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Chapter 9

Time-Dependent Perturbation Theory

9.1 Theory

Time-independent or stationary-state perturbation theory, as we developed ear-
lier, allows us to find approximations for the energy eigenvalues and eigenvectors
in complex physical systems that are not solvable in closed form and where we
could write H in two parts as

H=Hy+V (9.1)
For these perturbation methods to work, V must be weak and time-independent.
We now turn our attention to the case

H=Hy+V, (9.2)
where V; is weak and time-dependent.

Examples might be the decays of an atomic system by photon emission or the
ionization of an atom by shining light on it.

We assume that at some time ¢y the system has evolved into the state ‘%(0))),

i.e., the state ‘1/%(0) satisfies the time evolution equation

ih% [wf?) = o [0f”) <t (9.3)

It is a solution of the time-dependent Schrodinger equation with no perturbing
interactions before ty where

H=H, t<t (9.4)
At time ¢y we turn on the interaction potential (or perturbation) so that

H=Hy+V, t>t (9.5)
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The new state of the system then satisfies

L0 A N
iho ) = Hle) = (Ho + Vi) o) t2to (9.6)
with the boundary condition(initial value)

o) = [4£7) at t=to (9.7)

As we said, we assume that the full time-dependent Schrodinger equation cannot
be solved in closed form and so we look for approximate solutions.

We let V, be a small perturbation, i.e., we assume there is a natural small
parameter in V; (as we saw in time-independent perturbation theory) and we
make an expansion of the solution in powers of V; or this small parameter.

Since the effect of Hy will be much greater than the effect of XA/;,Amost of the time
dependence comes from Hy. If we could neglect V;, then since Hj is independent
of time, we would have the simple time dependence

[ihe) = e ot

) (98)

Let us assume that this is still approximately true and remove this known time
dependence from the solution. This should remove the major portion of the
total time dependence from the problem. We do this by assuming a solution of
the form

n) = "R (1)) (99)
and then determining and solving the equation for the new state vector |1(¢)).

Substituting this assumption in our original equation, the equation for |1 (t)) is
then given by

i (e H 0 (1)) = (o + V2) (€57 (1))
e+ 50 (1)) + ine# 50t 2 )
= Hoe 710t 4p(8)) + Vae # 1ot (1))
() = V(1) 0(1) (9.10)
where . o
V(1) = o3 Hot ek ot (9.11)

The substitution has removed Hy from the equation and changed the time de-
pendence of the perturbing potential. We are in the so-called interaction picture
or representation where both the state vectors and the operators depend on time
as we discussed earlier.
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We develop a formal solution by integrating this equation of motion for the
state vector to get

m/imwmwzfvwmmmw

=ih(|¥ (1)) = [ (t0))) (9.12)
so that the formal solution is given by
W) = w0 + = [ V)i (913)

This is an integral equation for |1h(t)). We solve it as a power series in V; by the
method of iteration.

The 0" —order approximation is found by neglecting the perturbing potential.
We get

[¥(8)) = [¥(t0)) (9.14)

The 1%¢—order approximation is obtained by inserting the 0*"—order approxima-
tion into the full equation. We get

00} = 0(t0)) + = [ V() ittt

_ (1+ ;Ltf V(t’)dt’)W(to)) (9.15)

The 2"?—order approximation is obtained by inserting the 1%¢—order approxi-
mation into the full equation. We get

W) = Wt + - [ V) )i

t

. (i;)Q / at’ tf A"V () (47) [ (to)) (9.16)

0

Notice that in all subsequent iterations the operators V (t'),V (t"),. .., etc, always
occur in order of increasing time from right to left.

We can write the general result as
(1)) = U (t, to) [¥:(to)) (9.17)
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U(t,to) =1+ i(fi)" f dty f dty........ ]ldtnf/(tl)f/(t2) ....... V(tn) (9.18)

The complete, formal solution to the problem is then given by

o) = e F A0 (1)) = e R LTI (8, 0) [ (o)) (9.19)

so that

e_%ﬁotf](t,to) = the total time development operator (9.20)
Before developing the detailed techniques of time-dependent perturbation the-
ory, let us spend some time with the operator U(¢,ty) and discuss some of its

properties.

We first introduce the idea of a time-ordered product of operators as follows.
The symbol

(A(t)B(t1)C(t2)..... X (tn)), = T (A(t)B(t1)C(t2)...... X (tn)) (9.21)

means the product of the operators where the operators are written from right
to left in order of increasing times, i.e.,

AWB{)  t>t

BYA®) />t (9:22)

(A BW)). = {

Now, we have using the time-ordered product definition

( : (j (t")dt’ /V(t”)dt”)

f V(t’)dt’r)

j V(A V(E")s

fdt fdt"V(t )V(t”)+fdt”f V({E"V ()

-2 f dt’ f "V (Y (1) (9.23)

\w
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and in general

+

...... fdtn(f/(tl)V(tz)......V(tn))+
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=
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because there are n! possible orderings of the n terms involved. This last form
is identical to the expression for U(%,%¢) and thus we have

Ul(t,to) = O(h)nl'( fV(t)dt])
:(exp l-; f V(t’)dt’l) (9.25)

+

The last expression is just a convenient shorthand for the infinite sum. In order
to verify that this is in fact a solution of

i () = V(0 (1) (9.26)

we must prove that
20 t0) [0(10) = VT 0) [ (00) (9.27)
ih%U(t,to) =V ()U(t,to) (9.28)

Substituting, we have

¢
L 0 4 0 i A
zhaU(t,to) = zh& (exp l—hJV(t )dt U
0 +

(vwma] s frew]) am

+

In the differentiation we do not have to worry about the non-commutation of the
operators inside the time-ordered product since the order is already specified.
Since t is certainly the latest time in the time-ordered product and therefore
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all the other operators will be on the right of V(t) we can pull it outside the
time-ordered product and write

=V()U(t,to)

t
. a 2 1 _3. Cr (gl !
ih=-U(t:to) = V(1) exp[ hth(t )dt

as required.

The most important question (really the only question) that is usually asked in
quantum mechanics is the following:

Suppose that the system is initially in an eigenstate

[n) of Hy, i.e., Hy|n) = €, |n). What is the probability
that the system will be observed, after the perturbation
has had time to act, in a different (and thus orthogonal)
cigenstate of Hy, say |m)?

Alternatively, the question is sometimes posed this way:

What is the probability that the interaction causes the
system to make a transition from the state |n) to the
state |m)?

The probability amplitude for observing the system in the state |m) at time ¢
is given by

(m | o) = (me” F AT (1, t0) [ (t0))
= (m| e "7t T (¢, t0) n) (9.30)

where

[¥(to)) = In) (9-31)

is the initial state.

Setting to = 0 for simplicity and using the 1¥*—order approximation for U (t,0)
and also using

i 7 i 7 + i + i
(mle# 0t = (ex o )} = (e7n! m)) " = (m] 5! (9.32)
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we get

t

1 i / 7 (4l
(m | = et [ at (m] V() n)
Ot
1 _s

= %e_ﬁmtfdt'(m|e%HOtthe_%ﬁUt In)
0

t

1 _s i N

- —enhent f dt' ek Em==n)t (1l Vi In) (9.33)
0

The probability of the transition is then
2

P () =m0 | 60 = 2 (931

t
[ aterComet | Vi)
0

The simplest example is when V; is not a function of t, or V; = V. We then have

2

[(m| Ve[| |
m| Vg |n i _
Poen(t) = (m [ 00) = Emftl | [averGemeor (o.35)
0
If we define A = ¢, — €,, then we have
_i 2 0 Aty 2
N 1- At N SN o3~
Pron®) =l Telolf | =G| <ol elolf (5 2] 030

for the transition probability.
9.1.1 What is the physical meaning of this result?
We must be very careful when we use the words

the perturbation causes a transition

between eigenstates of H,
What this means physically is that the system has absorbed from the perturbing
field (or emitted to it) the energy difference A = ¢, —¢,, and therefore the system
has changed its energy.

Does the statement also mean that the state vector has changed from an initial
value [0(0)) = |n) to a final value [¢(1)) = |m)?

We can get a better feeling for the correct answer to this question by deriving
the result in a different manner.
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We have 9
iho ) = H o) = (Ho + Vi) ) (9.37)

and .
Hy|n) =epn) (9.38)

As in our development of time-independent perturbation theory, we let
Vi = gU, (9.39)

where g is a small parameter.

The set of eigenvectors {|n)} is a complete set and therefore we can use it as a
basis for the space and, in particular, we can write

i) = 3 an(t)e +" [n) (9.40)
The reason for pulling out the phase factors will be clear shortly.

It is clear that if g = 0, then this is the correct general solution with
an(t) = a,(0) = constant (9.41)

The phase factors we pulled out represent the time dependence due to Hy and
this is, by assumption, the major time dependence in the system.

If g is small we expect the time dependence of a,(t), which is due to the per-
turbation to be weak or that

d“g(t) is small (9.42)

It is in this sense that we can propose to use perturbation theory on the system.

Using the eigenbasis expansion we have

. dan(t) —%snt
;(zh o +5nan(t))er In)

Z(anan )+ gUsan(t ))e went
n

n) (9.43)

Applying the linear functional (m/| from the left and using the orthonormality
relation
{m [ n) = dmn (9.44)

we get

dam (t

=gy, (m| Uy |n) e™mnta, ()

=3 Vin ()™ an () (9.45)
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where I
Wmn = % (9.46)

This is an exact equation. It implies that the time dependence of an(t) is due
entirely to V; (because we explicitly extracted out the dependence due to Hy).
This is the interaction picture that we had earlier.

Exactly Solvable 2-State Example

Consider a 2-state system with

_ E1 0 _ 0 5€iwt _ V11 V12
H() - ( 0 E2 ) ’ V(t) - ( 5e—iwt 0 ) - ( ‘/‘21 ‘/22 ) (947)

In the interaction picture, as derived above, we have

den(t)

T ;Vm"(t)eiwmntcn(t) ) = ;Cn(t)e_%s’*t In)  (9.48)
or
ihdiét):564w+EgE2p02@) (9.49)
ihdcfzit) o PO (9.50)
[r) = cr(t)e ML) + ea(t)e F P2 2) (9.51)
We can write these equations as
dgﬂ:_f(eﬂfwﬁ ei[w_owl]t)c(t) (9.52)
where
¢ =( 28 ) , war = EQ;LEI (9.53)

We can find an exact solution. With initial conditions ¢;(0) = 1 and ¢3(0) = 0
we get
2 6
|Cl (t)| = 452 . h2 (w—oa1 )
1

sin? Qt = 1 - |ey () (9.54)

where )
_9, wowa)”
h2 4

A graph of these functions is shown in Figure 9.1 below.

0? (9.55)
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Figure 9.1: Exact Solution

A straightforward calculation gives

2
2 (w - w21)
le1 () [rnin = o)+ B (9.56)
21 h2
At resonance, w = ws1, we have
0 2
Q = E ) |Cl(t)|min = 0 (957)

as shown in Figure 9.2 below.

Figure 9.2: At Resonance

The amplitude as a function of w is shown in Figure 9.3 below.

Figure 9.3: Amplitude versus w
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where A = full width at half maximum = 46/h. The amplitude is peaked at
resonance and the width is proportional to ¢ (the strength of the perturbation).

This periodically forced 2—state system is a basic problem - it demonstrates the
fundamental features of absorption and emission.

We now return to the full, general equations and look for a perturbation solution.
Now we assume (power series)

an(t) = a® + galV + g2a® + . (9.58)

Substituting and arranging the terms in a power series in g we have

da%o) . da%) ~ i
( S ) g (0 = 5l Oy el | gt ok

da(Hl) ~ i
ih ?llt = > {m| Uy |n) ern@mntg(M N grh =0

or looking at each order separately we have

daﬁf’)
dt

st . da%) 2 L omnt (0)
1%" —order ih = = > (m| U In) en“mtay,

n

Oth

—order =0

(r+1) R ;
(r+1)* —order ih a;t = > (m| Uy |n) enmntal)
n

Note that the coefficients aflo) follow from the initial condition
[(0)) = Y alP |n) (9.59)
n

The solution proceeds as follows:

initial condition — a{®

a;o) - ag) using the 1°% — order equation

aif) N a;’“”) using the (r +1)*" - order equation
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Now consider the following example. We assume that

H=H, <0 (9.60)

where

Ho|n) = e, |n) (9.61)

and during the time interval 0 < ¢ < T a perturbation V, is applied to the system
and the a,(t) change with time.

Finally, for ¢ > T' the perturbation is turned off and a, (t) = a,(T).

The probability that, as a result of the perturbation, the energy of the system
becomes €., is given by

2

([0l = [V ai(ye =[] = lar () (9.62)
and as t — co we get ) )
[(r [ 9e)]” = lar(T)] (9.63)
Now to 1%¢~order we have
d 5-1) - i
ih = = S (r| Uy n) enrnia® (9.64)
dt o
If [4(0)) = |i), then
1 _
al® = { net (9.65)
0 n=#1
This gives
da'? . ;
i = (O e (9.66)
Integrating we have
1 [ -
a(T) = — [ (1] fi) ¥ Cm=tay (9.67)
R
and
ar(T) = al(T) + gal(T) (9.68)

which is identical to our earlier result as ¢t — oo.
Now let return to our question. Has the state changed also?

In the example we found that the perturbation produces a final state |);) for
t > T which to 15!-order is

) = S an(t)e 7 [n) (9.69)
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This is a coherent (definite relative phases) superposition of eigenvectors of H,.
This is NOT a stationary state. Interference effects between the terms in the
sum are detectable. They do not, however, affect

|la,(T)|” = probability that the energy changes to &, (9.70)

Thus, the perturbation does not cause a jump from one stationary state |2} of
Hj to another |r), but instead it produces a non-stationary state.

The conventional language of quantum mechanics produces this ambiguity be-
tween the two statements

the energy is e, and the state is |r)

For the state _
[e) = D" an(t)e 7" n)

it is correct to say

the probability of the energy being €, is |a,(T)|?
or

Prob(E = e|[)) = |a, (T)?
The state, however, is |¢;) and NOT |r).

An example

Suppose we perturb an oscillator with a decaying electric field of the form
Vi, = —q€gie™  t20 (9.71)

To 1%¢—order, starting with the initial state |n) with energy

e = hu(n+ %) 9.72)
we have .
W) =)+ = [ av o)) (973)
where - 0 -
V(t) = enHoty,emn Hot (9.74)

We let n =0 (the ground state) for this example. We then have
1 ! PPN DN
() = 10) + — f dt' e ot (_ggoi)eF e 7 Hot ) (9.75)
i
0
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Using

e HHt0) = 151 |0)

-

1
H0t|1 t|0

we get (letting ¢ — o)

= l —_ i r 7 jiwt'—L
[$(0) =10)+ - ( qeon/mo[dte )

and finally,

POH1_|(1|¢(t) ’/dt/ zwt-,

& T

T 9mhw 7202 + 1

(9.76)

(9.77)

(9.78)

(9.79)

(9.80)

We now return to the earlier general result (11.36) we derived for the probability,

namely,

sin 5

) 9 At
Pueat® = ol ()

In Figure 9.4 below we plot this function.
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0
delta

Figure 9.4: Probability(0,n) versus Delta

The height of the central peak is proportional to ¢ and the location of the first

zero is at 9rh
A= % (9.82)

so that the width of the peak decreases as 1/t.

The formula implies that for very short times
Py, o< t2 for all &, (9.83)

As t » oo, however, the probability is largest for those states whose energy lies
under the sharp bump near A =0 or those states with whose energy lies under
the peak around eg. Now the energy €, ~ ¢y lies under the sharp bump when

2mh
|A] = [er — 0] < e (9.84)

The area under the bump is proportional to ¢ and the rest of the area oscillates
in time around zero. This latter feature means that if ¢, # €y, the transition
probability oscillates in time with a repetition time of
2rh
—_— (9.85)
|5n - 50|
The case, where we are looking for a transition to a single state, is, thus, only
valid in perturbation theory for very small time ¢. Otherwise the condition that
the
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will not be true and perturbation theory breaks down. We also note that the
probability cannot grow larger than one or that, after a while, the higher-order
effects of the perturbation which we have neglected so far must become impor-
tant and prevent the probability from exceeding one.

The condition that tells us whether a transition probability to a state with
an energy appreciably different than the original energy is the same condition
in time-independent perturbation theory that tells whether the state vector
changes appreciably from the unperturbed state, namely

{n| V]0)

En — &0

<<1 (9.87)

Physically, a more interesting case occurs when the state |n) is one of a contin-
uum of energy states, or it lies in a group of very closely spaced levels.

In this case we ask a different experimental question, namely,

What is the probability that the system makes
a transition to a small group of states near
|n) (or has energy near €,)?

Since the area under the bump near A = 0 or ¢, ~ ¢ is proportional to ¢, we
expect that the transition probability to a small group of states near ¢y will
grow linearly with ¢ and thus

Pon(t .
0%() = transition rate =I'= constant as ¢t — oo (9.88)

Quantities that we measure are related to the transition rate and this result
says that these measurements will make sense.

Let us now carry out this derivation in detail.

To calculate this transition rate we must sum Py, over the group of final states.
We assume that | (b Vi [0)|? is relatively constant over the small group of states
near |n) (has a weak energy dependence).

We then have

in (en—c€0)t 2
2 Poran(®) =[(nl Vi 0} [ dewpen) 25 (9.89)

(en=c0)
ingroup group 2

where

p(e,) = number of states per unit energy

p(en)de, = number of states in the interval de,
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Now in the limit ¢ — oo

sin [7(5";0)75] ’

W - 75(80 —€n) (9.90)

i.e., in general, for a sequence of functions

.2
sin” at
0i(ar) = > (9.91)
Toct
we have that
L a=0
1) =<7 9.92
t(a) {S mizt az0 ( )
and
lim f dad, () F(a) = F(0) (9.93)
Therefore,
tlim or(a) = () (9.94)
Using this result, we have
> Poon(t) =Tt (9.95)
n
and thus
o 2 N 2
I' = transition rate = + (| V10)]" p(en)en=co (9.96)

which is called Fermi’s Golden Rule.

We now consider a perturbation that depends explicitly on time. In particular,
suppose we have a harmonic perturbation of the form

L Vv , .
Vi = Ve coswt = 56“ (e + ") (9.97)

and [1(t9)) = |0), where we let ty - —oco. The e"* factor is necessary to make
the mathematical operations valid in the limit. It is equivalent for small 7 to
turning the perturbation on slowly. In the end we will let n — 0.

