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PREFACE 

This volume is the result of a one-semester course in quantum mechanics 
that I taught at the University of Virginia. The course was taken by physics 
majors in their senior year and by graduate students from other departments, 
mainly electrical engineering and astronomy. 

The material presented somewhat exceeds what can be taught during one 
semester. When presented in class the chapter on scattering could obviously 
be left out. If scattering theory is desired, one could leave out Chapters 
11 and 12. 

The basic ideas, theorems, and techniques of quantum mechanics are 
developed along familiar lines. They are applied, whenever possible, to real 
physical systems which, at the level of this book, necessitates an emphasis on 
the physics of the hydrogenlike atoms. 

A look at the table of contents shows that problems related to the hyperfine 
structure of hydrogen and positronium have been given much more emphasis 
than is customary in texts at this level. This has been done for the following 
reason: the hyperfine structure and its Zeeman effect offer a unique oppor­
tunity to demonstrate stationary and time-dependent perturbation theory and 
such abstract concepts as the mixing of states in actual physical systems of 
current research interest, yet with a minimum of mathematical difficulties. 
Matrices can be diagonalized exactly, summations usually run only over 
two values of the summation index, and orthogonality and normalization 
do not require integration over all space but are immediately obvious from 
the properties of the two dimensional state vectors involved. 

lowe a debt of gratitude to Professor J. Eisenberg for numerous enlighten­
ing and enjoyable discussions. 

KLAUS ZIoeK 
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In the choice of notations the author of a book is inevitably faced with a 
dilemma. On the one hand, it would be nice to keep the notation unambig­
uous; on the other hand, it is desirable to keep it conventional. An un­
ambiguous notation would not only quickly use up all the known alphabets, 
it would also of necessity be unconventional. The letter m, for example, is 
commonly used to describe the mass of particles-predominantly of elec­
trons-but it is also commonly used for the quantum number of the z­
component of the angular momentum. In the case of such an obvious clash 
between convention and uniqueness this author has always sided with 
convention. To reduce confusion as much as possible the following table is 
offered. It does not claim to be complete since sometimes a variable or 
constant appears briefly only to be substituted into oblivion on one of the 
following pages. In such a case I feel that inclusion in this table would have 
introduced more confusion that it would have alleviated. 

In general, cgs units have been used in this book. In the treatment of 
angular momentum, atomic units have been used in some places, to the 
extent of letting Ii = 1, (see p. 99.) 

1. MATHEMATICAL SYMBOLS 

Symbol 
A,B,C, .. . 
a, b, c, .. . 
r 

A,B,C, .. . 
A,B,C, .. . 
a, b, c, .. . 

i 
i, j, k 

Explanation or Definition 
Matrices 
Vectors or their representatives 
The radius vector or its representative 
Linear operators 
Scalars in general use. If (in a special case) a is 

a vector, the symbol a = lal = + v (a • a) is 
used for its magnitude 

The imaginary unit i = v-=1 
The unit vectors in the direction of the X-, Y-, 

and z-axis of a cartesian coordinate system 
The Legendre polynomials 
The associated Legendre functions 
The spherical harmonics 
A finite increment of the quantity following 11 

Example a2 - al = Ila 

Introduced 
Appendix Ao4 
Appendix Ao4 

Appendix A.l 

Eq.5047 
Eq.5.60 
Eq.5.62 

xi 



xii A GUIDE TO SYMBOLS, NOTATIONS, AND UNITS 

1. MATHEMATICAL SYMBOLS (cont'd) 

Symbol 

V 

t 

* 
[ ] 

Explanation or Definition 

The gradient operator. In cartesian coordinates 

. a . a a 
V =1- +J- +k-ox oy oz 

The Laplace operato'f. In cartesian coordinates 

V2 = ~ 02 02 

ox2 + oy2 + oz2 

For the Laplace operator in spherical polar co­
ordinates see Eq. 5.21 

As in A signifies the transpose of the matrix A 
As in At signifies the hermitian conjugate of the 

matrix A 
As in a*, a*, ;'*, A*, etc., signifies the complex 

conjugate of a complex quantity. 
Commutator brackets 

[A, B] = AB - BA * 

'2. PHYSICAL SYMBOLS 

c 
D 
d 
d 

E 
e 

Symbol 

g 
H,H 

h,1i 

I 
J,j 

Explanation or Definition 

The velocity of light 
Describing a state with L = 2 
Describing a state with I = 2 
The Lattice period of the one-dimensional 

crystal 
The energy 
The electronic charge, also the basis of the 

natural logarithm 
The gyromagnetic ratio 
The hamiltonian matrix; the hamiltonian 

operator 

Planck's constant h = 6.6256 X 10-27 erg sec 
Ii = h/21T; also in atomic units Ii = 1 

The quantum number of the nuclear spin 
The quantum number of the total angular mo­

mentum of an atom 

* Also other uses 

Introduced 

Appendix AA 

Appendix AA 

Chapter 6.3 

Introduced 

Chapter 7.5 
Chapter 5.6 

Eq.3.84 

Eq.7.14 

Eq.9.15; 
Eq.2.30 
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2. PHYSICAL SYMBOLS (cont'd) 

Symbol 
k 

L 

m 

n 
p 

p 
p,p 
r, r 
S 
s 
t 

u{r), u{r) 
V 
x,y,z 

Clt 

!jJ 

dO 
CJ) 

Explanation or Definition 
The wave number of an electromagnetic or 

matter wave k = 21T/)., where). is the wave­
length 

The quantum number of the total orbital angu­
lar momentum 

The quantum number of the orbital angular 
momentum 

The quantum number of the z-component of an 
angular momentum, also the mass of a par­
ticle, especially the reduced mass (Eq. 5.8) 

The principal quantum number 
Describing a state with L = 1 
Describing a state with I = 1 
The momentum, its magnitude 
The radius vector, its magnitude 
Describing a state with L = 0 
Describing a state with I = 0 
The time 
A time-independent wave function 
The potential 
The components of the radius vector 
Spin state-vector indicating mz = ! 

(X =J2mE* 
li2 

Spin state-vector indicating mz = -! 
The wavelength* 
A magnetic moment 
The Bohr magneton 
The frequency 
The differential cross section 
The total cross section 
The Pauli matrices 
The volume element, in cartesian coordinates: 

d-r = dx dy dz, in spherical polar coordi­
nates: d-r = r2 dr sin {} d{) drp 

A (generally, time-dependent) wave function 
The solid angle element 
The angular frequency 

• Also other uses 

Introduced 

Eq.5.114 

Eq.5.36 
Eq.5.29 
Eq.5.107 
Eq.5.8 
Eq.5.77 
Chapter 7.5 
Chapter 5.6 

Chapter 7.5 
Chapter 5.6 

Eq.2.18 

Eq.10.65 

Eq.3.4 

Eq.1O.66 

Eq.7.11 

Eq.13.1 
Eq.13.2 
Eq.9.79 

Eq.13.1 
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INTRODUCTION 

Since time immemorial, man has observed his environment and has tried to 
make sense out of what he saw. A crowning achievement in this endeavor 
was the creation of Newtonian mechanics. For the first time in history it had 
become possible to describe mathematically a large body of experience using 
just three basic laws. In the two centuries following Newton, physicists 
applied his theory in a more and more refined form to everything in sight. 
Buoyed by their brilliant successes, many physicists during this period 
believed that they would eventually be able to describe all natural phenomena 
in terms of Newtonian mechanics. Even the development of electrodynamics 
by Faraday and Maxwell seemed only to add new forces to the already known 
gravitational force, leaving Newton's laws untouched. 

Toward the end of the last century and the beginning of the present one, 
cracks began to appear in the monolithic structure of physics. Experiments 
were performed whose results were in flagrant disagreement with any reason­
able conclusion drawn from Maxwell's and Newton's theories. In this book 
we shall concern ourselves with these disagreements and with the conclusions 
drawn from them by the equals of Newton. 

To physicists early in this century the failures of Newton's theory were 
deeply disturbing. To us, humbled by the struggle with the understanding of 
nuclear forces and, of course, equipped with 20/20 hindsight, its successes 
seem to be more startling than its failures. It is indeed almost miraculous that 
a theory which describes correctly. the fall of the legendary apple on Sir 
Isaac's head also accounts for the motion of the earth with its 2 X 1025 

apple masses around the sun. To expect that the same theory should also 
describe the motion of an electron with 3 X 10-30 apple masses seems now 
presumptuous. 

When we enter the through-the-Iooking-glass-world of quantum mechanics, 
we must remember that our imagination has been molded in lifelong contact 
with things and events that are correctly described by Newtonian mechanics. 
It will, therefore, be best if we leave behind the collection of prejudices that 

1 
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we sometimes fondly refer to as common sense. Again and again we shall 
have to 'examine with experiments the firmness of the ground on which we 
stand, and we shall have to entrust ourselves to the guidance of mathematics 
as we move about. 

A BRIEF HISTORY OF QUANTUM MECHANICS 

The great scientist,. the true genius, blazes the trail into unexplored 
territory. For any serious student of science it will be inspiring and rewarding 
to trace the steps of the great explorers in their conquest of the unknown. 
Yet for his own first exploration, the student may find the steps of these 
explorers too steep and their trail too rough, and thus in this book our 
approach has generally been, how it might have happened. 

The development of quantum mechanics, on the other hand, is one of the 
most fascinating chapters in the history of the human intellect; and in the 
following section we shall try to trace the historical development of the ideas 
presented in this book. 

How It All Started 

Toward the end of the nineteenth century, physicists had every reason to be 
satisfied with their accomplishments. Newtonian mechanics had explained the 
miracles of the heavens and had reached in its Lagrangian and Hamiltonian 
formulation an apex of mathematical elegance. Maxwell's equations had 
explained the mysteries of electromagnetism, and thermodynamics was a 
fully developed branch of physics and the secure foundation of a thriving 
technology. It is not surprising, then, that many physicists thought that all the 
questions has been asked and that finding the right answers would be merely 
a matter of time. One physicist who expressed himself in this sense was 
Phillipp v. Jolly. His remark would be just one of many famous last words if 
it were not for the name of the student to whom it was addressed. The 
student was Max Planck who, undeterred, had taken up the study of thermo­
dynamics and by 1900, at the age of 42, had become one of the foremost 
authorities in this field. It was then that he presented at a meeting of the 
German Physical Society an empirical formula with which he attempted to 
bridge the gap between the Rayleigh Jeans law and the Wien law of blackbody 
radiation. The former described the connection between wavelength and 
intensity correctly at long wavelengths whereas the latter gave a correct 
description in the limit of short wavelengths. Planck's formula, which was a 
purely empirical interpolation between the two well known laws, fitted the 
precise measurements that were then available with extraordinary accuracy. 
This inspired Planck to search for a rigorous derivation of his formula1 and 

1 M. Planck, Ann. d, Phys., 4, 553 (1900). 
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" .. . after a few weeks of the most strenuous work of [his] life, the darkness 
lifted and an unexpected vista began to appear . .. " This happened, however, 
not until he had been forced to " .. . an act of desperation." 

This act of desperation was the assumption that an oscillator could absorb 
and emit energy only in the form of quanta of the energy E = hv. Planck's 
revolutionary assumption was ignored by most physicists and attacked by 
some. One of the most vigorous attackers was Planck himself, who for the 
following 15 years tried to derive his results without assuming the quanti- . 
zation of the oscillators. He came away knowing " ... for afact that the ele­
mentary quantum of action played a far more significant part in physics than 
[he] had initially been inclined to suspect . ... " 

It was none other than Albert Einstein who realized in 1905 the sweeping 
significance of the assumption that Planck, who was no revolutionary, had 
made so reluctantly. 

In 1905 Einstein2 concluded that Planck's" .. . determination of the quantum 
is to a certain degree independent of his theory of black body radiation . ... " 
He then showed that Planck's "light quantum hypothesis" if generalized by 
assuming that all light can be emitted or absorbed only in the form of quanta 
of the energy 

E= hv 

explained not only Stoke's law of fluorescence but also Lenard's recent 
measurements of the photo effect. Einstein's equation E = hv of course 
specifies only that light cannot be emitted continuously. It was not initially 
interpreted as meaning that light quanta are discrete particles that are emitted 
in a well defined direction. This final conclusion was drawn by Einstein in 
1909. 

Quantum Mechanics and the Atom 

Today the terms atomic physics and quantum mechanics are almost 
synonymous, yet the application of the quantum hypothesis to the theory 
of atomic structure was slow in coming. The idea that atoms are the building 
blocks of all matter had been firmly established during the nineteenth century; 
however, the structure of the atoms remained a complete mystery. Without 
any notion at all of the atomic structure, it was of course impossible to apply 
the new quantum hypothesis to what we now consider its most proper realm. 
This situation changed suddenly in 1911 when an English physicist, Ernest 
Rutherford,3 discovered that all the positive charge and almost all the mass 
of an atom are concentrated in an extremely small nucleus surrounded by an 
almost massless negative cloud. In 1912 a young Danish physicist, Niels 

2 A. Einstein, Ann. d. Phys., 17, 132 (1905). 
3 E. Rutherford, Phil. Mag., 21, 669 (1911). 
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Bohr, met Rutherford and one year later he had abstracted from Rutherford's 
discovery a theory of the structure of the hydrogen atom.' Bohr's model of 
the hydrogen atom had the electron circle the nucleus In allowed orbits whose 
angular momenta were quantized. The energy difference between two 
orbits was to be equal to the energy of the photon emitted in the transition 
from one orbit to the other. 

During the next ten years or so Bohr's theory was generalized and refined 
and by 1923 it had been built into the complex system of postulates and 
empirical rules that is now known as the old quantum theory. This theory was 
capable of explaining most of the observed features of atomic spectra quali­
tatively and of explaining some of them quantitatively. All the while it was 
obvious that it was not the real thing. 

Quantum Mechanics 

The next step forward was an eerie hypothesis by Prince Louis de BrogUeS 
of France. He proposed, based on relativistic considerations, that particles 
should be assigned a wavelength 

h A=­
p 

now known as the de Broglie wavelength. This sent an Austrian physicist, 
Erwin Schrodinger, who was at that time in Zurich, hurrying to his desk. 
But while Schrodinger still calculated, lightning struck in Gottingen, Ger­
many, and set off an explosive development unequalled in the history of 
science. In July, 1925, Werner Heisenberg, one of many brilliant young men 
that had assembled in Gottingen under the tutelage of Max Born, sent to the 
Zeitschrift fUr Physik a paper6 with the abstruse title "Uber die quanten 
theoretische Umdeutung kinematischer und mechanischer Beziehungen." 7 

In this paper he proposed a quantum theory that did away with all such 
classical concepts as velocity and location of the electrons in an atom that, 
alas, could not be measured in any conceivable way and replaced them with 
relations between observable quantities. The algebraic rules that connected 
the observables, Heisenberg invented as he went along. In September of the 
same year his colleagues Max Born and Pascual Jordan pointed outS that 
Heisenberg's rules were the rules of matrix algebra, a mathematical subject 
that physicists in those days had little reason to study. 

, N. Bohr, Phil. Mag., 26, 1 (1913). 
6 L. de Broglie, Ann. de Physique, 3, 22 (1925). 
6 W. Heisenberg, Zs.J Phys. 33, 879 (1925). 
7 "On.the quantum theoretical reinterpretation of kinematical and mechanical relations." 
sM. Born and P. Jordan, Zs.J Phys., 34, 858 (1925). 
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In the meantime Erwin Schrodinger had not been idle and in January, 1926, 
he sent a paper9 to the "Annalen der Physik" with the title, "Quantisierung 
als Eigenwert Problem." 10 In this paper he introduced his postulates for 
the transition from classical mechanics to quantum mechanics, derived the 
Schrodinger equation of the hydrogen atom, and solved this equation in 
essentially the manner that has been presented in this book. One month later 
in February, 1926, in another paper ,11 he mentions that the perturbation 
theory of classical mechanics can be extended to quantum mechanics and 
concludes" .. .In first approximation results the statement that the perturba­
tion of the eigenvalue is equal to the perturbation term averaged over the 
unperturbed motion . ... " 12 

In March, 1926, Schrodinger showed13 the equivalence of his theory and 
Heisenberg's matrix mechanics.14 

The theories that had thus far been developed were nonrelativistic. But 
the precision of spectroscopic measurements did not allow the small relativistic 
effects to be swept under the rug. The "fine structure" splitting had already 
been bothersome to the old quantum theory and in October, 1925, two 
Dutch physicists, G. E. Uhlenbeck and S. Goudsmit,t5 using the old quantum 
theory, explained this splitting as the consequence of an intrinsic angular 
momentum of the electron. They concluded that for this intrinsic moment 
the gyromagnetic ratio must be g = 2. In May, 1927, Wolfgang Pauli16 was 
able to present a formal theory for this electron spin using matrix notation. 

In the meantime, physicists all over the world had gone to work and had 
applied Heisenberg's and Schrodinger's ideas to the numerou~ problems of 
atomic physics that had been awaiting solutions. In January, 1928, Paul 
Adrienne Maurice Dirac, at Cambridge published17 "The Quantum Theory 
of the Electron" which reconciled quantum mechanics with the special theory 
of relativity. He put the capstone on an intellectual edifice that in all its 
splendor had taken less than three years to be constructed. 

9 E. Schrodinger, Ann. d. Phys., 79, 361 (1926). 
10 "Quantization as an eigenvalue problem." 
11 E. Schrodinger, Ann. d. Phys., 79, 489 (1926). 
12 See Eq. 10.10. 
13 E. Schrodinger, Ann. d. Phys., 79, 734 (1926). 
14 See Chapter 9. 
15 G. E. Uhlenbeck and S. Goudsmit, Naturwissensch, 13, 1953 (1925). 
16 W. Pauli, Zs.J. Phys., 43, 601 (1927). 
17 P.A.M. Dirac, Proc. Roy. Soc., 117, 610 (1928). 



1 
THE EXPERIMENTAL FOUNDATION 
OF QUANTUM MECHANICS 

In this Chapter we shall discuss a few experiments whose results do not agree 
with what classical physics would lead us to believe. The nature of the dis­
agreement will make it obvious that a completely new theoretical approach 
is needed to describe these experiments. In selecting examples of these experi­
ments, we shall not in general follow the historical development, but shall 
select those experiments that make the break most apparent. The inventors 
of quantum theory did not wait for most of these experiments to be performed. 
They were brilliant enough to read the new theory out of the less striking 
experimental evidence available to them. 

1.1 THE PHOTOELECTRIC EFFECT 

If light strikes a piece of metal it frees electrons from its surface, and it is 
experimentally possible to count these electrons and to measure their energy. 
A quantitative investigation of the effect shows that the light intensity 
determines the number of electrons thus freed but has no influence on their 
energy. This is contrary to what we would expect from Maxwell's electro­
magnetic theory since the intensity of a light wave is proportional to the 
square of the amplitude of its electric field vector. The energy of the electrons 
is, surprisingly, determined only by the color of the light, i.e., its frequency. 
Albert Einstein (1905) showed that the experimental results could be described 
by 

E = hv - Ew (1.1) 

where E is the kinetic energy of the photoelectrons, h is Planck's constant,! 
v is the frequency of the incident light, and Ew is the work function of the 

1 The constant h = 6.6256 X 10-27 erg sec was introduced in 1900 by Max Planck to 
describe the thermal radiation of a black body. We know today that h is a fundamental 
constant of nature which plays an all important and all pervading role in quantum mech­
anics. 

6 



THE PHOTOELECTRIC EFFECT 7 

metal, i.e., the amount of energy needed to remove an electron from the metal 
surface. This experiment seems to demolish at once the conventional notion 
that light is an electromagnetic wave. Einstein interpreted Eq. 1.1 by pos­
tulating that light always comes in the form of small packets, light quanta or 
photons, and that the amount of energy in each photon is 

E= hv (1.2) 

In the photoelectric effect an electron absorbs a single photon whose energy 
becomes the kinetic energy of the electron.2 The light intensity is simply given 
by the number of quanta per second. In other words, light, which we had 
thought consisted of electromagnetic waves, behaves in this experiment as if it 
consisted of individual particles with an energy E = hv. 

We can derive the linear momentum of an individual photon by using 
Maxwell's electromagnetic theory. 

A plane electromagnetic wave of total energy Et transmits a linear mo­
mentum: 

Et 
Pt=­

C 
(1.3) 

where c is the velocity of light. It follows that the momentum p of a single 
photon is given by 

hv h 
P= -=-

c Ii 
(1.4) 

(Ii = wavelength) 

This result is borne out by experiments. According3 to Eqs. 1.2 and 1.4 it is 
not possible to transfer all the photon energy to the electron and to conserve 
momentum in a collision between a photon and an unbound electron. The 
photo effect requires that the electron is bound to an atom, whose recoil acts 
to conserve momentum. Since the atom is much heavier, the transfer of 
energy to the electron is almost complete. 

The collision of a photon with a free, or loosely bound electron is known as 
the Compton effect. If a light beam4 penetrates a thin slice of matter some of 
the light is scattered. Arthur Compton (1923) showed that the wavelength of 
the scattered light was increased and that the change in wavelength depended 
on the scattering angle. Compton was able to explain the measured angular 
dependence of the wavelength shift perfectly when he assumed that individual 

2 The energy Ew is due to surface phenomena. If the photoeffect is observed on free atoms, 
as in a gas, one has to replace Ew with E i , the ionization energy of the atoms. 
3 See Problem 1.1. 
4 This experiment is usually done with light of a very short wavelength, i.e., with x-rays. 



8 THE EXPERiMENTAL FOUNDATION OF QUANTUM MECHANICS 

photons of energy E = hv and momentum p = hv/c collided with individual 
electrons in such a way that momentum and energy were conserved just as 
they are in the collision of a pair of billiard balls. 

1.2 THE DIFFRACTION OF LIGHT 

The fact that light behaves as if it consisted of particles even in experiments 
that also reveal its wave nature can be strikingly demonstrated in a simple 
diffraction experiment (Figure 1.1). 

Fig. 1.1 Both photons and electrons exhibit their wave nature in a double slit diffraction 
experiment. They "interfere" with each other even if the intensity is so low that there is 
never more than one particle at a time between the slits and the screen. 

A light beam penetrates the slits A and B and creates the familiar double 
slit diffraction pattern5 on a screen. The light intensity on the screen is 
indicated in the diagram above the screen. If we move a photoelectric cell 
across the screen, its current will be proportional to the light intensity as 
shown in the diagram. Next we equip the photo cell with an amplifier that 

5 Shown here for slits that are narrow compared to the wavelength of the incident light. 
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enables us to register individual photoelectrons and thereby, according to 
Eq. 1.2, individual photons. 

Now we put the photocell directly behind one of the two slits and reduce the 
light intensity until, according to the photocell, only every now and then a 
photon penetrates the slits. Having thus established that there is almost never 
more than one photon at a time between the slits and the screen, we return 
the photocell to the screen and move it slowly across. In doing so, we find 
that more photons arrive at the cell when it is at the location of a diffraction 
maximum and fewer, when it is at the location of a diffraction minimum. The 
number of photons counted during equal periods of time and plotted as a 
function of x gives exactly the same curve as the intensity plot obtained before. 
We also discover that at any location the individual photons arrive at random, 
although at a higher average rate at the diffraction maxima. 

This experiment shatters all hope that we might be able to explain inter­
ference as some sort of interaction between photons that have penetrated the 
slits. Clearly a new theory is called for to reconcile the seemingly conflicting 
observations. 

In sifting through the debris we find the following unassailable experimental 
facts: 

1. The diffraction pattern predicted by Maxwell's theory exists even at the lowest 
light intensities. 

2. If one slit is closed, a single slit diffraction pattern appears. 
3. If monochromatic light is used, the photoelectrons in the photocell have all 

the same energy as given by Eq. 1.1. 
4. At any given point "photons," as measured by the photocell, appear at 

random. 
5. The average rate at which the photons appear is proportional to the light 

intensity. . 
6. In "collisions" of "photons" with electrons or atoms, energy and momentum 

are conserved according to the classical laws of physics. 

From this we conclude, tentatively, that light consists of discrete particles­
called photons-that can be counted. The photons obey the laws of a peculiar 
non-Newtonian mechanics. This mechanics seems to determine only where an 
individual photon is likely to go but does not seem to link cause and effect, i.e., 
initial and final conditions in the rigorous manner known from classical 
mechanics. The larger the number of photons involved in a measurement, the 
more closely their distribution approaches the distribution given by Maxwell's 
theory for the light intensity. 

1.3 ELECTRON DIFFRACTION 

We might console ourselves with the thought that photons are not really 
bona fide parti<:ies and that things will look different with, let us say, electrons. 
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So we replace6 the lightbeam in Figure 1.1, with an electron beam and the 
photocell with some device capable of counting electrons. Again we measure 
the intensity, this time of the electrons as a function of the position x, and 
again we find a double-slit diffraction pattern. The electron "wavelength" 
calculated in the familiar manner from the slit separation, the slit to screen 
distance d and the diffraction pattern, turns out to depend on the electron 
momentum p. It is given by 

A=~ 
p 

and is called the de Broglie wavelength of the electron. 

(1.5) 

It should be emphasized that this is the same relation that we had obtained 
for photons (Eq. 1.4). It was de Broglie'S contribution to have guessed 
Eq. 1.5 correctly when there was no direct experimental proof for it. 

The fact that Eq. 1.5 does not depend explicitly on the mass of the electron 
suggests strongly that it might hold true for any kind of particles, as, indeed, 
it does. We do not encounter this kind of diffraction phenomenon in our daily 
life simply because, as a result of the smallness of h, the wavelength of mac­
roscopic bodies is exceedingly small. The wavelength of a man of 7 x 104 g 
walking at a velocity of 100 cm/sec is given by Eq. 1.5 as 

6.6 X 10-27 10-33 
------ R:; cm 
100 x 7 X 104 

Obviously this will not lead to observable diffraction phenomena if he passes 
through a slit of 100 cm width (a door). 

1.4 PROPOSED THEORETICAL APPROACH TO THE PROBLEM 

We have seen that light behaves as if it consisted of particles and that the 
light intensity in a certain place can be interpreted as the probability of 
finding photons there. On the other hand, particles (electrons, for instance) 
after passing through a slit distribute themselves in such a way that the prob­
ability of finding them in a certain place can be calculated by assuming 
that they are waves. The notion that there should be any "as if's" in nature is 
disturbing, and we shall therefore adapt the following point of view: 

Matter as well as light consists of particles; however, the behavior of these 
particles is not described by Newtonian mechanics but by some sort of wave 
mechanics or quantum mechanics. 

6 Electrons of an energy suitable for this experiment (-50 ke V) have according to Eq. 1.5 
a very short wavelength. The "replacement" therefore requires a considerable change in the 
scale of the entire apparatus. Electron diffraction experiments of this kind have become 
possible only recently and tax severely the skill of even the best equipped experimentalist. 
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This new kind of mechanics, somehow, does not allow definite predictions 
for the behavior of an individual particle but describes only some sort of 
average behavior or, in other words, only the probability that a certain 
particle will do a certain thing. 

The opposite viewpoint is also legitimate: light and matter can be described 
as waves which, during emission and absorption, manifest themselves as 
particles. 

The theory we are about to develop will encompass both pictures. Which 
picture we use mentally in thinking of a situation is a matter of practicality 
or preference-this author, for one, refuses to be considered a wave, no 
matter how short his wavelength. Obviously the correct quantum mechanical 
theory must go over into the well-known classical theories of light and 
matter under certain limiting conditions. The way in which this happens is 
hinted at by our above experiments. If a vast number of photons arrives 
during a short time interval, their particle nature will no longer be apparent, 
but we will observe the intensity predicted by classical electrodynamics. 
This is especially true if the frequency v and thereby the photon energy hv is 
small. A single photon of a radio wave contains so little energy that no experi­
mental equipment is sensitive enough to register it. If radio waves are at all 
detectable, there are so many photons present that the electrodynamical 
description is fully adequate. 

If the mass ofa particle is much larger than, let us say, the proton mass, the 
diffraction effects will become negligible and the probability to find the 
particle in the zero order diffraction maximum (i.e., straight behind the slit 
where classical mechanics says it ought to be) will become a certainty. 

1.5 HEISENBERG'S UNCERTAINTY RELATION 

The thought that for a well-defined initial condition, nature (or at least our 
theory) should not provide us with a well-defined final state is unpleasant. 
We shall, therefore, following Werner Heisenberg, examine the concept of 
the well defined initial state more critically. 

Obviously we know the initial state of a particle, i.e., its momentum and 
location, only if we have actually measured it. Let us, therefore, measure in a 
"gedanken-experiment," 7 proposed by Niels Bohr, the velocity and location 
of an electron. Let us assume that we have a microscope so powerful that we 
can see an individual electron with it. The fundamental process necessary to 
accomplish this is, of course, that light (i.e., at least one photon) is bounced 

7 A gedanken-, or thought-experiment, is an imagined experiment which, although im­
practical or even unfeasible, does not violate any fundamental law of nature. In agedanken­
experiment we can let the cow jump over the moon and calculate the initial velocity it 
needs to do this. 
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Fig. 1.2 The combined effects of the finite resolution of the microscope and the momentum 
transferred by the photon set a fundamental limit to the accuracy with which the location 
and the momentum of the electron can be known Simultaneously. 

off the electron and enters the objective lens of the microscope (see Figure 
1.2). 

It is well known that, because of the finite size of the diffraction pattern, a 
microscope of focal length f can resolve a particle position only with an 
uncertainty: 

A. Llx ~j-
d 

(1.6) 

where A. is the wavelength of the illuminating light. The photon in bouncing 
off the electron transfers some momentum to it (Compton effect). The x­

component of the momentum of the scattered photon is determined only 
with an uncertainty . 

d 
±P"'2j 

since we do not know where it actually went through the lens. Thus, even if 
we know the momentum p", of the photon before the collision perfectly well, 
after the collision the x-component of its momentum is only known within8 

Llp = p",d 
'" j 

(1.7) 

8 In the derivation of Eq. 1.7 it has been assumed that the absolute value of the photon 
momentum has not been changed by the collision, i.e., the electron has been considered to 
be "heavy" compared with the photon. This assumption is valid as long as the photon 
energy is small compared with the rest energy, Eo = 511 keY, of the electron. For photons 
of visible light (E = hv "'" 4 eV) this is certainly a valid assumption. 
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From the conservation of momentum it follows that after the x-component 
of the electron-momentum has been observed, it is uncertain within the same 
limits. The product of the uncertainties of electron x-coordinate and mo­
mentum is therefore 

(1.8) 

(using Eq. 1.4 and assuming that the light was incident in the x-direction, i.e., 
that p. = p.,). 

The fact that 
(1.9) 

contains neither the particle mass nor the parameters of the microscope 
suggests that it might be universally valid, as is indeed the case. Equation 1.9 
expresses the famous uncertainty principle by Heisenberg and says in words 
that, if the coordinates of any object are known with an accuracy fl.x, fl.y, fl.z, 
then its momentum is uncertain within9 : 

h 
fl.PII = -, 

fl.y 
(LlO) 

According to Heisenberg's uncertainty principle as stated in Eq. 1.9, we 
can never know the initial state of any system with complete accuracy, and 
this rather than a lack of causality is the reason that our theory can determine 
only the probability that a certain final state will occur. 

Much has been written about the question whether nature is really in­
determinate or whether the uncertainty principle states merely a limit, 
although a fundamental one, to the accuracy with which we can measure 
things. As we have seen in Bohr's gedanken-experiment, our trouble stems 
from the fact that the probe particles (the photons) have a nonzero wave­
length and momentum. The uncertainty principle is thus deeply anchored in 
the wave nature of particles. If a particle with zero wavelength existed, it 
would not be subject to a description by quantum mechanics, and the un­
certainty principle would not apply to it. The particle would also, if used as a 
probe in Bohr's microscope, destroy the uncertainty principle for all other 
particles. Until such a particle has been found, we leave the above question 
to the philosophers. 

9 The alert reader will have noticed that something is amiss here. A single photon does not 
create an image in the focal plane of the microscope. It would have been better to measure 
the coordinates of an ensemble of particles using several photons. The result would have 
been the same. Since a more formal discussion of the uncertainty principle is given later 
in this book, we shall not pursue this point. 
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PROBLEMS 

1.1 Show that in a collision between a photon and a free electron energy and 
momentum would not be conserved if all the photon energy were transferred 
to the electron (photo effect). 

1.2 Calculate the de Broglie wavelength of an electron whose energy is 1000 eV. 
Compare the result with the wavelength of x-rays with an energy of 1000 eV. 

1.3 Calculate the de Broglie wavelength of (a) an electron, (b) a proton having a 
kinetic energy of 1 eV, 100 eV, 106 eV. 

1.4 What advantages do electron microscopes have over light microscopes? 
Why? 

1.5 An automobile is moving with a velocity of 60 m/hr. What is its de Broglie 
wavelength? What, if any, additional assumptions do you have to make to 
solve this problem? 

1.6 Derive an expression for the ratio of electron wavelength/photon wavelength 
for electrons and photons of equal energy. At what energy are the two 
wavelengths equal? 

1.7 You are given a source of x-rays of 200 keY and are to demonstrate the 
existence of the Compton effect and the photo effect. What kind of target 
material, high Z or low Z, will you use as a target in (a) the Compton experi­
ment, and (b) the photoeffect experiment? 

1.8 The diameter of an atomic nucleus is of the order of 10-13 cm. You want to 
obtain information about the size and shape of nuclei and you have decided 
to do this by bombarding them with fast protons. What is the approximate 
energy to which you have to accelerate the protons? 

1.9 A bullet whose mass is 10 g moves with a velocity of 1000 m/sec. In a pre­
cision experiment this velocity is determined with an uncertainty of 10-4 %. 
How accurately, in principle, could one measure the location of the bullet? 
Does the uncertainty principle constitute any practical limit on the accuracy 
with which the location can be determined? 

1.10 A high-speed shutter is placed between a monochromatic light source (a 
laser) and a high resolution spectrometer. First the shutter is held open for a 
long time while a measurement of the photon energy is made. During a later 
experiment the shutter is opened for only 10-9 sec while the photon energy is 
measured. How does the result of the second measurement compare with that 
of the first? (a) Qualitatively, give reasons. (b) Quantitatively, assuming that 
the spectrometer has infinite resolution. 

SOLUTIONS 

1.1 Let E1 = hv be the energy of the photon. In this case its momentum will be 
PI = hv/c. Let E2 = mv2J2 = P22/2m be the energy of the electron and P2 its 
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momentum. Assuming the electron to be at rest initially and assuming that 
all the photon energy is transferred to the electron, we have 

P22 
hv = El = E2 =-

2m 

The electron momentum becomes, in this case, P2 = V2mhv ""' PI = hv/c 
q.e.d. This is, of course, a non-relativistic calculation; relativistically we 
obtain a similar inequality. 

1.8 In a light microscope the wavelength of the illuminating light has to be short 
compared to dimensions of the object to be observed. Similarly, if we 
"illuminate" a nucleus with a proton, we must require that the de Broglie 
wavelength of the proton is short compared to the nuclear dimensions if we 
are to observe any detail. In optical microscopy we settle for nothing less 
than an image of the object. Nuclear physicists are less demanding and are 
willing to calculate the size of their object from diffraction patterns. Thus we 
assume that useful information can be obtained even if the de Broglie wave­
length is equal to the nuclear diameter. Hence 

h 
A = - = 10-13 cm 

P 
now 

P = V2mE 
h2 . 1026 (6.626)2. 10-54 . 1026 

or E = -2m = = 13.1 .10-4 erg 2 . 1.67 . 10 24 

= 820 MeV 

This calculation was nonrelativistic. Can you do the same calculation using 
the proper relativistic connection between energy and momentum? The 
result should be E = 617 MeV. 



2 
MATTER WAVES 

2.1 THE WAVE EQUATION AND THE WAVE FUNCTION 

There are several ways to make the transition from classical mechanics to 
quantum mechanics. They all depend at one point or another on a clever 
guess of the modifications we have to make in a classical expression to get its 
quantum-mechanical equivalent. 

Our approach to the problem will be to exploit the close resemblance 
between light waves and particle waves as expressed in Eqs. 1.4 and 1.5 and 
to guess a plausible-looking wave equation and then to check its validity by 
applying it to a well-understood experimental situation. 

A plane light wave can be described by 

cp(x, t) = Eo sin (kx - wt) (2.1) 

where Eo is the magnitude of the vector of the electric field strength, w = 27TV 
the angular frequency, and k = wle = 27TI). the wave number. Such a wave 
has the same phase in any plane perpendicular to the direction in which it 
progresses. 

We know from the outcome of the electron diffraction experiment in 
Chapter 1.3 that a "wave" of electrons of uniform momentum is "mono­
chromatic" (i.e., has a well defined wavelength), so we write in analogy to 
Eq. 2.1: 

'fjJ(x, t) = A sin (kx - wt) (2.2) 

We do not know whether this is the correct wave function (it will turn out 
not to be), nor do we know the meaning of the constants A, k, and w. The 
interpretation for w is suggested by Eq. 1.2; we assume that a similar relation 
exists between the kinetic energy and the frequency of a particle. Hence we 
try 

16 

P 2 
hv = nw = E = ~ 

2m 
or 

p.,2 
w=--

2mn 
(2.3) 
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where p", is the particle momentum.1 A suitable expression for k comes 
directly from the experimental result (Eq. 1.5): 

A = 27T =.!!-.­
k p", 

or 

Using Eqs. 2.3 and 2.4 in Eq. 2.2 we obtain 

1p(x, t) = A . sin (p~X - :~~) 

(2.4) 

(2.5) 

This wave function is unfortunately not very informative. It describes an 
infinite plane wave and, hence, does not offer any clue to the location of the 
particle. Actually this was to be expected. We had specified the particle 
momentum Px exactly and should therefore have no idea where the particle 
is. Nevertheless, we shall try to obtain some hints from Eq. 2.5 concerning 
the kind of differential equation or wave function that describes the motion of 
particles. The wave function Eq. 2.5 actually satisfies a large number of wave 
equations, and we try one: 

a21p a21p 
-=IX-at2 ax2 

(2.6) 

This equation is solved by Eq. 2.5. It describes, for instance, the propagation 
of a plane sound wave through a gas if we identify IX with the velocity of 
sound. Substituting Eq. 2.5 and assuming apia! = 0 (i.e., absence of forces 
acting on the particle), we obtain 

or 
p",2 

IX =--
4m2 

(2.7) 

(2.8) 

This result looks unattractive. We would prefer a wave equation that depends 
only on basic partic1e properties such as mass; whereas, dynamic variables 
such as the momentum should appear only in the wave function. 2 A second 
look at Eq. 2.7 tells us that Px would have cancelled if we had differentiated 
only once with respect to time. So we try a new wave equation: 

(2.9) 

1 We have used here h = h/21T . h (pronounced h-bar) is more frequently used in the modern 
literature than Plank's original h. 
2 At relativistic velocities, mass becomes a dynamic variable; ours, however, is a non­
relativistic theory. 
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We substitute Eq. 2.5 into Eq. 2.9 and find that this does not end our trouble 
(Eq. 2.5 is not a solution of Eq. 2.9). 

As we can easily verify 

1p(x, t) = A exp [iC:X - ~:~) ] (2.10) 

is a solution of Eq. 2.9 if 
iii 

y=-
2m 

Here we stop and review the situation. On the credit side we note: 

(2.11) 

1. We have found a wave equation (Eq. 2.9) that does not dep.end explicitly on a 
dynamic variable. 

2. The constant y contains the fundamental constant Ii that seems to play such an 
important role wherever quantum phenomena are concerned. 

3. The wave function (Eq. 2.10) which solves Eq. 2.9 describes a "monochro­
matic" plane wave as was desired. 

On the debit side we find: 

1. The experimental situation we have tried to describe is rather undemanding. 
Even though our wave equation can handle a simple plane wave, we still have to 
test it on a more complicated physical situation. 

2. The wave equation (Eq. 2.9) as well as the wave function (Eq. 2.10) are com­
plex. This is particularly disturbing with regard to the latter, since it means that 
Eq. 2.10 cannot describe a measurable quantity. 

So, what does it describe? 
We postpone the answer to this question and take another look at Eq. 2.9. 

Substituting Eq. 2.11 and making the obvious extension to three dimensions 
we get 

or (2.12) 

If in obtaining Eq. 2.9 we have guessed correctly, Eq. 2.12 will be the wave 
mechanical equivalent of the classical equation of motion. We compare these 
two descriptions of the behavior of a free particle: 

Classical Equation of Motion Quantum Mechanical Wave Equation 

(a) E = p2 (b) iii o1p = (iIiV)2 1p 
at 2m 

(2.13) 

Written in this form, the two equations exhibit a very formal (and very faint) 
similarity. This similarity led Erwin Schrodinger (1926) to postulate that the 
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transItlOn from the classical description to the quantum mechanical de­
scription of a system should be made using the following procedure: 

(a) Write the classical equation of motion in terms of the total energy E, the 
momentum p and the potential V. 

(b) Change this equation into an operator equation by replacing E with the operator 
ih( a/at) and by replacing p with the operator3 - ih V 

(c) Apply the resulting operator equation to a wave function 'P and solve for it. 

This is merely a shrewd guess, and it should be stated that there are other 
ways to make the transition from classical to quantum mechanics, based on 
equally tenuous similarities. 

The fact that the similarities between Eqs. 2.13a and 2.l3b and the con­
clusions drawn from them are not at all obvious is just another tribute to the 
genius of Erwin Schr6dinger. Before we try to find out about the meaning of 
the wave function, we shall outline briefly how this theory was completely 
confirmed by experiment. 

The classical equation of motion of a particle in a potential is 

p2 
E = - + VCr) 

2m 
(2.14) 

Application of the above postulates (b) and (c) yields the SchrOdinger 
equation: 

• to 01p 1i2 02 ( ) 
1ft - = - - v 1p + V r 1p at 2m 

(2.15) 

In the case of the hydrogen atom,4 the potential energy is given by Coulomb's 
law: 

e2 
VCr) = VCr) = - - (2.16) 

r 

substituting this into Eq. 2.15 we obtain 

01p 1i2 e21p iii - = - - V21p - -at 2m r 
(2.17) 

This is the famous SchrOdinger equation of the hydrogen atom. We shall solve 
it later (Chapter 5) and find complete agreement between the experimental 
values for the energy levels of the hydrogen atom and the values calculated, 
using Eq. 2.17. 

The application of the same procedure to other systems also leads to 
agreement with the experimental results, and we are today convinced that 

3 This choice of sign will be discussed in Chapter 4.1. 
4 Assuming the proton to be stationary. 
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Schrodinger's postulates are the key to a complete description of quantum 
phenomena: 

(a) If we can overcome the mathematical difficulties involved in solving the 
Schrodinger equation. 

(b) If we know the force law applicable to the situation. 

For more than two particles, the mathematical difficulties are often con­
siderable, just as in the case of the classical many-body problem. There exist, 
however, very powerful approximative methods to deal with more compli­
cated problems. The exact force law is known to us only for electric and 
magnetic interactions of the kind existing between a nucleus and its sur­
rounding electrons or between the electrons themselves:> The laws that govern 
nuclear forces are still partly unknown-a fact that further impedes the 
search for the solution of nuclear many-body problems. We shall see later 
that quantum mechanics can make qualitative but firm predictions about the 
outcome of experiments even though we know only the general character of 
a force (i.e., whether it is attractive, repulsive, spherically symmetric, etc.). 

After this sneak preview of events to come, we shall try to understand the 
role of the wave function in the scheme of things. 

Since Eq. 2.10 describes a plane wave filling all space and does not offer 
any clue, we turn to the Schrodinger equation (Eq. 2.15) for enlightenment. 
Equation 2.15 is a partial differential equation, and we try to solve it by 
writing the wave function as a product of a function u(r) that depends only 
on r and another function pet) that depends only on t. 

I "P(r, t) = p(t)u(r) (2.18) 
hence 

illu(r) dp = _ ~ p(t)V2u(r) + V(r)p(t)u(r) 
dt 2m 

(2.19) 

we divide by "P(r, t) and get 

iii dp 112 2 - = - --\7 u(r) + V(r) 
pet) dt 2mu(r) 

(2.20) 

Since the left side of Eq. 2.20 does not depend on r, and the right side does 
not depend on t, both sides must be equal to the same constant6 , say E. 

5 The gravitational force is also well known but is so weak that its manifestations have 
never been observed on an atomic scale. 
6 The mathematical technique we have used here is called the separation of the variables. 
It often leads to a simplification of the problem. In our case it allows us to split the partial 
differential Eq. 2.19 into an ordinary differential equation and a partial differential equation 
of fewer variables (x, y, and z). A partial differential equation that can be reduced in this 
manner is said to be separable. 
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Hence 

or (2.21) 

and 
1i2 

Eu(r) = - - V2u(r) + V(r)u(r) 
2m 

(2.22) 

Equation 2.22 is usually called the time-independent Schrodinger equation. 
It is obvious from Eq. 2.20 that this separation can always be carried out if 
V is not time dependent, i.e., if oV/ot = O. 

Since Et/Ii in Eq. 2.21 must be dimensionless, it follows that E has the 
dimension of an energy; w = E/Ii is a frequency, and since E is a constant, W 

must be constant. Thus7 

1p(r, t) = tp(t)u(r) = e-irotu(r) (2.23) 

This is a wave function that describes a monochromatic standing wave whose 
amplitude u is a function of r. 

In Chapter 1, we had interpreted the square of the amplitude of a traveling 
wave as something proportional to the probability that a photon goes 
through a unit area in unit time. For a standing wave, the intensity is pro­
portional to the probability of finding a photon in a volume element. 

In analogy to this, we interpret8 u*(r)u(r) as the probability density of 
finding the particle at r. The square of the absolute value, u*(r)u(r), was 
taken to account for the possibility that u(r) might be a complex function. 

At this point some clarification of the concept of probability density may 
be in order. 

The probability of finding a point particle at any given point in space is 
zero because there are infinitely many points in any finite volume. To come to 
a meaningful definition of the probability of finding a particle somewhere, we 
have to refer to a finite volume element. The probability of finding a particle in 
it depends on the distribution of the particles and on the size of the volume 
element.9 We define as the probability density P the probability w per unit 
volume: 

to find the particle. 

p=dw 
dr 

(2.24) 

The probability that the particle is in a finite volume V is obviously given 

7 The constant 'Po is now included in the function u(r). 
8 u*(r) is the complex conjugate of u(r). 
9 The probability of catching a fish depends on how large the net is as well as on the local 
abundance of fish. 
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by the integral 

(2.25) 

taken over this volume. Hence 

Per) = lp*(r, t)lp(r, t) = u*(r)u(r) (2.26) 

Since the particle, if it exists, must be somewhere, the probability density 
integrated over all volume elements must yield a certainty. Thus 

f Per) dT = f u*(r)u(r) dT = 1 (2.27) 

The Schrodinger equation is a homogeneous differential equation and leaves 
a constant factor in its solutions undetermined. The normalization ofthe wave 
function Eq. 2.27 allows us to determine this factor and to calculate the 
absolute probability density. 

The probability density can be measured in scattering experiments but, 
although these experiments confirm the interpretation that we have given the 
wave function, they are not very precise. The real proof of our theory is 
rather in the extreme accuracy (6 or more decimal places) with which 
measured energy values verify its predictions. 

Before we continue, we bring our terminology up to date. The time­
independent Schrodinger equation (Eq. 2.22) 

(2.28) 

is often written as an operator equation (see Appendix A.l): 

Eu = (;~\72 + v)u = Hu (2.29) 

The operator 

/i2 
H = - _V'2 + V 

2m 
(2.30) 

is called the Hamilton operator or the Hamiltonian of the problem because of 
its similarity to the Hamiltonian form of the equation of motion in classical 
mechanics. Instead of saying that we solve the Schrodinger equation (Eq. 
2.28) we often say, "we find the eigenfunctions u of the Hamiltonian" (Eq. 2.30) 
(see Appendix A.l). ' 

The eigenvalues E of the Hamiltonian are the possible energy values of the 
system. This statement will be made plausible later (Chapter 4.l). In the final 
analysis, however, it can be justified only through experimental verification, 
and we add it, belatedly, as another postulate to the ones listed on p. 19. 



WAVE PACKETS, MOMENTUM EIGENFUNCTIONS AND UNCERTAINTY PRINCIPLE 23 

2.2 W AVE PACKETS, MOMENTUM EIGENFUNCTIONS AND 
THE UNCERTAINTY PRINCIPLE 

Having acquired some familiarity with the basic concepts of quantum 
mechanics, we take another look at the uncertainty principle. 

It is well known 10 tizaWy; nonperiodic function of time J(t) can be expressed 
as a superposition of sine waves of varying frequency with the help of a 
Fourier integral: 

1 foo J(t) = /_ A(w)eiwt dw 
'\/ 27T -00 

(2.31) 

Similarly a function of r, or for the sake of simplicity x, can be written as 

1 foo 1p(x) = /_ rp(k)eikX dk 
'\/ 27T -00 

(2.32) 

where k is the wave number and rp(k) an amplitude depending on it. We 
recognize the function ei7cx as an eigenfunction of the momentum operator 
since it satisfies the eigenvalue equation 

::l ikx 
·Ii ue kli ikx -I -- = e ox (2.33) 

The functions eikx are, therefore, often referred to as momentum eigen­
functions. The eigenvalues kli of eikx are, by dimension, momenta but whose 
momenta? To find out, we note that eikx is not only an eigenfunction of the 
momentum operator but is also an eigenfunction of the Hamiltonian of a 
free (V = 0) particle. 

(2.34) 

According to the postulate on p. 22 the eigenvalues of the Hamiltonian are 
the possible energy values of the system. We can thus interpret the wave 
function 1p(x) of a localized particle as a superposition of wave functions of 
free particles with various momenta. The range of k over which rp(k) is 
substantially different from zero gives the range of momenta kli that we can 
expect if we make measurements of the particle momentum. 

This is very similar to a situation with which we are familiar in another 
field: electronics. An electric pulse starting at t = tl and lasting to 1 = 12 , 

although it is a one-shot event and has no periodicity, can be interpreted as a 
superposition of sine waves of various frequencies. If such a pulse is put 
through a circuit whose response is frequency dependent, the circuit will 
behave exactly as if it had been subjected to a superposition of sine waves 
covering the frequency range indicated by the Fourier integral. 

10 If not, see Appendixes A.2 and A.3. 
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Equatio~2.32 thus expresses a connection between the spatial eigenfunc­
tions 1p(x) and the momentum eigenfunctions cp(k) or, in other words, 
between the probability that the particle is in a certain place x ± ~x and that 
it has a certain momentum Px ± ~Px' Obviously there must, then, exist a 
connection between Eq. 2.32 and the uncertainty principle. In Appendix A.3 
the Fourier integral of a square pulse is deriye~. It is shown that the spectrum 
extends to higher and higher frequencies w as thet~iJth of the square pulse 
is reduced. 

If we replace the square pulse f(t) with a square wave 1p(x), we can con­
clude by comparing Eqs. 2.31 and 2.32 that for a narrow square wave, 1p(x), 
the "spectrum" of the wave numbers extends to very large values of k. 

This would imply that a particle whose wave function is well localized must 
have a wide momentum spread; however, there is a catch. A square wave is 
not a solution of the Schrodinger equation. With a little more effort than we 
have invested in Appendix A.3 one can show, however, that the following 
theorem holds true. 

THEOREM 

The smaller the interval x ± ~x is over wnfch'aju~ction 1p(x) differs sub­
stantially from zero, the larger is the interval k over which its Fourier amplitude 
cp(k) differs substantially from zero. 

This theorem whose proof can be found in the literaturell applies to any 
kind of function and thereby also to solutions of the Schrodinger equation. 

Relying on this theorem, we can now state with confidence that the mo­
mentum spectrum of a well localized particle extends to very high momenta. 
We have thus shown again that the uncertainty principle is deeply rooted in 
the wave nature of particles. 

From the foregoing it is obvious that the momentum spectrum will not only 
depend on the width but also on the shape of the spatial distribution of the 
particle. The two curves in Figure 2.1 may illustrate this. They both enclose 
the same area and have the same full width at half maximum12 but obviously 
have different Fourier transforms. 

It is interesting to ask for what shape of the spatial distribution, given a 
width, the width of the momentum distribution is smallest. If we define the 
uncertainties ~x and ~Px as the full widths at half maximum of the respective 
distributions, the answer is: The uncertainty in the momentum is smallest, 
for a given uncertainty in the location, if the wave function is a gaussian: 

1 2 2 
u(x) = -= e-x /2" (2.35) 

-Ja.J"Tr 
11 For example, L. P. Smith, "Mathematical Methods for Scientists and Engineers," p. 364· 
Dover Publications Inc., New York, 1961. 
12 A widely used though arbitrary definition of the "width" of a curve. 
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at half __ b 
maximum (t. w. h. m.) 

a ---i~~I~(-

Fig.2.1 Two curves with the same width (fw.h.m) and the same area can have different 
Fourier integrals. 

The uncertainty product is, in this case; 

Ii Llx Llp =-
'" 2 

(2.36) 

This is considerably smaller than the uncertainty product that we had derived 
from Bohr's gedanken-experiment. It is known as the minimum uncertainty 
product. We forego the proof at this point13 since we shall derive the same 
result later (Chapter 6.3) in another way. 

Thus far we have concerned ourselves only with either monochromatic 
plane waves or standing waves. The former describe a particle of well-known 
momentum and completely undetermined location, the latter a particle con­
fined to some region of space-the region where the amplitude u(r) in Eq. 
2.22 is different from zero. 

As every baseball fan knows, there also exist particles that move in free 
flight from one place to another, and both their momentum and their 
position are reasonably well known. We shall now investigate what our theory 
has to say about this situation. To this end let us assume that the wave 
function 'IfJ(x, 0) that described the particle at the time I = 0 maintains its 
shape but is shifted along the x-axis as time goes on (see Figure 2.2). A 
mathematical way of expressing this is to say that 

'IfJ(x, t) = 'IfJ(x - vI, 0) (2.37) 

~
C"""';;;;=~."' 

13 The proof is found in many oft, , ,",0,. ad ~Wf xts;". . Powell and B. Crasemann, 
Quantum Mechanics, Addison\.w~~J~c~~iff~i~'}961, Chapter 3, p. 77. 

0() r- ".. .'"" " ..::::- /' "'", \ 
, .... ' 

~ \" .. 
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Jf;(x, t) 

x_ 

Fig.2.2 A wave function 1p(x, t) = 1p(x - vt, 0) that maintains its shape while it moves in 
the positive x-direction. This kind of wave function cannot describe a moving particle. 

vvhere v is the velocity vvith vvhich the entire curve is shifted in the positive x 
direction. This velocity is called the phase velocity.14 

It is tempting to assume that a moving particle can be described by such a 
vvave function moving vvith the particle velocity. We shall soon see, hovvever, 
that this is not true. 

The Fourier transform of Eq. 2.37 is obviously 

'IjJ(x, t) = 'IjJ(x - vt, 0) = -:= a(k)eik(x-vt) dk 1 fOCJ 
.J27T -OCJ 

(2.38) 

'IjJ(x, t) is thus decomposed into a packet of plane vvaves 

exp [ik(x - vt)] = exp [ik( x - ~ t) ] (2.39) 

These vvaves, hovvever, do not satisfy the Schrodinger equation (Eq. 2.15). 
If, on the other hand, vve use Schrodinger vvaves according to Eq. 2.10 to 
build the vvave packet, the resulting vvave function vvill not satisfy Eq. 2.37. 
We conclude that a vvave packet of matter vvaves cannot propagate in the 
manner described by Eq. 2.37. Actually this vvas to be expected. The un­
certainty principle tells us that a moving particle vvhose location vve knovv at 

14 Notice that in this special case the phase velocity would equal the group velocity. For a 
discussion of the concepts of phase- (wave-) and group velocity, see F. Jenkins and H. 
White, Fundamentals of Optics, Second Edition, McGraw-Hill, New York, 1950. 
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the time t = 0 to be x ± ~x, has a momentum distribution covering the 
range from Pa; - ~x to Px + ~x. Since the momentum is not perfectly 
defined, the prediction of the future location must contain an additional un­
certainty over and above the one the particle had at t = O. In other words, 
wave packets tend to spread out as time goes by.15 A quantitative study of 
this spread in time is given in more advanced texts.16 It is interesting to com­
pare this situation with the one known in optics. In a light wave moving 
through vacuum, phase velocity and group velocity are equal. A packet of 
light waves thus maintains its shape in a vacuum. Only in the presence of a 
dispersing medium do phase velocity and group velocity differ. The result is 
known as dispersion. Applying the same terminology to a packet of matter 
waves which changes its shape constantly, we can say that matter waves show 
dispersion even in vacuum. 

