. Einstein
In the balance between seriousness and humour,
characteristic of all truly artistic achievements, we
are reminded of complementary aspects conspicuous
in children's play and no less appreciated in ma­
ture life.
N. Bohr

f I

I

d

Cooper: There have been bitter complaints from some of our contem-
poraries, that physics in the twentieth century has become too
abstract, has lost touch with those things ordinary people can
understand, has lost contact with common sense and substituted
instead constructs so abstract that the ordinary mind can never
attain them.

Author: That is why I want to talk about quantum mechanics and
"common sense". I have many times heard the complaint that
quantum mechanics is hard to follow because its concepts are in
"contradiction to common sense". Unfortunately nobody knows
precisely the meaning of "common sense". If I am not mistaken,
you are of the view that "common sense" is a relative concept, and
that its meaning changes significantly with the development in
science. .; "

Cooper: Yes, it is a cliche that the commonsense of the new generation
is formed from concepts laboriously constructed by their elders,
that what is avant-garde for one generation is common sense and
prosaic for the next. It seems dubious that the Newtonian concep­
tion of the world would have been common sense to the Greeks
in the time of Aristotle, for that matter to the scholastic scholars·
It was not even so for many of his contemporaries. And those so
enamored of common sense (at present Newton's world) are often
just those who complain that the mechanical Newtonian view
destroyed the magical medieval world.

Author: It is difficult to counter such a point of view. By the way, it
immediately solves the question posed by us at the very beginning.
Isn't it?

II 156
i'
II



I •

Interlude

Cooper:

Author:

Bohr:

Author:

Bohr:

Author:

Bohr:

Author:
Bohr:

I think so, for the present generation of physicists it is quantum
physics that is common sense. It is the structure of the quantum
theory that is closest to them, relations of the quantum theory
that have an immediacy and an intuitive correctness....

However, without denying the justification of the point of
view mentioned above, let us try to solve the question of common
sense and look at this question from a more open position. More­
over, we would like to speak of the commonsense not of physicists,
but of "ordinary people", those who "bitterly complain" that the
"ordinary mind can never attain" the ideas of modern physics.
An approach from a more open position to the "common sense"
in quantum mechanics was strongly advocated by one of our ho­
noured participants. It would be nice to hear in this connection
his remarks on the complementarity principle, for example.

Using the word "complementarity" much as it is used in atomic
physics, to characterise the relationship between experiences ob­
tained by different experimental arrangements, and visualizable
only by mutually exclusive ideas, we may truly say that different
human cultures are complementary to each other. Indeed, each
such culture represents a harmonious balance of traditional con­
ventions by means of which latent potentialities of human life
can unfold themselves in a way which reveals to us new aspects
of its unlimited richness and variety.

What is there that an ordinary person cannot comprehend?
And yet the complementarity principle finally boils down to un­
certainty relations as well as wave-particle duality of micropar­
ticles. Meanwhile, all these incomprehensible ideas find their
due place not only in questions linked with human cultures but
even in quite common questions, for example questions linked
with psychology.

We all know the old saying that, if we try to analyse our own
emotions, we hardly possess them any longer, and in that sense
we recognise between physical experiences, for the descriptions
of which words such as "thoughts" and "feelings" are adequately
used, a complementary relationship similar to that between the
experiences regarding the behaviour of atoms obtained under
different experimental arrangements.

But can't we go one step further, and try to draw some anal­
ogies between modern ideas in physics and ideas contained in
famous literary works? It would be quite interesting to compare
poetical truth and scientific truth.

In other words, is there a poetical or spiritual or cultural truth
distinct from scientific truth?

Precisely.
We are indeed directly confronted with the relationship of

science and art. The enrichment which art can give us originates
in its power to remind us of harmonies beyond the grasp of sys­
tematic analysis.
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Author:

Dobrolyubov:

Author:

Dobroluybov:

Author:
Bohr:

Author:

Perrault:

Author:

I am extremely grateful to you. You have helped dispel some
of my doubts. I would now turn to particular examples, the first
example being Oblomov, a novel by 1. A. Goncharov. Let us recall
what one of our distinguished participants has written about the
image of Oblomov.

Well, take for example this: Oblomov's wishes always assume
the form "how good it would be if this were done", but how this
can be done he does not know. That is why he is so fond of dreaming
and dreads the moment when his dreams may come in contact
with reality.

I remember that you drew analogy between Oblomov and such
literary heroes as Onegin, Pechorin, Rudin.

Yes, indeed. But the point is that they all have one common
feature-a fruitless striving for activity, the consciousness that
they could do a great deal but will do nothing.

(to Bohr): And what would you say to this?
I would say that the relation between the experience of a feeling

of volition and conscious pondering on motives for action is es­
pecially instructive.';.

I should state that the ideas expressed by my learned friends
pertain to different situations and were profounded at different
times. And yet they do have something in common. To a certain
extent the personal tragedy of Oblomov lies in his inability to
overcome the dialectical contradiction between the possible and
the actual. Potentially, much is vested in Oblomov; this is an
evidence of the considerable superposition of possibilities. But
the "act of measurement", which would allow Oblomov to realize
some aspect of his nature at the cost of this superposition is miss­
ing. This actl does not occur, the superposition is not destroyed
and everything remains as it was.
Let us now consider the second literary example, the famous fairy­
tale "Cinderella" by Charles Perrault. Will you please narrate the
scene in which the fairy godmother sees Cinderellaroff[to~th I laIl
at King's palace.

Here you are: The fairy godmother then' said to Cinderella,
"Her(is a coach fit for the ball, and coachman and footmen" .... As
Cinderella stepped into the carriage, her fairy godmother said,
"Remember, you must not stay a minute after twelve, for if you
do, your coach will become a pumpkin again, the horses will turn
back into mice; the footmen will become lizards, and the coachman
will become a rat; and your dress will turn to rags."

Thank you. I wanted to draw your attention to the fact that
the omnipotent fairy godmother gave the coach and the dress to
Cinderella only for a while, until midnight. And why not for good?
It is clear that she could have done that but it would be agailllst
the inherent logic and the central idea of the tale. It would, so
to say, take away the "charm". If it is for a while, well and good;
but if it is for ever, there is no charm. Doesn't it remind us of a



model of virtual transitions? The conservation laws are violated,
treasures are created out of "nothing" with the help of a magic wand,
but all this is allowed only for a finite interval of time-"until
midnight". After this, Cinderella must return to her previous state,
and without the beautiful dress. Just compare: a quantum system
visits a new level without any expenditure of energy from outside,
only for a limited interval of time after which the system must
return to its previous level. In the same way, Cinderella performs
l'virtual transitions" between her house and the royal palace, enjoys
and dances but is careful not to overstep the agreed time limit.
Then a messenger with the crystal slipper appears on the scene.
Please narrate what happened after this.

Perrault: The messenger, who had been sent with the slipper, said that
everyone was to try it. He looked at Cinderella and saw that she
was beautiful. He ordered her to sit dOwn and put the slipper on
It fitted her perfectly... Just then the fairy godmother appeared
and touched Cinderella with her wand and her rags became a dress
more beautiful than any she had yet worn.

Author: And so, it came true. The fairy godmother gave Cinderella
the dress to keep for ever. The virtual transition led to a real tran­
sition by Cinderella to "a new level". The prince, the slipper, the
messenger-all played the role of the photon which, by interacting
with the system undergoing virtual transitions, has led to a real
transition. Of course, the Cinderella story should not be seriously
taken as an illustration of the idea of virtual transitions, as an
explanation of quantum jumps. In the same way the novel Oblomov
should not be seriously taken as an illustration of the principle of
superposition of states or as an explanation of the problem of
destruction of superposition in the act of measurement. However,
it is easy to see the general internal logic in the comparison drawn
above.

Bohr: It may not be irreverent to remark that even at the climall'
of his work the artist relies on this common human foundation
on which'twe stand.

Author: With this interesting discussion we come to the end of our
consideration of the basic concepts of quantum mechanics. Of
course, quantum-mechanical ideas are quite unusual and peculiar.
And yet they did not appear from nothing but rather arose on the
basis of a solid foundation of concepts and ideas which are a result
of the entire human experience. Hence the analogies between phys­
ical models and[ literary images are not incidental, but trather
inevitable.

~----------------~
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Every physical theory is a synthesis of certain physical
ideas (advanced on the basis of experiment) and a certain
mathematical apparatus. The building-up of a theory is
a complicated and controversial process developing accord­
ing to successive approximations. However, in this contro­
versial process, at least in its initial stage, a completely
definite logical structure is envisaged, including three
logically successive stages: (1) a stage in which the basic
ideas are formulated and interpreted, and the physical
foundation of the theory is built; (2) a stage in which
an adequate mathematical aparatus for the physical ideas
is found and the physical ideas and the mathematical
apparatus are linked together, Le. it is postulated exactly
what physical meaning corresponds to the various mathe.
matical symbols (as a result, the mathematical relations
acquire the meaning of physical laws), and (3) a stage
in which the "physicized" mathematical apparatus is "set
to work". The new results thus obtained are checked exper­
imentally where this is possible. This leads to a further
understanding of the physical content of theory an&to
a further development of its apparatus.
At the time of creation of a theory the mathematical
apparatus adequate for the description of physical ideas
mayor may not be available. When Newton created his
mechanics, he also had to work out the corresponding
mathematical apparatus-the method of fluxions which
later developed into differential and integral calculus.
But when quantum mechanics was created, the appro­
priate mathematical apparatus was already available in
the form of theory of linear operators.
In Quantum Physics and Philosophy [6], Bohr writes
... in quantal formalism, the quantities by u"hich the state
of a physical system is ordinarily defined are replaced by
symbolic operators subjected to a non-commutative algorism
involVing Planck's constant. This procedure'prevents a fixa­
tion of such quantities to the extent which would be reqUired
for the deterministic description of classical physics, but
allows us to determine their spectral distribution as revealed
by evidence about atomic processes. In conform ity with the
non-pictorial character of the formalism, its physical inter­
pretation finds expression in laws, of an essentially statisti­
cal type ...
Turning to the mathematical aspect of quantum theory,
we shall consider below how quantum-mecbanical ideas
"are introduced into" the apparatus of linear operators. We
shall demonstrate the working of this apparatus by a num­
ber of specially selEcted examples and problems.

1
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linear Operators (Basic
Definitions)

17-Section A Brief Look at the Theory
of Linear Operators

This section is essentially mathEmatical in nature. It
includes different questions on the theory of linear opera­
tors. In other words, it describes the fundamentals of the
mathematical apparatus which proved to be suitable for
the creation of quantum theory. We emphasize that in
this section none of the mathematical symbols is "loaded"
with any physical meaning.

An operator, when applied to some function, transfmms
it into a new function. The notation

L1p (x) = cp (x) (17.1)

means that the operator denotEd by the symbol L acts
on the function 1p (x), as a result of which we get function
cp (x). •

The operator L is called linear if it satisfies the condi­
tions

L (1pi + '!'2) = L'!'i +1'!'2; 1 (a'!') = aL,!,~ (17.2)

where a is some number. We shall be using only linear
operators below.
The effect of an operator acting on a function ma~ be
represented as a definite or an improper integral:

f1p (x) = fL~I(x,~y)()lp (y) dy. (17.3)

The quantity L (x, y) is called the kernel of the operator.
If the variable is discrete, we will have instead of (17.3)

L'!'n = LJ L~m'!'m' (17.4)
m

The totality of coefficients Lnm forms the matrix of the
operator [, and we speak of the matrix representation
of the operator. A matri:x representation is alwayspos~

sible because the kernel L (x, y) in (17.3) may obviously
be treated as a continuous matrix.
Suppose .L1p = cp; the operator L* is called the complex
conjugate of the operator L, if by the action of this opera­
tor on the function 1p* we get the function cp*:

L*,!,*(x)=cp* (x). (17.5)

The operator I is said to be the transpose of the operator
L if the following condition is satisfiEd:

r'l'(x)I.L,!,(xrdx = J,!,(x)L'l'(X)dx., (17.6~

Sec. 17



The kernel of the transposed operator satisfies the condi­
tion

L (x, y) = L (y, x).

while the matrix satisfies the condition

(17.7)

(17.8)

I
f

Let us consider some linear operator £. Let us find its
complex conjugate operator L*. We then find the transpo-

sed operator L* for the operator L*. This operator is
denoted by £+ and is said to be conjugate to the operator t.
By using the concept of the conjugate operator, two impor­
tant types of linear operators are defined: Hermitian
operators and unitary operators. If

L=L+, (17.9)

the operator L is called Hermitian (self-adjoint). If

LL+=£~L=1, (17.10)

the operator L is said to be a unitary operator. Note that
unitary operators are usually denoted by the symbol (j.
The matrix of a unitary operator satisfies the condition

(17.11)

Note an important property of unitary operators. Sup­
pose ~ Unm'!'m = lpn' It can be easily seen that

m

(17.12)
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The basic equation of the theory of linea,lO operators has the
form'

£'!'=A'!'. (17.13)

The numbers A for which the equation (17.13) has finite
solutions, form the spectrum of eigenvalues of the operator [
The spectrum of eigenvalues of an operator may be con­
tinuous, discrete or mixed. The solutions,!, (x) of equa­
tion (17.13) are called the eigenfunctions of the opera-
tor i. One or more ei~enfunctions may correspond to
a given eigenvalue. If s linearly independent eigenfunc­
tions correspond to a certain value AI, it is said that the
~igenvalue Al is s-fold degenerate.



We shall state three theorems concerning the basic Properties of Hermitian Operators

properties of Hermitian operators. (The proofs of the
first two theorems are given in Appendix A.)

First Theorem

An operator has real eigenvalues if and only if it is Hermi­
tian.

Second Theorem

The eigenfunctions of a Hermitian operator, correspond­
ing to different eigenvalues, are mutually orthogonal.
Let .L'ljJn = Anti-ln. The theorem states that for An =t= Am,

~ 'IjJ~ (x) 'ljJn (x) dx = O. (17.14)

Since (17.13) is "hbmogeneous, the eigenfunctions are
determined upto an arbitrary constant multiplier. We
choose this multiplier so that the normalization condi­
tion is satisfied:

J'IjJ~(x)'ljJn(x)dx=1. (17.15)

By combining (17.14) and (17.15), we get the condition
of orthonormalization of the eigenfunctions of a Hermi­
tian operator:

j 'IjJ~(x)'ljJn(x)dx=6mn. (17.16)

If the spectrum of the operator is continuous, we get
instead of (17.16)

.\ 'IjJ~,(x)'ljJdx)dx=6(A-A'). (17.17)

Let us consider the case of the s-fold degeneracy of an
eigenvalue. The eigenfunctions corresponding to this
eigenvalue are, generally speaking, not orthonormalized.
However, we can form s linear combinations of the
given functions which satisfy the condition of orthonor,
mal ization.

Third Theorem

Any bounded function may be expanded in a series
(integral) of eigenfunctions of a Hermitian operator.
In other words, the system of eigenfunctions of a Hermi­
tian operator is a closed (complete) one.
Using the last theorem, we represent any particular
function dl(x) in the form of a series of eigenfunction~

'ljJn (x): dl = ~cntjJn' In order to find Cn, we multiply
n
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(17.19)

(17.20)

Representations

166

this equation by ,,~ (x) and int.gmt. with ,"speet to x:r
) 'P;';. (x) <I> (x) dx = ~ :cn f 'P;';. (x) 'Pn (x) dx.

n

Using (17.16), we get from this

5'P~n(x)<I>(x)dx= 2: cn6mn =cm·
n

Thus,

<I> (x) = ~ Cn'Pn (x), } ~
where (17.18) .~

~'n ~ J'i>~ (x) <l> (x) dx. I
In the case of a continuous spectrum, we must use the J
condition (17.17). As a result, we get instead of (17.18) t,
<D (x) = ) C(A) 'PI. (x) dA, }

where

C(A)= ~ 'P~(x)<I>(x)dx..

We shall mention one of the results which is a direct con­
sequence of the completeness of the system of eigen-
functions of a Hermitian !operator. Suppose <I> (x) = I
= ) C (A) 'PI. (x) dA and 'I' (x) = ) b (A') 'PI.' (x) dA'. By
using (17.17), it can be easily seen that

J'1'* (x) <I>(x)dx= ) b*(A)C(A) dA.

Suppose that the Hermitian operator M transforms the
function ~ (x) into the function qr (x):, I

:e~X~s eX::d(:~e functions <I> and 'I' in terms of (:;~~:~l·
functions 'PI. (x) of another Hermitian operator (the ope- ~

atH L). AS3uming- that the spectrum of the operator l "
is continuous, we have ~

<D (x) = ) C (A) IJ'I. (x) dA; 'I' (x) = f b,(A) 'PI. (x) dA f
(17.22)

'The transformation (17.21) will then have some correspond­
ing tran.sformation of the function c (A.) to the function
b (A). We write this transformation in the form

b (A) = M ,(A) J: (A.). (17.23)



(17.25)

It is said that (17.21) and (17.23) are two different repre­
sentations of the same transformation. The nature of
the representation is determined by the variables on which
the initial and final functions depend. Hence we speak
of x-representation in the case of (17.21) and of A-repre-
sentation (representation of the operator L) in the case
of (17.23). Correspondingly, the operator Ai in (17.21)
is the operator of the given transformation, defined in
the x-representation [for convenience, we shall henceforth
write it as it (x)], while the operator Ai (A) occurring
in (17.23) is the operator of the given transformation,
defined in A-representation.
Let us see what the Hermitian operator looks like in
eigen representation. Let (flit (x) he the eigenfunctions
of the operator Ai. In this case, we can write (17.22)
in the following form:

<11 (x) = JC(/l) (flit (x) d/l; 'I'(x) = Jb(/l)CPIL(x)d/l.

(17.24)

Applying the operator M (x) to the function <11 (x), we get

M (x) <I> (x) = .i C(11,) M(x) (fl1L (x) d/l = J /lC (Il) (fl1L (x) dll·

Comparing this result with the second equality in (17.24),
we have

b (Il) = IlC (Il),

whence we get

Ai (~l) = /l. (17.26)
Thus in its eigen representation, the Hermitian operator
coincides with its eigenvalues.
We shall now consider a more general situation: the ope-
rator "W(x) is known; it is required to find out the form
of this operator in the A-representation. Using (17.21)
and (17.22) we write

'I' (x) = 111 (x) <1> (x) = fC(ATM (x) 'PA' (x) dA'

= Jb (A') 'PA' (x) dA'.

, Multiplying both sides of the last of these equalities by
'IjJ~ (x) and integrating with respect to x, we get

~ C (A') r) 'P~ (x) if (x) 'PA' (x) dX] dA'

= Jb (A') [J 'IjJ~ (x) 'IjJ).,;(x) dX] dA'.
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(17.27) ;:

(17.29)

finally get

By using (17.17), we find that

b (A) = J[J "'~ (x) M(x) 1/11.' (x) dx ] C (A') dA'.

Lastly, by taking (17.23) into account, we
the result [compare with (17.3)]:

if/I (A) C (A) = JM (A, A') C (A') dA',

where

M (A, A') = ~ '\J~ (x) 1ft (x) 1/11.' (x) dx.
r
,~

Thus, if the form of the operator is known, say, in the i~

x-representation, we can find the matrix of this operator ~.

in the A-representation by using the eigenfunctions of, ~.

the operator 1~ given in the x-representation, by (17.27).r
In conclusion, we mention a situation where the eigen­

functions of one Hermitian operator are given in the ;.•..
representation of another operator. In thi~ case, the fol- i
lowing relation is valid: I t

"'df.L)=cp~(A)·1 (17.28)1···.•,•.•..
A transition from the A-representation to the x-represen- .

tation is determined with the help of (17.22). In operator
form, these relations can be written as 'F

;t
<1> (x) = U (x, A) C (A); 1I' (x) = 0 (x, A) b (Ie).

Next, we put

J '¥* (x) <1> (x) dx = J '¥* (x) (j (x, A) C (A) dx

= JC (A) [V+ (A, x) '¥ (:)1,* dA.

Using (17.20), we get

b (A) = [r (A, x) '¥ (x).

Transition from One
Representation to Another as
Unitary Transformation

Two important results follow from the last formula.
Firstly,

'I' (x) = U (x, A) b (A) = (j (x, A) UT (A, x) 1I' (x)

and, consequently,

V~(x, A) 0+ (A, x) = 1. (17.30)

This means that the transition from one representation
to another is accomplished with the help of a unitary
transformati6n. Secondly, if
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(17.31)

(17.32)

'¥ (x) = M (x) <D (x), then U (x, A.) b (A.) = M(x) U(x, 'A) c (A.)

and, according to (17.30),

b (Ie) = (;+ (A., x) M(x) (; (x, 'A) c ('A).

Comparing (17.31) and (17.23), we get

if (Ie) = {;+ (Ie, x) Sf (x) () (x, Ie).

It should be explained here that a product of operators
means the successive action of the operators on the func­
tions to their right. In the present case we should first
apply the operator U (x, A.) to the function c (A.), thus
getting the function <D (x). Operator M (x) then acts
on the function 4>t(x) , resulting in the function l' (x).
Finally, the function 'I' (x) is acted on by the operator
U+ (A., x).
Thus, the relations (17.29) describe the transition from
one representation of functions to another carried out with
the help of a unitary operator. Relation (17.32) describes
the same transition for operators.

Quantities and properties which do not cbange with
unitary transformations and are, consequently, indepen- Unitary Invariant~

dent of the choice of representation are called unitary
im;ariants. Unitary invariants include: (a) the Hermitian
property of an operator (if an operator is Hermitian in
one representation, it will be Hermitian in any other
representation); (b) the spectrum of eigenvaluEs of a Her-
mitian operator; (c) the condition of orthonormalization
of eigenfunctions [this is immediatelyse€n from (17.12»);

(d) integrals of the type J'1'* (x) (IJ (x) dx [this directly

foll~ws from (17.20»); (e) integrals of the type J'1'* (x) X

X M (x) <D (x) dx and of the more general type

J'1'* (x) iJn (x) <D (x) dx, where n is a positive integer.

Note that unitary invariance ,of these integrp Js means
that the following relations hofd:"

) '¥·~(x) M (x)~<D(x) dx= J~b·(A)M (A.)~ (A.) d'A, (17.33)

J~ '¥*i(x) ijn (x) <1J (x);.ax = Jb* (~ Mn (11.)0 (A.)' d'A. (17.34)

As! an example we shall prove (17.33). Using (17.29)
and (17.32), we successively transform the left-hand side
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Commutation of Operators and
the System of Common
Eigenfunctions

170

of (17.33):

J[(;*b* ('A)] [;ft-I ('A) (j+UC(A) dx

= J[[;*b* (A)) OM (A) C (A) dx

= Jb* (A) [;+[;if (A) C (A) dA = J b* (A) if (A) C (A) d A.

Thus, as a result, we get the right-hand side of (17.33),
Q.E.D.

