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Preface

Sensible people skip the prefaces of books, because they can. When I was
young and ignoring bunk, I skipped all of ‘em. If you're sensible and also
reading this, you must want to know the author's intentions.

Many years ago, I realized that almost everyone was getting more false
information about fundamental physics than true information. I am not
talking about technology: technology is in good shape. I am referring to
finding reliable information to understand physics, so you might advance
further, and possibly participate in creating physics. Solid information about
basics is very rare. What poses as information about fundamentals is material
written by reporters. Reporters think that if a sentence is grammatically
correct and uses physics words in a plausible order, then it must be the unique
truth about nature. They have never heard of a science where words strung
together and making sense could possibly be dead wrong. They would never
believe it is possible to combine correct physics equations with exact
mathematics and create impossible nonsense. Physics wins all the awards for
the Queen of the Sciences Most Easy to Get Wrong.

When a person starts learning physics with independence, he or she
discovers an unexpectedly high density of distinctly different wrong concepts
in arbitrary wrong orders clamoring for attention. People who don't learn with
independence don't see it. They freely insert wrong concepts in wrong orders
that look OK, because they're not really thinking about it anyway. A very
timid and conservative disinformation system then replicates lore about
physics the way a cell replicates junk DNA. Meanwhile the priceless original
means of discovery get edited out because they are too simple to possibly be
important. It really works that way: easy half-page breakthroughs of 50 years
ago got recopied into exponentially overblown interpolations by people who
just hate easy half-page breakthroughs. Somebody must benefit from it.

This book represents the best way I have discovered to help people
understand quantum mechanics. Every step is easy: no steps are left out. We
don't make artificial puzzles, and we're not in physics boot-camp. The main
secret is to interpret equations just for what they appear to say.



An old tradition dominates. The old tradition is the only part of physics
based on bullying people and terrifying them with superstition not to use or
believe the equations for what they say. It's also loaded with dirty tricks of
disinformation. It would be a dirty trick to teach chemistry by saying ‘the
correct and established phlogiston theory of fire can sometimes be calculated
using the oxidation aspect of fire. Since the human brain cannot understand
fire, we must say that it is both and neither phlogiston and oxidation at the
same time’.

The rest is about critically analyzing the terribly illogical ordering of
topics and claims of the older approaches. It was a self-serving attempt to
salvage the dignity and historical relevance of the old quantum theory by
presenting it as pre-requisite for the new theory that destroyed it. How would
that make sense? None of the juggernauts who participated in the old
quantum theory still survives. Their disciples have disappeared. Our approach
being rid of it can cause nobody an insult, except for the astounding insult
caused to the conceptual mistakes of junk DNA still remaining in the system.

For decades students read out of books whose prefaces emphasized that
‘nobody understands quantum mechanics’. Somewhere in this book I observe
that's a pretty repulsive way to get started. There's a much better way to put
it: nobody understands nonsense. A healthy brain is not supposed to
understand nonsense. For decades the healthy minds that rejected superstition
had no alternative but to ‘shut up and calculate’. In this part of the 21st
Century it is finally legal to understand the Schrédinger equation and its
solutions, learn everything possible about entanglement, insist on
descriptions that have no unexplained or supernatural elements, and
understand quantum mechanics on its own basis. You can call it an
‘interpretation’ but it is actually a ‘presentation’ that is natural, unpretentious,
direct, and efficient. That's how physics is supposed to be.

I don't understand professors who say that teaching physics is difficult. I
think that teaching physics, and finding out new things about physics, are just
about the most fun a person can have. I'm very grateful for students who have
been so good as to allow me to do it. Sometimes they ask for ‘the most
important single fact about the world’. They are surprised when I have the
answer right away:
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Chapter 1

The continuum Universe

Figure 1.1. A cubic mile of space, or a view of the electron wave in
an atom, depending on scale. Photo by permission of Tommy
Richardsen.

1.0.1 A cubic meter of space

Imagine a cubic meter of space sitting on your kitchen table. It is inside a



glass box. The air has been pumped out so you can experiment with space.
Space is not a trivial subject. Several physical theories have been proposed
for it. The theory that the space you are considering is ‘empty’ failed a long
time ago. It did not explain the data.

Very important data comes from electromagnetism. A large magnet
placed on one side of the box will affect a compass needle on the other side.
Magnetic fields go right across the box and fill its entire interior, a
continuum. When playing with magnets and iron filings, one will see a
thready, clumpy pattern that appears to be ‘field lines’. Actually the magnetic
field is smooth and continuous, while the clumpy-thready patterns are the
magnetized bits of iron attracting themselves.

A concept called ‘action at a distance’ had proposed instantaneous
propagation for magnetic fields (and other fields), but that failed long ago. If
you move the magnet, there is a time delay for the fields to cross the box, at a
known speed. The changing magnetic fields come with changing electric
fields moving inside the box. An impulsive disturbance of the fields travels at
the speed of light. Now please! The fields do not fly across the box like little
point-like photon torpedoes. One does not become more modern or
sophisticated about physics by interpreting electrodynamics in those terms,
one goes into mistakes. The disturbance travels through the field like a
breeze-borne ripple in a field of wheat. Except that wheat is too grainy, being
a grain food. There is no granularity at all in the continuum: it is perfectly
smooth all the way down to zero, as far as the current experiments and theory
say. This is the fundamental physical point of view of quantum mechanics. It
is about a continuum, which probably contradicts what you’ve heard about
photons, and quantum mechanics.

Remove the magnet, turn off the lights, and experiment with the
hypothesis of empty space. The hypothesis fails, because the box is full of
thermal radiation. Cool the box to the temperature of intergalactic space. The
box is still full of colder thermal radiation, your own chunk of non-cosmic
microwave background. The wavelengths formally average about one
centimeter, but you’d be hard pressed to find a single recognizable ‘cosine’
shape. The waves occur in a huge range of sizes, shapes, and fluctuations
bouncing round in chaotic disorder. THIS is quantum mechanical.

There is a theory that black body radiation consists of photons. The
theory has been misrepresented and misunderstood. Before 1900, the theory



focused on the electromagnetic fields, which are continuous entities sloshing
around everywhere inside the box. This was the correct physical picture and a
very good theory. The waves of thermal radiation are very jumbled,
disorganized, constantly rearranging and shifting in shape, an interpenetrating
seething continuum. There has never been a time or place empty of them.
Beside that, the box is full of many other things more recently found,
including the chiral condensate, the Higgs field, gravitational fields, and so
on. The theory says they are all infinitely smooth and continuous, and
explains data very well.

The misrepresented photon theory says radiation is a bunch of little point-
like particles flying around randomly in ‘empty space’. This is a perfectly
logical interpretation of the words used by physicists, but it is wrong. It is
actually impossible to learn physics by being logical and using Webster's
dictionary! for word meanings: there are too many internally consistent and
logical misinterpretations which happen to be wrong. Moreover, for reasons
of history quantum physics became loaded with word abuse, and competition
to confuse the physical picture. Coursework concerned with making
calculations does not tend to correct it. For that reason, many TV-physics
personalities and college physics teachers who passed graduate-level exams
never revised the wrong picture coming from the misrepresented photon
theory of little point-like particles flying around.

The wrong physical picture of the old quantum theory has two errors in
the hypothesis of empty space, and little point-like particles. The actual
quantum theory discovered those things do not exist. Quantum mechanics is
not about the most tiny subatomic particles. It is not about Planck's constant.
Quantum mechanics is about the Universe, and the Universe is big. Everyone
agrees on this. For some reason the facts have a hard time getting out there.

1.0.2 The downside of successful advertising



Figure 1.2. Just as you would guess, a 3D-printing template to make
Planck-constant cookie-cutters does exist!. Source: Planck Constant—
cookie cutter by cb1986ster, published on 19 November 2015,
www.thingiverse.com/thing:1143630.

Winston Churchill wrote that ‘History is written by the victors’. Quantum
physics is the only part of physics where historical mistakes before there was
a theory were kept around as disinformation after there was a theory. This
may surprise you.

We are talking about the old quantum theory, which was work done in
1900-25 by Bohr, Einstein, Sommerfeld, Wilson, and many others. The old
quantum theory is the domain of formulas like E=hv=Aw, and p=h/A, or p=fik:
The Bohr model was a centerpiece of the old quantum theory (OQT), along
with the concept of intrinsic quantization of energy, angular momentum, and
other things. If an argument depends on the finite value of Planck's constant
h, or mentions the ‘quantum of action’, the basis is the OQT.

The premises of the OQT were that Newtonian point-particles
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indisputably existed, but needed some constraints to act right in the micro-
world. The ideas and formulas of the OQT were mass-produced and
universally distributed before people knew they were fundamentally wrong.
The advertising campaign was successful beyond any measure. It is still
around today, maintained by adding a chapter to the storybook. It says the
OQT and all its basic accomplishments were permanent foundation points,
which the new theory made more mathematical, more difficult to understand,
while not actually changing the foundations.

The reality was different. Schrodinger's wave theory did not validate the
old theory. Instead it exposed the old theory as cookie-cutter equations true
sometimes when conditions made them circular, but otherwise false in
general. As a foundation the OQT was completely off-track and wrong in
every single element! You need this information, because volumes of dis-
information will rebroadcast exactly the brain viruses of the OQT you don’t
want in your personal operating system, which makes understanding so much
more difficult.

Isn’t that interesting? Quantum mechanics now is not the subject it was
believed to be in 1930 or 1950. The name ‘quantum mechanics’ is a
misnomer: the subject is not about ‘quantization’. Physics evolves: the
understanding changes, and the meaning of words changes, while the words
themselves stay the same. For many years the presentation of quantum
mechanics came from the 1920s, updated periodically to be more technically
demanding. The way thinking evolved along the way was secondary to
making bigger and more difficult calculations. Like everyone else, the author
bought into every element of the OQT, and thought it was awesome
necessary progress. When he was very young, and not sure of his skills, he
had said ‘I’m not sure if I am able, but I’d like to understand quantum
mechanics before I die’. After learning quantum mechanics, and not dying
from the experience?, and thinking about this and other things for more than
40 years, there is a definite conclusion. The OQT was not just a dead end. It
was a brain-virus dead-end that is bad for you!

Consider this: Bohr, Einstein, Heisenberg, Sommerfeld, and many others
had ‘quantization’, Planck's constant, E=mc2, E=hf, p=h/A plus all the skills
of top theoretical physicists. Yet all of them were completely defeated for 25
years from 1901-26. If the top brains in physics were stopped for 25 years by



the equations released to the public, they will stop you. The cookie-cutter
equations were what stopped progress on the subject. Relying on them in any
form will prevent your progress. This is actually a very helpful discovery. For
one thing, Bohr never realized it.

1.0.3 The wrong use of x™

Before quantum mechanics, the symbol x“meant the position of a point
particle, represented by a set of numbers® x{(t)=(x(t),y(t),z(t)), for each time t.

In one dimension, the motion of a particle under uniform acceleration a is
described by

x(t)=x0+v0t+at2/2.
Except for loose and colloquial language, quantum physics never uses such a
concept of a particle nor a particle trajectory x{t). The words ‘particle tracks’
in a ‘particle detector’ have changed to words meaning ‘quantum field tracks
in a quantum field detector’. We only bring it up so it's clear what we are not
discussing xN, with the N having a Newtonian meaning.

This ‘point’ (sorry for the pun) will become a major theme. If you study
and teach quantum mechanics for, say 20 years, you will discover people
who make it extremely hard for themselves. Those who fail have the same
problem: they were told and accepted that point particles are on an equal
footing with waves. They imagine xN(t) everywhere but it is never written®.

It is not an accident. For a long time physics writers had fun interpreting
everything calculated for a wave as if it came from a contradictory weird
particle. Quantum tunneling is an example. The first panel of figure 1.3
shows a wave in one dimension sloshing through (not over) a certain region,
emerging on the other side. It is unremarkable: can a sound wave go through
a sheetrock wall and be heard on the other side? Why not! Yet those who
made physics difficult—Ilet's call them the enemies of understanding—have
two or three favorite devices. They never consider a movie of the wave
oscillating in time, and never show more than one panel from a movie. To
help correct that we show several snapshots in figure 1.3. The actual movie is
just beautiful!
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Figure 1.3. Quantum waves are always moving. These movie frames
in time ordering show a quantum wave passing through an interaction
layer, usually called ‘quantum tunneling’. The wave is actually in
three dimensions, and the representation is very schematic. It is falsely
presented in terms of fictitious particles recycled from the old theory
that became irrelevant. The false presentation creates a non-existent
mystery.

However, a notion that ‘time did not exist in the micro-world’ came
largely from the Bohr model, which had ‘stationary states’ where nothing
ever happened. When it was discovered to be dead wrong, the zombie came
back with presentations removing time dependence from quantum mechanics
for purposes of presentation. Check some sources to discover this: one page
of a book has time-dependent factors, the next page strips them off, and then
time might disappear forever. Most of the barriers to learning have the same
feature: the OQT is used to interpret the new theory that contradicts it.



Finding waves that are bouncing and jiggling with time-dependence, a little
mathematical surgery removes the time-dependence, rediscovering (!)
‘stationary states’>.

Experts don’t seem to notice the number of dirty tricks. For example, the
colored region in figure 1.3 is reported to be a ‘wall a particle cannot cross’.
It is not an impenetrable wall, and no calculations nor equations refer to a
parcle®. Anyone looking at the cartoons sees no parcles in them, but the
particles imagined to exist from the previous theory that failed are put in by a
juggle of words. Experts don’t recognize that the words can do damage. ‘The
figure shows a particle approaching a barrier’. (It does not.) ‘A classical
particle cannot cross the barrier. The quantum particle can tunnel through the
barrier, to appear on the other side.’

The term ‘quantum wave’, which is accurate, was deliberately and
systematically replaced by another word we hate to write. It was done early
while everyone underestimated the impact of the Schrédinger equation when
it first appeared. It was at first unbelievable that the entire OQT had been
destroyed by one simple equation. The early presentation based everything on
parcles with the early intention to keep the old quantum theory intact forever,
while hoping the Schrodinger wave equation would just go away.



Figure 1.4. Erwin Schrodinger.

1.0.4 The Enemies of Understanding

Stuffy, stinky old physics books once gave the impression quantum
mechanics was so mathematical and sublime that ‘the founders themselves’
could not understand what it was about. We think that's unhelpful, and an
advance form of discouragement coming from an authoritarian mindset. As
Feynman once said:[1]

‘I don’t believe in the idea that there are a few peculiar people capable
of understanding math, and the rest of the world is normal. Math is a
human discovery, and it's no more complicated than humans can
understand. I had a calculus book once that said, “What one fool can
do, another can’. What we’ve been able to work out about nature may
look abstract and threatening to someone who hasn’t studied it, but it
was fools who did it, and in the next generation, all the fools will
understand it. There's a tendency to pomposity in all this, to make it



all deep and profound.’

Feynman was better than all of them, and he was not pompous. Why are
people pompous? We enjoy telling students that physics is like a theater.
Most of the players are delightful creative characters in love with the
Universe. Here and there the theater has just a few bothersome villains who
play dirty tricks. They write 1200 page Big Color books called Some Kind of
Physics and contribute just the right amount of mistakes to Wikipedia to
make it disabling. Right? The pompous stuff seems to come from
competition to get attention. It's true the founders of quantum mechanics
could not always agree with each other. What do you expect? Remember they
were struggling to establish and maintain their careers, in a very competitive
system. Physicists are often jealous, and selfish: they are humans!

Depending on your source, you may find a rather dogmatic presentation
that pretends to be weird and wonderful, but it's just dogmatic. Learning
quantum mechanics asks you to participate in critical thinking more than
most forms of physics. This is because there's so much bunk in the system.
Most of it is word abuse. If you ask anyone, ‘why do YOU think particle
physics is about particles?’, they may not understand the question. Those
‘particle tracks’ are not fundamental microscopic phenomena. They are a
macroscopic chain of correlations you absolutely cannot distinguish from the
passage of a fast little wave. Erwin Schrédinger wrote

“The cloud chamber and emulsion phenomena, though they are at the
moment in the focus of interest, represent after all only a small section
of all that we know about nature. In their apparent simplicity they
appeal to the vivid imagination of an intelligent child .... Yet they are
not as simple as they look. This is witnessed by the pages and pages
of intricate formalism that is often devoted to account for even the
simplest of them.’

Schrodinger often assumed too much expertise from his readers. He
might have mentioned those cloud chamber tracks were the one and only,
sole remaining ghost of the parcle idea, while also not mandating its use.
Schrodinger might have told you that the intricate formalism uses waves in
every calculation, always waves that had been colloquially renamed
particles, because the parcle word was so handy to keep around. And it



appears that Schrodinger was unaware of two 1929 papers by C G Darwin
and N F Mott that explained particle tracks as wave phenomena, eliminating
the last vestige of any need for parcles. (We’ll return to this in chapter 10.)

Physicists are sometimes lazy and complacent with word usage. They can
trick themselves and also get tricked. Once the author was at an international
meeting where a very angry condensed matter physicist gave a flaming talk
that none of the ‘particles’ of particle physics existed! Nothing claimed to be
a new particle lasted long enough to make a track! It was a great outrage to
perpetrate the hoax of new particles! The complaint was perfectly correct
about word abuse but also 75 years in the past in its physical conceptions.
The word ‘particle’ has not in physics meant a dimensionless point for 75
years! That is why Wolfgang Pauli wrote (in a letter to Einstein’ that the
appearance of a point-like electron at a sharp position was ‘a creation outside
of the laws of nature’.

The pattern of replacing calculations by verbal patterns that don’t match
is bizarre. Someone must have benefited. Here is an analogy. After thousands
of years people finally discovered equations for astronomy that actually
describe planetary motion. The discovery that planets are rocks should have
killed the theory that planets are demons, but it did not. There were too many
people making a living off demons, and the demon business never stopped
being profitable. Nowadays celestial mechanics is used to make high
precision horoscopes for superstitious rich people, who pay money to believe
planets are demons. The Horoscopic interpretation of celestial mechanics
uses demon-assumptions to interpret whatever a rock planet might be doing
in demon-words. The fact no demon appears anywhere in any equation, while
so vividly imagined in the interpretation, is held to be proof that demons are
very tricky. Every planet has a demon aspect, and a rock aspect, totally
complementary, so when you see one aspect you cannot see the other. The
greatest wisdom of the Horoscopic interpretation is that planets are both and
neither rocks and demons at the same time. No macroscopic human brain can
fully comprehend it.

The term ‘Copenhagen interpretation’ appeared in the early 1950s. It
refers to Bohr's re-presentation of the subject after it had been discovered by
others. The presentation has heavy emphasis on ‘wave—particle duality’ and
the ‘uncertainty principle’. These items had played no role at all in the



discovery of quantum mechanics. They play no role in a modern presentation.
A person® can go to at least 100 physics conferences for 37 years and never
hear the term ‘wave—particle duality’. No working physicist anywhere views
the uncertainty relation as anything more than an easy math fact. However,
the core of the Copenhagen presentation puts the items early and in a
particular order to make them appear essential. The presentation of every
topic computed for waves was redundantly rehashed by inventing a parcle
aspect to be ‘complementary’. That is so confusing, and so easy to avoid.
How to avoid it? Dump the particle.



Figure 1.5. There are no demons!.

The order of presentation is everything. Students will ask, ‘what
difference does the order or presentation make, so long as we see all the
material?’ It matters because physics is not math. The meaning and usage of
physics concepts downstream of one piece of information depends on the
ordering upstream. The ordering and decisions of the Copenhagen



presentation is the source of physics pop-culture mistakes that quantum
mechanics is full of paradoxes and cannot be understood. That quantum
physics would never be understood was Bohr's life-long philosophy, also
adopted by Heisenberg before there was a quantum theory, from which the
two never deviated after the actual theory arrived. When Schrédinger's theory
first appeared and was absolutely easy to understand, Heisenberg dismissed it
as ‘crap’ for that very reason.

One should be repelled by a presentation advertising? it was not going to
be understood. We say everyone in the 21st Century must understand
quantum mechanics. That calls for re-ordering the material and avoiding the
tradition of listing ‘axioms of quantum theory’, posing as if physics were
high school Euclidean geometry. In fact quantum mechanics is the only
subject in physics where teachers traditionally present haywire axioms they
don’t really believe, and regularly violate in research. (Most violations occur
with the fishy eigenvalue postulate, see section 8.3.) The schoolbook subject
also tends to be authoritarian about obeying rules without understanding the
reasons, a result of rules put out of order that do not follow logically. The
logical disorder and incipient contradictions of an outmoded presentation can
be avoided, and that makes learning quantum mechanics so much easier.

Some claim that physics is based on principles. But basing decisions on
principles not understood makes a person weaker, not stronger. If a person
understands the basis of information, he or she needs no authority nor their
principles to justify it. So it is pretty well known that people cannot learn
physics when it's based on authority. That's why US students cannot learn
physics from high school football coaches'®. Memorizing authority
statements that are not understood is why people can’t understand quantum
mechanics.
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Figure 1.6. Don’t look at this picture! It shows what people with the
wrong concept of xare thinking about.

1.1 The right use of x:"describing a continuum

Water is a great example of a continuous substance. It is compressible
(although very strong), it supports arbitrary wave shapes in its interior, and it
definitely exists. Water has no special shape, and simply conforms to the
shape of the forces acting on it. Predicting the future of a pail of water is
really challenging because so many details are involved. Water in the space
shuttle forms itself into bouncing spherical blobs. That is typical wave
physics. It's a good prototype for the electron wave trapped in an atom,
except the water blob has a rather sharp boundary electron waves seldom
have. Also, first fill the space shuttle with the substance everywhere. The
electron wave is like a pulse or a lump of stressed water inside the water.
There's no nothingness outside the electron!

To describe a continuum mathematically, you first propose (or declare)
that the underlying space, formerly considered ‘empty’, provides a



continuous coordinate system with labels x=(x,y,z), or similar. The default is
that no points are themselves actually different than others, and that the labels
do not themselves represent anything physical. Choose the vicinity of some
arbitrary point for the discussion. In that region there is some disturbance, a
function yi(x;t). The physical variable at symbol x7is the wave yx(t). We
changed notation from Yi(x;t) - Yx(t), which is read ‘psi-sub-x as a function
of t’. The first thing you notice is that there are as many time-dependent
physical variables as there are points in space. (Later we’ll discover there are
quite a few more, for more species of fields.)

This physical picture is just the opposite of the point particle. The
disturbance represented by the wave function is ‘everywhere it happens to
be’. One can usually localize the ‘big region’ of the electron wave pretty
well: we can say that an atomic electron wave is spread over the volume of an
atom, which is pretty small on the human scale. Yet outside the atom the
electron wave does not just disappear. The amplitude of the wave approaches
zero: zero is a definite value, not the same as disappearing.

The point is not semantic, but about consistency. The wave function is
(are) the time-dependent dynamical variable(s), or ‘degrees of freedom’.
Each point in space has a dynamically independent degree of freedom,
coupled by the equations to other, nearby points. All those dynamical
variables are expressed by a very big list Yx{t) for what happens at each
arbitrary point x."Everywhere the disturbance is small, we may dismiss it as
uninteresting, but the physical variables don’t disappear. If a wave, namely
the physical variable at a particular position x= (1, 2, 3) is zero, the physical
variable ((1,2,3))=0 has not been disturbed from zero, and still waits to
participate in physics.

The Schrodinger equation predicts how a given quantum matter wave will
change in time. ‘Time evolution’ means a wave shape Y(x;t=0) - Y(x;t=t1),
which is a new shape at time t;. The resulting shape is a given shape, and

time evolves by W(x;tl) - Y(x;t2), to make another new shape; see figure 1.7.
The Schrodinger equation predicts the time rate of change by
(1.1)
10P0t=Qu,
where Q will be called the frequency operator. The notation Q is innovative
and self-explanatory, since 0/0t has dimensions of frequency.



t=0 + dt

t=0

Figure 1.7. A graphic with time moving ‘up’ for how wave equations
predict time evolution. No particular ‘shape’ of a function is actually
determined by the equation. The initial shape is entirely set by initial
conditions. The equation uses shape information from values and
curvatures at each moment in time t to predict the function's new
shape at updated time t + dt. The shape ‘time evolves’, and the wave
moves.

Operators are math tools that might have been used in Newtonian
physics. The equation v=dx7dt predicts velocity by applying the time
derivative operator d/dt to x-"We could invent an operator that acts on x and
returns vSystem(x) for a given system Then classifying and memorizing
interesting velocity operators, we would build up the description of systems
one by one by solving dx7dt=vSystem(x). (That plus theorems on existence
and uniqueness of solutions is how a course in differential equations works.)
We could invent an operator that acts on x~and returns ‘acceleration’



Asystem(x) for each system. The corresponding differential equation could
be d2x7dt2=ASystem(x).

Instead of ‘velocity operator’ we prefer ‘frequency operator’ in 10/
0t=Qu because of the 1 in the equation. A deceptively easy example is Q=w0,
some constant. The differential equation predicts yi(t) by (12

10yP0t=w0y; - P(t)=Y(0)e—1w0t.

This is harmonic time dependence with angular frequency 0. There is a
subtle difference between representing a system by a differential equation and
simply giving a solution to the system's time dependence. The differential
equation does not depend on initial conditions and does not predict initial
conditions. This represents our guess that nature defines the system, which
will be the same system for any initial conditions. Removing initial
conditions is the accomplishment of an equation of motion, and it is the only
accomplishment. That's because the set of all solutions, for all initial
conditions, is precisely equivalent to a differential equation, and vice verse.
Did you know that? The differential equation is a concise code for all
solutions with all initial conditions left unspecified and nothing more.

No differential equation as easy as equation (1.2) will ever describe a
wave. Waves have infinitely variable shapes, and then infinitely many initial
conditions. We’ll review this using example systems that are not too difficult.
If it's going to predict realistic waves, system by system, a realistic operator
Q2 must involve some serious math. We will postpone the details of Q for
now. Be warned that in the traditional approach the most difficult cases were
presented early as difficult puzzles. That's something of a professor-cheat and
also obsolete. Before 1930, say, physics was largely based on solving
differential equations, which usually meant memorizing the solutions to the
small class that could be solved. After 1930, and with the organizing
principles of operators and vector spaces of quantum mechanics, physics was
much less dependent on solving differential equations. It is very important to
know the general features of the solutions of quantum mechanics, which are
very easy. Meanwhile the actual details of solutions become less and less
important: unless you need them.

Our use of symbol Q is new, while an absolutely equivalent symbol H

called the Hamiltonian operator is traditional and not self-explanatory''. The



road forks here. One road leads to a digression about Hamiltonians, certain
historical prescriptions for what was ‘allowed’ and what was postulated, and
often some dogmatic assertions (see section 7.1.3) that are redundant. Along
that road were little analogies with parcles, often at a deliberately high math
level students could not challenge. After a big loop all roads come to time
evolution, which is our road. Quantum mechanics is mostly about time
evolution, which is causal and deterministic, as is clear from the Schrédinger
equation of motion. Since we are concerned with causal, mechanistic time
evolution, it would be inappropriate to confuse the analysis with references to
probability until they are needed. That is how quantum mechanics is done.
First you characterize the wave function, and solve what it is doing. After the
calculations are made, statistical predictions are extracted: not during the
process!

1.1.1 The wave function describes the state

Notice that the word ‘function’ has subtly changed its meaning. In math
classwork a function is a map from an input to an output. Students score
points by evaluating functions presented as a puzzle and computing the right
output. That meaning is not being used, and we discourage you from
evaluating wave functions, except when using a computer to make graphics.
It is better to consider the wave function as being pre-evaluated by a
computer graphics routine, or an equivalent wave-list that represents the state
of the system.

The concept of a well-defined state began with Schrédinger's wave-list .
There was no correct concept of a state in quantum physics before it. The
attempt of the Bohr model to define a ‘state’ was so atrocious that in 1925
Born, Heisenberg, and Jordan set up a theory called ‘matrix mechanics’
where the concept of a state did not appear. The competition between matrix
mechanics and Schrédinger's wave theory led to disinformation reporting
they were ‘the same’ theory. They are not the same: matrix mechanics had no
concept of a quantum state, and no place to put the initial conditions of a
quantum state.

Within a year of discovering his equation, Schrédinger was able to derive
all the correct features of matrix mechanics as a consequence of it. The
converse is impossible, and without a concept of a state matrix mechanics did



not predict quantum mechanics. We’re mentioning this because matrix
mechanics has symbols ‘x{t)’ and ‘p{t)’ that stand for time-dependent
operators. These symbols are often introduced with equations looking much
like Newtonian ones, which is a notational trick that causes great confusion.
It is premature to say much about such operators, other than warn you the
symbols do not describe parcle trajectories. They are mathematical tools that
nicely automate a few easy calculations, make all other calculations
impossible, and play no role in the basic understanding of quantum theory.
One can understand it with a single paragraph in section 9.1.4.

With the modern picture of the state of the system as a little bouncing
wave, what seemed to be a particle moving around was an unresolved blob of
disturbances getting swapped from one location to another. Whether or not
you buy this, that is how the math is set up and it is how the math works. The
dynamical variables labeled by fixed points don’t fly around in space. The
time-dependent deformation propagates among the cheerful little wave
variables, like a continuous crowd performing ‘the wave’ at a football
stadium. Some may think it is more advanced to replace water with educated
facts about water molecules, and the stadium wave by the individual people.
It is not helpful here. The smooth and continuous behavior of water, which
you know by experience and see with your eyes, gets to the soul of the
Universe. Also try to remember the molecules themselves are not gritty little
particles, but continuous interpenetrating jiggling quantum waves.

Later we’ll talk about your thumb, which from the quantum point of view
is quite a remarkable thing. For now, imagine someone with poor eyesight
seeing a bowling ball under a bed sheet. When the ball rolls around they
might think it's a ghost flying atop the sheet. Actually the bed sheet moves up
and down to create the illusion: the disturbance under the sheet moves from
place to place. If the ball is taken away, the bed sheet goes back to its zero-
deformation state: it does not disappear. The wave function is like the bed
sheet: we are aware of its movable disturbances, and call it ‘matter’.

While quantum mechanics needs many variables to describe waves, the
dynamics itself is rather plain and easy; see figure 1.8. Many people have the
relations all mixed up, with notions of ‘operators’ and ‘probability’
competing and conflicting interpretations. As figure 1.8 suggests, we can
develop almost all of quantum theory in terms of basic wave dynamics that
absolutely agrees with human intuition (about waves, of course!)
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Figure 1.8. The big picture of quantum theory. Quantum dynamics is
a very special linear type (the dot) inside of the larger scheme of
classical Hamiltonian and Lagrangian dynamics of wave systems.
Newtonian particle dynamics includes non-linear cases, but uses far
fewer variables. Quantum probability is more or less separate and
disconnected; the links between the two are tenuous.

In a quantum mechanical universe, a cosmic ray proton kicked out of
some distant supernova does not become a Newtonian or relativistic particle
traveling across light years of empty space. Those particle ideas did not work
out. They do not exist now, so we can’t use them. The cosmic ray proton is a
resonant excitation of the quantum mechanical stuff which propagates itself
as a self-sustaining disturbance in the ground state of the Universe. This
quantum mechanical ground state is really big, and probably a new concept to
you. Being a completely new idea, it is given an old and maximally
misleading name: ‘the vacuum’.

1.1.2 FIAQ

Here are frequently and infrequently asked questions, FIAQ:
There's something different about this presentation. Aren’t we supposed



to start with Planck's constant? Maybe if we lived a hundred years ago.
Absolutely no, for the 21st Century. If you have an A tattoo we recommend
you have it removed'?. The consternation that eliminating A causes to some is
amazing. But since the OQT was addicted to /1, you can and should avoid its
substance dependence.

Consider this: the concept of a little wave does not, by itself and on its
own merits, need a conversion factor of the year 1900 into MKS units defined
by Newtonian physics. Atomic spectra were first measured as frequencies,
and continue to be measured as frequencies. If the Schrédinger equation can
calculate frequencies directly—and it does!—then that suffices to ‘do
physics’. The intermediate step of the OQT involving the Newtonian energy
of particles was a digression. The mix-ups'® over £ are so many that we’ll
need to return to this. For now know his: there are no exceptions to the rule
that reference to £ sends you backwards into ancient history. Dispensing with
h takes you forward.

There's something different about this presentation. Aren’t we supposed
to start with the probability to find a particle? Why? And NO! Since we
don’t need point parcles any more, and will never use them, then why define
physics using what does not exist?

Unless you come from Mars, or have a very lucky educational
background, the one and only defining fact of the wave function Yi(x)
previously seen will be a claim!# that ‘the probability to find the particle in
the volume dxdyz is Y*(x)(x)dxdydz’. This one ‘postulate’ plants four
independent mistakes. It defines quantum probability in terms of
distributions, which later is contradicted by the Born rule (see section 9.1.6.)
that does not refer to distributions. It instructs people to replace complex
Y(x), loaded with information, with Y*(x){y(x)" that has no useful
computational information. It suggests you can use the claim freely in
intermediate calculations, which is false. And it initiates an illogical structure
that must have a parcle for its existence, which is wrong.

Physics evolved. Bohr's 1929-ish Copenhagen presentation came and
went. It is true that the wave function is a humanly constructed proxy for
nature, and not nature itself. What else do you expect? The probabilistic
nature of quantum mechanics can’t be dumbed down, and the naive
definitions found in basic books include mistakes about probability. Let's not



start there! To learn quantum mechanics, you absolutely should believe you
are faithfully describing a little wave, because that will teach you how it
works. Later, your little wave calculation is converted to probabilities for
little waves. Physa-bloggers and TV experts carelessly using the words
quantum parcle are the enemies of understanding!

How can we possibly think about waves without a particle? Don’t we
need particles to make waves? No, there's been some brainwashing about
needing particles as thinking tools. You have never seen a particle of air nor a
particle of water. Your human experience with those funny continuous
substances is priceless. It's a bad idea to replace your valuable intuition by an
imaginary 19th Century gas of little jelly beans. In every experiment so far
the Universe has been 100% continuum, contradicting the partcle
conceptions, which must be dropped. There are no quantized orbits, no
intrinsic quantizations, no quantum leaps, no clouds of point-like electrons,
no irreducible disturbances of measurements. All that collapsed when
Schrodinger discovered quantum waves.

Shouldn’t the credit for quantum waves go to de Broglie? Partly: we can
be generous. History is also a form of power. We recommend fact-checking

original sources. In his 1924 dissertation de Broglie wrote:!°

‘Considérons d’abord le mouvement rectiligne et une forme d’un
mobile libre. Les hypothéses faitesau début du chapitre premier nous
ont permis, grace au principe de Relativité restreinte, 1’ étude
complete de ce cas .... Ici nous devons poser:

(1.3)
v=Wh=mO0c2h1-2,Y ipidqi=m0p2c2h1-p2dt=mOpch1-B2dL=vdeV,
d’ou V=c/B. Nous avons donné une interprétation de ce résultat au
point de vue de I'space-temps.’

Consider the problem from two perspectives, if any. At the minimum,
hundreds of millions of people have uncritically seen the equations, with their
teachers saying they were meaningful. That is because those people were told
the discussion was about particles, and they did not know any better.

From the other perspective, think again: if you propose a wave, what are
those things mass m, velocity V, and momentum p that appear in the
equations? They are particle concepts in the context of de Broglie and Bohr.



Those masses and momenta are not wave concepts nor wave attributes, in the
context of the original. That is why de Broglie’s equations never made sense
as a theory nor a piece of a theory, when viewed on their own. The problem
for de Broglie, then and now, was attempting to assemble cookie-cutter
equations obtained on one basis into a new concept that needed new
equations. Upon hearing about it, Peter Debye ridiculed the method, saying,
‘if this man is serious, why does he not write a competent wave equation?’
(And Schrodinger followed up on it.)

The topic called ‘wave—particle duality’ amounts to 99.9% commitment
to particles, and 0.1% vaguely associating a cookie-cutter wave to make the
particle misbehave. The attempt is not internally consistent, and not a part of
quantum mechanics. In 1924 de Broglie's idea was far-seeing. In this century
it is a bunch of symbols seeking their meaning in the mistakes it kept on
board: you are better off not translating them from French to English. There
are many examples of how random combinations of equations might seem to
predict new physical information, but do not.

Writers often present physics history as going in a straight line, with
every praised accomplishment leading directly to the next. A sort of phony
reverence for ‘the founders’ can be a cover for a sequence actually based on
accepting authority statements without critical thinking. The actual progress
of physics research, and physics history, is as ‘crooked as a dog's hind leg’.
Twenty five years were wasted between Planck's correct empirical fit to the
black body spectrum and Schrédinger writing a viable wave equation. There
are no cases where the pre-quantum equations became foundations for
quantum mechanics. Every pre-quantum equation derived from data was
found to be a special case, and not a general principle. Watch out for those
who order their presentation chronologically, and apply patches to make it
look coherent: it falls apart when you study the actual subject. You will
encounter false advertising, and false information on what to believe. Let's
not repeat a full century of physics by building on mistakes.
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Chapter 2

Everything is a wave

Figure 2.1. A picture of a quantum wave scattering off an
impenetrable sphere. This comes from an exact calculation, not an
artist's conception. The wave moves from left to right in oscillatory
fashion: a movie would be ideal. The real part of the wave function is
shown as the height; the actual wave exists in three dimensions, and is
rotationally symmetric about the axis of propagation. The imaginary
part is simply 90° out of phase. The reflection is the pile-up on the



left. The ‘shadow’ downstream on the right is actually a nebulous
phenomenon, not a sharp one. There are no edges, and color was
assigned by arbitrary software. Almost all quantum waves are almost
always moving.

Everything known—solid, liquid, vapor, or plasma, the vacuum, out past the
furthest galaxies, plus the space in between—is some kind of wave. Folks,
the quantum universe is just beautiful. You cannot know the gorgeous,
sensuous, voluptuous, infinite dimensional beauty until you understand
quantum mechanics. Everyone in physics reports that learning quantum
mechanics was the most staggering experience of their lifel.

When people hear this news, they are not sure they believe their ears, or
what the the word means. Waves in what?.

2.1 Waves in what medium: waves made of what
stuff?

Let's add a bit to the picture. We are not talking about waves like those on the
surface of water. Such waves occupy a boundary where the water ends.
Quantum waves exist throughout the interior of the Universe, where there are
no boundaries.

To get started, humans are very good at understanding a lower-
dimensional world, like a two-dimensional surface. It is a first step to
developing and trusting your understanding. Then consider a mental movie of
an unremarkable wave moving and spreading over the surface of a distant
ocean. If your movie is just ordinary quality—not approaching a well-made
TV commercial advertising water—it might have more informational content
than learning volumes on partial differential equations. It may seem a
paradox that even a child's vision of waves could have so much information.
There is no paradox. Mathematics is often a clumsy under-representation of
how people think. It is possibly less powerful than how the insects can think,
but it has still developed into the most powerful tool to communicate and
assist our thinking.



Once comfortable with a two-dimensional wave, gently back away from
using the ‘height’ of a wave in centimeters. There will be a ‘value’ of the
wave, also called its amplitude, which is more general. The ‘amplitude’ will
be expressed in units to be decided later: be flexible.

Figure 2.2. A bird’s eye view of a generic electron, which is an ever-
vibrating wave with no particular shape. This is actually a picture on a
two-dimensional space. The real thing lives in three dimensions. There
are no edges.

Now consider waves in three-dimensional space. Imagine what it means
in the context that ‘the world is made of waves’. The waves must be all
around us, inside us, interpenetrating. In fact they are ceaselessly vibrating,
intermingling, inside of everything and one another. For example, the proton
is a little self-trapped wave, like a smaller atom inside the electron wave that
makes an atom. In a convenient approximation the proton is ignored, and
imagined fixed, but that is an approximation. The electromagnetic field



waves pass right through and interpenetrate both the electron and proton
waves, and vice versa. This is the new and simple vision. Don’t bother with
Mr Mach's particular hobby, a picture of empty space with a moving point.
Start thinking of the entire Universe as living inside a continuous multi-
dimensional ocean without a boundary.

Then what is the stuff of waves? It is the stuff of what the Universe is!

2.2 Evidence for waves

Visible light waves are rather small. Very short waves tend to go in straight
lines, known as ‘rays’. The straightness comes from the symmetries of
physics in three-dimensional space. The direction and wavelength of the
wave are conserved, namely do not change with time.

This is another example of the relation between symmetries and
conservation laws. In fact it is the explanation of conservation of momentum,
referring to the momentum of light rays, not particles. No particular place is
special in a vacuum. Once moving in a vacuum, there's no special place to
stop: waves must keep moving, so wave momentum is conserved.

It is not very hard to deduce that light is a wave, and Mr Huygens, the
contemporary of Mr Newton, explained a great deal of it. It is sad that wave—
particle apologists tried to rewrite history, which was always clear on the
point that waves could explain everything observed, while Mr Newton's
particles never did. Somewhat like Huygens, the author's mother first
explained the rainbow of color from an oil slick on a puddle of water. ‘Look
at that!,” she said. ‘“You always see those colors. Qil is not colored. What
causes that? The color is the light not the oil. It is caused by the oil layer
being very thin, and stopping waves. The colors not stopped reflect back,
separated and pretty.” My mother disgraced Mr Newton, who botched the
interpretation.



Figure 2.3. A modest house in the neighborhood, seen through a
pinhole. Small distortions from light waves diffracting off the pinhole
become easier to see if the pinhole is wobbled slightly with the line of
sight fixed.

‘Stealth airplanes’ became public when an American president
accidentally mentioned they existed while he was on TV. The press was later
invited to see the technology, supposedly explained by radar-absorbing paint.
We believe in good paint, but there's probably more to the trickery?. Nobody
notices that the front lenses of binoculars were being stealth-coated for
visible light 50 years ago. The coating has layers of material to cancel
reflections. When reflections are nullified, more light goes into the binoculars
to make a brighter image. It's not increased absorption, it is increased
transmission.

2.2.1 Do this experiment

With small effort you can play with waves of light. Make a clean pinhole in
paper with a pin or a sharp pen or pencil. A 0.5 mm mechanical pencil works
well. Aluminum foil or a gum wrapper works better than paper, if any is



available. Look through the pinhole at something detailed and far away
outside on a sunny day. Without moving your eye, wobble the pinhole very
slightly, and try to observe some distortion near the edges of the image. A
slight watery distortion should be visible, as if looking through a somewhat
flawed lens. The experiment is not critical, and you can even make a pinhole
with the cracks between your fingers. Wobbling the pinhole helps your brain
resolve small angular deflections, and it eliminates the question of whether
the position of your eye is to blame.

Human eyes can resolve angular features of 1/1000-1/10 000 rad. That's
equivalent to seeing a spot 10 cm to 1 cm across (grapefruit to gummy-bear
size) at a distance of 100 m. Light waves going through a pinhole diffract
sideways by a definite angle. It is approximately the wavelength divided by
the diameter of the hole. Since you see the effect, the wavelength of light is
somewhere around 1/1000 of the pinhole size. Dividing 1/2 mm by 1/1000
gives a wavelength of 1/2000mm. This is dead on. Ignore the accident of
being dead on. The wavelength of light cannot be arbitrarily far from the
estimate. You are now an experimental physicist’. You can check the
particular wavelength is good for oil slicks, the optical coating of binoculars,
designing space telescopes, and so on.

2.2.2 La tache de Poisson, also called Arago's spot

Light emerging from a pinhole fans out like ocean waves passing a rock.
Downstream from a rock the waves coalesce as if the rock were never there;
see figure 2.4. Francois Arago (1786-1853) used the same effect to test the
wave theory of light. He sent light through a pinhole* and past a tiny metal
disk stuck on a piece of glass. (Tiny metal disks are very easy to make. Melt
a small bit of metal into a tiny ball. Tap the ball with a hammer.) The light
emerging from the pinhole clearly diverges, and the shadow of the disk was
observed to grow larger with distance. Far downstream, however, a bright
spot appeared in the center of the shadow: the ‘spot of Arago’ (or ‘la tache de
Poisson’). Light did not go through the metal disk, but curved around the
disk, and the coalescence downstream proved light is a wave. Careful
observation can even reveal bright and dark rings inside the shadow. The
experiment is both qualitative and quantitative. The quality of light being a



wave was tested and confirmed®.
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Figure 2.4. Two views of a bright spot downstream and inside a
shadow. The left panel shows a calculation of waves moving left to
right. The dark lines show the approximate shadow boundary, inside
of which waves will merge and reappear. The right panel is from an
experiment using a laser.

The distance down the optical path where a central spot would be
significant was also predicted. This is not trivial, and involves the physics of



diverging rays (Fresnel zone) many advanced physics books do not even
cover®. The furthest distance to see the spot is near the area of the disk
divided by the wavelength. For Arago's reported 2 mm disk and wavelength
1/2000mm, the furthest distance is 25 000 mm, or 25 m. That's too far for a
table-top experiment in 1818, but with a disk one third the size, a ninth of the
distance is 2.6 m, which looks good.

Imagine the accomplishment in 1818. Waves of the nearly infinitesimal
length of 1/2000 mm actually curve in free space. Arago had made a
microscope to look at light itself”. But Arago had help. Augustin-Jean Fresnel
had developed a wave theory that explained the strength of reflection and
refraction from glass or crystal surfaces. Simeon Poisson's theory held that
light was a stream of particles. Poisson attempted to shoot down Fresnel's
waves on the basis that a bright spot would be observed far downstream of
shadows. Poisson thought that was absurd, and proposed the test. Arago
decided to test the absurd. Poisson attempted to falsify the wave hypothesis,
but ended up truthifying it.

2.2.3 Most photon waves are much larger than most
atoms

There are many subtleties in cookie-cutter equations, and here is one of
interest. A 60 Hz AC circuit should have a wavelength A~c/(60s—1)=5000
km. On that naive basis, every wire in every town of the American electrical
grid should be exactly in phase with every other. But that's too simple. If you
investigate the industrial zone of any town, you’ll see banks of capacitors the
engineers have strategically located to get the phase of the local three-phase
electrical supply to behave itself under varying loads of electrical usage. An
electrical power grid is an immensely complicated electrical wave medium
where unwanted space and time fluctuations cost real money. The engineers
get the wave relations right because their calculations are never distracted by
the mistaken concept of ‘point-like photons’. Once 60 Hz AC is supplied to
its windings, a basic electric motor rotates in synchronization with the
applied time-dependence, and the user never thinks about the large-scale
variations.

Recall that a typical ray of visible light has a wavelength of 1/2000mm.



Since microscopes cannot see atoms, they must be much smaller than a
wavelength of light. To be ‘steady’ a wave must repeat nearly the same for
many periods. Suppose Av<v is the range of frequencies. After a number of
about N2v/Av waves, the wave train will repeat. The total time for N periods
is At~N/vz1/Av. This is called the uncertainty relation for time and
frequency,

AtAvz1.

It adds detail to the obvious and circular fact that an absolutely periodic
signal (A v = 0) must last forever (At- o). While it was quite oversold,
there's actually not much to the uncertainty relation: it is a math identity
about Fourier analysis. More information will be given in section 8.2.4.

When atoms make an atomic transition, the frequency spread Av is often
exceedingly small compared to the central frequency. The observed
frequency spread measures the time for the transition to occur: it completely
contradicts the ‘instantaneous quantum leap’ assumed in the Bohr model. The
1S2S transition of hydrogen is an extreme example. The intrinsic width
Av~1Hz, and compared to the transition frequency v/Av~1015. The atom
oscillates like a radio antenna for about a second of time while emitting the
radiation. Moreover, the transition produces two photons, violating the OQT
rule assuming one photon must be emitted or absorbed at a time. The 1S2P
transition is faster: it takes a nanosecond. Light travels about 1 ft in a
nanosecond, but 1 ft is hundreds of millions larger than the atomic size. Both
the size and time scale numbers are completely inconsistent with the ‘photon’
being localized anywhere on the scale of the atom.



-
Fi

Figure 2.5. A quaint 1930s phototube in a flower pot. Light shining
on the metal backing kicks electrons out to the wire loop, which has a
voltage set up to attract them. An atom explodes because of a
resonance between its time dependence and the light.

The physical situation is so far from the point-like photon picture that it is
breathtaking. On the TV show Star Trek the photon torpedoes are dangerous
pinpoints of light shot out like cannon balls. Nothing like that ever happens.
The calculation of an atomic transition is more like watching a plastic beach
ball respond to a tsunami wave in mid-ocean. The beach ball is not the
photon, it is the electron wave trapped in the atom. The tsunami wave is the



photon. A typical mid-ocean tsunami wave may be 200-300 km long,
depending on ocean depth. Its velocity may be 1000 km h™!. The numbers
mean a mid-ocean tsunami wave is very flat and boring. Try to imagine the
scale of flatness 300 km long compared to a beach ball. If all else is glassy
smooth—the default for quantum theorists—the beach ball slowly rises and
slowly falls, as a long, flat wave takes 20 min passing under its butt.

Two tenuously attached beach balls—a molecule—might fall apart from
the interaction. Imagine watching two beach balls struggling over their
conjugal destiny over 12 h of gentle sloshing in glassy smooth water where
nothing at all seems to be happening. No, please don’t. Quite a few quantum
processes take a long time to occur, and they are gentle, non-destructive,
peaceful unions and disunions nothing like the cannon-ball excitement of TV
shows. When and if physicists can arrange for any localized, hard collision, it
never comes from the localization of ‘particles’, which have never been
observed.

However the correct physical picture was unavailable in the OQT.
Einstein, Bohr, and almost everyone misunderstood the effects and
importance of resonance. The resonance match of time dependence was
missed due to the dogma of ‘energy levels’. When resonance was overlooked
the matching of conditions was wrongly thought to be a match of subatomic
spatial collisions that never happened. Many people have experienced an
open metal pipe howling mysteriously in a strong wind. The pipe might be
pretty small, but there's no demon in the pipe. The resonant match of time
dependence caused by a breeze miles in extent causes the effect. Similarly,
the sharpness of the transition observed in the photoelectric effect is due to
the resonant response of the atom, as a nanodetector, not photons!

In 1968 Willis Lamb and Marlon Scully surprised many with a paper [2]
called “The photoelectric effect without photons’. The paper simply repeated
the quantum mechanical calculations found in textbooks since the 1920s
while not using the language or words of ‘photons’. No trace of a particle-
photon or a quantum-photon appears in the calculation. Around 40 years
before, people should have started reporting that ‘we found out the
photoelectric effect comes from a resonant response of electron waves in the
atom’. Instead, a bias to confirm and validate the pre-quantum OQT had
caused the calculations to be consistently presented in words presupposing



photons, and presupposing the methods of the OQT, which Lamb and Scully
noticed were never used in the calculation. To this day the ‘patches’ made for
gaps of pre-quantum theory are regularly used for the post-quantum theory
that has no gaps.

The question goes to what one expects from a physical theory. A
complete theory has no gaps, and never appeals to external postulates for
support. Einstein, Bohr, and the others conceiving the OQT were not fools,
and they were very visibly aware that making ad-hoc postulates contradicted
the proper design of a physical theory. Yet after quantum theory a struggle
reappeared to go back to ad-hoc postulates. Physics is supposed to be better
than that. Someone® has written “The public is more familiar with bad design
than good design. It is, in effect, conditioned to prefer bad design, because
that is what it lives with. The new becomes threatening, the old reassuring.’

Edward Tufte, noted for designing beautiful books, wrote that

‘Good design is clear thinking made visible, bad design is stupidity made
visible.’

2.3 Early clues to the size and nature of atoms

In this century you can buy a machine to resolve and manipulate single
atoms. Doing physics without hi-tech and extravagant expenditure of money
needs real cleverness. To measure the size of atoms with 19th Century
technology, here is what to do.

Liquids and solids are basically incompressible: the 19th Century picture
has atoms packed tightly like identical balls in a box. For an estimate, an
atom can be moved in any single direction by about one atomic diameter.
Small molecules are close to the size of atoms, so we’ll ignore the distinction
for a while.