We have

0
(| 0(®) = (| 0) + =t [ i’ (ul? () 0)

5 (n|V]0)  (9.98)

et [ ei(sn—so—hw)% 6i(sn,—sg+hw)%

+
€o—€ent+thw+ihn e9g—e,—hw+ihn
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Thus, the probability of the energy being €, at the time ¢ is

2
[{n [¥(2))]
2nt . 2 1 + .
= [l V'[0)] { RN F } .
+ahe (e0—en+hw+ihn) (eg—en—hw+ihn)

The first term comes from the e ** part of vV, (positive frequency) and the
second term comes from the ¢! part of V; (negative frequency). The last term
represents interference effects.

Since
Py (t) =Toont (9.100)
we have
APy, (t
Lo = #“ (9.101)
and thus
Toon (9.102)
nt 1 1 — oS
_er (] V' (o) { e (60*67551&)%(’“7)2] (1= cos2wi) }
4 +2sin 2wt [ (Eg—sn+hw+i;n)(sofsnfhuwihn)

The sinwt and coswt terms arise from the interference term. In the limit n - 0
and assuming that |n) is in the continuum part of spectrum, we have

1. the first two terms are not equal to zero only if €,, — ¢ = thw

2. the sinwt and coswt terms average to zero if we assume that I'g_,,, is
dPy_,(t)/dt averaged over a few cycles of V;

which gives the result
L2
2r [(n] ¥ [0}

Ty, =
0 h A

[0(en —c0—hw) + (e —€0 + hw)] (9.103)
The positive and negative frequency parts act independently and the interference
averages to zero.

Thus, the e”™* part produced a AE > 0 process (absorption), while the et
part produced a AF < 0 process (emission).

To enhance our understanding of time-dependent perturbation theory, we look
at a variation of this harmonic perturbation. Suppose we have a harmonic
perturbation of the form

Vi= Ve @ty yreiet (9.104)
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which is only applied for a finite time interval 0 <t < T. If we start with energy
€; in the state |i), then at any time ¢ > T

a;l)(t) = 1°" — order amplitude for the state [(t))
to have energy e (be in state |f)?) f#1

is given by
1 A 1 A
o (1) = —(7IV]i) f Dt — (7] ) f sty (9.105)
i i
0 0
and )
‘a?)(T)| = probability that the final energy will be ¢/ (9.106)

As an example we consider spin resonance (we solved this problem exactly ear-
lier).

We consider a spin = 1/2 particle in a static magnetic field By (in the z—direction).
This says that the unperturbed Hamiltonian is

.1
Hy =~ hyBod: (9.107)

This operator has the eigenvectors and eigenvalues

[+) = ((1)) =)= ((1)) ;e :¥%h’yBo (9.108)

We now perturb the system with another magnetic field By, which is rotating
in the z — y plane with angular velocity w. This implies that

N 1 A A
V, = _§h731(coswti +sinwtj) -6
1 A A ' 1 0 e—iwt
= —§hfyBl [g_r coswt + 0y, smwt] = —§h731 ( eiwt 0 )

1 N N
=——hyBy (Ve ™" + V*e™?) (9.109)

2
V:(O é) 7 V+:((1) 8) (9.110)

We choose the initial state to be

where

|#) = |n) (spin up in the z-direction) (9.111)

The first order perturbation theory approximation for this result is
2 2 1
‘a;l)(T)‘ = (L) sin? = (wo +w)T (9.112)
wo +w 2
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where

W = ’yBQ 5 wi = ’}/Bl (9.113)
and we have used
N N 1
(| V]+)y=0, (-] VT |+) = —571731 (9.114)
Wpi = % = wo (9.115)

When is the first order perturbation theory result valid?

If we compare the exact result with perturbation theory by expanding the exact
result in a power series, we find that the two results agree exactly if

w1
wo +w

‘ <<1 (9.116)

which corresponds By <« By (as long as wg +w # 0). When wg +w = 0 we have a
phenomenon called resonance. The exact solution gives

1
las(T)? = sin? 50T (9.117)

where a2 = (wg + w)® + w? and perturbation theory gives

wlT)2 (9.118)

‘“5“1)(T)|2 B ( 2

Thus, the results agree only if |w17T| <« 1 or if the perturbation only acts for a
short time.

9.2 Atomic Radiation and Selection Rules

We now apply time-independent perturbation theory to the absorption and
emission electromagnetic radiation by matter.

The Hamiltonian for an electron in an atom interacting with and electromagnetic
field is )
A

o ke

ﬁ _ (ﬁop B
2Mme
where ¢ = —e, U = the potential energy function that binds the electrons in the

atom, and A and ¢ are the vector and scalar potentials associated with the
electromagnetic field.

+qp+ U (9.119)

These potentials imply the electric and magnetic fields

E:—w—%%‘?ﬁ:vxﬁ (9.120)
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Note that if A =0, the B =0 and

7

¢=- (7,t)-dr (9.121)
0
We rewrite H as o R
H=Hy+V (9.122)
where
P2
Hy = 5 2.+ U = Hamiltonian for the atom with no electromagnetic field
Me
(9.123)
and
R S @ (i i
V= 2mec (Pop - A+ A op) + 2mec? (4-A)+q0 (9-124)

is the perturbation due to the presence of the electromagnetic field, i.e., the
term V tells us how the atom interacts with the electromagnetic field.

9.2.1 The Electric Dipole Approximation

The typical wavelength of visible electromagnetic radiation is » 5000 and the
typical dimension of an atom is » a few . This implies that the electromagnetic
fields are approximately constant over the volume of the atom.

In Gaussian units |E| ~ | B|, but the force due to B ~ (v/c)x the force due to E.
Thus, magnetic effects are negligible in most atoms compared to electric effects.
We therefore assume

1. E ~ constant over the volume of the atom
2. B can be neglected

This is the so-called electric dipole approximation.

In this approximation, we have A = 0 and as we said above (11.121), B=0 and

¢ = f B t)dF (9.125)
0
This last integral is independent of path since
. 10B
E=—-——=0 9.126
VX c Ot ( )

Since we are assuming that E ~ constant over the volume of the atom, we get

¢ =7 E(t) (9.127)
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This adds a perturbation of the form

V = —qi- E(t) (9.128)
to the Hamiltonian.

In some derivations the quantity

2
’ q i T SR q .o
V= 2mec (Bop - A+ A-Pop) + I (A-A)+qo (9.129)

is chosen as the perturbation. The next step would be to expand in powers of
the potentials. Since V- E = 0 for the radiation field, we can choose ¢ = 0 and
vV-A=0 (if these relations were not true we could make them so with a gauge
transformation).

Therefore, we end up with an expansion in powers of A. The first term in the
expansion is

> q - TR = q - -
Va,=— op A+ A-Dop) = — A-D, 9.130
Ap e (p p p p) o Pop ( )
since o R
Pop A=A -PopxV-A=0 (9.131)

In this case, in the electric dipole approximation

E~ constant , B=0
A ) = —¢ f B, t)dt
0

d(7,t)=0

If E(7,t) = E(7)e"™", then A = eEfiw. Using

ﬁo Z - =
ﬁp = g |:H07rop] (9132)
we get
A~ q A~ N —
Vap = - [Ho,7op]| - E (9.133)

We can then calculate matrix elements

(m| Vap ) =~ (m| HoFoy ~ Fo Ho ) - E

=L (em =) (ml Ty B )
=m0 | V ) (9.134)
w
where PR
Wi = (9.135)
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Thus, the matrix elements of VAP (from fi-ﬁop) differ from the matrix elements of

V (from ¢) by the factor wy,, /w. This implies different transition probabilities in
first order except at resonance where wi,, /w = 1. The reason for the differences
is as follows:

1. we assumed that the perturbation =0 for t <0, ¢t>T
2. there is no physical problem with V = —¢7 - E changing discontinuously

3. however, if A- Pop changes discontinuously, then the relation

. 104
EF=—— 9.136
c Ot ( )

generates spurious d—function type E fields

It is clear that one must exercise great care in choosing a starting point for
perturbation theory.

9.2.2 Induced Emission and Absorption

We now look at the physics connected with the harmonic perturbation. Physi-
cally, it represents an electromagnetic wave interacting with the atom.

We consider the perturbing potential

. _ —'.E —iwt iwt t<T
V:{ qr- Eo(e7™t+e™?) 0<t< (9.137)

0 t<0,t>T

where Ej = a constant vector which tells us the strength and polarization of the
electromagnetic field.

This perturbing potential corresponds to monochromatic(single wavelength)
electromagnetic radiation.

For an initial state [1(0)) = |i) where Hy |i) = ¢; |i) the probability, at any time
t> T, that the atom will have a final energy €y is

P (T) = ‘affl)(T)f (9.138)

to first order, where we have from our earlier derivation

(1) =

— fE' Z 1-— i(wfi—w)T 1= i(wfi+w)T
(e O)H[ c b ] (9.139)

h Wr; —Ww Wr tWw

If €f > ¢; this gives the probability amplitude for absorbing radiation and if
€f < ¢; this gives the probability amplitude for emitting radiation.
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In the limit 7' — oo, as we saw earlier, P;_,¢(t) = I';_, st which gives

) L= 2
21 [(f17 - Eoli))|
h 4

Fi_,f = [5(5i—€f—hw)+§(€i—€f+hw)] (9140)

In this expression
0(e; — ey — hw) — absorption
0(e; — ey + hw) — emission

We then have the transition rates

omq? |(f17- Boli)|”

h 4

Iy, =T%,, =

3

(9.141)

These expressions are zero/nonzero or transitions are not-allowed/allowed de-
pending on the matrix element of the perturbation, i.e.,

if for i - f (f|7-Eoli) =0, then the transition i — f is not allowed

These relationships between the quantum numbers of the initial and final states
that tell us whether or not a transition is allowed are called selection rules.

To determine the selection rules for one-electron atoms we only need to consider
matrix elements of the form

(n'0'mepmg|7 - Eg [nfmemy) (9.142)
or we need to look at three matrix elements, namely,

(n"l'memg| 2 nlmems) , (0" €memg| g ntmems) and (n'€'memg| 2 Infmems)

Now
z=rcosf o< rYg = x3 (9.143)
x=rsinfcosp < r(Y11+Y1 1) =11 (9.144)
y=rsinfsing o< r(Y11 -Y1 1) =22 (9.145)

A typical matrix element, therefore, will have a term like the following:
(smg | smg) [ Rurpr (1) Ry (r)r3dr / Yo e Yom, Yim dQ (9.146)
where m = £1, 0.

The radial integral would equal zero only by accident implying that it is not
part of the general selection rules, which must come from the other terms.

706



The term (smgy | sMg) = O ,m, gives us a simple selection rule (this simple rule
arises here because the interaction does not depend on spin). We have

My =ms —> the Amy=0 SELECTION RULE (9.147)

The rest of the selection rules come from the angular integration terms
/ Yy, Yome Vimd© (9.148)

This integral equals 0 unless £ + ¢’ + 1 = an even integer. This rule follows from
parity considerations. For any angular integration over all angles to be nonzero,
the integrand must be even under the parity operation.

Now
Yom = (=1)Yom (9.149)

under the parity operation. Therefore
Vi YemYim = (=) Y0 Y, Yim (9.150)

which gives the stated rule.

The f-integration says that we must have
[0/ —f<1<t+4
This corresponds to thinking of the integrand as made up of two states, namely,
('me| (|€me) ® [1m))

Our angular momentum addition rules say that

[tme) @ |1m) = [+ 1) @)@ |¢-1)
and the selection rule then follows from the orthogonality condition.
The two ¢-rules when combined imply the selection rule

Amy =me —mye =+1,0 SELECTION RULE (9.151)

Thus, for transitions within the electric dipole approximation, as defined above,
we have the SELECTION RULES

Amyg =me —mg = £1, 0 (9.152)
Al=1-0=+1 (9.153)
Amg=0=As (9.154)

The derivation is more complex for multi-electron atoms due the complexity of
the wave function (see next chapter), but it can be shown that, in general, the
SELECTION RULES in the electric dipole approximation are
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parity changes

A(X ) =+1

AS=0

AMg=0

AL = £1,0 (possibility of 0 which is not allowed for 1-electron atoms)
AMy =+1,0

AJ=+1,0

AMj;=4+1,0

© ® NS e W N

J=0—J =0 is strictly forbidden

9.3 A Real Physical Process - Ionization

We now carry out the calculations of the transition rate for the ionization(transition
to the continuum) of hydrogen by electromagnetic radiation.

The initial state of the electron is the ground state of hydrogen

62

|i) = [100) with energy €; = €100 = —5— (9.155)
2@0
The final state of the electron in the ionization process is a free particle state(ionized
electron)
h2k?
2m

If) = ‘E} with energy e = e = (9.156)

We then have - o
ﬁop |k> = hk’ |k‘) (9157)

which says this is a momentum eigenstate also (for free particles [H,pop] = 0
and momentum and energy have the same eigenstates). The momentum is given
by p = hk. Since ¢ ¢ > ¢&; this is an absorption process and thus the transition
rate is given by

P, (t
I',_j = transitionrate = lim %()

t—o0
27 1~ 2
== (k| V'1100)|" 6(ex — €100 — hw) (9.158)
where w = frequency of the electromagnetic radiation and

V=—ei-& (electric dipole approximation)

€ = the electric field vector
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We define

dI' = rate of transition into a small solid angle d2

Z Foal‘c

E in dQ

(9.159)

For convenience we use a common trick and assume that the universe is a large
box (side = L, volume = L3). This allows us to normalize the plane wave states

associated with the free electron. We have

(7| k) = Ae™T
(E|F)=1= [ (k| 7) (] B)
- a2 [dre R - a2 [ d - a2
or
Now there are
L3 (;lj;g =1 2L:)3d9k2dk = m(lﬂdsk

states in the volume d®k of phase space. This implies that there are

L3mk
(2m)3h?

states per unit energy per unit solid angle.

Therefore,

(9.160)

(9.161)

(9.162)

(9.163)

(9.164)

2
= Y Ty~ de Lok e T - € L0} (e~ a00 — heo)

3 2
EindQ 2 ) h 2h

Doing the integration (using the delta function) we get

L3¥mke?

dr = dQ———|(k| 7 £]100
orzp [(HI7 €1 )
where
h2k?
€k = €100 t+ hw =
2m
oo 2mw B i 1z
A a?
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9.3.1 Evaluation of the Matrix Element

We have
(K|7-€1100) = [ a®F (| 7) (77 € |100)
medl* & (7] 100)
L3/2./d3 -ER1o(r) Yoo
2 (9.168)

_ d3~ ik _%T (c:"
ag/QL?,/z f

We can arbitrarily choose k = k2 which gives

7. al 2 —tkr cos 60—
(k|7 £1100) = ——— f AQdrre Fr e 0 5§ (9.169)
ag L3/2
using k- R = kz = krcosf. Now in spherical-polar coordinates we have
£ = £ (sinf. cos p.é, +sin b, sin &, + cosf.¢é.) (9.170)
7 =1 (sinf cos pé, + sin @ sin pé,, + cos Bé,) (9.171)
(9.172)

so that
E -7 =Er(cosfcosh. +sinfsinb. cos(v — ¢.))

We then have

(k|7 - € 100)
9 2m b

c [dgofsin@d&fdrr%_lkmose_% [cos B cos B, +sinfsinb. cos(p - p.)]
3/2L3/2

Since
27 27
(9.173)

the p— integration wipes out the cos(¢ — ) term. Letting x = cosf we then

have
N o A€ 9 —ikroz—-=-
(k|7-E[100) = 2% f /drr o (9.174)
/2L3/2 2
Now
fdrr e hrrmag = fdrTS M= — = % (9.175)
(ikx + al—o)
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Therefore, we have

1
(|7 - £]100) = 4WSC°SQE~/~ LA
(ikx + al—o)
_4r€cosh.  16ka;
ag/2L3/2 (1+k2a3)?

and 202 2 71.2
- - 4 0.alk
|(k‘7~-5|100)‘2: 0967E~ cos 2€a0
L3(1 + k2a3)b
where
k2= 2miw _ i
h ag
Finally, we get
L3mke?
Fioniza ion — / = /dQ ].
' 16m2h3 u 00)f

where

dQ); = integration over the angles of k

(varies direction of arbitrary z - axis)

(9.176)

(9.177)

(9.178)

(9.179)

However, varying the z-direction is the same as keeping & fixed and integrating

over dQ2z. Therefore, we have

ke* 4096m2E2%af
Fionization = m c T [ng COS 9

167r2h3 L3(1 + k2a 2)6
647rm6252 7 K3
3h3 (1+ k2a3)6

Now )
2mwa
1+k%a2 = —2
and letting
h
wp =
0 2mag
we find that )
1 1/2
1+l<:2ag=i andk:=—(i—1)
wo ap \WwWo
and we get

64me?E%a3 (wo\® [ w 3/2
Fionization = T -
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Thus, there exists a threshold energy for this process, i.e., it cannot occur unless
the energy of the photon is greater than a minimum amount, which makes
physical sense. In particular, we must have w > wg so that

hwo = |e100| = Fionization = minimum = threshold (9.185)
We also get the correct 6/"—power term in the answer which agrees with exper-
iment.
9.4 Adiabatic and Sudden Approximations
In standard time-dependent perturbation theory, we assume that the time-
dependent perturbation is weak. An alternative approach, where we assume

the time-dependence is slow, is called the adiabatic approrimation.

Suppose that H = H(g(t)), where g(t) tells us the dependence on time. This
might correspond to a variation in time of some parameters. We still have

d .
ih— [(t)) = H(g(1)) [ (1)) (9.186)
and at any instant of time we have

H(g(t))In(g(t))) = En(g()) In(g(t))) (9.187)

where n(g(t)) represents the quantum numbers describing the instantaneous
state vector.

Let us assume that the instantaneous eigenvectors always form a complete set
so that we can write

(1)) = 2 an(t)e™ D n(g (1)) (9.188)

where we have generalized the phase factor
e ment (9.189)

that appeared in a similar expression in our earlier derivations to include the
term

¢
1
Bult) == [ Ealg(t)at (9.190)
0
which is called the dynamical phase.
Inserting this expression for the state vector |1(t)) into the time-dependent

712



Schrodinger equation we get

ihi Z an(t)e D n(g(t))) = H(g(t)) Z an(t)ew"(” In(g(t)))

hz da;lzt(t) iBn (t) |n(g(t) +Zh20ln(t) |n(g(t)))

il Y o (06O L n(a(1)

= Zan(t)ew”(t’H(g(t)) n(g(£)) = - an(t)e™ D E, (9(1)) In(g(t)))

i m(}%fﬂe”"“) In(g(t))) +ih Zan(t)i%ﬁ)ewf) n(g(t)))

+ih Z an(t)elﬂ"(t) ; In(9(1))) = > an(®)eP I E,(g(1) In(g(t)))

Now

dﬁ;t(t) ?%[E (g(t'))dt’ ——fE (9(1))

Therefore, we get

¥ 2 O n(g())) + L (0O L na(e)) -

Applying the linear functional

(m] = (m(g(t))]

from the left we get

Zda—new”(mm Zan ’ﬁ"(m| |n) 0

T
Using
(m|n)=dmn
we have
—dgtm ehPm = _ Zn:oznem" (m)| % [n)
da, _ i(Ba—bm) (] &
dt ; n€ m| dt n)

Now taking the time derivative of the eigenvalue equation we have

dH dE
dat In) + H— | )=

d
E,—
)+ B In)
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Again, applying the linear functional (m| from the left we get

Dy =
dt ' dt

. d
(| < n) + G| (| ) + B (1] % ) (9199)

For m # n, using (m| H = (m| E,,, we have

d d
(m| a [n) + En (m| 7 In} = En (m] P n) (9-200)
d . (m|Gn)
v _Amig 9.201
(m| dt In) En - En, ( )
Thus, we finally have
da (ot (] G 1)
7’”74 — ’L(Bn‘an)# 9.202
dt ; e Em - En ( )

We choose the initial state to be one of the instantaneous eigenvectors
[4(0)) = In(9(0))) (9.203)
which implies that

an(0) =1
am(0)=0 m=#n

Therefore, for m + n at small ¢ we have

do, x e (Bn=Bm)t (m| %I )

204
dt E.,-E, (9:204)

We now assume that .
dH

(m)| — |n) and E,, - E, (9.205)

have slow time dependence and that to this order of approximation we can write

ei(Bn_ﬁmr)t = ei(Em_E")% (9.206)

which is what we would have if there was no extra time dependence.