Two operators L and if are called commutative if for
any bounded function <1> (x) they satisfy the following
condition:

ML<1> (x) = LM<1> (x). (17.35)

If there is even one function for which (17.35) does not
hold, the operators L and £I are called non-commutative.
The notation [M, L] = £IL - L£I is called the com­
mutator operator of Land M. If the operators commute,
this fact is often expressed thus: [M, L], = O.
The following theorem holds: If the operators Land M
have common eigenfunctions forming a closed system,
the operators commute. We shall prove this theo­
rem.
We denote the eigenfunctions of the operators Land M
by 'PAJ.l (x). (The double subscript AfA- indicates the fact
that these functions are common). Obviously,

ML'PAlt = Mf'¢Alt = AfA-'PAJ.ll

LM'ljJAJ.l = fA-.L'¢;\J.l = fA-A'P}.J.l.
I t follows from this that

(~IL-1M)'PAJ.l = 0,

and since the functions 'P;,J.l (x) are known to form a closed
system, for any function <1> (x) we can write

(ML-.LM) <1> (x) = ~ c}.J.l (ML-LM) '¢AIl (x) = 0,

Q.E.D.
We stress the importance of the fact that common eigen­
functions must fo'rm a closed system. It may so happen
that two operators have only one common eigenfunction.
In this case it is impossible to draw any conclusion about
the commutativity of the operators.
The above theorem means that commutativity of opera­
tors is a necessary property of the commonness of the

t '
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system of eigenfunctions of these operators. But is this
property a sufficient condition also? The answer to this
question is in the affirmative in the case when there is
no degeneracy in the eigenvalues of the operators. In
the more general case, taking into account the possibility
of degeneracy, the following theorem is valid. If the oper­
ators Land Af commute, we can find their common eigen­
functions. For example, suppose the eigenvalue Al is
s-fold degenerate. From the 8 solutions of the equation
L't/J = AI't/J, we can choose 8 linear combinations which
are also the eigenfunctions of the operator M. In this
case, Al will in general correspond to 8 different eigen­
values of the operator M.
With this we conc~ude our degression in the field of "pure"
mathematics. The information contained here is sufficient
for further use of the apparatus of linear operators without
referring to special literature.

i
••

The Influence of the Choice of
Basic States

(18.1 )

(18.2)

Section 18 From Hamiltonian Matrix to
Energy Operator

We turn to equation (12.8) discussed in Sec. 12. There
we chose a certain system of basic states of microparticle
{( i I}. An arbitrary state (8 (t) I of this microparticle
at time t was represented as a superposition of these
basic states:

<s (t) I = ~ (8(t) I i) (i I.
i

The notation C i (t) was employed for the amplitudes
<8 (t) I i). It was shown that the amplitudes C i (t) satisfy
the equation

- in .!!-. Ci (t) = ~ H ij (t) Cj (t),
dt LJ

j

Sec. 181

which permits one to find, from a knowledge of the ampli­
tudes C i (t) and the Hamiltonian matrix H ij (t) at time t,
the amplitudes Ci at any subsequent moments of
time.
The expression (18.1) clearly shows that the set of ampli­
tudes {C i (t)} depends on the choice of the system of basic
states {( i I}. Suppose we have to go over to a new system
of basic states {( m I}. In order to accomplish this transi­
tion, we represent the earlier basic states in the form of
superposition of new basic states:

(i I = L] (i I m) (m I (18.3)
m

17t:
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Substituting this superposition in (18.1), we get

(s(t)1 =~2]Cdt)(ilm)(m!,
i m

or

(s (t) I = Cm (t) (m I,
where

Cm (t) = ", Ci (t) (i 1m).
i

(18.4)

(18.5)

The new amplitudes Cm (t), corresponding to the system of
basic states {( m I}, satisfy an equation of the type
(18.2) but obviously with a new Hamiltonian matrix
H mn (t):

- in :t Cm (t) = ~ H mn (t) C n (t). (18.6)
n

We shall show how the old Hamiltonian matrix can be
expressed in terms of the new one. Substituting (18.5)
in (18.6), we find

- in ~ ~ Cj • (t) (tim) = ~ ~ H mn (t) Cj (t) (jln).
j' n j

Multiplying both sides of the last equation by (m Ii)
and summing with respect to m, we get'

-iii :t ~ Cj' (t) [~(tlm)(mli)]
j' m

= ~ [~ ~ H mn (t) Uln) (mli) ] Cj (t).
j n m

Taking into account that ~ (j' 1m) (m I i} F (j' I i) =
m

= 6r i' we can simplify the left-hand side of the last
equation. As a result, we get

- iii ~ Ci:(t) = ~ Hi} (t) Cj (t),
j

where

Hi/(t) - 2J 2J H mn (t) (j In) (m Ii).
n m

(18.7)

Thus the choice of any system of basic states of a micro­
particle influences both the form of the amplitudes of
states satisfying (12.8) as well as the form of the Hamil­
tonian matrix.
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Taking the complex-conjugate of the equation and con­
sidering (9.33) and (12.9), we get

Note that while going over from (18.9) to (18.10) or from
(18.11) to (18.12), we have made use of the rules given
in Sec. 10 under the heading "The Mechanics of Quantum
Mechanics". The final equation (18.12) is analogous to
equation (18.2), but unlike the latter, it is independent
of the choice of basic states.

.
'The operator Ii (t), acting on the basic state < i I, gives
rise to a new state <'" (t) I = Ii (t) I i), which is not
basic. The element of the Hamiltonian matrix H

ij
(t)

here plays the role of the amplitude <j I'" (t», I.e. of
the amplitude probability that a microparticle in the
basic state (j I may be found in the state <'" (t) I.
Substituting (18.8) :in (18.2), we get

~.'
\
I
(,
I.
!
I

.~

1'1

j~

Transformatioll of an Equation
Expressing Causality Into a f'orm
Independent of the Choice of
Basic States

(18.8)

(18.9)

(18.10)

(18.11)

(18.12)

Hij';(t) = (II H!(t) Ii).

iii ~ (ils(t)=(illi(t)ls(t)

d ~

iii dt Is (t) = H (t) Is (t).

1t was mentioned in Sec. 13 that the system of basic
.states is usually chosen in such a way that these states
could have a direct physical meaning. However, for the
sake of greater convenience when considering equation
(12.8), we go over to new, specially selected basic states
in a number of cases. Thus, in Sec. 13, the transition
from the basic states (1 I and (2 I to the basic states
<I I and (II I was motivated by a desire to diagonalize
the Hamiltonian matrix, while in Sec. 14 it was done
in order to express the Hamiltonian matrix in a form
eonvenient for drawing an ,analogy with an electron in
magnetic field.

Let us consider operator Ii (t) satisfying the following
relation:

-iii :t (s(t)li)= ~ (s(t)lj)(jIH(t)li)

or

or

-iii ~ (s(t)li)=<s(t)IH(t)/i).

Sec. 18
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Vector Analogy
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In order to express the causal relationship mathemat­
ically [(18.2)] in the above discussion, we had to use
information about the state under consideration, the
physical meaning of the problem and the system of basic
states. But now [Eq. (18.12)] it is sufficient to have
information about the state under consideration and the
physical meaning of the problem. This means that a tran­
sition from (18.2) to (18.12) leads to a more abstract
level of analysis.
We emphasize that such an abstraction is made possible
by the use of operators. Operators help us to get quantum­
mechanical relations that are more abstract and are inde­
pendent of the choice of the system of basic states.
The more abstract analysis, enabled by the introduction
of operators is, to a certain extent, analogous to the more
abstract analysis connected with the introduction of
vectors. We shall consider this analogy in detail.
This analogy is not unexpected. Remember that in
Sec. 14 it was suggested that a state should be treated
as a vector in some arbitrary space. The concept of pro­
jection amplitudes was also introduced there.
The essence of the vector analogy is as follows. In order
to perform operations with components of vectorial
quantities one always has to choose a definite system of
coordinate axes. In quantum mechanics we make a cor­
responding choice of a definite system of basic states.
By using vectors, one can perform operations with vector

Quanturn-mechanical expression I Vector analogy

~ (f I i) (i I s) = 0 ~ aibi=O

i f
->->

(f J s)=O '(ab)=O

(mutually orthogonal states) (mutually orthogonal
vectors)

in~ (i I s (t) =
dt

ei= ~ Hijaj
= ~ H ji (j I s (t» j

j -> ~->

dJ ~ e=Ha
i!i-ls(t»=HI s(t»

dt

(operation on a state) (operation on a vector)

cr
I



quantities without resorting to a choice of any particular
system of axes. Similarly, by using vectors of states
and their operators in quantum mechanics, one can
avoid having to choose a system of basic states. Let
us illustrate the vector analogy with the help of the
table (p. 174).

Each cell of the table contains two expressions having
the same meaning (indicated in brackets). However, the
upper expression depends on the choice of the system of
basic states or coordinate axes, while the lower one is
independent of any such choice.
It is worthwhile giving an example for the lower right
cell of the above table, which shows how one can imagine
an operator acting on a vector. As an example of this (to
which, of course, no "quantum-mechanical meaning"
should be assigned) let us consider the case when the
matrix Hij is of'tne form

(H)~( ~
f)

,:,)f)r a

0 f)

f)r a - f)r
1

f) f)
0f)r 2 f)r1

I'

••

Average Energy

where r1 , r2 , r3 are three Cartesian coordinates in space.

In this case the relation ~ = iI; acquires the form which
is familiar to those who have studied vector analysis:...,. ...,.
c = curl a.
In conclusion let us reiterate the various aspects of the
vector analogy: (a) corresponding to the choice of basic
states, we have a choice of the system of coordinate axes;
(b) a transition from one set of basic states to a.nother
corresponds to a transition from one system of axes to
another (note that such a transition does not involve
the physics of the problem being considered); (c) the
expansion into basic states corresponds to a representation
of the vector in terms of its projections on the coordinate
axes. The analogy with vectors is a good example of
abstraction and of the representation of relations in
a form taking into account only strictly physical infor­
mation.

Let us demonstrate some of the advantages of the oper­
ator approach. We shall show how the mean value
(E) of the energy of a microparticle in some state (3 I
is determined. Let {(i I} be the basic states with ener­
gies E j • This means (see Sec. 13) that the Hamiltonian
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matrix is diagonal. Hence,

(j 1Ii Ii) = {jiJEft

or
(jIHli) = (jli) E i • (18.13)

We expand the state (s I in terms of the system of basic
states {(i I~ : (s I = LJ (s Ii> (i I, and try to find the mean

value of tHe energy <1? > with the help of a formula of
the type (12.3):

(E) = ~ I(sli) 12 E i • (18.14)
i

By taking (9.33) into account, we rewrite (18.14) in the
form
(E) = 2}(sli}E i (i!s}=(slcp}, (18.15)

i

where

"

!cp) = ~ Ii} E i (ils).
i

From (18.13) it follows that

H!i) = Ii) E i •

Substituting (18.17) in (18.16), we get

!cp) = ~ Hli}(ils}=Hls},
i

(18.16)

(18.17)

after which we get the required result from (18.15):

(E> = (3 I iI I 3 >. (18.18)

Energy Operator (Hamiltonian)

176

It can be seen from (18.18) that mean value of the energy
of a microparticle in the state (s I is expressed only through
the operator iI. Basic states do not enter this relation.
The convenience of the relation (18.18) is due to its inde­
pendence from the choice of basic states, which allows
one to use freely any system of basic states when carrying
out calculations. For example, suppose it is convenient
to use the basic states {(m I}. In this case the operator
relation (18.18) immediately acquire the corresponding
form

(E) = 2] 2] (slm) (mIHln) (nls). (18.19)
m n

It has been mentioned above that the Hamiltonian
matrix could be called the energy matrix (remember
that the elements of the diagonalized Hamiltonian matrix



(18.21)

(18.12)

(18.18)

(18.20)

i

'.

Using (18.21) and taking into account that (il s) = ct,
we can rewrite (18.2) in a form which, as can be easily
seen, is completely analogous in form to (18.12):

in ~ (i Is (t) = Ii (i Is (t». (18.22)

Correspondingly, (18.20) may be written in the form

H (i I f) = E (i I f). (18.23)

are essentially the possible values of the energy of the
roicroparticle). The connection between the operator Ii
and the Hamiltonian matrix as well as relation (18.18),
expressing the average energy ofIa microparticle in terms
of the operator H, justify the name energy operator given
to it. In the literature the operator H is also called the
Hamiltonian.
We write expressions derived above in which the Hamil­
tonian of a microparticle is present (we emphasize the
exceptional importance of these expressions):

in~ Is (t) = His (t),
dt

(E) = (sIHls),
HI!) = If) E..

In expression (18.20), (f I denotes some stationary state
and E is the energy in this state.
Finally, we note that the Hamiltonian (as well as any
other operator) may act not only on the state Is), but
also en its amplitude (i Is), since we always have the
representation [see (17.4)1

HCi(t) = 2J HiJC j (t).
j

We now come to the main problem of this chapter, Le.
that of imparting physical meaning to the mathematical
apparatus of linear operators in order to convert it into
the apparatus of quantum mechanics. In this sense the
previous section should be considered as a preliminary
step towards solving this problem.

The following two points must be noted when consider­
ing the role of linear operators in quantum mechanics.
Firstly, in quantum mechanics to every dynamic variable
(spatial coordinate, energy, momentum, angular momen-

Section 19 Linear Operators in
Quantum Mechanics

Role of Operators in Quantum
Mechanics
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tum, etc.), there is assigned a definite Hermitian opera- .~

tor.
Secondly, the transition from one representation to an.,.
other without changing the physical meaning of the prolr­
lem is achieved with the help of unitary operators.
Let us consider the first point in detail. It means that
besides the energy operator fl, other "physical operators"

like the coordinate operator;-' the ~omentum operator ~,
the angular momentum operator if, etc. must be intro~
duced. In this respect, it if' significant that the well­
known dynamic relations vf classical mechanics may be
transferred to quantum me.t.hanics in the same form, if
we replace the physical quantities in these relations by the
corresponding Hermitian operators. In other words, the
apparatus of quantum mechanics may be built up in
analogy with the apparatus of classical mechanics, if we
replace the dynamic variables with their corresponding
Hermitian operators. As an example, let us compare the
following expressions:

In classical mechanics I In quantum mechanics

p2

I
~ p2 ~

(19.1)E= 2m+U H= 2m+U

- - - I
~ ~ ~- - -M=(rx p) M=(rX p) (19.2)

It should be remembered, however, that a complete formal
analogy between the apparatus of classical and quantum
mechanics does not exist. We point out (for details see
Sec. 20) that in the algebraic manipulation of operator
relations we must remember that operators may not com-
mute. Thus if ..4 and B do not commute, then (..4 + B)'1. =1=
=1=..4'1. + 2AB + jJ'1.. In this case (A + B)'1. = A2 + AB+
+ BA + B'1.. Besides, there are operators in quantum
mechanics which do not have classical analogies (for
example, the spin operator).
Note that we may formally assign corresponding opera­
tors to all classical dynamical variables including those
which do not have any meaning in the microworld.

Thus, we may introduce the operators of velocity;,
of potential energy 0, kinetic energy T, etc., though
neither velocity nQr the breaking-up of total energy into
kinetic and potential components which is characteristic
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for classical mechanics, have any meaning for micropar­
ticles.

Let us consider the question: In exactly what way can
we compare a physical quantity with a Hermitian opera­
tor? In other words, what is the meaning of the word
"compare" here? The following two basic postulates pro­
vide an answer to this question.
Postulate 1. If the operator L is compared with aphys­
ical quantity l, it means that the eigenvalues A of the
operator are identified with the values of the physical
quantity under consideration obtained by measurement.
Postulate 2. If operator L is compared Fith a physical
quantity l, it means that the eigenfunctions 'Iv,. (a) of
the operator are identified with the eigenfunctions of the
quantities from theA-set, expressed in a-representation.
By the remarks nul.de in Sec. 15, this means that the
eigenfunctions '¢1. (a) of the operator are identified with
the amplitudes of states {Ala >, often called the wave
functions. ' . .
Thus a study of the fundamental equation of the theory
of linear operators [see (17.13)]' '

..... j I

L (a){Ala) = A(Ala) (19.3)
includes physical problems such as finding the spectrum
of possible values A of a physical quantity l, and finding
the amplitudes of states {A I a> in which the correspond­
ing values of A occur.
When applied to the energy operator, (19.3) takes the
form of (18.23). A study of equation (18.23) permits us
to find the possible values of the energy.of a microparticle
and the corresponding amplitUde values O'f the stationary
states.

The postulates formulated above "knit together" the
-physical and mathematical aspects; they "load" the mathe­
matical symbols and inferences with a definite physical
meaning. We shall demonstrate this with a _number of
observations.
1. The eigenvalues of a Hermitian operator are real.
From a physical point of view this means that the values
of quantities obtained during measurements are real.
2. The spectrum of the eigenvalues of a Hermitian opera­
tor may be discrete or continuous. This corresponds to
quantization or a continuous variation of the physical
quantities characterizing a microparticle.
3. The eigenfunctions of a Hermitian operator satisfy
the condition of orthonormalization. This mathematical
'lact becomes the condition of orthonormalization of eigen­
1unctions of physical quantities and, in particular, the

Basic Postulates

Mathematical Results and Their
Physical Meaning I'

·t
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condition 01 orthogonality 01 basic states 01 a micro-T
particle. In other words, the mathematical result' (17.16) !

is converted into physical relations (15.13) and (10.8),
while the mathematical result (17.17) is converted into
the physical relation (15.14).
4. The system of eigenfunctions of a Hermitian operator
is a closed (complete) one. From a physical point of
view, this means that it is possible to expand any ampli­
tude in terms of amplitudes which are eigenfunctions of
a physical quantity, Le. in terms of basic amplitudes. In
other words, the completeness of a system of eigenfunc­
tions of a Hermitian operator is converted into the phys­
ical principle of superposition of states.
5. The eigenvalues of a Hermitian operator may be degen­
erate. Physically this means that one value of a quan­
tity may correspond to several different states.
6. The mather¥tical result (17.28) for the eigenfunctions
of operators corresponds to the physical result (9.33)
for amplitudes of states.
7. Unitary transformations corresponding to the transi­
tion from one representation to another, physically cor­
respond to a transition from one complete set of quanti­
ties to another and, in particular, from one system of
basic states of a. microparticle to another.
8. ,The existence of a common complete system of eigen­
functions means that the operators commute. This mathe­
matical fact corresponds to the possibility of 8imulta­
noous measurement of the corresponding physical values.
Note ,that the impossibility of the simultaneous measure­
~nt of such physical quantities as the coordinate and
momentum of a microparticle means that the operators of
coordinate and momentum do not commute.
9,. The mathematical fact of commutativity of the Hamil-
tonian it and the operator £ meanstl¥lt. physically the
quantity l corresponding to the operat~r L is an integral
of'motion. In other words, the condition

IH, L] = 0

from the physical point of view is the law of conservation
of the quantity 1.
The last remark will be rigorously proved below. Here,
we shall just mention Some ideas of a qualitative nature
for this purpose. If operators iI and L commute, the
quantities E and 1 can be simultaneously measured since
there are states in which both these quantities have defi­
nite values. A state in which energy has a definite value
;is stationary, Le. has an infinitely long "life" time. But
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this means that the quantity 1 must also be conserved
for an infinitely long time, just like any other physical
quantity for which the given state is an eigenfunction.

If the quantity 1 is measured in a state described
by the amplitude (AI ex), then, according to basic postu­
lates, the measured value will be A. We assume now that
the quantity 1 is measured not in its eigenstate, but in
some "other" state, for example, in the state described
by the amplitude <1>s (ex) = (3 I ex). In this case the result
of a single measurement cannot be predicted unambiguous­
ly; probabilistic predictions enter into the picture now,
thus permitting an estimation of the mean value (A)
from a relatively large number of measurements (in this
connection see Sec. 12). We shall show how to compute
the mean value (A) in the state (s I, if we know the Hermi-
tian operator L corresponding to the quantity l. Note
that in the particular case when energy is used in place
of the quantity l, this problem was considered in Sec. 18,
where the following result was obtained:

Mean Value of a Quantity

(we assume for definiteness in this case that the variable ex
which characterizes the representation varies contin­
uously). Let us prove this.
We expand the amplitudes <1>s (ex) and <1>:(ex) in terms
of eigenfunctions '¢n (ex) = (An I ex) of the operator £ (we
assume that the spectrum of the operator L is discrete):

<E) = (3 I Ii Is).

In the general case, (18.18) takes the form

(A) = J<1>: (ex) L (ex) <1>s (ex) dex

(18.18)

(19.4)

<1>s (ex) = 2l (siAn) '¢n (ex),
n

<D: (ex) = ~ (sIAm)* '¢~ (ex).
m

Substituting these superpositions in (19.4) and using
(19.3) and (17.16), we get

J<1>: (ex) L (ex) <Ds (ex) dex

= ~ ~ (sIAn)(SIAm)* J'!'~ (ex) L (ex) 'iJn (ex) dex
n m

. ~ ~ (sIAn)(sIAm)* An J'¢~ (ex) '!'n (ex) dex
n m

Sec. 19 181

i'

'.



n m n

By (12.3), the last sum is equal to {A >, Q.E.D.
The result (19.4) is very important. In fact this one result
is sufficient to demonstrate the usefulness of the applica­
tion of operators in quantum mechanics.
In analogy with (18.18), the result (19.4) can be written
in a more abstract form which avoids a choice of repre­
sentation:

<A> = {s I £ Is>. (19.5)

The Variation of the Mean Value Using (19.5) and assuming at the outset that the op-
of a Quantity with Time erator L is independent of time, let us write

d d ~

dt (P.) = dt (s (t) IL Is (t»

=( :t (s(t)I) lils(t»+<s(t)ILI (:t Is(t»). (19.6)

Further, we turn to (18.12) and transform it into the form
d A- in at (s (t) I = (s (t) IH+,

or, taking into account the hermiticity of the Hamil­
tonian,

d ~- in_ tlk (s (t) I = (s (t) ,H. (19.7)

Substituting (18.12) and (19.7) into (19.6), we get
d i A~ ~ ~

dt (A) = h (s (t)IHL -LHls (t),

or
d i ~ ~

;:rt(A)=n(sl[H, L]18). (19.8)

If the quantity 1 is an integral of motion, ft(A) = O.

It follows from (19.8) that the above-mentioned condi­
tion [Ii, L1 = 0 is a condition for the conservation of
he quantity l. ~

We introduce a new operator i, defining it by the relation
~ d

(s ILl s) = dt (A). (19.9)

Comparing (19.9) with (19.8), we conclude that in the

case when L is independent of time, the operator L
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*., L =-;:; [H, L].

