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Preface

The author recently published a book entitled Introduction to Electricity

and Magnetism [Walecka-18]. It is based on an introductory course taught

several years ago at Stanford, with over 400 students enrolled. The only

requirements were an elementary knowledge of calculus and familiarity with

vectors and Newton’s laws; the development was otherwise self-contained.

The lectures, although relatively concise, take one from Coulomb’s law to

Maxwell’s equations and special relativity in a lucid and logical fashion.

Although never presented in an actual course, it occurred to the author

that it would be fun to compose an equivalent set of lectures, aimed at the

very best students, that would serve as a prequel to that Electricity and

Magnetism text. This book has now also been published as Introduction to

Classical Mechanics [Walecka-20]. The goal of this second text is to provide

a clear and concise set of lectures that take one from the introduction and

application of Newton’s laws up to Hamilton’s principle and the lagrangian

mechanics of continuous systems.

Both of these texts on classical physics are meant for initial one-quarter

physics courses. These lectures, aimed at the very best students, assume a

good concurrent course in calculus; they are otherwise self-contained. Both

texts contain an extensive set of accessible problems that enhances and

extends the coverage. As an aid to teaching and learning, the solutions to

these problems have now been published in additional texts [Walecka-19,

Walecka-21].

The present text completes the first-year introduction to physics with a

set of lectures on Introduction to Quantum Mechanics, the very successful

theory of the microscopic world. The Schrödinger equation is motivated

and presented. Several applications are explored, including scattering and

transition rates. The applications are extended to include both quantum

vii
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electrodynamics and quantum statistics. There is a discussion of quan-

tum measurements. The lectures then arrive at a formal presentation of

quantum theory together with a summary of its postulates. A concluding

chapter provides a brief introduction to relativistic quantum mechanics.

An extensive set of accessible problems again enhances and extends the

coverage.

The goal of these three texts is to provide a good, understandable, one-

year introduction to the fundamentals of classical and quantum physics. It

is my hope that students and teachers alike will find the use of these books

rewarding and share some of the pleasure I took in writing them.

Quantum mechanics is a huge field, and no attempt has been made

to provide a complete bibliography. The references given in the text are

only directly relevant to the discussion at hand. It is important, however,

to mention some of the good, existing books that the author has found

particularly useful, such as [Wentzel (1949); Bjorken and Drell (1964);

Bjorken and Drell (1965); Schiff (1968); Itzykson and Zuber (1980);

Landau and Lifshitz (1981); Shankar (1994); Merzbacher (1997); Gottfried

and Yan (2004); Feynman and Hibbs (2010)]. In addition, appendix B lists

some significant names in quantum mechanics, both in its theory and in its

applications.

I would like to once again thank my editor, Ms. Lakshmi Narayanan,

for her help and support on this project. I am also grateful to Paolo Amore

for his reading of the manuscript.

John Dirk Walecka

Governor’s Distinguished CEBAF

Professor of Physics, emeritus

College of William and Mary

Williamsburg, Virginia

January 8, 2021
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Chapter 1

Motivation

1.1 Classical Optics

Consider a non-dispersive wave which is the real part of

Ψ(x, t) = ei(kx−ωt) = eik(x−ct) ; ω = kc (1.1)

Here c is the velocity of the wave, and the frequency and wavelength are

related by

ω = 2πν = kc = 2π
c

λ
(1.2)

As we have seen, this could be an electromagnetic wave in vacuum, a trans-

verse wave on a string under tension, or the sound wave in a medium. This

wave satisfies the wave equation

∂2Ψ(x, t)

∂x2
=

1

c2
∂2Ψ(x, t)

∂t2
; wave equation (1.3)

We have also seen that a linear combination of two such waves with

slightly different wavenumbers k, produces an amplitude modulated signal.

A more general linear combination can produce a localized wave packet, or

pulse.

Huygen’s principle states that each point on a wavefront acts as a source

of an outgoing spherical wave. From this, and its generalizations, one de-

rives single-slit diffraction, two-slit and multi-slit interference, and most of

classical wave optics.1

1See Probs. 1.1–1.2. For a more detailed discussion here, see [Wiki (2021)].

1



April 12, 2021 16:29 EMcon.tex,ws-book9x6-9x6 12222-main page 2

2 Introduction to Quantum Mechanics

1.2 Planck Distribution

Early in the twentieth century, Planck was studying the distribution of

energy as a function of frequency for the electromagnetic radiation in a

cavity. Normal modes are uncoupled simple harmonic oscillators. The

classical equipartition theorem says that the energy of a simple harmonic

oscillator at an absolute temperature T is

〈ε(ν)〉 = kBT ; equipartition for s.h.o. (1.4)

where kB is Boltzmann’s constant

kB = 1.381× 10−23 J/oK ; Boltzmann’s constant (1.5)

Since there is no limit to how small the wavelength can be, or how high

the frequency, this classical result says there should be an ever-increasing

energy as a function of frequency for the radiation in a cavity, the so-called

ultraviolet catastrophe.2

To fit his data, Planck employed an empirical expression of the form

〈ε(ν)〉 = hν

ehν/kBT − 1
; Planck distribution (1.6)

where h is a constant obtained from the fit, now known as Planck’s constant

h

2π
≡ � = 1.055× 10−34 Js ; Planck’s constant (1.7)

Note that at low frequency, the Planck distribution reproduces the equipar-

tition result

hν

ehν/kBT − 1
→ kBT ; hν � kBT (1.8)

while at high frequency, it now disappears exponentially

hν

ehν/kBT − 1
→ hνe−hν/kBT ; hν � kBT (1.9)

One can ask where this empirical Planck distribution might come from.

Suppose that in each mode with frequency ν in the cavity it is possible to

have any number n of photons, each with energy

ε = hν ; photon energy (1.10)

2See Prob. 1.3.
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Then the mean energy in the mode at the temperature T follows from

an elementary statistical calculation with the Boltzmann weighting factor

e−nhν/kBT as

〈ε(ν)〉 =
∑∞

n=0(nhν)e
−nhν/kBT∑∞

n=0 e
−nhν/kBT

= − d

d(1/kBT )
ln

( ∞∑
n=0

e−nhν/kBT

)
(1.11)

The sum is just a geometric series3

∞∑
n=0

xn =
1

1− x
(1.12)

It follows that

〈ε(ν)〉 = d

d(1/kBT )
ln
(
1− e−hν/kBT

)

=
hν

ehν/kBT − 1
(1.13)

This reproduces Planck’s distribution.

1.3 Photons

The fact that light waves actually consist of photons, which manifest par-

ticle properties, was demonstrated by Einstein in his examination of the

photoelectric effect, where light shining on various solids ejects electrons.

The photons of light each have an energy

ε = hν ; photon (1.14)

We know the momentum flux in an electromagnetic wave is 1/c times the

energy flux, and hence each photon in light also has a momentum

p =
hν

c
; photon (1.15)

Photons are now observed every day in the laboratory as single events in

low-intensity radiation detectors.

3Note e−nhν/kBT =
(
e−hν/kBT

)n
.
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Sound waves in materials also regularly exhibit particle properties

through phonons, which satisfy analogous relations to the above.4

1.4 Davisson–Germer Experiment

We have seen that waves exhibit particle properties. The Davisson–Germer

experiment in 1927 showed that particles also exhibit wave properties. They

took electrons from an oven, let them impinge on a crystal, and looked for

Bragg diffraction maxima (Fig. 1.1).

detector

oven
crystal

electrons

Fig. 1.1 Sketch of Davisson–Germer experiment.

They observed a diffraction pattern as in classical optics,5 and quantum

mechanics was on!

4Remember that c is the appropriate wave velocity.
5Again, see [Wiki (2021)] for more details.
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Chapter 2

Wave Packet for Free Particle

2.1 de Broglie Relation

In attempting to write a wave relation for a non-relativistic particle of mass

m, de Broglie appealed to the analogous photon relations from the above.

He associated a wavelength with the momentum according to

p = mv = �k =
h

λ
; de Broglie wavelength (2.1)

As one immediate consequence, if one fits an integral number n of wave-

lengths around a circle of radius a, then

2πa = nλ =
nh

mv
(2.2)

The angular momentum |�L | of a particle moving around in the circle is

then

|�L | = mva = n� ; angular momentum (2.3)

As we have seen, this is precisely the quantization condition that leads to

the Bohr theory of the one-electron atom!1

2.2 Schrödinger Equation

With the de Broglie relation, and the angular frequency ω(k) given by

ε = �ω(k) =
p2

2m
=

(�k)2

2m
(2.4)

1See Prob. 1.5.

5
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the wave in Eq. (1.1) now takes the dispersive form

Ψ(x, t) = ei[kx−ω(k)t] = ei[kx−(�k2/2m)t] (2.5)

Appropriate linear combinations of these waves can again describe a local-

ized wave packet.2

Let us ask what wave equation this Ψ(x, t) satisfies. Evidently

i�
∂Ψ(x, t)

∂t
= − �

2

2m

∂2Ψ(x, t)

∂x2
(2.6)

The momentum of the particle is p = �k. This quantity is obtained from

the wave in Eq. (2.5) by taking a partial derivative with respect to x. Let

us therefore define the momentum p to be the differential operator

p ≡ �

i

∂

∂x
; momentum (2.7)

and write the hamiltonian H(p) for a free particle as

H =
p2

2m
= − �

2

2m

∂2

∂x2
; hamiltonian (2.8)

Then this wave Ψ(x, t) for a free particle satisfies the Schrödinger equation

i�
∂Ψ(x, t)

∂t
= HΨ(x, t) ; Schrödinger equation (2.9)

We make a few comments on this result:

• This equation is inherently complex, so then is the wave function

Ψ(x, t). Hence, we will have to arrive at some new physical inter-

pretation of Ψ(x, t). We will proceed to investigate this below;

• The differential equation explicitly contains Planck’s constant �;

• The differential equation is linear in the time derivative, and thus it

looks more like a complex diffusion equation than a wave equation;

• It involves the classical hamiltonian H(p, x), where p now becomes

a differential operator involving Planck’s constant

p =
�

i

∂

∂x
(2.10)

2See Prob. 2.7; see also [Walecka (2008)].
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• The momentum p and the position x now satisfying the basic com-

mutation relation

[p, x]Ψ(x, t) ≡ (px− xp)Ψ(x, t) =
�

i
Ψ(x, t) (2.11)

; commutation relation

• In fact, the argument can be turned around. One says that the sys-

tem is quantized by imposing the canonical commutation relation

in Eq. (2.11), which can be satisfied by writing the momentum as

the differential operator in Eq. (2.10).

2.3 Interpretation

The complex Schrödinger wave function Ψ(x, t), for which we write the

underlying differential equation in quantum mechanics, is not a physical

observable. As you might imagine, this leads to substantial complications.

On the other hand, we do know intuitively that the wave function should

be large where the particle is, and small where it is not. Born suggested

that we interpret the square of the modulus of Ψ(x, t) as the probability

density of finding the particle at the position x at the time t

ρ(x, t) ≡ |Ψ(x, t)|2 = Ψ∗(x, t)Ψ(x, t) ; probability density (2.12)

Here Ψ∗(x, t) is the complex conjugate of Ψ(x, t).

We should at least find a continuity equation for the probability density

ρ(x, t), and the consequent conservation of probability, in the theory. Let

us try to establish that. Consider

∂ρ

∂t
=

∂Ψ∗(x, t)
∂t

Ψ(x, t) + Ψ∗(x, t)
∂Ψ(x, t)

∂t
(2.13)

The complex conjugate of the Schrödinger equation gives

−i�
∂Ψ∗(x, t)

∂t
= [HΨ(x, t)]

∗
(2.14)

Hence

∂ρ

∂t
=

1

i�

{
Ψ∗(x, t) [HΨ(x, t)]− [HΨ(x, t)]

∗
Ψ(x, t)

}
(2.15)
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Insertion of the differential form ofH = −�
2∂2/∂x2 allows this to be written

as

∂ρ

∂t
= −∂S(x, t)

∂x
(2.16)

where

S(x, t) =
1

2m

{
Ψ�(x, t)

�

i

∂Ψ(x, t)

∂x
+

[
�

i

∂Ψ(x, t)

∂x

]∗
Ψ(x, t)

}

=
1

2m

{
Ψ�(x, t)pΨ(x, t) + [pΨ(x, t)]

∗
Ψ(x, t)

}
(2.17)

; probability flux

Thus we have achieved our continuity equation for the probability density.

Note that the probability flux S(x, t) is just a mean value of p/m for the

particle, or its mean velocity. Note also that S(x, t) is explicitly real.

2.4 Stationary States

Let us look for separated solutions to the partial differential Schrödinger

equation

Ψ(x, t) = Φ(t)ψ(x) (2.18)

We will eventually build the general solution out of these. Substitution into

the equation, and division by Ψ = Φψ, gives

i�
1

Φ(t)

dΦ(t)

dt
=

1

ψ(x)
Hψ(x) (2.19)

In order for this to hold for all (x, t), both expressions must simply be equal

to some constant E.

For the first term, one then has

i�
dΦ(t)

dt
= EΦ(t) (2.20)

The solution to this equation is

Φ(t) = e−iEt/� (2.21)

For the second term, one has

Hψ(x) = Eψ(x) (2.22)
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This is a differential eigenvalue equation, where E is the eigenvalue, and

ψ(x) is the eigenfunction. Multiply this equation on the left by ψ∗, and
integrate over the appropriate range in x. This gives∫

dxψ∗(x)Hψ(x)∫
dx |ψ(x)|2 = E (2.23)

Let us assume that the hamiltonian is hermitian and satisfies∫
dxψ∗(x)Hψ(x) =

∫
dx [Hψ(x)]

∗
ψ(x) ; hermitian (2.24)

We will discuss this property is some detail below. In this case, one has

E = E∗ ; real (2.25)

The eigenvalue E of the hermitian hamiltonian H is real, and since it is

just the mean value of the hamiltonian by Eq. (2.23), we can identify it as

the energy of the system.

The separated solution thus has the form

Ψ(x, t) = ψ(x)e−iEt/� (2.26)

If this is substituted into Eqs. (2.12) and (2.17), one has

ρ(x) = |ψ(x)|2

S(x) =
1

2m

{
ψ�(x)pψ(x) + [pψ(x)]

∗
ψ(x)

}
(2.27)

The probability density and probability current are independent of time,

and the separated solution in Eq. (2.26) is known as a stationary state.

2.5 Eigenfunctions and Eigenvalues

Let us start with the simplest case of the eigenfunctions and eigenvalues of

the momentum operator

pψ(x) =
�

i

dψ(x)

dx
= �kψ(x) (2.28)

Here we have denoted the eigenvalues by �k. The solutions to this equation

are

ψ(x) ∝ eikx (2.29)
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Now it is crucial to supply some boundary conditions for the problem.

Here we shall just consider the simplest case of periodic boundary conditions

(p.b.c.). Imagine the particle is running around a large circle of length L,

and let x denote the distance along the circle (see Fig. 2.1).

0L

x

Fig. 2.1 Free particle going around a large circle of length L, with the distance x along
the circle. Basis for periodic boundary conditions (p.b.c.).

The p.b.c. in this case is

ψ(x+ L) = ψ(x) ; p.b.c. (2.30)

The eigenvalues of the momentum then follow immediately through

kn =
2πn

L
; n = 0,±1,±2, · · · (2.31)

The normalized eigenfunctions are

ψn(x) =
1√
L
e2πinx/L (2.32)

A simple calculation shows these solutions are orthonormal∫ L

0

dxψ∗
n(x)ψm(x) = δm,n (2.33)

where δm,n is the Kronecker delta

δm,n = 1 ; if m = n

= 0 ; if m 
= n (2.34)

Now consider the following expression∫ L

0

dxψ∗
m(x)pψn(x) =

�

i

∫ L

0

dxψ∗
m(x)

dψn(x)

dx
(2.35)
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A partial integration gives∫ L

0

dxψ∗
m(x)

dψn(x)

dx
= [ψ∗

m(x)ψn(x)]
L
0 −

∫ L

0

dx
dψ∗

m(x)

dx
ψn(x) (2.36)

With our boundary conditions, the first term on the r.h.s. vanishes, and

hence the momentum operator p is hermitian∫ L

0

dxψ∗
m(x)pψn(x) =

∫ L

0

dx [pψm(x)]
∗
ψn(x) ; hermitian (2.37)

Note that the hermiticity of the operator depends crucially on the boundary

conditions in the problem.

It is evident that the above momentum eigenfunctions are also eigen-

functions of the hamiltonian H = p2/2m

Hψn(x) = Enψn(x)

En =
(�kn)

2

2m
(2.38)

A repetition of the previous calculation shows that the hamiltonian H =

p2/2m is also hermitian [see Eq. (2.24)].

These stationary states for a particle going around in a circle are eigen-

states of momentum, with a discrete quantum difference

�Δk =
2π�

L
(2.39)

between the eigenvalues. The probability density in each stationary state

is constant

ρn(x) = |ψn(x)|2 =
1

L
(2.40)

There is no preferred position on the circle.

2.6 General Solution

Let us try to construct the general solution to the Schrödinger equation for

a free particle moving around the circle from these separated solutions

Ψ(x, t) =
∑
n

cnψn(x)e
−iEnt/� ; general solution (2.41)

Since the Schrödinger equation is linear, the principle of superposition holds,

and any linear combination of solutions is again a solution.
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The Schrödinger equation is first order in the time derivative, so one has

to specify the wave function everywhere in space at the initial time (say

t = 0) to specify the solution

Ψ(x, 0) ≡ g(x) =
∑
n

cn ψn(x) (2.42)

Use the orthonormality of the eigenfunctions to determine the expansion

coefficients

cm =

∫ L

0

dxψ∗
m(x)g(x) (2.43)

The functions ψn(x) form a complete set, and it is known that an arbitrary

piecewise continuous function can be expanded in such a complex Fourier

series.3

3See [Fetter and Walecka (2003)]; see also Prob. 9.1.
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Chapter 3

Include Potential V (x)

3.1 Schrödinger Equation

Let us try and extend the Schrödinger equation to describe a non-relativistic

particle of mass m moving in a real potential V (x). An evident approach is

to just appeal to our classical mechanics arguments and extend the hamil-

tonian by

p2

2m
→ p2

2m
+ V (x) (3.1)

Let us see what happens to our previous quantum mechanics arguments if

we work with the following hamiltonian

H(p, x) =
p2

2m
+ V (x) ; hamiltonian (3.2)

We will continue to write the momentum in the Schrödinger equation as

p =
�

i

∂

∂x
; momentum (3.3)

The hamiltonian is still hermitian, since a real potential is hermitian∫
dxψ∗(x)V ψ(x) =

∫
dx [V ψ(x)]

∗
ψ(x) ; hermitian (3.4)

The separated solutions are then again stationary states

Ψ(x, t) = ψ(x)e−iEt/� (3.5)

where E is the real energy∫
dxψ∗(x)Hψ(x)∫

dx |ψ(x)|2 = E (3.6)

13
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The potential cancels on the r.h.s. of Eq. (2.15)

1

i�

{
Ψ∗(x, t) [VΨ(x, t)]− [VΨ(x, t)]

∗
Ψ(x, t)

}
= 0 (3.7)

Thus the argument on the continuity equation for the probability density

goes through unaltered

∂ρ(x, t)

∂t
+

∂S(x, t)

∂x
= 0 ; continuity equation (3.8)

where

ρ(x, t) = |Ψ(x, t)|2 ; probability density

S(x, t) =
1

2m

{
Ψ�(x, t)pΨ(x, t) + [pΨ(x, t)]

∗
Ψ(x, t)

}
(3.9)

; probability flux

In particular, the probability density and flux are still time-independent in

the stationary states

ρ(x) = |ψ(x)|2 ; stationary states

S(x) =
1

2m

{
ψ�(x)pψ(x) + [pψ(x)]

∗
ψ(x)

}
(3.10)

3.2 Particle in a Box

Before investigating the general boundary conditions, let us first consider

another simple physical situation where the potential is repulsive and grows

very large. The potential then effectively presents a wall to the particle

where the wave function must vanish. If a particle moves in one dimension

along the x-axis and is in a box of length L, the boundary conditions become

(see Fig. 3.1)

ψ(0) = ψ(L) = 0 ; particle in box (3.11)

The energy eigenstates in this case are

ψn(x) =

√
2

L
sin knx

kn =
nπ

L
; n = 1, 2, 3, · · · (3.12)
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0 L
x

Fig. 3.1 Free particle moving in a one-dimensional box of length L, with the distance
x along the axis. There is an infinite repulsive potential, or wall, on both sides.

The corresponding energy eigenvalues are

En =
(�kn)

2

2m
=

(�πn)2

2mL2
(3.13)

The energy eigenstates are no longer also eigenstates of momentum,

since now the particle is bouncing off the walls; however, the momentum

operator is still hermitian since the boundary term on the r.h.s. of Eq. (2.36)

still vanishes

[ψ∗
m(x)ψn(x)]

L
0 = 0 (3.14)

We show the first four eigenfunctions and corresponding probability

densities in Figs. 3.2 and 3.3. If one has some way of repeatedly observing

the location of the particle in these stationary states, then one will indeed

observe the spatial distribution in Fig. 3.3. This is a real, quite amazing,

consequence of quantum mechanics!

The general solution to the problem of a non-relativistic particle in a

one-dimensional box is constructed exactly as in the last chapter

Ψ(x, t) =
∑
n

cnψn(x)e
−iEnt/� ; general solution (3.15)

The eigenfunctions again satisfy the orthonormality condition

∫ L

0

dxψ∗
n(x)ψm(x) = δm,n (3.16)

The expansion coefficients are thus obtained from the initial condition just
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as before

Ψ(x, 0) ≡ g(x) =
∑
n

cn ψn(x)

cm =

∫ L

0

dxψ∗
m(x)g(x) (3.17)

The functions ψn(x) form a complete set, and it is known that an arbitrary

piecewise continuous function can be expanded in such a Fourier sine series.1

Fig. 3.2 First four wave functions of a particle in a one-dimensional box of length L.
Taken from [Amore and Walecka (2013)].

3.3 Boundary Conditions

The separated Schrödinger equation is a second-order differential equation

in space. With no additional input, the evident boundary condition is to

ask that the physically acceptable solutions, and their first derivatives, be

continuous

ψ(x), ψ′(x) continuous ; boundary conditions (3.18)

1Again, see [Fetter and Walecka (2003)].
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Fig. 3.3 Probability densities corresponding to the first four wave functions of a particle
in a one-dimensional box of length L. Taken from [Amore and Walecka (2013)].

This sounds so obvious, but as we shall now see, this has essential, and

quite unexpected, consequences.

3.4 Barrier Penetration

Consider a non-relativistic particle moving in one dimension against a bar-

rier of height V0 extending for all x > 0. Suppose its energy is less than

the barrier height. Then classically it can never get into the barrier, since

its kinetic energy is a positive definite quantity

E =
m

2
ẋ2 + V0 ; x > 0

E − V0 =
m

2
ẋ2 ≥ 0 (3.19)

Let us now ask what happens in quantum mechanics with the above

boundary conditions. Consider a stationary state with an energy E < V0

below the barrier. To the left of the barrier, we have both an incident and

reflected wave (see Fig. 3.4)

ψ(x) = eikx + a e−ikx ; x < 0 (3.20)
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V0

E

x

Fig. 3.4 Free particle moving in one dimension against a barrier of height V0 with

E < V0. There is an incident and reflected wave, as well as a decaying wave inside the
barrier.

Inside the barrier, the Schrödinger equation reads[
− �

2

2m

d2

dx2
+ V0

]
ψ(x) = Eψ(x) ; x > 0 (3.21)

This can be rearranged to read

d2ψ(x)

dx2
= κ2ψ(x) ; x > 0

κ2 ≡ 2m(V0 − E)

�2
(3.22)

The acceptable solution inside the barrier, which extends out to infinity, is

evidently

ψ(x) = b e−κx ; x > 0 (3.23)

Let us now match the wave functions, and their first derivatives, at the

origin x = 0

1 + a = b

ik(1− a) = −κb (3.24)

The solution to these equations gives

b =
2k

k + iκ
(3.25)

Several features of this result are of interest:

• In contrast to the classical result, there is now a finite probability

of finding the particle inside the barrier;
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• This comes from our choice of boundary conditions in Eq. (3.18).

We might, instead, have just imposed the classical result ψ(0) = 0.

This would have been incorrect;

• As the barrier height increases, that is as κ → ∞, the amplitude

b → 0. The amplitude to find the particle inside the barrier van-

ishes, and in this limit we indeed have a wall;

• If the barrier were to be of finite spatial extent, there would be some

amplitude for the wave to actually get through it.2 This barrier

penetration is entirely a quantum effect! It is now observed every

day in the laboratory.

3.5 Bound States

As another application of the one-dimensional Schrödinger equation, con-

sider the lowest-energy ground state in an attractive square-well potential

V (x) = −V0 ; −L < x < L (3.26)

Here V0 > 0. We are looking for a bound state with (see Fig. 3.5)

E = −Eb < 0 ; bound state (3.27)

The ground state will be symmetric, and so we only have to consider x > 0.

x

-E
b

-V
0

L-L

Fig. 3.5 Bound ground state in a square-well potential in one dimension. Here we make
the minus signs explicit, with V = −V0 < 0, and E = −Eb < 0. We are looking for the
symmetric ground-state eigenfunction, with no nodes and minimum curvature.