Nowadays you can find liquid nitrogen in any hospital. Its Newtonian
mass density is 0.807 g cm ™3, the atomic weight of N, is 28.0, so 1 mole of

the molecules make 28 g = 28/.807 = 35 cm3 of volume. The volume per
atom is 17.5cm3/6.02x1023=2.8x10—-23cm3. That volume will be close to
the molecule size-cubed, which gives size=3.3x10—8 cm, or zero point three-
three millionths of a millimeter. Besides assuming cube-shaped molecules,
this calculation has a flaw. It relies on Avogadro's number 6.02x1023 taught



in school, without giving the information on how you would ever determine
Avogadro's number. Avogadro himself had no method to find his own
number.

And so, for a long time Avogadro's number was not known. There is
information in gases. A gas consists of atoms heated to separate and fly
around freely. Heating a given volume of liquid or solid in vacuum not too
far above the vaporization point makes a gas with about 10 000 times more
volume than the corresponding solid. This depends on the temperature, so
consider steam at 200 C ~500 K. Since the cross sectional area of the
molecule does not change, the extra volume of gas comes from the volume
through which atoms move, called the ‘mean free path’ (MFP). (You can
imagine randomly oriented solid rods about one MFP in length and the
diameter of an atom filling most of the space.) The volume fraction predicts
the MFP is about 10 000 times the atomic diameter. Now we need the MFP
from 19th Century data.

Figure 2.6. Do not look at this figure. It's from an obsolete



government agency with an obsolete logo describing a dysfunctional
and bad design that never existed.

Figure 2.7. Three cartoon of the hydrogen n=3,£=2,m=2 wave
function. The left ‘Easter eggs’ picture uses three conceptual errors
dating to the 1920s. Mistake #0 omits the time dependence. All the
states are oscillating, and some whirl around like propellors. Mistake
#1 shows contours without the information there is a continuous three-
dimensional structure, like layers of an onion, except a perfectly
smooth onion. Mistake #2 is making pictures of the modulus-squared
Uy at all. It is rather useless. The panels on the right show a few
transparent layers of the real part of the wave function. A sense of
rotation is indicated by the axis and arrow. The colors stand for
positive and negative regions of the wave function. The atom on the
right happens to have its rotation axis tilted. Such things naturally
happen.

The MFP was deduced early from diffusion. It describes the slow spread
of atoms or molecules that are over-concentrated in a region. An excess
number density p spreads by current jD=DV p, which defines the diffusion
constant D, with dimensions D~length2/time. For an irresponsible estimate,



imagine a bottle of perfume in a closed room is opened very carefully 10 cm
from your nose. You might smell it in a few seconds: 10—1 s is too fast, and
1000 s is too slow. That estimates D~1 cm? s™!. D will be an increasing
function of molecular velocities v, and by dimensional analysis D~Lv. The
length scale L must be the MFP, because there's nothing else. From the
perfume geruch-experiment

MFP~Dv~1cm2s—13x104cms—1~10-5cm;d~10-4MFP~10-9cm.
Calculations by Johann Loschmidt in 1865 found a typical MFP for a gas at
room temperature and pressure to be around 10—4 cm. Dividing by 10 000
gives molecular diameter: 10—8 cm. Improving the estimate with the volume
of a spherical atom being m(diameter)3/6, and so on, Loschmidt claimed to
find an accurate d=8x0.000866x0.000140=0.000000969mm, (his original
numbers), which he sensibly reported ‘or in round numbers one millionth of a
millimeter for the diameter of an air molecule’. Lofshmidt attributed the first
estimate to Maxwell and to later work by Meyer.

Maxwell subsequently cited Lofschmidt and an independent 1868
determination using the same method by George Johnstone Stoney (1826—
1911). Stoney happens to be quite central to the early development of
quantum physics. He did more than anyone we might name. Yet for some
reason, Stoney, perhaps for being a brilliant Irish genius of the 19th Century,
was completely ignored® by the later period of Planck, Einstein, Sommerfeld,
etc, having their turns at being European geniuses. Stoney measured the size
of atoms, first deduced the existence of ‘an atom of electricity’ he called the
electrine, correctly attributed the frequencies of atomic spectra to the motion
of electrines, and fought back successfully when Helmholtz appropriated the
atom of electricity and renamed it the ‘electron’. Stoney also determined the
unit of elementary charge, up to the experimental uncertainties of the time.
Knowing the unit of electric charge allows you to electrolyze 18 g of water
into 22.4 1 each of H and O, at STP, over-determining Avogadro's number.

All this was done by Stoney before 1891. Stoney also set up the pre-quantum
atom with elliptical orbits: more on this in section 6.1.2. It was not the
ultimately correct direction, but it is the atom you were told was the genius
idea of people working 20 and 30 years later. If people had followed up
correctly, many troublesome wrong ideas might never have gotten to be so



popular.

Figure 2.8. A more typical electron wave in a hydrogen atom that has
been ‘kicked’ into a random blobby shape. The colors show the sign
of the wave function at the instant of the snapshot.

2.3.1 How to use the size of an atom

The size of an atom is a curiosity before you know atoms are little waves.
The facts of waves helps us use the size productively.

As a crude estimate, the size of trapped electron waves is somewhat
smaller than the atom. Unless matter waves go faster than light, we expect the
physical wave speed to be less than light speed c=3x108 cm s~ '. To order of
magnitude, the frequency of electron wave vibrations

f~speed/size<10-8cm/(108(cms—1)<1016 s~!. An atom at rest, and vibrating

constantly at a frequency approaching 101 Hz is a breathtaking conception!.

Compare the calculation to experiments, remembering the exponent 16.
Since they are vibrating, atoms should emit light. Following Mr Balmer, Mr
Rydberg's observations were well-described by an emitted-light frequency
formula f=Rooc(1/n12-1/n22). We’ll explain the integers n1,n2 momentarily.
In one surviving 1888 record, you can find the constant Roo=1.097x107m-1.



The corresponding vibrational frequency is
(2.3)

2nRooc=wH=2.08x1016Hz.

We estimated 10'® Hz: as an estimate, the calculation is right on. The
Schrodinger equation predicts everything about hydrogen by beautiful, self-
contained calculations without any flaky volunteering of external information
or estimates.

The frequencies of light a quantum wave absorbs or emits are the
frequencies of its electromagnetic current. By a formula from the Schrédinger
equation (see section 6.1.4), the current's frequencies are the differences of
frequencies with which the wave vibrates. Rydberg's formula for light
frequencies is the difference of two frequency formulas, just as consistent.
The n1=1 case shows the lowest possible frequency a hydrogen atom can
have'! is wH.

We have just reviewed information that is supposed to be well known.
However, the way we are approaching it is new. We have not mentioned or
used Planck's constant anywhere. We have not used or mentioned any
concept of intrinsic quantization of anything. Those elements of the OQT are
not just unnecessary, but they simply do not exist along the modern path to
quantum mechanics. Those were the mistaken ideas that stopped Bohr and
others for decades, so that they could not accept the actual subject after it was
discovered.

Let's repeat the physical picture. The atom is a trapped electron wave.
The wave does not just sit there like a dot. It is vibrating very rapidly, and it
cannot stop, because the balance between wavy springiness and wavy
bouncing is what an atom is.

2.3.2 The aether came back!

To repeat, the stuff of quantum waves is the Universe itself. There was a
precedent in 19th Century aether theories. They generally assumed that
empty space contained a mechanical substance which supported the
vibrations of light waves. Many have heard that Maxwell and Einstein and
relativity eliminated the aether. It once was said ‘there are just equations, and
no underlying medium is consistent’. That is true in physics pop-culture,



false for physics as it now exists. Pop-culture is always 100 years out of date!

The aether did not go away, but came back as the Lorentz invariant
vacuum. There had been a concept error associating a dynamical medium
with a special Galilean rest frame. No such relation exists, as shown by
constructing a mechanically correlated medium that is perfectly dynamical,
supporting all kinds of waves, yet which has no preferred relativistic rest
frame. In your first course in quantum field theory (which is somewhat above
the level of this material) you will spend weeks developing Lorentz-invariant,
classical continuum aether theory (LICAT) while never using the word
‘aether’ or acronym LICAT. Please do some fact checking: such material is
usually found after defining fields, the ‘action principle’, generalized Euler—
Lagrange equations, the facts and representations of the Lorentz group,
Noether's theorem, and before ‘field quantization’.

Figure 2.9. The dynamical framework of quantum mechanics is
continuum ‘jello’ theory. We live inside the jello.

In continuum mechanics every disturbance of the ‘medium’ is described
by a coordinate g, and its conjugate momentum p,. These never describe a

point-like parcle. Instead they refer to continuously varying sets that are



infinite by their very nature. You would do the same to describe a wave
propagating inside a block of jello. The main difference between quantum
mechanics, which uses continuum mechanics, and the Newtonian model lies
in a continuous infinity of dynamical variables, which cannot be reduced to
three ‘position’ coordinates.

Yet as soon as we mention ‘momentum’ the brainwashing by Newtonian
physics might be misinterpreted as a parcle existing point by point in the
medium. That is not the right idea, but originates in mistakes of Newtonian
physics incompetently attempting to define everything with a parcle. By 1800
Lagrange's formulation of mechanics had revealed that momentum is a very
general concept, not equivalent to the Newtonian one, however many times it
is misunderstood. Fields and waves have momenta, and infinitely many of
them, for the infinity or motions they undergo. All of the mixups about
momentum come from one terrible and wrong ‘definition’ p=mv, and from
ignoring the more flexible and universal definition of continuum Lagrangian
and Hamiltonian physics. Since we cannot explain that subject in one
paragraph, try to remember this: quantum mechanics of waves always has an
infinite number of dynamical variables. Every attempt to dumb the variables
down to those of a classical Newtonian parcle causes mistakes and problems.
Every authority who tells you the wave function ‘does not exist as a physical
wave, since there is no aether for light or matter’ is parroting unhelpful
advertising that became obsolete. Physics evolved and moved on, while the
advertising stayed around.

Ironically, the Michelson—Morely experiment, so much cited to support
special relativity, actually did have a preferred rest frame. The Ewald—Oseen
extinction theorem [1] takes into account the propagation of light in air and
other media. Light does not jump across empty space between molecules, but
interacts with constant regeneration of its waves among the molecular waves,
and adopting the overall molecular rest frame. The effect is subtle, and
directly contradicts a supposed estimate (actually a bluff) that the index of
refraction of air (1.000 28) is ‘negligible’. After traveling a mere millimeter
of distance in air, light has already adapted itself to the overall rest frame of
the air. Then an experiment done in air has no information about ‘propagation
in free space’. The Michelson—Morely experiment was conducted in air and
measured the speed of light in different directions of the atmosphere of the
laboratory room. Not surprisingly, the motion of the Earth through space was



not detected.

The Ewald—Oseen theorem appeared in 1915-16, many years after the
Michelson—Morely experiment and special relativity. The Michelson—Morely
experiment was published in 1887 and is available online [3]. It appeared 36
years after Fizeau's 1851 water tube experiments did observe a change in the
speed of light traveling with and against the flow of moving water. Michelson
and Morely had repeated and confirmed Fizeau's experiments before building
their famous test apparatus. Repeated experiments and repeated theories of
thoughtful, dedicated experts did not settle down into a consistent picture for
decades due to one overarching fact: waves can be very, very subtle.

2.3.3 FIAQ

Many writers say the Schrodinger wave function is just a tool to statistically
predict the action of particles. The presentation here claims the wave
function exists physically. Which is it? This is a question about ‘existence’.
The people who told you what exists lied to you. They don’t know what
exists: we don’t know what nature ‘is’ either. Then why did those writers
insist on parcles?

Here is an important fact: interpreting wave equations in precisely the
way they are written and the way they work is internally consistent, and
makes quantum mechanics most easy to learn. Learning physics always
involves making choices of what issues to postpone, or completely ignore.
Faithful, methodical people who try to memorize everything in a 1200 page
book do worse than those who find the actual information and ignore the
book.

We concentrate on quantum waves as potentially the literal, real
substance of the Universe because it might be true. It is not automatically
wrong. Believing the equations in front of you is also maximally efficient to
learn the material. The most satisfying approach makes interpretations fit the
equations, while final decisions about ‘ultimate reality’ are not needed until
they are needed. In that order of development the wave function is as real as
anything else.

By the time Fresnel and Arago were investigating waves of light, it was
already known that the wave concept was not exhaustively complete. The
proposal that classical light was an electromagnetic wave was not



exhaustively complete. Light with a given polarization will pass a polarizer
oriented to pass it, and stop on a polarizer at right angles. The orientation of
any particular electric field is directly observable. There is no electric field
which will pass with 50% intensity through every orientation of a polarizer.
Unpolarized light cannot be described by a wave amplitude, nor any
superpositions of wave amplitudes. Since the electric field model has this
flaw even in classical physics, is the electric field an artificial mathematical
construct with no physical existence?

Matter waves for electrons also have polarization. There is a Schrodinger
wave model for an electron ignoring that, and a different wave model
incorporating it. Just as for light, there is no wave function for an electron
with polarization that is also unpolarized. So there is more to learn: quantum
theory in general form uses a more subtle tool called the density matrix. A
density matrix is not always needed, and the way it works is equivalent to a
wave function sometimes.

The over-selling of quantum mechanics made it hard to get reliable
information about it. The first efforts to command and control the subject
went off track, setting up postulates in a pretended Euclid-style axiomatic
framework. Since that was done out of order, quantum mechanics is the only
topic in physics where postulates were set up and contradicted by quantum
mechanics. Since the general case disobeys most of the pretended postulates,
it is greatly suppressed. The presentation of the density matrix is either
omitted, or described as: ‘In some cases we do not have complete information
about a wave function’. (Mostly we NEVER have complete information
about ANYTHING.) A truthful statement would be: “We generally guess the
description by a wave function which might be adequate. It is not always so,
and in general, systems are described by density matrices’. Since we’ve given
you this information, we will not be making stinky axiomatic postulates
about wave functions. You would not accept any!

Qualitatively, a density matrix allows a system to be described by adding
up weighted predictions from a number of wave functions. You would do this
on your own to compute weighted averages, which the density matrix
automates. Strange to tell, the overly restrictive postulates of the OQT, as
replanted by the Copenhagen presentation asserting the ‘eigenvalue
postulate’ (see section 8.3), strictly says!? this is ‘not allowed’.



To understand quantum probability one must first learn to use one wave
function with the concepts of entanglement (see chapter 9). Coherent
presentations beginning with density matrices, and arriving at wave functions

for special cases do exist!3: it is not an easy road. The main advantage is the
realization that quantum mechanics is descriptive, not proscriptive: nothing is
prohibited until you make a model with prohibitions. What else did you
expect? We suggest a person should return to pondering ultimate reality after
learning the basic physics, and discovering how very many times people have
lied to others about ‘quantum reality’.
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Chapter 3

There is no classical theory of matter

Figure 3.1. Head of a fly, drawn by Robert Hooke and published in
his Micrographia, 1665. Hooke was an acute observer of nature, and



deduced universal gravitation and the conception of the vector field of
gravity extending across space.

The discovery of universal gravitational attraction by a force decreasing with
the inverse square distance was due to Robert Hooke. He published it in his
Cutlerian Lectures of 1665, and supported it with observations of the Moon,
the variation of atmospheric pressure with height, and of course Kepler’s
laws. That was done more than 20 years before Newton’s Principia. It was
Hooke’s challenge to Newton to reproduce the result, and possibly improve
it, which first drew Newton’s attention to the problem.

That is probably not the history you have heard: as Winston Churchill
said twice: ‘History is written by the victors’. Newton was the victor who
hated Hooke, arranged after his death to have every portrait of him burned,
forged documents, and removed the substance of the Cutlerian Lectures from
Hooke’s posthumously published collected works'. Kepler, Huygens, Hooke,
Wren, Euler, and many others made the breakthroughs of the ‘clockwork
Universe’ for which Newton has sometimes been given all the credit. Yet the
subject called Newtonian physics never led to a consistent Universe.
Classical mechanics cannot deliver a consistent theory of matter. Ultimately
this is due to dimensional analysis, which in Newtonian physics has a major
flaw called the kilogram, and which in electrodynamics has no dimensional
scale at all. Quantum mechanics is flawless and contains its own inherent
dimensions. It does possess fundamental constants with units of length, or
frequency, depending on your preference, and it does not have room for the
Newtonian kilogram.

3.1 Earnshaw’s no go theorem

Earnshaw’s theorem says there’s no stable equilibrium configuration for any
classical point electric charge. Stable equilibrium means that if the forces on
an object are balanced to zero a small variation of the object’s position
pushes the object back into position, rather than kicking it out of position.
The proof is easy. The total external forces summed over a sphere



surrounding a given charge must point inward. By Gauss’ law the sum of
external electric fields over a sphere is proportional to the external charge
inside the sphere, which is zero at the given point. (The force of the given
charge on itself is never counted in classical electricity and magnetism.)
‘Magnets’ won’t help. They have no effect on electric charges at rest. Their
effects on each other obey Earnshaw’s theorem.

The upshot is that if you arrange a bowl-shaped configuration of potential
energy for a classical charge’s position in one direction, there must be a
saddle-shaped compensation in another direction. If you attempt to stably
balance a bowling ball on a horse’s saddle, it will fall and hurt someone on
one side or the other.

Let’s make this quantitative. The electrostatic potential? is a classical field
d(x;t). Fields generally obey wave equations, in this case and for a region
without external charges

(3.1)
2V - 20=02¢0t2.

The restriction ‘no charges’ is more sneaky than you might think. If your
theory has point charges, there are no charges everywhere, except for
infinitesimal mathematical pathologies (singularities) exactly on top of the
charges. So the equation applies right up to the edge and all the way around
infinitesimal points, which is pretty much ‘everywhere’.



Figure 3.2. A generic wave has no particular shape. The cosine shapes
are tools of human description, which work because you cannot stop
people from using them, but which don’t occur without a definite
reason.

Before you get equation-hives, let’s do something easy. The static
assumption is zero ‘speed’ and zero ‘acceleration’ of the field everywhere,
0b/0t=02¢/0t2=0. The right hand side of the equation is zero. Consider a two-
dimensional situation ¢(x)=d(x,y). (This does not mean the world is two-
dimensional. It means ¢ does not depend on z, so it’s unchanging in the z
direction. It’s a case to consider.) We then have

(3.2)
A bowl-shaped trapping region along the x direction needs increasing
curvature 02¢/0x2<0. Then 02¢/0y2>0 follows for the y direction, which
represents an upside-down bowl shape that is unstable. Right?



Earnshaw’s theorem is more general than Poisson’s two-dimensional
electrostatic formula, equation (3.2). One reason to show you Poisson’s
formula is to observe something unexpected, and not well covered anywhere.
The solutions to equation (3.2) and its three-dimensional version have no
definite shape. You can literally and without restriction ‘bend’ the potential
function into any shape you desire along one direction, such as ‘x’. The
equation responds by computing 02¢/0x2, everywhere you specified it, and
demanding payback among all the other terms A function in three-
dimensional space has three natural curvatures® at every point, which can be
taken as 02¢/0x2, 02¢/0y2, and 02¢/0z2. If you’ve taken calculus—or even if
you failed calculus—you know that each of those three symbols is a
particular, computable quantity. Poisson’s formula does not specify three
computable quantities, but only the sum of three quantities. Since it’s not
predicting much, the equation cannot possibly predict any particular shape,
and only places one gentle restriction on all possible shapes of the
electrostatic field. We wish this basic fact was more widely known!

Just as with the OQT, a few cookie-cutter electromagnetic formulas have
circulated that give a short-run edge for engineering applications, while doing
at least as much harm in the long run. We are thinking about the ‘Coulomb
solution’, an electrostatic potential ¢p=e/|xT, d=e/r, p=e/(4ne0r), in different
notations. The formula describes a singular spherically symmetric
configuration of pre-ordained shape, directly contradicting the general rule
we just discovered, which predicts no special shape. In early work the
formula is derived from Coulomb’s law, reported to be a law, which seems
pretty serious. Then Coulomb’s law and all its baggage seem to predict and
require the point-like parcle we said we’d never need. The contradictions are
resolved by asking which concepts and formulas are more fundamental than
others. We began with the wave equation (3.1). It includes time-dependence,
while Coulomb’s law does not. Coulomb’s law, as written, predicts electric
fields will be updated instantaneously everywhere when a charge is moved:
that kind of time-dependence is wrong. Similarly, the Coulomb-type
electrostatic potential comes from disallowing any time dependence,
disallowing any but spherically-symmetric shapes, and forcing all
singularities to be at an infinitesimal, extrapolated point. That adds up to
quite a few arbitrary assumptions. No cookie-cutter equation can be used



outside the zone of its assumptions. The most common mistakes in physics
come from forgetting (or being given wrong information) about restrictive
assumptions, performing exact mathematics afterwards, and generating
exactly wrong conclusions.

3.1.1 Waves have no particular shape, unless they
do

The fact that wave-type systems predict no particular shape is very old:
d’Alembert is reported to have discovered the wave equation in 1746. It’s a
mistake to ask for wave equations that predict ‘everything’ or even formulas
with any particular solutions. Both the wave and Poisson’s equations are of
the type known as partial differential equations (PDEs), involving more than
one partial derivatives. Such equations predict a mild but strict consistency
relation upon wave shapes, and nothing more. We’ll repeat this early and
often.

The wave equations of quantum mechanics are PDEs, and similarly do
not predict particular wave shapes. One can and will select wave shapes of
particular interest for particular circumstances, yet selecting special solutions
is much different from an equation predicting ‘everything’. Pay attention
here! The literature almost everywhere fails to say this plainly. Instead, the
mathematics of PDE ‘solutions’ tends to express very little information,
sometimes in the most complicated way possible. This is a great secret, and
an amusing one. For example, the general solution to one-dimensional
quantum waves in free space will be developed with

yany(x,t)=[dkeikxe—-10(k)tyany(k),whereyany(k)=12nfdxe (3.3)
—1kxyany(x,0),
and yany(x,0) is any function you chose to consider. Many find this
mysterious and intimidating, and we suspect, many cruel teachers have
enjoyed it. Yet the second line actually says that any function yany equals
WYany, and has no information.. The first line has information in only one (1)
of all the symbols. Expressions are very complicated only because expressing
almost no information for almost all possibilities takes a lot of notation!

Knowing that waves have no pre-arranged shape lets you bypass a few



patches made to cover the mistakes of a definite shape. The term ‘wave
packet’ was made up to correct a wrong definition of waves in terms of cosine
shapes. To correct the wrong definition* a wrong principle is then invoked.
The ‘principle of superposition’ says that you can always add two waves that
are solutions and make a new wave solution. It’s generally applied to make
new shapes out of sums of cosine shapes, making them look more essential
than ever. The ‘principle’ is mis-named and false in general, and because it’s
false, it causes problems down the road. However, you can add solutions to
linear equations, which are often used in quantum mechanics.

Returning to Samuel Earnshaw’s theorem of 1842: both in his time and
now, there never existed an internally consistent theory of static, stable matter
in equilibrium. There is no classical crystal lattice of copper atoms with
happy point-like electrons bumbling amid them to make electricity ‘a flow of
electrons’. If a genie could assemble 10%* classical electrons and nuclei into
an intricately chemical mole of copper, with all electric charges equal and
opposite with forces balanced out for every particle, the smallest thermal
fluctuation would cause the whole affair to explode.

3.1.2 Complex waves

The Schrodinger wave function is complex, with a real and ‘imaginary’ p(aSrtL:l )
PEO=Y1(xDHy2(x).

The notation for Y1, Y2, which are both real, is not standard. What was

standard when quantum mechanics was discovered was a certain fear or

superstition about complex numbers that was never justified, and by now is

quite obsolete.



Figure 3.3. Contour map of a two-dimensional slice of the real part of
the solution to the Schrodinger equation for an interaction function
V~1/r. Waves move from left to right, and roll continuously across the
scattering center. A movie would be better. The curve is a hyperbola,
as used in the classical Rutherford trajectory, that approximately
follows the rays of wave propagation in a very rough sense.

Complex numbers are just notation for real numbers, with restrictions
automatically built into the addition and multiplication rules. It is a serious
conceptual error to say the second part of the complex number is ‘imaginary’,
in the sense of not existing physically. The high-school math teacher who



smugly says we cannot buy 31 apples, where 1=—1, does not know how
physics works. There are many examples in physics where pairs of real
numbers match very nicely with complex numbers. The best known example
is complex notation for resistance, inductance, and capacitance of electric
circuits. The real (first) part of the wave function is the actual wave
amplitude, although the word ‘amplitude’ is also used for both parts. The
second part of the wave function is equally important, just as voltage and
current are equally important in electric circuits. We’ll explain more later: we
never replace the complete wave with its modulus-squared y*y. That is such
a dreadful mistake we’ll postpone even talking about it.

Complex algebra automates rotations. Complex z=x+1y has exactly the
same information as the coordinate pair (x,y) representing a point in a plane.
Multiplying z - z'(t)=e—1wtz is equivalent to the rotation

X — X'(t)=cos(wt)x+sin(wt)y;y — y'(t)=—sin(wt)x+cos(wt)y.
PLEASE CHECK THIS by computing the ‘real’ and ‘imaginary’ parts of e
—10tz. With t standing for time, the operation makes the point (x'(t),y’(t)) run
on a circle clockwise (the direction of increasing time.) This took some
planning and explains the minus sign in exp(—1mt).

Rotating a vector in the plane by 180° is equivalent to multiplying it by
—1. The rotation is equivalent to the operations of two 90° rotations in
sequence. In complex arithmetic 1 rotates a vector by 90°, and 1x1=—1 rotates
by 180°. No wonder that 1=—1! The rotations are rather transparent in
exp(—1wt)=cos(wt)-1sin(wt). It apparently took a few hundred years for
someone (reportedly W R Hamilton) to recognize that complex numbers
were automating ordinary geometry, not imaginary non-existence. By now it
is well-known, yet many prefer to maintain there is a mystery in complex
numbers. Who benefits from it?

The algebraic properties explain the role of complex numbers in quantum
mechanics. The two parts of the wave oscillate in time with phase relations
much like voltage and current in AC circuits, which the complex notation
automates. Consider a quantum wave with time dependence i(x;t)=e
—10tP(x;0). Such time dependence is exceptional, but also a fundamental
building-block or thinking tool for what will be general. Separating the two
parts gives



y(xt)=e

1010 HY2(0;PL(D=cos(@OY1(xD)+sin(@y2(0)p2(xt=  (3-5)
—sin(wt)P1(x;0)+cos(wt)P2(x;0).

The multitude of symbols set off in the box has just the same information as
the complex expression underlined . (It is also repetitive: we can’t be sure
you actually checked the algebra suggested.) The expression says that {1 and
2 rotate into each other continually, with neither being more ‘real’ than the
other. We do not need complex numbers to represent quantum mechanics®
but they are efficient and convenient to describe just what is wanted.

We come to the question: ‘OK, so the electron wave is like two real-
valued waves. Why do you need two?’ The answer is known, and comes from
the conservation of electric charge, as expressed by a local continuity
equation (see section 4.0.4) in quantum theory. Consider a real-valued wave
going like cos(kx)cos(wt). That wave disappears everywhere and repeatedly
at times tn=(n+1/2)m/w, for integer n. Periodically the wave reappears
everywhere, out of nothing. That cannot describe a continuously conserved
charge. In comparison the time-dependence of equation (3.5) shows that
when one part of the electron wave goes through a minimum, the other is
crossing a maximum, while there is never a moment when the wave entirely
disappears. In section 6.1.4 we will see the quantum electric uses both the
real and imaginary parts of the wave function.

Constructing math to match conservation laws is an everyday tool
nowadays in particle physics (which is about waves of fields, not particles).
For obvious reasons it is much easier to count up conserved quantities in high
energy events than get down inside the little quantum waves. Conservation
laws and reaction rates are enough to deduce that the ‘color of a quark’ needs
three continuously intermixing complex waves, which tumble around like a
little polarization in the hidden space called SU(3). It is nothing like RGB
colors and the little joke about three colors has become an embarrassment.
Understanding the matchup of math and physics of the strong interactions
took about 50 years of successful and failed experiments, and the failure of
all but one theories. The matchup of math and physics was not understood in
the clumsy early days of quantum mechanics. Under the influence of the
OQT, and to maintain its mistakes, complex quantum waves were botched in



novice and high-school books, replacing the complex wave by its magnitude
Y*P. That must never be done. There are no cases where the replacement
improves understanding. The only cases that lead to a successful calculation
are fake cases used in botched presentations.

If you want to think of one real wave, choose the ‘real part’ of y, which is
certainly one valid part.

Does this mean that all quantum waves are complex? Not at all. The
electromagnetic field is real-valued, because it absolutely can be created or
destroyed. As consistent, light waves themselves have no electric charge. The
absence of a conserved charge is an odd but true way of predicting that light
can be emitted or absorbed. It is more fundamental than ‘photons’ and tells
that when you get to photon waves, they will be real-valued. On the other
hand, the gluon field, which is a beautiful generalization of the
electromagnetic field, must carry a ‘color’ charge, which is conserved jointly
with the quarks: that is very intricate. Naturally the gluon fields are complex.

Since complex functions are doubly-real, beware of a common math
convention that will treat real-valued quantities as complex while ‘throwing
away the imaginary part’. This is never done in quantum mechanics. It is
clumsy to use mathematics to generate things to be ignored or thrown away.
When mathematics and physics are married well, there is nothing clumsy,
and no part will be thrown away.

3.1.3 Wave numbers, wave vectors, plane waves

If you promise to understand that cosine-shaped waves are good math tools,
not at all the ‘solutions’ nor defining facts of most waves, we’ll now review
the neat concept of wave numbers, symbol k-~

Look at figure 3.4, which shows a cosine wave with flat wave fronts and
wavelength A propagating at an angle 6 to the x axis. Notice the wave is
‘everywhere’, covering the figure and formally extending to infinity. That is a
true fact of cosine waves, which certainly have their limitations. If you live
on the x axis, you see a periodic structure projected onto it with an apparent
wavelength ‘Ax” = McosB. If you live on the y axis, you see a periodic
structure with an apparent wavelength ‘Ay’=MA/sinf. The subscript notation
and a flavor of vector components prompts an idea to make a new kind of
vector ‘(Ax’, ‘Ay’)??, where ?? means there are questions. It will not work,



and there cannot be a ‘wavelength vector’ of that kind. The x and y
components of a true vector oriented at angle 6 go like cosf and sinf, while
the ‘effective wavelengths’ along each axis have inverse trigonometric
factors.

y.ik
A/ sin(©) =

A/ cos(6)

Figure 3.4. A cosine wave propagates from left to right along
direction k= By definition |kT=2m/A. The inverse of the apparent
wavelengths projected along the x axis is kx=|kTcosf. This is the
same with the y component k.. Then k=(kx,ky) makes a true vector.

The solution makes a vector k”out of the inverse of the apparent
wavelengths. The direction of ks perpendicular to the wave front and in the
direction the wave is moving. The vector kTocally defines the direction of a
ray. The magnitude |kT=2m/A. The x component is kx=cos8(2m/)), and the y
component is ky=sinB(2n/A). The true vector ks called the wave number or
the wave vector. In three dimensions the components are k=(kx,ky,kz).

The factor of 2m is included to automate 2m for convenience. Suppose
k=x"k=x"2n/A. The wave is moving along the x axis. The formula for it is

W(x)=Acos(2nx/A)=Acos(kx).



When kpoints in any other direction, put kX 7in the argument of the cosine,
and in one step you have described the wave:

P(x)=Acos(k"x).
It’s not a good idea to expand k*Xx or express it in trigonometric functions,
because it is perfect as it stands. The phase of the wave is the argument of the
trigonometric function. The surfaces of constant phase are the wave fronts.
Those are the points where k"x=0 (say), or any constant mod-2mn. Beginning
at x=0, the related points x {anywhere on the plane) with kx=0 are all points
on the line perpendicular to k;"which are the wave fronts just as we promised.

It is not a minor point that figure 3.4 should extend everywhere, without
limits. The picture frame and its arrows can be translated and put down
anywhere with no significant differences. The wave is efficiently describe by
the wave number k; while the wave number itself has no particular position.
Figure 3.5 is waiting for wave numbers on the left and right side to be drawn.
Everyone discovers a momentary disorientation of not knowing where to put
little arrows kT,kZ. If kT has the right length and is perpendicular to the wave
fronts on the left side, it’s little arrow can be put anywhere on the left. If you
are given a wave number kZ for the wave on the right, it is not a concept
describing the position of anything on the right. The boundary between the
two regions is quite a subtle thing for wave numbers to describe: give it a try.



Figure 3.5. Refraction of a plane wave. The directions of two wave
numbers kT,kZ are clear in each zone. Yet precisely where to locate a
wave number is quite ambiguous, because wave numbers have no
particular position.

The visual disorientation of looking at a plane wave comes from very
sophisticated human visual processing that reads more into the picture or the
math expression than the actual information that is present. The last thing to
suspect would be any importance to the unlikely, silly extension of the plane
wave to actually exist everywhere. One needs a sense of scale. The typical
wavelength of protons in the beam of the Large Hadron Collider is about



10717 cm. That’s a hundred million waves per nanometer. For the purposes of
engineering accelerator physics, a cubic nanometer is infinitely small, and for
the purpose of exploring quarks it is infinitely large. While plane waves never
exist they are the constant tool of simplified description. When more
localized wave configurations are described using plane waves, the
uncertainty relation provides a rough estimate of the spread in wave numbers
for a given spread in spatial size. It is a math fact about superpositions of
waves that has no physical information.

Opening a quantum mechanics book, or almost any physics book on a
subject newer than thermodynamics, will find hordes of formulas with
exp(1k'x). When someone says ‘this is a plane wave’ it sounds like ‘a plain
wave’ while it looks weird and not plain. Those not instructed in the art of the
wave vector will have two conflicts.

First, the imaginary conflict. Since exp(ik-x)=cos(k*Xx))+1sin(k"X), one
complex exponential makes available cos and sin configurations. Multiplying
by exp(18) induces a phase shift k’x= k*xF8. (Try it.) Such things as a
complex index of refraction fall into place with lovely consistency of math
and physics. The unknown genius who made so much so easy should have
been remembered®.

Moreover, the exponential automates many trigonometric formulas, such
as

(3.6)
e1lkT-xXe1kZ-xZe1(kT+k2) x>
When there is a product like this the wave numbers add. There are real
surprises in the consequences of THIS easy formula! As usual, complex
numbers are not hoodoo’ but a friend automating operations of two real
numbers.

Next, if you lack skill or warning, you might forget that the phase or
argument of the trigonometric functions is k*X; so that kx=0 finds all the
points which are constant-phase wave fronts passing through the origin, (to
repeat!) and all then perpendicular to k" That surface in three dimensions is a
plane, for goodness sake. If you translate to another point x¥, then k®{x=x¥)
will again give all the points of a plane perpendicular to k’and going through
x¥. After you know this, you must transfer your attention to k; which is so
easy, while remembering the plane of constant phases it controls is absolutely



huge.

If you lack skill or warning, or you are brilliant, you might decide to
expand the terms in the exponent of the plane wave. Unless you have a
reason, never expand a dot product, nor replace it by a formula involving
magnitudes and relative angles. You will make things longer, worse, and
more difficult to interpret. But if you disobey the plane wave, you discov% 7

etk xZerkxxeikyyeikzz.

According to the wave theory of light, the light rays, strictly speaking,
have only fictitious significance. They are not the physical paths of some
particles of light, but are a mathematical device, the so-called orthogonal
trajectories of wave surfaces, imaginary guide lines as it were, which point in
the direction normal to the wave surface in which the latter advances (cf.
Fig. 3 which shows the simplest case of concentric spherical wave surfaces
and accordingly rectilinear rays, whereas Fig. 4 illustrates the case of curved

Figure 3.6. Curved wave fronts illustrated by Schrédinger in his 1933
Nobel Prize lecture. His reference to ‘imaginary guide lines’
describing rays of light with only ‘fictitious significance’ refers to the
notion of particle trajectories. © The Nobel Foundation 1933.



The sum in the exponent becomes a product. Equation (3.7) is one of the
exceptions where disobedience becomes a power tool. Many calculus-driven
operations such as integrals and integral transforms work smoothly on
products of functions. Since that’s not our topic we’ll move on, with the
information that what seems to be a hundred math tricks is actually ten
thousand or more math tricks, almost all of which is only a half-dozen or so
very good tricks in different combinations, which will accumulate with
experience: and you have just seen one of them.

3.1.4 Photons and other waves are never localized at
points

No matter what we write, someone will expect us to say that light and
electrons were later found to be both a wave and a particle, and neither, all at
the same time, which cannot really be understood. To repeat our message, we
painted it on a wooden board, set up against an NRA-disapproved backstop in
a western US state, and decorated it with a double-barreled shotgungz

the particle-like photon was the center-point of a 20-year propaganda period



between 1905 and 1925. It was the idea of the ‘photon’ that did not survive.

By 1935 high-quality theory had derived from first principles all the
phenomena the ‘old’ photon had been set up to explain. None of the ad-hoc
assumptions of the old photon theory were needed. The new theory showed
they were not correct. The old ideas died. We are not writing to resell the
dead ideas of dead people.

Quantum mechanics was first developed for electrons, and then applied to
electromagnetic fields. The combination is called quantum electrodynamics
(QED). A signal that QED was on track came when the photon was derived
as a particular output of the theory. If there had never been an old quantum
theory, the photon would be a prediction, and also a prediction without the
mistakes of the OQT. The internal structure of the photon, which is a lovely
creature, turns out to be a ‘quantized ray’. It is an entirely delocalized
resonance of the electromagnetic field. They are never short, they are as long
as the system making them can make them long. Still there’s a clear and
definite importance of a whole number of photons.

3.2 Fundamental constants without the kilogram

Many basic physical relations can be anticipated by dimensional analysis. In
1914 Edgar Buckingham [5] perfected it as a predictive approach to physics,
as opposed to the more basic idea that dimensions should be consistent. This
followed 50 years of observations by Fourier, Maxwell, Rayleigh, and others
that the system of units matters, that it is arbitrary, and that consistency can
be very restrictive.

Buckingham’s example. Buckingham wrote: “We desire the thrust of a
ship’s propellor as a function of the propellor’s shape, size, the density of
water, and the ship’s speed...’, given certain dimensionless shape ratios. This
seems to be a difficult problem. The dimensionful quantities are the propellor
radius r=length, the Newtonian mass density p=massN/length3, the speed
v=length/time and force f=massNxlength/time2. Only one combination has
the dimensions of force:

(3.8)
f=I1Br2p1v2.

Here T1B is a dimensionless constant, which Buckingham’s method isolates,



and which must absorb the shape factors of the propellor, the details of water
and hydrodynamics, and so on. Whatever that constant is, the method has
made a prediction, as if by magic, of the more important relationships. Since
the objective was the Newtonian concept of force, the inputs needed a
quantity like the Newtonian massy density that referred to Newtonian theory.

Soon we'll discover that Newtonian mass is a ‘dirty word’.

Example: the blue sky. Rayleigh discovered the sky is blue because
higher frequencies scatter off atoms in proportion to the illuminating
frequency w4. The atmosphere is about 100 km deep, which is just right for
backscattering to happen most of the time for blue light with angular
frequency near wblue~4x1015s—1. This is rather finely tuned, because the
scattering is 10* times smaller for 10 times smaller frequency: red reflects
back very little from the sky. By dimensional analysis, the Rayleigh
scattering cross section (an effective area) must then go like
oRayleigh~d6w4/c4, where d is a typical diameter of the scattering atom. The
interaction is dynamical and the effective area is not nd2/4. (And this is why
‘parcle cross sections’ do not measure parcle size, hey!) Also notice that no
concept of Newtonian mass or force is involved. From the color of the sky
Rayleigh was able to deduce that atoms are close to 1078 cm in size, although
the d® dependence left some uncertainty. Reversing the argument with
information that molecules are close to 107 cm in size predicts the sky is
blue® on Earth, and white to yellow (the color of the Sun) on other habitable
planets with sufficiently deep atmospheres that all the colors bounce back.
Since Mars has a very thin atmosphere, the stars probably can be seen in the
daytime, and the atmosphere will be'® deep purple.

Continuing. In Buckingham’s time it was assumed that Newtonian
physics and the Newtonian mass unit was necessary to do physics. After
quantum mechanics was discovered Newtonian physics and its kilogram
became irrelevant for fundamental physics. It will be be maintained for
engineering, commerce, and classical approximations, but there is no role for
it at the fundamental level.

The necessity of the kilogram in Newtonian physics comes from a gap in
the equation f=ma”"While the acceleration a’is a ‘space—time’ observable, the
equation introduces two quantities f-and m to measure one thing. Measuring
one component ax=fx/m cannot determine f, or m separately. Newtonian



theory has a lapse of incomplete definition, which was covered by
distributing arbitrary force meters or copies of the kilogram to patch the gap.
Everything downstream of f=ma~ inherits the weakness: in particular,
Newtonian energy has a faulty definition (see section 8.2.1), and faulty units
inherited from the kilogram.

3.2.1 Getting rid of the kilogram

Everyone agrees the kilogram is a human convention. Could quantum theory
be done without a Newtonian mass unit entirely? To explore this, imagine we
began with quantum mechanics and no prior notion of the Newtonian mass
unit. We would need to do physics and find our fundamental constants from
data without using the K part of MKS units. To make this more interesting,
let’s temporarily restrict attention to experimental data known before 1901,
and avoid all bias of the OQT. We do not restrict theory concepts to coming
before 1901: we imagine quantum mechanics had been understood without
the digression of ‘quantum parcles’.

We will have units of time and length. The unit of time suffices to define
the unit of length when we adopt the theory that the speed of light c is a
universal constant. That was done in the late 20th Century by fixing c=2.99...
x108 m s~! to a reference value. That required a highly precise definition of
the second, which was adopted in terms of very technical atomic physics
(rubidium). For conceptual purposes the 19th Century could have defined the
second in terms of the lowest vibrational frequency of the hydrogen atom,
wH=2.08x1016s—1, a number known from Rydberg’s work in the 1880s.

And so the 19th Century already knew that the equations of quantum
mechanics must have a constant with dimensions of frequency, to predict an
atomic frequency. (It was specifically noticed by James Jeans in 1904; see
section 6.1.2.) The electron wave equation indeed has a fundamental
frequency constant we~7.8x1020s—1. An alternative, human scale parameter
is pe=we/c2=0.87scm—2. This fact may be new to you, but remember, we are
imagining a different history without the kilogram.

The ratio of wH/we is dimensionless, and must come from the dynamics
of the atom. The quantum theory developed in section 7.2.1 shows that wH/
we=a2/2, where o is the dimensionless coupling of the electromagnetic



interaction. (Everyone uses this standard approximation: a correction of order
1073 will be discussed soon.) The characteristic size of the hydrogen atom
called a0~5.29%x10-9 cm, which is very precisely defined by the theory, is
a0=ac/we, where c is the speed of light, which was already known to 1%
accuracy by the 1860s. (Check the numbers. If you know the atomic size and
a, you can predict we.) The first clue to atomic size is the typical number
density of atoms in solids, nA~a0—-3~1024cm-3, as discussed further in
section 2.3. From experiments, the atomic size and atomic frequency
determine two fundamental constants a~0.0073 and we=7.8x1020s—1.

While not done until later in history, the two constants a and we (plus one
more) suffice to predict everything in table 3.1. Many of the quantities have a
Newtonian formula. Since there is no classical theory of matter, the
Newtonian formulas have an ad-hoc ‘fudge factor’ fit to experiment case by
case. For example, the Newtonian formula for the velocity of sound is
vS=K/nAmNA, where K is called the bulk modulus of the material, n, is the

number density of atoms, and my, is the Newtonian mass per atom. The

fudge factor K is defined circularly from Newtonian mass and the speed of
sound. This is somewhat subtle, due to the formula hiding how the formula
was obtained. An engineer might say K is found by force or pressure meters.
The fudge factor K comes from outside the Newtonian theory, no matter how
you get it.

Table 3.1. Fundamental constants «, we, wp and experimental data
predicted by them. The fundamental eletromagnetic coupling constant
a is called the ‘fine structure constant’ for historical reasons. Number
densities n refer to typical solids. The column oom estimate shows
numbers estimated to order of magnitude. More precise determination
of fundamental constants involve global fits to high precision data
sets.

name symbol  formula oom estimate

fine structure  « 2a0wH 0.0073~1137 (fitted)
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3.2.2 Quantum theory is ambitious

The quantum theory is much different, and seeks to predict everything. The
fundamental constants of o and the fundamental frequency constant of
electrons (we), protons (wP), or entire atoms (wA) are the only parameters
allowed. Since we no longer have a use for Newtonian mass, the frequency
parameters must provide the dimensional factors, while providing predictive
power from the theory.

The proton’s constant ®P can be estimated from the speed of sound v in

typical solids, as follows. The Fermi pressure of degenerate electrons
predicts most of the classical bulk modulus. The Fermi pressure is the Fermi
frequency wF=ne2/3c2/we per volume, where n, is the electron number

density. This is an absolute quantum prediction, often using a free-electron
approximation, but in principle (and in the 21st Century) computable for
arbitrarily precise electronic and crystal structure information. It is not a
fudge factor. Then vSs=wFnec2/wAnA is dominated by dimensional analysis,
where ®wA=A®P is the frequency parameter of atoms with atomic number A
propagating the sound wave. There are typically a few valence electrons per
atom so ne/nA~1. Then vSs~ne2/3c2/AwewP. By algebra

vSs2~(1016cm—27.82%1040s—2A)(9%1020cm2s2)
(wewP)c2;wPwe~900(56A)(5000ms—1v)2.
For iron A = 56 and vSs=5000 m s ! gives ®P~900we, which ‘weighs the
proton’ on the frequency scale. For diamond A = 12 and vSs=12000 m s,
which predicts ©wP/©wS=900(56/12)(5000/12000)2=1750. Given the effects

neglected, the order of magnitude is ®P~103we.

A much better determination is done with precision atomic spectroscopy.
Since the electron and proton interact, the spectral frequencies of the physical
hydrogen atom depends on a combination of electron and proton frequencies
(equation (10.3), section 10.1.1):

oH=02wewnP2(we+wP)~02we2(1-wewP+).

This reduces to the commonly remembered relation QH=02we/2 when
weKQP. A sufficiently precise measurement of wH and another precise
measurement of we or wP predict the ratio. Using modern numbers gives we/



®P~0.00054, or wP/we~1835.

3.2.3 Mass ratios

The number above is the same ratio as the Newtonian proton to electron mass
ratio:
(3.9
wPwe~mNPmNe.

This is expected from a rough argument called Ehrenfest’s theorem; see
section 8.1.4. It is remarkably crude: the quantum waves are replaced by
averaged quantities that are plausibly related to the imaginary ray trajectories
shown in Schrédinger's figure 3.6. It is an uncontrolled approximation that is
clearly not exact.

The reliability of the relation above is not well understood. The precision
of Newtonian physics in quantum circumstances never cleared up, except that
it failed. This is not controversial: nobody knows what would be meant by
‘the Newtonian mass of a quantum electron’. With few exceptions, 21st
Century quantum mechanical parameters are measured known to high
precision using quantum mechanical equations and observables. The left
hand side of equation (3.9), which is very precisely measured, can be used to
define and predict the right hand side!!, for any Newtonian quantities that
might be wanted. At least that is how history should have gone.

Unfortunately, history went the other way. There was a blind conviction
from 1900-25 that Newtonian mechanics was ‘established’ and its definitions
of fundamental constants were ‘exact and final’. When Bohr, Born,
Heisenberg, and so on started questioning Newtonian physics, we see no
record of them questioning the fundamental constants of Newtonian physics.
That is surely due to a misconception that fundamental constants are self-
defining, and determined!? by ‘experiments’. Actually fundamental constants
get their meaning from a theory, and cannot be measured without a theory to
define them.

The traditional presentation of quantum mechanics used the old theory as
defining concepts. The ‘Newtonian mass of a quantum electron’ was
accepted without discussion. To this day one finds surprisingly careless use
of the ‘mass of the electron’ in terms of a Newtonian massy reference



parameter mNe=9.1x10-31 kg, which puts kilogram units back into a
quantum theory that does not need them. When the most basic system of
units and measurements (wrongly) pre-supposed Newtonian definitions, it
worked like a chronic plague to maintain the mistakes after the new quantum
theory was discovered.

Old units and new units. There are two ways to proceed. The pre-
quantum tradition assumed Newtonian mass was fundamental, and then used
Planck’s constant to cancel out MKS units where they don’t appear in
quantum theory, which happens to be everywhere. To use the MKS system
replace frequencies we — mNec2/h, wP — mPec2/f, and so on in kilogram
units. This maintains we/wP - mNP/mNe, and all other ratios. The numbers
of the MKS system have an arbitrary scale, because the kilogram is an
arbitrary unit'? invented in 19th Century France. Since we has no reference to
a kilogram, then my, in kg and A in units of kg-m? s! cancel out the

kilogram. The unacceptably large errors of Newtonian mass and /7 (defined in
terms of it) wreak havoc in high precision work, but the replacements are OK
for people wanting MKS numbers.

The other way to proceed uses we in frequency units, or an equivalent
‘quantum mass parameter’ pe=we/c2. This kind of mass is a frequency called
a mass for everyone wanting to keep the word ‘mass’. Then calculations of
spectral frequencies and time evolution are predicted without any mention of
the kilogram, just as the table shows.

Example: light predicts sound. Planck found'* that the frequency
spectrum of light goes like v2/(ev/Tv—1), where Tv is the temperature in units
of frequency. The peak of the distribution is at 1.59 Tv. This expression
bypasses the Newtonian temperature in degrees Kelvin, which is redundant.
For example, a black body at temperature 1000 K is ‘red hot’, emitting
considerable radiation near 1014+1s—1, and looking at the color tells you it is
‘hot” without a thermometer. The arbitrary unit of the Kelvin is defined by a
conversion factor 1°K=1.31x1011s-1. Then 0 -C = 273 K =
273%1.3092%1011s—1=3.57%1013s—1. Looking at ice in the infrared regime
will ‘see the temperature of ice’, entirely bypassing the kilogram.

The ideal gas law is the same law in Tw units. The speed of sound in an
ideal gas is vSg=yTw/wAirc, where wAir is the molecular frequency (mass)
parameter of air, and y=7/5 accounts for isentropic compression. The sound



speed is 331 m s~ ! for air at 273 K. Solving for wAir gives

wAir=1.4x3.57x1013s-13312m2s-29x1016m2s2=4.11x1025s
—1,wAiroP=4.11x10255-11.43x1024s-1=28.7.

Air is close to 80% N, (molecular weight 28) and 20% O2 (molecular weight

32), averaging to molecular weight 28.8, which agrees. The speed of sound
directly measures the mass of air molecules in units of s—1. Alternatively,
HAIr=wAir/c2=45500scm—2.

Example: the gas constant. The practice of making and distributing
physical copies of the kilogram is archaic and imprecise. Scientists have long
sought an alternative based on independently reproducible measurements.
The kilogram unit enters the ideal gas law PV=RT through the molar gas
constant R=8.31445Jmol-1K-1 One mole of gas (NA=6.02x1023
molecules) contained in 22.4 liters of volume at standard temperature 273.15
K has an absolute pressure P=101.325Pa. Applying that pressure to a cylinder
of area A=0.96784cm2 makes a force f=9.8066N. The standard acceleration
of gravity happens to be 9.80665ms—2. The pressure will balance a piston of
mass 1 kg compressing the gas under the force of gravity, according to the
force balance equation mg=PA=RTA/V. That will serve to experimentally
define a standard kilogram. The temperature in frequency units is 3.58x1013s
—1, or equivalently the molar gas constant R=2.155x1037K-1. The kilogram
is then determined by

1kg=NATA/Vg,=6.02x1023%3.58%x1013s
—1x0.96784cm222.4x103cm3%x980.665cms—2=9.495x1029scm—2.

Recall the electron frequency parameter, which comes directly from quantum
mechanical data, is pe=0.87scm—2. Converting units gives

ne=0.87scm—29.5x1029s(kg—1cm—2)=9.1x10—-31kg.
Comment. It is interesting that the magnificent technology of the 21st
Century coexists with the anachronisms of the kilogram and the practice of
reporting meaningless conversion constants on the same footing as true
fundamental constants. Table 3.2 from Wikipedia shows a number of high-
precision values for the gas constant R. The table suggests that Wikipedia



readers lack confidence in converting units. (Let’s hope we typed correctly!)
The value of R is an example of those ‘experimentally defined’ fundamental
constants not only based on outmoded theory, but insisting on definitions
from outmoded theory. The gas constant R describes the properties of ideal
gases. There exist no ideal gases. To ‘experimentally measure’ the gas
constant the speed of sound is measured in argon as a function of pressure
and extrapolated to zero pressure. The eight-digit numbers represent very
expensive high-precision measurements of a gas that does not exist.