If L varies with time, we get instead of (19.10)

(19.Hl)

(19.11)

The physical meaning of any result is obviously inde- Unitary Invariance of Physical
pendent of the choice of a representation. In other words, Results
the physical meaning of a result should not change upon
a transition from one representation to another. Since
these transitions are accomplished by means of unitary
transformations, it means that physical results must enter
the mathematical apparatus as unitary invariants.
Thus, the requirement of unitary invariance of corre­
sponding results may serve as an additional criterion of the
correctness of the basic postulates formulated above and
the consequences that follow from them. In this connec­
tion, we first mention the fact of unitary invariance of
the property of hermiticity of an operator mentioned
in Sec. 17, and also the unitary invariance of the spectrum
()f eigenvalues of a Hermitian operator. I t is easy to see
that the commutator [fI, Ll is also a unitary invariant
and, consequently, the condition of conservation of any
physical quantity is, as expected, independent of the
choice of a representation. We mention further that uni-

tary invariance of the relation J'IJ'~'IJ'm dx now indicates
the i Ildependence from the choice of representation of the
-condition of orthonormalization of eigenfunctions of a
physical quantity. Finally, unitary invariance of the

-expression ) <D* r(x) L (x) <D (x) dx indicates the inde­

pendence from the choice of representation of the mean
values of physical quantities.

Note that the result (19.4) could have been obtained unambiguous­
ly from the requirement of the unitary invariance of the quantity
<1..) using the expression (18.18) obtained for a special case. Indeed,
from the requirement of unitary invariance it follows that (I..)
must be represented by an expression of the type

) <Xl. (x) in (x) <D (X) dx,

and a comparison with the particular result (i8.i8) indicates that
in this case n must be put equal te t.
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Section 20

r
f

Operators of Coordinate and
Momentum

18A

The Quantum-Mechanical
Apparatus in Coordinate
Representation

A further treatment of the apparatus of quantum mechan­
ics requires a knowledge of the definite form of the oper­
ators of various physical quantities. For this it is essen­
tial to choose a definite representation. Let us choose the
coordinate representation for this purpose.
Note the importance of finding the form of the two basic
"physical operators", the coordinate and the momentum
of a microparticle. Knowing these operators, we may
obtain the energy operator [see (19.1)] and the angular
momentum operator [see (19.2)1.

For simplicity we shall consider one-dimensional motion
along the xi-axis (the result so obtained can be easily gen­
eralized to a. three-dimensional case). Taking into account
the remarks made in Sec. 17 about the form of Hermitian
operator in its eigen representation [see (17.26)], we con­
clude that the operator of a coordinate in the coordinate
representation is the coordinate itself:
x (x) = x. (20.1}

This result can be generalized to any coordinate function:

V (x) = lZ{x). (20.2)
Let us now try to find the form of the momentum opera­
tor. First we shall prove the following theorem. Suppose
an operator {j somehow transforms a coordinate. If the·
Hamiltonian Ii remains invariant under this transfor­
mation, the operators lJ and H commute. Proof: Let
Ox = x'; we act on H (x) 1J' (aJ) with the operator {)
to • get on (x) 1J' (:») = Ii (x') 1J' (x') = iJ. (x) 1J' (x') =
= H (x) VIp (x), which proves the theo,rem.
Suppose the operator 0 is the operator of infinitesimal
translation along the x-axis: 61J' (x) = 'I\J (x + dx). Mak­
ing use of the smallness of the translation, we write

¢ (X+dX)=[1+dX ~J ¢(x)

Thus
~ d
0= 1+dxa;-

Proceeding from the properties of homogeneity of space.
we conclude that an operation by {) must leave the Hamil­
tonian of a microparticle invariant. Hence, according
to the theorem proved above, we obtain [6, H] = 0
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or L~, h] = O. Bm it was shown above in Sec. 19 that
a commutation with the Hamiltonian expresses the law
of conservation of a physical quantity. This means that
dld:JJ is the operator of Some physical quantity which is
conserved. We know that momentum is a quantity whose
conservation is a consequence of the homogeneity of
space (see Sec. 1). Consequently, the operator dldx must
coincide with the momentum operator of a microparticle
up to some constant factor:
II ...

(fX= 'VPx' (20.3)

The factor y is determined from a consideration of the lim­
iting transition from quantum" mechanics to classical
mechanics (see Appendix B). It can be shown that y =
= i/n. Thus the operator of the x-component of a micro­
particle momentuih in the coordinate representation has
the form

A • d
Px = - ~h dZ' (20.4)

The results (20.1) and (20.4) can be easily generalized
to a three-dimensional case:

r== r, (20.5)
~

p== -in'V. (20.6)

Using (20.4), we can write an equation for the eigen- Eigenfunctions of Momentum
functions of the x-component of the momentum:

-in :x ljJpx (x) = PX'¢Px (x). (20.7)

It can be easily seen that (20.7) can be solved for any
values of the parameter P.t. Consequently, the momentum
of a micro particle is not quantized (the spectrum of the
eigenvalues of the momentum is continuous).
From equation (20.7) it follows that the eigenfunctions
of operator Px have the form of plane waves:

\lJPIll (x) = A exp (iP xx/1i); (20.8)

To determine the factor A, we make use of the condition
of orthonormalization (17.17):

JljJ* p; (x) '¢Px (x) dx = <') (Px- p;).

SUbstituting (20. 8) into this equation, we find

4'12.Jexp [- ix (p:- Px)/1i} dx = <') (Px- p~).

'.
f ,1

"l,

·f',
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Schrodinger Equation

Further, taking into account (15.17), we obtain

i exp fix (Px- p;)/n] dx = 2:rtM (Px- p;).

Comparing the last two equations, we get A2 == (2nnt1.
Consequently,

'/Jp (x) = (2nn)-1/2 exp(ipxxlh). (20.9)x

A generalization for the three-dimensional case gives

'/J-p (;:) = (2nn):o:3/2 exp (ipr!1i). ;(20.10)

Note that the eigenfunction of the momentum (20.10)
coincides with the wave function (15.15) derived in
Sec. 15 tor a freely moving microparticle.

Let us consider the equation (18.23) for eigenfunctions
of a ,Hamiltonian:. /'

Hrp (x)=Erp (x). ( ~20.11)
~E E

Using (19.1) for the Hamiltonian of a micro particle
moving in an external field with potential U (:Il), and
taking into aC(jount (20.2) and (20.4), we get
~. h2 d2

HI(X) = - 2m dx2 +U (x). (20.12)

Substituting (20.12) into (20. 11), we get

h2 d2 e
- 2m dx2 rpg (X) + [U (X) -; 1rpE (X) = O. (20.13)

This is the one-di mensional SchriJdinger equ,ation. Gener­
alizing it for the three-dimensional case, we write

(20.14)

Knowing the functions cp g (:Il), we may write the expres­
sions for amplitudes of stationary states 'YE (:Il, t), since
the time dependence in this case has the universal form
discussed in Sec. 13. Using (13.4) and taking into account
the fact that!

'Yg (x, t)= (E I X, t}=(x, t I E}·=C~ (t), (20.15)

1'86

we get

'Yg (x, t)=rpB (x) exp (-iEt/1i). (20.16)

I t can be easily seen that the functions 'Y~ (:Il, t) are
the solutions of equation (18.22), where the Hamiltonian



(20.12) has been used in place of fl. In this case, the equa­
tion has the form

(20.17)

The operator of the square of angular momentum is given
by the expression

It is also called the Schrodinger equation More precisely,
equation (20.13) is called the time-independent Schrodinger
equation and the equation (20.17) is called the time­
dependent Schrodinger equation.
Schrodinger's contribution was that he guessed (yes,
guessed!) how to write the Hamiltonian of a micro particle
in the form (20.12). It is true that in our discussions (20.12)
does not appear unexpectedly, it appears here as a conse­
quence of results (19.1), (20.2) and (20.4). It should,
however, be l'emembered that (19.1) has not been derived
here, in fact it was.postulated (more precisely, an analogy
between classical and quantum-mechanical relations was
postulated). When Schrodinger proposed his famous
equation, this analogy was not yet apparent. Moreover,
the result (20.12) itself, as we shall see below, served
as the basis for this analogy. (For establishing the rela­
tion (20.17), we may make use of the transition from
quantum to classical mechanics-see Appendix B.)
, By using (19.2) and (20.4) we can easily get the expres­
~ions for the operators of projections of the angular mo­
mentum:
~ . a a) 'IM = -in(y --Z-. I

x 'Uz dy' I
~ (d a )M = - in z - - x - ~

• Y ax az' I

M' (a a) J= - ili x - - y - .z ay ax

M'=M~+M~+M~.

(20.18)

(20.19)

Operators of the Angular
Momentum Projections and the
Square of Angular Momentum

'.

While considering the angular momentum operators, it is
convenient to use spherical coordinates r, a, <p instead
of Cartesian coordinates x, y, z: '

:t= r sin acos <p, }
Y.= r sin asin <p,

Z = rcos a.
(20.20)
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(20.21)

,
Using (20.20), we represent the derivative a~ '¢ in
form
a iJl/J ax al/J all al/J az

acp 'IjJ = ax aqJ +ay aqJ +az aqJ

alp . e . al/J. e= -a;; rsm smtp+ayrsm costp

=(x3-- y 3-).h.ay "ax 'f'

From this, with the help of (20.18), we get

iII = -in3-z aqJ •

In a similar way from the derivative a .1, we findae 'f'

(20.22)

Commutation Relations

M M~ n +" (a e a )x + i y = e- 1
(j) + as+ i cot acp

from which, with the h«t!If of (20.19), we get
~ L'· 1 a2 1 a (. a )-1

M2 = - n2 sin2e acp2 + sin e as sm eas J. (20.23)

These relations form the commutation rules for the
operators of coordinate, momentum and angular momen­
tum of a microparticle. Denoting the Cartesian compo­
nents of these operators by subscripts i, j, k, we can
write these commutation rules (it will be shown later
on how they may be derived):

(20.24)

(20.25)

(20.26)

(20.27)

(20.28)

(20.29)

(20.30)

[ril rj] =0.
A A

[Pi,Pj]=O,

LPil rj] = - i'h6ij ,
A ,.. ~ a ".,~

[Pi> t (r)] = - in -a t (r),
rt

[.111 il ;j] = in ~ eijk;k,
II.

[M i , Pj] = in ~ eijkPk,
II.

~ ~ '\.' ~

[Mil MJl = in L.J eij.kMk·
II.

Here etJk is a unit antisymmetric tensor of the 3rd rank,
e123 = e 231 = e312 = 1, e132 = e321 = e213 = -1, and the
remaining 21 components of thi s tensor are equal to zero
(in these components at least twolsubscripts have the
same value). It can be easily seen; that in summations
with respect to k not more than one term is present.
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ln the coordinate representation ri = ri; therefore, the
..esult (20.24) is obvious. It means that all three coordi­
nates of a microparticle can be measured simultaneously
{as was mentioned in Sec. 3, they OCcur in the same com­
iplete set of quantities).
Prom (20.4), we write

[p~. p.].1._ -n2 (_82 82_).1.
II J '" - 8ri 8rj 8rj 8ri "'.

Since the value of the mixed derivative is independent of
1;he order in which the differentiation is carried out, it
follows that [Pi> Pi] = O. This result means that all the
1;hree components of momentum can be measured simul­
otaneously (they belong to the same complete set of quan­
otities).
"The result (20.2&) IS derived in the following way:

:{Pi, ij] '\jJ= -in {8~i (rj'\jJ)-r j 8~i '\jJ}

.f, 8rj .1. 'f,~= - Ut 8ri '" = - lnUij'\jJ.

It means that components of momentum and coordinate
which have different subscripts can be simultaneously
measured, while components with like subscripts are
unmeasurable, in complete accord with the uncertainty
,relations for coordinate and momentum of a micropar­
ticle described in Sec. 3. The result (20.26) also indicates
that the three components of coordinate and the three
eomponents of momentum enter in different complete
sets of quantities.
The result (20.27) is a generalization of (20.26). In fact,

~ ~ 'n { 8 (/.1,) / 8 .I'} 'n 8/ .1.
[Pi' f] '\jJ= -l ar; '" - 8ri '" = -l 8r; "'.

Results (20.28)-(20.30) can be obtained from (19.2) by
using the preceding commutation relations (see Ap­
pendix C).
Results (20.28) and (20.29) mean that components of the
angular momentum and coordinate (angular momentum
and momentum) with like subscripts can be measured
simultaneously, while those with different subscripts
cannot be measured simultaneously. These results also
mean that projections of the angular momentum cannot
belong to complete sets which include coordinates or the
momentum components.

. The result (20.30) means that different components of an­
I· gular momentum don't have a common closed system of
I~. eigenfunctions and cannot appear in the same complete set

I.~··..
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of quantities. Considering the examples discussed earlier,
we can conclude that different components of angular
momentum cannot be measured simultaneously. This
conclusion is correct, but it should be slightly improved
on the basis of the example of the components of angular
momentum. As a matter of fact, there is one case when
all the three components of angular momentum can be
simultaneously measured-this is the particular case when
all of them are equal to zero. This case, however, does not
essentially change anything since, as has been remarked
in Sec. 17, the presence of one common eigenfunction is
in no way connected with the commutation of operators.
By using relations (20.19) and (20.30), we can establish
one more rule for commutation (see Appendix D):

[M2, Mi ] = 0 (20.31)

This means that we must include the square of the angu­
lar momentum and anyone of the projections of the angu­
lar momentum in the same complete set of quantities.

Note that the simultaneous measurability of all the components
of momentum and the impossibility of similar measurement for
the angular momentum components have a very simple explana­
tion. The fact is that the parallel translations associated with the
momentum operator are commutative, while the rotations asso­
ciated with the angular momentum operator are noncommutative.
It is immaterial whether we move first along the x-axis and then
along the y-axis, or in the reverse order.
However, the sequence of rotations is certainly not immaterial.
Take, for example, a point on the I-axis and make two successive
rotations through 90o-in one case first around the x-axis and then
around the z-axis, in the other case first around the z-axis and
then around the x-axis. It can be easily seen that the final positions
of the point are different in these two cases.

The Inversion Operator; Parity

190

The inversion operator P is defined in the following:
way:

P'ljJ (;, t) = P'ljJ ( - -;,t), (20.32)

where P is a constant. By applying the i"ersion operator
twice, we obviously return to the initial function 'ljJ (;, t).
It follows from this that p2 = 1, Le. .

P = ±1. (20.33)'

The quantity P is called the spatial parity. If P = 1,_

and consequently, P'ljJ (;, t) = 'tV (-;, t), the micropar~
ticle is said to possess even parity. If, however, P = -1'
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* It must be noted that in some processes involving elementary
particles, the symmetry of "usual wOJ;'ld" and "mirror world" is
Violated. It was shown by Wu in 1957 that in experiments on the
fl-decay of nuclei, spatial parity is not conserved. This result
was predicted in 1956 by Lee and Yang.

and, consequently, P'IjJ~, t) = -'IjJ (--;., t), the micro­
particle is said to pos'>ess odd parity.
Suppose [P, ill = O. In this case, according to (19.10),
the parity is a conservahle quantity. If at the initial
moment of time the microparticle was, for example, in
a state with even parity, it must have the same parity
at subsequent moments of time (which, of course, imposes
certain restrictions on the possible changes in the state
of the microparticle).
It was mentioned in Sec. 1 that the laws of conservation
of energy, momentum and angular momentum are the
results of definite propertills of the symmetry of space and
time. The law of conservation of parity is no exception to
this. It is a consequence of the symmetry with respect
to inversion operation, which, as can be easily seen,
reduces to a combipation of the operation of rotation and
reflection fin fact, the operation (x, y, z) -+ (-x, _y,
-z) consists of rotation through 180°, say, arround the
z-axis, and reflection in the plane perpendicular to the
z-axisJ. Taking into account that the conservation of
angular momentum is linked with rotational symmetry,
we conclude: the conservation of spatial parity is asso­
ciated with the fact that physical processes take place
identically in the "usual world" and the "mirror world".*

Let us write the equation for the eigenfunctions of the Eigenvalues and Eigenfuncfions
operator if z' defined by (20.21): of the Operators Mz and M2

-iho~'IjJ=Mz'IjJ. (20.34)

The solutions of this equation are of the form ..

..p (cp) = A exp (iM zcp/n)~ ". (20.35)-
The function .p is periodic: 'IjJ (cp + 2n) = 'IjJ (cp). Conse
quently, '.
M z = Jim, m = 0, ±1, +2, . . . . (20.36)
The reader is already familiar with this results: the pro­
jection of angular momentum is quantized; it assumes
values differing by multiples of Planck's constant (see
Sec. 2). The factor A in (20.35) is determin.ed from the

2n

, normalization condition ~ 'ljJi:.'ljJmdcp = 1. It is easy to
o
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We now turn to the operator M2. Using (20.23), we write

>

see that A = (2n)-1/2. Thus

'i'm (cp) = (2n)-1/2 exp (imcp).

1.2 [ 1 8
2

'IjJ + 1 a ( . e 8'IjJ ) ] _ M2'h
- n sin2 e 8<p2 sin e as sm as - 'Y'

(20.37)

(20.38)

? i

'\

This equation is known in mathematics as the equation
for spherical junctions. It has bounded solutions under
the condition that

M2 = lZ 2l (l + 1), l = 0, 1, 2, .... (20.39)

(20.40)

Assuming that the condition (20.39) is satisfied, we write
the solutions of (20.38) in the form of spherical harmonics:

'11 = .. /" (l-I mJ)! (2l+1) pi m I (cos 8) eimQJ
-1m V (l+lm/)14n I ,

where m = 0, ±1, •.. , ±l. Taking (20.31) into consid­
eration, we conclude that the eigenfunctions of Mt

and M2 are common. Hence, m should be treated as a mag­
netic quantum number corresponding to the projection
of the angular momentum of the z-axis. It assumes 2l + 1
values (from -l to l). The functions p!ml(cos 8) appear­
ing in (20.40) are essentially the associated Legendre
functions. We remind the reader that

m dm
PI (x) = (1- x2)m/2 dxm PI (x)

where PI (x) are Legendre polynomials*: I

1 dl /
PI(x)= 2111 dx l [(x2 -1)1].

(20.41)

(20.42)

(20.43)
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The spherical functions '\JIm (8, cp) are orthonormalized:

2lt It

Jj '\Jim (8, cp) '\JI'm' (8, cp) sin 8 d8 dcp = 611'~~"
o 0

If the result (20.36) is known, we can derive the result
(20.39) by assuming that

M2 = 3 (M;) = 3/is (m2).

• Legendre polynomials and associated functions are considered
in Appendix D.

I
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The Relations of Classical
Mechanics in Operator Form

I:
t
If

I

The mean value (m2 ) is determined by the expression
I 1

"" m
2

"" m
2

1(m
2
)= .L.J 21+1 =2 .L.J 21+1 =3 1(1+1).

m=-I m=O

This leads directly to (20.39).
It follows from (20.18) that the inversion operators Parity and Angular Momentum

commute with operators of any projection of the angular
momentum. Moreover, the inversion operators and the
operators of the square of the angular momentum com-
mute:

[P,Mi]=O, [P,M2]=0. (20.44).

This mean that the operators P and Mi have a common
complete system of eigenfunctions. The same applies to
the operators P and,M2. From this it follows in particu­
lar that a state with a definite orbital quantum number 1
must also be characterized by a definite spatial parity.
In spherical coordinates the inversion is of the form
r--+r, 8--+n-8, cp--+ljJ+n. (20.45)

Using (20.40)-(20.42) we find that for such a transforma­
tion the function 'ljJ/m (8, cp) is multiplied by (_1)1:

I "'\JIm --+ (-1) 'ljJ/m' (20.46)

It follows hence that states with even 1have an even parity
while the states with odd 1 have an odd parity.
It is appropriate here to recall that the example given in
Sec. 3 for the complete set of quantities describing the
state of a photon includes M2, M z and P [see (3.7b)1.
Note that the parity and the angular momentum occur
in the same complete set of quantities. Formally, this is
a consequence of relations (20.44). However, one can
start from considerations based on direct physical intui­
tion. In fact, the obvious "affinity" between the parity
and the angular momentum is connected with the above­
mentioned fact that the inversion operation includes rota­
tion in addition to reflection. The order in which these
operations are carried out is immaterial; rotation can
follow reflection or, the other way round, it can precede
reflection.

So far, we have several times used the fact that the
apparatus of quantum mechanics is based on the well­
known equations of classical mechanics written, however,
in operator form. This fact is so important that it is ap-
propriate to return to it once again.
We have mentioned above the brilliant guess by Schrodin­
gel', who proposed the expression (20.12) for the Hamilto-

'.

s.c. 20

-.
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nian of a microparticle. If we use this guess and the funda';"
mental result (19.10), we can easily see that the equations;.
of classical mechanics can be actually transferred to quan- .t
tum mechanics by replacing the physical quantities by the'
corresponding Hermitian operators. Substituting the oper­
ator L = x in (19.10), and using the expression (20.12)
for the operator iI, we get

;; = Px1m. (20.47)

This is the well-known classical result: the velocity is
equal to momentum divided by mass. In quantum-mechan­
ical interpretation this result means that the velocity
operator is equal to the momentum operator divided by
the mass. Further, we substitute the operator L = p~

in (19.10). Using the expression (20.12) for ii as before,
we get
:' d
P:r.= -lh" U (x). (20.48)

It can be easily seen that this is just Newton's second law
of motion, written in operator form. ~ ,. .
Remember, that the operators of the type x and Px are
introduced in accordance with the definition (19.9). Hence,
it follows that the results (20.47) and (20.48) indicate
the validity of the classical relations for the mean values
of physical quantities:
d ~

7ft (x) = (s IP~ I s)1 m, (20.47a)

d d
dt (Px) = - dx U (x). (20.48a)

Ehrenfest was the first to point out this and hence rela­
tions of the type (20.47a) or (20.48a) a~lled Ehren/est
theorems. In short, Ehrenfest's theorems lstate that clas­
sical relations for physical quantities al.re transformed
in quantum mechanics into relations for mean values of
physical quantities.
It was noted in Sec. 19 that the mathematical analogy
between classical mechanics and quantum mechanics con­
sidered here requires a certain amount of caution since
operators don't always commute with each other. This
leads to the conclusion that the information contained
in the classical relations is insufficient for building up the
quantum-mechanical apparatus. It is necessary to have
additional information about the properties of commuta­
tion of the operators under consideration. In other words,



the classical relations must be supplemented by the com­
mutation relations of the type (20.26)-(20.30).
Thus, it is the commutation relations which carry the
specific information essential to the apparatus of quantum
mechanics. In this connection, we note that the right­
hand sides of the commutation relations contain the speci­
fically quantum-mechanical constant, i.e. the Planck's
constant.