The fact that photons do not undergo dispersion in vacuum does not imply 
that they are exempt from quantum mechanics. Rather, since they move with 
the velocity of light regardless of their momentum, 

fiw 
p=-

c 

an uncertainty in momentum does not affect their spread in space. 
The group velocity of a packet of light waves is defined as17 

1 0Vph 
Vg = V ph - /\, oJ. (2.40) 

ow 
v =-

9 ok 
since for particle waves: 

E p2 fi 2k2 
W=-=--=--

fi 2mfi 2mfi 
It follows that 

ow fik p 
v =-=-=-=V 

9 ok m m 

In other words, the group velocity of a packet of matter waves is equal to the 
velocity of the particle it represents. 

15 This spread may be preceded by a contraction to the minimum size allowed by the 
uncertainty principle. 
16 For example, J. Powell and B. Crasemann, loco cit. 
17 See F. Jenkins and H. White, loco cit. 
18 See Problem 2.7. 



28 MATTER WAVES 

PROBLEMS 

2.1 Can we measure the wave function of an electron? If so, how? If not, why? 

2.2 The normalized wave function of the electron in the lowest energy state of a 
hydrogen atom iSIS 

u(r) = Ae-me2r/n2 

(a) Show that this is a solution of the Schr6dinger equation (Eq. 2.22) if the 
potential is a Coulomb potential. (b) Determine the value of the constant A. 
(c) Find the energy eigenvalue. 

2.3 Find a form of the potential for which u(r) = constant is a solution of the 
Schr6dinger equation. Interpret your result. 

2.4 An electron whose kinetic energy is 1 eV is trapped in a cubic box of 1 m3 

volume with perfectly reflecting walls. What is the probability that the electron 
can be found in a volume element of 1 cm3 in one of the corners of the box. 
(Hint. Do not calculate, think.) 

2.5 Given a homogeneous gravitational force in the -y direction, a frictionless 
particle moves in a parabolic trough whose cross section is given by y = x2• 

Write down (a) the time-dependent Schr6dinger equation, and (b) the time­
independent Schr6dinger equation of the system. Assume that there is no 
motion in the z-direction and that the amplitude is small. 

2.6 (a) Normalize ul(x) = A le-ax2 

and 
U2(X) = A 2e-ax2 

over the interval - 00 < x < 00. 

Are these two functions orthogonal over this interval? 
(b) Are the functions orthogonal over the interval 0 < x < oo? 

2.7 Derive Eq. 2.41 from Eq. 2.40. 

SOLUTIONS 

2.6 (a) 

hence 

Al =JJ2~~ 
= A22J 00 x2e-2ax2 dx = A22 JJ2~ 

_00 4~ ~ 

19 Watch out for the two different meanings of e in this equation. 



hence 

To find out whether the functions are orthogonal we form 

f-: Ul (x)U2(x) dx = A1A2 f-: x e-2a.,2 dx 

SOLUTIONS 29 

Since the integrand changes sign as we go from x to -x the integral must 
vanish between symmetrical limits. 

2.6 (b) The integral 

does not vanish, i.e., the two functions are not orthogonal over the interval 
o < x < 00. It is thus meaningless to say that two functions are orthogonal 
unless we specify the interval, area, or volume in which they are orthogonal. 



3 
SOME SIMPLE PROBLEMS 

At this point only some mathematics stands between us and our intermediate 
goal: the calculation of the parameters of the hydrogen atom. A look at the 
Schrodinger equation in the form in which we shall later solve it (Eq. 5.22) 
may, however, convince us that we should sharpen our skills on the simpler 
problems below. These problems do not deal with real physical systems but 
with simplified abstractions. They will, nevertheless, give some valuable 
insight into the workings of quantum mechanics. 

3.1 THE PARTICLE IN A BOX 

For simplicity we consider a one-dimensional box, i.e., we allow a particle 
to move in a force-free region on the x-axis -a < x < +a. At x = ±a, we 
install a strongly repulsive force in the form of an infinite potential (Figure 
3.1). 

-a a 

Fig. 3.1 An infinite square well potential. 

30 
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In the force-free (V = 0) interior of the box, the time-independent Schro­
dinger equation (See Eq. 2.28) is 

(3.1) 

We try a solution of the form: 

u(x) = A sin (~x) + B cos (~x) (3.2) 

Substitution into Eq. 3.1 yields 

E[A sin (~x) + B cos (~x)] = _/i2 [_A~2 sin (~x) - B~2 cos (~x)] (3.3) 
2m 

This is an identityl if, and only if, 

/i2~2 
-=E 
2m 

Hence 

or 

. (~ ) (J2mE ) u(x) = Asm '.j7 x + Bcos 7 x 

(3.4) 

(3.5) 

is a solution of Eq. 3.1. 
This wave function does not tell us very much, since Eq. 3.1 places no 

restriction on E. Actually this was to be expected, since a particle moving 
freely along the x-axis can have any energy it pleases. Equation 3.1, however, 
does not tell the wb.:ole story; we have not yet taken into account the influence 
of the retaining wans. 

Outside the region -a < x < +a, Eq. 3.1 has to be replaced with 

_/i2 d2u(x) 
Eu(x) = - -- + Vu(x) 

2m dx2 

In the limit V -+ 00 this can be satisfied for finite values of E only if 

u=o for all Ixl > a 

The infinite potential thus imposes the boundary conditions: 

u(+a) = u(-a) = 0 

(3.6) 

If we assume the wave function to be continuous at x = ±a, this results in 

-A sin (~a) + Bcos (~a) = u(-a) = 0 

and (3.7) 

A sin (~a) + B cos (~a) = u(a) = 0 

1 In other words valid for all values of x. 
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A trivial solution of Eq. 3.7 is A = B = 0, which means that u(x) == 0 or 
that the box is empty. 

There are, however, two nontrivial solutions; one is 

A = 0 hence cos (ow) = 0 
or 

u(x) = B cos «()(x) (3.8) 
where 

TT 3TT 5TT nTT d' dd . ()( = - , - , - , ... , - , etc., an n IS an 0 mteger. 
2a 2a 2a 2a 

(3.9) 

The other is 
B=O hence sin (M) = 0 

or 
u(x) = A sin «()(x) (3.10) 

where 

O TT 2TT 3TT nTT d' . ()( = ,-, -, - , ... ,- ,etc., an n IS an even Integer. (3.11) 
a a a a 

The energy eigenvalues are, according to Eq. 3.4, 

n = 1,2,3, ... (3.12) 

i.e., there are infinitely many quadratically spaced energy levels possible. 
This leaves only the constants A and B to be determined. If there is one 

particle in the box, we must have 

L: U2(~) dx = f:aU2(x) dx = 1 (3.13) 

Applied to the wave functions (Eqs. 3.8 and 3.10), this normalization yields 

1 
A=B=-

.ja 
(3.14) 

In Eq. 3.12 we left out the case n = 0 for good reasons. According to Eqs. 
3.10 and 3.11, n = 0 results in u(x) == O. In other words, any particle confined 
in a box must have a certain minimum energy: 

(3.15) 

This sounds startling, but is a direct consequence of the uncertainty principle. 
If we know the particle coordinates to within 2a, and we do, then the mo­
mentum has to be uncertain to within 

~p = 2TTn 
'" 2a 

(3.16) 
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This amounts to not knowing whether the particle moves with a momentum 
Ip",1 = 7Tlij2a in the +x or -x direction. The energy corresponding to this 
momentum is2 

P 2 7T21i2 
E=~=--=El 

2m 8a2m 
(3.17) 

the lowest possible energy state. 
This is a simple method to obtain a rough estimate of the minimum energy 

of a system. It can be used to estimate the energy of electrons in an atom or of 
nucleons in a nucleus if the atomic or nuclear radius (i.e., the size of the box) 
is known. 

3.2 THE TUNNEL EFFECT 

A classical particle (for example, a bowling ball) with kinetic energy E 
moves toward a potential barrier (position 1, Figure 3.2a). The ball rolls up 
the slope, and a short time later at x = 0 (position 2) all the kinetic energy is 
transformed into potential energy V(O) = E. At this moment the ball re­
verses its direction and starts to roll back down the slope. Never under any 
circumstances will it run up the hill any further; in other words, never will 
it be found in the region x > 0, where Vex) > E. 

Now we investigate what happens under similar circumstances in a 
quantum mechanical system. We assume that a particle with kinetic energy E 
approaches a potential barrier of height Vo > E. For mathematical con­
venience, we assume a discontinuous transition from V = 0 to V = Vo at 
x = O. To the left of the barrier (x < 0) the Schrodinger equation reads 

1i2 d2u 
---=Eu 

2m dx2 

and we know the solution already: 

For x > 0 we have 
u = A sin «xx) + B cos «xx) 

1i2 d2u --- = (Vo - E)u 
2m dx2 

The general solution of Eq. 3.20 is 

with _J2m(Vo - E) 
Y - 1i2 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

2 The exact agreement is somewhat fortuitous and results from the fact that we have used 
Ap", . Ax = h in the uncertainty relation (Eq. 1.9) instead of, as is more usual, Ax Ap", = Ii. 
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(a) 

Fig.3.2 A classical particle (Fig. 3.2a) cannot overcome a potential barrier that exceeds 
its total energy; however, quantum mechanics allows a particle to appear in places that are 
strictly forbidden to it by classical mechanics (Fig. 3.2b and c). 

In a physically meaningful solution u must be finite for large x.3 Hence 

D = 0 (3.22) 

At this point we make two additional assumptions: The wave function 
u(x) and its derivative shall be continuous everywhere, including the point 
x = 0.4 From the continuity at x = 0 follows 

B = C (3.23) 

3 Unless we have a particle source somewhere at x > 0 (a possibility that we exclude here). 
Remember that this solution is valid only for x > O. We do not have to worry about its 
behavior for negative values of x. 

4 A discontinuity of du/dx or a discontinuity of u(x) would let d'u/dx' go to infinity. Accord­
ing to Eq. 3.20 this can happen only if either E or V becomes infinite. 
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Thus 

du B -Y'" -= - ye 
dx 

for 

du = Aoc cos (ocx) - Boc sin (ocx) 
dx 

Hence, from the continuity of duJdx at x = 0, 

- yB = ocA 

The complete solution is thus 

u(x) = A[sin(J2;; x) - J Vo ~ E cos (~ x) ] 

in the region x < a, and 

u(x) = AJ E exp (_J2m(V°a- E) x) 
Vo-E Ii 

(3.26) 

(3.27) 

(3.28) 

in the region x ~ a. Since Vo > E, (Eq. 3.28) describes a nonperiodic wave 
whose amplitude decays exponentially. 

This means that the particle has a finite-although exponentially de­
creasing-probability to be in a region (positions 3 and 4, Figure 3.2b) that 
is strictly forbidden to it by the laws of classical physics. 

If we let the potential go to zero at x = a (Figure 3.2c), particles that have 
reached position 4 find themselves again in a region with V < E and can 
continue their journey towards x = 00. This looks as if particles could dig a 
tunnel through a potential wall of finite thickness and penetrate it if it is too 
high for them to go over it. This effect is called "tunnel effect" and has 
important consequences. 

As we might suspect, this kind of barrier penetration is not restricted to 
matter waves. When light is totally reflected at the boundary between 
glass and air, it actually penetrates into the air. However, in this forbidden 
region the amplitude dies down exponentially over a distance of the order 
of a wavelength. No light escapes permanently, and we have total reflection. 
If we bring another piece of glass to within a wavelength of light of the 
reflecting surface, light can escape into it even though the two surfaces do not 
touch each other. 

It is not difficult to show that other effects familiar from optics occur with 
matter waves. Light is reflected at both surfaces of a windowpane, i.e., not 
only in going from a region of low n to one of high n, but also in going from 
high n to low n. Similarly, matter waves are partially reflected at a potential 
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threshold even if Vo < E and even in going from a region with Vo < E to one 
with V = O. Both these effects are, of course, unknown to classical mechanics. 
A bowling ball with E > Vo will always roll on toward x = 00, and a bowling 
ball that approaches the slope in Figure 3.2a from the high side will always 
roll down. 

We shall now discuss an important manifestation of the tunnel effect in the 
field of nuclear physics. In a nucleus, positively charged particles are held 
together by attractive nuclear forces of very short range. The exact law obeyed 
by the nuclear forces is still not completely known. For instance, we do not 
know whether these forces possess a potential or whether they are velocity de­
pendent. The general situation however, can be described at least approxi­
mately with the picture shown in Figure 3.3. Outside a certain distance, R2 , 

from the center of the nucleus, the long range (V oc l/r) repulsive Coulomb 
force between the positively charged particles dominates. Closer in, at R1 , the 
attractive nuclear force takes over, and we represent it by a potential well. 
Particles trapped in this well must have a certain minimum kinetic energy, 
E1 , as a result of the uncertainty principle (see Chapter 3.1). Because of the 
tunnel effect, an IX-particle rattling around in this potential well has a small 
but finite probability of "tunneling" through the wall. According to our 

® 

-=® 
~® 

@) ®E 

®~@) ®~ 
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®=-®~@J 
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r_ 
Fig. 3.3 The nucleons in a nucleus are held together in a potential well formed by the 
nuclear forces. They do not have enough energy to spill over the rim of this well. The 
tunnel effect allows some of them to get out nevertheless. (Energetically the emission of 
(X-particles is favored over the emission of single nucleons.) 
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simple-minded theory of this process, we might expect to find an expression 
like 

p ex: u*u = U2 ex: exp -2[ J(V -1i~)2M (Rl - R2)] (3.29) 

(V = average potential between RI and R2 , M = mass of the ex-particle) for 
the probability of finding the ex-particle outside the nucleus (ex-decay). A 
more sophisticated approach to the problem yields 

(3.30) 

which is in satisfactory agreement with experimental results. 
Another example of the tunnel effect is the penetration of electrons through 

a very thin insulating layer between two conductors. This effect is used in 
certain electronic devices (tunnel diodes). 

If the two conductors are superconducting and are held at a slightly 
different potential, an interesting effect can be observed. In tunneling from the 
higher potential V2 through the insulating barrier to the lower potential VI> an 
electron looses an amount of potential energy that is given by 

(3.31) 

where e is the electron charge. For reasons that are explained by a detailed 
quantum mechanical theory of superconductivity, electrons can also tunnel 
through the insulator in pairs. In this case, the excess energy which is now 

D.E = 2e(V2 - VI) (3.32) 

can be emitted in the form of a photon whose frequency is 

2e(V2 - VI) 
w= 

Ii 
(3.33) 

Not only have such photons recently been observed (the so-called a.c. 
Josephson effect)5 but Eq. 3.33 has been found to agree with the experimental 
results to within 10-3 percent. 

3.3 THE LINEAR HARMONIC OSCILLATOR 

We shall now examine a system that is still a simplified abstraction but 
that has served as a model for the theoretical study of many real physical 
situations. 

5 The abbreviation a.c. stands for alternating current. In experiments of this kind, the 
frequency w is usually in the microwave range. 
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It is well known from classical mechanics that a restoring force, which is 
proportional to the distance from an equilibrium position, F = -Cx, leads 
to a simple harmonic motion. Such a force can be derived from a potential: 

Cx2 

v=-
2 

(3.34) 

The equation of motion of a one-dimensional classical harmonic oscillator is 
thus 

mv2 Cx2 
E=-+-

2 2 
(3.35) 

We mention an obvious way to realize such a system: A mass, M, held 
between two springs obeying Hooke's law (see Figure 3.4). A solution of the 
equation of motion Eq. 3.35 is 

x = A sin (wt) (3.36) 

We determine the constants: 

mA2 CA2 
E = -- w2 cos2 (wt) + -- sin 2( wt) 

2 2 
(3.37) 

or 

(3.38) 

This identity holds true only if 

and (3.39) 

hence 

(3.40) 

~-:x; 

Fig. 3.4 In a classical harmonic oscillator a particle is bound to an equilibrium position by 
a for~e that is proportional to the distance from this position. Another way to express the 
same fact is to say that the potential energy is proportional to the square of the distance 
from the equilibrium position. 



THE LINEAR HARMONIC OSCILLATOR 39 

In other words, a classical harmonic oscillator in one dimension can have any 
amplitude and, hence, any total energy but only one frequency. 

w=J~ (3.41) 

Now we write the Schrodinger equation for the one-dimensional quantum 
mechanical harmonic ascillator. (We shall show later that the three-dimen­
sional Schrodinger equation can be separated into three one-dimensional 
equations.) 

li2 d2u w2mx2 
Eu = - -- + --u 

2m dx2 2 
(3.42) 

We have used here w2 = Cjm, i.e., we have expressed the potential energy 
in terms of the freq uency w that a classical harmonic oscillator with the same 
restoring force C would have. To simplify Eq. 3.38, we rewrite 

2Eu Ii d2u mwx2 
- = AU = - - - + -- u (3.43) 
liOJ mw dx2 Ii 

This simplifies if we measure x in units ~ li/mw,6 i.e., substitute x = x' ~ Ii/mw: 

AU = _ d2u + X '2U 
dX'2 

(3.44) 

For convenience, we shall drop the primes henceforth and write x instead, 

keeping in mind that our unit of length is now: ~ li/mOJ. Innocent though it 
looks, Eq. 3.44 is not easy to solve. We notice, however, that for very large 
values of x, AU « x2u, so that the Schrodinger equation becomes 

(3.45) 

For large x this equation has the solution: 

(3.46) 

This is usually called the asymptotic solution of Eq. 3.44. We split a factor 
e~x2/2 off the eigenfunction u(x) and substitute 

u(x) = r x2/2J(x) (3.47) 

into Eq. 3.44, hoping that this will simplify our problem.7 We form 

d2u 2 
-2 = e~x 12[ -f(x) -2xf'(x) + rex) + x 2f(x)] (3.48 ) 
dx 

6 We can easily convince ourselves that this has, indeed, the dimension of a length. 
7 It will, see Problem 3.4. 
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Substituting Eqs. 3.47 and 3.48 into Eq. 3.44, we obtain 

J..f(x) = f(x) + 2xf'(x) - f"(x) - x2f(x) + x2f(x) (3.49) 
or 

f"(x) - 2xf'(x) + f(x)(J.. - 1) = 0 (3.50) 

In order to solve this new differential equation, we expand 

(3.51) 

hence 

(3.52) 

ao ao 

f"(x) = ! k(k - I)Akxk- 2 = ! (k + 2)(k + 1)Ak+2Xk (3.53) 
2 0 

We substitute Eq. 3.51, 3.52, and 3.53 into Eq. 3.50. 

ao ao ao 

! (k + 2)(k + 1)Ak+2xk - 2! kAkXk + (J.. - I)! AkXk == 0 (3.54) 
000 

This is an identity only if 

(k + 2)(k + I)Ak+2 - 2Akk + (J.. - I)Ak = 0 (3.55) 

that is, if the coefficients of x~ vanish separately for all values of k. Equation 
3.55, therefore, gives the following recurrence relationS for the Ak : 

A - 2k + 1 - J.. A 
k+2 - (k + 2)(k + 1) k 

(3.56) 

This means that any series whose coefficients satisfy Eq. 3.56 will satisfy Eq. 
3.50. As usual, this includes many more solutions than the physical meaning 
of Eq. 3.50 calls for and, as usual, we invoke the boundary conditions to sift 
out the physically meaningful solutions. 

In the linear harmonic oscillator the particle can go to infinity if its energy 
E is infinite. The oscillator has thus no clearly defined boundary, and the 
only condition that we can impose in good conscience is 

L: u*(x)u(x) dx = 1 (3.57) 

This implies that u*(x)u(x) goes to zero faster than II/xl since the latter 
condition would stilI lead to a logarithmic singularity. With this in mind, 
we examine Eq. 3.56. 

(3.58) 

S See Problem 3.7. 
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A series with coefficients that satisfy Eq. 3.58 is convergent,9 but convergence 
alone is not enough. Unless 

00 

f(x) = LAkxk (3.59) 
o 

stays smaller than e+x2 / 2 for large values of x, 

u(x) = e-x2/2f(x) (3.60) 

will at best approach a constant, and Eq. 3.57 cannot be satisfied. However, 
as we shall see presently I(x) in Eq. 3.59 does not stay smaller than ex2/2• We 
expand 

00 2k k 

ex2/2 = L ~ = L x (3.61) 
o 2kk! k·even 2kI2(kj2)! 

The ratio of two consecutive coefficients becomes for large values of k: 

2k/2(kj2)! 1 1 
----~~~--= ~-

2kl2+l(kj2 + 1)! 2(kj2 + 1) k 

Since the same ratio for Eq. 3.58 approaches 2jk, it follows thatf(x) in Eq. 
3.59 does not stay smaller than ex2 / 2 for large x. Fortunately, there is a way 
out of this dilemma. If in Eq. 3.56 for a certain integer k = n, 

2n + 1 = A (3.62) 

An+2 and hence all following coefficients vanish. In this case we get 

(3.63) 

This is a polynomial and therefore certainly smaller than ex2/2 for large values 
of x and finite n. The normalization condition (Eq 3.57) can therefore be 
satisfied only if 

A = 2n + 1 (3.64) 

and if, at the same time (depending on whether n is even or odd), either all the 
odd-numbered or all the even-numbered Ak vanish. We thus have two series 
of eigenfunctions with ascending values of the quantum number n: 

n = 0,2,4, .. . 
(3.65) 

n = 1,3,5, .. . 

one with even, and one with odd values of n. The Ak are given by the re­
currence relation Eq. 3.56 if we know Ao and AI. We shall now derive some 
eigenfunctions explicitly. To this end, we assume that all odd-numbered 

9 This is the well-known ratio test. See for instance, V. Kaplan, Advanced Calculus, Addison­
Wesley Inc., Reading, Mass., 1953. 
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Ak = 0 and that n = 0 (i.e., that our series breaks off after the first term). 
From Eq. 3.56 follows .Ie = 1; hence 

and 

We write the constants A with two subscripts to account for the possibility 
that they might have different values for a series that breaks off after n terms 
then they have for a series that breaks off after n' terms. Now we go to n = 2, 
A = 5, and get 

o = A24 = A 26 = etc., 

n=4 

o = A40 = A48 , etc. 

Next we derive some odd eigenfunctions: 

n = 1 

Al3 = 0, etc. 

n = 3 A=7 
o = A35 = A37 = etc. 

n=5 A = 11 

0= A57 = etc. 

The polynomials whose coefficients we have just derived are called Hermite 
polynomials. The Hermite polynomials have been well investigated, and we 
list here, without proof, some convenient formulas to determine their co­
efficients: 

Hn(x) = 2nxn - 2n- 1 (;)xn- 2 + 2n- 2 • 1· 3(:)xn-4 

_2,,-3 ·1· 3· 5G)xn- 6 + ... 

dHn(x) = 2nHn_1(x) 
dx 

Hn+l(x) = 2xHn(x) - 2nHn_1(x) 

(3.66) 

(3.67) 

(3.68) 

(3.69) 

In keeping with convention, we have used in Table 3.1, which lists the first 
six eigenfunctions, the coefficients as they are given by the above formulas. We 
notice that the ratio of the coefficients is the same as that given by Eq. 
3.56. The normalization, however, will be changed and we shall now call them 
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Table 3.1 

n An En Un 

- --
nw B -x2/2 0 1 -
2 oe 

- -----
3nw 

B 12xe-x2 / 2 1 3 -
2 

- --
5nw 

B2(4x2 - 2)e-x2 / 2 2 5 
2 

- -----
7nw 

B3(8x3 - 12x)e-x2 / 2 3 7 
2 

- --
9nw 

B4(16x4 - 48x2 + 12)e-x2 / 2 4 9 -
2 

- --
11nw 

B5(32x 'i - 160x3 + 120x)e-x2 /2 5 11 
2 

Bn" Also, again in keeping with convention, we have chosen the sign of the 
Hermite polynomials in Table 3.1 and Figure 3.5 so that the highest power of 
x is always positive. This amounts to a choice of the phase of the wave 
function which has no physical significance. 

The constants Bn can be obtained from the normalization. 

Example 

(3.70) 

The normalization as defined in the example (Eq. 3.70) yields, in the general 
case,1O 

(3.71) 

10 For a derivation of this expression, see J. L. Powell and B. Crasemann, Quantum Mech­
anics, Addison-Wesley, Inc., Reading, Mass. 1961. 
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Harmonic oscillator eigenfunctions and their squares. 

Figures 3.5 and 3.6 show the normalized wave functions and their squares 
for the quantum numbers, n = 0 to n = 7. 

We sum up: The boundary conditions select, just as in the case of the 
particle in the box, a denumerable set of eigenfunctions belonging to a set of 
discrete, (in this case, equidistant) energy eigenvalues. 

The eigenfunctions form two discrete sets; one remains unchanged under 
a mirror transformation (i.e., if we change x to -x), and the other changes 
sign. 

Functions with this kind of behavior under exchange of x with -x are 
said to have a definite parity. If 

u(r) = u( -r) (3.72) 

the ·parity is said to be even, and if 

u(r) = -u( -r) (3.73) 
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the parity is said to be odd. 
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Examples 
COS x, X2, x2 + X4 + a 

have even parity; . 3 
SIn x, x, x 

have odd parity. en, x + x2 

do not have a definite parity. We shall learn more about the significance of 
the parity of an eigenfunction in subsequent chapters (see Chapter 6.6). 

It is now easy to solve the harmonic oscillator problem in three dimensions. 
The Hamiltonian is 

measuring, as before, lengths in units 

and using 
E= hAW 

2 

(3.74) 

(3.75) 
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Fig. 3.5 (continued) 

we obtain the Schrodinger equation: 

\121p + (A - r2)1p = 0 

We try a solution of the form: 

1p(x, y, z) = u(x)v(y)w(z) 

Fig. 3.6 (continued) 

02U 02V 02W 
WV - + uw - + uv - + (A - x2 - y2 - Z2)UVW = 0 

ox2 oy2 OZ2' 

We divide by uvw 

1 02U 1 02V 1 02W 2 2 2 - - + - - + - - + (A - x - y - z ) = 0 
U ox2 V oy2 W oz2 

(3.76) 

(3.77) 

(3.78) 

(3.79) 

Obviously, this can be written so that either all the x-dependent terms, or 
all the y-dependent terms, or all the z-dependent terms are on one side. 



0.7 

0.5 

~ 0.3 <= 
" '0 

~ 0.1 :c .. 
..Q 

£-0.1 

-0.3 

-0.5 
(g) 

0.6 

0.4 

" '0 

:E 0.2 0. 
E .. 
~ 0.0 

~ -e-O.2 
0.. 

Fig. 3.5 (concluded) 

THE LINEAR HARMONIC OSCILLATOR 47 

0.48,---,.-....,---.,.----,----r-,..--,----, 

0.40 n= 6 

~10.32 
~, 
~. 

~10.24 
2l 
£0.16 

0.08 

0.30 

0.25 

~ 
.~ 0.20 
" '0 

~0.15 
~ 
£ 0.10 

0.05 

o 

I 1\' 
-n=7 

-

e-

I-

l- ) , 

(g) 

I I r\ I 

-n 
-

-

,\ -

6.0 -6.0 -4.5 -3.0 -1.5 1.5 3.0 4.5 6.0 
Displacement from equilibrium position 

(h) 

Fig. 3.6 (concluded) 

Hence, the equation can be separated by using three different separation 
constants, Ax, Ay, Az, which have to satisfy 

Ax + Ay + Az = A 

This gives us three independent equations: 

d 2u 
dx2 + (Ax - X2)U(X) = 0 

d2v 
-2 + (Ay - y2)V(Y) = 0 
dy 

d2w 
-2 + (Az - Z2)W(Z) = 0 
dz 

(3.80) 

(3.81) 

The solutions for these one-dimensional equations have already been 
obtained and are listed in Table 3.1. 
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To sum it up, the wave function of the three-dimensional harmonic 
oscillator is the product of the wave functions of three one-dimensional 
harmonic oscillators in the x, y, and z direction. The total energy is the sum 
of the energies of the three one-dimensional oscillators. This results in a very 
complicated behavior since a solution for the x-coordinate with, for example, 
n = 2 can combine with any solution for the y and z coordinate. 

It is interesting to compare the probability of finding the particle in a 
certain location in the potential well for the classical and quantum-mechanical 
harmonic oscillator. 

For the classical harmonic oscillator the probability is, obviously, in­
versely proportional to the velocity that the particle has when it moves 
through a certain volume element (length element in the one-dimensional 
case). Hence 

P d dx --;==d=x = x ex:: - ex:: , 
v ,J A2 _ x2 

For the quantum-mechanical harmonic oscillator, it is 

P dx ex:: u2(x) dx 

(3.82) 

(3.83) 

Figure 3.7 compares the probability density of the particle at various 
distances from the origin in both a quantum-mechanical harmonic oscillator 
of quantum number n = 60 and a classical harmonic oscillator of the same 
total energy. 

There is an excellent agre~ment between the classical probability density 
and the average probability density in the quantum-mechanical case. Com­
paring Figure 3.6 with Figure 3.7, we see that this agreement develops 
gradually as n increases. This is a manifestation of the correspondence 
principle: Quantum-mechanical systems, in general, approach the classical 
behavior as we go to large values of the quantum numbers. 

Figure 3.8 shows the energy levels and the probability densities of the 
first eleven states in relation to the harmonic oscillator potential: V = Cx2j2. 
The quantum-mechanical harmonic oscillator is a reasonable approximation 
of many physical systems. As an example, we mention diatomic molecules. 
In a diatomic molecule the two atoms can vibrate around their equilibrium 
position. For vibrations of small amplitude, the restoring force is very 
nearly proportional to the amplitude and the molecule resembles a harmonic 
oscillator rather closely. Consequently the vibrational states of a diatomic 
molecule lead to nearly equidistant spectral lines. 

Historically the harmonic oscillator has played an important role in the 
development of quantum mechanics. Guided by experimental evidence from 
the blackbody radiation, Max Planck postulated in 1900 that a harmonic 
oscillator should only be able to absorb or emit radiation in discrete amounts. 
This was the beginning of the era of the "old quantum mechanics." 
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Fig.3.7 For large values of n the average value of the probability density closely resembles 
the classical probability density (dotted line). 

In 1925, Heisenberg invented a new kind of "matrix mechanics" and 
showed that, applied to the harmonic oscillator, it, indeed, led to discrete 
equidistant energy levels. 

3.4 THE ONE-DIMENSIONAL CRYSTAVI 

A metal crystal consisting of a vast number of positive ions and electrons 
is certainly a quantum-mechanical many-body system par excellence. For­
tunately it is possible to derive some of its salient features from the follow­
ing drastically simplified model. 

11 The material in this section is somewhat more difficult than that in the preceding sections. 
Chapter 3.4 is selfcontained, however, and its study can be postponed until later. 
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(a) The positive ions are much heavier than the electrons and are known, 
experimentally, to be almost immovable. We assume that they are stationary 
and that they provide a periodic potential with a period d in which the 
electrons move. 

(b) The electrons are very nimble, and able to move out of each others 
way. We assume that the electric potential created by the electrons is the 
same everywhere in the crystal. 

These assumptions reduce our problem to the study of the motion of an 
individual electron in a superposition of a constant and a periodic potential. 
To further ease the solution, we make some mathematical simplifications. 

(c) We consider only one dimension, i.e., we investigate the motion of 
an electron in the one-dimensional crystal lattice of Figure 3.9. 

(d) Since the absolute value of the potential has no influence on the 
motion of the electron, we assume the potential to be zero halfway between 
lattice points. 

(e) To avoid trouble that might arise at the two ends of the crystal, we 
join them to form a ring. 

Before we set out to solve the Schrodinger equation for this problem, we 
try to find out as much as we can about the general character of its solutions. 
The crystal potential was assumed to be periodic with a period d: 

V(x + d) = V(x) (3.84) 

The fact that the shape of the potential is the same in all cells of our one­
dimensional crystal lattice does not mean that the eigenfunctions have to be 

Fig. 3.9 
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periodic with the lattice period. True, the Schrodinger equation remains 
unchanged if we replace V(x) with V(x + d), but it leaves a constant factor 
in its eigenfunctions undetermined. At the point x + d, the Schrodinger 
equation is, therefore, the same as it was at the point x. Its solution, u(x + (1), 
could, however, just as well be 

u(x + d) = PIU(X) (3.85) 

where PI is a (possibly complex) constant. If we move over one more lattice 
space, the same argument holds true. Hence 

u(x + U) = PI . P2U(X) (3.86) 

If we continue this N times (where N is the number of ions in our crystal 
ring), we get back to where we came from. Hence 

u(x + Nd) = itl . P2 ... PNU(x) = u(x) (3.87) 
or 

PI' PI'" PN = 1 (3.88) 

Because of the symmetry of the crystal ring, it cannot make any difference 
at which lattice point we started, and we conclude that all the Pk must be 
equal. Hence 

u(x + Nd) = pNu(x) = u(x) 
or 

P = e2trinlN, 

We have, therefore, 

n = 0, 1, 2, ... , N - 1 

(3.89) 

(3.90) 

u(x + rnd) = e2trinmlN. u(x) (3.91) 

The statement made in Eq. 3.91 can also be expressed in the following form: 

u(x) = e2rrinaJINd. w(x) = eikaJ . w(x) (3.92) 

where k = 2T1'n/Nd and where w(x) is periodic with the period d [i.e., 
w(x + d) = w(x)]. The proof is easily accomplished by replacing x with 
x + rnd in Eq. 3.92. Equation 3.92 is known to physicists as Bloch's theorem12 

and to mathematicians as Floquet's theorem.13 It can easily be extended to 
three dimensions. 

The plane wave described by Eq. 3.92 has an amplitude w(x). that is 
periodic with the period d of the lattice. As we had emphasized earlier, u(x) 
itself need not have the same periodicity. However, it is easy to convince 
ourselves that the probability density, u*(x)u(x), will be periodic with the 
lattice period. This follows from 

u*(x + d)l.l(x + d) = w*(x + d)w(x + d) = w*(x)w(x) = u*(x)u(x) (3.93) 

111 Felix Bloch, z.[ Physik, 52, 555 (1928). 
13 A. M. G. Floquet, Ann. del''Ecole norm. sup., 2, XII (1883). 
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--
Fig. 3.10 For reasons of mathematical convenience the ring of Fig. 3.9 is idealized by a 
succession of square well potentials. 

If we want to go on with the solution of the Schrodinger equation, we 
have to specify the actual shape of the periodic potential. To simplify things, 
we assume the physically impossible though mathematically convenient 
Kronig Penney potentiaJ14 (shown in Figure 3.10). We have shown that the 
solutions of the Schrodinger equation with a periodic potential: 

d2u + ,2m (E _ V)u = 0 (3.94) 
dx2 /i2 

are of the form: 
u(x) = eik"'w(x) (3.95) 

Substitution of Eq. 3.95 into Eq. 3.94 yields a differential equation for w(x): 

- + 2ik - + - E - - - V w = 0 d2w dw 2m ( k2/i 2 ) 

dx2 dx /i2 2m 
(3.96) 

To solve Eq. 3.96 we substitute 

w(x) = eiy", (3.97) 

The resulting identity yields15 

?' = -k ± J2m(E/i: V) (3.98) 

14 R. de L. Kronig and W. G. Penney, Proc. Roy. Soc., A130, 499 (1931). 
15 Remember that in the Kronig Penney model, V is (except for the discontinuities) a 
constant. 
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In the region of zero potential, 0 < x < a, the general solution of Eq. 3.96 
becomes, therefore, 

where 

IX = +J2mE 
1i2 

In the potential well, a < x < d, the general solution is 

wvCx ) = Cei<P-k)X + De-dP-ldx 

where 

f3 = J2m(E - V) 
1i2 

(3.99) 

(3.100) 

(3.101) 

(3.102) 

Ifwe require that the eigenfunction u(x) and its first derivative be continuous16 

at x = 0 and x = a, we get 

( dWO\ = (dWv\, 
dx /0 dx /0 ( dWo) (dWv) 

dx a dx a 

(3.103) 

(3.104) 

These four linear homogeneous equations are sufficient to determine the four 
constants A, B, C, and D if the determinant of their coefficients vanishes. 
This fourth order determinant of transcendental functions of E is difficult 
to solve for E, and we simplify the problem even further. We shrink the 
region a < x < d, increasing at the same time V so that the product: 

V(d - a) = K (3.105) 

remains constant. Since u(x) was to be continuous at x = a and x = d, we 
can integrate Eq. 3.96 if we narrow the potential well so much that u(x) 
remains (practically) constant in going from x = a to x = d. With the 
potential well this narrow the condition (3.105) makes V so large that we 
can neglect both k and E inside the well. Hence Eq. 3.96 becomes 

d2w + 2ik dw _ 2m Vw = 0 
dx2 dx 1i2 

(3.106) 

We integrate Eq. 3.1 06 over the region of the potential well: 

fd d2W fd dw 2mfd 
-2 dx + 2ik - dx - - Vw dx = 0 

a dx a dx 21i a 
(3.107) 

this yields 

(dW) (dW) + 2ik(w(d) _ w(a)) _ 2~ w(d)K = 0 
dx d dx a Ii 

(3.108) 

16 See footnote 4. 
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Because of the periodicity of w(x) and its continuity at x = 0 

wed) = w(O) = w(a) 

so that the second integral vanishes. Hence 

( dW) _ (dW) _ 2m w(O)K = 0 
dx ° dx a 1i2 

(~~)o and (~:)a 

(3.109) 

(3.110) 

are the derivatives on either side of the potential well, i.e., in the region of 
zero potential, therefore 

( dWO) _ (dWo) _ 2m wo(O)K = 0 
dx ° dx a 1i2 

(3.111) 

Together with Eq. 3.99 this yields 

Ai(ex - k)(1 - ei(~-k)a) - Bi(ex + k)(1 - e-i(~+k)a) - 2m K(A + B) = 0 
1i2 

(3.112) 
Equations 3.99 and 3.109 yield 

A + B = Aei(~-k)a + Be-i(~+k)a (3.113) 

Equations 3.112 and 3.113 are two linear homogeneous equations for A and 
B. They can be solved if the determinant of the coefficients vanishes: 

1 - ei(~-k)a 

i(ex - k)(1 _ ei(~-k)a) _ 2mK 
1i2 

(3.114) 

Multiplying this out and using the identity ei'P = cos f/J + i sin f/J, we get 
a transcendental equation for ex: 

Km sin (exa) + cos (exa) = cos (ka) 
Ali2 

(3.115) 

or substituting the value of ex given Eq. 3.100 and replacing17 a with the lattice 
constant d: 

Km (d -) (d 1-) I sin - .J2mE + cos - V 2mE = cos (kd) 
liv 2mE Ii Ii 

(3.116) 

17 This is now permitted since we have made d - a very small. 



I, 

I III! 

56 SOME SIMPLE PROBLEMS 

The left-hand side is a function of E, the right-hand side is not. The left-hand 
side can assume values larger than one, the right-hand side cannot. Equation 
3.116 can, therefore, be satisfied only for those values of E for which the 
left-hand side remains between -1 and + 1.18 In other words, in a crystal 
only certain energy bands are allowed for an electron. This result is borne out 
by a more complete theory and confirmed by experiments. Figure 3.9 shows 
a plot of 

Km (d -) (d-) 1>(lXd) = -J sin - -J2mE + cos - -J2mE 
Ii 2mE Ii Ii 

(3.117) 

as a function of IXd, for various values of K. 
The values of 1> for which Eq. 3.116 can be satisfied are drawn heavily. 

They determine the so-called allowed energy bands of the crystal. Taking the 
allowed values of IXd from Figure 3.9, we can calculate the allowed values of 
E from Eq. 3.100. 

(3.118) 

The result is shown in Figure 3.12. A look at Figures 3.11 and 3.12 shows what 
we would have expected. The larger K, that is the higher the potential 
separating the regions of zero potential, the narrower the energy bands. For 
K -- 00 the crystal is reduced to a series of independent square wells, and the 
energy bands go over into the discrete eigenvalues that we had found for a 
square well in Chapter 3.1. 

3.5 SUMMARY 

Let us review our findings thus far. The transition from classical mechanics 
to quantum mechanics starts from the classical equation of motion of a 
system: 2 

E = L + VCr) (3.119) 
2m 

The transition is accomplished in five steps. 

(a) The total energy E is replaced by an operator 
a 

iii -at 
(b) The momentum p is replaced by an operator19 

-iliV 

18 In a real crystal, N is very large, kd can vary almost continuously, and cos (kd) can assume 
any value between -1 and + 1. 
19 This choice of sign is customary, since only the square of ihV occurs in the Schrodinger 
equation, it does not make any difference here. We shall, however, come back to this 
point in Chapter 4.1. 
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Fig. 3.11 A particle trapped in a potential well can have only certain discrete energy 
values. In a periodic potential these discrete energies are replaced by allowed energy bands. 

Fig. 3.12 As the barriers between different crystal cells get bigger and bigger the energy 
bands shrink to the allowed energy values of the particle in an infinite square well. 
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(c) The resulting operator is applied to a wave function 1p and the resulting time 
dependent Schrodinger equation: 

a1p 1i2 
iii - = - - \121p + V(r)1p 

at 2m 
(3.120) 

is solved for 1p(r, t) . 

(d) 1p*(r, t)1p(r, t) dr 

is the probability that the particle can be found in the volume element dr at the 
time t. 

If the potential doe~ not contain an explicit time dependence, i.e., if 

av 
-=0 
at 

(3.121) 

the Schrodinger equation (Eq. 3.120) is separable, and we obtain the timeindepend­
ent Schrodinger equation 

-1i2 
2m \12u(r) + V(r)u(r) = Eu(r) 

The eigenvalues of the Hamiltonian (operator) 

1i2 
H = - - \12 + V(r) 

2m 

(3.122) 

(3.123) 

are the possible energy values of the system. The square of the absolute value of 
the eigenfunction 

u*(r)u(r) 

gives the probability density that the particle can be found at r. 
(e) The eigenfunctions 1p(r, t), or u(r) for the time independent problem, must be 

normalized by forming 

J 1p*(r, t)1p(r, t) dt = 1 or J u*(r)u(r) dr = 1 (3.124) 

These integrations can only be performed if the boundary conditions of the 
problem are known. The boundary conditions together with Eq. 3.124 select 
the physically meaningful solutions ofEq. 3.120 or Eq. 3.122 from the many 
more mathematically possible ones. 

It is obvious from the foregoing examples that the boundary conditions 
playa decisive role. The condition u(±a) = 0 in the example of the particle 
in a box eliminated all solutions that did not satisfy 

n = 1,2,3, ... (3.125) 

Similarly the condition 

J u*u dx = 1 (3.126) 
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Fig. 3.13 In quantum mechanics, as well as in classical mechanics, the basic differential 
equations permit an infinite variety of solutions. Whether we hear music depends on the 
boundary conditions. 

imposed on the solutions of the linear harmonic oscillator led to discrete 
energy eigenvalues. In the one-dimensional crystal the periodicity of the 
potential together with the condition 

u(x + Nd) = u(a;) (3.127) 

led to allowed bands of discrete energy eigenvalues. For finite values of N, 
Eq. 3.116 is, of course, satisfied only for a finite number of energy eigenvalues 
in each band. 

We conclude20 from our examples: Whenever a particle is confined to a 
certain region of space only certain discrete energy eigenvalues are allowed. 

The great importance of the boundary conditions and the fact that 
confinement leads to discrete eigenvalues is by no means restricted to quantum 
mechanics. To illustrate this we mention two examples from classical physics. 

Maxwells equations21 encompass everything that is electromagnetic. 
Whether they describe the TV program on Channel 6 or the current generated 
in a hydroelectric power plant depends on the boundary conditions under 
which we solve them. The motion of a string can be described by a differential 
equation, and all the configurations the string can assume are compatible 
with this differential equation. If we impose boundary conditions, only 
certain configurations remain possible (Figure 3.13). 

20 A rigorous proof of this statement has not yet been found, although the widely varying 
conditions under which we have shown it to be valid make it plausible that the statement 
is universally true. 
21 J. R. Reitz and F. J. Milford, Foundations of Electromagnetic Theory, Addison-Wesley, 
Inc., Reading, Mass., 1960. 
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The Schr6dinger equation is a linear differential equation or, to put it 
differently, the Hamiltonian operator is linear. According to the definition 
of linearity (see Appendix AI), this means that a superposition of solutions 
(or eigenfunctions) is also a solution. We have studied this for the case of the 
wave, packet (see Chapter 2.2). We mention here in passing that a similar 
superposition is possible when different eigenfunctions belong to the same 
eigenvalue, a case to which we shall return later (Chapter 9). 

We conclude this chapter with the introduction of some widely used 
expressions whose origins should by now be obvious to the reader: 

A quantum mechanical system can usually exist in various states charac­
terized by their wave functions. A state whose wave function is an eigen­
function of an operator is often called an eigenstate of that operator. 

If the wave function of a state can be expressed by a linear combination of 
other wave functions we often refer to this as a superposition of states. 

The labels (indices) of a set of discrete eigenvalues are often called the 
quantum numbers of the corresponding states. 

PROBLEMS 

3.1 A gas consisting of point particles of mass m = 10-23 g is confined in a box 
whose volume is 1 cm3• According to the kinetic theory of gases the average 
velocity of the gas molecules is given by 

mv2 

- =!kT 
2 

where k = 1.38 X 10-16 [erg/molecule OK] is Boltzmann's constant. Give a 
rough estimate of the temperature at which one can expect to see a deviation 
from the behavior predicted by the kinetic theory. Is this limitation of 
practical concern in the example given here? 

3.2 (a) A proton or (b) an electron are trapped in a one-dimensional box of 
10-8 cm length. What is the minimum energy these particles can have? 

3.3 A particle is trapped in a one-dimensional box whose total length is L. Its 
energy is E = n21i2/2mL2. Where in the box is the particle most likely to be 
found? 

3.4 An electron whose kinetic energy is 10 eV is trapped in a potential well whose 
walls are 10.01 V high. How thin must the walls of the well be in order for the 
electron to have an appreciable chance to escape? 

3.5 A junction between two superconducting metals exhibits the a.c. Jo;ephson 
effect. A voltage of 1.0 mV is applied across the junction. What is the fre­
quency of the electromagnetic radiation emitted by the junction? 

3.6 Determine the normalization factors Bo, B1 , and B2 for the harmonic oscill­
ator eigenfunctions of Table 3.1. 
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3.7 To find out why we have split off the factor e-flJ1/1 (Eq. 3.47), expand u(:c) 
itself into a series and substitute this series into Eq. 3.44). Compare the result 
with Eq. 3.56. 

3.8 The energy eigenvalues of a molecule indicate that the molecule is a one­
dimensional harmonic oscillator. In going from the first excited state to the 
ground state, the molecule emits a photon of hv = 0.1 eV. Assuming that the 
oscillating part of the molecule is a proton, calculate the probability that 
the proton is at a distance from the origin that would be forbidden to it 
by classical mechanics. 

3.9 An electron is trapped in a one-dimensional harmonic oscillator potential. 
The frequency difference between the spectral lines emitted by the electron is 
.:1v = 1015 cycles/sec. The electron is in its ground state. What is the prob­
ability of finding the electron at a distance of (+10-7 ± 1 x 10-9) em from 
the origin? What is the probability of finding the electron at the center of the 
potential well in an interval of ±10-9 cm? 