2See, for example, [Walecka (2008)].
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Inside the potential, we want the symmetric solution with minimum

curvature, and so

ψ(x) = a cos (κix) ; x < L

κ2
i =

2m

�2
(V0 − Eb) (3.28)

Outside the potential, since we seek the bound state confined by the poten-

tial, we keep just the decreasing exponential

ψ(x) = b e−κox ; x > L

κ2
o =

2m

�2
Eb (3.29)

Now match the wave functions and their derivatives at x = L. Better

yet, match the logarithmic derivative, which is the ratio of the derivative

to the function, since one then gets rid of the amplitudes. Thus, with a

change in sign,

κi tan (κiL) = κo ; eigenvalue equation (3.30)

Given V0, this transcendental eigenvalue equation must be solved numeri-

cally for Eb. Fortunately, we can readily extract two limiting cases:

(1) Suppose V0 is very large, then Eb will also be very large, and so

will the r.h.s. of Eq. (3.30). Now adjust V0. Start with V0 = Eb, in which

case the l.h.s. vanishes. Move V0 away from Eb. By the time one gets to

(κiL) = π/2, one will have found a solution to Eq. (3.30) since the l.h.s. is

infinite at that point. Hence, as V0 → ∞ one has

Eb = V0 − �
2

2m

( π

2L

)2
; V0 → ∞ (3.31)

When the well is very deep, the ground state looks just like the ground

state of a particle in a one-dimensional box of length 2L.

(2) Suppose V0 goes to zero. Eb then also goes to zero, and the r.h.s.

of Eq. (3.30) is very small.3 Again, start with V0 = Eb in which case the

l.h.s. vanishes. Move V0 away from Eb a little. An expansion of the l.h.s.

of Eq. (3.30) for small (κiL) gives

κi(κiL) = κo (3.32)

3The wave function now falls off only very slowly outside of the potential.
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It is best to write this in dimensionless form. Introduce

v0 ≡ 2mL2

�2
V0 ; εb ≡ 2mL2

�2
Eb (3.33)

The eigenvalue Eq. (3.32) then reads

v0 − εb =
√
εb ; v0 → 0 (3.34)

As v0 → 0, the solution to this equation is

εb = v20 ; v0 → 0 (3.35)

For the attractive square-well in one dimension with v0 → 0, there will

always be a bound ground state with this binding energy εb. Furthermore,

in this state, the normalized wave function exists almost entirely outside of

the potential! Again, a quite amazing result of quantum mechanics.

3.6 Higher Dimensions

So far, for simplicity, we have worked in just one dimension where the

Schrödinger equation reads[
− �

2

2m

∂2

∂x2
+ V (x)

]
Ψ(x, t) = i�

∂Ψ(x, t)

∂t
(3.36)

Here the partial derivatives imply that the other variable in the set (x, t) is

to be kept constant. To increase the number of dimensions, we can simply

follow our work on the wave equation and replace

∂2

∂x2
→ ∇2 (3.37)

where ∇2 is the laplacian

∇2 =
∂2

∂x2
; one dimension

=
∂2

∂x2
+

∂2

∂y2
; two dimensions

=
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
; three dimensions (3.38)

This is equivalent to writing the Schrödinger equation as

HΨ(�x, t) =

[
�p 2

2m
+ V (�x )

]
Ψ(�x, t) = i�

∂Ψ(�x, t)

∂t
(3.39)
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and expanding the momentum to read

pj =
�

i

∂

∂xj
; j = 1, 2, · · · (3.40)

where the index j now labels the cartesian axes.

As one example, consider a particle of mass m in a square two-

dimensional box with sides L. Here the boundary conditions are those

of walls, and the eigenfunctions and eigenvalues are evidently

ψnx,ny
(x, y) =

(
2

L

)
sin
(nxπx

L

)
sin
(nyπy

L

)
; (nx, ny) = 1, 2, 3, · · ·

Enx,ny
=

�
2π2

2mL2

(
n2
x + n2

y

)
(3.41)

The general solution to the Schrödinger equation is correspondingly

Ψ(x, y, t) =
∑
nx

∑
ny

cnx,nyψnx,ny (x, y) e
−iEnx,ny t/� (3.42)

3.7 Perturbation Theory

Suppose the hamiltonian has an additional small piece δV (x), which makes

the Schrödinger equation difficult to solve analytically

H → H0 + δV (x) (3.43)

We return to Eq. (3.6)

E =

∫
dxψ∗(x)Hψ(x)∫

dx |ψ(x)|2 =

∫
dxψ∗(x)[H0 + δV (x)]ψ(x)∫

dx |ψ(x)|2 (3.44)

Let us use the eigenfunction ψn(x) of H0 in this expression to obtain

En = E0
n +

∫
dxψ∗

n(x)[δV (x)]ψn(x)∫
dx |ψn(x)|2 (3.45)

This provides the first-order perturbation theory expression for the shift in

the eigenvalue

δEn =

∫
dxψ∗

n(x)[δV (x)]ψn(x)∫
dx |ψn(x)|2 ; perturbation theory (3.46)

The small shift in the eigenvalue is the integral of the perturbation over the

eigenfunction.
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As an example, suppose that with the particle in the box in Fig. 3.1

there is a small, narrow potential step at the midpoint

δV (x) = ν0 ;

∣∣∣∣x− L

2

∣∣∣∣ < l (3.47)

where l � L. The eigenfunctions are
√

2/L sin (nπx/L). For odd n, the

magnitude of the sine is unity at the midpoint where x = L/2. For even n,

it vanishes there.4 Hence, for l � L, one has

δEn = 4ν0
l

L
; n = 1, 3, 5, · · ·

= 0 ; n = 2, 4, 6, · · · (3.48)

3.7.1 Non-Degenerate Perturbation Theory

Let us make the analysis more general. We want to solve for the eigenfunc-

tions and eigenvalues in the Schrödinger equation

Hψ(x) = [H0 + δV (x)]ψ(x) = Eψ(x) (3.49)

Expand the wave function ψ(x) in the complete set of eigenstates of H0

ψ(x) =
∑
m

cm ψm(x)

H0ψm(x) = E0
mψm(x) (3.50)

Substitute this in the above equation∑
m

(
E − E0

m

)
cmψm(x) = δV (x)ψ(x) (3.51)

Now multiply by ψ∗
n(x) on the left, integrate over x, and use the orthonor-

mality of the eigenfunctions

cn =
1

E − E0
n

∫
dxψ∗

n(x)δV (x)ψ(x) (3.52)

We now make a rather unusual choice of norm for ψ(x)

cn = 1 ; choice of norm (3.53)

Let us discuss this:

• This choice is for a given n;

4See Figs. 3.2 and 3.3.
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• The Schrödinger equation is a homogeneous differential equation,

and any norm of ψ(x) can be chosen, as long as physical results are

calculated from expressions analogous to Eq. (2.23);

• This choice will yield (ψ → ψn, E → E0
n) as δV → 0, which allows

us to focus on the evolution of a given eigenfunction and eigenvalue

as the perturbation is turned on;

• As long as no denominators vanish, we then have the following

exact results

ψ(x) = ψn(x) +
∑
m �=n

ψm(x)

E − E0
m

∫
dy ψ∗

m(y)δV (y)ψ(y)

E = E0
n +

∫
dxψ∗

n(x)δV (x)ψ(x) (3.54)

This comprises a complicated inhomogeneous integral equation for

ψ(x) and E.

Although the above expression is complicated, we obtain very useful

results by consistently expanding as a power series in δV !

ψ(x) = ψn(x) +
∑
m �=n

ψm(x)

E0
n − E0

m

∫
dy ψ∗

m(y)δV (y)ψn(y) + · · ·

E = E0
n +

∫
dxψ∗

n(x)δV (x)ψn(x)

+
∑
m �=n

1

E0
n − E0

m

∣∣∣∣
∫

dy ψ∗
m(y)δV (y)ψn(y)

∣∣∣∣
2

+ · · · (3.55)

This is non-degenerate perturbation theory, where we have assumed that

none of the denominators vanish. Note that a given order in δV in the

wave function always yields the energy shift to one higher order.

Problems 3.5 and 3.6 contain some applications of these results. If there

is degeneracy present, then one has to get fancier with the perturbation

theory.5

5See, for example, [Walecka (2013)].
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Chapter 4

Scattering

We turn to some elementary considerations on the scattering of a particle

in three dimensions from a spherically symmetric potential V (r).

4.1 Incident Plane Wave

Suppose we prepare a particle in a state of definite incident momentum

ψinc(�x) = ei
�k·�x ; �p = ��k (4.1)

This is also an eigenstate of energy, with

E =
(��k )2

2m
(4.2)

It satisfies the free Schrödinger equation

(∇2 + k2
)
ψinc(�x) = 0 (4.3)

Since we are eventually going to compute ratios of fluxes, the choice of

overall norm is immaterial.

Now use �k · �x = kr cos θ and expand the plane wave in a complete set

of functions of cos θ

eikr cos θ =
∑
l

(2l + 1)il jl(kr)Pl(cos θ) (4.4)

25
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Here Pl(cos θ) is a Legendre polynomial satisfying∫ 1

−1

d cos θ Pl(cos θ)Pl′(cos θ) =
2

2l + 1
δl,l′

P0(cos θ) = 1 ; P1(cos θ) = cos θ ; P2(cos θ) =
1

2
(3 cos2 θ − 1)

; etc. (4.5)

We can then solve for the amplitude jl(kr) according to

jl(kr) =
1

2il

∫ 1

−1

d cos θ Pl(cos θ)e
ikr cos θ (4.6)

This defines the non-singular spherical Bessel function jl(kr). Let us com-

pute the first two, with ρ ≡ kr and μ ≡ cos θ,

j0(ρ) =
1

2

∫ 1

−1

dμ eiρμ =
1

2iρ

(
eiρ − e−iρ

)
=

sin ρ

ρ

j1(ρ) =
1

2i

∫ 1

−1

dμμeiρμ = −dj0(ρ)

dρ
=

sin ρ

ρ2
− cos ρ

ρ
(4.7)

Note that through this order1

jl(ρ) → ρl

(2l + 1)!!
; ρ → 0

jl(ρ) → 1

ρ
cos [ρ− (l + 1)π/2] ; ρ → ∞ (4.8)

where (2l + 1)!! = 1 · 3 · 5 · · · (2l + 1).

4.2 S-Wave Scattering

The separated solutions in Eq. (4.4) satisfy the Schrödinger equation in

spherical coordinates. Let us focus on the l = 0 term, which is the dominant

term at low energy where kr → 0,

(∇2 + k2
)
j0(kr) =

(∇2 + k2
) sin (kr)

kr
= 0 (4.9)

Evidently the radial part of the laplacian in spherical coordinates is

∇2 .
=

1

r

(
∂2

∂r2

)
r (4.10)

1These relations actually hold to all orders; see also Prob. 4.2.
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for then the above becomes2

(−k2 + k2
) sin (kr)

kr
= 0 (4.11)

Let us now include a potential V (r), and work at very low energy. The

separated l = 0 Schrödinger equation, or s-wave equation, becomes[
1

r

∂2

∂r2
r − v(r) + k2

]
ψ(r) = 0 ; v(r) ≡ 2m

�2
V (r) (4.12)

Let us define

ψ(r) ≡ u(r)

r
; s-wave (4.13)

The s-wave Schrödinger equation for u(r) then becomes[
d2

dr2
− v(r) + k2

]
u(r) = 0 ; s-wave eqn (4.14)

4.3 Spherical Square Well

Let us solve the s-wave Schrödinger equation for an attractive square-well

potential of the form

v(r) = −v0 ; r < d (4.15)

Outside the potential we will have some linear combination of sine and

cosine, which we can write

uout(r) = A sin (kr + δ0) ; r > d (4.16)

where δ0 is the s-wave phase shift. Inside the potential, if we assume there

is no bound-state and keep just the solution that is non-singular at the

origin, we have

uin(r) = B sin (κr) ; r < d

κ2 ≡ k2 + v0 (4.17)

2The laplacian in spherical coordinates is actually

∇2 =
1

r2
∂

∂r

(
r2

∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2

The first term is the same as in Eq. (4.10).
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Upon equating the logarithmic derivative at the potential boundary, we

obtain an equation for the phase shift δ0(k)

k cot (kd+ δ0) = κ cot (κd) (4.18)

4.4 Scattering Boundary Condition

We first note that a spherical wave going out from the origin is a solution

to the Schrödinger equation, just as in Eq. (4.11),

(∇2 + k2)
eikr

r
= 0 ; outgoing wave (4.19)

We now require, on physical grounds, that the solution to the scattering

problem far away from the potential should consist of the incident wave

plus an outgoing scattered wave

ψ = ψinc + ψscatt ; r → ∞ (4.20)

This is known as the scattering boundary condition. In detail, this says that

ψ(�x ) = ei
�k·�x + f(k, θ)

eikr

r
; r → ∞
; scattering b.c. (4.21)

The amplitude of the outgoing scattered wave f(k, θ) is known as the scat-

tering amplitude.

Let us see how this works for our s-wave scattering. In order to satisfy

this boundary condition, we must choose a particular form for the amplitude

A of the wave function outside of the potential in Eq. (4.16)

uout(r) =
eiδ0

k
sin (kr + δ0) ; r > d

ψ(r) =
uout(r)

r
(4.22)

Now look at

ψscatt(r) = ψ(r)− ψinc(r) ; r > d (4.23)
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This gives

ψscatt(r) =
eiδ0

kr
sin (kr + δ0)− sin(kr)

kr

=
eiδ0

2ikr

[
ei(kr+δ0) − e−i(kr+δ0)

]
− 1

2ikr

(
eikr − e−ikr

)
=

1

2ik

(
e2iδ0 − 1

) eikr
r

(4.24)

Note that the incoming wave has cancelled, and we satisfy the scattering

boundary condition. Furthermore, we can identify the s-wave scattering

amplitude as

f0(k) =
1

2ik

(
e2iδ0 − 1

)
=

eiδ0

k
sin δ0 ; s-wave (4.25)

The general expression for the scattering amplitude, including all partial

waves, is

f(k, θ) =
∑
l

(2l + 1)fl(k)Pl(cos θ) (4.26)

As k → 0 it is only the s-wave that contributes to the scattering amplitude,

since it is only the s-wave that gets into the potential.

4.5 Cross-Section

The classical concept of a scattering or reaction cross-section is as follows:

One prepares a beam of particles, with a certain incident flux Iinc, where

the incident flux is the number of particles crossing a unit transverse area

per unit time. The cross-section is then a little element of transverse area

such that if a particle goes through it, a certain event takes place. Hence

the rate of such events taking place is

Iinc dσfi = number of events i → f per unit time (4.27)

In quantum mechanics we deal with probability, and its rates and fluxes.

The probability flux in three dimensions follows from Eq. (3.10) as

�S(�x ) =
�

2im

[
ψ��∇ψ −

(
�∇ψ
)∗

ψ
]

(4.28)

This has the interpretation as the amount of probability flowing through

a unit transverse area per unit time. The elastic scattering cross-section
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dσ for the scattering of a particle into a solid angle dΩ (and corresponding

area r2dΩ) in quantum mechanics is therefore3(
k̂ · �Sinc

)
dσ =

(
r̂ · �Sscatt

)
r2dΩ (4.29)

With the incident and scattered wave functions in Eq. (4.21), one has

k̂ · �Sinc =
�k

m

r̂ · �Sscatt =
�k

mr2
|f(k, θ)|2 (4.30)

Here, in the second line, we have only taken the radial derivatives of the

exponential as r → ∞. Hence, the differential cross-section for elastic

scattering into the solid angle dΩ in quantum mechanics is the absolute

square of the scattering amplitude

dσ

dΩ
= |f(k, θ)|2 ; elastic scattering (4.31)

For s-waves, one has

dσ

dΩ
=

sin2 δ0
k2

; s-waves (4.32)

Prepare a beam of particles with a definite momentum ��k. Count how

many particles go through a unit transverse area in front of the target

over some period of time. Multiply this number by the cross-section dσ.

This will give you the number of particles that you have observed being

scattered into the solid angle dΩ. And your particle distribution will look

like |f(k, θ)|2. It works! It is amazing that all this information is contained

in the single wave function ψ(�x )!

4.6 High Energy

Let us look at the other scattering limit of high energy where very many

partial waves contribute to the scattering amplitude. Recall that in elec-

trostatics if we have the electrostatic potential satisfying

∇2Φ = − 1

ε0
ρ (4.33)

3In this chapter, (k̂, r̂) are unit vectors.
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where ρ is the charge density, then the potential is obtained by summing

over the Coulomb interaction with each small charge element

Φ(�r ) =
1

4πε0

∫
1

|�r − �r ′|ρ(�r
′)d3r′ (4.34)

Here, we want to solve the equation

(∇2 + k2
)
ψ = vψ ; v =

2m

�2
V (r) (4.35)

In direct analogy, we can obtain the scattered wave by summing over the

outgoing wave from each little source element4

ψscatt(�r ) = − 1

4π

∫
eik|�r−�r ′|

|�r − �r ′| v(r
′)ψ(�r ′)d3r′ (4.36)

With the inclusion of ψinc, which satisfies the homogeneous differential

equation, the whole wave function then looks like

ψ(�r ) = ei
�k·�r − 1

4π

∫
eik|�r−�r ′|

|�r − �r ′| v(r
′)ψ(�r ′)d3r′ (4.37)

This produces an (exact) inhomogeneous integral equation for ψ.

Let us look at the asymptotic behavior of ψscatt for large r.5 The dis-

tance |�r − �r ′| can be expanded as

|�r − �r ′| = r − r̂ · �r ′ +O(r′/r) (4.38)

With the identification of the final scattering momentum �p ′ through

�p ′ = ��k′ ≡ �kr̂ ; final momentum (4.39)

and the simple replacement of the denominator by r for large r, one has

ψscatt(r) =
eikr

r

[
− 1

4π

∫
e−i�k ′·�r ′

v(r′)ψ(�r ′)d3r′
]

(4.40)

This both demonstrates that ψ satisfies the correct scattering boundary

condition, and it also allows us to identify the scattering amplitude as

f(k, θ) = − 1

4π

∫
e−i�k ′·�r ′

v(r′)ψ(�r ′)d3r′ (4.41)

4We are actually employing the Green’s functions for the differential equations.
5We assume sufficient convergence of the integral.
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Now, just as with perturbation theory, we can start iterating the ex-

pressions to obtain a power series in v. The first iteration simply replaces

ψ in the scattering amplitude by ψinc, where

ψinc(�r ) = ei
�k·�r (4.42)

This produces first Born approximation for the scattering amplitude

fBA(k, θ) = − 1

4π

∫
ei�q·�r

′
v(r′)d3r′ ; Born approximation (4.43)

Here the momentum transfer ��q is defined through

�q ≡ �k − �k ′

q2 = 4k2 sin2
θ

2
(4.44)

The Born approximation for the scattering amplitude is simply the three-

dimensional Fourier transform of the potential with respect to the momen-

tum transfer! We give two applications in Probs. 4.5 and 4.6.
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Transition Rate

So far, we have focused on very simple physical systems in order to concen-

trate on the quantum mechanics (although we did get more realistic with

s-wave scattering and the Born approximation). Let us continue in that

vein as we turn to a study of transition rates in quantum theory.

5.1 Model Problem

Consider two particles moving in one dimension along the x-axis. Parti-

cle one is free to move in a large circle as in Fig. 2.1, so it satisfies pe-

riodic boundary conditions. It has the eigenfunctions and eigenvalues of

Eqs. (2.31) and (2.32)

ψn(x) =
1√
L
e2πinx/L ; n = 0,±1,±2, · · ·

En =
(2π�)2

2mL2
n2 ; particle one (5.1)

The eigenfunctions satisfy the orthonormality condition in Eq. (2.33).

The second particle is confined to a box of a much shorter length as in

Fig. 3.1, and it has the eigenfunctions and eigenvalues of Eqs. (3.12) and

(3.13)1

ψn(x) =

√
2

L
sin
(nπx

L

)
; n = 1, 2, 3, · · ·

En =
(π�)2

2mL2
n2 ; particle two (5.2)

These eigenfunctions are illustrated in Figs. 3.2 and 3.3. They are also

1We will subsequently use the lengths L1 for the big circle and L2 for the box.

33
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orthonormal. It is assumed here that the box is completely transparent to

the first particle, which passes right through it.2

The starting hamiltonian and general solution for this two-particle sys-

tem are then

H0 =
p21
2m1

+
p22
2m2

+ Vbox(x2)

Ψ0(x1, x2, t) =
∑
n1,n2

c0n1,n2
(t)ψn1

(x1)e
−iEn1

t/� ψn2
(x2)e

−iEn2
t/� (5.3)

This wave function satisfies the Schrödinger equation

i�
∂Ψ0(x1, x2, t)

∂t
= H0Ψ0(x1, x2, t) (5.4)

We have left a time-dependence in the coefficients c0n1,n2
(t) for general-

ity, but let us see what happens when we substitute this solution in the

Schrödinger equation

∑
n1,n2

[
i�

dc0n1,n2
(t)

dt
+(En1

+En2
) c0n1,n2

(t)

]
ψn1

(x1)e
−iEn1

t/� ψn2
(x2)e

−iEn2
t/�

=
∑
n1,n2

(En1 + En2) c
0
n1,n2

(t)ψn1(x1)e
−iEn1

t/� ψn2(x2)e
−iEn2

t/� (5.5)

Upon cancellation of the common terms, and the use of the orthonormality

of the eigenfunctions to extract a given coefficient, one obtains

dc0n1,n2
(t)

dt
= 0 (5.6)

Hence, the expansion coefficients are independent of the time (which we

already knew!), and we can simply evaluate them at the initial time, say

t = 0

c0n1,n2
(t) = c0n1,n2

(0) ; time-independent (5.7)

If we were to start in a given state ψn0
1
(x1)ψn0

2
(x2) , then all but one coef-

ficient would vanish

c0n1,n2
= δn1,n0

1
δn2,n0

2
; given initial state (5.8)

2The second particle might be bound to the target by a strong force that the projectile
does not feel, for example.
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Now let us make the problem a little more complicated and assume that

the two particles interact through some short-range potential, so that the

hamiltonian becomes

H = H0 +H ′

H ′ = V (x1, x2) ; interaction (5.9)

The Schrödinger equation then reads

i�
∂Ψ(x1, x2, t)

∂t
= HΨ(x1, x2, t)

= (H0 +H ′)Ψ(x1, x2, t) (5.10)

Let us again expand

Ψ(x1, x2, t) =
∑
n1,n2

cn1,n2
(t)ψn1

(x1)e
−iEn1 t/� ψn2

(x2)e
−iEn2 t/� (5.11)

A repetition of the above argument then gives

i�
dcn1,n2(t)

dt
=
∑
n′
1,n

′
2

〈n1, n2|H ′|n′
1, n

′
2〉 cn′

1,n
′
2
(t)e

i(En1
+En2

−En′
1
−En′

2
)t/�

(5.12)

where

〈n1, n2|H ′|n′
1, n

′
2〉 ≡

∫ L1

0

dx1

∫ L2

0

dx2 × (5.13)

ψ∗
n1
(x1)ψ

∗
n2
(x2)H

′(x1, x2)ψn′
1
(x1)ψn′

2
(x2)

The above provides an exact set of coupled, linear, first-order differential

equations in the time for the expansion coefficients cn1,n2
(t) in the presence

of the interaction H ′.

5.2 Golden Rule

Now, as previously, we are in a position to iterate these equations and

obtain a power series in H ′. Since the r.h.s. of Eqs. (5.12) is already linear

in H ′, we can just make use of our previous coefficients c0n′
1,n

′
2
(t) = c0n′

1,n
′
2
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on the r.h.s.! This gives

i�
dcn1,n2

(t)

dt
=
∑
n′
1,n

′
2

〈n1, n2|H ′|n′
1, n

′
2〉 c0n′

1,n
′
2
e
i(En1+En2−En′

1
−En′

2
)/�

+ · · ·

(5.14)

Suppose it is the state ψn0
1
(x1)ψn0

2
(x2) that is occupied at the initial time

t = 0, so that

c0n′
1,n

′
2
= δn′

1,n
0
1
δn′

2,n
0
2

; given initial state (5.15)

Then, at a later time, the amplitude for finding the system in a different

two-particle state satisfies

i�
dcn1,n2

(t)

dt
= 〈n1, n2|H ′|n0

1, n
0
2 〉ei(En1

+En2
−E

n0
1
−E

n0
2
)t/�

; (n1, n2) 
= (n0
1, n

0
2) (5.16)

Integration of this relation between the initial time t = 0, and the total

elapsed time t = T , gives

cn1,n2(T ) = −1

�
〈n1, n2|H ′|n0

1, n
0
2 〉

1

ω

(
eiωT − 1

)
(5.17)

where the initial and final energies of the pair, and energy differences, are

defined by

E0 ≡ En0
1
+ En0

2

E ≡ En1
+ En2

�ω ≡ E − E0 (5.18)

Now, by our general interpretation of quantum mechanics, the probabil-

ity of finding the system in the state with (n1, n2) after time T , if it initially

started in the state with (n0
1, n

0
2), is given to leading order H ′ by

Pfi(T ) = |cn1,n2
(T )|2 ; transition probability

=
1

�2

∣∣〈n1, n2|H ′|n0
1, n

0
2 〉
∣∣2 4

ω2
sin2

(
ωT

2

)
(5.19)

The transition rate is the transition probability divided by the time

Rfi(T ) ≡ Pfi(T )

T
; transition rate (5.20)
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Hence

Rfi(T ) =
1

�2

∣∣〈n1, n2|H ′|n0
1, n

0
2 〉
∣∣2 fT (ω)

fT (ω) ≡
[
T

sin2 (ωT/2)

(ωT/2)2

]
(5.21)

Let us examine the function fT (ω), which we plot in Fig. 5.1.