The gas constant R in a number of unit systems listed in Wikipedia,
along with natural units. Uncertainties are the values of last digits in
parentheses. Actually seven more unit conversions were provided.
Silly, right?

Value of R units

8.314 459 8(48) kgm2s—2K-1mol-1
8.314 459 8(48) JK-1mol-1
8.3144598(48)x107 ergK—1mol-1
8.3144598(48)x10-3 amu(km—1s)—2K-1
8.3144598(48) m3PaK—-1mol-1
8.3144598(48)106 cm3PaK—-1mol-1
8.3144598(48) LkPaK-1mol-1
8.3144598(48)x103 cm3kPaK-1mol-1
8.3144598(48)x106 m3MPaK-1mol-1

8.314 459 8(48) cm3MPaK-1mol-1



8.3144598(48)x10-5 m3barK-1mol-1
8.3144598(48)x10-2 LbarK-1mol-1

2.155x1037 mol-1K-1

3.2.4 The identity of energy and frequency

When quantum mechanics was discovered most physicists were experts in
generalized classical mechanics in Hamiltonian and Lagrangian form.
Scholarship went downhill since. As a result, students trying to learn
quantum theory are set to be waylaid by concepts from classical mechanics
(Poisson brackets, generators of canonical transformations, Hamiltonians,
etc) they are not expected to understand. As Feynman must have said, you
can fool your friends, and fool your teachers, but you cannot fool physics,
which will clobber anyone not understanding it. (Which is another reason
why insisting quantum mechanics would not be understood once made things
so difficult.)

We’ve structured our presentation to avoid that history. The Schrodinger
equation will calculate frequencies measured, and that’s all you really need.
Still the concepts and facts of Hamiltonians are important, and very strongly
recommended after your first understanding of quantum mechanics has been
developed. Once you study it all deeply, there is a concise summary:

The frequency operator is the Hamiltonian operator is the frequency
operator, and it will be whatever you choose for your model.

Henceforth, and when translating sources, you can use ‘Hamiltonian’ and
‘frequency operator’ interchangeably.

Also here in small print is information in case you investigate the
digression:

Many unfortunate textbooks'™ will tell you that Hamiltonian and
Lagrangian mechanics are mere re-formulations of Newtonian
mechanics, because the book authors don’t know any better (badkab).
After botching classical Hamiltonians, the road will be golden to
botching Hamiltonian operators.



When you study it, a few useful facts will convincingly show that
Hamiltonian physics is different and profound. Fact 1: the Newtonian
definition of ‘energy’ comes from work, and depends on a path C via
a line integral [dx I Right? Hamiltonian energy never depends on a
path, and is always given as a definite function. Fact 2: the Newtonian
definition of ‘momentum’ is pN=mNv. The Hamiltonian use of
momentum p; is not a definition, it is a set of independent coordinates

for a system, effectively doubling the phase space of generalized
coordinates called g;. The formula relating p; to other variables is not

determined until the system is defined. There are no cases where the
two definitions of p; and pN coincide!'® except for a circular-defined

Hamiltonian model rigged to reproduce Newtonian physics as a
special case. Fact 2.5: Hamilton’s equations predict time evolution:
(3.10
q’'i=0H/dpi;p i=0H/0qi.
Choose any function H(qipi) you desire for your ‘Universe’.
Hamilton’s equation will reveal what Universe you just made. Fact 3:
guesswork and fitting data has produced many excellent Hamiltonian
models, defined by particular functions H(qi,pi). They explain
experimental data. Meanwhile, people have been looking for a
perfectly Newtonian system for 300 years, and never found one that
worked in all detail. Fact 4: the books of the badkab will tell you the
definition of the Hamiltonian is H=KE+PE, where PE is the potential
energy, and KE=pZ/2mN is the Newtonian kinetic energy mNvZ2/2
rewritten using pN. This is a bad definition and false in general. There
are no cases where it is true, except for a circular-defined Hamiltonian
model rigged up to reproduce Newtonian physics as a special case.
Yet every day millions of students are memorizing a wrong ‘fact of
the Universe’ that energy must always be the sum of KE + PE. We
hope these facts inspire you to study.

Schrodinger learned Hamiltonian mechanics from his dissertation
advisor, Friedrich Hasenohrl (1874-1914) who Schroédinger claimed
would have discovered quantum mechanics if he had not died early.
Schrodinger knew mechanics backwards and forwards, including the



1840s discovery by W R Hamilton (1805-65) that classical particle
trajectories could be computed by a method of wave optics and ‘rays’.
If you study Einstein’s work, you will see he used Hamiltonian and
Lagrangian physics extensively. Einstein also tended to repackage
arguments with meter sticks, clocks, and moving railroad cars that
didn’t give it away.

After Schrodinger discovered his equation he commented in a
letter to Einstein about the identity of frequency and energy in
quantum theory. The link comes from the Lagrangian—Hamiltonian
quantity called action. Bypassing a one semester course we strongly
recommend... the action S(x;t) has all the information about a
physical system including its initial conditions. The variables that
extremize the action solve the equations of motion. That is the content
of the ‘principle of stationary (or least) action’, 6S=0, which is super-
sophisticated notation if nothing else'”. Then given the function S(xt)
representing solutions the Hamiltonian is defined H=-0S/ot. The
energy is the numerical value of the Hamiltonian. These definitions of
Hamiltonian and energy are general, and universal. They do not
depend on the details of the system. They are 100 years more
advanced than Newtonian physics.

When Planck had first connected frequency to energy, Einstein
knew the energy referred to H=—0S/0t and the frequency was about
the action. But the action of what? After Schrodinger found his wave
function, there was an answer. The formula H=-0S/0t reduces to
numerical values Eyr - 10y/0t - oy when ~e—1wt. Einstein’s relation
was true for frequency eigenstates, and also circular for that case: it is
not true for more complicated waves. Einstein was off track for 25
years thinking about parcles. The action of the Schrédinger equation
is not very exotic, and has a term S-=1fd3xy*dy/ot. Put in e—10t and
0S/0t~w. (More information is in section 8.2.1.) The action formula is
general and predicts exactly when energy equals frequency: proposing
energy IS frequency was not general and could never predict the
action. After Schrodinger published his equation, Einstein heard a
garbled report from Planck, where apparently the equation was
reported wrong. Einstein then sent Schrodinger a suggested



correction'® for what a viable wave equation ought to be. Einstein’s
‘correction’ to Schrodinger was the Schrédinger eigenvalue equation.

3.2.5 FIAQ

I was told the quantum wave function is unobservable because it is complex.
Can you observe both real parts of the complex electron wave? Good
question! The answer is YES, which is why your books says NO. What is
‘observable’ in quantum mechanics was made early into an embarrassing
mess. About the job of interpreting (or helpfully presenting) quantum
mechanics, Murray Gell-Mann has written [9].

“The fact that an adequate philosophical presentation has been so long
delayed is no doubt caused by the fact Niels Bohr brainwashed a
whole generation of theorists into thinking that the job was done 50
years ago.’

Someone may be offended (but we don’t know why) to hear that Bohr’s
influence and angst 75 years later has lost its relevance.

As we mentioned, Bohr, Heisenberg, and to some extent Born consistently
maintained that quantum mechanics was not supposed to be understandable,
and the wave function was never observable, because that premise fit their
program. (THIS was not helpful.) Once the ‘obvious un-observability’ of
complex numbers (wrongly) got a free pass, they dwelled on certain ultra-
restrictive idealized measurements chosen for the word ‘observables’, which
by construction supported their beliefs'®. Meanwhile, we have no record of
those gentlemen actually counting how many real numbers experiments could
measure, compared to the number needed to specify a quantum state. In 1957
Ugo Fano showed [10] that there is always an equal number of physically
observable numbers as needed to completely determine any quantum state.
Fano’s work actually goes beyond wave functions. It includes them, as well
as the generalization called density matrices, discovered after wave functions.
The number of variables to specify a state is finite in many cases: the
dimension of the wave function or state depends on the model. There do exist
special cases of some interest where the experimental conditions prevent
measuring everything, but that is not a universal rule.



The embarrassment is that this took so long. Bohr and Heisenberg had
made up their minds about a philosophy of unreality before the actual
quantum theory existed. The philosophy was set in stone and maintained after
Schrodinger discovered the previous physics was wrong. Physics waited 30
years for Fano to overcome Bohr’s influence, and 40 years after that for Fano
to get noticed in the mid-1990s. Isn’t that amazing! With revitalized interest
in quantum computing, the Fano process, now called quantum tomography,
exploits the fact that the wave function is observable in principle. (More
about this in section 8.2.3.) Measuring an infinite amount of detail may need
an infinite number of experiments... but that was never the central issue,
since one never needs infinite detail.

What was written above has contradictions. It’s absolutely known that
you cannot measure both the momentum and the position of a quantum
particle. The authors who invented and made so much of the term ‘quantum
particle’ defined their own word usage. Since there’s no parcle entity in
quantum theory, they were free to stick words onto quite inappropriate
usages. When a plane wave is called a quantum parcles—just as those people
did—it happens to have no definite position. This is just as obvious as it
appears to be.

One does not expect tricky and narrow re-definitions of terms to create
false conflicts in physics. Since physics words are tools without pre-
determined meaning, it is very common for physicists to show no interest in
word choices. It’s unfortunate that word meanings then came to be so abused
in quantum mechanics. We didn’t do it!

Who controlled the use of words, and who benefited? The meanings were
chosen to fit the particular order of presentation, putting point-parcles first.
Usually physics experts and teachers don’t notice. Many had unconsciously
adopted a code-word system taking for granted the premises of the OQT.
Physics wars were fought over the right to claim the word ‘principle’. The
uncertainty relation turns out to be a math identity with no predictive
physical information when it is derived from waves, or math identities. When
the relation is called a ‘principle’, and presented as a claim about mysterious
parcles, and well before a plane wave has been defined, it was made to appear
to have content. Isn’t that interesting?

Also, did you notice that physicists stopped spouting new ‘principles’
close to the time quantum mechanics was discovered. Far more physics has



been found after basic quantum mechanics than all previous history, because
quantum mechanics was the breakthrough allowing it to happen. Yet people
had realized there were already too many bogus ‘principles’ on the market to
give the word any market value.

As Feynman must have said:

It’s not a great accomplishment to deal with something you can’t explain
by a Principle you can’t explain. It is a great accomplishment to get rid of an
unexplained Principle every time you can.
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Chapter 4

Matter waves

Figure 4.1. As with 19th Century instruments, brass was the ideal
material for the endcap calorimeter of the CMS detector at the Large
Hadron Collider. With international cooperation, the Russian Navy
allocated 600 tons of obsolete WWII battleship cartridges, which were
melted down and rolled into 50 mm thick absorber plates.



4.1 Your quantum governmental representative

If you meet a US congressional representative, or a member of the House of
Lords, be sure to tell him or her that everything in this civilization newer than
animal power, wooden carts, and square-rigged ships is applied physics. All
of the stuff the rich and powerful take for granted was once a shabby little
demonstration physics experiment. The biologists, geologists, chemists,
engineers, and mathematicians won’t be insulted by this. We were all once
the same people.

Everything newer than 1900 is applied quantum physics. Without
developing quantum physics, we’d have anthracite and bituminous coal, steel
mills, the internal combustion engine, large electric motors we barely
understood, and vacuum tube amplifiers nobody understood for our
enormous radio sets. There would be one computer in each major country,
occupying a square mile and burning up the resources of a city, and it would
not have the capability of your smartphone.

A laptop computer screen violates several laws of physics of 1900. It
produces light with almost no heat. It is a quantum device. The concept of a
time-dependent display made of 1440x900=1296000 LED pixel triads (for
three colors) was never dreamed by the wildest visionary of 1900. Anything
with 4 million light sources would need 4 MW minimum to operate, and an
army of men could not keep up with replacing the burnt-out bulbs.

The first visible light LED was invented in 1962 by Nick Holonyak Jr.
Now they come in any color you desire. Before they manufacture LEDs the
physics wizards compute a crystalline continuum where electron waves will
do what they are told. While the calculations are cursorily described in terms
of ad-hoc ‘energy levels’, the calculations actually engineered a host of wave
properties from start to finish. The correct physical picture is not that
electrons fall off shelves and spit out blips of light. The picture is much more
like engineering Niagara Falls so that hoards of well-mannered electron
waves maintain enough coherence for their electromagnetic current to make
a natural laser-river of light. The current generates the light by the ordinary
Maxwell equations, not quantum magic. The extra feature of quantum light
explains why it’s do darned coherent and loss-free. We recommend finding a
mounted LED (plastic capsule, two leads) and exploring it with a 5-10 power
hand lens. Many but not all basic LEDs are built with internals so they work



by putting the leads across a few hearing-aid type batteries. Seeing the flow

of light blazing from of a dust-mote crystal is one of life’s great experiences!.

A scientist of 1900 would not believe it was possible.
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Figure 4.3. A good galena crystal (big cube) from the defunct
Sweetwater Mine in southwest Missouri. The crystal escaped being
broken up to make dozens of crystal radios. Only collectors care about
them now.

A scientist of 1900 would be very interested in a particle accelerator. Like
the public, he’d assume the term was self-explanatory. He’d assume the
device was made of brass? and wood and sat in the basement of an academic
building. He would know about electromagnets, but not be a fool to believe
in superconducting electromagnets. When you told him the ring was 27 km in



circumference, the scientist would politely correct you: “You mean 27
centimeters in circumference,” he would say, ‘I have some experience with
scientific instruments.’

4.2 A quantum device

Figure 4.4 shows a ‘cat-whisker crystal radio’. The example is an elegant,
artsy modern version of stuff kids could cobble together before quantum
mechanics was on the scene. The device needed no batteries, no electrical
power. That is amazing. Children (as well as stranded soldiers, seamen, etc)
could hear radio transmissions from hundreds of miles with low technology.
It was a quantum device, and yet not a person on the planet understood it in
1900, 1905, 1910, .... All that’s needed is a coil of wire, wrapped to certain
dimensions, a galena crystal, and a good ground?. For reasons not understood
at the time, a very fine wire hooked into the system—the ‘cat-whisker’—and
poked about on any small bit of galena crystal* would let anyone hear tinny
music in an earphone, or the address of the President of the United States, if

the man® happened to be talking.




Figure 4.4. A handsomely made crystal radio, a quantum device
capable of picking up radio transmission without batteries or any other
power source. Basic models are made by wrapping wire on a
cardboard tube, and fiddling by hand with a fine ‘cat whisker’ wire on
a galena crystal, shown in the inset. Radio designed and built by
Richard H Weber.

The crystal radio was a pre-quantum quantum device. Electron waves
could go in one direction in the galena crystal from the cat-whisker, but not
the reverse direction. The junction made a one-way electrical valve, called a
diode, which is the crucial element to extract energy from the resonant circuit
of the radio coils. The technicians of the day could tell you what the galena
crystal did, but they had no conception of why or how it worked. When odd
things happened there was no way to understand it. In 1907 H J Round
noticed something unusual while experimenting with a cat whisker wire on a
crystal of silicon carbide. He wrote:

‘To the Editors of Electrical World: SIRS: During an investigation of
the unsymmetrical passage of current through a contact of
carborundum and other substances a curious phenomenon was noted.
On applying a potential of 10 volts between two points on a crystal of
carborundum, the crystal gave out a yellowish light. Only one or two
specimens could be found which gave a bright glow on such a low
voltage, but with 110 volts a large number could be found to glow ....
In a single crystal, if contact is made near the center with the negative
pole, and the positive pole is put in contact at any other place, only
one section of the crystal will glow and that same section wherever
the positive pole is placed.’

Round had discovered a natural LED but did not know what he had
discovered. Shortly after 1900 not a single person in the human universe had
any idea about how most of the world worked. Crystal radios, magnets,
matter, whatever, almost nothing made sense.

As we know, Newtonian physics was the barrier. Electricity and electrical



phenomena were the way out. Many of the breakthroughs of the 19th Century
were made by inventors, not academic scientists. In 1832 Joseph Henry (who
was an academic) observed radio waves when he noticed a spark sent 200 ft
between coils, but did not follow up. In the late 1860s inventor Mahlon
Loomis sent sparks between the Blue Ridge Mountains of Virginia, and
sought support from the US Congress to develop a telegraph system [1].
Loomis’s US Patent 129171 of 1872 includes:

“The nature of my invention or discovery consists, in general terms, of
utilizing natural electricity and establishing an electrical current or
circuit for telegraphic and other purposes without the aid of wires,
artificial batteries, or cables to form such electrical circuit, and yet
communicate from one continent of the globe to another .... I now
dispense with both wires, using the Earth as one-half the circuit and
the continuous electrical element far above the Earth’s surface for the
other part of the circuit.’

At least four bills were considered by Congress: one provided for 2
million dollars to incorporate the Loomis Aerial Telegraphic Company. In
January 1873 a different bill was passed and signed into law by President U S
Grant... but with no funds provided. In 1875 Thomas Edison was involved in
a controversy about an ‘etheric force’ that communicated electricity across
distances. Edison thought it communicated with the spirit world. Not until
1878 did George Fitzgerald (of Trinity College, Dublin) predict that electric
circuits could produce electromagnetic waves, according to Maxwell’s
equations. (Maxwell himself never suggested it.) Despite the advantage of
communicating with spirits, Edison despised formal education and favored
DC electricity. In a dramatic industrial shoot-out associated with the
Columbian exposition of 1893, Edison was soundly whipped by Nicola
Tesla, whose training helped him understand AC power. Tesla is quoted for
saying:

‘If you want to find the secrets of the Universe, think in terms of
energy, frequency and vibration.’



Figure 4.5. Nicola Tesla around 1890.

4.3 Electricity is a quantum effect

If Newtonian physics were your guide, you would never predict, and never
understand electricity.

A lot about electricity contradicts the classical physics used to explain it.
Everyone knows that the electric force field of an isolated charge decreases
like the inverse radius-squared to the source. The force decreases so fast that
waggling a reasonable charge at one end of a room produces effects almost
too small to measure on the other side. Yet it’s taken for granted that if you
apply an electric field to one end of a metal wire, it appears at the other end
with practically equal strength. Exactly how do electric field lines decide to
flow along a metal tube, which is so convenient, without spreading out? It is
‘explained’ by a tautology: ‘the surface of a conductor is an equipotential’.

Ohm’s law says the decrease in electric potential is proportional to the



current caused to flow. Those things called ‘conductors’ have an absolutely
uniform electric potential over their entire length, so long as the current is
zero or small enough. That’s the statement: how does it occur?

Somewhat like the old quantum theory, the explanation of electricity in
classical terms does not bother being complete. It is a mythology that’s good
enough to describe what’s observed, when applied just where the description
is made, yet it is not predictive and not internally consistent. Unlike the old
quantum theory, nobody covered up the bugs of pre-quantum electricity and
made them into philosophical features.

The 1900 Drude model is the default classical framework for electricity,
which like most engineering compromises, seems to work well for cases
where it applies. (Note that is a bit circular.) The Drude model is all about
dissipation. Its myth proposes an ideal gas of point-like electrons in free
space between atoms, getting accelerated by the electric field somehow
oriented along the wire, and periodically having collisions with stationary
atoms. As always presented, the model predicts the electric current jin terms
of the electric field EDy the rule

jiX)=oE{X);0=neq2tm.
The first equation is Ohm’s law in local form. (There will be more about the
local current in the next section.) The second equation defines the
conductivity o in terms of the electron number density n,, the electric charge

ey In MKS units, and an average time between collisions 7. We noticed that

Newtonian physics could not predict a fundamental frequency, so how does it
predict 7, an inverse frequency? It does not! Drude’s derivation cuts some
corners, and t is another fudge factor: the conductivity o is observed in
experiments, and converted to parameter 7 by inverting the formula. Pretty
cute, while testing nothing.

A priori, the actual prediction of the model would be that the
conductivities of all substances would be about the same. That’s because the
chemical valence finds a ‘few’ possible free electrons per atom, and atoms do
not differ wildly in their diameters. Multiplying factors of two or so all ways,
most substances (inert gases excepted) should have conductivities varying by
a factor of 10 or so. The opposite is observed: conductivities range from®
10-7 W m™! to 102> W m™L. The collision time T would range over 27 orders



of magnitude. The Drude model works when it’s circular and fails otherwise,
and has become a mainstream tool of experimental interpretation. (Especially
for experiments that ‘don’t depend on any theory’.)

The author’s father was an electrician working under IBEW local 401 for
decades. He was intelligent, loved music, chess, and math, and had a concise
picture of electricity rather more complete than the Drude model. In the
Ralston model electrons are like steel ball-bearings stacked up continuously
along a long pipe. You hit a ball-bearing at one end, and its partner at the
other end gets the impulse almost instantaneously. The virtue of the model is
that the electrons are connected by pressure waves—waves!-—and not
inherently subject to ‘friction’, so that dissipation of energy (which is
arbitrarily small, in an arbitrarily good conductor) is a side issue.

The quantum picture of electricity has the same elements, and explains
everything. Electron waves flow smoothly across and inside the atoms of a
crystal lattice, which are mostly electron waves to begin with. If the lattice is
perfect the waves self-configure to flow perfectly, without dissipation,
because they are flowing through themselves in perfect order. Waves of
impulses are passed between and among electron waves because they are
‘stiff’ and interact. Unlike water, the wave equation for quantum electrons
does not have a ‘friction’ term representing dissipation. In fact the flow of
electrons is so frictionless it’s a challenge to find where the electrical friction
of resistance comes from. Resistance is dominated by defects in the crystal
lattice, which disrupt the flow of electron waves like a boulder in a river.

What about Earnshaw’s theorem? Quantum mechanics does not
contradict Gauss’ law, so it still might seem a problem. It’s all different with
electrons as waves. There’s no particle sitting at a point: waves are smeared
out everywhere. There is a notion of force, but it’s not captured by ‘the force
on the electron’ because the forces are infinitesimal continuum wave stresses
distributed everywhere. (Later we’ll be more specific.) There are also forces
Earnshaw knew nothing about. An important force is in the springiness of the
electron wave, which does not want to bend. In fact, the potential energy per
volume of an electron wave i has a term going like |V -y|2 or
—*V - 2y, (Either expression gives the same result, added over the full
volume.) The potential energy per volume of a static electromagnetic field
has a term going like | V - ¢|2 or —=$2V - ¢. These expressions coincide in
functional form, but come with different pre-factors, because they are generic



features of the internal stresses of waves. So the quantum theory of matter
has enough forces to balance out, and (very important) does not need to be
static to produce a stable, steady Universe. The atomic electrons have the
extra feature that they are constantly bouncing, gyrating, interpenetrating, and
redistributing external stresses over an entire body such as a crystal. The
electron waves typically merge into each other and share co-mingled
existence for thousands of atomic lengths. That explains the fantastic strength
of materials. Without that, cleaving a single layer of atoms ‘glued’ together
classically would break metals into crumbs.

Earnshaw’s theorem does not apply to a ‘quantum force’. A piece of
string does not exist classically, so it can transmit quantum forces. Consider a
strange fact” of quantum strings®. You tie an ordinary string to a paperweight,
and pull it a few inches across a desk. The atoms of the string and the
paperweight come toward you. The energy you impart goes exactly the
opposite direction, from your hand into the object to be dissipated by friction.
The energy flows ‘upstream’ against the movement of atoms. Isn’t that
strange! It is not always this way. You can push the paperweight with a
quantum pencil, and the energy will flow in the same direction as the atoms
transmitting it.

4.4 The continuity equation

Quantum physics has a number of quantities that are not created or destroyed,
and which are locally conserved. This is another exact feature of the theory,
not a statistical one®. Local conservation means that when a quantity changes
inside a volume, it must flow out the surface boundaries, just as water must
flow through the sides of a burlap bag to leak out; see figure 4.6. The
conservation of stuff in quantum mechanics does not occur with
discontinuous jumps or the exchange of parcles, real or virtual: those terms
are a transcription of the smooth continuum equations into a hold-over
language some think the popular press wants to hear. (OK, there are some
weird things in quantum mechanics, but they can wait.)

The word ‘local’ means in the vicinity of an arbitrarily small spatial
region. The local flow of things is described by a local current, symbol j(x;?),
which represents the stuff passing at a point per oriented area per time. The



total current is a different concept that has no information on position, but
which is the local current summed over the whole area of flow. The total
electric current in a wire has MKS units of amps: it is not specific about
where inside the wire the current is distributed. As a rule, totals of physical
quantities may appear in engineering rules, but they are not specific enough
to help discover or understand physics in the continuum.

Figure 4.6. Quantum wave equations obey continuity equations
prescribing flows of conserved quantities. For something conserved to
leave a volume, it must pass through the surface surrounding it.

The divergence of the local current, symbol V - -j{kx;t), measures its
expansion or contraction point by point. An incompressible flow has zero
divergence, which is exceptional. The density of stuff per volume p(x;t) is
closely related. If the density decreases in time, as measured by dp/0t<0, the
divergence will register an expanding current, V - -j{x;t)>0. Conversely if a
current is converging with V - -jix;{)<0 the density will locally be



increasing, dp/0t>0. The constraint expressing local conservation is the
continuity equation:

(4.1)

V - j-+0pot=0

While the equation has a time-derivative it is not an equation of motion. The
continuity equation does not predict dynamics, but occurs when and if
dynamical equations have certain symmetries that lead to local conservation
laws.

Everything correctly reported as ‘not created or destroyed’ in physics is
actually locally conserved. This includes!® energy, momentum, angular
momentum ... isospin, lepton number, etc, when they are properly defined in
all detail. The conserved attributes of quantum waves are found from other
formulas of currents distributed continuously over space. We cannot list

everything here, because it is tantamount to listing all the equations of

motion.

It follows that electric charge is a locally conserved quantum mechanical
quantity. In the quantum theory the current is not a ‘little dot’ nor an
independent substance but a locally conserved feature of charged quantum
waves. Given a wave function, a formula computes the current it predicts.
The local conservation law shuts the door on the loophole of a quantum
electron disappearing in one place, and reappearing someplace else, with the
total charge of the world conserved. This is not a minor point. Popular stories
about ‘non-local’ quantum events correlated over distances tend to obscure
the exact and unvarying facts of local conservation. Tricky suggestions of
‘teleportation” might be interesting, but even Star Trek has the physics
correct, so that matter going from one place to another needs to go through
the space in between'?.

The quantum formula for the current (equation (6.1)) is not obvious, and
perhaps impossible to guess without the Schrodinger equation. However the
formula for the quantum current is the only new feature of the
electromagnetic interaction. Maxwell’s equations do not change with
quantum mechanics. Let’s take a moment to review this: in MKS units the
current appears in

V - xB - =0j - +110€00E — ot



where Bis the magnetic field. It is always possible to write!® E2—0A70t and
B2V - xA” where A~ is the wvector potential. Computing
V 5 xB2V - x(V 5 xAY gives

-V -2A- (4.2)
+V - (V 5 A 5)+1c202A - 0t2=p0j - (x - ,t);wherec2=1e0p0.
We’ve just computed the speed of light. The rest may appear intimidating, so
pause to discuss some special cases:

e Suppose A7is steady in time, and V - -A=0. Then V - 2A=j” This is
three copies of the Poisson equation, whose solutions from electrostatics
are not too intimidating. Taking the divergence of both sides needs
V - +j=0, which has an obvious meaning from the continuity equation.

e Suppose V - 2A=0, which is just three copies of the Laplace equation.
Then 02A70t2~j This is an acceleration equation for A; with jacting
like the force.

e If j"varies periodically, it will accelerate A periodically. The complete
left side of equation (4.2) is a ‘plain ordinary’ wave equation, as if
equation (3.1) were copied for each component of A but with an extra
term V - (V - -A). That term kills the propagation of a longitudinal
mode, so that light in free space is a transverse wave.

Since it’s a wave the electromagnetic (EM) field can pass through regions
(‘tunnel’), refract, and bend (“interact’), and become trapped in sufficiently
well-matched conditions. It is useful to compare light waves with matter
waves, and also recognize the differences. First, the EM field can be created
and destroyed. It has no conserved charge. Next, the EM wave equation has
no intrinsic frequency parameter. It is pure and dimension-free, getting all
information about the time and frequency scales of ‘the rest of the Universe’
from the current on the right hand side. Finally, there is a significant
difference between the classical field A"and the ‘Schrédinger wave function’
of the EM field. The classical EM wave is quite an exotic quantum state,
where the fields are coherently correlated over gazillions of elementary
excitations. (It is not a stream of statistically independent ‘photons’.) In
contrast the Schrédinger matter wave function at the basic level is for
experiments concerning one electron, not many. The generalization to many



electrons exists and will be treated in chapter 10.

4.5 FIAQ

You say you’re a particle physicist, yet there are no particles. Then what do
Feynman diagrams show? We wish the TV-spokespeople and physa-bloggers
would tell you. Feynman diagrams are not pictures of reality. They represent
mathematical tools to make approximate calculations.

Look at figure 4.7, which shows a diagram for Compton scattering. A
number of moving plane wave fronts covers the figure. They should
completely fill the whole region, interpenetrating everywhere, but the artist
used restraint. The calculation of Compton scattering begins with the
incoming waves, and describes how their interpenetration over the whole
volume generates outgoing waves. The calculation involves multi-
dimensional integrations of all the waves over the volume again and again.

=1
4
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p+K = p'+K'
Figure 4.7. Feynman diagrams are not pictures of reality, but
approximate calculational tools. The calculations involve plane wave



fronts which are ‘everywhere’, even more extensively than shown.
Removing the wave fronts and showing nothing but arrows and
wiggles, representing wave numbers, creates a visual impression of
‘particles’.

Mr Feynman had awesome calculational powers. He was not the first to
make the multi-dimensional integrations, but he was the first to transcribe
them into pictures. Instead of showing the wave fronts which are
‘everywhere’, Feynman amused himself by showing the wave vectors, and
connecting them into pretended particle collisions. Erasing the wave fronts
from the cartoon, they reappear anyway when you make the calculation.
Some diagrams seem to show particles doing impossible things, like going in
circles, or acting ‘virtual’. Just as in tunneling, using parcle words and
cartoons to replace what a wave does often produces an impossible
interpretation.

There is something unnatural about the cartoons. Waves do not often
configure themselves into rigid, infinitely extended plane waves. The
calculations are too crude to do better! They use plane waves as an
approximation, and do not attempt to be pictures of reality. Instead of solving
smooth time evolution a few approximate waves generate more approximate
waves, and so on. The rather crude nature of the calculations is sometimes
recognized, with remarks that ‘the exact process needs adding up an infinite
number of diagrams for all particle exchanges’. Actually the approximations
do not converge in any mathematical sense, but will eventually get worse if
pushed too far. Feynman diagrams are great for their uses, but also reveal
something interesting everyone should know: those diagrams of wave-
exchanges are approximations. Nature is not making approximations.
Feynman diagrams are a charming, human baby picture of what nature is
NOT doing.

So how did ‘particle physicists’ get this wrong? In general, they don’t!
Trouble has been caused by changing word meanings that afterwards were
misunderstood or misrepresented. By the time Klein and Nishina made
calculation of quantum Compton scattering in 1929, the word ‘plane wave’



was starting to be replaced by ‘particle’ and vice versa. The replacement was
convenient and unambiguous for those experts in the know. A definite
calculational correspondence also made this easy. A plane wave is huge and
complicated, but only has four parameters, which are the frequency and wave
number (,k). It’s the same number of symbols as the relativistic point parcle
energy and momentum, (E,p). It is not an accident, because the relativistic
point parcle concept had been derived by observing little waves in the
laboratory. There’s nothing more to the issue, except for the human error of
extrapolating a little wave to a dimensionless point.
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Chapter 5

More quantumy experiments

Figure 5.1. Waves are generally jumbled up, moving, interflowing,
interpenetrating, and distributed everywhere over space. Waves do no
select any ‘position’ concept. It is also OK to construct expressions for
the average position of a wave-blob, along with other quantities. Photo
by permission of Tommy Richardsen.

5.1 The Franck—Hertz particle accelerator



In two papers published in 1914, James Franck and Gustav Hertz reported
experimental evidence for matter waves, but with only partial understanding.
It is an example of how physics experiments can be partially understood,
without seeing all the features. The timing of the experiment was ideal. It was
12 years before the wave theory of matter got developed. It was almost
simultaneous with the botched and wrong pre-theory that appeared instead.

Franck and Hertz were experimenting with vacuum tubes, which means
glass tubes with electricity going through low pressure gas. The gas was
mercury vapor at 115 °C. This temperature was one where the vapor density
was just right to see something interesting... empirical science depends on
luck. As the gentlemen turned up the voltage, they expected to see more
current, which is Ohm's law. At first the electric current passing through the
tube went up, and then it dropped suddenly. Increasing the voltage further,
the current increased from its minimum, and then dropped again suddenly.
This cycle repeated every 4.9 V; see figure 5.4.
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Figure 5.2. Scattering of a quantum wave moving left to right on a
spherical obstacle. The three-dimensional shape is azimuthally
symmetric about the horizontal axis through the middle.

Franck and Hertz deduced that electrons with 4.9 V of energy! were
stopping dramatically on the mercury atoms, and delivering practically all
their energy. Hence, very little current. After being stopped once, electrons
put under 2x4.9V could accelerate again, and be stopped twice, and so on. A
police ‘speed-trap’ model could explain this. When in free space electrons
accelerate like dragsters, until they cross a limit, and the physics cops stop
them. After paying the ticket, the electrons repeated the hurry-up-and wait



cycle again and again.

The experimenters also observed increased light production near the
current maxima. The most light comes out when the electrons stop, and
deliver their energy to a ‘new form of matter’, emitting light upon decay. Not
only that, but with some fussy adjustments, it is possible to see dark and
bright layers in the vapor, clearly showing the zones where more collisions
and light production is occurring. In the first paper they speculated the light
was predominantly at wavelength 253.6 mp (nm). That range of ultraviolet is
not transmitted by glass. They remarked they would need a quartz tube and
said: “We hope soon to know whether in our case the emitted light belongs to
the line 253.6 my’. That was verified in the second paper. It was not trivial,
because both glass and the human cornea block those wavelengths, making
them invisible. The figure of 253.6 mp (nowadays 2540 nm) came from
measurements of mercury by the American R W Wood. Franck and Hertz
were not experimenting at random, but had heard of quantization ideas, for

which they cited Stark and Sommerfeld.
’-

Figure 5.3. The first wave accelerator. In the Franck—Hertz
experiment, electron waves picked up energy and frequency
accelerating across a vacuum tube, periodically dumping the energy
on resonant atomic transitions.




Franck and Hertz initially thought the mercury was becoming ionized at
the speed-trap energies. lonization means electrons are kicked completely out
of atoms. The dramatic effect of nothing happening, then a sharp energy loss,
was consistent. Actually Franck and Hertz were playing with a resonance of
the atom. To understand what's happening, imagine blowing air across a pan-
pipe, or a glass bottle. Below a critical speed not much happens. When the air
speed is perfect the pipe will resonate, extracting energy, and converting it
into the natural vibrational frequency of the system. Each mercury atom is
like a little pan-pipe, which is somewhat fussy to the passing electron wave,
but then responds with enthusiasm when the frequencies are matched just
right.

The resonance of a mercury atom is not really a new form of matter, but it
is certainly a transformation of the electron waves in the atom from one set of
vibrating shapes to a distinctly different one. The analogy suggests there
ought to be many resonant frequencies: for a pan-pipe, those would be the
harmonics. It's a bit too simplistic to expect perfect multiples of a given
frequency... that may or may not happen. The Franck—Hertz experiment was
a success partly by playing with one repeated resonance of cold atoms,
avoiding other complications.

A fundamental thing about resonance is that frequencies of the driver and
resonator must match. If Franck and Hertz had known about matter waves,
and deduced that frequencies were matched, they would have jumped 15
years ahead on the research curve, and saved us a century of propaganda.
Recall we estimated that 1016s—1 is the approximate frequency of an electron
wave making an atom. The Franck—Hertz experiment's light with wavelength
A=2536A has a frequency v=c/A=1.18x1015s—1. The numbers are close
enough, and might be dismissed as just ‘typical atomic physics’. However,
the matching of frequencies implies that the electron wave frequency was
1.18x1015s—1. This re-calibrates the old fashioned unit called the ‘volt’. The
volt is a rather quaint unit which for years was based on electrochemical
battery cells, which are reproducible, but not very informative. Franck and
Hertz had the correct idea that 4.9 V measured the electron's motion. That
motion is not a parcle but a wave phenomenon: the data says the extra
frequency acquired by an electron pulled with 4.9 V is 1.18x1015s—1. In their
Zusammenfassung (Summary) Franck and Hertz wrote: [1]
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‘Es wird gezeigt, dall die Energie eines 4,9-Voltstrahles genau gleich
einem Energiequantum der Quecksilberresonanz linie 253,6 pp ist.’

(It is shown that the energy of a 4.9 V beam is exactly equal to an energy
quantum of the mercury resonance line 253.6 pp.)

That gives the frequency—volt conversion factor in one step:

4.9electronvoltT.18x1015Hz; 1electronvolt=1.184.9x1015Hz=2.4x 1021

In 1962 Brian Josephson, a 22 year old student who could do basic
quantum mechanics, predicted the relation between frequency and voltage
that would occur in a superconducting junction device. The experimentally
determined number is called the Josephson constant KJ-90, which has the
value

KJ-90=0.4835979GHzpuV,or1J-90V=4.836x1014Hz.

This is exactly twice the value of equation (5.1). The J-90 volt must be twice
the value as before, because superconductor current is made with cooper
pairs, charge 2e. The AC Josephson effect is stupendously simple. You put a
DC voltage across a junction, and the current oscillates at 4.836x1014 Hz V
~I. It was a schoolbook calculation that had been missed by schoolbook
calculations made for waves with one single frequency.

Let's check a previous result. It is known that hydrogen can be ionized by
13.6 V. That means you might put (say) 10 1.5 V AA batteries in series,
accelerate electrons emerging from a heated filament, and watch them
destroy hydrogen atoms that get in the way. A 13.6 V electron will have an
incoming frequency v13.6 we can compute:

v13.6V=13.6Vx2.4x1014HzV (5.2)
~1=3.3x1015Hz;®13.6V=21v13.6V=2.08x1016s—1=wH.

This predicts the hydrogen Rydberg frequency wH perfectly, equation (2.1).
There is one subtle thing: with equation (2.1), we mentioned that the
frequencies of the electron wave current are the differences of the wave
vibrational frequencies. If the incoming electron frequency is 13.6 V, to
match the atomic resonance frequency and cause ionization, the final electron
frequency must be zero, so the difference is 13.6. The final electron stops



dead: an electron at rest is the only case where the wave can have zero
frequency. The shape of such waves can be computed: they are flat, with no
bending, no motion.

Comment. Notice we’ve compared data to data using the wave theory,
without ever needing Planck's constant. It is never needed in quantum theory,
while always needed in the old quantum theory. The critical element we
bypassed was the Newtonian electron. It would have caused the following
extra, and meaningless steps: * Convert the electrochemical electron volt to
MKS Newtonian kinetic energy. * Assert that conservation of MKS energy
applies to quantum Newtonian electrons, whatever that means. * Assert that
atomic electrons make an instantaneous quantum leap between unexplained
energy levels. ¢ Assert that the emerging light will carry off the MKS energy.
« Convert the MKS light energy back to frequency, which is what a
spectrometer actually measures. Quantum mechanics does not give you
cookie-cutter formulas for MKS Newtonian energy. Quantum mechanics
destroyed Newtonian physics as a way of thinking about nature. (That still
permits the MKS unit system to mark up experimentally observed quantities,
such as the Josephson constant, with Newtonian symbols and A. And
Newtonian physics will always be around for engineering physics.)

Continuing. A modern particle accelerator is not that different. Electrons,
protons, or whatever are electrically stripped from atoms. After acceleration
they collide, and the experimenters measure the rate. Observing a significant
change in the collision rate, at a particular collision energy, is enough to
know a new resonance has been seen. When the Higgs ‘particle’ was
discovered, probably, at CERN in 2012, nobody saw any little dot with any
kind of Newtonian mass. What was seen was a ‘bump’ in a chart, measuring
an increased collision rate. It is rare to make a Higgs, and the overall collision
rate (like the current of Franck—Hertz) changes by a relatively small amount.
The visible signal of the Higgs resonance was an increased amount of light
quanta tuned exactly to the 125 GeV resonant frequency. (Two photon waves
of about 62.5 GeV each, plus Lorentz boost effects, if you want to be
technical.)
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Figure 5.5. A histogram (empirical distribution) of counts of two
photons versus invariant mass from an early CMS experiment at the
CERN Large Hadron Collider. The invariant mass is computed from
certain combinations of the wave numbers and frequency, and owes
nothing to the archaic Newtonian definition. The little bump on the
curve shows an excess production rate near the 125 GeV resonance
point predicted for the ‘Higgs particle’. It is no little dot, but a long-
sought new vibrational dimensionality of the Universe, an independent
quantum field.

This was a very difficult experiment with a very small signal. Previous
experiments searched for years, but did not have the necessary technology.
The public was told it was a great discovery, and it was, yet we in the physics
business were also disappointed. The Higgs field resonance was exactly
where theory using previous experiments had predicted it should be?. Yet the
satisfaction of confirming a theory is nothing like the thrill of breaking one,



which many had hoped for.

5.2 The Davisson—Germer demonstration
experiment

With Schrédinger's equation a calculation of a few lines could predict the
conditions to make a dramatic demonstration experiment, of the kind that
would convince a dead man.

The opportunity to perform such an experiment was given to Clinton
Davisson, who had the experience and resources at hand. That was going to
be a Nobel Prize enterprise, including the press release. Davisson's Nobel
lecture begins:

That streams of electrons possess the properties

of beams of waves was discovered early in 1927

in a large industrial laboratory in the midst of a great city,
and in a small university laboratory overlooking

a cold and desolate sea.

Note the date where Davisson cites himself for what the theorists told him
to go discover. The part that is true is that a cold desolate sea lies below the
University of Aberdeen, where George Padgett Thomson and students did a
simpler, independent experiment on a small budget at the same time.
Eventually the dissertation advisors shared the 1937 Nobel Prize, and thanked
their students.

Four pages into the lecture Davisson divulged more of the truth: ‘The first
to draw attention to it (electron diffraction) was Walter Elsasser who pointed
out in 1925 that a demonstration of diffraction would establish the physical
existence of electron waves.’. Walter Elsasser (1904-91) did more than make
a casual suggestion. His paper [2] suggested two tests of de Broglie's wave
proposal that perhaps had already been observed. One test was the Ramsauer
(or Ramsauer—Townsend) effect, where electrons with about 1 eV of energy
were observed to have practically zero collisions with noble gases such as
argon. The electrons flowed past the obstacles as waves matched to the
atomic size. Another test was the observation of peculiar ripples in the
angular distribution of electrons scattering off platinum, as observed by



Davisson and Kunsman in 1923. Elsasser showed by calculation that both
phenomena were consistent with de Broglie matter waves. Elsasser proposed
a more quantitative demonstration experiment, and sought the support of
James Franck of Géttingen (the same Franck as Franck—Hertz). Franck was
encouraging but would not spare manpower to help the 21 year old Elsasser,
who was inexperienced and eventually gave up experimental physics as being
too hard. Davisson knew of Elsasser's paper [3] but did not believe it. At the
time Schrodinger had not yet found his wave equation, and the absence of a
wave equation made analysis very difficult. After Schrodinger published his
papers on wave mechanics, Born in 1927 remembered Elsasser, who
happened to be his own student. Born presented the old Davisson—Kunsman
data at an Oxford meeting as evidence for matter waves. Davisson attended
the meeting, and after talking to important people like Born, Schrédinger, and
Thomson, ‘they all told him to look for wave interference’. So then he
believed it. Later Elsasser said about Davisson:

‘So by that time Schrédinger's work was known, you see, and then he
(Davisson) just gave me a nice footnote and that was that. As a matter
of fact, you see I was just 21 years old when I wrote this, and I was
just too young to exploit it.’

A~Azimuth




Figure 5.6. Schematic diagram of the Davisson—Germer experiment
showing primary beam (vertical) and detector pickup (‘to galv’). The
blocky thing represents a tiny crystal of elemental nickel, which was
rotated about the vertical axis to determine the angular distribution of
scattering. From Davisson's Nobel lecture. © 1937 The Nobel
Foundation.

Yet since Elsasser predicted this particular Higgs particle, and suggested
the crucial experimental element of using a single crystal, we think he might
have shared in the Nobel prize, despite not having ‘a large industrial
laboratory in the midst of a great city’. Elsasser went on later to contribute to
nuclear physics and become a highly distinguished geophysicist.

Figure 5.6 shows a schematic of Davisson and Germer's experiment from
the Nobel lecture. In ‘good’ directions the atomic planes of the target crystal
caused waves to constructively interfere, increasing the scattered intensity.
How to convert such a pattern into information about the impinging
wavelength was quite well known from x-ray scattering.

5.2.1 Matter waves tend to be small

The measured intensity as a function of the azimuthal angle (around the
rotation axis) is shown in figure 5.7. Since the atomic plane spacings were
known from x-ray scattering, the wavelength Ascatt=1.65x10—-8 cm fit the
data. (This is n = 1 fit listed in their table 1.) A single clean wavelength,
which is exceptional, occurred for the experimentally circular reason that no
other wavelength (wave packet) was going to match the crystal lattice and
electron beam energy. (That's how great experiments tend to work out.) The
potential applied was 54 V. Converting to frequency gives
54V x2.4x1014HzV—-1=1.3x1016Hz. The data for frequency and wavelength
is

A=1.65x10-8cmv=54Vx2.4x1014HzV-1=1.3%x1016s—1.
Note the order of magnitude: the numbers are typical atomic sizes, one more
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5.3 The free space Schrodinger equation

In section 6.2 we will review how Schrodinger guessed his famous equation.
Here we consider the special case of propagation in free space, or ‘free
quantum electrons’. The equation in free space is
(5.3)
10yot=—12pe V 2y;;pe=wec2.
The complete equation adds U(x){s to the right hand side, where U describes
an interaction. Far from interacting regions one has U(x)- 0.

If you promise not to be bullied, nor get angry, the next step is a very
ordinary expression which has scared or angered many. At time t = 0 you
send out your sub-quantum minions to push and pull a matter wave into an
arbitrary shape yany(x), and hold it there. freeze the wave in place, and we
seriously mean in ANY shape: no restrictions, because the initial shape comes
from arbitrary and undetermined initial conditions. The mathematics of
Fourier analysis can express any shape as a sum of complex cosine waves,

yany(x)=[dkeikxy~any(k); — noinformation! (5.4)
Yany(x)=[d3keikx{"any(k)— noinformation!
Here d3k=dkxdkydkz. These expressions (one- and three-dimensional form)
are not predictions and not puzzles to be computed, but more like water-color
paintings waiting to be painted. Whatever yany(k)’is put inside the integral, it
will predict a corresponding Pany(x), and vice versa. We have used the trick
of putting no information into the expressions, except the fact there's two
related ways to express any function.

Next, we tell the sub-Q minions to release the wave and let it slosh
around. No matter what the time dependence may be, we can encode it
replacing Y any(k)- ¢ any(k;t)=y"(k;t). That's equivalent to using the no-
information trick at each moment in time. The time dependence comes from
physics, which the Schrédinger equation will predict. To avoid confusion we
are dropping subscript-any because the time dependence is not arbitrary.
Once again express the time dependence with a Fourier transform: 55)

Y(x,t)=[dkdweikxy"(k,w)elkx—1wt — noinformation!

Whatever ¢ (k,n) is, it will correspond to yi(x,t), and vice versa.



Now for physics: we now ‘educate’ or direct the meaningless expression
above to solve the free Schrédinger equation:
(5.6)
(100t+12pe020x2)yi(x,t)U, [dkdwerkxy (k,0)(0—k22pe)ertkx—1mt0.

Inside the integral we used the primeval eigenvalue equation twice:
(5.7)

100te—10t=we—1wti10oxeikx=keilkx.

Any time an operation on a function produces the same function multiplied
by a constant, it is called an eigenvalue relation. The functions associated
with eigenvalues are called eigenstates. The equations above are eigenvalue
relations for derivative operators. It is not much at first, but the primeval
equation is the tip of a very big mathematical iceberg that comes up soon.

The right hand side of equation (5.6) will be zero for all x,t if and only if
the integrand yi(k,w)(w—k2/2pe) - 0. Whenever yi(k,0)#0 we must have w
—k2/2pe=0. But Yi(k,w) was an arbitrary function of k (recall any), so all
solutions must obey the free space dispersion relation 58

w=k22e.

The range of wave numbers k is undetermined, and equivalent to the initial
conditions, equation (5.4). For each k there must be a frequency w given by
equation (5.8). That is the content of the free space Schrédinger equation and
it is the only content.

The expansion in Fourier modes worked beautifully because it was an
expansion in eigenstates of the differential operators 10/0t and —10/0x. Each
operator produced an eigenvalue. Finding eigenvalues of the frequency
operator happens to be the general way to solve the Schrédinger equation.

Example: determining pe With pe=0.87scm—2, and k=2m/A, the equation

predicts for the Davisson—Germer experiment
(5.9)

v=w2n=2m1.74sA\2/cm2=2m1.74%1.652x10-16s—1=1.33x1016Hz,

just as reported by the data. Or you can reverse this: the data of Davisson and
Germer predicts pe=0.87scm—2.

Example: a general solution The double Fourier expansion with no



information in it, equation (5.5), represents the solution when the dispersion
relation is put into it, as follows:
(5.10
Y(x,t)=[dkerikxy~(k)etkx—1k2t/2pe — generalsolution.

In three dimensions replace dk - d3k and kx — k"X We suggest you check
this by applying the differential operator (10/0t+12ped2/0x2). Once again
U (k)=y any(k) is a code for the initial conditions. That's all there is to it! We
have solved a quantum mechanics problem... nothing more is needed! Notice
there is no integration dw because w — k2/2pe is fixed inside the equation.
The same result comes from integrating dwd(w—k2/2pe), in case you are
familiar with the Dirac delta function. In any event, the physics is predicting
the bare minimum information, which is all that is needed.

Example: de Broglie Louis de Broglie thought E=hv and p=h/A were
fundamental relations. They were assembled with E=p2/2mN to give hv=
(h2/2A2mN) for each ‘quantum parcle’. The free space dispersion relation
we=k2/2pe is the same thing, but with a very different meaning: there is no
single wave in the general solution. The only case where one would have a
single wave with a single frequency and wavelength would be some
fabulously precise selection as an initial condition. The Schrédinger equation
predicts the de Broglie relation when reduced to that single case: the de
Broglie relation does not predict the Schrodinger equation, because it was too
narrowly posed from the start.

Example: wave speeds The general solution is a sum of harmonic waves that
are functions of k’x=wt. A function of x — vt translates rigidly to the right at
speed v, as if drawn on clear plastic, and pulled across a page. Write

kx2ot=| kTkTkT xZ0 | kTt=| kTk - x~

—vphaset,wherevphase=w | kTK22pe | kT=|kT2pe.

Each electron plane wave moves rigidly at the phase velocity
vphase=|kT/2pe. This is different from the cookie-cutter c=Af equation. The
velocity of free space matter waves depends on kthe larger |kT, the smaller
the wavelength, the faster they go. As we will see, the interactions that bend
quantum waves is much like a local distortion of their propagation speed in
the background ‘medium’.



5.3.1 Interpreting the sign of the frequency

The free space wave shows once again how ‘quantum mechanics’ is a
misnomer. The values of w and k™ are undetermined, and completely
continuous. One says there is a ‘continuous spectrum’ for waves ‘propagating
in the continuum’ of free space. There is no ‘quantization’ to be found here.
The discovery of the Schrodinger equation is that frequencies will be
quantized when and if the dynamical solutions have quantized frequencies. In
general, frequencies are only quantized when the waves are localized by an
interaction that traps them. Such things are called ‘bound states’.