We then get
(m| G ) o
m(t) ~ —ih t {En=En)t _q 9.207
This implies that
ayy, (t) remains small for m #n (9.208)
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The adiabatic theorem assumes that in the case where the system starts in an
eigenstate |n) at t =0, i.e.,

an(t)=0 m=#n (9.209)

and that .
(1)) = e n(g(1))) (9:210)

which says that if the system was in the eigenstate |n) at ¢t =0, i.e.,
H(g(0))In) = Hon) = £ n) (9.211)

then at a later time ¢, it is still in the same eigenstate [n(g(t))) of the new
Hamiltonian H(g(t)), i.e.,

H(g(t)) In(t)) = En(t) In(t)) (9.212)

This result is independent of the size of the perturbation. It depends only on
the change in time being slow.

This means that if we start with a particle in the ground state of a harmonic
oscillator potential

V= %k(O)mQ — 1o (k(0),z) (9.213)

and assume that
k(0) - k(T) (9.214)

slowly, the particle ends up in the ground state of the harmonic oscillator po-
tential

1
V= 5k;(T):z;2 - o (k(T), ) (9.215)
to within a phase factor.

The opposite result comes from the so-called sudden approximation , where the
change occurs so fast that no changes of the state vector are possible.

Since the state vector does not change at all, if you are in the ground state and
a sudden change in the parameters occurs, then you remain in the ground state
for the old parameters. This is not the ground state with new parameters. It is

some linear combination of the new states.

Let us look at the adiabatic approximation in another way. We consider a time
dependent part of the Hamiltonian of the form

H(t)=Hy+H , H =Vf(t) (9.216)
where f(t) has the form shown in Figure 9.5 below.
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f(t)

Figure 9.5: Time Dependence

We assume that the particle starts out in the n'” eigenstate of Ho = H (0)
[¥(0)) = [n); (9.217)
where the subscripts are

t — initial parameters

f — final parameters
The state vectors is assumed to change in time to |¢(t)).

If V is small, we can write, using first order time-independent perturbation
theory

Vkm
where
Viem =i (k| V |m), (9.219)

On the other hand, first order time-dependent perturbation theory implies that

(1)) = 3 an(t)e 7Bt n), (9.220)
with
P
() =13 Vo Of £t dt (9.221)
. t ,
am(t):—%an Of F()e BB gy man (9.222)
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Now we are assuming that df /dt is small, we integrate by parts to get

. t
() == Vi [ S EEOR gy
0

t
Vin d [ wg gt
:_7Em—Enff(t,)E[e (Em E")h]dt’
0

Vinn N, (Em—FE )t,:It
—__ mn t m n h
— £ i
t ! 7
, Vi A () -0 gy (9.223)

E,-E, dt’
0

Using f(0) = 0 and neglecting the last term because df /dt is small gives

Vn _3i
Iw(T)>=[(1—Zv)| b=, 5 j’E Iq)i]e nEnT (9.224)
where
T
y= | f(t)dt (9.225)
/
Therefore
Vin Von N
f(n|¢(T))=[z(nl+l§LE kE (k I][(l—zv)l )i q;quEn |Q>i]e nEnT
|V:1n| -y
[ +q; o E )2]6 wEnT (9.226)
Vm an _ i
F{m (1)) = [ <ml+k;L1%'“_E€i(kl] [(1—27)| )i Q;LE(;—En |Q>i:|e wEnT
== M Vik Viem -+E,T
[ 7h(Em—En) +m§¢n (En—Ek)(Em—Ek)]

(9.227)

Note that all the first order terms cancel in the last expression. If we only keep
terms to first order (which is consistent with the derivation) we then have

—iYann] k=n
f<k|w<T>>={£1 ol e

(9.228)

which implies that

Vol 72
pin ) =14 Vb

I (m | ¥(T)) % =0 to first order m # n

— 1 to first order
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which is the adiabatic approximation.
Therefore, the adiabatic approximation says:

if the Hamiltonian H (t) changes slowly in time,
then there will be no transitions from the
eigenstate |n); of H(0) to a different

eigenstate [m), of H(t)

In time-dependent perturbation theory, we assume the perturbation is turned
on and off and thus H(0) = H(T), i.e., we have the same unperturbed Hamil-
tonian at the end.

The transitions in that case are from one eigenvector of the unperturbed Hamil-
tonian to another eigenvector of the same unperturbed Hamiltonian.

This implies a first-order transition amplitude and hence a second-order transi-
tion probability.

In the adiabatic approximation, however, we have a second-order transition am-
plitude (m # n) and hence a fourth-order transition probability. That is why we
can assume that the transition probability for m # n is equal to zero.

The first derivation gives the adiabatic approximation for any size perturbation.
In the second derivation,however, we not only assumed a slow change in time,

but also assumes a small perturbation so that we could use first order pertur-
bation theory.

What happens in the second derivation if the perturbation is not small?
The way to handle this is to divide the time interval (0,7") into N subintervals
such that the perturbation AV is small within any subinterval. In fact, it is of

O(V/N). Thus, if N is large, AV is small.

We then apply our arguments to each subinterval. If the transition amplitude is
first-order in the perturbation, then the total transition amplitude behaves like

N (%) LV (9.229)

with each of the N steps giving a contribution proportional to AV. This says
that the net result is of order V', and thus, if V' is large, the transition amplitude
will be large.

However, the transition amplitude is second-order and thus the total transition
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amplitude behaves like

2

vy Vv
N(N) —>F—>OasN—>oo (9.230)

Therefore, the transition amplitude (m # n) is zero independento fthesize of V.

An Example

Let us consider a 1-dimensional square well where

V(z) = {0 o <5 (9.231)

oo |z[>3

The eigenfunctions and energies are

nre =1,3,5,......
Yn(z) =1 2 ey (9.232)
sin g r n=240,....
for [z < § and zero otherwise and
252,,2
E, - % n=1,2,3, ... (9.233)
ma

Suppose that we change the size of the well and ask what happens to the ground
state in the sudden and adiabatic approximations.

Sudden

Y1(x) = cos 72117 before (9.234)
a
leads to

P(x) = cos 722 after (no change in the wave function) (9.235)
a

However, after the change we have new eigenfunctions and energies

j LIE =1,3,5,.......
Py =P T 9.236
¥n(@) {SinTZTf n=2,4,6,..... ( )
for || < § and zero otherwise and
252,2
E = % n=1,2,3, ... (9.237)
ma

The state of the system is still an eigenstate of the old well and, thus, is not an
eigenstate of the new well. In fact, we have

¥(z) = cos % = S bty () (9.238)
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Adiabatic

Y1 (x) = cos ;Lm before (ground state of old well) (9.239)
a

Py (z) = cos Z—x after (ground state of new well) (9.240)
a

The state of the system is an eigenstate of the new well and, thus, is not an
eigenstate of the old well any longer. In fact, we have

Uy, (x) = cos % = buthn () (9.241)

It is a superposition of the old energy eigenstates.

9.5 Problems

9.5.1 Square Well Perturbed by an Electric Field

At time t = 0, an electron is known to be in the n = 1 eigenstate of a 1-dimensional
infinite square well potential

V() oo for |z| > a/2
€T =
0 for |z|<a/2

At time t = 0, a uniform electric field of magnitude £ is applied in the direction
of increasing z. This electric field is left on for a short time 7 and then removed.
Use time-dependent perturbation theory to calculate the probability that the
electron will be in the n = 2, 3 eigenstates at some time ¢ > 7.

9.5.2 3-Dimensional Oscillator in an electric field
A particle of mass M, charge e, and spin zero moves in an attractive potential
V(z,y,2) =k (x2 +y 22) (9.242)

(a) Find the three lowest energy levels Ey, E7, Es and their associated degen-
eracy.

(b) Suppose a small perturbing potential Az coswt causes transitions among
the various states in (a). Using a convenient basis for degenerate states,
specify in detail the allowed transitions neglecting effects proportional to
A? or higher.

(¢) In (b) suppose the particle is in the ground state at time ¢ = 0. Find the
probability that the energy is F4 at time t.
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9.5.3 Hydrogen in decaying potential

A hydrogen atom (assume spinless electron and proton) in its ground state is
placed between parallel plates and subjected to a uniform weak electric field

- 10 for t <0
E=1z _m
Eoe™™ fort>0

Find the 1%'order probability for the atom to be in any of the n = 2 states after
a long time.

9.5.4 2 spins in a time-dependent potential

Consider a composite system made up of two spin = 1/2 objects. For ¢ < 0, the
Hamiltonian does not depend on spin and can be taken to be zero by suitably
adjusting the energy scale. For t > 0, the Hamiltonian is given by

. 4AN\ = =
i=(5z )55

Suppose the system is in the state |[+—) for ¢ < 0. Find, as a function of time,

the probability for being found in each of the following states |++), |- +) and

=-)-
(a) by solving the problem exactly.

(b) by solving the problem assuming the validity of 15*~order time-dependent
perturbation theory with H as a perturbation switched on at ¢t = 0. Under
what conditions does this calculation give the correct results?

9.5.5 A Variational Calculation of the Deuteron Ground
State Energy

Use the empirical potential energy function
V(r)= —Ae"a

where A =32.7MeV, a=2.18x 10713 em, to obtain a variational approximation
to the energy of the ground state energy of the deuteron (¢ =0).

Try a simple variational function of the form

(15(7') — e—ar/2a

where « is the variational parameter to be determined. Calculate the energy
in terms of o and minimize it. Give your results for « and E in MeV. The
experimental value of E' is —2.23 MeV (your answer should be VERY close! Is
your answer above this? [HINT: do not forget about the reduced mass in this
problem]
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9.5.6 Sudden Change - Don’t Sneeze

An experimenter has carefully prepared a particle of mass m in the first excited
state of a one dimensional harmonic oscillator, when he sneezes and knocks the
center of the potential well a small distance a to one side. It takes him a time
T to blow his nose, and when he has done so, he immediately puts the center
back where it was. Find, to lowest order in a, the probabilities Py and P, that
the oscillator will now be in its ground state and its second excited state.

9.5.7 Another Sudden Change - Cutting the spring

A particle is allowed to move in one dimension. It is initially coupled to two
identical harmonic springs, each with spring constant K. The springs are sym-
metrically fixed to the points +a so that when the particle is at « = 0 the classical
force on it is zero.

(a) What are the energy eigenvalues of the particle when it is connected to
both springs?

(b) What is the wave function in the ground state?

(c) One spring is suddenly cut, leaving the particle bound to only the other
one. If the particle is in the ground state before the spring is cut, what is
the probability that it is still in the ground state after the spring is cut?

9.5.8 Another perturbed oscillator

Consider a particle bound in a simple harmonic oscillator potential. Initially(t <
0), it is in the ground state. At ¢ =0 a perturbation of the form

H'(z,t) = Az?e7t™

is switched on. Using time-dependent perturbation theory, calculate the prob-
ability that, after a sufficiently long time (¢ > 7), the system will have made a
transition to a given excited state. Consider all final states.

9.5.9 Nuclear Decay

Nuclei sometimes decay from excited states to the ground state by internal
conversion, a process in which an atomic electron is emitted instead of a photon.
Let the initial and final nuclear states have wave functions @, (71, 72, ...,7z) and
(71,72, ...,Tz), respectively, where 7; describes the protons. The perturbation
giving rise to the transition is the proton-electron interaction,

where 7 is the electron coordinate.



(a) Write down the matrix element for the process in lowest-order perturba-
tion theory, assuming that the electron is initially in a state characterized
by the quantum numbers (nfm), and that its energy, after it is emitted,
is large enough so that its final state may be described by a plane wave,
Neglect spin.

(b) Write down an expression for the internal conversion rate.

(c¢) For light nuclei, the nuclear radius is much smaller than the Bohr radius
for a give Z, and we can use the expansion

1 1 77

-7 e

Use this expression to express the transition rate in terms of the dipole
matrix element

Z
d= (‘Pf| ij i)
j=1

9.5.10 Time Evolution Operator

A one-dimensional anharmonic oscillator is given by the Hamiltonian
H=hw (aTa + 1/2) +Xalaa

where A is a constant. First compute a™ and a in the interaction picture and then
calculate the time evolution operator U (¢, tg) to lowest order in the perturbation.

9.5.11 Two-Level System

Consider a two-level system [1,) , |1y) with energies E, , Ep perturbed by a jolt
H'(t) = Us(t) where the operator U has only off-diagonal matrix elements (call
them U). If the system is initially in the state a, find the probability P,_; that
a transition occurs. Use only the lowest order of perturbation theory that gives
a nonzero result.

9.5.12 Instantaneous Force

Consider a simple harmonic oscillator in its ground state. An instantaneous
force imparts momentum pg to the system. What is the probability that the
system will stay in its ground state?

9.5.13 Hydrogen beam between parallel plates

A beam of excited hydrogen atoms in the 2s state passes between the plates
of a capacitor in which a uniform electric field exists over a distance L. The
hydrogen atoms have a velocity v along the x—axis and the electric field £ is
directed along the z—axis as shown in the figure.
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X

Figure 9.6: Hydrogen beam between parallel plates

All of the n = 2 states of hydrogen are degenerate in the absence of the field &,
but certain of them mix (Stark effect) when the field is present.

(a) Which of the n = 2 states are connected (mixed) in first order via the
electric field perturbation?

(b) Find the linear combination of the n = 2 states which removes the degen-
eracy as much as possible.

(¢) For a system which starts out in the 2s state at ¢ = 0, express the wave
function at time ¢ < L/v. No perturbation theory needed.

(d) Find the probability that the emergent beam contains hydrogen in the
various n = 2 states.

9.5.14 Particle in a Delta Function and an Electric Field

A particle of charge ¢ moving in one dimension is initially bound to a delta
function potential at the origin. From time t = 0 to ¢ = 7 it is exposed to a
constant electric field & in the z—direction as shown in the figure below:

ex(t) 4

»> t

0 T

Figure 9.7: Electric Field

The object of this problem is to find the probability that for ¢ > 7 the particle
will be found in an unbound state with energy between Ej and Ej + dFj.

(a) Find the normalized bound-state energy eigenfunction corresponding to
the delta function potential V(z) = —Ad(z).

(b) Assume that the unbound states may be approximated by free particle
states with periodic boundary conditions in a box of length L. Find the
normalized wave function of wave vector k, ¥y (), the density of states as
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a function of k, D(k) and the density of states as a function of free-particle
energy Ey, D(Ey).

(c) Assume that the electric field may be treated as a perturbation. Write
down the perturbation term in the Hamiltonian, H;, and find the matrix
element of H; between the initial and the final state (0| Hy |k).

(d) The probability of a transition between an initially occupied state |T) and
a final state |F') due to a weak perturbation H(t) is given by

¢ 2

1 a / dwprt 340
PIeF(t)Zthvf<F|H1(t)|I>e Cdt

[}

where wpr = (Erp—FE7)/h. Find an expression for the probability P(Ey)dE
that the particle will be in an unbound state with energy between E} and
Ek+dEk for t > 7.

9.5.15 Nasty time-dependent potential [complex integra-
tion needed]|

A one-dimensional simple harmonic oscillator of frequency w is acted upon by
a time-dependent, but spatially uniform force (not potentiall)

(For/m)
F(t)=~—2'1"2 | —co<t<oo
) T2 + 12
At t = —oo, the oscillator is known to be in the ground state. Using time-

dependent perturbation theory to 15t—order, calculate the probability that the
oscillator is found in the 1% excited state at ¢ = +oo.

Challenge: F'(t) is so normalized that the impulse

f F(t)dt

imparted to the oscillator is always the same, that is, independent of 7; yet
for 7 >> 1/w, the probability for excitation is essentially negligible. Is this
reasonable?

9.5.16 Natural Lifetime of Hydrogen

Though in the absence of any perturbation, an atom in an excited state will stay
there forever(it is a stationary state), in reality, it will spontaneously decay to the
ground state. Fundamentally, this occurs because the atom is always perturbed
by vacuum fluctuations in the electromagnetic field. The spontaneous emission
rate on a dipole allowed transition from the initial excited state |i).) to all
allowed ground states [¢)4) is,

U= kS (i)

g
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where k = wey/c = (E. — Eg)/hc is the emitted photon’s wave number.

Consider now hydrogen including fine structure. For a given sublevel, the spon-
taneous emission rate is
4 - 2
C(nrantyys(mnrgy = =k Y (W L' T M)|dnLI My )|
3h AT
(a) Show that the spontaneous emission rate is independent of the initial M.
Explain this result physically.

(b) Calculate the lifetime (7 = 1/I") of the 2P, )5 state in seconds.

9.5.17 Oscillator in electric field

Consider a simple harmonic oscillator in one dimension with the usual Hamil-

tonian - )
H= L + me &2
2m 2

Assume that the system is in its ground state at t = 0. At ¢t = 0 an electric field
& = €7 is switched on, adding a term to the Hamiltonian of the form

H' =eEx

(a) What is the new ground state energy?

(b) Assuming that the field is switched on in a time much faster than 1/w,
what is the probability that the particle stays in the unperturbed ground
state?

9.5.18 Spin Dependent Transitions

Consider a spin= 1/2 particle of mass m moving in three kinetic dimensions,
subject to the spin dependent potential

N 1 R
Vi= k) (el

where k is a real positive constant, 7 is the three-dimensional position operator,
and {|-),|+)} span the spin part of the Hilbert space. Let the initial state of
the particle be prepared as
[Wo) = |-) ®[0)
where |0) corresponds to the ground state of the harmonic (motional) potential.
(a) Suppose that a perturbation
W = hQ (|=) (+] + [+) (-)) @ 17

where 1M denotes the identity operator on the motional Hilbert space,
is switched on at time ¢ = 0.