3.10 Show that for infinitely large values of the constant K 19 ,Eq.~!he 
allowed energy bands contract t6 points on the ~nergy ~~ ~il_~t ,~ 
points coincide with the energy eigenvalues of a particle in a one-dimen~iona:~ 
~~~~~~. f 

SOLUTIONS 

3.1 A serious discrepancy with the kinetic theory of gases can certainly be 
expected if the average kinetic energy mvl /2 = tkT approaches the minimum 
energy of a particle in a box as given by Eq. 3.15: 

."slil 
El = 8al m 

Since a = 1 for a cubic box we let 

or 
."slil ."s(6.626)2 . 10-54 

T = 3mk = 4."s . 3 . 10-23 • 1.38 . 10-16 

= 2.65 . 10-15 OK 

This temperature is so low that quantum effects would be quite negligible 
even at the lowest temperatures that can be reached today (,.." 1 o-a OK). This 
does not mean that quantum effects cannot be observed in low temperature 
gases or liquids. In our example we had assumed point particles so that each 
particle has the full volume of the box available. Real gas molecules, of 
course, occupy a volume so that only a small intermolecular volume remains 
at very low temperatures. In that case we can easily observe quantum effects 
in liquid He at temperature of the order of 10 K. 
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3.8 If E = h'll = 0.1 eV we have according to Table 3.1: 

liw 
Eo = -:2 = 0.05 

The force constant C is, according to Eq. 3.41: 

C = mw2 

A classical harmonic oscillator with this force constant and a total energy Eo 
has, according to Eq. 3.39, an amplitude of 

2Eo Ii 
A=-=-= 

c V2mEo 

The ground state wave function is, according to Table 3.1, 

21 1 21 Uo = Boe-x 2 = --= e-X 2 

V V7T 

using the normalization (Eq. 3.71). The probability of finding the proton 
outside the classically defined limit A is then 

P(A) = 1 - ~ fA e-x2 dx = 1 - ~ iAe-x2 dx 
V 7T -A V 7T 0 

The reader may evaluate this integral using tables of the error integral 

-= e-x2/2 dx 1 it 
V27T 0 



4 
SOME THEOREMS AND DEFINITIONS 

4.1 THE EXPECTATION VALUE, EHRENFEST'S THEOREM 

The object of theoretical physics is to make quantitative statements about 
measurable parameters of a physical system. In classical physics there can be 
little doubt about the connection between a theoretical prediction and its 
experimental verification. 

In the realm of quantum mechanics, the existence of the uncertainty 
principle forces us to reexamine this problem, raising the following questions. 

(a) In what way can we extract a value for a dynamic variable from our theory? 
(b) How is this value related to the outcome of an experiment designed to measure 

the variable? 

Because of the uncertainty principle we cannot determine the parameters 
of a system with. complete accuracy. The sad fact that experiments, for 
whatever reasons, l do not yield a unique result was well known to experi­
mentalists before the advent of quantum mechanics, and they developed 
methods to deal with this regrettable situation. It is a common practice to 
repeat uncertain experiments several times and to determine the average of 
several measurements of, for example, a parlll11eter x according to 

1 n 
x = - LXk 

n k~l 
(4.1) 

where xk is the result of the kth measurement. If certain values X k occur nk 

times, we can write Eq. 4.1 as 

m 

Lnkxk 1 m 

X = k~~ = - L nkxk 
"" n k~l 
£., nk 

(4.2) 

k~l 

1 We are thinking here of reasons as mundane as insufficient resolution, imperfect equip­
ment, etc. 
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The probability that a measurement yields the value xk is then 

(4.3) 

Using this definition, we can write 

(4.4) 

We shall follow the mathematical usage of calling the thus defined average, 
x, the expectation value of x (often written as x = (x». The definition (Eq. 4.4) 
can obviously be extended to a continuous distribution of probabilities, P(x), 
by writing 

(x) = L:p(X)X dx = L: x dW (4.5) 

dW = P(x) dx is the probability that x has a value between x and x + dx. 
Since the probability that x has any value at all must be one (a certainty), we 
find that P(x) has to satisfy 

(4.6) 

P(x) is usually called the probability density of x because it gives the proba­
bility per unit interval 

dW 
P(x) =-

dx 
(4.7) 

that x has a certain value. In forming the average of x according to Eq. 4.5, 
those values of x that are more probable contribute more heavily to the 
integral. These values are, so to speak, given more weight. For this reason, 
(x) as in Eq. 4.5 is sometimes caIIed the weighted average of x, and P(x) is 
also caIIed the weight function. The procedure used to get the expectation 
value of a parameter x can be extended to functions of one or several 
parameters. We can define the expectation value of a function of, for example, 
three parameters j(x, y, z) as 

(f(x, y, z» = III P(x, y, z)f(x, y, z) dx dy dz (4.8) 

In applying this to quantum mechanics, we remember that u*(r)u(r) dT is 
the probability that a particle can be found in the volume element dT. The 
expectation value (r) of the coordinate vector of the particle is thus, according 
to Eq. 4.8, 

(r) = I u*(r)u(r)r dT (4.9) 
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The expectation value, on the other hand, is defined as the average of many 
measurements. The connection between theory and experiment must, 
therefore, be given by 

J 1 n 
(r) = u*(r)u(r)r dT = lim - L rk 

n-+ 00 n k=l 
(4.1 0) 

where r k is the result of the kth measurement of the particle coordinates. 
The only way to measure the coordinates of a particle is to perform a 
scattering experiment, i.e., to bounce some other particle off it. Obviously 
this will change the coordinates of the scattering particle and will, in general, 
make it unavailable for subsequent measurements. The way to get around 
this difficulty is to start with a large number of target particles in the same 
state and to bombard them with a stream of identical particles, thus averaging 
over a large number of measurements. Figure 4.1 shows a typical scattering 
experiment. The particle detector is moved around the target and measures 
the flux of scattered particles as a function of the angle e. Symmetry con­
siderations preclude a cp dependence as long as target particles and bom­
barding particles have their symmetry axes-if they have any-oriented at 
random. It might seem as if such a scattering experiment would yield nothing 
but (r), the average location of all the target atoms, i.e., the center of mass 
of the target. This is not true. Among other things, we can obviously extract 
some information about the size of the scattering particles2 from an analysis 
of the relative number of the scattered particles. This amounts to a measure­
ment of (ILlrl) and since ILlrl is the same for all the target particles it does not 
matter whether we measure 

(4.11) 

several times for the same particles or once for several identical particles. 
Now we turn to the expectation value of the momentum. It is easily defined 

experimentally. We measure the momentum of a particle several times or we 
measure the momenta of several particles accelerated under identical con­
ditions and take the average. But how can we define it theoretically? How 
do we determine the expectation value of an operator? Is it 

(POl) = -Jill ~ (1jhp) dT ox or (POl) = -J1jJ*ill 01jJ dT ox 
or what? To find out, we follow a procedure given by Paul Ehrenfest.3 Let 

(x(t) = J x1jJ*1jJ dT 

2 If the size of the bombarding particles is known. 
3 P. Ehrenfest, Z. Physik 45, 455 (1927). 

(4.12) 
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Beam of 

incoming particles 

Detector 

8 = Scattering 
angle 

monitor I Beam 

Fig. 4.1 In a typical scattering experiment a beam of identical incoming particles is 
scattered by a large number of identical target particles. 

be the expectation value of the x coordinate of a particle moving along the 
x-axis. 

d(x) 
v = - (4.13) 

re dt 

must be the average velocity with which the wave packet (particle) moves. 
We conclude that4 

m d~;) = (Pre) (4.14) 

should be the expectation value of the x-component of the particle momen­
tum. We now proceed to express (Pre) in terms of the operator ili(ojoX).5 

m-- = m- X1jJ*1jJdT d(x) d f 
dt dt 

= m x 1jJ* - + 1jJ - dT f ( 0"11 01jJ*) 
at at (4.15) 

4 We restrict ourselves to m(d(x)/dt) instead of m(d(r)/dt) purely for reasons of mathe­
matical simplicity. The transition to three dimensions will be obvious for the final result. 
5 Note that x, y, and z are parameters of the integration, they are, therefore, independent of 
t, i.e., dx/dt = dy/dt = dz/dt = O. 
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For O'lp/ot and O'lp*/ot we substitute expressions we obtain from the 
Schr6dinger equation (Eq. 2.15) and its complex conjugate: 

O"z . ....!p. = _I \j2'1p _ ~ V(r)'Ip 
at 2m n (4.16) 

01p* in 2 i 
- = - - \j 'Ip* + - V(r)'Ip* at 2m n (4.17) 

Substituting Eqs. 4.16 and 4.17 into Eq. 4.15, we obtain 

(4.18) 

Because of the hermiticity of the Laplace operator, 6 the second integral can 
be rewritten 

(4.19) 

hence 

(4.20) 

This answers our question. The expectation value of the momentum is 
obtained by sandwiching the momentum operator, -ili(%x), between the 
two eigenfunctions and integrating. Making the obvious extension to three 
dimensions, we get 

(4.21) 

This equation is known as Ehrenfest's theorem. Now we can also explain the 
minus sign for which we had no reason earlier (see p. 56). The minus sign 
comes from an arbitrary choice we made in the phase of the wave function 
(Eq. 2.10). If, instead, we had used a wave function 

'Ip(x, t) = A exp [ _i(x:X - ~:~) ] (4.22) 

6 See Appendix A.1. 
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it would have satisfied a Schrodinger equation 

O'IjJ 02'IjJ 

- at = y ox2 
(4.23) 

and this would have led to a plus sign in Ehrenfest's theorem. The choice of 
sign we have made here is universally accepted in the literature. 

Equations 4.12 and 4.21 suggest a generalization of the averaging pro­
cedure they employ. Let F(p, r) be a function of the dynamic variables p and 
r describing some measurable property of a classical system. The expectation 
value of the same property in the corresponding quantum mechanical system 
can then be obtained in the following way: The function F(p, r) is replaced 
with the operator 

F = F(-ili'V, r) (4.24) 

using the procedure given on p. 56. The expectation value (F) is found by 
letting 

(4.25) 

where 'IjJ is the wave function describing the system. 
From all we have said thus far it should be clear that this statement is a 

postulate rather than a provable theorem. As such, it is in need of experi­
mental verification which we provide by applying it to find the expectation 
value of the energy: 

2 

F(p, r) = L. + VCr) 
2m 

As we know, this translates into 

li2 
F(-ili'V,r) = __ 'V2 + V(r)=H 

2m .. 

According to Eq. 2.22, we have 

Hu=Eu 
hence 

(H) = f u*Hu dT = E f u*u dT = E 

(4.26) 

(4.27) 

(4.28) 

(4.29) 

This statement can be compared with experimental results, and we shall do 
this for the case of the hydrogen atom in a later chapter. This final postulate 
was introduced by Dirac and it completes the list of postulates on p. 57. 
The postulate introduced ad hoc at the end of Chapter 2.1 is now seen to be 
just a special case of Dirac's postulate. 



DEGENERACY 69 

4.2 DEGENERACY 

Degeneracy is a phenomenon that we encounter in systems described by 
partial differential equations. We shall make ourselves familiar with it by 
contemplating a classical example. Figure 4.2 shows a circular membrane 
(drumhead), clamped around its periphery, in various states (modes) of 
vibration. The lines represent nodes, the circumference being a node in every 

Finger placed at 
point PI 

fa = 2.13 f1 

fo= 2.65 f1 f6= 2.92 f1 

h = 3.16 f1 fa = 3.50 f1 f9= 3.60 f1 

Fig. 4.2 The q>-dependent modes of vibration of a circular drumhead are twofold degen­
erate. The frequency in each of these modes is independent of the orientation of the nodes. 
This rotational symmetry can be lifted by an external perturbation. 
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Fig. 4.3 A sketch of the drumhead vibrating in the mode [6' 

case. The plus and minus signs represent opposite displacements: at an 
instant when the plus areas are raised the minus areas are depressed. Figure 
4.3 shows a perspective view of the drumhead vibrating in the mode 16' The 
numbers underneath the individual figures give the frequency of the particular 
mode in multiples of the fundamental frequency 11' 

If we strike the membrane at the center we will obviously excite the first 
mode, the fourth mode, or one of the higher modes having complete rota­
tional symmetry. We could also excite any combination of these modes. 
Let us assume that somehow we had managed to excite only the first mode. 
This mode is characterized completely by its eigenvalue, i.e., the frequency 
/1 and the eigenfunction 

(4.30) 

that gives the deflection in the z-direction as a function of x, y, and t. From 
Figure 4.2a it is obvious that the x, y dependence of A is of the form 

Al(.Jx 2 + y2, t) = Al(r, t) (4.31) 

In other words, in a cylindrical coordinate system centered on the center of the 
membrane the eigenfunction does not depend on the azimuth rp. We turn 
now to the mode 12' Here the eigenfunction depends on the angle rp. 
Obviously it will be possible to excite this mode in many different ways, 
depending on the azimuth rp at which we strike the initial blow. A blow atP l , 

for example, would excite a vibration around the line a-b. A blow at P2 

would excite a vibration around the dotted line c-d. Because of the rota­
tional symmetry of the membrane both vibrations must have the same 
frequency (eigenvalue). The two eigenfunctions, however, will be different. 
True, the second eigenfunction will result from the first one through a simple 
rotation of the coordinate system, but it cannot be written as a multiple of 
the first eigenfunction. An eigenvalue-here 12-that has several eigen­
functions which are not linear combinations of each other, 7 is said to be 
degenerate. 

7 A linear combination of one function (as in our example) is, of course, simply a multiple 
of that function. 
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Inspection of Figure 4.2b makes it plausible that all possible vibrations of 
the mode /2 can be described as a superposition of two vibrations: one 
around the axis a-b, the other around some other axis (for example, 
c-d8). This mode is, therefore, said to be twofold degenerate. In a more 
general case where we need at least n different eigenfunctions to describe 
all the possible modes of vibration we speak of n-fold degeneracy. Inspection 
of Figure 4.2 shows that the eigenfunctions of the vibrating membrane are, 
at most, twofold degenerate. Degeneracy is thus likely to occur in systems 
that have certain symmetries. Symmetry is, however, not the only cause of 
degeneracy. If the modes f3 and f7 (Figure 4.2), by some accident, had the 
same frequency (they do not), we would still call this a degeneracy even though 
the two eigenfunctions are not related by a simple symmetry operation. 

Degeneracy of an eigenvalue is much more than a mathematical curiosity. 
Only a few quantum mechanical problems can be solved directly. Usually 
we have to solve a simpler problem and then apply perturbation theory to 
take into account all the interactions present. In the example of Figure 4.2, 
it may not matter whether the membrane vibrates around a-b or c-d 
since the frequency is the same in either case. However, if the symmetry 
is disturbed by a perturbation (for example, a finger placed at the point Pl), 
the two modes will have different frequencies and the degeneracy is lifted. 
Thus the concept of degeneracy will become important later when we discuss 
perturbation theory. At the moment we mention only that the fine structure 
and hyperfine structure of spectral lines result from degeneracies that are 
lifted by small perturbations. 

PROBLEMS 

4.1 Determine the expectation value of the kinetic energy and the potential energy 
of the linear harmonic oscillator in the states with n = 0, n = 1, and n = 2. 

4.2 Determine the expectation value of x and px of the linear harmonic oscillator 
for the states with n = 0, n = 1, n = 2. Interpret your result. 

4.3 The wave function of a particle is 

u(x) = A exp [i( c£X - ~2;t) ] 
What is the expectation value of its momentum? 

8 A detailed theoretical analysis bears this out. The eigenfunctions of the membrane are of 
the form sin (mp)In and cos (mp)In where the In are Bessel functions. Obviously any eigen­
function sin (ncp + c£)In can be written as a linear combination: 

sin (ncp + c£) = [a sin (ncp) + b cos (ncp)]In 
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4.4 Derive an expression for the restoring force in a linear harmonic oscillator. 
(Hint. Since the force constantly changes direction and the system is sym­
metrical about the origin, the expectation value of the force, i.e., its average, 
is of course equal to zero. A useful estimate can nevertheless be obtained by 
considering the average of the absolute value of the distance x from the 
origin.) 

4.5 Derive an expression for the expectation value of the z-component of the 
angular momentum. (Hint. Classically the angular momentum is given by 
L = r x p.) 

Solution of 4.3. The expectation value of the momentum is 

<P> = Loooo u* ( -in ::) dx 

Now 

-ih :: = -Aih· ioc . exp [i( ocx - ~2:) ] = ocnu 

hence 



5 
THE HYDROGEN ATOM 

5.1 THE HAMILTONIAN OF THE HYDROGEN ATOM 
IN THE CENTER OF MASS SYSTEM 

A hydrogen atom consists of a proton and an electron, held together by 
the electrostatic attraction the two hold for each other. Classical physics 
would draw the following picture of such a system (Figure 5.1). The total 
energy of the proton and electron in this coordinate system is given by 

(5.1) 

total energy = kinetic energy + kinetic energy + potential energy of 

where 

of the electron of the proton proton and electron due 
to their mutual coulomb 
attraction l 

P. = momentum of the electron, Pp = momentum m. = electron mass 
of the proton 

mp = proton mass Ir. - r pi = distance between electron and proton. 

1 The validity of Coulomb's law has been established experimentally with extreme accuracy. 
Plimpton and Lawton have shown, in 1936, that the exponent of r in Coulomb's law is 
2 ± 2 x lO-9. Their measurement was done, however, using macroscopic laboratory 
equipment. In using Coulomb's law in Eqs. 5.1 and 5.2, we make the bold assumption that 
it will still be valid in the realm of the submicroscopic where other well-known laws (those 
of classical mechanics) fail. The agreement between the quantum mechanical theory of the 
hydrogen atom and the experimental results, which we are about to establish, will prove 
at the same time that Coulomb's law is valid down to distances of the order of lO-8 cm. 

It might be mentioned at this point that the validity of Coulomb's law for protons has 
been established down to ~lO-l3 cm. Electrons, to the best of our knowledge, behave like 
true point particles, obeying Coulomb's law as far as we can measure. 

73 
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y 

Fig. 5.1 The classical picture of a hydrogen atom as described in an arbitrary cartesian 
coordinate system. 

Using the substitutions of p. 19, we obtain the following Hamiltonian: 

/j2 2 /j2 2 e2 
H = - --V'e - -V'p - ---

2me 2mp Ire - rpl 
(5.2) 

The operator V'e 2 operates only on the electron coordinates; the operator 
V' p 2 operates only on the proton coordinates. 

This Hamiltonian describes the system completely, but it tells us more 
than we care to know. It describes not only the behavior of the electron and 
proton due to the coulomb interaction but also any motion the atom as a 
whole might make. In classical physics we usually distinguish between these 
two parts of the motion by transforming to a-center-of-mass coordinate 
system. In this way we obtain two equations of motion, one describing the 
motion of the center of mass in some "laboratory coordinate system," the 
other describing the motion of the parts of the system relative to their 
center of mass. We use the same technique here and introduce the coordinate 
vector of the center of mass: 

R = (~) = mere + mprp 
Z me + mp 

(5.3) 
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Since the coulomb force between the proton and the electron depends only 
on their distance from each other, we need only to introduce one other 
vector to describe the system completely 

(5.4) 

To carry out the transformation of Eq. 5.2 to the center-of-mass coordinate 
system we form 

(5.5) 

Using Eqs. 5.3 and 5.4 this can be written as 

_O'IjJ = me O'IjJ + O'IjJ , 
oXe me + mp oX ox 

(5.6) 

Similarly 

_O'IjJ_ = mp O'IjJ _ O'IjJ 
me + mp oX ox 

(5.7) 

Analogous expressions are obtained for 

O'IjJ O'IjJ O'IjJ 
oYe' oZe ' oYP , 

and 

Introducing the reduced mass 

(5.8) 

we obtain 

(5.9) 

and 

(5.10) 

where V R operates only on the coordinates of the center of mass and V only 
on the coordinates x, y, z. The Hamiltonian becomes, therefore, 

(5.11) 
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Keeping in mind that Eq. S.11 is an operator equation, we carry out the 
squares and obtain 

H = _1i2 [m22 V2R + ~(VRV + VVR) + V2] 
2me mp mp 

- ~ [m22 V 2R - ~ (V R V + VV R) + V2] 
2mp me me 

(S.12) 
r 

or 
,,2 ,,2 2 

H = -fl V2R _ _ fl_ V2 _ ~ 
2(me + mp) 2m r 

(S.13) 

This Hamiltonian is the sum of a part -1i2j[2(me + mp)] V2R that depends 
only on R and a part - [(1i2j2m) V2 + e2jr] that depends only on r. It is easy 
to show that if this is the case, we can separate the Schrodinger equation by 
substituting 

'!j!(r, R) = 1>(R)u(r) (S.14) 

The two parts of the eigenfunction, 1>(R) and u(r), are connected only through 
the common separation constant. In this case, the separation constant 
contains the kinetic energy of the center-of-mass of the atom. Unless the 
atom is placed in a box, this kinetic energy can assume any value and, as a 
result, the eigenfunctions 1>(R) and u(r) are independent of each other.2 
Physically this means, of course, that the internal state of the atom is 
independent of the motion of its center of mass. 

To carry out the separation, we substitute Eq. S.14 into Eq. S.13, obtaining 

_1i2 112 e2 

---- uV~ 1> - - 1>V2u - - u1> = E tu1> 
2(me + mp) 2m r 

(S.lS) 

We divide by u1> 
,,2 ,,2 2 

-fl V~ 1> _ _ fl_ V 2u - ~ = E t 
2(me + mp)1> 2mu r 

(S.16) 

We group together the r and the R dependent terms and equate them to the 
same constant: 

,,2 1i2 2 
-fl V~ 1> = Ec = -V2u + ~ + Et (S.17) 

2(me + mp)1> 2mu r 
or 

(S.18) 

2 Later in this chapter we shall encounter situations where the separation constant, itself, is 
quap.tized. In this case the two factors of the eigenfunction will only be conditionally 
indePendent. 
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and, using 
E= Et - Ee: 

_/i2 2 e2u 
--Vu -- =Eu 
2m r 

(5.19) 

(5.20) 

The solution of Eq. 5.18 is a plane wave, obviously describing whatever 
motion the center of mass, i.e., the entire atom makes. This part is of no 
interest to us. Equation 5.20 is the Schrodinger equation of a particle moving 
in a fixed potential (see Eq. 2.28) except that the electron mass has been 
replaced with the reduced mass. For this reason the separation in the center­
of-mass system is sometimes referred to as the reduction of a two-body 
problem to a single-body problem. 

5.2 SEPARATION OF THE SCHRODINGER EQUATION 
IN SPHERICAL POLAR COORDINATES 

Since the potential of the hydrogen atom has spherical symmetry it is 
appropriate to transform to spherical polar coordinates before we attempt 
a solution. The coordinate system we shall use is shown in Figure 5.2. 
The Laplace operator 

becomes in these coordinates3 

V2 =! ~ (r2~) + 1 a (sin D.E....) + --~--<:-.\J r2 or or r2 sin 0. 00. aD r2 
Using Eq. 5.21 in Eq. 5.20 yields 

1 a (r2 aU) + _1_ .E.... (sin 0. aU) [1 '/ 
~ or or r2 sin {} of} of} ~ ~~~ 

\'" " .. 
+ 1 02U + 2m (~+'~'E)'·ft~·'O (5.22) r2 sin2 0. oq;2 /i2 r 

We try to separate this, substituting4 

u(r) = x(r) Y(D, q;) (5.23) 

Y ~ (r2 OX) + _X_ .E.... (sin 0. OY) + _X_ o2y 
or or sin 0. aD aD sin2 0. oq;2 

+ 2mr2 (~ + E) XY = 0 (5.24) 
/i2 r 

3 See for example, W. Kaplan Advanced Calculus, Addison-Wesley Publishing Co., Inc., 
Reading, Mass. 1953. 
4 We shall discuss the physical significance of this separation at the end of Chapter 5.9. 
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y 

x 

Fig. 5.2 The spherical polar coordinates used in the description of the hydrogen atom. 

If we divide by X Y, this separates into an r-dependent equation and a f}- and 
!p-dependent equation: 

d ( 2 dx) 2mr2 (e2 
) - r - + -- - + E X = Ax 

dr dr li2 r 
(5.25) 

and 

--- smf}- +---¥= -AY 1 0 (. OY) 1 02 

sin f} of} of} sin2 f} 0!p2 
(5.26) 

where A is the separation constant. Now we note that Eq. 5.26 is independent 
of the total energy E and the potential energy V except for the connection 
with Eq. 5.25 by way of the separation constant A. This means that Eq. 
5.26 is valid for any central potential, V = V(r), and any value of the total 
energy E. This does not imply that the solutions of Eq. 5.26 are independent 
of V or E since the separation constant A is common to Eq. 5.26 and the 
E and V dependent Eq. 5.25. Physically meaningful solutions of Eq. 5.26 
must, of course, have values of A that are compatible with solutions of 
Eq. 5.25 and vice versa. We postpone the solution of Eq. 5.25 and focus our 
attention on Eq. 5.26. 
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5.3 THE SEPARATION OF THE ANGULAR WAVE EQUATION 

Since separation of the variables has served us well thus far, we try it 
again by substituting 

y(f}, cp) = P(f})cp{cp) (5.27) 

into Eq. 5.26. The result is 

sin f} 1- (Sin f) OP) + A sin2 f} = _ !.- 02cp 
P of} of} cp Ocp2 

(5.28) 

Ifwe name the separation constant m2 , as everybody does, this separates into 

sin f}!l (sin f) dP) + AP sin2 f} = m2p (5.29) 
df} df} 

and 

(5.30) 

This constant has nothing to do with the reduced mass m introduced earlier. 
Equation 5.30 can be integrated immediately to yield 

cp = cpoe±imq> (5.31) 

Since the wave function should not change if we change cp by 27T (thus coming 
back to the same point) we have to require that 

cp(cp) == cp(cp + 27T) == cpoe±imq>. e±im21T = cpoe±imq> (5.32) 

This will be the case if, and only if, m is an integer. We have just found the 
first quantum number of the hydrogen atom: 

o 
We call it the magnetic quantum number for reasons that will become apparent 
later. It should be noted here that the physical meaning of m is not evident 
from anything we have said thus far. To solve Eq. 5.29, we make the 
substitutions: 

Hence 

or 

; = cos f}; .!!:... = -sin f}~ 
df} d; 

-sin2 f} ~(-sin2 f) dP) + AP sin2 f} = m2p d; d; 

(1 - ;2)~((1 _ ;2) dP) + A(1- ;2)p = m2p 
d; d; 

(5.33) 

(5.34) 

(5.35) 
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If we change the name of the constant in Eq. 5.35 to 

A = 1(1 + 1) (5.36) 

Equation 5.35 is recognized as the well-known associated Legendre equation 

(5.37) 

Its solutions are known as the associated Legendre functions. The reader who 
is familiar enough with spherical harmonics to have recognized the Schr6-
dinger equation (Eq. 5.26) as the differential equation of the spherical 
harmonics may at once advance to p. 83 where the solutions of Eq. 5.26 are 
listed and discussed. The reader who lacks mathematical proficiency is well 
advised to bear with us through the following purely mathematical discussion. 
It will lead to the derivation of the spherical harmonics: a class of functions 
that plays a decisive role not only in quantum mechanics but also in the 
theory of electricity and magnetism. 

5.4 LEGENDRE POLYNOMIALS 

A look at Eqs. 5.30 and 5.35 shows us that one particular value of m 
simplifies both equations: m = O. We, therefore, try to solve Eq. 5.35 for 
this special case. 

We substitute5 

into Eq. 5.386 

~ ((1 - e) dP) + AP = 0 
d~ d~ 

and (b) dP = '" ka ~k-l 
d~ f k 

(5.38) 

(5.39) 

2 (k + l)(k + 2)ak+2~k - 2 k(k + l)ak~k + A 2 ak~k == 0 (5.40) 
000 

Equation 5.40 is an identity if, and only if, all the coefficients of equal powers 
of ~ vanish separately, i.e., if 

k(k + 1) - A 
ak+2 = ak (k + l)(k + 2) (5.41) 

Now 
lim ak+2 = 1 (5.42) 
k""'oo ak 

5 For reasons soon to become apparent we are vague about the upper limit of these sums. 
6 The indices under a sum can, of course, be renamed freely, i.e., 

2 k(k + l)ak+l~k-l == 2 (k + l)(k + 2)ak+2~k 
1 0 
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This means that Eq. 5.39a is7 divergent for ~ = 1 (remember ~ = cos {}). 
At this point we have to invoke the boundary conditions of the hydrogen 
problem to select from the many mathematically possible solutions of Eq. 
5.38 those that are physically meaningful. Since the attractive force between 
the electron and the proton abates gradually as r increases, there is no well­
defined boundary. Therefore we have to settle for the condition 

f u*u dr = 1 (5.43) 

which states merely that there is one electron and that it is somewhere. 
Since we had shown that the SchrOdinger equation is separable, we could 
write 

u = x(r )P( {})r/>( q;) (5.44) 

The three functions X, P, and r/> are related only through the common separa­
tion constants m2 and A = l(l + 1). We cannot, therefore, rely on one to 
make up for infinities in the others and must insist that 

f X*Xr2 dr, f P*P sin {} d{} and f r/>*r/> dq; 

all remain finite. Hence, unless 

f P*( {})P( {}) sin {} d{} (5.45) 

and, therefore, P({}) remains finiteS, Eq. 5.43 cannot be satisfied. This means 
in view of Eq. 5.42 that Eq. 5.39a has to break off after a finite number of 
terms and that for some k = I 

k(k + 1) = 1(1 + 1) = A 1= 0, 1,2,3, . •. (5.46) 
We have thus found another quantum number for the hydrogen atom 

o 
Again, we emphasize that nothing said thus far makes the physical meaning 
of I obvious. The polynomials 

I 

PI = I ak~k (5.47) 
o 

7 Or rather could be. The criterion (Eq. 5.42) gives what is known as the ambiguous case, 
allowing either convergence or divergence. 
S The fact that the integral (Eq. 5.45) is finite does not necessarily imply that P({}), itself, is 
finite. However, for the kind of smoothly varying functions we are dealing with in physical 
applications, one condition always implies the other. 
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are known as Legendre polynomials. Since Eq. 5.38 determines P only up to a 
constant factor, and since the PI-being polynomials-have no singularities 
for -1 ~ ; ~ 1, they can be normalized. It is customary to normalize the 
Legendre polynomials by requiring 

(5.48) 

This together with Eq. 5.38 is sufficient to determine the coefficients of the 
Legendre polynomials unambiguously. 

5.5 THE ASSOCIATED LEGENDRE FUNCTIONS 

We return to the associated Legendre equation (Eq. 5.37) and make the 
substitution: 

This leads to 

and 

d2P = m(m _ 2)e(e _ 1)(m/2l-2w + m(e _ 1)(m/2l-1W 
de 

(5.49) 

(5.50) 

+ m(e _ 1)(m/2l-1 dw + m(;2 _ 1)(m/2l-1 dw + (;2 _ 1)(m/2l d2w 
d; d; de 

= (e - 1)m/2{ w[m(m - 2);2(e - 1)-2 + m(;2 - 1)-1] 

+ dw 2m;(e _ 1)-1 + d2w} (5.51) 
d; d;2 

Substituting Eqs. 5.49, 5.50, and 5.51 into Eq. 5.38 yields-after collecting 
terms of equal order: 

d2w dw (e - 1) d;2 + (m + 1)2; d; - [/(/ + 1) - m(m + 1)]w = 0 (5.52) 

We return to the Legendre equation (Eq. 5.38). 

E... [(1 - ;2) dPI] + /(l + I)P = 0 d; d; I 
(5.53) 

Remembering Leibnitz's rule 

(uv)(ml = u(mlv + ... + m(m - 1) u(2lv(m-2l + mu(l)v(m-1l + uv(ml (5.54) 
2! 
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we differentiate Eq. 5.38 m-times, letting 

dP 
-=V d; (5.55) and 

dmp dm+! 
-m(m + 1) --' - (m + 1)2; -+1 P, 

d;m d;m 

dm+2 dm + (1 - ;2)--2 P, + 1(1 + 1)-P, = 0 (5.56) 
d;m+ d;m 

Collecting terms of equal order yields 

(;2 _ 1) ~ (dmp,) + 2(m + 1) ~ (dmp,) 
d;2 d;m d; d;m 

dmp 
- [l(l + 1) - m(m + 1)] -' = 0 (5.57) 

d;m 

We compare Eq. 5.57 with Eq. 5.52 and find them to be identical if we let 

(5.58) 

We sum up. The P, are solutions of the Legendre equation (Eq. 5.38). 
dmpdd;m satisfies Eq. 5.57, derived from Eq. 5.38 through m-fold differenti­
ation. Equation 5.57 is none other than Eq. 5.52 which was obtained by 
substituting 

(5.59) 

into the associated Legendre equation (Eq. 5.37). The solutions of the associ­
ated Legendre equation (Eq. 5.37) must, therefore, be 

(5.60) 

These functions are called the associated Legendre functions. Since the P, are 
polynomials of the order I, we cannot differentiate them more than 1 times. 
We must, therefore, insist that 

m <:. 1 (5.61) 

We shall see later that this inequality has a very evident physical meaning. 
In view of Eqs. 5.27, 5.31, and 5.60, we can, therefore, state: The angular 
part of the Schrodinger equation for any central potentialS is solved by the 
spherical harmonics: 

"Yzm = N'mrimtpp,m({}) (5.62) 

• In other words, for any potential that depends only on the magnitude of r. 
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where the N zm are normalization constants. The name spherical harmonics 
suggests that the Y zm are some kind of three-dimensional equivalent of the 
trigonometric functions. This is, indeed, true. The YZm are not only periodic 
in rp, and {}, but they also satisfy 

J Yim Ykn sin {} d{} = 0 (5.63) 

for l:;t:. k or m :;t:. n in obvious analogy to Eqs. A.2.7 and A.2.8. A set of 
functions that satisfies conditions like Eq. 5.63 or Eqs. A.2.7 and A.2.8 is 
said to be orthogonal. If the functions can also be normalized, as the YZm and 
the trigonometric functions obviously can, they are said to be orthonormal. 
We shall forgo the proof of the orthogonality of the spherical harmonics 
and return to it later (Chapter 6.1) in connection with a more general discussion 
of orthonormal sets. 

5.6 THE SOLUTION OF THE RADIAL PART 
OF THE SCHRODINGER EQUATION 

We return to Eq. 5.25, substituting for A the value we had found while 
solving the Legendre equation. 

!!... (r2 dX) + 2mr2 (~ + E)X = 1(1 + 1)X (5.64) 
dr dr /i2 r 

Just as in the case of the harmonic oscillator (Chapter 3.3), substitution of 
~a power series into Eq. 5.25 would lead to a recurrence relation connecting 
three coefficients with each other. Again, we have to resort to some mathe­
matical slight of hand to avoid Ithis. We substitute 

into Eq. 5.25. Since 
'fJ(r) = rx(r) 

dX 1 d'fJ X 1 d'fJ 'fJ 
dr = ~ dr - ; = ~ dr - ~ 

this substitution yields the following differential equation for 'fJ(r): 

d2'fJ + 2m (~ + E)'fJ = 1(1 + 1) '2.. 
dr2 /i2 r r2 

(5.65) 

(5.66) 

(5.67) 

This would still lead to a useless recurrence relation, and we make one more 
substitution: 

(5.68) 
This yields 

d2, _ 2a d, + [2me2 + 2mE + a 2 _ 1(1 + 1)J' = 0 
or2 dr /i 2r /i2 r2 

(5.69) 
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The value of at in Eq. 5.68 was left open, and nothing can stop us from letting 

2 2mE at=---
Ji2 

(5.70) 

Hence 

d2, _ 2J-2mE d, + (2me2 _ 1(1 + 1)), = 0 
dr2 Ji2 dr Ji2r r2 

(5.71) 

A final substitution 

(5.72) 

yields the recurrence relation: 

2 (kfoiii - ~) 
C - C 

k+l - k(k + 1) _ 1(1 + 1) k 
(5.73) 

At this point we have to invoke the boundary conditions. If the hydrogen 
atom exists, the electron must be bound, and we have to insist that 

remains finite. 10 Hence 

J x*(r)x(r)r2 dr 

J X*Xr2 dr = J fJ*fJ dr = J ,2e-2ar dr ~ M 

where M is some finite number. This means that for large r 

,= !Ck~ 
(5.74) 

(5.75) 

has to converge faster than ear in order for Eq. 5.74 to remain finite. Now, 
the ratio, of two coefficients ck becomes for large k 

lim Ck+l = 2at 
k-+oo ck k 

(5.76) 

On the other hand, if we expand ear, the ratio of two consecutive coefficients 
tends towards at/k for large values of k. Hence Eq. 5.74 can be satisfied only 
if the series Eq. 5.72 breaks off after a finite number of terms. This is possible 
only if in Eq. 5.73 for some integer k = n: 

(5.77) 

or 

(5.78) 

10 See the pertinent remarks in Chapter 5.4. 
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This quantum number is the last of the three quantum numbers hidden 
behind the Schrodinger equation of the hydrogen atom. It is called the 
principal quantum number or the quantum number of the total energy. 

We conclude as follows. 

(a) The total energy of a hydrogen atom is negative. This is not startling. In 
writing Eq. 5.1, we had fixed the energy scale-as is customary for systems with 
finite binding energy-so that the total energy was zero for a proton and an electron 
resting at a very large distance from each other.H 

(b) The hydrogen atom can exist only in states in which the total energy satisfies 
(Eq.5.78). 

(c) The energy difference between two different states is given by Eq. 5.79: 

me4(1 I) 
En. - Enl = 21i2 n12 - n22 (5.79) 

This is the famous Rydberg formula for the spectral lines emitted by a hydrogen . i 
atom. We note here that the emission of light, i.e., the fact that the energy difference 
between two states can be converted into the energy of a photon, is not explained 
by our theory. A consistent treatment of light emission is the subject of quantum 
electrodynamics and goes considerably beyond the scope of this book. 

(d) The ionization energy of hydrogen, i.e., the energy required to sever the elec­
tron completely, is obtained by letting n1 = 1 and n2 = 00 in Eq. 5.79; 

(5.80) 

All these findings are in splendid agreement with the experimental results, 
and we have every reason to consider our theory completely vindicated.12 

Now to some of the finer points. Equation 5.73 implies that 

n>l 
because otherwise for 

n=l 

en+! and, thereby, all the following coefficients would be infinite. 

11 Note that in Eq. 3.35, we had used a different convention, making the energy of the oscil­
lator zero for the equilibrium position. Obviously that is the preferable choice if V(r) goes 
to infinity for large r. 
III See also footnote 1. 

I .' 
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Thus we have the following picture: The eigenfunctions of the hydrogen 
atom are 

(5.81) 

where the Ylm are the spherical harmonics. The principal quantum number, 
n, can have any integer value: 

n=I,2,3, ... 

The quantum number I can have any integer value: 

1= 0, 1,2, ... , n - 1 

and the quantum number m can have any integer value: 

-/..;;; m";;; / 

In writing this latter statement we have followed the usual convention of 
writing Eq. 5.62 in the form 

y: - N eim<pplml({}) 
1m - 1m I (5.82) 

where m can assume any value between m = -/ and m = /, instead of 
writing 

(5.83) 

where m can have only positive values 0 ..;;; m ..;;; /. 
The energy depends only on n, and n different values of / are possible for 

each value of n. For each of these values of I there are 2l + 1 different values 
of m possible. To all of these different quantum numbers m and I belong 
different eigenfunctions (Eq. 5.81), but only one eigenvalue En. The hydrogen 
eigenvalues are thus very highly degenerate except for the lowest value E1• 

The degree of degeneracy of a state with the quantum number n is obviously 
given by 

n-1 

I21 + 1 
.0 

It is customary to call a state with / = 0 an s-state, a state with / = 1 a 
p-state, and states with higher values of /, d,f, g, h ... states. 

The origin of these labels goes back to the prequantum days of spectros­
copy. The letters s, p, d,Jrefer to the character of the spectral lines, sharp, 
principle, diffuse, and fine, connected with these states. 

The value of the principal quantum number is usually expressed as a 
number preceding the letter symbol. 
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Fig. 5.3 The energy-level diagram of the hydrogen atom. 

The Is state is th].ls the lowest energy grQund state of the hydrogen atom. 
The 2s and 2p state are the states with n = 2, I = 0 and n = 2, I = 1, etc. 
Figure 5.3 shows the energy level diagram of the hydrogen atom. 

We still owe an explanation of the physical meaning of the quantum 
numbers I and m. We postpone this explanation and a more detailed dis­
cussion of the hydrogen eigenfunctions until we have acquired a better 
understanding of some of the more formal aspects of quantum mechanics. 
We now content ourselves with the derivation of some of the more obvious 
consequences of Eq. 5.78. 

5.7 HYDROGENLIKE ATOMS, THE ISOTOPE SHIFT 

The term hydrogenlike atoms is used to describe atoms consisting of one 
positive and one negative particle. Obviously such atoms must have a 
Hamiltonian similar to Eq. 5.2, and all the expressions derived for the hydro­
gen atom must be applicable. 

The He Ion 

The spectrum of the singly ionized He atom13 is described bytq. 5.79 
except that all energy eigenvalues are larger by a factor 4. In the Hamiltonian 

13 The neutral He atom is a three body problem and has altogether different eigenfunctions 
and eigenvalues. 
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(Eq. 5.2) we expressed the potential energy as 

e2 (electron charge) . (proton charge) 
-= 
r r 

obviously this has to be modified to 

e(Ze) e2Z 
--=- (5.84) -

r r 

if the central nucleus has a charge Z. Instead of a factor e4, this yields a factor 
e4Z2 in Eq. 5.79. In the case of the He ion (Z = 2) this quadruples the energy 
eigenvalues. 

A very accurate measurement of the spectrum of the He ion shows a small 
deviation from this prediction. This is because we also have to replace the 
reduced mass: 

in Eq. 5.79 with 

__ m--!:._m~ll_ m'= 
m. + mil 

where mil is the mass of the He nucleus. The deviation is 

m' = mil m. + m1J ~ 1 + ~ me = 1.0004078 
m me + mil m1J 4 m1J 

in excellent agreement with the experimental value: 

1.0004071 
Muonie Atoms 

(5.85) 

(5.86) 

Muons are particles which very much resemble electrons, except that their 
mass is about 200 times that of the electron. A negative muon can be 
attracted by a nucleus and "orbit" around it just like an electron. Since the 
mass of the muon is ~200m., the "radius" of its orbits is 200 times smaller 
than that of a corresponding electron orbit. The picture of an orbiting 
electron or muon is of course not really correct. What we should have said 
is that as a result of the mass dependence of the factor e-lZr in Eq. 5.68, the 
eigenfunction goes faster to zero for large r if the mass m is larger. The 
consequences are, however, the same. 

The muon "orbits" the nucleus deep inside the innermost electron .shell 
and sees the full charge Z of the nucleus. Accordingly, muonic atoms have 
hydrogen-like spectra but all energy eigenvalues are higher by a factor: 

mIl Z2 ~ 200Z2 

me 
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This leads to the emission of photons in the x-ray region.14 Since the muon 
comes much closer to the nucleus than the electrons, muonic atoms are a 
very sensitive probe for the range of the nuclear forces. Whereas for the light 
elements (Eq. 5.79)-after multiplication with (m/.Im.)Z2-holds quite well, 
the deviation increases rapidly with Z. From the size of the deviation one can 
calculate the size of the nucleus. Some of the best measurements of nuclear 
diameters have been made this way. 

Positronium 

A positron is a positive electron. If it ever gets together with an electron, 
the two annihilate each other and 2 or 3 y-rays result. Before they annihilate 
each other, the positron and electron sometimes form an atom called 
positronium, which lives for 10-7 or 10-10 sec, depending on the relative 
orientation of electron and positron spin. We recall that the mass, m, In 

Eq. 5.79 is the reduced mass: 

If we replace the proton mass, mp , with the positron mass, m., we obtain 

m.2 m. 
m=-=-

2m. 2 
(5.87) 

Hence the energy eigenvalues of the positronium atom are ! of the energy 
eigenvalues of the hydrogen atom. 

Muonium 

A positive muon can capture an electron and form muonium. The reduced 
mass is in this case: 

m.m/l 
m = ~ me 

m. + mIl 

i.e., the energy eigenvalues of a muonium atom are almost equal to those of a 
hydrogen atom. 

The fact that the reduced mass rather than the electron mass enters into 
the derivation of the energy eigenvalues makes itself felt in a similar way in 
the spectra of nonhydrogenlike atoms. It leads to an-exceedingly small­
energy difference between the spectra of different isotopes of the same 
element. 

14 We are referring here to photons emitted when the muon changes its state. Jumping 
electrons emit the usual spectrum of an atom with Z - 1. 



ANGULAR MOMENTUM 91 

5.8 ANGULAR MOMENTUM 

We have yet to explain the physical significance of the quantum numbers 
m and I. The fact that they were obtained in solving the angular part of the 
Schrodinger equation suggests that they might have something to do with 
the angular momentum of the atom. To pursue this idea we translate the 
classical expressions for the angular momentum into the language of quantum 
mechanics. 

The Angular Momentum Operators 

In .classical physics the angular momentum of a point mass with the 
momentum p is defined as 

x p", 

Lei = r X p = j Y PlI 

k z pz 

(
YPZ - ZPlI) 
zp", - xpz 

xPlI - yp", 

(5.88) 

where i, j, and k are the unit vectors in the x, y, and z direction. The quantum 
mechanical equivalent is, according to the postulates of Chapter 2.1: 

o 0 
y- - z-oz oy 

o 0 z-- x-L = -iii ox oz 
o 0 x--y-oy ox 

We transform this to spherical polar coordinates: 

From 

follows 

Also, since 

or x 
-=-ox r 

x = r sin {} cos ([! 

y = r sin {} sin ([! 

z = r cos {} 

or y 
-=-oy r 

J!. = tan ([! 
x 

or z 
-=-
OZ r 

o 1 O([! y 
-(tan ([!) = --- = -­ox cos2 ([! ox x2 

(5.91) 

(5.92) 

(5.93) 
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and 

a 1 oqJ 1 
- (tan qJ) = -- - = -
oy cos2 qJ oy X 

therefore 

oqJ Y 2 
- = - -cos qJ, 
ox x2 

oqJ cos2 qJ 
-=--
oy x 

We differentiate 
z = r cos f} 

partially with respect to x, y, and z 

oz or . of} 
- = 0 = - cos f} - r Sill f} -
ox ox ox 

or, using Eqs. 5.90 and 5.91 

Similarly, from 

and 

follows 

and 

Now 

of} x cos f} cos qJ cos f} 
-=----= 
ox r r sin f} r 

oz or . of} 
- = 0 = - cos f} - r Sill f} -
oy oy oy 

oz or . of} 
- = 1 = - cos f} - r Sill f} -
oz oz oz 

of} = Y. cos f} = sin qJ cos f} 
oy r r sin f} r 

of} = (': cos f) _ 1) _1_ = _ sin f} 
oz r r sin f} . r 

~ = or ~ + of} ~ + oqJ ~ 
oy oy or oy of} oy oqJ 

(5.94) 

(5.95) 

(5.96) 

(5.97) 

(5.98) 

(5.99) 

(5.100) 

(5.101) 

(5.102) 

(5.103) 

equivalent expressions are found for a/ox and a/oz. Using Eqs. 5.90, 5.103, 
5.91,5.101 and 5.95 in Eq. 5.89, we obtain 

Lx = ili(sin qJ ~ + cot f} cos qJ~) 
of} oqJ 

(5.104) 

Similarly 

Ly = ili(- cos qJ ~ + cot f} sin qJ~) 
of} oqJ 

(5.105) 
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and 

L =-ili~ 
z ocp 

(5.106) 

L. is immediately recognized as an operator that has the hydrogen wave 
functions as eigenfunctions with the eigenvalues ±mIi since 

(5.107) 

in other words: The quantum number m is a measure of the z component of 
the angular momentum in units of Ii. 

5.9 THE OPERATOR OF THE TOTAL ANGULAR MOMENTUM 

We now form the operator of the square of the total angular momentum: 

(5.108) 
Now 

LIIJ2 = -1i2 (sin cp ~ + cot f} cos cp~) (sin cp ~ + cot f) cos cp~) 
of} ocp of} ocp 

= _1i2 sm2 cp - + SIn cp cos cp cot f} -- - -{ . 02 . 02 sin cp cos cp 0 
of}2 of} ocp sin2 f} ocp 

o 02 + cot f} cos2 cp - + cot f} cos cp sin cp --
of} ocp of} 

+ cot2 f} cos2 cp 02
2 - cot2 f} cos cp sin cp~} 

ocp ocp 
(5.109) 

Also 

{ 
02 02 

L'l/2 = _1i2 cos2 cp -2 - cos cp cot f} sin cp --
of} ocp of} 

_fl . 2 0 .Jl • 02 + cot 'V sm cp - - cot 'V sm cp cos cp --
of} ocp of} 

+ cos cp sin cp a + t2.fl. 2 02 
- co 'vsm cp-

sinS f} ocp ocps 

Finally 

+ cot2 f} cos cp sin cp ~} 
. ocp 

(5.110) 

(5.111) 
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Adding Eqs. 5.109, 5.110, and 5.111 gives 

(5.112) 

This can also be written 

(5.113) 

We compare this with the angular part of the Schrodinger equation: 

-_.- sm {)- + --'- = -1(1 + l)Y 1 a ( . ay) 1 a2y 
sin {) a{) a{) sin2 {) aq;2 

(5.26) 

The conclusion is obvious, the angular part of the hydrogen wave functions 
Y1m({)q;) and hence the entire wave functions, u(r), are eigenfunctions of the 
operator V 

Vu(r) = x(r)VY1m({), q;) = n2/(/ + l)u(r) (5.114) 

with the eigenvalues 

/(/ + 1)n2 

We conclude: The quantum number I is a measure of the total angular 
momentum in units of h. 

~onsidering the remarks made on p. 76, we can now more fully appreciate 
the implications of the separability of Eq. 5.22. The Hamiltonian can be 
written as the sum of a radial part and the angular momentum operator 
Eq. 5.113. This connects the separability with the conservation of angular 
momentum.I5 The separation constant is quantized in this case so that the 
angular and the radial part are not fully independent but are connected by 
the condition that A = /(/ + 1) in both Eq. 5.25 and Eq. 5.26. 

5.10 THE EIGENFUNCTIONS OF HYDROGEN, ATOMIC UNITS 

Now that we understand the meaning of the various quantum numbers of 
the hydrogen atom, we return to the discussion of its eigenfunctions. Table 
5.1 lists the complete hydrogen eigenfunctions u(r, {), q;) for the four lowest 
values of n. The normalization constants have been determined such that 
f u*u dT = 1. In the absence of an interaction with some external force any 

15 We shall explore this connection in more detail in Chapter 6. 



Table 5.1 

State n I m u 
-

Is 1 0 0 Ane-~ rme2 
-- x=-

2s 2 0 0 Ane-~(1 - x) nli" 

--
2p 2 1 0 A"e-~x cos {} 

An=~(me"t --
e-Z • V'TT nli" 

2p 2 1 ±1 A - x sin {}e±"P 
"vi. 

----
3s 3 0 0 A"e-~( 1 - 2x + ~") 

--

3p 3 1 0 A"e-~ A x(2 - x) cos {} 
--

3p 3 1 ±1 
1 ±. 

Ane-~ '113 x(2 - x) sin {}e up 

--

3d 3 2 0 
1 

Ane-~ '11- x"(3 cos" {} - 1) 
3 2 --

3d 3 2 ±1 A e-~ ~ sin {} cos {}e Hip 
n '113 

--
3d 3 2 ±2 A e-~ _1_ x" sin" {}e±2iip 

" 2'113 --
4s 4 0 0 Ane-~( 1 - 3x + 2x" - ~) 

--
4p 4 1 0 A"e-~V5x( 1 - x + ~) cos {} 

----
4p 4 1 ±1 J5( X") . A"e-~ 2. x 1 - x +"5 sin {}e±'ip 

--

4d 4 2 0 A"e-~~x'(1 - ~)(3 cos" {} - 1) 

--
4d 4 2 ±1 A"e-~ A X"( 1 -~) sin {} cos {}e±iip 

--

4d 4 2 ±2 A"e-~ A x.( 1 - ~) sin" {}e±2iip 

--
I 

4f 4 3 0 A"e-~ 6'115 x" cos {} (5 cos" {} - 3) 
--

4f 4 3 ±1 IJ3 ±. A e-~ - - x3 sin {} (5 cos" {} - l)e tip 
" 6 20 . --

'113"," ±2· 
4f 4 3 :b2 A e-~ -- sin" {} cos {}e 'ip 

n 6'112-
--

4f 4 3 ±3 A"e-~ ,"ox" sin" {}e±3iip 
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coordinate system should be as good as the next one. We would, therefore, 
expect that the electron density u*u is independent of the angles {} and cpo 
For cp this is easy to see since 

u*u = X~)[p!m({})]2eimq>. e-imq> (5.115) 

is indeed independent of cpo It is, however, not usually16 independent of {}, 
nor need it be. In any state with n > 1, there are several states with different 
I and m that have the same energy, i.e., are degenerate. As long as we do not, 
by some interaction, n;move this degeneracy, the atom is not in anyone of 
these states in particular but in a mixture of all of them. The reader should 
convince himself that the probability density of, for instance, the 3d state is, 
indeed, independent of {} if we form :17 

u*u = u*(3, 2, 0)u(3, 2, 0) + 2u*(3, 2, l)u(3, 2, 1) + 2u*(3, 2, 2)u(3, 2, 2) 

(5.116) 

where u(3, 2, 1) stands for u(n = 3,1 = 2, m = 1). We shall see later 
(Chapter 10.2), that it is also possible (for instance, with the help of an 
external magnetic field) to make sure that an atom is in a state with a well­
defined value of I and m. (It is this case that Figure 5.5c refers to.) Figure 5.4 
gives the probability density u*u averaged over all angles {} as a function of 
r for various values of the quantum numbers n and I. Figure 5.5 attempts to 
give an impression of the spatial distribution of the electron probability 
density for various values of the quantum numbers. The probability of 
finding the electron in a volume element is given by 

dP = u*u dr = u*ur2 dr sin {} d{} dcp (5.117) 

This probability is also plotted in Figure 5.4 as a function of r for various 
values of n and I. 

It is interesting to calculate the radius at which the probability18 of finding 
the electron, is greatest. We do this for the case of the Is state: 

o = ~ (u*u dT) = ~ [exp (- 2m~2r) r2 dr sin {} d{} dCP] (5.118) 
dr dr h 

This yields 

(5.119) 

This happens to be the radius of the first electron orbit in Bohr's old quantum 
theory.19 The Bohr radius h2jmee2 is frequently used as the unit of length in 

16 Only for s-states. 
17 Where do the factors 2 come from? 
18 Not the probability density! 
19 Neglecting the small difference between the electron mass me and the reduced mass m. 
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(a) (b) 

Fig. 5.5 The spatial distribution of the electron probability density u*u in a hydrogen 
atom. The scale has been changed to make all three figures appear the same size. Also the 
shading has been normalized so that the area of highest electron density appears black. 
The reader may verify just how much the absolute size and density vary from state to state. 

atomic physics and is the basis of the so-called atomic units. In atomic units 
the energy is measured in multiples of the ionization energy of hydrogen 
mee4 j2n2.l9 The use of atomic units amounts to letting n2 = 1, e2 = 2, and 
me = t in all equations. Expressed in atomic units the Schrodinger equation 

i' 
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Eq. 5.20 becomes for instance:19 

-V2u _ 2u = Eu (5.120) 
r 

The ~bscissa in Figure 5.4 is divided in units of Ji2/mee2. We had inquired 
earlier (Chapter 5.6) into the degree of degeneracy of the hydrogen eigen­
functions. A look at Table 5.1 shows a marked difference between the m and 
the I degeneracy. The m degeneracy is simply due to the symmetry of the 
eigenfunctions just as.in the classical example of Chapter 4.2. The reason 
for the I degeneracy is less obvious. The probability distributions for the 3s 
and the 3p state for instance are completely different (see Figure 5.4c, d). We 
can only conclude that the shape of the electron distributions is such that 
for the given potential of the form V = e2/r the total energy just happens to 
be the same for both states. To demonstrate how this can occur, we calculate 
the expectation value of the potential energy for the 2s and the 2p state. 

where 
me2 

a=-
nJi2 

(5.121) 

(5.122) 

The weighted average value of the potential energy is thus the same for the 
two states. This must mean that the small hump in the probability distribution 
of the 2s state in the region of strong field makes up for the fact that most of 
the 2s distribution is in a weaker field than the 2p distribution. 

Very accurate measurements of the energy levels reveal that the degeneracy 
of the states is lifted by small perturbations. These perturbations affect some 
of the linear combinations of the eigenfunctions of a degenerate eigenvalue 
more than others. This leads to a splitting of the corresponding energy levels. 
We shall discuss some of these effects in detail in the later chapters. 

PROBLEMS 

5.1 Normalize the first three Legendre polynomials using the condition (Eq. 5.48). 

5.2 Show explicitly that the first three Legendre polynomials are orthogonal over 
the interval -1 < ~ < 1. Are they also orthogonal over the interval 0 < 
~ < I? 



5.3 

5.4 

5.5 
5.6 

5.7 

5.8 

5.9 

5.10 

5.11 

5.12 

5.13 

5.14 
5.15 

5.16 

5.17 

5.18 
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How can we calculate the ionization energy of the hydrogen atom from 
spectroscopic measurements? 

The spectra of muonic atoms allow us to determine the size of the nucleus. 
How? Explain qualitatively. 

Is a positronium atom larger or smaller than a hydrogen atom? Explain. 
You are given the task of finding out whether a certain element is a mixture of 
several isotopes. For evidence, would you tum to atomic or molecular 
spectra? Why? 

Verify, by application of the appropriate operators, that the quantum 
numbers of the 2p state of the hydrogen atom are indeed I = 1, and m = 0, 
±l. 
A baseball is pitched so that it spins at 300 rpm. Making sensible assumptions 
about the structural parameters of the ball (mass, composition, etc.) deter­
mine its angular momentum in units of n. How much angular momentum is 
this per atom? 
When an atom of a heavy element is bombarded with electrons of sufficient 
energy, it sometimes happens that one of the two Is electrons is knocked 
out of the atom. The resulting hole is filled by one of the 2p electrons. The 
x-rays emitted in this process are known as the K x-rays. Derive a formula for 
the wavelength of the K x-rays as a function of the atomic number Z. 