The frequency of a matter wave is positive when propagating in the
continuum and negative in a bound state. Consider figure 5.8 showing a
bound state. In the interior region the wave has the strongest interactions,
which will be complicated. Towards the outside boundary the interactions get
small, and the wave attempts to propagate out into free space. In that region
V 2y is small, with a particular sign. The sign is best understood by dividing
out . In the figure for x=2 the value of (V 2y)/y>0, causing the wave to
flatten out as it approaches the boundary. For example yi(x)~e—kx has
d2y/dx2~k2yi(x), with k2>0.




Figure 5.8. The frequency of a trapped eigenstate is negative (wn<0)
which corresponds to (V - 2y)/{>0, solid curve) in regions near the
outside edges of an atom, where the interaction function (dashed)
becomes sufficiently small.

The time dependence of the wave dy/0t must maintain that trapping. For
each self-resonant trapped wave with time dependence exp(—iwt), the time
derivative goes like

100te—10t=we—1wt.

If we are sufficiently far from the interaction center to neglect the interaction
term, we have
(5.11
oP~—k2c22w*y,
which needs »<0.

Next consider propagation in free space. A generic plane wave goes like
exp(1kx), so that Y"(x)=—k2yi(x). Then equation (5.11) is replaced by oy~—
(—k2)y, needing w>0.

Finally there is the delicately balanced case with w=0 for the perfectly flat
wave V 2y=Uy=0. The signs are summarized by

trappedwave, ‘boundstate’ ®<0;flatwavew=0;untrappedwave, ‘unboundstate

5.3.2 The memorized substitution rules

We presented the free space Schrodinger equation without explaining it,
because it is more urgent to see how it works. We think explanations are
important, and it will appear in section 6.2. However, the campaign
promoting the non-explanation of the Schrodinger equation came early, and
was very well advertised. It fits in pretty well with the idea a person was not
supposed to understand quantum mechanics.

The main key to the not-understanding tradition was memorizing non-
explanations. We’re not going to defend it. In a typical Copenhagen



presentation one will see statements like this:

e ‘For every classical physical quantity, such as position, momentum,
angular momentum, mass°, etc, ... quantum mechanics has a Hermitian
operator using the same symbol’. And this cannot be explained.

e The momentum of the quantum particle is represented by p=-1AV ~And
this cannot be explained.

e For each system with a classical Hamiltonian H(x;p)" there is a
Hamiltonian operator H(x;p) replacing pthe numbers by pthe operator.
This is called ‘quantizing the system’.

e After quantizing the system, its stationary states are given by solving
H|y>=E [y>.

The memorized substitution rules (MSR) include the above and a little
more. In section 3.2.2 we mentioned Poisson brackets were assumed not to be
understood by novice students. So the MSR say that for every classical
Poisson bracket, one should use a corresponding commutator of operators. If
this appears to be a non-sequitur—namely a statement not connected in a
logical or clear way to anything said before it—that was the character of the
MSR.

Many studying quantum mechanics have been perplexed. Actually
students use the MSR as a way to remember formulas. The Newtonian
formula for a Hamiltonian is H=pZ2/2m+VN(x), where V) is the Newtonian

potential energy. Substituting p~gives H=A2V 2/2mN+VN(x). The last step
finds the stationary states:

~h2V Z|y>2mN+VN(x)¢>=E [ y>.

The equation just written uses terribly sloppy, misleading harmful notation
(see section 7.1.3), but the whole memorized kludge is sloppy, so what's not
to like?

Many notice what's not to like. Not one thing has been explained, nor
understood, by enacting memorized rules. Einstein objected to what became
an inherently irrational acceptance of unthinking, which he called the
‘Heisenberg—Bohr tranquilizing philosophy—or religion?’ (And this was not
the debate about quantum probability, either.) If you take a physics course
and get points for ‘quantizing’ an arbitrary system—a favorite is the ‘banana



peel’—try to remember it's just a schoolbook algorithm to name differential
equations. The only Hamiltonians that matter are those describing nature, not
those predicted by recipes. In section 8.2.1 we will review the relation of
-1V 1o ‘momentum’ that is not an inexplicable postulate, but a derived fact
of the Schrédinger equation.

5.3.3 Don’t add the wave functions of two electrons

There's a joke about two electrons who go into a bar. The bartender says:
‘What will you have?’ One electron says: ‘How much is a double-slit?’ The
bartender says: ‘$8.” The other electron says: ‘Count me in, we’ll both have
the same.” The bartender says: ‘That’ll be $64, cash.” The electrons complain:
‘Can’t you add?.” The bartender says: “You waves are all the same. And I
know how you multiply.’

Oooh... When quantum subsystems are composed, their wave functions
multiply, they do not add. In principle it is a procedural decision for wave
functions to compose by multiplication, but it is the only consistent option.
The consequences of products and entanglement are the topic of chapter 10.
The way it works is totally unexpected, and was never guessed before
quantum theory. We need to give a hint of it here, to avoid mistakes and
paradoxes that might come up if you adventurously (and incorrectly) start
superposing the waves of more than one quantum system.

Consider two frequency eigenstates called systems 1 and 2 in free space,
examined at point xT at time t; and xZ at time ¢,. Each time label is related to

a common, standard time t by t1=t+Atl, t2=t+At2. If the wave functions
multiply, the time dependence is

e—1w0ltle1w2t2=e—1(01+w2)te—101Atle—102At2.

The frequencies conjugate to t add. We have just discovered the law of
addition of energies for basic non-interacting systems. The overall energy as
frequencies is the sum of the subsystem frequencies.

Relate each position label to a common, standard position x“by xT=x
+AxT, x2Z=xFAxZ. If the wave functions multiply, the space dependence is

e1lkT-xTeikZ-x2Z=e1(kT+k2)-x€1kT-AxTeikZ-AxZ.



The wave numbers conjugate to x add. We have just discovered the law of
addition of wave numbers for basic non-interacting systems. The wave
number conjugate to xis the sum of the subsystem wave numbers.

The result is confirming a rule of beginner's physics that the total energy
is the sum of subsystem energies. That rule has been obtained for non-
interacting subsystems, because that's the only case where it is exactly
correct. When systems interact there is an interaction energy, which may or
may not be small, and needs to be accounted for. Since the only case many
have seen is the simple addition case, we’ve used it to make a point, and also
warn you. It is premature to talk of many quantum systems, and when we get
there wave functions will not simply add. There will be subtle and interesting
consequences of composing wave functions by products. We’ll get there
when we are ready!

5.3.4 FIAQ

Why did the presentation of the phase velocity not also discuss the group
velocity, which is more important? Many students are confused by this. The
free-space phase velocity formula is vphase=k72pe. It is the true velocity of
harmonic waves in the expansion, mode by mode. The relation k=2pevphase
contradicts the by-rote MSR rule pN=mNvVN, and there's no way to save it.

When a generic blob of waves starts moving, its center moves, it spreads,
and it changes shape in many different possible ways. There exists about
seven different formulas for ‘group velocity’ to describe different features.
None are correct for everything: all are wrong for something. However, early
in quantum history somebody wanted a Newtonian-looking formula to come
out*, and popularized the (best-known) group velocity as ‘the answer’. If you
see a source calculating with a Gaussian wave packet, be very critical when
reading it, and you will discover the wave packet does not move at the group
velocity, despite language claiming or suggesting it.

The unfortunate outcome was that many students memorizing the group
velocity could do one homework problem on group velocity while becoming
unable to look at wave functions and understand anything else. We’re not
going to repeat the argument, nor the formula, because nothing in quantum
physics uses the group velocity, and dwelling on it just wastes time.



I have seen eigenvalue equations like equation (5.7) described to be
physical principles defining what an experiment measures. Why are they not
described that way? Because math facts are not physical principles. Math
facts are the outcome of your own assumptions. We don’t know what nature
is, but it is operating on its own regardless of our assumptions.

There is a dogmatic presentation where eigenvalue equations are
introduced as free-standing statements about existence. It is deceptive, and
won’t work with adults who wunderstand eigenvalue equations. The
Copenhagen presentation was loaded with unsupported, free-standing
statements, under the excuse that any logical system must start somewhere
with some definite axioms. The ‘eigenvalue postulate’ we mentioned is one
such thing. If you have never seen an eigenvalue equation, you are told to
accept that ‘an experiment always measures an eigenvalue and leaves the
corresponding eigenfunction’. There do exist special cases where this occurs:
for example, if you work hard enough to filter out a very pure plane wave, the
eigenvalue relation of equation (5.7) applies. There are two faults with the
organizational flow chart putting this early. First, there's no explanation or
attempt at explanation: it is a form of bullying by non-explanation. Second,
the eigenvalue relation comes from mathematics, so that when it might apply,
it's a math fact, and when it does not, physics will not be affected. Finally the
statement ‘an experiment always measures’ is dead on arrival with the word
‘always’. Children can be told with authority what nature must necessarily do
in experiments, but nature does not obey human authorities. There is a special
term some people use for those real-world measurements that don’t obey the
authorities. The are called improper measurements.
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Chapter 6

Atoms are musical instruments

Figure 6.1. Light on water and soap, by Professor Hamid Kellay of
the University of Bordeaux.

6.1 The quantum clues you never knew

Here is the tale of the burning philharmonic. One day a large orchestra was
rehearsing for a major recording. Every violin was tuned exactly like the
others, because violinists are so fussy. The trombones and oboes and flutes
were adjusted to perfect pitch. The timpani were the last ones made by



Stradivaridrum. During a break fire broke out. The musicians were safe,
having lunch and cocktails at a restaurant across the street'. The beautiful
instruments of the philharmonic orchestra burned.

And then, goes the tale, the forensic examiners recovered the recording of
the burning ensemble. Computer analysis of the chaos showed inexplicable,
mathematical regularity, and beauty. The record was astonishing. Pure tones
sang with sweet harmony from flaming violins. The woodwinds breathed
fiery expiration through their body cavities. The tortured trumpets played a
full octave higher than the score. The inexplicable music of a spontaneously
combusted orchestra was pirated and distributed world-wide on the internet,
outselling the work of artists? invited to the American White House.

The parable does not exaggerate. It under-describes the fantastic
experience of anyone seeing the pure colors of hot atoms in a flame, and also
understanding it. If you have the resources of the top 1/10% you should buy a
university laboratory and experiment around with quantum physics.

6.1.1 Atomic spectra

‘Atomic spectra’ mean the frequencies of light given off by hot atoms. The
‘good’ experiment needs the atoms to be separated enough so the light comes
straight to your detectors, without multiple reflection and re-emission. That's
why atoms of a gas, heated in a flame or by electric currents, are preferred. A
‘spectroscope’ sends light through a slit, giving it a sharp direction, and then
through a prism or diffraction grating. The prism affair bends light according
to its frequency. This is a quantum measurement: it yields an ‘eigenstate of
wave number’, which like other measurements, works out by the dynamical
rules of wave physics without a post-dated postulate claiming it's mysterious.



Figure 6.2. A wealthy 19th Century gentleman discovers the joy of a
spectroscope. You can now buy one for $8. The prism is the triangle
shape in the middle. This device is comparing two different spectra.
The most amazing discovery is found in between the separated
spectral lines. One sees no light.



Figure 6.3. A few lines of the spectrum of mercury atoms... dozens of
lines exist. The gaps between the lines are the real clue. Photo by Jan
Homann.

Looking through a telescope focused on the far side of the prism, one sees
a bunch of colored lines, which are copies of the slit (figure 6.3). At first it is
confusing why there are so many copies. Then you realize they are images of
rays bent according to color. The colors are pure and beautiful, we repeat.
The completely non-obvious thing is that between the colored lines there is
nothing. Nothing! No light is emitted at almost all colors. Each kind of atom
only emits light with a certain set of sharp frequencies, and that is simply
bizarre.

You might be expecting to hear that inherent quantization of atomic
energy levels explains this. Hell no. That was the non-explanation of the
previous millennium. Nothing was ever explained by postulating that the
discrete quantization of frequencies that were observed was a consequence of
postulating that discrete frequencies must be observed.

6.1.2 The unknown history

Well before 1900 the clues of atomic spectra were understood. It is a simple



matter of counting the number of physical variables. It is known that any
linear oscillating Hamiltonian system will have exactly one frequency per
oscillating coordinate. For an ‘oscillator’ you can imagine a ball on a spring.
For 13 oscillators you can imagine 13 balls and any number of springs. For
your comprehensive exam, you might be asked to solve equations for 13 balls
connected by 13 x12/2=78 springs, which is as many as can be jammed
between pairs, and recover the fact there's still 13 oscillators, and at most 13
different frequencies.

Returning to the atomic spectra, more than 13 lines were observed. There
are thousands of lines even for hydrogen, the atom with only one electron.
There appears to be infinitely many lines, which turns out to be the truth and
the secret of the atom. Well before 1900 this clue was understood. Waves are
mechanical systems equivalent to an infinite number of oscillators. The
things of the atom that oscillate are the innumerable bits of the continuous
wave, which can be divided and subdivided ad infinitum.



Figure 6.4. George Johnstone Stoney, who discovered the electron
and published the solar system model 30 years before it was called the
Bohr model.

This is so simple people are not sure they can trust their intuition. If you
divide a wave in two, can the left and right halves vibrate independently?
Yes, but don’t forget they are coupled in the middle. Divide each half in two:
each half is independent, to vibrate as it will, while coupled at the boundary.



Subdivide the subdivisions forever, and observe there's no limit to the
number of shapes, and then the possible number of vibrational frequencies:

W(x,)=> noocnyn(x)e—iwnt.
Note the sum extends to infinity. The research staff can easily do the math,
which to some extent consists of simply making definitions and concentrating
on the cases where the definitions apply.

It was not only possible to make the deduction, but the deductions were
actually made quite early, in deciding that atoms must be little vibrating blobs
of some kind of jello-like jello; since the hydrogen atom is one electron that
tells you that one electron must be little vibrating blobs of some kind of jello-
like jello. Letters between Stokes, Kelvin, and Lorentz speculated on this in
the 19th Century. In 1906 Lord Rayleigh published an ‘electron fluid’ model
of the atom [1], which unfortunately made a poor fit to experimental data.
The same year James Jeans commented on Rayleigh's atom [2], writing:

“Thus if we regard the atom as made up of point-charges influencing
one another according to the usual electrodynamical laws, the
frequencies could depend only on the number, masses, and charges of
the point-charges and on the aether-constant V. What I wish to point
out first is that it is impossible, by combining these quantities in any
way, to obtain a quantity of the physical dimensions of a frequency.’

This was true of Newtonian physics, which had no intrinsic frequency
parameter. Jeans continued:

‘It seems, then, that we must somehow introduce new quantities—
electrons must be regarded as something more complex than point-
charges. And when we have once been driven to surrendering the
simplicity of the point-charge view of the electron, is there any longer
any objection to putting the most obvious interpretation on the line-
spectrum, and regarding its frequencies as those of isochronous
vibrations about a position of statical equilibrium? The main objection
felt against this view is here supposed to lie in being inconsistent with
the point-charge view of the electron. The present author suggests that
the same objection applies equally to the ‘orbital motion’
interpretation.’



So Jeans found the flaws in the point charge and the orbital motion
interpretation seven years before Bohr kept it in his model.

The date 1906 conflicts with the popular information that Bohr
discovered the atom in 1913. No, Bohr invented and explained nothing. He
simply reverse-engineered the spectrum of hydrogen fit by Rydberg to an
unexplained postulate about angular momentum quantization. Rutherford had
already popularized the solar system model of the atom with his
interpretations of 1911. Rutherford got the model from Nagoaka (1904) and
Nicholson (1906). They all acknowledged George Johnston Stoney as the
actual inventor of a solar-system atom in the 1880s. Stoney committed to
human music so completely he predicted too many atomic frequencies would
be harmonic ratios. Arnold Schuster (1851-1934) conducted a thorough
survey of spectra which rejected such a simple regularity. That discouraged
scientists from working on Stoney's idea. Yet Schuster wrote about ‘the

inverse problem’3 in 1881:

‘We know a great deal more about the forces which produce the
vibrations of sound than about those which produce the vibration of
light. To find out the different tunes sent out by a vibrating system is a
problem which may or may not be solvable in special cases, but it
would baffle the most skillful mathematician to solve the inverse
problem to find the shape of a bell by means of the sound by which it
is capable of sending out. And this is the problem which ultimately
spectroscopy hopes to solve in the case of light.’

The inverse problem of finding a wave equation whose solutions matched
the atomic spectra is precisely what Schrodinger solved in 1926.

6.1.3 The sound of every tune and no particular
tune all at once

Figure 6.5 shows the sound spectrum of the singing art-form of the Republic
of Tuva in Russia. The spectrum shows a graph of intensity of sound versus
frequency. Sharp peaks show high intensity at certain points, with gaps in
between. The bars at the top of the figure show evenly spaced harmonics,
which the Tuvans work hard to produce by resonances of their vocal system,



which sounds rather disturbing to Western ears. Instead of singing one note,
the Tuvans are quantum experts who sing ‘no particular note, but every note
and all notes at once’.

The spectrum of sound from a guitar string (‘high-E’) is more orderly
than Tuvan singing. The repeated bumps are harmonics, which are simple
integer multiples of the frequency. A guitar string finds its own frequencies
automatically, because it is trapped between fret and a bridge to do nothing
else. A trapped electron wave finds its own resonant frequencies where it
sustains itself. Generally many vibrational patterns happen simultaneously:
that is what waves do.

Figure 6.6 shows the guitar spectrum left to right in the top panel. Below
that, we rotated the figure 90° so that each frequency peak looks like a
horizontal band, or ‘frequency level’. The rotated graph is on the right, with
higher frequencies at higher levels. The figure explains almost all there is to
know about ‘energy levels’. The frequency levels and energy levels are
precisely the same thing. We mean the word ‘precisely’ very literally.

T T

Hz

Figure 6.5. The intensity spectrum of a Tuvan singer versus
frequency. The vertical lines show harmonics the Tuvans produce.
Rather than sing one note, the art form of ‘quantum singing’ is about
singing many notes all at once. Figure by Professor W G Unruh of the
Canadian Institute for Physics & Astronomy.
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Figure 6.6. The mercury guitar. The top panel shows the spectrum of
mercury as a function of frequency. The notation is conventional:
intensity on the y axis, versus frequency on the x axis. The bottom
panel shows the frequency levels, which are simply the frequencies of
a plot rotated by 90 degrees.



Consider this. If we showed you nothing but energy levels (some levels of
mercury are on the left) you might never figure out it is a graphics trick.
Rotating a graph of frequency spectrum by 90° makes a graph of frequency
levels. Yet millions of students are daily learning that energy levels are
intrinsic inexplicable mysteries (Bohr's picture) without ever being told the
connection to frequency resonances they can understand.

OK, if we had started off wrong with energy levels, then we would have
needed to explain where the frequencies came from. It was ingenious back
then: having no physical picture was Bohr's claim to accomplishment.

The energy level diagram shows both the same information as the guitar
string frequencies, and also different information. The exact correspondence
is that the atom vibrates at the frequencies of the energy levels. It is nothing
but terminology and archaic Newtonian units that distinguish the sharp
frequencies and the energy. (We’ll do more with that.) For physical purposes
all the labels should be frequency. In fact, the most precise atomic physics
measurements and theory bypasses the unit conversions, and literally lists all
the numbers as frequencies. The frequency of the 1S2S transition in hydrogen
is 2 466 061 413 187.103(46) kHz. The experimental uncertainty is the last
two digits in parentheses. Current physics cannot tolerate using Planck's
constant to convert to MKS units, because the conversion factor produces too
many uncertainties!

Figure 6.6 indicates the frequency of the mercury resonance Franck-—
Hertz explored, the lowest one, with a dashed line on the figure. It could
correspond to a high frequency guitar string vibration immediately across the
figure, except the scales of frequency are so vastly different. This is all
precisely faithful to our present theory, and needs no justification by external
authority, which is why you can understand it.

But there is another feature not yet explained. In the obsolete and bad-for-
you picture of quantum jumps, the photons supposedly come out by magic
with energies which are ‘differences of the energy levels’. That is, the vertical
arrows on the left side of the figure show the differences of frequencies of the
atomic levels. That is not how guitar strings work. If a guitar string vibrates
at 404 Hz, you hear sound of frequency 404 Hz. This is a clue that the
Schrodinger equation will not be the sound equation, but something different.
The way it works turns out to be very neat.



6.1.4 The quantum current

When Schrodinger was exploring his equation, he naturally knew it must
predict a locally conserved current, so he found the formula right away. It is
not entirely clear whether Schrodinger used the relation of symmetry and
conservation known as Noether's theorem to find the formula. It was
generally known at the time and certainly used soon afterwards. The
Schrédinger equation has a symmetry under which the wave function ¢ and
elBy cannot be distinguished. Superficially this comes from replacing
U - e10y everywhere in the equation, and finding the phase factor just cancels
out. Noether's theorem shows that the conservation of electric charge follows
from the symmetry. The symmetry is also quite a bit deeper and more
intricate than the superficial version. Understanding it more deeply eventually
led to the generalizations found in modern strong and electro-weak theories.
Anyway, Schrodinger found the following formula for the current: 6.1)
JED=1eQ2pQU* V- V.
Here e, is the quantum parameter for the overall size of the charge. Notice

the current is zero if  is purely real, or purely imaginary, or whenever its
complex phase is constant (Y(x)~e10 | (x)|). As promised earlier, two parts
(real and imaginary) of the quantum wave are needed to make a conserved
current.

Observe that the current is smaller when the stiffness parameter pQ is
larger, with everything else fixed. Then electron waves, which have the
smallest pQ of charged systems (just as you’d expect) have the most
spectacular currents and electromagnetic interactions. (For example, when
you look at your thumb, you only see the electrons on the outside. The rest of
your thumb is invisible!) Notice that if you know @, you can compute the
current, but not the other way around. The conserved ‘stuff’ is not ¢ but a
measure of the wrinkles in ¢ that must move through a bounding volume to
get out.

Most of the symbols in equation (6.1) probably do not speak to you right
away, but notice this: the current is not proportional to the wave amplitude y,
but proportional to its square. This means that if you add two waves the
current will not add in a simple linear way. One might guess this would have



amazing industrial applications, which has been borne out. Another fact:
suppose a matter wave vibrates with more than one frequency, which
happens to be the typical situation. For example, some shape ¢1(x) vibrates
with angular frequency w1, and ¢2(x) vibrates with angular frequency 2.
(Such special shapes always exist, as we’ll discover in section 7.0.2.) A
superposition goes like

U(xt)=cldple—10lt+c202e—1m2t.
Let jT be the current calculated with ¢1. In computing ¢1*V @1 the time
dependent factor e-1wltXelwlt cancels out. This is the same with
jZ~$2*V $2. The total current is

(6.2)

jZjT+jZ+constim[$p1*V F2e—1(01-w2)t],
where const involves eQ/pQ and c1c2*. Notice the Im[] part, which needs a
complex wave, and picks out the exact phase relation making a current.

By inspection, the electrical current does not vibrate at a single wave-
function frequency, but at the difference of two frequencies in the wave
function. This explains so much: and it has generally been ignored, or
forgotten.

We have seen the equation for the current: by the Schrédinger equation, it
is locally conserved with the charge density, which has the formula

px=eQU*(X)P(x):
The symbols y*ys are very famous and often introduced in a sort of oracular
presentation as ‘the probability to find the quantum particle’. Besides the
point parcle objection, let's observe that the claim omits the information
about local conservation. In fact, local conservation contradicts the common
idea that the point parcle jumps around randomly and might appear
anywhere. Since that idea was wrong, it's a good thing to contradict!

6.1.5 Light has the beat

As we said, the wave equation for light has no preferred frequency. Light
adapts itself to matter and is emitted with the frequency of the
electromagnetic current. In one simple step the current of the Schrodinger



equation explained the spectral emission frequencies of light. A hot disturbed
atom is thrown into a mixture of internal vibrational frequencies. It is just
what you would expect for a little blob of quantum jello crashing about. The
electric current vibrates at the differences, or beat frequencies, of the electron
wave frequencies. A vibrating atom is like a radio antenna, emitting light at
difference frequencies until the wave runs out of differences and reaches a
pure frequency. The beats stop if the atom goes to its lowest frequency
condition, called the ground state. The beats also tend to be weak if the atom
transiently vibrates near any single frequency, the natural frequency level of
the atom. The phenomenon of light ‘getting the beat’ effortlessly explains
why atoms cascade down in energy over time while emitting the sharp
spectral frequencies observed.

Yet this beautiful discovery was largely spoiled by the previous non-
discoveries of the Bohr model. The model did not discover that atomic
spectra are the differences of frequencies: that was already in Rydberg's
empirical fit, and already generalized to all spectra, by the so-called
Rydberg—Ritz combination principle of 1908. The Bohr model actually
assumed more inputs than its outputs. Assume special ‘orbits’ exist, assume
instantaneous jumps, assume there are photons with E=hv, and assume
conservation of energy. Notice there is no mechanism, no element of time
evolution, and no mention that light needs to obey its own wave equations
that are driven by the electric current. The assumptions are not intended to
stand on their own: they were formed by working backwards from data, and
decreasing the information given by data. That is why Wikipedia will report
that Bohr predicted the hydrogen atom spectrum.



Figure 6.7. Two snapshots of a bouncing hydrogen atom. The atom is
three-dimensional and spherically symmetric. The artist making the
picture transcribed the amplitude to the ‘height’ of a wave which is
easier to render.

In this century you need to know it is a serious conceptual error to use
‘conservation of energy’ as a fundamental principle. You can salute it all you
want: conservation laws are outputs of equations of motion, which have more
information. If you have an equation of motion you can calculate everything,
which will already be consistent with a conservation law, while having full
detail, such as the amount of time needed for an atomic transition. The time
At a transition takes is observable with the relation AtAw>1/2, where Aw is
the observed spread of frequencies in spectral lines. (Line widths had been
classified and named s, p, d, f for sharp, principal, diffuse, and fine years
before the quantum models.) Meanwhile with a conservation law you might



anticipate a numerical relation, which the law itself does not actually explain,
and you cannot compute time evolution.

The Schrédinger current is what makes all electrical technology possible.
The typical atomic vibrational frequencies of electron waves are so high—
10'°> Hz and above—we could hardly communicate with them. However, the
difference of vibrational frequencies can extend all the way down to zero,
namely DC and 60 Hz AC. The picture of the Bohr model that atoms were
immune to frequencies below their resonant spectral transitions was terribly
wrong. If it were correct, 60 Hz AC power would not exist!

6.2 The Schrodinger equation

Schrodinger's notebooks of 1925-26 have been preserved, and they show that
more than trial-one wave equations were explored. The basic issues can be
understood very easily.
The equation of motion of a plain ordinary dimensionless classical wave
with amplitude ¢(x;t) was shown in equation (3.1), repeated here: (63)
0290t2=c2'V 2¢.
The ‘generic linear wave equation’ is
(6.4)
0200t2—c2V 2d+w*2¢—U"(x)d(x)=0. — genericlinearwaves.
The plain ordinary dimensionless equation is a special case setting the
parameters w* - 0 and U™ (x)- 0.

For reasons Newton never suspected, these equations have a generalized
Newtonian form. On the left side is the acceleration of the amplitude. A wave
induced in a Newtonian mechanical medium will have every little bit
accelerating proportional to the local force on it. The right hand side of the
equation is the local force of springiness in bending the wave: that is
computed from VZ¢. While the Newtonian acceleration formula a=f/m
appears, it's not quite right to say this comes from Newton. Any dynamical
equation is going to have some time derivatives.

The most simple solution comes from U™ - 0 and V Z¢flat=0. Then 65)

020flatot2=—w*2¢,pflat=cte—10*t+c—e1w*t.



Here c, are initial conditions. The equation describes a certain harmonic

oscillator with frequency w*. The Hooke's law force —w*2¢ shows the
parameter w*2 is a ‘spring constant’ tending to restore a wave to zero
amplitude. The function U"(x) is a spatially varying version of a spring
constant. One anticipates that waves can potentially be trapped in a localized
region of ‘soft springiness’ where U™(x)<0. Note that U™~ should not have a
constant part, in order not to over-count the w*2 term. Then U7(x)-0 as
|xT — oo relative to the interaction region will describe the approach to free
space.

Schrodinger went a long ways with this line of argument, finding results
about two years ahead of the field before he published anything. What he
published used an approximation from the frequency parameter w* being
enormously larger than atomic frequencies. When w*2 is so large it swamps
the other terms in equation (6.4), its effects should be factored out. Make a
change of variables

d(x;D)=e—10*tY(x;t) — definesy;0200t2=02Pot2—21w*0Pot—w*2Pe—1w*t.
The overall phase e—1w*t factors out of the other terms in equation (6.4), and
cancels out. The transformation cancels out the w*2 term completely, leaving

02yot2—210*0Pot—c2 V 2P+(w*2—w*2)y—U"(x)=0,
(6.6)
—10yot—c22w* V 2y—Uy~0, — theSchrodinger equation!
(6.7)
whereU=U"2w*,andassuming | o*dyot| > | 02yor2 | .
As the flag proclaims, equation (6.6) is the Schrédinger equation. For the
electron w* - we~7.8x1020s—1 is truly huge on the atomic scale, as assumed.
The second line of equation (6.7) restricts its applicability basically to
situations where the frequencies of ¢ are small compared to we. The low
frequency approximation is a rough estimate, or ‘highly suspicious step’
(hss). Even if those conditions hold, a relatively small term in a differential
equation will often tend to become non-negligible after a sufficiently long
time.

Amazingly, Schrodinger published the approximate equation (6.6) with



no mention of its potentially more exact predecessor of equation (6.4). He did
this despite the fact that equation (6.4) was consistent with special relativity
(assuming a consistent interaction U™) and special relativity was assumed to
be universally true in 1926. Schrodinger actually butchered his equation with
the highly suspicious step (hss), because he was so sensitive he knew
butchery was needed.

Continuity again. Without proof we claimed equation (6.1) was conserved,
with charge density p(x;t)=eQur*yi(x;t). Take the divergence of equation
(6.1), and you will see terms of the form y*V Zy. Take the time derivative of
p, and there will be terms like y*oyi/ot. Use the Schrédinger equation (6.6),
and show that V*j=-0p/ot, to verify the equation of motion predicts the
current is conserved. This is easy, and so satisfying we leave it to you to
explore.

6.2.1 The artful mutilation of a theory

The problem demanding mutilation appears with the flat wave, equation
(6.5). There are two solutions, which mean two distinct ways to cancel out
the high frequency oscillations, by defining ¢ —» eTiw*ty+. The equation for
the alternative sign simply replaces o* - —w*:

10y+0t=—c22w* V ZY++Uy+  theSchrodinger equation,10ys
—0t=c22w* V 2Zy——Uy—  theanti-Schrédinger equation.
Equation (6.4) has two inequivalent low frequency approximations,
suggesting it inadvertently represents two distinctly different quantum
systems. The doubling was already visible in equation (6.5) provided ¢ was
complex. It is the solution for two separate real harmonic oscillators. (The
solution for one real oscillator in complex notation would use the real part of
the equation.) We’ve seen in section 3.1.2 that a conserved current needs a
complex wave. Therefore, both ¢ and i must be complex®.

Whenever the equation for Y+ is solved, there will be a solution for y—
replacing time t— —t. (This is not time-reversal symmetry, which refers to a
property of Y+ on its own.) Schrodinger went so far as to solve the
vibrational frequencies of the hydrogen atom for the + cases, with the



predictable result that they occurred in opposite-sign pairs. The physical
meaning of the sign of the frequency (section 5.3.1) convinced Schrédinger
he should choose the equation for )+ and its solutions matching experiments.

Once he abandoned equation (6.4) as a starting point, Schrédinger needed
a ‘derivation’ of his equation, and especially a derivation that might be
acceptable to the mindset of the OQT he intended to overcome. Schrédinger
then reviewed and modified W R Hamilton's method relating wave optics to
classical mechanics, also called Hamilton—Jacobi theory. The derivation
should be a side issue because anything truly new in physics is never derived,
but guessed. However, pretending there was a derivation became a major
issue for the repackaging of Schrodinger's theory by those so heavily
invested in the OQT. That's why the dominant presentation differs from ours,
and diligently seeks to make Newtonian physics appear to have relevance and
predictive power.

Antimatter! About a year after Schrodinger published, Oskar Klein and
Walter Gordon published the Klein—Gordon equation, the generic equation
(6.4). To their chagrin they rediscovered the same frequency doubling and
difficulty of interpretation Schrédinger had found, and could not make
physical sense of their own equation. The objective of the 1928 Dirac
equation was to get rid of those problems. Yet Dirac increased the number of
frequency-doubled complex waves, apparently making things worse. Dirac
fought for his equation to survive, making several mistakes of interpretation
which were criticized by Weyl, Oppenheimer, and others. By 1931 Dirac had
no option but to propose a new species of matter must exist. Soon afterwards
[3] in 1932 Carl Anderson observed tracks in a cloud chamber consistent
with antimatter, writing:

‘Up to the present a positive electron has always been found with an
associated mass 1850 times that associated with the negative electron .... The
specific-ionization is close to that for an electron of the same curvature,
hence indicating a positively-charged particle comparable in mass and
magnitude of charge with an electron.’

Looks like protons were called positive electrons in those days! The name
‘positron’ for the anti-electron was suggested by an editor of a Physical
Review paper Anderson published a few months later. At least two scientists
had observed the positron before Anderson: in 1929 Chung-Yao Chao and



Dmitri Skobeltsyn independently noted electron-like signals with the wrong
sign. Lacking a theory to explain it, they did not follow up.

After we know anti-matter exists, there comes a question: why don’t we
return to the generic equation (6.4), which has the advantage of consistency
with special relativity, and avoid the butchery of the hss? One answer is that
we can, and we have shown you how. The actual quantum wave is the one
from the Klein—Gordon or Dirac equation, which was replaced by defining
the Schrédinger wave function y=eiw*td, as a convenience and
approximation. If you are impressed by the high frequency of atomic
electrons, you need to add the constant frequency we to get the true frequency
of ¢. It's very nice this completely explains ‘rest mass’. It is the frequency
parameter of the flat electron wave in free space: a spring constant. Just as the
rest mass was an invisible component of energy in non-relativistic physics, so
is the frequency difference between ¢ and ¢.

A more traditional answer is that basic quantum mechanics has
traditionally been based on the ordering of the Copenhagen presentation. It
totally collapses with the Klein—Gordon or Dirac equations. It is no longer
possible even to PRETEND that y*y(x) is the probability for a ‘quantum
parcle’ position. The lofty axioms contradict themselves right away rather
than later. (They could not have been lofty when they described an
approximate, butchered equation!) So the traditional approach suppresses the
whole discussion. When relativity is mentioned in that context, it is done
using approximations for small effects arranged not to disturb the non-
relativistic framework.

That is not a very satisfactory situation, but most students of quantum
mechanics don’t hear about it until they come to advanced graduate level
coursework. It is interesting that the essential issue does not really come from
relativity. The essence is that a second order wave equation—02¢/0t2—is
different than a first order one with 10y/0t. That is where the destruction
happens. It is resolved at the fundamental level by enlarging the space of
quantum waves to include all possibilities of matter and antimatter. It is not
done by adding in some wave functions for antimatter waves, but by
including all necessary products of matter and antimatter waves. There was a
specific warning in section 5.3.3. It must wait to be developed in chapter 10.



6.2.2 What interaction function?

The Schrodinger equation does not specify the interaction function Ux),
which defines the particular system, and which needs to come from physics.
There is no shortage of sources solving the Schrodinger eigenvalue problem
for a collection of standardly named cases. As discussed in section 5.3.2,
assigning the Newtonian potential VN(x)'- U(x)"in appropriate units defines
the standard naming scheme. The Newtonian potential for a one-dimensional
harmonic oscillator is kx2/2, so using U(x)~x2 is called a ‘quantum harmonic
oscillator’. Using U(x)~alx2+a2x4 is called a ‘quantum anharmonic
oscillator’, and so on.



Figure 6.8. Those little boxes pasted up by a committee have no
information. At least a committee might have told you those little
parcles were quantum waves of quantum fields.

Unfortunately, that resurrects the problems of using Newtonian terms for
what a quantum wave does. The quantum harmonic oscillator is not the least
bit like a classical Newtonian oscillator, despite receiving the most ingenious
efforts of talented enthusiasts wanting to make it appear the same. The older
textbooks give the impression one is really accomplishing something by (say)



setting up a classical double pendulum, and dealing with equations for the
‘quantum double-pendulum’. The idealized, scholastic nature of the exercise
is hardly noticed. The positive contribution of solving many Newton-named
examples is that one sees many examples.

We have emphasized a different approach. None of this material is
particularly ‘realistic’. It is all a toy model and prelude to learning how to
deal with more physical models. Any given, fixed interaction function can
only be an approximation to a dynamical, reacting system with its own life
and time evolution. This was already the case in Newtonian physics. When
the Moon orbits the Earth, it is treated as moving in a background
gravitational potential. Actually the Moon reacts on the Earth with
gravitational waves that cause the tides. There is a time-dependent field
between the Earth and Moon which is just not recognized as gravitational
waves. Since we basically have no idea of the possibilities on the atomic
scale, it makes no sense to limit the interaction function. Yet if that makes
you nervous, the textbook authorities will solve the dilemma with an
authority statement like ‘the Schrodinger equation uses the Newtonian
potential’.

6.2.3 FIAQ

When you talk about the atomic spectrum, it seems to use classical waves
everywhere. Don’t you need the fact that photons exist someplace? No, not
yet. You are also better off learning quantum mechanics without photons
coming too early.

From its inception the notion of the photon as a little point was
unworkable, representing a badly designed attempt to reconcile odd kinds of
data. Einstein never committed to it. The idea was waiting for clear thinking
and good design to be discovered on some different basis. Clear thinking
about Nagoaka's atom might have decided the electron current must vibrate at
the difference of electron frequencies, just as observed. Then, how would that
happen?

Already by 1901, Reginald Fessenden had discovered the principle of the
heterodyne receiver, which combined oscillating signals by multiplication.
The ingenious facts of multiplication produce sum and difference
frequencies. The math identity is



cos(w1t)cos(w2t)=12cos(w1t+w2t)+12cos(w1lt—w?2t).

To make a current with difference frequencies, Fassenden would have said:
‘Just multiply different oscillations’. If only difference frequencies and no
sums are observed, Fassenden would have said: ‘Make phase combinations
equivalent to certain complex products’. That is,

e—1wlteim2t=e—1(01-w2)t.
(See the Schrodinger current, equation (6.2).) Yet the bias that the electron

was a point-like parcle was so strong no one seems to have considered any
other formula for the current, regardless of the data.

None of this comes from photons nor needs photons. So how do photons
fit in to quantum mechanics? Photons are particular excited states of the
vacuum. Planck's analysis of the black body spectrum found that for each
electromagnetic field wave number kthere existed a whole number of mode
frequencies wn=nc|kT. When quantum electrodynamics was developed it
was found that its nth excited state has the same label n. The main difference
with the nth excited state of an atom is that the photon wave states are
entirely delocalized. Feynman described a mental block concerning the
operator notation describing this in approximate calculations. The textbook
photon state is so utterly delocalized it is everywhere, which by causality
needs infinite time to form. The resolution is that the electromagnetic field
finds the best resonance possible, which might be a teensy bit mismatched
from the ideal. That is called a ‘virtual particle’, which is a double-misnomer.
First the thing actually exists, and not only in virtue. Second, it's not a parcle.
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comes with a well-defined shape. Yet the answer to the mathematical question is ‘no’.

“The overall phase relating ¢ to ¢ cancels out in the formula for the current, so if one is complex they
both are.
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Waves with known solutions
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Figure 7.1. The Schrédinger theory of hydrogen IS small enough to
write on the edges of a postage stamp.

Quantum mechanics is easier than you might think, because the properties of



the solution to quantum dynamics are generally known in advance. Dynamics
describes the time evolution of physical objects. The decision to put attention
on a linear wave equation interacting with a given interaction function has
consequences. The general solutions are linear combinations of products of
harmonically varying time dependence multiplied by special ‘shape’
functions. It may take work to find the functions, but mathematicians and
physicists often call that a ‘trivial’ problem. The word trivial means a
solution exists with a definite form, which happens to be the most useful
information possible. In quantum mechanics the general facts are much more
useful than the details of solutions, even when you are concerned with
details! Schrédinger made a very good decision choosing to explore a ‘trivial
framework’ for quantum dynamics. We probably cannot get much
information from systems that are not trivial.

7.0.1 A general ansatz

The free quantum wave shows the general pattern of quantum wave
solutions. First there was the trick of no information and equation (5.4). A
general expression about any initial wave shape is written down using some
general expansion, which symbolically includes initial conditions. The
general expression is called an ansatz, which means an empty mathematical
expression that waits to be completed. The ansatz is a mathematical
parameterization not based on any underlying theory or principle.
Completion comes when the empty expression is required to comply with the
time dependence of the equation of motion.
A time t = 0 consider

P(X - ,t=0)=clh1(x - )+c202(x - )+ (7.1)
cndn(x — )=Y nallcngn(x - ) — parameterization,notprediction
Here ¢n(x —) are a number of ‘basis’ or ‘shape’ functions, waiting to be
specified. The expression reminds us of a Fourier expansion that uses cosine-
shaped waves, which is a special case. The symbols c, stand for initial

conditions for the wave. They are called ‘expansion coefficients’, while the
whole expression is called ‘an expansion of a function in the basis ¢n’. As the
note says, it is a parameterization, not a prediction.



The notion of a basis comes from linear algebra, extended to describing
functions. Every basis function must be linearly independent, so none of the
coefficients double-count. Many interrelated statements about a basis center
on a property of completeness, whereby the weighted sums are sufficient to
parameterize any functions wanted. To be formally complete a set must be
infinite, because infinite variety can exist for functions: there also exist
criteria for expressing completeness of particular classes of functions named
after dead mathematicians (Banach space, Hilbert space, etc). You are not
always obliged to deal with infinite sets, and narrow distinctions specifying
‘allowed functions’ tend to fail in physics where problems will define their
own ‘spaces’ circularly. That is why the Ynall above runs up to all the
functions wanted, whatever that is. We often discuss cases where just a few
terms suffice.

Linear algebra gives a geometric interpretation to functions as vectors,
which is by far the most powerful thing to know after calculus... or even
better than calculus. It's very annoying that elementary coursework usually
does not include the information, which really is quite basic. (Mathematicians
are often unaware of what physicists need to know, and distracted by
exceptions, and their own ideas of rigor.) Here are three basis vectors written
as lists you can also graph as functions, plus one function-list which is a
linear combination

e1=(0,0,1,0,0,0,0...)e2=(0,0,0,1,0,0,0...)e3=(0,0,0,0,1,0,0...)fx=
—lel+2e2+7e3=(0,0,-1,2,7,0,0...)
Linear combinations of the e, basis elements can be rearranged and combined

to make smooth basis functions ¢n we generally have in mind for smooth,
continuous waves. There is not much more to quantum mechanics than the
Schrodinger equation, applied linear algebra, and a few probability rules,
developed after you understand the basics.

Function-lists There is nothing more powerful than considering functions
to be pre-evaluated lists with indices f(x)- fx. This is so powerful we
recommend you abandon the alternative definition that functions are maps
from an input to an output. We are not concerned with evaluating arithmetic.
Instead imagine a computer evaluates every function for you the instant it is
defined, and stores the result. An example would be



f(x)=x,x>0; - fx=(1,2,3,4,5,...)AX,
where Ax is a small interval along the x axis. Then g(x)=2f(x) - 2fx makes a
list where every element is doubled. By this act of notation, all the theorems
of linear algebra can be transferred wholesale to functions. For the sum of
two lists, you add the number in the same slots, with the rule for adding
functions, and so on.

The function-list concept is very useful because it more than doubles your
insight into the math while cutting the work in half. We will always assume
you have a hard-wired computer, or the equivalent ‘research staff’ to pre-
evaluate functions. The research staff will competently turn wave shapes into
lists, and back again, leaving the research boss no work beyond thinking
about the lists. The ansatz of equation (7.1) that tends to intimidate simply
says: ‘I’ve got a list, which is a sum of some other lists’, and that is so easy.

The norm-squared of a list-vector |f|2 is defined by the Pythagorean
theorem:

|f]2=|f1|2+|f2|2+|fn|2.
Applying this to a function-list gives

|f]2=|f1|2+[f2]2+|fn|2(AX) - [~oocodx | fx | 2=[—cocodx | fx | 2.

It is possible to be fussy over the transition from the discrete sum with Ax - 0
to the integral over the whole line. All fussy issues are resolved by knowing
the right hand side will be our agreed definition of the norm-squared of the
function, which will work because it has all the properties of positivity, and
so on needed. With the norm we can talk about ‘larger and smaller’ functions
more competently than comparing them at single points. In fact, the norm (or
normalization) is just one number, which we can separate and consider
independent of the other features defining the function ‘shape’. Think about
this accomplishment: the elusive concept of ‘shape’ has already been sorted
into ‘size’ from the norm, with the rest being the shape for a given size.



Figure 7.2. Two snapshots of a bouncing hydrogen atom, repeated
from figure 6.7. The artist making the picture transcribed the
amplitude to the ‘height’ of a wave, which is easier to render. The
figure suggests an expansion consisting of just one frequency
eigenstate.

More will come. We want your focus on the shapes of quantum waves
and how we describe them with lists, and in particular, lists for shapes that
change over time.

7.0.2 The silver bullet: one rule to solve them all

Mathematics cannot tell you which expansion to choose. We come to the
‘Silver Bullet’,! which describes the general solution to quantum dynamics.
For any given Schrodinger equation, there always exist some special basis
functions ¢n where the time dependence is



P(x - ,0)=c1d1(x - Je-lo1t+c202(x - Je—lw2t+...cnon(x - e (7.2)
—lont,=) ncndn(x - )e—wnt — SilverBullet.
To repeat, using the ansatz of equation (7.1) with the Schrodinger equation,
one can show there exist special ¢n(x) that time-evolve harmonically, by
¢on(x,t=0) - ¢n(x)e—1wnt. That is not a feature of an arbitrary basis expansion,
and needs both special frequencies wn and (repeat) special ¢n, which will be
determined for each system. The special ¢n(x) are called ‘eigenfunctions’ or
‘frequency eigenfunctions’. You can also interpret the relation as updating
each coefficient cn - cne—1wnt. For simplicity the Silver Bullet and the
general ansatz (7.1) have used the same symbol ¢n. Then at t = 0 the
oscillating factor e-10n0 - 1, and the initial conditions are compatible.

Consider figure 7.2. The ground state shape of the hydrogen atom is
described by ¢1(r)=exp(-r1/a0), where a0~0.5A. The shape is spherically
symmetric, namely a function only depending on r=|x - |, with a cusp at the
origin: the ground state wave is shaped like a ‘pimple’ in the quantum stuff.
The ground state wave vibrates at the terrifically high frequency w1~-1015s
-1: So ¢l(r,t)=exp(-1r/al)e—1w1t and Re[p1(r,t)]=exp(—1/a0)cos(wlt).
Hydrogen has another special shape ¢2(r)=rexp(-r/a0) that vibrates at a
somewhat slower super-high high frequency, and so on. There is much more
experimental information in the special shapes than in the frequencies. If you
start with an arbitrarily different shape, the vibrations will be mixed up, and
appear disorganized: in fact, that is the prediction of the Y ncn...eiont form.

The Silver Bullet is both a general solution, and an organizational tool. It
is not a calculational task waiting for you to carry out, and it is not a puzzle.
It is a form of final answer, from which experimental predictions can be
found and tested. The Silver Bullet is a symbolic expression, full of
information and also ready to manipulate with other expressions. The general
fact of the solution captures the qualitative features, and is much more useful
than any particular solution.

It is exceptional in physics to know the solution to dynamics in advance.
Solving dynamics is usually difficult, and many dynamical systems have no
known solutions. In very simple cases, such as a Newtonian pendulum, the
time dependence cannot be expressed in elementary functions. The fact
solutions are known comes from the equation of motion being linear. The



Silver Bullet is a generic math fact of linear dynamical systems, and does not
come from quantum physics. And to repeat, there's nothing deep in 1=—1,
whereby the amplitude of the wave function oscillates like an AC circuit in
nearly the most simple way possible.

The angular frequencies wn are real valued (not complex) by a general
agreement not to consider systems whose time dependence would explode
exponentially or disappear. OK? (This obvious fact has been presented as a
pretentious postulate, ‘the Hamiltonian or frequency operator must be
Hermitian’, or self-adjoint Q=Qt.) The notation Y'n does not imply that wn
are a discrete set, and many important systems have a continuous spectrum of
frequencies. If and when a system has a discrete set of vibrational
frequencies, separated by gaps, its frequencies are quantized. Note that this is
a definition, and a circular one, not a principle. The number and values of the
angular frequencies wn, and the shape functions are what distinguishes one
system from another. Part of quantum mechanics simply consists of a bus
tour visiting the friendly systems which have exact solutions and checking
the solutions put before you. This is much different from scary stories that
you’d actually need to derive solutions from scratch. We think that's
unproductive, and we’ll show you how to avoid it.

Every textbook problem that has been solved is a solved time-dependent
problem. It is an excellent adventure to type formulas from textbooks into a
graphics program and use random initial conditions to make entertaining
‘quantum movies’, which we recommend.

Example. We mentioned the ground state hydrogen atom eigen-shape
function ¢1(r)=e—1w1t. Suppose c1#0 and all other cn - 0. Then

(7.3)

Y(r,0)=clo1(x)e—101t,=Re[c1]+1Im[c1]e-r1/a0(cosw1t—1sinw1t).
Multiplying the factors will give four terms without changing the
information. Suppose c1=1/2 and c2=1/3. Then

Y(r,t)=12e-r1/a0e—1w 1t+1r3e—r/ale—102t.

Choose w1=-1/2, and ®2=-1/8. A movie of the real part of yi(r,t) will bounce
and slosh around like a little quantum wave. If you are able, you must make a
movie.



7.1 The Schrodinger equation

The Silver Bullet formally ends any questioning along the lines of: ‘Can you
solve quantum mechanics?” We have the solution! The complete solution is
equivalent to the Schrédinger equation of motion:

(7.4)

10Y0t=Qus.

Here Q is a ‘linear operator’ with dimensions of frequency that define the
particular system equations on the right hand side. Linear operations include
multiplication by functions, and also differentiation by x,y, or z any number
of times, or any other linear operations. Specifying Q is a linear operator
means Q does not depend on y, and

Q(apa+pyb)=aQuya+BQyb.
When function-lists are considered vectors, every operator has a
corresponding matrix representation, where the matrix multiplication of a
vector gives a new vector.

In section 1.1 we mentioned the simplest linear operation of
multiplication by a constant, formulaQ — 0. It is not a typical example, and
useful to explore why. The corresponding Schrédinger equation is

10y0t=w0y,

which has a solution
(7.5)

P=cle—10t,
reproducing the Silver Bullet. Note c; is not determined by the solution: it is
an initial condition, as promised.



t=0 + dt

t=0

Figure 7.3. How the solutions to PDEs work. An arbitrary, specified
wave form at one moment moves to another wave form as time
progresses. Every slice of time creates the initial conditions for a new
future. Repeated from figure 1.7: the repetition is needed!.

The solution written above is too easy and incomplete: it's the kind of
mistake inspired by a first order ordinary differential equation (ODE), which
always has a single solution. Waves will never have a single solution. Waves
are described by partial differential equations (PDEs), which are quite unlike
ODEs, and have infinitely many solutions. PDEs are so different that one
should never show a unique solution, to avoid the impression any exist.
(That's why ‘cosine solutions’ are so treacherous.)? The rest of the solutions
to equation (7.5) are yi(x,t)=c(x)e—1wlt, where c(x) is any function you
choose as initial conditions. Right? equation (7.5) has a sneaky feature that
all possible frequencies are the same. Because of that stupid and exceptional
property, the generic meaning of the Silver Bullet (SB) to have special shapes
matched to each frequency is subverted, while the SB technically still applies.