Using Fermi’s Golden Rule compute the rate of transitions out of |¥).
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(b)

()

Describe qualitatively the evolution induced by W, in the limits Q >
VEk/m and Q « /k/m. HINT: Make sure you understand part(c).

Consider a different spin-dependent potential
Vo = |4+) (+] @ £, (2) + |-) (-] @ ()

where X, (Z) denote the motional potentials

+oo x| <a
E T) =
+(® {O |z| > a

0 Tl <a
E_(j') — | |
+oo x| 2a
and a is a positive real constant. Let the initial state of the system be
prepared as

W) = |-) @0')

where [0’) corresponds to the ground state of ¥_(#). Explain why Fermi’s
Golden Rule predicts a vanishing transition rate for the perturbation W
specified in part (a) above.

9.5.19 The Driven Harmonic Oscillator

At t = 0 a 1-dimensional harmonic oscillator with natural frequency w is driven
by the perturbation

H(t) = —-Fxe ™

The oscillator is initially in its ground state at ¢ = 0.

(a)

Using the lowest order perturbation theory to get a nonzero result, find
the probability that the oscillator will be in the 2nd excited state n =2 at
time ¢ > 0. Assume w # €.

Now begin again and do the simpler case, w = . Again, find the prob-
ability that the oscillator will be in the 2nd excited state n = 2 at time
t>0

Expand the result of part (a) for small times ¢, compare with the results
of part (b), and interpret what you find.

In discussing the results see if you detect any parallels with the driven
classical oscillator.
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9.5.20 A Novel One-Dimensional Well

Using tremendous skill, physicists in a molecular beam epitaxy lab, use a graded
semiconductor growth technique to make a GaAs(Gallium Arsenide) wafer con-
taining a single 1-dimensional (Al,Ga)As quantum well in which an electron is
confined by the potential V = kx?/2.

(a)

What is the Hamiltonian for an electron in this quantum well? Show
that g (x) = Noe’af”rz/ 2 is a solution of the time-independent Schrodinger
equation with this Hamiltonian and find the corresponding eigenvalue.
Assume here that « = mw/h, w = \/k/m and m is the mass of the electron.
Also assume that the mass of the electron in the quantum well is the same
as the free electron mass (not always true in solids).

Let us define the raising and lowering operators a and a* as

d+:\}§(d‘2_y) , &:\;5(;2+y)

where y = \/mw/hx. Find the wavefunction which results from operating
on 9o with a* (call it 11 (x)). What is the eigenvalue of 1 in this quantum
well? You can just state the eigenvalue based on your knowledge - there
is no need to derive it.

Write down the Fermi’s Golden Rule expression for the rate of a transition
(induced by an oscillating perturbation from electromagnetic radiation)
occuring between the lowest energy eigenstate and the first excited state.
State the assumptions that go into the derivation of the expression.

Given that k = 3.0 kg/s?, what photon wavelength is required to excite the
electron from state 1y to state ¥1?7 Use symmetry arguments to decide
whether this is an allowed transition (explain your reasoning); you might
want to sketch 1g(x) and 1 («) to help your explanation.

Given that
alyy="vlv-1) , a'p)=-Vr+1ljv+1)

evaluate the transition matrix element (0|« |1). (HINT: rewrite x in terms
of @ and @*). Use your result to simplify your expression for the transition
rate.

9.5.21 The Sudden Approximation

Suppose we specify a three-dimensional Hilbert space H 4 and a time-dependent
Hamiltonian operator

100 00 1
Ht)y=afl0 2 0o]+8@®)|0 0 o0
00 3 10 -2
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where « and S(t) are real-valued parameters (with units of energy). Let S(t)
be given by a step function

<0
mt):{g iio

The Schrodinger equation can clearly be solved by standard methods in the
intervals ¢ = [-00, 0] and ¢ = (0, +oo], within each of which H remains constant.
We can use the so-called sudden approzrimation to deal with the discontinuity
in H at t =0, which simply amounts to assuming that

[W(0,)) =[¥(0-))

Suppose the system is initially prepared in the ground state of the Hamiltonian
at t = —1. Use the Schrodinger equation and the sudden approximation to
compute the subsequent evolution of |¥(t)) and determine the function

F@) =(wO) (@) , t20
Show that |f(t)|? is periodic. What is the frequency? How is it related to the
Hamiltonian?
9.5.22 The Rabi Formula
Suppose the total Hamiltonian for a spin—1/2 particle is
H = -v[ByS, + by (cos (wt) Sy +sin (wt)Sy)]

which includes a static field By in the z direction plus a rotating field in the
x —y plane. Let the state of the particle be written

(W) = a(t) [+2) +b(t) |-=)
with normalization |a|? + [b|* = 1 and initial conditions
a(0)=0 , b0)=1

Show that

where A = —yBy —w. This expression is known as the Rabi Formula.

9.5.23 Rabi Frequencies in Cavity QED

Consider a two-level atom whose pure states can be represented by vectors in a
two-dimensional Hilbert space H 4. Let |g) and |e) be a pair of orthonormal basis
states of ‘H 4 representing the ground and excited states of the atom, respec-
tively. Consider also a microwave cavity whose lowest energy pure states can be
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described by vectors in a three-dimensional Hilbert space H¢. Let {|0),]1),|2)}
be orthonormal basis states representing zero, one and two microwave photons
in the cavity.

The experiment is performed by sending a stream of atoms through the mi-
crowave cavity. The atoms pass through the cavity one-by-one. Each atom
spends a total time ¢ inside the cavity (which can be varied by adjusting the
velocities of the atoms). Immediately upon exiting the cavity each atom hits a
detector that measures the atomic projection operator P, = |e) (e|.

Just before each atom enters the cavity, we can assume that the joint state of
that atom and the microwave cavity is given by the factorizable pure state

[W(0)) =lg) @ (co|0) + c1[1) + c212))
where |co|? +|c1? +|co? = 1

(a) Suppose the Hamiltonian for the joint atom-cavity system vanishes when
the atom is not inside the cavity and when the atom is inside the cavity
the Hamiltonian is given by

Hac = hwle) (gl ® ([0) (1] + V2[1)(2]) + hv]g) (el ® ([1) (0] + v2[2) (1])

Show that while the atom is inside the cavity, the following joint states
are eigenstates of Hac and determine the eigenvalues:

|Eo) =1g) ®10)

Fr) = — (lg) ®[1) +]¢) @ [0)

V2
Br) = % () ® 1)~} @ [0))

|Eau) = % () ®12) +]e) @ [1))

By} = % (l9) ®[2) - e} ® [1))

Then rewrite |¥(0)) as a superposition of energy eigenstates.
(b) Use part (a) to compute the expectation value
(Pe) = (W(t)| Pe ® I [0(1))

as a function of atomic transit time ¢. You should find your answer is of
the form

(P.) = P(n)sin® [Q,1]

where P(n) is the probability of having n photons in the cavity and €,
is the n—photon Rabi frequency.
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Chapter 10

Quantum Measurement

In this chapter, the solution to the so-called "quantum measurement" problem
is fully developed within the standard structure of quantum mechanics (4 pos-
tulates). I have collected together and organized the thoughts of many other
physicists (especially Hobson), filled in many details and derivations, added my
own thought along the way, and generally produced a unified picture of the
solution.

10.1 Basic Quantum Mechanics Reviewed

I am assuming that you have already studied the basics of quantum mechanics
prior to this discussion.

We can then state the standard formulation of quantum mechanics based on
the 4 postulates listed below(with some embellishments):

ee All physical systems are represented by ket vectors |¢)) normalized to 1,
ie, (Y|} = 1. The ket labels represent everything that we know
about the system.

ee Measurable properties of physical systems are represented by linear oper-
ators called observables.

So restating part of the first postulate, the ket labels represent the values
of all observables of the system that have been measured.

If a vector associated with particular physical state |¢0) is an eigenvector,
with eigenvalue «, of operator A associated with particular measurable
property of system, ie., if A[¢)) = a|p), then the system in that state
definitely has the value « of that measurable property.

This implies that if one performs a measurement corresponding to the ob-
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servable represented by Aona system in the state |1}, then with certainty
(probability =1) the measurement yields the value « for that measurable

property.

Observables are represented by Hermitian operators (real eigenvalues).
Since the eigenvectors of any Hermitian operator form a complete, or-
thonormal set, they can be used as a basis for the Hilbert space of the
system.

Finally, if the system is in the state |[¢)) and one measures an observable
B, where |¢)) is not an eigenvector of B, the the only possible results of
the measurement are one of the eigenvalues {b;} of B.

Dynamics of state vectors

The state vectors of any system change with time via deterministic laws
(similar to classical rules).

We define the time evolution or development operator that governs
how a state vector changes in time by the relationship

|A,t+ At) = U(AL) |A, t) (10.1)

or the state vector at time ¢+ At is given by the time evolution opera-
tor(Unitary) U operating on the state vector at time t.

In general, the ket labels(which contain whatever we know(have measured)
about state) are the only thing that changes.

The time evolution operator is a unitary operator since the state vector
must remain normalized to 1, i.e, the vector length cannot change, which
is guaranteed by the use of a unitary operator. The only changes to state
vectors in quantum mechanics are changes in direction(phase).

The time evolution operator is related to the energy operator (this follows
from time translation invariance)

U(t) = e AR (10.2)
Connection with Experiment/Measurements
We have specified above what happens when one measures a certain prop-
erty of physical system at a moment when state vector of system is an
eigenvector of the operator representing that property - probability equals
1 that we get the corresponding eigenvalue.

What if one measures a certain property of physical system at a moment
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when state vector of system does not happen to be an eigenvector of the
operator representing that property (which is most of the time) - what are
the probabilities?

We need a new assumption.

Suppose the system is in the state |¢b), and one carries out a measure-
ment of a property (observable) associated with the operator B. We as-
sume the eigenvectors of B are the vectors(states) |b;), which means that
B |bi) = b;|b;), i =1,2,,3... where the b; are the corresponding eigenvalues.

Quantum theory now assumes that the outcome of measurement is strictly
matter of probability.

Quantum theory stipulates that the probability that the outcome of mea-
surement of B on the state |1)) (not an eigenvector) will yield the result b;
(remember the only possible results of measurement are the eigenvalues of
B no matter what state the system is in), is equal to | (b;|¥)|* (the Born
rule). The probability is given by the absolute square of of the
corresponding component!

The quantum mechanics formalism based on these postulates + em-
bellishments correctly predicts experimental results for all known ex-
periments.

Some ideas implied by these rules are:

These rules imply that one cannot say anything definite about the
value of the observable represented by B when system is in a state
[¢)), which is NOT an eigenvector of B.

One can only make probability statements.

Before one measures the observable represented by B when the sys-
tem is in a state |¢)), which is NOT an eigenvector of B, the system
does not have a value of that observable, according to quantum the-
ory!

Our information about any state is only set of probabilities.

But all of your experience says that objects have values for measured
quantities before they are measured, i.e., your experience tells you
that the observable represented by B has a value even if we do not
measure it.

That is your view (the standard classical view) about what is real and
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what is not real.

Quantum theory implies you are wrong in both cases!!

10.1.1 Where is the “collapse” postulate?

Since the system has a definite value of the observable represented by B after
the measurement, i.e., a pointer points to a value or a counter clicks or a mark is
registered on a piece of paper (note that these are all irreversible occurrences
which must be the end result of any measurement) and there is no mechanism
to produce a single value in the rules as presented so far, most presentations
add another rule at this point called collapse of the state vector.

It is usually proposed that the effect of a measurement is to irreversibly change(collapse)
the state vector (which was not an eigenvector of B) into an eigenvector of
B(corresponding to the eigenvalue jsut measured) so that it would be observed
to have a definite (probability = 1) value for a subsequent measurement of the

operator B.

This extra rule says that state vector changes(discontinuously) during measure-
ment from representing range of possibilities (superposition of all possible states)
to definite state or only one possible outcome.

Which particular eigenvector it gets changed into is determined by
outcome of measurement and cannot be known until then!. It cannot
be predicted! It is at this point that randomness enters quantum
mechanics.

I believe that this last rule is not needed and should not be added.

First of all, no real mechanism is ever given for “how” this process actually takes
Y
place, and second no specifications are given as to exactly “when” it occurs.

That suggests to me that it does not exist!

I will now proceed to develop a proposal for “definite outcomes* without using
any “collapse” rule.

10.2 The Measurement Process

We consider a system consisting of a quantum system (Q-system) and a mea-
surement system (M-system).

If the meter, which we assume is initially OFF (state |0),,) was turned ON
when system was in |+)Q state, then according to the above rules the combined
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system evolves to
[+)g10)pr = [+)g+1)y,  ie., meter (a good working meter) reads +1 (10.3)

Similarly, if the meter turned ON when the system is in the |—)Q state, then
combined system evolves to

I=)l0)ar = =)o l-1)pr  ie., meter (a good working meter) reads -1 (10.4)

This indicates that measurement, within framework of our rules, CORRE-
LATES or ENTANGLES the dynamical variables (Q-system) being measured
and the macroscopic (M-system) indicator of the meter, which we assume can
be directly (macroscopically) observed.

Let us expand the discussion a bit. We have supposed above that the meter has
eigenvectors (labelled by the corresponding eigenvalues)

[+1),, — meter on: reading +1 (10.5)
|-1),, — meter on: reading -1 (10.6)
|0),, — meter off (10.7)

and the system has eigenvectors (labelled by eigenvalues)
[+)g — value = +1 (10.8)
|-)g = value = -1 (10.9)
Now suppose that the initial state of the system is a superposition
) =al+)g +b]-)g (10.10)
and thus the initial state of the combined system is given by
linitial) = (a|+)g +b[-)g) [0) (10.11)

which represents the system in a superposition state and the meter OFF. We
are interested in the evolution of this state according to QM. We note as we
stated above that, if, instead of above initial state, we started with the initial
states

|[4) = [+)g [0}y  OR [B) =[-)g [0}y (10.12)

and then turn on the meter, these states must evolve as
[4) = [+) [0) s = [4') = [+)g [ (10.13)
1B =|=)q 1005 = 1B') = =)q I=)as (10.14)

respectively, indicating that the meter measured the appropriate value (the
definition of good meter) since system is in eigenstate and has definite value
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with certainty.

If system is in initial state corresponding to a superposition, however, then the
linearity of quantum mechanics says it must evolve

linitial) = (al+)g +b|=)g) [0)r, = |final) = al+)g |+)p +b]=)g |-)pr  (10.15)

We note the problem immediately, i.e., the meter has not ended up in a state
with a definite value - it remains in a superposition of two macroscopically
different pointer readings, which is never observed in the real world.

Hence, if as most physicists assume, the state vector represents a complete
description of the Q-system, there seems to be a need for the “collapse” rule to
fix the result and obtain “definite” values!

Since we will not be incorporating the “collapse” rule, we must proceed in a
different way.

10.2.1 The Density Operator

The problem, as we will now see, lies with assuming that the state vector is the
proper way to represent the Q-system during the measurement process.

The expectation value is the average of set of measurement results taken from
a collection of systems in the same state. A straightforward calculation of the
expectation value in a specific state takes the following form, with O being an
operator representing the measurement of the specific physical variable and |¢)
is a state vector of some system in the collection:

(0) = (¢|O¢) = expectation value of O in state |¢) (10.16)

If we choose any set of basis vectors {|i)}, i = 1,2,.... for our vector space, we
can expand |¢) and (¢| as

0y =D aili) , (¢l= 3 aj (il (10.17)

where
a;=(il¢) , aj=(o|j) (10.18)

Plugging these expansions into the expression for the expectation value:

(0)= X 110 Ll = T (Lajasi01)

J

=Z(Z<¢>Ij)(i|¢)(j|0|i>)=Z(Z[<i|¢><¢|j><jlé|i>]) (10.19)

J

K3
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Now we define a new operator p = |¢) (¢|, which is just the projection operator
onto the state |¢). We can then write the expectation value as

i \J

(0)=3 (Z(ilﬁlj) (jléli)) (10.20)

Using the relation

Llial=1
J
one finds that the expectation value can be written in a very interesting form

(0) = Y>(il pO i) = Tx(p0) (10.21)

(2

i.e., the expectation value is given by the sum over the diagonal matrix elements
of the operator product pO (the symbol Tr = Trace is just shorthand for the
diagonal sum).

The new operator p is called the density operator.
Why bother?

The real power of the density operator approach to QM comes when we have
to deal with a situation in which we cannot be sure what state system is
in(as in the measurement problem).

Imagine we have a whole collection of identical systems, some in |@1), some in
|$2), etc. We might not know which system in which state, and might not even
know how many systems are in any one state.

Example: Think about a beam of electrons that has not passed through any
Stern-Gerlach(S-G) magnets. Chances are that the spin states of the electrons
are completely random. Perhaps the best one can know is the probability of
finding an electron in any state.

P1 = P]."Ob(|¢1>) s P2 = P]."Ob(|¢2>) s P3 = PI’Ob(|¢3>) g eeseress (1022)

These probabilities have nothing to do with quantum theory; they simply rep-
resent our ignorance of the details of what is happening. Thus, they are not
related to any quantum amplitudes.

Given a situation like this, one should be able to do some useful calculations.

For example, one could work out expectation value of any measurement as fol-
lows.

If one can calculate the expectation value for each individual state, then the
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overall expectation value is simply given by

(0) = Py (¢1]Od1) + Po (62| O |¢2) + P3 (93] Olps) + -+ + Py (¢ Olb) (10.23)

Think back to original definition of expectation value which just represents the
average value of measurement. What we have done here is put together the
weighted average of the average value for each state, which is just the definition
of the overall average value. Now if one constructs a density operator that is
given by

p=Pilo1)(d1] + Pold2) (da| + Ps|d3) (@3] + -+ + P [dn) (¢nl (10.24)
then the expectation value is still given by
(0) = Tr(pO) (10.25)
as expected.

Some notation: when the density operator takes the form p = |¢) (4| it is
said to represent a pure state and when the density operator takes the form
Py |p1) (@1]+ Pa|p2) (2| + P3 |¢3) (@3] +-+++ P |#p) it is said to represent a mixed
state

10.2.2 A Crucial Example

Consider a box containing a very large number of electrons, each having spin =
1/2. This means that each electron spin can have measurable component +1/2
along any direction. Now, suppose the box has a hole so that the electrons can
get out and go into a Stern-Gerlach device oriented to measure the z-components
of spin(arbitrary choice).

In order to proceed, we need to know how the box of electrons was prepared.