Section21 Applications of the
Schrodinger Equation

I

We shall mention three types of problems involving the
solution of the Schrodinger equation.
First type of problems. We consider the motion of a micro­
particle in a limiJ;·ed region of space or, in other words,
in a potential well (for example, the motion of an electron
in an atom). Such a motion is called finite and the micro­
particle is said to be in a bound state. In this case the
time-independent Schrodinger equation is used [see (20.13)
or (20.14)1. By solving the Schrodinger equation under
certain boundary conditions imposed on the wave func­
tion and its first derivative*, the spectrum of the values
of the energy of the microparticles and the wave functions
of the stationary states can be found.
Second type of problems. The infinite motion (motion un­
bounded in space) of a microparticle in an external field
is considered. For example, the microparticle passes
through a potential barrier (we recall the tunneling
effect mentioned in Sec. 4) or is scattered by some energy
centre. Since the motion is infinite, the energy spectrum
of the microparticle is continuous. By solving the time­
independent Schrodinger equation, we can find the form
of the wave fun-etions of the microparticle far from the
scattering centre (or barrier) from which, for example, the
probability of scattering at a certain angle (or the prob­
ability of tunneling through the barrier as well as of reflec­
tion from it) can be calculated.
Third type of problems. In the two types of problems indi­
cated above, we spoke of the stationary states of a micro­
particle. For those the time-independent Schrodinger
equation was used. The third type of problems involves
a change in the state of a microparticle with time, and for
this the time-dependent Schrodinger equation is used [see

* The boundary conditions are considered below during a dis­
cussion on specific problems.

Sec. 21

Some Characteristic Problems iB
Quantum Mechanics
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A Particle in a One-Dimensional
Potential Well with Infinitely Hign
"Walls"

(20.17)1. By solving this problem we can fmd the prob­
ability of any quantum transition taking place under
the influence of a given external force.
Examples of problems of first two types are given in this
section and in Sec. 24. The third type of problems can be
found in Sec. 25. Naturally, we shall limit ourselves to
just a few typical examples. But it should be mentioned
here that the applied aspects of quantum mechanics are,
reflected quite comprehensively in the existing literature '
(in this connection, we recommend [34, 35] which give
specially selected quantum-mechanical problems).

Such a well is described by a potential U of the form

{

OO' x<O,
U (x) = 0, O-<x-<a, (21.1)

00, x>a.

The parameter a is the width of the well. The energy is
measured from the bottom of the well. Within the limits
of the well (0 -< x -< a), the Schrodinger equation (20.13)
is of the form

At the boundaries of the well (for x = 0 and x = a)
the continuous wave function cp vanishes, since the infi­
nitely high "walls" make it impossible for the particle to be
found beyond the limits of the well*. Thus in this case
the boundary conditions are of the form

where

k~ = 2mEln2.

cp (0) = cp (a) = O.

We can write the general solution
tion (21.2) as follows:

cp (x) = A sin (kx) + B cos (kx).

Since cp (0) = 0, it follows that

cp (x) = A sin (kx).

(21.2)

(21.3)

(21.4)

ofl.rential equa-

(21.5)

B = O. Thus,

(21.6)

From the condition cp (a) = 0, we conclude that

ka = nn, where n is ail integer. (21.7)
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* In the case of "walls" having a finite height, this possibility,
as will be shown helow, is not excluded.



Taking (2'1.3) into account, the last result can be rewritten
in the following form:

En = n2J[,2/t2 /2ma2. (21.8)

The expression (21.8) determines the spectrum of values of
the energy (energy levels) of the particle in the potential
well. It coincides with the expression (5.2) derived ear­
lier.
According to (21.5) and (21.7), the wave function CPn (x)
corresponding to the nth energy level, is of the form CPn (x) =
= A sin (Jtnx/a). The integration constant A is deter­
mined from normalization condition [see (15.13) in this

a

connection] ScP~ (x)dx = 1. It can be easily seen that
o

A = V2/a and, consequently,

CPn (x) = V2/a sin (Jt~x/a). (21.9)

Thus, we have found the energy levels and the orthonor­
malized wave functions for the stationary states of a par­
ticle in a rectangular one-dimensional well with infinitely
high "walls".

Let us consider a rectangular potential well shown in
Fig. 21.1 (a). Since the particle is inside the well, E <
< VI and E < V 2' The rectangularity of the potential
enables us to clearly distinguish three spatial regions:
region 1 (x < 0), region 2 (0 <. x <. a) and region 3 (x >
> a). We shall consider these regions separately and will
then combine these results at the boundaries of the regions,
Le. at the points x = ° and x = a. The Schrodinger
equation (20.13) has the following form:
for region 1

~:; - x~CP = 0, where x~ = 2m (V 1 - E)/ltl
,

for region 2
d2rp
dx

2
+k2cp=0, where k2=2mE/1t2,

and for region 3

d2rp
dx

2
-x~<p=O, wherex~=2m(V2-E)/1t2.

(21.10a)

(21.10b)

(21.10c)

Rectangular Potential Well with
"Walls" of Finite Height

Fig. 21.1

V, E tJ~
X

1 t' 2- a
~

~ (

ftl)
x

R{q,e,
(I;

••

, ~,

The general solutions of these differential equations may
be written in the following form:
for region 1

CPI = Al exp (Xl' x) + B I exp (-XiX), (21.11a)
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for region 2
<P2 = A 2 exp (ikx) + B 2 exp (-ik:JJ), (21. 11 b)

for region 3

<P3 = A 3 exp (x 2x) + B3 exp (-x 2x). (21. 11c)

[Note that the solution of equation (21.10b) may be
written in the form (21.11b) or (21.5).] The boundedness
of the wave function requires that B t and A 3 be put
equal to zero. Thus,

<Pi (x) = Ai exp (Xi x),

<P2 (x) = .12 exp (ikx) +B2 exp (- ikx), (21.12)

<Pa (x) = Baexp (- x2x).

The qualitative form of the functions CPt, CP3 and Re {CP2}
is shown in Fig. 21.1 (b). The reader should pay attention
to the fact that in the case of a potential well with "walls"
of finite height, there always exists a probability of
finding the particle beyond the limits of the well; this
probability decreases exponentially with the distance
from the boundaries of the well.
In order to find the four coeffIcients (AI, A 2 , B 2 , B 3 ),

we make use of the fact that both the function and its first
derivative must be continuous at the boundaries. The
continuity of the wave function is obvious, while the con­
tinuity of the derivative can be easily shown. In order
to do so, let us integrate Schrodinger's equation (20.13)
over a certain interval (a - ~, a + M containing the
potential jump. We get

a+1\.
dcp A dcp 2m r
dx (a +Ll) - a:; (a - M= fi2 J [U (x) - E] cP dx.

a-I\.

Since the functions under the integral sign are bounded,
in the limit of ~ -+ 0 this integral vanishes. As a result

~ ~ /
we get di (a + 0) = dx (a - 0), which w,.J)e proved.

Returning to our problem, we write the 1I0~dary condi­
tions (conditions of 'piecing' together the solutions at the
boundaries of the region):
cpdO) = cpdO) , I
CP2 (a) = CPa (a), I
drpl (0) = drp2 (0) ~ (21.13)
dx dx' I
dd~2 (a) = dd~3 (a).)

Substituting the expressions (21.12) in these equations, we



get the system of equations ior the coefficients A l' A 2' B 2J

B3 :

At =A2+B2, I
A2exp (ika) +B 2exp ( - ika) = B 3 exp ( - X2a ), I
XtA t =ik(A2-B2), ~ (21.14)

ikA2exp (ika) - ikB2exp ( - ika) I
= - X2 B 3 exp ( - x2a). J

The system (21.14) is a homogeneous system of linear
equations. In order that such a system should have non­
trivial solutions, it is necessary that its determinant should
be equal to zero. Equating the determinant of the system
to zero, we get an equation for the energy E (we recall
that the quantities k, Xl' X 2 are expressed in terms of E).
The solutions of this equation will give us the possible
values of the energy of the particle.
We emphasize that from a mathematical point of view,
the quantization of the energy in a well is a direct conse­
quence of the homogeneity of the system (21.14). This
is the crux of the problem of finding eigenvalues of phys­
ical quantities: the particle is left to its own devices, Le.
the external influences are eliminated thus eliminating
inhomogeneities from the equation. As a result, the particle
chooses its own course characterized by certain funda­
mental parameters (frequency, energy, etc.). The simplest
example, taken from classical physics, is that of a pendu­
lum. If a pendulum is not disturbed, it will oscillate with
a difinite natural frequency, irrespective of the way the
oscillation have been induced.
Thus, in order to determine the value of the energy of
a particle, we should equate to zero the determinant of the
system (21.14) and solve the equation so obtained. How­
ever, it is inconvenient in practice to consider a determi­
nant of the 4th order. Hence we shall first simplify the
system of equations. To do so, we rewrite the function
(jJ2 in the form lp2 = C sin (kx + b) (this form is equiva­
lent to the one used earlier; the reader may independently
express the coefficients C and b in terms of the old coef­
ficients A 2 and B 2)' The system (21.14) will now have
the following form:
At = C sin b, I
Csin(ka+b)=B3 exp(-x2a), Ir (21.15)
xtA t = kC cos b, J
kCcos (ka+b) = -x2B3 exp (-X2a).
Dividing the third equation of this system by first and
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Fig. 21.2
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the fourth by second, we get
Xl = kcot b, }

X2=-= -kcot(ka+b).
We now have a system of two equations in place of the
system with four equations. From the first equation of
the system (21.16) we fwd cot b = xl/k, hence

kftsin b = (1 +cot2 b)-1/2 = --;-==-
Y2mU l

Similarly, we get from the second equation of (21.16)

sin (ka+b) = -"IIkft •
v 2mU2

As a result, we get an equation that determines the value
of k (and, consequently, the energy levels) in implicit
form:

k . kft . kft (21 17)a = n:rr - arCSIn ,I - arcsIn ,1' .
v 2mUl v 2mU2

where n is an integer. Figure 21.2 shows the left- and
right-hand sides of equation (21.17) as a function of k.
In the situation shown in the figure, the particle has three
energy levels corresponding to values of k equal to kI ,

k 2 , k3 • If we change the width of the well, the slope of
the straight line y = ka will change thus changing the
the position and the number of possible energy levels,
A decrease in the width of the well will decrease the
slope of the straight line. The energy levels will "creep"
out of the well, and their number will gradually
decrease. An increase in the width of the well will
raise the line y = ka; it will intersect a larger num­
ber of branches of the inverse sine graph, thus
leading to a larger number' of levels in the
well. As a -+ 00, the numbes of levels in the well will
rise indefinitely, and we finally get a continuous energy
spectrum. It is easy to examine similarly the effect of
a change in the depth of th~ well on the s~ctrum: the
greater is the depth, the mOlel levels therea~'t.he well.
We should proceed further in the followin w y. find from
(21.17) the possible values of k and the valu sE, Xl' and
X2 corresponding to them, then substitute these values in
(21.15) and solve the system of equations containing the
coefficients, and then substitute the final result in the
expression (21.12) for the wave functions. However, on
account of the mathematical complications involved,
we shall not embark on this venture here.
In conclusion, we note that (21.17) may also be used for
determining the minimum energy E I of a particle in a
potential well. For this we just have to consider the



hatched triangle in Fig. 21.2 and put k1a;:::::,rr" whence we get
E 1 ;:::::, rr,2fi2J 2ma2• This result is in good agreement. with the
estimate (4.11) obtained in Sec. 4 on the basis of the
uncertainty relations (3.3).

When considering the motion of a particle in a spherically A Particle in a Spherically
symmetrical field, it is convenient to use spherical coor- Symmetrical Field

dinates r, 8 and cpo Spherical symmetry of the field means

that U (--;) = U (r). The ~-operator in spherical coor-
dinates has the form

1 a ( a) 1~=-- r2 - -L_~s (21.18)r 2 iJr ar I r 2 q;,

1 iJ2 1 a (_ a)
where ~S'l' = sin28 [acp2 + sin 8 as sm 8 as' (21.19)

Taking this into ~cc,ount, we can rewrite the Schrodinger
equation (20.14) in the form

1 iJ ( a ) 172a; r 2 a;'IjJ +72~9q;'IjJ (r, 8, cp)

+ (2m/1i2) [E - U (r)] 'IjJ (r, 8, cp) = O. (21.20)

Equation (21.20) allows the separation of variables. This
means that its solution may be found in the form of
a product of two functions, one of which depends only
on r, and the other on the angular coordinates 8 and cp:

'IjJ (r, 8, cp) = R (r) ll> (8, cp). (21.21)

Substituting (21.21) into (21.20), we get the following
result:

d ( dR) 2m(Ii" r 2 a;:- +r2 [;2[E-U(r)]R(r) =_ dSq><D

R(r) <D (8, cp) •(21.22)

Since the left- and right-hand sides of (21.22) depend on
different independent variables (on r and on 8 and cp, -.
respectively), both sides must be equal to some constant,
which we denote by A. Introducing this constant, we write

- ~eq;ll> (8, cp) = All> (8, cp). (21.23)

Comparing (21.19) with (20.23), we conclude that (21.23)
is in fact the equation for the eigenvalues and eigenfunc-
tions of the operator JVj2. This allows us to use (20.39)
and (20.40) and write

A = 1 (1 + 1), 1 = 0, 1, 2, ••. , (21.24)

rh 8 .. / 2l + 1 (l-I m I )! pi m I 0) imlp
w(,cp)=V ~'(l+lml)! l (cosue

= Y lm (0, lp), (21.25)

Sec. 21
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It should be noted that (21.27) may be reduced to the
one-dimensional Schrodinger equation with a special
boundary condition at r = O. For this we must use the
substitution

(21.28)

(21.27)

(21.26c)

where we have introduced the notation

r-
Y 9 +2 = 1/ ~ sin2 8e±2irp

~, - 32n .

cp (r) = rR (r) .. (21.29)

and in view of the boundedness of the 1\4\~n R (r),
require that the condition q> (0) = 0 be satisfied. It can
be easily seen that the substitution (21.29) in fact con­
verts (21.27) into the one-dimensional Schrodinger equa­
tion

d
2cp 2m ) rrJ 0)

dr 2 +fi2 [E - Udr hI (r) = O. (21.3

In this case the boundary condition q> (0) = 0 corresponds
to the one-dimensional potential well having an infinitely
high vertical wall on the left (at r = 0).

We emphasize that the "angular part" of the wave function
is independent of the particular form of the potential
U (r); this is a direct and important consequence of the
spherical symmetry of the potential.
'Ve now turn to the "radial part" of the wave function,
i.e. to the function R(r). According to (21.22) and (21.24),
this must be a solution of the equation

1 d ( dR) 2m-- r 2 - +-[E-U[(r)]R(r)=Or 2 dr dr fj2 ,

U ( ) = U ( ) _I- !l2l (l+ 1)
[ r r I 2mr2 •

where m = 0, +1, ... , +l. The functions Y 'm (8, q»
are spherical harmonics (they were introduced in Sec. 20).
It will be useful to write down the expressi ons for the
first few spherical harmonics:

1
Y oo = f - , (21.26a)

1 4n

/3 .. /-
YIO=ll 4n cos8; Y1,±1= V 8~ sin8e±irp, (21.26b)
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where T= P; is the vector of the density of flow of the
liquid.
Equation (21.31) is independent of the choice of the vol­
ume V. Using this fact, we can decrease the volume V
to some particular point. In the limit as V -+ 0, (21.31)

Thus,
a i" .t --..-+
at j p dV + Ypv dS = 0.

v s

By replacing the integral over the closed surface by a
volume integral, we can rewrite the last equation in the
following form:

'It
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The Continuity Equation and the
Schrodinger Equation

(21.31)J(~~ +divT) dV=O,
v

Further study of (21.30) obviously requires a considera­
.. tion of the particular form of the potential U(r).
It should be noted that among the problems on the motion
of a particle in a spherically symmetrical field are the
problems of an electron in an atom and the scattering
of particles by spherically symmetrical centres.

We shall establish a formal analogy between the time­
dependent Schrodinger equation and the continuity equa­
tion, which is widely used in classical physics, especially
in hydrodynamics. We assume that there is a certain
medium (for example, a liquid) described by the functions

p (;) and -;~) [p(;) is the density of the medium and

-; ~.) is the velocity of the particles of the medium at
--..

the poin t r; naturally, these functions may also depend
on time!. Let u~ imagine a certain volume V in the
medium to be isolated. The change in the quantity of

liquid in this volume per unit time is equal to .!!.. r pdV.atJ
v

Let us isolate a certain element of surface area dS on
the area S bounding the volume V, and associate with

-+
it a vector dS equal to dS in magnitude and directed along
the outward normal to the surface. The amount of liquid
passing per unit time from the volume V through an

-* -+ ---*
element of surface area dS is equal to pv dS. The amount
of liquid passing through the entire surface per unit

~ --..-+
time is equal to ;y pv dS. The law of conservation of

s af ~--..-+
matte·r requires that --aJ p dV and ;y pv dS be equal.

tv S



(21.33)

(21.32)

, I

i
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becomes a differential equation at this point:

ap +d' ":'" 0- IVJ=.at
This is the classical continuity equation.
Let us turn to the time-dependent Schr6dinger equation.
We shall generalize the one-dimensional equation (20.17)
for the three-dimensional case:

a -r !i2 -r -r-->-

in- 'P' (r, t) = --2- ~ lV (r, t) +U (r) 'P' (r, t).
(}t m

We introduce purely formally a certain "medium" and
define the density of this "medium" as 'P''P'*. This density
may be called the "probability density". In other words,
the probability of finding a particle will be greater at
those points of space, where the density of the "medium"
is higher.
This "probability density" may be given a fairly simple
physical meaning if we imagine that the space is filled
with a large number of particles (the interaction of parti­
cles is to be neglected in this case). Obviously, the number
of particles in some volume ~V is proportional to the
probability of finding a particle in this volume. With
this approach, W'P'* may be considered simply as the
density of the number of particles.
As in the classical case, we start by considering a certain
finite volume V:

~ r dV = ~ r If'P'* dV = r (W* a'l' + 'P' a'l'* ) dV
at J P at J J at at .

v v v

Substituting into this :t Wand :t If* from the Schr6d­

inger equation (21.33), and from the complex conjugate
of equation (21.33), we get

~ rIf'F* dV =~ r ('P'*~ 'P' - If~ qr*) dVat J 2m J
V V

= ~: j div ('P'*Y'lf - WY'W*)d~ .

V ~
The last result can be written in the form

r [.!...- (W'P'*) - div {.!:.!!- (If*Y'"lfJ Ot 2rn
v

- lfY'lf*) }JdV = 0, (21.34)

or, after decreasing the volume V to a point,

:t (lflf*) - div [ ~~n (If*Y'lI' - lfY'W*)J= O. (21.:35)
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'I< The functions 'P' C;, t) and qJ (;:'j are related to each other through
a relation of the type (20.16).

x
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Passage of a Particle Under or
Over a Potential Barrier

Fig. 21.3

(21.38)

(21.39)

k=V2mE/tz,
Y2m(U-E)

x= Ii

. _. iii ( dqJ * * dqJ )I-2m cp~-cp a:; .

By drawing an analogy between (21.34) and (21.31) [or
between (21.35) and (21.32)], we come to the conclusion
that the Schrodinger equation corresponds to some quan­
tum-mechanical continuity equation, if in addition to the
probability density*

p = 1¥*1Jf = cP*cP (21.36)

we also introduce the vector of probability flow den8ity
-:" in . ill
] = 2m (1Jf'V1Jf*- 1Jf*'V1Jf) ="2,;"i" (cp\7cp* -. CP*'Vcp). (21.37)

If we interpret (21.36) as the density of particles, then
the vector (21.37) may be considered as the vector of den­
sity of the flow of particles. With such an interpretation
the quantum-mechanical continuity equation (21.35) ex­
presses the law of conservation of the number of parti-
cles. ,,'
In the case of a one-dimensional motion along the .:r-axis,
(21.37) assumes the form

CPt (x) = At exp (ikx) +B t exp (- ikx);

CP2 (x) = A 2 exp (xx) +B 2 exp (- xx);

CPa (x) = Aa exp (ikx) +Ba exp ( - ikx).

In conclusion, let us note that we cannot assign the mean­
ing of "flow" in the literal sense to the quantum-mechan-

ical vectorj, since in order to determine the flow through
any surface we must be able to measure the values of the
velocity (momentum) at fixed points of the surface, which
is obviously in contradiction to the uncertainty relations.

Let us consider a one-dimensional rectangular potential
barrier (Fig. 21.3) and assume that particles arrive at it
from the left with an energy E which is less than the
height U of the barrier. We can isolate three spatial
regions and write the solutions of the Schrodinger equa­
tion (20.13) for these regions:

The terms containing exp (ikx) describe the particles
moving in the positive direction of the x-axis while the
terms containing exp (-ikx) indicate motion in the op­
posite direction. If we take into account that the par-



(21.40)

ticles are moving in the positive direction, we mu
exclude the second term in the function 4l:l: B 3 = O.
The other coefficients are non-zero. The term with At
describes particles falling on the barrier, the term with
B1 describes those reflected from the barrier, while the
term with A., describes particles which have passed
through the barrier.
The conditions of continuity of the wave function and its
derivative at points x = 0 and x = a give the following
system of four equations:

At+Bt=Az+Bz, ')

Az exp (xa) +Bz exp (- xa) = A 3 exp (ika), I
ik(A t -Bt )=x(Az-B2), (

x [A z exp (xa)-Bz exp (-xa)J I
=ikA3 exp(ika). J

It turns out that we have just four equations for five co­
efficients! But actually, only four and not five coef­
ficients are known. The density of flow of particles inci­
dent on the barrier Ulnc) must be given. This density
is given by (21.38), where we must substitute qJ =
= A 1 exp (ikx). As a result of this, we get

jlnc = I At 12 ftk/m. (21.41)

Thus by knowing the quantity jlnc we can determine the
coefficient AI'
Similarly for the density of flow of the reflected particles
we get

(21.42)

and for the density of flow of particles passing through
the barrier we have

hr = I A3 12 nk/m. (21.43)
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Usually in such problems the density jlnc is chosen in
such a way that Al = 1. In this case the system (21.40)
assumes the form

1+Bt =A2+B2 , }

A 2 exp (xa) +Bzexp (- xa) = A3 exp (ika), (21.44)

k (1-Bt ) = X (A z- B2 ),

x [A z exp (xa)-Bz exp (-xa)] = ik A 3 exp (ika).

The system (21.44) is the non-homogeneous system of four
linear equations containing four unknown coefficients.



The inhomogeneous system has a solution for any values
of k and x, i.e. for any values of the energy E of the par­
ticle. This is in agreement with the fact that for infinite
motion of the particle its energy is not quantized.
We can determine the fraction of particles that has passed
through the barrier:

D=itr/itnc. (21.45)

The quantity D is called the transmission coefficient of
the barrier. Solving the system (21.44) (w~ shall omit the
steps), we get

Aa=- :k e-ika[exa(t_ i: r- e- xa (1+ i: )2J-1.
(21.46)

Further, using (21.49) and (21.45),
~' '"

D = 4k2x 2

4k2x 2+(k2+X2)2 sinh2 (xa) .

In the particular case when xa ~ 1,
as

f
· 2a ]D=Doexp. --7': V2m(U--E) •

where

Do=16 Z(1- ~).

we find

(21.47)

(21.47) is simplified

(21.48)

(21.49)

In addition to the transmission coefficient, we also have
the coefficient of reflection at the barrier, defined as the
fraction of the particles reflected by the barrier: R =
= jrer/hnc. It is clear from basic principles that D + R =
= 1 (all the particles not passing through the barrier
must be reflected by it).
Finally we consider the case when a particle passes over
the barrier (E > U). In this case, instead of (21.39) we
get

CPt (x) = exp (ikx) +B t exp (- ikx),

cpz (x) = Azexp (iKx) +Bzexp (- iKx),

CPa (x) = Aaexp (ikx),

where

K = V2m (E - U)/Ii.