T

TT2 4

Fig. 5.1 Sketch of the function fT (ω).

The function fT (ω) has the following properties:

(1) For large T , at the origin (ω = 0), it grows as T

fT (0) → T ; T → ∞ (5.22)

(2) For large T , away from the origin (ω 
= 0), it goes to zero

fT (ω) → 0 ; T → ∞
ω 
= 0 (5.23)

(3) When integrated over all ω, a simple change of variables x ≡ ωT/2

gives

∫ ∞

−∞
fT (ω) dω = 2

∫ ∞

−∞

sin2 x

x2
dx = 2π ; all T (5.24)

The last result is obtained from any good table of integrals;
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(4) When multiplied by a well-behaved F (ω) and integrated over ω, then

for large T one simply gets that function evaluated at the origin

∫ ∞

−∞
F (ω)fT (ω) dω = 2πF (0) ; T → ∞ (5.25)

Now we can either continue to work with the well-defined function fT (ω)

in the very large T limit, or we can introduce a shorthand for the above

results. We introduce the Dirac delta function

LimT→∞ fT (ω) = 2πδ(ω) = 2π� δ(E − E0) (5.26)

It has the following properties:

δ(E − E0) = 0 ; if E 
= E0

δ(E − E0) = ∞ ; if E = E0∫
F (E)δ(E − E0) dE = F (E0) (5.27)

For large T , the transition rate in Eq. (5.21) then becomes3

Rfi =
Pfi(T )

T
=

2π

�

∣∣〈n1, n2|H ′|n0
1, n

0
2 〉
∣∣2 δ(E − E0)

; transition rate (5.28)

We make several comments on this result:

• This expression is exact to O(H ′);
• It is independent of T ;

• It gives the transition rate to any other two-particle state in the space;

• One only recovers energy conservation for the transitions as T → ∞;

• Fermi called Eq. (5.28) the “Golden Rule”;

• It is one of the most useful results in quantum mechanics!

Although we will be content here to work to leading order in H ′, it is im-

portant for our understanding of quantum mechanics to realize that the full

wave function Ψ(x1, x2, t) in Eq. (5.11) simultaneously carries information

on all the exact probability amplitudes cn1,n2(t).

3If you are uncomfortable working with the Dirac delta function, just continue to
work with fT (ω) for large T .
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5.3 Density of Final States

Suppose we are doing a scattering experiment in our simple model. We can

prepare the target in a given state with energy En0
2
, and we can prepare

an incident beam with a well-defined energy En0
1
= �

2k20/2m1, where k0 =

2πn0
1/L1. We certainly can achieve the energy resolution to determine that

the target ends up in another state with discrete energy En2 ; however,

with the scattered particle, the situation is more complicated. Let us, for

simplicity, call the size of the big region in which the first particle moves

L1 ≡ L. The final particle energy is En1
= �

2k2/2m1 with k = 2πn1/L,

and as L becomes very large, these energies are very closely spaced. Thus

no matter how small our resolution dk is on the final particle, many final

states will lie within this resolution! For large L, the number of these states

dnf is

dnf =
L

2π
dk ; L → ∞ (5.29)

Thus all of these states will get into our final detector, and the transition

rate that we actually measure is of necessity

Rfi dnf = Rfi

(
L

2π
dk

)
; measured rate (5.30)

Equation (5.28) then reads

Rfi dnf =
2π

�

∣∣〈n1, n2|H ′|n0
1, n

0
2 〉
∣∣2 δ(E − E0)

(
L

2π
dk

)
(5.31)

Multiply and divide this expression by dE. It is then possible to immedi-

ately do the integral over E using Eq. (5.27), where we have summed over

all of the energy-conserving events that get into our detector. Hence4

Rfi dnf =
2π

�

∣∣〈n1, n2|H ′|n0
1, n

0
2 〉
∣∣2 ρE (5.32)

where ρE is known as the density of final states

ρE =
L

2π

(
dk

dE

)
; density of final states (5.33)

4We suppress the integral symbol on the l.h.s., although we have now used
∫
δ(E −

E0)dE = 1; we leave it this way because there are usually some variables left in dnf

[see, for example, Eq. (5.43)].
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It follows that with a projectile energy of E = �
2k2/2m1, this density of

final states is given by

ρE =
L

2π

(m1

�2k

)
; E =

(�k)2

2m1
(5.34)

5.4 Incident Flux

The incident probability flux of the first particle in our model problem with

an incident wave of the form

ψn0
1
(x1) =

1√
L
eik0x1 ; incidentwave (5.35)

is given by Eq. (2.27) as

Iinc =
1

L

(
�k0
m1

)
; incident flux (5.36)

This is the probability flow of the incident particle past a given point per

unit time. It is the ratio of the transition rate to the incident flux that is

the physical observable here.

5.5 Summary

In summary, in our model problem the ratio of the transition rate to inci-

dent flux that we measure in our final particle detector is

1

Iinc
Rfi dnf =

(
k

k0

)(m1

�2k

)2
|〈k, n2|H ′|k0, n0

2 〉|2 (5.37)

〈k, n2|H ′|k0, n0
2 〉 =

∫ L

0

dx1 ei(k0−k)x1

∫ L2

0

dx2 ψ∗
n2
(x2)H

′(x2, x1)ψn0
2
(x2)

Note that the two factors of L coming from the density of final states and

incident flux just cancel the factors of (1/L)2 coming from the normalization

of the projectile wave functions. If the integral over x1 is convergent, its

upper limit can be extended to infinity, and the size of the big region L

in which the projectile moves has then disappeared from the problem! The

above expression is analyzed in more detail in Prob. 5.1.5

5It is useful to note that the p.b.c. allows the integral over the coordinate x1 of the

first particle in the matrix element in Eq. (5.13) to be rewritten as
∫ L1/2
−L1/2

dx1.
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The extension to higher dimensions follows immediately from

dnf =

(
L

2π

)2

d2k ; two-dimensions

=

(
L

2π

)3

d3k ; three-dimensions (5.38)

5.6 Born Approximation

Let us return to our three-dimensional problem of the scattering of a particle

from a potential V (r), and we calculate to lowest order in V (r). This is

now a one-body problem. We work in a large box of volume L3 and apply

p.b.c. The initial and final particle wave functions and energies are

ψi(�x ) =
1√
L3

ei
�k·�x ; E =

(�k)2

2m

ψf (�x ) =
1√
L3

ei
�k′·�x ; E′ =

(�k′)2

2m
(5.39)

The initial probability flux is

Iinc = k̂ · �S(�x ) = 1

L3

�k

m
(5.40)

The transition rate multiplied by the number of final states is

Rfi dnf =
2π

�
|〈f |V |i〉|2δ(E′ − E)

[
L3

(2π)3
d3k′

]
(5.41)

Here the matrix element of the potential is given by

〈f |V |i〉 = 1

L3

∫
d3x ei�q·�x V (r) ; �q ≡ �k − �k′ (5.42)

Multiply and divide the transition rate by dE′, do the integral over the

Dirac delta function, and invoke the resulting energy conservation to obtain

Rfi dnf =
2π

�
|〈f |V |i〉|2

[
L3

(2π)3
k2
(
dk

dE

)
dΩ

]
(5.43)

where dΩ is the solid angle into which the particle is scattered. Now use

dE

dk
=

�
2k

m
(5.44)
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The differential scattering cross-section is then given by

dσ =
1

Iinc
Rfi dnf

=
(m

�k

) 1

(2π)2�

∣∣∣∣
∫

d3x ei�q·�x V (r)

∣∣∣∣
2

k2
( m

�2k

)
dΩ (5.45)

Note that the factors of L have cancelled from this expression, which can

be rewritten as

dσ

dΩ
= |fBA(k, θ)|2

fBA(k, θ) = − 1

4π

∫
d3x ei�q·�x v(r) ; v(r) ≡ 2m

�2
V (r) (5.46)

This is precisely the Born approximation result in Eq. (4.43)!

It is quite amazing that with so many different factors coming from so

many different places, we obtain the same result from our transition-rate

analysis as we did from the time-independent scattering study. In the end,

the transition-rate approach is more powerful and useful.

5.7 Two-State Mixing

So far in looking at transition rates we have worked to leading order in H ′.
We now simplify the problem enough so that we can treat H ′ exactly. We

still seek separated solutions to the Schrödinger equation as in Eqs. (2.18)–

(2.22), so that we have

Ψ(x, t) = ψ(x)e−iEt/�

Hψ(x) = Eψ(x) ; H = H0 +H ′ (5.47)

The eigenfunction ψ(x) can be expanded in the complete set of solutions

to the unperturbed problem

ψ(x) =
∑
n

anψn(x)

H0ψn(x) = E0
nψn(x) (5.48)

Substitution into the eigenvalue equation, and the use of the orthonormality

of the eigenfunctions ψn(x), gives∑
n′

[(
E0

n − E
)
δn,n′ + 〈n|H ′|n′〉] an′ = 0 (5.49)
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This relation is still exact, and there is one equation for each n. We are thus

faced with an infinite set of coupled algebraic equations for the amplitudes

(a1, a2, a3, · · · ); however, we now make some simplifying assumptions:

• We assume that it is only the mixing of a pair of states (ψ1, ψ2) that is

important for us;

• We assume that the pair is degenerate, with energy E0;
6

• We assume that the diagonal elements of H ′ vanish.
• We assume the off-diagonal elements of H ′ are real, with H ′

12 = H ′
21.

The above equations then reduce to the following simple pair of equations

(E0 − E)a1 +H ′
12 a2 = 0

H ′
12 a1 + (E0 − E)a2 = 0 (5.50)

This is a pair of linear, homogeneous, algebraic equations for the ampli-

tudes (a1, a2). These equations will only have a non-trivial solution if the

determinant of the coefficients of (a1, a2) vanishes. Hence

(E0 − E)2 − (H ′
12)

2
= 0 (5.51)

It follows that the eigenvalues and corresponding (normalized) eigenfunc-

tions are

E+ = E0 +H ′
12 ; ψ+(x) =

1√
2
[ψ1(x) + ψ2(x)]

E− = E0 −H ′
12 ; ψ−(x) =

1√
2
[ψ1(x)− ψ2(x)] (5.52)

The general solution to the two-level problem is then obtained as the

linear combination of the separated solutions

Ψ(x, t) = c+ ψ+(x) e
−iE+t/� + c− ψ−(x) e−iE−t/� (5.53)

Suppose that at the initial time t = 0 we start in the state ψ1(x), so that

Ψ(x, 0) = ψ1(x) ; initial condition

c+ = c− =
1√
2

(5.54)

6These could be the pair of first excited states of a particle in the square two-
dimensional box, for example. [See Eqs. (3.41).]
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Then at a later time

Ψ(x, t) = a1(t)ψ1(x) + a2(t)ψ2(x)

a1(t) =
1

2

(
e−iE+t/� + e−iE−t/�

)
a2(t) =

1

2

(
e−iE+t/� − e−iE−t/�

)
(5.55)

The probability of finding the particle in the state ψ1(x) after time t is

then

P1(t) = |a1(t)|2 = cos2 (H ′
12 t/�) (5.56)

while the probability of finding it in the state ψ2(x) is

P2(t) = |a2(t)|2 = sin2 (H ′
12 t/�) (5.57)

Evidently the particle oscillates back and forth between the states (ψ1, ψ2)

with an angular frequency H ′
12/�, and

P1(t) + P2(t) = 1 (5.58)

This is essentially the analysis that applies to neutrino mixing, or that

of the neutral kaon, in particle physics.7

7See, for example, [Walecka (2008)].
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Chapter 6

Quantum Electrodynamics

In order to do more physics, we need to get more realistic. An essential

part of modern physics is the interaction of a charged particle with an elec-

tromagnetic field. We certainly cannot do all of quantum electrodynamics

here, and we will be content to include the electromagnetic field through

vector and scalar potentials ( �A,Φ). This will allow us to describe

(1) A static Coulomb field, as in an atom,

Φ(�x, t) = ΦCoulomb(r) ; �A = 0 (6.1)

(2) A static magnetic field1

�B(�x) = �∇× �A(�x) ; Φ = 0 (6.2)

(3) A transverse radiation field2 with

�B(�x, t) = �∇× �A(�x, t) ; Φ = 0

�E(�x, t) = −∂ �A(�x, t)

∂t

�A(�x, t) = Re
[
�e�ks e

i(�k·�x−ωt)
]

; ω = kc (6.3)

where �e�ks with s = (1, 2) are transverse unit vectors.

To proceed, we need to construct the hamiltonian for a charged particle in

such an electromagnetic field.

1With �∇ · �B = 0.
2See [Walecka (2018)].

45
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6.1 Hamiltonian

The classical hamiltonian for a charged particle in an electromagnetic field

with vector and scalar potentials ( �A,Φ) is given by

H =
1

2m

[
�p− e �A(�x, t)

]2
+ eΦ(�x, t) (6.4)

We shall justify this by showing that the classical Hamilton’s equations

produce the Lorentz force on the particle

�F = e
(
�E + �v × �B

)
; Lorentz force (6.5)

Hamilton’s equations read

∂H

∂pi
=

dxi

dt
; i = 1, 2, 3

∂H

∂xi
= −dpi

dt
(6.6)

The first of Hamilton’s equations expresses the particle velocity as

vi =
dxi

dt
=

1

m

[
�p− e �A(�x, t)

]
i

(6.7)

Differentiation of this relation gives

dpi
dt

= m
d2xi

dt2
+ e

dAi(�x, t)

dt
(6.8)

The second of Hamilton’s equations then yields the force on the particle

through3

m
d2xi

dt2
= −e

dAi(�x, t)

dt
− ∂H

∂xi

= −e

[
∂Ai

∂xj
vj +

∂Ai

∂t

]
+ e

[
vj

∂Aj

∂xi

]
− e

∂Φ

∂xi

= eEi + evj

[
∂Aj

∂xi
− ∂Ai

∂xj

]
(6.9)

where the electric field �E receives a contribution from both potentials

�E = −�∇Φ− ∂ �A

∂t
(6.10)

3We use our convention that repeated Latin indices are summed from one to three.
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Now use the vector manipulations[
�v ×

(
�∇× �A

)]
i
= εijkvj

(
�∇× �A

)
k
= εijk εklmvj

∂Am

∂xl

= [δil δjm − δim δjl] vj
∂Am

∂xl

= vj

[
∂Aj

∂xi
− ∂Ai

∂xj

]
(6.11)

The magnetic field �B is obtained from the vector potential through

�B = �∇× �A (6.12)

Hamilton’s equations then reproduce the Lorentz force equation

�F = e
(
�E + �v × �B

)
; Lorentz force (6.13)

6.2 Schrödinger Equation

Thus, for our purposes, the Schrödinger equation for a non-realtivistic par-

ticle in a potential V (r), in the presence of additional electromagnetic fields

with vector and scalar potentials ( �A,Φ), is given by

i�
∂Ψ(�x, t)

∂t
= HΨ(�x, t) ; Schrödinger eqn

H =
1

2m

[
�p− e �A(�x, t)

]2
+ eΦ(�x, t) + V (r) (6.14)

Upon quantization, in order to satisfy the basic commutation relation

[pi, xj ] =
�

i
δij (6.15)

we continue to employ

�p =
�

i
�∇ ; canonical momentum (6.16)

6.3 Ionization in Oscillating Electric Field

We start the discussion of electromagnetic interactions with a very simple

example, where we explicitly have all the wave functions. Suppose a charged

particle is moving in the ground-state of the one-dimensional box, and it is



April 12, 2021 16:29 EMcon.tex,ws-book9x6-9x6 12222-main page 48

48 Introduction to Quantum Mechanics

boosted into the continuum by an electric field that is oscillating along the

x-axis according to

Ex = E0 cosω0t = E0 1
2

(
eiω0t + e−iω0t

)
(6.17)

The interaction hamiltonian is then

H ′ = −eE0x cos (ω0t)
.
= −

(
eE0
2

)
x e−iω0t (6.18)

where it is only the final term that will increase the energy of the bound

particle in Eqs. (5.17) and (5.18).

The initial and final wave functions and energies are4

ψi(x) = ψn0
(x) ; Ei =

�
2π2

2md2
n2
0

ψf (x) =
1√
L
eikfx ; Ef =

(�kf )
2

2m
; p.b.c. (6.19)

The transition rate times the number of final states is then

Rfidnf =

(
eE0
2

)2
2π

�
|〈f |x|i〉|2δ(Ef − Ei − �ω0)

[
L

(2π)
dkf

]
(6.20)

We can now carry out some familiar manipulations and use

dEf

dkf
=

�
2kf
m

(6.21)

The maximum energy density of the electric field is

U0 =
ε0
2
E2
0 ; field energy density (6.22)

The transition rate per unit field energy density follows as

1

U0
Rfi dnfi = πα

(
ckf
Ef

) ∣∣∣∣∣
∫ L

0

dx e−ikfx xψn0
(x)

∣∣∣∣∣
2

; Ef = Ei + �ω0

(6.23)

were α is the dimensionless fine-structure constant

α =
e2

4πε0�c
=

1

137.0
(6.24)

4Here d is the size of the confining box.
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The transition rate is proportional to the absolute square of the tran-

sition dipole moment. If the integral converges, then the expression in

Eq. (6.23) is again independent of the length L of the region of the final

continuum particle. It is also easy to check that the expression in Eq. (6.23)

has the correct dimensions.

6.4 Interaction With the Radiation Field

To lowest order, the interaction with the radiation field in the hamiltonian

in Eq. (6.14) is

H ′ = − e

2m

[
�p · �A(�x, t) + �A(�x, t) · �p

]
; �p =

�

i
�∇

�A(�x, t) = A(�k, s)�e�ks
1

2

[
ei(

�k·�x−ωt) + e−i(�k·�x−ωt)
]

(6.25)

Here A(�k, s) is the amplitude of the vector potential in the classical wave.

Since the fields are transverse with �k · �e�ks = 0, we can move �p through to

the right in the first term, and rewrite

H ′ = −e �A(�x, t) · �p

m
(6.26)

To leading order in �A, this looks like the classical expression −e �A(�x, t) · �v .
If we are looking at transitions that put energy into the system, then, as

before, we can simply use5

�A(�x, t)
.
=

1

2
A(�k, s)�e�ks e

i(�k·�x−ωt) ; Ef = Ei + �ω (6.27)

We also know that the time-average energy flux in the classical wave is6

Sinc =

[
ε0ω

2

2
A2(�k, s)

]
c ; energy flux (6.28)

6.5 Photoionization

We are now in a position to make a more realistic calculation of photoion-

ization by the radiation field. We work in three dimensions with initial and

5See Prob. 6.3.
6See [Walecka (2018)]; remember that now �E = −∂ �A/∂t, and the magnitude of the

time-average Poynting vector for the electromagnetic field is Sinc = 〈ε0 �E 2〉c.
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final particle wave functions and energies

ψi(�x) = ψ0(�x) ; Ei = E0

ψf (�x) =
1√
L3

ei
�kf ·�x ;Ef =

(�kf )
2

2m
(6.29)

The transition rate multiplied by the number of final states, and divided

by the incident flux, is then

1

Sinc
Rfi dnf =

(
e2

2ε0ω2c

)(
1

m2L3

)
×
(
2π

�

)∣∣∣∣�e�ks ·
∫

d3x ei(
�k−�kf )·�x �p ψ0(�x)

∣∣∣∣
2

× δ(Ef − E0 − �ω)

[
L3

(2π)3
d3kf

]
(6.30)

Write d3kf = k2f dΩf dkf , and use

dEf

dkf
=

�
2kf
m

(6.31)

This yields

ωfi ≡ 1

Sinc
Rfi dnf ; photoionization

=
α

2πc2

(
kf
2E

) ∣∣∣∣�e�ks ·
∫

d3x ei(
�k−�kf )·�x

(
�p

m

)
ψ0(�x)

∣∣∣∣
2

dΩf (6.32)

where the energy E is defined by

E ≡ (�k)2

2m
(6.33)

This is a nice result. It is the general expression for photoionization

by the classical radiation field to lowest order in α. Note that the factors

of L3 have again cancelled. One can again check that this has the correct

dimensions.

6.6 Normal Mode Expansion of the Electromagnetic Field

The next challenge is to express the free electromagnetic field in normal

modes, that is, as a set of uncoupled simple harmonic oscillators. We work

in a big cubical box of volume Ω = L3, and apply periodic boundary con-

ditions.
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The total energy in the free electromagnetic field in the box is obtained

through the sum of the squares of the electric and magnetic fields. In SI

units it is given by

E =
1

2

∫
Ω

d3x

(
ε0 �E

2 +
1

μ0

�B 2

)
; field energy (6.34)

One has the freedom of choosing a gauge for the electromagnetic poten-

tials,7 and here we work in the Coulomb gauge. This gauge has the great

advantage that, when quantized, there is a one-to-one correspondence of

the resulting quanta with physical photons. For free fields, the Coulomb

gauge is defined by

�∇ · �A = 0 ; Φ = 0 ; Coulomb gauge (6.35)

The electric and magnetic fields are then given by

�E = −∂ �A

∂t
; �B = �∇× �A (6.36)

With periodic boundary conditions, the normal modes are given by

plane waves

q�k(�x, t) =
1√
Ω
ei(

�k·�x−ωkt) ; �k =
2π

L
(nx, ny, nz)

ωk = |�k|c ; ni = 0,±1,±2, · · · ; i = x, y, z (6.37)

Once again, we have an infinite, discrete set of wavenumbers, and the nor-

mal modes are orthonormal∫
Ω

d3x q��k(�x, t) q�k′(�x, t) = δ�k,�k′ (6.38)

Now introduce a set of orthogonal, transverse unit vectors �e�ks for each
�k as shown in Fig. 6.1. They satisfy

�e�ks · �k = 0 ; s = 1, 2

�e�ks · �e�ks′ = δs,s′ (6.39)

7See Probs. 6.1 and 6.2.
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k
e

1

k

k
e

2

Fig. 6.1 Orthogonal, transverse unit vectors �e�ks for each �k.

The vector potential can now be expanded in normal modes as follows

�A(�x, t) =
∑
�k

2∑
s=1

(
�

2ωkε0Ω

)1/2 [
a�ks�e�kse

i(�k·�x−ωkt) + a��ks�e�kse
−i(�k·�x−ωkt)

]

(6.40)

where we have chosen particular amplitudes for the normal modes which

will make the energy come out nicely. This expansion has the following

features to recommend it:

• This expression is real, giving rise to real ( �E, �B);

• Since only the transverse polarization vectors are used in the expansion,

one has ensured that

�∇ · �A = 0 (6.41)

• �A(�x, t) satisfies the wave equation, and, since the order of partial deriva-

tives can always be interchanged, so do the fields ( �E, �B)

� �A(�x, t) = 0 (6.42)

⇒ � �E(�x, t) = � �B(�x, t) = 0 (6.43)

• The periodic boundary conditions are obeyed;

• There is enough freedom to match the initial conditions.

The normal-mode expansion in Eq. (6.40) can now be substituted in

the expression for the energy in Eq. (6.34), making use of the definition

of the fields in Eqs. (6.36). This is classical E&M. The calculation is
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straightforward, and the details are given in appendix A. The result is8

E =
∑
�k

2∑
s=1

�ωk
1

2

(
a��ksa�ks + a�ksa

�
�ks

)
; normal modes (6.44)

The problem has been reduced to normal modes. One has an infinite,

uncoupled set of simple harmonic oscillators, one for each value of the

wavenumber �k and polarization s.

6.7 Quantization of the Oscillator

We will spend some time with the quantization of the simple harmonic

oscillator, since that will be central to what we do in quantum mechanics.