Let us consider two very different cases:

1. In the first case, we fill the box with electrons that have been prepared in
a superposition state

)= (1) +142) = It (10.26)
This preparation can be done by sending the electrons through an z-
oriented magnet and choosing one of the resulting beams. Thus, in this
case, each electron is in the indicated state - each electron is in a super-
position of “up” and “down” in the z-direction. We then fill the box with
these electrons.

2. In the second case, we send electrons through a z-oriented magnet and
collect electron from both beams “z-up” and “z-down”. In this case we
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know that the electrons are either “z-up” OR “z-down”, i.e., they each
have a definite value - they are not in a superposition. We then fill the
box with the two collections of electrons. Remember the electrons in the
box in this case are EITHER in the state |1,) OR in the state ||.).

Now we proceed with the experiment. In case (1) we observe “z-up” 50% of the
time and “z-down” 50% of the time and we know that in order to describe this
system by a state vector we must say
1
W) soxq) = ﬁ(nz) +12)) = 50-50 up-down (10.27)

i.e., every electron in the box is in this superposition state.

In case (2) ) we observe “z-up” 50% of the time and “z-down” 50% of the time.
But we now have a problem. If I did not know that each electron in the box in
this case had a definite value, I would be tempted to describe the this system
by the same state vector as in case (1). However, we know that is not true!
The electrons in case (2) are not each in a superposition but they have definite
values!

So, if T measure z-components I cannot tell whether I have case (1) or case (2)
and I do not know how to write the state vector for the box in case (2),

But remember how I created the electron in case (1). They all have a definite
value of the z-component, namely, “z-up’. So if I subject the electrons coming
out of the box in case (1) to a x-measurement instead of a z-measurement, I
will end up with only one beam!

However, in case (2), the electrons coming out of the box are either “z-up” OR
“z-down” each of which is 50-50 in the z-direction and thus I would end up with
two beams after the extra measurement!

The different measurement results mean that their states must be described
differently in QM.

State vectors do not give us the freedom to do this unless we want to monkey
around with relative phases, i.e., we would need to write

|w>BOX(1>=%<|TZ>+|¢Z>> , |w>Box<2>:%uwa‘“um (10.28)

where « is a completely unknown relative phase factor, which must be averaged
over during any calculations since it is different (and random) for each separate
measurement (each member of ensemble). I actually do not think such an object
is a legitimate state vector!

If we use density matrices, we have a very different story. For pure state a

739



density operator (or matrix) is defined as

p=1v) (¥l (10.29)

for some state vector [¢), i.e., it is the pure state projection operator.
In case (1) this gives
.1
p=5(1/2) 172+ [=1/2) (172 + [1/2) (=1/2] + |-1/2) (-1/2]) (10.30)

Derivation of the p matrix in the (+1/2,-1/2) basis:

(B CRER) m
Now
(1721p11/2)
= (1/2] %(I1/2> (1/2 +[=1/2)(1/2] + |1/2) (=1/2| + |-1/2) (-1/2]) [1/2)
) % (10.32)
and so on, so that
aF (1 1) (10.33)

where the diagonal matrix elements represent probabilities and the non-zero
off-diagonal matrix elements imply that one will observe quantum interference
effects in this system. It is clear that any pure state density operator cannot be
written as the sum of pure state projection operators.

In case (2), however, have

p= %(Il/Q)(1/2|+ -1/2){-1/2]) (10.34)

and
11 0

which clearly is sum of pure state projection operators. This corresponds to
a mixed state. Note that off-diagonals are zero so that this density operator
cannot lead to any quantum interference effects.

Remember, this system(case (2)) is such that electrons have values
so that the density operator take this form (sum of projection oper-

ators)!!
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Note that when electrons DO NOT HAVE VALUES (case (1)) the density op-
erator has interference terms and cannot be written as a sum of projection
operators - A DIFFERENCE that does not show up when using state vectors!!

We note that if we treat case (2) as pure state with the extra relative phase
factor we would obtain:

11 e«
p=3 (e 7) (10.36)
which becomes
1
P=5 ((1) ?) (same result as before) (10.37)

when we average over .
Now, let us digress to see what happens in a real classical system.

Consider rolling a die which has possible values = 1,2,3,4,5,6 where the prob-
ability of occurrence of each value = 1/6. In this case, the density operator
representing the die will be for a mixed state (no interference effects)and the
die has a value before/after each roll so that we have

1
p= 6(|1) (1] +12) (2] +|3) (3| + |[4) (4] +|5) (5] +|6) (6]) mixed state  (10.38)
and the expectation value of the ROLL operator is

— 1
(ROLL) = 6(1 +2+3+4+5+6)=3.5 standard definition (10.39)

More formally, we know that any operator can be written as sum of eigenvalues
x projections operators(called the spectral decomposition), i.e., for the B
operator introduced earlier we can write

B =370 [bi) (bil

so that we have for the ROLL operator
ROLL =111)(1]+2|2) (2| +3]3) (3| + 4|4) (4| + 5|5) (5] + 6 6) (6] (10.40)

The operator product of the density operator and the ROLL operator can be
written(using the orthonomality of the basis state vectors) as

— 1

pROLL = 6(1 [1) (1] +2]2) (2| +3|3) (3| +4]4) (4] + 5|5) (5] + 6|6) (6]) (10.41)
Thus, the expectation or average value is

_ ___ J— 1
(ROLL) = Tr(pROLL) = > (k| pROLL k) = 6(1+2+3+4+5+6) = 3.5 (10.42)
k
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But, in this case, we know the values are real before the measurement, i.e., we
are using a macroscopic die with numbers we can see!

Thus, this particular form(sum of pure state projection operators) of a density
operator represents that case. The same was true earlier for the electrons in the
box when we knew they were either “up” or “down” In both cases the system
had known values before measurements! REMEMBER this fact for later.

If we were to add the “collapse” rule it raises a host of questions: What exactly
do we mean, physically and mathematically, by a “collapse during measurement”
of quantum system?

Does collapse occur all at one instant?
Wouldn’t instantaneous collapse contradict special relativity?

If collapse occurs during a time interval, then what equation describes its time-
evolution during that interval?

Quantum states are presumed to follow the Schrédinger equation, which pre-
scribes continuous time evolution; how can instantaneous state collapse be rec-
onciled with smooth evolution?

How can we resolve “problem of outcomes” that appears to arise when a su-
perposed quantum’s state is measured by “which-state” detector, creating a
so-called entangled state of the quantum and the detector that appears to be
an indefinite superposition of two macroscopically distinct states of a composite
system?

Such questions comprise the quantum measurement problem.

With all these thoughts/ideas in hand, we will now continue this discussion of
the measurement problem and finally suggest a resolution of problem of definite
outcomes that lies entirely within standard quantum physics.

A “quantum measurement” means any quantum process that results in a macro-
scopic effect, regardless of whether humans or laboratories are involved.

Thus not only is an electron striking a laboratory viewing screen and creating a
visible flash a measurement, but also a cosmic-ray muon striking and macroscop-
ically moving a sand grain on a planet in some other galaxy is a measurement.

To analyze a measurement, we look at a specific experiment: suppose an elec-
tron beam passes through a pair of double slits and then impacts a viewing
screen. Just as in Thomas Young’s similar double-slit experiment using light,
performed in 1801, a pattern is formed on the viewing screen that seems to
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shows interference between the two portions of the electron beam which are
seemingly(classically) coming through the two slits: a broad dark-and-bright
striped pattern spreads out widely on the screen - much wider than slits - indi-
cating regions of destructive (dark) and constructive (bright) interference.

On closer inspection, the bright lines are formed by a very large number of tiny
individual electron impacts, each one making a small flash on the screen.

According to above definition, each flash is a measurement of the position of an
electron as it hits the screen.

Each electron’s flash on screen is a measurement!

For the purposes of this analysis, however, it is better to consider a related
example of measurement, still based on the double-slit experiment.

Suppose an electron detector is installed at the slits and assume that the detec-
tor can detect the electron’s position as it passes through slits while disturbing
each electron only minimally (in the precise sense described below). As it turns
out, measurement, even by such a minimally-disturbing “which-path detector”,
changes everything.

Exactly when the detector turns on, the pattern on screen changes from a striped
interference pattern to a smoothly-spread-out sum of two single-slit patterns,
each showing diffraction but no interference.

The interference pattern abruptly vanishes.

An analogous experiment has been done using light (photons) instead of elec-
trons, and using an interferometer rather than double-slit interference setup.

A which-path detector was randomly switched on or off as each photon passed
through this experiment; photons for which the detector was "off" formed an
interference pattern while photons for which the detector was "on" formed the
expected no-interference pattern.

Reminder:

If the system is in a “pure” superposition state, then the density operator takes
the form

p= %(|1/2) (1/2]+ |=1/2) (1/2] + [1/2) (-1/2] + |-1/2) (-1/2]) (10.43)
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i.e., sum of projection operators and “cross-terms” (interference terms) or the

matrix form
1(1 1
p= 2(1 1) (10.44)

where the diagonal matrix elements represent probabilities and the off-diagonal
matrix elements imply that one will observe quantum interference effects in this
system. Clearly, any pure state density operator cannot be written as the sum
of pure state projection operators.

If in a “mixed state”, then the density operator takes the form

p= %(II/Q)(1/2I+ -1/2){=1/2]) (10.45)

or the matrix form

p= % ((1) (1)) (10.46)

i.e., sum of projection operators (no interference terms).
As we found in the dice example:
1
p= 6(\1) (1] +12) (2] +13) (3| + |4) (4] +|5) (5] +|6) (6]) mixed state  (10.47)

When we observe a quantum system evolve into such a “mixed state”
density operator, then the quantum system can be interpreted “classi-
cally”, i.e., a measurement has taken place and it has been irreversibly
recorded.

This is the important point!! A full "“collapse” is not necessary!! Be-
fore we go deeper to see how this all works, we take two important digression
to introduce a topics that will become central to the discussion of quantum
measurement - these subjects will be greatly expanded in next book revision.

10.3 The so-called Gambler’s Ruin problem - a
possible way to get to the irreversible record-
ing

10.3.1 Mathematical Problem of the Points

A sequence of fair coins is flipped. Player A gets a point for every head and
player B gets a point for every tail. Player A wins if there are a heads before
b tails, otherwise B wins. Find the probability that A wins. Let a(a,b) be the
probability that A wins and S(a,b) the probability that B wins, which implies
that

a(a,b) + B(a,b) =1
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Solution (due to Pascal and Huygens -1500’s)
1 Sfa+b-1 n n!
CY(aq b) - W kz:‘a ( k where k = m

An example is the Gambler?s Ruin problem.

Just as in the problem of points, suppose that at some stage A has a counters,
and B has m + n — a counters so that total number of counters = m + n, and let
A’s chances of victory at that point be v(a).

The solution when A starts with m counters is given by

1-(B[a)™
1= (Ba)men

This works for all cases except a = 8 = 1/2 (the 50-50 probability case). For
that special case, the solution is

pa=v(m)=

a

v(a) =
(a) m+n

Thus, there is always a winner (hence the the name ruin for the loser) - even
when « = 8 = 1/2. Note that this relation is linear in a in this case!

Pearle’s Theorem What does this have to do with quantum collapse? I now
present an idea from Philip Pearle:

I soon found a charming analogy for collapse dynamics, useful for providing
an intuitive and non-technical explanation of how it works. I happened to be
browsing in Feller?s book on probability (a favorite textbook, from an under-
graduate course taught by Stanislaus Ulam) when I encountered the gambler?s
ruin game.

Two gamblers, initially possessing, respectively, a fraction x1(0), 22(0) of their
combined wealth (so z1(0)+x2(0) = 1) repeatedly toss a fair coin, and the result,
heads or tails, determines which one gives one dollar to the other.

They play until one gambler loses all his money, and the game ends.

The analogy is that the amount of money possessed by one gambler at any time
is proportional to the squared amplitude of one of two states whose sum is the
state vector representing the physical system undergoing collapse.

Just as one gambler loses all his money, so one of the states loses all its ampli-

tude, and as the other gambler wins all the money, so the state vector ends up
as totally described by the other state (7> collapse!!).
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Let Q(z) be the conditional probability that a gambler wins the game, given
that he has the fraction = of the total wealth.If A is the fraction of the total
wealth they exchange at each toss (i.e., A =1 $1/total dollars), the difference
equation

Q) = 5Q(r - A) + 3@z +4)

expresses that there are two routes to win if one has fractional wealth , namely
lose the next toss and drop to x — A but win thereafter, or win the next toss
and rise to x + A and win thereafter.

The solution of the difference equation is Q(z) = Az + B, where A and B are
constants. Now we have boundary conditions:

Since Q(0) = 0 (because you can’t win if you have no money) and Q(1) =1
(because you have won if you have all the money), then Q(x) =z, i.e., Q(1) =
1=A4+B,Q0)=B=0->A4=1,B=0-Q(z)=x

That is, if one starts with the fraction x = 2(0) of the money, one has the prob-
ability x(0) of attaining all the money ?> you get to « = 1, which is just collapse
behavior.

The game can be modified to have many players, to have A change as the game
progresses (e.g., to get smaller as one gambler gets closer to losing), etc.

So, one may think of quantum collapse as a gambler’s ruin competition among
the states in a superposition, to see which final state wins the game (remains

at the end).

I ran a simulation of the Gambler?s Ruin problem using OCTAVE on a com-
puter.OCTAVE code - gambruin.m:
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x1=1];

yl=[1;

x=40;x1=[x1,x];
y=100-x;y1=[y1,yl;

count=1;

while (x ~= 0) && (x ~= 100)
r=rand;

x=x+(r <= 0.5)-(r > 0.5);x1=[x1,x];
y=100-x;y1=[y1,yl;
count=count+1;

endwhile

figure
plot(l:count,x1,'-b");
axis([1,c0unt,9.1991);
xlabel('Step');

ylabel('value');
title('Gambler''s Ruin')

hold on;

plot(l:count,yl, '-r');
hold off

count

Some sample runs are shown below - note there is always a winner(loser)
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One state always wins out!! Collapse occurs even though there is no direct
collapse mechanism!! An irreversible mark always appears!! Could this be the
way collapse works without a postulate or mechanism?

10.4 Another short digression - another way to
get to the irreversible recording - Decoher-
ence

If we have a quantum system is the state
11
P=35\1 1
then this states exhibits quantum interference effects.

Decoherence says that as a state interacts with macroworld in its environment
(which it has to do) off diagonal elements go to zero, i.e., the state makes

transition to
1t o
P=5\0 1

As we already said, this state has zero quantum interference effects and a def-
inite measurement value has been irreversibly recorded somewhere.

If we had quantum dice the state vector would be

|Dice) = %(H) +]2) +[3) +|4) +|5) +|6)) and p = |Dice) (Dice]
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giving

p :% (11 (1] + [2) (1] + [3) (1] + [4) (1] + [5) (1] + 16) (1]

+[1) (1] + 12) (1] + [3) (1] + [4) (1] + [5) (1] + [6) (1]
+ 1) (2] +[2) (2 +13) (2] + |4) (2] + [5) (2] + [6) (2]
+ (1) (3] +12) (3 +13) (3] + |4) (3] + [5) (3] + [6) (3]
(1) (4] +[2) (4] + [3) (4] + [4) (4] + [5) (4] + [6) (4]
+[1) (5] + 12) (5] +[3) (5] + [4) (5] + [5) (5] + [6) (5]
+[1) (6] +12) (6] + [3) (6] + [4) (6] + [5) (6] + |6) (6]

Thus, the quantum dice generally has a lot of quantum interference terms. This
corresponds to a density matrix of the form

a1 a2 a3 G4 ais Aaie
Ga21 Q22 G23 Q24 A25 (26
a31 Q32 a3z as4 azs aA3e
G41 Q42 Q43 Q44 Q45 Q46
as1 Q52 As53 As4  A55 456
ae1 Q2 A3 Aea  Ae5 (66

It has lots of off-diagonal terms. Rolling the dice (a measurement) or decoher-
ence if dice left alone, produces

a1 0 0 0 0 0
0 a9 0 0 0 0
_ 0 0 ass 0 0 0
PZlo 0 0 aw 0 0
0 0 0 0 ass 0
0 0 0 0 0 age
where
1
a11 = (22 = (33 = (44 = A55 = Aee = 6
or

p= %(ID (1] + 12) (2] +[3) (3] + [4) (4] + |5) (5] + |6) (6])

which is a mixed state implying as we said earlier that a measurement has
occurred!! Maybe that is what Gambler?s Ruin is doing!

The next revision of this text will have lots more to say about Gambler’s Ruin
and Decoherence in relation to the measurement question.

Now let us continue on earlier path.
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10.5 Look closely at “which-path” experiments

In the so-called “delayed-choice” two-slit experiment mentioned above, collapses
were instantaneous to within the accuracy of fast switching between the two
states; in addition, each collapse is executed entirely while the photon was in-
side the interferometer.

We can gain considerable insight by studying how quantum theory describes a
which-path measurement. Note: it is a measurement as defined earlier, because
the detector registers “slit 1”7 or “slit 2” macroscopically for each electron.

We denote the state of one electron passing through slit 1 as [t)1) and the state
of one electron passing through slit 2 as [¢)2) . John von Neumann, who was
the first to carefully analyze measurement in purely quantum-theoretical terms,
insisted on treating not only the measured quantum but also the macroscopic
detector as quantum systems because, after all, detectors are made of atoms
and they perform a quantum function by detecting individual quanta. I agree
with that view of the macroscopic detector.

Now let us repeat the earlier discussion again, filling in any remaining gaps and
confusions.

Accordingly, one represents the “ready to detect" quantum state of detector by
|ready), and the state of detector after detecting an electron by |1) if |i1) was
detected, and by |2) if |¢)2) was detected. A properly operating detector will
surely transition from |ready) to |1) upon measurement of an electron that has
been prepared (perhaps by simply shutting slit 2) in state |i1).

As a limiting idealization, we assume, with von Neumann, that the measurement
of an electron prepared in state |i)1) leaves the electron still in state |¢;) after
detection. Such a minimally-disturbing measurement would cause the electron-
plus-detector composite system, initially in composite state |11 ) [ready), to tran-
sition into the final state [¢1)|1).

We summarize the process as

[¢1) [ready) — 1) 1) (10.48)

Similarly, a minimally-disturbing measurement of and electron initially prepared
in |t)) is described mathematically by

[v2) [ready) — [12) [2) (10.49)

Now suppose that both slits are open so each electron can pass through either
slit, and suppose the preparation and experiment (e.g. slit widths) is symmetric
with respect to two slits. Then the state of each electron as it approaches the
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slits prior to detection must be described by a symmetric superposition
1
V2

But quantum physics, including its time dependence, is linear. This imply that
[¥h) [ready) evolves according to

) = —=([¢1) +[¥2)) (10.50)

1) [ready) = %uwn + ) Iready)

= 5 () ready) + ) ready)

- %wmn +l2)[2)) (10.51)
The final state
) = %uwl) 1) + ) 2)) (10.52)

following detection said to be “entangled” because it cannot be factored into
simple product of states of two sub-systems. As indicated in Figure 1
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Figure 10.1:

when two independent quanta pass near each other, interact, and subsequently
separate, the interaction generally entangles the two quanta and entanglement
then persists after interaction regardless of how far apart the two quanta might
eventually travel, provided only that the two quanta experience no further in-
teractions.