Using (21.49), we write the boundary conditions for the
points x = 0 and x = a. We then solve the system of
equations so obtained and find the coefficient B 1• Further,
from (21.42) we determine the coefficient of reflection
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Fig. 21.4

t>
1

I
II ~,

~IIIII--------------R--j-re-t-/j-ln-c-.-I-t--tu-r-n-s-o-u-t-tO-b-e-e-q-U-a-l-t·o------r
I _ (k2_K2)2 sin2 (Ka) ,
j, R - 4k2KLt--(k2-K2)2 sin2 (Ka) • (21.50)

Using (21.47) and (2(50) we can fwd the dependence of
the transmission coefficient D on the ratio E/U. This
dependence is shown graphically in Fig. 21.4. The same
figure shows the dependence D (E /U) for a classical par­
ticle (dotted line). A comparison of the solid curve with
the dotted line indicates the quantum-mechanical na­
ture of microparticles. Note that for E < U in classical
mechanics all particles are reflected from the barrier and
not a single particle passes through. In quantum mechan­
ics, however, a part of the particl~s is reflected and
a part passes through the barrier. For E > U, in classical
mechanics all particles pass through and not a single
particle is reflected, while in quantum mechanics a part
of the particles passes through, and another is reflected.
Both sub-barrier transmission and above-barrier reflection
of microparticles are specifically quantum effects.

(22.1)

(22.4 a)

(22.4 b)

(22.4c)

The Hamiltonian in Some
Specific Problems

The Hamiltonian is of the form
~ ft2 d2 m(i)2,y2

H= - 2m dx2 +-2-'

Section 22

It is obtained from (4.5) by taking (19.1) and (20.4) into
account. The eigenvalues are

En=ft(fJ (n+ ~); n=O, 1, 2, ... (22.2)

[for n = 0 we get from (22.2) the energy of zero-point
oscillations, which was determined in Sec. 4 on the basis
of the uncertainty relations]. The eigenfunctions are

'Pn (x) = y m(fJ!1i exp (- £2/2) H n (£), (22.3)

where £ = x y m(fJ!1i, and H n (£) are called Hermite poly­
nomials. Let us write down the expressions for the first
few functions 'Pn (x):
'Po (x) = (xoVn)-t/2 exp (- x2/2x:) ,

'Pt (x) = (2xo Vn)-t/2 exp (-x2/2x:) 2x/xo,

'P2(X) = (SxoVn)-t/2exp(-x2/2x:)(4 :; -2)

(where X o = Y1ilm(fJ).
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(22.6)
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The Hydrogen Atom

Note. Hermite polynomials, generalized Laguerre polyno­
mials (mentioned below), harmonic functions and Legen­
dre polynomials (introduced in Sec. 20) are called spe­
cial functions. A considerable amount of mathematical
literature has been devoted to special functions and their
applications; for reference we mention l36, 37]. A basic
account of polynomials and associated Legendre functions,
special functions and Hermitian polynomials is given in
Appendix E.

The problem of the hydrogen atom is a well-known exam­
ple of the motion of an electron in a spherically symmetric.
al Coulomb field. The Hamiltonian has the form
~ 1i2 e2

HI=--~--2m r (22.5)

[it is obtained from (4.1) by using (19.1) and (20.6)].
The eigenvalues 'If (this Hamiltonian are given by the
following familiar expression [see (2.5)]:

En = -me"-/21i2n2 ; n = 1, 2, 3, ....

The eigenfunctions of the Hamiltonian (22.5) may be
expressed in the form

1J'nlm = R nl (r) Ylm~(8,j cp); 1=0, 1, •.. , n-1;
(22.7)

m=O, ±1, "', ± l.

Here y 1m (8, cp) are spherical functions. They define the
"angular part" of the wave function irrespective of the
particular form of the spherically symmetrical potential;
Rnl (r) is the "radial part" of the wave function, it is
defined by (21.30) with the Coulomb potential [U (r) =
= - e2/r]. The form of the function Rnl (r) is described
by the expression

Rnl:(r) = const exp (r/rin)I(2r/rin)1 L~I:,t~(2rlrin), (22.8)

where r1 = 1i2/me2 (this quantity is already known to the
reader as the radius of Bohr's first orbit) and L~~/ are
the so-called generalized Laguerre functions (see, for
example, [36]).
Expressions for some of the first harmonic functions have
been given in Sec. 21 [see (21.26)]. We shall now give the
expressions for the first few functions R nl (r):

RiO = 2r1 3/ 2 exp (- rlrl), (22.9a)

R 20 = (2rD-l/2 exp (- r/2rl) (t - 2~1 ) , (22.9b)

R 2i = (2 -V 6rn- i exp (- r/2rl) r/r1• (22.9c)

I '
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On Degeneracy of Energy Levels

In Sec. 5, when discussing the concept of an electron clou ",
we introduced the functions Un I and Z 1m' Figure 5.2 (a)~
showed the form of some of the functions W n I (r) =.
= r2un z (r), while Fig. 5.2 (b) showed some of the func­
tions Z Zm- Returning to the functions considered in this
section, we note)hat unz=R;tz (r) and!Zzm= I Y lm (e,q» I'.
In particular, we note that (5.4) is in agreement
with (22.9a).
By using (22.9) and (21.26), we can write the first few
eigenfunctions of the Hamiltonian (22.5):

\jJ160 = (nrD- 1/2 exp (- r/r1)' (22.10a)

\jJ200=(SnrD- 1/ 2 exp(-r/2r1) (1- 2~1)' (22.10b)

\jJ211 = (sVnr; t 1exp ( - r/2r1) sin eet(j)r/r1' (22.10c)

'¢210 = (4 V2nr~ti exp ( - r/2r1) cos er/ri' (22.10d)

The function (22.10a) describes the ground state of the
hydrogen atom, while the functions (22.10b)-(22.10d)
describe the excited states corresponding to the first ex- /
cited energy level (n = 2).

It follows from (22.6) that the energy of an electron in
the hydrogen atom is determined only by the quantum
number n, whil e the states (the functions ~)n Zm) are de­
termined by three quantum numbers n, land m. Besides,
when considering electronic states we must take into
account the quantum number (J which does not occur in
these expressions.Since for a given value of the principal
quantum number n the orbital quantum number l assumes
integral values from 0 to n - 1, and for every l the
magnetic quantum number acquires 2l + 1 values, the
following gn states must correspond to an energy level En:

n-l

gn = 2 ')1. (2l +1) = 2n2 (22.11)
z=o

(the factor 2 takes account of the two spin states of the
electron). This means that the eigenvalue En of the Ha­
miltonian (22.5) (in other words, the nth energy level) .'
is 2n2-fold degenerate. l
Degeneracy of energy levels, as a rule, is associated with i
symmetry in the atomic system. Thus, for example, owing
to the spherical symmetry of intra-atomic fields, there is i
degeneracy of the quantum numbers mand a-the energy
is independent of the orientation of the orbital momentum
and the spin momentum of the electron. The degeneracy

,of the quantum number l is .associated with the specific
nature of the Coulomb potential; in non-Coulomb fields



the energy of the electron depends not only on n but also
on 1.
Various fields, external as well as internal, may lower
the degree of symmetryofthe system. Thus, for example,
"switching on" an external electric field leads to the ap­
pearance of a physically distinguished direction. As a
result, the spherical symmetry disappears and is replaced
by cylindric< I symmetry. A decrease in symmetry lEads
to a removal of degeneracy (partial or total). This is
exhibited in a splitting of energy levels, i.e. in their con­
version into sets of Jl( w, less degenerate levels. Splitting
of energy levels in an external electric field is known as
Stark's effect, while the splitting in an external magnetic
field is known as Zeeman's effect.

The Hamiltonian of a crystal consisting of N nuclei and
ZN electrons can be ~ written in the form

N .' ZN
~ 1"'1~ 1~~

H = 2M LJPf+ 2m LJ p~
i A

., -t-- .....

+Ud{rk}) +Uz ({R i }) +Us ({rk}' {R i }), (22.12)

where M is the mass of the nucleus, Pi is the momentum
operator for the ith nucleus, m is the mass of the electron,

Pk is the momentum operator for the kth electron, {;k}
is the set of coordinates of the electrons, {R i} is the set
of coordinates of the nuclei. The function U 1 desclibes the
interaction of electrons. It is of the form

Ut = ~ ~ ~e2/rk/' (22.13)
kcf:-l

where rR/ is the distance between the kth and Ith electrons.
The function U 2 describes the mutual interaction of the
nuclei, while the function U 3 describes the interaction
of the nuclei with the electrons.*
Since M ~ m, the nuclei move much more slowly than
the electrons. This permits us to consider the motions of
nuclei and electrons separately: when considering the
motion of electrons, we assume that the nuclei are sta­
tionary, while when considering the motion of the nuclei,
we assume that the electrons colIectively create an aver­
age field which is independent of the coordinate of indi­
vidual electrons. In this case the waye function of the

• The functionsUi. U2 , Ua, describing the various interaction
potentids, in .fact correspond to operators in the coordinate repre~

se~tation. .

Sec. 22

Crystal; the Adiabatic
Approximation
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crystal may be represented in the form of a product Of'
"nuclear" and "electronic" functions:

~ -+ -+--+-

'IjJ ({rk}, {R1}) = 'I' ({R1}) CPe ({rk}). (22.14)

We also represent the Hamiltonian (22.12) as a sum of the
"nuclear" Hamiltonian HI and the "electronic" Hamilton­
ian iI2:

(22.15)

(22.17)

(22.16)
~ 1 ~ ~ 1 ~ e2 .....

H2 = 2m LJP~+2 LJ ~ r;-+U3 ({rk }).

k k4=1 I

The function U 3 describes the potential energy of the
electrons in the field of the nuclei which are located at the
lattice sites in the crystal.
Thus, instead of solving an extremely complicated Schro­
dinger equation for the entire crystal

" ~ -+ ~-+

H'IjJ ({rk}, {R i }) = Ecr\jJ({rk}, {R i})

it is enough to solve two much simpler equations:
(a) for nuclei (for crystal lattice)

jj1'I'({Ri }) =Elat'I'~({Rtl),
(b) for electrons
~..... .....

H 2CPe ({rk}) = Eecpe ({rk}),

(22.18)

(22.19)

One-Electron Approximation

where Ecr = Elat + Ee. This approximation is called
adiabatic.
In conclusion, we make a fairly important clarification.
When using the adiabatic approximation we consider,
strictly speaking, not the bare nuclei, but nuclei together
with those electrons which are tightly bound to them.
Consequently, when we speak about a separate treatment
-of the electrons ensemble, we mean not all the electrons,
but only those which have been "collectivized" by the
crystal (in other words, the electrons moving over the
crystal lattice, for example, the conduction electrons).

In accordance with the adiabatic approximation, we
shall consider, without going into the dynamics of the
crystal lattice, the motion of electrons which have been
"collectivized" by the crystal. We use the expression

(22.16) and consider that the function U3 ({;k}) may be
represented as a summation over the "collectivized"



(22.21)

f electrons (,ince each electron interacts with the lattice
~ field independently from other electrons): U3 ({;k}) =

= L} U~ (;k). In this case the "electronic" Hamiltonian
k

(22.16) assumes the form

~ 1 ~~! 1 ~ ~ e! ~ -+
H= 2m LJPk+2: LJLJ rkl + LJUdrk)' (22.20)

k k~l k

Further simplification is based on the assumption that

the term ~ LjL} e2/rkl in (22.20) may be approximated by
k I

a summation over the electrons:
1 ~ ~ e2 -+
2: LJ LJ '7kl ~ ~ U5 (rk)'

k~l k ..
In other words, when considering electron-electron in­
teraction, it is assumed that each electron moves in a
certain field which is common for the whole ensemble
(it is called the self-consistent field). As a result, the Ha­
miltonian of the electron ensemble can be represented as
a sum of "one-electron" Hamiltonian. This allows us to
represent the wave function of the ensemble in the form of
a product of "one-electron" functions [we denote them by...
<p (rk)], after which the Schrodinger equation for the elec­
tron ensemble turns into set of "om-electron" equations
of the form

(22.22)

i
I ~

.+ •
Here p and r are the momentum operator and the coor-
dinate of one of the "collectivized" electrons, E being the
energy of the electron.
Thus, by using (22.21) we can go over from a considera­
tion of the electron ensemble to consideration of a single
electron moving in the field:

-+ -+ -+

U(r)=U.(r)+U~(r). (22.23)
This transition is called the one-electron approximation.

The potential U (-;) is a periodic function with the period
of the crystal lattice. It will be shown in Sec. 24 that the
energy of an electron moving in a periodic field is broken
up into alternate bands of allowed and forbidden values,
Le. has a band structure. An electron bound to an atom has
energy levels, while a free electron is characterized by a
continuous energy spectrum. An electron "collectivized"
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by the crystal occupies an "intermediate" position to a,
certain extent-it is "free", but only within the limits of
the crystal. The band structure of the energy states of
such an electron is obvious and is "intermediate" between
the structure of discrete levels and that of a continuous
spectrum.
The relative freedom of movement of a "collectivized"
eleotron is reflected, in particular, in its wave function~

which is represented in the form of what are called Bloch
functions:

(22.24)

The Hamiltonian of the
Interaction of an Electron with
Electromagnetic Radiation

This is the wave function (15.15) of a free electron, modu­

lated by the function u (---;), which has the period of the

potential U (~ (for more about Bloch functions, see
Sec. 24).

We shall consider the system of a bound electron plus
radiation. In the absence of interaction between the elec~

tron and the radiation, the system is described by the
"unperturbed" Hamiltonian:

_;;9 ~

H O=2m-+ U +Hv, (22.25)

where p2/2m + U is the Hamiltonian of the electron, and
Hv is the Hamiltonian of the radiation. In the case of
interaction between the electron and the radiation, the
system is described by a "perturbed" Hamiltonian

11 = (~- : 1)212m +U +Iiv (22.26)

I
~.

wIleI'cl A is tile oparator of the vector potential of tile ra­
diation field [we recall that in the coordinate'representa-

-+-+ -+-+ .

tionA (r) = A (r)l*. Note that the field potentials here
have beem chosen in such a way that the well-known cal-

ibration conditions div ;; = 0 and <p = 0 (<p is the scalar
potential of the field) are satisfied. Next, we represent the
Hamiltonian in the following form:

(22.27)
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* It is shown in classical field theory [381 that the interaction of
a charge with an electromagnetic field may be considered by replac-

~ -+- e-+
ing p by p - -; A. We use this classical result here, replacing

the dynamic variables with the corresponding operators.
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2t5

Momentum and Coordinate
Operators in the Momentum
Representation

(23.1)

Transition to the Momentum
RepresentationSection 23

We shall show how to go over from the coordinate to
the momentum representation and shall give some re­
sults in the momentum representation.

Obviously, the momentum operator in the momentum
representation is the momentum itself:

,... e ~ -+ e2

Ht= -2me(pA) + 2meZ A2. (22.29)

It should be noted here that the Hamiltonian (22.29) is
responsible for all processes of absorption and emission
(spontaneous as w¥ll, as induced) of photons by an elec­
tron.

where fi' is the interaction Hamiltonian, which plays
the role of the perturbation. Comparing (22.25), (22.26)
and (22.27), we find that

"., e ~-+ -+~ e2

H t = - -2-[pA) + (Ap)] -+ -2zA2. (22.28): me me
This expression can be somewhat simplified if we put,in

..:+-+ -+ -+ -+-.:;: -+0-+

accordance with (20.27), pA (r) -A(r) p=-ilidivA(r).

Using the fact that div 1= 0, we get

Px=Px; P=p·

We shall, therefore, go over directly to a consideration
of the x-coordinate.
Suppose that the amplitude of a state is given in the coor­
dinate representation by the function cp (x), and in the
momentum representation by the function <1> (Px)' By
using (17.33), we can write

. ) cp* (x) X(x) cp (x) dx= ) <1>* (Px) x(Px) <1> (Px) dpxo (23.2)

The relation between the functions cp (x) and <1> (Px),
according to (15.6), is of the form

q> (x) = J<1> (Px) '¢px (x) dpx' (23.3)

where '¢px (x) are the eigenfunctions of the operator Px
in the coordinate representation. By using (20.9) we can
-rewrite the expression (23.3) in the following form:

q> (x) = (2nli)-1/2 ~ <1> (Px) exp (iPxx/li) dpx' (23.4)



(23.8}

00

- in Jd;x [<1>exp (iPxxlh)) dpx
-00

By substituting (23.4) in the left-hand side of the equal­
ity (23.2), we get

Jlp* (x) xlp (x) dx

= 2~nJ JJ<1>* (p~) e-iP~x/nx<1>(px)/pxx/ndp~dpxdx. (23.5)

The factor x <1>(px) exp (iPxxltt) under the integral sign
in (23.5) may be expressed in the following form:

x<1>(px) exp (ipxxln) = - in dd [<1>exp (ipxx/n))
Px

+iti dd<D exp (ipxx/n). (23.6)
Px

We substitute (23.6) into (23.5) and consider the integral
with respect to Px' In so doing, we take into account that

=- in <1> (Px) exp (ipxx/n) 1:'
00

= 0

[since it is physically impossible to attain an infinitely
large momentum, we get <1> (00) = 0 and <1> (-00) = 0).
Thus in the integral with respect to Px, only the second

term on the right-hand side of (23.6), indd<D exp (ipxx/n)
Px

should remain. As a result, (23.5) assumes the form

Jlp* (x) xlp(x) dx

= 2~nJ JJ<1>* (p~) in exp [i(Px-p~)xltt) d~~:x) dp~dpxdx.

(23.7)

Integration with respect to x on the right-hand side of
this equation gives, according to (15.17),

(2nnt 1 Jexp[i(px-p~)x/n)dx=c5(px-p~)·

Further, using the property of the delta function, we per­
form an integration with respect to p~:

J<1>* (P~) c5 (Px- p~) dp~ = <1>* (Px)'

As a result, we are left with only the integral with respect
to Px' and (23.7) assumes the form
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Comparing the right-hand sides of (23.8) and (23.2), we
find the expression for the x-coordinate operator in the
momentum representation:
~ . d
x (Px) = In -d-. (23.9)

Px

A generalization to the three-dimensional case gives
..+-->-
r (p) = itt V-->-' (23.10)

p

where V-->- is the gradient in the momentum space.
p

By using (23.1) and (23.9) it is easy to see that the com­
mutators of the operators of the coordinate and momen­
tum components will be exactly the same in the momen­
tum representation, as in the coordinate representation
[we are speaking of the expressions (20.24)-(20.26)]. This
conclusion may abo be extended to the expressions
(20.27)-(20.30). (n other words, the commutation rela­
tions are independent of the choice of a representation,
i.e. are unitary invariants. This is quite natural, if we
recall that the mathematical fact of commutation of
operators has a definite physical meaning which, obvious­
ly, cannot change while going over from one representa­
tion to another.

Going over to the momentum representation, we can
write (20.11) in the fOlllll

Ii (Px) TEl (Px)=ETF(Px). (23.11)
where T E (Px) are the eigenfunctions of the Hamiltonian
in the momentum representation. Note that the quanti­
ties E in (23.11) are exactly the same as in (20.11), since
the spectrum of eigenvalues of a Hermitian operator is
a unitary invariant. Since in the momentum representa-

tionpx = Px and x= in -dd, the Hamiltonian (20.12)
Px

will now have the form

iJ (Px) = f~ +U (in d;x). (23.12)

As a result, we get the following equation in place of
(20.13) :

(:~ - E) TE (Px) +U(in ~;=) = O. (23.13)

This is the time-independent Schrodinger equation in the
momentum representation.
As an example, let us write out the Hamiltonian of a
linear ha,rmonic oscillator:
~ pi mw2Jj2 d2

H (Px) = 2m --2- dpi. (23.14)

Sec. 23

Unitary Invariance of the
Commutation Relations

Schrodinger Equation in the
Momentum Representation
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Compare this expression with (22.1), which describes the
same Hamiltonian in the coordinate representation.
The momentum representation allows us to obtain fairly
easily one result with which the reader is already famil­
iar. If a microparticle moves freely, equation (23.13)
is obviously simplified:

( :~ - E) 1:E (Px) = 0, (23.15)

from which it immediately follows that

E = p~/2m. (23.16)

The result (23.16) has been already mentioned in Sec. 1.
It means that a freely moving particle simultaneously
possesses a definite energy and a definite momentum;
moreover, these quantities are related to each other by
the classical relation (23.16). In the case of a freely mov­
ing microparticle, the stationary state is also an eigen­
function of the momentum operator. We emphasize that
this can in no way be extended to bound microparticles
(see the following example).

In Sec. 21 we considered the problem of the motion of
a particle in a one-dimensional rectangular potential
well with infinitely high walls in the coordinate repre­
sentation. The energy levels (21.8) and the orthonorma­
lized amplitudes of stationary states (21. 9) were deter­
mined.
When going over to the momentum representation, the
result (21.8) obviously does not change, while the result
(21. 9) changes. By finding the amplitude of stationary
states in the momentum representation, we can also find
the probability of values of momentum of a particle in
the n-th energy state. We denote these amplitudes by
Tn (Px); the required probability will then be l1:n (Px)1 2•

The amplitude 1:n (Px) are related to the amplitude of
stationary states in the coordinate representation [to
the amplitudes qJn (x)] by superposition relations of the
same type as (23.3):

1:n (Px) = JqJn (x) 'i'~ (Px) dx, (23.17)
A

where 'i'~ (Px) are the eigenfunctions of the operator x
in the momentum representation. By using the fact that
'tjJ~ (Px) = 1/lp~ (x), and (20.9), we can rewrite (23.17) in
the following form:

Probability of Momentum Value~

for a Particle in a Rectangular
Well with Infinitely High Walls
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1:n (Px) = (2nn)-1/2 JqJn (x) exp ,( - iPxxl1i) dx.
o

(23.18)



By substituting (21.9) into this equation and integration,
we finally come to the following expressions for the prob­
,ability:

I T ( ) 12 = 4nan2
{ cos2( ~~a) , n is odd

n Px ( p2a2 ) 2
Ii n

2
n

2
_ :-2 . 2(_Pxa ) n l'S

n sIn 2ft' even

(23.19)

Thus, it has been rigorously shown that the stationary
states (energy levels) of a particle in the potential well
are not characterized by a definite momentum but by a
-corresponding definite de Broglie wavelength. We re­
mind the reader that this circumstance was qualitatively
discussed in Sec. 5"when we solved futility of a graphical
representation oCa bound microparticle in the form of a
-classical wave in a ,resonator.