Calculate the expectation value of the kinetic and the potential energy of the 
hydrogen ground state. 
What is the parity of the first three eigenfunctions in Table 5.1 ? 

Verify that the Is eigenfunction in Table 5.1 is normalized and orthogonal to 
the 2s eigenfunction. 
Show that the three 3p eigenfunctions in Table 5.1 are orthogonal to each 
other. 
Verify that the 4feigenfunctions in Table 5.1 are normalized. 
What is the degree of degeneracy of the hydrogen eigenfunctions in the states 
with n = 1, 2, 3? 

Show that a hydrogen atom in the 3d state is spherically symmetric as long as 
no external perturbation distinguishes a particular coordinate system. 

In Bohr's old quantum theory an electron was thought to move in a circular 
orbit around the nucleus. Studying Table 5.1, you will find certain eigen­
functions for which the picture of an orbiting electron is particularly appro­
priate. What are their quantum numbers? 

(a) Derive an asymptotic expression for the radius at which the elec:wfKi§ 
most likely to be found in states with I = n - 1, for n » 1. 
Table 5.1.) Calculate the classical expression for the frequency #.'oHEtI(lIW(]lf 

an electron moving in a classical orbit with this radius. 
(b) Derive an asymptotic expression for the frequency dItt~en(~ 

(En - E"+I) ---:----'---- = Llw n 
(c) Compare the results of (a) and (b) above. Comment 
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5.19 Show that whenever a Hamiltonian20 H(xl , ... , Xn) can be written as a sum 
of two parts HI(xl , ... , Xk) + H 2(Xk+I , . .. , xn) depending on different 
variables, the eigenvalue equation 

H(xl , ... , xn)'P(xI , ... , xn) = E'P(xI , ... , xn) 

can be separated by substituting 

'PI (Xb ... , Xk)'P2(Xk+1' ... , Xn) = 'P(XI , ... , x n). 

How are the eigenvalues of the operators H1(xb ... , xk), H 2(xk+1, ... , x n), 

and H(x], ... , xn) related? 

SOLUTIONS 

5.6 The mass M of the nucleus enters the energy levels of an atom only through 
the reduced mass (Eq. 5.8): 

Since me « M the small difference in M between different isotopes has a 
negligible influence on m. The atomic spectra of the various isotopes of an 
atom differ, thus, very little. A molecule in its vibrational modes approaches 
an harmonic oscillator. The energy eigenvalues of the harmonic oscillator, 
according to Eqs. 3.64, 3.43, and 3.41, 

E = (2n + 1)I1w = (2n + 1)11J~ 
n 22m 

are inversely proportional to the square root of the mass m of the vibrating 
particle. 

Assume that tJ.M is the mass difference between two isotopes and that 
tJ.M « M. In this case the ratio of the molecular energy values for the two 
isotopes will be 

R =JM + tJ.M R! 1 + ~ . tJ.M 
M 2 M 

For the same ratio we get in the case of an atomic spectrum 

[ me(M + tJ.M) oJ (me + M) R! 1 + me . tJ.M 
me + M + tJ.M me . M M M 

5.13 In the product UrI' U2.-1 the cp dependent part becomes 

20 Or other operator. 



PROBLEMS 103 

In the products u:.o . u2,l and ui.o . U2._1 the rp dependent part becomes 

or 

In each case the integral from rp = 0 to rp = 21T vanishes, i.e., the eigen­
functions are orthogonal. 

5.16 The rp-dependence is obviously eliminated in the products u*u. The only 
angular dependence that could exist would be a D-dependence. Dropping the 
identical x-dependent parts, we get for the state with m = 0 

I 
u *u = -- (9 cos4 0 - 6 cos2 0 + 1) 

1 1 9.2 

For the states with m = ± 1 

and for the states with m = ±2 
1 

u *u = -- sin4 0 
3 3 4.3 

These probability densities are quite obviously D-dependent. On the other 
hand all five states, m = 0, m = ± 1, and m = ±2 are degenerate in the 
absence of any perturbation that favors a particular direction. The atom will, 
therefore, be in a state that is the sum of equal parts of all five states. Thus the 
total probability density becomes 

1 2 2 
u*u = -- (9 cos4 0 - 6 cos2 0 + 1) + - sin2 0 cos2 0 + -- sin4 0 

9·2 3 4·3 

Substituting 
sin2 0 = 1 - cos2 0 

we get 

t cos4 0 - t cos2 0 + i-8 + i cos2 0 - i cos4 0 

+ i- + i- cos4 0 - t cos2 0 = u*u 

Adding this up we find that the D-dependence cancels and we obtain 

u*u = ~ 

i.e., the electron distribution in the 3d state is isotropic. 
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6 
MORE THEOREMS 

In the preceding chapters we have tried to establish a firm connection 
between the more or less intuitively introduced postulates of Chapters 2 and 
4 and the results of experimental physics. In doing this, we have looked 
neither left nor right. Lest the reader get the impression that quantum 
mechanics is a collection of postulates and mathematical tricks, we shall now 
fill in the gaps and try to show quantum mechanics as it actually is: a 
physical theory of great mathematical beauty, fully as elegant as classical 
mechanics in its Lagrangian or Hamiltonian form. We shall also discuss 
some mathematical techniques that will be of help in the solution of the more 
intricate problems in the following chapters. 

6.1 ORTHONORMAL FUNCTIONS, COMPLETE SETS 

Frequently we have encountered integrals of the type 

J 1p*cp dT = C (6.1) 

in the foregoing chapters. Sometimes the function cp satisfied cp = 1p, in 
which case we had normalized 1p such that c = 1. Sometimes the nature of cp 
was such that c = 0, in which case we had called 1p and cp orthogonal. All of 
this is vaguely reminiscent of the scalar product (dot product) of vector 
algebra. For instance 

J 1p*cp dT = C (6.2) 

is a constant, although 1p and cp are functions of r, whereas 

3 

(a· b) = L aibi = C (6.3) 
i=l 

is a s'calar, although a and b are vectors. Actually this similarity is more than 
skin deep and is explored in the mathematical theory of Hilbert spaces. We 

104 
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shall just use it asa handy excuse to apply the convenient notation and 
terminology of vector algebra to our problems. 

Definition. The scalar product c of two functions 1fJ(r) and q;(r) is defined as 

J 1fJ*q; dr = c (6.2) 

and we shall henceforth use the abbreviationl 

J 1fJ*q; dr = (1fJ, q;) = c (6.4) 

for it. Note that this notation implies that the first of the two factors is taken 
as the complex conjugate. We can extend the notation in the following way to 
include operators 

J 1fJ*Qq; dr = (1fJ, Qq;) 

J(Q1fJ)*q; dr = (Q1fJ, q;) 

Thus the definition of a hermitian operator2 becomes 

(1fJ, Hq;) = (H1fJ, q;) 

(6.5) 

(6.6) 

(6.7) 

Definition. A set of functions 1fJI' 1fJ2' ... ,1fJn is said to be linearly 
independent if there exist no constants aI' a2, ... , an> different from zero, 
so that 

(6.8) 

is satisfied for all choices ofr. Obviously this means that none of the functions 
1fJk can be expressed as a linear combination of all the others. 

Definition. A set of functions 1fJI, 1fJ2' ... , 1fJn that satisfy 

is said to be orthonormal. 
Let 1fJI' 1fJ2' ... , 1fJn be a set of linearly independent functions. Let 

I The notation implies that the integral is taken over all space. 
2 See Appendix A.I. 

(6.9) 

(6.10) 
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be a linear combination of the "Pk' If the "Pk form an orthonormal set, it is 
especially easy to determine the coefficients Qk in Eq. 6.10. To this end we 
multiply both sides with, for example, "P/ and integrate: 

n 

("Pi' cp) = ~;ak( "Pi' "Pk) (6.11) 
1 

Because of the orthogonality of the "Pk all terms of the sum except the one 
with "Pk = "Pi vanish. Because of the normalization of the "Pk 

(6.12) 
hence 

(6.13) 

It is obvious that the larger the set of the "Pi is, the more linearly independent 
functions cp we can construct with it in the manner of Eq. 6.10. It is interesting 
to raise the question whether with an infinite set of orthonormal functions 
"Pk' we can express any arbitrary function cp(r) as 

(6.14) 

Obviously we can do this if for any function cp(r) we can make 

lim (cp(r) - i Qk"Pk) == 0 
n-+ 00 1 

( 6.15) 

through a suitable choice3 of the Qk' Equation 6.15 is not very suitable as a 
practical criterion. If we want a workable expression, we have to settle for 
less: 

( 6.16) 

where, in order to carry out the integration, we have to assume cp(r) to be 
piecewise continuous. Whereas Eq. 6.15 would make cp(r) = L Qk"Pk every­
where, the slightly less stringent condition, Eq. 6.16 allows for the occurrence 
of Gibbs' phenomenon4 in the vicinity of a discontinuity in cp(r). Now we 
form 

3 The reader who is still not familiar with the contents of Appendixes A.I, A.2, and A.3 
should study them now. 
4 See Appendix A.2. 
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Using Eqs. 6.9 and 6.13, this becomes 
n n n 

En = ('P, 'P) - ~ akak* - ~ ak*ak + ~ ak*ak 
1 1 1 

or 
En = ('P, 'P) - ~ ak *ak 

hence Eq. 6.16 is satisfied if 

lim En = 0 
n--> 00 

or 

This leads to the next definition. 

(6.18) 

(6.19) 

(6.20) 

(6.21) 

Definition. An orthonormal set of functions lPk' k = 1,2, 3, ... is said to 
be complete in a volume V if for any piecewise continuous function 'P(r) 

00 

('P, 'P) = ~ ak*ak (6.22) 
1 

where the integral is taken over the volume Vand the ak are defined by 

ak = (lPk' 'P) (6.23) 

Keeping in mind the subtle difference between Eqs. 6.15 and 6.16, we 
brazenly interpret the completeness relation (Eq. 6.21) to mean that any 
function (at least of the kind we have to deal with) can be expanded in the 
form: 

(6.14) 

where the ak are given by Eq. 6.13. 
It is obvious that despite its mathematical elegance the completeness 

relation is almost useless as a practical criterion. How are we to decide 
whether Eq. 6.19 is valid for any function 'P? We leave this thorny problem 
to the mathematicians and merely convince ourselves below that the eigen­
functions of operators of physical significance form orthonormal sets, 
emphasizing, however, that the orthonormality of a set of functions does not 
necessarily imply its completeness.5 The proof that any set of functions is 

5 The statement that an infinite orthonormal set is not necessarily complete is very easy to 
prove 

cos (wt), cos (2wt), ... , cos «k - l)wt), cos «k + l)wt), cos «k + 2)wt), etc. 

is certainly infinite and orthogonal. It can also be normalized (see Appendix A.2.7); yet, it 
is not complete since it cannot be used to expand the function cos (kwt). Similarly, cos (kwt), 
k = 0,1,2,3, ... is not a complete set, since it is obvious from changing t into -t that 

cannot be satisfied for n "" O. 

00 

sin (nwt) = ~ ak cos (kwt) 
o 
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complete is usuaIly rather difficult (not surpnslOg if we consider how 
sweeping the statement of completeness is). However, the eigenfunctions of 
the operators we are dealing with in quantum mechanics have, generaIly, 
been shown to form complete sets, at least with regard to the kind of wave 
fUllctions we are interested in, and we shaIl frequently expand functions in 
terms of such sets without further proof of their completeness. 

By now it should be apparent to the reader that the expansion of a function 
in terms of a complete set of other functions is merely a generalization of the 
Fourier expansion discussed in Appendix A.2. 

At first glance it may seem difficult to lend substance to the above statement 
about the eigenfunctions of operators of physical significance. Is there anyone 
mathematical characteristic that is common to all operators that have a 
physical meaning? Fortunately, there is. 

Let Q be an operator describing some measurable physical quantity, for 
example the momentum, of a system. The expectation value 

(6.24) 

is then the result that we can expect as the average of many measurements of 
that quantity (Chapter 4.1). If "Pi is an eigenfunction of the operator Q, 
Eq. 6.24 yields, of course, (Q) = qi where qi is the eigenvalue of "Pi. This 
shows that the eigenvalues of operator can be measurable quantities. An 
operator of physical significance is obviously one whose eigenvalues are 
measurable quantities. Measurable quantities, whatever they may be, are 
certainly real. Operators of physical significance must, therefore, have one 
thing in common: their eigenvalues must be real. Once a physical problem 
has been properly phrased mathematicaIly, it is more likely than not that 
the answer to it has been available for 100 years or so. In our case the answer 
is given by the foIlowing theorem. 

THEOREM 

The eigenvalues of a hermitian operator Q are real. 

Proof 

also 

Now, since Q is hermitian, 

and hence 

(6.25) 

(6.26) 

q =q* 

The above proof can also be read from right to left yielding the statement: 
An operator, whose eigenvalues are real, is hermitian. 
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This leaves us with the comfortable knowledge that the theorems that we 
shall prove below for hermitian operators cover all the cases of physical 
interest. 

For good measure we prove that two of the most important operators are 
indeed hermitian. 

THEOREM 

The Hamiltonian operator 

is hermitian. 

n2 

H = - - V'2 + VCr) 
2m 

(6.27) 

Proof. VCr) is a real multiplicative factor and thereby hermitian. The 
proof of the hermiticity of the Laplace operator V'2 is given in Appendix A.I. 

THEOREM 

The momentum operator -iI1V' is hermitian. 

Proof 

o o~ o~* 
-(~*~) = ~*- +~­ox ox ox 

Integration of Eq. 6.28 yields 

-(~*~)dT= ~*-dT+ ~-dT J 0 .J o~ J o~* 
ox ox ox 

(6.28) 

(6.29) 

The integral on the left side vanishes because ~*~ vanishes for large values 
of I xl if the particle is confined to some finite region: 

(6.30) 

Hence 

~* ...1! dT = - ~ .L dT J 0 J 0 * 
ox ox (6.31) 

or, since corresponding expressions are obtained for the other coordinates, 

(~, V'~) = -(V'~,~) (6.32) 
hence6 

(~, iI1 V'~) = (in V'~, ~) q.e.d. (6.33) 

6 Remember that the complex conjugate of the first factor is to be taken, i.e., (in "ihp, tp) = 
- fih "ihp*tp d-r. 

• 
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From the hermiticity of the momentum operator follows immediately that 
the operators Lx, Ly and L z are hermitian. 

Proof. According to Eq. 5.89, 

L ·Ii 0 ·Ii 0 x=-IY-+IZ-
oz oY 

Since the operators P. = -ili(ojoz) and py = -ili(ojoy) are hermitian, and 
since y and Z are real factors and, thereby, hermitian, it follows that Lx is 
hermitian. The proof for Ly and L. follows from a cyclic permutation of the 
variables. (A cyclic permutation replaces x with y, y with z, and Z with x.) 
Since the angular momentum operators can be derived from each other 
through a cyclic permutation any expression derived for one of them can 
be transformed into an expression for the others by means of a cyclic 
permutation. The hermiticity of £2 follows immediately from the hermiticity 
of L (see Problem 6.2). 

THEOREM 

The eigenfunctions "PI' "P2, "Pa, ... of a hermitian operator Q, belonging to 
different eigenvalues ql' q2, qa, ... are orthogonal over Q's region of hermiticity. 7 

Proof. The proof is accomplished by showing the above statement to be 
true for any two eigenfunctions "Pi and "Pk. 

(6.34) 

also 

Because of the hermiticity of Q: 

or (6.35) 

Since by assumption qi ::;6 qk' it follows that 

for i::;6 k q.e.d. 

We still have to cover ourselves for the eventuality that the eigenvalues are 
degenerate. Let "Pi and "Pk be two normalized linearly independent eigen­
functions of the hermitian operator Q, both belonging- to the same eigenvalue 
q, i.e., 

(6.36) 

7 Sometimes the condition S V tp*(Qcp) d-r = S V (Qtp)*cp d-r is satisfied only in a certain 
volume V and not elsewhere. In this case V is referred to as Q's region of hermiticity. 
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Since our above proof breaks down "Pi and "Pk need not be orthogonal even 
if Q is hermitian. We form 

(6.37) 
where 

(6.38) 

Thus, "Pk' is a new eigenfunction to the same eigenvalue q. The constants ex 
and fJ are arbitrary, and we determine them by requiring that 

and 

Because of the normalization of "Pi and "Pk this yields 

ex = -fJ("Pi' "Pk) 
and 

(6.39) 

(6.40) 

(6.41) 

(6.42) 

If we solve Eqs. 6.41 and 6.42 for ex and fJ and substitute into Eq. 6.68, we 
obtain 

"Pk' = "Pk - ("Pi' "Pk)"Pi 

.J 1 - I( "Pi' "Pk)1 2 
(6.43) 

This is an eigenfunction of Q with the eigenvalue q, it is orthogonal to "Pi' and 
it is normalized. We can, thus, amend the above theorem as follows: The 
eigenfunctions of a hermitian operator belonging to nondegenerate eigen­
values are orthogonal. From the eigenfunctions that belong to degenerate 
eigenvalues, orthogonal linear combinations can be formed. 

Definition. The largest possible number of mutually orthogonal linear 
combinations of eigenfunctions of an operator Q having the same eigenvalue 
q is said to be the degree of degeneracy of q. 

There is a systematic procedure to form such orthogonal linear combina­
tions, the so-called Schmidt orthogonaiization procedure. In the orthogonali­
zation of "Pi and "Pk' above, we have used the Schmidt procedure for the 
special case of twofold degeneracy. 

6.2 MORE ABOUT EXPECTATION VALUES 

We shall now take another, closer, look at expectation values. Let Q be a 
hermitian operator with a complete set of normalized eigenfunctions 
Uk' k = 1, 2, 3, ... belonging to the eigenvalues qk' k = 1, 2, 3, .... Let a 
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quantum mechahical system be in a state described by a wave function "Pn 
which is not an eigenfunction to Q. The expectation value of Q is then 

We expand "Pn: 
00 

"Pn = 2 aniui 
i~l 

Substitution into Eq. 6.44 yields 
00 co 00 00 

(Q)n = (2 aniui, Q 2 ankuk) = ( 2 aniui, 2 ankqkUk) 
i~l k~l i~l k~l 

since (ui , Uk) = bik , this becomes 
00 00 

(Q)n = 2 ani*aniqi = 2 lani l2 qi 
i~l i~l 

(6.44) 

(6.45) 

(6.46a) 

(6.46b) 

In other words, the expectation value of Q in the state "Pn is the weighted 
average of all the eigenvalues qi' and the statistical weight of each eigenvalue 
is the absolute square of the expansion coefficient of the corresponding 
eigenfunction of Q. 

We see now what the physical significance of the eigenfunctions of an 
operator is: If the wave function of the system is an eigenfunction of Q with 
the eigenvalue qm' the statistical weights of all the other eigenvalues are zero 
and a measurement will yield qm with certainty. But can we square this state­
ment with the uncertainty principle? We certainly can. The uncertainty 
principle links the uncertainties of two observables and says nothing about 
the uncertainty in the measurement of a single observable. However, not all 
pairs of observables are linked with an uncertainty relation of the type of 
equation Eq. 2.36. In view of the above statement about eigenfunctions, we 
can pronounce the following theorem: 

THEOREM 

If the wave function of a quantum mechanical system is an eigenfunction 
of the operator A and at the same time an eigenfunction of the operator B, 
we can simultaneously measure (A) and (B) with certainty. 

Proof. The proof follows from the foregoing statement about eigen­
functions. To find out under what circumstances a wave function can be an 
eigenfunction of two or more operators, we make another brief excursion 
into mathematics. 

Definition. "P is said to be a simultaneous eigenfunction of the linear 
operators A and B, belonging to the eigenvalues CI. and f1 respectively if it 
satisfies both: 

and (6.47) 
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THEOREM 

Two linear operators A and B which have simultaneous eigenfunctions, 'Ij1, 
commute. 

Proof 

hence 

A(B'Ij1) = AfJ'Ij1 = fJA'Ij1 = fJrx.'Ij1 

B(A'Ij1) = Brx.'Ij1 = rx.B'Ij1 = rx.fJ'Ij1 

BA'Ij1 = AB'Ij1 q.e.d. 

We show now that the inverse statement also holds true. 

THEOREM 

(6.48) 

(6.49) 

(6.50) 

The eigenfunctions of commuting linear operators are simultaneous eigen­
functions or in the case of degeneracy can be constructed in such ~W~ 
simultaneous eigenfunctions. /,:?~f!!'" C L ..•. ~ 

,y . 
Proof /':-:~ 

';', ' ""). 

(a) Nondegenerate case. Let 'Ij1 be an eigenfunction. tb' A 

A'Ij1 = rx'lj1 

We multiply both sides from the left with B 

BA'Ij1 = Brx'lj1 

since A and B are assumed to commute 

(6.51) 

(6.52) 

(6.53) 

i.e., B'P is an eigenfunction of A with the eigenvalue rx. Since rx was assumed 
to be nondegenerate, B'P can only be a multiple of 'P, hence 

q.e.d. (6.54) 

(b) Degenerate case. For the sake of simplicity we assume rx to be twofold 
degenerate and 'PI and 'P2 to be two orthonormal eigenfunctions of A 
belonging to rx. Then all linear combinations of 'PI and 'Ij12 are also eigen­
functions of A with the eigenvalue rx. We pick one of them: 

'P = al'PI + a2'P2 

It must be an eigenfunction of A: 

A'P = rx(al'PI + a2'1j12) 

We multiply Eq. 6.56from the left with B and obtain 

BA'P = rxB(al'PI + a2'P2) 

(6.55) 

(6.56) 

(6.57) 

I 
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Since A and B commute, this can also be written 

(6.58) 

In other words, B(al1f1I + a21f1,J is an eigenfunction of A with the eigenvalue 
(X: Since (X was assumed to be twofold degenerate, B(al1f1I + a21f12) must be 
one of the linear combinations of 1f1I and 1f12. We must thus be able to write 

(6.59) 

Since the coefficients a l and a2 are still arbitrary we can determine them so 
that 

(6.60) 

In this case al1f1I + a21f12 also becomes an eigenfunction of B since it satisfies 

(6.61) 

To determine the particular coefficients a l and a2 that satisfy Eq. 6.60, we 
multiply Eq. 6.61 from the left with 1f1I * and 1f12 * respectively and integrate. 
This yields 

al (1f1I, B1f1I) + a2(1f1I, B1f12) = pal (1f1I, 1f11) + Pa2(1f1I, 1f12) (6.62) 
and 

(6.63) 

1f1I and 1f12 were assumed to be orthonormal, hence, if we use the abbreviations 

, etc. 

(6.64) 
and 

(6.65) 

These are two simultaneous linear equations for a l and a2• They can be solved 
if the determinant of their coefficients vanishes. 

(6.66) 

This is a quadratic equation with two roots PI and P2. We had assumed to 
know B, 1f11' and 1f12 and, hence, we can calculate Bu , Bu , B2l , B22 and, 
thereby, PI and P2. If PI and P2 are equal, any choice of a l and a2 will satisfy 
Eqs. 6.64 and 6.65, and P is a degenerate eigenvalue. If PI :F P2 Eqs. 6.64 
and 6.65 will determine the constants a l and a2 so that Eq. 6.61 is satisfied, 
q.e.d. 
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Obviously this procedure can be extended to higher degrees of degeneracy. 
Returning from this mathematical digression to the realm of physics, we 
can formulate the following theorem. 

THEOREM 

The expectation values of two commuting operators can be measured 
simultaneously and with arbitrary precision. 8 

6.3 COMMUTATORS AND THE UNCERTAINTY PRINCIPLE 

In view of the preceding theorem the uncertainty principle must be 
restricted to the expectation values of noncommuting operators. To investi­
gate this situation in detail we avail ourselves of some mathematical tools. 
If two operators A and B do not commute, the difference of the products AB 
and BA must be different from zero. 

Since expressions of the type (AB - BA) occur frequently in quantum 
mechanics, this difference has been given a special name and a special symbol. 

Definition 
AB - BA = [A, B] (6.67) 

is called the commutator of the operators A and B. 
From this definition follow, immediately, the identities ~elow which the 

reader may verify himself. 

[A, B] == - [B, A] 

[A,BC] == [A, B]C + B[A, C] 

[AB, C] == [A, C]B + A[B, C] 

[A, [B, C]] + [B, [C, A]] + [C, [A, B]] == 0 

(6.68) 

(6.69) 

(6.70) 

(6.71) 

The commutator of two operators A and B will in the most general case be 
another operator, for example, D. 

[A, B] = D (6.72) 

We assume now that A and B are hermitian and investigate the hermiticity­
or the lack of it-of D. 

(?p, [A, B]rp) = (?p, ABrp) - (?p, BArp) = (?p, Drp) (6.73) 

We compare this with 

(D?p, gy) = (AB?p, rp) - (BA?p, rp) (6.74) 

8 At least in principle, that is. 



"'ll!" 

116 MORE THEOREMS 

Since A and B are hermitian this can be written 

(Dtp, ep) = (Btp, Aep) - (Atp, Bep) = (tp, BAep) - (tp, ABep) = -(tp, Dep) 

(6.75) 
An 'Operator satisfying Eq. 6.75 is said to be antihermitian, hence: 

THEOREM 

The commutator of two hermitian operators is antihermitian. If we want to 
express Eq. 6.72 in terms of a hermitian operator we can write 

[A, B] = iC 

where C is hermitian. We introduce now a new operator 

Q = A + tAB 
and form 

(Qtp, Qtp) = flQtpl2 dT ~ 0 

substitution of Eq. 6.77 into Eq. 6.78 yields 

«A + iAB)tp, (A + iAB)tp) ~ 0 

Since A and B are hermitian this can be written as9 

(tp, (A - iAB)(A + iAB)tp) ~ 0 

Making use of Eq. 6.76, this can also be written as 

(A2) - A(C) + A2(B2) ~ 0 

(6.76) 

(6.77) 

(6.78) 

(6.79) 

(6.80) 

(6.81) 

'IIi" This inequality must hold regardless of the size of A, and we ask for which 
value of A the left side becomes smallest. Obviously for 

A = (C) 
2(B2) 

assuming that (B2) ¥:- O. Using Eq. 6.82 in Eq. 6.81, we get 

(A2) _ (C)2 + (C)2 ~ 0 
2(B2) 4(B2) P 

or 

(6.82) 

(6.83) 

(6.84) 

The heading of this paragraph may have led the reader to suspect that this 
expression might be related to the uncertainty principle, and it is. To show 

9 Note that since B is hermitian, iB is antihermitian and changes its sign in our notation if 
it is moved to operate on the 'second function in the bracket. 
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this we introduce an operator that describes the deviation of an individual 
measurement of a quantity described by the operator A from its expectation 
value: 

c5A = A - (A) (6.85) 

The expectation value of this operator is zero, as it must be, since the expecta­
tion value (A) is defined as the average of many measurements of the quantity 
represented by the operator A. 

In an investigation of experimental errors it is customary to characterize 
the accuracy of a series of measurements by the "root-mean-square" (rms) 
error10 of the measurements. In our case the root-mean-square error is 
described by the operator 

(c5A)2 = A2 - 2A(A) + (A)2 (6.86) 

Its expectation value-which can be different from zero even if (c5A) = O-is 

(6.87) 
or 

(6.88) 

Now we replace A with c5A = A - (A) and B with c5B = B - (B) on both 
sides of the inequality Eq. 6.84. This gives on the left-hand side: 

«c5A)2) «c5B)2) 

The right-hand side of Eq. 6.84 remains unchanged since Eq. 6.85 and its 
equivalent for B obviously have the same commutator as A and B themselves. 
Hence we obtain 

(6.89) 

or, since 

(6.90) 

are the rms errors of the measurements of the properties described by the 
operators A and B, we find 

(6.91) 

10 Let x be a quantity to be measured, xk the result of an individual measurement, and 
1 n 

x = - L x k the average, or mean, of all measurements. (Jxk = x - x k is the deviation of the 
n 1 

kth measurement from the mean. 

Jl n 
«(Jxk ) = - L (x - x k )2 

n 1 

is the rms error. In the case of a gaussian distribution of the xk around x, the rms error 
gives the turning point of the Gaussian. 
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i.e., if the operators describing two properties of a quantum-mechanical system 
do not commute, the product of the uncertainties in the measurement of both 
quantities is larger than or equal to a certain minimum value. This is the most 
general form of the uncertainty principle. In most cases of interest the commu­
tator of two noncommuting hermitian operators will not be another operator 
but a constant. 

As an example we calculate the uncertainty product of position and 
momentum 

[x, Px] = [x, -iii :xJ = -ili[ x, :xJ (6.92) 

according to Appendix A.l.2 

[x, :xJ = -1 (6.93) 

Hence, in this case, C = Ii or 

(6.94) 

We notice that the uncertainty product given by Eq. 6.94 is smaller by a 
factor of Ij47T than the value given by Eq. 1.9. This is due to the fact that in 
the present calculation we had minimized the uncertainty product whereas the 
previous values were only rough estimates. The value given by Eq. 6.94 is, 
accordingly, said to be the minimum uncertainty product. l1 

6.4 ANGULAR MOMENTUM COMMUTATORS 

Since H, V, and L z have simultaneous eigenfunctions (namely, the 
hydrogen eigenfunctions) they must commute, i.e., 

[H, V] = [H, L z] = [V, L z] = ° (6.95) 

To investigate the remaining components of the angular momentum operator 
we form12 

[Lx, Ly] = (ypz - Zpy)(zPx - xpz) - (zPx - xpz)(Ypz - Zpy) (6.96) 
Since 

[Px,Py] = [x,Py] = 0, etc., 
this becomes 

[Lx, Ly] = YPxPzz - YXpz2 - Z2pyPX + xPvzPv - YPxzPz + Z2pXpy 

+ yxpz2 - XpyPZZ = [z,Pz](xpv - ypz) (6.97) 

11 See also Eq. 2.36. 
12 px, Py, and pz are used as abbreviations for the components of the momentum operator 
-in(%x), -in(%y), and -in(%z). 
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Now 

According to Example A.Ll in Appendix A.l, we have 

or [z, pz] = iii 

and hence, using Eq. 5.89, Eq. 6.97 becomes 

[Lx, Ly] = iliLz 

Through a permutation of the variables we also obtain 

[Ly, L z] = iliLx 
and 

(6.98) 

(6.99) 

(6.100) 

(6.101) 

(6.102) 

Equation 6.95 might create the impression that the L z enjoys some sort of 
preferred position; this is, of course, not the case. From 

[P, L z] = [Lx2 + Ly2 + L z2, L z] = 0 

it follows immediately that 

[P, Lx] = 0 
and 

[P, L,J = 0 

(6.103) 

(6.104) 

(6.105) 

through a permutation of the variables. The fact that Eq. 5.106 looks so 
much simpler than the corresponding expressions for Lx and Ly is a result of 
the particular choice of the spherical polar coordinate system. Since the 
Hamiltonian is symmetrical in the variables x, y, and z we can also conclude 
that 

[H, Lx] = [H, Ly] = 0 (6.106) 

As Eq. 6.97 demonstrates, it does not follow from Eq. 6.106 that Lx and LlI 
commute. From the fact that H commutes with Lx, Ly, and L z whereas Lx, 
L lI , and L z do not commute with each other, we have to conclude that the 
simultaneous eigenfunctions which H has with Lx differ from those it has 
with Ly and L z. 

We wish to draw attention to the fact that all the above conclusions were 
drawn directly from the algebraic properties of the angular momentum 
commutators. No reference had to be made to any specific set of eigen­
functions. 
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6.5 THE TIME DERIVATIVE OF AN EXPECTATION VALUE 

We shall now derive a useful expression for the time derivative of an 
~xpectation value and prove an important theorem. ' 

Let Q be an operator describing some property of a quantum-mechanical 
system. We assume Q to have no explicit time dependence, i.e., 

oQ =0 
at 

and ask: What is the rate of change of the expectation value of Q? 

- (Q) = ...3L Q"P dT + "P*Q -:1!. dT d fa * f a 
dt at at 

(6.107) 

(6.108) 

For o"P/ot and o"P*/ot we substitute the appropriate expressions from the 
time-dependent Schrodinger equation and its complex conjugate: 

iii o"P = H"P 
at 

(H itself is real.) Hence 

and 

- (Q) = - (-H"P*Q"P + "P*QH"P)dT d 1 f 
dt iii 

Or, using our new notation, 

We have shown in Chapter 6.1 that H is hermitian. Hence13 

(H"P, Q"P) = ("P, HQ"P) 
and therefore 

(6.109) 

(6.110) 

(6.111: 

(6.112 

d 1 1 
dt (Q) = iii {("P, QH"P) - ("P, HQ"P)} = iii ("P, [Q, H)"P) (6.113 

If [Q, H] = 0 it follows obviously that (d/dt)(Q) = o. We can, thus, fOJ 
mulate the following important theorem: 

The expectation value of an operator that commutes with the Hamiltonic. 
is constant in time. 

Obviously this is a sufficient but not a necessary condition since Eq. 6.1l 
can also vanish if [Q, H)"P is orthogonal to "P. 

13 To see that this is nothing but the definition of hermiticity, just rename the functi. 
Q"P by letting Q"P = rp. 
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6.6 SEPARABILITY AND CONSERVATION LAWS 

In Chapter 5.9 we made a then cryptic remark about the connection between 
the separability of the Schrodinger equation and the conservation of angular 
momentum. We shall now try to shed some more light on this connection. 
Let H be an operator, for example, the Hamiltonian of the hydrogen atom. 
Let the eigenvalue equation 

(6.114) 

i.e., the Schrodinger equation, be separable. This means that Eq. 6.114 is 
equivalent to 

(6.115) 
where 

HI and 1fJI contain only variables not contained in H2 and 1fJ2. Multiplying 
Eq. 6.115 with 1fJ2 and 1fJb respectively, we obtain 

and 

This means that the eigenfunction 1fJ is a simultaneous eigenfunction of the 
Hamiltonian H and its two parts HI and H 2. According to the theorem on 
p. 1 13 this implies that HI, H2 and H commute: 

(6.117) 

This, in turn, means, according to Chapter 6.5, that the properties described 
by the operators HI and H2 are constant in time. We have, thus, shown that 
the separability of the Hamiltonian implies the conservation of some dynamic 
variable. The well-known conservation of angular momentum is, thus, 
quantum mechanically expressed by the fact that the Hamiltonian can be 
written as the sum of a radial part and the angular momentum operator. We 
have said "can be written," since separability is a sufficient but not a necessary 
condition for the conservation of dynamic variables. The separability of a 
partial differential equation is deperident on the coordinate system whereas 
physical conservation laws are not. As an example we consider the angular 
momentum operator V. In spherical polar coordinates we saw this operator 
appear explicitly in the Hamiltonian, enabling us to separate the Schrodinger 
equation into an angular and a radial part. In cartesian coordinates this 
would not have been the case. The angular momentum operator would have 
been dependent on all three coordinates, and its explicit introduction into the 
Schrodinger equation would not have led to a separation of the variables. 
The choice of spherical polar coordinates with all its fortunate consequences 
is, of course, not a stroke of luck but a tribute to the insight of Erwin 
Schrodinger. 
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6.7 PARITY 

We had seen earlier that the eigenfunctions of the harmonic oscillator have 
a d~finite parity. The same is true for the hydrogen eigenfunctions. Therefore, 
it might be appropriate to track down the origin of this peculiar property of 
certain eigenfunctions. To this end we consider the Schrodinger equation: 

/i2 
Eu(r) = - - V2u(r) + V(r)u(r) 

2m 

Changing the sign of all coordinates yields 

/i2 
Eu( -r) = - - V 2u( -r) + V( -r)u( -r) 

2m 
if 

V(-r) = VCr) 

(6.118) 

(6.119) 

i.e., if the potential is invariant under space inversion, the two differential 
equations are identical. This means that u(r) and u( -r) can differ only by a 
constant factor CI. that is not determined by the differential equation. Hence 

u( -r) = Cl.u(r) (6.120) 

Changing the sign of r we get 

u(r) = Cl.u( -r) = Cl.2u(r) (6.121) 
Hence 

or CI. = ±1 

In other words, if the potential is symmetrical about the origin, the eigen­
functions have a definite parity. They will either change sign (odd parity) or 
not change sign (even parity) under a mirror transformation. 

We still have to plug one loophole. Our proof depended on the assumption 
that the eigenfunction u(r) is nondegenerate. This is not always the case. 
Therefore, we assume now that the Schrodinger equation Eq. (6.114) has 
several degenerate eigenfunctions and that one of these eigenfunctions, 
properly normalized, is u(r); u(r) need, of course, not have a definite parity. 

Through a process called symmetrization, or antisymmetrization, we can 
construct from u(r) normalized eigenfunctions of even, or odd, parity. 

The equation 
ue(r) = y[u(r) + u( -r)] (6.122) 

is obviously an eigenfunction, it has even parity, and it can be normalized 
through the choice of y. Similarly 

uo(r) = y'[u(r) - u( -r)] (6.123) 
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has odd parity and can be normalized through the choice of y'. We sum up: 
If the potential in the Hamiltonian is symmetrical the eigenfunctions of a 
non degenerate eigenvalue have a definite even, or odd, parity. In the case of 
degeneracy we can always construct eigenfunctions of definite parity through 
symmetrization or antisymmetrization. 

We now show that the parity of the wave function ofa system is constant in 
time. To this end we invent an operator P that consists of the instruction: 
change the sign of all coordinates in the function that follows. This operator 
applied to an eigenfunction of even parity 

Pue(r) = u.( -r) = u.(r) 

has the eigenvalue + 1. Applied to an eigenfunction of odd parity 

Puo(r) = uoC -r) = -uo(r) 

(6.124) 

(6.125) 

it has the eigenval ue -1. In other words, the eigenval ue of this operator is the 
parity of the wave function. Hence 

(P) = {+1 
-1 

for even parity eigenfunctions 

for odd parity eigenfunctions 

This operator is, therefore, called the parity operator. We apply the parity 
operator to the Schrodinger equation. This yields 

P[Hu(r)] = Hu( -r) = HPu(r) = Eu( -r) 

if the Hamiltonian 

H = - !f \72 + VCr) 
2m 

(6.126) 

(6.127) 

is symmetrical in r, which it is as long as VCr) is symmetrical. Another way to 
express the statement made by Eq. 6.126 is to say that 

PH=HP or [H, P] = 0 

According to Eq. 6.113 this implies 

d .. 0 
- (P> = 
dt 

(6.128) 

(6.129) 

This digression about the parity of eigenfunctions might seem rather academic, 
and it is at this point. The true importance of the concept of parity will 
become evident later in two applications: 
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1. In complicated quantum-mechanical systems it would sometimes require 
laborious calculations to tell whether a certain process can happen. If we know, 
however, that the interaction Hamiltonian14 of the system is symmetrical and that 
the process would change the parity of the wave function, we know immediately 
that it cannot happen. 

2. If we do not know the interaction Hamiltonian14 (and we do not in the case of 
nuclear interactions), we can measure whether certain processes conserve parity and, 
thus, learn whether the Hamiltonian is symmetrical. This may be less than we 
would like to learn but it is often what we must settle for. 

PROBLEMS 

6.1 Do the functions log (kx), k = 0,1,2, ... form a complete set? Do the 
functions log (kx), k = ... -2, -1,0, 1,2, ... form a complete set? 

6.2 Show that if A is a hermitian operator, A2 is also hermitian. 
6.3 A and B are two arbitrary hermitian operators. Which of the following 

expressions are hermitian: [A, B], i[A, B], AB? 

6.4 Show that the operator of the z-component of the angular momentum is 
hermitian. 

6.5 Can we measure the energy and the momentum of a particle simultaneously 
with arbitrary precision? 

6.6 Can we measure the kinetic and the potential energy of a particle simul­
taneously with arbitrary precision? 

6.7 A quantum-mechanical particle moves in a constant potential (constant in 
time and space). Is its potential energy constant in time? 

6.8 Express the degree of degeneracy of the hydrogen energy eigenvalues as a 
function of n. 

6.9 Verify Eqs. 6.69, 6.70, and 6.71. 
6.10 Are the expectation values of the kinetic energy and the potential energy of a 

bound particle constant in time? 
6.11 Find the parity of the Is, 2s, 2p, 3s, 3p, and 3d eigenfunctions of the' hydrogen 

atom. 

SOLUTIONS 

6.5 In order for E and p to be simultaneously measurable, their operators must 
commute. Now 

1i2 
H= __ V2+V 

2m 
and p = -iliV 

14 The word Hamiltonian is not only used for the operator of the total energy of a stationary 
state but also for the operator of the interaction energy when a system goes from one state 
to another. It is this latter operator that we refer to with the term interaction Hamiltonian. 
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Hence, since V'2V' = V'V'2, 

[H, p] = -ili( VV' - V'V) 

This commutator vanishes only in the case V = constant. In other words, 
energy and momentum can be measured simultaneously and with arbitrary 
precision only for an unbound particle. This is, of course, exactly what we 
would expect from the uncertainty principle. Given enough time we can 
measure the energy of a bound particle with arbitrary precision. The ac­
curacy of the measurement of the momentum is, on the other hand, limited 
by the fact that a bound particle is localized. 
We investigate here the parity of the eigenfunction u(n, I, m) = u(3, 2,1) 
leaving it to the reader to find a general connection between parity and the 
quantum numbers n, I, and m. First we must find out how the variables T, D, 
and q; change as we change x ~ -x, y ~ -y, and z ~ -z. Obviously T 

remains unchanged. Consulting Figure 5.2, we find that a vector pointing in a 
certain direction will point in the opposite direction if we replace D with 
1T - {} and q; with 1T + q;. Making these substitutions in the 3d wave function, 
we find that 

sin {} cos {} eiip ~ sin (1T - {}) cos (1T - {})eiip • ei:r 

= sin {} ( -cos {})eiip • (-1) = sin {} cos {} eiip 

i.e., the parity of the u(3, 2, 1) wave function is even. 

Ii 

I 
~: ' 
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In classical mechanics we can solve the two-body problem in closed form. 
For more complicated problems, however, we must resort to perturbation 
theory. A similar situation exists in quantum mechanics. We have seen the 
hydrogen problem yield to a frontal assault. Many of the more complicated 
problems, however, require the use of approximative methods. Several such 
methods have been developed, using either iterative procedures or a statistical 
approach. The more important iterative methods, first introduced by D. R. 
Hartree, assume that each electron moves in a central field created by the 
nucleus and all the other electrons. The Schrodinger equation is solved for 
each electron in an assumed central field, and the thus-found electron eigen­
functions give a charge distribution. This charge distribution is then used to 
calculate new eigenfunctions which in turn give a charge distribution that is 
somewhat closer to reality. This new charge distribution is then used to 
calculate new eigenfunctions which in turn .... 
~ Today the Hartree method, applied by high-speed computers, allows us to 
calculate numerically the electron distribution in many electron atoms with 
high precision. While Hartree calculations are not overly difficult concep­
tually, their application to real physical problems requires a truly heroic 
effort. 

Even if we do not endeavor to calculate the eigenfunctions and energy 
levels of the more complicated atoms, their fine structure offers a fascinating 
field of study. The fine structure of spectral lines results from the existence of 
degenerate eigenvalues whose various eigenfunctions react differently to 
perturbations. We shall discuss this in some detail in a later chapter dealing 
with perturbation theory. The degeneracies are, of course, always connected 
with different angular momentum states, and a quantitative treatment 
requires a thorough knowledge of the quantum-mechanical theory of angular 
momentum. This theory is based on the algebraic properties of the angular 
momentum operators, some of which we derived in Chapter 6.4. A detailed 
theory of angular momentum is beyond the scope of this book, although we 
shall derive some of its conclusions in Chapters 9 and 10. 

126 
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Thus we conclude that a systematic discussion of the spectra of many 
electron atoms is out of our reach. In this chapter, therefore, we shall try, 
in a less strenuous way, to come to a qualitative understanding of some of the 
features of many electron atoms by combining experimental· results, basic 
quantum mechanics, and educated guesses. Our motivation for this chapter is 
threefold: (1) to furnish a nodding acquaintance with the important field of 
atomic physics, (2) to introduce the concept of spin, and (3) to introduce the 
terminology and notation of atomic physics. 

7.1 THE PERIODIC TABLE 

Even before the advent of quantum mechanics the striking similarities and 
regularities in the chemical behavior of the elements were attributed to 
regularities in their atomic structure. From our quantum-mechanical vantage 
point we expect these regularities to reflect the structure of the wave functions 
of the atomic electrons. The electron structure of all the known elements has 
now been unraveled, using mainly spectroscopic evidence. In the following we 
shall trace the assignment of quantum numbers for the lightest elements.1 

The ionization energy of the hydrogen atom is 

(5.80) 

According to Eq. 5.84 this becomes for a one electron atom of nuclear charge 
Ze 

We apply this to the He atom. 

Helium 

(7.1) 

In the He atom the nucleus has a charge 2e; however, each of the two 
electrons neutralizes part of this charge for the other electron so that none of 
them sees the full nuclear charge. Let us assume that one of the electrons is in 
a Is state. This electron together with the nucleus presents a spherical charge 
distribution to the second electron, and we assume that the second electron 
moves at least approximately as it would in the field of a central charge 
eZeff somewhere between e and 2e. Assuming that the second electron is also 
in a Is state we calculate the ionization energy of the He atom. 

4Z2 
E. = me eff 

Ion 21i2 (7.2) 

1 Following a treatment given in W. Weizel, Lehrbuch der Theoretischen Physik 2nd 
volume, Springer Verlag, Berlin, 1950. 
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Equating this to the measured value Elon = 24.5 eV (the ionization energy 
of hydrogen is 13.5 eV) we find 

ZeU = J24.5 = 1.35 (7.3) 
13.5 

This means that each of the electrons sees only 1.35e instead of 2e, or that 
one electron screens 65 percent of one proton charge. This is not unreasonable. 

Lithium 

Assuming that the principal quantum number of the third electron is also 
n = 1, we obtain, using the measured value Elon = 5.37 eV, 

ZeU = J5.36 = 0.63 (7.4) 
13.5 

This is impossible since two electrons cannot neutralize 2.37 proton charges. 
'i. We try n = 2 for the third electron. This yields 

ZeU = J5.36 = 1.26 (7.5) 
. 3.38 

(3.38 eV is the ionization energy of hydrogen in its 2s state.) This means that, 
seen from a 2s electron, each of the two Is electrons screens 1.74/2 = 87 
percent of a proton charge. This is reasonable since the 2s electron is, on the 
average, farther away from the nucleus than the two Is electrons. 

Beryllium 

We assume n = 2 for the 'fourth electron and also assume that each of the 
two Is electrons screens 87 percent of one proton charge, just as they did for 
the first 2s electron. In addition, the second 2s electron is also screened from 
the nucleus by the first 2s electron. 

In the case of He, we observed that two electrons with equal n screen each 
other with 65 percent efficiency, and we now assume that the same holds true 
for the two 2s electrons. This leaves us with 

Zeu = 4 - 1.74 - 0.65 = 1.61 

For n = 2 this yields an ioniiation energy of 

Elon =3.38' (1.61)2 = 8.8 eV 

(7.6) 

(7.7) 

and this is in fair agreement with the experimental value of 9.28 eV. We can, 
thus, assume that the assigned quantum numbers are correct. 

Boron 

Assuming another 2s electron, we calculate from the known ionization 
energy Elon = 8.26 eV that Zeu = 1.56. If we calculate Zeff' assuming that 
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the screening due to the 4th electron is 65 percent, we get 

2eff = 5 - 1.74 - 1.3 = 1.96 (7.8) 

which is a rather poor agreement. So we try n = 3. This yields 2eff = 2.34 
which is impossible, since it would mean that an n = 3 electron (which is, on 
the average, farther away from the nucleus than an n = 2 electron) sees more 
of the nuclear charge. 

This suggests that the 5th electron might be a 2p electron. The 2p eigen­
function is zero at the origin, and the screening should, therefore, be better 
than the 3.04 nuclear charges Eq. 7.8 that we expected for another 2s electron. 

If we continue this procedure, adding evidence from optical and x-ray 
spectra at the later stages, we arrive at the quantum number assignments 
listed in Table 7.1. 

7.2 THE PAULI PRINCIPLE 

Table 7.1 reveals some remarkable regularities. There are never more than 
two s-electrons, six p-electrons, ten d-electrons, or fourteen f-electrons 
belonging to the same value of the principal quantum number n. Remem­
bering that a p-state is threefold degenerate, a d-state fivefold degenerate, etc., 
we conjecture that the six p-electrons represent all three possible values of m 
(-1,0, + 1) just twice, etc. Thus we formulate, tentatively the following 
theorem: 

There are never more than two electrons in any atom that have the same 
set of quantum numbers. 

There are never more than two electrons in any atom that have the same 
set of quantum numbers. 

This looks suspicious. Why should there be just two electrons allowed to a 
state? It was in 1925 when Wolfgang Pauli suggested that there might be 
another quantum number at the bottom of this.2 This quantum number was 
to be capable of only two values, and two electrons of equal quantum numbers 
n, I, and m were to differ in this new quantum number. Soon afterward this 
quantum number was identified by Uhlenbeck and Goudsmit as the "spin" 
of the electron.3 Later, we shall discuss the spin in more detail. Here all we 
need to know is that it exists and that, in the case of the electron, it gives 

. rise to a quantum number capable of only two values. This enables us to 
pronounce the famous Pauli exclusion principle or Pauli p~r:.:i.nc.illii:l!!!'!i!l!l:::l~' "';~~.' 

"There are no two electrons in any atom that have 
numbers." 

a~secoEl1Cil8'lt~~ . 
,,~ ---.-..,--,::t'{~ 

0'0(/- , ~ 
2 W. Pauli, ZS.f Phys., 31, 373 (1925). :. .t('; !.' \;" ~.-
3 G. F. Uhlenbeck and S. Goudsmit, NaturwissensChaften:1~:';)7.~.~.~5). ' ." }? 

,,.(~,,,J\.,, -", 
"'<:"'\'-'1'" 
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Table 7.1 

i 
! 

Electronic Configuration of the Elements 

Atomic Ele- n= Atomic Ele- n= 
No. ment 1 2 3 4 5 No. ment 1 2 3 4 5 

6 I ------ - ----- ------ -
ssp s p d s p d s p ssp s p ds p d f s p d f s p d' ------ - ----- ------ -

1 H 1 54 Xe 226 2 6 10 2 6 10 2 6 
2 He 2 ------ -

------ - ----- 55 Cs 22 6 2 6 10 2 6 10 2 6 1 
3 Li 21 56 Ba 22 6 2 6 10 2 6 10 2 6 2 
4 Be 22 57 La 22 6 2 6 10 2 6 10 2 6 1 2 
5 B 22 1 58 Ce 22 6 2 6 10 26 10 226 2 
6 C 222 59 Pr 22 6 2 6 10 2 6 10 32 6 2 
7 N 22 3 60 Nd 22 6 2 6 10 2 6 10 426 2 
8 0 224 61 Pm 22 6 2 6 10 2 6 10 52 6 2 
9 F 22 5 62 Sm 22 6 2 6 10 2 6 10 62 6 2 

10 Ne 22 6 63 Eu 226 2 6 10 2 6 10 72 6 2 
------ - ----- 64 Gd 226 2 6 10 2 6 10 72 6 1 2 

11 Na 22 6 I 65 Tb 22 6 2 6 10 2 6 10 92 6 2 
12 Mg 22 62 66 Dy 22 6 2 6 10 2 6 10 10 2 6 2 
13 AI 22 6 2 I 67 Ho 22 6 2 6 10 2 6 10 11 2 6 2 
14 Si 226 2 2 68 Er 22 6 2 6 10 2 6 10 12 2 6 2 
15 P 22 6 2 3 69 Tm 22 6 2 6 10 2 6 10 13 2 6 2 
16 S 22 6 2 4 70 Yb 22 6 2 6 10 2 6 10 14 2 6 2 
17 CI 226 2 5 71 Lu 226 26 10 2 6 10 14 2 6 I 2 ! 18 Ar 22 6 2 6 72 Hf 22 6 2 6 10 2 6 10 14 2 6 2 2 ----------- - 73 Ta 22 6 2 6 10 2 6 10 14 2 6 3 2 
19 K 22 6 26 I 74 W 226 2 6 10 2 6 10 14 2 6 4 2 
20 Ca 22 6 2 6 2 75 Re 22 6 2 6 10 2 6 10 14 2 6 5 2 

I 21 Sc 22 6 2 6 12 76 Os 226 2 6 10 2 6 10 14 2 6 6 2 
22 Ti 22 6 2 6 22 77 Ir 22 6 2 6 10 2 6 10 14 2 6 9 0 
23 V 22 6 2 6 32 78 Pt 22 6 2 6 10 2 6 10 14 2 6 9 I 

r 24 Cr 226 2 6 5 I 79 Au 22 6 2 6 10 2 6 10 14 2 6 10 I 
25 Ma 22 6 2 6 52 80 Hg 22 6 2 6 10 2 6 10 14 2 6 10 2 
26 Fe 226 2 6 62 81 TI 226 2 6 10 2 6 10 14 2 6 10 2 I 

I 
27 Co 22 6 2 6 72 82 Pb 226 2 6 10 2 6 10 14 2 6 10 2 2 
28 Ni 22 6 2 6 82 83 Bi 226 2 6 10 2 6 10 14 2 6 10 2 3 
29 Cu 22 6 2 6 10 I 84 Po 22 6 2 6 10 2 6 10 14 2 6 10 2 4 
30 Zn 22 6 26102 85 At 226 2 6 10 2 6 10 14 2 6 10 2 5 
31 Ga 22 6 2 6 10 2 I 86 Rn 22 6 2 6 10 2 6 10 14 2 6 10 2 6 
32 Ge 22 6 2 6 10 2 2 -------
33 As 226 2 6 10 2 3 87 Fr 226 2 6 10 2 6 10 14 2 6 10 26 
34 Se 226 2 6 10 24 88 Ra 22 6 2 6 10 2 6 10 14 2 6 10 2 6 
35 Br 22 6 2 6 10 2 5 89 Ac 21 6 2 6 10 2 6 10 14 2 6 10 261 
36 Kr 22 6 2 6 10 26 90 Th 22 6 2 6 10 2 6 10 14 2 6 10 262 ----------- - 91 Pa 226 2 6 10 2 6 10 14 2 6 10 2261 
37 Rb 22 6 2 6 10 2 6 I 92 U 22 6 2 6 10 2 6 10 14 2 6 10 32 6 Ii 
38 Sr 22 6 2 6 10 26 2 93 Np 226 2 6 10 2 6 10 14 2 6 10 4261 
39 Y 22 6 2 6 10 2 6 12 94 Pu 22 6 2 6 10 2 6 10 14 2 6 10 626 I 
40 Zr 22 6 2 6 10 2 6 22 95 Am 22 6 2 6 10 2 6 10 14 2 6 10 72 6 ! 
41 Cb 22 6 2 6 10 2 6 41 96 Cm 22 6 2 6 10 2 6 10 14 2 6 10 72 6 11 
42 Mo 22 6 2 6 10 2 6 51 97 Bk 22 6 2 6 10 2 6 10 14 2 6 10 8 2 6 1 
43 Tc 22 6 2 6 10 26 61 98 Cf 22 6 2 6 10 2 6 10 14 2 6 10 10 2 6 : 
44 Ru 226 2 6 10 2 6 7 I 99 Es 22 6 2 6 10 2 6 10 14 2 6 10 11 2 6 
45 Rh 226 2 6 10 2 6 8 I 100 Fm 22 6 2 6 10 2 6 10 14 2 6 10 12 2 6 
46 Pd 22 6 2 6 10 2 6 10 101 Md 22 6 2 6 10 2 6 10 14 2 6 10 13 2 6 
47 Ag 22 6 26 10 2 6 10 I 
48 Cd 22 6 2 6 10 2 6 102 
49 In 22 6 2 6 10 2 6. 10 2 I 
50 Sn 22 6 2 6 10 2 6 10 22 
51 Sb 22 6 2 6 10 2 6 10 2 3 
52 Te 22 6 2 6 10 2 6 10 2 4 
53 I 226 2 6 10 2 6 10 2 5 
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We mention here that the Pauli principle applies not only to atomic 
electrons but to any system containing several identical particles of half­_I integer spin (we shall see presently what that means). Such particles are called 

d fermions and whenever several identical fermions (electrons, protons, or 
neutrons are some examples) get close together, we can be assured that no 
two of them will have the same set of quantum numbers. There are other 
particles called "bosons" (7T-mesons and photons are examples) that do not 
mind so much and that will happily wear a set of quantum numbers worn 
by another boson of the same kind at the same place. 

7.3 SPIN 

Part of the angular momentum of the hydrogen atom results from the 
motion of the electron around the proton. This part of the angular momentum, 
the one we discussed in Chapter 5.8-9, is, therefore, often called the orbital 
angular momentum. Besides the orbital angular momentum that all particles 
can have, most elementary particles have an intrinsic angular momentum. 
Regardless of their state of motion, they behave somewhat like little gyros 
or tops. We call this intrinsic angular momentum the spin. Particles with 
spin are electrons, protons, neutrons, and photons, to name a few. Particles 
without spin are 7T-mesons and K-mesons. 

The spin of a particle cannot be explained in terms of the non-relativistic 
quantum mechanics we have developed here. To understand it, we would 

I. \ have to find the eigenfunctions of· a relativistically invariant Hamiltonian, 
first proposed by Dirac. This would go considerably beyond the scope of 
this book, and we introduce spin here as an empirically known property of 
some elementary particles. We saw in Chapter 5.9 that in a hydrogen atom 
the orbital angular momentum is characterized by a quantum number I, and 

5 
S I 
5 2 
5 I 

that the expectation value of the magnitude of the angular momentum is 

)1(/ + 1) Ii 
5 ], where 
5 l' 

I = 0, 1, 2, ... , n - 1 5 I 
5 " 
5 I The expectation value of the z-component of the angular momentum is mli 
5 1 h . . 
5 '" were m IS an mteger 

~ -/ '" m '" I 
6 

The spin angular momentum can be treated in a similar fashion. The spin 
quantum number that is the equivalent of I is usually called I; it describes the 
magnitude 

)1(1 + 1) Ii 
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of the spin angular momentum. The quantum number m b the equivalent of 
m (or m! as we shall write it from now on to distinguish the two) can again 
have values 

-I~mz~I 

cHanging in steps of one. mz describes the z-component 

mzli 

of the spin angular momentum. There is, however, one significant and sur­
prising difference: The spin quantum numbers are capable of half-integer values. 
Table 7.2 lists the possible values of I and mz up to 1= t. Electrons have 

Table 7.2 

I 0 t 1 I-
--

mz 0 -t, t -1,0,1 -I-, -t, t, I-

1= t. This explains the fact that in the periodic table (Table 7.1) the possible 
sets of the orbital quantum numbers are represented just twice. The states 
with the same values of n, I, and m can still differ in mz~ which can be either 
+t or -to Protons and neutrons also have 1= t. Some of the esoteric 
particles manufactured with the large high-energy accelerators have higher 
values of 1. Particles with half-integer spin 

1= t, 1-, etc. 

are called fermions and obey the Pauli principle. Particles with integer spin 

I=O,I,2,3,etc. 

are called bosons and could not care less. 

7.4 THE MAGNETIC MOMENT OF THE ELECTRON 

If a particle moves in a central field in such a way that its orbit encloses an. 
area, its angular momentum is proportional to this area. If the particle is 
charged, its orbital motion constitutes a current flowing around the periphery 
of the area, resulting in a magnetic moment. We would expect that these 
statements of classical physics remain true in quantum mechanics and that 