Despite possibly wide spatial separation, entangled quanta have a
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unity not possessed by non-entangled quanta.
This unity is source of quantum non-locality.
Entanglement is ubiquitous in nature.

The entangled "measurement state" (52) that is at the heart of quantum mea-
surement is remarkably subtle.

To fully understand “entanglement”; we first need to understand “superposition”.

The quantum principles says that any linear combination of possible quantum
states of a system, as in (50) and (52) for example, is also a possible quantum
state of that system. Figure 2 pictures an experiment that demonstrates such
a superposition of states.

D2 A
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I\
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A T M
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Figure 10.2:

This represents a layout of optical paths called a “Mach-Zehnder interferome-
ter.”.

A light beam enters at the lower left passing through the “beam splitter” BS1;
the reflected beam makes a right angle with the incoming direction, while the
transmitted beam passes straight through. So the beam splits and each “half”
traverses one of two paths; mirrors M bring the paths back to crossing point as
shown.

Devices called “phase shifters”, denoted by (1 and ¢, are placed into each path.
The phase shifter can add a short variable length to a path. A second beam
splitter BS2 can be placed at crossing point. Without BS2, each “half”-beam
moves straight ahead along one path to detector on that path.

Things get more interesting with BS2 in place.

Because 50% of each of two beams then goes to each detector, BS2 mixes two
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beams together so one can show interference.

The interferometer is constructed so that, when the phase shifters are set to
zero, the two “optical paths” (number of wavelengths, after accounting for phase
changes upon reflection and refraction) from entry point to D1 are equal while
two optical paths to D2 differ by half a wavelength.

It is thus found that the light interferes constructively at D1 and destructively at
D2, i.e., all light goes to D1. If one then uses ¢; or ¢s to add a half wavelength
to either path, the light then interferes constructively at D2 and destructively
at D1, i.e., all light goes to D2.

As one continuously varies the length of one or other path by varying one or
other phase shifter, one finds that the amount of light arriving at D1 varies
continuously from 100% down to 0%, while amount arriving at D2 varies from
0% to 100%.

The two paths are clearly interfering!

The experiment is an interferometer-based analog of Young’s double-slit inter-
ference experiment demonstrating the wave nature of light.

But, as we know, light is really just photons, and photons are indivisible.

How does nature explain this experiment when we dim the light to point where
only one photon at a time traverses the interferometer?

After all, the photon still traverses BS1, yet it cannot split in two because a
quantum is unified and cannot be split!

With BS2 removed, one finds either D1 or D2 registers a single entire photon,
randomly, with 50-50 probabilities, regardless of how the phase shifters are set.

The randomness is absolute. It is more random than any human macroscopic
game, such as coin flips, that only mimics randomness. Nature invents quantum
randomness to deal with obstacles such as beam splitters while preserving unity
of quantum.

The detectors never register half of a photon. They get either a whole photon
or no photon.

What happens in the single-photon experiment with BS2 present?
As discussed earlier, beginning from equal path lengths, which gives construc-

tive interference at D1 and destructive interference at D2, as phase shifters vary,
probabilities of detecting photon at D1 and D2 vary as Figure 3 which gives the
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percentage of photons impacting D1.
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Figure 10.3:

Importantly, the results do not depend on which phase shifter the experimenter
chooses to vary. Since each photon responds to changes in either path length,
each photon must “follow both paths” This verifies the superposition principle
and shows that quanta can be in “two places at same time”!

This seems paradoxical if we assume photons are tiny particles, but if we assume
the photons are waves it is not paradoxical, i.e., each photon simply spreads
along both paths, interfering with itself at D1 and D2. One must conclude that
each photon travels both paths even when BS2 is not present because once a
photon enters the interferometer it must behave in same manner regardless of
whether BS2 is placed or not placed at the far end.

A delayed-choice experiment provides further evidence for conclusion:
Since photons “do not know” whether BS2 will be inserted, they must travel
both paths on all trials including those for which BS2 not inserted - this is con-

nected with entanglement.

With BS2 removed, the situation is like the double-slit experiment with a which-
slit detector present:

Each photon is entangled with the macroscopic detectors D1 or D2 as in (52).
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With BS2 present, the two paths mix and we have a situation like double-slit
experiment with no which-slit detector:

Each photon follows two paths to each detector where it interferes with itself,
and one detects the interference state (50).

All of this suggests that measurements affect superposed quantum
states via entanglement of the superposed quantum with a detector.

10.6 Resolving Paradoxes and Understanding Mea-
surement

10.6.1 The apparent paradox of Schrédinger’s cat

A cat is penned up in a steel chamber, along with the following device:

In a Geiger counter there is tiny bit of radioactive substance, so small, that
perhaps in course of an hour one of its atoms decays, but also, with equal
probability, perhaps none decay; if it happens, the counter tube discharges and
through a relay releases a hammer which shatters a small flask of hydrocyanic
acid(poisonous).

If one left the entire system to itself for hour, we would say that the cat still
lives if no atom has decayed!

If one uses a state vector approach to understanding the entire system, one would
express this by having a living and a dead cat mixed or smeared out in equal
parts - a superposition of “dead” and “alive” It is typical of these cases, that the
indeterminacy originally restricted to the atomic domain becomes transformed
into macroscopic indeterminacy, which can only then be resolved by direct ob-
servation, which prevents us from naively accepting as valid the “blurred model”
for representing reality.

Mathematically, the nucleus and the cat have become entangled in measure-
ment state (52), with |[¢)1) and [i)2) representing undecayed and decayed states
of nucleus and [1) and |2) representing the alive and dead cat.

According to Schrédinger’s understanding of the situation, the indeterminacy
of the nuclear state “becomes transformed into macroscopic indeterminacy” of
cat, and since he could not comfortably accept this as a “blurred" state”, i.e., a
cat that is in a superposition of being both alive and dead, he hoped this would
say something is wrong with QM.

As we will show, according to standard quantum physics, Schrodinger’s 1937
understanding was incorrect:
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The composite system (cat-plus-nucleus) is not predicted to be in superposition
of two states of a cat and a nucleus.

Instead, the composite system is predicted to be in a superposition of two cor-
relations between cat and nucleus, one in which a live cat is 100% correlated
with an undecayed nucleus, and a second in which a dead cat is 100% correlated
with a decayed nucleus.

Entanglement will have transformed a pure state superposition of nu-
clear states to pure state superposition of correlations between sub-
system states.

We will see that this is precisely what one expects from quantum mechanics,
and it is not paradoxical!!

This so-called “problem of definite outcomes” applies of course to more than
Schrodinger’s dramatized example.

Regardless of whether the measuring instrument is a which-slit detector, a
Geiger counter, or a cat, the entangled state (52) applies. This state appears
at first glance to represent a quantum superposition in which the detector is
in two macroscopically different states simultaneously. If so, then there is an
inconsistency within quantum physics, because obviously it cannot be this easy
to create a macroscopic superposition.

The question is: Is it true that (52) really represents a macroscopic superposi-
tion?

Turns out, there is more to this entangled state than meets the eye.

If one assumes the detector to be in superposed state a|1) +b|2), one finds that
(52) necessitates either a = 0 or b = 0, implying that detector is not in an indi-
vidually superposed state within its own Hilbert space.

The same applies to the detected quantum:

It is not in a superposed state a|i) + b|¢2) with both a # 0 and b # 0.

The entanglement process leaves neither sub-system superposed!

So far as I know, this simple fact has long been ignored by physicists
studying the measurement problem.
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10.6.2 Density Operator to the Rescue

The density operator formalism(discussed earlier) for quantum physics provides
a stronger version of this conclusion.

The density operator for a quantum system whose state is |¢)) (a pure state) is
simply the projection operator

p =) (¥l (10.53)

As we saw earlier, if the system is in state whose density operator is p, then
standard quantum expectation value (O) of arbitrary observable O is found from

(0) = Tr(pO) (10.54)

This approach is especially useful if the quantum system is a composite of two
subsystems A and B.

We define the density operator p,4 for subsystem A alone by by
pa=Trp(p) (10.55)

where Trp means that trace taken only over states of subsystem B.
It is then easy to show(see later) that standard quantum expectation values for
subsystem A alone (values obtained by an observer of A without any knowledge

of B) are A )
(Oa) =Tr(pa0Oa) (10.56)

where O4 means any observable operating on system A alone (i.e., operating
within A’s Hilbert space). Applying this formulation to measurement state
(52), the reduced density operators for the quantum system (call it A) and its
detector (call it B), respectively, are

pa = (1) (al+ ) () (10.57)

. 1
pp =5 (1) (1] +12)(2) (10.58)
The plus signs in (57) and (58) make one think of superpositions such as (50),

but these are not superpositions. The density operator for the superposition
(50) has cross-terms:

p= () (Y] = %(Wh) (1] + [h1) (2| + [ih2) (31| + [1h2) (¥2]) (10.59)

The two cross-terms, involving both [¢)1) and |[¢2), are missing from (57). So
(57) does not describe system in superposition of two quantum states.

However, (57) is precisely the density operator one should use if one knows the
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quantum system is either in state |¢)1) or in state |1)2) but one didn’t know which
and so, due your own to lack of information, you simply assign probability of
1/2 to each of two possibilities.

The same goes for (58).

(57) and (58) are “classical” probabilistic states - analogous to the “states of
knowledge” one would assign to coin flip when you know the outcome to be
either heads or tails with equal probability but don’t know which has occurred.
Remember the dice example!

The situation described by a density operator such as (57) is known as “mixture”
of states [¢1) and |i)2), as distinct from “superposition” of states as observed in

the Mach-Zehnder experiment and represented by (50).

Equation (56) tells us that all correct statistics for subsystem A alone can be
found from standard formula (54) applied to subsystem A alone.

But we have just seen that (57) is the density operator one should use if one
knows A to be in either |11) or |i)9) without knowing which.

The same goes for subsystem B and (58).

In the case of Schrodinger’s cat, it follows that the observer of the cat alone sees
outcomes appropriate to a cat that is either alive or dead, not both.

For subsystems, the interference terms are missing, and an “ensemble” of re-
peated trials must exhibit a nonsuperposed mixture rather than superposition.

This is the clear prediction of quantum physics for the entangled state (52).

But one must be careful, because (57) and (58) are not complete descriptions
of quantum states of the nucleus or the cat.

In fact, (57) and (58) are not quantum states at all but merely “reduced states”
arising from actual state (52) of composite system when one part of the com-
posite system is removed from the equations.

In case of Schrodinger’s cat, (57) and (58) give the correct predictions for ob-
servations of either the nucleus alone or the cat alone, but do not represent the
state of either subsystem because this is given by (52).

In fact, when two quanta entangled, neither one has a quantum state of its own!

Physicists, philosophers and mathematicians who specialize in quantum foun-
dations have in past objected to the argument that reduced density operators

758



can be adduced in this manner to clarify the measurement problem.
They offer two key objections:

First, “basis ambiguity”, charges that ‘the ‘basis set” (set of orthogonal eigen-
vectors) for operator (58) (for example) is entirely ambiguous, so (58) cannot
represent the true quantum state.

It is true that (58) doesn’t represent the true state of the subsystem, because
(58) is actually just identity operator |1) (1] +|2) (2] in B’s subspace, divided by
2, so that any other orthogonal basis set could be used instead. Given only the
description (58), subsystem B could just as well be described by any other pair
of orthonormal vectors in B’s subspace, for example

L
V2

But B’s state of affairs is certainly not entirely described by (58). Rather, it is
described by composite state (52).

(1) £12)) (10.60)

Equation (58) merely tells us the following:

If the cat and the nucleus are in state (52) then, when one looks at the cat,
one is going to see cat that is either alive or dead. There is no claim that (58)
represents complete quantum state of the cat.

That is, there is no claim that cat is really in either state |1) or state |2), because
the state it’s really in is admittedly (52).

Thus, the basis ambiguity objection to our conclusion (namely, that Schrodinger’s
cat is either alive or dead, not both) fails.

The second key objection is that (57) and (58) are “improper density operators”
because they arise not from insufficient knowledge (as classical probabilities
arise) but from reductions of the full density operator for state (52) to Hilbert
subspaces of each subsystem. It’s true that these reduced density operators do
not arise from insufficient knowledge about an actual state.

In fact, we do have complete knowledge of the state of both A and B, namely,
the measurement state (52). So this objection fails not because it is false but
because it is irrelevant:

Reduced operators admittedly do not represent the state of the composite sys-
tem. They tell us only what we will observe at the nucleus and at the cat and
they tell us nothing about the correlations between these observations, so these
density operators do not tell us the real state of system.
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And so plot thickens.
The entangled state (52) properly describes both individual subsystems.

However, the plus sign in (52) signifies superposition of two terms. We know,
however, that neither subsystem A nor subsystem B is superposed.

What then is meaning of plus sign?
This superposition arose from the superposition represented by (50).

We cannot logically ignore this fact - a strategy known as the “shut up and
calculate” approach to quantum measurement.

Instead, we must ask: Exactly what is superposed when the two subsystems are
in this entangled state?

Superpositions preserve the all-important unity of quantum.

When Max Planck proposed in 1900 that electromagnetic radiation occurs in
energy steps of magnitude E = hv, he tacitly implied the central quantum prin-
ciple:

The unity of an individual quantum.

Energy (electromagnetic energy in case of radiation) comes in spatially extended
bundles, each having a definite and identical quantity of energy. One cannot
have half a quantum, or 2.7 quanta!

You must have either 0 or 1 or 2 etc., quanta. In its own way, this is a fairly
natural notion - apparently nature prefers to sub-divide the universe into a
countable or even a finite set of entities as opposed to an uncountable continuum!

The spatial extension of these bundles then implies nonlocality:

If we have one quantum and destroy it (by transforming it to something else),
we must destroy all of it everywhere simultaneously, because we cannot, at any
time, have just part of quantum in existence.

Louis de Broglie put it perfectly in 1924, regarding another kind of quantum
namely the electron:

The energy of an electron is spread over all space with a
strong concentration in a very small region....That which
makes an electron an atom of energy is not the small volume
that it occupies in space - I repeat it occupies all space -
but the fact that it is indivisible, that it constitutes a unit.
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When one transforms the state of a quantum, one must transform the entire
extended quantum all at once. Hence there are quantum jumps. Furthermore,
composite entangled systems such as atoms also behave in a unified fashion.

This unity is the source of the nonlocality seen in experiments involving entan-
gled pairs of photons.

Nonlocality is exactly what one would expect, given the unity and spatial ex-
tension of the quantum and the unitary (i.e. unity-preserving) nature of the
entanglement process.

Standard nonrelativistic quantum theory prescribes two kinds of time evolution:
collapse upon measurement, and Schrédinger equation between measurements.

The key feature of Schrodinger equation is that it prescribes a so-called "uni-
tary" time evolution, meaning time evolution that preserves pure states, i.e.,
transforms unit Hilbert space vectors into other unit vectors.

Some ideas required physically by unity of quantum are expressed as follows.

If quantum is described by a pure quantum state at ¢ = 0, it should remain pure
at later times. This notion prompts us to ask whether measurement process
also preserves pure states.

At least in case of the idealized process described in (51), the answer is “yes”
because both “before” and “after” states are pure.

Measurement state (52), since it is pure, represents a highly unified state of
affairs, even though one of its subsystems is a macroscopic detector. Thus one
suspects that this state, like its progenitor (50), is truly a superposition in which
the superposed terms represent two situations or states of the same object.

But precisely what is that object, i.e., what is superposed?

We have seen that the states of subsystem A are not superposed, nor are states
of subsystem B.

The conventional interpretation (which, as we will see, is subtly incorrect) of a
product state such as |11} |1) is that it represents a state of a composite system

AB in which subsystem A is in state |¢);) while B is in state [1).

In this case, (52) would represent a superposition in which AB is simultaneously
in state |¢1)[1) and also in state |1)2) |2).

The situation of Schrédinger’s cat would be: live cat and undecayed nucleus
superposed with dead cat and decayed nucleus.
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This is at least as physically outrageous as a live cat superposed with a dead
cat, and it contradicts the physical implications (a cat that is either alive or
dead) of reduced states (57) and (58) as described earlier.

Something is still wrong!

Let us repeat some of our discussion and provide even more details.

10.7 Some Repetition and More Intricate Details
Proposal:

The solution to the so-called quantum measurement problem is completely con-
tained within standard quantum mechanics and needs no elaborate new struc-
tures and interpretations.

10.7.1 Remember the standard discussion from earlier:

Total system T = quantum system S (states |s;)) + measuring device A (states
la;)) , where |ag) = state of measuring device “OFF”. The unitary time evolution
rule says that [s1)|ag) — |s1)|a1) and |s2)|ag) = |s2)|az). The linearity of QM
the says that

[)sa = (c1]s1) +c2]s2)) |ao) = c1|s1)]ao) + ca|s2) |ao) > c1]s1) |a1) + c2[s2) |az)

In this derivation
W’)s = (c1]s1) +c2ls2)

is state of the quantum system(superposition), while
[¥)sa = c1ls1)lar) + c2]s2) |az)
is state of the combined system(superposition).
The quantum measurement problem is the observation that the state
[)sa = c1ls1)lar) +c2|s2)|az)
is not observed as the outcome of the measurement!
What is seen is not a so-called superposition, but either
Isi)la1) or [s2)las)
That is “problem of outcomes”.

The state
[h)sa = c1ls1)lar) + cals2)|az)
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is usually referred to as a superposition, which is misleading.

Entanglement outweighs superposition as the defining feature of this state.
Without entanglement-correlations, we would not have a measurement prob-
lem!

Careful investigation of this state in a 2007 experiment(Roch) (Wheeler delayed
choice experiment) demonstrates its strikingly non-local character:

A photon jumps from state [t)) g = (c1[s1) + c2|s2) to state [¢) g4 = c1|s1)|ar) +
2 |$2) |az) precisely when A (the measuring device) switches on and while photon
is still inside the interferometer, and jumps from [¢) ¢, = ¢1[s1) |a1) + c2 |s2) |az)
to [th) g = (c1]s1) + c2|s2) when A switches off.

Quantum jumps, removal of interferences, and the observed non-locality are due
to entanglement.

Of course, an entangled state = superposition, but it is a very special superpo-
sition.

To call [1)) g 4 = c1|s1) |a1)+c2|s2) |az) simply a “superposition” misses the crucial
physics of entanglement and makes all the difference in the understanding of the
state.

Entanglement is a characteristic trait of quantum mechanics; one that enforces
the entire departure from classical lines of thought.