The details of the Q operator are specified when the system is specified.
You will find disagreements about this: someone will say equation (7.5) is
‘not allowed’, by setting up rules early to control the narrative. There is a



general answer for authority figures who tell you what is ‘allowed’. You say:
‘Who are you to know what nature will allow!” The real genius of the
Schrodinger equation is leaving the frequency operator Q and even the
dimension of the system (number of basis elements) unspecified, until a
specific system is confronted. It really should be called the Schrddinger
framework for quantum dynamics.

The SB comes from a very simple observation. At time t = 0, make an
arbitrary expansion any(x)=) kcany—kok(x) general enough to express any
function, given enough coefficients cany—k. The choice of basis @k is free at
this point and not the ultimate symbol ¢n. Whatever happens in time will be
updated by creating functions cany—k - cany—k(t). Notice these functions
have a Fourier time series, or Fourier expansion in time:

ck(t)=Ynck,ne—1wnt.
To reduce clutter the subscript any is implied but not written. Label n keeps

track of the frequencies actually present. Swap labels to sum k first and the
frequencies last:

(7.6)
U(x,0)=> ncnon(x)e—10nt,wherecndn(x)=> kck,npk(x).
equation (7.6) shows that the SB ‘exists’ for ¢n(x), which will be certain
special combinations of @k(x). (We hope you’ve been distinguishing symbol
0=0.)
To find the special shapes, the combination of the Schrédinger equation
and SB is

10Y0t=Qur.100tY kckdke—10kt - Ykckokdke—10kt; QU - YkckQaoke (7-7)
—10kt;requiringtermbytermQ¢n=wn¢n — eigenvalueequation.
The last line is not only ‘a solution’, it is true for all solutions with distinct
wn, by a fact of linear algebra and the independence of ¢n. It also must be
true for each label n because the initial conditions ¢, are independent. Notice

the proof assumes the Q operator does not itself depend on time, namely it
has no time-dependent parameters. This is generally assumed: otherwise,

there are few or no useful theorems? for system with Q=Q(t).
The formula above is actually the theorem of normal modes, from



(generalized) classical mechanics. The theorem says that if you have a linear
system, the most general solution is a weighted superposition of special
solutions that are eigenfunctions of a linear operator. It's a pity that basic
education focused on parcle notions does not recognize generalized classical
dynamics and the theorem. Schrodinger certainly knew what he was doing
when he entitled his 1926 discovery paper [1] ‘Quantization as an eigenvalue
problem’ (Quantiserung als eigenwertproblem).

Most information about the system, encoded in €2, now appears in the
particular eigenstates, namely ¢n. If ¢n is a solution, then A¢n is a solution,
for a complex constant A:

QAdn=wnAdn.
One says that ‘the normalization of eigenstates is not determined by the
equations’. To write down a solution one simply chooses a normalization
(overall scale) of ¢n by some agreement. Linear algebra suggests a very
clever rule for the normalization, which is always used, but it is still an
arbitrary convention. With the convention determined, the initial condition
coefficients c, acquire a corresponding meaning for expansions cngn.

The minor point of fixing normalizations is sometimes misunderstood to
be a special issue of ‘quantum mechanics’. The particular error says: ‘The
norm of any quantum state is 1°, on the authority of an early postulate. In the
worst presentations, every function encountered will be instantly stopped by
the normalization police, and forced to be normalized with integration
exercises that demand significant computational effort. Also, if you look up
‘eigenfunctions of quantum operators’, you will usually find rather
complicated expressions, where much of the complication comes from
nothing but a normalization convention.

The upshot is that understanding the origin and meaning of normalization
factors will make learning very much easier. Since eigenfunctions have any
normalization you choose, many expressions are best with the simplest
normalization possible. With a little judgment one can often postpone
normalizations, or efficiently deal with normalizations only at the moment
they are needed. Be aware that unthinking followers of tradition will think
this efficiency is a mistake!.

Untypical example. Computing a derivative is a linear operation. Then



d/dx and 1d/dx are linear operators. For another untypical example consider
Q=1vd/dx in one dimension, where v is a constant with units of length/time.
The Schrodinger eigenvalue equation is then

QU=1vooxy=100tyr;1vodpn(x)ox=wmndn(x).
The derivative of eik(n)x is proportional to the same function for any k(n):
that solves the eigenvalue equation

1voeik(n)xox=vk(n)eik(n)x — wneik(n)x,hencemn=vk(n).
The index notation needs adjustment: this is very common. Replace n -k as
the label, then ¢n — pk=eikx. The eigenvalue equation is solved for any value
of k, so the allowed wk=vk is a continuous set, called a continuous spectrum.
Putting the SB together, the general solution is
(7.8)
Y(x,t)=Y kckeikx—1vkt - fdke(k)erkx—1vkt.

The notation }'n - Yk - [dk evolved as we realized that k was a continuous
index. If you enjoy computing integrals, you may concoct initial conditions
c(k) that produce a formula you can calculate further: it is best to stop, and
reflect.

The example is not typical because the eigenstates came out as eikx, the
curse of the cosine waves. But the cosine eigenfunctions are just building
blocks. Notice the exponent of equation (7.8) is 1k(x—vt). Since (x—vt)
appears as a whole, the final answer will be y(x,t) - @(x—vt), namely some
function of x moving rigidly at velocity v. Whatever value of v you choose,
perhaps v=3.7, every initial condition time-evolves by moving rigidly at that
speed, which is not very physical. To make sure you follow, consider the
initial conditions Y(x)=1/(3+x2)2. Then with v=3.7, the time-evolving
function will be y(x,t)=1/(3+(x—3.7t)2)2. These steps bypassed the
expression of initial conditions using c(k), which is only an ansatz waiting for
information after all.

The result is not physical nor interesting, which is why you will not see
Q=1vd/0x embossed on the Eiffel Tower* in Paris as the greatest physical
model in history. However, the model is simple, and like an old pocket
watch, it shows how the parts mesh together.



All solutions work as we have described. One example has the whole
pattern. It was the same pattern with the free quantum wave that used Q~(10/
0x)2, which we solved with equation (5.10). The free quantum frequency
operator has waves moving in both left and right directions, with a different
formula for wk, and the different eigenvalues and eigenstates were the only
difference.

7.1.1 Expanding in complete orthonormal sets

The direct problem of time evolution specifies initial conditions by choosing
coefficients ¢, in the frequency eigenstate basis. That is rather easy, because

the time dependence is equivalent to replacing cn — cne—1wnt. Since you have
the c,, this is very easy.

The indirect problem of time evolution specifies yi(x,0), leaving you to
find the coefficients c,. This appears to be a very difficult problem, with

infinite variations. Suppose your eigenstates ¢n are Bessel functions, and
your initial wave is shaped like a top-hat. How will you add Bessel functions
to make a top-hat?
Here the property of orthogonality solves the problem. Two functions ¢1,
¢2 are orthogonal when their inner product is zero: 7.9)
<dp1|$p2>=[dxdp1*(x)d2(x)=0 — orthogonal.
Most students first learning quantum mechanics have never seen this, and
have no interpretation, and that is a blight on our friends the mathematicians
for withholding the information. Orthogonality is a supreme test of
independence: two functions are completely unrelated when orthogonal.
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Figure 7.4. Successive approximations reconstructing sin(x)/x as

linear combinations of Legendre polynomials. Their definition is
unimportant compared to the fact they are orthogonal and complete.

Orthogonal functions are in every possible way exactly analogous to
orthogonal vectors in linear algebra, namely they are at right angles, and
independent of each other. It is not difficult to find functions that are
orthogonal. Every function that is even under x - —x is orthogonal to every
function that is odd. However, it takes some work to find two even functions
that are orthogonal. We are not concerned about the labor of calculating
integrals. It is no labor in the 21st Century when a computer can compute a
definite integral in a millisecond. Systematic analysis can and has produced
dozens of basis sets of mutually orthogonal functions. Many are named after
dead mathematicians of the 19th Century, whose lifetime accomplishments
were to find orthogonal functions. Move on!

When a set of functions are mutually orthogonal, it is a real
accomplishment, written



<¢m | pn>=const.6mn — mutuallyorthogonalwhereSmn=1,m=n;Smn=07xi:

This corresponds to a basis of perpendicular ‘unit vectors’. Look at this
formula and consider <¢m| and |¢n> to be separate typographical units.
When they are mutually orthogonal, all mn combinations connecting one
symbol to another at the ‘|’ give zero, except when m matches n.

Now suppose you are so lucky that your basis expansion, from the
beginning, used mutually orthogonal functions ¢n. Let ygiven(x) — | ygiven>
be the initial conditions given. The pointy bracket will simplify and automate
notation. You want c,, to make the expansion |ygiven(x)>=Yncn|¢n>. Due

to orthogonality, notice that each particular c,,, (for instance m = 3 and c¢3), is

uniquely filtered or ‘projected’ from the others by connecting the
typographical unit <¢m | to the expansion:

<03 | ygiven>=Yncn<¢3 | dpn>=c3<dp3 | $p3>.
Inside the sum <¢3|¢pn> gives zero for all cases n=1,2,4,...%, except n = 3.
Do you want coefficient ¢,? Then connect symbol <¢7| to the expansion:

<07 | pgiven>=Yncn<¢7 | pn>=c7<dp7 | 7>.
Projection gives the nth coefficient multiplied by <¢n|¢n>. The basis can
always be made to be normalized <¢n|¢pn>=1. (If |¢pn> is not normalized,
then |$pn>/<¢n|¢pn> is normalized.) A normalized mutually orthogonal basis
is called an orthonormal basis, and obeys <¢n | pm>=6nm. To summarize:
(7.11
Given | pgiven(x)>=Yncn | ¢n>,thencm=<¢m | Pgiven>, — projection
(7.12
assuming<¢n | pm>=8nm. — orthonormalbasis.

It is sometimes misunderstood that the inner product <¢m |given> will be
work to evaluate. The evaluation has already been done with the orthonormal
basis. It is better to understand that than turn to numerical examples here that
would be work to evaluate.

All of this assumed the far-fetched luck that one would have an
orthonormal basis available. They exist in infinite variety—any orthonormal
basis can be rearranged to give any other orthonormal basis—but finding



such a basis does not appear to be easy. We happily present you with the
helpful gift of the Hermitian operator:

THE EIGENSTATES WITH DISTINCT EIGENVALUES OF
HERMITIAN OPERATORS ARE ORTHOGONAL.

In particular, since the frequency operator is Hermitian, the eigenstates
(with different eigenvalue) of the frequency operator are automatically
orthogonal. The Silver Bullet automatically uses orthogonal eigenstates;
assuming eigenvalues do not coincide. This is one of the greatest gifts of all
time from math to physics. Don’t ignore it!

7.1.2 What eigenvectors mean

Here are facts a person should know from linear algebra. Linear operators
make linear transformations of vectors. Orthogonal transformations preserve
the norm of real-valued lists. Unitary transformations preserve the norm
<f|g> of complex lists. Symbol <f|g> stands for the inner product. When
f(x) - fx and g(x)-gx are functions-as-lists, the integral creating <f|g>
literally makes the inner product. An orthonormal basis is literally a basis of
perpendicular vectors, just like a Cartesian coordinate system. Orthogonal
and unitary transformations send entire orthonormal basis sets to new
orthonormal basis sets.

Symmetric and Hermitian transformations are equivalent to scale changes
or ‘stretches’ along special axes. That is the meaning of the eigenvalue
equation, Q¢1 > wldpl. The eigenvalue is the stretch factor. Most of the
information in a vector is in its direction. An eigenvector happens to be
oriented so nicely (and matched to a transformation) that the transformation
leaves the direction entirely unchanged®.

Hermitian transformations have real eigenvalues. The stretch property
explains geometrically why any eigenvectors with distinct, real eigenvalues
are automatically orthogonal. Consider figure 7.5. It illustrates some
hypothetical non-orthogonal candidates for eigenvectors |A> and |B>.
Suppose Q stretches |A> by an eigenvalue wA=2. Then the projection of
| B> in the direction of |A> must also be scaled by the same factor. That's
inconsistent with | B> being an eigenvector with a different eigenvalue, such
as ®B=3. One can stretch two vectors by two different factors only when the



vectors are completely orthogonal. Hence the theorem: eigenvectors with
distinct eigenvalues of Hermitian operators are orthogonal.

Using equations, expand A and B in a basis (X7, y*). Suppose there are
distinct eigenvalues ®A=2, ®B=3. The eigenvalue equations are

QA=2A - Q(Axx"+Ayy")=2Axx"+2Ayy ;QB=3B - Q(Bxx"
+Byy”")=3Bxx"+3Byy".

The two relations are inconsistent. It is impossible to have Qx"=2x" and
Qx"=3x".

Degeneracy is the term when more than one of the eigenvalues are the
same. From the figure it is possible to stretch two different vectors by the
same eigen-factor. So the automatic niceness of orthogonality fails. What to
do? If you have N independent vectors, you can always make N mutually
orthonormal vectors from them. Perhaps this extra work explains the
pejorative term ‘degenerate’, a mathematician's disapproval of eigenvectors
not automatically orthogonal. Degeneracy always implies a symmetry. The
freedom to choose a basis, among a set with no intrinsic preference, is one
way to define symmetry®. Symmetry is a big and subtle topic, and symmetry
does not usually imply degeneracy.

It is very important to understand the geometrical picture of functions as
lists, orthogonality, and projection. From high school analytic geometry, the x
component of a vector W - is the dot product x"*W -, where x” is one of the
orthonormal unit vectors of the basis. This should not be a memorized
formula, but a self-evident fact. In just the same way, the expansion
coefficient cm=<¢m | > should be a self-evident fact. In the remote event
your teachers told you to solve a number of simultaneous equations to find
expansion coefficients—or if you find yourself going down that road—it's a
lot of extra work that takes you 100 years into the past.
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Figure 7.5. It's geometrically impossible for a linear transformation to

stretch two eigenvectors by different amounts unless they are
orthogonal.

7.1.3 The dogmatic eigenvalue equation

We derived the eigenvalue equation from the Schrédinger equation to make a
useful basis of orthogonal functions solving time evolution. Right? The
eigenfunctions are an intelligent basis, but not more than a basis.

Meanwhile, there is also what we call a ‘dogmatic eigenvalue equation’,
which might give you trouble, written

H|y>=E [y>.
When asked for ‘the Schrédinger equation’ in a comprehensive exam, any
physics graduate student writing the dogmatic expression on a blackboard has
exactly 30 s to apologize, find the eraser, and replace it by the actual
Schrédinger equation.

The mistake happens because pop-culture and many older works have the
dogmatic eigenvalue equation bizarrely misidentified as an inexplicable
quantum principle. The mistake can be explained in a few steps. First replace
Q- -V -2/2uQ+U(x -), reducing the generality. Then introduce A, in a
way to cancel out. Finally rename all the terms:

1alpat=QljJ, -V 522 HQ[I,H'U(X — )(I)n:@nq)n,_hv — 22l_lQl.|J
+AU(x - )dn=Awndn,~A2V - 22mNy |
+V(x - )¢n=Endn,whereEn=Awn,oftenwrittenasH | y>=E | >, — neverdoffid-3



Consider the last line ‘never do this’ first. If you have no background with
eigenvalue equations, it does not have the information to express a complete
fact. It seems to say that whenever you have a wave function y, the action of
symbol H will always give E times . This, along with the holdovers of the
Bohr model, is probably why many have been misled to think every quantum
system has a definite energy, symbol E. Omitting the subscript n and the
distinction between the wave function and the eigenstate basis functions ¢n
has been done quite systematically in pop-culture physics. So you should
never do it!

In the lines above, defining the symbol En=fwon has no information. It
comes from multiplying both sides of an equation by A, which cancels out
however it is written. If you choose to use symbol E,, it brings the burden of

canceling out /i every time it is used for physical predictions. Check a few
(dozen) textbooks to discover the time evolution factors are written
exp(—1Ent/f1), which seems to involve A, but simply equals e—1wnt after A
cancels out. We can’t stop you from copying /i symbols wherever you want
them to cancel out, but it's well known that Feynman called it ‘a total waste
of time’.

You may be tempted to say that E=Aw is meaningful, because E stands
for ‘energy’, and Einstein proposed the equation to be a principle. Did you
notice that we’ve come to this point without defining the word energy! If you
think Newtonian energy would be a definition, NO! It's also not possible to
create physical information by making up symbols. Without a consistent
definition, the only purpose of introducing a symbol defined as E identically
equal to hw would be to put in an old concept where it has not been needed,
so let's not do that. When we come to a concept of energy for quantum waves
it will stand on its own. It will not come from a symbol circularly defined to
make Einstein perpetually correct about things he never considered. (Yet
people will believe it anyway.)

Historically equation (7.13) was often disconnected from its derivation,
and placed very early as a free-standing principle’. The reason was a
dogmatic approach claiming that ‘measurements will yield the eigenvalue of
a Hermitian operator’. It reveals a dramatic difference in ways to present
quantum mechanics. The claim about measurement does not say what the
quantum mechanical system is doing between measurements. That's



deliberate, to suppress computable information in favor of a claim one could
never know. No time evolution appears in the eigenvalue relation: none
existed in the Bohr model. The claim cannot be falsified: when it failed a
measurement was ‘improper’. They will even misidentify equation (7.13) as
the Schrodinger equation for stationary states, unaware that ‘stationary states’
was the term Bohr invented for his model, with the same words implanted in
a presentation made up after the the new theory had been found.

Let's hope you understand why the dogma is bad for you. Notice you
cannot start with the eigenvalue equation, and logically go backwards to
understand the mixtures of frequencies that make up smooth and natural time
evolution. Right? But if you start with the correct picture of smooth and
natural time evolution of superpositions, you see there's a nice theorem that
special shapes vibrate with a single frequency, and make good mathematical
building blocks for time evolution. We strongly recommend NO dogmal!

7.1.4 The time evolution operator

The time evolution operator formalizes dynamics by defining an operator Ut
such that

llJ(X - ,t):thJ(X - ,0)
The operator takes the ‘now’ state y(x —,0) and maps it into ‘the future’. This
is an elegant idea, with features of seeming to cheat so that U(t) ‘solves
everything’ with no effort. (But notice that the initial conditions {i(x —,0) are
NOT predicted, but supplied as always by YOU.) Once constructed, Ut will
act on  with the effect of automatically replacing cn - cne—1wnt, while
bypassing all the intermediate steps, including the explicit determination of
frequency eigenstates and eigenvalues. The hook comes when one finds one
cannot construct Ut exactly unless the Schrodinger equation can be solved
exactly by some other method such as the Silver Bullet. While it is just
another tool, one needs to know about the notion of a time evolution operator,
and that it can be useful to develop certain relationships even when it has not
been constructed. An example is development of the Heisenberg picture,
described in section 9.1.4. We are keeping that material well-separated from
this section, because mixing them all together at this point (another confusing



tradition) is unnecessary, and just confusing.

7.2 Solved models

There is an abundance of sources presenting a cavalcade of exactly solvable
models of quantum systems. Most solutions are competent and one will
eventually memorize all of them. We decided to minimize that material here.
While practicing math skills with differential equations is absolutely
necessary, too much emphasis on differential equations gives a false
impression they will be the foundation of understanding. It's not true: linear
algebra is far more important, and teaches you that particular solutions to
differential equations are not very informative. Another avoidable feature of
the traditional approach is computing normalization integrals. We
recommend surveying the literature to see how different authors deal with
this. Many develop multiple pages of algebra computing normalizations the
instant an eigenfunction is obtained. Professional physicists use a trick that
every overall normalization is to be postponed, and treated as a garbage can
collecting all other pre-factors, just as long as it is possible to get away with
it. Since eigenfunctions are eigenfunctions regardless of their normalization,
one is being instructed to be incompetent when normalizations get much
attention.

Here is a brief review of how a few solved systems work:

The clamped free wave. The frequency eigenvalues of the free quantum
wave in one dimension are the continuous set ®=k2/2m for arbitrary k. The
clamped free wave has the same free space operator Q=—-02/0x2/2pQ
restricted to the interval 0<x<L, with (x)=0 otherwise. This corresponds to
‘clamping’ the waves at the edges, exactly like the waves in a guitar string
are clamped at the bridge and a fret. The boundary conditions of clamping
quantize the wave numbers. The eigenfunctions and eigenfrequencies are

(7.14

¢n=sin(knx)forkn=nm/L,n=1,2,...;0n=kn2/2p
The discrete, integer-defined kn=nmn/L forces ¢n(0)=¢n(L)=0. No other k
values are consistent. Then all superpositions y(x)=)ncn¢n(x) obey
W(0)=y(L)=0, as required. Notice that eikx continues to solve the eigenvalue
equation for arbitrary k, while almost all k violate the edge conditions.



Eigenvalue problems consist of equations plus boundary conditions, which
together lead to a vector space of allowed solutions, and that is the main
lesson of the clamped wave.

This is the first example of ‘quantization’ of frequencies. It does not come
from any deep principle. It is a generic fact of trapped waves, whose
‘wavelengths’ (more generally wave shapes) must conform to the trapping
conditions. In an atom there is no clamp, but a gentle decrease to zero of the
wave outside the trapping zone. Frequency quantization comes from the
boundary conditions Y- 0 as | x| — oo.

The clamped free wave is often called the ‘infinite square well’. The
name comes from beginning with the full Schrédinger equation, and choosing
the interaction or potential function U(x)=0,0<x<L,U(x)=c0, otherwise. There
is also indoctrination language of the form, ‘solve the free quantum particle
in a one-dimensional box’, which turn the almost trivial problem into a
puzzle. Moving the clamps to define a different interval L1<x<L2 is a typical
variation that complicates the expressions and tests whether the quantization
concept is understood.

Two- and three-dimensional clamped boxes. The generalization of the
one-dimensional clamped wave to mode dimensions is instructive. It is easy
to solve the free two-dimensional system with the conditions y(x,y)=0
outside the region O0<x<L1l, O0<y<L2. The eigenfunctions are
¢mn(x,y)=sin(knx)sin(kmy), where knL.1=nm and kmL2=mmn. The frequency
eigenvalues are wmn=kn2/2pu+km2/2u. The general Silver Bullet solution is
U(x,y)=Y mncmndmn(x,y)e—1omnt. The appearance of multiple indices was
implicit in the Silver Bullet, but not usually appreciated until one works with
enough examples on two- or three-dimensional spaces. It is a pleasure to
make and see computer-generated movies of quantum ‘waves in a box’ with
perfectly random initial conditions.

Match and patch. For constant U, the eigenfunctions of the operator Q=
—02/0x2/2uQ+U are eikx, while the eigenvalues are the free space
eigenvalues plus U. An unlimited number of solvable models can be made by
patching together the solutions to piecewise continuous U, making a series of
steps or wells. The pedagogical purpose concentrates on two conditions that
both ¢ and its first derivative must be continuous everywhere to solve the
second order differential equation. Quantization conditions again come from



meeting the boundary conditions. We decided to skip these exercises,
because they focus too much on the methods of ordinary differential
equations, without contributing much to general skills.

The quadratic potential. The quadratic potential U=pw02x2/2 is
ubiquitous and probably considered the ultimate prototype of a quantum
system. The pedagogical purpose is to display an eigenvalue problem where
everything desired comes out sweetly. It is the only quantum system that
remotely approaches the classical system, giving it the name ‘quantum
harmonic oscillator’, which it is not. The system is so well known and used
that everyone must eventually memorize every possible feature, which (for
once) is actually useful, because the model is recycled again and again. A few
subtle points are usually overlooked. A slick algebraic method to deduce
eigenvalues and eigenstates is actually worse than simply checking solutions,
because it gives an impression the method is very powerful, while actually it
is over-specialized. Like the clamped wave, the differential equation has
solutions for continuous frequencies, while the quantization wn=(n+1/2)w0
comes from the boundary conditions - 0 as |x| — o, a fact overlooked by
the slick algebraic method. The ground state ‘zero point energy’ ®0/2 is
meaningless, while many authors thoughtlessly repeat a false claim it ‘comes
from the uncertainty principle’. It comes from choosing an arbitrary
differential equation to solve, while adding any constant to make a different
frequency operator simply adds the same constant to the eigenvalues. Since
that constant produces an overall phase everywhere, it is completely
unobservable.

The continuous spectrum of hydrogen. It's remarkable that the
Schrédinger equation for the hydrogenic potential U=ac/|x— | has
analytically solved bound states. They are so famous that many students and
professors never think about the states with the continuous spectrum of »>0.
They correspond to electron waves with frequencies high enough to come in
from infinity, scatter off the atom, and exit to infinity. These solutions were
found by Arnold Sommerfeld in 1928. While solving difficult differential
equations will not necessarily make you a physicist, studying just about
everything Sommerfeld did probably will.

7.2.1 Fundamental constants from hydrogen



Imagine we had the shape of the hydrogen wave function from
measurements®. Then from experimental data the ground-state pimple-shape
is  ¢1(r)~e-r/a0. Experiments give a0=5.29x10-11 and frequency
wH=2.06x1016 Hz. Given the wave shape, you can ask what differential
equation for waves gives the shape as a solution. You could deduce the
Schrodinger equation.

Wave equations almost always involve V -2, called the Laplacian
operator. When acting on functions of r=|x - | there is an identity

V - 2f(r)=1r200r(r200r)(r).
The identity is written this way to show how it dovetails with fast integration
by parts (FIP); try it. Then

V - 201(r)=1r2001(r200r)e-1/ale—ioHt= (7.15
(1a02-2a0r)¢1;-a02V - 201-1r¢p1=—12a001.
The left hand side is an operator acting on ¢1, and the right hand side is a
constant times ¢1: we have an eigenvalue equation. Happily, the operator has
the Schrédinger form Q=-constV - 2+U", where a tentative interaction
function U"=—1/r has the wrong units. That is because we started computing
V - 2¢1 without paying attention to units.

The eigenvalue 1/2a0 is an inverse length, not a frequency. Multiply both
sides of the equation by ac, where c will convert the units, and a is a
dimensionless constant to match the observed frequency:

—aca02V - 2¢1-acr¢1=—wHd1s
—1;whereac2a0=wH;a=2wHa0c=2%2.06x1017s—22x5.29x10—-11mx*3%x108ms
—1=0.0073.

The Laplacian of the Schréodinger equation comes with a factor of
—(12pe)V -2, or (-c22we)V —2. Comparing finds the electron's
fundamental frequency parameter:

c2we=acal;we=coa0=3x108ms—-10.0073x5.2910-11m=7.8x1020s—{7-16
Alternatively use pe=we/c2=0.87scm—2 as the convenient human-scale unit.



7.2.2 Lessons from hydrogen

We have now repeated the analysis done more quickly with table 3.1. The
Schrodinger equation for hydrogen is QHy=10y/0t, which leads to the
eigenvalue equation for the nth state

—12peV - 2¢on—acr¢gn=onHon,wherepe=0.87scm2;0=0.0073~1137.
Two fundamental constants pie and a come from two pieces of data in the size
a, and the frequency wH. If the fundamental constants are known from other

information, the hydrogen parameters are predicted by

a0=loapec;oH=02pec22.
The interaction function ac/r is rather easy to remember, because it looks
very much like the MKS Newtonian potential energy eN2/(4neOr). We have
enough reviewed the ‘cult of belief’ that Newtonian physics would predict
this: it cannot, so there must be a deeper explanation.

Consider this: electrodynamics itself has no scale. To guess Q we are
looking for a static function U(x —) that must (a) have the dimensions of
frequency and (b) be spherically symmetric. From the second item
U=U(|x - |), then U=ca/|x - | is unique, where a is dimensionless.



Figure 7.6. Another attempt to look inside a typical hydrogen atom.
The artist made artificial layers in the continuum and sliced them in
half with a graphics command. The movie is spectacular.

By inspection, the constant a sets the strength of the electromagnetic
interaction. It turns out to be the one and only coupling constant in the theory
of electrons with electromagnetic interactions. The whole of quantum
electrodynamics (as a theory of quantum electromagnetic and electron fields)



has just we and o as parameters. Arnold Sommerfeld called a the fine
structure constant, from associating it with small atomic spectrum effects he
was trying to explain. Sommerfeld was making perturbative series
expansions in the pre-quantum theory using MKS units. The units were
annoying, so Sommerfeld cleverly found a natural dimensionless
combination. Since a is dimensionless it refers to no unit system and needs
no units: that is how we have found it.
For comparison in the old MKS terminology

oa=eN24ne0hc.

This formula is actually faulty if presented as a definition. The formula is
only approximate, because the Newtonian parameters ey and A are too

roughly defined and measured to use for precision quantum physics. Modern
measurements are arranged so that o stands on its own. Rather than have ey

and /1 define o, precise quantum measurements of o define ey and A and
Newtonian mass so the MKS units cancel out. Right?

Next, the size of the hydrogen atom goes like 1/pe. Every other atom gets
its size from the electron size parameter, so that the whole world of atoms,
molecules, and life depends on that number. The muon's intrinsic frequency
parameter is 207 times larger, so that if electrons did not exist, the world of
muonic atoms, molecules, and muonic life would be 207 times smaller, with
a few more consequences’. Your muonic molecules would want room
temperature 207 times higher to make you comfortable: 62 000 K.

7.2.3 More about spherically symmetric systems

We showed directly that one eigen-shape ¢1=e—r1/a0 solved the eigenvalue
equation. The shape might have come from experimental measurement, but
in fact came from Schrédinger's pen. Fitting two parameters o, we to two data
facts does not constitute a test. The tests come when more frequencies and
eigenfunctions are found and agree with experiment. That becomes incredibly
detailed, going well beyond our purpose here. Here are ‘cultural facts’ those
skilled in the art learn for developing all the solutions:
e Hydrogen is a special case of interaction functions with rotational
symmetry, U=U(r). The interaction does not depend on the polar or



azimuthal angles 6, ¢. However, the wave solutions do have a wide
variety of angular shapes. For any Schrodinger system with rotational
symmetry, it can be shown the most general solutions of the Schrédinger
equation have the form

(7.17

U(1,0,0;)=> n€mcn€mRne(r)Y£m(0,p)e—iwnlt.

This is the Silver Bullet with detail added. The symbols Y€m(8,¢) are
famous, known as the spherical harmonics, and have nearly magical
(nice) properties. They are developed in the quantum theory of angular
momentum. There £(£+1) is shown to be the eigenvalue of an operator
L -2 and m the eigenvalue of an operator L, identified as the z

component of the angular momentum operator L. —. This information,
for now, is more useful than the demonstration. The index ranges are £ =
non-negative integer, m=integer, —£<ms<¥.
The problem reduces to solving a one-variable radial eigenvalue
equation for functions Rn&(r):
(7.18
—12pQr200r(r20Rntor)+£(£+1)2pQr2Rn¢=wnfRnl.

This might look difficult, but it is amazingly simple and easy compared
to the scope of the problem posed. And take heart: we do not expect you
to solve difficult eigenvalue problems. The solutions to known problems
are actually just checked.

For hydrogen (H) the discrete spectrum eigenvalues on=—02pQ/2n2 do
not depend on £. This unusual accident is due to a hidden symmetry, and
played an important role in physics history.

For H the range of £ is 0<€<n. For large n one label then hides many
eigenstates with the same frequency. The number of possible states has a
great effect on the number of transitions and the rates between one
another. The Schrédinger equation predicted this spectacularly.

A pedagogical tradition'® observes the general solutions for H might be
polynomials times e—r/a0. Somewhat complicated methods deduce the
polynomials from recursion relations. The polynomials have long been
classified as the associated Laguerre functions. A rather long exercise
checks this is true.

Each nth state has n radial nodes. Larger n states tend to be further from



the origin, with effective radii scaling like n. Since £ can range up to n
—1, a tremendous number of angular variations exist. These atoms spin
around like propellors, displaying angular momentum.

e Equation (7.17) does not predict the atom must exist in a state of given
£. Equation (7.18) solves Rnf for given £ values, but also does not
predict an atom must exist in a state of given £. A large number of
different £ states can vibrate with the same wn. These facts show that the
hypothesis of intrinsically quantized angular momentum of the Bohr
model was dead wrong. Since it was wrong, pop-culture will report that
quantum mechanics confirmed that angular momentum is inherently
quantized.

e Once functions Rn¢ are known, they multiply Y{£me—1wnt to make the
general solutions, as already claimed.

e In terms of p=2nr/a0 and dressed up with normalization clutter, the
eigenfunctions are

dnem(r,9,¢)=2na03(n—£-1)!2n[(n+£)!le—p/2pLLn—2—-12¢ (7.19
+1(p)Y Em(3,0).
This has been lifted from sources, and is not well defined until you find
the same source's definition of the Laguerre Lnm, which vary. (If you
try it, beware that Mathematica tends to get Laguerre indices wrong.)

What did the Schrodinger equation accomplish? Some writers will report
that Schrodinger reproduced the results of the Bohr model, which was a great
triumph. We disagree, and so should you. Schrodinger reproduced all the
experimental data and more with a wave equation one could write on a
postage stamp. The detail and amount of information correctly predicted is
just awesome. As far as we can determine, the Bohr model predicted no
results (except wrong ones) because it was constructed from experimental

data to circularly reproduce the same data'!.



Figure 7.7. Graphics showing the shapes on the sphere represented by
spherical harmonics with m = [ for 0<I<8. The plot intensity is
proportional to Re(YIm(0,$)). The spherical harmonics are a terrific
basis for expanding angular functions, not a discovery of quantum
mechanics.



Yet despite our enthusiasm, the Schrodinger H-atom is now obsolete, and
used only as a first approximation or teaching tool for more than 50 years.
After adding some improvements for small effects, the Schrodinger atom
reproduced spectra to precision of a few parts per million, but no better. The
atom of the Dirac equation instantly eclipsed all those accomplishments, and
for years was experimentally unchallenged. The framework continued to be
an electron wave propagating in a fixed, background interaction function,
which unrealistically had no dynamical reaction. In 1947 Willys Lamb and
his student R C Retherford conducted a clever experiment to falsify the
symmetries of the Dirac atom. They observed a subtle and ‘slow’ microwave
beat frequency, now called the Lamb shift, which no modification of a fixed,
background interaction function could predict. Hans Bethe and many other
physicists had been looking for the interaction function to act springy, and
show time dependence not found in the static Coulomb type interaction.
Bethe produced a quick calculation incorporating effects of a dynamical
electromagnetic field and explained the data. The electromagnetic field had
always been dynamical: the ingenious step was to isolate the quantum
dynamical features existing beyond the classical theory.

Since that time hundreds of theorists have calculated many dozen small
effects in better and better approximations to test quantum electrodynamics.
The term ‘Lamb shift’ is often applied to all the approximated small terms
not found in the Dirac atom. The theory has worked very well. Table 7.1
shows a comparison of experimental frequencies with their uncertainties with
a state-of-the art calculation'”. The numerical values to 12 and 14 digit
accuracy of the transitions are sufficient to find their definitions with an
internet search engine.

Table 7.1. A collection of experimental uncertainties o and data f,,

compared to our calculations which use two free parameters. The data
for the 1S2S transition is the first item and has not been used in the fit.

oexptHz  fexptHz fourcalcHz
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2.46606141319 x 1015

2.46606141319 x 1015

10074 4.797 338 x 109 4.79733066539 x 109
24014 6.490144 x 109 6.49012898284 x 109
8477 7.70649350012 x 1014 7.70649350016 x 1014
8477 7.7064950445 x 1014 7.70649504449 x 1014
6396 7.70649561584 x 1014 7.70649561578 x 1014
9590 7.99191710473 x 1014 7.99191710481 x 1014
6953 7.99191727404 x 1014 7.99191727409 x 1014
12 860 2.92274327868 x 1015 2.92274327867 x 1015
20 568 4.197604 x 109 4.19759919778 x 109
10 338 4.699099 x 109 4.6991043085 x 109
14 926 4.664269 x 109 4.66425337748 x 109
10 260 6.035373 x 109 6.03538320383 x 109
11893 9.9112 x 109 9.91119855042 x 109
8992 1.057845 x 109 1.05784298986 x 109
20099 1.057862 x 109 1.05784298986 x 109

7.2.4 Minimal spherical harmonics

We conclude this chapter with some pointers on the spherical harmonics,
Yem(0,0). It is very useful to know what to learn, and what to ignore (for a
while) in the vast literature.

Everything important and useful comes from the angular part of the



V - 2 eigenvalue equation. The equation is not very useful in the form

V - 2f=1r200rr20for+1r2sinf000sinf0fo0+1r2sin2002f0 2.
It is quite useful in the form

V = 2f=Dr2f-1r2(r - xV - )2f,=Dr2f+1r2L - 2f;L - =r - x(-1V - )(7.20

where r - =x -, and Dr2 represent the terms with d/0r. In the useful form one
does not write out the terms in symbol L — 2, which is ideal in most simple
form.

The usefulness happens because the eigenvectors of L -2 are the
spherical harmonics:

L-2Yem=¢(£+1)YEm;LzYfm=mY£m.

The eigenvalues are real. Then automatically the Y€m are orthogonal, which
makes them an ideal basis for representing functions of 6 and ¢. The
orthogonality relations are

<Y¢m|Ye'm'>=[dcos(0)dpY Lm*(0,$)Y 'm’(0,$)=5£L'Smm’,
where —1<cos08<1 and 0<¢<2m are the full ranges of the angles on the sphere.
A general expansion is

f(0,0)=Y emfemY ¢m(0,0);fem=<Y em | f>.

The V -2 operator appears in thousands of equations in mathematics,
physics, engineering, chemistry, and so on. Every time spherical polar
coordinates are used, one has the opportunity to replace V — 2 by equation
(7.20) in no steps. Next, one expands the function of interest in spherical
harmonics, just like equation (7.17), with a possible addition of an index
depending on m. Term by term where V -2 acts on the expansion one
replaces L - 2Y®m - £(£+1)Y€m. The angular derivatives disappear into the
eigenvalues, which are just numbers, setting up subsequent steps in
maximally easy form.

Because of these and many other nice properties, someone'® has written
that ‘the spherical harmonics are better than hot home-made bread with butter
on it’. The minimal information here is what needs to be mastered and used



repeatedly. Unfortunately two distinct kinds of disinformation can possibly
spoil the experience. First, if your source takes the not-very-useful form,
invokes that thing called ‘separation of variables’, and launches into several
pages about solving differential equations, it's almost a total waste of time,
and also wrongheaded. The transformations start with equations you cannot
solve, make arcane transformations, and end with equations named after dead
mathematicians (associated Legendre) that you cannot solve. It is
wrongheaded because its focus is on detail you don’t generally want. It
actually dates back a century ago to the time when basis functions and
orthogonality were not understood, while memorizing differential equations
was considered important, and we’re not doing that any more.

Next, some sources might make an issue of the operator
L-=r-x(-1V -)=r-xp- supposedly coming from the memorized
substitution rules, and quantum physics. That was a common mistake of
physicists with poor math training of (say) 75 years ago. There was a lot of
guess work: ‘we guess’ -1V - stands for momentum, and ‘we guess’
r-%X(-1V =) stands for ‘angular momentum’, and ‘we guess’ the Y€m will
be involved in measuring angular momentum. The older presentations often
mistook math facts to be physics discoveries. The mathematical consistency
is automatic: the only physical information entering is the Schrédinger
equation. While it was not recognized at first, in the 21st Century mature
physicists know how Lie groups and generators work. (Someday you should
learn about it.) There's no ‘guessing’ nor any reference to physical principles
involved in the quantum theory of angular momentum.

Reference
[1] Schrédinger E 1926 Ann. Phys. 384 361-77
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history on the tower. They were all men, no women allowed.
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Eigenvalues do not change under similarity transformations. The self-adjoint test of Hermiticity H=HT
can become unreliable under some similarity transformations.

%Given N degenerate frequencies, and making N elements of an orthogonal basis |ej> by hand out of
the eigenvectors, the transformation |ej>— U|ej> makes an equally new basis, where U is N x N
unitary; and that defines the symmetry.

"The textbooks by Liboff set up eigenvalue equations as quantum principles do.

8Using measurements to determine a wave function appears to contradict schoolbook lore that
measurements must be impossible. Meanwhile the technology has long existed to do the measurements.

We're neglecting the reduced-frequency correction that involves wpwP/(op+wP), which is actually a
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the complete derivation’, perhaps 30 pages. Please! Deriving solutions to differential equations means
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data better and better.

12The calculations using the collected formulas of many dozen authors have been done by John C
Martens and the author.

13For once, Feynman did not say this.
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Chapter 8

Observables



Figure 8.1. A rainbow trout photographed by Michael Stack of
Fishtales Outfitting, mtfishtales.com.

The wave function represents our description of a physical system, in as
much detail as our theory permits. As soon as a complete description of any
complicated subject exists, there is usually a need to get rid of most of it, and



work with simplifying summaries. Observables are numbers extracted from
the wave function that can serve as simplifying summaries. This definition of
‘observable’ is absolutely neutral, and comes from examining a formula for a
number, and interpreting it as a number.

Yet ‘observables’ became a very contentious word through attempts to
connect its definition with a very contentious ‘doctrine of measurement’.
We’ll review the doctrine without forcing it upon you. Most of the turf-wars
in early quantum mechanics were based on prescribing limiting and
sometimes arbitrary restrictions on what would be ‘allowed’ as a good
quantum measurement. It makes sense to review the general procedure for
calculating observable numbers first, and after that consider additional
restrictions for the cases when they may appear.

The question ‘what is observable in quantum mechanics?’ was raised well
before quantum mechanics. The Bohr atom was built so that nothing about
the atom itself was observable. As we mentioned in section 1.1.1, Born,
Heisenberg, and Jordan (BHJ) at first promoted a philosophy of matrix
mechanics based only on ‘what was observable’. They did not define what
that meant, and the operators used for calculations were not observable.
When Schrédinger challenged everything with his wave function so easy to
visualize, BHJ instantly dismissed it as ‘unobservable’. In those days
complex numbers were considered unobservable without a second thought.
Then the whole history of the subject struggled with an apparent conflict
between a perceived superstructure where calculations were made, and a
different level where experimental predictions emerged. Whoever controlled
the word ‘observable’ stood to command the subject, explaining the conflicts.

Physics evolved and moved on. We now understand we can, in principle,
experimentally observe as much as desired that the wave function describes,
and vice versa. While many things can be observed, there is a particularly
appropriate way to integrate over the wave function with suitable weights,
which makes a number that is very natural to describe experiments. It
corresponds to the idea that one should make a correspondence between
averaged properties of the wave function and things observed in the lab.
These collective properties are both obvious and subtle at the same time.
When you take for granted that the symbols correspond to the words, there's a
second level of actually verifying that the interpretation is fair, faithful, and
useful.



8.1 Collective position, velocity, and momentum:
tropical storms

8.1.1 Collective velocity

Consider the weather map of figure 8.2. It has too much information. Weather
scientists are then asked to give the ‘the precise position’ and ‘the precise
velocity’ of hurricanes and tropical storms, as if they were point particles.
There are no options but that a storm's position and velocity will be some
kind of average summary, especially when the thing is 100 miles across.



Figure 8.2. Exactly where is Hurricane Floyd, and where is he going?
Quantities such as <x-> and <v-> provide convenient practical

summaries of the behavior of quantum waves. NASA GOES satellite
image.

Finding a good summary takes more than placing pins by eye on a
satellite map. Whatever formula is chosen will have some arbitrary features,
but they must be consistent. Suppose you want the collective velocity of a



storm as a whole. Add up all the local velocity fluctuations over the storm's
volume, which will cancel the whirling internal motions, and compute the
total.

Similarly, in quantum mechanics there exists a volume-integrated current
denoted <j>:

<jZ=-1eQ2pQJd3xy* V-V §*,=-1eQuQ[d3xy* V.
The second line comes from integrating by parts assuming -0 at the
boundaries of an arbitrarily large volume. Removing the charge parameter e,

produces a candidate for a volume-integrated, collective wave velocity:

(8.1)

<vE=-1pQd3xyH(xt) V().

Often the time dependence of matter waves is artificially removed, and such
formulas seem to have no sense of motion in them. That is why we made the
movement explicit with symbol y(x;t). The formula says that in some average
sense the matter wave as a whole tends to move in an integrated way directed
by Vi, which may remind you of diffusion.

Equation (8.1) and almost all other uses of [d3x=[dxdydz instruct the
research staff or a computer to add up a number over a volume, without
reference to the much-despised operation of finding anti-derivatives in
calculus courses. We’ll repeat this early and often: the integrated quantities
exist as symbols we can manipulate, while seldom needing a specific
calculation. You should be just as neutral and unimpressed by it as in
learning that the National Weather Service has people computing gradients of
air pressure integrated over storm profiles. Also, keep in mind that totalized
quantities are seldom specific enough to be very informative. If you know
<v> you know three numbers, and cannot compute Ji(x;t). Meanwhile if you
know yi(x;t) it has the information of infinitely many numbers, and you can
compute <v>,

Given the wave function, many similar things can be calculated with a
pointy bracket expression. The consistent definition is that <something> is a
sandwich y*somethingys, integrated over the whole volume:

(8.2)
<something>=<ys | something | y>=[d3xyr*something(x)i.

The specific notation of <ys||y> is used to distinguish one candidate ¢ from



another, when needed. Notice that <{| | > makes an ‘operator sandwich’ in
which operator comes in the middle. It is necessary to choose an ordering for
operators, which <y |operator | > resolves. One reason for the ordering is
that <y|operator|y> is real-valued whenever the operator is Hermitian.
While that's not strictly necessary, nor needs to be a postulate, it is general
enough to accomplish everything wanted.

It is not obvious, but <-1V = is nearly unique to describe a collective
velocity. There is no notion of <dx7dt>, because x7is not a function of time.
Whatever you choose must be a true vector with the correct transformation
properties of a velocity. For example [dxy(—1V =)y would not be real-valued.
Taking the real part can be done, but that would not be odd under time-
reversal. If you computed <xZV= it would not be real, and would also
depend on the coordinate origin for x; while velocities do not. By mentioning
time reversal and transformation properties, we’re hinting there's a higher
level of theoretical artistry and insight involved in relating operator
sandwiches to physical quantities, which is true. Those who use MSR will not
get everything wrong, but they will also not understand why.

The notation for pointy <> is borrowed from mathematics. For 100 years
before quantum mechanics, mathematicians had noticed many isolated
regularities of wave-like equations. The apparently stupid operation of
integrating function*xsomethingxfunction consistently led to simple
outcomes. Near 1900 the meaning of this was starting to clear up. By 1922
Hilbert and Courant published a book, Methoden der mathematischen Physik
(Methods of Mathematical Physics) introducing differential operators to
physicists who had no previous experience. Just as you’d expect, many
physicists came to view <{y| ANYTHING |y> as something coming from the
microscopic antics of inexplicable quantum parcles, rather than the direct fact
it is just a number.

8.1.2 A concept error about momentum

We come to a concept error from early times. Consider equation (8.1). It is a
definition that is not intended to be more than a crude summary. Now to
make a mistake, we observe the dependence on 1/pQ can be moved to the
other side, giving



(8.3)
HQ<vZE=-1fd3xy*(x;1) V(D).

In Newtonian physics, the formula for Newtonian momentum pN=mNVN,
where vN=dxN/dt, and xN(t) is the particle trajectory we said we’d never use.
Yet at the dawn of quantum time a trajectory was desired, and the new
meaning of quantum mass pQ was not recognized. That set up an
interpretation error to claim (assert, discover, misunderstand) the right hand
side of equation (8.3) must be the ‘momentum of the quantum particle’ we
said we’d never use. The damaging part of the mistake asserts we would
necessarily need to return to parcles, due to a strong unmentioned bias that ‘if
it has momentum, it's gotta be a particle’.

That is false since ocean waves and quantum waves and and tropical
storms have momentum. The particle concept trying to pass the door does not
belong, and makes no more sense than ‘the hurricane particle’ that destroyed
a shopping mall' in Florida. Also, it makes no sense to invoke the Newtonian
formula, which we’re not using, to define a momentum for a wave, which is a
completely different dynamical system. In any event, people were given false
information that momentum implies a particle, and false information that
particles define momentum, so that at the first mention of ‘momentum’ in
quantum mechanics they were misled. It is no longer acceptable to make
incoherent conceptual errors. Neither is it acceptable to make an unexplained
statement that ‘—1V 1S THE MOMENTUM of a quantum parcle because it is
a postulate’. That explains nothing, and we can do better than that.

8.1.3 Velocity second moment

The nth moment f™n of a function f(x) is a number from computing

f'n=[dxxnf(x).
The factor xn weights large x regions more and more for large n. Suppose
you are given f, for n=1,...,30. Then you know 30 numerical facts about the

function, which is quite a bit of information. The Mellin transform of a
function is just f'n as a continuous function of n. Under very general
conditions it is invertible: if you know all the moments of a function, you
know the function. That is one example of how integral quantities like



observables can probably encode all the information you might desire.

Suppose the first moment vanishes. Then the second moment
f2=[dxx2f(x) is a measure of the squared width of the function. (Draw a
picture of the integrand and assume f(x) is well localized.) If f(x) is
normalized, a more general and standard definition of the function's width-
squared is Ax2=f2—f12. Subtracting f12 makes Ax2 not depend on the choice
of coordinate origin, which is what we mean by the ‘width relative to where
the function is concentrated’.

The sandwich <-1V = is actually a first moment of the spatial Fourier
transform, namely the plane wave expansion of yi(x). This is seen from the
expansion

(8.4)

Y(x)=[d3ky(k)eik %;1V §i(x)=[d3kk{™ (k)erik X
This uses the fact that each plane wave eik-X7is an eigenvector of -1V “with
eigenvalue k-’A common notation writes

2 Vi KTk==kTk>.
Using equation (8.4) in the sandwich and reversing the order of integration
gives

<K>=[d3k( dSXLU*(x)"e1k-"x?k$~(k)§<K3=jd3kqf*(kjkﬁN(k);wheredeXﬂ&5)
(xJerk X=Y*(x).
Some terms were underlined to make inspection easier. These expressions
ignore (make invisible) the 2 ‘normalization clutter’ of conventional Fourier
transforms?. Our objective is equation (8.5), which shows that <K= produces
a vector of first moments of Y™*(k){"(k). If a different operator ‘A’ were in
the sandwich, expanding in the basis of its eigenstates would make a similar
relation for the moment of the operator's eigenvalues ‘a’. This is formalized
in section 9.1.3.

We are ready for the second moment <KZ>. In no steps compute

<KZ>=[d3ky™*(k)kZy"(k):
This suggests a candidate for the second moment of velocity <vZ>. By
agreement we define the velocity operator to be K7j1Q, and then <vZ>=<KZ>/



HQ2. Notice that <vZ>#<v>2, so this is new information. When acting on
W(x) the squared-velocity operator may not be transparent: we agree to use
the plane wave eigenstates where kZ is simple for the definition.

Let's emphasize we are exploring agreements to assign words to
calculations. This is much different (and much more honest) than a tradition
pretending some mysterious conspiracy by words would predict the physics.
As it stands, <vZ> is ‘one more numerical fact’ about the wave function. We
actually know more: AK2=<KZ>-<K>2 measures the squared-width of the
wave number components of the wave function.

Suppose <v>=0, so the wave as a whole is vibrating, but nominally (by
naming it) the quantum system is ‘at rest’. From the Schrédinger equatior(18 6)

12pQKZy=10y/ot—U(x), 12pQ<vZ>+<U(X)>=<Q>,
where Q and 10y/0t are equal acting on solutions to the Schrodinger equation.

We mentioned it was often thought that U(x) was always the Newtonian
potential energy function. To do some guessing, irresponsibly replace
12pQ<vZ>T2uQ<v>2, and one term looks like Newtonian kinetic energy.
The other term is some average (that depends on ) of the potential energy.
When Ehrenfest was finding his way with the symbols, the relation seemed
‘almost’ the sum of kinetic and potential energies of the Newtonian system
he had in mind, suggesting Q would be the energy operator, which had been
claimed. From those analogies <KZ>/2uQ=pQ<v2>/2 is generally called the
‘average kinetic energy’ of a quantum system. That is a misnomer, since
Y(x)V 2y actually measures potential energy of bending the wave, but it is
seldom noticed.