Summing up, we can compile a "scheme" for the transi­
tion from one representation to another as follows:

1L------~

This "scheme" assumes two methods of transition. The
first method: the Schr5dinger equation with the Hamilton-

ian Ii (x) is solved and the amplitudes of stationary states
q)n (x) are found in the coordinate representation. Then
with the help of the superposition relation (23.17) we
perform a transition from the amplitudes CPn (x) to the
amplitudes Tn (Px)' This is the method that was adopted
in the above example. However, it is also possible to

follow a second method: the transition from H (x) to

if (Px) is made and the Schr5dinger equation in the mo­
mentum representation (23.13) is solved. In this case,
the derivation of the amplitudes Tn (Px) is reduced to the
solution of the equation (23.13).

Sec. 23

------~-~- -------.,.

A Scheme for the Transition
from the Coordinate to the
Momentum Representation
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The quantum-mechanical problem of an electron in a
periodic field plays an important role in the solid-state
theory. We turn to this problem, using the one-electron
approximation discussed in Sec. 22.

Let us consider a one-dimensional periodic potential
U (x) satisfying the condition

U (x + p) = U (x). (24.1)

Following the second method in the scheme given at the
end of the preceding section, we change over to the
momentum representation. This means that the poten­
tial U(x) should be expressed as an operator in the mo-

mentum representation, tJ (P:x;). (In order to simplify
the notation we shall write P for Px here.)
We expand the periodic function (24.1) in a Fourier series:

The Band Structure of the
Energy Spectrum. Brillouin Zones

;··----··-·----s-e-c-ti-o-n-2-4--------~-i~-ld-E-re-c -tr-o-n-j-n-a-p-e-r,·rO·d·rc·.-"

~

00

U (x) = ~ U n~exp (- i2nnx/a)
:::I n=-oo

and, changing to the momentum representation, we write

U(p)=
00

~U (
2:rtnh d)exp ----n a dp •

n=-oo

(24.2)

We shall now show that the operator exp (PI d~) is
a displacement operator with a finite displacement in
p-space by the amount P = Pl' This is so, as

dT 1 2 d2't
-r (p + Pi) = -r (p) + Pi dp (p) + 21 Pi dp2 (p) + ...

= [1+Pi d~ + ;, P: :;2 + ... ] -r (p) = exp (Pi ~; ) •
Thus

exp (Pi ~; ) = -r (p +Pi)' (24.3)

From (24.2) and (24.3) it follows that
00

~ ( 2:rth)U(p)-r (p)= ~ Un-r p+-a-n • (24.4)
n=-oo

By using (24.4) we can write the Schrodinger equation
(23.13) in the following form:

'I·:'"

Ir

i
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00

(::-E)-r(p)+ ~ Un-r (p+
2

:rtahn) =0.
n=-oo

(24.5)
J I

j"". '.



In fact, (24.S) isa homogeneous system of linear equations
containing the functions 't (P), 't (p - 2'JTJi/a), 1: (p +
+ 2nfila), etc. Generally speaking, this system consists
of an infinite number of equations:

................................................................ 0 ..

[ (p+;:n/a)2 EJ 't (p + 2:n )

+ ~ UnT: (p+
2nn (:+1) ) = 0,

n
00

[:: -EJ1:(p)+ ~ U n1: (p+
2n:n )=0,} (24.6)

n=-oo

[(p-;:n/a)2 EJ't(p_2~n)

+v2 Un't (p+
2nn

(:-1) ) = O.

.....................................~ ,
Nonzero solutions of this homogeneous system are possible
only if its determinant is equal to zero. We denote this
determinant by D (E, p) and symbolically write

D (E, p) = O. (24.7)

We fix P (let, say, P = PI) and write the roots of equation
(24.7) as E I (PI)' E 2 (PI)' E 3 (PI), .... For a different
value of P (say P = P2) we get new roots: E I (P2)' E 2 (P2)'
E 3 (P2)' .... By choosing different values of P, we
finally get a set of functions defined by equation (24.7):

E 1 (p), E 2 (p), E a (p), ... , E j (P), ••• (24.8)

For every index j, the energy is a continuous function of
the momentum. By assuming that these functions are
bounded we write for the index j

E min /" E .( ) <" E max (24 . 9)j """" j P "'" j •

The inequalities (24.9) include the energy values for the
microparticle which constitute the jth energy band. If
Ef-af < Emr, we get a region of unattainable energy
values between the (j - 1)th and jth energy bands. This
region is llsually called the forbidden band.
Thus, the energy spectrum of an electron in a periodic
field must consist of a number of energy bands, some of
which may be separated by forbidden bands. Within every
energy band the energy varies continuously; it is described
by some contil1luous function Ej (p).
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(24.11)·

...---------------------..
II ro;.:::pl:;~nft:.lrlr tll~~:nh~~::~;::tem (24.6) transJ,:
I~ Ej (p+2n:

n)=Ej (p). (24.10}
I.'

1:1 Since the above replacement does not change anything,
I' we can say that the momentum p has physically differentr:i values within the limits of the band:

Ii' . - nti/a -< p -< nfi/a.

r

Ii'"

i.'

In other words, the p-space is split into intervals of length
2nfi/a, and one has to consider p only within the limits
of one individual interval. These intervals are called the
Brillouin zones. In this case we are dealing with one­
dimensional Brillouin zones. In general, the Brillouin
zones are three-dimensional; they often have a very com­
plex configuration, which reflects the specific nature of
the periodic field under consideration.
The band structure of the energy spectrum is characteris­
tic of an electron moving in the periodic field of a crystal
lattice. The concepts of energy bands and Brillouin zones
form the basis of the modern electronic theory of solids
(see, for example, [39, 40]).

BLOCH FUNCTIONS. Let us consider the jth energy band. Figure
(24.1) shows the dependence EJ (p) for this band. We choose some
value EO from this band and denote by pO the corresponding value

Fig. 24.1

of the momentum for motion to the right. The wave function of
the chosen stationary state is denoted through ..~ (p). It can be

easily seen that this function differs from zero only forp =
= pO + 2Jtnn/a [it can be seen from the figure that only at th~se
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points does the curve Ej (P) intersect the straight linelE = EO].
Hence the function -r~ (p) may be written in the form

-rJ(p)= ~Q(P)6(po+2nann_p). (24.12)
n

Next, we go over to the coordinate representation by using the
familiar; rule (23.4):

co

(fJ (x) = (2nn)-1/2 J-rJ (p) exp (ipx/h) dp.

-co

we can rewrite the above result in the following form:

(fJ (x) = uJ (x) exp (ipox/h).

The explicit form of the function uJ (x) is not known [in~order to

know it, we should have known the explicit form of U (x)]. How­
ever, it can be seen from (24.13) that the function u~ (x) is periodic
with the period of the field:

uJ(x+a)=uH;:)· (24.14)

Thus, the wave function of a stationary state given by the indices
j and p has the following form in coordinate representation [ef.
(22.24)]:

y.. '

Substituting (24.12) into this, we get

(f~(x)=(2nli)-1/2 ~ g (po+2n
a
lin)

n

X exp [t (po+ 2n:ln) XIii].
By introducing the notation

(2nli)-1/2 ~ Q (po+ 2n:n) exp (i 2n
a
nx) = uJ (x),

n

(24.13)

This is a plane wave [exp (ipx/Ii)] whose amplitude [Ujp (x)] is
periodic with the period of the field. The functions (24.15) are
referred to as Bloch functions in the literature.
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(24.15)

The Kronig-Penney Potential

Fig. 24.2

(fjp (x)=Ujp (x) exp (ipx/h).

tet us consider the motion of a particle is a field whose
potential is shown in Fig. 24.2 (the so-called Kronig­
Penney potential). This is the simplest case of a periodic
potential.
Figure 24.2 shows three spatial regions. Assuming first
that E > U 0' we write the solution of the Schrodinger
eqnation (20.13):

Sec. 24



, ,..
for region 1

qJdx)=Ai exp (ikix)+Bi exp (-ikix);

ki = V2m (E-Uo)//i;
for region 2

qJ2(x)=A2 exp (ik2x)+B2 exp (-ik2x); k2=V2mE//i.

The solution for region 3 may be expressed in terms of
the solution for region 1 by using results obtained pre­
viously. Let us take a certain point x of region 3. Accord­
ing to (24.15), we can write

qJa (x) = u (x) exp (ipx//i). (24.16)

The symmetric point x - 1 in region 1 corresponds to
the chosen point. At the point x - 1 we have

qJl (x - 1) = u (x - l) exp lip (x - l)//i].

In accordance with (24.14), we rewrite this equality in
the form
qJl (x - l) = u (x) exp lip (x - l)//il. (24.17)

From (24.16) and (24.17) we find qJa (x) exp (- ipx//i) =
= qJl (x - l) exp (- ipx//i) exp (ipl//i) or, finally,

qJa (x) = exp (ipl//i){A i exp [ikdx-l)]

+B i exp [-ik.(x-l)]} (24.18)

By using (24.18) and the expression for qJl and qJ2' we
can write the continuity conditions for the wave function
and its first derivative at the points corresponding to the
potential jump (the points x = 0 and x = a). These con­
ditions form a homogeneous system of linear equations in
terms of the coefficients AI' B l , A 2 , B 2 :

Ai +Bi =A2 +B2

Ai exp (ik2a) +Bi exp (-ik2a)

= exp (ipll/i)[A i exp (- ikib) +B i exp (ikib)],

kiAi-kiBi = k2A2-k2B 2,

k2[A2 exp (ik2a)-B2 exp (-ik2a)]

=exp (ipll/i)[A i exp (-ikib)-Bi exp (ikib)]kio

By equating the determinant of this system to zero, we
get the following system (we omit the intermediate steps):

.cos (pll/i) = cos (~a) cos (kib) kJ;;;k:i sin (k2a) sin (kib).

(24.19)



Since the modulus of the cosine cannot be greater than
unity, we get the following condition imposed on quanti­
ties k1 and k 2 and, hence, on E:

-1-<: [cos (kza) cos (k1b)- kJ::~~ sin (k2a) sin (k1b)]<;: 1.

(24.20)
This condition defines the allowed energy bands.
We nex t consider the case when E < U o.
Now k1 is an imaginary quantity. Suppose k1 = ik 3 ,

where k 3 = V2m (Uo - E)/li. Since by replacing k1 by
ik3 the cosine and the sine are converted into hyperbolic
cosine and hyperbolic sine, respectively [cos (k1b) -+
-+cosh (k 3b); sin (k1b) -+ i sinh (k 3b)1, we can make use
of the result (24.19), which in this case assumes the form

cos ( ~ ) = cos (k2tl) cosh (k3b)

+ ~k---;":~ sin (k2a) sinh (k3b). (24.21)

Accordingly, the condition (24.20) defining the energy
bands is transformed into the following form:

-1 -<: [cos (kza) cosh (k3b)

+ k;k~k:i sin (kza) sinh (k3b) ] -<: 1. (24.22)

Let us consider a special ~dse, when

b '~rr (a ~ l); E!~ Uo (24.23)
(the barriers are narrow and high). Since in this case the
quantity b can become arbitrarily small, we can require
that the following conditions be fulfilled:

bV2mUolli;~ 1, or k3b~ 1. (24.24)

By taking (24.24) into account, we put cosh (k 3b) /'OV 1
and sinh (k 3 b) /'OV k 3b, and besides, according to (24.23),

(k~-k~)/2k2k3 ~ k3 /2k2~ ~ YUo/E.

As a result, (24.21) assumes the following form:

cos (pa/li) = F (k 2a), (24.25)

where we have used the notation

F (y) = cos y + (mUoblk2li2 ) sin y.

The condition (24.22) assumes the form

- 1 -<: F (k 2a) -<: 1.

Sec. 24
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p------------------zr
Fig. 24.:3

The function F (k 2a) is shown in Fig. 24.3. The parts of
the k 2a axis, for which the condition (24.27) is satisfied,
have been shaded in the diagram. They correspond to the
allowed energy bands (remember that k 2 = y!2mEln).
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Fig. 24.4

\

\1
\.

Using (24.25)-(24.27), we shall make two remarks. First­
ly, if a ~ 00 (transition to a free electron), cos (k 2a) ~
~ cos (pain); this corresponds to a transition to the clas­
sical relation (23.16) for the energy and momentum of a
particle. Secondly, it can be seen from Fig. 24.3 that a

I
I

I
I

I
:1
'I
I
i

I

discontinuity in the energy of the electron occurs when
cos (pain) = + 1, i.e. for pain = nn, where n is an in­
teger. According to (24.11), this means that the discon­
tinuities in the energy of the electron occur at the boun-
dary of the Brillouin zone. '



Figure (24.4) shows the dependence of the electron energy
on momentum as determined by (24.25). The discontin­
uities in the energy mentioned above are clearly seen
(the energy bands are shown on the left side by hatching).
For comparison the classical dependence of energy on
momentum is shown for a free electron: E = p2/2m.

The conversion of energy levels of an electron in the
atom into energy bands of an electron "collectivized"
by the crystal may be seen as an effect of the removal of
commutation degeneracy.
As was mentioned in Sec. 22, the electron energy in an
atom in the general case of a non-Coulomb potential is
determined by the quantum numbers nand l. This gives
rise to a 2 (2l + 1)-fold degeneracy of this energy. By
assuming that the atom is a part of some perfectly ordered
ensemble of N similar atoms and that it remains isolated
from its neighbours', the degeneracy in the electron energy
must be taken as 2N (2l + i)-fold. The factor N is asso­
ciated with the so-called commutation degeneracy: in an
ordered ensemble, there are no physically isolated atoms,
hence the energy of an electron cannot depend on any of
the N atoms near which it is localized. However, in a real
ensemble (i.e. a crystal), the atoms are not isolated­
they interact with one another. This interaction leads to
a "collectivization" of the electron and a partial removal
of degeneracy of its levels. The level with a 2N (2l + 1)­
fold degeneracy is split up into a system consisting of
N (2l + 1) sublevels, each of which remains doubly de­
generate (according to the spin quantum number 0').

: Thus a "collectivization" of the electron by the crystal
leads to a removal of commutation degeneracy and de­
generacy with respect to the quantum number m.
It is significant that a system of N (2l + 1) sublevels is
in reality not discrete, but forms a band of allowed val­
ues of the electron energy. Indeed, let !1.E be the width
of this system of sublevels, and !1.e be the distance be­
tween the neighbouring sublevels: !1.e = !1.E/N (2l + 1).
For the system of sublevels to be discrete, it is essential
that !1.e > hh, where't is the lifetime of an electron in
a crystal. In other words, the distance between sublevels
must be greater than the uncertainty jn the energy of the
Sublevel described by the relation (3.2). This means that
the condition

Formation of Energy Bands as an
Effect of the Removal of
Commutation Degeneracy

h (2l + 1) N/!1.E < 't (24.28)

must be satisfied. Assuming that N (2l + 1) ~ 1023 ,

'dE ~ 1 eV, we find that't should be more than 108 s,
Le. more than 10 years. Since the real lifetime of a "col-
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lectivized" electron in the crystal may only be less than
this, the relation (24.28) is obviously not satisfied. This
enables us to consider the system of N (2l + 1) sublevels
as an energy band. Naturally the number of electron states
in the band remains finite-the band may "accommodate"
up to 2N (2l + 1) electrons. In this connection we speak
of the degree of filling in of a band, of completely filled
bands, etc.

Section 25 The Probability of Quantum
Transitions

Quantum Transitions and the
Principle of Superposition of
States

We assume that a microparticle undergoes a transition
from one stationary state to another under the action of
some external factor. How to find the probability of such
a transition?
The initial and the final states of the microparticle are
described by functions of the type (20.16). For example,
let the initial state be given by 'l'n (x, t)
= ern (Xl exp (- iEnt/fi). For simplicity, the set of spatial
coordinates is denoted by x. The functions 'J!n satisfy
the Schr6dinger equation (20.17): .

(25.1)

(we shall call it the "unperturbed" equation). The phys­
ical nature of external factor, which causes the quantum
transition of the microparticle, is arbitrary. In particular,
it may be the interaction of the microparticle with electro­
magnetic radiation. In the quantum theory apparatus
such a factor appears in the form of an interaction poten­
tial which must be added to the "unperturbed" Hamilto-
nian fl. In Sec. 22 in the example of the interaction of an
electron with radiation, this "addition" to the Hamilto­
nian was interpreted as some perturbation and was denoted
by it'. We shall use the same notation here. By taking
into account the perturbation iI', we can rewrite the
Schr6dinger equation in the form

(25.2)
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This equation is called the "perturbed" equation. Its
solutions CDn are no longer stationary states. Hence the
index n here does not fix the energy level, but merely
indicates the past history: the given "perturbed" state
has "emerged" from nth "unperturbed" state.



Essentially, the state <Pn is a superposition state:

(25.3)
n

If at a certain time t we "switch on" the corresponding
detector, the superposition (25.3) is destroyed and the
microparticle will be observed in one of the stationary
states, for example, in the state '¥m' This means that the
microparticle has undergone a quantum transition from
the state 1fn to the state 1fm' It is well known that the
probability of such a transition is 1 Xnm 0) 12 •

The reader is in fact familiar with all this. The remarks
made above are in agreement with those made in Sec. 10,
regarding the relation (10.3), which is essentially
equivalent to the.relation (25.3).
Thus, the transition probability is, as expected, the square
of the modulus of the corresponding transition ampli­
tude:

W nm =IXnm(t)12. (25.4)

This amplitude is one of the coefficients in the superposi­
tion (25.3), which is just an expansion of the "perturbed"
state <Pn in terms of "unperturbed" states.

In order to find the probability Wnm , we should first
solve equation (25.2) and then find the expansion coef­
ficients of the solutions obtained for states of the type
(20.16). As can be easily seen, such an approach corre­
sponds to the first method in the "scheme" of transition
from one representation to another, considered in Sec. 23.
The other approach corresponding to the second method
in this scheme, however, is more rational. We shall follow
the second method here.
According to (15.5), the coefficients Xnk of the superposi­
tion (25.3) may be treated as a wave function describing
the "perturbed" state, though not in the coordinate re­
presentation (in the coordinate representation this is done
by the function <pn ), but in the representation of a set of
those physical quantities with respect to which the funo­
tions 1fk are eigenfunctions. Since the functions 1f k are
eigenfunctions of the Hamiltonian, we call this repre­
sentation the energy representation. Thus, following the
second method in the "scheme" in Sec. 23, we must "trans­
late" the "perturbed" equation (25.2) given in the coor­
dinate representation into the energy representation. This
will give us a new equation-the "perturbed" Schrodinger
equation in the energy representation. The solutions

. of this equation will be the required transition ampli-

Sec. 25

Transition to the Energy
Representation
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(25.5)
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tudes. Performing the operations indicated above, we sub­
stitute (25.3) into (25.2), and take into account (25.1).
We get

.~ ", dXnk nr - ~ H' , (t) ur
lft LJ ---cit" Tli - LJ Xnk Tk·

k k

Premultiplying both sides of (25.5) by 1f~ and in­
tegrating with respect to the spatial coordinates, we obtain

(25.6)

i

'[

in L; d~~k I 1f~qrkdx= ~ Xnk I '¥~fI' (t) lJ.'kdx.
k k

Taking into account the orthonormalization of stationary
states, we can rewrite the last expression in the follow·
ing form:

'f;, dXnm ~ r lrr* H- 'ur d
~" -cit = LJ Xnk J T m T k X.

1\

Next, we introduce the expression

Jqr~H'1f"dx=exp (iWmk t ) Jtp:aH'cp"dx

= exp (iwm"t) ( m Iii' Ik), (25.7)

Application of the Method of
Perturbations to Computation of
the Transition Probabilities
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where

wmk=(Em-Ek)/n. (25.8)

Taking into account (25.7) we may rewrite (25.6) in the
following final form:

d i"'V ~
dt Xnm = - T LJ Xnk <m IH' (t) Ik) exp (iWmk t ).

k

(25.9)
Thus, we have obtained the "perturbed" Schrodinger
equation in the energy representation. In fact (25.9) is
not one equation, but a system of equations. We emphasize
that the system (25.9) is more convenient than (25.2),
since by solving this system we can at once determine the
transition amplitudes Xnm' It is also quite significant
that when solving the system (25.9), the perturbation
method can usually be applied.

The perturbation is usually very small, which enables
us to obtain an approximate solution of the system (25.9)
by using the method of perturbations. A small perturbation
means that the function cI>n may be represented in the
furm ':
<Dn="'¥n+An, (25.10)



(25.13)

(25.14)

(25.15)

where An is a small addition to the unperturbed function
'Yn' In accordance with (25.10), we can write

Xnk = 6nk + X~h + xi{~ + Xit3~ +- . . . . (25.11)

It can be easily seen that A = L lxh1i + xi:l. + X~~ +
It

+ ... J 1J'k' According to (25.11), the small addition A
is in turn split into additions differing in the order of
smallness: the functions X<Jk are of the same order as the
perturbation, X~2h are of the order of the square of per­
turbation, etc. Substituting (25.11) into (25.9), we get

d !II + d (2) + d \1,
dt Xnm dt Xnm dt Xnm + ...
- i ~ (~ -L (1) + (2) + ) H~' Ik )- -Ii: LJ Unk I Xnk Xnk ••. (m I )exp (iwmk t .

k

(25.12)

We rewrite (25.12), retaining terms of only first order in
the perturbation:

d <1, i ( 1 H~' I (.)(JtXnm= -Ii m n) exp ~wnmt.

This is the approximate expression for the amplitudes
Xnm, obtained in the first-order approximation in the
method of perturbations.
If it turns out that (m I iI' In) = 0, we must use the
approximate expression for the amplitudes in the second­
order approximation in the method of perturbations. It
is obtained from (25.12) by retaining terms of the second
order in the perturbation:

d (2) i'V (1)( IH~'lk) (. t)dt Xnm = - Ii LJ Xnk m exp lWmk •
k

Similar!y, for the third-order approximation in the method
of perturbations we get

d (3) i ~ (2) ( IH~ , Ik) (. t)- Xnm = ---,;- LJ Xnk m exp ~Wmk
dt "

k

etC.
Knowing the transition amplitudes for any order in the
method of perturbations, we may obtain the transition
probabilities in the corresponding approximation. In
the first approximation, we get, from (25.13),

w;;~ = I X;;~ (t) 1
2

t

= ;21) (mIH'(t)ln) exp (iW mnt)dt\2. (25.1G)
_00

Sec. 25 231



...,-----------------.....
For the second-order approximation in the method of
perturbations we get, from (25.14),

t

w~~ = n\ I~ j X~l~ (t)( m,H' (t) Ik)
k -00

(25.17)

Feynman's Diagrams and the
Calculation of Transition
Probabilities
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. /2X exp (lffimkt) dt ,

etc.
Note that the result (25.17) describes the interference of
amplitudes. The resulting transition amplitude here is
the sum of the transition amplitudes through various in­
termediate states. The impossibility of finding the micro­
particle in any intermediate state leads to the indistin­
guishability of alternatives and permits us to speak of
intermediate states as virtual states.
The further course of action envisages a substitution of...
definite operators H' in expressions of the type (25.16)
and (25.17). In quantum electronics, for example, the
operator (22.29) is used. A detailed consideration of such
questions is beyond the scope of this book. The reader is
advised to refer, for example, to [12, 411, in this connec­
tion.