It is well known that, for 2-part systems, all non-product states exhibit non-
locality (Bell inequality).

Thus when S and A are entangled [¢)) g4 = c1[s1) |a1) + c2|s2) |az), they share a
non-local channel.

The measurement state |))g, = c1s1)|a1) + c2|s2)|az) is subtle. Although
[V) g4 = c1ls1)|ar) + ca|s2)|az) is called a superposition of S and/or superpo-
sition of A, neither is true.

When S and A are in the measurement state [1))g 4 = ¢1]s1) [a1) +c2|s2) lag) nei-
ther S nor A in superposition. [¢)g, = c1|s1)|a1) + c2|s2) |az) = superposition,
but neither a superposition of S nor of A and also not superposition of states of

the composite system SA.

In [tp) g4 = c1s1) |ar)+c2|s2) [az), S is in both states |s1) and |s2) simultaneously,
as we know from the observed interference between 2 states.

However, in case of [1)) g4 = c1|s1) |a1) + c2|s2) |az) experiment shows that SA is
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not in both two-part states |s1)]a;) and |s3)|az) simultaneously, but only in
two correlations simultaneously.

The entanglement of two systems is quite different from superposition of one
system.

Experiments(Rarity et al) have demonstrated the precise sense in which [¢) ¢ 4 =
c1]s1)|a1) + c2|s2) laz) represents superposition.

Experiments answer the question “given that S and A are in state [¢)g, =
c1|s1)]a1) + ca|s2)|ag), what (if any) entities interfere and what is nature of
interference?”

10.7.2 The Local State Solution of the Problem of Definite
Outcomes

Consider a single quantum S(electron or photon), passing through double-slit
experiment, with a “downstream” viewing screen.

Suppose an ideal “which-slit detector” A is present so that, upon detection,
S and A become entangled in measurement state with orthogonal detection
states |1)) g4 = c1]s1)|a1) + c2|s2) |az). Imagine S and A separated by meters or

kilometers.

Complete observation of the experiment requires two “local observers”.The 1st
observer is S and the 2nd observer is A.

Such a non-local setup has been carried out experimentally.

What did the local observers observe?

A well-known prediction of quantum physics says that first observer observes
implications of “local state of S”, represented by “reduced” density operator,
where the degrees of freedom 2nd system are averaged over by the “trace” (Tr)
operation (see derivation below)

ps =Tra(psa) = |e1|*[s1) (s1] + [c2|*[s2) (s2]

and 2nd observer would observe implications of “local state of A”, represented
by the reduced density operator

pa=Trs(psa) = lerf* |ar) (a1] + [eaf? |az) (az]
where the density operator gives probabilities via the relation
P(q) = Tr(pFy) = Tr(plq) (ql)
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The “local state of S” is found by completely removing from the density operator
any effects of A and vice versa.

This is the important idea!

Derivation of reduced density operator

psa =sa) (Psal = (cils1)]ar) +c2[s2)az))(c] (s1|{az] + c5 (s2| (az)

2
ps =Tra(psa) = Y, (ak| psalax)
k=1

NS

(a] (W’)SA SA(¢|) |ax)

ko
Il
[

NS

{ar| ((c1ls1)lar) + eals2) las)) (e (sifar] + ¢ (s2f (a2])) ax)

=
Il
[u

M

(Cl |51) 6k1 + Co |Sg> (5}62)(0; <51| 5k1 + Cg (52| 5k2)

=
Il
—

=lea[*[s1) (s1] + |eaf* [s2) (52 (10.61)

where we have used orthonormality via (a;|a;) = §;;. We note that the Tr
(trace) operation = sum over all designated states removes all knowledge of
designated system from equation. This is clearly useful if we do not know much
about reduced system. A similar derivation holds for p4.

Continuing our discussion.

Reduced states are mixtures, not superpositions. QM predicts both LOCAL
observers find mixtures not superpositions. An ensemble of experimental trials
verifies this via the mixed-state pattern in agreement with assertion made ear-
lier that neither S nor A is in a superposition.

For a different example, pa = |c1]? |a1) (a1]| + |c2|? |az) (az| predicts Schrodinger’s
cat is in a mixture of either dead or alive, not a superposition of both dead and
alive.

The local states ps = Tra(psa) = |e1]? [s1) (s1]+]e2|? [s2) (s2] and pa = Trs(psa) =
lc1[? |a1) {a1]+|e2|? |az) (az] must be taken seriously as implying the outcomes pre-

dicted to be observed at the two sites.

The local states cannot be dismissed simply by the argument that the only “real”
state is the “global state” [1)) g, = ¢1]s1) |a1) + c2|s2) |az).

There is no contradiction between the predicted local mixtures ps = Tra(psa) =
lea|*[s1) (s1] + |ea|*[s2) (s2| and pa = Trs(psa) = le1]? lar) (aa] +|eal* [az) {az| and
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the unitarily-evolving global pure state 1)), = ¢1|s1) |a1) + c2|s2) |as2).

Important: To consider the combined system SA as single system only evolv-
ing unitarily misses the essential physics of nonlocality.

Haroche and Raimond weighed in on question of when a two-part system should
be considered as a composite of two subsystems, versus when it should be con-
sidered as a single system B = SA.

The composite system should be considered a single system whenever the bind-
ing between the parts is much stronger than the interactions involved in the
dynamics, so that internal structure of composite system is left unchanged as it
travels through the experiment.

By this criterion, SA is not single system. Not only does the relation between
S and A change during experiment, the relation is entangled and thus nonlocal.

The implication is that )¢, = c1]s1)|a1) + c2|s2) |az) must be considered an
entanglement of two separate systems S and A, not superposition of a single

composite system SA.

That’s the basics of the measurement theory! It follows completely from stan-
dard QM.

10.7.3 Now for even more details

Roch’s “delayed choice” experiments used a Mach-Zehnder interferometer(Figure
4) rather than the logically equivalent double-slit setup, to observe photons.

mirror

a detectors
A

. / /'1\'1(”

Figure 10.4:
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Figure 10.5:

As shown in detail in Figure 5, while a photon is on the 48-meter-long interfer-
ometer paths, a quantum-based random number generator “decided” whether
the second beam splitter (positioned at the end of paths - note the spatial sepa-
ration) would be incorporated or omitted, i.e., it decided whether the detectors
would not or would (respectively) determine “which path”.

In trials incorporating the second beam splitter, an interference pattern is ob-
served, indicating the photon passed through the device as a superposition along
both paths.

In trials omitting the second beam splitter, no interference is observed, indicat-
ing the photon passed through the device as a mixture along one or the other
path.

The two parallel paths were 5 millimeters apart.
Precisely (so far as the experiment could determine) when the second beam-
splitter switched from “on” to “off”, the photon changed in mid-flight from being
on both paths to being on one or the other path.
The quantum jump was correlated with and coincident with the incorporation
or the omission of the second beam splitter (i.e., with the decision to not entan-

gle or to entangle the detectors with the photon).

All experimental results are just as predicted by the reduced states ps = Tra(psa) =
le1[* [s1) (s1] + [e2[* [s2) (s2] and pa = Trs(psa) = le1f* la1) {ar] + |caf? [a2) (sl

Switching the second beam-splitter off entangles the photon and the detec-
tor in the measurement state [1))g, = c1]s1)|a1) + c2|s2) |az) causing photon
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to collapse from the superposition [¢))g = (c1s1) + c2]s2) into the mixture
ps =Tra(psa) = |c1?|s1) (s1] +|c2)? |s2) (s2| that is observed at the detector.

At this point we are in the diagonal density matrix stage. Thus, we
are doing a classical measurement and it should be interpreted as
such.

This resolves problem of definite outcomes!

Quantum theory predicts and experiment verifies that, with the detector in
operation, observers of S and of A find them to be in definite mixtures, not
indefinite superpositions!

Any strategy of imagining the quantum and the detector to be widely separated
obviously changes nothing - it does not matter whether the quantum and the
detector are close together or far apart.

The key to understanding quantum measurements comes from understanding
the nonlocal relationship that develops between S and A when they evolve uni-
tarily into entangled measurement state [1)) ¢, = c1]s1)|a1) + c2[s2) |az).

In experiments, the global state [1))g, = c1]s1)|a1) + c2|s2)|az) violates Bell’s
inequality, implying an instantaneous non-local transfer of correlations across
arbitrarily large distances. Without entanglement one would observe different
results - the interferences would not disappear as in the experiments. But en-
tanglement “decoheres-collapses” coherent states so that S and A impact their
detectors randomly. Locally, entanglement decoheres each photon so that they
exhibit definite outcomes.

But quantum dynamics is unitary, implying that the global state [¢))g, =
c1|s1)|ar) + ¢ |s2) |az) remains coherent despite the incoherence of subsystems.

Since the individual photons are now incoherently mixed, what has happened
to coherence?

Answer: it is the experimentally observed global coincidence measurements
which compare the impact points of entangled pairs.

In a double-slit experiment with two screens, each photon “knows” the impact
point (i.e., phase shift) of the other photon and instantly adjusts its own impact
point in order to form an interference pattern as a function of the difference
between the two photons’ phase shifts!

This is strikingly non-local, and the experimental results violate Bell’s inequal-
ity.
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Thus the coherence of the entangled state resides in the correlations between
subsystems, rather than in the subsystems themselves!!

Entanglement transforms the coherence of states of S into coherence of correla-
tions between states of S and A, allowing S and A to exhibit definite outcomes
while preserving the global coherence as demanded by unitary evolution.

We can now answer the question: Precisely what is superposed and what inter-
feres in the measurement state?

The answer is surprisingly simple: Only the correlations between S and A are
superposed. Thus the measurement state [¢)) g, = ¢1|s1) |a1) + ¢2 |s2) |az) should
be read as:

The state |s) is positively correlated with the state |a;), and the
state |sq) is positively correlated with the state |ag)

Only correlations are superposed, not states.

When the superposition [1) g = (c1|s1) + c2|s2) of S entangles with the states of
A, the superposition shifts from a superposition of states of S to a superposition
of correlations between S and A, so S can be in an incoherent mixture while
maintaining unitary global dynamics!

This is how nature resolves problem of definite outcomes.

So the coherence exhibited by the measurement state [1))g, = c1]s1)]a1) +
2 |$2) |az) must be invisible to local observers, and yet show up in the global
measurement state in order to preserve unitary dynamics.

One could regard this as the underlying reason why entanglement (i.e., measure-
ment) must shift the coherence from the states of S and A to the correlations
between S and A. “Collapse” can be viewed as consequence of the measurement
state’s nonlocality plus special relativity’s ban on instant signaling. We note that
the global measurement state is a very different animal from local states. While
the local mixed states are immediately observed at both local sites, the global
state can be “observed” only at some time after measurement by traveling
to both local sites, gathering data from both, and then assembling information
and noting the correlations between two sets of data.

Another difficulty(as mentioned earlier) often raised in conjunction with mea-
surement problem: “basis ambiguity” or “the preferred basis problem”. The
argument is that the local state solution based on reduced states is mathemat-
ically ambiguous in the special case that |c;|? = |co|? = 1/2 because the reduced
density operators become pg = I5/2 and ps = I4/2, where I and I 4 are identity
operators in the two reduced Hilbert spaces. Measurement does not determine
a unique pair of subsystem basis vectors; any orthonormal basis can be used for
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each subsystem implying an ambiguous situation.

This is specious criticism because the measurement device is not constructed
to pick out particular basis set in the subsystem’s Hilbert space. It is designed
instead to correlate with the particular physical state of measured quantum sys-
tem. Regardless of what basis is used, the detector is designed to transition into
|a;) upon detecting S to be in |s;), (i = 1,2). It’s not designed to transition into
some other states such as (|s1)+|s2))/v/2. The particular physical states |s;) and
|s2) determine, unambiguously, the “natural” basis of the measurement. In the
double-slit experiment, these states are for example “quantum comes through
slit 17 and “quantum comes through slit 2”. The ambiguity of basis sets for
the reduced density operators isn’t important. What’s important is the specific
correlations established by detector!

Our conclusions so far:

When the detector measures the superposed quantum, quantum physics pre-
dicts that the states actually observed are local (i.e., mixed or reduced) states
of subsystems, not the superposed global state that follows from Schrédinger’s
equation.

The local states directly observed in the measurement must contain no hint of
nonlocal correlations between two subsystems since this would violate relativ-
ity’s prohibition on instant signaling.

Thus the local states describe what actually happens at both subsystems.

The global state predicts these local states(can be derived from), and also pre-
dicts indirectly-observable (by gathering global data at later time) nonlocal
correlations between these states.

10.7.4 An even more dramatic experiment

The unity of the quantum suggests that the measurement state (52) represents
a unified, hence superposed, and pure, quantum state of composite system. We
asked the question: precisely what is superposed?

We answered this question by studying the simple (i.e., non-composite) super-
position (50) via interference exhibited in a Mach-Zehnder experiment.

Varying the lengths of either path 1 or path 2 created varying interference ef-
fects in detectors, demonstrating each photon really must travel both paths to

its detector.

Quantum theory agrees entirely with these conclusions, as can be shown by
using photon wavelengths to show that path differences correctly predict the
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interferences observed at each detector.

This implies that to understand the measurement state, one needs to find and
analyze entanglement experiments that demonstrate interference. This has been
done for several decades in connection with quantum non-locality. The key theo-
retical analysis was done by John Bell. Many nonlocal interference experiments
have been done beginning with Clauser and Freedman culminating in experi-
ments demonstrating nonlocality across great distances and that simultaneously
closed all possible loopholes in all previous experiments.

By now, it is well known that the entangled state (52) predicts nonlocal effects
between two subsystems, and that phase variations of either subsystem cause in-
stantaneous, i.e., non-local, re-adjustments (correlations) of the possibly-distant
other subsystem.

When macroscopic systems are involved (i.e., cats) we have a problem.
It is not easy to vary the phase of cat, and, as we saw in the Mach-Zehnder
experiment, one cannot understand superposition without varying the phases of

superposed parts.

Thus, all nonlocality experiments are carried out with pairs of simpler quanta
such as photons.

The most recent nonlocal entanglement experiments most appropriate for in-
vestigating measurement were conducted nearly simultaneously by Rarity and

Tapster and Ou. Figure 6 shows the layout for these “RTO” experiments.

The “source” creates entangled photon pairs by “parametric down-conversion”.

M M

source of s » -
entangled @ -
photons )

M M

Figure 10.6:

The RTO experiment is two back-to-back interferometer experiments but with
the first beam splitter for each photon located inside the source of entangled
photons.
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Without entanglement, each single photon (either A or B) would interfere with
itself at own detectors according to its own phase shift p4 or ¢ 4.

Two entangled photons are emitted into a superposition of the solid paths con-
necting detectors Al and B1, and the dashed paths connecting detectors A2
and B2.

Note that the two photons are already entangled when emitted.

Entanglement changes everything.

No longer does either photon interfere with itself at its own detectors.

Instead, photons are entangled in measurement state (52) with [¢)1) and |¢3)
representing (say) the solid-line and the dashed-line states of A and |1) and |2)
representing the solid-line and the dashed-line states of B, although in the RTO
experiments neither subsystem is macroscopic.

Each photon now acts like which-path detector for the other photon.

Recall the double-slit experiment:

When the which-slit detector is switched on, the pattern on screen switches
abruptly from striped interference pattern indicating the pure state nature
of each electron across both slits, to the phase-independent sum of two non-
interfering single-slit patterns.

Entanglement between the electron and the which-slit detector breaks the pure
state into two single-slit parts, so that the measured electron comes through

either slit 1 or slit 2.

This suggests that in the RTO experiment, the entanglement should break the
pure-state superposition into two non-interfering parts.

This is exactly what is observed. Both photons impact their detectors as ran-
dom 50-50 mixtures, just like a flipped coin.

Entanglement breaks the single-photon pure state (50) observed in the Mach-
Zehnder experiment, causing each photon to behave “incoherently” with no de-
pendence on its phase setting.

But (52) is pure state.

Where has phase dependence gone?

The answer lies in the phase-dependent but nonlocal relationship observed be-
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tween the solid and the dashed branches. This phase dependence is observed
experimentally in coincidence (or correlation) measurements comparing the de-
tections of entangled pairs.

The “flipped coins” mentioned above turn out to be correlated with each other.

This phase dependence across two separated subsystems is essential to preserve
the unity of the (now entangled) quantum.

This is not an easy experiment to perform:

The source creates a stream of photon pairs, and one must compare the impact
of single photon A at detectors Al, A2 with the impact of corresponding entan-
gled photon B at detectors B1, B2. RTO figured out how to do this, with the
result shown in Figure 7.

degee of

correlation /_)erfect correlation
+1 (as in an ideal measurement)

zero
correlam :
(completely 0
uncorrelated)

!
n 2n
nonlocal phase
shift difference
Pg—Pa

Afe—
perfect

anti-correlation

Figure 10.7:

The figure graphs the degree of correlation between A and B. This is a measure
of the agreement between the outcomes at A’s detectors and B’s detectors.

A correlation of +1 means perfect, or 100%, agreement: Either both sets of
detectors register outcome 1 (i.e., Al and B1 click) or both register outcome 2.

The opposite extreme is a correlation of -1, meaning 100% disagreement: If one
detector registers 1, the other registers 2.

Either correlation, +1 or -1, implies that either photon’s outcome is predictable
from the other photon’s outcome.

A correlation of zero means one photon’s outcome does not at all determine
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other’s outcome: Each photon has random 50-50 chance of either outcome re-
gardless of the other photon.

Correlations between 0 and +1 mean the outcomes are more likely to agree than
to disagree, with larger correlations denoting higher probability of agreement;
for example, correlation of +0.5 means 75% probability of agreement.

Similarly, correlations between 0 and -1 mean outcomes are more likely to dis-
agree than to agree; a correlation of -0.5 means a 75% probability of disagree-
ment.

The RTO experiment agrees entirely with predictions of standard quantum
physics.

When accounting is made of the optical paths for both photons, they obtain the
following result:

1
P(correlated) = P(Aland B1) + P(A2and B2) = 5[1 +cos(pp —pa)] (10.62)

P(anticorrelated) = P(Al and B2) + P(A2and B1) = %[1 —cos (pp—pa)]

(10.63)
where P(correlated) is a single-trial probability that A’s and B’s detectors will
agree, and P (anticorrelated) is a single-trial probability that A’s and B’s detec-
tors will disagree.

The degree of correlation, defined as P(correlated) - P(anticorrelated), is then
simply cos (pp — pa), as graphed in Figure 7.

In 1964, John Bell published a ground-breaking article stating the sufficient
condition for a statistical theory such as quantum physics to meet condition
known as “locality”. He defined locality to mean “that result of measurement
on one system be unaffected by operations on distant system with which it has
interacted in past”.

Bell expressed a sufficient condition in form of inequality that any local theory
must obey.