As it stands, <Q> does not involve pQ<v=2/2, so the Newtonian matchup
does not quite work out. Yet despite this apparent flaw, we can show that
<Q> is a constant in time, just as needed for a conserved energy. The proof is
quite easy, using the Schrodinger equation:

00t<Q>=<0yot | Q| y>+<y | Q|0 |y>ot>, =<y | 1Q)Q | y>+ (8.7)
<Y | Q(—1Q) | Pp>=<Q2-Q2>=0.
Like any conservation law, this is a useful fact about the wave. But what does
it mean?

The old way of guessing relations using the MSR was certainly confusing,



and succeeded or failed about 50% of the time. That's why we recommend
more modern methods. There's no reason for guessing when Hamiltonian
physics is well-defined on its own. An unambiguous calculation (section
8.2.1) shows that <Q> is exactly the energy of the system. This does not
come from Newtonian physics or analogies, but from the straightforward
facts of continuum mechanics.

The existence of a strictly conserved energy contradicts fanciful
interpretations of wave packets having ‘no definite energy’ because of the
‘uncertainty principle’. It is true that a wave packet with no single frequency
has no single frequency. The guess E=hv was never a correct definition of
energy, which is always a quantity describing an entire system. There are
actually no cases where the uncertainty relation predicts information about a
wave function. If you have any wave function whatsoever, it already contains
more information than the little scrap of fact from the uncertainty relation. If
you know this, you will escape many fallacious references to the uncertainty
relation.

8.1.4 Collective position

The formula for <v= can be related to a formula for the average position of
the hurricane, storm, or quantum wave. It is not trivial to define a competent
measure of average position. The typical average position of ‘stuff’ is a
weighted average of the stuff multiplied by its position. The electron wave
stuff is represented by y(x;t), but what kind of average shall we choose? Here

are three candidates® for an average position:

<xZa=?[d3xxTi(x;1); <xZb=2[d3xx TY(x;}) | ;<xZc=2[d3xy*(x;O)xT(x}?).

The first line is complex, disturbing some people, so avoid it. The second line
uses |P(xt) [=|y*(x)Y(x;t) |, which signals an error of math inexperience:
you cannot compute anything after a square-root-abs operation*. For one
thing, |W(x;t)| will have cusps at zeroes of y, making a mess. The last line
may not be a work of art, but it's better than the first two candidates. The
whole of the discussion has its arbitrary features: the habit (of the old school)
that by making crude summaries, we are discussing something deep about
existence just stinks.



In favor of the third definition, Ehrenfest was able to show from the
Schrodinger equation that

ddt<x3c=<v3,

To see it is not trivial, put <v> on the left side and pose the relation as a
question:

<vE=—1pQfd3xy*(x;t) V B(x;1),=2[d3x Ay ot(xD)xB(x1) +* (8.8)
(x;Dx0P(x;1)ot.
The equation is not a monster, just look at both sides. The time dependence is
in Y(x;t), the moving wave. It ends up as time dependence d<x>/dt, an
averaged substitute for a trajectory. The only way the relation can be true is if
10y/0t is related to derivatives such as V2 by a wave equation of motion.
Use the free-space Schrodinger wave equation:
(8.9)
10Yt=—12pQV 2.
Replacing oyi/ot gives
(8.10
—1pQ[d3xy* V ="-12pQ[d3x V Zy*x-y*xV Zy.
Notice that the ordering of operations must be respected. Operator ordering
is not new with quantum mechanics, but many calculations need a new level

of attention to it. The first term on the right hand side is related to the second
by FIP:

[d3x(V R)B=—[d3xA VB « FIP;[d3x(V ZA)B=
~[d3x(V A)- VB=[d3xA V 2B « FIP

FIP uses [d3xV({integrand)—»0 when the integrand vanishes at the
boundaries, which is always assumed by using boundaries so far from the

system that FIP applies®. Using FIP with equation (8.10) gives

—1pQ[d3xy* V §i=?-12pQ[d3xy* V Zx=xV 2.
For the x component calculus gives

(8.11



P*020x2X—X020X2P=2Y*0ox.
That gives the x component of the left side of the equation above. The same
follows for the other components, creating Ehrenfest theorem-1.

FIP is often learned first in quantum mechanics. It is formalized in terms
of a Hermitian operator. By FIP <V3*=—<V = because ¢ and y* trade
places. Introduce a factor of 1 and then

<KS#=<—1V3*=<-1V3=<KS3,

or more simply, <K= is automatically real. As we said often, any operator H
such that <H> is real for any y is called Hermitian. To repeat,

H is Hermitian if and only if<y | H | y>=realforally.

If you resist knowing this, don’t. Consider the convenience of working with
real-valued summaries, so that you don’t need to think about complex
numbers.

A person knowing FIP might work backwards and guess the Schrodinger
equation from equation (8.8). In fact the Ehrenfest theorem-1 works for any
real-valued interaction function U(x). In equation (8.10) replace
-V 2u/2uQ - -V 2u/2uQ+U(x)s, and nothing changes. The proof of the
continuity equation is similar, and also needs U(x)to be real.

8.1.5 The expected classical limit that failed

The objective of the ‘Ehrenfest relations’ was to obtain Newtonian physics as
an output, where the quantum theory would predict the classical trajectory
xN(t) » ?xQ=<x>(t), and then recover Newtonian dynamics. We have seen
part one, which shows two definitions of <x> and <v> are compatible.
Making definitions compatible is competent mathematics, not a fact of
nature. To get his objective to come out, Ehrenfest would need to predict the
Newtonian formula for ‘force’ from the acceleration mNd<v>/dt. This did not
work out, as can be seen with no work. The calculation of d<v3/dt will
depend on the wave function y(x;t) defining <v>:

00t<v>=—1uQ0ot[d3xy*(x,t) V T(x;?).



The right hand side depends on ¢/, no matter what substitutions are made. Yet
the Newtonian force is a given and fixed formula that does not depend on
W(x;t). The two cannot be equal.

Amazingly, one textbook after another ignored this. The equations were
manipulated to give <dU/0x> on the right hand side. With a statement that
the interaction function was ‘the classical potential energy’—not from logic
or experiment, but by postulate—the sandwich <-0U/0x> was called the
Newtonian force. While the formula is not the Newtonian force, scholars still
wrote that the ‘classical limit’ had been recovered. For example, Griffiths [1]
writes that ‘(the equations) are instances of Ehrenfests's theorem that
expectation values obey classical laws’. Those were the expected words, but
the expectation value the passage cites is not the classical law®.

The mistake was caused by the presentation flow chart invented by Bohr.
It wrongly inserted particles and particle probabilities as defining elements in
all of the equations and before defining anything else. That made ignoring the
flaws of Ehrenfest mandatory! The uncertainty relation was claimed early and
out of place, making everything downstream seem to be inexact. The symbols
<x> and <v> were presented as statistical averages (expectation values),
which all agree can sometimes be motivated. By fouling up the logical order
the Ehrenfest relations were made to seem ‘good enough,’ especially when
the order of averaging was too murky for a student to challenge it.

Yet there is a conceptual error in treating exact relations as probability
relations. Statistical averages have fluctuations, while exact relations do not.
As we’ve just seen, the symbols <x= and <v= and <0dU/ox> are exact
quantities. The contradictions of a wrong interpretation cannot be ignored. If
a person said: “Wait! The Newtonian force does not ever depend on the wave
function’, his teachers would be hard-pressed to respond’. Prematurely
introducing quantum probability both botched many definitions, and also put
everything derived downstream from it on intellectually unstable, and
sometimes incompetent grounds. It's the road we’re not following, and for
good reasons!

8.2 The general definition of observables

Our investigation of <x>, <-1V>, etc, used sandwiches which are



‘quadratic’, namely bilinear in y*...y. For the general definition:

A quantum observable<H>of the wave

functionyisanumberobtainedby<H>=<y | H | p><y | y>,= (8.12
<y | H | p>assuming<y | y>=1.
It has usually been assumed that H is Hermitian so the observable is real. If H
is not Hermitian, one gets a complex number, equivalent to two real numbers.
With combinations of non-Hermitian sandwiches real numbers can be made
to come out: it is a meaningless ‘postulate’ to require Hermitian operators.
To avoid fighting with those who have not thought this through, we’ll use
Hermitian operators.

The non-observability of <ys| > is something new. It does not agree with
one's notion of a classical continuum wave. It can be explained: the wave
function is an eigenvector of an operator, and eigenvectors never have a
definite, predetermined normalization. Explaining more here would be a
distraction: there is more information in section 10.3.3. One will usually see
<y|y>-1 imposed as a ‘normalization postulate’. The definition dividing
out <y |y> avoids an unnecessary postulate and shows that <ys|y> -1 is a
normalization convention that is convenient.

Any multiplicative or linear differential operator can be put into a
sandwich, to learn some information. For example <x3> provides a number
coming from the wave function not available from <x2> and <x>, so it is new
information. <x4> provides another number. Students will ask: ‘What is the
correct quantity to use?’ Nobody in authority can tell you. The actual
situation in physics is that observations need to be matched to experiments,
and this is never trivial. Any numbers providing information will be
welcome: the idea they could be universally specified in advance is too far-
fetched to consider. However, you will find a stream of literature suggesting
that x“and -1V ~observables more or less complete ‘all possibilities’,
inasmuch as it's what a parcle-person would think about. We turn to a few
interesting topics.

8.2.1 Collective wave momentum
WE REGRET THE FACT quantum mechanics met a few unsavory efforts to



systematically divert the origin of math relations into physical postulates
about the Universe. At first it seems harmless: who's to decide what postulate
is more fundamental than any other? Yet the harm done is considerable. It
can be entirely avoided by careful ordering of presentation.

For example, we presented that equation (8.3) is only tenuously
connected to ‘momentum’. By honest steps we showed the expression is a
computable ‘sandwich’ of y*...¢y with -1V 7in between, and not more was
claimed. In the most dogmatic approach a ‘physical postulate’ was made that
—1VIS! IS!! IS!!! the momentum of the quantum particle’. Depending on
your source, it was often posed to deliberately be without context, origin, or
any possibility of understanding it. It was also very importantly claimed to be
independent, inexplicable, fundamental: hence, impossible to challenge.
Instead of talking about a physically moving wave, the symbol —1V was set
up as THE OPERATOR FOR MOMENTUM, WHERE IN QUANTUM
MECHANICS, MOMENTUM IS AN OPERATOR.

One does not expect physics to be a struggle over controlling word usage,
but that's what happened early on. First, -1V 1S NOT Newtonian momentum,
which has a different use and definition. Next, if -1V s used to calculate
some kind of momentum, we don’t need the overbearing IS! IS!! IS!!!
existence nonsense. Right?

Now as we mentioned, waves of all kinds, including the quantum kind, do
carry momentum. The Schrédinger equation predicts everything there is to
know about the dynamics. The facts and definitions of momentum come from
dynamics, and are found inside the rules, not outside. A competent physicist
should be able to derive the formula for wave momentum from the wave
equation.

The most simple derivation goes as follows. In general form the
Schrédinger equation is written

10Y0t=Qus,

where often Q - -V 2/2pQ+U(x). The corresponding action is
(8.13

S=[dtL (Y, P*)=[dtd3x1y* oYrot—yr*Qus.
The Schrodinger equation is found from the extrema 6S=0. The second term
is <Q>. The Lagrangian above has the general form L=} ipiq i—H(qi,pi),



showing that <Q> IS the Hamiltonian functional.

The momentum of any generalized coordinate g is 0L/dq’, where L is the
Lagrangian, and q° is the time derivative. Consider a wave of any shape
Yany(x)” whose time dependence comes from a simple translation by
coordinate qt). Thus

Yany(x;t)=yany(x=q(t)). — translation.
The vector q(t) represents the collective coordinate for translations, which

make only three variables among the formally infinite wave coordinates.
Under the translation shown, the collective position changes

<x3 - <xS(t)=[d3xpany*(x>qMh)xPany(x>q(h), =fd3x pany*(xY(x™
+qi))yany(x7),=<x>+<1>q)=<x>+qD).
The last line divides by the normalization <1>=[d3xy*y, or uses a
normalized wave function. The result transforms like the position on a map,
just as we expect (and insist) for the words ‘collective position’.

The calculation of the collective momentum conjugate to coordinate qis

pg=0L0q=-100q Jd3xyany*(x=q(t))ddtpany(x=q(t))whereddtpany(x~
~q(t))=—q"* V Pany;thenpg=—100q 4 [d3xyany* V Pany,andthenpg=  (8.14
—1/d3xyany* V {any.
More generally, Noether's theorem, published in 1918, establishes the local
character of conservation laws in continuum mechanics. Symmetry under
spatial and time translations leads to conservation of the energy momentum
tensor, for example, which Noether's theorem predicts. The basic relation
between conservation and symmetry is much older in Lagrangian and
Hamiltonian physics. Noether's approach shows how to systematically
formulate those particular generalized momenta conjugates to particular
coordinate variations. Our application using a collective coordinate builds a
bridge between beginner's (few coordinates) and more advanced (infinitely
many coordinate) Lagrangian physics.

A Lagrangian formulation is necessary because all general concepts of
momentum and energy are Lagrangian—Hamiltonian concepts, which cannot
be formulated correctly otherwise, as we said earlier. It is a bit unfortunate



that this particular Lagrangian material comes from a higher level than our
discussion. Sorry, energy and momentum come from Lagrangians, and can’t
be dumbed-down. If you don’t know about Lagrangians, you must learn
about them!

8.2.2 Constants of the motion

In section 3.2.2 we mentioned a tendency for Hamiltonian physics to be
misunderstood. Not understanding the subject meets the agenda of the N-
people and the C-people, where N and C stand for Newton and Copenhagen.
It's strange but true that the N-people tend to dislike Hamiltonians, because
the method makes classical physics too easy. The beautiful relation between
symmetry and conservation laws in Hamiltonian physics takes no steps. The
Hamiltonian equation dpi/dt=—0H/dqi says that if H(qi,pi) does not depend on
any generalized coordinate g*, the corresponding p* is constant in time. No
steps!

Since quantum wave dynamics is of the classical Hamiltonian type (while
involving gazillions of times more variables) the relation between symmetry
and conservation holds true. It happens to look different when expressed with
operator sandwich observables. Compute the time dependence of an
observable using the Schrodinger equation:

ddt<A>=00t<A>=<oyot| A | y>+<y| A || por>, =<y | QA [y>+ (815
<Y | A(-1Q) [ p>=1<QA-AQ>,
The algebra assumes the operator is not explicitly time dependent; otherwise
add 0A/ot. On the right hand side we see the commutator [Q,A]=QA-AQ.
With that notation we have

(8.16

—1ddt<A>=<[Q,A]>.
This repeats the calculation done for equation (8.7). In no steps, <A> is
constant in time if [Q2,A]=0. But what does it mean?

It is the obvious and beautiful relation of conservation and symmetry, to
those skilled in the art of reading it. Commutators are discovered and
developed in the theory of Lie groups. The meaning of a commutator [A,B] is
the rate of change of B under the transformation generated by A. The concept



of ‘a transformation generated by A’ comes from Lie groups. Let a -0 be an
infinitesimal real parameter. Consider the transformation operator
U(x)=1+10A. One says that ‘A generates the transformation U(a)’. Acting on
a state gives

[y> = [y>a=U(0) | g>=(1+10A) [y>.

If |y> does not change under the transformation, there is a symmetry under
the operator U(a). Also, A |y>=0 must be true. Then <[Q,A]>=0, and <A> is
a constant of the motion.

This algebra so far is a little incomplete. The word symmetry refers to a
feature of a physical system, and only sometimes a feature of a state. The
transformation U(a) can be considered a change of basis of the entire system.
Under the transformation the Hamiltonian matrix will change by
Q - Qa=U(a)QUT(a). Either you know this from linear algebra, or you must
learn it. By algebra

(8.17

U(a)QUT(a)=(1+10A)Q(1-100A),=Q+1a[ A, Q]+0O(a2),
and assuming A=AT (as always) for observables. This equation shows that
the change of Qa per parameter o is the commutator with A, which generates
the transformation. When [A,Q]=0 then to first order® in « the transformation
leaves Q unchanged, and that is a symmetry. If you are following this skill of
the art, then in no steps equation (8.16) says that <A> is constant when €2 has
a symmetry generated by A, expressing the relation between symmetry and
conservation.

By the way, the Hamiltonian Q is the generator of time evolution,
because Q-10/0t every time it acts. The time translation operator
U(t)=1-1tQ creates a change of basis moving an infinitesimal duration t into
the future.

Example Free space has translational symmetry. That means Q is not an
explicit function of x; and [-1V ;R]=[K;Q]=0. In no steps <K= is constant.
Also, Kand Q share eigenstates, namely eik-x; which helps solve them.

Discussion. A sort of foggy reverence for quantum mechanics, and
corresponding disdain for classical Hamiltonians, has tended to present these



results a little differently. In the early days of quantum theory those who
knew all about Lie groups had mathematical super-powers, and seemed to
have been ungenerous in sharing their powers. There was then (and now) a
definite tendency to present all of the above as a miraculous outcome of
quantum physics. That is not logical: everything is coming from the
Schrodinger equation, which is a generic wave equation, with all the rest
being mere notation. Putting factors of Planck's constant everywhere gave
people false information that commutators were zero when f—0. That's
absurd, given that Lie groups and commutators were known to come from
mathematics, and to represent the underlying geometry of transformations,
more than 30 years before the physicists found commutators in quantum
notation. In effect, somebody early on lied to other people about
commutators. Next, a series of guesswork analogies associated with the MSR
(section 5.3.2) actively asserted that the operator methods were quasi-
Hamiltonian by analogy and by guesswork, either through ignorance or by
concealing the construction of the actual and literal Hamiltonian of the theory
(section 8.2.1). Relations like equation (8.16) were presented as marvelous
accidents of guesswork, not the direct outcome of notation, which is the real
explanation.

Our telegraphic review of Lie groups cannot begin to do justice to the
subject. There's obviously much to be developed. Whether or not you
completely absorb what we’ve described, it is very important you have the
information that those methods exist, and a physicist must eventually learn
all of them. Those in the 21st Century who know enough about Lie groups
continue to have super-powers over those who don’t!

8.2.3 Observability of the wave function

Suppose Yi(x) - Px is pre-evaluated in N> 1 slots of x. If N = 1000 is enough
for you, choose it. The are N2 possible combinations yxyx'*, including the
‘diagonals’ x=x' and ‘off diagonals’ x#x'. The sandwich of any operator H(a)
cannot be more complicated than evaluating an N x N matrix sum:

<y |H(a) | y>=Y xN Y x'Nyx*Hxx'(a)Px.
Consider the slot x=x'=1. Let H11(a)=1, and all other Hxx'a)=0. Then <H(a)>



reports the y1y1* value. Let H12(b)=1, and all other values be zero. Then
<H(b)> reports the y1y2* value®. Continue by choosing operators H(a), H(b)
... H(N2) all terms in iy can be evaluated. So the wave function is observable.

There's one loophole. Multiplying ¢ — Ae10y cancels out every time: one
cannot detect it with an operator sandwich. But we have already agreed the
overall normalization is not observable. The observable part of the wave
function predicts what is observed and vice versa.

This is the gist of Fano's proof [2] using density matrices that with
enough measurements-as-sandwich observables the wave function is
observable. It surprises and shocks many who assumed (and were told) the
wave function could not be observed. There's a couple of reasons not to be
overly impressed. What are all these H(a),H(b)...H(N2) things physically?
Math will not tell you. They stand as a mathematical concept correction to the
mathematical concept error that the wave function could not possibly be
observable. How will one choose H(a),H(b)...H(IN2) in an experiment? Math
will not tell you. An impression from the old stuff that operators must be
‘position’ x"or ‘momentum’ —iV 7is confronted: the habitual narrowness of
discussing nothing more than Newtonian variables in Copenhagen bites the
dust. How could you make infinitely many measurements? We’re sure we
cannot. But do you need infinite information? Why? Moreover, many useful
quantum systems are described by rather few variables, like (say) three
numbers. Can you measure three numbers? The upshot is that one
catastrophic early conceptual error—‘complex numbers are imaginary and
cannot physically exist’—did a great deal of early damage. Once corrected,
the ordinary supposition that you can measure just as much as you have the
time, patience, and facilities to measure is most of the message.

One more thing: since determining the wave function well might take a
hundred or a hundred thousand measurements (billions at a particle
accelerator), it would be illogical to assign your final wave function to every
single individual system. You are not finding out features of individual
systems, but finding out features of collections, often called ‘ensembles’ of
individual systems. The wave function is a descriptive tool of ensembles.By
awfully clever math, to emulate the ensemble of little waves, you emulate one
element of a little wave, and read out the predictions using the rules of
quantum mechanics.



Einstein is said to have opposed quantum mechanics because he opposed
a probability interpretation. That is false. Einstein opposed irrational
dogmatism. In 1935 Einstein, Podolksy, and Rosen wrote the single most
important paper in quantum mechanics, after Schrédinger's 1926 paper,
according to many. We recommend you not to believe internet physa-
bloggers who repeat that ‘God does not play dice’ yet never read Einstein's

papers and letters. In 1949 he wrote!?:

“The attempt to conceive the quantum-theoretical description as the
complete description of the individual systems leads to unnatural
theoretical interpretations, which become immediately unnecessary if
one accepts the interpretation that the description refers to ensembles
of systems and not to individual systems.’

These are not the words of a person stubbornly opposing probability. The
word ‘ensemble’ accepts a statistical interpretation. Einstein's remarks are
totally correct. There is universal evidence that quantum mechanics describes
ensembles of systems. Like the photon, Einstein's beliefs were misreported
and misrepresented. There is a mystery here, to discover how and why
Einstein's character was assassinated in his own lifetime. Who benefited?

8.2.4 The uncertainty relation: never say
‘principle!’

Did you know that the uncertainty relation is not a principle. Principles have
priority, predictive power, and cannot be derived from math. Relations are
just math facts, and are always derived. It's nice that Wikipedia recognizes it:

‘Historically, the uncertainty principle has been confused [4, 5] with a
somewhat similar effect in physics, called the observer effect, which
notes that measurements of certain systems cannot be made without
affecting the systems, that is, without changing something in a
system. Heisenberg offered such an observer effect at the quantum
level (see below) as a physical ‘explanation’ of quantum uncertainty
[6]. It has since become clear, however, that the uncertainty principle
is inherent in the properties of all wave-like systems [7], and that it
arises in quantum mechanics simply due to the matter wave nature of



all quantum objects.’

For once Wikipedia has it right, except the word ‘principle’ should be
corrected to ‘relation’. Any wave of any sort obeys the relation automatically
and without referring to any authority of a ‘principle’.

In 1927 Heisenberg noticed an interesting fact about wave blobs, which
was not obvious in over-simple cosine waves. He was experimenting with
Schrodinger's theory, which he previously called ‘crap’, precisely because it
was easy to understand. Heisenberg noticed the math fact we’ll soon
describe, and sent his draft paper (or a letter, accounts differ) to Bohr. At that
point Bohr convinced!' Heisenberg that the uncertainty principle was a
manifestation of the deeper concept of complementarity. Heisenberg duly
appended a note to this effect to his paper on the uncertainty principle, before
its publication, stating:

‘Bohr has brought to my attention [that] the uncertainty in our
observation does not arise exclusively from the occurrence of
discontinuities, but is tied directly to the demand that we ascribe
equal validity to the quite different experiments which show up in the
[particulate] theory on one hand, and in the wave theory on the other
hand.’

The note has a bizarre reference to ‘the occurrence of discontinuities’, and
was intended to give those concepts (reiterating the OQT) a validity that did
not exist. No calculations of the actual quantum theory supported
‘discontinuities’, so they appeared in a note added. Also note our italics,
‘equal validity’. Instead of getting rid of the parcle that was not there, a parcle
reappeared in a note added, the best way to get equal validity! That was
Bohr's idea of complementarity (which few remember now) that was so big
back then. The ‘occurrence of discontinuities’ also came from Bohr's belief
system. Like the particle, it was nowhere found in the math relation we’re
talking about.

You will understand the meaning, the inputs and the outputs when you do
the calculation. Today anyone with a computer can check it. Figure 8.3, top
left panel, shows a series of values for a bell-shaped function f(x) - fx where
the index 0<x<40 in steps of one unit. The actual wave is continuous, while it
is represented as a list of values, with one value per slot labeled x. (This is not



only how the math works—whether or not the label x is continuous—but also
how we bypass integral expressions with their potential math-intimidation
factor.) You have now seen the input: a function. We are not doing physics at
this point, and there are no physical assumptions.

>
X
Y
A

.

10 20 30 40 10 20 30 % 40

S il Y

.................

20 -10 0 10 ké{} 20 -10 0 10 20

Figure 8.3. The uncertainty relation is a math fact. The left panels (a)
show a typical function f(x) sampled at points which makes a list f,

(top), and its Fourier expansion coefficients f'k (bottom). Large width
Ax makes a small range Ak. The right panels (b) show the same for a
more localized function. Small width Ax makes a large range Ak.
There is a math fact that AxAk>1/2.



The Fourier series corresponding to the function is a weighted sum of waves
going like f'kcos(kx) and f'ksin(kx) that adds up to give the original
function'®. The series coefficients f'k are not ‘outputs’, because they are
simply a representation of the input. (Recall the trick of no information,
equation (5.4).) The notation is that the amplitude (weight) for each cos(kx)
is the value of f'k. The bottom left panel of Figure 8.3 shows the f'k
corresponding to f(x), case (a). The signs of f'k alternate in this example, so
the summed-up cosine waves will correctly cancel each other well to make
the bell-shaped function f(x), and that's quite a stunt. The relationship of the
original formula and coefficients is an exact formula, executed by the
computer in milliseconds.

Coming to the point, let Ax and Ak be reasonable ranges of important x
and k components. Notice that (case (a), left) large width Ax makes a small
range Ak. Compare the right side panels, case (b). Here a more localized
function with smaller Ax makes a larger range Ak. Since Ax and Ax are in an
inverse relation, a math fact exists:

AxAk>12.

The ‘proof’ of such a fact consists of giving natural and precise definitions of
the quantities Ax and Ak. In one dimension the standard choice is

AX2=<x2>—<x>2=<(x—<x>)2>,
with a similar expression for Ak. It is more important to understand that Ax
and Ak are simple order-of-magnitude estimators than belabor the derivation.

This concludes the content of the uncertainty relation (ur). When Ak -0
then Ax — oo, which expresses the fact that a cosine wave with a perfect
repeating wavelength must be infinitely long, else contradict itself.
Conversely, representing a somewhat localized wave-blob by a weighted
sum of cosines needs quite a spread of wavelengths to cancel everywhere
except on the blob. Then Ax - 0 and Ak — . Now if you are suspecting that
the ur is not that interesting after all, you actually do have the right picture.
The complications mathematicians and physicists face when expressing their

own arbitrary functions as sums of other arbitrary functions cannot be called

a crisis in anyone's world-view '3,

Did the analysis produce new information? No. The ur is only an



inequality, used for rough estimates. Better estimates exist. In fact, if you
have any wave function in front of you, the full Fourier expansion already
exists, representing all the information not available from the inequality. So
the ur is the kind of mathematics that decreases the total information going
into it, in order to give a simple and useful fact about waves. That is how the
relation is used in electrical engineering, plasma physics, oceanic wave
physics, etc, as well as quantum physics. Since time and frequency f are
related by a Fourier transform, there is also a ur written AfAt>1/2, as
anticipated in section 2.2.3. (Sorry for two different uses of symbol f.) If you
want an instrument to respond to time fluctuations as short as a nanosecond
(10-9 s), its bandwidth or spread of resolved frequencies must exceed about
109s—1, or more. The ur is more about the difficultly of building sharp shapes
or rapid fluctuations with smooth waves than it is about localization. A wave
with a kink may be quite delocalized, yet will typically obey the ur inequality
by having a much wider range of Ak than one might suspect.

Unfortunately, some older works present the ur as ‘physics’ associated
with the eigenvalue postulate. According to the postulate, every measurement
of position x must be infinitely sharp: no errors! It is uncompromising and
literal, Ax=0, which needs Ak - o, which needs <Q> - oo, namely, infinite
energy. The premises are simply unphysical. Watch out also for mixups
based on putting probability claims too early. Quite a few educated people
cannot answer the question: ‘Is AxAk>1/2 true always, or only true in an
average sense?’. Some will hedge that ‘it's always true, on average’, which
equivocates to hide the fact statistics might be lucky. To avoid the confusion,
keep in mind that exact math facts cannot fail. From its derivation the
‘uncertainty’ relation AxAk>1/2 is an exact math fact that is true by the
definition of the symbols. It is a certainty relation.

8.3 Logjam restrictions on observables

There is a different use of the word ‘observable’, which should have been
called ‘restricted observable’, and which by omitting the qualification caused
great controversy and confusion. It comes from the ‘eigenstate postulate’.
The issue comes from some very special experiments which rather clearly
filter out an eigenvector of a physically relevant operator. For example,
pulling on electrons emerging from a hot filament with an electric field, and



letting them escape into free space, rather easily produces a beam well
enough described by eik*X"If the beam is messy and has many components
of k; the crafty experimentalist will tinker with it, because a pure and simple
beam is such a nice tool. Let |k= stand for an arbitrarily narrow wave packet,
and K7stand for —1V " operating on it. Since —1Veik-xZkeik-x7is a true
eigenvalue equation, it can be written

KTk==kTkS.
The observable using KTs

<K>=kkTk><kTk==k
Notice this is not profound. To repeat:

IF YOUR STATE HAPPENS TO BE AN EIGENSTATE OF AN
OPERATOR,

THE OBSERVABLE IS THE CORRESPONDING EIGENVALUE.

Now comes the converse. The ‘eigenstate postulate’ states that every
quantum measurement yields the eigenvalue of a Hermitian operator and the
corresponding eigenstate. The claim is devoid of information but also
circularly true when it happens to be true. The postulate is not actually a part
of quantum mechanics, except among those who insist it be a part, and it is
not an experimentally supported postulate. There are many ways to evade it:
even when an experimental apparatus has been tuned up to filter out
eigenstates, you can add up the observations in ways not equalling
eigenvalues. For example, accepting the premise that k™acts like Newtonian
momentum, the momentum of 10%° electrons in a beam very poorly made
with mixed up wave packets can be delivered to a block of wood, which
recoils, and no eigenstates are ‘measured’. For another example, the
eigenstate postulate (ep) says that when you measure an electron spin, you
will find one of two eigenstates called ‘up’ or ‘down’. (And confusing ‘what's
claimed you will measure’ with conditions that are inherently up or down is
very common, as encouraged by the OQT.) Yet in a medical MRI device the
continuous range of electron polarizations of the electron spins is the signal
which is actually observed. The breakdown of the ep only happens when real-
world experiments are studied. There is one place it has never failed: the
eigenstate postulate is universally true in schoolbook thought experiments



that assume it holds.

Someone might be offended when we call the ep meaningless'4, but we
don’t know why. The perception there is content came from a mindset
focused on making postulates before there was a Schrodinger equation.
Before there was a quantum theory a handful of classic experiments more or
less spontaneously exhibited outcomes that seem to need the ep. The 1923
Stern—Gerlach experiment is always cited. It is an outcome of the wave
function property called entanglement (section 10.3). As a consequence it
explained without the ep after you have a wave function. (And whatever state
| y™> comes out, there exist a Hermitian operator |(™><y~| that makes the ep
circularly true, which is rarely noticed.)

To some extent the ep attempts to cover the gap of the BHJ program that
had operators and no wave function. Since there was no state, there was no
notion of <anything>, and no way of calculating what the (‘observable-
based’) program would observe. Making ‘observables’ identical to
eigenvalues closes the gap with an operator-based definition. It is also as
close as one can possibly come to perpetuating the OQT with its ‘intrinsic
quantization’. For example, we have seen that <Q> is a number equal to the
energy of the system. The energy is not generally quantized, whether or not
you have a bound state. An authority appears, and dictates that ‘you will
measure an eigenvalue’, and then (by a juggle of words) the ‘energy is
quantized when you measure it’. Those words—it is not quantized in a
superposition, but it is quantized when you measure it—are an example of the
confusion inherent in the OQT and its supporters. It backtracks to the Bohr
model, and on the same authority basis of arbitrarily postulating what was
wanted to come out. Directing attention to eigenvalues comes as close as
possible to intrinsic quantization while avoiding the wave function, the initial
conditions, and even the time evolution that are the actual accomplishments
of quantum mechanics.

The ep comes with a ‘collapse postulate’ many have noticed is
inexplicable, and fishy. The statement is that ‘the measurement of the
eigenvalue causes the wave function to collapse to the eigenstate’, where
(usually) it is claimed to persist until the next measurement. One should
notice that if your apparatus does select an eigenstate, the observation of an
eigenvalue and an eigenstate are circular, nothing is collapsing, and it does



not need a principle. More generally the eigenstate and collapse (also called
‘projection’) postulated omit the crucial interaction with a measuring
instrument that would be involved in detecting the wave function. It was
omitted early because the theorists did not know what was involved, and
omitted again by the authority figures who enjoyed making postulates. The
crux of the issue is whether the wave function describes an ensemble of
experiments (as a statistical proxy) or whether it defines a separate ‘reality’
for individual systems. In the first case there's no crisis when your description
collapses or your wave function evolves: your information is a different thing
from the ‘Universe’. The second case, however, has generally been asserted,
along with an overblown role for the wave function, which has caused a
problem for reality when reality instantly collapses. We don’t really
understand the psychological appeal this has for some people.

The persistence by postulate of an eigenstate under time evolution must
also be noticed. If it is true, the operator observed must commute with the
Hamiltonian (section 8.2.2). But then steady wave functions, namely
frequency eigenstates, are automatically eigenstates of the commuting
operator. Why does one need a postulate to predict what's already known
from math?

The other reason for the ep is to set up highly idealized sequences of
measurements that dramatically contradict the assumptions of pre-quantum
physics. The drama is enhanced by the theorem of linear algebra that two
operators A, B automatically have joint (common) eigenstates if they
commute, [A,B]=0. They cannot have common eigenstates if [A,B]#0. In that
case, when a ‘proper’ measurement yields an eigenstate of A, it cannot have
been a ‘proper’ measurement of B. Since this is an obvious deductive
statement from math, there's no new physical information in it. However, an
early contingent wanted to think that -1V 1S! momentum, and x7s! position,
so then [x;-1VT#0 made ‘simultaneously measuring the position and
momentum of the quantum particle’ impossible. (And we agree!) The other
purpose of the ep is to make measuring the wave function impossible.
Suppose the wave function has N complex degrees of freedom, or ‘dimension
N’. It will be described by 2(N—1) real numbers, since one overall complex
normalization is not used. There are exactly N Hermitian operators that
commute, including 1. (They can all be diagonal, filling N diagonal slots.)
There are not as many commuting operators as variables in the wave function,



shutting the door on observing it under the added restrictions of the
eigenstate postulate.

The fact that commuting operators have joint eigenstates is not a
postulate, but a very useful fact, often confused with the ep. For example, any
interaction function with rotational symmetry commutes with the angular
momentum operators L.Z and LZ, (section 7.2.2) which commute with each
other. Since the eigenfunctions of LZ and LZ have been known for 150 years,
the joint eigenstate property instantly reduces spherically symmetric
problems to much easier problems (section 7.2.2). This can be misunderstood
by blindly starting with the ep pretending to be a universal fact, mistakenly
believing the system must exist solely in those commuting eigenstates, and
misinterpreting the formulas... so don’t do that!

Summary of issues with the eigenvalue postulate Let's summarize:

e An observable in an operator sandwich is a number like <A>.

e If the state is an eigenstate, |{>=|an> with A|an>=an|an>, then
<A>=an. The normalization <{s| > cancels out, or choose <ys|y>=1 by
convention.

e With enough observables one can formally reconstruct the wave
function. That, by the way, may be quite ambitious.

e While not necessary in quantum mechanics, a contingent maintains
every observable IS an eigenvalue. It is a Law of Nature of Schoolbooks
few experimental physicists ever take seriously. This different use of
‘observable’ cannot be defended, and so is made a ‘postulate’ of the
Copenhagen presentation.

e The eigenstate postulate restricts ‘proper’ measurements to operators
which share eigenstates, and then must commute. This is a circularly
true fact of so-called ‘proper’ measurements.

e The restrictive measurements insisting on eigenstates are not enough to
determine |y>. And so what?

e The ep causes a common confusion that what ‘exists’ might be those
restrictive measurements and eigenvalues. It often succeeds in
replanting the mistakes of the OQT: And that is really bad for people!

It’s not commonly known that Einstein thought the attempt to restrict nature
by authoritarian prescriptions was ridiculous. When someone suggested one
of his thought experiments might violate the restriction of the eigenvalue



postulate, he replied!: ‘I couldn’t care less’ (‘Ist mir wurst’).

8.3.1 FIAQ

Is there something wrong with the uncertainty relation or principle here?
Heisenberg’s relation involves Ai. The math relation has no h. Which one is
the true relation? They are the same relation. We asked you to keep track of
assumptions. The wave-derived relation has no role and no room for Planck's
constant. To put it in, Heisenberg used algebra and the OQT that a parcle’s
Newtonian momentum ApN=AAk. The algebra was

AxAk=12,Ax(AAK)>H2.

In almost all of math and physics, an equation multiplied on both sides by the
same constant is the same equation. The uncertainty principle is the first time
in history that a math identity became a physical principle by multiplication
on both sides by a constant that cancels out.

It is an interesting experiment to ask people who know a little quantum
physics about this. Some of them will say you cannot divide out A. (‘That
will break a math rule.”) Some will say that when you do such a division, you
change the meaning of the equation. But if that's the case, will the meaning
change if we multiply all terms by 17.3? The people victimized by the OQT
were so bamboozled by £ they said it deserves a special dispensation to sit in
equations and provide extra meaning, which would cancel out for any
constant except h.

Some may remain ‘uncertain’. Bohr and Heisenberg jointly worked up a
‘photon microscope’ presentation somewhat above the level of high school
physics. It purports to describe an interaction: there is none. The microscope
argument introduces a notion of momentum, just where the parcle enters. The
wave relation AxAk>12 is not obtained from momentum, so some believe an
extra meaning might seem to come from A and the classical limit A - 0.
Here's the secret: waves carry momentum. It's unhelpful, and in the post-
quantum presentation, incompetent or deceptive to introduce momentum with
a fictitious parcle. Since momentum was not needed for the math inequality,
it would be incompetent or deceptive to introduce it at all. We have already
developed wave momentum from the Schrodinger equation and its



Lagrangian (section 8.2.1). It stands on its own.
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INot to mention the effects of quantum hurricane particles on trailer parks.
2Replace dxi - dxi/2m and dki - dki/2m component to make normalization factors explicit.

3We introduce the ‘is it equal’ sign =? used on physics blackboards everywhere, perhaps appearing here
for the first time in printed form.

“Math has easy and hard directions, like wood. It's a pleasure to discover the easy directions, and avoid
going across the grain that will punish you.

SFIP is not a cheat. It replaces an unnecessary ‘postulate’ about the Universe with the option to
recompute any cases where FIP might not apply.

®Not all books are wrong. The book by Commins makes a series expansion to identify special
circumstances where the expected Newtonian answer would apply. We don’t know what happens
otherwise! The textbook by Ballentine has a mature discussion of serious concerns.

"The typical response would be: ‘Ehrenfest becomes exact as fi - 0’. That's also false, since /i has not
played any role, but the bias to believe in the magic of /i was very strong.

8The requirements of a group turn out to be so demanding that many relations shown to first order in a
small parameter such as o will be true to all orders. [Q,A]=0 is sufficient to show Q is unchanged under
a certain ‘finite transformation’ generated by A with an arbitrarily large parameter a.

9The perceptive reader will notice we’re not insisting H is Hermitian. As we noted, it is redundant: it
assumed, the math is the same, because wxyx'* is automatically Hermitian, which decreases the
number of independent measurements by about half.

10The quote is found in [3]. The source cited is [4].
UThis passage comes from [5].

12Fourier series use real parts for even functions, cosines, and imaginary parts for odd functions, sines.
It's another example of ‘two parts’ of complex numbers, with nothing ‘imaginary’ about it.

13The key step was choosing the word ‘uncertainty’. If it had been called the ‘blob-relation’ it would
not be famous.

14Preposterous is also good: it means ‘contrary to reason or common sense; utterly absurd or
ridiculous’. It's not an insult, but the right word for those wanting quantum mechanics not to be
understandable.


http://dx.doi.org/10.1103/RevModPhys.29.74

151 etter of Einstein to Schrédinger, 19 June 1935.
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Chapter 9

More ways to describe waves

Figure 9.1. Amazing waves in the sky of Ladne-Viru County, Estonia,
2014, by Kairo Kiitsak.

9.1 More than one description

We’ve developed material with some depth. Let's step back to simpler things,
and clear up a few concepts that often get muddled.

9.1.1 Two ways to add waves

First, without any physics, or anyone's permission, you can verify that adding



two functions makes a new function. If someone wants to add cosine shapes
of various wavelengths, you cannot stop them. If someone (Mr Fourier)
claims that almost any shape can be reproduced from a sufficiently
complicated sum of sine and cosine shapes, it's a math fact, which is self-
defining. (It will work out, for exactly where it works out.) There is no
statement about nature in any of that.

For example, suppose you are observing a wave in a plastic bucket of
water. In your mind you consider the peak of the wave to be the sum of two
smaller waves. You consider each smaller peak to be the sum of smaller ones,
and the smaller peaks to be made of smaller ones, all the way down to tiny
ripples. Once you’ve entertained yourself, you tell people that your bucket is
in many states at the same time. It is both one big wave, it is also two smaller
waves, and it is 10 000 ripples of myriad shapes, all at once, because that's
how you want to think about it. By an amazing math fact (figure 9.2),
absolutely any wave is absolutely equal to any other wave... plus the
difference added as a third wave. (And this is trivial, right?)

w III3_|'(1|Jr1 1I13)

Wg 0.6 | \/W\/\W M
v, | LW AW YW
0.2 ¢ ;

0 20 40 60 80 100




Figure 9.2. By an amazing equation, any wave (top) is absolutely
equal to any other wave (bottom) plus the difference (middle). It's a
hoax to say that this comes from a quantum principle, and it's a
swindle to say that the waves are ‘in every state at once’.

Next and independent of this, a certain class of wave equations, which
are called ‘linear’, have the feature that you can make a genuinely new
solution by adding any weighted sum of old solutions. That is remarkable. It
makes solving equations so easy it is like cheating. But let's not cheat, and
call the single class where a property applied a ‘principle’. If an equation is
non-linear, you cannot add solutions. Yet writing a solution A=B+(A—-B) can
always be done. No one can stop you from expanding any solution in an
orthonormal basis. So there is actually two kinds of superposition,
consistently confused by those who use the term ‘principle of superposition’
cited early, in section 3.1.1. We recommend burning the words ‘principle of
superposition’ in a bundle of western sage from a new age bookshop, and
never using it again.

9.1.2 Superposition is not a quantum effect

When quantum mechanics is developed, one learns that waves of different
shapes can be viewed as vectors on a high-dimensional space. This is quite a
thrill, which seems wonderfully abstract. In the early confusion about
quantum mechanics, most physicists, and many mathematicians, did not
understand how that kind of math worked. Out of that era came stories about
an electron being in all states at once, which is a misinterpretation of the
mathematics. From that era came wrong statements that ‘superposition is a
uniquely quantum mechanical effect’.

Figure 9.3 shows how any vector can be considered to be the sum of two
other vectors. The figure actually shows two different ways, among infinite
ways, to make a sum. This fact is a very confusing thing for people learning
vectors of Newtonian force.
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Figure 9.3. By an amazing equation, any wave (top) is absolutely
equal to any other wave (bottom) plus the difference (middle). The
basic equation is A=B+(A-B). It's a hoax to say that this comes from a
quantum principle, and it's a swindle to say that the waves are ‘in
every state at once.’

Whether the vectors represent forces or wave functions, the idea of a
vector sum is the same. The possibility of representing a Newtonian force
vector an arbitrary number of ways was never considered a big philosophical
issue. But if you wish to consider an electron to be in ‘all states at once’, you
might by symmetry consider the Newtonian analog with just the same basis.
Make and label as many ‘force triangles’ as you desire with the letters of
your choice. Considering all these alternatives, you might consider saying the
classical Newtonian forces are in every direction, and no particular directions,
all once. But you will not say it, because you will see it is both a concept
error and an abuse of language, just as for the quantum case.

The first mistake in saying that ‘superposition is a uniquely quantum
thing’ is forgetting to count the number of dynamical variables. The quantum



parcle concept thinks about three variables, and cannot understand all the
wave coordinates, which must be used. Next, almost all representations of
physical quantities use some superposition of coordinate labels. The labels of
the wave function are actually on the same footing as Newtonian phase space
coordinates, with a significant difference. The Newtonian coordinates are not
pinned down very well by the theory: they are pinned down by the user.
NASA uses a very precisely defined celestial coordinate system for the
navigation of spacecraft. That coordinate system is ultimately defined by a
number of distant stars. In quantum mechanics the wave function is
expressed in implicitly defined coordinates, which are not pinned down so
well. You can take all the eigenfunctions of the hydrogen atom, and make an
arbitrary unitary transformation, and still describe a hydrogen atom. The
standard Schrodinger equation has been posed in a coordinate convention that
makes it easy to visualize, but nature is not concerned with our coordinate
conventions. Moreover, a physical hydrogen atom will be interacting with the
Universe in ways we do not control, and that is where the natural expressions
of its coordinates will appear, much like the stars fixing a convention for the
astronomers.

9.1.3 The eigenstate expansion of observabies
Consider an operator A, with eigenvalues a,, and eigenstates |an>:
(9.1)
A |an>=an|an>

Suppose | > is not a eigenstate of A, and you measure <y | A [ y>, which will
not equal an eigenvalue of A. To avoid the work of computing integrals, one
expands | > in the basis of eigenvectors of A:

| y>=Ynyn|an>,whereyn=<an | y>;A |an>=an|an>A | y>=Ynynan | an>.
Remembering that <y | stands for y*, its expansion is

<y |=Ymym*<am]|.
We used a new index m in the sum: it is very common not to remember this,
so watch what comes next. Combining the formulas gives



<y| A |y>=yYmYnym*<am |an>anyn=Y nanyn*yn=y nan | <an | y>| £9-2)
The ugly double sum collapses because orthogonality gives zero for almost
all terms except the matching cases m = n. Once again the normalization
<am|an>=8mn greatly simplifies things. If an index like n is used in two
different sums, it causes a ‘global variable’ inconsistency that will confuse
your calculations, which is very common. The last term in the equation above
is redundant, added to make the notation self-explanatory.

Inspecting equation (9.2), the trick of using basis |an> reduced the
operator A to its eigenvalues, and nothing could be more simple. Pay
attention to this! It's very ingenious. Next, the expression is real if a, are real,

which proves the theorem defining Hermitian operators. If you do not know
or prove all theorems of linear algebra before coming to quantum mechanics,
basic calculations will discover all theorems.

Finally the expression provides a clue for those cases where one would
believe the eigenstate postulate. It claimed every proper measurement gave
an eigenvalue. Equation (9.2) is a sum of eigenvalues weighted by yn*yn,
which is consistent with yn*ymn being the probability to find each eigenvalue.
Consistency is one thing: does it really happen?

We can easily imagine some real-world situations. A number of
experiments are done, each one happens to give an eigenvalue, and the
probability of each case is counted up by the frequency of occurrence. This
natural experimental process happens sometimes. It is different from knowing
| > from enough measurements, and computing <y | A | > directly, perhaps
never getting any lucky eigenstates. Then in the event the eigenstate postulate
holds, there seems to be little room to interpret |yn|2=|<an|y>[2 as
anything but the probability to find state |an>, given |y>. The range
0<|<an|y>|2<1 is certainly consistent.

Most variants of the eigenvalue postulate include another postulate that
eigenvalues must occur with probability |<an|y>|2. Our presentation
exposes a weakness: it's not the only possibility. In fact one should not define
‘probability’ by the frequency of events. Probability is a deep and subtle
subject. It is a sort of artificial intelligence of managing and manipulating
information, whether or not it is uncertain information. The most powerful
and interesting developments of Bayesian probability explicitly avoid



associating probability with event frequencies.

It is best to limit interpretations to what stands on its own. As constructed,
one can say that |<an|y>|2 is so far consistent with a type of probability to
find state |an>, given |y>. Since probability represents a mathematical
structure, more exploration will be needed to determine exactly what kind of
probability this might be.

9.1.4 Heisenberg picture

We briefly mentioned earlier the time evolution operator Ut, which is a
beautiful and powerful concept such that y(t)=Uty(0). We claim that from
the Schrodinger equation Ut~1-1tQ for time parameter t — 0. (Check this is
the same as 1/0t=Q.) For those skilled in the art of Lie groups (which we
do not expect) an operator using the same symbol but for arbitrarily large t
will solve the time evolution by a coordinate transformation Y(t)=Uty(0). The
full time evolution operator is an awesome thing, which can only be
constructed for a few solvable models, but whose existence unites many
advanced topics.

With that existence in mind, we ‘compute’ (actually represent) the time
dependence of observables by

<A>()=<Y() | A [Y()>=<y(0) | UtTAUL| y(0)>.

This allows one to define a time-dependent operator
(9.3)

A()=UtTAUL.
That makes <A>(t)=<y(0)|A(t) |y(0)>. With the time dependence in the
operator, the expression uses i(0), which is the initial condition frozen at the
initial time ¢t = 0. That defines the ‘Heisenberg picture’: use time dependent
operators, constant y(0), and calculate all the same numbers. For example,
the operator K=—1V "tan be mapped in a time dependent operator K{t), which
created notation reminiscent of Newtonian physics. Yet far from providing
any feature of a particle trajectory, the time dependent operator is an object of
‘infinity-squared’ difficulty. The dimension of any operator is the dimension
of the wave function, squared.

Since the time dependence of A(t) is known, a differential equation exists



to predict it. It is called the Heisenberg equations of motion, although
Heisenberg's original (1925) equation was not exactly the same, and the
derivation we are following came from Schrédinger. Those equations are
generally non-linear, whenever the Hamiltonian operator is not a simple
quadratic function of other operators, which is usual. Even worse than usual,
the fact of being non-linear means there is no hope for analytic solutions. To
this day there exist essentially no independent solutions of the Heisenberg
equations, except solutions to solved Schrédinger equation problems that are
mapped into time dependent operators.

If one asks why any of this is relevant, it can be explained. First, the
solved case of a quadratic Hamiltonian (‘harmonic oscillator’) is extremely
useful because the operators have an infinity-squared amount of information.
The mathematical power is used to set up practical approximation methods.
Next, the early competition between Born, Heisenberg, and Jordan versus
Schrodinger kept the operator-based approach on center stage for priority,
while for a while appearing to be a distinctly different approach to quantum
mechanics. However, one notices that if the time dependent operators had
any dynamical existence as physical entities, the equation of motion would
not be so trivial as producing equation (9.3). In general non-linear operator
equations would be much more complicated and come in tremendous variety.
It is not noticed because Schrodinger coyly wrote that the two approaches of
matrix mechanics and wave mechanics had been shown to be ‘equivalent’. It
was an overstatement that minimized embarrassment to BHJ. Those words
‘equivalent’ have been repeated everywhere without recognizing the BHJ
program lacked the essential concept of a quantum mechanical state with its
initial conditions, which Schrodinger provided.

Even before Schréodinger had published, Cornelius Lanczos in 1925
recognized that the abstract, difficult, non-linear operator equations of BHJ
matrix mechanics were reproduced by an infinitely more simple linear
integral equation. To a skilled mathematician like Lanczos, that was a signal
that the non-linear operator equations represented essentially an error in
formalism that made an easy thing infinitely complicated. This accurate
criticism is almost never seen, while it is useful information to balance a
somewhat mystical reverence sometimes given to the approach. Yet Lanczos
was ignored: he was not in mainstream physics, he was in ‘no-stream’
physics. Lanczos had missed the element of communicating with physicists.