In conclusion, we return to the Feynman's diagrams
considered in Sec. 6 (see the diagrams 6.1, relating to the
scattering of one electron by another). Note that all the
diagrams shown in Fig. 6.1 are associated with the same
quantum transition-the transition of two electrons from
particular initial states to particular final states. Strictly
speaking, each particular transition must be described by
an infinite number of diagrams, with an ever increasing
number of vertices. In this connection, we recall the re­
mark expressed in Sec. 6: "In order to caloulate the prob­
ability of scattering of an electron by an electron, it
is necessary, in principle, to take into account the Con­
tribution (to this transition) of various processes de­
scribed by different diagrams."
Returning to Feynman's diagrams, we can now clarify
the meaning of the remark quoted above. We can now
explain the meaning of "taking into account" of the con­
tribution from different diagrams. What happens is that
to each diagram there corresponds a definite transition
amplitude. The resulting amplitude is the sum of these
amplitudes. Consequently, in order to compute the prob­
ability of a particular quantum transition, it is necessary
firstly to form all the possible Feynman's diagrams of the
transition and write the amplitudes corresponding to the

t
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(26.1 )

To conclude the book, let us discuss in very general terms
tbe very important problem of the methods of describing
the evolution of microsystems with time. The quantum­
mechanical apparatus so far developed uses three different
methods. Three different forms of the equations of motion
in quantum mechanics correspond to these methods.
We shall discuss these methods below. Usually we refer
to them as three different representations: the Schrodinger
representation, the Heisenberg representation and the
interaction representation (Dirac representation). The term
"representation" is used here in a different, wider sense
than in the previous sections. We may also speak of
Schrodinger's coordinate representation or Schrodinger's
momentum representation. In the previous sections we
restricted ourselves to the Schrodinger representation but
considered various representations, understood in a more
restricted sense-the coordinate, the momentum and the
energy representations. We shall now consider Schrodin­
ger, Heisenberg and Dirac representations, restricting
ourselves to the coordinate representation.

Here, the evolution of a microsystem with time is de- Schrodinger Representation
scribed as an evolution of the amplitudes of states of the given
microsystem:

Sec. 26

various diagrams, and, secondly, sum all these ampli­
tudes and find the square of the modulus of the sum.

In Sec. 6 we had the sentence: "Fortunately, the con­
tribution of different processes (different diagrams) is
different." This means that in practice the method of per­
turbations is used, which allows us to restrict the summa­
tion of amplitudes to just the first few terms. The dimen­
sionless quantity (e2/lic)n j 2, mentioned in Sec. 6, is the
factor which in the above-mentioned sum of amplitudes
contains the amplitudes corresponding to the diagrams
with n vertices. The smallness of this quantity explains
the applicability of the method of perturbations in quan­
tum electrodynamics.
It may be said that the quantum-mechanical idea of in­
terference of transition amplitudes along with the method
of perturbations ft>rtns, from a most general point of view,
the foundation of quantum electrodynamics as a quantum
theory.

Section 26 Ways of Describing
Evolution of Microsystems
with Time
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(26.7)

Heisenberg Representation

The operator U (t, to) satisfies the conditions

{J (to, to) = 1, (26.2)

(;rJ+ = frO = 1. (26.3)

The condition (26.2) is obvious. The condition (26.3) of
unitarity is a direct consequence of the independence of
the normalization of amplitudes of state from the choice
of the instant of time:

J'tlJ* (x, t) 'tlJ (x, t) dx = .\. 'tlJ* (x, to) \jJ (x, to) dx.

The quantum-mechanical equation of motion in the
Schrodinger representation (corresponding to Schrodin­
ger's equation) is of the form

a ~

in at 'tlJ (x, t) = H (x) \jJ (x, t), (26.4)

where the operator Ii does not depend on time. By using
(26.4) and (26.2), we can easily find the form of the
operator rJ (t, to):

fj (t, to) = exp [ - ~ (t - to) H (x) J. (26.5)

The exponent should be treated here as an expansion into
a power series.

'fhe evolution of a microsystem with time is described
as an evolution of Hermitian operators describing a given
microsystem. The amplitudes of states are treated as
time-independent:

<p (x, t) = cp (x, to)' (26.6)

The transition from amplitudes in the Schrodinger repre­
sentation to amplitudes in the Heisenberg representation
is carried out, as can be seen from (26.1), with the help
of the operator 0+ (t, to):

cp (x, t) = {J+ (t, to) 'tlJ (x, to).

For, substituting (26.1) into (26.7), we get

cp (x, t) = O+U'tlJ (x, to) = 'tlJ (x, to)

= {; (to, to) cp (x, to) = cp (x, to)

Let L (x) be the operator of some physical quantity in
Schrodinger's representation. According to (17.32) and
(26.7), this operator in the Heisenberg representation
will have the form :',
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L (x, t) = 0+ (t, to) i (x) rJ (t, to).' (26.8)



Substituting (26.5) into (26.8), we find

1 (x, i) =exp [~ (i-io) H (x)] [(x)

X exp [ - ~ (i-io) H (x) J. (26.9)

Differentiating (26.9) with respect to time, we get

in :t L (x, i) = exp [+(i- to) H (x) ] L (x)H (x)

xexp[ - ~ (i-to)H(x) J-exp[ ~ (t-to) If (x)]

X if (x) L (x) exp [ - +(t - to)l! (x) l (26.10)

This may be written in the form
a~ ~~ ~ • ~~ ~ •

in 7ft L (x, i) =U+L (x) H (x) U -U+H (x) L (x) U (26.11)

or, by taking into account (26.3), in the form

in :t L (x, i) = [rL (x) O{riT (x) (; - (rIf (x) [JOt i (x) O.

(26.12)

Using (26.8) with respect to the operator £ (x) as well as
the operator if (x), we get the quantum-mechanical equa­
tion of motion in the Heisenberg representation [ef.
(19.10)]:
. lJ- ~ ~

lit 7ft L (x, i) = [L (x, i), H (x, t)]. (26.13)

We note that at the time to we have cp (x, to) = 'I1J (x, to) Comparison of Schri:idinger and

and L (x, to) = L (x), i.e. both the amplitudes of states Heisenberg Representations

and the operators coincide in these two representations.
However, at subsequent moments of time, we encounter
two different situations. In the Schrodinger representation

\ the amplitude of state changes, while the operator re­
mains the same as it was at the moment to; in the Heisen­
berg representation, on the contrary, the operator changes,
while the amplitude of state remains the same as it
was at the moment to' It could be said that in the Schro­
dinger representation the dependence on time is shifted
to the amplitudes of states, and in the Heisenberg repre­
sentation, to the operators.
For practical calculations, it is usually more convenient
to use the Schrodinger representation. However, the Hei­
senberg representation has the advantage that it permits
us to draw a mathematical analogy between quantum
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Interaction Representation (Dirac
Representation)

mechanics and classical mechanics. In Heisenberg's
representation the quantum-mechanical relations have
the form of classical relations, in which the physical
quantities are replaced by operators (in this connection,
we recall the last item of Sec. 20).
Schrodinger, when he introduced in 1926 the representa­
tion now named after him, considered the time-dependent
amplitudes of states as the amplitudes of certain waves,
and thus gave birth to the subject of "wave mechanics".
A year earlier, Heisenberg proposed his method of de­
scribing the evolution of microsystems with time, thus
introducing for the first time equation (26.13) in matrix
form. This gave rise to the subject of "matrix mechanics".
The difference between both these subjects is reduced to
the above-mentioned difference between the Schrodinger
and the Heisenberg representations, Le. it is of a strictly
formal, mathematical nature.

Suppose that the Hamiltonian of a microsystem can be
broken into two components, one of which (if0) represents
the Hamiltonian of the microsystem itself, and the other
(if1) describes the interaction of the initial microsystem
with external fields or other systems (in other words, is
"responsible" for the effect of perturbation of the initial
microsystem) :

(26.14)

In this case, it is convenient to use the interaction repre­
sentation introduced by Dirac.
The amplitude of state '¥ (x, t) in the interaction repre­
sentation is expressed through the amplitude of state
'I\J (x, t) in the Schrodinger representation in the following
way:

'¥ (x, t) = exp [~ Ho (x) (t- to)] 'I\J (x, t). (26.15)

(26.16)
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In accordance with (17.32) we find from here the form 01
the operator £B (x, t) in the interaction representation:

LB (x, t) = exp [~ (t - to)lfo (x)] L (x)

xexp[ - ~- (t-to)Ho(x)].

We emphasize that in (26.15) and (26.16) we have used
not the entire Hamiltonian, but just its "unperturbed"
component iI 0 (x). Differentiating (26.15) with respect



to time, we get

iii :t 'I' (x, t) = -flo (x) 'I' (x, t)

+ iii exp [+(t- to) i/o (x)] :t '" (x, t).

Since

iii :t ",(x, t)=[Ho(x)+HtCx , t)J'" (x, t),

the last result can be written in the following form:

iii :t 'I'(x, t)=exp[ ~ (t-to)Ho(x) ]lItCx, t) '" (x, t)

=exp[+(t-to) H o(x)] Ht exp[ - ~ (t-to)llo(x) J
X 1f (x, t) = flf (x, t) 'I' (x, t). (26.17)

Combining the results obtained above, we write the quan­
tum-mechanical equations of motion in the interaction
representation as
. a ~ ~ ~

(Ii 7ft L B (x, t) = [L B (x, t), H o(x, t)J,

fn :t 'I' (x, t) = iff (x, t) 'I' (x, t)

(26.18)

(26.19)

[note that (26.18) is obtained as a result of differentia­
tion of (26.16) with respect to timeJ.
Thus, in the interaction representation, the dependence
of the amplitude of state on time is determined by the
interaction (perturbation) Hamiltonian iff, while the
time dependence of the operator is determined by the
"unperturbed" Hamiltonian lio. In this sense the inter­
action representation lies in between the Schrodinger and
the Heisenberg representations.

The vector analogy enables us to compare quite clearly On the Vector Analogy Again
all the three representations considered above. We cor-
relate the system of basic states of the microparticle with
the system of mutually orthogonal basic vectors in some
arbitrary space. We shall consider all operators in matrix
form defined by the system of basic vectors. The states
of the microparticle are described by vectors considered
in the coordinate system defined by the basic vectors.
Thus we have a system of basic vectors and a set of vector
states to be considered relative to this system.
We now turn to various representations. In Schrodinger's
representation the evolution of a microparticle with time
assumes a rotation of the vector state relative to the sta-
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One Additional Remark
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tionary system of basic vectors. In the Heisenberg repre­
sentation the evolution of a microparticle with time as­
sumes, on the contrary, a rotation of the system of basic vec­
tors relative to the stationary vector state. Finally, in
the interaction representation we assume a rotation of
both the system of basic vectors and the vector state.
Moreover, the rotation of the vector state is caused ex­
elusively by the interaction of the microparticle with the
external fields (perturbation) and is therefore dynamic
in nature. The rotation of its system of basic vectors,
however, is not related to the external factors, and is
kinematic in nature.

The methods of describing the evolution of microsys­
tems with time considered above are based on the use of
the quantum-mechanical equations of motion. They assume
a continuous evolution in time of either amplitudes
of states or of certain Hermitian operators, or simulta­
neously of the amplitudes of states and the operators
both. However, there are other qualitatively different
processes. Thus, it is well known that a destruction of
the superposition of states caused by the detector in the
act of measurement leads to an abrupt change in the am­
plitude of state. It is obvious that this change in the am­
plitude does not follow any equation of motion and obeys
only probabilistic predictions.
In this connection two types of process are distinguished
in quantum mechanics: processes associated with a con­
tinuous change in the amplitude of state in accordance
with the equation of motion, and those connected with
abrupt, unpredictable, unambiguous changes in the am­
plitude of state in the act of measurement. In the exist­
ing quantum-mechanical apparatus processes of the first
kind are mainly involved. A considerable increase in
recent times in the interest in quantum-mechanical prob­
lems of measurement indicates the starting point of se­
rious research into processes of the second type (in this
connection see the remarks about the problem of measure­
ment in quantum mechanics in [42]).
It is often believed that the probabilistic interpretation
of quantum mechanics is limited by the introduction of
probability amplitudes, since the latter can be predicted
unambiguously from a solution of the Schrodinger equa­
tion. Such a belief, as can be easily seen, is associated with
a fact that the above-mentioned processes of the second
type are not taken into account. Undoubtedly, these
processes intensify and complicate the probability aspect
of quantum mechanics since they point to the necessity
of considering a sort of "secondary probability"-the



probability of the realization of the amplitude of
probability.
It must be admitted that the theory of quantum-mechani­
cal measurement is still far from complete; processes of
the second type have not been sufficiently incorporated
into the apparatus of quantum mechanics. This means
that modern quantum mechanics, in spite of its strictness
and indisputable mathematical beauty, "conceals" un­
solved problems, which predetermine its further develop­
ment as a physical theory.

On the History of Origin
and Growth of Quantum
Mechanics
(A Brief Historical Survey)

"The Crisis in Phy!ics". 19th century was an era of rapid
growth in physics. It is enough to mention just a few areas:
the achievements in electricity and magnetism which led
to Maxwell's electromagnetic field theory and permitted
the inclusion of optics into the framework of electromag­
netic phenomena; the significant progress in the develop­
ment of classical mechanics which came close to perfec­
tion as the result of a number of brilliant mathematical
works; the enunciation of many universal principles in
physics, of prime importance among them being the law
of conservation and transformation of energy. It is not
astonishing that towards the end of the 19th century it
was generally believed that the description of the laws of
nature was in a final stage. In this respect the famous re­
marks of Planck are worth noting. After defending his
Ph.D. thesis, Planck wrote to his teacher and mentor
Philip J oIly asking his advice as to whether he should
seek a career in theoretical physics. Young man, replied
Jolly, Why do you want to ruin your life? The theoretical
physics is practically finished, the differential equations have
all been solved. A II that is left now is to consider individual
special cases involving variations of initial boundary con­
ditions. Is it worthwhile taking up a job which does not
hold any prospects for the future?
In the August of 1900, the celebrated mathematician Hil­
bert presented his famous 23 problems before the Second
International Congress of Mathematicians. One of these
problems (the sixth one) pertained to axiomation in
physics. Hilbert proposed that a finite number of initial
axioms should be formulated so that all the results needed
for a complete description of the physical picture of the
world could be obtained from them by purely logical
means. The very fact "that such a problem was stated
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speaks in most convincing manner of the belief held by
scientists at the time that a final description of physical
phenomena was at hand.
Events which followed dispelled such illusions very soon.
At the turn of the 20th century a number of fundamental
discoveries which could not be contained within the frame~

work of the existing theories in physics were reported.
The list of these discoveries was quite imposing: X-rays,
the dependence of the mass of an electron on its velocity,
the incomprehensible laws of the photoelectric effect,
radioactivity, etc. It appeared that nature had decided
to "laugh" at the self-confidence of people who thought
they had uncovered all its secrets.
Such an unexpected turn of events forced many physicists
and philosophers to speak of a Gollapse of the earlier foun­
dations, of the impossibility of knowing everything about
matter, of the absence of objective laws of nature, of the
"disappearance of mass", etc. The earlier unanimity was
replaced by sharp differences of opinion about fundamen­
tal ideas.
In his book "Materialism and Empiriocriticism" published
in 1908, V. I. Lenin called this period in the development
of physics a period of "crisis in physics": The essence of
the crisis in modern physics consists in the break-down of
the old laws and basic principles, in the rejection of an objec­
tive reality existing outside the mind, that is, in the replace­
ment of materialism by idealism and agnosticism. '111atter
has disappeared' -one may thus express the fundamental and
characteristic difficulty in relation to many particular ques­
tions which has created this crisis.
Analysing the causes that led to this crisis, Lenin wrote:
I t is mainly because the physicists did not know dialectics
that the new physics strayed into idealism.
Defending the dialectical point of view, Lenin emphasized
that 'Matter disappears' means that the limit within which
we have hitherto known matter disappears and that our know­
ledge is penetrating deeper ....
Lenin pointed out that the period of crisis will culminate
in a new leap in the development of physics and that its
further development will occur on the lines of materialis­
tic dialectics. He wrote: j'IJodern physics is in travail; it
is giving birth to dialectical materialism. The process of
ehild-birth is painful.
Looking back, we can now say that this "travail" led also
to the birth of quantum mechanics. As Lenin envisaged,
the overcoming of this "crisis in physics" resulted in a
deepening of our knowledge of matter, and demanded a
decisive turn from metaphysical to dialectical ideas. This
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was reflected most clearly in the quantum-mechanical
concepts. We have every reason to associate quantum
mechanics with a qualitative leap in our knowledge about
nature (see Sec. 16).
Considering the history of the initial period of quantum
mechanics, we can isolate three distinct stages. The
first stage: end of 19th century-1912 (first experiments and
first attempts to explain them). The second stage: 1913­
1922 (Bohr's quantum theory). The third stage: 1923­
1927 (establishment of quantum mechanics). We shall
now proceed to study these three stages in detail.
First Experiments and First A ttempts to Explain Them
(end of 19th century-1912). The foundations of quantum
mechanics were laid by experiments conducted at the
end of the 19th century and the beginning of th.e 20th
century in variou~,branchesof physics which at that time
were not connected with one another, e.g. atomic spectro­
scopy, study of black body radiation and the photoelectric
effect, solid state physics, study of the structure of atom.
By the end of the 19th century a lot of experimentalma­
terial on the radiation spectra of atoms was accumulated.
I t turned out that atomic spectra are ordered sets of dis­
crete lines (series). In 1885, Balmer discovered a series
of lines of atomic hydrogen, later named after him,that
could be described by a simple formula. In 1889, Rydberg
found a series of lines for thallium and mercury. Exten­
sive studies of the spectra of different atoms were conduct­
ed ,during this period by Kaiser and Runge who used pho­
tographic methods. In 1904, Lyman discovered a series
of hydrogen lines falling in the ultraviolet region of the
spectrum and in 1909, Paschen found a hydrogen series
in the infrared region of the spectrum. Remarkably, the
Lyman and Paschen series could be described by a for~

mula which was very close to the one established earlier
by Balmer. Noticing the regularities among various se­
ries of an atom, Ritz in 1908 formulated his famous com­
bination principle (see Sec. 2). However, right until
1913, this formula could not be explained, the nature of
the spectral lines remained unclear.
Wien in 1896, studying black body radiation, derived a
formula which accounted for the experimental results
obtained for high radiation frequencies quite accurately
(Wien's law). This formula, however, was not applicable
for lower frequencies. In 1900, Rayleigh proposed a for­
mula which agreed fairly well with experiments for low
frequencies (the Rayleigh-Jeans law) but led to absurd
results for higher frequencies (this situation was known as
'ultraviolet catastrophe'). In the same year Lummer and
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Pringsheim conducted detailed experimental studies
over a wide frequency range. In order to explain the re­
sults obtained by Lummer and Pringsheim, Planck pro­
posed his famous empirical formula which transformed
into Wien's and Rayleigh's formulae in the corresponding
limiting cases.
The formula proposed by Planck contained a certain
constant, which he called an elementary quantum of action
(Le., the Planck's constant Ii). According to Planck (see
(44]), Either the quantum of action was a fictitious quantity,
in which case all the deductions from the radiation theory
were largely illusory and were nothing more than mathemati­
cal juggling. Or the radiation theory is founded on actual
physical ideas, and then the quantum of action must play
a fundamental role in physics, and proclaim itself as some­
thing quite-new and hitherto unheard of, forcing us to recast
nllr physical ideas, which, since the foundation of the infini­
tesimal calculus by Leibniz and Newton, were built on the
assumption of continuity of all causal relations.
After a careful consideration of his formula, Planck
arrived at a brilliant conclusion: it must be assumed that
every radiating atom in a solid emits energy only dis­
cretely, in quanta, the energy of an individual quantum
being equal to liw. This resulted in the historic paper by
Planck Theory of the Law ofDistribution of Energy in a N or­
mal Spectrum, which he presented before the Berlin Acade­
my of Sciences on 14th December, 1900. This day may, in
fact, be considered as the birthday of quantum mechan­
ics.
Planck's discovery was in sharp contradiction with the
classical theory. It must be admitted that this was at
first disturbing for Planck himself. In an attempt to
reconcile his discovery with classical concepts, Planck
proposed in 1911 a hybrid conception. According to this
conception, only the emission process in radiation is
discrete while the processes of propagation and absorp­
tion of radiation are continuous ones.
Planck's hybrid hypothesis got no recognition. Earlier,
in 1905, Einstein gave a brilliant explanation of all the
laws of the photoelectric effect known at that time by assum­
ing that light is emitted as well as absorbed discretely.
Later, in 1917, Einstein came to the conclusion that a
light quantum possesses not only a definite energy but
also a definite momentum equal to liw/c.
In 1907, Einstein successfully applied the idea of quanti­
zation to solve an important problem in solid-state phys­
ics which had baffled scientists for many years. Physicists
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in the 19th century had faced a violation of the classical
law by Dulong and Petit. It was observed that the spe­
cific heat of solids is not constant but decreases upon a
considerable lowering of temperature. As an example,
let us consider the experiments conducted by Weber in
1875. He discovered a temperature dependence of the
specific heat of boron, carbon and silicon. The fact that
specific heats of solids depend on temperature could not
be explained within the framework of classical theory
until the appearance in 1907 of Einstein's paper Correlat­
ing Planck's Radiation Theory and the Specific Heat Theory.
Applying Planck's idea of quantization of energy to
atomic vibrations in crystals, Einstein deduced a for­
mula which, in agreement with experiment, described
the temperature dependence of the specific heat of solids.
Einstein's work laid the foundation of the modern theory
of the specific hea"t of solids. .
Finally, we must mention studies of the atomic structure
whose origin can be tracted to the year 1904 when Thom­
son proposed a model for the hydrogen atom in the form
of a uniformly positively charged sphere with one electron
at~ the centre. Later, Thomson came to the conclusion
that the number of electrons in an atom must! be propor~