an electron in a state with 1 ¥= 0 has an orbital magnetic moment. This is, 
indeed, true. If we solve the Schrodinger equation of an atom in a magnetic 
field B including the terms for the magnetic part of the total energy, we find 
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that the energy eigenvalues contain terms of the form /L' B where /L is a 
magnetic dipole moment. These calculations are not trivial, and we shall 
forego them here, substituting some semiclassical arguments leading to 
exactly the same value for fl. 

Let an electron move in a circular orbit of radius r = 1i2/me2 around a 
proton. Let us assume that the z-component of the angular momentum is 
L z = Ii. We equate this with the classical angular momentum: 

(7.9) 

An electron orbiting the proton with a frequency W/27T = v = l/T constitutes 
a current of i = v electrons/sec. Such a current enclosing an area A = 7Tr2 
produces a magnetic dipole moment: 

2 .A eW7Tr 
flo = I =--

27T 

Substitution of Eq. 7.9 into Eq. 7.10 yields 

eli 
flo=-

2me 

(7.10) 

(7.11) 

This is the so-called Bohr magneton. An electron in a state with a total 

angular momentum --/1(1 + 1) Ii has a magnetic moment 

fl = --/l(l + l)flo (7.12) 

If the z-component of the angular momentum is mzli the z-component of the 
magnetic moment will be 

(7.13) 

All this is borne out by a rigorous quantum mechanical calculation and 
verified by experiments. 

The intrinsic angular momentum of the electron is also connected with a 
magnetic moment, the so-called intrinsic or spin magnetic moment. Sur­
prisingly this magnetic moment is the same as the orbital magnetic moment 
belonging to mzli = Ii although the spin angular momentum mIIi is only half 
as big. This is often expressed by saying that the gyromagnetic ratio of the 
electron (also called its g-value) is equal to two. 

spin magnetic moment measured in Bohr magnetons 
g = angular momentum measured in units of Ii 

(7.14) 

This result is correctly given by Dirac's relativistic quantum mechanics, and 
particles with g = 2 are often called Dirac particles. Obviously Dirac particles 
are fermions. The only known Dirac particles are the electron, and the muon, 
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and their antiparticles. A very precise measurement of g shows a small 
deviation from Dirac's value. The g-values of the electron and muon are 

g. = 2.003192 (7.15) 
and 

> 

gp. = 2.00233 (7.16) 

This very small deviation from g = 2 and even the small difference between 
g. and gp. are accounted for by a more complete relativistic quantum theory 
called quantum electrodynamics. 

7.5 THE VECTOR MODEL 

Now we extend our semi-quantitative contemplation of many electron 
atoms to their angular momenta. We do this for three reasons: 

1. This approach gives many of the essential features of atomic structure with 
much less bother than a complete quantum-mechanical treatment of the subject. 

2. It will enable us to understand the nomenclature used to describe atomic states. 
3. It demonstrates-on firm ground-a technique often used at the frontiers of 

theoretical physics: one picks an experimentally observed or theoretically expected 
symmetry, here rotational symmetry, and derives all the properties related to it, 
even though one lacks a complete understanding of the system (here the many­
electron atom). 

The most surprising aspect of the hydrogen eigenfunctions is, certainly, 
that even the component of the angular momentum vector with regard to an 
arbitrary direction is capable only of certain discrete values. 

This was confirmed in a famous experiment by Stern and Gerlach' and it is 
true for all quantum-mechanical systems. There are no special requirements 
for establishing the direction with respect to which an angular momentum can 
have only integer or half-integer components. Therefore, we define a direction 
like this: 

Fig.7.1 This is one way to establish an axis of quantization. 

'w. Gerlach and O. Stern, Z. f Phys., 7, 249 (1921). For a review of this important 
experiment, see R. M. Eisberg, Fundamentals of Modern Physics, John Wiley and Sons, 
New York, 1961. 
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forcing every electron in the universe to adjust its angular momentum 
components in the approved manner. What is the catch? Well, it is this: 
Our thumb, of course, does not lift any existing degeneracy, and an electron 
with I = 3 can have eigenfunctions with m! = -3, -2, -1,0,1,2, or 3 but 
it can also have any linear combination of these eigenfunctions. Thus what we 
have really said is this: An electron of angular momentum I can be described 
in any coordinate system by a superposition of at most 21 + 1 eigenfunctions 
with m! ranging from -I to +1. This is why, so far, the quantum number m, 
has not taken on much meaning for us. It has not led to observable conse­
quences. In a strictly central potential, all 21 + 1 states of different m! but 
equal I are degenerate. They have the same energy and cannot be distin­
guished spectroscopically. This is changed if we introduce terms into the 
Hamiltonian that depend on the angle f). Such terms can be introduced 
through an external electric or magnetic field. It is obvious that in the presence 
of such fields the energy will depend on the orientation of the angular 
momentum, and thereby the magnetic moment, in the external field. 

Let us assume that a hydrogen atom is in a state in which it has a total 
orbital angular momentum .j l(l + 1) n. If we place the atom into a magnetic 
field in the z direction, the field will exert a torque on the magnetic dipole 
moment, trying to align it with the z-direction. Since the atom has an angular 
momentum it will behave like any gyroscope in such a situation. The torque 
will not align it but will cause the axis of the angular momentum to precess 
around the z direction. This is shown in Figure 7.2. The precession results in a 
constant value of the z component of the angular momentum, and this con­
stant value has to be one of the allowed values m!n where -1 < m! < 1. The 
x and y component of the angular momentum keep changing all the time and, 
therefore, cannot be measured simultaneously. This is obviously what the com­
mutation relations (Eqs. 6.101 and 6.102) have been trying to tell us all along. 

Which value of m! the atom will assume depends on the orientation it had 
when it was first brought into the field. Actually, we do not even need an 
external field to define a special direction for an atom. Any electron in a 
many-electron atom has either a spin or a spin and an orbital angular 
momentum. Any electron can thus define a direction with respect to which 
the other electrons must adjust their angular momentum components. 

Now we investigate what happens when the magnetic moments of two 
electrons react with each other. As an example we consider a p-electron and a 
d-electron, disregarding for the moment that the two electrons also have a 
spin angular momentum. The magnetic moments of both electrons will try to 
align each other and, in the process, will set up a precession around a common 
axis. The resultant of the two angular momenta in the direction of this axis 
has to be quantized to have a magnitude that can be expressed as 

.JL(L + l)n 
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Fig. 7.2 A torque acting on an atom with angular momentum (or on any gyroscope) v. 
not align the axis of the angular momentum but will cause it to precess. The projection 
the angular momentum on the axis of precession is an integer multiple of h. For a macr 
scopic gyroscope the number of possible orientations is so large as to be continuous. 

where L is an integer. For the example given, there exist only three ways 
which this can be accomplished. The three possibilities are shown in Figu 
7.3a to 7.3c. Actually this figure makes the situation look more complicatt 
than it really is. The possible values of L in our example are simply 

L = 2 + 1, L = 2 ± 0, and L = 2 - 1 (7.1 
In other words, L is the sum of the larger of the two l's, and the possib 
values m l of the smaller of the two. For two arbitrary angular momentu 
quantum numbers I and I' with I > 1', we thus obtain 

1-I'~L~I+1' (7.1: 

In the most general case of the addition of n orbital angular momenta, tl 
highest possible value of L is given by 

n 

Lmax=2;lk (7.1 ' 
1 

where lk is the quantum number of the orbital angular momentum of tl 
kth electron. The lowest value of L is zero or the lowest nonnegative numbl 
that we obtain if we subtract all the other lk from the largest lk. 

Spin angular momenta add in a similar fashion. If there are two electron 
the possible values of the total spin S are5 

S = t + t = 1, and S = -~ - t = ° 
5 It is customary to use the letter I for the spin of elementary particles and nuclei, where, 
the letter S is used for the total spin of many electron atoms. 
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(c) 

Fig. 7.3a,b,c Two angular momenta precess around a common axis. The opening angles 
of the precession cones adjust themselves so that the resultant has a length that can be 
expressed as vi L(L + 1) h, where L is an integer. 
Fig. 7.3d The total angular momentum described by the quantum number J will align 
itself in such a way that its component with respect to a given external axis has one of the 
possible values of mJ. 

For three electrons, we get 

S = t + t + t = t, and S=t+t-t=t 
For n electrons, S can have any value between 

S = 0 and S = nl2 or S = t and S = nl2 
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depending on whether n is even or odd. It is obvious that in a many-electron 
atom, where every electron has a spin and many have an orbital angular 
momentum, things could be appallingly complicated. Fortunately, two 
factors cooperate to simplify matters. 

1. The Pauli principle sees to it that the angular momentum of a closed shell is 
zero. This leaves us with only the outermost electrons to worry about. 

2. Spins and orbital angular momenta (at least, in the light atoms) obey Russel 
Saunders coupling also called L-S coupling. 

These terms mean the following. In a many-electron atom all the orbital 

angular momenta add up to a total orbital angular momentum J L(L + 1) Ii 
in the manner just discussed. All the electron spins add up to a total spin 

angular momentum J S(S + 1) Ii as discussed above. 
The total spin and the total orbital angular momentum align themselves 

with respect to each other in such a way that they add up (vector fashion) 
to a total angular momentum characterized by a quantum number J. J can 
assume any value between J = IL - SI and J = IL + SI, varying in steps of 
one. Thus, J is either always an integer or always a half-integer depending on 
the nature of S. 

To illustrate this we return to the example of the p and d electron (Figure 
7.3a to 7.3c). Let us assume that the two electrons have arranged themselves 
in such a way that 

L=3 and S=I 

The total orbital angular momentum and the total spin will now precess 
around each other and form a resultant total angular momentum (see 
Figure 7.3d), characterized by the new quantum number J, which can be 
either 2, 3, or 4. If the two electrons had added up to L = 2, S = I, J could 
have been I, 2, or 3, etc. Now comes the important point: If the atom is 
brought into a magnetic field, which is weak compared with the extremely 
strong magnetic fields inside the atom, it will precess as a whole and adjust 
its total angular momentum in such a way that its z-component 

has one of the values: 

-JIi, -(J - I)/i, ... , (J - I)/i, J/i 

This latter 2J + I-fold degeneracy which is lifted only by an external magnetic 
field, is called the multiplicity of the state. 

Notice that if the total angular momentum aligns itself in a magnetic field 
in such a way that mJ is an integer or half integer, neither m s , m z, ms, or mL 
are integers or half-integers. Actually these z-components are not even 
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constant but vary in time as a result of the precession around the common 
axis. Therefore, they cannot be used to describe the state of the system. 

This is often expressed by saying that m l, m s , mL and ms are not "good 
quantum numbers" if several angular momenta couple with each other. If the 
external field becomes stronger than the internal fields, it is "every spin for 
itself" and m l and ms become good quantum numbers. In other words, the 
spin and orbital angular momentum of each individual electron adjusts itself 
so that its components with regard to the external magnetic field become 
integers or, in the case of spin, half-integers. In such a case we often say, 
colloquially, that the strong magnetic field decouples spin and orbital angular 
momenta. 

Based on this coupling scheme is the following notation. The total orbital 
angular momentum is expressed by a capital letter: 

S, P, D, F, etc. 
corresponding to 

L = 0, 1,2,3, etc. 

The quantum number of the total angular momentum J is tacked on as a 
suffix, and the number of possible orientations of the total spin 2S + 1 is 
expressed by a prefix. Thus the system we have discussed would be in a 

or 3F4 state 

depending on the actual value of J. If the principal quantum number is of 
interest, it can be added in front of the letter. To gain more familiarity with 
this notation we apply it to some concrete examples. 

Hydrogen 

There is only one electron, hence 1= Land S = t. The ground state is 
obviously a I 2SIA (pronounced: doublet S one-half) state. 

In the first excited state, L can be either 0, in which case J = t, leading to a 

2 2SIA state, 

or it can be 1. In this case the spin has two possible orientations leading to 
J = tor J = t or, in our new notation, to a 

2 2PIA state or a 2 2P3 state 

These two states have different energies since in one case the magnetic 
moments of spin and orbital angular momentum are anti parallel and in 
the other case they are parallel with respect to each other. This results in 
different values of the magnetic energy. Since the magnetic energy is small 
compared to the Coulomb energy, this energy difference is very small. It 
leads to a splitting of the spectral lines and is called fine structure splitting. 

Ii 'ill 
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We see now why 2S + 1 and not S is used as a prefix. 2S + 1 is th{ 
observed fine structure splitting that results from the interaction of spin anc 
orbital angular momentum if L > S.6 

The 2 2S~ and 2 2P~ states remain degenerate under the influence of th{ 
spin orbit interaction. Very precise experiments, first performed by W 
Lamb,7 showed that even this degeneracy is lifted by an interaction with thl 
radiation field. This Lamb shift between the 2 2S~ and the 2 2P~ state is onl~ 
about i'o of the already very small fine structure splitting. 

Helium 

Because of the Pauli principle, the ground state of He must be a 

11So state 

The first excited state can be an S state or a P state. Let us first consider the i 
state. Since the two electrons now have different principal quantum number 
the Pauli principle no longer enforces opposite spin directions. Hence, we Cal 

have either a 

2 ISO state 

(singlet s zero) 

or a 2 3S1 state 

(triplet s one) 

Now to the P state. Here S can be either zero (coupling with L = 1 to giv 
J = 1) or it can be one (coupling with L = 1 to give J = 0, 1, or 2). Thus th 
resulting states are 

and 

It is interesting to note that a selection rule 

/).S = 0 

allows transitions between two states only if the initial and final stat{ 
have the same total spin. Transitions between triplet and singlet states aJ 

thus forbidden. This results (in the case of He) in the existence of tw 
independent series of spectral lines where no line in the singlet spectrum ca 
be expressed as a difference of energy levels participating in the tripli 
spectrum, and vice versa. Before this was properly understood there weI 
thought to be two kinds of helium, ortho-helium and para-helium, chemicall 
alike but, somehow, spectroscopically different. 

6 For L < S the level splits into 2'- + 1 different levels. 
7 W. Lamb and R. C. Retherford, Phys. Rev., 79, 549 (1950). 
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PROBLEMS 

7.1 Estimate the ionization energy of the carbon atom. 

7.2 Why is it difficult to separate the rare earths chemically? 

7.3 Which of the following elements: Li, Be, N, F, Na, Mg, CI, would you expect 
to have a spectrum similar to that of hydrogen ? Which would have a spectrum 
similar to that of helium? 

7.4 The He nucleus has no spin. Draw a qualitative diagram of all the energy 
levels with n = 1, n = 2, n = 3 of the singly ionized He atom (a) without an 
external magnetic field, and (b) with an external magnetic magnetic field. 

7.5 Draw a schematic diagram of levels with n = 1, n = 2, n = 3, of the muonic 
carbon atom. (Consider only the energy levels resulting from the various 
states of the muon and assume that the electrons remain in their ground 
states.) 

7.6 

7.7 

7.8 

7.9 

7.10 

Which of the following states cannot exist: 2p~, 2Pl' 3p~, 2P%, 2p~, IPO' 

3PO' 3P1? 

How many different energy leveltl does a 4p~, and a 2P"A state have (a) with­
out an external magnetic field, and (b) in an external magnetic field? 

Neutrons and protons are fermions with spin I = t. What total nuclear spin 
would you expect the following nuclei to have: H2, H3, He3, He4 ? 

Pions have no spin. A negative pion can be captured into atomic states by a 
proton, forming a pionic hydrogen atom. The proton has spin t. Draw a 
schematic energy level diagram for the lowest s, p, and d state of a pionic 
hydrogen atom (a) in the absence of a magnetic field, and (b) in a magnetic 
field. 

The electron and its positive antiparticle the positron both have spin t. Since 
they have opposite charges they can form a hydrogenlike atom that is called 
positronium. The ground state of positronium is, of course, a Is state. Would 
you expect, in the absence of an external magnetic field, that the ground state 
is split as a result of the interaction between electron and positron spin? If so, 
into how many levels? 

ates 7.11 The hydrogen molecule H2 consists of two hydrogen atoms. These atoms are 
bound together by the two electrons that orbit around both nuclei. The wave are 

two 
can 
'plel 
vere 
:ally 7.12 

function of both these electrons is spherically symmetrical (s-state). Yet, there 
exist two, experimentally discernible varieties (states) of hydrogen at low 
temperatures, ortho-hydrogen and para-hydrogen. What distinguishes these 
two kinds of hydrogen? 

(a) Given three particles with angular momentum quantum numbers 11 = 4, 
12 = 3, 14 = 2, in how many different ways can these angular momenta be 
combined to give a total angular momentum L? (The values of L obtained in 
this way are not necessarily different from each other). 
(b) Into how many states (not necessarily all of different energy) do the states 

! : 
! 
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obtained in (a) split under the influence of an external magnetic field? Show 
that this latter number is the same whether the angular momenta interact with 
each other, or not. 

SOLUTIONS 

7.7 In a 4p~ state the !lngular momentum quantum numbers have the following 
values: L = 1 (P state), and S = j (prefix 4 = 2S + 1). The two have com· 
bined to give J = t (suffix t). The 4p~ state is one of the three fine structure 
levels, each belonging to one of the three possible values of the total angular­
momentum quantum number J =!, J = j, and J = t. As such it is rep­
resented by a single-energy level in the absence of a magnetic field. In an 
external magnetic field (or, also, because of an interaction with a nuclear 
spin) the total angular momentum described by J (here J = i) can orient 
itself in two ways so that mJ = t or mJ = -t, resulting in a split into two 
different levels. In the case of the 2P% state the quantum numbers are L = 1, 
S = t, and J = !. This state is also represented by a single-energy level in the 
absence of a magnetic field. The level is one of the two fine structure levels 
belonging to J = j and J = i. In the presence of a magnetic field there will be 
four levels belonging to mJ = j, mJ = t, mJ = -t, and mJ = -j. 

7.12 We start with the particle with 11 = 4. Relative to this particle the particle 
with 12 = 3 can orient itself in such a manner that the resulting angular 
momentum has one of the quantum numbers L' = 7, 6, 5, 4, 3, 2, or 1. 
Relative to these possible angular momenta, the remaining particle can orient 
itself so that mi. is either 2, 1, 0, -1, or -2. Hence, 

L'= 7 6 5 4 3 2 

mi. 
2 9 8 7 6 5 4 3 
1 8 7 6 5 4 3 2 
0 7 6 5 4 3 2 1 

-1 6 5 4 3 2 1 
-2 5 4 3 2 1 0 

(Note that in the last column 13 is the larger of the two numbers so that it i! 
now L' that has to orient itself so that mL' = ± 1, or 0.) 

We have thus obtained a total of 33 different combinations. We would, 01 
course, have obtained the same number if, for example, we had started bJ 
combining 12 and 13 and the result LH with 11' In the presence of a magnetic 
field, L = 9 splits into 2L + 1 = 19 different levels and L = 8 into 2L + 
1 = 17, etc. Adding it all up, we obtain 19 + 2·17 + ... = 315. So much 
for the interacting particles. If there is no interaction, the first particle can. 
assume any of 2/1 + 1 = 9 different orientations. Independently, the seconc 
particle can assume 2/2 + 1 = 7 and the third 2/3 + 1 = 5. The total numbeJ: 
of different combinations is obviously 9·7·5 = 315, as it should be. 1 
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LIGHT EMISSION 

tn 8.1 TRANSITION PROBABILITY 
ar 

~t It is well known that an atom in an excited state, described by a wave 
10 function un'J'mJ' can return spontaneously to the ground state u"JmJ ' emitting 
1, a photon whose energy nw equals the energy difference between the initial 
ile and the final state of the atom. A complete quantum mechanical theory of 
~Is light emission should be able to predict the probability for such a transition. 
be Since the final state of the system contains a photon and the initial state does 

not, a theory that describes light emission has to be able to describe the 
;Ie creation of a photon. Such a theory exists and is known as quantum electro­
ar dynamics. Regrettably, quantum electrodynamics, which is a branch of 
~; quantum field theory, goes far beyond the scope of this book. 

til 

To stay out of the mathematical brierpatch of quantum field theory we 
shall use the technique that has served us well thus far: We shall write down 
the expression for the analogous classical situation and then translate it into 
quantum mechanics. Since photons do not naturally emerge from this theory 
we must introduce them as deus ex machina at the appropriate time. 

A classical device that radiates light, although of a long wavelength, is an 
antenna or electric dipole. The flow of electromagnetic energy, according to 
classical electrodynamics, is given by the time average of the Poynting vector 

S = [EH] (S.l) 

where E and H are the vectors of the electric and magnetic field. The Poynting 
01 vector of the radiation field of an electric dipole, radiating with a frequency 
bJ w is l 
:tic ' 
+ lSI = (ed)2w4 sin2 {} sin2 (riA - wt) ; 

lch 47Tc3r2 (A = l..) 
27T 

:anwhere ed is the electric dipole moment (see Figure S.l). fie 

(S.2) 

Jell See Marion, Classical Electromagnetic Radiation, Academic Press, New York and 
London 1965. 
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L 
x 

[ 
Fig. 8.1 According to Maxwell's theory the intensity of the light emitted by an electri< 
dipole is proportional to sin2 D. 

The radiation of a classical dipole is thus proportional to the square of itl 
(oscillating) dipole moment. We, therefore, investigate the quantum mechan­
ical expectation value of the dipole moment ed of a stationary state charac 
terized by an eigenfunction u(r). 

(ed) = f u*ed u d-r = e f du*u d-r (8.3 

If we change r into -r, u*u remains unchanged if u has a definite parity 
however, because of d, the integrand changes sign. Since any integral of th 
type 

ff(x, y, z) d-r 

vanishes between symmetrical limits if2 

f(X, y, z) = -f( -x, -y, -z) 

we can pronounce the following theorem: 

(8.~ 

The stati()nary states of a system whose Hamiltonian is symmetrical abol 
the origin have no electric dipole moment. 

Does this demolish our hopes of explaining the emission of light by atoms 
Of course not. Stationary states do not radiate anyway. What we are aftt 

2 The proof of this statement is straightforward in one dimension and can easily be extendt 
to three dimensions. 
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must be a transient oscillating dipole moment occurring when <'UJ."a;tpll).lgoes 
from one stationary state to another. To investigate this possibil,ity wereturp 
to the time-dependent Schrodinger equation (Eq. 2.15): . 

. 0'1p 1i2 2 
zli- = - -V '1p + V(r)'1p ot 2m 

According to Eq. 2.21, this equation has the solution: 

'1p = e-iwtu(r) = e-UEt//i)u(r) (g. 5) 

If there is more than one stationary state (and this is the only caseofinteJ;est 
to us) all the linear combinations 

'1p = .L cke-UEkt/liluir) 
k~l 

(8.6) 

are solutions of Eq. 2.15. The symbol k stands here as an abbrevja~iQn for. ~ 
set of quantum numbers n, J, mJ . Thus the most general-nonstationary,.-,-
probability density is, according to Eq. 8.6: . 

.. (8.7) 

The probability density (Eq. 8.7) fluctuates in time with the frequencies 

(8.8) 

ity; This leads us to suspect that light of these frequencies might be emitted if 
the these fluctuations are connected with a changing electric dipole moment of 

the atom. Substitution ofEq. 8.7 into Eq. 8.3 yields the expectation value of 

8.4) 

lout 

the electric dipole moment: . 

(8.9) 

This is the most general form of the electric dipole moment. A transition from 
an initial state k to a final state i resulting in the emission of a phbtollof 
frequency W ik is represented in Eq. 8.9 by the term: 

ms' Now we make the decisive assumption: The intensity of the light emitted by 
IfteJ an atom is given by the time average of Eq. 8.2 if we replace (ed)2 with 
Ilde( (2ed) ik 2• The factor of two results from the fact that the exchange of i and k 

in Eq. 8.10 leaves the time average unchanged. Thus the contributio.n.'Yiih 
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the frequency IWikl appears twice in the sum (Eq. 8.9.) The time average of 
sin2 (riA - wt) is 

(sin2 (riA - wt) = t (8.11 ) 

so .that the light intensity becomes, according to Eq. 8.2, 

I _ (ed)ik2wik4 sin2 {} 
ik - 27Tc3r2 (8.12) 

If we integrate Eq. 8.12 over the surface of a sphere of radius r = 1, we obtain 
the luminous intensity of the light source, i.e., the energy emitted by the 
atom per unit time: 

Lik =IIikr2 sin {} d{} dip = 4Wi:
4 

(ed)ik2 (8.13) 
3c 

Obviously, it is not proper to speak of light intensity if we are dealing with 
the light emitted by a single atom. An atom emits individual photons, and a 
quantum-mechanical theory should tell us the probability of finding them. 
Here the shortcomings of our theory become apparent. Our method of 
substituting the expectation value of the electric dipole moment into the 
classical formula (Eq. 8.2) simply does not describe the creation of photons 
but rather the emission of a continuous wave. However, all is not lost. Instead 
of carrying out a quantization of the radiation field (as we properly should3), 

we simply introduce photons, ad hoc, into our theory. 
Now, if L is the luminous intensity of a source, the number of photons 

emitted by the source-per-unit time must be given by 

N=~ 
liw 

(8.14) 

If we have only one atom and Lik is its luminous intensity, as given by Eq. 
8.13, then 

A. = Lik = 4Wik3 (ed). 2 

'k liw 3lic3 'k 
(8.15) 

must be the probability that the atom emits a photon during one unit of time. 
Since the emission of a photon is accompanied by a transition from the 
initial state of the atoms "Pk to the final state "Pi' Aik is usually called the 
transition probability. The lifetime of the initial (excited) state is in this case 
given by 

1 
T=-

Aik 
(8.16) 

3 This so-called second quantization would lead to the correct theory-the quantum field 
theory of light emission. 
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if the final state 'Pi is the only one to which 'Pk can decay. If there are several 
final states possible, the lifetime of the state "Pk is obviously given by' 

1 
T=--

IAik 
(8.17) 

;=1 

We mention here in passing that we can also make a strictly classical theory of 
light emission. In this theory the light emission from a classical oscillator­
an elastically bound electron-is calculated, using classical electrodynamics. 
If a classical oscillator radiates energy, its oscillation must be damped as a 
result of the energy loss. The radiation damping leads to an exponential decay 
of the luminous intensity, and the decay constant y can be calculated. We 
obtain 

(8.18) 

where m is the electron mass. Obviously, in the classical as well as in the 
quantum-mechanical case the luminous intensity is proportional to the decay 
constant. The ratio 

Aik _ 2wikm(d)2 - 1. 
- - ik 

Y 31i 
(8.19) 

is called the oscillator strength and gives the luminous intensity of the atom 
in units of the luminous intensity of a classical oscillator. The value given fo)" 
the transition probability by Eq. 8.15 agrees in first approximation with the 
one obtained fro)q. quantum electrodynamics. The higher order terms are so 
small that we cannot detect their presence with current experimental 
techniques. We return to Eq. 8.15, which we write in the form: 

(8.20) 

The coefficients ("Pi' ed"Pk) fill a two-dimensional array and are, therefore, 
called matrix elements. We shall hear more about them later. The structure 
ofEq. 8.20 is of more than passing interest. Whenever transition probabilities 
are calculated, the result can be written in the form 

(8.21) 

where 'Pk and "Pi are the wave functions of the initial and final state, and Q is 
the operator of the perturbation (here the electric dipole moment) that causes 
the transition from one state to the other. Initial and final states can be of a 
very general nature, and Table 8.1 may serve to illustrate this point. We 

4 See Problem 8.7. 
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Table 8.1 

Process Initial state Final state 
; 

Light emission Excited atom Atom in ground state 
+ photon 

Radioactive decay Nucleus N Nucleus N' + at-particle, etc. 

Scattering Proton moving toward a Proton moving away from 
nucleus + nucleus at rest nucleus + recoiling nucleus 

m.ention here that if the transitio~ from the state 1J11c to the state 1J1i has a large 
probability, then the probability T1ci ex: 1(1J11c' Q1J1i)1 2 of the inverse transition 
is also large. The reader should be able to prove this statement, assuming 
that the operator Q is hermitian. (see Problem 8.3) 

8.2 THE SELECTION RULE FOR I 

The actual calculation of atomic transition probabilities can be a very 
tedious business. We shall not attend to it here and settle instead for the 
d~rivation of selection rules. A selection rule is a rule that tells one whether 
or not a certain transition can occur without making any statement about the 
nl,lmerical value of the transition probability. 
, ,First we consider the qUlj.ntum number I. The wave functions of the 

hydrogen atom, or for that matter of any atom with a central potential, are 
of the form: 

(8.22) 

A.change from r to -r corresponds to a change from iJ to 7T - iJ, and from 
qJ t~7T + qJ (see Figure 5.2) in a spherical polar coordinate system. Since 

Siri(7T - iJ) = sin iJ; COS(7T - iJ) = -cos iJ; and 

(8.23) 

a]J. iJ?spection of the hydrogen wave functions (Table 5.1) shows that all 
fU.Ilctions with even values of I have even parity whereas all those with odd 
values of 1 have odd parity. Considering that an integral vanishes between 
syinmetrical limits if the integrand has odd parity, and considering that the 
operator of the electric dipole moment has odd parity, we can state the 
following selection rule: 



THE SELECTION RULES FOR m, 149 

The expectation value of the electric dipole moment-and with it the transition 
probability-vanishes unless initial and final state have different parity, i.e., 
unless 

linitial - Ifinal = 111 ~ 0, 2, 4, ... (8.24) 

This necessary but not sufficient condition for light emission is known as 
Laporte's rule. A straightforward but tedious calculation shows that actually 
an even more restrictive selection rule applies: 

111 = ±1 (8.25) 

8.3 THE SELECTION RULES FOR m, 
Now we consider the quantum number m. Since the states of equal nand 1 

but different m are degenerate we assume that a magnetic field in the z­
direction is present. This field is assumed to be so small that it does not 
appreciably change the energy levels or the transition probability. The field is 
merely there to assure that the m-degeneracy is lifted; therefore, we have a 
right to assign to the atom a definite value of the quantum number m. First, 
we calculate the light emission in the x-y plane which is due to a dipole 
moment in the z-direction. 

(ez).k = LooXiXkr3 dr L" Pllm; P/::k sin {} cos {} d{) L b e-im;tpeim"", dq> (8.26) 

We take a closer look at the last integral: 

(8.27) 

This integral vanishes unless 11m = O. Hence, in the presence of a magnetic 
field in the z-direction, linearly polarized light can be observed5 at a right 
angle to the field, resulting from transitions with 

11m = 0 (8.28) 

Notice that this rule has been derived neglecting the spin, and is thus only 
applicable to transitions between spinless (i.e., singlet) states. We state here 
without proof that it is valid in the presence of a spin in the more general 
form: 

(8.29) 
Now we form 

x ± iy = resin {} cos q; ± i sin {} sin q» = r sin {}~tp (8.30) 

5 This is only a necessary condition for the emission of light. It could, of course, be that the 
D- or the r-dependent integral vanishes. 
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From this we derive the expectation value: 

(8.31) 

Hence 
(x ± iy) = 0 (8.32) 

or 
(x) = (y) = 0 (8.33) 

unless 
(8.34) 

Hence the dipole moment in the x-y plane can lead to the emission of light in 
the field direction if 

D.m = ±1 (8.35) 

To determine the polarization of the light emitted in the z-direction, we recall 
that, according to Eq. 8.9, a factor 

(8.36) 

appears in the expression for the electric dipole moment. If we consider that 
i = ei1f / 2 and multiply this into the time-dependent part (Eq. 8.36), we see 
that according to Eq. 8.31 the x- and the y-component of the dipole moment 
are out of phase by 71'/2. The light emitted in field direction must, therefore, 
be circularly polarized. 

It should be mentioned that nature has ways to get around the above 
selection rules. Even if the matrix element of the electric dipole moment 
vanishes, an atom will always go to the ground state (eventually), utilizing 
processes having operators with parity and angular momentum properties 
different from those of the electric dipole operator. Possible mechanisms by 
which such forbidden transitions can occur are the following. 

Magnetic Dipole Radiation 

If electric dipole radiation is the quantum-mechanical analog of the 
radiation from a dipole antenna, magnetic dipole radiation is the quantum­
mechanical analog of the radiation from a solenoid. The transition proba­
bilities for magnetic dipole transitions are usually very much smaller than 
those for electric dipole transitions. 

Higher Electric Multipole Radiation 

Even if two states are not connected by an electric or magnetic dipole 
moment, they can nevertheless have an oscillating electric quadrupole, etc., 
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moment. Again, the transition probability for such transitions is very much 
smaller than that for electric dipole radiation. 

Two Quantum Transitions 

The 2s state of hydrogen cannot decay to the Is state because that would 
imply I:l./ = O. There are no other electric or magnetic moments to help the 
good cause and, therefore, the atom is left high and dry once it is in the 28 
state. Usually deexcitation will occur when the atom collides with another 
atom but, even in a perfect vacuum, the atom can go to the ground state by 
the simultaneous emission of two photons. Since two-quantum emission is 
very much less probable than one-quantum emission, the 2s state is said to 
be meta-stable. 

PROBLEMS 

8.1 Prove that 

I~!(X)dX = 0 

ifJ(x) has odd parity. 

8.2 Calculate the probability of the electric dipole transition between the states 
(n, I, m) = (2, 1, 0) and n = 1 of the hydrogen atom. Neglect any effects that 
result from the electron or proton spin. 

8.3 Quantum-mechanical transitions between two states can take place in both 
directions (for example, an atom which can e~t a photon in going from a 
state 'Pk to a state 'Pi can also absorb a photon in the state 'Pi and go to the state 
'Pk)' Show that the transition probabilities for these two processes are always 
proportional to each other. 

8.4 Name all the states of the He atom that have n = 2. Which of these states are 
meta-stable? 

8.5 Give more examples of quantum-mechanical transitions in the spirit of Table 
8.1. List also the inverse transitions. 

8.6 The oscillator strength of the 2p - Is transition of the hydrogen atom is 
J = .139. What is the transition probability? What is the lifetime of the 2p 
state? Assume the elementary charge to be twice as big as it is. How would 
the lifetime of the 2p state change? 

8.7 Verify Eq. 8.17. 

8.8 A muonic carbon atom is a carbon atom in which a negative muon "orbits" 
the nucleus far inside the innermost electron shell. Using the value of the 
transition probability for the 2p - Is transition, calculated in Problem 8.6, 
find the lifetime of the 2p state of the muonic carbon atom. 
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Solution of 8.3.- The probability for a quantum-mechanical transition between 
two states 'IJli, 'IJlk is given by an expression of the form 

P ex:. I ('IJlk, Q'IJli)1 2 

wkere Q is the operator of the interaction that brings about the transition (for 
instance the electric dipole operator in the case of light emission). The probability 
for the inverse transition from the state 'IJlk to the state 'IJli under the influence of the 
same operator Q is then 

P' ex:. I ('IJli, Q'IJlk)1 2 

The operator Q, describing a physical quantity, must be a hermitian operator. Hence 

('IJli, Q'IJlk) = (Q'IJli, 'IJlk) = ('IJlk, Q'IJli)* 

Hence 
or Pex:.P' 

We have written P' ex:. P rather than P' = P since more than the absolute square of 
the matrix element enters into P'. For instance, let P be the probability that an atom 
spontaneously goes from an excited state to the ground state, emitting a photon. 
The probability of the opposite process, excitation of the atom by resonance ab­
sorption of a photon, will in this case depend on the absolute square of the same 
matrix element, but it will also depend on the abundance of photons available for 
absorption (i.e., on the intensity of the incident light). 



9 
MATRIX MECHANICS 

In the preceding chapters we have formulated quantum mechanics with the 
help of partial differential equations. The differential equations were to be 
solved for wave functions which by themselves did not represent any 
measurable quantities. Dynamic variables came out of this theory in the form 
of eigenvalues. The fundamentals of this approach to quantum mechanics 
are due to Schrodinger. There exists another formulation of the theory that is 
due to Heisenberg. The Heisenberg approach spurns quantities that cannot 
be measured directly, such as probability amplitudes. Instead, measurable 
quantities are directly related with each other through the rules of matrix 
algebra. The two approaches yield the same results and are-no matter how 
different they look-very closely related mathematically. The rules of matrix 
mechanics were derived directly from the experimental results by Heisenberg. 
Only later was it recognized by Schrodinger how closely akin mathematically 
his and Heisenberg's forms of the theory really were. Having already mastered 
Schrodinger's wave mechanics, we shall use it as a convenient access road to 
Heisenberg's matrix mechanics. 

Although both theories are completely equivalent it turns out that in some 
applications one is more convenient to use than the other. In the following 
chapters we shall concentrate on those problems that lend themselves more 
readily to a solution with matrix methods. 

9.1 MATRIX ELEMENTS 

Previously we had defined the expectation value of a linear operator Q as 

(9.1) 

This expectation value was defined as the average of many measurements of 
the quantity described by the operator Q. The measurements were to be 
made while the system was in a state described by a set of quantum numbers 
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symbolized here by the one subscript i. Now we expand "P;* and "P; in terms of 
eigenfunctions of another linear operator (for instance, in terms of the eigen­
functions Uk of the Hamiltonian of the system). 

and 

Hence 

"Pi = L C;mUm 
m=l 

(9.2) 

(9.3) 

The definite integrals S Uk * QUm dT form a two-dimensional array of numbers. 
We encountered such an array in the previous chapter and for no good 
reason, called the numbers matrix elements: 

(9.4) 

Now we shall show that they deserve this name because the rules of matrix 
algebra apply to them. First we show that the rule of matrix addition 

(A + B);k = aik + bik (9.5) 

applies. Let Q and P be two linear operators. Then 

(Q + P)ik = f u;*(Q + P)uk dT = f Ui*QUk dT + f Ui*PU k dT = qik + Pik 

(9.6) 
Matrix multiplication is defined by 

n 

(AB)ik = L aimbmk (9.7) 
m=l 

To show that the same law applies to our two-dimensional arrays, we form 

Pk = QUk 

where Q is hermitian, and expand it in terms of the U;: 

QUk = Pk = L CkiUi 
i=l 

We multiply from the left with u!* and integrate 

(u!, Quk) = q!k = L ck;(u!, ui) 
i=l 

(9.8) 

(9.9) 

(9.10) 

Since the eigenfunctions of a hermitian operator are orthonormal,! it follows 
that 

(9.11) 
Hence 

(9.12) 

1 Or can be made orthonormal. 
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Therefore 

(Ui' PQUk) = (Ui, P l~l qlkUI) = l~ Pilqlk q.e.d. (9.13) 

The associative and distributive law are obviously satisfied since the linear 
operators satisfy them. From the above definitions, the theorem follows. 

THEOREM 

If the Uk form a complete set offunctions and Q is a hermitian operator, then 
the matrix Q is hermitian. 

Proof 

qik = (ui, Quk) = (QUi' Uk) = (Uk' Qui)* = qk;* 

Finally, a simple but important theorem. 

THEOREM 

(9.14) 

The matrix elements of an operator taken between the eigenfunctions of this 
operator form a diagonal matrix. 

Proof (trivial) 

As an example of this last theorem we write down the elements of the 
matrix of the Hamiltonian: 

(9.15) 

We sum up: For every hermitian operator we can form a hermitian matrix, 
using an arbitrary complete set of functions. If these functions happen to be 
the eigenfunctions of the hermitian operator, the resulting matrix is diagonal 
and the matrix elements are the eigenvalues of the operator. Operators and 
matrices are related in much the same way as are vectors and their represen­
tatives. A vector exists in its own right without reference to any coordinate 
system. We can represent the vector by a column 

giving its projections in a particular coordinate system. Similarly, an operator 
l) is a mathematical entity that exists without reference to any system of 

functions one might care to apply it to. We can represent the operator Q in a 
2) particular set of functions Uk by forming all the matrix elements. 

(9.16) 
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A quantum-mechanical problem is solved if we have found the eigenvalues 
and eigenfunctions of the Hamiltonian H and of those other operators Q in 
which we might have been interested. We can then construct the diagonal 
matrices, whose elements are the expectation values, and the nondiagonal 
matri,ces, whose elements qik = ("Pi' Q"Pk) are related to the transition 
probabilities between the eigenstates "Pi and "Pk of the Hamiltonian. Now the 
question is: Do we have to solve the Schrodinger equation in order to form 
this diagonal matrix? The answer is no. We shall show in the next paragraph 
that there exists a strong algebraic connection between the different matrix 
representations of the same operator. This will enable us to form a matrix 
representation of an operator in any complete set of functions and then to 
find its one and only diagonal matrix representation by means of a unitary 
transformation. 

9.2 THE SOLUTION OF A QUANTUM MECHANICAL PROBLEM 
BY MEANS OF A UNITARY TRANSFORMATION 

We start with two complete sets of functions: 

k=1,2,3, ... 

Obviously, we can expand one in terms of the other: 

Cf!k = I aki"Pi 
i=1 

The expansion coefficients aki form a matrix. Similarly, 

Substitution ofEq. 9.18 into Eq. 9.17 yields 

The coefficients of Cf! .. : 

must satisfy 

Hence 
AB= 1 or 

if 

if 

k=n 

k"#n 

B = A-I 

We shall now show that the matrices A and B are unitary. 

(9.17) 

(9.18) 

(9.19) 

• (9.20) 

(9.21) 
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Proof 

(Ti' Tk) = t5ik = C~l ail1J!I'n~ akn 1J!n) 

= I I(ail1J!l,akn1J!n) = I Iail*aknt5ln = Iail*akl = Iak1aut 
1=1 n=l 1=1 n=l 1=1 1=1 

(9.22) 
Written in matrix form, Eq. 9.22 reads 

AAt = 1 (9.23) 

We have thus found the theorem: 

THEOREM 

Any complete set of functions can be transformed into another complete set 
by means of a unitary transformation. 

Next we see what the transformation A, defined as above, will do to the 
matrix representation of an operator Q. Let Q be a matrix whose elements are 

(9.24) 

Let Q' be the matrix representation of the same operator Q in another 
complete set of functions: 

(9.25) 

Using a unitary transformation, we express the qik' with the help of the 1J!k: 

qik = I I (ain1J!n, Qakl1J!l) 
n=ll=l 

or in matrix notation 
Q' = A*QAt* 

We have thus found the following theorem. 

THEOREM 

(9.26) 

(9.27) 

The same unitary transformation that transforms one complete set of 
functions into another complete set through 

or written more explicitly k = 1,2,3, ... 

(9.28) 

transforms the matrix representation of an operator in one set into the represen­
tation in the other set through 

Q' = A*QAt* (9.29) 
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Therefore, it should be possible to find the diagonal matrix representation 
of an operator (i.e., the representation that has the eigenvalues of the 
operator in the main diagonal) in the following way: 

(a) Write down the matrix representation of the operator in some arbitrary 
complet,e set of functions f{!k. 

(b) Find the unitary transformation that transforms this matrix into a 
diagonal matrix. 

(c) Use the same transformation to transform the arbitrary set of functions 
f{!k into the complete set of eigenfunctions "Pk of the operator. 

If this procedure is unique, it should solve the problem completely since it 
gives us the eigenfunctions and the eigenvalues of the operator, and from 
these two quantities we can calculate all there is to be known. Now, we shall 
show that there is one and only one, diagonal matrix representation of an 
operator by giving a unique procedure for finding it. Let H' be a matrix 
representation of the Hamilton operator in some arbitrary complete set of 
functions f{!k: 

(9.30) 

We want to find the diagonal representation H = E with the elements2 

(9.31) 

where the "Pk are the eigenfunctions and the Ek the energy eigenvalues of the 
Hamilton operator. The unitary transformation that transforms H' into the 
diagonal matrix E is defined by 

At*H'A* = E 

Multiplication from the left with A* yields 

H'A* = A*E 
or 

"" H' * - "" *E - *E .L., im amk - 4. aim mk - aik k 
m=l m=l 

(9.32) 

(9.33) 

(9.34) 

For any value of k, Eq. 9.34 is a set of coupled linear homogeneous equations 
for the aik : 

i = 1 : Hll'alk* + H 12'a2k* + H13'a3k* + ... = alk*Ek 

i = 2:H21'alk* + H 22'a2k* + H 23'a3k* + ... = a2k*Ek (9.35) 

i = 3: ... , etc., ... 

2 We conform, in general, with the convention that we have used for matrices: (1) Capital 
letters for operators and (boldface) matrices, and (2) lower case letters for matrix elements. 
We depart from this convention only when-as in the case of energy eigenvalues-the use 
of capital letters for particular eigenvalues is well established. 



THE ANGULAR MOMENTUM MATIUCES 159 

These linear homogeneous equations for the aik * can be solved if, and only 
if, the secular determinant vanishes: 

(Hu' - Ek ) Hu' H13' 

H 21' (H22' - Ek ) H 23' 

=0 (9.36) 

This determinant is an equation of order n, (n -- (0). It has n possible solu­
tions, the Ek , that need not all be different (degeneracy). We have thus shown 
that there exists, at least in principle, a unique way to determine the eigen­
values Ek and all the coefficients of the unitary transformation A that trans­
forms the CfJk into the 'tfJk. This method of solving a quantum-mechanical 
problem is completely equivalent to solving the Schrodinger equation. Since 
it involves the solution of an infinite set of coupled linear equations when 
applied to a problem with infinitely many different eigenfunctions, it is not 
often used for problems of this type. The real advantage of the method 
becomes apparent if we apply it to perturbation problems, as we shall do in 
the next chapter. 

9.3 THE A~GULAR MOMENTUM MATRICES 

For later use we shall now derive matrix representations of the angular 
momentum operators. It will turn out that we can do this without ever 
specifying a particular complete set of functions. We start from the algebraic 
(commutation) relations between the operators that we derived in Chapter 
6.4. 

Since the algebraic relations between operators remain valid for their 
matrix representations, we know that the commutators3 

(a)[Lx' Lv] = iL .. 

(a)[Lv, L z] = iLx' 

(a)[Lz' Lx] = iLy, 

(b) [V, Lx] = 0 

(b) [V, Lv] = 0 

(b)[V, L z] = 0 

(9.37) 

(9.38) 

(9.39) 

must also be valid for the angular momentum matrices. Since two diagonal 
matrices always commute it follows from Eqs. 9.37, 9.38a, and 9.39a that 
no two of the component matrices Lx, Lv, Lz can be simultaneously diagonal. 

3 For convenience, we follow the convention of expressing angular momenta in units of h, 
this amounts to setting h = 1 in our equations. 
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:We::Rnow that die angular momentum matrices are hermitian because the 
corresponding operators are hermitian. We choose our representation so 
that Lz and L2 are diagonal and set out to find L"" Ly, Lz and V in this 
particular representation. It will turn out that the assumption that Lz and 
V are, diagonal, together with the commutation relations Eqs. 9.37 to 39, 
suffices to determine the elements of the angular momentum matrices 
hnafubiguouslY· 

For later use we introduce the nonhermitian matrix 

and its hermitian conjugate' 

, ".. L+ t = L_ = L", - iLy 

TnestHnlitriteNatisfy the following commutation relations: 

Als:~: 
;1;,', ' [i~:L+] = [Lz, L",] + i[L., Ly] = iLl! + L", = L+ 

[L+, L_] = -i[L"" Ly] + i[Ly, L",] = 2Lz 

and ifinaIly{ and~bviously) 
1! 

[V, L+] = [V, L_] = 0 

sInce both L", and Ly commute with V. We can also easily verify that 

(9.40) 

(9.41) 

(9.42) 

(9.43) 

(9.44) 

(9.45) 

L+L_ b V - Lz2 + L. (9.46) 
and 

L_L+ = V - L.2 - L. (9.47) 

We>st'il1'do not know what the physical significance of L+ and L_ is. To find 
ont, we;'iri-vestigaie the operators L+ and L_. Let "PAm be a simultaneous 
eigerifunctionofthe operators L2 and L. with the eigenvalues A and m: 

.'. V"PAm = A"PAm; Lz"PAm = m"PAm (9.48) 
.~ ,~ , '. 

We know that such simultaneous eigenfunctions must exist since the operators 
Vand L. commute. In the case of the hydrogen eigenfunctions we had found 
th~f.A = l(l + 1). We have as yet no right to assume that A will be of the 
same:form for any eigenfunction "PAm of the operator V and, hence, use the 
pon90mmittal form A for the eigenvalues of V. We apply LzL+ to "PAm. 
According to Eq. 9.42 this yields 

. LZ(L+"Pi;J ';'L+L~1pAm + L+"PAm 
," " >,', '", " 

\"~+~'I'+~,+ L+"PAm = L+(m + l)"PAm = (m + 1)(L+"PAm) (9.49) 

4 Of course, t~~,:I!-erIIliti~n conjugate of a non-hermitian matrix is also a non-hermitian 
iriatriJC The '<noii~hermitian hermitian conjugate" is only a linguistic curiousity, not a 
mathematical one. 
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Comparing the left and the right side of Eq. 9.49, we see that L+'!fl).m is an 
eigenfunction of L z with the eigenvalue m + 1. Since '!fl).m is an eigenfunction 
of L z with the eigenvalue m this means that L+ when applied to one of the 
functions '!fl).m raises the value of its quantum number m by one. Therefore, 
it is often called a raising operator. Similarly we can show that L_ is a lowering 
operator, i.e., it lowers the value of m by one. It should be pointed out that L+ 
raises and L_ lowers the quantum number m regardless of what else it does 
to the eigenfunction of £2 and L z• Unless m + 1 is a nondegenerate eigenvalue 
of L z , we are not justified in assuming that 

(9.50) 
but only that 

L+'!fl).m = '!fl~m+1 (9.51) 

where '!fl' is a function that may, or may not, differ from '!fl. From Eq. 9.45 
follows 

(9.52) 

In other words, while L+ and L_ raise or lower the quantum number m by 
one, they leave the quantum number it untouched. Next we apply L+ several 
times in succession to an eigenfunction '!fl).m 

(9.53) 

thus, raising m more and more. Now, m is the expectation value of the z­
component of the angular momentum vector and it the expectation value of 
the square of its absolute value. Therefore, the above procedure must lead 
us to some highest value of m which we shall call j since the z-component of a 
vector cannot be larger than the entire vector. Hence, there must be an 
eigenfunction '!fl;.; ¥= 0 and eigenfunctions with m > j + 1 must not exist. 
Hence 

(9.54) 

Similarly, a consecutive application of L_ must lead to some lowest value of 
m = j' so that 

for (9.55) 

The difference j - j' must, of course, be a positive integer. Now we apply 
L+L_ and L_L+ to '!fl;.;' and '!fl;.;, respectively, 

L+L_'!flAj' = 0 and L_L+'!flAj = 0 (9.56) 

Using Eqs. 9.46 and 9.47 we obtain 

and L_L+'!flAj 

= (it -/ + j)'!fllj = 0 (9.57) 
Since 
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it follows from Eq. 9.57 that 

j'U' - 1) = A and 

Equation 9.58, together with the fact that 

j-j'=k 

j(j + 1) = A 

is a positive integer, allows us to determine k. The quadratic equation 

(j - k)(j - k - 1) = P + j 
has two solutions: 

k =-1 and k = 2j 

(9.58) 

(9.59) 

(9.60) 

(9.61) 

The first one has to be discarded because it is negative. From the second it 
follows that 

or 

and 

j' =-j 

A =j(j + 1) 

m = -j, -(j-l), -(j- 2), ... ,j - 2,j - l,j 

(9.62) 

{9.63) 

(9.64) 

In other words, what we found for the special case of the hydrogen eigen­
functions applies to any wave function "P;..m that is an eigenfunction to £2 and 
L z : 

(a) the eigenvalue of £2 can be expressed as j(j + 1), and 
(b) m i can assume any of 2j + 1 values from - j to + j. 
Now comes the big difference: According to Eq. 9.61, k = 2j is an integer, 

which means that j can have integer or half-integer values.1S In other words, 

j = O,!, 1, -1-, 2, ... ,etc. (9.65) 

We have, thus, justified all the assumptions made earlier in the discussion of 
the vector model. In the beginning of this section we promised that the 
elements of the angular momentum matrices could be determined from the 
commutation relations and the assumption that L2 and L z are diagonal. We 
have yet to make good on this promise. 

9.4 AN EXPLICIT REPRESENTATION OF THE ANGULAR 
MOMENTUM MATRICES 

To find the elements of the angular momentum matrices we apply L+ to 
some eigenfunction6 "Pim: 

(9.66) 

5 This does not prove the existence of the spin but shows that spin, if it exists, can be 
described within the framework of our formalism. 
6 Instead of A = j(j + 1) we shall use j from now on to label the eigenfunctions. 
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We know that V';m+1 is an eigenfunction to L z with the eigenvalue m + 1. If 
m + 1 is a nondegenerate eigenvalue, we must have 

(9.67) 

where am is a constant. Since we have shown in the preceding paragraph that 
there are as many different eigenvalues m as there are eigenfunctions V';m 

(namely, 2j + 1), we conclude that the eigenvalues mare nondegenerate. 