The hamiltonian for the one-dimensional oscillator is

H =
p2

2m
+

κq2

2
; oscillator (6.45)

Introduce the destruction and creation operators by

a =
p

(2m�ω)1/2
− iq

(mω

2�

)1/2
; ω2 =

κ

m

a† =
p

(2m�ω)1/2
+ iq

(mω

2�

)1/2
(6.46)

From our discussion of the hermiticity of operators, it is clear that a† is the
hermitian adjoint of a.9 The canonical commutation relation between the

momentum and coordinate is

[p, q] =
�

i
(6.47)

It follows that the creation and destruction operators satisfy

[a, a†] = 1 ; commutation relation (6.48)

Written in terms of these new operators, the hamiltonian takes the form

H = �ω

(
a†a+

1

2

)
≡ �ω

(
N +

1

2

)
(6.49)

8Recall c2 = 1/ε0μ0.
9See Prob. 6.4. Here we label the coordinate more generally as q.
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Here we have defined the number operator by

N ≡ a†a ; number operator (6.50)

It further follows from our discussion of hermiticity that the number oper-

ator N is hermitian; consequently, it has real eigenvalues.10

Now we could write and solve the simple harmonic oscillator as a one-

dimensional differential Schrödinger equation in coordinate space.11 It is of

great interest, however, to see how far we can get on the spectrum of the

number operator, and on the application of the creation and and destruction

operators to those eigenstates, using only the general principles of quantum

mechanics, in particular, the commutation relations of the creation and

destructions operators.

We shall therefore proceed to work in an abstract occupation number

space, where we write the eigenvalue equation for the number operator in

abstract form as12

N |n〉 = n|n〉 ; abstract eigenvalue equation (6.51)

The abstract eigenstates are orthonormal, with an inner product satisfying

〈n′|n〉 = δn,n′ ; orthonormal (6.52)

This relation actually follows by taking a matrix element of Eq. (6.51) and

using the hermiticity of N

〈n′|N |n〉 = n〈n′|n〉 = n′〈n′|n〉 (6.53)

Hence

(n′ − n) 〈n′|n〉 = 0 (6.54)

The abstract states are also complete, satisfying the relation∑
n

|n〉〈n| = 1 ; complete (6.55)

10Again, see Prob. 6.4. The hermitian adjoint of a product of operators is the product
of hermitian adjoints in reverse order.

11As done, for example, in [Walecka (2013)].
12The coordinate-space wave function is the component form of this abstract state vec-

tor; in the language of Chapter 9, one has 〈x|n〉 = ψn(x), where ψn(x) is the coordinate-
space wave function.
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To justify this, take an arbitrary matrix element 〈n2| · · · |n1〉 of this relation∑
n

〈n2|n〉〈n|n1〉 =
∑
n

δn2,nδn,n1
= δn2,n1

= 〈n2|n1〉 (6.56)

which is the correct answer.

Let us now see how far we can get in this abstract occupation number

space using just the general principles of quantum mechanics. Consider

[N, a†] = a†aa† − a†a†a = a†[a, a†] = a† (6.57)

It follows that

Na†|n〉 = a† (N + 1) |n〉 = (n+ 1)a†|n〉 (6.58)

Hence a† raises the eigenvalue by 1

a†|n〉 = C(n)|n+ 1〉 (6.59)

In the same vein, consider

[N, a] = a†aa− aa†a = −[a, a†]a = −a (6.60)

As before

Na|n〉 = a (N − 1) |n〉 = (n− 1)a|n〉 (6.61)

It follows that a lowers the eigenvalue by 1

a|n〉 = C̄(n)|n− 1〉 (6.62)

Let us demonstrate that this lowering property must terminate, since the

eigenvalues of n must be non-negative. Consider the matrix element

n = 〈n|N |n〉 = 〈n|a†a|n〉 = |C̄(n)|2 ≥ 0 (6.63)

In order that the lowering process not actually produce a state with negative

eigenvalue, one must have

a|nmin〉 = 0 (6.64)

Hence, the lowest eigenvalue of the number operator is zero

N |nmin〉 = N |0〉 = 0 (6.65)
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The states with integer n are then obtained from this by repeatedly

applying a† to it using Eq. (6.59).13 The norm of the raised state is given

by

〈n|aa†|n〉 = 〈n|N + 1|n〉 = n+ 1

= |C(n)|2 (6.66)

Let us choose the relative phase of all the basis states so that

C(n) =
√
n+ 1 (6.67)

It follows that

a†|n〉 = √
n+ 1 |n+ 1〉 (6.68)

Similarly

a†|n− 1〉 = √
n |n〉 (6.69)

Operate on this state with a

aa†|n− 1〉 = (N + 1)|n− 1〉 = n|n− 1〉 = √
n a|n〉 (6.70)

Hence, with our phase convention

a|n〉 = √
n |n− 1〉 (6.71)

In summary, we have found the eigenstates and eigenvalues of the simple

harmonic oscillator hamiltonian in Eq. (6.49)

H = �ω

(
a†a+

1

2

)
≡ �ω

(
N +

1

2

)
(6.72)

using the commutation relation

[a, a†] = 1 (6.73)

and the general principles of quantum mechanics. We have also found the

effect of the creation and destruction operators on these abstract eigenstates

H|n〉 = �ω

(
n+

1

2

)
|n〉 ; n = 0, 1, 2, 3, · · ·

a|n〉 = √
n |n− 1〉

a†|n〉 = √
n+ 1 |n+ 1〉 (6.74)

13See Prob. 6.5.
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It is really quite remarkable that we are able to obtain all of these results us-

ing only the general principles of quantum mechanics and the commutation

relations of the creation and destruction operators!

6.8 Quantization of the Electromagnetic Field

We are now in a position to quantize the electromagnetic field. We treat the

normal-mode amplitudes as creation and destruction operators, and write

the uncoupled energy in Eq. (6.44) and commutation relations as

H =
∑
�k

2∑
s=1

�ωk

(
N�ks +

1

2

)
=
∑
�k

2∑
s=1

�ωk

(
a†�ksa�ks +

1

2

)

[a�ks, a
†
�k′s′

] = δ�k,�k′ δs,s′ (6.75)

We then have an infinite set of uncoupled simple harmonic oscillators, one

for each mode. The state vector is the direct product of abstract state

vectors, one for each mode, that satisfy

a†�ksa�ks|n�ks〉 = n�ks|n�ks〉 ; n�ks = 0, 1, 2, · · · (6.76)

The quanta are called photons, and we are back to where we started the

course!

The vector potential in Eq. (6.40) now becomes a quantum field operator

that creates and destroys photons

�A(�x, t) =
∑
�k

2∑
s=1

(
�

2ωkε0Ω

)1/2 [
a�ks�e�kse

i(�k·�x−ωkt) + a†�ks�e�kse
−i(�k·�x−ωkt)

]

(6.77)

As does the interaction with a non-relativistic charged particle in Eq. (6.26)

H ′ = −e �A(�x, t) · �p

m
(6.78)

6.9 Radiative Decay

We now have enough information to compute the rate for the radiative

decay ψi → ψf + γ. With the interaction in Eqs. (6.77) and (6.78), it is

the appropriate creation operator in the vector potential that makes the
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transition to the final photon state of |1�ks〉. The decay rate then follows as

in Eq. (6.30)

Rfi dnf =

(
�e2

2ωkε0Ω

)(
2π

�

) ∣∣∣∣�e�ks ·
∫

d3x e−i�k·�x ψ∗
f (�x)

�p

m
ψi(�x)

∣∣∣∣
2

×

δ(Ef − Ei + �ωk)

[
L3

(2π)3
d3k

]
(6.79)

The volume element Ω = L3 cancels. Now use d3k = k2 dk dΩk, and

dk

d(�ωk)
=

1

�c
(6.80)

This gives the photon emission rate

ωfi = Rfi dnf

=
α

2πc2
ωk

∣∣∣∣�e�ks ·
∫

d3x e−i�k·�x ψ∗
f (�x)

�p

m
ψi(�x)

∣∣∣∣
2

dΩk (6.81)

This is a powerful result. We have calculated the rate for photon emission

by a charged particle making a transition in any quantum system!

6.10 Schrödinger Picture

In the Schrödinger picture, the operators are time-independent, and

all the time dependence is put into the wave function. Thus the

Schrödinger equation for a non-relativistic particle in a potential V (r), in

the presence of additional electromagnetic fields with vector and scalar po-

tentials ( �A,Φ), in the Schrödinger picture is given by

i�
∂Ψ(�x, t)

∂t
= HΨ(�x, t) ; Schrödinger picture

H =
1

2m

[
�p− e �A(�x)

]2
+ eΦ(�x) + V (r) (6.82)

Upon quantization, in order to satisfy the basic commutation relation

[pi, xj ] =
�

i
δij (6.83)
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we continue to employ

�p =
�

i
�∇ ; canonical momentum (6.84)

The vector potential �A(�x) is quantized in Eq. (6.77), where it is �A(�x, 0).

Note that one then has a full interacting quantum field theory.

Other pictures, in particular the interaction picture where the free-field

time dependence is put into the quantum field operators [see Eqs. (6.14)]

are discussed in Sec. 9.7. 14

6.11 Lasers

Suppose we have a whole array of excited systems in the same state prepared

to make a radiative transition down to another state. When making the

radiative transition, the creation operator in the vector potential acts on

the state |n�ks〉 in which there are already photons present. It gives

a†�ks|n�ks〉 =
√

n�ks + 1 |n�ks + 1〉 (6.85)

The larger the value of n�ks, the larger the amplitude
√
n�ks + 1. Hence, as

n�ks grows, the emitted photons are more and more likely to go into the

same single mode with a given value of �ks. The result will be an intense

electromagnetic wave with a single value of �ks. This is the laser.

14Quantum electrodynamics (QED) is examined in detail in [Walecka (2010); Walecka
(2013)].
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Chapter 7

Quantum Statistics

If we have a system of many identical particles, we have to be concerned

with the quantum statistics of these particles. Let us start by considering

a collection of bosons.

7.1 Bosons

Let us order the available single-particle states as 0, 1, 2, · · · , i, j, k, · · · .
The state vector for the many-particle system in the abstract occupation

number space is then just the direct product over all the single-particle

states with the number of particles in each mode

|n0 n1 n2 · · · 〉 = |n0〉|n1〉|n2〉 · · · ; abstract state vector (7.1)

The operators in this space are just our previous simple harmonic oscillator

operators for each mode, and for bosons, we will now denote these operators

by b and b†. They satisfy the commutation relations

[bi, b
†
j ] = δij ; commutation relations (7.2)

All of the properties of these operators follow exactly as in Sec. 6.7. As we

have seen, this analysis holds for photons. It also holds for non-relativistic

spin-zero systems such as 4He atoms, which are also bosons. Let us here

focus on this latter case.

Suppose we have a single-particle operator such as the kinetic energy

for this many-body system. We write this operator as

T̂ =
∑
i

∑
j

b†j 〈j|T |i〉 bi ; one-body operator (7.3)

Some comments:

61
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• From now on we use a hat over a quantity to indicate an operator in

the abstract space, except for the creation and destruction operators

where this is obvious;

• Here 〈j|T |i〉 is the appropriate single-particle matrix element for the

problem at hand

〈j|T |i〉 =
∫

d3xψ∗
j (�x)Tψi(�x) (7.4)

• If T is diagonal, then

T̂ =
∑
j

〈j|T |j〉b†jbj =
∑
j

〈j|T |j〉n̂j (7.5)

• In this last case, the many-body matrix element of the kinetic energy

operator is

〈n1 n2 · · · |T̂ |n1 n2 · · · 〉 =
∑
j

〈j|T |j〉nj (7.6)

This just adds up the kinetic energy of all the filled states, and it is

clearly the correct answer.

We can rewrite this one-body operator T̂ by introducing the non-

relativistic quantum field

ψ̂(�x) ≡
∑
j

ψj(�x) bj ; quantum field

ψ̂†(�x) ≡
∑
j

ψ∗
j (�x) b

†
j (7.7)

The one-body operator is then

T̂ =

∫
d3x ψ̂†(�x)T ψ̂(�x) (7.8)

Suppose one has a two-body operator, such as the potential between all the

pairs

V =
1

2

∑
i

∑
j

V (|�xi − �xj |) (7.9)
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The extension of the above is simply1

V̂ =
1

2

∫
d3x

∫
d3y ψ̂†(�y)ψ̂†(�x)V (|�x− �y |) ψ̂(�x)ψ̂(�y) (7.10)

One can then construct a hamiltonian and write the many-body

Schrödinger equation in this abstract occupation number space as

i�
∂

∂t
|Ψ(t)〉 = Ĥ|Ψ(t)〉 ; Schrödinger eqn

Ĥ = T̂ + V̂ (7.11)

This is often referred to as second quantization.2

If the number of bosons is conserved, as in the case of 4He atoms, then

there will be one Schrödinger equation in each subspace of given N .

7.1.1 Bose Condensation

Suppose we have a non-interacting collection of bosons at very low tem-

perature. They will all occupy the same lowest-energy single-particle state,

and the ground state of the many-body system becomes

|N, 0, 0, · · · 〉 = |N〉|0〉|0〉 · · · (7.12)

This is known as Bose condensation.

Consider the creation and destruction operators (b†0, b0) for the zero-

mode. Redefine these operators as

ξ0 ≡ b0√
N

; ξ†0 =
b†0√
N

(7.13)

Consider the commutator of these new operators

[ξ0, ξ
†
0] =

[b0, b
†
0]

N
=

1

N
≈ 0 (7.14)

This vanishes for large N . We can therefore forget about the fact that these

new quantities are operators and just treat them as classical quantities (“c-

numbers”). What is their value? Take the matrix element of

1

N
〈N |b†0b0|N〉 = |ξ0|2 = 1 (7.15)

1There is no self-interaction, and we can always subtract it off as a one-body operator

to eliminate it, if need be.
2See [Fetter and Walecka (2003a)].
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Hence the c-number ξ0 is a pure phase.

Consider the first term in the quantum field operator

ψ0(�x)b0 = ξ0
√
N ψ0(�x)

≡ φ0(�x) (7.16)

For Bose condensation with large N , the quantum field operator can thus

be separated into two parts

ψ̂(�x) = φ0(�x) +
∑
j≥1

ψj(�x) bj (7.17)

We observe the following:

• The first term is a c-number;

• It has the spatial dependence of the lowest-energy single-particle state

ψ0(�x);

• It serves as a wave function for the condensed many-body system;

• Since the Bose condensate is described with a single-particle wave func-

tion, it is not surprising that it exhibits many of the unusual features

of a quantum fluid, such as quantized vortices; 3

• The remainder of the above quantum field is an operator acting on the

states above the condensate.

7.2 Fermions

There is another class of particles, for example, electrons and nucleons, that

show a very different behavior. These are the fermions that obey the Pauli

exclusion principle, which states that

One cannot put two identical fermions into the same state.

We have to go back and build this principle into the fermion operators

in the abstract occupation number space. Consider the operators in one

mode (a, a†). Instead of imposing commutation relations, we impose anti-

commutation relations

{a, a†} ≡ aa† + a†a = 1

{a, a} = aa+ aa = 0

{a†, a†} = a†a† + a†a† = 0 (7.18)

3See [Walecka (2008)]; see also Prob. 7.5.
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Consider the action of these operators on the two states |0〉 and |1〉, where
|1〉 = a†|0〉

a|1〉 = |0〉 (7.19)

• The number operator then gives the correct values

a†a|1〉 = (
1− aa†

)
a†|0〉 = |1〉

a†a|0〉 = (
a†a
)
a|1〉 = 0 (7.20)

• And further application of a† and a takes one out of this subspace

a†|1〉 = a†a†|0〉 = 0

a|0〉 = aa|1〉 = 0 (7.21)

• Thus these operators fulfill the condition that one can have either |0〉
or |1〉 particles in a given state, but no more.

The anti-commutation relations we then impose in the abstract occu-

pation number space for fermions are

{ai, a†j} = δi,j ; fermions

{ai, aj} = {a†i , a†j} = 0 (7.22)

The only challenge now is keeping track of signs, since the operators for

different modes anti-commute. One has

as|n0 · · ·ns−1 1s ns+1 · · · 〉 = (−1)Ss |n0 · · ·ns−1 0s ns+1 · · · 〉
a†s|n0 · · ·ns−1 0s ns+1 · · · 〉 = (−1)Ss |n0 · · ·ns−1 1s ns+1 · · · 〉

Ss = n0 + n1 + · · ·+ ns−1 (7.23)

The trick is to keep the operators paired until they reach the state on which

they operate. For example

a†sas|n0 · · ·ns · · · 〉 = ns|n0 · · ·ns · · · 〉 (7.24)

For fermions, the field operators now become4

ψ̂(�x) ≡
∑
j

ψj(�x) aj ; quantum field

ψ̂†(�x) ≡
∑
j

ψ∗
j (�x) a

†
j (7.25)

4For the spin-1/2 electrons and nucleons the single-particle wave functions become a
little more complicated — see below.
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The kinetic and potential energies in this abstract occupation number space

again take the form5

T̂ =

∫
d3x ψ̂†(�x )T ψ̂(�x )

V̂ =
1

2

∫
d3x

∫
d3y ψ̂†(�y )ψ̂†(�x )V (|�x− �y |) ψ̂(�x )ψ̂(�y ) (7.26)

and the many-body Schrödinger equation is again

i�
∂

∂t
|Ψ(t)〉 = Ĥ|Ψ(t)〉 ; Schrödinger eqn

Ĥ = T̂ + V̂ (7.27)

The quantum many-body problem is discussed in detail in [Fetter and

Walecka (2003a)].

7.3 Connection Between Spin and Statistics

It follows from some of the more esoteric aspects of relativistic quantum

field theory that there is a connection between spin and statistics

Half-integral spin particles obey Fermi statistics, while integer spin

particles obey Bose statistics.

Electrons and nucleons have spin-1/2, and they obey Fermi statistics.
4He atoms have spin zero and photons have unit helicity (the component

of spin along the direction of motion); they obey Bose statistics.

We can keep track of the helicity of the photons with the polarization

vectors

�e�k,±1 = ∓ 1√
2

(
�e�k1 ± i�e�k2

)
(7.28)

For the spin-1/2 particles, we keep track of the spin projection along the

z-axis with a set of two-component column vectors 6

φ↑ =

(
1

0

)
; φ↓ =

(
0

1

)
(7.29)

5Note that the two-body potential now vanishes if the initial or final pair of single-
particle states are identical since a2j = (a†j)

2 = 0.
6One then uses the complex conjugate transpose ψ†j (�x), or adjoint, of the single-

particle wave function in the field [note Eq. (11.41)].
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Chapter 8

Quantum Measurements

In discussing measurements in quantum mechanics, it is always good to have

a specific experiment in hand. We start our discussion with the Stern–

Gerlach experiment — one of the pioneering measurements in quantum

mechanics that led Pauli to the concept of spin.

8.1 Stern–Gerlach Experiment

In this experiment a beam of neutral particles with internal angular mo-

mentum ��S, here assumed to be spin-1/2 with Sz = ±1/2, and a magnetic

moment �μ = 2μ�S in the direction of the spin, is passed through an inho-

mogeneous magnetic field (see Fig. 8.1).

beam

inhomogeneous

magnet

dB
z

dz

(A)

z

y

x

Fig. 8.1 Stern–Gerlach experiment on a spin-1/2 system with a magnetic moment �μ =

2μ�S, and Sz = ±1/2. The z-axis is in the plane and vertical.

67
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The particles feel a force in the z-direction of

Fz = μz
dBz

dz
(8.1)

Instead of seeing a continuous distribution of particles coming out of the

detector in the z-direction, one observes only two beams, corresponding

to Sz = ±1/2. This illustrates the discrete quantization of the angular

momentum. One observes just the eigenvalues of Sz.

In quantum mechanics we understand what is happening by saying the

initial internal state of each particle is a linear combination of the two spin

states1

|ψint(t)〉 = c↑(t) | ↑〉+ c↓(t) | ↓〉 (8.2)

The probability that we will measure spin up is then |c↑(t)|2, and the prob-

ability that we will measure spin down is |c↓(t)|2, where

|c↑(t)|2 + |c↓(t)|2 = 1 (8.3)

The internal Schrödinger equation tracks the behavior of both components

as time progresses.

Suppose one now passes the top beam through a second detector iden-

tical to the first one as illustrated in Fig. 8.2.

X(A)

Fig. 8.2 Repeat of Stern–Gerlach experiment on upper beam using detector (A).

One will now observe that all of the particles coming out again have their

spin up, and there are none coming out with their spin down.2 We conclude

from this that measurements are reproducible, and if we measure that the

particle has spin up, then another measurement immediately afterwards

will again say that it has spin up.

1Here the states | ↑〉 and | ↓〉 are one-particle states in the abstract occupation number

space.
2We assume pure pass measurements here.
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But in quantum mechanics, we actually have something more profound.

The act of the first measurement has changed the system. It is no longer in

the state in Eq. (8.2). The act of measurement has reduced the basis. The

act of measurement has placed it entirely in the new state

|ψint(t)〉 = c(t) | ↑〉 ; |c(t)|2 = 1 (8.4)

It is even more interesting than this. Suppose that instead of being

oriented in the same z-direction as the first detector, the second detector in

Fig. 8.2 is rotated by 90o about the y-axis and oriented in the x-direction,

which is normal to the plane in Fig. 8.1. What we will now observe coming

out of the second detector is two beams, one corresponding to spin up along

the x-direction | →〉, and one corresponding to spin down along the x-

direction | ←〉. How do we understand this? In quantum mechanics these

two states form a complete basis in which the state | ↑〉 can be expanded

| ↑〉 = 1√
2
( | →〉 + | ←〉 ) (8.5)

Hence, the above state can be rewritten as

|ψint(t)〉 = c(t)√
2
( | →〉 + | ←〉 ) (8.6)

The probability that we will now find the system in the state | →〉 is then

|c(t)|2/2, and the probability that we will find | ←〉 is also |c(t)|2/2. The

act of measurement again prepares the system in a new state. The internal

Schrödinger equation again tracks the behavior of both components as time

progresses.

Suppose we now select a system coming out in the | →〉 state with its

spin pointed up along the x-axis. We have then prepared a known linear

combination of the original states3

| →〉 = c̃↑(t) | ↑〉+ c̃↓(t) | ↓〉 (8.7)

and the process starts all over again!

Whenever you get confused by abstract discussions of measurements in

quantum mechanics, it is always worthwhile coming back to this example,

where the concepts are quite intuitive.

3You can now figure out what happens if we put detector (A) after either one of these
beams (see Prob. 8.2).
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8.2 Reduction of the Basis

Let us try to formalize this measurement theory. Suppose we are looking at

a single particle, and we have a complete set of the eigenfunctions of some

hermitian operator with real eigenvalues at our disposal

Fψf (x) = fψf (x) ; eigenfunctions (8.8)

Order the eigenvalues f0 ≤ f1 ≤ f2 · · · , and expand the wave function

Ψ(x, t) in this complete set of eigenfuctions

Ψ(x, t) =
∑
f

cf (t)ψf (x) ; complete set (8.9)

The state is normalized, so that

∑
f

|cf (t)|2 = 1 (8.10)

Measurement theory then assumes the following:

(1) If we make a precise measurement of the quantity F , we will observe

one of the eigenvalues f ;

(2) If we perform a pure pass measurement at a time t0 that lets the eigen-

value f through, then the wave function is reduced to4

Ψ(x, t) = cf (t)ψf (x) ; t ≥ t0

|cf (t)|2 = 1 (8.11)

The measurement is reproducible and the basis is reduced.

(3) If the measurement simply lets the eigenvalues in the set f1 ≤ f ≤ f2
through, then the basis is reduced to

Ψ(x, t) =
∑
f

′
cf (t)ψf (x) ; t ≥ t0

∑
f

′|cf (t)|2 = 1 (8.12)

where the sum
∑′

f goes over f1 ≤ f ≤ f2.

4Note that the coefficient cf (t) must be rescaled to achieve this norm (see Prob. 10.2).
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8.3 A Second Experiment — π0 Decay

As a second, more complex, experiment, consider observations of the decay

into two photons of the neutral, spin-zero, π0 meson. We work in an ab-

stract occupation number space where there are three states (see Fig. 8.3)

π 0

λ = -1

λ = +1

k

k

k

Fig. 8.3 The three states used in the discussion of the π0-decay experiment.

(1) There is a single π0 at rest in the state |π0〉 ;
(2) There is one two-photon state with equal and opposite wave vectors �k

and unit positive helicities λ = +1, where the helicity is the component

of the angular momentum along the direction of motion. With the use

of the photon operators b†�kλ this state is

|�k,+1〉 | − �k,+1〉 = b†�k,+1
b†−�k,+1

|0〉 (8.13)

(3) There is a similar two-photon state with equal and opposite wave vec-

tors �k and unit negative helicities λ = −1

|�k,−1〉 | − �k,−1〉 = b†�k,−1
b†−�k,−1

|0〉 (8.14)

Since the pion at rest has no angular momentum, and angular momentum

is conserved, there can be no net angular momentum along the direction

of motion of the photons, and therefore it is only two-photon states with

the same helicity that can be accessed during the decay. The state we are

describing in the abstract occupation number space is a linear combination



April 12, 2021 16:29 EMcon.tex,ws-book9x6-9x6 12222-main page 72

72 Introduction to Quantum Mechanics

of these three states 5

|Ψ(t)〉 =
∫

dΩk

2π

{
c+(t) |�k,+1〉 | − �k,+1〉+ c−(t) |�k,−1〉 | − �k,−1〉

}
+ c0(t)|π0〉 (8.15)

The Schrödinger equation then tracks all three coefficients in this state

vector as a function of time.