Legend has it that he visited Pauli, the most corrosively negative (while
brilliant) physicist of the time. Pauli is said to have dismissed Lanczos as
worthless, ignorant, hopeless. Yet Lanczos was not a fool: he published his
observations before Schrodinger. However Lanczos missed the even easier
linear differential form of Schrodinger's theory, and he did not solve any
useful problems. If Lanczos had persisted and reproduced the hydrogen atom
spectrum, then Lanczos would have been the hero of quantum mechanics.
The integral form of the equation was rediscovered, and exists in a highly
useful form as the Lippmann—Schwinger equation. Unlike the Heisenberg
picture, nobody considers it an independent approach to quantum mechanics,
but instead an excellent mathematical method beautifully suited to certain
applications.

9.1.5 Comparing waves

There are essentially two ways to compare the shape of waves, or functions
in general. One ‘boneheaded fussy’ way considers any function to be
‘completely different’ from another unless both agree everywhere. One
function-as-a-list fx=(f1,f2,...,fn) is different from another if any element of
the list is different. This is the bookkeeping method of factory part numbers
and librarians. Decimal numbers are lists with a convention sorted by powers
of 10. It is a much bigger mistake to confuse 31 190 with 81 193 compared to
31 198, but if a list is different, it is anyway and forever mutually exclusive in
the boneheaded fussy method.

Yet wave-shape-lists that increase, decrease, or oscillate can be equally
important. They have no natural order. It is also not reasonable to consider a
shape differing by a small bump or wiggle to be completely different from
another one. A very efficient and elegant comparison of shapes comes from
the inner product, also called the overlap. We have been using it to some
extent: the inner product is so important that repetition and redundancy is
generally needed. We will deliberately let this section be self-contained, and
hope you recognize things seen before.

In visual terms, two reasonably localized functions fa(x) and g(x) are
graphed simultaneously. The product fa(x)g(x) is large where both f(x) and
g(x) are large. If the functions are well separated then one is zero while the
other is large, and vice versa. Please look at figure 9.4. The overlap denoted



<f|g> of two real functions is computed from the area of the product f(x)g(x)
everywhere the functions exist:

(9.4)

<f | g>=[—o00odxf(x)g(x) — overlap of realf,g~f1g1+f2g2+fngnAx.

In the second line the differential dx — Ax, and the integral is replaced by a
sum. The more primitive expression is a step forward, not backward from
calculus. First, and to repeat what we say elsewhere, almost all the integral
signs in quantum mechanics stand for numbers, not anti-derivatives, and
numbers are easy. Second, the sum in equation (9.4) represents an inner
product or dot product of lists considered to be vectors on a space of arbitrary
dimensions. The inner product is a natural way to compare lists, as well as
having so many convenient features it becomes indispensable. When
functions are complex the inner product is defined with the complex norm-
squared |z |2=|x+1y|2=x2+y2=zz* where z*=x-1y is the complex
conjugate! of z. The overlap is

<f | g>=[-cocodxf*(x)g(x) — overlap of complexfand complexg.

Note the * is on the left function by convention: not on both. The order
matters. In general <f|g>*=<g|f> happens to be quite clever, and also needs
some attention.
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Figure 9.4. To compute the overlap of two functions f(x), g(x), one
finds the area under the curve of the product f(x)g(x), which was
multiplied by six to show its shape.
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Figure 9.5. Two functions f, g are completely independent if they are
orthogonal, with zero overlap. This means they are either completely
separated, or that positive and negative regions of f(x)g(x) (shaded)
cancel in computing <f | g>.

Notice that multiplying a function by a constant, f(x) - Af(x), can arguably be
said not to change its actual ‘shape’, but just how tall it is. Children would
say a picture of Mount Everest and the actual Mountain have the same shape.
The norm-squared of f(x) is defined to be |f[2=[<f[f>]2. It's just one
number equivalent to one overall constant factor. Everything else about a
function is in f(x)/| <f|f>|, which is said to be normalized, which means its
norm is 1. Often without discussion many functions are assumed to be
normalized: it is a good organizational trick to ‘put the normalization on a
shelf’ and deal with it separately, when needed.

Older treatments made a major issue of calculating the norms of wave
functions the moment they were introduced, and ‘implementing the
normalization postulate’. As we have seen, the ‘postulate’ is actually an



agreement for notation. We agree to describe quantum physical systems with
normalized wave functions, which (at most) means we agree to not use one
number in the overall normalization. (In plain words, if we don’t need it, let's
not deal with it.) We are reiterating this small point because it saves a lot of
work. If your sources spend a lot of effort calculating normalizations, they
are actually not explicitly needed, until they are needed.

Back to comparing waves: if the overlap is zero, two functions are
orthogonal, and quite unlike one another (see figure 9.5). We can say
orthogonal functions are mutually exclusive: there is no trace of one in the
other. Meanwhile if the overlap of two normalized functions is one, they
must be the same function. The full range of overlaps of normalized functions
is zero (minimum) to one (maximum):

0<|<f|g>|2<1, — fullrangeofoverlaps,

repeating that |f|=|g|=1. The (normalized) overlap is only one number, and
rather insensitive to the differences of wave shapes, but not completely
insensitive. Yet the Universe of shapes is so vast it is very useful to have a
single-number comparison between two functions.

9.1.6 The Born rule of quantum probability

We come to the Born rule, which tells you the quantum mechanical
probability that your description of a system can use wave function 2, given
a wave function 1. We don’t think the Born rule is a ‘fact of nature’, while
some do. We claim the Born rule is a fact of our choice of description and
exploiting the most convenient mathematical opportunities. It is not derived
from probability as ‘frequency’. The Born rule essentially begins with a fact
nobody can stop us from choosing to define probability using it. We then
explore the implicit classes that turn out to be distinguished under the rule.
That sounds vague, and the Born rule in fact is deliberately vague, for a good
purpose.

The Born rule uses the fact that any candidate {2 already pre-exists in Y1
—by mathematics—with an amplitude one can compute. That component
will remain after a non-too-destructive ‘filtering’ (or projective) process
reveals it. For example, a continuous superposition of wavelengths can be



separated by a diffraction grating scattering the incoming wave into a range
of angles. If the grating is ideal, each Fourier component labeled by k'toming
in will be filtered and separated to emerge in a particular direction k™ The
process is non-destructive and in principle reversible. For example, sending
light through glass prisms glued together to make a ‘polarizing beam-splitter’
will be sorted into perpendicular x and y polarization amplitudes. Another
beam-splitter downstream, and tilted at an arbitrary angle, will extract
whatever amplitudes are available, and sort them again.

To express the filter effects mathematically, let |{1> be the given wave.
The amount of |y2> pre-existing in | 1> is given by the projection. The
relation is

(9.5)

[p1>=|p2><y2 | p1>+([y1>—|p2><g2 | p1>).

Look hard at the equation: it says |p1>=|y1>, so it is correct. The term in
brackets is orthogonal to |(2>:

<2 ([y1>=|w2><y2 | g1>)=<g2 [ Y1>—<g2 [ y2><y2 | y1>=0,
assuming <y2 |y2>=1, or Y2 is normalized?. The first term in equation (9.5)
is the part of the initial wave parallel to |y2>, and the other part is
orthogonal, hence mutually exclusive of |y2>. It could be called Y2 L: see
figure 9.3 once again.

The upshot (and obvious to those skilled in the art), is that given any Y1,
you already have 2 with amplitude <2 | 1>,

The Born rule assigns and invents an ad-hoc probability concept with the
following agreement: the Born rule probability is denoted P(y2 | 1), where
the line | is read ‘given’, and has the formula

(9.6)

P2 [y1)=|<y2|y1>|2.

Since the maximum value of |<y2|y1>|2 - 1 if and only if Yy1=2, the Born
rule probability that a function will be itself is <ys| y>=1. The minimum value
of |<y2|y1>[2-0 if and only if Y1 and Y2 are orthogonal, or mutually
exclusive: that corresponds to zero probability.

The overlap-squared appearing in the Born rule comes from the physics
of intensity. The intensity of light and sound waves goes like the amplitude-



squared. An intensity meter scanned over the range of angles emerging from
a diffraction grating will yield intensities going like |yk|2. This fact is
universal for all linear wave theories. The Schrodinger theory is linear so it
obeys the rule. The Born rule will work when an experiment measures some
kind of intensity—there are many variations—which has been efficiently and
faithfully filtered out from the initial state. The probability of those
measurements is given by P(y2 | y1). Since intensity is ubiquitous in physics,
and probably more inevitable than we appreciate, the ad-hoc character of the
Born rule is almost already a theorem, not a postulate [1].

In section 9.1.3 we derived a tentative feature of probability equivalent to
the Born rule. It was hard to escape assuming the eigenvalue postulate.
Despite our criticisms, the ep is not always wrong, and using probability as
frequency is not always wrong. To state this positively, it's common to find
experimental situations where the Born rule works without needing to think
hard about it. In cases where it's not so obvious it is good to accept the Born
rule neutrally as a procedural agreement for our own symbols, which
happens to be precisely what it is.

9.1.7 Avoid bunk about disturbance of
measurements

The Born rule is often associated with an ‘irreducible destruction of
information by the uncontrolled interaction of measurement’. That's false,
and harmful to understanding. Our analysis shows no uncontrolled interaction
and no measurement has been done. The Born rule assumes the process of
projective filtering was gentle, and if there is any significant disturbance or
destruction of the components filtered out, the rule cannot predict it.

The bunk usually accompanies slippery presentations of the uncertainty
relation and pretended interactions imagined using Planck's constant. In that
literature the Born rule was actually suppressed. When those probabilities of
point-like parcles were introduced instead, there was a perceived need to
show how a wave packet could have a wide spread of wave numbers, which a
parcle does not have. The answer was to pretend an interaction created the
spread of parcle momentum’. Before you learn quantum mechanics you
cannot tell the argument is a hoax. After you understand quantum mechanics,



you will know that an interaction requires a definite calculation of time
evolution, to see how the wave function changes. Those calculations were not
made. The suggestion they were made by some advanced mentality is a
sham. So to repeat, the neglect of any interaction that changes the wave
function's projection onto the detected component is clear in the Born rule's
formulation, equation (9.5).

It is true that to measure a system your apparatus must somehow interact
with it. The tradition then creating an artificial distinction between measuring
classical and quantum systems has obsolete and unhelpful elements. One
problem is that measuring classical systems is taken as trivial and not worth
critical examination, while it merits your attention. If one gives classical
mechanics the same degree of literalism as quantum mechanics, many of the
peculiar limitations attributed to quantum mechanics reappear. For example,
suppose a classical system has a sharp and conserved momentum, as the
quantum eigenstate postulate asserts. The classical system must be
translationally invariant. Then there's no particular position to measure. Such
a system exists classically: it is an infinitely long, infinitely smooth rod
traveling along its length at a steady speed. One cannot know where it is.
This exposes the assumption one is not supposed to treat classical physics
seriously. The fundamental objection to schoolbook prescriptions for
measurements is that real experiments come in such variety, and with so
many inherent unknowns, that it's quite offensive for theoretical authorities to
make rules about them in advance. Clever experimentalists have by now
demonstrated a nearly unlimited number of quantum measurement stunts that
always confirm one part of quantum mechanics while probably violating an
authority figure's opinions someplace else. There are even interaction-free
measurements, where by measuring nothing and not interacting with one
channel, information about it is obtained through a different channel?.

Notice that the words ‘probability distribution’ do not appear in the Born
rule. Physics education tends to have a gap in probability theory
(misunderstood as counting frequencies) and distribution theory, which is
used without adequate definitions or notation. A few examples will convince
you that quantum probability defined by the Born rule is something new.

Non-distribution example. Probability distributions have a sharp definition.
Make a graph of the accumulation of ‘stuff’ labeled N versus a variable x.



The rate of change per x is the distribution dN/dx.
Since distributions are rates, they depend on the rate variable in a
particular way. A function y=y(x) will lead to a different amount of stuff per

y:

dN(y)dy=dN(x(y))dx | dxdy | .

This is the chain rule* accounting for how the relative rate of y compared to x
appears. The first term dN(x(y))/dx| is the distribution in the x variable,
replacing x in terms of y. That's an ordinary variable change of a function.
The second term |dx/dy| contradicts the rule for replacing variables in
functions. You can propose the words ‘a distribution is a function’, and the
words will be wrong, because distributions have a different rule for changing
variables. This simple fact is seldom explained, and that explains the
perplexity many find with changing variables.

Any function of position Yi(x) has a corresponding function (k) called
its Fourier transform. If you know one you can compute the other, and vice
versa. The Fourier transform is precisely the overlap of the original function
onto harmonic waves. By the Born rule you may consider y"(k)*y"(k) to be
the probability to find each harmonic wave of a given k. The most
straightforward interpretation will be found in electric engineering. The
actual power (intensity) of a generic wave packet i(x) that goes straight into
a processor or antenna selecting k will be the corresponding Y~ (k)*yr"(k).

Now if quantum theory had been defined by distributions, then from a
rate Y (k)*y~(k) - dN/dk one could predict the rate dN/dx — Y(x)*Wi(x) by the
quaint old ‘chain rule’:

dNdx=?dNdk | dkdx | (transforming a classical distribution).

But that fails. The Born rule does not generally obey the rules of distributions
when variables are changed. In fact, given a claim that y*y(x) is a
distribution, it is not possible in principle to compute }~(k) or even Yi(x)
itself, because phase information was lost.

This is not often noticed, because the ‘normalization postulate’ tends to
hide its most simple examples. In usual form the postulate says without
explanation that <y /|y>=1. Given the Born rule we predict <y|y>=1, so
there's no issue. Suppose we compute <y |p>=[d3xy*(x)yi(x). Change the



units of length, say from cm to inches, which is a scale transformation x> x
'=Ax.” Then d3x-A3d3x, and we must replace yi(x)—-A-3y(x'/A). That
transformation IS consistent with a distribution dN/d3x - dN/d3x’, usually
taken for granted. However it is done ‘by hand’: it does not come about
automatically using a chain rule.

Since it does not come from distributions, the Born rule defines a new
extension of probability related to how we use our own descriptions. The new
probability will sometimes but not always dovetail with the ordinary use of
probability distributions. That's why we are presenting the Born rule not as a
‘fact of physics’, but as a procedure which will sometimes give the same
result as experimental measurements, when used appropriately. At this point,
an authority somewhere may object, saying that ‘there are no exceptions to
the Born rule’. That's nonsense, because the entire use of wave functions is a
special case, often found inadequate, compared to the more general density
matrix theory. The variety and complexity of physical measurements is so
vast it is not wise to push any ‘doctrine of measurement’ further.

Reference
[1] Caticha A 1998 Phys. Rev. A. 57 157

'In case your math is rusty, z*=x-1y is a definition concocted so the Pythagorean quantity z*z=(x—1y)
(x+1y) - x2+y2 comes out right.

’There's no cheating with normalization postulates needed here. The Born rule is more complicated to
write when functions are not normalized, so we’re not doing that.

3The undergraduate-level textbook by Bliimel has many examples.

4The |dx/dy| in the chain rule is both a convention that stuff N will be defined to be increasing, and a
reminder of the Jacobian rule for transforming multiple differentials.
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10.1 Sums of products are generic

In the 19th Century when Maxwell, Boltzmann, Gibbs, and others were
developing classical statistical mechanics, the notion of a classical
probability distribution was rather informal. Probability theory was slow in
developing. Decades after quantum mechanics, the great mathematician
Kolmogorov realized that mathematicians had forgotten to make axioms for
probability. Kolmogorov's superior analysis reduced (his) probability to three
axioms for probability P. His axioms say that the probability there is some
event someplace in your own sample space is one, the number P is positive
and not zero, and there is an additivity rule P(1U2)=P(1)+P(2)-P(1n1).
While deriving all of classical probability was a great feat, Kolmogorov
apparently did not notice that his formalism bypassed parts of quantum
probability the physicists had been using for years. Physics had jumped out of
the axiomatic cookie jar before it was set up.

The Born rule makes a formula for quantum probability without
explaining that it is a new mathematical system. The rule transcribes the
concept of mutually exclusive quantum system to a calculation. Mutually
exclusive quantum systems have no possibility of describing one another:
they are orthogonal, inner product zero. Orthogonal functions are somewhat
rare. If your function is a list of 1000 slots, that defines its dimension, and
there are exactly 1000 total mutually exclusive normalized functions.

An electrical engineer will classify signals as functions differently. In
each slot the signal has N-bits: for eight-bit precision, the signal is resolved
into 256 discrete values. Repeated over 1000 slots, there are 256'%%° mutually
exclusive signals. Notice this is much more than 1000! There are only about
1080 atoms in the observable Universe. The number of universes in which the
engineer needs to store such information is

143736034398869180245266113663484224073703334822

433318652402884132868806733604792360415639030443258
300640876089196308150760718393398609942658971312333
583734726940944376523020510445785561419002559483634
718480762416087862406988933546045257558466999076447
574173537634977512700363409437326171391307515795135
492186021853629461747725256008047945133326703447270



417347006244945374658771596390543432238931171001775
014203260161220960695441838028403617456210475768136
116871125723440063971297120833241960985411914470664
023376763842509859419599434165891372665398856944907
990854277200972343489641285536116284082778008910016
277058533820487004495849215640754292438944363029462
464101560372272891531866900312101896936331990300632
663750946939827180604726808665971027800786413200822
625329836670371125829465345020721257320616999081133
270128942582241645638328916449711974012769515472572
460762075205170270887087871161158977210033777999450
379645063265763560048590947604207485166610601430017
513936772253039364727021993731479390837764327893030
909930157645446379807697552437957207792294086543452
897425833343769567879145950767918482990291312234279
953634019214545113770473828674272953002780547290848
311357082860125445397156054861936902354395303300315
988210253035748525348653267950031343336407250679275
503593877893221626845904050160338130400530238246112
291871170645151518230561913654534217091674199273968
754002885297777167600499657394050747710573065717609
690707514703684272172215882919579627709097613141140
133660882081956870821463770351873920984349507083570
622118241546432430478722774333611760907147295961720
490652470250867891349644039057569248970715887394366
830163142237804004107834750794858496282516381995443
806692934887034031753285370922631143307634427774074
724593672416799433345908958098339063676987447512279
258037824353820088123496865556716478767691296094035
599233781341599988220483483828055741678700878938072
564465556769042880615207994723834454210685879762463
281195922336869754972299546608551494453481250701424
668504614395805474980776262506721909566072078930151
687124024978644946445340719137204186047247542428953
813900070817523215374925121531678311664323950328936
566902359394943131606497266397854590480537701373302



792307511805986762835090489741647765855207141289223
977683174364809046230062470984916437243042806580142
152691032662855824774497835156212233886424436603817
605193236935366036864643399055775761432576/8271806
1255302767487140869206996285356581211090087890625

Classical probability routinely accepts a classification scheme that is so
fabulously detailed it literally cannot possibly exist. The particularly vague,
unsharp probability classes of the Born rule are ingenious and desirable. The
Born rule reduces the effective possibilities under discussion to a relatively
small and robust computational decision, enormously compressing
information. See figure 10.2.

Exactly when will quantum systems be mutually exclusive? We tend to
believe quantum systems will be orthogonal when sufficiently separated in
space. The wave functions of atoms are somewhat localized, and separation
should produce circumstances with zero wave function overlap. Yet this is
only tentative, because it is the first time we’ve discussed more than one
quantum system, and interacting quantum systems have new features.

The concept of two systems means we can look at one kind of wave at
location xT, and another wave at location xZ. A wave function y(xT,x2) will
be the topic. Any function of two independent variables can be decomposed
into a sum of products of functions of each variable:

(10.1

P(xT,x2)=Y mncmnum(xT)en(xT).

Hence, products and features of multiplication of subsystems will describe
compositions of quantum sub-systems.

A multiplicative feature found in basic probability has often been used to
motivate this. When two things have independent probabilities, the
probability of both is the product of the separate probabilities (102

P(A,B)=P(A)P(B) — classical independence.

We cannot use classical probability rules to define the more general features
of quantum probability. However, there will be some cases where
multiplying wave functions plus the Born rule will give the result of
independent classical probability, because the theory must cover all possible



cases.

Once there are products of wave functions, the most common
oversimplification puts too much emphasis on one product, yitot - y1y2. The
hydrogen atom might possibly be described by products of wave functions
for the proton and the electron. Let x€& be a region where you are considering
an electron wave, and xp where considering a proton wave. One might guess
W(X€,xP) - ?W(x€)Y(xp). But a simple product can only represent independent
systems, as follows.
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Figure 10.2. Randomly generated lists with an 80% probability to be
the same as a smooth list, according to the Born rule. Top: one case.
Bottom: many cases. In old-fashioned distribution theory every single
case would be mutually exclusive of all the others.




The time evolution will come from the frequency operator. For electron
waves there is one operator V&2=02/0xe2, and for proton waves Vp2.
Suppose Qeye=10ye/0t, with no role for Yp. Suppose Qpyp=10yp/ot, with no
role for ye. The product obeys

100t(Yeyp)=10Yedtyp+iyeopot=(Qe+Qp)yeyp.
This is an ‘addition law for operators’ and then an °‘addition law for
frequencies’. When independent systems are composed, their eigenstate
frequencies add. The frequencies of superpositions will include the sums of
all terms available.

Now we know what is not the outcome of interaction: simple products.

2=Qe+CQ2p — no interaction.
When there is interaction there must be terms that depend on both variables:

Q=Qe+Qp+Qep ~ interaction.

The arrow indicates the interaction term that couples equations together, and
generally makes things difficult to solve. When there are interactions, the
generic sums-of-products expansion (equation (10.1)) can’t be avoided. And
that is a good thing, because existence needs it.

In the 1930s Schrodinger noticed a pattern of probability concept errors
was creeping into quantum mechanics, especially from extrapolating classical
distribution theory, point-like parcles, and so on. To focus attention on the
situation of a generic mixed up sum of products, Schrodinger gave it a new
name: entanglement. He made calculations and examples showing how
entanglement caused effects inconsistent with the dumbed-down replacement
of electron waves by point-like electron probability clouds. The famous
Schrodinger cat paper was written to expose the absurdity and technical
errors of the dumbed-down stuff. (The enemies of physics! turned it around
and claimed Schrédinger's cat was another proof quantum mechanics was not
supposed to be understood.) After being around for about 75 years,
entanglement is hot in the 21st Century.

Quantum gurus of entanglement will tell you it is a uniquely new and
weird feature of quantum mechanics that the macroscopic human mind is not



supposed to understand, and so on. Yet the description of a tropical storm off
Florida cannot be reduced to a single product of a function of the latitude
times a function of the longitude. Entanglement is first an ordinary math fact
of describing more than one dimension, and then an ordinary math fact for
describing more than one system. Entanglement is also used with the Born
rule and quantum probability. The composition of entanglement and the Born
rule is what transports physics outside Mr Kolmogorov's cookie jar. People
will often say it proves ‘there is no quantum reality’. They are thinking of
their mistaken point—parcle reality.

Quantum Classical
Probability Dynamics
f )
Classical Y. 1 t Quantum Dynamics
Probability
.\ r,

Figure 10.3. The big picture of quantum mechanics repeated. The
little dot represents the relation of quantum dynamics to classical
Hamiltonian and Lagrangian dynamics.

10.1.1 The two wave electron—proton atom

What really is an atom? Since it's part of nature, we don’t really know.
However an atom is described by a correlation of electron—proton waves. We



cannot predict where atoms will be found in the Universe. Those facts are
mostly in the initial conditions. When you find an electron wave in a
hydrogen atom, it always comes with a proton wave, and the wave function
describes the correlation. Correlation is a very general idea, and not a
particular feature of quantum mechanics; see figure 10.4. However quantum
theory manages the information of correlations in new ways naturally
expressed with wave functions.

Figure 10.4. It takes two or more position vectors xT,x2 to describe a
correlation. An ordinary cloud of water is described by a correlation of
humidity at xZ related to humidity at xT. Correlations themselves are
not a particular discovery of quantum theory. Photo by Michael
Jastremski.

We mentioned that entry-level quantum mechanics takes for granted an
unphysical fixed ‘interaction potential’, which in reality should be a
dynamical interaction. The mythology of the fixed potential is a central
player in the classical Kepler problem, where the Sun is assumed to have an



infinite mass, making recoil negligible.

Those flaws are not part of classical mechanics, and they are corrected by
the elegant center of mass (CM) and relative coordinate decomposition. It
comes from a variable change? from two position vectors xT, xZ to r=xT-xZ
and RZ(m1xT+m2xZ)/(m1+m2). In Newtonian physics m; are the Newtonian

masses, while for quantum waves mi — pQ are the quantum mass parameters:
the math works the same. We never refer to Newtonian mass, so we can use
symbol pe — me in this section, to avoid a possible confusion with a reduced
mass symbol p that is very common.

The reason for the CM transformation is to exploit the symmetry of
problems where the interaction is a function of position differences, namely r;
and not a function of the position of the origin, carried in R”Due to the
symmetry that R™has no preferred location, its dynamics is trivial in both the
Newtonian and quantum wave cases, effectively reducing the dimension of
the problem.

We are ready to describe the joint electron—proton system. It will involve
a product-space wave function Y(x€,xp) expressing information at two
independently selected points. The conventional Schrodinger Hamiltonian
operator will be H=-Ve&2/2me-Vp2/2mP+V(r). After the change of
variables

(10.3

H=-V R22(me+mP)—(me+mP) V22memP+V (r)=Q(R)+Q(r).

Symbol VR2=02/0RZ, and so on. As always V(r)'is an interaction function.
Using V=—ac/r predicts the physical hydrogen atom and its correlation in
terms of r=xe—xp, and the frequency parameter memP/(me+mP). Already this
is new information. For deuterium with nuclear mass (frequency)
md~2.01mP, replace mP - md, which will cause a change in the predicted
spectral frequencies.

The frequency operator is a sum of Q(R)+Q(r), suggesting its

eigenfunctions will be simple products. For hydrogen the result is
(10.4

®nLP{xe,xp)=e1P RPnL(1).
Here ¢n¢ are the eigenfunctions solved as if there were no dynamical proton

(equation (7.19)). This is a general rule: any two quantum waves interacting
with a function of r'tan be solved by pretending there is a fixed background,



and multiplying by a center of mass coordinate wave function elP*RIf you
ignore the internal coordinates ¢n¢, the quantum center of mass coordinate
‘thinks’ it is moving in free space. Yet don’t forget it comes with the ¢né
functions.

Equation (10.4) has the function arguments (x€,xp) on the left, and (r;R)
on the right. One might use the right hand side and move on, complacent that
the fixed-potential approximation gave ‘the correct answer’. But we began
with interest in the electron wave and proton wave examined at the points
x€,xp on the left side. In terms of those variables

®nePxE,xp)=elP-{mexe+mPxp)/(me+mP)onem*(xp—xe).

This is distressingly intricate. When solved for a fixed background, the
eigenfunctions ¢n described the electron wave. Now the coordinate x€
appears in two places. The bound state wave function does not refer to the
electron, but describes a correlation of differences of position where you look
at the electron and proton waves: it is a function of xp—x€, not x€! The
hydrogen spectrum comes from oscillations of those relative correlations,
which were incorrectly® identified as purely electron wave oscillations
before. See figure 10.4, which reminds you that a cloud-cloud (not an
electron cloud) is a correlation of water drops probed at many points.

The time dependence is also surprisingly complicated. The frequency
eigenvalues associated with the cm coordinate are w(P)=P2Z/(2(me+mP)).
Including the internal atomic frequencies, the time evolution is

®dnePxe,xp,t)=e—1P2/(2(me+mP))eiwH/n2®dnLP{xE,xp,t=0).
The formula predicts that the electron's electric current depends on the overall

motion of the atom. That ultimately will lead to a Doppler shift of atomic
spectra, among other things.

What should we generally do with the P"dependence? It describes initial
conditions. We can imagine a quantum hydrogen atom moving with a sharply
fixed Pand coming right at us. Where is the electron? If you observe nothing
about the proton labels, they will be integrated over in observables. The
average position of the electron wave will be

<x@>=[d3xp<P(x&xP) | x€ | P(x&xP)>.



We suppressed the indices of W. By a neat accident, the plane wave e1lP*R
cancels out, and the answer tries to be just the same as using a fixed potential.
But the relative coordinate is not x& but xp—x€. Integrating over xp averages
over every point in space: the result of observing the electron's position on its
own returns no position! Actually that makes sense: the electron and proton
come together, and the atom is a correlation of the two. We should have
looked at observables depending on xé—xp. They correspond to what's done
‘ignoring’ our discussion and using a fixed background interaction.

The most simple case would be to choose P=0, ‘an atom at rest’. That is
not realistic: the function e10xR™is constant in R; and extends everywhere
over space. We generally believe the atom is not smeared over everywhere,
but should have R™variables localized within a small region. That will be
represented by superpositions of plane waves [d3PelP*R™.., which predicts
the correlations of x& and xp. There are few or no cases where we can
conceptually replace the difference xe—xp — x€ and not make a mistake.

Entanglement has shocking lessons about how quantum physics works.
The number of possible entangled relationships in a simple physical system
can be huge. When different situations and concepts are identified one by
one, physics is usually smarter than we are, because all the different
combinations are already there waiting to be noticed!

10.2 Promoting operators, and other notation issues

As we mentioned, entanglement starts with the basic fact that generic
functions of two variables x, y are sums of all possible functions of each
variable. Once the operator 0/0x is defined for functions of x, an agreement is
needed for what the operator does to functions of y. The agreement is that (0/
0x)g(y)f(x)=g(y)(0/0x)f(x). This is not actually obvious from dy/0x=0, which
might mean that (0/0x) acts like ‘0’ on g(y). The actual agreement is that (0/
0x) acts like ‘1’ on g(y). Then dy/0x=y01/0x=0 also follows. At one point in
history (and often in thermodynamics) a more complete notation 0/0x|y
made the meaning explicit.

A convention in quantum mechanics agrees that an operator on variables
a is promoted to act like 1 on independent variables b, unless something
different is specified. The convention makes a convenient, but also sloppy



notation. Sloppy notation with products, operators, and entanglement can
cause experts to get confused, so you should be aware of it like a dangerous
snake.

Next, we look at the |y> and <y|y> notation attributed to Dirac, but
really just adopted from mathematicians’ ({,y) inner products. There is a
conceptual reason for the | > notation, which seeks to represent objects in
‘coordinate-free’ fashion. Nature does not depend on our basis, so that classy
notation seeks to avoid using a basis. That's why the symbol |y> stands for
the state as a thing in itself, and separate from the basis used to express
components. However this has a potential cost of omitting the information
needed to be specific. In the basis of space coordinate x, each slot x represents
a mutually exclusive unit vector called |x>. The notation yx stands for a list
indexed by x: the precise relation is

qjx=<x|lp>.

Since it was not needed at the time, we deliberately bypassed this nuance in
our early use of |y> notation. Also, the left side uses two keystrokes, the
right side uses five keystrokes, and even more pencil motions, so the right
side notation is not always superior. Entanglement has upgraded the math
level, and wants a coordinate-free notation, but as mentioned, When the Dirac
notation is extended to symbols like |a>|b>|c>, the notation tends to omit
too many symbols to reliably specify what is intended. Adept experts use
their experience to make the notation work, but even experts can be confused.
Soon enough, Dirac notation evolved to expressions like |kTkZkZ...>,
which represents the direct product of three plane waves with labels ki"and
the spatial coordinates xi entirely omitted. Then

<xT,x2,x3...|kT,kZ,k3...>=elkT-xTeik2-xZe1k3-x3.. ..

Each different notation has a commendable function in some context where it
is most convenient. Simply knowing that the notation itself can be a barrier
is a major part of understanding entanglement.

Be warned that careless writers will inadvertently give false information
originating in virtuoso calculations (sometimes) presented with sloppy word
abuse and sloppy notation. It is very common to hear that ‘entry-level
quantum mechanics is based on wave functions, but quantum field theory is



based on operators’. That is because manipulating certain operators can
sometimes give the same outcome as computing with wave functions. If you
pursue this, you will discover that quantum wave functions like |kT,kZ,kZ...>
are still present under the smokescreen of operator-based computational
technology. It is not true that the Schréodinger wave function became obsolete
and was superseded by later developments. We also don’t see why the wave
function would become ‘unreal’ for having any number of indices. It may be
a proxy for reality, but its dynamics act as real as anything else is real.

10.2.1 The quantum interferometer

Dirac's 1930 textbook—Principles of Quantum Mechanics—was a
masterpiece, despite the fact Dirac was only 28 years old. Dirac had gone into
quantum physics early. He recognized Bohr's influence as a philosopher, but
wanted ideas that could be expressed with equations. While making his own
contributions Dirac acted as a formalizer and an arbitrator of the turf wars
between Heisenberg, Born, Bohr, and Schrédinger.

The brilliant introduction of Dirac's book sets up a paradox. Consider an
interferometer (figure 10.5), which divides a ray of light into two beams
traveling two paths, which evolve with phase shifts and are recombined. The
interference pattern observed after recombination proves light is a wave.
Operate the device at very low intensity so you can count photons. Reduce
the intensity so two photons cannot be present at any one time. (The
experiment was done early* with filters to reduce the intensity, and waiting
months for the interference pattern to be recorded on photographic film.) So
long as two paths are open, the interference pattern is obtained. This is prima
facie evidence that describing quantum systems with waves is needed, even
when ‘counting photons’. The behavior of orthogonal light polarizations,
which do not interfere, is also just as classical wave physics predicts. Yet
putting a photon detector (‘phototube’) in either arm of the interferometer
produces one ‘pop’ of the instrument at a time, recording one whole photon.
A whole photon is that thing giving a transition resonantly matching
frequencies wy=w1-w2, which if not a general rule of nature, is what photons
and atoms do under ideal photon-detector conditions. No half photons are
observed. No Newtonian dodge that one particle split into two, and joined up



later, can be made to work.

Figure 10.5. A cartoon of an interferometer. It's usually forgotten that
‘nothing’ on path A or B is the ‘something to specify’ called the
ground state.

In an unusually long (for Dirac) discussion, Dirac concluded in his own
words that both and neither waves and particles must be a necessary
interpretation of quantum mechanics. Formalizing this compromise dictated
by Bohr kept the parcle concept in play. Another compromise was giving
indeterminacy early development, because Dirac had finessed the steps to
make it mathematically consistent. However Dirac was unwilling to write
equations solely for the purpose of producing contradictions. Under the next
topic Superposition and indeterminacy, Dirac wrote apologetically

“The reader may feel dissatisfied .... He may argue that a very strange
idea has been introduced—the probability of a photon being partly in
each of two states of polarization, or partly in each of two separate
beams .... He may say further that this strange idea did not provide
any (new) information about the experimental result... it may be
remarked that the main object of physical science is not the provision
of pictures, it is the formulation of laws....’



Here Dirac expressed his preference for equations, not pictures.
Unfortunately, Dirac had not given any equations for the interferometer: it's
clear had had none to offer. It was too early for him to be in command of
entanglement. As a result of the interferometer being botched, mixups started
happening.

The interferometer can be understood using the appropriate entangled
products. Let | 1A> represent a photon in interferometer arm A. Don’t think
the symbol implies a profound thought, nor an exhaustive description:
quantum physics exploits under-description. Let |0A> represent nothing
found in interferometer arm A. Symbol |0> appears often in quantum theory
for ‘the ground state’, ‘the vacuum’, etc. Once again, a one year course in
quantum field theory can give you an infinitely detained representation of
| 0>, which being the ground state is really interesting, but the symbol under-
describes it. You can actually measure |0A> OR another state |0B> if you
put a detector in arm A OR arm B and find nothing with high probability. It is
the same with measuring a photon | 1A> and so on.

Consider products of these symbols. The product |0A>|0B> describes
instruments registering nothing in A AND strictly correlated with nothing in
B. A strict correlation of two nothings is expected when the illumination of
the interferometer has been turned off. (It is a small accomplishment to
translate the experimental situation to symbols.) Consider the product
|0A>|1B>. It describes finding nothing in A AND finding one photon in B.
That describes half the data. The product | 1A>|0B> describes the cases of
finding one photon in A and nothing in B. This describes the other half of the
data. These two cases are mutually exclusive, and orthogonal, by
construction®. To describe equal probabilities of 1/2 under the Born rule, we
propose an interferometer state |INT>:

|INT>=12|0A>|1B>+12[1A>|0B>.
This was not written down in Dirac's book, and seems to be hard to find
written anywhere. It is also incomplete. After evolving a distance x4 (xg) on
side A (B) we propose |1A(B)> - e—1kA(B)xA(B)| 1A(B)>. Finally there will
be a rule for recombining beams, and a rule to read out the final intensity.

It is interesting to ask why such a simple thing as an interferometer has
such a devious description. It is partly because we are not accustomed to



working with products. We are also over-trained to ignore |0>: the vacuum is
not nothingness, it is the ground state, and it exists. The interferometer is like
a musical instrument. It has two resonant arms coupled by the half-silvered
mirror at the front end. The innocuous half-silvered mirror excites both the
|0A>|1B> and |1A>|0B> vibrational modes at the same time: it is not
unlike one jet of air exciting two organ pipes of the quantum electromagnetic
field.

Given these secrets you can invent and explore non-standard
interferometers. Consider |INT2>=|1A>|0B>/2+|1A>|1B>/2. The symbols
predict 50% of events® with one photon in A and nothing in B, and 50% of
events with one photon in A AND one photon in B, which we never hear
about. Is that possible? Why not! An enemy letting light into side B might
make it happen. Note that |[INT2> is orthogonal to a state
[INT2 L>=|1A>[0B>/2—[1A>[1B>/2:

<INT2 L |INT2>=(12<1A|<0B|-12<1A [<1B])
(12]1A>|0B>+12|1A>|1B>)=0+0+(12<1A |<0B| | 1A>|0B>
—-12<1A|<1B| | 1A>|1B>)=12-12=0.

The algebra is very ordinary, but if you find the notation is awful, you are
right! Anyway, your theory of [INT2> is predicting no cases where
|INT2 L > will serve. Was that your intention?

Consider  |INT3>=|1A>|0B>/2+|0A>(|1B>+|2B>)/4.  Observing
nothing on side A is strictly correlated with seeing one photon in B half the
time, and two photons the other half of the time. With the same conditions,
side B will also respond 100% of the time to an instrument detecting
| 1B>+|2B>)/2. Can this exist? Why not!

We are learning here that quantum mechanics is descriptive, not
restrictive. It is rarely predictive, because each experimental situation tends to
need detailed study to know what it ‘is’. Quantum mechanics, even including
the extreme version of the eigenvalue postulate, does not actually contain the
restrictions on measurements assumed in the OQT. Notation should also not
be viewed as making predictions or restrictions on reality. Instead the
symbols represent possible systems you might find if you actually study
reality. This is a breakthrough in understanding quantum systems. The
bookkeeping is so flexible it can describe many things you never imagined.



What actually occurs in nature is a separate issue, which no amount of
notation will decide!

Continuing, the big discovery of entanglement is that rather simple sums
of products of wave functions describe correlations of outcomes with a
variety never before considered. If your picture of reality is a point-like
localized photon it will never explain those correlations: so give up that
picture. From the start we’ve said the wave function is not nature itself, but a
proxy used to describe nature. There is also not enough information in the
description |0A>|1B>+|1A>|0B> to know whether each individual event is
being described. If the description looks good after 1000 events, then it
describes 1000 events. There are so many alternative possibilities that asking
for one cookie-cutter to describe every individual case cannot be imposed
from the top down. That is why Einstein wrote: ‘The attempt to conceive the
quantum-theoretical description as the complete description of the individual
systems leads to unnatural theoretical interpretations’, which one can easily
avoid. Unless you have some advance knowledge of which wave functions
are ‘allowed’, how will you know which entangled wave functions are
disallowed?

10.3 The Stern—Gerlach experiment

The Stern—Gerlach experiment (1922) provides another example of
entanglement. If you understand entanglement you understand the
experiment, and vice versa.

The topic is also botched very often. Wikipedia begins:

“The Stern—Gerlach experiment demonstrated that the spatial orientation
of angular momentum is quantized.’

No it did not. The usual story says an electron beam goes through a
magnetic field, and out come two mysterious beams, labeled by their spins
‘up’ or ‘down’”’. This (goes the story) proves there is an inherently quantized
measurement of ‘spin-up, spin-down’, which also ‘cannot be explained or
understood’, since point particles cannot spin. The experiment will often be
presented in the first chapter of a typical book® before the concept of a wave
function or equation of motion exists. Such presentations encourage the
misconception that quantization is inherent in ‘spin’ and everything else, and



that electrons are always in one spin state or another. Perhaps 200 pages later
in the same book, spin will actually be defined, but usually as an isolated
topic again divorced from any wave equation.

The presentation recapitulates another mistaken path of physics history,
and makes it appear mandatory. Early physicists—Einstein and Bohr
especially—grievously misinterpreted the Stern—Gerlach experiment as a
feature of point parcles, overlaid with yet another OQT quantization principle
that ‘could not be explained’. The effort to keep the old non-explanation
coexisting with quantum mechanics which does explain everything causes
great confusion.

Here's how it actually works. There exist quantum waves with
polarization. Electron waves (silver atom waves, etc) happen to have a
polarization degree of freedom as valid and concrete as the polarization for
light. Given the polarized wave equation, the solutions predict the wave
propagating in a magnetic field splits into two waves. Two waves separate by
dynamics and time evolution. No magic is involved. Without a polarized
wave equation, the experiment appears to be impossible to understand in the
pre-quantum framework of parcles assumed. That is true about the wrong
framework. Needing a new axiom about the Universe—an eigenstate-type
postulate—was true in the mistaken context, and not true in the actual theory.

The mysterious quantization of the Stern—Gerlach experiment comes from
a math fact. Any two-way entangled function (a polarized wave) depending
on position x and polarization € tan be decomposed into sums of products of
functions. You can call this college math, or you can call it entanglement. In
terms of indices xj for position x and polarization component j, the theorem is

Wxj=Y aAllej()A(a)dx(o)where<e(a) [ (B)>=6ap;<d(a) | ¢(B)>=80p.
The number of terms All ranges up to the dimension of the smaller space.
This is remarkable: if All =2 (or 3, or 5, ...) total polarizations labeled j, it is
very small compared to the dimension of the space labeled by x. The theorem
predicts a decomposition exists that is much more simple than all possible
products found in a general expansion in a generic basis. The theorem was
known® from about 1900 as the Schmidt decomposition, but apparently not
correctly used (if known at all) by physicists when quantum mechanics was
in formation. The theorem says you can always find two special bases for the



space and polarization variables which are diagonal, as shown. The constants
A(x) are relative weights. Writing out two terms with A(a)=1 gives

Pix)=e1)p(1)(x)+el2)0(2)(x):

The formula represents a strict correlation that polarization (1) is found with
spatial configuration ¢(1)(x), and ditto for ¢(2)(x). Not only is the
decomposition most simple, but also the factors €j and ¢j are each orthogonal
on their own spaces. When the beams ¢(1) and ¢(2) are spatially well-
separated as the experiment arranged, they are surely orthogonal. Then when
you find a beam at position 1, it is strictly and always correlated with
polarization €(1), which is mutually exclusive of €(2) found in the beam at
position 2. This is mathematical magic (but not magic) those insisting on a
separate eigenvalue postulate evidently did not recognize. (Hence the
reversion to Copenhagen habits of not explaining by postulating what was
observed.) Yet mathematical theorems don’t count as discoveries about the
Universe: all mathematical facts were present from the start in your mode of
description, whether or not it took years to recognize it.

Here is an embarrassing fact. Apparently Einstein and Bohr in 1922 were
unaware of a related Stern—Gerlach experiment done before 1830. We have
no record they ever considered it. Light rays passing through a good calcite
(Iceland spar) crystal split into two beams. Each beam has a definite
polarization; see figures 10.6 and 10.7. The mechanism is basic wave
mechanics. When a particular polarization has a distinct propagation speed,
Snell's law (a wave fact) tells you the rays will separate. Malus, Fresnel,
Arago, and many others had this completely in hand and explained by 1830.
Einstein and Bohr heard from Stern and Gerlach about two spots, but were so
focused on parcles they never considered the wave mechanism of
polarization. The lapse is hard to explain. Wave equations and polarization of
the electromagnetic field were the established physics at the time.

The connection between Stern—Gerlach and polarization is not a great
leap. When the writer, who had played with double refraction by calcite
crystals as a boy, first heard about the Stern—Gerlach spots as a student, he
asked whether the calcite spots were the same thing. The most competent
physicist available to consult, Professor Philip Altick, was not entirely sure.
He first said the calcite experiment would need to be done with photons. But



if you can see light with your eyes, are high-tech photon detectors going to
disagree? And Stern—Gerlach measured spots of silver plated on a paper card,
not atoms one at a time'®. (That is, they did not measure eigenstates of
‘spins’, up or down!) Yet if we can understand and explain calcite with
ordinary wave physics, why is new quantum principle of the eigenstate
postulate mandatory at all? Professor Altick was careful, thoughtful, but not
entirely sure. He had asked his professors similar questions, and they told
him such questions were considered improper, off-base, ignorant. Their
general wisdom was that the Principles of Quantum Theory were so profound
and sublime that they would invariably predict some things that were
previously understood on a physical basis. The first principle from Bohr was
that quantum mechanics could not be understood. The consequences of the
first principle were that you were ignorant to be concerned with things that
could be understood (!). Dirac's first chapter makes nearly the same
observation dismissing polarization. We suggest you read it.



§ 4. DouBLE REFRACTION OF LIGHT EXPLAINED BY THE WAVE
THEORY.

By means of Iceland spar cut in the proper direction, double refraction is
capable of easy illustration. Causing the beam which builds the image of
our carbon-points to pass through the spar, the single image is instantly

o
Fig. 26.
divided into two. Projecting (by the lens E, fig. 26) an image of the
aperture (L) through which the light issues from the electric lamp, and

introducing the spar (P), two luminous disks (E O) appear immediately
upon the screen instead of one.

Figure 10.6. The Stern—Gerlach experiment discovered double
refraction of matter waves. It had long been known for light. The
figure is from Tyndall J 1875 Six Lectures on Light Delivered in the
United States in 1872—-1873 (London: Longman).



Figure 10.7. A single small light source is behind the calcite crystal in
the author's hand. The beam of light splits into two beams, much as in
the Stern—Gerlach experiment, supposedly requiring a new quantum
principle. However the splitting of light beams known as ‘double
refraction’ was completely understood from wave physics before
1830. It was a major clue to the polarization of matter waves
completely overlooked by the ‘founders of quantum mechanics’.



10.3.1 The relation of polarization and spin

Long before Stern and Gerlach, a certain two-ness of electrons had been
suspected from the Zeeman effect that showed spectral lines were doubled in
magnetic fields. (Doubling means the fundamental electron frequencies come
in pairs: the difference frequencies involve all allowed combinations.) Pauli
was famous for suggesting an abstract two-ness exclusion principle before
quantum mechanics was discovered. There is nothing magic about ‘two’ and
emphasis on ‘the two-state spin’ of the electron wave generates many
conceptual errors. It is very important to know that quantum wave systems
exist with polarizations in 2, 3, 4, 5, ... integer dimension classes. The Stern—
Gerlach experiment might have been done with deuterium, whose nuclear
wave has three polarizations, making an ordinary 3-vector wave. That would
give three spots. (Actually, the electron in a deuterium atom is more
magnetically reactive than the nucleus. There might be six spots for 3 x 2
total polarization possibilities.)

The first mention of polarization in quantum theory we found comes from
C G Darwin [2] in 1927, who suggested 3-vector polarization, avoiding the
two-component case which he thought was taboo:

‘When what is required is to double the number of states of the
electron... the wave mechanics (in this the matrix mechanics is better)
definitely excludes half quantum numbers for the spin, and so would
lead to triplets -I, 0, —1 instead of doublets 1/2, —1/2, ... wave
mechanics must have suggested to many a way out of these
difficulties by assimilating the electron to a transverse rather than a
longitudinal wave, for this at once provides the number of states with
the necessary factor 2.’

We don’t know who wrongly told Darwin the ‘doublet’ of two states (half
quantum numbers) was ‘definitely excluded’. Darwin seems to know how
tricky light is to have exactly two transverse modes and three independent
polarizations. Instead of recycling the electromagnetic wave equation (4.2),
Darwin explored a very elaborate theory that failed. That left Pauli to propose
the two-component Pauli equation for the spin-1/2 electron, and make it
famous. But for some reason Pauli did not write a three-component wave, or
predict all the polarization classes.



It is possible that Darwin rejected spin-1/2 polarization because it was
‘too weird’. The fact this geometrically novel class existed was known by
mathematicians before 1900. Under a rotation about an axis by angle 6; the
spin-1/2 polarization rotates by functions of 672. We use ‘rotates’ to mean a
literal rotation, as so familiar with vectors, but in a novel geometrical class
described by half angles. That is strange, but consistent! The mathematics of
the rotation group finds and characterizes all possible classes.

Unfortunately the botched old presentations have many basic facts wrong,
so watch out!. The first mistake fails to recognize polarization at all, and talks
about spinning parcles. The next gaffe bases almost all the analysis on the
spin-1/2 case, probably because it (alone) tends to defy an intuitive picture.
Finally, false information is given that ‘the presence of A shows that spin is
an entirely quantum mechanical effect’, which can’t be correct when you
know the math pre-existed, and predicted all the polarization categories. By
1937 Cartan complained about how physicists abused the concepts, writing in
his book Theory of Spinors that:

‘In almost all these (physics) works, spinors are introduced in an
entirely formal manner, and without any intuitive geometrical
significance: and it is the absence of geometrical significance which
has made ...(physics)... so complicated.’

It was the physicists, not the mathematicians who made spin overly
abstract.

10.3.2 Polarization observables

As always, the observables of polarization are sums of sandwiches yj*...k,
where ... stands for summing with operator matrix elements jk. There are!!
N2 combinations of jk taken all independent ways. Spin is a label for a
special set of three matrix operators called S;"which mathy craftsmanship has
selected from the N2 possibilities. Those selected operators project out the
actual, physical angular momentum carried by the polarization when
<y | STy> is computed.

Here is an example with a 3-vector wave. Let y{t)=(q{t)+1p(t))/2, where
q(t) and 1p(t) are real valued. Let the matrix elements Sjk€=—1ejk€, which is
the Levi-Civita array that produces ordinary cross products, thus



Y jkAjSjkeBk=(A¥xB)%. Then

<Y |STy>=q%p;”
which is the usual formula for angular momentum. It's no accident that
symbols q-and p-worked out: it's basic craftsmanship.

It is intelligent to make a basis of eigenstates using a nice Hermitian
operator. The eigenvalue equation Sz|m>=m|m> has N orthonormal
solutions for an N-dimensional case. That basis spans all linear combinations
of polarization, so one can use it freely. According to the eigenvalue
postulate a measurement of S, will always produce an eigenvalue and

eigenstate. (Never say always about an experiment; always say sometimes
that works out to be true!) N spin-labels are not enough, however, to account
for the N2 possibilities in every form of yj*...k that can occur. The upshot
is that polarization is the physical degree of freedom, from which spin-
observables are projected, while spin is an incomplete attribute that cannot
fully describe polarization. This is not brought out by studying the electron's
special case of two polarizations: that's why most material about quantum
spin deals with little else—and avoids the word ‘polarization’. To master
these concepts, you really must study the rotation group with all its
consequences.

Example: sunlight. You have a beam of sunlight, and measure the energy
flux with a thermometer painted black, observing the rise in temperature as a
function of time. Does the formula E=Aw apply? The somewhat educated
person can say: ‘Yes, since light is a stream of photons. You multiply the
number of photons per second by hv energy per photon to compute the
energy absorbed per second’. That answer is circular to assume and maintain
the misrepresented older idea of photons. There is a better answer: ‘Why
bring up photons?’ The experiment is not using a photon counter where the
concept would be relevant. The postulate that every measurement of energy
(whatever that means) yields an eigenvalue failed: the experiment is an
improper measurement, so perhaps should be ignored. Really?

The photon idea was misunderstood and misrepresented to be a universal
fundamental entity for every explanation. The picture that light is a stream of
photons uses it. It later turned out that a photon is a special exceptional state



of quantum electrodynamics—an eigenstate—with very limited scope. Lots
of electromagnetic states are different. The theorists defined the eigenstates,
and by definition every photon has a definite polarization. One then asks,
exactly what is the polarization direction of sunshine? A student may say:
‘Unpolarized light vibrates in all directions at once.” OK, please express that
with a mathematical formula. The student realizes that a vector ‘in all
directions at once’ produces a formula for zero. The thermometer does not
read zero.