Therefore 

(9.68) 
Similarly we find that 

(9.69) 

Since the V';m form an orthonormal set, the matrix L+ can only have non­
vanishing elements of the form: 

(9.70) 

(i.e., only the elements whose row index is one higher than their column index 
differ from zero). The matrix L+ must, therefore, look like Eq. 9.71. 

m= ! \-! 1 0 -1 3 ! -! 3 
2 -2 

1-

! 0 a_Yi 0 0 0 0 0 0 0 
. I - -- - - --- ----J= 2--- ----

-! 0 0 0 0 0 0 0 0 0 
-- - - -- - -~ --I-

1 0 0 0 ao 0 0 0 0 0 
---- --- - --- ------

0 0 0 0 0 a_I 0 0 0 0 
j=I-- - -- - - --- ---~ 1- (9.71) 

-1 0 0 0 0 0 0 0 0 0 
--- - -- - ------

;! 0 0 0 0 0 0 a Yi 0 0 2 

--- - -- - ---- - ----I-
j- ;! -2 ! 0 0 0 0 0 0 0 a_Yo 0 

---- --- - -- - ----I-
-! 0 0 0 0 0 0 0 0 a_% 

---- --- - --- ----I-
3 0 0 0 0 0 0 0 0 0 -2 

(Note that in accordance with convention we have labeled rows and columns 
so that m runs from +j to -j. This puts the nonvanishing matrix elements 
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above the main diagonal.) From Eqs. 9.46 and 9.47 it follows that L+L_ 
and L_L+ are diagonal matrices. Hence using Eq. 9.41 

(L_L+)im = j(j + 1) - m2 - m = 'LL-ikL+km(jim 
k~l 

* = .L L-mkL+km = .L L+kmL+km (9.72) 
l~k 

Since the only nonvanishing elements of L+ are those with k = m + 1, there 
is nothing to sum over in Eq. 9.72, and we get 

L:m+l.mL+m+l.m = j(j + 1) - m(m + 1) (9.73) 

or (except for a phase factor which we set arbitrarily equal to plus one7) 

L+m+1,m = .Jj(j + 1) - m(m + 1) 

Letting j = l, we find that 

m l -l m l 
--- -- ----

L+= 1. ° 1 and L_ = t ° 2 --- ----
-l ° ° -l 1 

And from 

it follows that 

and L = .!(O -Oi) 
y 2 i 

Also from the commutator Eq. (9.37a) it follows that 

L --1(1 0) 
z - 2 ° -1 

The matrices 

G~ = G ~), = (0 -i) Gy , 

i ° 

(9.74) 

~ (9.75) 

(9.76) 

(9.77) 

(9.78) 

(9.79) 

are the famous Pauli spin matrices or Pauli matrices. In a similar fashion we 
can find the matrix L+ for j = 1: 

(0 1 0) 
L+=/2001 

° ° ° 
(9.80) 

7 The phase of the angular momentum has no physical significance. 



Hence 

'( 1 } 1( L. ~ Ji ~ L--
0 Y - /i ~ 
1 

(~ 
0 

-;) L = 0 z 

0 

L' ~ 2(~ ° 0) 
1 0 

o 1 

PROBLEMS 

9.1 Which of the following statements are correct? 
(a) All diagonal matrices are hermitian. 

PROBLEMS 

-i O} 0 -/ 

0 

(b) A matrix that is both hermitian and unitary is a diagonal matrix. 
(c) All real matrices are hermitian. 
(d) A diagonal matrix commutes with any matrix of the same rank. 

9.2 Find the elements 

and 
Pn = (Ul' p.,u1) 

165 

(9.81) 

(9.82) 

where Uo and Ul are the first two eigenfunctions of the one-dimensional 
harmonic oscillator and p., is the x-component of the momentum operator. 

9.3 Find the elements 

(qx)oo = (uo, qxuo), (qx)Ol = (uo, qXUl)' 

(qX)lO = (u1 , qxuo), and (qx)n = (u1 , qXUl) 

of the electric dipole moment matrix of the one-dimensional harmonic 
oscillator. 

9.4 Find the matrix element 

for the hydrogen atom. 
9.5 Write down the explicit expressions for the raising and lowering operators 

L+ and L_ and show, by applying them to the 2p eigenfunctions of hydrogen, 
that they, indeed, raise and lower the value of the quantum number m. 
(Hint. See solution of 9.6.) 
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9.6 Show explicitly that L+ Yll = L_ Y1- 1. 

9.7 Derive explicit representations for the matrices L"" Ly , Lz , and V for} = ! 
so that L z and L2 are diagonal. 

9.8 Are all the Pauli matrices hermitian? Are they all unitary? 
9.9, Demonstrate that the commutation relations derived for the angular mo­

mentum operators do, indeed, apply to the angular momentum matrices for 
} = t and} = 1. 

9.10 Which of the angular momentum matrices for} = 1 are hermitian? Which are 
unitary? 

SOLUTIONS 

9.2 ( 
2 aBo 21 ) f 00 2 Boe-x 12, (-iii) ax e-X 2 = -Bo2ili _00 (-x)e-X dx = 0 

(Since the integral is taken between symmetrical limits and the integrand has 
odd parity. See also Problem 8.1) 

(Boe-x2/2, (-iii) ~ B12xe-X2/Z) = -2i1iBoBl L: e-x2 (1 - x2) dx 

( - V;) - -iii 
= - 2iliBoBl V 7r - T = - iliBoBl V 7r = vI 

Following this procedure the reader should not find it difficult to evaluate the 
two remaining matrix elements. 

9.6 The raising operator L+ = Lx + iLy can be written explicitly with the help 
of Eqs. 5.104 and 5.105: 

( a a a a) 
L+ = iii sin rp af} + cot f} cos rp a rp - i cos rp af} + i cot f} sin rp a rp 

a a 
= (iii sin rp + Ii cos rp) af} + (iii cot f) cos rp - Ii cot f} sin rp) arp 

We apply this to 
Yll oc sin f}e;q; 

L+ Yll oc (iii sin rp + Ii cos rp) cos f}eiq; 

+ (iii cot f) cos rp - Ii cot f} sin rp)i sin f}eiq; 

{
COS f} 

= eiq; Ii cos f} cos rp - Ii -. - cos rp sin f} 
sm f} 

+ i( Ii sin rp cos f} - Ii :~: ; sin rp sin f} )} = 0 

Analogously, we may show that 

L_Y1- 1 = 0 



10 
STATIONARY PERTURBATION THEORY 

10.1 THE PERTURBATION OF NONDEGENERATE STATES 

We have already mentioned that most quantum-mechanical problems 
must be solved with one or the other of a variety of approximative methods. 
One of these methods is due to Schrodinger and deals with the following 
situation: 

The state of a system is mainly determined by some strong interactionl (for 
instance, the Coulomb interaction between the electrons and the nucleus). The 
Hamiltonian H(O) related to this interaction is known and so are its eigen­
functions2 and eigenvalues: 

H(O)"P~O) = E~O)"P~O) (10.1) 

In addition, there exist weakerl interactions which result in small changes 
of the Hamiltonian, its eigenfunctions, and eigenvalues. As examples we 
mention the interaction with an external electric or magnetic field, and the 
interaction between spin and orbital magnetic moment. Because of the 
presence of these additional interactions, Eq. 10.1 becomes 

(10.2) 

where H, Ek and "Pk differ slightly from H(O), E~O), and "P~O). It is obvious what 
"differ slightly" means in the case of Ek; however, for Hand "Pk we have 
to define it more carefully. We assume "Pk to be of the form 

(10.3) 

and require that "P~l), "Pk2 ) , etc., are small compared to "P~O) in some yet to be 
defined way. As far as H is concerned we assume that it can be written as 

(10.4) 

1 The terms strong and weak interaction are usually reserved for the description of certain 
nonelectromagnetic interactions. We use them here in a broader sense. 
2 We shall see later that we can obtain useful results even without such detailed knowledge 
of the unperturbed system. 
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and that H(1), H(2), etc., are small compared to H(O). Again, we have to hedge 
concerning the exact definition of smallness. The conditions that have to be 
satisfied by "P~1) and H(1) will evolve in the course of our investigation and it 
will turn out that the two conditions are closely related. We substitute Eqs. 
1O.3.and 10.4 into Eq. 10.2 and obtain 

H"Pk = (H(O) + H(1) + H(2) + .. ')("PkO) + "P~1) + "Pk2) + ... ) 
= (EkO) + E~l) + Ek2) + .. ')("PkO) + "Pkl) + "Pk2) + ... ) = Ek"Pk 

(10.5) 

If we write this explicitly, we obtain an expression containing terms like 
H(O)"PkO) , H(O)"Pk1), H(O)"Pk2), H(1)"PkO) , H(l)"Pk1), etc. The sum of the upper indices 
in these expressions is a measure of their smallness. In other words H(1)"Pk1) 
will be smaller than H(l)"PkO) or H(0)"Pk1) if we have defined the smallness of 
H(1), H(2), ... and "P(l), "P(2), .•. , etc., properly. Below we shall restrict 
ourselves to first order perturbation theory by neglecting all terms of the type 
H(1)"Pk1), H(2)"PkO), etc., or of higher order. In this case Eq. 10.5 becomes 

From Eq. 10.1 we know that H(O)"PkO) = E(O)"PkO) so that Eq. 10.6 becomes 

(10.6a) 

We assume that the eigenfunctions of H(O) form a complete set and expand 
"Pk1) in terms of this set: 

,)1) = "a 111(0) Tk L., kmTm 
m=l 

Substituting this into Eq. 1O.6a we obtain 

H(O) "a w(O) + H(1),,,(O) = E(O) "a 111(0) + E(1),,,(O) 
L., kmTm Tk k L., kmTm k Tk 

m=l m=l 

(10.7) 

(10.8) 

Ifwe multiply both sides ofEq. 10.8 from the left with "P;O)· and integrate we 
obtain as a result of the orthonormality of the "P;O) 

E (O)a + H(l) - E(O)a + E(1) ~ 
i ki ik - k ki k Uki (10.9) 

From Eq. 10.9 we can obtain the aki and thus, by means of Eqs. 10.7 and 
10.3, the perturbed eigenfunction "Pk = "PkO) + "P~l). First we assume that 
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i = k and obtain from Eq. 10.9: 

H (l) - Etl) 
kk - k (10.10) 

This does not tell us anything about the aki but states that in first approxima­
tion the perturbation energy E~l) is equal to the expectation value of the 
perturbing Hamiltonian H(l) taken between the eigenfunctions 'ljJkO) of the 
unperturbed state. For the case i ¥- k follows, if E~O) is nondegenerate 
(i.e., if EkO) ¥- E:O) for all i ¥- k), 

(10.11) 

This leaves only the coefficient akk undetermined. Its real part can be found to 
be zero from the normalization of 'ljJk = 'ljJkO) + 'ljJkl ) (see Problem 10.2). The 
imaginary part of akk remains undetermined, and we can make it zero since it 
effects only the phase of 'ljJk and has no influence on the energy of the per­
turbed state. To show this, we separate the term containing akk from the sum 
(Eq. 10.7): 

Since we know that the coefficient akk is small as well as purely imaginary, we 
can write 

This is the sum of a large ('ljJkO») and a small (.L aki'IjJ:O») vector in the complex 
icpk 

plane. To first order, the magnitude of this sum is clearly not affected if one 
of the two vectors is rotated by a small angle (cp ~ lakkl) with respect to the 
other. 

With all the expansion coefficients thus determined, we can write down the 
perturbed eigenfunctions to first order: 

(10.13) 

This important equation tells us the following facts. 

1. If the wave function of a state 'PkO) is changed by some perturbation H (1), we 
can express the perturbed wave function 'Pk as a linear combination of the un­
perturbed wave functions 'PjO). This is often expressed by saying that the perturbation 
mixes in other states. 

2. The difference between the energy of the unperturbed state 'PiO) and the states 
'P~O), which are mixed in by the perturbation, appears in the denominator of the 
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expansion coefficients aki. This means that those states whose energy Ei is close to 
the energy Ek of the unperturbed state are mixed in most heavily. 

3. The matrix elements of the perturbation, H:i) = ("'~O), H(l)",~O» appear in the 
numerator of Eq. 10.13. 

In vIew of the connection between the matrix elements and the transition 
probabilities discussed in Chapter 8.1 we can thus say: A perturbation H(1) 
mixes only those states between which a transition is possible under the 
influence of that perturbation. 

By now it should have become obvious what the conditions are for the 
smallness of'1fJkl ) and H(1). If'1fJk is to differ only very little from '1fJkO) , only small 
amounts of the other states '1fJ)O) should be mixed in by the perturbation. In 
other words, the coefficients a ki in Eq. 10.13 should be small. This, in turn, 
gives us the condition that qualifies H(1) as being small, namely, 

for i» k (10.14) 

Thus far we have used the Schrodinger picture, but we can make the 
transition to matrix mechanics without difficulty. The perturbed eigen­
function '1fJk can be obtained from the unperturbed eigenfunctions '1fJ)O) through 
the "transformation"3: 

(akk = 1) (10.15) 

According to Eq. 9.27, the same matrix A, whose elements transform the 
'1fJ: O) into the '1fJk' will transform the matrix H to its diagonal form through 

At*HA* = E (10.16) 

10.2 THE PERTURBATION OF DEGENERATE STATES 

The perturbation theory as we have developed it in the preceding paragraph 
has but one flaw: It is almost useless since it applies only to nondegenerate 
states. Not only are most atomic states degenerate, but the perturbation of 
degenerate states is of special interest to the experimental physicist. To 
understand this we repeat briefly the basic facts of degeneracy with special 
emphasis on the degeneracy of energy eigenvalues. An energy eigenvalue 

3 We have used the term transformation to emphasize the formal analogy to the trans­
formation of vectors as described by Appendix A.4.5. We can, in this vein, consider the 
",lO) the elements of a state vector. The wary reader will sense yet another formulation of 
quantum mechanics lurking beyond the horizon. 
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E(O) is said to be n-fold degenerate if there are n linearly independent 
eigenfunctions "PkO) so that 

k = 1,2,3, ... , n (10.17) 

The fact that all the "PkO) have the same energy eigenvalue E(O) with the 
Hamiltonian H(O) does not imply that they also have the same eigenvalue 
with some other Hamiltonian H. Even if H differs from H(O) only by a small 
perturbation, 

H = H(O) + H(1) (10.18) 

If the perturbation H(ll acts differently on the various eigenfunctions "PkO), it 
can very well happen that 

(10.19) 

where all the Ek are now different. In this case we say that the degeneracy is 
lifted by the perturbation. A degeneracy lifted by a perturbation is the delight 
of the experimental physicist because with luck and ingenuity it is often 
possible to measure directly the energy differences Ek - E(O) to a very high 
degree of accuracy (frequently much more accurately than the energy E(O) 
itself). In order to develop a perturbation theory applicable to degenerate 
states, we follow the approach taken in Chapter 10.1, amending it as needed. 

Up to and including Eq. 1O.6a, everything is all right; Eq. 10.10 on the other 
hand, cannot generally be true if the state "PkO) is degenerate. In the 
case of n-fold degeneracy there exist n linearly independent eigenfunctions "Pk~) , 
"Pk~)' ••• , "Pk~) and infinitely many linear combinations 

(10.20) 

all belonging to the same eigenvalue EkO). The perturbation, however, if it 
lifts the degeneracy (and this is the only case with which we shall concern 
ourselves), will do different things to these different unperturbed eigenfunc­
tions. If we want to obtain the energy eigenvalues Ek1 , ••• , Ekn that develop 
under the influence of the perturbation H(1), we have to pick those linear 
combinations "PkO) that are eigenfunctions of H(l) or that, in matrix language, 
make H(1) diagonal. That such linear combinations do exist can be seen in 
the following way. Assume that the perturbation has been applied and has 
lifted the degeneracy completely. In this case, n different nondegenerate 
eigenfunctions exist, each with one of the eigenvalues Ek1 , ••• ,Ekn• If 
we now turn off the perturbation gradually, these n nondegenerate eigen­
functions will continuously go over into exactly n of the infinitely many linear 
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combinations. These n linear combinations are sometimes called the adapted 
eigenfunctions of the perturbation. Once we have found the adapted 
eigenfunctions our troubles are over; we can then calculate the perturbation 
energy according to Eq. 10.10: 

E = (111(0) H(1)./I(O» 
kz Tkz, Tkz, 1 = 1,2, ... , n (10.21) 

At the same time Eq. 10.11 ceases to cause trouble. If i :F k, the denominator 
still vanishes in the case of degeneracy, but so does the numerator (H(l) is 
diagonal), and we can hope that somehow we will be able to find the aki • 

Before we set out to do this, however, we convince ourselves in a more 
rigorous mathematical manner that the matrix H(l) can always be made 
diagonal in first approximation. 

Let us assume the state "PkO) , in which we are interested, is 5-fold degenerate 
in the absence of a perturbation. In this case the diagonal energy matrix will 
look as follows. 

E(O) 

• 0 0 0 0 0 0 0 

0 E~O) , 0 0 0 0 0 0 

0 0 E(O) 
k 0 0 0 0 0 

0 0 0 E(O) 
k 0 0 0 0 

H(O) = 0 0 0 E E(O) 
k 0 0 0 (10.22) 

0 0 0 0 0 E(O) 
k 0 0 

0 0 0 0 0 0 E(O) 
k 0 

0 0 0 0 0 0 0 E(O) 
I 

The energy eigenvalue EkO) is different from Ei(O), E:O), E:O), etc. Therefore 
these states will not give us any trouble in Eq. 10.12. The only states we have 
to worry about are the five states with EkO). This means, on the other hand, 
that the perturbation Hamiltonian H(l) has to be made diagonal only with 
respect to these five states. If H(O) and H(l) are to be simultaneously diagonal, 
(at· least in the framed rows and columns) they must commute, (at 
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least in the framed rows and columns). Now, the framed portion of 
H(O) is proportional to the unit matrix, and the unit matrix commutes with 
any matrix; hence, we can always diagonalize H(1) in the region of degeneracy. 

In the general case of the perturbation of an n-fold degenerate state we 
therefore procede as follows. 

(a) We pick n-different, linearly independent linear combinations 1j{~), tp~~), ••• , 

tpk~ of the unperturbed eigenfunctions. 
(b) We form the n2 matrix elements of H(1) with them. 
(c) We diagonalize the resulting n x n matrix with a unitary transformation A 

(discussed in chapter 9.2.). 
(d) If we are interested not only in the energy eigenvalues as given by the dia­

gonalized form of H(1), we can go on and find the adapted linear combinations by 
applying the unitary transformation A to 

.,,(0) .,,(0) .,,(0) 
't'kl ' 'kz ' ... , 'rkn 

Before we apply this technique to a specific example, we take a look at the shape of 
the matrices involved. The Hamiltonian matrix in the absence of a perturbation 
looks as follows 

E(O) 
1 0 0 0 0 0 0 0 0 

0 E(O) 
2 0 0 0 0 0 0 0 

0 0 E(O) 
3 0 0 0 0 0 0 

0 0 0 E(O) 
3 0 0 0 0 0 

0 0 0 0 E(O) 
3 0 0 0 0 

H(O) = 0 0 0 0 0 E(O) 
3 0 0 0 

0 0 0 0 0 0 E(O) 
3 0 0 

0 0 0 0 0 0 0 E(O) 
4 0 

0 0 0 0 0 0 0 0 E(O) 
5 

(10.23) 

Under the influence of the perturbation the Hamiltonian matrix, represented 
in the system of the unperturbed eigenfunctions "PkO) , becomes. 



Iool 

~ 

H(l) + E(O) 
11 1 

H(I) 
12 

H(I) 
21 

H(I) + E(O) 
22 2 

H(I) 
31 

H(1) 
32 

H(I) 
41 

H(l) 
42 

H(I) 
51 

H(l) 
52 

H=I H(I) 
61 

H(l) 
62 

n(l) 
71 

H(I) 
72 

H(I) 
81 

H(I) 
82 

H(1) 
91 

H(1) 
92 

Hg> 
n(l) 

23 

H~~) + E~O) 
H U ) 

43 

H(l) 
53 

H(l) 
63 

H(1) 
73 

n(l) 
83 

H(I) 
93 

H(I) 
14 

H(1) 
24 

H(1) 
34 

H~!) + E~O) 
H(1) 

54 
H(l) 

64 

H(1) 
74 

H(1) 
84 

H(1) 
94 

H(l) 
15 

H(1) 
25 

H(I) 
35 

H(I) 
45 

H(l) + E(O) 
55 3 

H(l) 
65 

H(l) 
75 

H(I) 
85 

H(1) 
95 

H(I) 
16 

n(1) 
26 

H U ) 
36 

H(l) 
46 

H(I) 
56 

H~~) + E~O) 
n(1) 

76 

H(l) 
86 

H(I) 
96 

H(I) 
17 

H(1) 
27 

H(l) 
37 

H(l) 
47 

H(l) 
57 

H(l) 
67 

H~~) + E~O) 
H(l) 

87 

n(l) 
97 

H(1) 
18 

H(l) 
28 

n(l) 
38 

H(l) 
48 

H(l) 
58 

H(I) 
68 

H(1) 
78 

H(1) + E(O) 
88 4 

H(l) 
98 

(10.24) 

~ >"'- '~'---~~~~ 
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In constructing Eq. 10.24, we have assumed that arbitrary linear combina-
tions of the degenerate eigenfunctions 1p~0) were used so that H is not in 
general diagonal. Now let us assume that we want to find out what happens 
to the state whose energy used to be E~O). The unitary matrix A, which 
transforms the region of interest into the diagonal form, looks as follows. 

1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

A~-<'f;' 0 0 an a 12 a 13 a 14 a15 0 0 ..... ' Cp~~\>_J~' 
0 0 

.. ~ 
a 21 a 22 a 23 a 24 a 25 0 0 . (~/ ~ 

0 0 a 31 a 32 a 33 a 34 a 35 0 0 

A= 0 0 a41 a42 a 43 a44 a 45 0 0 (10.25) .. 

0 0 0 0 '" a 51 a 52 a 53 a 54 a 55 , 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 ;Alt..' 

Obviously Eq. 10.25 will affect only the framed area of Eq. 10.24. As a result 
of the unitary transformation 

A*tHA* = H' (10.26) 

we thus get a Hamiltonian that is diagonal only in the area of interest (see 
page 176). 

Equation 10.27 is the representation of the perturbed Hamiltonian in the 
system of the unperturbed eigenfunctions 1p~0) if instead of arbitrary linear 
combinations the adapted eigenfunctions have been used for the state with 
the energy E(O) + E(l) 

3 3k • 

It should be emphasized that in order to obtain Eq. 10.27 and with it the 
desired values of the perturbation energies E~~) ... E~;), we do not actually 
have to know the adapted eigenfunctions. Rather, by following the procedure 
of Chapter 9.2, we obtain E~~) ... Ei:) from the secular determinant (Eq. 
9.36) and only then the elements of the unitary matrix A from the Eqs. 9.35. 

Fortunately, we do not have to burden ourselves with those parts of Eqs, 
10.24 and 10.25 that are outside the framed portions. We can write Eq. 10.26 
just as well in the form 

A *tHA * = E(O) + E(l) (10.28) 

where A *t, H, A *, E(O) and E(1) stand only for the framed portions of the 



... 
~ 

H~~) + E~O) H(l) H(l) H(1) H(I) H(I) H(I) H(l) 12 13 14 15 16 17 18 
H(l) H~~) + E~O) H(l) H(I) H(I) H(l) H(1) H(1) 21 23 24 25 26 27 28 

H(1) H(1) E(O) + E(1) 0 0 0 0 H(l) 31 32 3 31 38 
H(l) H(l) 0 E(O) + E(I) 0 0 0 H(1) 41 42 3 3. 48 
H(1) H(I) 0 0 E(O) + E(I) 0 0 H(1) 

H'=I 
51 62 3 33 58 

H(I) H(l) 0 0 0 E(O) + E(1) 0 H(1) 61 62 3 3, 68 
H(1) 

71 
H(l) 

72 0 0 0 0 E(O) + E(1) 
3 3s 

H(I) 
78 

H(1) H(1) H(l) H(1) H(1) H(l) H(l) H~~) + E!O) 81 82 83 84 85 86 87 

(10.27) 

--.J 
"~ 
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respective matrices. Ifwe substitute H = E(O) + H(l) into Eq. 10.28, we obtain 
A*t(E(O) + H(l))A* = E(O) + A*tH(l)A* = E(O) + E(l) (10.29) 

or 
(10.30) 

This is an equation that directly relates the perturbation part of the Hamil­
tonian to the perturbation energy, and it is in this sense that we shall hence­
forth interpret the matrices A and H(l). 

To become more familiar with this formalism we treat explicitly4 a trivial 
case: the perturbation of the 21P! state of the He atom by a magnetic field. 
The total spin of this state is zero and so is the spin of the nucleus. Hence we 
are dealing with an orbital angular momentum of 1= 1 and threefold 
degeneracy. 

We have learned in Chapter 7.3 that a state with a total angular momentumS 

-J l(l + 1) and a z-component m has a magnetic moment -J l(l + 1 ),uo with a 
z-component m,uo where ,uo is the Bohr magneton. We know from classical 
electrodynamics that the energy of a magnetic dipole with a dipole moment 
J.L in a magnetic field of field strength B is given by 

E = (J.L' B) (10.31) 

Since the magnetic moment of an electron is proportional to its angular 
momentum we assume, correctly but without proof, that the expectation 
value of its energy in a magnetic field is given by 

('p, J.L' B1p) = (1p, ,uoL' B1p) = ,uo(1p,(L"B" + LyBy + LzBz)1p) (10.32) 

The angular momentum operator L operates only on the angular part of the 
eigenfunctions 1p and leaves the radial eigenfunctions untouched. The angular 
parts of all eigenfunctions are the spherical harmonics. 6 The normalized 
spherical harmonics with I = 1 are 

(a) m = 1; lit . y = - - - sin {}eUP 
11 2 21T 

(b) m =0; 
1 3 J-YlO = -J2 21T cos {} (10.33) 

J-(c) m = -1; 
1 3. i Y = - - sm {}e- '" 

1-1 2 21T 

For simplicity we assume the magnetic field to be in the z-direction, i.e., 

4 And in more detail than is actually necessary. 
S In units of h. 

(10.34) 

6 As long as the potential depends only on r, which it does here. The second electron is in 
the Is state and has, therefore, a spherically symmetrical distribution. 
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Since the three eigenfunctions are degenerate we try first to find the adapted 
linear combinations by forming H~~) , i, k = 1, 0, -1, with the eigenfunctions 
as given in Eq. 10.33a to c. According to Eq. 5.106 (letting Ii = 1) 

H(ll = -if-toB. (J(Jg; (10.35) 

Hence, H(I) Y10 = 0 so that the middle column of our matrix H(ll vanishes. 
The middle row must also be zero because Y1 has no g;-dependent term and 
the term e+i'P integrated over 27T gives zero. Similarly, 

(Yn , H(lly1_ 1) ex::. f f e-i'P sin {} (J(Jg; (sin {}e-i'P) sin {} d{) dg; = 0 (10.36) 

because the integral over g; vanishes. The same holds for (YI - 1 , H(l) Yll). In 
other words, H(l) is a diagonal matrix and Eq. 1O.33a to c are the adapted 
eigenfunctions. If we calculate the two remaining matrix elements 
(Yll , H(I) Yll) and (Y1- 1, H(l) Y1- 1), we find them to be 1 and -1, respectively. 
The diagonal representation of the matrix H(l) is therefore 

H'" ~ p~,(~ ~ _~) (10.37) 

of course, this is no surprise; we could have read it directly from Eq. 10.34. 
The fact that the spherical harmonics are the adapted eigenfunctions is also 
trivial. They are, after all, eigenfunctions of the operator L z• 

We conclude from Eq. 10.37 that the singlet PI state splits into three levels 
under the influence of a magnetic field. The energy of the m = 1 level 
increases proportionally to the magnetic field; the energy of the m = 0 level 
remains unchanged; and the energy of the m = -1 level decreases propor­
tionally to the magnetic field. If we plot the energy of each state as a function 
of the magnetic field, we obtain Figure 10.1. What if the magnetic field had 
been in the x-direction? The matrix would have been nondiagonal: 

H(I) = B L = f-toB., (~ ~ ~) 1'0 .,., '2 
vOl 0 

(10.38) 

To diagonalize it, we have to solve according to Eq. 9.36: 

-Ek 
f-toB", 

0 
..)2 

f-toB., 
-Ek 

f-toB., 
=0 (10.39) 

..)2 ..)2-

0 f-toB" 
-Ek 

..)2 
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E 

E(O)IooE=:;;,....-----------_ 

Fig. 10.1 An external magnetic field lifts the threefold degeneracy of an atom with L = 1. 

This determinant has the solutions Ek = 0 and Ek = ±ftoBIIJ as we would 
have expected since the energy of the atom should not depend on the direction 
of the magnetic field. Using Eq. 9.35, we determine the coefficients of the 
unitary transformation. Since 

Letting k = 1 we find that, using E1 = ftoBIIJ, 

a21* = V2 an * 
and 

For k = 2 it follows that (since E2 = 0) 

and 

Finally, with k = 3 

and 

(10.40) 

(10.41) 

(10.42) 

(10.43) 

(10.44) 

(10.45) 

(10.46) 

(10.47) 

(10.48) 
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putting these equations together we get 

A* = (~:;. a~. -::i:u .) 

au - au * al3 

(10.49) 

The values of au * , a12 *, and al3 * follow from the unitarity of A 

o 
ala * ) (all vi au 

-Vi a1a* a12 0 -au = 0 1 0 
all ) (1 0 0) 

al3 al3 - vi al3 

Hence 
au*au + a12*a12 + al3*al3 = 1 

2aU*all + 2a1a*al3 = 1 

From Eqs. 10.51 and 10.52 it follows that 

a12*a12 = t 
together with 

and 

this yields 

al3 0 0 1 
(10.50) 

(10.51) 

(10.52) 

(10.53) 

(10.54) 

(10.55) 

(10.56) 

This does not say anything about the phase of the aik . However, since our 
one condition that A be unidry is satisfied whether A is real or not, we set the 
phase angle equal to zero and obtain 

A= 

111 
2 

1 

..}2 
1 
-
2 

..}2 2 

o 1 
- ..}2 

1 1 
..}2 2 

This enables us to find the adapted linear combinations 

(a) _ 1y1 + _1_ yO + .ly-1 
"PI -"2 1 ..}2 1 2 1 

(b) 1 y1 1 -1 
"P2 = ..}2 1 - ..}2 Y1 

(c) .ly1 1 yO + 1y-1 
"Pa = 2 1 - ..}2 1 "2 1 

(10.57) 

(10.58) 
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To sum Up: In the absence of a magnetic field, a He atom in the 2p state can 
be in any of the angular momentum states described by the eigenfunctions 
(Eqs. 1O.32a to c) or any of their linear combinations. In other words, the 
angular momentum vector can point in any direction. In the presence of a 
magnetic field in the x-direction only the linear combinations (Eqs. 10.56a 
to c) are permitted. The atom precesses now in such a way that the x­
component of the angular momentum vector has one of the values Ii, 0, 
or _Ii.? 

10.3 SPIN, STATE VECTORS, lllLBERT SPACE 

We have stated earlier that spin is the intrinsic angular momentum of some 
elementary particles and that its existence cannot be deduced from a non­
relativistic theory. 

Since many interesting phenomena in atomic physics result from the 
existence of spin, we shall introduce spin, ad hoc, guessing at a formalism 
to deal with it. The formalism we shall use is due to W. Pauli and gives 
the essential features of the proper Dirac theory of the electron. 

Formally we can introduce spin into the wave function of a quantum­
mechanical system by adding two new quantum numbers: s for the magnitude 
of the spin angular momentum as given by8 

(S2) = s(s + 1) 

and m. for its z-component as given by8 

(s.) = m. 

(10. 59a) 

(10. 59b) 

In order to avoid problems arising from the coupling of spin and orbital 
angular momentum, we assume the orbital angular momentum to be zero 
and write9 

"P = "Pn .•. m, (10.60a) 

Since spin is an intrinsic property of particles that exists regardless of their 
state of motion, we could also write "P in the form 

"P = "Pnq; •• m, (lO.60b) 

where q; is the spin eigenfuntion and "Pn the orbital eigenfunction of the 
system. Let us assume that Eq. 10.60 describes a system in which only one 

? See Problem 10.8. 
8 In units of n2 or n, respectively. 
9 The formalism we are about to develop can very well cope with the simultaneous existence 
of spin and orbital angular momentum; however, we shall restrict ourselves to the dis­
cussion of systems with I = 0 for simplicity. 
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particle has a spin and that this spin has s = t. What does the spin eigen­
function look like in this case? 

The coordinates of the spin eigenfunction eps.m, cannot be the components 
x, y and z of the radius vector since the spatial distribution of the electron 
was supposed to be independent of its spin state. This means that, although 
spin constitutes an angular momentum in three-space, the coordinates of the 
spin eigenfunction refer to some other space which we shall call spin space. 

We try to write the spin-eigenfunction in the form 

m = _1_ e±iy/2 
-rm, .J27T 

(10.61) 

where ep is an angle in spin space. This seems to fit the bill. The functions 
epm, are eigenfunctions of the operator10 

L = i~ 
• oy 

(10.62) 

with eigenvalues ±t. The functions epm. are also orthonormal, since 

ep* ep dy = - e-ty/ 2e-,y/2 dy = 0 f2" 1 f2". . 

o +~ -~ 27T 0 ' 
(10.63a) 

and 

f2" 

o ep~ep~ dy = 1 (10.63b) 

We can even form linear combinations 

(10.64) 

where a2 + b2 = 1 so that ep is normalized. 
But that is as far as it goes. We cannot find any linear combinations that 

are eigenfunctions of Lx or Ly nor is the situation improved by the use of 
more complicated functions instead of (1/ .J27T)e± (;y/2) because such functions, 
if their linear combinations are eigenfunctions of Lx and Ly, make these 
operators nonhermitian. The plain fact is that epm is not a function in the 
usual sense, but is a vector in spin space. S 

It is usually written as 

(10.65) 

if the spin is up, and 

(10.66) 

10 h = 1. 
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if the spin is down and 
ffJ = aa. + b(3 (10.67) 

where11 

(10.68) 

if it points somewhere else. a. and (3 are state vectors in spin space and, 
according to the rules of vector algebra, they are orthonormal. 

If our eigenfunctions are vectors, our operators must be matrices and 

L =.lo = 1.(1 0) 
• 2. 2 ° -1 

(10.69) 

obviously fits the bill for an operator that has a. and (3 as eigenfunctions with 
the eigenvalues +t and -to a. and (3 are not eigenfunctions of L .. and L1/; 
instead we have 

La.=1.e .. 2 1 ~) (~) = H~) = !(3 (10.70) 

L(3=1.e 
x 2 1 ~) (~) = H~) = tao (10.71) 

and 

La.=1.e 1/ 2 i -i) C) = 1.(0) = i (3 ° ° 2 i 2 
(10.72) 

L(3=1.e ~i) (~) = _ ~(~) i 
(10.73) = --0( 

II 2 i 2 

It is now possible to construct linear combinations of a. and (3 that are 
normalized eigenfunctions (also called eigenvectors) of Lx and LII• For 
instance, 

L.,(aa. + b(3) = (~(3 + ~ a.) = t(a(3 + ba.) (10.74) 

(aa. + b(3) is an eigenfunction of Lx if a = b. Its eigenvalue is t and it can be 

normalized through a = b = 1/.J"2. 
At this point some general remarks are in order. It is not just a stroke of 

luck that the multiplication of a. and (3 with the angular momentum matrix 

L. = to. (10.75) 

yields the eigenvalue equations: 

L.a. = ta., (10.76) 

There is more to it. We can obtain a consistent formulation of quantum 
mechanics that is completely equivalent to the Schrodinger (eigenfunction) 
or Heisenberg (matrix) formulation in the following way. 

11 Why? 
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A quantum mechanical system can be represented by a column vector that 
has one component for each of the possible combinations of all the quantum 
numbers that describe it. Since there can be infinitely many possible com­
binations, such state vectors can have infinitely many components. The 
infinite dimensional space spanned by these state vectors is called a Hilbert 
space. 

Table 10.1. 

Quantum 
numbers State vectors 

n j mj (1) (2) (3) (4) 
- - - --

0 1 t a 0 0 "2 o 
- - - --

I 0 t -t b 0 0 o 
- - - --

2 0 1 t 0 0 "2 o 
- - - --

2 0 t -t 0 0 0 o 
- - - --

2 3 .l!. 0 0 a "2 2 o 
- - - --

2 3 .1 0 0 b "2 2 o 
- - - --

2 3 -t 0 0 C "2 o 
- - - --

2 i _.l!. 0 0 d 2 o 
- - - --

2 1 t 0 0 0 "2 
- - - --

2 t -t 0 0 0 o 

etc. 0 0 0 o 
,I· ,~ 

Column I describes the atom in its IS ground state in the absence of a magnetic 
. field; the two spin states are degenerate; the normalization requires a2 + b2 = 1. 

Column 2 describes a 2S state whose degeneracy has been lifted; the electron spin 
is up. 

Column 3 describes a 22P% state which is fourfold degenerate; the normalization 
requires a2 + b2 + c2 + d 2 = 1. 

Column 4 describes a 22p~ state whose degeneracy has been lifted; the electron 
spin is up. 
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A state vector is normalized to have the length 1. If the state of the system 
is described by a nondegenerate eigenfunction, the component of the state 
vector corresponding to its particular set of quantum numbers is 1. All 
others are zero. In the case of degeneracy several components can be non­
zero; however, the sum of their squares has to be one. 

As an example we write down state vectors for some states of the hydrogen 
atom in Table 10.1, disregarding the nuclear spin. 

In the Hilbert space picture the place of the operators is taken by matrices 
and the place of the wave functions by vectors. If the multiplication of a 
vector with a matrix results in the same vector multiplied with a scalar, we 
call it an eigenvector of the matrix and the scalar its eigenvalue. All this has 
already been anticipated in our notation. The equation 

can mean 
Operator Constant 

J?' JL' J "I'*Q"I' dT = (Q) 

Z;avefu~ 
or it can mean 

Representative of 
state vector 
(row form) 

matrix 

(10.77) 

(10.78) 

Representative of 
state vector (column form) 
\i 

"1'3 = (Q) (10.79) 

The result is, in either case, a number-the expectation value (Q). The row 
vector ~t = ("1'1*, "1'2*' "1'3*' ... ) in Eq. 10.79 is the hermitian cOll1,nJJ·IiiiI •• _ .... 
the vector: CE Cf}llt 

"1'1 <;p~~.--~ C1'(t 
,:>\~,,-r- .~ ,_ 

"1'2 +- r 'p '''{ J . .., 
~ = ~(f ('). \~1lb.80).;., . .:t 

f-.. ,\ t·.} ." ',\' 
\ l-' , \ 

,.J''> , ..... 
. . '- ........ -- \., Ij!#f!; .. 

This enables us to use the matrix convention for the inner PfQ~·~\1tti­
plication of every element in a row in the first matrix with the corresponding 
element in a column of the second matrix). The inner (dot) product of two 



186 STATIONARY PERTURBATION THEORY 

vectors (~ . <1» becomes thus ~t . <1>. We do not want to pursue this matter 
further but simply state: 

(a) Spin eigenfunctions can be written as two component vectors in spin 
space. 

(b) :rhe corresponding operators are the angular momentum matrices :12 

L",= to"" LI/=ioll' (10.81) 

where 

Oz = (I 0) 
o -1 

(10.82) 

are the Pauli matrices. 
In the following paragraph we shall apply our knowledge of stationary 

perturbation theory and spin to the interaction between nuclear and electron 
spin. 

10.4 HYPERFINE STRUCTURE 

We have mentioned earlier that the proton has spin _V3 Together with this 
intrinsic angular momentum goes a magnetic moment of 2.79275 nuclear 
magnetons.14 The neutron also has spin t and a magnetic moment of -1.9128 
nuclear magnetons. The minus sign indicates that for equal direction of the 
spin angular momentum the magnetic moments of proton and neutron point 
in opposite directions. The fact that the neutron has a magnetic moment is 
somewhat surprising since very sensitive measurements have shown it to be 
strictly neutral. Its electric charge, if indeed it has any, is less than 10-20 

electron charges. The existence of a magnetic moment shows that the neutron's 
disdain for electric fields is somewhat hypocritical as deep down inside it 
must have currents of equal but opposite charges. Since the proton and the 
neutrpn have a spin and a magnetic moment it is not surprising that most 
nuclei are similarly endowed. If the atomic electrons have a resulting angular 
momentum (and magnetic moment), the nuclear spin has to align itself in 
such a way that the resultant of nuclear spin and electron angular momentum 

12 h = 1. 
13 This is the customary (though colloquial) way to express the fact that a particle has a 
spin quantum number s = ! and a total spin angular momentum ILl = V s(~ + 1) h = 
V!h. 
14 A nuclear magneton is a magnetic dipole moment fin = eh/2m~, where mp is the proton 
mass. Note the fact that theg-value of the proton is not 2 but 5.6. This large deviation from 
the Dirac theory is due to the nuclear forces of the proton. 
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(3/2,3/2) 
(3/2, 1/2) 
(3/2, -1/2) 

E(O) 1--==::.....""'""::-------------- B Z 

(3/2, -3/2) 

(1/2,1/2) 

(1/2, -1/2) 

Fig. 10.2 The Zeeman effect of the hyperfine structure of deuterium. 

can be written as15 

-Jf(j + 1) 

according to the vector model (see Chapter 7.4). The various relative 
orientations of nuclear and electron magnetic moments have different 
energies. The electronic energy levels are thus split by the interaction of 
electronic and nuclear angular momentum or, in other words, the 2j + 1 
fold degeneracy of the electron state is partially lifted. Some examples may 
serve to illustrate this fact. The nucleus of the deuterium atom has spin 1. 
In the IS ground state the (quantum number of the) electron angular 
momentum is j = t. The two possible hyperfine states have f = t and f = -!. 
One state is twofold degenerate, the other four-fold. Under the influence of 
an external magnetic field the state with f = t will split into 2 levels and the 
state with f = -! into 4 levels (see Figure 10.2). In the 22P% state of deuterium 
the total angular momentum of the electron is j = -!. As a result we have 
three hyperfine levels with f = t,f = -! and f = !. The three hyperfine states 
are 2-, 4- and 6-fold degenerate. 

The 22PI,4 state has j = t and, therefore, f = t and f = -! just as the 
ground state. 

It should be pointed out that the total number of different possible orien­
tations is not influenced by the coupling. Thus, in the P-state of deuterium we 
have one electron with s = t and I = 1 and one nucleus with I = 1. That 
gives two possible orientations for the electron spin, three possible orienta­
tions for the electron orbital angular momentum, and three possible orienta­
tions for the nuclear spin, for a total of 

2 x 3 x 3 = 18 

different possibilities if there is no coupling. 
15 It is customary to describe the spin of the nucleus with I, mZ, The total angular momentum 
of the electron is usually described with j, mi even if, as in an s-state, it consists only of the 
spin angular momentum. The resultant total angular momentum is described by f, m" 
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We must arrive at the same number if we add up all the degeneracies of the 
two P-states. The 22P'A. state has one twofold and one fourfold degenerate 
level. The 22P% state has three levels with 2-, 4-, and 6-fold degeneracy. 
Adding it up we get 2 + 4 + 2 + 4 + 6 = 18. 

10.5 THE HYPERFINE STRUCTURE OF THE HYDROGEN 
GROUND STATE 

Before we discuss the hydrogen hyperfine structure quantitatively, we shall 
see what the vector model can tell us about it. Since the ground state is an 
s-state, we have j = t. The proton also has I = t, and proton and electron 
spin can thus be either parallel giving us a triplet state with f = 1, or they can 
be antiparallel, resulting in a singlet state with f = O. The two states differ in 
energy, and this energy difference has been calculated to 5 or 6 decimal 
places. Experimentally it is one of the best known quantities in all of physics: 

~E 
'JI = - = (1 420405751.800 ± 0.028) cps 

h 
(10.83) 

Spontaneous transitions between the two states are responsible for the 
famous 21 cm line emitted by interstellar hydrogen. 

~ = A. = 21 cm 
'JI 

(10.84) 

The energy difference between the triplet and singlet state was first calculated 
in 1930 by E. Fermi who showed it to be 

~E = liw = a(I . j) (10.85) 

and calculated the value of the constant a. Fermi's result is what we might 
expect since the energy of two magnetic dipoles 1J.1 and 1J.2 is given by 
classical electrodynamics as 

(10.86) 

The rigorous derivation of Fermi's result (Eq. 10.85), however, goes beyond 
the scope of this book. Below we shall use the measured value of the byperfine 
splitting between singlet and triplet state and derive from it the behavior of 
the two states in a magnetic field, i.e., the Zeeman effect. Our plan oj attack 
will be the following. 

First we shall consider the Coulomb interaction part of the Hamiltonian 

R(O) = - ..!!.... V'2 + V(r) 
2m 

(10.87) 



THE HYPERFINE STRUCTURE OF THE HYDROGEN GROUND STATE 189 

as the Hamiltonian of the unperturbed atom. We shall add to this the 
perturbation due to the spin-spin interaction (Eq. 10.85) 

H' = H(O) + a(1 . j) (10.88) 

and find the adapted linear combinations of the unperturbed eigenfunctions 
(including, of course, the spin eigenfunctions). Next we shall consider the 
Hamiltonian (Eq. 10.88) as the unperturbed Hamiltonian whose energy 
eigenvalues (the measured hyperfine levels) and eigenfunctions (the adapted 
linear combinations) we know. We shall add to this Hamiltonian the 
perturbation due to the interaction with the external magnetic field 

H= H' + fL·B (10.89) 

The spin-spin interaction did not lift the degeneracy completely; thus we 
again must form adapted linear combinations, this time starting with the 
eigenfunction that we found for the spin-spin interaction. So much for the 
plan, now to its implementation. 

In the following we label all the quantities referring to the proton with a 
+ sign and all the quantities referring to the electron with a - sign. The 
operator (I • j) can be expressed in terms of the Pauli matrices 

(10.90) 
where 

(10.91) 

acts only on the proton-spin eigenvector and 

(10.92) 

acts only on the electron-spin eigenvector. Using the symbols Cl and ~ for 
the spin eigenvector, we can write down the following combinations for the 
spins of electron and proton: 

CPl = Cl+Cl­

(Both spins up) 

'P2 = ~+~-
(Both spins down) 

(10.93) 

(Notice that Cl- and Cl+ as well as ~- and ~+ are vectors in different spaces. 
The spin-space of the electron and the spin-space of the proton. Cl+Cl-, etc., 
are, therefore, not to be understood as inner products of the vectors Cl+ and 



190 STATIONARY PERTURBATION THEORY 

(X-, etc., but merely as juxtapositions.) 

CP3 = (X+~­
(Proton spin up, 

electron spin down) 

CP4 = ~+(X-
(Proton spin down, 

electron spin up) 

From Eqs. 10.69 to 10.73 it follows that: 

Substitution into Eq. 10.88 yields, using Eq. 10.90,16 

(10.94) 

(10.95) 

(10.96) 

(10.97) 

(10.98) 

In other words (X+(X- is one of the adapted linear combinations that make the 
matrix of the perturbing Hamiltonian diagonal. Next we try 

~ (0+' o-)~+~- = ~ (X+(X- - (X+(X- + ~+~-) = ~ ~+~- (10.99) 
444 

Thus, ~+~- is also an eigenvector to a(I • j); it is degenerate with (X+(X-. 
Now we try (X+~-

a a - (0+' o-)(X+~- = - (~+(X- + ~+(X- - (X+~-) (10.100) 
4 4 

(10.101) 

Neither of these vectors is an eigenvector, and we should now proceed to 
use our diagonaIization procedure; however, the adapted linear combina­
tions are obvious in this case. We add Eq. 10.100 to Eq. 10.101: 

(10.102) 

This linear combination is an eigenvector, again with the eigenvalue a/4. We 
still have to normalize: 

(X+~- + (X-~+)(X+~- + (X-~+) = 1 + 0 + 0 + 1 = 2 (10.103) 
Hence 

\jJT = )2 (X+~- + (X-~+) is the normalized eigenvector. (10.104) 

16 Remember that 0'+ operates only on «+ and (3+ not on «- or (3-; 0'- operates only on 
«- and (3-. 



THE HYPERFINE STRUCTURE OF THE HYDROGEN GROUND STATE 191 

If we subtract Eq. 10.101 from Eq. 10.100, we find another eigenvector: 

~ (0+' o-)(a+~- - ~+a-) = ~ (3~+a- - 3a+~-) = - 3a (a+~- - ~+a-) 
444 

(10.105) 
Its eigenvalue is -ia, and it can be normalized to give 

1 
~s = J2 (a+~- - ~+a-) (10.106) 

We sum up. The (normalized) adapted eigenvectors of the operator 
a(J • j) of the spin-spin interaction are 

+ - Q+Q­a a, ...... and (10.107) 

They are degenerate and their energy is a/4 above the energy of the un­
perturbed ground state. There is also a nondegenerate state whose energy is 
ta below the unperturbed level: 

1 
~s = .J2 (a+~- - ~+a-) (10.108) 

The eigenvectors (Eq. 10.107) form the so-called triplet state, and "Ps 
forms the singlet state. The energy difference between the two states is 

(10.109) 

Now we determine the quantum numbers of the four adapted eigenfunctions. 
We start with mf , the quantum number of the z-component of the total 
angular momentum. 

Just from an inspection of the eigenfunctions we find that a+a- has the 
eigenvalue mf = 1 and ~+~- has the eigenvalue mf = -1. Obviously both 
states have f = 1. Next we determine the eigenvalues of (a+~- ± ~+a-) 

(i.e., both states have the eigenvalue mf = 0.) Now we turn to the quantum 
number of the magnitude of the total angular momentumf For a+a- and 
~+~- we have already found it. We can guess what it will be for the two 



192 STATIONARY PERTURBATION THEORY 

remaining states, but it is instructive to carry out the calculation. 

(
L++L-)2 

L2 = (L+ + L-)2 = L:+ + L:-

L/ + L.-

= i(0'",+2 + 0'",-2 + 20'/0'",- + 0'/2 + O'y-2 + 20'/O'y-

Now 

Hence 

L2 ~ (Cl+~- ± ~+Cl-) 
../2 

+ 0'/2 + 0'.-2 + 20'/0'.-) (10.111) 

(10.112) 

1 
= r [6 + 2(0'",+0'",- + O'/O'y- + O'/O'.-)](Cl+~- ± ~+Cl-) 

4",,2 

= ~ [6(Cl+~- ± ~+Cl-) + 2(~+Cl- ± Cl+~-) + 2(~+Cl- ± Cl+~-) 
4../2 

1 (!(Cl+~- + ~+Cl-) selecting the upper sign 
-2(Cl+~- ± ~+Cl-)] = -= 

../2 O( Cl+~- - ~+Cl-) selecting the lower sign 

(10.113) 

The eigenvalues of V are thus 2 and 0, so that we have eitherf = 1 orf = O. 
Table 10.2 sums it all up. 

Table 10.2 

State Eigenfunction Quantum numbers Energy 

J mf mz m; 
----

«+«- 1 1 t 1 Eo + !ilE 2" 
----

I 
Triplet c./IT = -= («+J3- + 13+«-) 1 v2 0 a a Eo + !ilE 

----
13+13- 1 -1 -t -t Eo + !ilE 

----
I 

Singlet c./I = -= («+J3- - 13+«-) 0 0 a a Eo - filE s v2 

a mz and mj are not good quantum numbers for these states. 
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By now the reader may have wondered what became of the unperturbed 
Hamiltonian and the spatial part of the eigenfunctions. Nothing. The 
Hamiltonian H(O) = -(/i2j2m)'\l2 + V(r) does not act on the spin eigen­
vectors (Eqs. 10.107 and 10.108), and the spin operator ~E(I • j) leaves the 
spatial wave function untouched. In other words, the spatial part of the 
Hamiltonian matrix H(O) is diagonal in the "Pn and remains so regardless of 
the spin eigenvector with which we multiply "Pn- All we have to do is, there­
fore, to diagonalize the perturbation and add the resulting terms to the 
already diagonal unperturbed matrix. The perturbed eigenfunctions are 
simply the product of the unperturbed spatial eigenfunctions and whatever 
spin eigenvectors we need to diagonalize the spin part of the Hamiltonian. 
After this preparation we are now ready to calculate the Zeeman Effect. 

10.6 THE ZEEMAN EFFECT OF THE HYDROGEN HYPERFINE 
STRUCTURE 

Ifwe subject a hydrogen atom to an external magnetic field-assumed to be 
in the z-direction-the perturbing Hamiltonian becomes, according to Eqs. 
10.88 and 10.89, 

H = H(O) + ~E(I • j) + fL • B = H(O) + ~E(I • j) + fL.B. (10.114) 

Here fl. and B. are the z-component of the magnetic dipole moment of the 
atom and the z-component of the external magnetic field. The magnetic 
moment of the hydrogen atom is the sum of the magnetic moments of proton 
and electron17 

_ G z- + G z+ _ _ + + 
fLz = g flo 2 - g fln 2 = fl G z - fl G z (10.115) 

where fln is the nuclear magneton and flo the Bohr magneton (g+ and g- are 
the g-values of the proton and electron). The minus sign takes into account 
that for equal spin-direction the magnetic moments of proton and electron 
have opposite directions because of the opposite signs of their charges. Thus, 
we can rewrite Eq. 10.114: 

~E 
H = H(O) + 4 (G+ • G-) + Bifl-Gz- - fl+G/) (10.116) 

To find the energy eigenvalues and the adapted eigenvectors of this perturba­
tion we could, again, start with a+cc, a+(3-, (3+a- and (3+(3-. But since we 
know that the eigenvectors of Eq. 10.116 must go over into the eigenvectors 
a+a-, '-iJT, (3+(3- and '-iJs if the magnetic field is reduced to zero, it is more 

17 That is, in an s state. In the case of states with nonzero angular momentum there is also 
an orbital contribution. 
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instructive to express the eigenvectors of Eq. 10.116 as a linear combination 
of the latter. 

We already know that a.+a.-, ~T' ~+~-, and ~s are eigenvectors of the 
first two terms of Eq. 10.116, therefore, we investigate what happens if we 
operate on them with Bhroz- - p+oz+). We start with 

and 
(10.117) 

(10.118) 

and find that both are eigenvectors of H, Eq. 10.116. The eigenvalues are 
±Bz(p- - p+) so that the energy of these two hyperfine states in a magnetic 
field is 

Next we form 

1 
Blp-oz- - p+o/) .J2 (a.+~- ± ~+a.-) 

B 
= .J; (-p-a.+~- ± p-~+a.- - p+a.+~- ± p+~+a.-) 

B = - .J; (p- + p+)(a.+~- =f ~+a.-) 

or, in other words, 

and 

(10.119) 

(10.120) 

(10.121) 

(10.122) 

This means that ~s and ~T are not eigenvectors of the perturbation by the 
external field. It is evident from Eqs. 10.121 and 10.122 that all the perturba­
tion does is to mix these two states and that the adapted eigenvectors can be 
written as linear combinations of~s and ~T' The simple sum ~s + ~T does 
not suffice since, although it is an eigenvector of Bz(p-oz- - p+oz+), it is not 
an eigenvector of Eqs. 10.116. We must then, alas, diagonalize Eq. 10.116, 
going by the book. According to Chapter 9.2, we start by writing "the matrix 
representation of the operator in some arbitrary complete set of functions." 
The obvious choice for these functions (here, of course, vectors) are the 
vectors ~ s and ~ T, which are eigenvectors in the absence of the magnetic field. 
Thus, we form 
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According to Eqs. 10.102 and 10.122, we have18 

D..E 
(10.124) 

4 
and 

(10.125) 

Using Eqs. 10.105 and 10.121, we can obtain the three other matrix elements 
and find the following representation: 

(10.126) 

The next step is to "find the unitary transformation that transforms this 
matrix into a diagonal matrix."19 According to Eq. 9.33, this unitary 
transformation A is defined by 

H'A* = A*E (10.127) 

or written explicitly for our two-by-two matrix: 

-B.{fr + p,+») (an* aI2*) 
_ 3D..E a21 * a22 * 

4 

= (an: aI2:) (El 0) (10.128) 
a21 a22 0 E2 

This matrix equation yields four linear homogeneous equations for the four 
coefficients aik *. "These linear homogeneous equations can be solved if, and 
only if, the secular determinant vanishes."20 

D..E _ E 
4 

-B.(p,- + p,+) 

This is a quadratic equation 

-B.(p,- + p,+) 

_ 3D..E _ E 
4 

=0 

E2 _ lilD..E2 + E ~E _ Bz2(p,- + p,+)2 = 0 

18 Re'member, a = !lEo 
19 Se(~ Chapter 9.2. 
20 S'.!e Problem 10.7. 

(10.129) 

(10.130) 
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t (1, -1) 

Fig. 10.3 The Breit-Rabi diagram of the hyperfine structure of the hydrogen ground 
state. 

which has the solutions: 

flE JflE2 

E = - 4 ± 4 + B/(,r + p,+)2 

Using the abbreviation 

2B. (_ +) B. (_ 0 _ +) -p, +p, =-p,g +p,g =x 
flE flE n 

Eq. 10.131 is often written in the form: 

flE flE -­
E = - - ± - -J 1 + x 2 

4 2 

(10.131) 

(10.132) 

(10.133) 

Adding to this the energy E(O) of the unperturbed level, we obtain for the 
energy of the states ~T and ~s, respectively, 

(0) flE flE /-­
ET •S = E - 4 ± 2 y 1 + x2 (10.134) 

Equation 10.134 is a special case of the Breit-Rabi formula21 which describes 
the Zeeman effect of the atomic hyperfine structure. 

With Eqs. 10.119 and 10.134, we have completely unravelled the hyperfine 
structure of the hydrogen ground state. Figure 10.3 shows a plot of the Eqs. 
10.119 and 10.134, the so called Breit-Rabi diagram. We could now easily 
calculate the coefficients of the unitary transformation A *, but we postpone 
this until we have some practical application for them. -

PROBLEMS 

10.1 In analogy to Eq. 1O.6a derive from Eq. 10.5 an expression that includes 
terms small of second order. 

a 1 G. Breit and I. I. Rabi, Phys. Rev. 38,2082 (1931). 
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10.2 Show that to first order the real part of the expansion coefficients akk vanish 
if we assume that both tpkO) and tpk = tpkO) + tpl? are normalized: 

(tpk' tpk) = (tpkO), tpkO) = 1 

10.3 Show that from 
Q' = A*QAt* 

follows 
Q = At*Q'A* 

if A is a unitary matrix. 
10.4 Find linear combinations of « and ~ that are eigenvectors of L1I and V. 

10.5 Show that «+«-, ~+~-, \jIT = (1/v'2)(<<+~- + ~+«-) and \jIs = 0/v'2) 
(<<+~- - ~+«-) are mutually orthogonal. 

10.6 Verify Eq. 10.126. 
10.7 Equation 10.128 yields four equations. Why don't we solve the secular 

determinant for the second pair of equations? 
10.8 Muonium is an atom consisting of an electron and a positive muon. The 

muon has spin t. Its mass is 206 times the electron mass. The muon behaves 
in all respects like a heavy electron. In particular, its magnetic moment is 
very close to ft Jl' the magnetic moment we obtain if we replace the electron 
mass with the muon mass in the expression for the Bohr magnet on fto. The 
energy difference between the states \jIT and \jIs in the absence of a magnetic 
field is 

AE = hv = h(4463.15 ± 0.06 Me/sec) 

In a magnetic field the energy difference between the states <t, mf ) = (1, 1) 
and <t, mf ) = (1,0) was measured and found to be h . (1800 Me/sec). What 
was the magnetic field strength? 

10.9 We can calculate the energy difference between the states \jIT and \jIs of a 
muonium atom in the absence of a magnetic field from a measurement of the 
energy difference between the states <t, m f ) = (1, 1) and (t, mf ) = (1,0) 
(see previous problem) in the presence of an external magnetic field. In order 
to minimize the error resulting from the inhomogeneity of the field, it would 
be desirable to make the measurement at a value of the magnetic field at 
which the energy difference is field-independent. Does such a value exist? 
Give a qualitative argument. If such a value of the magnetic field exists, 
calculate it. 

10.10 For very large values of the magnetic field Bz , do the energies of the states 
«+«- and \jIT converge, diverge, or approach a constant difference? 

10.11 At what value of the external magnetic field Bz is the energy difference 
between the states ~+~- and \jIT equal to the energy difference AE between 
the unperturbed states \jIT and \jIs? 

10.12 At what value (other than zero) of the external magnetic field Bz is the 
energy difference between the states ~+~- and \jIs equal to I1E, the energy 
difference between the unperturbed state ~T and ~s? 
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SOLUfIONS 

10.2 We have 

= (1p;'0), 1p;'0» = (1pk' 1pk) = (1p;'0) + 1p;'I), 1p;'0) + 1p;'I» 

= (1p;'0), 1p;'0» + (1p;'0), 1p;'I» + (1p;'I), 1p;'0» + (1p;'I), 1p;'I» 

In first approximation we have 

(1p;'I), 1p;'I» R:: 0 

Hence, since 1p;'0) was assumed to be normalized, 

(1p;'0), 1p;'I» = - (1p;'I), 1p;'0» = - (1p;'0), 1p;'I»* 

In other words, the matrix element (1p;'0), 1p;'I» is imaginary. Now we 
multiply Eq. 10.7 with 1p;'0)*. Since the 1p;'0) are orthonormal we get 

(1p;'0), 1p;'I» = akk( 1p;'0), 1p;'0» = akk 

Since (1p;'0), 1p;'ll) was shown to be imaginary the akk do not have a real part. 

10.12 The energy of the state f3Tf3- is according to Eq. 10.119 

The energy of the state tYs is given by Eq. 10.134 as 

I'1E I'1E --
E = E(O) - - - - vI + X 2 

s 4 2 

Thus the energy difference between the two states is 

Setting this equal to I'1E we obtain 

Substituting the proper value (Eq. 10.132) for x, we obtain 
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Solving this for Bz , we obtain 

B = (flog- - flng T) !l.E 

z 2flog- . flng T 

Now flo/g- = fl. = 0.92838 . 10-20 erg/gauss is the magnetic moment of 
the electron, and flng T = flp = 14.105 . 10-23 erg/gauss that of the proton. 