• At the initial time t = 0 we prepare a π0 at rest so that

c0(0) = 1 ; c+(0) = c−(0) = 0

; t = 0 (8.16)

• There is a piece of the hamiltonian H that converts the π0 to two

photons; we do not need to know just what this is, only that it is there.

As the time progresses, the π0 will disappear and the two photons will

appear. The decrease in |c0(t)|2 with time gives the decay rate;

• After some time, the π0 is gone, and the state is

|Ψ(t)〉 =
∫

dΩk

2π

{
c+(t) |�k,+1〉 | − �k,+1〉+ c−(t) |�k,−1〉 | − �k,−1〉

}
; t � 0 (8.17)

With no further information, we expect these coefficients to be equal

|c+(t)|2 = |c−(t)|2 (8.18)

Now suppose we do an experiment where we set up a detector to look

at the photon with a given momentum ��k coming from the decay of a pion,

and we measure the helicity of that photon. We do that experiment over

and over again. The probability that we will measure a given helicity is

obtained from Eq. (8.18). It is equally likely that we will measure λ = +1

as λ = −1. If we do measure λ = +1 in a pure pass measurement, for

example, then the state vector becomes

|Ψ(t)〉 = c(t) |�k,+1〉 | − �k,+1〉 ; |c(t)|2 = 1 (8.19)

We have reduced the basis, and the measurement is now reproducible.

Let us do another experiment. We have a collaborator who sets up a

second detector to measure the helicity of the second photon with opposite

momentum −��k. If there is no coordination in our measurements, he or
5For illustration, we keep only the asymptotic energy-conserving states with 2�kc =

mπc2.
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she will find the same probability distribution as obtained from Eq. (8.18)–

equal numbers of λ = ±1.

But suppose we arrange the timing to make sure we are doing a coin-

cidence experiment where we measure the two photons coming from the

decay of the same π0. Now if I find a helicity λ, my collaborator will find

the same helicity λ! It is only those states that are contained in the state

vector, which supposedly describes the system for all time. Equation (8.18)

implies that the probability that we will both measure a pair with λ = +1

is the same as the probability that we will measure a pair with λ = −1.

We will never measure a pair with opposite helicities, which would imply

a breakdown in the conservation of angular momentum, since there are no

such pairs in the state vector.

We can go further. If I do a pure pass experiment for helicity λ =

+1, for example, the state vector is reduced by my measurement to the

state vector in Eq. (8.19), and the subsequent measurement of the second

helicity, whenever it would occur, would also then give λ = +1 with unit

probability. My measurement has determined what the second observer will

subsequently see. And it does not matter how far we are apart when we

make these measurements; the results are now correlated. When we get

together later offline and compare our results for the same π0 decay, we

will find we have measured the same helicities. It is only those states that

are contained in the state vector.6

It is important to note that the Schrödinger equation simultaneously

tracks the time development of the states of both helicities λ = ±1. It is

only a measurement that selects one or the other of the possibilities.

It is the observations that the Schrödinger equation simultaneously

tracks all the components of the state vector, and that a measurement of

one component reduces the basis and can determine what a second observer

will see, which form the foundation of quantum computing.7

6There is a principle in relativistic quantum field theory known as microscopic causal-
ity, which states that information cannot be transmitted faster than the speed of light.

That principle cannot be violated, and this experiment does not do so.
7See, for example, [Bernhardt (2019)].
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Chapter 9

Formal Structure of Quantum
Mechanics

In mechanics and electricity and magnetism we write the fundamental equa-

tions, Newton’s laws and Maxwell’s equations, in abstract form in the sense

that we write them as relations between vectors. The component form of

these relations is just a calculational tool. The underlying relationships

are between the vectors themselves. Our goal here is to achieve a similar

abstract form for the Schrödinger equation. We have actually seen good

examples of this in our use of the abstract occupation number space for

electrodynamics and for the quantum statistics of many-body Bose and

Fermi systems. Our first step is to generalize the notions of vectors and the

scalar dot product of vectors to infinite dimensional complex linear vector

spaces with an inner-product norm.

9.1 Hilbert Space

Ordinary three-dimensional vectors have cartesian components, and a dot

product defined by

�v = (v1, v2, v3)

�a ·�b =
3∑

i=1

aibi (9.1)

Let us generalize this in two ways:

• Extend the space to have an infinite number of dimensions;

• Let the components of the vector become complex.

75
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One then has

�v = (v1, v2, v3, · · · )

�a ∗ ·�b =
∞∑
i=1

a∗i bi (9.2)

The square of the length of the vector is then given by

|�v |2 = �v ∗ · �v =

∞∑
i=1

|vi|2 (9.3)

An infinite dimensional linear vector space with an inner-product norm is

known as a Hilbert space. Our goal is to write the Schrödinger equation as

an operator relation in an abstract Hilbert space.

9.2 Component Form

Let us start with the component form of our relations. In order to do this

we need to introduce the concept of a continuous component, and we also

need to make use of the Dirac delta function that was introduced when

discussing transition rates. In fact, the concepts and notation for what

we are doing here were originally introduced by Dirac in his fundamental

work.1

We first label the components of the abstract state vectors that we are

studying with a subscript x, and calculate the inner product of two of those

vectors as2

〈ψm|ψn〉 =
∑
x

(ψm)
∗
x (ψn)x (9.4)

We now have to define the continuous sum, as well as the components in

the x-direction. We do this by writing the sum as an integral and using our

coordinate-space wave functions for the components

〈ψm|ψn〉 =
∑
x

(ψm)
∗
x (ψn)x ≡

∫
dxψ∗

m(x)ψn(x) (9.5)

This defines the continuous sum. It is just the integral over the appropriate

interval of two of our previous wave functions.

1See [Dirac (1930)].
2We go back to one dimension for simplicity.
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Let us further introduce the eigenstates of the hermitian position oper-

ator x̂ 3

x̂ |x〉 = x |x〉 (9.6)

We can then rewrite the above as

〈ψm|ψn〉 =
∑
x

(ψm)
∗
x (ψn)x =

∑
x

〈ψm|x〉〈x|ψn〉 (9.7)

where we have identified the wave functions as

〈x|ψn〉 = ψn(x)

〈ψm|x〉 = ψ∗
m(x) (9.8)

We now have the consistent physical interpretation that the probability for

finding the particle in the interval dx at the position x if it is in the state

|ψn〉 is the absolute square of the probability amplitude obtained from the

inner product 〈x|ψn〉

|〈x|ψn〉|2 dx = |ψn(x)|2 dx ; probability (9.9)

Equation (9.7) allows us to identify the completeness relation for the

eigenstates of position ∑
x

|x〉〈x| = 1̂ (9.10)

What about the inner product of these states? Here we are forced to deal

with the fact that the eigenvalues of position are truly continuous, and we

write4

〈x|x′〉 = δ(x− x′ ) (9.11)

The relation in Eq. (9.10) then gives us, consistently,

〈x′ |x′′ 〉 =
∑
x

〈x′ |x〉〈x|x′′ 〉 =
∫

dx δ(x′ − x) δ(x− x′′ )

= δ(x′ − x′′ ) (9.12)

3We here and henceforth again use a hat over a symbol to indicate an operator in
the abstract Hilbert space (except for the creation and destruction operators, where it
is obvious).

4Note the Dirac delta function is symmetric, with δ(x− x′) = δ(x′ − x).
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The matrix element of the potential energy in this coordinate represen-

tation is given by

〈x′|V (x̂)|x〉 = V (x)〈x′|x〉 = V (x)δ(x− x′) (9.13)

The matrix element of the kinetic energy is a little more complicated, but

still straightforward

〈x′|T̂ |x〉 = − �
2

2m

〈
x′
∣∣∣∣ d2dx2

∣∣∣∣x
〉

= − �
2

2m

d2

dx2
〈x′|x〉

= − �
2

2m

d2

dx2
δ(x− x′) (9.14)

9.3 The Schrödinger Equation

Let |Ψ(t)〉 be a time-dependent vector in this abstract Hilbert space. The

Schrödinger equation then reads

i�
∂

∂t
|Ψ(t)〉 = Ĥ|Ψ(t)〉

Ĥ = T̂ + V̂ (9.15)

Take a matrix element with 〈x|, and use completeness of the eigenstates of

position5

i�
∂

∂t
〈x|Ψ(t)〉 =

∑
x′

〈x|Ĥ|x′ 〉〈x′ |Ψ(t)〉 (9.16)

Identify 〈x|Ψ(t)〉 as the wave function Ψ(x, t), and use the expressions for

the matrix elements of the kinetic and potential energies from above.6 This

gives

i�
∂

∂t
Ψ(x, t) =

∫
dx′

[
− �

2

2m

∂2

∂x2
+ V (x)

]
δ(x− x′)Ψ(x′, t)

=

[
− �

2

2m

∂2

∂x2
+ V (x)

]
Ψ(x, t) (9.17)

Low and behold, we recover our previous Schrödinger equation in coordi-

nate space from the component form of the Schrödinger equation written

in this abstract Hilbert space in Eq. (9.15)!

5Eigenstates of momentum are investigated in Probs. 9.1–9.3.
6Note that if the matrix element is real, and if the operator is hermitian (see the next

section), then the matrix element is symmetric 〈x′|Ĥ|x〉∗ = 〈x′|Ĥ|x〉 = 〈x|Ĥ|x′〉.
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9.4 Hermitian Operators

Let F̂ be an operator in the abstract Hilbert space. The adjoint operator

F̂ † is defined by

〈ψn|F̂ |ψm〉∗ = 〈ψm|F̂ †|ψn〉 ; adjoint (9.18)

where |ψm〉 and |ψn〉 are any two acceptable states in the space. An oper-

ator is hermitian if it is self-adjoint

F̂ = F̂ † ; hermitian (9.19)

The eigenstates of a hermitian operator are defined by

F̂ |ψf 〉 = f |ψf 〉 ; eigenstates (9.20)

Here f is the eigenvalue, and it follows from Eqs. (9.18) and (9.19) that these

eigenvalues are real. The projection of these eigenstates on the eigenstates

of position yield the corresponding coordinate-space wave functions

〈x|ψf 〉 = ψf (x) ; wave function (9.21)

It can be shown for certain classes of operators that the wave functions

form a complete set, in which any other acceptable wave function can be

expanded7

Ψ(x) =
∑
f

cf ψf (x) ; completeness (9.22)

The corresponding statement of completeness in abstract Hilbert space is

|Ψ〉 =
∑
f

cf |ψf 〉 ; completeness (9.23)

9.5 Commutation Relations

The theory of quantum mechanics for a particle moving in one dimen-

sion in a potential V (x) is constructed by imposing the following canonical

commutation relation on the hermitian operators p̂ and x̂ representing the

momentum and position of the particle in abstract Hilbert space

[p̂, x̂] =
�

i
; commutation relation (9.24)

7See [Fetter and Walecka (2003)]; see also Prob. 9.1.
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As in Eq. (9.17), this is satisfied in the coordinate representation with

〈x|p̂|x′〉 = �

i

∂

∂x
δ(x− x′) ; coordinate rep (9.25)

9.6 Ehrenfest’s Theorem

The formal solution to the Schrödinger equation in abstract Hilbert space

can be written as

|Ψ(t)〉 = e−iĤt/� |Ψ(0)〉 ; formal solution (9.26)

where the exponential of the operator has a well-defined meaning in terms

of its power-series expansion. If we consider the hermitian operator F̂ then

what we would measure for the time development of this quantity if the

system is in the state |Ψ(t)〉 is the expectation value 8

F (t) = 〈Ψ(t)|F̂ |Ψ(t)〉 = 〈Ψ(0)|eiĤt/� F̂ e−iĤt/� |Ψ(0)〉 (9.27)

Differentiate this with respect to time

dF (t)

dt
= 〈Ψ(t)| i

�
[Ĥ, F̂ ] |Ψ(t)〉 (9.28)

The operator whose expectation value then yields the time development of

F (t) is given by the commutator with the hamiltonian(
dF

dt

)
op

=
i

�
[Ĥ, F̂ ] (9.29)

If F̂ should have an additional explicit time dependence, this relation be-

comes (
dF

dt

)
op

=
∂F̂

∂t
+

i

�
[Ĥ, F̂ ] ; Ehrenfest’s theorem (9.30)

This is known as Ehrenfest’s theorem. We give three consequences:

(1) If the operator F̂ = 1̂, then we are simply investigating the time devel-

opment of the norm of the state. It is evident that

i

�
[Ĥ, 1̂ ] = 0 (9.31)

8The state is normalized (see below); see also Prob. 9.5.
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Thus if the state is originally normalized, it will continue to be normal-

ized as time progresses;

(2) Suppose we have a time-independent operator Ô that commutes with

the hamiltonian. Then(
dO

dt

)
op

=
i

�
[Ĥ, Ô] = 0 (9.32)

The expectation value of this operator does not change with time;

hence, the operator Ô represents a constant of the motion;

(3) With a hamiltonian of the form

Ĥ =
p̂2

2m
+ V (x̂) (9.33)

one has

i

�
[Ĥ, x̂] =

p̂

m
i

�
[Ĥ, p̂] =

i

�
[V (x̂), p̂] (9.34)

In the coordinate representation, the last expression becomes

i

�
〈x′| [V (x̂), p̂] |x〉 = −∂V (x)

∂x
δ(x− x′) (9.35)

Equations (9.28)–(9.35) then become the quantum analogs of Hamil-

ton’s equations in classical mechanics.

9.7 Other Pictures

All of the above results hold in what is known as the Schrödinger picture

where Eqs. (9.15) and (9.26) govern the time development of the abstract

state vector. As we have seen, in many cases where

Ĥ = Ĥ0 + Ĥ1 (9.36)

it is convenient to take out the free time dependence and have the time

evolution be explicitly proportional to Ĥ1. We do this by going to the

interaction picture. The Schrödinger equation is

i�
∂

∂t
|Ψ(t)〉 =

(
Ĥ0 + Ĥ1

)
|Ψ(t)〉 (9.37)
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Define

|Ψ(t)〉 ≡ e−iĤ0t/� |Ψ0(t)〉 ; interaction picture (9.38)

Substitute this in the Schrödinger equation(
Ĥ0 + i�

∂

∂t

)
|Ψ0(t)〉 = eiĤ0t/�

(
Ĥ0 + Ĥ1

)
e−iĤ0t/� |Ψ0(t)〉 (9.39)

The terms in Ĥ0 cancel, and one is left with a Schrödinger equation of the

form

i�
∂

∂t
|Ψ0(t)〉 = Ĥ1(t)|Ψ0(t)〉 ; interaction picture

Ĥ1(t) = eiĤ0t/� Ĥ1e
−iĤ0t/� (9.40)

Here

|Ψ0(t)〉 ≡ eiĤ0t/� |Ψ(t)〉 (9.41)

This is still an exact formulation of the problem, and always remember that

physics lies in the matrix elements.

We can rewrite the time development of |Ψ0(t)〉 as

|Ψ0(t)〉 = Û(t, t0)|Ψ0(t0)〉 (9.42)

Then from Eq. (9.40), the time-development operator Û(t, t0) satisfies the

following differential equation and initial condition

i�
∂

∂t
Û(t, t0) = Ĥ1(t)Û(t, t0)

Û(t0, t0) = 1 (9.43)

This can then be rewritten as an integral equation

Û(t, t0) = 1̂− i

�

∫ t

t0

dt′ Ĥ1(t
′)Û(t′, t0) (9.44)

This integral equation can be iterated to obtain an explicit power series in

Ĥ1 for the time-development operator

Û(t, t0) = 1̂− i

�

∫ t

t0

dt′ Ĥ1(t
′) +

(
− i

�

)2 ∫ t

t0

dt′
∫ t′

t0

dt′′ Ĥ1(t
′)Ĥ1(t

′′) + · · ·
(9.45)
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The Schrödinger state vector then develops in time according to Eq. (9.38)

|Ψ(t)〉 = e−iĤ0t/� Û(t, t0)|Ψ0(t0)〉 (9.46)

Suppose we confine the discussion to operators Ô that have no explicit

time dependence. Their expectation value in the Schrödinger picture, with

a normalized state vector |Ψ(t)〉, is
〈Ô〉 = 〈Ψ(t)|Ô|Ψ(t)〉 (9.47)

The formal solution to the Schrödinger equation in abstract Hilbert space

is given in Eq. (9.26)

|Ψ(t)〉 = e−iĤt/� |Ψ(0)〉 (9.48)

The Heisenberg picture, which has exactly the same physical content as the

Schrödinger picture, is defined by putting all of the time dependence into

the operators

ÔH(t) ≡ eiĤt/� Ô e−iĤt/� ; Heisenberg picture (9.49)

The state vector is then independent of time, and

〈Ô〉 = 〈Ψ(0)|ÔH(t)|Ψ(0)〉 (9.50)

The equation of motion of the Heisenberg operator is given by

dÔH(t)

dt
=

i

�
[Ĥ, ÔH(t) ] (9.51)
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Chapter 10

Quantum Mechanics Postulates

Here we summarize the quantum mechanics postulates arrived at in the

previous discussion. They are formulated in the abstract Hilbert space.

(1) There is a state vector |Ψ(t)〉 that provides a complete dynamical de-

scription of a system;

(2) An observable F is represented by a linear hermitian operator F̂ ;

(3) The operators obey canonical commutation relations, in particular

[p̂, x̂] =
�

i
(10.1)

(4) The dynamics is given by the Schrödinger equation

i�
∂

∂t
|Ψ(t)〉 = Ĥ|Ψ(t)〉 (10.2)

(5) The eigenstates of a linear hermitian operator form a complete set1

F̂ |fn〉 = fn|fn〉 ; n = 1, 2, · · · ,∞∑
n

|fn〉〈fn| = 1̂ (10.3)

(6) Measurement postulate:

(a) A precise measurement of F must yield one of the eigenvalues fn ;

(b) If the state vector is normalized, then the probability of observing

an eigenvalue fn at the time t is |〈fn|Ψ(t)〉|2 ;
(c) A measurement f ′ ≤ f ≤ f ′′ at time t0 reduces the state vector to

|Ψ(t0)〉′ =
∑′

n afn(t0)|fn〉(∑′
n |afn(t0)|2

)1/2 ; where f ′ ≤ fn ≤ f ′′ (10.4)

1See Prob. 10.1.
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Through his many years in physics, the author has found this to be a

complete and essential set of postulates for the implementation of quantum

mechanics.
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Chapter 11

Relativity

11.1 Special Relativity

The final chapter in the text Introduction to Electricity and Magnetism
[Walecka (2018)] discusses special relativity. The speed of light is observed

to be the same in all inertial frames. Lorentz came up with a coordinate

transformation involving the position and the time that leaves the wave

operator unaltered by the transformation

∂2

∂x′ 2 − 1

c2
∂2

∂t′ 2
=

∂2

∂x2
− 1

c2
∂2

∂t2
(11.1)

Einstein took this transformation seriously in his special theory of rel-

ativity and said this is how the spatial and time coordinates are actually

related between frames. The amazing implications of Lorentz contraction

and time dilation are repeatedly exhibited in the laboratory today.

An elegant way of summarizing the Lorentz transformation is to say

we live in a complex Minkowski space. Suppose the origins of the frames

coincide at the initial times. With the use of the coordinate along the

direction of relative motion of the frames, and the subsequent time, one

can form a two-vector xμ = (x, ict) in the first frame. The square of the

length of this two-vector is the interval

2∑
μ=1

xμxμ = x2 − c2t2 ; interval (11.2)

87
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A Lorentz transformation to the second frame is then an orthogonal trans-

formation (a rotation) aμν in this space that leaves the interval invariant

2∑
μ=1

x′
μx

′
μ = x′ 2 − c2t′ 2 =

2∑
μ=1

xμxμ = x2 − c2t2 (11.3)

The calculation proceeds in a familiar fashion

2∑
μ=1

x′
μx

′
μ =

2∑
μ=1

2∑
ν=1

2∑
ν′=1

aμνaμν′xνxν′ =

2∑
ν=1

2∑
ν′=1

δν,ν′xνxν′ =

2∑
ν=1

xνxν

(11.4)

With the inclusion of the two (unaffected) transverse spatial coordi-

nates, the analysis is extended to four-vectors xμ = (�x, ict), and the

Lorentz-invariant scalar product of four-vectors. The theory of special

relativity is then readily developed in this complex, four-dimensional,

Minkowski space in which we live. A detailed discussion can be found

in the text [Walecka (2008)].

Relativistic quantum mechanics is a huge field, and it forms the basis

for everything that goes on in today’s nuclear and particle physics. We

certainly cannot give a comprehensive introduction to relativistic quantum

mechanics here. We can, however, cover two topics that provide a good,

firm foundation for future study. We discuss the quantum field theory of

a massive, neutral scalar field, and we introduce the Dirac equation for

relativistic spin-1/2 systems.

11.2 Massive Scalar Field

The relativistic relation between energy and momentum for a particle with

rest mass m0 is

E =
√

�p 2c2 +m2
0c

4 (11.5)

If we identify this with the hamiltonian H, and attempt to quantize with

�p = (�/i)�∇, the Schrödinger equation becomes

i�
∂φ(�x, t)

∂t
=
[
−(�c)2�∇ 2 + (m0c

2)2
]1/2

φ(�x, t) (11.6)
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The square-root causes difficulties.1 A repeated application of this expres-

sion, however, leads to a much simpler expression

(
�−m2

)
φ(�x, t) = 0 ; m ≡ m0c

�
(11.7)

This is the relativistic wave equation for a particle with inverse Compton

wavelength m = m0c/�.

We know from the previous text Introduction to Classical Mechanics
[Walecka (2020)] how to do classical continuum mechanics with the wave

equation.2 There the analysis is applied to the string, where the wave

equation holds. Introduce the two-vector xμ = (x1, x2) = (x, ict), with

c2 = τ/σ and i the imaginary number
√−1. Also, introduce the convention

that repeated Greek indices are summed from 1 to 2. The basic equation

of motion is then obtained from Hamilton’s principle of stationary action

δ

∫
d2xL

(
q,

∂q

∂xμ

)
= 0 ; d2x ≡ dx cdt (11.8)

The lagrangian density for the string is

L =
σ

2

[
∂q(x, t)

∂t

]2
− τ

2

[
∂q(x, t)

∂x

]2
(11.9)

This can be rewritten as

L = −τ

2

(
∂q

∂xμ

)(
∂q

∂xμ

)
= −τ

2

(
∂q

∂xμ

)2

; string (11.10)

Lagrange’s equation for the string then follows as

∂

∂t

[
∂L

∂(∂q/∂t)

]
+

∂

∂x

[
∂L

∂(∂q/∂x)

]
− ∂L

∂q
= 0 (11.11)

With the above conventions, this can be written as

∂

∂xμ

[
∂L

∂(∂q/∂xμ)

]
− ∂L

∂q
= 0 ; Lagrange’s eqn (11.12)

Now just extend the definition of xμ to include two additional spatial

coordinates xμ = (x1, x2, x3, x4) = (�x, ict), and take the above analysis over

1One can always start expanding it (see Prob. 11.1).
2See also the book Introduction to Classical Mechanics: Solutions to Problems

[Walecka (2020)]; in particular, see the solution to Prob. 15.10.
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to the scalar field φ(�x, t).3 Hamilton’s principle reads

δ

∫
d4xL

(
φ,

∂φ

∂xμ

)
= 0 ; d4x ≡ dx3 cdt (11.13)

Lagrange’s equation reads

∂

∂xμ

[
∂L

∂(∂φ/∂xμ)

]
− ∂L

∂φ
= 0 ; Lagrange’s eqn (11.14)

To get the proper scalar field equation we employ

L = −c2

2

(
∂φ

∂xμ

)2

− 1

2
m2c2φ2 ; scalar field (11.15)

Lagrange’s equation then reproduces Eq. (11.7)(
�−m2

)
φ(�x, t) = 0 (11.16)

The field φ and the lagrangian density L are both Lorentz scalars. Thus

Hamilton’s principle and Lagrange’s equation are here both Lorentz invari-

ant.