The unpolarized electromagnetic field is an example of a state not capable
of being described with one wave function, and needing a density matrix. In
general, polarization describes the features of a density matrix. The attempt
to dumb it down simply fails in general.

10.3.3 Many observables cannot be expressed with
wave functions

Our definition of an observable <A>=<y | A |y> was more general than the
‘observables’ dictated by the eigenvalue postulate, which (ok, ok) represents
a special case. Beginning with section 2.3.3 we had mentioned that
entanglement and the density matrix create the general structure of quantum
theory. Now we can see why.

Let |x> describe an ideal light wave with electric field polarized along
the x axis. By the Born rule, the probability this can be described by |y>,
representing an electric field polarized along the y axis, is |<x|y>|2=0.
Suppose the beams labeled 1, 2 have passed through a calcite crystal, with
direction | 1> strictly correlated with | x> and direction |2> strictly correlated
with |y>. The normalized state is

|P>=12[x>|1>+12 | y>| 2>,
The probabilities (relative intensities) of each beam given the state are

P(|x>|1>|®>)=]<x|<1|x>[1>2]2=1/2;P(|y> [ 2> |¥>)=|<y| <2 |y>| 2>
Adding the probabilities gives the total intensity ‘1’ relative to the incoming
intensity. This would be considered obvious. It is not obvious.

The human eye is generally insensitive to polarization. Then ignoring



polarization, how do we describe the simultaneous observation of two beams
in two directions, as in figure 10.7? A student misunderstanding the
‘principle of superposition’ would say: ‘You add the amplitudes |1>+]2>
and square to find the intensity’. That's a common mistake and does not
describe what happens. If the two beams are combined, the rule of adding
intensities is different from the rule of adding amplitudes, and generally
contradicts it. Let's repeat this: ten thousand times a day, students are told to
add the amplitudes and square, and never add the intensities. Yet in many
cases you should add intensities and few seem to notice!

Let A be an operator on the joint space of directions and polarizations.
Suppose like the human eye, the A-observables know nothing about
polarizations. Then A acts like the unit operator on polarizations, doing
nothing to them. Specifically

<x| A|x>=<x|x>=1,<x|A|y>=<x|y>=0,<y| A |y>=<y|y>=1;<A>=
<Y|A|[P>=12(<1|<x|+
<2[<yDA(Ix>[1>+]y>|2>)or<A>=12<1[A[1>+12<2 | A[2>.

This is just the average of two experiments using direction wave functions
| 1> or |2> separately, as if polarization never existed. It is much different
from adding |1>+|2> and computing the sandwich, which would introduce
cross-terms of the form <1]...|2>.

Suppose a detector can distinguish polarizations, but has no information
about beam directions. The corresponding operator B acts like the unit
operator on beam directions, doing nothing to them. Then

<1|B|1>=<1|1>=1,<1|B|2>=<1|2>=0,<2 |B|2>=<2|2>=1;<B>=
<Y|B|W>=12(<1|<x|+
<2|<2)B(|x>]1>+|y>[2>)or<B>=12<x|B|x>+12<y|B|y>.

This is just the average of two experiments using polarization wave functions
|x> or |y> separately, as if distinct directions never existed. It is much
different from adding |x>+|y> polarization, which would describe a state of
definite polarization direction. Averaging the intensities as if they came from
equal probabilities of orthogonal components is how one computes a
completely unpolarized process.

There's nothing special about two states. Suppose you have a model



where five states of |luck(a)> are strictly correlated with five states of being
| rich(a)>. Those joint rich-and-lucky states'? can be written

| ¥>=Y0a5 | luck(a)>A(x) | rich(a)>.
If none of your instruments detect inherited wealth, observables will take the
form

<A>=A(1)<luck(1) | A |luck(1)>+A(2)<luck(2) | A [ Tuck(2)>+~A(5)
<luck(5) | A |luck(5)>.
The expression is indistinguishable from a weighted sum of observables
occurring by pure luck with probabilities A(x). But was every single event
necessarily an eigen-lucken-state? We doubt it.

The examples should not be imagined exceptional. Instead they are
inevitable. When dealing with a physical quantum system, the extent of its
entanglements will initially be unknown. You may believe the system is
described by a function of x"All other attributes and variables not specifically
described will effectively be summed out and ignored in the observables you
happen to consider. Reduction is the process of systematically decreasing the
dimensionality of description, in anticipation that some dimensions will not
be measured. The density matrix is a tool to automate that process and those
calculations. If you are good with linear algebra you will recognize that every
example was consistent with <A>=tr(pA)/tr(p) for some matrix p, and where
tr stands for the trace. This definition of the observable suffices to define the
density matrix p. When A are Hermitian, then p is Hermitian, and has positive
eigenvalues: nothing more is generally required. By a math identity, tr(pA)=
<y| A |y> if and only if p is so simple it has one eigenvector, p|y>=|y>.
Systems that are so simple the density matrix reduces to a single
eigenfunction are the exceptions. Naturally more information is needed to
understand the density matrix unless you are very very good with linear
algebra: that's the next step in learning quantum mechanics in any event.

The opposite happened in early discussions about quantum probability,
which were entirely phrased in terms of wave functions. That is because the
density matrix (although apparently recognized in some form in 1927) was
not understood before John von Neumann's book [3] appeared in 1932. This
was about four years after Bohr and Born, Heisenberg, and Jordan (BHJ) on



one side, and Schrodinger (with help from Einstein) on the other side, had
staked out their academic fighting territory. Schrédinger and Einstein
absorbed entanglement and emphasized it: Bohr and BHJ went backwards
and emphasized Planck's constant.

The density matrix does not make the Schrédinger wave function any
more or less an element of ‘reality’. Instead, the density matrix disgraces
those who were claiming lofty postulates about what existed in reality. What
does it say if your schoolbook is loaded with postulates about the wave
function'® and fails to tell you that no single wave function generally exists?

Due to entanglement the mere description of a realistic-quanty-reality is
very complicated, whatever that means! The density matrix made the
statistical foundations of quantum theory rather clear. Whether or not
probability is intrinsic, the Universe is so complicated by entanglement and
interactions that every attempt to describe it uses a density matrix summing
over many undescribed and undetected features. There is no such thing as an
isolated ‘free electron’. Whatever is meant by an electron is immersed and
interacting with the myriad variables of quantum field theory, churning and
time evolving in the background, with all their initial conditions, and ignored
in defining the ‘electron’. This is an acceptable explanation for why quantum
mechanics makes statistical predictions. What else would you expect?

10.3.4 Mott's particle detector and decoherence

When people hear there's no experimental evidence for particles, they can't
believe their ears, because their eyes have seen nothing else about ‘particle
physics’ except pictures of little particles exploding in all directions. But
think again: when anyone looks closely at those tracks, perhaps using a
crystal capable of probing its wave character, they find out the thing is a little
wave. It is not mysterious for a little wave to zoom along and be
misidentified by eyes, ears and word abuse as a ‘particle’.

However, it is quite mysterious for a spherical wave predicted by the
quantum wave theory to propagate over a macroscopic distance, and resolve
itself into little localized packages the experiment indicates. This amounts to
one [4] mystery not explained so far. We mentioned it in Section 1.0.4.
Meanwhile a million other mysteries were quickly explained by the



Schrodinger equation. It was quite unbalanced for ‘wave particle duality’ to
focus on one single particle-like phenomenon, naturally a favorite, and
declare that the ‘particle aspect’” was on an equal footing with the ‘wave
aspect’. The assertion of complete symmetry of explanations was never true,
and that's why it caught on! Yet nothing was ever calculated from the particle
aspect. All those things supposedly particle-like were just wave energy and
wave momentum things that did not really come from particles. That matters!

In 1929 Charles G Darwin (physicist-grandson of the naturalist) saw the
key. A particle track in a cloud chamber is a series of correlated atomic
events. It's quite ordinary for a fast spherical wave to pass an atom, and cause
a localized, resonant atomic transition to an excited state, triggering a droplet
in the chamber. The unexpected thing from a spherical wave is two or more
events on a straight line path, rather than distributed over a spherical surface.
Yet would the first interaction not distort the propagating wave, and perhaps
lead to favoring more interactions with any subsequent atom on a straight-
line path? And since there is an interaction, should the system of a fast wave,
plus 1, 2, ...N atomic detectors, not be treated as an entangled whole, or
‘multi-verse’ of possibilities, impossible to reduce to one single wave? As
Darwin wrote [4]

‘In this “multi-infinite” space a single point then represents the state
of the world and a single line its history. It is interesting to observe
that the quantum itself plays no part at all in the sub-world, except as
a dimensional constant which can be incorporated with the other
dimensional constants of the system.’

Darwin's term ‘the quantum’ refers to Planck's constant. Noticing that it
no longer played a role in quantum theory was perceptive, but got him no
points from the cult of the pre-quantum theory so desperate to keep it around.

Neville Mott was a young theorist who picked up Darwin's clumsy
attempt at calculation, and made it into the first convincing use [5] of
entanglement leading to ‘decoherence’. The term ‘coherence’ means one can
deal with an isolated wave amplitude using the rules of wave calculations, the
Born Rule and so on. ‘Decoherence’ means that the interactions with a larger
system cannot be reduced to something so simple. One either treats the large
system as a giant whole, or deals with interactions that erode or destroy the
picture of an independently propagating wave. Mott finessed his calculation



by choosing the steps needed to make the outcomes plausibly come out. It
was ignored, as far as we can see, for nearly 40 years, despite the fact that
Mott later received a Nobel Prize (1977) for unrelated work on
semiconductors. The literature of quantum mechanics after the year 2000 has
far more references to decoherence than to coherence. It’s a hot topic, 75
years in the making!

Why was Mott's contribution ignored? Who benefitted? We can imagine
a critic saying that the calculation was not quite based on first principles, but
needed to slip in an assertion that certain scattering amplitudes added
coherently in a certain way, and incoherently otherwise. Actually, that's fair
and necessary. The engineering of a particle detector is hardly a trivial, first —
principles affair. The technical experts fiddle endlessly rejecting things that
don't leave particle-like tracks, until by a circular process they produce a
device that does leave satisfying particle-like tracks.

Actually, quite a few experiments in quantum mechanics have a similar
feature. The experiments that don't work out are often set aside as useless
until they confirm a theory that gives them value. That was the case with
Davvison and Germer, the discovery of the positron, the discovery of
Cherenkov radiation, the discovery of parity violation... Isn't it interesting
that most discoveries cannot be made until it is the right time for the
discovery to be made!

10.4 Bell inequalities, EPR, and all that

In 1964 John Bell published [6] ‘On the Einstein Podolsky Rosen paradox’,
which dramatized what Einstein, Podolsky, and Rosen (EPR) had found 30
years before in Physical Review, 1935. The issue is again the surprises of
entanglement. Coming a few years after Schrodinger's cat, Einstein had the
same intentions to expose and defeat an unscientific, mystical attitude that
had taken over quantum mechanics. Already by 1928 he had written to
Schrodinger:

“The Heisenberg—Bohr tranquilizing philosophy—=or religion?—is
so delicately contrived that, for the time being, it provides a gentle
pillow for the true believer from which he cannot very easily be
aroused. So let him lie there.’



10.4.1 A long and dirty turf war
Jean Bricmont has written [7]:

‘The history of quantum mechanics, as told in general to students, is
like a third rate American movie: there are the good guys and the bad
guys, and the good guys won.

The good guys are those associated with the ‘Copenhagen’ school,
Bohr, Heisenberg, Pauli, Jordan, Born, von Neumann among others.
The bad guys are their critics, mostly Einstein and Schrédinger and,
sometimes de Broglie. The bad guys, so the story goes, were
unwilling to accept the radical novelty of quantum mechanics, either
its intrinsic indeterminism or the essential role of the observer in the
laws of physics that quantum mechanics implies... the views of
Albert Einstein, John Bell and others, about nonlocality and the
conceptual issues raised by quantum mechanics, have been rather
systematically misunderstood by the majority of physicists.’

The assassination of Einstein's character began with disinformation that
he stupidly opposed its statistical predictions. Meanwhile, goes the dis, Bohr
and Heisenberg supposedly revolutionized liberal thinking. Scholars find the
opposite: Arthur Fine [8] writes:

‘It was Bohr who balked at the idea that one might give up the
classical concepts and it was then Bohr who worked out the method
of complementary descriptions in order to save these very concepts.
This is the method that FEinstein castigates as a ‘tranquilizing
philosophy’. Thus the tale of Einstein grown conservative in his later
years is here seen to embody a truth dramatically reversed. For it is
Bohr who emerges the conservative, unwilling (or unable?) to
contemplate the overthrow of the system of classical concepts and
defending it by recourse to those very conceptual necessities and a
priori arguments that Einstein had warned about in his memorial to
Mach. Whereas, with regard to the use of classical concepts,
Einstein's analytical method kept him ever open-minded, always the
gadfly who would not be tranquilized.

In the end Einstein was more radical in his thinking than were the



defenders of the orthodox view of quantum theory, for Einstein was
convinced that the concepts of classical physics will have to be
replaced and not merely segregated in the manner of Bohr's
complementarity.’

Isn’t that interesting! In their construction Bohr and Heisenberg always
retreated to interactions of a classical parcle picture, which were never
actually computed, and supposedly made quantum systems inherently
unobservable. As Yu Shi expresses it [9]:

‘The Copenhagen interpretation is based on a misinterpretation of the
uncertainty and uncertainty relation, and confuses entanglement with
local interaction.’

H D Zeh has written [10]:

‘The Copenhagen interpretation of quantum theory insists that the
measurement outcome has to be described in fundamental classical terms
rather than as a quantum state .... The Copenhagen interpretation is often
hailed as the greatest revolution in physics, since it rules out the general
applicability of the concept of objective (classical) physical reality. I am
instead inclined to regard it as a kind of ‘quantum voodoo’: irrationalism in
place of dynamics.’

We inserted the word classical.

John Wheeler called the mystical voodoo stuff ‘quantum mumbo-jumbo’.
Among other things, Wheeler was indirectly referring to J R Oppenheimer,
his colleague at Princeton, and known as ‘Oppy’. E T Jaynes later became
one of the 20th Century's most insightful writers on probability in physics. He
wrote about his interactions with Oppy as a student':

‘“When in the Summer of 1947 Oppy moved to Princeton to take over
the Institute for Advanced Study, I was one of four students that he
took along .... My thesis was to be on Quantum Electrodynamics ....
But, as this writer learned from attending a year of Oppy's lectures
(1946-47) at Berkeley, and eagerly studying his printed and spoken
words for several years thereafter, Oppy would never countenance
any retreat from the Copenhagen position, of the kind advocated by
Schrodinger and Einstein. He derived some great emotional



satisfaction from just those elements of mysticism that Schrodinger
and Einstein had deplored, and always wanted to make the world still
more mystical, and less rational .... Some have seen this as a fine
humanist trait. I saw it increasingly as an anomaly—a basically anti-
scientific attitude in a person posing as a scientist—that explains so
much of the contradictions in his character .... I wanted to reformulate
electrodynamics from the ground up without using field quantization.
The physical picture would be very different; but since the successful
Feynman rules used so little of that physical picture anyway, I did not
think that the physical predictions would be appreciably different; at
least, if the idea was wrong, I wanted to understand in detail why it
was wrong .... If this meant standing in contradiction with the
Copenhagen interpretation, so be it; I would be delighted to see it
gone anyway, for the same reason that Einstein and Schrodinger
would. But I sensed that Oppy would never tolerate a grain of this; he
would crush me like an eggshell if I dared to express a word of such
subversive ideas. I could do a thesis with Oppy only if it was his
thesis, not mine.’

Why was Bohr so successful? It is reported that his lectures were
mesmerizing philosophy. They were based on few equations, which was
attractive. It is reported Bohr got everything from the de Broglie relations,
and classical particles. And Bohr commanded tremendous financial resources
from endowments and the support of the Danish government.

We must not forget there was a world war from 1914 to 1918. There were
catastrophic consequences for Germany after 1918 from the Versailles
Treaty, the ruin of the world economy by the stock market crash of 1929, and
a depression in Europe so deep it made the out-of-work Americans seem rich.
(The Americans usually had food.) Theoretical physics has always demanded
courage: everyone attempting it after 1914 was a special kind of reckless
fool. Yet everyone needed food. Visiting Bohr for a spell might yield the
equal or better of a year's salary, when people were living month to month. If
you were his assistant your future was secure. Victor Weisskopf was an

assistant to Bohr for a few years, and recalled the following!®:

‘It is very difficult to get into Copenhagen; I have seen cruel things
happen if you come and cannot get through the ’Guard’. Bohr was



surrounded by five or six, maybe even more, of his disciples, who
were a very arrogant crowd. If you were not accepted by them you
would have a very difficult time with him. That was always so, and I
can give you a few examples. Rabi is one; a number of Americans
had a very bad time here .... They would see Bohr very little because
we watched it. I know because I was one of those disciples; we were
not nice. Well we did it out of tremendous enthusiasm, to keep the
level high.’

During World War II Werner Heisenberg was the physicist leading the
German Nazi government program to develop an atomic bomb. The United
States had its own program, initiated with worry that Germany might succeed
first, and sent spies to monitor progress. One of the spies was former baseball
player Moe Berg. His baseball career (1926-34) had not been spectacular,
except that he was a noted intellectual. Sports writers quipped® that: ‘He can
speak 12 languages but can’t hit in any of them.” In 1944/% Berg was in
Germany with instructions to gather information on the bomb program. He
knew enough physics to befriend top theorists and be invited to attend
lectures. In 1944 he attended a talk by Heisenberg with a pistol in his
pocket!” ‘with orders to shoot Heisenberg if his lecture indicated that
Germany was close to completing an atomic bomb. Heisenberg did not give
such an indication, so Berg decided not to shoot him, a decision Berg later
described as his own ‘uncertainty principle’. Berg's keenly perceptive
observations of Heisenberg and expertly extracted information may have
influenced the decisions of President Roosevelt and General Groves, the US
military man heading the Manhattan Project, not to assassinate Heisenberg
along with the entire community of German quantum physicists.
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Figure 10.8. Former major league baseball player Moe Berg played a
decisive role in physics; see the text.

After the war Moe Berg refused to accept a national medal for his
heroism. At some point someone criticized him for ‘wasting his intellectual
talent’ on baseball. Berg (who had a degree in law) replied'®: ‘I’d rather be a
ballplayer than a justice on the U.S. Supreme Court’.



10.4.2 The EPR allegory

Plato had an allegory of the cave. It was about people kept in ignorance, and
given partial information from the movement of shadows. EPR's allegory of
quantum mechanics was meant to challenge those presenting shadowy
pictures involving the uncertainty relation, parcles, the ‘collapse postulate’,
and locality. EPR's strategy[12] was war-like use of the Copenhagenish-(C)
methods and rules against itself.

Einstein was never insensitive to language: he knew perfectly well that
repeatedly mismatching quantum parcle words to calculations was the war
tactic of his enemies. Then EPR describe an example they know very well
does not exist, and where time evolution, the only prediction of physics,
deliberately plays no role. Consider'® a certain wave function
P(x1,x2)=8(x1-x2-x0). It cannot actually exist, but it will be said to
‘describe two parcles’. Let a C-measurement of x; produce eigenvalue Xx;.

The measurement predicts the number x1-x0 is then an eigenvalue of the
operator Q=x2. Thus, ‘collapsing’ the wave function at one location collapses
it to Q at another, distant location, without any interaction at the other
location. That seems physically wrong, but continue. Suppose the momentum
of particle 1 is measured. By Fourier transform,

(10.5

Y(x1,x2)=[dp2ne1p(x1-x2—-x0).

The C-measurement of momentum yields an eigenvalue p*, collapsing
system 2 to wave function eip*(—x2-x0), which is an eigenstate of P=—10/0x2
with eigenvalue —p*. Once again, the collapse of one system collapses the
distant system without interaction. ‘Thus, it is possible to assign two different
wave functions (in our example Yk and ¢r) to the same reality’, wrote EPR.
(Their Yk and ¢r referred to a general discussion coming before their main
example.) Now, argue EPR in a subtly flawed way, the sharp position Q and
momentum P values of system 2 violate the uncertainty relation, (or better)
violate the rule that operators which do not commute cannot have joint
eigenvectors. They write:

‘We are thus forced to conclude that the quantum-mechanical
description of physical reality given by wave functions is not
complete .... On this point of view, since either one or the other, but



not both simultaneously, of the quantities P and Q can be predicted,
they are not simultaneously real. This makes the reality of P and Q
depend upon the process of measurement carried out on the first
system, which does not disturb the second system in any way. No
reasonable definition of reality could be expected to permit this.

While we have thus shown that the wave function does not provide
a complete description of the physical reality, we left open the
question of whether or not such a description exists. We believe,
however, that such a theory is possible.’

The reader can consult the original paper for what is ‘reality’. The usage
connected to equations is that if ‘the physical quantity A has with certainty
the value a whenever the particle is in the (eigen) state given... (then) there is
an element of physical reality corresponding to the physical quantity A’. The
purpose of this gambit is to have the claimed contradiction of joint
eigenvectors violate reality. For the meaning of a ‘complete description’,
EPR write:

‘“Whatever the meaning assigned to the term complete, the following
requirement for a complete theory seems to be a necessary one: every
element of the physical reality must have a counterpart in the physical
theory. We shall call this the condition of completeness.’

Considered soberly, the business of making postulates about ‘reality’ on
the basis of an oversimple description was a bit preposterous. Einstein later
regretted the presentation which (in our opinion) too much emulated Bohr's
pompous style of obscurantism. So what did EPR accomplish? First, their
wave function y(x1,x2)=y(x1-x2) does not describe two independent
particles, and they seem to know it: it is deliberately and by construction
incomplete, defining a system lacking much information except for a
correlation by entanglement. (For example, the ‘center of mass’ of the system
x1+x2 is ‘everywhere’,). The Schmidt decomposition is explicit in the
diagonal sum of equation (10.5). Since the wave function does not predict
much about either system, kinematic assumptions made for independent
systems don’t apply. The adroit subversion of the collapse postulate
demonstrated its lack of predictive power, unless circularly true. What EPR
accomplished was proof that Einstein not only appreciated quantum



mechanics, but had studied it more deeply than his opponents.

Bohr announced to the world there was ‘nothing new’ in EPR and that he
had refuted their argument. Actually the rambling seven-page paper reiterates
Bohr and Einstein's old and stale debates about the uncertainty relation.
Where Bohr appears to respond to the EPR content, he wrote:

‘We see that the argumentation of the mentioned authors does not
justify their conclusion that quantum-mechanical description is
essentially incomplete. On the contrary this description, as appears
from the preceding discussion, may be characterized as a rational
utilization of all possibilities of unambiguous interpretation of
measurements, compatible with the finite and uncontrollable
interaction between the objects and the measuring instruments in the
field of quantum theory.’

John Bell wrote!®:

‘Indeed I have very little idea what this means .... I do not understand
the final reference to ‘uncontrollable interactions between measuring
instruments and objects’, it seems just to ignore the essential point of
EPR that in the absence of action at a distance, only the first system
could be supposed disturbed by the first measurement and yet definite
predictions become possible for the second system.’

10.4.3 Bell physics

John Bell recognized the EPR paper had exposed features of entanglement
that the C-presentation unwisely downplayed. Bell made his own example of
non-local correlations that included a viable experimental prediction. EPR
has been repeatedly reported to favor ‘classical hidden variable theories’: you
won'’t find that in EPR, while it comes from associating them with Bell.

The standard notation begins with a certain two-component wave
function | 0>, which can be written as

(10.6

|P0>=12(|+a>|-b>—|—a>|+b>),p0>=12(|+>|—>—|—>|+>).
Here * stand for the + eigenvectors of a matrix oz on either space. Experts
call the wave function ‘the antisymmetric singlet’. The second form omitting



system a,b labels is the most common. Already an invisible notational barrier
is being set up, using the |>|> notation lacking the detail to be self-
explanatory.

We prefer index notation. Let system a have index j, and system B have
index K: upper and lower case indices will help distinguish them. Any two-
index space has a special antisymmetric matrix

gjK=01-10.

This matrix does not change under any unitary linear transformation rotating
the spaces labeled j and K. That is quite special: in fact, it is the only
combination of products which is invariant. The unit matrix §jK and the
Levi-Civita array €jK¢£ are prototypes of the same invariant phenomenon in
three dimensions. From the invariance ) jKaj*ejKbK does not change under
rotations. You can consider it to be the z component of a cross product in the
plane, which is nearly the same thing, but not as sharp.

Then IF you are thinking about two electrons, with polarization j K
indices, someone plays a dirty trick to introduce Bell's entangled
combination:

(10.7

YiK(H)=0(t)gjK.

This is just the same as equation (10.6). The trick is that the array ¥jK
appears to describe four complex numbers (eight facts!) in j=1,2 and K=1,2
combinations. However, €jK is a privileged, invariant combination that is a
unit of concept all on its own. There is only one undetermined complex
number ¢(t) in Y(t)~@(t). One complex number severely lacks the
information to describe two spin-1/2 states. Since one overall constant drops
out of a quantum state, the wave function shown represents almost, but not
quite, zero information. This is very well hidden in the expression or
equations (10.6) or (10.7) so few notice. Please notice that we begin with an
initial condition having almost, but not quite, zero information. Note this!
The state in question is the same state no matter how the polarizations are
rotated. It does not describe two happy independent little jelly bean electrons.
Yet in the set-up, there are always statements the wave function is the initial
state of ‘two quantum particles’, from (say) the decay of a ‘virtual photon’ to
an e+e— pair’’. The imagination by word abuse of the experiment does not



correspond to what is underway.

Next in the story-telling, ‘the quantum particles explode in opposite
directions’, moving like Newtonian bullets toward fast detectors placed on
the left and right. This is not described by the wave function shown: in fact,
most discussions even omit the label t for time evolution. Yet the exploding
quantum particles are very real in the imagination of the reader being set up
for a surprise. Then discussions continue to detecting + spin states on the left,
and + spin states on the right. Here is the eigenstate postulate. If those
detectors are Stern—Gerlach instruments, they can still be oriented at separate
angles 0L, OR on right and left, leading to many interesting possibilities.
Many of the outcomes are strictly correlated between both sides. Consider
aligned detectors 6L.=0R and assume no intermediate effects of time
evolution between initial state and detection. Then there are no cases
observed with -left AND -right. The observable for that case is

<@ |-L>|-R><-L|<-R|¥|>.
Inserting ¥ from equation (10.6) will instantly confuse you: the notation is
not at all self-explanatory, which the experts enjoy. With indices any case
where state j and K match is proportional to §jK. The inner product
Y jKojKejK=0. The observables for (-left AND -right), OR (+left AND
+right) are zero..

That leaves (—left AND +right) and vice versa to observe. In the next
step, various misinterpretations claim it is really weird and incredible that a
particle on the left would show such a ‘response’ to distant particles on the
right. To make this seem weird there's a preamble hinting that getting + on
the right, say, must need some non-local interaction to force—to happen on
the left. The hint is enlarged to discussions about measurements made so
quickly it is impossible for communication within the limitations of light-
speed between the two sides to be possible. The words ‘quantum non-
locality’ refer to EPR's suggestion there was something wrong with distantly
separated systems being correlated.

We’d like you to understand the argument, not be victimized by
suggestive language. Pause to consider. The premises of the argument were
that the initial state is not a simple product of two independent systems.
Indeed the math says there are not two independent systems: the wave



function never described that. The premises define a state with a correlation
encoded in entanglement. If you begin with correlations, and make a rule
they are preserved over long distances, your own assumptions predict long-
distance correlations. To make a fake mystery of this, you’re supposed to
forget the correlations. In some presentations the ‘quantum particle on the
left’ is presented as an independent entity, just born out of the quantum egg,
and minding its own business. To emphasize that (wrong) idea, a side
calculation will find that + cases happen on the left side exactly as if the state
is unpolarized. We are supposed to forget that correlations between
subsystems cannot be found by evaluating subsystems one by one on their
own.

Now that we have your attention on correlations, recall that by rotating
the left and right detectors to angles 6L, BR many more outcomes can be
explored. With the restrictive assumptions of the eigenvalue postulate, the
eigenvalues measured on left and right will make a table of outcomes where
all the information is in the correlations of the left and right sides, which for
discussion might be a thousand miles apart. The idea that a quantum particle
a thousand miles from another has a life and existence on its own is very
appealing. Both the EPR and Bell discussions are set up to cause a conflict
with that presupposition of ‘locality’, which is then contradicted by the
quantum mechanical premises.

Here are a few analogies to guide the thinking.

The exploding Planck mill One day a classical lumber mill exploded, and
sent boards emerging at relativistic speeds which hit unlucky people in
neighboring counties. Before the explosion the boards had been neatly
stacked in horizontal piles. A supervisor on the left side of the mill was hit in
the face by a horizontally flying relativistic plank. That was enough to predict
the supervisor on the right side of the mill also got hit with a plank. The two
planks were strictly correlated in their geometrical orientation. Moreover, the
prediction of the double-Planck injury could be made faster than light-speed
communication permitted.

A mistaken gem of relativity pop-culture imagines communication at the
speed of light to be an issue. But relativity makes no rules restricting what
you happen to know in advance. Another wrong gem of quantum pop-culture
forgot that correlations built into a system initially will either appear later in



time-evolved form, or stay the same. There's nothing remarkable about
correlated wood products. Also, the instant your model did not find a vertical
board in any event, you might predict with certainty the wave function for
anyone finding a vertical board collapsed to the outcome of the experiment.
That is the content of the subsidiary ‘collapse postulate’ that comes with the
eigenvalue postulate. It sometimes says that your description of a system can
collapse instantly. Many instantaneous collapse examples have been set up to
dramatize the weirdness of quantum mechanics, while they involve nothing
but the collapse of a description of a system that was never intended to be
complete. The exploding Planck mill explains that parts of quantum
measurement paradoxes sometimes have nothing to do with quantum
mechanics. But quantum probability is not trivial, and happens to have more
in store.

Where is Sally? Since the framework of quantum probability is a
mathematical construction, we can’t stop any number of applications made to
amuse ourselves. In this allegory Sally is a two-dimensional (but complex)
person, whose state (1,0) lives in Lawrence, Kansas, which is a US State, and
state (0,1) lives in Paris, France, which is a nation state. Stranger things have
been observed. Today Sam is lonely and uncertain where Sally is. In his mind
Sam proposes the Sally state | Sally>=(1/2,1/2). It would be an insult to Sally
to reduce her to two complex numbers. Also, none of this is to be taken as the
actual opinion of Sam, who holds Sally very dearly. It is nothing but
bookkeeping for certain correlations.

What Sam has in mind is a Born rule probability 1/2 that Sally is in either
state. Misunderstanding the bookkeeping has led to some fake paradoxes.
Light speed communication across the surface of the Earth between
Lawrence and Paris has a time delay of about 0.05 s, which is long enough
for a human to notice. The door opens, Sam sees Sally, and her wave function
collapses from (1/2,1/2) - (1,0) in less time than physical laws should permit.
Did Sally's quantum wave move faster than light? If Sam thinks so, and finds
it mysterious and profound, you should not.

Actually the bookkeeping was inappropriate. Orthogonal vectors should
be used for mutually exclusive states. It is true that (1, 0) and (0, 1) are
orthogonal and potentially appropriate for objects separated by 8000 miles.
Given that the Born probability of (1, 0) is 1/2 Sam made a common error to



assume Ymix=(1/2,1/2) to represent his ‘state’. Meanwhile Yantimix=
(1/2,—1/2) also has 50:50 Born rule probabilities to observe (1, 0). They seem
both equally good. Yet ymix is orthogonal to yantimix, which has Sam
predicting zero probability for conditions that are 50:50 Born rule
probabilities. Is that a paradox?

It is not a paradox, but a misunderstanding, or inappropriate use of
notation. Suppose you know nothing about the elements of an N-dimensional
space. You will be wrong to guess y=(1/N,1/N,...1/N). It is a very definite
particular sharp state, and predicts N = 1 mutually orthogonal vectors will
have zero probability, which amounts to knowing quite a bit of information
(while you had none). If you have no information, you should not be using a
wave function at all.

We cannot develop much of density matrix theory here. Yet we can at
least settle the description of a ‘completely random system’. Such a system
has no preferred directions, and its density matrix is proportional to the unit
matrix, p=1N1NxN. There is no information in this and nothing useful to
measure. It is as far from defining any wave function as mathematically
possible. If you pursue this?!, you will discover that every independent
observable operator A has <A>=tr(Ap)=0.

The upshot is that quantum probability is not the most obvious
bookkeeping scheme. It will take more study than this monograph to master
it. Speciously assigning wave functions may under-describe what's known,
over-describe what's not wanted, or introduce correlations that were not
intended. Schrédinger made a parody ridiculing the description of a cat with
(1/2,1/2). When he introduced the cat he wrote [13]: ‘One can even set up
quite ridiculous cases’, with the intention of highlighting the absurdity of
Bohr's views. Schrodinger's enemies then misrepresented it as adopting their
views!

10.4.4 Quantum probability is not defined by
distributions

Early and often, beginning with section 1.1.2, we warned you that quantum
probability will be wrongly defined when presented with y*{ and statements
about distributions. The 1964 paper by John Bell made physics history by



dramatizing observables not consistent with distributions. Either Bell already
understood that people had been misled to assume distributions, and
entertained himself with contradicting it, or he discovered for himself what he
already knew. To this day, people misreport and misrepresent the outcome,
which is that if you assume quantum probability and the Born rule come from
distributions, it fails in general. Like many or all ‘paradoxes’ of quantum
theory, it is a completely unremarkable fact that only seems remarkable when
you have wrong information.

Letters between Schrodinger and Einstein show they both anticipated that
the Copenhagen presentation contradicted itself. Schrédinger attempted to
show it by creating observables inconsistent with a distribution, but did not
succeed. EPR argued that correlations of subsystems at arbitrary distances
were inconsistent with an independent ‘reality’ of the subsystems, which (as
parcles) the Copenhagen presentation had assumed. Physics waited for Bell
to set up a competing model using distributions, and show it would not work.

Bell's approach went as follows. Suppose systems A and B are described
by an entangled wave function: the EPR example is often used. Suppose a
and b are eigenvalues of operators from measuring A and B, as the most
restrictive measurements assume. Let P(a,b|c)>0 be a classical distribution of
a and b depending on some other random variables c. Add a little detail that
when some particular ¢ occurs, it necessarily and always produces some
definite outcomes, such as a—+ and b - —. (Many have noticed that Bell sets
up a ‘straw man’ distribution model which is not totally compelling, but
continue.) Then find an operator W such that the quantum correlations of
<¥|W | ¥> cannot be reproduced by any such P(a,b|c):

<W>=<y| W|y>#!{dadbdcW(abc)P(a,b | c)P(c).
The substantial difference between the left and right side, and tremendous

freedom to choose |y> and W, give every reason to believe that a theorem
‘can’t always be done’ (symbol #!) should be possible.

That kind of analysis will be tricky, because none of the cases where an
equality is true will help the objective. It's often difficult to express what the
infinite powers of math cannot do, so that Bell was forced to proceed by
algebraically deducing some inequalities obeyed by the right hand side. Then
any quantum mechanical <yj| W |y> violating the inequality falsifies the



existence of a distribution-based description.

Many sources repeat Bell's calculations, but we find it is the kind of
algebraic exercise that happens to teach you very little. You are
understanding Bell's accomplishment and message when you understand that
dramatizing a feature of quantum probability, which was always present in
the Born rule, did not discover anything new. An experimental verification of
the analysis also did not discover anything new. That showed that entangled
states exist, but we already knew that entangled states exist. It is interesting
for states to preserve their entanglement over macroscopic distances: and also
somewhat of a technical stunt to make it happen.

What was actually new, and got many excited, was the language that it
‘rules out the general applicability of the concept of objective (classical)
physical reality’. Those words objective and classical make a difference. Bell
knew he had material to excite popular interest, and deliberately oversold the
results as showing that ‘no hidden variable theory can reproduce quantum
mechanics’. Here ‘hidden variable’ was improperly extended to more than
Bell had shown. It was used to mean any theory where causal, deterministic
physical variables, not themselves statistical quantities, were guided by
background variables like ¢ to produce apparently random outcomes. Bell's
simple model was not general enough to show that: yet a dumbed-down and
sweeping ‘no hidden variable’ statement became popular anyway. (Circular
and true, the kind of hidden variable theories that are not good enough are the
particular sort of classical distribution models of the type made by Bell.
Quantum mechanics itself is loaded with hidden quantum variables that tend
to go unnoticed!)

Bell's work was followed by many variations from many authors. They
all depended on the breakdown of classical distribution concepts, while
usually talking about something else. Many emulated Bell's method by
producing inequalities. Inequalities were so popular that not using an
inequality to express a math fact was news. The abstract of Lucien Hardy's
1993 paper [14] entitled Nonlocality for two particles without inequalities for
almost all entangled states is:

‘It is shown that it is possible to demonstrate nonlocality for two
particles without using inequalities for all entangled states except
maximally entangled states such as the singlet state. The eigenvectors



corresponding to the measurements that must be performed to do this
are exhibited and found to have a particularly simple relationship to
the entangled state.’

‘Exhibiting nonlocality’ means that one can mathematically define long-
range quantum correlations that a model based on distributions of
autonomous, local entities cannot reproduce. We doubt that experimental
stunts can verify every possible long-range quantum correlation that can be
mathematically defined, but there's an active industry in attempting some of
it.

10.4.5 Something weird

As Gell-Mann indicated (section 3.2.3) Bohr's last accomplishment with
quantum mechanics was writing with exponentially increasing obscurancy so
that physicists lost interest in quantum mechanics for 50 years. A 2010
conference?” was sufficiently brave to advertise: “‘Why should young people
be interested in these ideas, when showing interest in quantum foundations
still might harm their careers?’ Yet the development of technology capable of
experimentally testing EPR and Bell-type correlations has reanimated interest
in foundation questions.

All around the world nowadays, experimentalists are entangling systems
and astonishing witnesses with the outcomes of ordinary quantum
mechanics. The lesson every time is that two or more entangled anythings are
not so many things but one unified correlated something, so that words like
‘photons’ fail to work right. Figure 10.9 shows that the human visual system
can see rather deeply into entangled functions, and extract information. The
un-entangled image in the upper left corner has almost no information.






Figure 10.9. A demonstration of the Schmidt or (singular value)
decomposition of an  entangled function @ f(x,y)=) aa
—maxaa(x)Aaba(y). The panels use a — max =1, 2, 5, 20 out of a
possible 324. The original image is a 324 x 450 pixel JPG of the
brilliant mathematician Emmy Noether (1882-1935).

Figure 10.10 adapted from an experimental paper [15] shows an optical
device exploiting pairs of entangled photons. The entanglement is such that
those parcles (or that unified thing) is (or are) emitted from a laser-driven
crystal in back-to-back pairs, with equal and opposite momenta, just as EPR
describe. On the left side of the figure a perforated aperture or mask with a
pattern is placed in front of a lens and a detector called D,. It is illuminated

by the beam moving to the left. The other beam goes in the opposite direction
by a uninterrupted flight in free space. The right side has a movable fiber
optic detector D,, which operates in timing coincidence with D,. Data from

rastering detector D, over the transverse plane on the right hand side finds a

sharp magnified image of the aperture. To be clear, no light goes from the left
side, where the aperture is, over to the right side. Yet on the right side,
detector D, detects the image using entangled things.
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Figure 10.10. Schematic layout of an apparatus producing ‘ghost
images’ by entanglement of photons. A laser-driven crystal emitting
back-to-back correlated photons is shown as BBO. A perforated
aperture with a pattern is on the left side in front of detector D;. The

photons producing a focused ghost image at detector D, is unimpeded,
and never goes through a lens.

One's first impression is that this is impossible magic. The ‘ghost image’
on the right side somehow knows what the left side saw. This first impression
assumes there are two independent, non-interacting photons, which the
experimental evidence contradicts. (Removing the coincidence requirement
DOES yield random photons on either side, with no ghost image formation.)
Yet the next question is whether the data might be explained by classical
physics. When the photon on the left goes through any particular point of the
mask, a classical model has an exactly oriented photon on the other side to
match its direction, event by event. The coincidence detection keeps the
events ordered and different directions from getting mixed up. However that
forgets there's a lens focusing the photons on the left, and no lens on the
right!



We’ll let the reader decide whether a lens on the right should be needed.
In a sense ghost imaging is not more mysterious than a locksmith's key-
cutting machine that reads one template and cuts another in coincidence.
Entanglement is not a necessary feature [16], and classical signals can do
almost the same thing: except for the subtleties of quantum probability of
entanglement, which are so interesting.

10.5 Chapter summary

The chapter began with a statement about the description, sums of products
are generic. If physics had gone differently, a description based on classical
probability and its gross over-description of waves might have been the
default. After assuming distributions of unimaginable complexity, physicists
might be mystified to find patterns of experimental outcomes of rather simple
type, like +, +, —, —, +, —, +, —, —, +, ... whose correlations could not be
described by distributions. This would be quite surprising, because
mathematicians (Kolmogorov) and physicists always assumed classical
probability could describe anything that might ever happen, or be conceived
to happen. If not already known, experiments would have forced scientists to
adopt a larger, and more flexible framework for probability, with the
misnomer, quantum probability. And the subject would not be about
quantization.

As history went, there was an early decision to adopt the Born rule to
define the kind of probability used in the description. The idea of using
classical probability for waves was never seriously considered. If you are
going to use a wave function (or density matrix) for your description, you
will always come in a circle to quantum probability. The lesson of quantum
mechanics is that forcing prior opinions onto your description of nature
seldom works out. Since wave functions and density matrices parameterize
what can be observed, and vice versa—all of it based strictly on what is
observable (section 8.2.3)—the framework is flexible enough. We don’t
know what nature is, and it is not clear whether quantum theory fully
describes it. However, it's not the worst thing. It has not failed yet.

10.6 Suggested reading



There are many books about quantum mechanics. Here in no particular order

dare

our observations about some of them. Book titles are generally

suppressed when author names suffice.

Modern Physics denotes books we must warn you to stop consulting.
Contrary to the ‘ethical code’ of physics teaching, books on modern
physics deliberately plant misconceptions and mistakes for reasons of
expedience. Books such as Krane favor operational authoritarianism:
they tell you the formula, and you execute the drill. Books such as
Serway, Moses and Moyer shoot for sneaky compromises or ‘white lies’.
If you find a cookie-cutter formula in a modern physics book, its
limitations and context will generally be botched, making a recipe for
lifetime incompetence. No book entitled Modern Physics should be
opened after a person opens books entitled Quantum Mechanics.

Bes is an undergrad book that is handsomely concise. It is rigidly
aligned with the Copenhagen school based on authority statements and
eigenvalue equations as first principles. Time evolution is postponed
until the book is nearly over. An interesting chapter deals with quantum
computing.

Griffiths is an undergrad book on wave mechanics. Griffiths has the
highest presentation skills and friendly manners but chooses never to
innovate anything. A calculated level of symbol-clutter and operational
clumsiness keeps students challenged on the wrong tasks. Some teachers
do that deliberately.

Ohanian is an undergrad book-writing professional who is competent
enough. An innovative approach of ladder operators unifies the book
and solves the hydrogen atom. In order to make a buck some of the
material is dumbed-down.

Gasiorowicz is a good book for the transition between undergrad and
graduate level. It starts from nothing, but goes the whole way and in
many cases is cleaner than Griffiths.

Winter is a delightful, hard to find text by a professor from The College
of William and Mary who cared deeply about teaching well.

Bliimel is a 2010 book that concisely summarizes the Copenhagen
tradition, wave—particle duality, etc, and then spends half the book on
modern applications of quantum information that contradict the
Copenhagen tradition. The book is much more thoughtful and complete



on measurement theory than others we reviewed.

Kroemer is a marvelous book from a great master of condensed matter
physics. There's a good deal of fine original material found no place
else. One does notice not much deep thinking about foundations or the
order of presentation.

Robinett is a solid serious undergrad book notable for showing the work
done in calculations in complete and unpretentious straightforward
detail.

Chester is a superstitious little book mixing up basic facts of linear
algebra with profound physical principles and sublime mysteries.
Goswami is an undergrad-level book by a dedicated nuclear theorist who
tries to balance philosophical aspects. It is one of the few that reviews
the struggles, sense, and nonsense of different interpretations of
measurement theory while still discussing physics.

Bohm is a relic of more than 50 years ago when great men struggled to
make sense of quantum theory. Bohm was philosophical yet critical of
the mumbo- jumbo and suspected physics ought to explain physics. The
overall level of this critical treatment is a bit math-challenged and below
the level of undergrad books by now.

Fermi, Notes on Quantum Mechanics is priceless. These handwritten
notes Fermi made preparing for lectures show the amazing simplicity,
directness, and efficiency of one of the greatest physicists in history. The
only flaw is there's not more of it.

Heisenberg was around at the right time and right place with the
masterful skills to produce a masterful book, but it isn’t. Nowadays the
emphasis on the uncertainty relation as a foundation of physical law
appears (to us) deceitful. Certain passages do illustrate the man's adept
math skills.

Sakurai is a standard graduate text. Sakurai was a brilliant theorist
whose incomplete manuscript was patched together by colleagues after
he died unexpectedly. The result notably lacks coherence and unity,
which many notice. It has a good treatment of transformation theory, the
rotation group, and the other material Sakurai actually finished.

Shankar is an undergrad quantum mechanics book attempting to be a
standard graduate text. The methods are usually cumbersome, and
concepts generally don’t really reach the graduate level. Angular



momentum and the rotation group are inexcusably incomplete. The first
chapter on linear algebra is excellent and worth the price of the book.
Dirac wrote the classic text early. Dirac's style is marvelous. He links
together elegant math, clear physical thinking, arbitrary assumptions,
logical gaps, and non-sequiters in a uniform consistent tone. The book is
a gold mine of insight about how the tentative and risky early era of
quantum mechanics got locked in.

Ballentine is one of very few books by a master who has thought long
and deeply to provide a fresh point of view advocating the ensemble
interpretation. It is so much more coherent than the C-presentation that
we believe Copenhagen has already been abandoned (but not the city).
The book is complete and appropriate for a graduate-level course.

Shiff was the graduate text of a previous era. The treatment of the
student is rather cruel. In derivations less accessible methods are chosen
over easy ones, and every sentence is written to make it hard. Shiff is
like Jackson for quantum. Still there is a lot of valuable material.
Landau and Lifshitz is a series across physics representing the ultimate
in cruelty to students. Yet Landau was a great physicist and just
touching his books is a privilege. The quantum mechanics books are
now old-fashioned, and in retrospect naive, given how much Landau
knew and grew. The books are useful for obscure insights and many
worked problems which tend to be hard. Landau will show off his tricks,
but never give them away!

Messiah replaced Shiff with more kindly organization and longer more
complete discussions. It has a somewhat mystical character emphasized
by profound quotations in French. The treatment of angular moment is
good and coverage is vast.

Mertzbacher used to be a text competing with Shiff by giving better
explanations and more physics. It was greatly expanded through several
editions and made more rigid.

Commins’ self-described experimentalist's approach seems to lack the
critical thinking and disbelief of specious theoretical claims we thought
experimental physics was all about. Yet the author was a distinguished
experimental physicist with many awards. The book seeks to be a
monumental summary of all physics from zeroth level to electroweak
quantum field theory.



Liboff is a stuffy unprogressive text with a level too high for an
introduction and too low for graduate courses. ‘Uncertainty as the
foundation of natural law’ plus some remarkable unphysical literalism
display a lack of critical thinking. Yet some topics are done quite well.
Despagnat is a survey by one of the more thoughtful lifetime advocates
that quantum reality can’t be reconciled with concrete realism in any
form. It has good sections comparing different postulations that are not
all consistent or independent.

Bell collects his papers in Speakable and Unspeakable in Quantum
Mechanics. Bell was simultaneously critical of the theory and a little
over-involved. Some of the papers are worth reading to find out what is
not there.

Bialnicky-Birula, Theory of Quanta is a novel volume from an original
thinker. Although conventional in layout there's not enough material to
make a course. At the same time a number of interesting side topics are
done imaginatively.

Van der Waerden is a nice old congenial book with real educational
value and solid thinking.

Feynman, Lectures III was reported to be Feynman's goal in writing
Volumes I and II. Feynman's magic fails when he gets tangled up trying
to derive quantum mechanics from Stern—Gerlach and ad-hoc notation.
The other two volumes on the rest of physics are priceless.

Mahan, Quantum Mechanics in a Nutshell is inspired by Davydov, and
both are very competent and well-organized. It avoids brainwashing
preliminaries and postulates by simply not discussing them. While
intended for the graduate level, it is about solving the Schrodinger
equation and developing approximations, and falls short of developing
transformation theory and much of the theory of angular momentum.
Schwable has at least two books spanning the level from introduction to
graduate topics. The math is skillful and not arranged to disable the
student. The presentation puts everything as cut and dried with no
critical thinking involved.

Greiner and collaborators produced 13 or more books on almost every
topic in theoretical physics. These books repeat what's found in other
books while filling in the algebraic steps other books omit. Some of that
is useful. It is disappointing to see how often they cite other Greiner



books, and few of the actual sources.

e Feynman and Hibbs’ book on path integrals is accessible to undergrads
and novice grad students. The physical reasoning is delightful. The dust
jacket reveals Feynman thought ordinary approaches to quantum
mechanics were deeper than his own. This got omitted from the book,
however.

e Holstein is a collection of relativistic quantum mechanics applications
above the level of Sakurai, and well-suited to a second semester
graduate course. Many topics have masterful treatments not found
anywhere else.

e Sakurai, Advanced Quantum Mechanics, the old version circa 1965, is a
wonderful transition book on relativistic quantum theory leading
towards quantum field theory. Other books of that bygone era such as
Roman have the simple good old stuff that modern books forget to
include.
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The enemies do exist, and they are evil. They glory in Schrodinger's cat, without telling you the cat
died in mid-1930s Germany by cyanide gas, just as millions were being rounded up for the same fate. It
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was Schrodinger's bad luck to predict it, and evil to cover it up.
’In this section the symbol ris not an alternative for x;’but instead r=xT-xZ.
3The identification was correct for the model used, and avoided complicating things too early.

“Kroemer's textbook cites [1]. This book also mentions the density matrix with a single phrase that it
‘would go beyond the scope of this text’.

°<0a|Ob>=<1a|1b>=8ab.
Swe’re using probability as frequency, which is not always wrong.

’Actually Stern and Gerlach used a beam of atomic silver, and the experiment won’t work with
electrons. The quantum postulates old presentations seek to validate won’t prevent unphysical mistakes.

8Sakurai.
9t is also called the ‘singular value decomposition’ and often included in modern software packages.

19Since individual eigenstates were not observed by Stern and Gerlach, we have proposed the
experiment measured the spot operator, whose eigenstates are eigenspots. They were invisible (not
observed!) until developed by the cigar smoke operator, used to blacken them.

Hwhile complex Yj doubles the counting, yj*...yk is Hermitian, so N2 independent elements is the
total.

12The whole point of being lucky is to be rich enough to do something with it.

13The influence of the Copenhagen presentation led to less and less mention of the density matrix in
books written between 1940 and the year 2000. It is mentioned in one phrase by Kroemer and not
mentioned at all by Griffiths. Just as quantum mechanics is having a revival, so is the recognition of the
density matrix.

14Jaynes switched in 1948 to Eugene Wigner as his thesis advisor.
15https://www.aip.org/history—programs/niels—bohr—lib1rary/0ral—hist0rie5/4944
16http://www.baseballlibralry.Com/ballplayers/player.php?name:Moe_Berg{_1902

The phrase in quotes comes from Wikipedia and is so well done we left it alone. But we’re not
perfectly sure what Moe Berg actually said.

180ne should read the original paper, which makes an argument more general than a single example.
19The quote and context come from Bricmont [7]
20 virtual photon has one unit of angular momentum, not zero, but it's a thought experiment!

?IThe trick writes A=A-tr(A)INxN/N+tr(A)INxN/N. The second term is not independent of 1NxN,
leaving the first term that has no trace.

22https://vallico.net/tti/master.html?https://vallico.net/tti/deBB_10/announcement.html.
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