Since flp ~ fl., we can neglect flp in the numerator so that (using Eq. 10.83) 

!l.E hv 6.626' 10-27 erg/sec 1.42 . 109 sec-1 

Bz R:! -2 = 2- = 2 . 1 41 . 10-23 -1 = 3.34 . 105 gauss 
flp flp . erg gauss 
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POSITRONIUM 

11.1 A LOWBROW APPROACH 

If a positron is brought to rest in matter, it ionizes the material along its 
path. Toward the end of its trail, when its velocity is sufficiently reduced, it 
can pick up an electron and form a positronium atom. If the process happens 
in a noble gas, the positronium atom should live happily ever after as a free 
atom. But how long is ever after? Since 

electron + anti-electron = electron - electron = no electron 

a positronium atom lives on borrowed time, and reality sooner or later will 
catch up with it, that is, positron and electron will annihilate each other. 
Where does the energy 2 mc2 go? Because of its low mass there are only two 
particles into which the positronium atom can decay-the neutrino and the 
photon. Both lead a very hurried existence, always moving with the velocity 
of light and, thus, both have a nonzero momentum in any coordinate system. 

If the positronium atom is at rest (and in its own center-of-mass coordinate 
system it is always at rest), decay into one moving particle does not conserve 
momentum. Positronium, therefore, has to decay into at least two particles. 

A decay into neutrinos, although possible, involves the so-called weak 
interaction and is, therefore, vastly less probable than the decay into photons, 

", .. which proceeds by means of the much stronger electromagnetic interaction. 
".. A detailed analysis (see Chapter 11.4) shows that positronium in its singlet 

state can decay into 2 photons. To conserve momentum and energy, these 
two photons must have precisely the same energy, and they must be emitted 
at a relative angle of precisely 1800 if the positronium atom was at rest at the 
moment of its demise. The energy of each photon must be 

E = mc2 = 511 ke V 

the rest energy of the electron. Positronium in its triplet state can only decay 
into an odd number of photons, and the smallest odd number (other than 
one) is three. Although decays into five or seven photons are possible, they 

200 
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are less probable and have not been observed. There are infinitely many ways 
to split energy and momentum between three photons, and no simple rules 
exist as to their angular distribution and energy distribution except that all 
three have to be emitted in one plane. 

The singlet state has a lifetime of 1.25 x 10-10 seconds,1 and the triplet 
state has a lifetime of 1.4 x 10-7 seconds. The existence of this long-lived 
component is an unmistakable sign of the formation of positronium. 

11.2 THE HYPERFINE-STRUCTURE OF POSITRONIUM 

In Chapter 5.7 we discussed the energy-level structure of positronium and 
we have nothing to add except that none of the predicted spectral lines have 
ever been observed. This is not disturbing since positronium is a very rare 
commodity and since it is usually formed in its ground state. However, since 
positrons have spin t the positronium atom has a hyperfine structure, and 
the hyperfine structure of its Is ground state has been measured by Deutsch 
and Brown in a very elegant experiment, which we shall discuss later. First, 
we shall see what we can find out theoretically about the hyperfine structure 
of positronium. 

As in the case of hydrogen, the ground state must be split by the I • j 
interaction into a singlet and a triplet state. Also, as in the case of hydrogen, 
we cannot calculate this splitting not knowing Dirac-theory, let alone 
quantum electrodynamics. The measured energy difference between the two 
states is 

E = hv = h(2.0337 X 105 Me/sec) (11.1) 

in perfect agreement with the theoretical prediction. This value is much 
larger than that of the hyperfine splitting of hydrogen (as well it should be), 
since the positron has a much larger magnetic moment2 than the proton. 
Having been given the value of the hyperfine splitting, we can now proceed 
to calculate the Zeeman effect of the positronium ground state. 

Apart from the magnetic moment of the positive particle, ~.<?;=t::,i~~_ ... ~ 
changed when compared with the case of the hydrogen ato .' SS~ &wet 
(l+CC and ~+~- are still adapted eigenfunctions with t ~~~ __ """'~/_ 

~(r ,~\ 

; ( t I B R J\ ~t Y ).t ",,,,,.,, 
f-t- = f-t+ "' \. ' __ ~-\'\O 

But this time we have 

1 In metals, positrons annihilate with the conduction electrons without form:l~~~~'!"· 
The annihilation lifetime in this case is also of the order of 10-10 seconds. 
2 The magnetic moment of the positron is, of course (except for its sign), the same as that 
of the electron. 
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Fig. 11.1 The Breit-Rabi diagram of the hyperfine structure of the positronium ground 
state. 

so that both eigenvalues vanish. This means that the external magnetic field 
does not change the energy levels of the states a+cc and ~+~-. The states 
I./JT or (j, mf ) = (1,0) and I./Js or (/' mf ) = (0,0) are still described by the 
Breit-Rabi formula (Eq. 10.131), but this time (ft- + ft+) enters and there is 
only a quantitative change in the behavior of the two levels in the magnetic 
field. The resulting Breit-Rabi diagram of the ground state of positronium is 
shown in Figure 11.1. 

11.3 THE MIXING OF STATES 
,;,q.:i 

We have learned in Chapter 10.1 that a perturbation can mix states. In 
other words, a system, that (in the absence of a perturbation) is in a state 1fJi 
goes under the influence of a perturbation into another state CfJi. The eigen­
function CfJi of the complete Hamiltonian (including the perturbation) can be 
written as a superposition of possible eigenfunctions of the unperturbed 
system, 

CfJi = 1 Cik1fJk (11.2) 
k 

where the expansion coefficients Cik can be determined by the methods 
developed in Chapter 10. Equation 11.2 can be interpreted as meaning that 
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the originally "pure state" "Pi has been "mixed" with some or all of the other 
eigenstates "Pk of the unperturbed Hamiltonian. The degree of the mixing is 
given by the coefficients eik, and in Eqs. 9.35 and 10.11 we have been given 
prescriptions for finding them. We have seen, however, that the energy 
eigenvalues of the problem can be obtained without worrying about the 
actual values of the coefficients. This raises the following question: Is the 
superposition of states just a mathematical exercise designed to gain useless 
information, or is the mixing an observable physical phenomenon? The 
answer is, the latter, as shown by the following example. 

The singlet 1·8 state of positronium has a lifetime of 1.25 X 10-10 sec., 
whereas the triplet state has a lifetime of 1.4 x 10-7 sec. If we mix the two 
states, the lifetime of the mixed state should be somewhere in between and 
we should be able to calculate precisely where in between.3 

Before we undertake a detailed calculation we survey the situation 
qualitatively: 

The ex+ex- and ~+~- components of the triplet state are adapted to the 
perturbation; they are not mixed with anything and will maintain their 
lifetime of 1.4 X 10-7 sec. 

\jJT and \jJs will be mixed by the magnetic field. This means that an atom 
originally in the \jJs state now has a chance to decay slowly via three quantum 
emission. Since it still has the chance to decay rapidly by way of two quantum 
emission, its lifetime will remain of the order 10-10 sec. 

For an atom originally in the \jJT state the situation is radically different. 
The admixture of even a small amount of \jJs opens the two quantum decay 
"channel" in which decays are a thousand times more likely. We can, 
therefore, expect that the lifetime of the \jJT component is roughly halved 
if we mix in as little as 0.1 percent \jJ s. Before we go any further we must ask: 
What is the probability that the atom is in any particular state to begin with? 
Let us assume that neither the electrons nor the positrons used in the 
manufacture of positronium are polarized.· This means that there are as 
many electrons and positrons in the ex state as there are in the ~ state. The 
probability that an electron is in the ex state is thus !; the probability that this 
electron captures a positron in the ex state is also t. Therefore, we expect to 
find one quarter of all positronium atoms in the ex+ex- state. The same 
arguments apply to the ~+~- state which therefore is also populated by one 
quarter of the atoms. The states ~+ex- and ex+~- are not eigenstates but are 
mixed by the (I • j) interaction. Both have a probability of one quarter to 
occur and both are equally represented in \jJs = (1/J2)(ex+~- - ~+ex-) and 

3 Implicit in this statement is the assumption that the lifetime of the pure states is not 
changed by the magnetic field, a reasonable assumption, since the spatial distribution of 
the electron and positron which determines the lifetimes together with the relative spin 
orientation, remains unchanged. 
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~T = (1/,j2)(a+(3- + (3+a-). Therefore, both these states also occur with a 
probability of 25 percent. Thus, in the absence of a magnetic field we have 
the following situation: Three quarters of all the positronium atoms are in 
the threefold degenerate triplet Is state and one quarter are in the singlet Is 
state. As a consequence 75 percent of the atoms will decay into three quanta 
with a lifetime of 1.4 x 10-7 sec and 25 percent will decay into two quanta 
with a lifetime of 1.25 x 10-10 sec. 

If we turn on a magnetic field the situation changes: One half of the atoms 
will continue to decay with the appropriate lifetime into three quanta. One 
quarter will decay into two quanta with a lifetime of the order of 10-10 sec., 
and one quarter will decay into two quanta with a field-dependent lifetime 
somewhere in between. Now, we shall try to find out just where somewhere is. 

The matrix equation (Eq. 10.128) yields four linear homogeneous equations 
for the aik*. The first one is (using Eqs. 10.132 and 10.133) 

a * - - a * - x = a * - - + - /1 + 2 
b..E b..E (b..E b..E --) 

11 4 21 2 11 4 2 V x 

or 

Similarly we get 

a 12* =,j~ - 1 

a 22* x 

-1 

Y 

The new eigenvectors we are after are (according to Eq. 9.17) 

~1 = al:l~T + a12~S 
and 

(11.3) 

(11.4 ) 

(11.5) 

(11.6) 

(11.7) 

To determine the real and the imaginary parts of the four complex 
coefficients aik *, we need eight equations, two of which we have already 
found (Eqs. 11.4 and 11.5). The unitarity of A* provides four more equations 

(11.8) 

but there it ends. We are thus forced to economize somewhere, and a look at 
Eqs. 11.6 and 11.7 suggests just the place. The absolute value of the phase of 
the eigenvectors ~1' and ~2 is of no physical significance. This means we can 
extract a common phase factor from either of these equations or, to put it 
differently, we can assume one of the two coefficients in each equation to be 
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real. Since y in Eqs. 11.4 and 11.5 is real, this means that all four coefficients 
can be taken to be real. Thus we have 

(11.9) 
and, from Eq. 11.8, 

and (11.10) 

Solving these four equations we get the following values for the four 
coefficients: 

(11.11) 

Hence 
1 1 

~1 = .J 2 (Y~T + ~s) 
l+y 

~2 = .J 2 (~T - y~s) (11.12) 
l+y 

and 

A look at Eq. 11.4 shows us that 

lim y = -00 and 
0:-+0 

limy = -1 (11.13) 

In the absence of a magnetic field (x = 0), thus we have 

and ~2 =~s (11.14) 

as it should be. In a very strong magnetic field we get 

1 
(a) ~1 = .J2 (-~T + ~s) and 

Using the definitions of ~T and ~s, Eqs. 10.104 and 10.106 and Eqs. I1.1Sa 
and lUSh become 

and (11.16) 

This bears out the statement made in Chapter 7.4 that in a strong external 
field it is every spin for itself. A strong field decouples the two spins and makes 
mz and m; good quantum numbers. We started this paragraph with the 
intention of calculating the lifetimes of the states ~1 and ~2 as a function of 
the external magnetic field. Having followed the discussion to this point, 
the reader should now be able to carry out the final steps of this calculation.4 

11.4 TWO- OR THREE-QUANTUM DECAY? 

We have stated earlier without proof that singlet positronium decays into 
an even number of photons, usually two, whereas triplet positronium can 

4 See Problem 11.1. 
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decay only into an odd number of photons, usually three. This is due to the 
charge conjugation invariance of the electromagnetic interactions. 

Charge conjugation means: Replace every particle in a system with its 
antiparticle.5 

Charge conjugation invariance means: Nothing is changed by charge con­
jugation, i.e., a process that happens in the real world would happen in 
exactly the same way in an antiworld created by exchanging every particle 
with its antiparticle. 

The electromagnetic interaction responsible for the annihilation of posi­
tronium and the strong (nuclear) interaction are charge conjugation invariant. 
The weak interaction that brings about nuclear {1-decay, is not. To investigate 
the consequences of charge conjugation invariance for the annihilation of 
positronium we have to invoke another general principle: The wave function 
of a system of several identical fermions, i.e., particles of noninteger spin is 
anti symmetric under the exchange of particles. This means that the wave 
function of a system of several identical fermions (for example, several 
electrons) changes its sign if we exchange the coordinates of two particles: 

"P(rl , r 2 , ••• , r i , rk , ••• , rn) = -"P(rl , r2 , ••• , rk , r i , ••• rn) (11.17) 

This theorem follows from field theoretical arguments and is a generalization 
of the Pauli principle. This latter fact we shall illustrate with an example. 
In Chapter 7.4, we had stated that the Pauli principle does not allow helium 
to have a triplet ground state. Let us now forget about this statement and 
instead insist that the ground-state eigenfunction be anti symmetric under 
particle exchange. We have not derived an explicit expression for the spatial 
part of the He eigenfunctions. We know, however, that in the ground state 
both electrons have the same quantum numbers (n = 1, I = m = 0) and, 
thus, the same eigenfunctions. Under an exchange of electron coordinates, 
therefore, the spatial part of the eigenfunction remains unchanged. Hence 
the antisymmetry must reside in the spin eigenfunction. Let ttl> ~l and tt2, ~2 
be the possible spin states of electron # 1 and electron #2. Obviously there is 
only one normalized non-zero spin eigenfunction that we can form from these 
functions that is antisymmetric, under particle exchange: 

1 
t\J = ,J2 (ttl~2 - tt2~1) (11.18) 

This is the singlet eigenfunction required by the Pauli principle. We can 
extend this antisymmetry requirement to the two different fermions forming 

5 This operation is sometimes more correctly referred to as particle-antiparticle con­
jugation, but the term charge conjugation is more widely used. 
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the positronium atom. We simply say: Positron and electron are two states 
of the same fermion, differing in one quantum number-the charge. If this is 
so, we have two identical particles but have to insist that the eigenfunctions 
are antisymmetric under exchange of the two "electrons": No.1 and No.2. 
In this new picture, let electron No.1 have a positive charge and electron 
No.2 a negative charge. An eigenfunction that is antisymmetric under charge 
exchange can be constructed as follows 

(11.19) 

where the labels 1 and 2 refer to the "electrons" No. 1 and No.2. Their 
spins and charges are respectively described by the symbols s, s' and +, -. 
Obviously Eq. 11.19 is antisymmetric' under particle exchange (exchange of 
labels 1 and 2), as it should be, but what happens to it under charge exchange 
alone? We express charge conjugation with an operator Sc which changes 
the "charge quantum number" plus into minus and vice versa: 6 

Sc"P = "PI(r, s, - )"P2(r, s', +) - "P2(r, s, - )"PI(r, s', -) (11.20) 

We compare this with the influence of a "spin exchange operator," which 
exchanges only particle spins 

Sp"P = "PI(r,s', +)"P2(r,s, -) - "Pa(r,s', +)"PI(r,s, -) (11.21) 

By comparison we find 

(11.22) 

Hence in order to see what the charge conjugation operator does to the 
antisymmetrized wave function, we need only to see what spin exchange does. 
This depends, of course, on the spin eigenfunction: 

(11.23) 

(11.25) 
but 

1 1 
Sp~s = Sp --/2 (a+(3- - a-(3+) = --/2 ((3+a- - (3-a+) = -~s (11.26) 

Hence 
(11.27) 

and 
(11.28) 

6 We assume that the positronium atom is in an s state so that the radial part of the eigen­
function is not dependent on the labeling of the particles. 
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where ffJT and ffJs are the complete eigenfunctions of the triplet and singlet 
ground states of positronium. ffJT and ffJs describe the system before annihila­
tion; after annihilation it is described by 

ffJ = ffJl • ffJ2 • ffJs ••• (11.29) 

the product of the wave functions ffJl' ffJ2' etc., of the photons emitted. 
What does a photon do under charge conjugation? A photon is its own 

antiparticle, but if we change all positive charges in the world into negative 
ones and vice versa, the electric and magnetic vectors of all photons change 
sign. This leaves the frequency and direction of the photon unchanged, but 
changes its phase by 1800 and thereby. changes the sign of its wave function. 
Thus ffJk goes to -ffJk and ffJ remains unchanged if we have an even number of 
photons, but changes sign if the number of photons is odd. 

Therefore, equations 11.27 to 11.29, taken together, say: If the electro­
magnetic interaction causing the annihilation is invariant under charge 
conjugation (and it is), then the triplet state positronium must decay into an 
odd number of photons and the singlet state positronium must decay into an 
even number of photons. 

PROBLEMS 

11.1 (a) Derive an expression for the lifetime of the two positronium hyperfine 
states with mf = 0 as a function of the magnetic field. 
(b) Discuss the quantitative results in comparison with the qualitative state­
ments made in Chapter 11.3. 

11.2 You are given the task of verifying the prediction made by quantum electro­
dynamics that the lifetime of the state IPs is 1.25 X 10-10 sec. Lifetimes of this 
order are very hard to measure accurately. How would you go about your 
assignment? 

11.3 What is the energy difference between the positronium hyperfine states 
(j, mf ) = (1, 1) and (j, mf ) = (1,0) in a magnetic field of 10,000 gauss? 

11.4 The lifetime of the triplet positronium states (j, mf ) = (1,0), (1, ±1) in 
solids (for instance plastic insulators) is reduced to ",,2 x 10-9 sec because of 
the annihilation of the positron with bound electrons in the material and/or 
collision-induced spin flips to the singlet state. Calculate the strength of the 
magnetic field needed to reduce the lifetime of the (1, 0) triplet state to 
10-9 sec. (Assume that the reduction of the lifetime in the magnetic field takes 
place only as a result of state mixing.) 

11.5 It is technically difficult to measure directly the relatively large energy 
difference between the singlet and the triplet state of positronium. In several 
experiments performed to date, experimenters have instead measured the 
energy difference between the states (/' mf ) = (1, 0) and (/' mf ) = (1, 1) 
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in a magnetic field and have calculated the zero field splitting from the 
Breit-Rabi formula. In doing this, they face a dilemma: In a weak magnetic 
field the lifetime of the state (I, 0) is relatively large, but the energy difference 
/),E (between the states (I, 0) and (1, I») is small, giving rise to large relative 
errors. In a strong field /),E is large, but the lifetime of the (I, 0) state is 
reduced, giving rise to a large uncertainty in /),E because of the uncertainty 
principle. If our goal is to determine the zero field energy difference in the 
customary way, what magnetic field would allow the highest accuracy? Is this 
choice of field critical? 

11.6 Calculate the energy difference between the positronium hyperfine states 
(j, mf ) = (I, ± 1) and (f, mf ) = (I, 0) in an external magnetic field of 10 k 
gauss. Calculate the energy difference between the states (f, mf ) = (1, ± 1) 
and (j, mf ) = (0,0) in the same field. 

11.7 You want to measure the energy difference between the positronium hyper­
fine states (j, mf ) = (I, + 1) and (j, mf ) = (1,0) with a relative accuracy of 
± 1.5 percent. The magnet available to you has an inhomogeneity of ± I 
percent independent of the magnetic field it produces. What is the minimum 
value of the magnetic field needed to achieve the desired relative accuracy? 

Solution of 11.7. The energy difference between the states (f, m f ) = (1, ± I) and 
(j, mf ) = (1,0) is (according to Eq. 10.131) 

/),E /),E -- /),E /),E __ 
E = - - + - VI + x 2 - - = - (VI + x 2 -1) 

4 2 4 2 

The uncertainty in E because of the uncertainty in B (or x) is 

OE /),E X 
/),E =-/),x =- /),x 

ox 2 VI + x2 

Thus the relative uncertainty in E expressed in terms of the relative uncertainty of x 
is 

x x 
- = - -== ~~-----

E 2 vI + x 2 /),E (VI + x 2 _ 1) x 
2 

Letting /)'x/x = 0.01 and /)'e/E = 0.015 we obtain 

3 x2 

2 + x2 - VI + x 2 

or 

x = V3 
Using the definition of x and the values of g and flo, the reader will obtain the value 
of B. 



12 
TIME DEPENDENT PERTURBATION 
THEORY 

12.1 THE FORMALISM 

Frequently one has a perturbation that changes with time, and the pertur­
bation theory we have developed can be modified to deal with such a situation. 
Let us assume that a system is described by a Hamiltonian 

H = H(O) + H<l)(t) (12.1) 

where H(O) is the unperturbed Hamiltonian and H(1)(t) is a small time­
dependent perturbation. The unperturbed Hamiltonian has eigenfunctions Uk 

(12.2) 

which are the solutions of the time-independent Schrodinger equation. 
Since H is time dependent, its eigenfunctions must be time dependent, and 
we have to solve the time-dependent Schrodinger equation: 

Htp(t) = iii atp 
at 

(12.3) 

We can expand tp in terms of the solutions of the unperturbed Schrodinger 
equation but, if we do this, the expansion coefficients must, of course, be 
functions of time: 

tp(t) = L ak(t)Uke-iEkt/1i 
k 

We substitute Eqs. 12.4 and 12.1 into Eq. 12.3: 

(H(O) + H(I)tp(t) = L (H(O) + H(1»ait)uke-iEkt/1i 
k 

(12.4) 

= ili[L dit)uke-iEkt/1i - L ait)uk iEk e-iEkt/li] (12.5) 
k k Ii 
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Because of Eq. 12.2 this becomes 

~+ .I H(l)(t)ak(t)uke-iEkt/1i 
k k 
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= ili.I dk(t)uke-iEkt/1i + ~ (12.6) 
k k 

We multiply Eq. 12.6 from the left with Un * and integrate over the volume: 

.I ait)e-iEkt/li( Un' H(l)(t)Uk) = iii .I dk(t)e-iEkt/li~nk = ilidn(t,e-iEnt/1i (12.7) 
k k 

On the right-hand side of Eq. 12.7 we have made use of the orthonormality 
of the Uk' Introducing 

(12.8) 
we can rewrite Eq. 12.7: 

(12.9) 

In the most general case this is a system of infinitely many coupled linear 
differential equations, but we can solve it approximatively. To this end we 
assume that prior to the time t = 0, the system is in one of the unperturbed 
states u, and we calI this particular state uinitial or, for short, Ui • At t = 0, the 
perturbation is turned on. If the perturbation is smaIl (as we shaIl assume) 
the coefficients ak in Eq. 12.9 will be smaIl. This means dn is smaIl or, in other 
words, the coefficients an change only slowly with time. We are thus justified 
in assuming that, for some time after the perturbation has been turned on, the 
ak on the right-hand side of Eq. 12.9 will remain close to their initial values 
ak(O). To determine the ak(O), we use Eq. 12.4, letting t = 0: 

(12.10) 
n 

we multiply from the left with Uk * and integrate: 

Now we can solve Eq. 12.9: 
~ki = ak(O) (12.11) 

a (t) = 1. foo eironit'H(l) dt' 
n iii -00 m (12.12) 

The reader, who is bothered by the fact that we assume the ak to be constant 
in order to determine their time dependence, may convince himself that a 
more formal approach, letting H(I) = £HU)' and 

ak(t) = akO) + £ak1) + £2ak2) + . . . (12.13) 

where £« 1, yields the same result if one neglects alI terms of second or 
higher order in £. 
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In the following paragraphs we shall apply this formalism to some simple 
problems. The first two are perturbation problems, all right, but we shall be 
able to diagonalize the perturbation Hamiltonian exactly (i.e., we shall not 
need to make approximations in solving Eq. 12.9.) 

12.2 SPIN PRECESSION 

If the perturbation mixes only a finite number of states, for example two, 
and if the time dependence of the Hamiltonian is simple, Eq. 12.9 can be 
solved exactly. As an example we treat the case of a free electron at rest. In 
the cx.-state the electron spin is assumed to point in the z-direction. At the time 
t = 0, a magnetic field B in the x-direction is switched on and stays on 
thereafter. The unperturbed states in this case are obviously 

« = (~) and 

and the eigenvector of the initial state is by assumption 

~i =« 

(12.14) 

(12.15) 

The unperturbed Hamiltonian is zero since we had assumed the particle to 
be at rest; the perturbation Hamiltonian is 

a", 
H = B",g . flo - = floB",a", 

2 
(letting g = 2). Thus Eq. 12.9 becomes 

Ol(t) = fl;!", [al(t)(<<l' a",«) + a2(t)eico12t(<<, a",~)] 
and 

02(t) = fl;!", [al(t)eiC021t(~, a",«) + a2(t)(~, a",~)] 

The unperturbed states have zero energy, hence 

(012 = (021 = 0 
Now, according to Eq. 10.95, 

and 
Hence 

and 

(12.16) 

(12.17) 

(12.18) 

(12.19) 

(12.20) 



SPIN PRECESSION 213 

We differentiate Eq. 12.19 and substitute it into Eq. 12.20, 

~ ii1(t) = ft~B" a1(t) 
ftoB" Iii 

or 

This has the solution: 

a1(t) = aeifloBzt/li + be-ifloBzt/li 

Differentiation of Eq. 12.23 and substitution into Eq. 12.19 yields 

a2(t) = _(aeifloBzt/li - b • e-ifloBzt/li) 

From 

follows 

hence 

and 

Thus the spin eigenvector of an electron in a magnetic field becomes 

'!pet) = cos (fto:"t) IX _ i sin (fto:"t) ~ 

(12.21) 

(12.22) 

(12.23) 

(12.24) 

(12.25) 

(12.26) 

(12.27) 

(12.28) 

(12.29) 

i.e., the perturbation mixes the two states IX and ~ and the degree to which 
each state contributes ,to the total state vector changes with time. According 
to Eq. 12.29, the spin stays in the y-z plane but precesses around the direction 
of the magnetic field with the Larmor frequency: 

(12.30) 

This result could also have been obtained by using a semiclassical approach. 
Our reason for giving this trivial problem the full treatment is to demonstrate 
the formalism on a simple situation before we graduate to something more 
complicated. Equation 12.29 also gives us another look at the mixing of 
states. 
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12.3 THE MIXING OF STATES 

We compare Eq. 12.29 with the result given by stationary perturbation 
theory. 
The~nergy eigenvalues are given according to Eq. 9.36 by 

1
- Ek floB", 1 = 0 

floB", -Ek 
or Ek = ±floB", (12.31) 

Using these values of Ek in Eq. 9.35, we get 

(a) floBa21 * = all * floB 

(b) floBa22* = -a12floB 

From the unitarity of 

it follows that 

Hence 

or 

or 
a21* = all* 
a22* = -a12* 

with eigenvalues ±floBx 

(12.32) 

(12.33) 

(12.34) 

Comparing Eqs. 12.29 and 12.34, we recognize another possible interpreta­
tion of the mixing of states. Under the influence of the perturbation the 
system oscillates back and forth between the various unperturbed states 
mixed together by the perturbation. The frequency of this oscillation is 
determined by the strength of the perturbation.! Stationary perturbation 
theory tells us the time average of the probability of finding the system in one 
state or another. 

To illustrate the oscillation of a system between two states under the 
influence of a perturbation, we consider the decay of muons in a magnetic 
field. Muons have spin t and thus behave in a magnetic field exactly as 
described in Chapter 12.2. As a result of the nonconservation of parity in the 
7T ~ fl + v decay producing the muon, it is easy to obtain beams of muons 
that are almost completely polarized along the direction of flight.2 

1 The question whether all mixed states can be interpreted in this way is somewhat academic 
since a stationary perturbation usually exists all along, and we do not know the unperturbed 
initial state. 
2 To show that the production of polarized muons in the decay of the meson requires 
nonconservation of parity in the decay process is not difficult. There are several very 
readable accounts of the connection between parity nonconservation and asymmetries in 
the angular distribution of the decay products. See, for instance, E. Wigner. SCientific 
American (December 1965), p. 28. 
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Fig. 12.1 Spin precession. The original axis of quantization was the direction of flight. 
With respect to this axis the muons were polarized. With respect to the direction defined by 
the magnetic field the muons are in a mixed state. 

Let us assume now that a short burst of polarized muons is shot into a 
target and stops there (Figure 12.1). 

A muon slows down and comes to rest (or rather thermal equilibrium) 
in a very short time (R::il0-10 sec). Its polarization is not disturbed in the 
process and, if the target is made of, say, graphite, there are no interactions 
to disturb the polarization afterward. Thus if the spins of all the muons 
point originally in the direction of the beam, they will continue to do so 
until the particles decay. This situation changes if the target is in a magnetic 
fil"'iJ in the z-direction. The stopped muons will, starting at t = 0, precess 
around the z-direction, and the spins which originally all pointed in the 
x-direction will point in succession in the +y, -x, -y, etc., direction. 

Positive muons decay with a lifetime of 2.212 ftsec into a positron and two 
neutrinos, and they have the fortunate habit of emitting the positron 
predominantly in the direction opposite to where their spin pointed at the 
moment of decay. This gives us a means of measuring the actual spin direction 
of the muons as a function of time. A detector (see Figure 12.1) registers 
the number of the decay positrons emitted at an angle between 0 and 0 + 
flO. If we plot the countrate of dN/dt as a function of the time T elapsed 
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dN 
dt 

o T 

Fig. 12.2 

3T 
t~ 

since the arrival of the short burst of polarized muons, we find the time 
dependence shown in Figure 12.2. 

Initially most of the positrons are emitted in the x-direction; after a t turn 
of the spin, most decay positrons are emitted in the direction of the detector, 
etc. The decreasing amplitude of the curve, of course, results from the 
fact that the total number of muons decreases continuously with the lifetime 
of 2.212 flsec. 

12.4 HARMONIC PERTURBATIONS 

Very frequently one has to deal with perturbations caused by an oscillating 
electric or magnetic field. Using the formalism developed in Chapter 12.1, 
we can treat such problems in a general manner, but we shall restrict ourselves 
here to an example which is of special interest to experimental physicists. 

A free electron (or other spin t particle) whose spin is pointing in the 
z-direction is at rest in a constant magnetic field B = kB = Bz , also pointing 
in the z-direction. At the time t = 0, a small rotating magnetic field 

B ~ {: ~:::;) (l2.3~ 
in the x-y plane is turned on. The Hamiltonian of the system is obvi;usly3 

H = H(O) + H(l) = flog B (J + flog B(cos w t sin w t O)(:x) (12.36) 
2 z z 2 0' 0' 'Y 

<Yz 

3 Concerning the notation used here (i.e., row and column vectors), see Problem A.12 of 
the Appendix. 



HARMONIC PERTURBATIONS 217 

Letting g = 2, we obtain 

(12.37) 

The unperturbed state of the system, prior to t = 0, is described by the 
eigenvectors 

and 
with eigenvalues given by 

and 

The eigenvector of the perturbed state is 

1.\J(t) = a1(t)ex + a2(t)(3 

We had assumed that the electron was initially in the state ex, hence 

I.\J(O) = a1(0)ex + a2(0)(3 = ex 
or 

Applying H(l) to ex and (3, we get according to Eq. 12.37 

similarly 

Hence it follows that 

and 

and 

Using 

this becomes 

H (l) - H(1) - 0 
11 - 22-

H(ll - H(1) - BII. e-iwot 
12 - ~.fJ - ,0 

(12.38) 

(12.39) 

(12.40) 

(12.41) 

(12.42) 

(12.49) 

(12.50) 
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and 

(12.51) 

Differentiation of Eq. 12.51 and substitution into Eq. 12.50 yields 

This and the differentiation of Eq. 12.50 and its substitution into Eq. 12.51 
yields two differential equations: 

ii2(t) + i(w - wo)d2(t) + (fl~BJalt) = 0 (12.53) 

and 

We substitute 

into Eq. 12.53 and obtain 

_y2 _ yew - wo) + (fl~Br = 0 

This has the solution: 

w - Wo J (W - Wo)2 (floB)2 _ /j.w 1 y= ± +--=-±II. 
2 2 Ii 2 

Thus, the general solution of Eq. 12.53 is 

(12.54) 

(12.55) 

(12.56) 

(12.57) 

(12.58) 

From the initial condition, a2(0) = 0 follows B = -A. We differentiate Eq. 
12.58 and let t = 0: 

d2(0) = 2AiA 

Equating this with Eq. 12.48, yields 

Hence it follows that 

A = _ floB 
2AIi 

(12.59) 

(12.60) 

a (t) = floB ei (dwtl/2(e-W _ ei.l.t) = -i floB sin (At)· ei (dwtl/2 (12.61) 
2 2AIi Ali 
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Thus the probability of finding the electron in the state (3 at the time t is 
given by 

la2(t)1 2 = (ft;:Y sin2 (At) (12.62) 

Now, if at t = 0, the probability of finding the electron in the state (3 is 
zero, whereas a short time t later it is la2(t)1 2, then la2(t)1 2 must be the 
transition probability that during the time interval t the electron has gone 
from the state ex to the state (3. Using the value of A as defined in Eq. 12.57, 
we obtain 

la2(t)1 2 = (fto~)2 2 sin2 {J(W - wo)2 + (ftoB)2 t} (12.63) 

Jj2[(W ~ wo) + (ft~B) ] 4 Jj 

We investigate this expression. The probability that the electron goes from the 
state ex to the state (3 under the influence of a harmonic perturbation of 
frequency Wo varies with time, and the amplitude of this variation is largest if 

2ftoBz 
w=w =--

o Jj 
(12.64) 

Ifwe want the transition probability to equal unity, we also have to maximize 
the sin2 term in Eq. 12.63 by letting 

At = J(W ~ wy + (ft~Br t = ~ (12.65) 

This result is often-colloquially-expressed as follows: The application of a 
magnetic field rotating with the resonance frequency Wo = w for a time 
t = 7T/2A "flips the spin" from the ex to the (3 state. If we had left the perturba­
tion on twice as long, t = 7T/A, la212 would again be zero, meaning that the 
spin would have been flipped back to the ex state. The resonance character of 
Eq. 12.63 enables us to measure magnetic moments with great precision. The 
magnetic field B and/or the time t are usually adjusted in such a way that at 
resonance, i.e., when w = wo, the transition probability is equal to one. We 
assume this to be the case and plot 

1 ( 7TJj ) 12 1 . 2 {Jl + Jj2(W - wo)2 7T} (12.66) 
a2 2ftoB = Jj2(W _ wo)2 + 1 sm 4fto2B2 2" 

4fto2B2 

as a function of (see Figure 12.3): 

(w- wo)Jj 

2ftoB 

Ii 
II 
II 
1i 

II 
Ii 
H 
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(w - wo)1i 

21'oB 

Fig. 12.3 

We can, thus, from a measurement of Wo and B z determine the magnetic 
moment flo of a particle. If we increase B (i.e., increases the power of the 
rotating r.f magnetic field), the curve in Figure 12.3 is broadened. 

A larger r.f magnetic field flips the spin in a shorter time; this so-called 
"power broadening" of the spectral line is, therefore, a manifestation of the 
uncertainty principle. Obviously the experiment can be performed in two 
completely equivalent ways: (a) by changing the frequency Wo of the r.f 
magnetic field, or (b) by changing the frequency w through a change of the 
field strength Bz of the static magnetic field. 

It is interesting to note that for a given r.f magnetic field the transition 
probability from the state a to the state ~ is just as big as the one from the 
state ~ to the state a. This is generally true in quantum mechanics: A process 
that has a high transition probability of going in one direction also has a high 
probability of going in the opposite direction.4 

Returning to Eq. 12.42, we notice that if we had written -sin wot instead 
of sin wot, thus changing the direction of rotation of the magnetic field, we 
would have had to replace w - Wo with w + Wo in Eq. 12.57 and would not 
have obtained a resonance. 

It should be noted that it is not necessary to use a rotating r.f I1lagnetic 
field in magnetic resonance experiments of this type. A linearly polarized r.f 

4 See Problem 8.3. 
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magnetic field in the x-direction can be written as 

B _ 2BC~WJ) _ B(:o:~) + B( ~W~~ ) (12.67) 

(i.e., as a superposition of two fields-one rotating clockwise, the other 
rotating counterclockwise). As we have seen, the field that rotates clockwise 
makes a negligible nonresonant contribution. Thus the experiment can be 
performed with a linearly polarized magnetic field if we make the obvious 
adjustment of the amplitude. 

Resonance experiments of this type have played a crucial role in the 
development of some branches of physics, and we shall now discuss a few 
typical (and important) ones. 

12.5 MAGNETIC RESONANCE EXPERIMENTS 

Molecular Beam Experiments 

Stern and GerlacbD demonstrated the possibility of separating in an atomic 
beam the two spin states of silver atoms in the ground state. The accuracy of 
this method of measuring the magnetic moment of atoms and molecules was 
improved by I. I. Rabi by several orders of magnitude. A molecular beam is 
first split according to the components of the angular momentum of its 
molecules (atoms) in an inhomogeneous field A of the Stern-Gerlach type 
(see Figure 12.4). One component, respresenting, for example, a certain spin 
state, is then passed into a homogeneous field B. Superimposed on this 
homogeneous field is an r.f. magnetic field of variable frequency £00 • From 
the field B the molecules pass into another inhomogeneous field C that 
deflects them onto a detector D. If the r.f. field is tuned to the energy difference 
(frequency) between the two spin states, the angular momentum of the 
molecules will change upon passage through the field B. In this case, the 
magnet C will no longer deflect them onto the detector D. The signal from 
the detector D will thus vary as the r.f. frequency is changed. Obviously this 
technique-as well as its theoretical foundation as given in Chapter 12.4---can 
be extended to more complicated situations. The Rabi apparatus, for instance, 
can be used to measure energy differences between hyperfine states (in this 
case the Hamiltonian (Eq. 12.36) must include the (/. j) interaction. 

Electron Resonance and Nuclear Magnetic· Resonance 

The nuclei in many chemical compounds and the electrons in certain free 
radicals are magnetically so loosely coupled to the rest of the molecule that 

5 See footnote on p. 134. 
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Magnetic :::::::: 
field lines :::::::: 

B c 

Beam 
-- ..tJ ---. lJD 

Fig.12.4 A schematic of Rabi's molecular beams apparatus. 

they can be considered free. In this case, the theory developed in Chapter 
12.4 can be applied directly. In the experiment a liquid or solid specimen is 
placed in a strong homogeneous magnetic field superimposed on a weak r.f. 
field. The field strength of the d.c. field is then varied until the resonance 
field, as given by Eq. 12.64 is reached: 

B = liw 
• 21-' 

(12.68) 

(I-' is here the magnetic moment of the particle under investigation). At this 
value of the d.c. field, spins are flipped and the r.f. circuit supplies the power: 

P=Nliw (12.69) 

(N = number of spin flips/second) to the sample. At a certain setting of the 
d.c. field we can thus observe a change in the load of the r.f. circuit. Obviously 
this experiment requires a certain degree of polarization of the probe. If 
there were exactly the same number of particles in the energetically higher 
a.-state as there are in the ~-state, the r.f. circuit would gain as much energy 
from transitions from a. to ~ as it would lose because of transitions from ~ 
to a. (remember the transitions probability is the same for both processes). 
Fortunately we are saved by the fact that in thermal equilibrium there is a 
slightly higher population in the energetically lower state (and we mean 
slightly). At room temperature for fields in the kilo-gauss region the excess 
population in the ~-state is only of the order of one part per million. 

Since a sample easily contains more than 1020 molecules this is enough 
to give a measurable signal. Nuclear and electron magnetic resonance 
techniques (N.M.R. and E.M.R.) are used in very accurate magnetometers 
where the known magnetic moment of protons or, electrons is used to measure 
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d.c. magnetic fields by varying the frequency of the r.f. field until resonance 
occurs. Other applications include the measurement of small deviations from 
the free-particle resonance frequency (Eq. 12.64) that result from interaction 
with the other constituents of a molecule, helping in the determination of 
molecular structures. 

Positronium 

As mentioned in Chapter 11.2 the hyperfine structure of the positronium 
ground state has been measured. The reader should now be able to appreciate 
the elegance of the method as well as do all the pertinent calculations. 
Positronium is formed in a microwave cavity located in a d.c. magnetic field. 
A linearly polarized r.f. magnetic field in the cavity mixes the states (j, mt ) = 
(1, ±1) and (j, mf ) = (1,0). Now, the state (1,0) is mixed by the d.c. field 
with the state (0, 0). If the d.c. field is set to be oft'the resonance value,s all 
the atoms in the states (1, 0) and (0, 0) will decay into two quanta. As the 
resonance value is reached the two quantum decay channel is also opened to 
the atoms in the (1, ± 1) states, resulting in a change of the energy distribution 
of the annihilation y-rays. 

Since we are already well acquainted with the hyperfine structure of the 
positronium ground state, we shall carry out a detailed calculation of the 
transition probability for this particular example. The calculation will follow 
the procedure that we used for the determination of the transition probability 
between the two spin states of a free particle (see Chapter 12.4). 

To keep things simple we shall assume that z « 1 (see Eq. 10.132), i.e., 
that the exterR@;1 magnetic field Bz is small. (The reader who settles for 
nothing short of perfection may obtain the complete solution by omitting 
this short cut.) 

We write the Hamiltonian of the system in the following form 

H = H(O) + H(ll (12.70) 

where H(O) is the time-independent part, including the interaction with the 
static magnetic field B •. H(ll(t) is the time-dependent perturbation caused by 
the rotating magnetic field: 

. B = B(= l:::~) (12.71) 

We want to obtain the matrix elements of the Hamiltonian H(ll and thus 
must ask ourselves: What are the possible initial states of the system under 
the influence of the already present static field B. ? This question has already 

8 It is technically much easier to vary the d.c. field rather than vary the microwave frequency. 
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been answered in Chapter 11.3. The states a+a- and (3+(3- are eigenstates of 
H(O) and so are the states (Eq. 11.12) 

and 

making use of our assumption that x « 1 \jJ1 reduces to 

(12.73) 

and Eq. (12.73) reduces to 

(12.74) 

The states a+a- and (3+(3- are degenerate so we could start with any linear 
combination. Which one should it be? To simplify matters we assume that all 
positrons are in the (3 state so that only the state (3+(3- will be occupied.7 Thus 
our initial states are 

and 

The Hamiltonian H<1), written explicitly in analogy to Eq. 12.36, is 

WlJ = fio~B (cos (wot), sin (wot), 0)(::= = :::) 
G z - G z 

= fioBg [(G",- - G/) cos (wot) + (Gy- - G/) sin (wot)] (12.75) 
2 

Fortunately we do not have to calculate all the matrix elements H ik , although 
this would not be overly difficult. We have seen in Chapter 12.4 that a spin­
flip transition under the influence of a magnetic field,S (and that is what we 
are concerned with here) happens only if the frequency Wo of the rotating 
magnetic field is very close to 

D.E 
-=w 
Ii 

7 This assumption is not completely unjustified since positrons from the fJ-decay of a 
radioactive nucleus are at least partly polarized. Our assumption does not affect the 
population in the states c¥l and c¥2. True, the initial capture of the positron will only lead 
to a state ~+~- or ~+a.-, but ~+a.- is not an eigenstate of the hyperfine interaction a+ . a-, 
which immediately mixes it with the a.+~- state to form the statesc¥s andc¥T. 
8 The same statement can be made for alI resonance transitions induced by oscillating or 
rotating electromagnetic fields. Other examples are the absorption of light by an atom and 
the absorption of y-rays by'a nucleus, both going to an excited state in the process. 
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where !1E is the energy difference between the final and the initial state. Let 
us assume we have adjusted our magnetic field B. so that liwo equals the 
energy difference between the states "PI and ~+~-. In that case only the matrix 
elements (~+~-, H(l)~1) = HJ~~1 and (~1' H(l)~+~-) = HLYJ3 will contribute 
and they are, as the reader can easily (?) verify,9 

( - (~T - ~ ~s) , H(1)~+~-) = Hi~~J3 = - fl"J;X e-iwot (12.76) 

From the hermiticity of H(l) follows 

H(1) = H(1)* = _ flogB eiwot 
PP.1 1.PP ~8 (12.77) 

Now,10 using Eq. 12.9, we can calculate the coefficients an(k). 

. (t) - .! (t) - iwtH(1) _ iflogBxa1(t) i(wo-w)t 
app - a1 e PP 1 - , e 

iii . 1i.J8 (12.78) 

and 

d (t) = 1 a (t)eiwtH<1) = ill. gBxa (t)e-i(wo-w)t 
1 iii PP 1.fJP ,0 fJfJ (12.79) 

This system of two coupled differential equations is, except for the values of 
the constants, the same as the one given by Eqs. 12.50 and 12.51. Therefore, 
we can obtain the solution immediately by substituting the proper values of 
the constants into Eq. 12.63. However, there is one hitch. Comparing Eqs. 
12.78 and 12.79 with Eqs. 12.50 and 12.51, we find that al(t) in Eq. 12.79 does 
not play the role of a2(t) in Eq. 12.51 but rather that of a2*(t). Since we are 
only interested in the transition probability la1 12 this need not bother us. 
Comparison of Eqs. 12.79 and 12.51 thus yields the substitution: 

flo B flogBx 
--+--
iii iliJ8 

(12.80) 

In other words, in order to obtain the transition probability la1 12 we must 
replace 

. gBx 
B wIth ~8 

in Eq. 12.63 obtaining 

lal(tW = (flogBx)2 sin2 {J(W - wo)2 + ~(flogBX)2 t} 
2li2[(w - wo)2 + ~(gB;flo») ] 4 8 Ii 

9 See Eqs. 10.95 to 10.97 and also Problem 12.4. 
10 See Problem 12.5. 
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So much for the transition probability. If, in an actual experiment, we want to 
observe a signal, it is necessary that there be a difference in the initial popula­
tion of the two states being mixed by the time-dependent perturbation. This is 
where things get a little sticky. The population of the state ~+~- depends on 
the degree of polarization of the positrons, and the population of the state 
~l = -(~T - (x/2)~8) depends on the magnetic field B •. Also, the two 
states have a different lifetime and, to make things worse, the lifetime of one 
of the states ~l depends on the magnetic field B •. Nevertheless, the reader 
might be able to unravel even this part of the problem or, at least, follow the 
literaturell on the subject. 

We have treated this particular example in considerable detail to show how 
detailed information can be extracted from an experiment. Resonance 
experiments of the type described here have reached a very high level of 
sophistication. It is no longer enough for the experimental physicist to 
measure a line and then say, here it is. The small effects that result from 
nuclear forces or an interaction with the radiation field shift a resonance line 
sometimes only by a small fraction of the linewidth. Therefore, it is not 
unusual that experimenters determine the location of the center of a 
resonance line to one hundredth or even one thousandth of the linewidth. 
This means, of course, that the lineshape, i.e., the dependence of the transi­
tion probability on such things as magnetic field or frequency must be very 
well understood. 

Muonium 

A technique quite similar to that used for positronium has been used to 
measure the hyperfine structure of muonium. A resonance transition between 
the states if, mf ) = (1,1) and (1,0) in a strong d.c. magnetic field B = kB. 
was induced by a rotating r .f. magnetic field. In the (1, 1) state the muon is 
in an a. state whereas in the (1, 0) state it is in a mixed state. In this case, the 
resonance transition leads to an observable change in the angular distribution 
of the decay positrons. 

PROBLEMS 

12.1 The angular distribution of the positrons from muon decay is given by 

P(8) = (1 -1 cos 8) (given without proof) 

P(8) d8 is the probability that the positron is emitted in the angular range 
between 8 and 8 + d8. 8 is the angle between the muon spin and the direction 
of flight of the positron. 

11 See for instance V. W. Hughes, S. Marder, and C. S. Wu. Phys. Rev. 106,934 (1957). 
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Derive an expression for the curve shown in Figure 12.2., assuming that the 
solid angle under which target and detector (Figure 12.1) see each other is 
very small. 

12.2 (a) Derive an expression equivalent to Eq. 12.63 for the precession of a free 
proton. 
(b) A free proton is located in a static magnetic field B = kBz of 10,000 
gauss. How strong a rotating r.f. resonant field must one apply in the x-y 
plane in order to "flip" the proton spin in 10-4 sec? 

12.3 Muonium was discovered by measuring the precession frequency of the atom 
in a weak static magnetic field, i.e., the energy difference between the states 
(j, mf) = (1, 1) and (1, -1). Compare this frequency with the precession 
frequency of a free muon in the same magnetic field. On which fact could the 
experimenters base their claim that muonium had, indeed, been formed? 
Does an experiment of this type give information about the size of the zero­
field hyperfine structure splitting between the triplet and singlet state? 

12.4 Derive Eqs. 12.76 and 12.77 explicitly. 

12.5 Derive Eqs. 12.78 and 12.79. 

12.6 Derive Eqs. 12.78 and 12.79, assuming that the initial state was not 13+13-
but (I(+cc. Comment! 

12.7 Derive all the elements of the matrix H(1) in the representation defined by the 
states (1(+(1(-, '-/J1> 13+13-, '-/J2' 

Solution 0/12.4. The Hamiltonian H(1) is given in Eq. 12.75. We apply it to 13+13-, 

!lo;B {(ax- - ax+) cos (wot) + (ay- - ay+) sin (wot)}I3+I3- = H(1)I3+I3-

now 
a xl3 = (I( and (see Eqs 10.95 and 10.96) 

Hence 

H(1)I3+I3- = !logB {cos (wi)(I3+(1(- - (1(+13-) + i sin (wot)( -13+(1(- + (I(+I3-)} 

fl gB - -
= T {- v2'-/Js cos (wot) + iY2'-/Js sin (wot)} 

-fl gB -fl gB 
= __ 0 ___ '-/Js{cos (wot) - i sin (wot)} = __ 0 __ '-/Jse-wot 

v2 v2 

We multiply this with '-/Jl = -'-/JT + x/2 '-/J s and obtain, since '-/J T and '-/J s are 
orthogonal 

H(l) = (_.,. +:: .1. ) (- flo!!B .1. e-iwot) 
l,pP 't"T 2 't"s v2 't"s 

The reader may verify by explicit calculation that 

H~~~~ = HW,l 
is indeed satisfied. 



13 
SCl\TTERING 

13.1 THE FUNDAMENTALS 

Thus far we have concerned ourselves mostly with particles held in potential 
wells, central potentials, or other entrapments. Now we shall investigate the 
fate that may befall a particle traveling through matter. 

Let a parallel beam of monoenergetic particles be incident on a target 
containing scattering centers, i.e., atoms, nuclei, etc. (see Figure l3.l). 
Occasionally a particle will approach a target particle so closely that the two 
interact and the incident particle is scattered. The target is considered to be 
thin if the probability is small that a particle is scattered more than once upon 

Scattering 
target 

Detector 
.....r,..- for scattered 

particles 

Beam 
monitor 

Fig. 13.1 The number of particles scattered into a detector is proportional to the solid 
angle dO. covered by the detector, the number of incident particles as determined by the 
beam monitor, and the number of scattering centers in the target. (The fraction of particles 
scattered out of the beam is assumed to be small.) The proportionality factor is called the 
differential cross section. 

228 
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traversing the target. In a typical scattering experiment one might measure 
the number of particles that are scattered by an angle D into the element dO. 
of the solid angle. This number will obviously be proportional to N' (the 
number of particles per cm2 per sec incident upon the target), to n (the 
number of scattering centers in the target), and to the element dO. of the solid 
angle. 

Number of particles scattered per second into dO. = (f(E, D)N'n dO. (13.1) 

The proportionality factor aCE, D) can obviously depend on the energy E 
of the incident particles and on the scattering angle D. If either the target or 
the beam particles are polarized, there can also be a dependence on the 
azimuth q;, a possibility that we shall henceforth disregard. The dimension of 
(f(E, D) as defined by Eq. 13.1 is that of an area, and (f is called the differential 
cross section. The physical interpretation of (f is the following: if the incident 
particles were point particles and if every particle hitting a scattering center 
were to be scattered into dO., each scattering center would have a cross 
section of (f [cm2]. 

Integration of (f(E, D) over all angles yields the total cross section. 

(faCE) = f aCE, D) dO. = f aCE, D) sin D dD dq; (13.2) 

It is obvious that it should be possible to calculate aCE, D) if the interaction 
between the target particles and the incident particles is known in detail. 
Similarly one should be able to derive salient features of the interaction from 
an analysis of scattering data. 

Scattering experiments have been essential to the exploration of the forces 
acting between the various elementary particles. It should, however, be 
pointed out that scattering experiments are often difficult to interpret. During 
a collision the interaction is sampled over a wide range of distances and, 
maybe, relative velocities. Therefore, it is not surprising that a measured 
scattering distribution can usually be fitted with a variety of theoretical 
models. In the following paragraph we shall derive some of the features of 
potential scattering without ever committing ourselves to a specific potential 
for the scattering centers. Since scattering encompasses a wide variety of 
processes we narrow down the number of possibilities as follows. 

1. The interaction between the particles can be described by a spherically 
symmetrical potential. 

2. The scattering process is elastic, i.e., neither of the participating particles 
changes its rest mass and no particles are created or annihilated during the collision. 

3. Target particles and incident particles are different. This means that we can 
always tell whether a particle emerging from the target is a scattered incident particle 
or a recoiling target particle. 
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13.2 THE SCHRODINGER EQUATION, PARTIAL WAVES 

There can be no fundamental difference between the interaction of two 
bound particles and that of two free particles. We must, therefore, be able to 
start with the Schr6dinger equation in the c.m. system (Eq. 5.20), written 
here (Eq. 13.3) for an arbitrary potential. The only difference in our pro­
cedure will be that we shall now seek solutions for unbound particles, i.e., 
those with E > V. 

(13.3) 

m = ml m2/ml + m2 is the reduced mass; m1 we assume to be the mass of the 
incident particle and m2 the mass of the target particle. To see just what 
the introduction of the reduced mass does for us in this case we calculate 
the energy in the center-of-mass system 

E = m 1vl 2 _ (ml + m 2)v,2 

2 2 
(13.4) 

where v' is the velocity of the center of mass and VI the velocity of the incident 
particle in the laboratory system. The lab velocity V 2 of the target particle is, 
of course, zero. Hence 