The canonical momentum density is given by

Π(�x, t) =
∂L

∂(∂φ/∂t)
=

∂φ(�x, t)

∂t
(11.17)

The hamiltonian density then follows as

H = Π
∂φ

∂t
− L (11.18)

This gives 4

H(�x, t) =
1

2

[
∂φ(�x, t)

∂t

]2
+

c2

2

[
�∇φ(�x, t)

]2
+

1

2
m2c2φ2(�x, t) (11.19)

With periodic boundary conditions, the normal modes for the scalar

meson field are given by plane waves

q�k(�x, t) =
1√
Ω
ei(

�k·�x−ωkt) ; �k =
2π

L
(nx, ny, nz)

ωk = c

√
�k 2 +m2 ; ni = 0,±1,±2, · · · ; i = x, y, z (11.20)

3Now, of course, c is the speed of light.
4Note that this hamiltonian density is positive definite.
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They satisfy the wave equation(
�−m2

)
q�k(�x, t) = 0 (11.21)

We have an infinite, discrete set of wavenumbers, and the normal modes

are orthonormal ∫
Ω

d3x q��k(�x, t) q�k′(�x, t) = δ�k,�k′ (11.22)

The scalar field can be expanded in normal modes according to

φ(�x, t) =
∑
�k

(
�

2ωkΩ

)1/2 [
c�k e

i(�k·�x−ωkt) + c��k e
−i(�k·�x−ωkt)

]
(11.23)

The total energy follows by substituting this expansion in the hamiltonian

density and doing the spatial integration. The calculation proceeds just as

in appendix A, only here it is simpler. We leave the details as a problem,

and the result is5

E =
1

2

∑
�k

�ωk

(
c��k c�k + c�k c

�
�k

)
(11.24)

Since the analysis has been reduced to a set of uncoupled simple har-

monic oscillators, we can immediately quantize the massive scalar field. We

impose the oscillator commutation relations of Sec. 6.7

[c�k, c
†
�k ′ ] = δ�k,�k ′ (11.25)

The total energy, which is the hamiltonian, then simply becomes the sum

over the number of quanta in each mode

Ĥ =
∑
�k

�ωk

(
N̂�k +

1

2

)
(11.26)

The energy of each quantum is just the correct relativistic expression for

the energy of a particle with momentum �p = ��k

�ωk = Ek =

√
(��kc)2 + (m0c2)2 (11.27)

Let us summarize what we can take away from our discussion of the

massive neutral scalar field:

• This provides the simplest example of relativistic quantum field theory;
5See Prob. 11.2.
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• The lagrangian density is Lorentz invariant, and hence so is Lagrange’s

equation here;

• Lagrange’s equation produces the relativistic wave equation for a mas-

sive scalar field;

• The hamiltonian is obtained from the lagrangian through the canonical

procedure;6

• The normal-mode expansion of the massive scalar field reduces the

hamiltonian to a set of uncoupled simple harmonic oscillators;

• The field is then quantized using the oscillator results;

• The quanta of the field are massive scalar particles, with the correct

relativistic relation between energy and momentum;

• The quantum scalar field φ̂(�x, t) now creates and destroys these quanta,

which are bosons;

• Interactions can now be included in the lagrangian density. For exam-

ple, an acceptable self-coupling of the field here is obtained by incre-

menting the lagrangian density with

L1(φ) = − λ

4!
φ4 (11.28)

Relativistic quantum field theory of a massive scalar field plays a central

role in the standard model of electroweak interactions in particle physics, as

well as in model field theories of the nuclear interaction in nuclear physics.7

11.3 The Dirac Equation

The first successful union of quantum mechanics and special relativity for a

single-particle was achieved by Dirac, and here we give the lovely historical

argument [Dirac (1926)].

One wants the theory to possess the following features:

(1) A positive-definite probability density

ρ = Ψ�Ψ ≥ 0 ; probability density (11.29)

6We also know from the Introduction to Classical Mechanics text how to obtain the
energy-momentum tensor Tμν and the energy flux [Walecka (2020)].

7See [Walecka (2004)]. Relativistic quantum field theory is developed in detail in
[Walecka (2010)].
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(2) A Schrödinger equation that is first-order in the time derivative

i�
∂Ψ

∂t
= HΨ ; Schrödinger equation (11.30)

(3) A continuity equation

∂ρ

∂t
+ �∇ · �S = 0 ; continuity equation (11.31)

As before, this will provide a basis for the interpretation of the theory

and ensure that, for a localized particle,

d

dt

∫
ρ(�x, t) d3x = 0 (11.32)

(4) The correct relativistic relation between energy and momentum

E2 = �p 2c2 +m2
0c

4 ; relativistic relation (11.33)

Now we do know of a theory that is Lorentz covariant and involves only

first-order time derivatives, and that is the set of Maxwell’s equations in

electrodynamics.8 Here one has a set of eight coupled equations for the

components of the electric and magnetic fields ( �E, �B ). Dirac argued by

analogy. He introduced a wave function Ψ that had a set of n components

ψσ ; σ = 1, 2, · · · , n
components of Ψ (11.34)

with a corresponding positive-definite probability density defined by

ρ ≡
n∑

σ=1

ψ�
σψσ (11.35)

To satisfy Lorentz covariance, one expects to have to treat space and

time on an equal footing, and to satisfy the second requirement above, they

must then occur linearly. Thus Dirac assumed an equation of motion of the

form

i�
∂ψσ

∂(ct)
=

�

i

3∑
k=1

n∑
ρ=1

αk
σρ

∂ψρ

∂xk
+m0c

n∑
ρ=1

βσρψρ ; Dirac eqn

σ = 1, · · · , n (11.36)

Here (αk
σρ, βσρ) are simply constants that couple the various components

of the wave function. One now has a set of n coupled, linear, partial
8See Introduction to Electricity amd Magnetism [Walecka (2018)].
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differential equations. In order to satisfy the third requirement above, we

need to investigate ∂ρ/∂t. To this end, consider

i�
∂

∂(ct)

∑
σ

ψ�
σψσ =

∑
σ

ψ�
σ

[
�

i

3∑
k=1

∑
ρ

αk
σρ

∂ψρ

∂xk
+m0c

∑
ρ

βσρψρ

]
+

∑
σ

ψσ

[
�

i

3∑
k=1

∑
ρ

αk�
σρ

∂ψ�
ρ

∂xk
−m0c

∑
ρ

β�
σρψ

�
ρ

]
(11.37)

where the second line is obtained from the complex conjugate of Eq. (11.36).

Now interchange dummy summation indices σ � ρ in the second term on

the r.h.s., and add it to the first term. The result can be written as

i�
∂

∂(ct)

∑
σ

ψ�
σψσ =

�

i

3∑
k=1

∂

∂xk

(∑
σ

∑
ρ

ψ�
σα

k
σρψρ

)

− �

i

3∑
k=1

∑
σ

∑
ρ

(
∂ψ�

σ

∂xk

)(
αk
σρ − αk�

ρσ

)
ψρ

+m0c
∑
σ

∑
ρ

ψ�
σ

(
βσρ − β�

ρσ

)
ψρ (11.38)

To have a continuity equation, the r.h.s. should be the divergence of some

quantity. It will be a divergence if the last two terms are absent. They will

disappear if the numerical coefficients in Eq. (11.36) are required to satisfy

the relations

βσρ = β�
ρσ

αk
σρ = αk �

ρσ (11.39)

These requirements can be rewritten in matrix notation as 9

β = β†

αk = αk † ; k = 1, 2, 3 (11.40)

Here we have used the fact that the complex conjugate transpose of a matrix

is the adjoint [
m†]

σρ
≡ m�

ρσ ; adjoint (11.41)

9It is assumed that the reader has an elementary knowledge of matrix manipulations
(see Prob. 11.5). Here we forgo the underlining of (�α, β), and later, of Ψ; furthermore
αk ≡ αk.
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If one defines the “vector” �α ≡ (α1, α2, α3), then Eqs. (11.40) take the form

β = β† ; hermitian

�α = �α† �α = (α1, α2, α3) (11.42)

Such matrices are said to be hermitian.

The previous results can also be rewritten in matrix notation as follows.

Introduce the column vector

Ψ =

⎛
⎜⎜⎜⎝

ψ1

ψ2

...

ψn

⎞
⎟⎟⎟⎠ ; Dirac wave function (11.43)

Then the probability density in Eq. (11.35) takes the form

ρ = Ψ†Ψ ; probability density (11.44)

The Dirac Eq. (11.36) becomes

i�
∂Ψ

∂t
= HΨ ; Dirac equation

H ≡ c�α · �p+ βm0c
2 ; �p =

�

i
�∇ (11.45)

It follows from Eqs. (11.38) and (11.39) that the continuity equation can

be written in matrix notation as

∂ρ

∂t
+ �∇ · �S = 0 ; continuity equation

ρ = Ψ†Ψ ; probability density

�S = cΨ†�αΨ ; probability flux (11.46)

It remains to satisfy point (4) and obtain the correct relativistic relation

between energy and momentum. As with the Schrödinger equation, one

looks for stationary-state solutions to the Dirac equation and converts it to

time-independent form

Ψ = ψ(�x) e−iEt/�

Hψ = (c�α · �p+ βm0c
2)ψ = Eψ (11.47)

If H is applied to both sides once again, one obtains

H2ψ = E2ψ = (c2�p 2 +m2
0c

4)ψ (11.48)
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The r.h.s. is the required result. The quantity H2 on the l.h.s. is now

obtained through matrix multiplication10

H2 =
(
c�α · �p+ βm0c

2
) (

c�α · �p+ βm0c
2
)

(11.49)

Since matrices do not commute, one must keep careful track of the order

of the factors in this expression. Thus

H2 = c2
3∑

k=1

3∑
l=1

αkαlpkpl +m0c
3

3∑
k=1

(
αkβ + βαk

)
pk +m2

0c
4β2 (11.50)

Since the components of pk do commute with each other, a change of

dummy summation variables allows the first term on the r.h.s. to be rewrit-

ten as

c2
∑
k

∑
l

αkαlpkpl = c2
∑
k

∑
l

1

2

(
αkαl + αlαk

)
pkpl (11.51)

The required expression for H2 in Eq. (11.48) is then reproduced, provided

the following relations are imposed on the Dirac matrices (�α, β)

βαk + αkβ = 0 ; anti-commute

αkαl + αlαk = 2δkl (�α, β) n× n matrices

β2 = 1 (11.52)

Thus (αk, β) must be hermitian, anti-commuting, n×nmatrices that satisfy

the last two conditions.11

The smallest dimension with which one can satisfy the relations in

Eqs. (11.52) is n = 4. The standard representation of the Dirac matri-

ces can then be exhibited in 2× 2 form as

�α =

(
0 �σ

�σ 0

)
; β =

(
1 0

0 −1

)
; standard representation

2× 2 form (11.53)

Here �σ = (σx, σy, σz) are the Pauli matrices given by12

σx =

(
0 1

1 0

)
; σy =

(
0 −i

i 0

)
; σz =

(
1 0

0 −1

)
; Pauli matrices

(11.54)

10Note that one has effectively taken
√

c2�p 2 +m2
0c

4 through the clever use of matrices!
11The unit matrix is again suppressed on the r.h.s. of the last two relations.
12Note that in this discussion, k = (1, 2, 3) is the same as k = (x, y, z).
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For a free particle in a cubical box of volume Ω with periodic boundary

conditions, one can again look for solutions to the Dirac equation of the

form

ψ =
1√
Ω
ei

�k·�xu(�k )

�p = ��k ; eigenvalue (11.55)

Equation (11.48) then becomes

E2
k = (��kc)2 +m2

0c
4 ; eigenvalue (11.56)

11.3.1 Non-Relativistic Reduction

In order to relate this discussion to that of the one-particle Schrödinger

equation, consider a non-relativistic reduction of the Dirac equation. Write

the Dirac wave function in the following two-component form

ψ =

(
φ

χ

)
; two-component form (11.57)

Now use the standard representation of the Dirac matrices in Eqs. (11.53),

and substitute Eq. (11.57) into the last of Eqs. (11.47). The stationary-state

Dirac equation then takes the form[(
0 c�σ · �p

c�σ · �p 0

)
+m0c

2

(
1 0

0 −1

)](
φ

χ

)
= E

(
φ

χ

)
(11.58)

The upper and lower components of this matrix relation are

c�σ · �pχ+m0c
2φ = Eφ

c�σ · �p φ−m0c
2χ = Eχ (11.59)

We remind the reader that each of these equations is itself a two-component

relation, the �σ are the Pauli matrices, �p = (�/i)�∇, and E is the eigenvalue.

Equations (11.59) are still exact.

Consider the positive energy eigenvalue with [compare Eq. (11.56)]

E = +
√

(m0c2)2 + · · · ; positive-energy solution (11.60)

The second of Eqs. (11.59) can be written as

χ =
c�σ · �p

E +m0c2
φ (11.61)
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This term is now of O(�p/m0c), and hence it is small in the NRL. Substitu-

tion of Eq. (11.61) into the first of Eqs. (11.59) gives

(c�σ · �p )2
E +m0c2

φ = (E −m0c
2)φ (11.62)

Write out the numerator on the l.h.s.

(�σ · �p )2 =

3∑
i=1

3∑
j=1

σiσjpipj =

3∑
i=1

3∑
j=1

1

2
(σiσj + σjσi) pipj (11.63)

The last equality comes from a change of dummy indices i � j and the fact

that the pi commute. The properties of the Pauli matrices in Prob. 11.6

reduce this expression to

(�σ · �p )2 = �p 2 (11.64)

Now in the NRL

E −m0c
2 ≡ ε ; NRL -eigenvalue

E +m0c
2 = 2m0c

2 + ε ≈ 2m0c
2 (11.65)

Thus in the NRL, the positive-energy, stationary-state Dirac Eq. (11.59)

for the upper components φ of the Dirac wave function reduces to the free-

particle Schrödinger equation13

�p 2

2m0
φ = −�

2∇2

2m0
φ = εφ ; Schrödinger equation (11.66)

11.3.2 Dirac Hole Theory

We have to face the problem of the negative-energy solutions to the

Dirac equation, for example, those with eigenvalue −
√
(��kc)2 + (m0c2)2

in Eq. (11.56). Within the principles of quantum mechanics, under some

perturbation, an isolated particle can simply keep falling down into these

levels without end. There is no ground state for a free particle!

Dirac came up with an extremely clever solution to this problem by

invoking the Pauli exclusion principle. We shall see below that the Dirac

equation describes a particle of spin-1/2, which is then a fermion. Dirac

assumed that all the negative-energy states are already filled with identical

fermions. Thus they are unavailable to the particle in a positive-energy

13The lower components are then given in the NRL by χ = (�σ · �p/2m0c)φ.
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state. Everything is then measured with respect to this filled negative-

energy sea, the new vacuum.

Fig. 11.1 Particle promoted to a positive-energy state, leaving a hole in the filled
negative-energy Dirac sea.

This picture has some immediate consequences, for example:

• Within this picture, one of the negative-energy fermions can be pro-

moted to a positive-energy state leaving a hole in the negative-energy

sea (Fig. 11.1). The hole must have just the opposite properties of

the particle, since if it is filled with a particle, one returns to the vac-

uum. The hole is thus just an antiparticle. Based on this picture, Dirac

predicted the existence of antiparticles before they were discovered!

• Within this picture, the vacuum has dynamics. For example, the charge

in the vacuum can be rearranged by the presence of another charge, and

the vacuum is polarizable.

Both of these observations imply that, from the outset, one is faced with a

many-body problem in relativistic quantum mechanics.

11.3.3 Electromagnetic Interactions

Consider a Dirac particle in an electromagnetic field. Such fields can be

described in terms of potentials ( �A,Φ) according to

�B = �∇× �A ; electromagnetic potentials

�E = −�∇Φ− ∂ �A

∂t
(11.67)
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In quantum mechanics, as well as in classical mechanics, these fields can be

incorporated by making the following replacements

�p → �p− e �A ; incorporate E-M field

H → H + eΦ (11.68)

Thus the Dirac equation in the presence of an electromagnetic field becomes[
c�α · (�p− e �A ) + βm0c

2 + eΦ
]
Ψ = i�

∂Ψ

∂t
; Dirac eqn (11.69)

This Dirac equation leads to the following remarkable results:14

(1) When applied to an electron in a static magnetic field described by
�A(�x ), one finds a magnetic moment of

�μel =
e�

2me
2�S ; �S =

1

2
�σ (11.70)

Thus

• Since ��S is a spin angular momentum, one concludes that the Dirac

equation describes a particle of spin-1/2 ;

• The electron is predicted to have a g-factor of gs = 2, in accord with

observation;

(2) In a static, central, electric field described by Φ(r), the electrons expe-

rience a spin-orbit interaction

VSO = e

(
�

2mec

)2
1

r

(
dΦ

dr

)
2�S ·�l (11.71)

where the orbital angular momentum is ��l. This is again in accord with

the experimental observation.

In summary, Dirac’s rather simple arguments on incorporating relativity

and quantum mechanics lead to an absolutely remarkable, and far-reaching,

theory of spin-1/2 fermions!

11.4 Path Integrals

Let us go back to the starting point in this chapter. There is another

approach to quantum mechanics that makes use of path integrals.15 In the
14See Probs. 11.9–11.10; see also [Walecka (2008)].
15See [Feynman and Hibbs (2010); Shankar (1994); Walecka (2010)].
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theory of quantum mechanics, the transition probability amplitude for a

particle to go from a point (q1, t1) to a point (q2, t2) can be written16

〈q2t2|q1t1〉 =
∫

D(q) exp

{
i

�
S(2, 1)

}
; path integral (11.72)

where S(2, 1) is the action

S(2, 1) =

∫ 2

1

dtL (q, q̇) (11.73)

Here the integral goes over all possible paths between the two points (it is

a path integral). In the classical limit where Planck’s constant � → 0, the

phase oscillates very rapidly. The method of stationary phase for evaluating

such an integral (see [Fetter and Walecka (2003)]) implies that if one can

find a path that leaves the phase stationary, then the integral receives all

of its contribution along that path. The condition for finding a stationary

path is precisely Hamilton’s principle

δS(2, 1) = 0 ; � → 0 (11.74)

The present text is an introduction to quantum mechanics, and going

into the path-integral approach takes us too far from our stated goals;

however, as a guide to future study, we do want to at least make the reader

aware of some of the features of functional methods and path integrals as

applied to relativistic quantum mechanics:17

• This approach unites quantum mechanics, field theory, and statistical

mechanics;

• It provides an alternative to doing quantum mechanics with canonical

quantization;

• Exact expressions are obtained for quantum mechanical transition am-

plitudes;

• Everything is written in terms of classical quantities, in particular, the

classical lagrangian and classical action;

• The price for this is that one has to consider other dynamical paths than

the classical one given by Hamilton’s principle of stationary action;

• With this approach, one can readily study the implications of various

symmetries of the lagrangian, even with highly nonlinear interactions

16See [Walecka (2010)].
17Two basic references here are [Feynman and Hibbs (2010); Abers and Lee (1973)]—

see also [Itzykson and Zuber (1980)].
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with derivative couplings, where canonical quantization becomes pro-

hibitively difficult;

• Reduction to multiple convergent integrals lends itself to numerical

methods.
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Problems

1.1 The discussion started with a classical wave that is the real part of

Ψ(x, t) = ei(kx−ωt) (12.1)

Suppose we have two oscillating functions with the same frequency

Re
(
αe−iωt

)
=

1

2

(
αe−iωt + α∗eiωt

)
Re
(
βe−iωt

)
=

1

2

(
βe−iωt + β∗eiωt

)
(12.2)

and suppose we are interested in the product of these functions, as in the

energy, energy flux, etc. Furthermore, suppose we want the time average

of such products, which we denote by 〈· · · 〉.
(a) Show

〈Re (αe−iωt
)
Re
(
βe−iωt

)〉 = 1

4
(αβ∗ + α∗β) =

1

2
Re (αβ∗) (12.3)

(b) Suppose the wave function is a superposition of two such terms

Ψ(x, t) = Re
(
αe−iωt

)
+Re

(
βe−iωt

)
(12.4)

Show

〈Ψ2(x, t)〉 = 1

2
|α+ β|2 (12.5)

These are extremely useful relations when using complex solutions to

the classical wave equation while describing real situations.1

1.2 Consider a classical plane wave incident on two slits separated by a

distance d. If we seek the amplitude of the wave on the other side of the
1See [Fetter and Walecka (2003)].

103
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slits, we can just add the waves Re[Aei(kx−ωt)] coming from each slit, where

x is the distance to the observing screen. For small angles, the difference

in optical pathlength Δ from the second slit is

Δ ≈ θd (12.6)

where d is the slit separation (see Fig. 12.1).

θ

Δ

d

θ

Fig. 12.1 Difference in optical pathlength Δ for two-slit interference pattern measured
at an angle θ. A plane wave is incident from the left, and the interference pattern shows
up on a screen to the right. The transmitted wave is uniform in the direction normal to
this plane.

(a) Use the result in the previous problem to show that the time-average

intensity pattern on the observing screen is proportional to

〈Ψ2(x, y)〉 = 2|A|2 cos2
(
kΔ

2

)
; interference pattern (12.7)

(b) Show the condition for the first interference minimum is then

θ ≈ λ

2d
; first minimum (12.8)

Note that no matter how small the slit separation d, if the incident wave-

length λ is comparable to it, then this interference pattern will show up at

a finite angle on the screen.

1.3 (a) Suppose we have a physical system satisfying the classical wave

equation and obeying periodic boundary conditions (p.b.c.) in one dimen-

sion

k =
2πn

L
; n = 0,±1,±2, · · · (12.9)
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Write the differential form of this relation as

dk =
2π

L
dn (12.10)

Use ω = kc to conclude that the number of normal modes per unit length

is given by

1

L
dn =

1

c
dν (12.11)

(b) Extend this result to two dimensions, and show

1

L2
d2n =

1

L2
dnxdny =

1

c2
dνxdνy (12.12)

If this is summed over all modes with a given length ν, then show the

number of modes per unit area is

1

L2
d2n =

2π

c2
ν dν (12.13)

(c) Show that in three dimensions, the number of modes per unit volume

of frequency ν is given by

1

L3
d3n =

4π

c3
ν2 dν (12.14)

If there is a degeneracy of g for the types of normal modes at a given

frequency, then

1

L3
d3n =

4πg

c3
ν2 dν (12.15)

(d) With the use of g = 2 for the two transverse polarizations of a free

electromagnetic wave, and with the equipartition result for the energy of

a normal mode in Eq. (1.4), show that one obtains the following classical

expression for the electromagnetic energy density in a cavity

U(ν, T ) =
8πkBTν

2

c3
; classical energy density (12.16)

1.4 A photon has a frequency just into the ultraviolet

ν = 1015 Hz (12.17)

What is its wavelength? What is its energy? What is its momentum?



April 12, 2021 16:29 EMcon.tex,ws-book9x6-9x6 12222-main page 106

106 Introduction to Quantum Mechanics

1.5 (a) In the books on Introduction to Classical Mechanics it is shown

that the energy E and radius a of a particle of mass μ and charge e per-

forming circular orbits about a point charge −Ze are

E = − Ze2

4πε0

1

2a
; energy

a =
4πε0
Ze2

�L 2

μ
; radius (12.18)

where |�L | = μav is the angular momentum. Verify these results;

(b) We shall show at the beginning of the next chapter that de Broglie’s

relation for the wavelength of a particle implies that the angular momentum

of the above system is quantized as |�L | = n� with � = h/2π where h is

Planck’s constant, and n is an integer n = 1, 2, · · · . Show this immediately

yields Bohr’s quantum theory of the spectrum of one-electron atoms.2

1.6 (a) Suppose we analyze a photon-electron collision through the con-

servation of momentum and energy

�pe = �p0 − �p1 ; momentum conservation

hν0 = hν1 +
�p 2
e

2m
; energy conservation (12.19)

Show the substitution of the first relation in the second leads to

h(ν0 − ν1) =
1

2m
(�p0 − �p1)

2 =
1

2m

(
h

c

)2

(ν20 + ν21 − 2ν0ν1 cos θ)

ν0 − ν1 =
h

mc2
ν0ν1

[
(1− cos θ) +

(ν0 − ν1)
2

2ν0ν1

]
(12.20)

(b) Show that if the energy shift is small, the last term can be neglected

for all θ of interest

(ν0 − ν1)
2

2ν0ν1
� 1 (12.21)

(c) The frequency of the light is related to its wavelength by ν0 = c/λ0

and ν1 = c/λ1. Hence show that one arrives at the lovely, simple Compton

formula for the shift in wavelength3

λ1 − λ0 =
h

mc
(1− cos θ) ; Compton formula (12.22)

2See [Walecka (2008)].
3With the use of proper relativistic kinematics for the particle, this result holds

without approximation.
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This is in complete agreement with the experimental results. The results on

Compton scattering confirmed the particle nature of the photon introduced

by Einstein in his explanation of the photoelectric effect.

2.1 Suppose one repeatedly prepares a non-relativistic particle in the

plane-wave state of definite momentum in Eq. (2.5) and sends it against

the two-slit opening in Fig. 12.1. Show the measured particle density on

the screen will exhibit an interference pattern identical to that in Prob. 1.2.