tional to the atomic weight and that the stability of
the atom is impossible without the motion of the elec­
trons. In 1908 Geiger and Marsden began studies on the scat­
tering of a-particles passing through thin foils of different
metals. They discovered that most of the a-particles pass
through the foil without being scattered while some a­
particles, roughly one in ten thousand, are strongly
deflected (by an angle greater than 90°). In 1911, Ruther­
ford came to the conclusion that the strong deflection of
an a-particle occurs not as a result of many collisions,
but in a single act of collision with an atom and, conse­
quently, there must be a small positively charged nucleus
at the centre of the atom, containing almost the entire
mass of the atom. This was a decisive step towards the
creation of the planetary model of the atom which Ruther­
ford finally formulated in 1913.
Thus, from the end of the 19th century to the year 1913
a large number of experimental facts, which could not be
explained on the basis of existing theory, were accumulat­
ed: the discovery of ordered series in atomic spectra, the
discovery of the quantization of energy in black body
radiation, the photoelectric effect, and the specific heat
of solids; also the planetary model of the atom was creat­
ed. However, until 1913, all these discoveries were con­
isdered separately. It was Bohr's genius that understood
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the common character of these facts and created a fairly
harmonious quantum theory on the atom based on these
facts.
Bohr's Quantum Theory (1913-1922). Bohr's famous paper
On the Constitution of A toms and Molecules appeared in
1913. It considered the theory of the planetary model of
the hydrogen atom based Oil the idea of quantization
(the energy and the angular momentum of an electron in
an atom were quantized). Resolutely departing from ac­
cepted concepts, Behr's theory ruled out a direct link
between the frequency of the radiation emitted by an
atom and the frequency of the rotation of the electron in
the atom. Having acquainted himself with Bohr's theory,
Einstein remarked: Then the frequency of light does not
depend at all on the frequency of the electron.... This is an
enormous achievement! In fact, Bohr's frequency rule pro­
vided a convincing explanation for Ritz' combination
principle and permitted calculations of the Rydberg con­
stant. Later, in 1945, referring to Bohr's theory, Einstein
wrote: This insecure and contradic-tory f07Jnd(ltion
sufficient to enable a man of Bohr's unique instinct and
tact to discover the major laws of spectral lines and of the
electron-shells of the atoms together with their significance
for chemistry appeared to me like a miracle and appears to
me as a miracle even today. This is the highest form of musi­
cality in the sphere of thought.
Experiments conducted in 1914 gave direct experimental
evidence for the fact that an atom may change its energy
only discretely. These were the famous experiments by
Franck and Hertz on the measurement of the electron
energy spent on exciting mercury atoms.
In 1915-1916, Sommerfeld developed Bohr's theory. In
particular, he generalized. the method of quantization for
the case of systems having more than one degree of free­
dom,by changing from circular orbit~ to elliptical ones,
and studied the precession of an elliptical orbit in its own
plane. In 1916 Debye and Sommerfeld came to the con­
clusion that the angular momentum components in the
direction of a magnetic field are quantized, thus introduc­
ing the concept of quantization in space. This received
excellent confirmation later in the experiments of Sten1
and Gerlach (1921 )on the splitting of atomic beams in
nonuniform magnetic fields.
Continuing his researches in the field of quantum theory
of atoms, Bohr in 1918 introduced the famous correspond­
ence principle (in his article On the Quantum Theon! of
Line Spectra) which he had been using in fact since 1913.
AccQrding to this principle, the laws of quantum physics
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mllst turn into the laws of classical physics for large val­
ues of quantum numbers of a systeul, i.e. if the relative
values of the ~uantum of action are negligibly small.
It follows from this that classical physics is of great
importance in the discovery of laws of quantum me­
chanics. The period from 1913 to the early twenties call be
considered as the period of the creation aI~d development of
Bohr's quantmn theory. The achievements of this theory
are beyond a shadow of doubt. It served as the most im­
portant step towards the creation of quantum mechanics.
However, in the course of the development of Boln"s
theory, its internal contrad ictions associated to a consid­
erable extent with contradictions in the very idea of
quantization and of "quantum jumps" (see Sec. 2) became
more and more apparent. The theory clearly betrayed a
stage of crisis. A~further development of quantum me­
chanics demanded an overcoming of this crisis and the
introduction of new ideas. As was mentioned in Sec. 2,
these contradictions were overcome by introducing the
idea of wave-particle duality. By eliminating the contra­
dictions of the "old quantum theory" the idea of duality
marked the beginning of a new stage in the establish­
ment of quantum mechanics as a genuine theory in phys­
ics, culminating in the creation of its apparatus, and,
consequently, in the solution of a number of problems of
atomic and nuclear physics.
The Growth of Quantum Mechanics (1923-1927). In 192~l,

Compton discovered the effect, later named after him, of
a decrease in the wavelength of X-rays upon scattering
hv matter. This effect clearly indicated the existence of
;ave as well as corpuscular p'roperties of radiation. Light
quanta were introduced into physics as elementary par­
ticles once and for all under the name of photons.
In 1923-1924, de Broglie suggested in his doctoral thesis
that the idea of wave-particle duality should be extended
to all microparticles, associating both wave and corpus­
cular characteristics with every particle (see Sec. 2).
Later (in 1927), the idea of duality received a convincing
confirmation by experiments on 'electron diffraction con­
ducted simultaneously in several different laboratories.
Jn 1925 de Broglie introduced the concept of "matter
waves" described by the 'so-called wave function.
The combination of the idea of quantization with the
idea of wave-particle duality proved to be very fruitful
for the development of quantum mechanics. The whole
apparatus of quantum mechanics was, in fact, built in
1925-1926. Heisenberg in 1925 took ,the first step in this
direction. He suggested that every quantized dynamic
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variable should be represented in the form of some ma­
trix whose diagonal elements are essentially the experi­
mentally observed values of the variable (the reader is
familiar with this approach for the case of the Hamilton­
ian, or energy, matrix which has been discussed in detail
in the book). Using the correspondence principle, Hei­
senberg converted the matrix relations into classical
relations for corresponding variables. In doing so, how­
ever, Heisenberg took into account the possibility of the
commutativity of the product of the matrices involved.
In 1926, Schrodinger in his paper On Quantization as an
Eigenvalue Problem used the wave concepts to introduce
his well-known differential equation for a wave function
(this equation is now termed the Schrodinger equation).
The problem of calculating the energy levels of a bound
microparticle was reduced by Schrodinger to the problem
of finding eigenvalues.
After the appearance ofSchrodinger's work, it was at
first believed that we now had two independent theories,
Schrodinger's wave mechanics and Heisenberg's matrix
mechanics. However, already in 1926, Schrodinger showed
that both these theories are, in fact, equivalent and
are just two different ways of looking at the same
problem. It should be mentioned that the wave'formalism of
Schrodinger's theory was very well received, since 'it "en­
abled a solution of quantum-mechanical problem with the
help of established methods ofmathematical physics. Planck '51

opinion [46] of Schrodinger equation is worth noting.
According to him, the fundamental importance of this
differential equation lies not only in the way it has been
derived, but also in its physical interpretation, whose
details are still not clear. But most important is the
fact that owing to the introduction of the quantum law
into the well-known system of usual differential equations,
we get an entirely new method which, with the help of
mathematics, can solve the complicated quantum-me­
chanical problem. This is the first case when a quantum of
action, which thus far was impervious to all attempts to
look at it from the point of view of classical physics, can
be included in a differential equation.
While the formalism of Schrodinger's theory was readily
accepted, the problem of the interpretation of wave me­
chanics and the physical description of the concept of
the "wave function" remained the subject of heated dis-
cussion for a long time. In 1926, Born proposed a proba- I
bility interpretation of the wave function; "matter waves"
were replaced by "probability waves". The impossibility I
of interpreting the wave function as the amplitude of a
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certain material field (like the electromagnetic or the
gravitational Helds) was recognized even at that time.
Planck in 1928, commenting on the nature of the wave
function, wrote (see [46]) that the impossibility of a phys­
ically intuitive representation of this quantity, which
only has an indirect symbolic meaning, is a direct Con­
sequence of the fact that the wave motion takes place not
in the ordinary three-dimensional space, but in the 80­

called configurational space, where the dimensionality
is determined by the number of degrees of freedom of the
system being considered.
This meant that de Broglie waves could not be interpreted
as classical waves of some sort.
The next important step towards the development of
quantum mechanics, which revealed its physical and
philosophical aspoc,ts, was made in 1927 by Heisenberg
who introduced his famous uncertainty relation. Through
these relations Heisenberg showed how the concepts of
energy, momentum, coordinate, etc. should be applied
to the case of microparticles (see Sec. 3). The appearance
of the uncertainty relations marked a final break of quan­
tum mechanics from classical determinism, thus establish­
ing quantum mechanics as a statistical theory. Starting
from the uncertainty relations, Bohr formulated in the
same year one of the leading discoveries of 20th century,
i.e. the complementarity principle (see Sec. 16).
The twenties was undoubtedly a period of most intensive
development of quantum mechanics. It is impossible to
describe here all the important researches conducted
rluring this period. We shall simply mention a few points
below to supplement the above picture.
In 1924, Pauli proposed that an electron could be assign­

ed an additional (fourth) degree of freedom
which can have two values. Uhlenbeck and
Goudsmit, using Pauli's idea, introduced in
1925 the concept of a "spinning electron" (in
other words, the spin concept).

In 1924, Bose carried out fundamental studies, which
were extended by Einstein in the form of a
statistical theory for photons which came to he
known as Bose-Einstein statistics. In the frame­
work of this theory, Planck's formula for black­
body radiation at last found a complete ex­
planation.

In 1925, Pauli formulated his famous exclusion principle
for electrons.

In 1925, Born and Jordan formulated Heisenberg's theo­
ry in matrix form.
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In 1925, Dirac developed the relativistic theory of elec­
tron and hydrogen-like atoms.

In 1926, Fermi and Dirac carried out fundamental stud-'\
ies on the statistical theory of electrons, later
called the Ferrni-D irac statistics.

NaturallY, the history of the development of quantum
mechan ics did not terminate in 1927. In the following
years, quantum mechanics was enriched by many new
methods, applications, and most importantly by further
studies of its physical and philosophical aspects. Some
problems of quantum mechanics (above all, the problem
of measurement) are still being investigated. However,
we shall end our brief historical discussion with the year,
1927, assuming that further developments in quantum"
mechanics form the subject of a special study. I
Headers who want to go further into details concerning
the origin and development of quantum mechanics are
advised to refer to [47-501.
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Appendix A
Theorem: An operator has real values if and only if it is Hermitian.
Proof: From (17.13) we get

JW* (x) LW (x) dx= I.. JW* (x) W(x) dx,

or

J'IjJ (x) L*W* (x) dx= 1..* JW(x) w* (x) dx.

! t follows hence that

Thus

JW*(L-£+)Wdx=(I..-I..*) JW*'ljJdx.

It can be seen from here that the equality')." = 1..* (denoting the

real positive eigenvalues) is satisfied if and only if the operator '1
is Hermitian (Le. if and only if L = Lt).
Theorem: The eigenfunctions of a Hermitian operator which cor­
respond to different eigenvalues are mutually orthogonal.
Proof: Using (17.13), we write

Eigenvalues and Eigenfundions

of a Hennitian Operator

, or

JW;LWn dx = I..n JW;Wn dx;

r ~ * * r *dJ WnL*Wm dx= I..m J WnWm x.

It follows from here that

JW; (L-L+) 'ljJndx = (I..n -I..;) JW;'ljJn dx.

If the operator L is Hermitian, then L = Lt (and also I..~ = I..m).

In this case the last equality acquires the form

(I..n-l..m}l)W~'ljJn dx=O.

'Since I..n 0#- I..m , we get

JW;Wn dx=O.
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Transition from Quantum
Mechanics to Clll5sical Mechanics

•
Appendix B
There is a formal analogy between the transition from quantum
mechanics to classical mechanics and the transition from wave
optics to geometrical optics (Le. the optico-mechanical analogy);
see, for example, [10, 11]. A transition to geometrical optics
means that the optical field is described by nearly plane wavtB
of the type

~

eie:tl = ei(k r-lilf).

It can be seen from (B .1) that

- a<Dk=V<D; 00=-

(B.t)

(B.2)

The vector k is directed along the light beam. At every point in
space the light beam is perpendicular to the surface of constant
phase (Le. perpendicuYar to the surface <D = const).
When:going over to classical mechanics, the quantum-mechanical wa­
ve function must acquire a form analogous to (B.1); moreover, the
phase of the wave function will be proportional to the mechanical

action S:

<D = AS.

The momentum -; and energy E of a particle are expressed through
the action S in the following way:

;=VS;
as

E=-­at
(B.3)
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The trajectories are lines perpendicular to the surface of constan\
action (in the same way as the light rays are perpendicular to the
urface of constant phase). Comparing (B.2) and (B.3) and taking- -into account that p = ftk, we find that

<D = SIn.
Thus the quasiclassical wave function is of tlle form

'i'= aeiS/h~ (B••)

By using (B.4) it is easy to determine the coefficient y in the flxpree­
sion for the momentum operator
.;;.
p=yV.
Let us consider the equation for the eigenfunctions of the mome"

..; -tum operator (the equation P'i' = p'¢) in the quasiclassical caSll.

In this case we get -; = VS, 'i' = aeis/II. Thus the above equatiOP

assumes the form
yVeiB/7a = VSlliS/'A
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(C.1)

~ ~

== (; X p) may he written in the form
3 3

Ml= ~ ~ t'lm;:kPn,
k_ln_l

Appendices

where e'kn is a unit antis~-mmetric tensor of tbe 3rd rank (e123 =
== e2S1 = eSl~ R: f, e132 = e321 = eU3 == -1, all the flther com­
ponents of the tensor are equal to zero).

Let us consider the commutator [Mi' ;:j]' By using (C.1), we tan
wnte thI!! commutator in the following form:

Mj, ~j]=M;;'j-~jMi== ~ ~ e'kn (~kPn~j-~J~llPn).
11 n

We shall show how the commutation relations (20.28)-(20.30) can Commutation Relation~

he derived. To start with we remark that the equahty M=

It can be easily seen that iy/1i = 1, and, consequently, '\' = -in.
The quasiclassical case may he used to substantiate the Schrodinger
equation. It can be easily seen that the well-known classical Ha­
milton-Iacobi equation

~+-!.- (VS)2+U=0at 2m

s a limiting case of the Schrodinger equation (20.17). By putting
'I' = eiS/,.. we get in this case

tl! .!.... 'I'=_~ is/~.at at e ,

_ 21!2 A'I'= - 21!2 V,(V'I')=_~
m m 2m

XV (.!:.... VS.eiS/,.) = -i2- AS.eiS/~+~(VS)! eiS/h.
I! 2m 2m~

Substituting these results intEl (20.17) and neglecting terms con­
taiDlng Planck's constant in thu expression for A'I', we get the
equatiEln

_~ eiS/,.,;;;-!.- (VS)! eiS/~+UeiS/,..at 2m

By cancelling out the factor eiS/,.. this equation becomes the Ha­
milton-Iacohi equation.

.,
yeiS/f,VS .!...=VS.eiS/~.

n
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)

e
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Taking into account that ;ik = ~rj, we get

[Mi, ;/]= L} L} eiknrk lPn' r/l.
k n

According to (20.26), [Pn' rjl = -iMn/• This leads to the required
relation (20.28):

[Mi, ;j]= -iii L} eiklrk=ili L} eijk;k.
k k

This relation means that

[M l' r2]= i1i;3'

1M2' ;31 = ilir1 ,

1M3' ;1] = ilir2 ,

[M 1 , ;11 = [M 2 , ~I = [M 3 , r~] =0.

Next let us consider the commutator [Mi , .oj]' By using (C. i), oNe
can write it in the form

{Mi, Pj]= L} L} eikn(;kPnPJ-PI;kPn).
k n

Taking into account that PnPj = i/Pn' we get

[Mi' Pj] = L} L} eikn [;k, PI] Pn.
k n

According to (20.26), Irk' pj] = iMkj. As a result, we get the
required relation (20.29):

[Mi' .0/]= iii L} eijnPn.
n

Thus

[M l' .02] = iliP3'

[M2, p3]=iliPi'

1M3' P1] = iliP2'
[M1, pd=[M2, p2]=[M3, .03]=0.
Going over to the commutator [Mi , Mj ], we shall restrict ourselves
for simplicity to the case when i = i, j = 2. Using

we can write

1Ml' M2] = (;2P3 -;3P2) (r3PI-rIP3)-(r8PI-rIP3)

X ( r 2P3 -~r3~P2) = ~r;;'3r3P1 - r2],3rIP3 -;.3pi8pr

+r3P2 ;lP3-r3PI ;:2P3 +r3.o1;3 P2 + rlP3 ;:2P3-rIP8r8P2.

Note that ~P3;:l.o3 = r~P3i;,P3 and ;:3P2;:3Pf = r3P1".;;I·
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Legendre Polynomials: The Legendre polynomials PI (x) may be Some Special Functions
defined as the coefficients in the expansion of the function
H(x, t)==(1+tS _2tx)-I/S, I t I < 1

as a power series in t:

By taking this into account, we write the expression for [M I M21:

[Ml' M 21 = 6:2Pa;:aPl-~aPI ~2Pa) + (~aP2~IPa-~IPa;:aP2)

= r2Pi (Para- raPa) + ~IP2 (;:3Pa- Pa ;a).
Since iaPa - p';ia = iii, we finally obtain

[MI' M2]= iii fr;P2~r;Pl)= iliMa •

Proceeding in the same way, it can be easily seen that

[M2, M al==iliMl ,

[Ms. M1]==iliM2.

All these results can be combined in the relation (20.30).

Appendix 0
Let us consider the case when i == 1:

[M2, M~(1l1f+M~+Mi) M 1-M1 (Mi+M~+M~)

==(M~+M~rMI-MI (1I:1~+M~)

== M 2MSMi--rMaMsM1-M 1M 2M 2-M 1M aMa
= (M sM1M s-iliM2M;)+- (1';{aM1M a+ i!iMaM2)

-(MsMiMs+iliM;Ms)--(MaMIMa-inM2Ma)==0.

Similarly, we get [MS, MsI == 0 and [MS, Mal == O. This proves
the relation (20.31).

Appendix E

00

(1+tS -2tx>-IJ2== ~ PI (x) tn (E.1)
1=0

(-1 :;;;:; x :;;;:; 1, 1 is a non-negative integer).
The polynomials P I (x) are the solutions of the differential equation
(1-x2)yM-2xy'+l(l+1)y==0, (l==O, 1, 2, ... ) (E.2)

and satisfy the condition y (1) = 1. They can be written in the
form

1 d l
PI (x)==- - [(x2-1)l]. (E.3)

2111 dx l
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We note that

Pz(1) = 1. PZ(-x)=(-1)lPz(x),

Po(x)=1,

Pdx)=x,

1
P 2 (x) ="2 (3x2 -1),

1
P a (x) ="2 (5x 3 -3x),

.. . .. .. .. ..

1

~

t

The Legendre polynomials are orthonormalized:

1

JPz(x)Pz,(x)dx= 2/~1 {ill"

-1

The basic recurrence relations are

(E.4)
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(/+ 1) P Z+1+ IPZ-1-x (2/+ 1) P z= 0,

PZ-P;+1- P ;_1 +2xP;=0,

P;+l-P;-l = (2/+ 1) Pz.

A ssociated Legendre Functions: The associated Legendre functions

Pf! (x) are defined through the Legendre polynomials P I (x) in the
following way:

dm
Pi (x) = (1_x2)m/2 dxm P z (x) (E.5)

(m and 1 are positive integers, m ~ I),

PY (x) = Pz(x); Piex) = 3 X 5 X 7 '" (2/-1)(1_x2)1/2.

Pt (x) = (1-x2) 1/2,

P~ (x)=3x(1_x2)1/2,

Pi (x)=3(1-x2),
................................
The functions Pf! (x) satisfy the differential equation

(1-x2)Y"-2xY'+[/(I+1)-1 m:2 ]y=0. (E.6)

They are orthonormalized:
1

r P'{' (x) P'{': (x) dx = _2_ (l+m)! (ill" (E.7)
J 2/+1 (l-m)!
-1

The basic recurrence relations are

(21+ 1) xP'{' (x) = (1- m+ 1) Plt1 (x) +(l+ m) P~l (x),

Pf+i1 (x)-P¥:11 (x)=(21+1) V 1- X2 P'l' (x).



(E.9)

(E.10)

Harmonic Functions. The harmonic function Y lm (8, 11') is defined
as the product of the Legendre associated function pllm I~(cos 8) and
the function exp (im<p):

Yl
m

(8 11')= Vr~2l""'+-1:-(:-:-l----;-I--:-ml '"'")1 Plm, (cos 8) eimql (E.8)
, 4l't(l+l m l)1

(l is a non-negative integer, m = 0, ±1, ±2, ..., ±l, 8 and 'P
are angular coordinates, °~ e~ l't, 0 ~ 'P ~ 2l't). Expressions
for the first few harmonic functions are given in Sec. 21 (see (21.26».
The harmonic functions satisfy the differential equation

dslPy+l (l+1) y=O,

where
1 {fA 1 a(. a)

AslP = sin2 8 ali" +sin 8 00 Slll
8 ae .

The spherical functions are orthonormalized:
2n n CJ)Yr", (8, 11') Yl'm' (8, 11') sin 8 d8 d<p = all' I'lmm"
() 0

Hermite Polynomials. The Hermite polynomials HfI, (x) may be
defined as expansion coefficients of the function exp (2xt - t2

):

00

tn
exp(2xt-t2 )= ~ Hn(x)-

LJ nl
11.=0

(-00 < x < 00, n is a non-negative integer).
Hermite polynomials are described by the expression:

H n (x) = (_1)ne X2 ~ e-x2
dxn •

H n (_x)=(-1)nHn (x).

H o (x)= 1,

Hdx)=2x,

H 2 (x)=4x2 -2,

H s (x)=8xs-12x,

(E.H)

(E.12)

The polynomials Hn (x) satisfy the differential equation

y" -2xy' +2ny=0 (n=O, 1, 2, •.• ). (E.13)

They are orthonormalized:
00

~ H 11. (x) H 11.' (x) e-x2 dx = ·Vi.2nnl ann' •

.........

-00

The basic recurrence relations

2xH11. -2nHn-l = H 11.+1'

2nHn_l=H~.

A.ppendices

are

(E.14)
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•
Modified Hermite Polynomials. (Hermite-Gauss Polynomials). The
Hermite-Gauss polynomials hn (x) are defined in terms of the
Hermite polynomials Hn (x) by the formula

(E.15)

The condition of orthonormalization for them has the form

CO)J hn (x) hn , (x) dx=l5nn ,.

-00

These polynomials satisfy the differential equation

Appendix F

(E.16)

(E.17)

Linear Harmonic Oscillators By taking (22.1) into account, we can write Schriidinger's equation
for the oscillator:

(F .1)

We introduce the notation

~=x ymw/n, 'J..=2E/nw.

In the new notation, (F1) acquires the form

(F.2)

256

The differential equation for Hermite-Gauss polynomials is of the
same form (see (E.17». Moreover, 'J.. = 2n + 1 and, consequently.

E=nw (n+ ~ ), n=O, 1, 2, ....

The wave function CPn (6) is apart from a constant factor a Hermite­
Gauss polynomial:

CPn (~)= Chn m·
The factor C is determined from the normalization condition for
the wave function CPn (x):

00J cpA (x) dx= 1-
-00



Taking (E.16) into account we conclude that'" /" Ii C2 = 1 and,V mro

consequently, C = Vmro/Ii. Thus we arrive at the relation (22.3)

-00-00

Thus

00 00

1 = j <p~ (x) dx = J<p~ (6) :~ ds
-00 -00
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