E = m1v/ _ (ml + m2)(ml2vl2) = ml m2v/ = mvl 2 

2 2(ml + m 2)2 2(ml + m2) 2 
(13.5) 

This is the kinetic energy of a particle of mass m moving with the velocity VI' 

Equations 13.3 thus describes the scattering of a particle of mass m and 
kinetic energy mvl 2/2 by a fixed potential located at the center of mass. 

To compare our findings with experimental results, we would have to 
transform the angles and cross sections to the laboratory system. The 
formulas for this routine task are derived in many texts. 1 

Even without solving Eq. 13.3 we can find out something about the general 
character of its solutions. In the immediate vicinity of the scattering center 
the action will be violent and its description difficult. At a considerable 
distance from the scattering target, however (where the experimentalist lies 
in wait for the scattered particles) things will be simpler, and a look at 
Figure 13.1 shows what the solutions will look like in this region. 

There must be a plane wave that describes the unscattered particles and, 
superimposed upon it, a spherical wave that emanates from the target and 

1 For example, L. I. Schiff, Quantum Mechanics, second edition, McGraw-Hill, New York, 
1955, p. 97 ff. 
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describes the scattered particles. We should thus be able to write the asymptotic 
solution of Eq. 13.3 as follows 

U oo = lim u(rlt}) = A{eikZ +.! !(t})eikr} (13.6) 
'1"-+00 r 

where the first term describes the plane wave and the second term the spherical 
wave. 

k = mv 
Ii 

(13.7) 

is the wave number of the (matter) wave.J(t}) is the amplitude of the spherical 
wave. It can, of course, still depend2 on the angle t} and is usually called the 
scattering amplitude. Before we try to find J(t}) we derive an important 
theorem. The propability P of finding a particle in a volume V is given, 
according to p. 58, by 

P = Iv 1p*1p dT (13.8) 

We can calculate the rate of change of this probability 

dP = r ( * O1p + 01p*) dT 
dt Jv 1p at 1p at 

(13.9) 

For 01pjot and 01p* jot we substitute the appropriate expressions from the 
time-dependent Schrodinger equation (Eq. 2.15) and its complex <;9njugate 

(hI' iii 2 i - = - V' 1p - - V(r)1p 
at 2m Ii 

and 

01p* iii 2 i 
- = - - V' 1p* + - V(r)1p* 
at 2m Ii 

(13.1i) 

Thus Eq. 13.9 becomes 
, ".,/ 

(13.12) 

This can also be written as 

dP iii i . - = - dlV(1p* V'1p - 1p V'1p*) dT 
dt 2m v 

(13.13) 

2 We had already ruled out a possible fjJ dependence. 
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Using the well-known divergence theorem linking the integral over the 
divergence of a vector with the surface integral over the vector, itself, Eq. 
13.13 becomes 

- = - (1p* V1p - 1p V1p*) da dP iii i 
dt 2m s 

(13.14) 

where the integral is to be taken over the surface S bounding the volume V. 
If no particles are absorbed or created, and we excluded these possibilities, 
any change in the probability of finding a particle in the volume V must be 
connected with a particle flux3 through the surface of the volume. The vector 

iii 
8 = - - (1p* V1p - 1p V1p*) (13.15) 

2m 

must, therefore, represent a particle current, and there must be a continuity 
relation 

dP = _ r div 8 dT = - r 8 da 
dt Jv Js 

(13.16) 

The minus sign states, of course, that an outward flow-positive 8-causes a 
decrease in the probability of finding the particle inside the volume. Now we 
calculate the probability current for the incident plane wave 

and get 

8' = - ..!!!:.. {A'*e-ikzA'ikeikz + A'eikzA'*ike-ikZ} 
2m 

= _ ..!!!:.. 2 IA'I 2 ik = IA'I 2 lik = IA'I 2 v = N' 
2m m 

(13.17) 

(13.18) 

since N' was defined earlier as the incident flux. For the scattered wave we 
obtain 

8 = _ i..!{A*f*({}) e-ikTAf({}) (ikr - 1) eikT 
2m r r2 

_ Af({}) eikTA*f*(&) (- ikr - 1) e-ikT} 
r r2 

Ii IAI21fl2 k IAI21fl2 V 
(13.19) 

8 is the flux through a surface element da. We assume the surface element to 
be orthogonal to the flux4 and obtain the total number of particles penetrating 

3 Or, more precisely, a probability current. 
4 In other words, we assume that the detector is lined up properly. 
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Idal by multiplying lSI with the surface element Idal = r2 dO.. Thus, the 
number of particles scattered per second into dO. is 

N= IAI 2 1JI 2 vdn 

We compare this with Eq. 13.1 and obtain 

/1(E, {})Nn' = IAI2 IJI2 V 

(13.20) 

(13.21) 

The expression (Eq. 13.6) assumed, of course, scattering from one center. 
Hence n = 1. If no scattering takes place, the outgoing plane wave is equal 
to the incident wave; this determines the normalization constant: 

A' =A 

Thus, according to Eq. 13.18, we have 

/1(E, {}) = 11(E, {})12 

(13.22) 

(13.23) 

Still without committing ourselves to a particular potential V we can go one 
step further if we invoke our assumption that the potential has spherical 
symmetry. 

In this case we can separate the Schrodinger equation just as we could for 
the bound particle. Since the angular part of the Schrodinger equation does 
not depend on either E or V (see Eq. 5.26) the solutions found in Chapter 5 
must still be good. We excluded the possibility of a cp-dependence so that the 
solutions of the angular part of the Schrodinger equation must be Legendre 
polynomials. Thus, the most general solution of Eq. 13.3 becomes 

(13.24) 

The radial functions Xz(r) are, of course, no longer the functions we encoun­
tered in Chapter 5. 

Equation 13.24 expresses the solutions of the Schrodinger equation 
(Eq. 13.3) as a superposition of partial waves. 

U z = Xz(r)Pz(cos {}) (13.25) 

each belonging to one particular value of the angular momentum quantum 
number I. If, for instance, the distribution of the scattered particles is nearly 
independent of {} in the center-of-mass system, the dominant term in the 
expansion (Eq. 13.24) must be the one with 1 = 0, i.e Po(cos {}) = 1; this 
case is often referred to as s-wave scattering. 

13.3 PHASE SHIFT ANALYSIS 

We shall now apply our method of partial wave expansion to a simple 
scattering problem. To be more explicit we shall apply it to the simplest 
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scattering problem there is, V = 0 (or no scattering at all). Of course, we 
know that in this case the solution of the Schrodinger equation is a plane 
wave of the form 

(13.26) 

since that was the form of the incident wave. If, however, we insist that this 
simple function be expanded according to Eq. 13.24, we shall have to solve 
the radial part of the Schrodinger equation in spherical polar coordinates for 
the case V = O. This means that we must find a solution for the equation 
(see Eq. 5.25) 

d (r2 dx(r») 2mr2 
dr ~ + Ji2 Ex(r) = 1(1 + 1)x(r) (13.27) 

To put this equation into a usable shape requires some mathematical 
legerdemain. First we introduce a new variable: 

p = kr = J2mE r 
/i 2 

This yields 

d ( 2 dX(p») 2 - p - + p X(p) = 1(1 + l)X(p) 
dp dp 

(13.28) 

next we substitute 
(13.29) 

This gives us 
2 dx % d'Y} pIA 
p-=p ---'Y} 

dp dp 2 
(13.30) 

We substitute this into Eq. 13.27 and get after multiplication with pIA: 

2 d 2'Y} d'Y} 2 
P -2 + p - + [p - 1(1 + 1) - tl'Y} = 0 

dp dp 
(13.31) 

This equation is known as Bessel's differential equation; its solutions are 
the Bessel functions5 

(_1)m (E)2m 
(P)V 00 .2 

'Y}! = Jv(p) = - 2 
2 m~O m! rev + m + 1) 

(13.32) 

where 

v = ±~ l(l + 1) + ! = ±i(21 + 1) (13.33) 

5 rex) is the well known gamma function; it satisfies r(t) = 1 and rex + 1) = xr(x). 
Consequ~ntly, r(n + 1) = n! The gamma function is thus an extension of the factorial to 
noninteger and even negative numbers. 
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Thus, the complete solution of Eq. 13.31 is: 

Bv(p) = aJv(p) + bLv(p) (13.34) 

J_v diverges for p __ 0 and, since the probability amplitude should be finite 
everywhere, we conclude that the coefficient b in Eq. 13.34 must be zero. 

Now we introduce a scattering potential, specifying that it be of short 
range or (to be more specific) that it satisfy:6 

rV(r)~O 
r-+ co 

(13.35) 

Since we have not specified the potential VCr) in detail we cannot solve the 
inhomogeneous Bessel equation that now results for the radial part of the 
wave function. Fortunately we do not have to solve it, we are still interested 
only in the solutions in the region where the measurement is made, that is, 
where r is large. At large r-or p-, however, the scattered particles no longer 
feel the influence of the scattering potential. This means that we still have to 
solve the radial Schrodinger equation only for the asymptotic case V = 0, 
although for different boundary conditions at r = O. Since the potential V 
is no longer zero everywhere the complete solution (Eq. 13.34) no longer 
applies in the region of small p. Since it does not describe the physical situa­
tion in this region we can no longer advance a physical reason that the value 
of the constant b in Eq. 13.34 be zero. 

The asymptotic solution of the Schrodinger equation in the presence of a 
scattering potential thus becomes 

1 
U = L (a!JI+~ + bIJ_I_~) ..;- Plcos ff) (13.36) 

1=0 P 

In view of the formidable nature of the Bessel functions it is desirable to find 
a-hopefully simplified-approximation for Eq. 13.32. As a starting point 
in this endeavor we use the well-known recurrence relation:7 

(13.37) 

The index 'JI will, according to Eq. 13.33, assume only half-integer values. 
Thus we start with J~(p): _ 

Jp co (_1)mp2m 

J~(p) = 2lo m! rem + 1 + !)22m 
(13.38) 

Now 
rex + 1) = xr(x) (13.39) 

6 Unless we insist on this condition (which is, incidentally, not met by the Coulomb 
potential V(r) = QlQ2/r), our formalism leads to unpleasant divergencies. 
7 See, for instance, A. E. Danese, Advanced Calculus, Allyn and Bacon Inc., Boston 1965, 
volume 1, p. 526. 
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Hence 
rex + n) = x(x + l)(x + 2) ... (x + n - l)r(x) 

Letting x = t and n = m + 1 we get 

J'A,(p) = J~ i: (_l)mp2m 
2 m~O m! 22m . t . ! . ! ... (m + tW(t) 

Since 

ret) = y':;;: 
this is nothing but 

J2 00 (_1)m p2m+l J2 
J'A,(p) = - '2 = - sin p 

TTp m~O (2m + I)! TTp 

Using the recurrence relation we can now obtain 

J %(p) = J ~ p Ci: p - cos p) 

J%(p) = J ~p { (;2 - 1) sin p - ~ cos p} etc. 

(13.40) 

(13.41) 

(13.42) 

(13.43) 

(13.44) 

At a large distance from the target we can neglect all the terms of higher 
order in p and get the following asymptotic expressions for the Bessel 
functions: 

J-2 . 
J'A, ~ - Sill P 

p--+oo TTp 
(13.45) 

J% ~ -J 2 cos p 
p--+oo TTp 

(13.46) 

J2 . 
J%~ - -Sill P 

p--+oo TTp 
(13.47) 

J%~J2 cosp 
p--+oo TTp 

etc. (13.48) 

In other words, except for the phase, all the Bessel functions of half-odd­
integer order approach the same function. Since 

sin (p - ~) = -cos p, sin (p - TT) = -sin p etc. (13.49) 

we can write the asymptotic expressions for all the above Bessel functions in 
the.[orm 

J-2. ITT 
JI+'A, ~ - Sill (p - -) ; 

p--+oo TTp 2 
I = 0, 1,2,3, ... (13.50) 
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In a completely analogous way we can show that 

J -!-IA. ~(-1)!J 2 cos (p - ITT) ; 1 = 0, 1,2, 3, . .. (13.51) 
p-oo TTp· 2 

In the presence of a short-range scattering potential the asymptotic partial 
wave expansion of the wave function thus becomes:8 

U = L [a! sin (kr - TTl) + bz' cos (kr - TTl)] 0:.1.- p!(cos fJ) (13.52) 
!=o 2 2 .J-; kr 

In the absence of a scattering potential we found that the bz' were zero. The 
bz', therefore, must be some measure of the strength and range of the poten­
tial V and must be connected with the differential cross section a(£, fJ). 
Just how they are connected, we shall now try to find out. To this end we 
take a look at the lth partial wave. 

U! = J~ :r {a! sin (kr - ~l) + bz' cos (kr - ~l) }Pz{cos fJ) (13.53) 

Using the identity 

sin (~ + fJ) = sin ~ cos fJ + cos ~ sin fJ 
we can rewrite 

a! sin (kr - ~l) + b!' cos (kr _ ~l) 

= c! sin (kr _ ~l + 15!) 

= c{ sin (kr - ~l) cos 15! + cos (kr - ~l) sin 15!] 

Using this in Eq. 13.53, we can write the lth partial wave as 

u! = J~ 1.- C! sin (kr - TTl + 15!)p!(COS fJ) 
TT kr 2 

If we compare the coefficients on both sides of Eq. 13.55, we find 

b' 
....l.. = tan 15! 
at 

(13.54) 

(13.55) 

(13.56) 

(13.57) 

The angle 15! can, according to Eq. 13.56, be interpreted as a shift occurring 
in the phase of the lth partial wave. At this point we redefine our goal: It is 

8 We absorb the factor ( -1) t in the b'. 
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customary to express the cross section in terms of these phase shifts <5 z 
rather than in terms of the coefficients hz'. We have already established a 
connection between the scattering amplitude j(f}) and the cross section 
Eq. 13.23. It is, therefore, sufficient to relate the phase shifts <5 1 to the scatter­
ing amplitude. In order to accomplish this we recall the two asymptotic 
expressions we found for the wave function (Eqs. 13.6 and 13.52) and equate 
them: 

A{eikZ + 1. J( fJ)eikT} = I C1 ~ J~ Pz{cos fJ) sin (kr - TTl + <5 z) (13.58) 
r I~O kr TT 2 

For large values of r this must be an identity in r as well as in fJ. In the 
absence of a scattering potential this becomes:9 

Aeikz = I a1 ~ f!:.. P1(cos fJ) sin (kr _ TTl) 
I~O kr-V;' 2 

(13.59) 

We substitute this expression on the left side of Eq. 13.58 and express the 
sines with the help of the identity eia; = cos IX + i sin IX. This yields 

I ~ J~ Pz{ cos fJ){ eikr e-i1T1 /2 - e-ikTei1Tl/2} + ~ J( fJ)eikT 
I~O 21kr TT r 

= I c1-.1- J~ P1(cos fJ){ eikre-i1Tl/2ei~1 - e-ikrei1Tl/2e-i~l} (13.60) 
I~O 21kr TT 

Since eikr and e- ikT are linearly independent the coefficients of either must be 
equal on both sides of Eq. 13.60. We begin with the coefficients of rikr: 

J2'1 00 . J2 1 00 •. - -'~ I a1Pz{cos fJ)e'1T1/2 = - - -. - I c1Pz{cos fJ)e'1T1/2e-'~1 (13.61) 
TT 2Ik,.'I~O TT 21kr I~O 

This equation holds for all values of fJ and since PI = P1(cos fJ), the coeffi­
cients of PI' must be equal on both sides, it follows that 

(13.62) 

Next we compare the coefficients of eikr in Eq. 13.60 

J~ _.1_ I alPI(coS fJ)e- i1TZ/2 + ~ J(fJ) = J~ _.1_ I clPzCcos fJ)e-i1Tl/2ei~1 
TT 2zkr I~O r TT 21kr I~O 

We substitute Eq. 13.62 into Eq. 13.63 and solve for j(fJ): 

J({}) = J~ _.1_ I a1PI(cos {})e-i1Tl/2(e2i~1 - 1) 
TT 21kA I~O 

(13.63) 

(13.64) 

9 In the absence of a scattering potential we have, of course, a 1 = cl' hi = t5 1 = O. 
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The coefficients al in Eq. 13.64 are the coefficients that we obtained in Eq. 
(13.52) in the absence of a scattering potential. We, thus, can obtain them 
explicitly from the partial wave expansion of the plane wave Aeikz• 

• n <Xl 1 J 2 . ( 7Tn) Ae'k.COS ~ = 2 an - - P n(cos {}) sm kr - -
n~ kr 7T 2 

(13.65) 

We multiply Eq. 13.65 with Pl(cos {}) and integrate 

A I~/I(COS {})eik.COS ~ d cos {} 

<Xl a J 2 . ( 7Tn) II = 2....E - sm kr - - Plcos {})Pn(cos {}) d cos {} 
n~O kr 7T 2-1 

(13.66) 

The right-hand side can be simplified by using the orthonormality relation 
between the Legendre polynomials :10 

II 2 
Plcos {})P n(cos {}) d cos {} = -- bnl 

-1 21 + 1 
(13.67) 

The left-hand side of Eq. 13.66 can be simplified by partial integration 
(using; = cos {}) 

All eikr~PM) d; = ~ eik'~PM) 1~~1 - ~ II eikr~p'm d; (13.68) 
-1 zkr ~~-1 zkr-1 

Now Pl(l) = 1 and Pl( -1) = (-1)1. Hence 

Since 

sin (kr _ 7Tl) = {-Sin (kr) 
2 -cos (kr) 

Equation 13.69 can also be written 

A ikrcp (t) 11 2Ail. (k 7Tl) - e ' I" = -- sm r - -
ikr -1 kr 2 

(13.71) 

The second term on the right-hand side of Eq. 13.68 can be shown to be 
small of second order in I/r by partial integration. Now we substitute Eqs. 

10 As eigenfunctions of a hermitian operator the Legendre polynomials must be ortho­
normal. The reader may verify the normalization expressed in Eq. 13.67. 
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13.71 and 13.67 into Eq. 13.66 and get 

or 

az = AiZJ~ (21 + 1) 

If we substitute this into Eq. 13.64, we obtain 

feD) = i (21:- 1) iZpz(cos fJ)e-i1TZ/2(e2iOZ - 1) 
z=o 21k 

Since 

This can, finally, be written: 

00 (21 + 1) . . 
f(fJ) =.2 Plcos fJ)e'OZsm bz 

z=o k 
Phew! 

(13.72) 

(13.73) 

(13.74) 

(13.75) 

(13.76) 

From 13.76 we can derive a simple expression for the total cross section 
a'o(E) by integrating If(fJ)12 = a'(E, fJ) over the solid angle (see Eqs. 13.2 and 
13.23). To this end we separate the real and the imaginary part of j(fJ): 

f( fJ) = i (21 + 1) Pz(cos fJ) cos 0z sin bz + i i (21 + 1) Plcos fJ) sin2 bz 
1=0 k z=o k 

Hence: 

= - .2 (21 + I)PzCcos fJ) cos2 151 sin2 bzd cos fJ 271'f1 [ 00 J2 
k2 -1 1=0 

271'f1[00 J2 + k2 -1 l~ (21 + I)PzCcos fJ) sin4 15 d cos fJ 

Using Eq. 13.67, this becomes 

a'o(E) = 4: i (21 + 1) sin2 15 1 
k 1=0 

(13.77) 

(13.78) 

(13.79) 

According to classical physics a particle passing a scattering center at a 
distance d with a velocity v has an angular momentum mvd. The quantum­
mechanical angular momentum must for large I go over into the classical 
expression: 

1(1 + 1)/i2 ---+ (mvd)2 (13.80) 
1-00 
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Large values of I thus correspond to passage at a large distance d from the 
scattering center. We assumed the scattering potential to be of short range; 
thus we conclude that partial waves with large values of I have a small 
amplitude b/. Another way to express the same fact is to say: partial waves 
with large values of I have a small phase shift 15,. The expansion (Eq. 13.79) 
should, thus, converge rapidly. This is most pronounced at low energies. 
Here v is small and, especially, if the scattering potential is of very short 
range, only the term with I = 0 contributes measurably. In this case (usually 
called s-wave scattering) the angular distribution of the scattered particles is 
isotropic in the center-of-mass system since P(cos fJ) = 1. This wave­
mechanical phenomenon, most prominently exhibited in low energy neutron 
scattering,11 has a well-known optical analog: Objects that are small compared 
to the wavelength of the incident light scatter isotropically. 

PROBLEMS 

13.1 Draw the angular distribution of the particles for pure s-wave, p-wave, and 
d-wave scattering. 

13.2 1 MeV neutrons are scattered on a target. The angular distribution of the 
neutrons in the center-of-mass system proves to be isotropic. The total cross 
section is measured to be 10-25 cm2, Using the partial wave representation, 
calculate the phase shift of all the partial waves involved. 

13.3 The total cross section for s-wave scattering on a short range potential can­
not exceed a certain maximum value. Find this value and express it in terms 
of the de Broglie wavelength of the scattered particle. 

13.4 Show that 

1= 0,1,2,3, ... 

13.5 A well-collimated beam of 1 MeV neutrons is shot through a target con­
taining 1023 nuclei per cm2• With a detector placed behind the target we find 
that only 83 percent of the neutrons penetrate the target. Attributing the loss 
to scattering, can we state whether a measurement of the angular distri­
bution in the center-of-mass system would yield an isotrQpic distribution of 
the scattered neutrons? Explain your answer. 

Solution of Eq.13.5. 17 percent or 0.17 of all particles are scattered out of 
the beam by n = 1023 nuclei. The total cross section of a target nucleus is 
thus given by 

0.17 = (10' 1023 or 

11 Why? 
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An isotropic distribution of the scattered particles would imply s-wave 
scattering. Equation 13.79 relates the total cross section to the angular 
momentum I and the sine of the phase shift Oz. Pure s-wave scattering would 
mean that the sum breaks off after the first term, i.e., 

47T 
a = - sin2 ° o k 2 Z 

now, 

k = ~v =~ =J2~T 
where T is the kinetic energy of the neutrons. Substituting the proper values 
for m, T and Ii we obtain 

2 . 1.67 . 10-24g . 1.6 . 10-6 erg 
k2 = = 4.94 . 1024 cm-2 

(1.04 . 10-27)2 erg2 sec2 

If our assumption of pure s-wave scattering were correct we would thus have 

ao = 1.7 . 10-24 = 2.54 . 10-24 • sin2 0, 



14 
TO NEW FRONTIERS 

In this chapter we shall outline, ever so briefly, some of the developments of 
quantum mechanics that go beyond the scope of this book. 

14.1 RELATIVISTIC THEORIES 

The famous fine structure constant IX = vic = 1/137 is the ratio of the 
electron velocity in the first Bohr orbit and the velocity of light. The smallness 
of this number indicates that a nonrelativistic theory is sufficient for most 
atomic processes. It will fail if the particle velocity approaches the velocity of 
light (or to put it differently) if the kinetic energy of a particle approaches its 
rest energy: 

One obvious way~ reconcile quantum mechanics with the special theory of 
relativity was immediately recognized by Schrodinger. Instead of making 
the transition to quantum mechanics from the classical expressionl 

mv2 
E=-

2 

one can start from the relativistic equationl 

E2 = C2p2 + m2c4 

and substitute 

and p ---+ -i/iV 

The resulting wave equation 

021p 
_/i2 _ = _/i2c2 V21p + m2c41p 

ot2 

1 For simplicity we restrict the discussion to the case of free particles (V = 0). 

(14.1) 

(14.2) 

(14.3) 

(14.4) 

243 
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was soon discarded, since it did not describe the observed behavior of 
"particles" correctly. The reason for this is that the "relativistic Schriidinger 
equation" or "Klein-Gordon equation" Eq. 14.4 describes particles of integer 
spin (bosons) and such particles2 had not been discovered at the time. The 
difficulties with the Klein-Gordon equation can be traced to the fact that it is 
of second order in the time derivative which appears as 

One can take the square root of the left side of Eq. 14.4 and obtain 

a 
iii -at 

but what is the meaning of the operator 

v' -1i2c2'V 2 + m 2c4 

on the right-hand side? When P. A. M. Dirac attacked the same problem a 
few years later (1928), he boldly linearized Eq. 14.4 by writing 

iii a1p = rxilic 'V 1p + f3mc 2 1p at (14.5) 

Dirac found that this equation could be satisfied if ~ was a four-by-four 
matrix and if ex was a three-component vector whose components were 
four-by-four matrices. The eigenfunctions 1p of Eq. 14.5 must then be 
four-component vectors, and it became soon apparent that two of these 
components were related to the existence of the two different spin states. 
The other two seemed to lead to states of negative energy for the free particle. 
This did not deter Dirac. He suggested that all the negative energy states in 
the world (allowed by the Pauli principle) might already be filled and that 
one would observe their existence only if an electron was knocked out of this 
infinite sea of negative-energy electrons into the regular world of positive 
energy. If this happened, a normal electron should appear together with a 
"hole" in the sea of negative energy electrons (see Figure 14.1). In the 
presence of an electric field pulling electrons, for example, to the right, the 
electron to the left of the hole would fill it, leaving a new hole to the left of 
the original one, etc. The hole in other words would behave like a particle 
with positive charge. Dirac thus postulated the existence of positrons four 
years before their actual discovery. Today the picture of the sea of negative 
energy particles is replaced by modern field theory which expands the basic 

2 An example is the 1T-meSOfl. 
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o 

-mc 2 

Fig. 14.1 A photon with an energy hv ~ 2mc2 can lift an electron from a negative energy 
state to a state with positive energy. The remaining hole in the sea of negative energy states 
behaves in every way like a positive electron. (This kind of pair production requires the 
presence of a third particle-not shown here-in order to conserve energy and momentum.) 

prediction of Dirac theory, saying that all particles have antiparticles. 
Particles and antiparticles have the same mass but opposite charge and 
magnetic moment. Neutral particles of integer spin can be identical with 
their antiparticles. 

The description of spin with the help of Pauli matrices is, of course, a 
simplified form of the complete four-component theory of Dirac. 

14.2 QUANTUM FIELD THEORY 

We have "quantized" the equation of motion of classical mechanics and 
arrived at the Schrodinger equation. In a similar fashion we can quantize 
field equations. If these field equations describe the electromagnetic field, this 
leads to the formalism of quantum electrodynamics, which describes the 
emission and absorption of photons. Quantum electrodynamics, whose 

1 
I 
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development was spurred by the discovery of the Lamb shift, is capable of 
making very precise predictions about the behavior of electrons and muons 
(predictions which thus far are in complete agreement with experiments). 
Among the lasting triumphs of quantum electrodynamics are the description 
of t~e Lamb shift and the exact prediction of the small deviation of the 
g-value of electrons and muons from the value given by the Dirac theory 
(g = 2). Quantization of the field of nuclear interactions leads to a field 
theory of mesons which, at this point, is much less developed than quantum 
electrodynamics. 

A field theory of the weak interactions, modeled after quantum electro­
dynamics, has also been developed. Although this theory has not been as 
strikingly successful as quantum electrodynamics, the agreement between 
theory and experiment is usually quite good. 

14.3 NEW QUANTUM NUMBERS: THE NUCLEON NUMBER, 
THE LEPTON NUMBER 

Whenever physicists try to extend quantum mechanics to describe some 
new body of empirical evidence, they scan experimental results for manifes­
tations of "quantum numbers" that are either conserved during interactions 
of the system or change by integer amounts. The next step is to find out if 
there are selection rules that govern the behavior of this quantum number in 
transitions from one state to another. An example may illustrate this. 
Neutrons and protons make up all known nuclei; they are very similar in 
mass, and the nuclear (strong) interaction between them seems to be inde­
pendent of charge, i.e., another proton is just as strongly bound to a nucleus 
as another neutron.3 These facts are taken into account by saying: Proton 
and neutron are two states of a particle called a nucleon. A neutron can decay 
into a proton, an electron, and a neutrino, but the free proton seems to be 
absolutely stable. For this reason one introduces the number of nucleons: 

N = (number of nucleons) - (number of antinucleons) (14.6) 

in a system as a quantum number and calls it the nucleon number. The 
nucleon number seems to be strictly conserved. True a neutron can decay 
into a proton, but a proton is still a nucleon and the lifetime of free protons 
(at least in our corner of the universe) is known to be larger than 1021 years. 

Electrons are also known to be quite durable and one might think of 
introducing the "electron number": (number of electrons) - number of 
positrons) = e as a new quantum number. It is, however, more practical to 
include the next of kin of the electron in the picture. 

3 Making due allowance for the fact that there exists an electrostatic repulsion between the 
proton and the other protons in the nucleus. 
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The muon is a very close relative of the electron; in fact, it is often called a 
heavy electron. It decays into an electron and two neutrinos. One calls this 
family of particles, the muon, the electron, and the neutrino: 

We claim the lepton number L = (number of leptons) - (number of 
anti-leptons) is constant. Let us see how this works out: 

A 7T-meson is no lepton. It decays into a muon and, if the lepton number is 
indeed conserved, its other decay product must be an antilepton. Since charge 
is always conserved the other decay product must be neutral and indeed we 
observe 

(14.7) 
and 

(14.8) 

where ii is the antineutrino. The muon, as stated above, decays into an 
electron (or positron) and two neutrinos. If we believe in leptonconserva­
tion, we must conclude that the two neutrinos are a neutrino and an anti­
neutrino; hence 

fl+ -+ e+ + 'V + ii 
fl- -+ e- + 'V + ii 

(14.9) 

(14.10) 

This was the story until 1964. At that time it was discovered that there are 
two different kinds of neutrinos-one 'Ve associated with electrons and one 
'V Il associated with muons. In the light of this new evidence we have to rewrite 
Eqs. 14.7 to 14.10 to read 

7T+ -+ fl+ + 'Vil 

7T- -+ fl- + iill 
fl+ -+ e+ + iill + 'Ve 

fl--+ r + vil + iie 

(14.11) 

(14.12) 

(14.13) 

(14.14) 
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The reader may convince himself that Eqs. 14.11 to 14.14 indicate the 
conservation of two other quantum numbers sometimes-unfortunately­
called mu-ness and e-ness. 

14.4 180SPIN, STRANGENESS, HYPERCHARGE4 

If neutron and proton are just two manifestations of the "nucleon," they 
must differ in at least one quantum number. To assume this quantum number 
to be the charge, is to underestimate theoretical physicists. 

The existence of a particle "doublet" is reminiscent of the case of the 
electron which can also exist in two states: 

"spin up" or "spin down" 

Noting that proton and neutron are of (almost) equal mass, Heisenberg 
(1932) introduced the concept of "isotopic spin." Purists point out that the 
term isotopic spin is a misnomer since proton and neutron are not really 
isotopes, but differ in charge. For this reason the term isobaric spin has been 
proposed. We shall occupy a middle ground adopting the term isospin 
which seems to be gaining acceptance. In this new picture the nucleon has iso­
spin T = t and the third component Ta (z-component) of the isospin vector 
points either up (Ta = t) or down (Ta = -t) in some isospin space. This 
enables one to bring the formalism of spin (Pauli matrices and all) to bear on 
the problem. The charge of a nucleon is given by 

N 
Q=Ta+-

2 
(14.15) 

where N is the nucleon number. Obviously Eq. 14.15 leads to Q = 0 or 
Q = +1 for a single nucleon, depending on whether Ta = +t or Ta = -to 
All this may seem to be a complicated way of dealing with a simple situation. 
But there is more to it. In introducing the charge as the third component of 
an isospin vector we have also introduced the isospin, that is, the vector 
itself. Now, charge is conserved. in all known reactions. This means the 
third component Ta of the isospin vector is always conserved. However, 
the magnitude of the isospin vector, characterized by the quantum number 
T, is also conserved in those processes that are a result of the strong 
interactions. 

The fact that these strong interactions are independent of the charge of 
the nucleon can thus be expressed by saying that strong interactions are 
independent of the orientation of the isospin vector in isospin space. This is 

4 All the considerations in this paragraph apply only to particles partaking in the strong 
interactions, not to leptons. 
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a close analogy to the case of the Coulomb part of the electromagnetic 
interaction, which is independent of the orientation of the spin vector in 
real space. 

If we want to be sophisticated, we can sum this up as follows: Proton and 
neutron, the two isospin states of the nucleon, are degenerate. The electro­
magnetic interaction lifts the degeneracy and leads to the small mass difference 
between the two particles. Presumably this is more than just a nice analogy 
but, without a detailed understanding of the strong interactions, who can 
tell. 

The concept of isospin can be extended to other strongly interacting 
particles, and we apply Eq. 14.15 to the case of the 7T-meson. The 7T-meson is 
no nucleon. Hence N = O. The negative pion has a charge Q = -1 which 
means that Ta must be equal to -1. If Ta = -1, T, at least, must be equal 
to 1. If T = 1 and if our isospin formalism is worth anything, there must be 
components Ta = 1, 0, -1. In other words, there should be three different 
7T-mesons with very similar masses forming an isospin triplet. The charge of 
the three 7T-mesons must be Q = 1, Q = 0, and Q = -1. This is exactly 
what one observes. 

Applied to another well-known meson, the K-meson (Eq. 14.15), breaks 
down completely. The K-meson is no nucleon. Hence N = O. Its charge is 
± 1 or zero, but there are two distinctly different neutral K-mesons. This 
indicates that the K-mesons do not form an isospin triplet with T = 1 but 
that the K+ and the KO mesons are members of an isospin doublet and that 
the K+ = K- and the KO are their antiparticles. If this is so we must have 
T = t and Ta = ±l. Unwilling to give up Eq. 14.15 completely, M. Gell­
Mann modified it to read 

Q=Ta + N + S 
2 

(14.16) 

introducing a new quantum number S. He named this quantum number 
strangeness for reasons not germane to this discussion. The introduction of 
strangeness resolves ~mother puzzle concerning the behavior of K-mesons. 
These particles have the peculiar property of being readily produced in 
high-energy nucleon-nucleon collisions but decay only very reluctantly by 
way of weak interactions. This seems to violate the general principle stated 
on p. 152 that a large probability for the transition 

state 1 -->- state 2 

implies a large probability for the transition 

state 2 -->- state 1 

But strangeness is more than just a farfetched attempt to salvage Eq. 14.15. 
Strong interactions conserve strangeness and since nucleons have strangeness 

'\ 
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S = 0, K-mesons and other strang€< particles can Qnly be produced in pairs 
Qf QPPQsite strangeness in nucleQn-nucleon collisiQns (associated prQductiQn). 
The K-mesQn is the lightest strange particle and cannQt decay by strQng 
interactiQns (i.e., with a large prQbability or shQrt lifetime). Once formed it 
has to' sit arQund until the weak interactiQns, which dO' nQt wQrry about 
strangeness, cause it to decay. 

Nand S are Qften lumped tQgether in Qne quantum number 

Y=N+S (14.17) 

which is called hypercharge. By this definitiQn pions have nO' hypercharge. 
KaQns and nucleQns have hypercharge Y = 1. After many futile attempts to' 
bring Qrder into the chaO's Qf the elementary particles, which were discovered 
by the SCQre every year, it seems now that the diligent search fQr new quantum 
numbers is beginning to' pay Qff. Some wondrQus symmetries based Qn 
the twO' quantum numbers T and Yare beginning to' emerge, prQmising fQr 
the first time that an understanding Qf this brave new world of elementary 
particles may nQt be far Qff. 



ApPENDIX A 

MATHEMATICAL REVIEW 

A.l LINEAR OPERATORS 

It is often convenient to use an operator notation in writing a differential 
equation. An operator is an instruction to carry out a certain mathematical 
operation on the symbol following it. 

Examples 

oOx ( ... ); V(·· .); V2( ... ), etc. 

The advantage of considering mathematical instructions as operators lies 
in the fact'that operators often lead to algebraic identities regardless of the 
nature of the function they are applied to and, thus, make it simpler to carry 
out the instructions they contain. 

Examples 

o 0 0 0 _·---·-=0 
ox oy oy ox 

(for analytic functions) (A.i) 

a 0 
x---x=-i 

ox ox 
(A.2) 

or written explicitly: 

of (x y' .. ) a 
x ' - - [xf(x, y' .. )] 

ox ox 

of ( x, y . . .) o-=-'f--,-( X-,-, Yo:..:.' _. ,---,.) = x - f(x, y, ... ) - x 
ox ox 

= -f(x, y, ... ) (A.2a) 

In the following we shall restrict ourselves to the consideration of linear 
operators, a class of operators that is of special interest to physicists. 
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Definition. An operator A that satisfies 

A(tp + cp) = Atp + Acp (A.3) 
and 

(A.4) 

(where A is a constant) is said to be a linear operator. The reader may 
convince himself that the above examples all satisfy the criteria (Eqs. A.3 
and A.4). Examples of nonlinear operators would be: 

sin ( ... ) or cos ( ... ) 

which obviously do not satisfy Eq. A.3 or Eq. A.4. An operator A, applied 
to a function tp(r, t) will usually change it into a completely different function, 
i.e., 

Atp(r, t) = cp(r, t) (A.5) 

There are, however, certain functions which, if certain operators are applied 
to them, are merely multiplied by a (possibly complex) constant, i.e., 

Au(r, t) = au(r, t) (A.6) 

where a is a constant. Such functions are called eigenfunctions! of the 
operator; the constant a is called the eigenvalue! of the eigenfunction (with 
respect to a particular operator). 

Example. eix is an eigenfunction of the operator dJdx; its eigenvalue is i. 
The same function is also an eigenfunction to the operator -2idJdx with the 
eigenvalue 2. As linear operator H is called hermitian if for two functions 
tp and cp 

f tp*Hcp dT = f(Htp)*cp dT 

The property of being hermitian is called hermiticity. 

Example. The Laplace operator is hermitian. 

Proof 

V'(cpV'tp*) = V'cpV'tp* + cpV'2tp* 

V'(tp*V'cp) = V'tp*V'cp + tp*V'2cp 

Subtracting on both sides and integrating yields: 

f V'( cp V'tp* - tp* V' cp) dT = f cp V'2tp* dT - f tp* V'2cp dT 

(A.7) 

(A.8) 

(A.9) 

(A. 10) 

! This is the terminology used by physicists. Mathematicians usually prefer tile terms, 
characteristic functions and characteristic numbers. 



THE FOURIER SERIES 253 

On the left-hand side we have an integral over the divergence of the vector 
(cpV1p* - 1p*Vcp). We remember Gauss's theorem: 

f div (vector) dT = f vector' dA (A. H) 

where dA is a: surface element and the integration on the right goes over the 
surface of the integration volume on the left. Hence: 

f V(cp V1p* - 1p* Vcp) dT = f(cp V1p* - 1p* Vcp). dA = 0 (A. 12) 

if we assume that for large values of r both 1p and cp go sufficiently fast to zero 
to make the integral vanish. It will turn out that the functions that we deal 
with in this book either will always vanish sufficiently fast to satisfy Eq. A.12 
or can be so selected that they vanish on some closed surface. We return to 
Eq. A.I0 which, considering Eq. A.12 yields 

f cp V21p* dT = f 1p* V 2cp dT q.e.d. (A.13) 

It should be emphasized that the proof of the hermiticity of V2 was based on 
the vanishing of the surface integral (Eq. A.12). This shows that the 
hermiticity of an operator depends on the nature of the functions to which it 
is applied. As stated above we will always be justified in assuming that 
integrals of the type in Eq. A.12 vanish. 

A.2 THE FOURIER SERIES 

A well-known mathematical device for dealing with otherwise unmanage­
able functions is to express them as an infinite Taylor series. This enables one, 
for instance, to integrate functions to any desired degree of approximation 
even if direct analytic integration is not possible. Actually, the Taylor series 
is only one of infinitely many ways to express a function as an infinite sum, 
and we shall now investigate a series expansion first derived by Fourier 
(1822) that is much more useful to the physicist. 

Letf(t) be a function which is periodic with the period T but otherwise not 
unduly restricted. In particular, it does not have to have a finite derivative 
everywhere (as would be required for the expansion into a Taylor series), 
nor does it need to be more than piecewise continuous, i.e., it can have a 
finite number of jumps. A plot of the function could, for instance, look like 
any of the curves in Figure A.l. 

Fourier showed that it was possible to expand any such function into an 
infinite series of sines and cosines of multiples of the fundamental frequency: 
w = 217/T 

'" '" f(t) = ! ak cos (kcot) + ! bk sin (kwt) (A. 14) 
o 1 
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Fig. A.I Any periodic function can be represented by a Fourier series. 

The advantage of such a Fourier decomposition (or Fourier analysis) in 
physical applications is obvious: Very frequently it is easy to measure or 
calculate the response of a system (for example, a radio or an amplifier) to 
monochromatic sine waves. If the system is linear, i.e., if the output is 
proportional to the input (at a given frequency), Eq. A.14 allows one to 
calculate its response to any periodic input if the response to sine waves of 
various frequencies is known. 

To determine the constant coefficients ak and bk we write 

n n 

J(t) = Z ak cos (hot) + Z bk sin (kwt) + En(t) (A.1S) 
o 1 

Obviously any function J(t) can be written in this form since we have 
introduced the new function 

En(t) 

to make up for any difference betweenJ(t) and the finite sums 

n n 

Z ak cos (kwt) + Z bk sin (kwt) (A.16) 
o 1 

If expansion (Eq. A.14) is to be possible, En(t) must vanish in some suitably 
defined way2 as n goes to infinity. We shall now show that kn(t)12 can be 
minimized through a suitable choice of the coefficients Ak and Bk • We form 
the mean square deviation: 

1 fT'2 1 fT'2 [n n J2 M = - [En(~)]2d~ = - J(~) - Z ak cos (kw~) - Z bksin(kw~) d~ 
T -T/2 T -T/2 0 1 

2 The reason for hedging a little will soon become apparent. 
(A. 17) 
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We minimize M by requiring 

aM = aM = 0 
oak obk 

for k = 0, I, 2, ... , n (A.18) 

This yields n + I equations: 

- = - 2 J(~) - ! ak cos (kw~) - ! bk sin (kw~) cos (lw~) d~ = 0 aM 1 fT/2 [n n ] 
oal T -T/2 0 1 

and n similar equations aM/obI = O. Now 

2 fT/2 {= I - cos (lw~) cos (kw~) d~ = (jlk 
T -T/2 = 0 

also 

if 1= k 

if l#:k 

2 fT/2 
- cos (lw~) sin (kw~) d~ = 0 
T -T/2 

Hence from Eqs. A.19, A.20 and A.21 

2 fT/2 - JW cos (kw~) d~ = ak 
T -T/2 

and: 

1 fT/2 - JWd~ = ao 
T -T/2 

(A. 19) 

(A.20) 

(A.21) 

(A.22) 

(A.23) 

(A.24) 

The fact that Eqs. A.22, A.23, and A.24 no longer depend on n means that 
the same ak and bk that minimize M for one value of n minimize it for any 
value of n. In other words, the ak and bk determined by Eqs. A.22, A.23, and 
A.24 are final. 

For many applications it is convenient to write Eq. A.14 in complex form. 
To this end we substitute Eqs. A.22 to A.24 into Eq. A.14 

1 ('/2 2 n ('/2 
J(t) = ~ J-T//(~) d~ + ~ t J-T//(~) cos (kro~) COS (kwt) tiE 

2 n 1TI2 
-+- .~ t -r/./(~ sin (k(J)~) sin (kwt) tI~ + E.,.(t) (A.2S) 

since sin (kwt) and cos (kwt) do not contain the integration parameter E 
we can include them under the integral). Using the identity 

cos (at - (J) = cos at • cos p + sin at • sin P (A.26) 
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this becomes 

1 fT/2 2 n fT/2 
f(t) = ~ -T//(~) d~ + ~ f -T//(~) cos [kw(t - ~)] d~ + En(t) 

Using the identity 

we obtain 

1 fT/2 1 n fT/2 
f(t) = - fa) d~ + - L f(~)[eikro(t-';) + e-ikro(H)] d~ + En(t) 

T -T/2 T 1 -T/2 
1 n fT/2 = - L f(~)eikro(H) d~ 
T -n -T/2 

With the abbreviations 
1 fT/2 Ck = - f(~)e-ikro.; d~ 
T -T/2 

we can finally write 
n 

f(t) = L ckeikrot + EnCt) 
-n 

(A.27) 

(A.28) 

(A.29) 

(A.30) 

(A.31) 

(A.32) 

(A.33) 

For the actual convergence proof we refer to one of the standard works on 
analysis.3 If the function to be expanded has discontinuities (and we have not 
excluded this possibility), the convergence of its Fourier expansion does not 
imply that 

n 

lim L ckeikrot = f(t) (A.34) 
n-+oo -n 

but rather that the weaker statement 

(A.35) 

holds true. Whereas Eq. A.34 would mean thatf(t) could be approximated 
everywhere with arbitrary precision, Eq. A.35 states only that the average 
deviation betweenf(t) and its Fourier series vanishes. 

This allows for the possibility that local discrepancies exist. Such 
discrepancies occur only in the vicinity of discontinuities off(t) and are known 
as Gibbs' phenomenon. Figure A.2 shows several finite Fourier series 
approximating a square .wave. The over- and undershoot in the vicinity of 

3 For example, Whittaker and Watson, Modern Analysis, Cambridge University Press, 
1963, p. 174 f.f. 
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Fig. A.2d 

Fig. A.2a,b,c,d A square wave (Fig. A.2a) can be approximated with a Fourier series. 
Shown here are Fourier series breaking off at n = 7 (Fig. A.2b), n = 19 (Fig. A.2c), and 
n = 101 (Fig. A.2d). Notice how Gibb's phenomenon gradually evolves at the discon­
tinuities. 

the discontinuity does not vanish as one goes to larger and larger values of n, 
but rather is compressed more and more towards the discontinuity. Its 
maximum amplitude approximates in this case ± 18 percent for very large n. 

The Fourier expansion of a periodic function is of great importance in 
many areas of physics. The Fourier analyzer best known to the experimental 
physicist is, of course, the spectrometer. It takes a periodic nonsinusoidal 
(light) wave and expands it into a series of sinusoidal waves of different 
frequency (spectral lines)4 

sin (kwt) 

and intensity 

The fact that the coefficients are given in the form of integrals may deter the 
novice (after all integration is more difficult than differentiation). Actually, 
it is an advantage in practical applications. Integrations can more easily be 
performed by a computer, and it is much simpler and much more accurate to 
integrate a measured curve than it is to differentiate it. The determination of 
the Fourier coefficients (Eqs. A.22 to A.24 and Eqs. A.30 and A.32) was 
facilitated by the existence of the relations (Eqs. A.20 and A.2I) that made the 
coefficients final, i.e., independent of n. As it turns out, the trigonometric 

4 A spectrometer does not usually determine the phase and, therefore, allows no distinction 
between sin (kwt) and cos (kOJt). 
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functions are not the only ones to have relations of this kind and, hence, they 
are not the only functions that can be used for series expansions in the spirit 
of Eq. A.33. This subject is explored in detail in Chapter 6.1. 

A.3 THE FOURIER INTEGRAL 

The intriguing possibilities offered by the Fourier series make one wonder 
whether it is possible to use a similar expansion for non periodic functions. 
A non periodic function is one whose period is infinite. 

In the preceding paragraph we said nothing about the size T of the period, 
and we investigate now what happens if we let T go to infinity. We substitute 

and 

into Eq. A.29; 

27Tk 
W k = kw =­

T 

27T 
tlWk = (k + l)w - kw = w = -

T 

f(t) = ! W k fa)eiOJk(t-s) d; 
00, tl fT/2 

-00 27T -r/2 

(A.36) 

(A. 37) 

(A.38) 

If we let T grow, tlwk = 27T/T becomes smaller and smaller, Wk becomes a 
continuous variable, and the sum (Eq. A.38) goes over into the integral. 

f(t) = 1- roo dw roo f(;)eiOJ(H) d; 
27T J-oo J-oo (A.39) 

The second integration can be carried out, and the integral5 

(A.40) 

is a function of the frequency w. We rewrite Eq. A.39 in the form5 ; 

f(t) = -= A(w)eiOJt dw 1 foo 
.J27T -00 

(A.41) 

If we compare Eq. A.41 with A.33, the meaning of A( w) becomes apparent: 
The Fourier series expresses a periodic function in terms of sines and 
cosines6 whose frequencies were multiples of the fundamental frequency w 

5 To emphasize the symmetry between the Fourier transform and its inverse, it is customary 
to split the factor 1/21T in Eq. A.39. 
6 Sines and cosines are lumped together in the complex exponential; negative frequencies 
just change the sign (phase) of the sine term. 



260 MATHEMATICAL REVIEW 

((x) 

b 

-a o a x_ 
Fig. A.3 

and whose amplitudes varied discretely with k. The Fourier integral expresses 
a non periodic function as a superposition of sines and cosines6 of con­
tinuously varying frequency whose amplitude A(w) varies continuously with 
w. 

Example. Find the Fourier integral, also called Fourier transform, of the 
following simple function (see Figure A.3): 

f(X) = b 

f(x) = 0 

for 

for 

-a ~ x ~ a 

-a> x > a 

For convenience we make the area under the "curve" equal to unity, i.e., 
2ab = 1. 

Solution 

1 fa .• - ib· . J2 b . A(w) = .....: be-·OJ• d; = -- (e""" - e-·OJa) = - - SIn (wa) (A.42) 
.J27T -a J2ir W 7T w 

TheOfrequency spectrum A(w) of the discontinuous function of Figure A.3 
extends to higher and higher frequencies as a decreases.7 For an infinitely 
short "pulse" we obtain _ 

. J2abw 1 hmA(w)= --=-
a-+O 7T W J2ir 

The amplitude has become independent of the frequency, i.e., the spectrum 
extends to infinity. 

7 Keeping, of course, 2ab = 1. 
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A.4 MATRICES 

Let us consider a vector y in an n-dimensional space. If we are given a 
coordinate system in this space, we can express the vector in terms of its 
projections on the n different coordinate axes and obtain its components 
Yl' Y2, ... , Yn' with respect to this coordinate system. We can write these 
components in the form of a column 

y= (A.43) 

and call this column the representative of the vector in the given coordinate 
system. We can change the vector y into another vector z by means of a 
transformation A 

Ay = z (A.44) 

A transformation is an operation which can change both the direction and 
the length (magnitude) of the vector. In the following we shall consider only 
linear transformations. 

Definition. A transformation A is said to be linear if for any (possibly 
complex) constant A 

A(AX) = AAx 

and if for any two vectors x and y 

A(x + y) = Ax + Ay 

(A.4S) 

(A.46) 

Since in the most general of all linear transformations any component ofthe::;:,'" 
representative of y may depend on any component of the repreJ,fj:l1t~~\~~of ,.~" 
x, the former can be expressed in terms of the latter by writin,g'? «,. c..: " /, ,c. r-

n <;'f,.. 
Yl = :I aux/ " ," 

1 

, 
~, .. , 

<-,to 

or in general 
Yk = :I ak/x, 

8 A very convenient and frequently used convention is to write 

:I Qk,x, = Qk'X, 

with the understanding that one has to sum over the index that appears twice (here I). 
However, in this book we shall, adhere to the more explicit notation of Eq. A.47. 
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The constant coefficients akl can be arranged in a two-dimensional not 
necessarily quadratic scheme which is called a matrix. 

A = (A.48) 

The matrix A obviously has a similar relationship to the transformation A as 
the column in Eq. A.43 has to the vector y. A is the representative of the 
transformation in our particular coordinate system. 

Now we ask, what happens if x itself has been created from a vector z by 
another linear transformation B, i.e., if 

The Ckm also form a matrix with the elements: 

Ckm = L aklb lm 
l~l 

Comparing the three matrices 

A= 

bn blm bIn 

b21 b2m b2n 
B= C= 

(A.49) 

(A. 50) 

(A.51) 

Cn Clm Cln 

Ckl Ckm 

(A. 52) 
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we realize that the element Ckm is obtained by successively multiplying the 
first, second, etc., coefficient of the kth row of A with the first, second, etc., 
coefficient of the mth column of B and adding all the products. The result C 
is called the product of the two matrices A and B, written 

(A.53) 

From Eq. A.51 follows that matrices do not in general commute, i.e., 
A . B ¥: B • A; hence, we must distinguish between multiplication from the 
left and multiplication from the right. The sum A + B = D of two matrices 
is defined by 

aik + bik = dik (A. 54) 

A matrix A, obtained from a matrix A by interchanging rows and columns, is 
said to be the transpose of A, written in terms of the coefficients: 

(A. 55) -Obviously: A = A. In quantum-mechanical applications we frequently 
encounter matrices whose coefficients are complex, and the complex conjugate 
A * of a matrix A is obtained by taking the complex conjugate of each 
coefficient. 

Definition. The hermitian adjoint At of a matrix A is obtained by taking 
the complex conjugate of the transpose of A. 

At = A* (A. 56) 

Definition. A matrix that is equal to its hermitian adjoint 

At = A 

is said to be hermitian (or selfadjoint) 

(A. 57) 

Definition. The unit matrix 1 is a matrix whose elements are 1 in the main 
diagonal and zero everywhere else, i.e., 

for i ¥: k 
or 

aik = bik 

where bik is the Kronecker symbol, which is defined as being 1 for i = k and 
o for i ¥: k. 

Definition. A matrix A-I for which holds 

A-I. A = A • A-I = 1 (A.58) 

is said to be the inverse of A. The inverse A-I of a matrix A has the elements9 

;, ~ Probl~ A.~ 1. 
,(.\ Note: 1lC1l~ no' 1lCQ. 

-1 (J.ki a ---
ik - det A 

10 

(A.59) 
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det A is the determinant we obtain if we consider the elements of A the 
elements of a determinant. Obviously we must insist that A is a square 
matrix and that det A :F 0 in order for the inverse to be defined. IXki is the 
cofactor of the element aki and is defi'ned as 

o 
IXki = - (det A) oaki 

(A.60) 

The reader may convince himself that IXki is the determinant that we obtain if 
we set the kth row and the ith column of det A equal to zero. We can now 
define another kind of matrix that is of great importance to quantum 
mechanics. 

Definition. A matrix U is said to be unitary if it satisfies 

UtU = uut = 1 or 

Definition. A vector x for which holds 

Ax= AX 

ut = U-I (A.61) 

(A.62) 

where A is a, possibly complex, constant, is said to be an eigenvector to the 
matrix A. A is called the eigenvalue of x with respect to A. 

PROBLEMS 

A.I Write down the explicit expressions for 'Ilr, 'Ilr2, 'Il(1 Ir) , and 'Il2(1lr), in 
cartesian coordinates. 

A.2 Show that the operator 'Il is not hermitian. Can this operator be made her-
mitian by multiplication with a constant? 

A.3 Show that a hermitian operator is always linear. 
A.4 Derive the Fourier series that describes the function plotted in Figure AA. 
A.S Can the function y = sin x be expressed as a series 

-

-2 -1 

00 

y =! akcos (kx) 
k=O 

1 

o 
Fig. A.4 

2 
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A.7 
A.8 
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-1 o 
Fig. A.S 

What is the Fourier transform of the function plotted in Figure A.5. 
What is the complex conjugate of the adjoint of a hermitian matrix? 

Show that 
f""ooJ . 

(AB) = BA 
A.9 Show that 

(ABC)t = CtBtAt 

A.tO Can a matrix be both unitary and hermitian? Must a unitray matrix be 
hermitian? 

A.ll Verify Eq. A.59. 

A.t2 Show that the application of a unitary transformation to a vector leaves its 
magnitude unchanged. 

SOLUTIONS 

A.3 The definition ofa linear operator is given in Eqs. A.45 and A.46: 

A(AX) = AAx and A(x + y) = Ax + Ay 

Let H be a hermitian operator and A a constant, then 

(x, HAY) = (Hx, AY) = A(Hx, y) = A(X, Hy) = (x, AHy) 
or 

HAY = AHy 
for any y. Furthermore 

(z, H(x + y)] = (Hz, x + y) = (Hz, x) + (H, z, y) = (z, Hx) + (z, Hy) 

= (z,Hx + Hy) 
or 

H(x + y) = Hx + Hy 

A.12 Let U be the unitary transformation that transforms x into x' 

x' = Ux 

If the length (magnitude of x remains invariant under this transformation, 
we must have 

x'· x' = X· x 
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In the following we must keep track carefully of the ordering of the various 
terms. This task will be greatly eased if we consider the vectors x and x' as 
one-row or one-column matrices. The dot product of two vectors becomes 
in this case, using the conventions of matrix multiplication, the multiplication 
of a one-row matrix with a one-column matrix. If 

is the column form, then the dot product should be written as 

xx = Xl 2 + X 22 + X32 

If we want to allow for the possibility that x is complex, we have to write 

xtx = xl *XI + X 2 *X2 + X3 *x3 

With this possibility in mind we thus write 

x'tx' = (Ux)tUx = xtutUx = xtx q.e.d. 
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Compton, A., 7 
Compton effect, 7, 12, 14 
Coulomb interaction, 188 
Coulomb's law, 19 
validity of, 73 

Crasemann, B., 25, 27, 43 
Crystal, one dimensional, 49-56 

Danese, A. E., 235 
Decoupling of angular moments, 139 
Degeneracy, 69 

degree of, 111 
of hydrogen e.f.'s, 98 
lifting of, 171 
of nucleons, 249 

Deuterium, hyperfine structure of, 187 
Diagonalization of a matrix, 173 
Diffraction, of electrons, 9 

of light, 8 
Dipole moment, electric, 143 

magnetic, 150 
Dipole radiation, magnetic, 150 
Dirac, P.A.M., 5, 181,244 
Dirac's postulate, 68 
Dirac theory, 245 

Ehrenfest, P., 65 
Ehrenfest's theorem, 63-68 

267 



268 INDEX 

Eigenfunction, 22, 23, 252 
adapted, 172, 178 
of angular momentum, 94 
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Schrodinger's postulates, 19 
Second quantization, 146 
Secular determinant, 159 
Selection rule, for I, 148 

for m, 149 
for spin, 140 

Separability, 20 
and CO,1:..:rvatlve laws, 121 

Separation of angular Schrodinger equa­
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positronium, 201, 203, 208 

Smith, L. Po, 24 
Spherical harmonics 83, 177 
:Spin, 131, 132, 162, 181-186 
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