2.2 (a) Consider a particle of mass m0 constrained to move in a circle

of radius a in the (x, y)-plane. Show the classical hamiltonian is

H =
1

2I
L2
z ; I = m0a

2 (12.23)

where Lz is the angular momentum in the z-direction, and I is the moment

of inertia;

(b) In quantum mechanics, Lz is given by

Lz = xpy − ypx =
�

i

(
x
∂

∂y
− y

∂

∂x

)
(12.24)

It is convenient to measure angular momentum in units of �, and to define

Lz ≡ �lz. It follows that

lz =
1

i

(
x
∂

∂y
− y

∂

∂x

)
; Lz ≡ �lz (12.25)

Consider an eigenfunction of lz with eigenvalue m

lzf(x, y) = mf(x, y) ; eigenvalue m (12.26)

Make this an implicit function of the rotation angle φ by defining

ψ(φ) ≡ f(x(φ), y(φ)) ; x = a cosφ

; y = a sinφ (12.27)

Show

1

i

dψ(φ)

dφ
=

1

i

(
x
∂

∂y
− y

∂

∂x

)
f(x, y) = lzf(x, y) (12.28)

Hence conclude that the eigenvalue equation for the z-component of the

angular momentum can be rewritten as

lzψ(φ) ≡ 1

i

dψ(φ)

dφ
= mψ(φ) (12.29)
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(c) Show the eigenfunctions of lz obeying p.b.c. are

ψm(φ) =
1√
2π

eimφ ; m = 0,±1,±2, · · · (12.30)

(d) Show these are simultaneous eigenstates of the hamiltonian, with

energy eigenvalues

Em =
�
2

2I
m2 (12.31)

2.3 The results in the previous problem can be used to write the

Schrödinger equation in polar coordinates in two dimensions. Introduce

the coordinates (r, φ), and let a partial derivative in these coordinates in-

dicate that the other variable in this pair is to be held fixed.

(a) Show from the previous problem that

∂ψ(r, φ)

∂φ
=

(
x
∂

∂y
− y

∂

∂x

)
f(x, y) ; x = r cosφ

; y = r sinφ (12.32)

(b) In exactly the same manner, show(
r
∂

∂r

)
ψ(r, φ) =

(
x
∂

∂x
+ y

∂

∂y

)
f(x, y) (12.33)

(c) Apply these relations twice, add, and divide by r2 to obtain the

laplacian in polar coordinates[
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂φ2

]
ψ(r, φ) =

(
∂2

∂x2
+

∂2

∂y2

)
f(x, y) (12.34)

2.4 The eigenfunctions and eigenvalues for a particle of mass m0 con-

strained to move in a circle of radius a in the (x, y)-plane are given in

Prob. 2.2 as

ψm(φ) =
1√
2π

eimφ ; m = 0,±1,±2, · · ·

Em =
�
2

2I
m2 (12.35)

(a) Show the corresponding probability density is a uniform constant;

(b) Show the general solution is

Ψ(φ, t) =
∑
m

cmψm(φ)e−iEmt/� (12.36)
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(c) Suppose one creates an initial state

Ψ(φ, 0) =
1√
2
[ψm1

(φ) + ψm2
(φ)] (12.37)

Construct the corresponding general solution, and show the probability

density now oscillates as a function of time.

(d) What is the frequency of this oscillation?

2.5 (a) Show the corresponding probability current in Prob. 2.4 is4

S(φ, t) =
1

2m0a

{
Ψ�(φ, t)

�

i

∂Ψ(φ, t)

∂φ
+

[
�

i

∂Ψ(φ, t)

∂φ

]∗
Ψ(φ, t)

}
(12.38)

(b) Interpret this quantity;

(c) Calculate S(φ, t) for the solution Ψ(φ, t) = ψm(φ) e−iEmt/�.

2.6 The mean value of a hermitian operator O with a normalized wave

function ψ(x) is

〈O〉 =
∫

dxψ∗(x)Oψ(x) (12.39)

In quantum mechanics we are dealing with probability distributions, and

the mean-square-deviation from this mean value is given by

(ΔO)
2 ≡

〈
(O − 〈O〉)2

〉
= 〈O2〉 − 〈O〉2 (12.40)

Make use of the normalized ground-state wave function for a particle in

a one-dimensional box of length L in Eq. (3.12) [recall Figs. 3.2 and 3.3],

and demonstrate the following:

(a) Show that for the momentum

〈p〉 = 0 ; 〈p2〉 = �
2
(π
L

)2
(12.41)

(b) Show that for the spatial coordinate5

〈x〉 = L

2
; 〈x2〉 = L2

3

(
1− 3

2π2

)
(12.42)

4Recall Eq. (4.28); here m0 is the rest mass, and φ is the polar angle.
5Note the following definite integrals

∫ π

0
du u sin2 (u) =

π2

4
;

∫ π

0
du u2 sin2 (u) =

π3

6
− π

4
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(c) Combine these results to obtain

(Δp)
2
(Δx)

2
=

�
2π2

12

(
1− 6

π2

)
ΔpΔx = 0.568 � (12.43)

This is an example of the Heisenberg uncertainty principle. The mo-

mentum and position (p, q) of a particle cannot both be specified precisely.

Given the commutation relation [p, q] = �/i, it is possible to give a rigorous

proof that for a normalized wave function6

ΔpΔq ≥ 1

2
� ; uncertainty principle (12.44)

The uncertainty principle represents a significant break from classical me-

chanics where one initializes a mechanical system at a given point (p, q) in

phase space, and then follows it in a deterministic fashion from there.

2.7 Although the solutions to the Schrödinger equation and correspond-

ing probability densities for a particle in a box in Figs. 3.2 and 3.3 are so

simple and clear, the solution for a free particle is more subtle.7 For exam-

ple, the probability density obtained from our motivating wave in Eq. (2.5)

is independent of position and time! In order to construct a probability

density that moves with the particle, we need to construct a wave packet.

(a) Take a superposition of the waves in Eq. (2.5) with an amplitude

sharply peaked about a wavenumber corresponding to the classical mo-

mentum p0 = �k0.
8 Construct

Ψ(x, t) =

∫
dk A(k − k0)e

i[kx−ω(k)t] ; ω(k) = �k2/2m (12.45)

Show this satisfies the Schrödinger equation for a free particle;

(b) Show that at the initial time t = 0, the wave function and probability

density are

Ψ(x, 0) = eik0xF (x) ; |Ψ(x, 0)|2 = |F (x)|2

F (x) =

∫
dl A(l) eilx (12.46)

where the amplitude A(l) = A(k − k0) is sharply peaked about l = 0;

(c) As an example, take A(l) = 1 for |l| < l0; calculate and plot |F (x)|2;
6See, for example, [Walecka (2008)].
7This is why we have left it as a problem—so as not to interrupt the flow of the text.
8Recall the previous problem on the uncertainty principle.
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(d) Since A(l) is sharply peaked about l = 0, we can make a Taylor

series expansion of ω(k) about k0 and keep just the first term

ω(k) ≈ ω(k0) + (k − k0)

[
dω(k)

dk

]
k0

(12.47)

Show that for finite time, the probability density then becomes

|Ψ(x, t)|2 = |F (x− vgpt)|2 (12.48)

Here vgp is the group velocity 9

vgp =

[
dω(k)

dk

]
k0

=
�k0
m

=
p0
m

(12.49)

Thus the probability density for the localized wave packet moves with the

classical particle velocity!

3.1 Suppose the potential in Fig. 3.4 has the opposite sign and is an

attractive half-space, with V (x) = −V0 < 0 for all positive x. Write the

transmitted wave as

ψ(x) = t eiκx ; κ2 =
2m

�2
(E + V0) (12.50)

Match the boundary conditions at x = 0, and show the transmitted ampli-

tude is

t =
2k

k + κ
(12.51)

Discuss.

3.2 Show that the expansion coefficients in the general solution for a

particle in a square box in Eq. (3.42) are obtained from the initial condition

Ψ(x, y, 0) = g(x, y) (12.52)

according to

cnx,ny
=

∫ L

0

dx

∫ L

0

dy ψ∗
nx,ny

(x, y) g(x, y) (12.53)

9The phase velocity of a wave is vph = ω(k)/k. Note that for this free-particle wave
packet, the group velocity is twice the phase velocity.
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3.3 (a) Suppose one prepares the following initial state for the particle

in the one-dimensional box10

Ψ(x, 0) =
1√
2
[ψ1(x) + ψ2(x)] (12.54)

Plot the initial wave function and probability distribution.

(b) Construct the solution Ψ(x, t) and probability distribution |Ψ(x, t)|2
for later times;

(c) Show that probability distribution oscillates back and forth in the

box;

(d) What is the frequency of that oscillation?

3.4 Suppose one prepares an initial state for the particle in a box that

is simply constant over the box

Ψ(x, 0) =
1√
L

; 0 ≤ x ≤ L (12.55)

Show the solution to the Schrödinger equation for all subsequent time is

Ψ(x, t) =

∞∑
n=1

cnψn(x)e
−iEnt/�

cn =

√
2

π

[
1− (−1)n

n

]
(12.56)

It is interesting that this simplest of initial conditions gives rise to such a

complicated wave function.

3.5 Suppose there is a small circular potential at the center of the two-

dimensional square box of the form

δV (�r ) = ν0 ; |�r − �r0| < a (12.57)

where �r0 is located at the center of the box. Assume a � L. Use per-

turbation theory to show that the shift in the ground-state eigenvalue is

then

δE1,1 = 4ν0
πa2

L2
(12.58)

3.6 Consider the non-degenerate perturbation theory in Eqs. (3.55).

(a) Show that this analysis holds for a particle in a one-dimensional box

with an additional potential δV (x);

10See Figs. 3.2 and 3.3.
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(b) Suppose the perturbation δV (x) is odd about the midpoint of the

box. Show that all the first-order energy shifts then vanish;

(c) Show that the second-order energy shift always lowers the energy of

the ground state.

4.1 Suppose the spherical square-well potential in Chapter 4 is just deep

enough to have one bound state at k2 = 0.

(a) Show the depth of the potential is 2mV0/�
2 = π2/4d2;

(b) What is the s-wave wave function inside the potential?

(c) What is it outside?

4.2 In the separated radial Schrödinger equation for a free particle in

spherical coordinates there are two types of solutions that form a funda-

mental system in which any radial solution can be expanded. These are the

spherical Bessel functions jl(ρ) and spherical Neumann functions nl(ρ).

(a) For l = 0 the spherical Neumann function is

n0(ρ) = −cos ρ

ρ
(12.59)

Show this satisfies the same radial equations as j0(ρ);

(b) For l = 1 the spherical Neumann function is

n1(ρ) = −cos ρ

ρ2
− sin ρ

ρ
(12.60)

Show this satisfies the same radial equation as j1(ρ);

(c) Show that through this order, the Neumann functions satisfy the

general relations

nl(ρ) → −1 · 1 · 3 · · · (2l − 1)

ρl+1
; ρ → 0

nl(ρ) → 1

ρ
sin [ρ− (l + 1)π/2] ; ρ → ∞ (12.61)

Note that the spherical Neumann functions are singular at the origin.

4.3 The spherical harmonics are the non-singular solutions to the an-

gular part of the Schrödinger equation in spherical coordinates. For l = 1

one has

Y1,0(θ, φ) =

√
3

4π
cos θ ; Y1,±1(θ, φ) = ∓

√
3

8π
sin θ e±iφ (12.62)
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Show these satisfy the angular equation

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
Yl,m(θ, φ) = −l(l + 1)Yl,m(θ, φ)

(12.63)

4.4 This problem involves the explicit verification of some results on

the probability flux quoted in the text:

(a) Verify Eqs. (4.30);

(b) Verify Eq. (5.36).

4.5 Suppose one has a Yukawa potential of the form

v(r) = λ
e−μr

r
; Yukawa potential (12.64)

Show that Born approximation for the scattering amplitude is given by

fBA(k, θ) = − λ

q2 + μ2
(12.65)

Sketch and discuss.

4.6 Suppose one has a spherical potential of the form

v(r) = v0 ; r < d

; spherical potential (12.66)

Show that Born approximation for the scattering amplitude is given by

fBA(k, θ) = −(v0d
3)

j1(qd)

qd
(12.67)

Sketch and discuss.

5.1 Suppose the interaction in our model problem is an integrable short-

range potential of the form

H ′(x2, x1) = V (|x2 − x1|) ; integrable potential (12.68)

(a) Define the momentum transfer by

q ≡ k0 − k ; momentum transfer (12.69)
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Show the matrix element of the interaction in Eqs. (5.37) takes the form

〈k, n2|H ′|k0, n0
2 〉 = Ṽ (q) ρ̃fi(q)

Ṽ (q) =

∫ ∞

−∞
dx eiqx V (|x|)

ρ̃fi(q) =

∫ L2

0

dx eiqx ψ∗
n2
(x)ψn0

2
(x) (12.70)

(b) Show the rate in Eqs. (5.37) becomes

1

Iinc
Rfi dnf =

(
k

k0

) ∣∣∣(m1

�2k

)
Ṽ (q)

∣∣∣2 |ρ̃fi(q)|2 (12.71)

(c) Show this has the correct dimensions.

5.2 The previous problem provides an expression for the ratio of the

transition rate to the incident flux in our model problem of the scattering of

one particle from another trapped inside a box in one dimension. It remains

to evaluate the target transition matrix element ρ̃fi(q). Since everything

now concerns the particle in the box, we can drop the superfluous subscript

2. For the transition from the ground state with n = 1 to an excited state

with n, one needs the integral

ρ̃n,1(q) =
2

L

∫ L

0

dx eiqx sin
(nπx

L

)
sin
(πx
L

)
(12.72)

where the quantum number n and the size L now refer to the box.11

(a) Evaluate this integral and show

ρ̃n,1(q) =
1

i

4nπ2(qL)

[(qL)2 − (n2 + 1)π2]2 − (2nπ2)2
[
1 + (−1)n eiqL

]
(12.73)

(b) Make a plot |ρ̃n,1(q)|2 as a function of qL (see Fig. 12.2). Discuss.12

5.3 Consider the back scattering of the projectile in our model problem.

(a) Show that the only modification of the results in Probs. 5.1 and 5.2

is that the momentum transfer now becomes

q = k0 + k ; back scattering (12.74)

(b) Show that this can be made arbitrarily large for a given energy trans-

fer, and hence one can experimentally map out the results in Prob. 5.2(b).

11Recall Fig. 3.2.
12It is of interest to make at least one log plot to see the diffraction structure.
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Fig. 12.2 Plot of |ρ̃n,1(q)|2 as a function of (qL) for four values of n. Here L ≡ L2 is
the size of the box. (The author would like to thank Paolo Amore for preparing this
figure.)

5.4 The goal of the two-state mixing example is to treat the interaction

H ′ to all orders. The system starts in the state ψ1 at t = 0. Expand the

expression for the probability of finding the system in the state ψ2 after

time T in Eq. (5.57), and divide by T , to get the transition rate as H ′ → 0.

Show

Rfi(T ) =
1

T
Pfi(T ) =

1

�2
|〈ψ2|H ′|ψ1〉|2 T ; H ′ → 0

(12.75)

Show this reproduces the lowest-order expression for the transition rate in

Eq. (5.21) at energy conservation �ω = 0.

6.1 The electromagnetic fields ( �E, �B) are related to the potentials by

�B(�x, t) = �∇× �A(�x, t)

�E(�x, t) = −∂ �A(�x, t)

∂t
− �∇Φ(�x, t) (12.76)

Let Λ(�x, t) be a well-defined function of position and time.

(a) Show the electromagnetic fields are unchanged under a gauge
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transformation

�A(�x, t) → �A(�x, t) + �∇Λ(�x, t) ; gauge transformation

Φ(�x, t) → Φ(�x, t)− ∂Λ(�x, t)

∂t
(12.77)

Since the fields are unchanged, the physics should be unchanged.

(b) Show that the terms in Λ can be eliminated from the

Schrödinger equation by making a local phase transformation on the wave

function

Ψ(�x, t) → eieΛ(�x,t)/� Ψ(�x, t) (12.78)

Remember that the wave function is not a physical observable.

6.2 Suppose one has chosen a vector potential �A′(�x, t) which reproduces

the ( �E, �B) fields, and suppose the divergence of this field is non-zero

�∇ · �A′(�x, t) = ρ′(�x, t) (12.79)

(a) Make a gauge transformation as in Prob. 6.1, and show that with

the new vector potential �A(�x, t)

�∇ · �A(�x, t) = ρ′(�x, t) +∇2Λ(�x, t) (12.80)

(b) Conclude that one can always work in the Coulomb gauge, where

�∇ · �A(�x, t) = 0 ; Coulomb gauge (12.81)

6.3 Show that if one were to retain just the first term in the time-

dependent interaction in Eq. (6.17), so that

H ′ = −eE0x cos (ω0t)
.
= −

(
eE0
2

)
x eiω0t (12.82)

then the rate Rfi in Eq. (6.20) would become

Rfi =

(
eE0
2

)2
2π

�
|〈f |x|i〉|2δ(Ef − Ei + �ω0) ; de-excitation (12.83)

Compare this with the rate Rfi in Eq. (6.20)

Rfi =

(
eE0
2

)2
2π

�
|〈f |x|i〉|2δ(Ef − Ei − �ω0) ; excitation (12.84)

Now fix Ei and �ω0, and conclude the following:
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• As a function of Ef there are two non-overlapping rate expressions, one

for Ef = Ei − �ω0, and one for Ef = Ei + �ω0;

• Since there is no overlap of the two expressions, one can ignore any

interference term between them in the calculation of the rates;

• In leading order, the real time-dependent perturbation H ′ in Eq. (6.17)

therefore describes both de-excitation and excitation of the system;

• Correspondingly, the perturbationH ′ in Eq. (6.26) describes both emis-

sion and absorption of radiation.

6.4 This problem reviews the main aspects of adjoints and hermiticity.

For simplicity, we go back to one dimension and express the matrix element

of an operator N between two acceptable wave functions as

〈ψf |N |ψi〉 =
∫

dx ψ∗
f (x)Nψi(x) (12.85)

The adjoint operator N† is then defined through the relation∫
dx

[
N†ψf (x)

]∗
ψi(x) =

∫
dx ψ∗

f (x)Nψi(x) ; adjoint (12.86)

An operator is hermitian if it is identical to its adjoint

N† = N ; hermitian (12.87)

(a) The eigenstates of N satisfy

Nψn(x) = nψn(x) (12.88)

Take the matrix element of this relation with ψ∗
n(x), and prove that the

eigenvalues of a hermitian operator are real;

(b) Suppose one has a pair of operators MN . Show

(MN)† = N†M† (12.89)

(c) Reverify that the operators p = (�/i)d/dx and H = p2/2m + V (x)

with a real V (x) are hermitian;

(d) Show that in two-dimensions, the angular momentum operator Lz

is hermitian.

6.5 (a) Show that the number of eigenstate |n〉 in Sec. 6.7 can actually

be constructed as

|n〉 = 1√
n!
(a†)n|0〉 (12.90)
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(b) Make use of the commutation relations to show this state is normal-

ized

〈n|n〉 = 1 (12.91)

6.6 Repeat the calculation of photoionization starting from the quan-

tized radiation field and a single photon in the state |1�ks〉. Use an incident

photon flux of

Iinc =
c

Ω
; photon flux (12.92)

Show the photoionization cross-section becomes

σfi ≡ 1

Iinc
Rfi dnf ; photoionization (12.93)

=
α

2πc2

(mc

�

)(kf
k

) ∣∣∣∣ê�ks ·
∫

d3x ei(
�k−�kf )·�x

(
�p

m

)
ψ0(�x)

∣∣∣∣
2

dΩf

6.7 The required transition matrix element for the quantum system in

the general expression for the photon emission rate in Eq. (6.81) is

�Mfi =

∫
d3x e−i�k·�x ψ∗

f (�x)
�p

m
ψi(�x) (12.94)

(a) Suppose the hamiltonian for that quantum system has the form

H =
�p 2

2m
+ V (�x) (12.95)

Show

[H,�x ] =
�

i

�p

m
(12.96)

Hence, show

�Mfi =
i

�

∫
d3x e−i�k·�x ψ∗

f (�x) [H,�x ] ψi(�x) (12.97)

(b) Now assume the wavelength of the light is such that kR � 1 where

R is a measure of the size of the system. Then

e−i�k·�x ≈ 1 ; kR � 1 (12.98)

Show that in this limit the required matrix element becomes

�Mfi =
i

�
(Ef − Ei)

∫
d3x ψ∗

f (�x) �x ψi(�x) ; dipole approx. (12.99)
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This is known as the dipole approximation.

7.1 Consider a non-interacting spin-1/2 Fermi gas inside a big box of

volume V = L3 with p.b.c. in all three directions. In its ground state, the

levels are filled up to a wavenumber |�k| = kF .

(a) Count the number of filled levels. Show the number of particles per

unit volume is

n0 ≡ N

V
=

1

V

[
2L3

(2π)3

∫ kF

0

d3k

]
=

k3F
3π2

(12.100)

(b) Show the energy per particle is

E

N
=

3

5
εF ; εF =

(�kF )
2

2m
(12.101)

where εF is the Fermi energy.

(c) Compute the pressure from the first law of thermodynamics P =

−(dE/dV ).13 Show

P =
2

5

�
2

2m
(3π2)2/3 n

5/3
0 ; Fermi gas (12.102)

7.2 Consider a non-interacting spin-0 Bose gas of massive particles in-

side a big box of volume V = L3 with p.b.c. in all three directions. In its

ground state, the particles all occupy the �k = 0 level.

(a) Compute the pressure from the first law of thermodynamics P =

−(dE/dV ). Show

P = 0 ; Bose gas (12.103)

(b) Suppose instead, that the particles are confined to a large cubical

box of volume V = L3, where the ground-state single-particle energy is

ε0 = (�2/2m)(3π2/L2). Show the pressure is

P =
2

3
ε0n0 ; n0 =

N

V
(12.104)

Compare with the result in part (a). Discuss.

7.3 While the full quantum many-body problem is complicated, the

Hartree self-consistent field approximation provides a surprisingly good first

approximation for many finite systems such as the electron cloud in the

13Here the many-body system is in its ground state at a temperature T = 0.
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atom or the atomic nucleus. Suppose there is a two-body interaction V (|�x−
�y |). The Hartree single-particle potential is defined by

UH(�x) =

∫
d3y V (|�x− �y |)n(�y ) (12.105)

where the particle density is given by the sum over all the occupied states

of the absolute square of the single-particle wave functions

n(�y ) =
∑
i

|ψi(�y )|2 ; over occupied states (12.106)

These wave functions, in turn, are given by the solutions in the self-

consistent potential[
−�

2∇2

2m
+ UH(�x )

]
ψi(�x ) = εiψi(�x) (12.107)

Provide a physical motivation for the Hartree equations, and give some

indication as to how you would go about solving them.

7.4 Consider a Bose gas where essentially all the particles remain in the

condensate. Suppose the two-particle interaction is a contact interaction.

(a) Show that the Hartree potential takes the form

UH(�x ) = λ|φ0(�x )|2 (12.108)

where φ0 is the condensate wave function in Eqs. (7.16)–(7.17), and λ is a

constant independent of N .

(b) Show that the Hartree equation for that condensate wave function

then becomes [
−�

2∇2

2m
+ λ|φ0(�x )|2

]
φ0(�x ) = ε0φ0(�x) (12.109)

Note that this is now simply a local, nonlinear, differential equation.

7.5 Consider the non-interacting Bose condensate wave function φ0 =√
Nψ0 in Eq. (7.16), where ψ0 is the ground-state single-particle level.14

Suppose the particles are in a big box with p.b.c in all directions.

(a) Show the square of the modulus is

|φ0|2 = n0 ; particle density (12.110)

where n0 is the particle density;

14We choose ξ = 1.
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(b) Compute the probability flux �S from Eq. (4.28) using this wave

function, and show the medium is at rest

�S(φ0) = 0 (12.111)

(c) The medium can be given a velocity by including a spatially-

dependent phase in the single-particle wave function ψ0 → ψ0 e
iχ(�x ). Show

the expression for the particle density is unchanged

|φ0e
iχ|2 = n0 (12.112)

(d) The velocity of the medium can now be identified from the proba-

bility flux calculated with this new wave function. Give an argument that

n0�v = �S
(
φ0e

iχ
)

(12.113)

Hence obtain

�v =
�

m
�∇χ ; fluid velocity (12.114)

The fluid velocity of the Bose condensate is obtained from the gradient of

the phase of the single-particle wave function.

(e) Show the fluid motion is irrotational

�∇× �v = 0 ; irrotational (12.115)

7.6 Repeat Prob. 7.1 for non-interacting spin-1/2 particles in a one-

dimensional box.

(a) Show the particle density is given by

n0 ≡ N

L
=

1

L

[
2L

π

∫ kF

0

dk

]
=

2kF
π

(12.116)

(b) Show the energy per particle is

E

N
=

1

3
εF ; εF =

(�kF )
2

2m
(12.117)

(c) Show these are the same results one gets for particles moving on the

large circle with p.b.c. (Remember to include both directions!)

7.7 One can go from plane-polarized photons to photons with a given

helicity through a canonical transformation. Define

�e�k,±1 ≡ ∓ 1√
2

(
�e�k1 ± i�e�k2

)
; b�k,±1 ≡ ∓ 1√

2

(
b�k1 ∓ ib�k2

)
(12.118)
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(a) Show∑
s=1,2

�e�ksb�ks =
∑
λ=±1

�e�k,λb�k,λ ;
∑
s=1,2

�e�ksb
†
�ks

=
∑
λ=±1

�e †
�k,λ

b†�k,λ (12.119)

(b) Show

[b�k,λ, b
†
�k,λ′ ] = δλ,λ′ ; [b�k,λ, b�k,λ′ ] = [b†�k,λ, b

†
�k,λ′ ] = 0 (12.120)

The properties of the operators follow from these commutation relations.

8.1 This problem discusses the spin of spin-1/2 fermions.15 The main

thing to keep in mind here is that the spin operators and wave functions

are very simple. The spin operator is

��S =
�

2
�σ ; spin operator (12.121)

where �σ are the 2 × 2 Pauli matrices (σx, σy, σz) defined in Eqs. (11.54).

The spin wave functions (“spinors”) for spin up and down along the z-axis

are

φ↑ =

(
1

0

)
; φ↓ =

(
0

1

)
(12.122)

(a) Show these are eigenstates of σz

σzφ↑ = φ↑ ; σzφ↓ = −φ↓ (12.123)

(b) The eigenstates of spin up and down along the x-axis can be con-

structed as

φ→ =
1√
2
(φ↑ + φ↓) ; φ← =

1√
2
(φ↑ − φ↓) (12.124)

Show

σxφ→ = φ→ ; σxφ← = −φ← (12.125)

(c) Hence, show

φ↑ =
1√
2
(φ→ + φ←) ; φ↓ =

1√
2
(φ→ − φ←) (12.126)

8.2 The Stern–Gerlach detector in Fig. 8.1 is rotated by 90o about

the y-axis, and the beam with spin-up along the x-axis is separated. The
15This problem involves simple matrix manipulations. If these are unfamiliar to you,

please do Probs. 11.5 and 11.6 first.
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detector is now returned to its initial configuration in Fig. 8.1 and that

beam is inserted into it. Express the state | →〉 with spin-up along the

x-axis as a linear combination of the states | ↑〉 and | ↓〉 with spin-up and

spin-down along the z-axis, and describe what is now observed coming out

of that detector returning to its initial configuration.

8.3 (a) Consider a particle of mass m0 moving in a circle of radius a

in the (x, y)-plane, as discussed in Probs. 2.2, 2.4 and 2.5. Suppose the

particle has a charge e. We know from E&M that the little current loop

has a magnetic moment μz = (πa2)ie, where ie is the current. Show

ie = eν = e
ω

2π
= e

Lz

2πI
(12.127)

Hence, show the magnetic moment is

μz =
e

2m0
Lz (12.128)

(b) When the angular momentum is quantized with Lz = �m, show

μz = μm ; μ =
e�

2m0

; m = 0,±1,±2, · · · (12.129)

(c) Discuss how the Stern–Gerlach apparatus can be used to prepare a

state ψm(φ) = eimφ/
√
2π ;

(d) Discuss how photoabsorption on the ground state can be used to

prepare a state ψ = aψm(φ) + bψ−m(φ).

9.1 Consider a particle moving in one dimension in a large circle of

length L and satisfying periodic boundary conditions. The wave functions

are16

〈x|k〉 = ψk(x) =
1√
L
eikx

k =
2πn

L
; n = 0,±1, · · · (12.130)

16Any piecewise continuous function ψ(x) can actually be expanded in this set, and
the basis functions are complete in the sense that

LimN→∞
∫ L

0
dx

∣∣∣∣∣∣ψ(x)−
N∑

n=−N

ckψk(x)

∣∣∣∣∣∣
2

= 0 ; completeness

This is all the completeness we will need for the physics in this volume.
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(a) Use completeness of the eigenstates of position to show that

〈k|k′〉 = δk,k′ (12.131)

(b) Show that the matrix elements of the kinetic energy operator are

〈k|T̂ |k′〉 = (�k)2

2m
δk,k′ (12.132)

(c) Show that the matrix elements of the potential V (x̂) are

〈k|V̂ |k′〉 = 1

L
Ṽ (k − k′)

Ṽ (k − k′) =
∫ L

0

dxV (x) e−i(k−k′ )x (12.133)

9.2 Look for stationary states in the abstract Hilbert space

|Ψ(t)〉 = e−iEt/� |Ψ〉
Ĥ|Ψ〉 = E|Ψ〉 (12.134)

Define the amplitude in the momentum representation as

〈k|Ψ〉 ≡ A(k) (12.135)

(a) Use the results of Prob. 9.1 to show that the Schrödinger equation

in the momentum representation is

∑
k′

{[
E − (�k)2

2m

]
δk,k′ − 1

L
Ṽ (k − k′)

}
A(k′) = 0 (12.136)

(b) Use the density of final states in one dimension to convert this to

the integral equation[
E − (�k)2

2m

]
A(k)− 1

2π

∫ ∞

−∞
dk′ Ṽ (k − k′)A(k′) = 0 (12.137)

Note that the differential equation for the amplitude 〈x|Ψ〉 in the coordi-

nate representation, and the integral equation for the amplitude 〈k|Ψ〉 in the

momentum representation, both follow from the same Schrödinger equation

in the abstract Hilbert space!

9.3 The abstract states in Probs. 9.1 and 9.2 are eigenstates of the

hermitian momentum operator p̂

p̂|k〉 = �k|k〉 (12.138)
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where the basic commutation relation in the abstract Hilbert space is

[p̂, x̂] =
�

i
(12.139)

(a) Verify that the eigenvalues �k are real;

(b) Show the projection of the first relation on the eigenstate of position

is

〈x|p̂|k〉 = �

i

∂

∂x
〈x|k〉 = �k〈x|k〉 (12.140)

(c) Show that in the momentum representation, the canonical commu-

tation relation is satisfied with

〈k|x̂|k′〉 = i
∂

∂k
δk,k′ ; momentum rep (12.141)

9.4 The completeness relation in the abstract Hilbert space for the

eigenstates of momentum for the particle moving on the large circle of

length L with p.b.c. reads∑
k

|k〉〈k| = 1̂ ; completeness

k =
2πn

L
; n = 0,±1, · · · (12.142)

(a) Use this to show

〈x|x′〉 =
∑
k

〈x|k〉〈k|x′〉 = 1

L

∑
k

eik(x−x′) = δ(x− x′) (12.143)

This is the completeness relation for the complex Fourier series;

(b) Similarly, use Eq. (12.132) to show that

〈x|T̂ |x′〉 =
∑
k

∑
k′

〈x|k〉〈k|T̂ |k′〉〈k′|x′〉 =
∑
k

(�k)2

2m
〈x|k〉〈k|x′〉

= − �
2

2m

∂2

∂x2
〈x|x′〉 (12.144)

(c) Show

〈x|p̂|x′〉 =
∑
k

∑
k′

〈x|k〉〈k|p̂|k′〉〈k′|x′〉 =
∑
k

�k〈x|k〉〈k|x′〉

=
�

i

∂

∂x
〈x|x′〉 (12.145)
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9.5 These are two problems on the adjoint.

(a) Show from Eq. (9.18) that

(iF̂ )† = −iF̂ † (12.146)

(b) Define |Ψm(t)〉 ≡ eiĤt/� |ψm〉. Use the fact that Ĥ is hermitian to

show that

〈Ψm(t)|ψn〉 = 〈ψm|−iĤt/�|ψn〉 (12.147)

9.6 The hamiltonian and number operator for the simple harmonic os-

cillator are given by

Ĥ0 = �ω

(
N̂ +

1

2

)
; N̂ = a†a (12.148)

(a) Expand the exponential, rearrange the terms, and show that

eiĤ0t/� a e−iĤ0t/� = 1 +
it

�
[Ĥ0, a] +

1

2!

(
it

�

)2

[Ĥ0, [Ĥ0, a] ] + · · · (12.149)

(b) Use the commutation relations for the harmonic oscillator, and show

that through this order

eiĤ0t/� a e−iĤ0t/� = a e−iωt (12.150)

(c) Similarly, show

eiĤ0t/� a† e−iĤ0t/� = a† eiωt (12.151)

9.7 Consider the time development operator in the interaction picture

in Eq. (9.45)

Û(t, t0) = 1̂− i

�

∫ t

t0

dt′ Ĥ1(t
′) +

(
− i

�

)2 ∫ t

t0

dt′
∫ t′

t0

dt′′ Ĥ1(t
′)Ĥ1(t

′′) + · · ·
(12.152)

Show that the double integral in the third term can be rewritten as∫ t

t0

dt′
∫ t′

t0

dt′′ Ĥ1(t
′)Ĥ1(t

′′) =
1

2!

∫ t

t0

dt′
∫ t

t0

dt′′ T [Ĥ1(t
′)Ĥ1(t

′′)]

(12.153)

where the time-ordering operation T [Ĥ1(t
′)Ĥ1(t

′′)] places the operator with
the latest time to the left.
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10.1 The statement of completeness for the eigenstates of the hermitian

operator F̂ in abstract Hilbert space is given in Eq. (9.23)17

|Ψ〉 =
∑
f

cf |ψf 〉 ; completeness (12.154)

(a) Obtain the expansion coefficient as

cf = 〈ψf |Ψ〉 (12.155)

(b) Substitute this back in to get

|Ψ〉 =
∑
f

|ψf 〉〈ψf |Ψ〉 (12.156)

(c) Conclude that the statement of completeness for the eigenstates of

the hermitian operator F̂ in abstract Hilbert space can be written as∑
f

|ψf 〉〈ψf | = 1̂ ; completeness (12.157)

10.2 (a) If one performs a pure pass measurement at a time t0 that lets

the eigenvalue f through, show that the rescaled reduced wave function at

t0 is18

Ψ(x, t0) =
cf (t0)

|cf (t0)|ψf (x) ; t = t0 (12.158)

(b) Give an argument that the reduced wave function at subsequent

times is then

Ψ(x, t) =
cf (t0)

|cf (t0)|ψf (x) e
−iEf (t−t0)/� ; t ≥ t0 (12.159)

11.1 (a) Expand the square-root in Eq. (11.6) to first order, and show

that, apart from a constant term m0c
2 in the energy, one obtains the non-

relativistic Schrödinger equation;

(b) What is the first relativistic correction to this Schrödinger equation?

11.2 As in appendix A, substitute the normal-mode expansion of the

scalar field in Eq. (11.23) into the hamiltonian density in Eq. (11.19), do

the spatial integrals, and derive the uncoupled oscillator expansion of the

energy in Eq. (11.24).

17The corresponding statement for the wave functions is obtained by taking the inner

product with |x〉.
18Recall Eq. (8.11).
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11.3 (a) The canonical momentum density for the neutral massive scalar

field is given by

Π(�x, t) =
∂L

∂(∂φ/∂t)
=

∂φ(�x, t)

∂t
(12.160)

The expansion of the scalar field in normal modes is

φ(�x, t) =
∑
�k

(
�

2ωkΩ

)1/2 [
c�k e

i(�k·�x−ωkt) + c†�k e
−i(�k·�x−ωkt)

]
(12.161)

Hence, show that the canonical momentum density is

Π(�x, t) =
1

i

∑
�k

(
�ωk

2Ω

)1/2 [
c�k e

i(�k·�x−ωkt) − c†�k e
−i(�k·�x−ωkt)

]
(12.162)

(b) Use the commutation relations of the creation and destruction op-

erators to show that the equal-time commutation relation of the field and

canonical momentum density is

[Φ(�x, t), Π(�x ′, t)] =
i�

2

∑
�k

1

Ω

[
ei

�k·(�x−�x′) + e−i�k·(�x−�x′)
]

(12.163)

(c) Each sum provides an integral representation of the three-

dimensional Dirac delta function. Hence show that the canonical com-

mutation relation in continuum mechanics between the field and canonical

momentum density is

[Φ(�x, t), Π(�x ′, t)] = i� δ(3)(�x− �x ′ ) (12.164)

11.4 Suppose we include the additional nonlinear self-coupling of the

neutral, massive scalar meson field of Eq. (11.28) in the lagrangian density

L1(φ) = − λ

4!
φ4 (12.165)

(a) Show that since there are no additional derivative terms, the canoni-

cal momentum density, and canonical quantization procedure follow exactly

as in the previous Prob. 11.3;

(b) Show the additional term in the hamiltonian density is simply

H1(φ) =
λ

4!
φ4 (12.166)
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(c) Substitute the normal-mode expansion of Eq. (12.161), and enumer-

ate the processes described by this hamiltonian density;

(d) What picture are we in?

11.5 Let m denote an n× n matrix

m =

⎡
⎢⎢⎢⎣
m11 m12 · · · m1n

m21 m22 · · · m2n

...
...

...
...

mn1 mn2 · · · mnn

⎤
⎥⎥⎥⎦ (12.167)

Label an element of m by mjk where j indicates the column and k indicates

the row. Introduce the convention that repeated Latin indices are summed

from 1 to n. The element of the matrix product of two such matrices a and

b is then given by

[a b ]jk = ajlblk (12.168)

Pick the row for ajl and the column for blk; then multiply the elements

together and add them up.

(a) Evaluate the following matrix products[
0 1

1 0

] [
0 −i

i 0

]
;

[
0 1

1 0

] [
1 0

0 −1

]
;

[
0 −i

i 0

] [
1 0

0 −1

]
(12.169)

(b) Let ψ denote an n-component column vector

ψ =

⎡
⎢⎣
ψ1

...

ψn

⎤
⎥⎦ (12.170)

The matrix product mψ is given by[
mψ

]
j
= mjkψk (12.171)

Evaluate the following matrix products[
0 1

1 0

] [
1

0

]
;

[
0 1

1 0

] [
1

0

]
;

[
0 −i

i 0

] [
1

0

]
(12.172)

11.6 The Pauli matrices are defined in Eqs. (11.54).

(a) Show the matrix product of Pauli matrices satisfies

σi σj = iεijkσk ; i 
= j (12.173)
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where εijk is the completely antisymmetric Levi–Civita tensor;

(b) Show that the Pauli matrices satisfy the following anticommutation

relation

σi σj + σj σi = 2δij (12.174)

11.7 The standard representation of the Dirac matrices in 2× 2 form is

�α =

(
0 �σ

�σ 0

)
; β =

(
1 0

0 −1

)
(12.175)

where �σ = (σx, σy, σz) are the Pauli matrices defined in Eqs. (11.54).

(a) Show that the rules for matrix multiplication of the 4 × 4 matrices

are satisfied by using matrix multiplication rules for the 2× 2 submatrices;

(b) Show that the following relations are satisfied by the Dirac matri-

ces19

βαk + αkβ = 0

αkαl + αlαk = 2δkl

β2 = 1 (12.176)

11.8 Use the analysis in Sec. 11.3.1 to show that the non-relativistic

limit of the positive-energy Dirac spinor for a free particle takes the form

uλ(�k ) =

[
φλ

(�σ · �p/2m0c)φλ

]
; φ↑ =

(
1

0

)

; φ↓ =

(
0

1

)
(12.177)

11.9 If the vector potential �A in Eq. (11.69) is included in the non-

relativistic reduction in Eq. (11.66), one has

1

2m0
�σ · (�p− e �A)�σ · (�p− e �A)φ = εφ (12.178)

With our convention that repeated Latin indices are summed from 1 to 3,

and the results in Prob. 11.6, one has

�σ · (�p− e �A)�σ · (�p− e �A) = σiσj(p− eA)i(p− eA)j

= (δij + iεijkσk)(p− eA)i(p− eA)j (12.179)

19Once again, we do not underline the Pauli or Dirac matrices, and there is a sup-
pressed unit matrix on the r.h.s. of Eqs. (12.174) and (12.176); also, αk ≡ αk.
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(a) Show

iσkεkij(p− eA)i(p− eA)j = −e�σkεkij(∇iAj)

= −e��σ · (�∇× �A )

= −e��σ · �B (12.180)

(b) Hence, conclude that the above non-relativistic reduction takes the

form [
1

2m0
(�p− e �A )2 − e�

2m0
�σ · �B

]
φ = εφ (12.181)

(c) From this, conclude that a Dirac particle has the magnetic moment

in Eq. (11.70).

11.10 (a) Consider the Dirac equation for a particle in a static, central,

electric field given by �E = −�∇Φ(r). Show that in this case the Dirac

equation can be reduced to[
c�σ · �p 1

2m0c2 + ε− eΦ(r)
c�σ · �p+ eΦ(r)

]
φ = εφ ; ε ≡ E −m0c

2

(12.182)

(b) Show that20

�σ · �pΦ(r)�σ · �p = Φ�p 2 + (�pΦ) · �p+ �

r

(
dΦ

dr

)
�σ · (�r × �p) (12.183)

(c) Hence conclude that if |ε|/2m0c
2 � 1, and eΦ

{
1 +O[(p/m0c)

2]
} ≈

eΦ, then the Dirac equation reduces to the following Schrödinger equation

for the upper components φ

Hφ = εφ

H =
�p 2

2m0
+ eΦ(r) +

e�2

(2m0c)2
1

r

(
dΦ

dr

)
�σ ·�l (12.184)

Here the spin-dependent contribution has been retained, and the angular

momentum identified as �r × �p = ��l.

(d) Use this result to obtain Eq. (11.71).

20Note that �∇Φ(r) = (�r/r)(dΦ/dr).
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Electromagnetic Field in Normal
Modes

One has the freedom of choosing a gauge for the electromagnetic potentials,1

and here we work in the Coulomb gauge. This gauge has the great advantage

that, when quantized, there is a one-to-one correspondence of the resulting

quanta with physical photons. For free fields, the Coulomb gauge is defined

by

�∇ · �A = 0 ; Φ = 0 ; Coulomb gauge (A.1)

The electric and magnetic fields are then given in terms of the vector po-

tential by

�E = −∂ �A

∂t
; �B = �∇× �A (A.2)

With periodic boundary conditions, the normal modes are given by

plane waves

q�k(�x, t) =
1√
Ω
ei(

�k·�x−ωkt) ; �k =
2π

L
(nx, ny, nz)

ωk = |�k|c ; ni = 0,±1,±2, · · · ; i = x, y, z (A.3)

They satisfy the wave equation

� q�k(�x, t) = 0 (A.4)

We have an infinite, discrete set of wavenumbers, and the normal modes

are orthonormal ∫
Ω

d3x q��k(�x, t) q�k′(�x, t) = δ�k,�k′ (A.5)

1See Probs. 6.1 and 6.2.
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Now introduce a set of orthogonal, transverse unit vectors �e�ks for each �k

(see Fig. 6.1). They satisfy

�e�ks · �k = 0 ; s = 1, 2

�e�ks · �e�ks′ = δs,s′ (A.6)

The vector potential can then be expanded in normal modes as in Eq. (6.40)

�A(�x, t) =
∑
�k

2∑
s=1

(
�

2ωkε0Ω

)1/2 [
a�ks�e�kse

i(�k·�x−ωkt) + a��ks�e�kse
−i(�k·�x−ωkt)

]

(A.7)

where we have chosen particular amplitudes for the normal modes which

will make the energy come out nicely.

With the use of Eqs. (A.2), the fields ( �E, �B) are expressed in terms of

the normal-mode expansion of the vector potential �A(�x, t) as

�E(�x, t) = i
∑
�k

2∑
s=1

(
�ωk

2ε0Ω

)1/2

�e�ks

[
a�kse

i(�k·x−ωkt) − a∗�kse
−i(�k·x−ωkt)

]

�B(�x, t) = i
∑
�k

2∑
s=1

(
�

2ωkε0Ω

)1/2

(�k × �e�ks) ×
[
a�kse

i(�k·x−ωkt) − a∗�kse
−i(�k·x−ωkt)

]
(A.8)

We will now substitute these expressions in the relation for the field energy

in Eq. (6.34)

E =
1

2

∫
Ω

d3x

(
ε0 �E

2 +
1

μ0

�B 2

)
(A.9)

and use the orthonormality of the plane waves

1

Ω

∫
Ω

d3x ei(
�k−�k′)·�x = δ�k,�k′ (A.10)
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Consider first the term containing the contribution of the electric field

ε0
2

∫
Ω

d3x �E 2 =
1

4

∑
�k,s

∑
�k′,s′

�ωk

[
δ�k,�k′δs,s′(a

∗
�ks
a�ks + a�ksa

∗
�ks
)

−δ�k,−�k′ (�e�ks · �e−�k,s′)
(
a�ksa−�k,s′ e

−2iωkt + a∗�ksa
∗
−�k,s′

e2iωkt
)]

(A.11)

Now consider the term containing the contribution of the magnetic field

1

2μ0

∫
Ω

d3x �B 2 =
1

2μ0

∑
�k,s

∑
�k′,s′

�

2ωkε0

[
δ�k,�k′�k

2δs,s′(a
∗
�ks
a�ks + a�ksa

∗
�ks
)

−δ�k,−�k′ (�k × �e�ks) · (�k′ × �e�k′s′)
(
a�ksa−�k,s′ e

−2iωkt + a∗�ksa
∗
−�k,s′

e2iωkt
)]

(A.12)

Use the vector identity2

(�k × �e�ks) · (�k × �e−�k,s′) =
�k 2(�e�ks · �e−�k,s′) (A.13)

Recall 1/μ0ε0 = c2 and ω2
k = �k 2c2, so that

�k 2

μ0ε0ωk
=

�k 2c2

ωk
= ωk (A.14)

The magnetic contribution then takes the form

1

2μ0

∫
Ω

d3x �B 2 =
1

4

∑
�k,s

∑
�k′,s′

�ωk

[
δ�k,�k′δs,s′(a

∗
�ks
a�ks + a�ksa

∗
�ks
)

+δ�k,−�k′ (�e�ks · �e−�k,s′)
(
a�ksa−�k,s′ e

−2iωkt + a∗�ksa
∗
−�k,s′

e2iωkt
)]

(A.15)

When the electric and magnetic contributions are combined, the final

time-dependent terms cancel identically, and the energy in the field is then

indeed given by the normal-mode expansion in Eq. (6.44)

E =
1

2

∑
�k

2∑
s=1

�ωk

(
a∗�ksa�ks + a�ksa

∗
�ks

)
(A.16)

2Note that (�k′ ×�e�k′s′ )→ −(�k×�e−�k,s′ ); note also that (�k ·�e−�ks′ ) = 0 for s′ = (1, 2).



April 12, 2021 16:29 EMcon.tex,ws-book9x6-9x6 12222-main page 136

136 Introduction to Quantum Mechanics

The electric and magnetic contributions to the energy of the free electro-

magnetic field oscillate back and forth with time, but the total energy is a

constant of the motion.
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Appendix B

Significant Names in Quantum
Mechanics—Theory and Applications

Hendrik Antoon Lorentz (1853–1927)

Max Karl Ernst Ludwig Planck (1858–1947)

Albert Einstein (1879–1955)

Max Born (1882–1970)

Niels Henrik David Bohr (1885–1962)

Erwin Rudolf Josef Alexander Schrödinger (1885–1962)

Louis Victor Pierre Raymond duc de Broglie (1892–1987)

Satyendra Nath Bose (1894–1974)

Douglas Rayner Hartree (1897–1958)

Wolfgang Ernst Pauli (1900–1958)

Enrico Fermi (1901–1954)

Werner Karl Heisenberg (1901–1976)

Paul Adrien Maurice Dirac (1902–1984)

Eugene Paul Wigner (1902–1995)

Felix Bloch (1905–1983)

Hans Albrecht Bethe (1906–2005)

John Bardeen (1908–1991)

Lev Davidovich Landau (1908–1968)

Victor Frederick Weisskopf (1908–2002)

Julian Seymour Schwinger (1918–1994)

Richard Phillips Feynman (1919–1988)

Francis Eugene Low (1921–2007)

Marvin L. Goldberger (1922–2014)

Chen Ning Yang (1922–)

Freeman John Dyson (1923–2020)

John Clive Ward (1924–2000)

Mohammad Abdus Salam (1926–1996)
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Murray Gell-Mann (1929–2019)

Leon Nathan Cooper (1930–)

John Robert Schrieffer (1931–2019)

Sheldon Lee Glashow (1932–)

Steven Weinberg (1933–)

Jeffrey Goldstone (1933–)

James Daniel Bjorken (1934–)

Kenneth Geddes Wilson (1936–2013)

David Jonathan Gross (1941–)

Hugh David Politzer (1949–)

Frank Wilczek (1951–)
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Fermi energy, 120, 122
number density, 120, 122
pressure, 120
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anti-commutation relations, 65
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Fermi gas, 120, 122
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Pauli exclusion principle, 64
quantum field, 65
Schödinger equation, 66
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spin-1/2 wave function, 97

fine-structure constant, 48

Golden Rule, 38
Green’s functions, 31
ground state, 19
group velocity, 111

Hamilton’s equations, 46, 81
hamiltonian
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Dirac equation, 95, 100, 131
fermions, 66
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Hartree approximation, 121
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higher dimensions, 21
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Huygen’s principle, 1
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Dirac equation, 98
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in quantum mechanics, 85
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Lorentz force, 46

magnetic moment
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wave equation, 89



April 12, 2021 16:29 EMcon.tex,ws-book9x6-9x6 12222-main page 146

146 Introduction to Quantum Mechanics

matrices, 130
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Maxwell’s equations, 93
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postulates, 70
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path integrals, 101
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electron, 100
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first law, 120

time-ordering, 127
transition rate, 33, 36, 42

Born approximation, 41, 42
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dipole approximation, 119
time-dependent interaction, 117
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ultraviolet catastrophe, 2
uncertainty principle, 110

vacuum, 99

wave equation, 1
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wave packet, 6, 110
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