He demonstrated that certain statistical predictions of quantum physics violate
Bell’s inequality, i.e., quantum physics makes nonlocal predictions.

The results in Figure 7 implies the case in point: Figure 7 violates Bell’s in-
equality at all phase differences pp — @4 other than 0, 7, and 2.

Let me underline meaning of this:
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Violation of Bell’s inequality means that the statistics of the measurements on
photon A - photon A’s “statistical behavior” - is necessarily affected by the set-
ting of photon B’s phase shifter.

In fact, even without Bell’s condition, the nonlocality of the experiment intu-
itively obvious.

Here’s why:

Suppose we set the phase shifters to zero and that all four optical paths (two
solid, two dashed) are then equal; thus ¢ — @4 is zero.

Without the two beam splitters BS, the two photons emitted into the solid pair
and the dashed pairs of paths would impact either detectors A1l and B1 or A2
and B2 because of symmetry of experiment and conservation of momentum.
This is neither surprising nor nonlocal, and would happen even if the photons
were not entangled.

But the beam splitter is a randomizing device that mixes the solid and dashed
paths; any photon passing through it has a 50-50 chance of reflection or trans-
mission.

With non-entangled photons and both beams splitters in place, there would
then be no correlation between photon A’s outcome and B’s outcome because
the two photons are independent of each other.

With entanglement, correlation is perfect.

How does one photon “know” which path the other photon took at the other
photon’s beam splitter?

Each photon is now “detecting” the quantum state of the other photon, from a
distance that could be large.

Perfect correlation certainly “feels” nonlocal even though (as mentioned above)
this perfect correlation at pp — w4 = 0 does not violate Bell’s inequality. Note
that such a violation is a sufficient but not a necessary condition for nonlocality.

Non-locality is written all over the RTO experiment.

Each photon “knows” which direction the other photon takes at its beam splitter
and adjusts its selection accordingly.

The key nonlocal feature of graph, which is simply a cosine function, has

(pB—a) as its independent variable. Thus any desired shift in correlations can
be made by an observer at either of possibly-widely-separated phase shifters.
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Bell suspected that this situation meant that observer A (call her Alice) could
use her phase shifter to alter outcomes that would have occurred at both her own
and observer B’s (call him Bob) detector and, following up on this hypothesis,
derived his inequality involving probabilities at both Alice’s and Bob’s detectors
which, if violated, implied that both photons must have readjusted their states.

Such a readjustment is just what we expect, given the unity of quantum and
thus the unity of atoms and other entangled systems such as our two photons.

Two photons form a single “bi-quantum”, an “atom of light”, in the pure state
(52).

When Alice varies her phase shifter, both photons “know” both path lengths
and readjust their behavior accordingly to produce the proper correlations.

Analogously, a single photon “knows” both path lengths in single-photon inter-
ferometer experiment.

Finally, we come to the central question of the discussion:
What is actually superposed in entangled superposition (52)?

A Mach-Zehnder experiment tests the simple superposition (50), while the RTO
experiment tests the entangled superposition (52).

We know what is superposed in Mach-Zehnder, namely quantum states |¢)1)
(path 1) and [¢5) (path 2). This is deduced from the effect that either phase
shifter has on both states.

Now consider the RTO experiment. What is the effect of shifting either phase
shifter?

One thing that does not change is the state (“local state” would be a better
term, as discussed earlier) of either photon A or photon B:

As we know, both photons remain in 50-50 mixtures regardless of either phase
setting.

What does change with variations in either phase shifter is the correlations be-
tween A and B.

With ¢p — pa = 0 we have perfect correlation: Either Al and Bl (which we
denote (11)) or A2 and B2 (denoted (22)).

As we vary either pp or p4 we obtain non-zero probabilities of anti-correlated
individual trials, denoted (12) (outcomes Al and B2) and (21) (A2 and BI).
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When non-local phase angle difference (¢p — ¢ 4) reaches w/2, we have zero
correlation, and when it eaches 7 have perfect anti-correlation.

Table 1 summarizes the crucial points in more detail.

The column titled “simple superposition” shows how the superposition state of
single photon (M-Z) varies from “100% state 1”7 to “100% state 2” as the phase
angle between two states varies.

The column titled “entangled superposition of two subsystems” shows that the
state of each photon remains unchanged throughout the entire range of both
phase settings, while the nonlocal correlation between states of two photons
varies from “100% correlated” to “zero correlation” and then to “100% anticor-
related” as either of the two local phase angles varies.

Simple superposition: Entangled superposition of two sub-systems:
@ State of photon @B-@a State of each photon Correlation between
the two photons

0 100% “1”, 0% “2” 0 50-50 “1” or “2” 100% corr, 0% anti
/4 71%“1”,29% “2” /4 50-50 “1” or “2” 71% corr, 29% anti
n/2  50% “1”,50% “2” /2 50-50 “1” or “2” 50% corr, 50% anti
3n/4 29% “1”7,71% “2” 3n/4 50-50“1” or “2” 29% corr, 71% anti
T 0% “1”,100% “2” jis 50-50 “1” or “2” 0% corr, 100% anti

Table 1. In a simple superposition, the photon's state varies with phase angle. In an
entangled superposition, the relationship between states of the two photons varies, while
individual states of both photons are phase-independent (or "mixed").
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So once again, what is superposed in RTO experiment?

The hallmark of a superposition is the dependence on phase difference between
the objects superposed.

But Table 1 exhibits no such phase dependence of states of two photons.

Each photon remains in unchanging 50-50 mixture of their own “path 1”7 and
“path 2” states - a situation that is radically at odds with the true superposition
of path 1 and path 2 exhibited by M-Z experiment.

Thus, in the entangled RTO state, neither photon is superposed.

We see here the source of the “classical” or non-superposed nature of reduced
density operators (57) and (58)), not to mention the non-superposed and hence
non-paradoxical nature of Schrédinger’s cat.

Examination of the phase-dependence of the measurement state (52), as demon-
strated by nonlocality experiments such as RTO experiment, reveals the true
nature of Schrédinger’s cat. The last column of Table 1 shows us what actually
is superposed when two subsystems are entangled in measurement state (52).

Since the correlations between two photons vary sinusoidally as the non-local
phase angle between the two photons varies, clearly these are correlations be-
tween the states of two photons, and not the states themselves, that are inter-

fering.

Entanglement has shifted superposition, from states of one photon A ((50), M-
Z) to correlations between photon A and photon B ((52), RTO).

More Repetition, More Details and Some Conclusions
In order to resolve problem of definite outcomes of measurements, aka Schréodinger’s
cat, our discussion analyzed the entangled state (52) of a microscopic quantum

and its macroscopic measuring apparatus.

This state is a "superposition" of two composite entities |¢1)|1) and |¢)2)|2),
with a phase angle between these entities that can range over 27 radians.

To resolve problem of definite outcomes we must ask(as we have already done
several times):

Precisely what does the composite superposition (52) actually superpose, phys-
ically?

In order to understand a simple non-composite superposition (50), we looked at
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the effect of varying the phase angle between superposed entities |¢1) and |t)q)
in experimental setting such as M-Z interferometer.

The theoretically predicted and experimentally observed results then made it
obvious that the quantum whose state is (50) flows simultaneously along two
separate paths described by [¢1) and [i)2).

To understand the superposition (52), one should proceed similarly by studying
situations in which phase angle between superposed entities |11) 1) and [i)2) |2)
varies.

One lesson of this analysis is that, in order to understand the measurement
problem, one must understand the significance of nonlocality.

This is because the key measurement state (52) that caused Schréodinger and
decades of experts so much concern has nonlocal characteristics.

It must be understood as a superposition of correlations, rather than a superpo-
sition of states, but this cannot become apparent until one considers the effect
of variations in phase angle between its superposed terms.

Experimental or theoretical studies of such phase variations will have nonlocal
ramifications, because such variations are inherently nonlocal!!

It’s worth emphasizing that, when two subsystems are entangled in
measurement state (52), neither subsystem is superposed - only the
correlations between subsystems are superposed.

In RTO experiments, the two correlations in question are represented by the
solid and the dashed paths connecting pairs of outcomes. A pair of photons
entangled in state (52) follows both of these paths simultaneously.

The subsystems themselves, however, are not in superpositions but instead in
indeterminate mixtures of definite states. Thus observers of either subsystem

will observe only definite outcomes, as predicted by the local mixtures (57) and
(58).

RTO experiments are the entangled analog of the M-Z interferometer experi-
ment: a pair of back-to-back interferometer experiments, with entangled pair of
quanta of which one quantum passes through each interferometer.

As we said earlier, the experiment and its theoretical analysis shows that, when
a superposed photon A becomes entangled with second photon B to form state
(52), the nonlocal aspect of A’s superposition is transferred to the correlations
between A and B.
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Thus, an entangled state such as (52) is neither a superposition of states of A
nor of states of B, but instead superposition of correlations between states of A
and states of B.

To see this most clearly, we compare the simple superposition (50) with the
entangled superposition (52).

In the simple superposition, the state observed by a “which-state” detector varies
smoothly from 100% [¢)1), through 50% [¢1) and 50% [¢)2), and finally to 100%
|t1) as the phase angle ¢ between [i1) and [¢)2) varies from 0 to .

In the entangled superposition, neither the state of A nor the state of B varies
as 4 or pp varies; both A and B remain in 50-50 mixtures throughout. What
does vary is the correlation between A and B.

A non-local “correlation detector” (i.e., an RTO-type of experiment!) would
find that the relation between the two subsystems varies from 100% positively
correlated (either pair state 11 or 22, pictured by solid and dashed paths in
Figure 6), to 50% positively correlated and 50% anti-correlated, and finally to
100% anti-correlated (12 or 21), as the nonlocal phase difference pp — ¢ 4 varies
from 0 to =.

This is a superposition of correlations, not a superposition of composite states
or of non-composite (single-system) states.

At least in the idealized case of a minimally-disturbing von Neumann measure-
ment, the initial stage of measurement process (through formation of measure-

ment state (52)) can be described as follows:

A quantum in a simple superposition such as (50) entangles with a macroscopic
which-path detector.

At the instant of entanglement, the local states of both the quantum and the
detector undergo a radical change, a quantum jump.

Locally, the detector and the quantum jump into mixtures (57) and (58).

Simultaneously, the global state (52) continues evolving smoothly according to
Schrédinger equation.

Entanglement causes the superposed single quantum to be instantly transformed
into superposed correlations between the quantum and the detector.

This stage of measurement process is entirely describable in terms of a pure
global states following Schrédinger equation.
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“Collapse” from the local superposition to the local mixtures occurs because of
the formation of the entangled state (52) and the resulting formation of subsys-
tems whose local states ((57) and (58)) have definite outcomes.

Note that the phenomenon of nonlocality is essential to preserving the pure-
state nature (the unity) of the composite system.

To put this more intuitively, a reorganization throughout the entire extent of
the composite entangled system is required in order to preserve the unity of the
(now entangled) quantum.

According to Table 1, when two systems entangle to form the state (52), both
“collapse” into phase-independent local mixtures.

Relativity requires this phase independence:

If any phase-dependent aspect of entangled state were locally observable, instant
information-containing messages could be sent, violating special relativity. Lo-
cal states of entangled subsystems must be invariant to phase changes.

Thus, only the relationship - the correlations - between A and B, but not A or B
themselves, can vary with phase angle. Since local observers cannot detect these
correlations, the entangled state cannot be used to send superluminal signals.

This is, ultimately, the reason Schrédinger’s cat must be either alive or dead
rather than superposition of both. A phase-dependent superposition involving
both local states would permit nonlocal signaling, violating relativity.

This conclusion implies that standard physical description of composite non-
entangled (i.e., factorable) product state such as |11 ) |1) has been long mistaken.

Usually we regard [¢1)]1) as state of the composite system AB, where subsys-
tem A is in state |¢);) and subsystem B is in state |1). But this leads us into the
paradox of Schrodinger’s cat, where (52) represents a state in which two macro-
scopically different composite states exist simultaneously as a superposition.

According to present discussion, quantum theory and quantum experiments im-
ply this entangled state to be a superposition of correlations between states
rather than a superposition of composite states.

Thus |¢)1)|1) is not a state of composite system, but instead a correlation be-
tween two subsystems. That is, |¢01)]|1) means “subsystem A is in state |¢)1)
if and only if subsystem B is in state |1)", an important departure from usual
description.

Even if one of two subsystems happens to be a macroscopic detector, the en-
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tangled state (52) is simply a non-paradoxical superposition of correlations. It
says merely that state |1;) of A is correlated with state |1) of B, and state |¢)5)
of A is correlated with the state |2) of B, with non-local phase angle pp — @4
determining the degree of each correlation.

Regardless of the phase angle, neither subsystem is in a superposition.

The entangled measurement state (52) is best described as a “macroscopic cor-
relation™ a pair of superposed (i.e., phase-dependent) quantum correlations in
which one subsystem happens to be macroscopic. It is technically very difficult
to create a macroscopic superposition, but macroscopic which-path detectors
routinely achieve the state (52). It’s not paradoxical, even though many analy-
ses have puzzled over it.

In entanglement, nature employs an ingenious tactic. She must not violate rel-
ativistic causality, yet she must be nonlocal in order to maintain the pure-state
nature of original single-quantum superposition over composite objects such as
bi-photons.

Thus, she accomplishes nonlocality entirely via the superposition of correlations,
because correlations cannot be locally detected and thus their superposition
cannot violate relativity. This tactic lies behind the nonlocal spread of phase-
dependence over large spatial distances.

By means of the superposition of correlations - entanglement - nature creates
a phase-dependent pure-state quantum structure across extended quantum sys-
tems such as bi-photons.

I've frequently used the term “local” as contrasted with “global”. For composite
systems, and especially the entangled measurement state, it’s a crucial distinc-
tion.

Entangled states such as (52) have distinct local and global (nonlocal) aspects.

The local description corresponds to two observers, each observing only one
subsystem. In the case of (52), this “local description” is fully captured by the
reduced density operators (57) and (58) - each local observer detects a mixture,
not a superposition, of one subsystem.

The “global description” means the evolving pure state of the entire composite
system, in our case (52). It is a superposition of nonlocal correlations that can
only be detected by observing both subsystems and, via an ensemble of trials
that individually record corresponding outcomes at both subsystems, determin-
ing the state of the correlations between them.

Although the global state implies the local description, the local description
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cannot hint at the global correlations because any such hint would violate Ein-
stein causality.

Thus, when an electron shows up in your lab, neither an examination of the
electron nor an examination of an ensemble of identically-created electrons can
give you the least hint of whether or how this electron is entangled with other
quanta elsewhere in the universe.

This clarification of entanglement resolves problem of definite outcomes, aka
Schrodinger’s cat.

An ideal measurement of a superposed microscopic system A by a macroscopic
detector B establishes the measurement state (52) at 100% positive correlation.
This state is equivalent to the logical conjunction “A is in local state |¢)1) if and
only if B is in local state |1), AND A is in local state |¢)3) if and only if B is
in local state |1)”, where AND indicates the superposition. This conjunction is
precisely what we want following a measurement.

Schrédinger’s cat is not in the least paradoxical.

This analysis does not entirely resolve the quantum measurement problem.

It resolves the problem of definite outcomes associated with the measurement
state (52), but this state continues to obey Schrédinger’s equation and, hence,
is reversible.

In fact, the entangled state between a quantum and its which-path detector can
actually be reversed in the Stern-Gerlach experiment.

In my view, a quantum measurement must result in a macroscopic indication
such as a recorded mark, and a mark is irreversible.

The above analysis shows the entangled state (52) describes a mixture of def-
inite, not superposed, outcomes of measurements, but these outcomes remain
indeterminate and the global state remains reversible.

The irreversibility problem is the question of how this nonlocal superposition of
correlations then further “collapses” irreversibly to just one of its possible out-
comes, a “collapse” that occurs in the RTO experiment only when one photon
impacts a detector.

In the case of the RTO experiment, however, it seems fairly clear that the non-
local superposition described by Eq. (52) must irreversibly decohere(register a

value) when either of its subsystems A or B interacts with a detector.

The RTO experiment furnishes a particularly good setting for this question, be-
cause the two photons remain in the reversible entangled state (52) throughout
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their flights from the source to detectors, and thus the two key questions of the
measurement problem (the problem of definite outcomes and the problem of
irreversibility) can be analyzed individually.

Let us now attempt to resolve the seeming existence of an "irreversiblity" prob-
lem.

10.8 The Environment as Monitor

I hope you are by now convinced that quantum physics describes the microscopic
world entirely consistently and with unparalleled experimental accuracy.

But still, there’s one slight problem:

Quantum physics seems to fail utterly in describing the world around
us!

We never see tables or teapots, not to mention ice cream, as wavy, space-filling
fields that are possibly here and possibly there and possibly both here and there.
Tables and teapots don’t quantum jump, nor does ice cream. Classical physics
may be inaccurate at the microscopic level, but it does explain how such ordi-
nary objects move in response to forces.

If quantum physics describes the microscopic world correctly, and if the macro-
scopic world is made of microscopic objects, then the quantum principles should
lead ultimately to tables and teapots.

Let us now explain, at least in part, how.

As we have seen, quantum physics began with Max Planck’s hypothesis that
eventually led to the quantum. The crucial quantum principle is the universe
is made of these highly unified, extended bundles of field energy. To the extent
that any given phenomenon depends on the spatially extended field nature of
quanta, the phenomenon should be considered as "quantum". To the extent
that quanta can be represented by pointlike objects, the phenomenon can usu-
ally be considered "classical".

But this classical-quantum boundary is a useful metaphor, not a law of nature.
Most physicists, me included, regard the world as fully quantum. The clearest
expression of the extended field nature of quanta is the principle of superposi-
tion.

Because electrons, photons, atoms, and so on are simply disturbances in fields,

these objects superpose just as disturbances in the surface of a tub of water
superpose. Several states can all be present at the same time.
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We will describe how the process called decoherence converts these wavy su-
perpositions into particle-like mixtures later.

The quantum measurement problem must be part and parcel of any discussion
of how quantum physics explains our normal world. After all, quantum measure-
ments - quantum phenomena that cause macroscopic changes - are the bridge
from the micro- to the macroworld. Schrodinger’s cat is a dramatic example.

The microscopic decay of a radioactive atom triggers a device that can kill
a macroscopic cat. Schrodinger launched the measurement problem when he
noted that the quantum rules seem to imply something we never see: a macro-
scopic superposition - namely, a cat that is both alive and dead.

Earlier, we suggested a resolution of this problem of definite outcomes. But
there’s more than that to the measurement problem.

Macroscopic processes are irreversible. The moving finger moves on. "Things
run down". The second law of thermodynamics demands it.

So quantum measurements must be irreversible, even though there appears to
be no trace of irreversibility in the microscopic world. As we’ll see, decoherence
solves this mystery.

10.8.1 The Problem of Irreversibility

Every measurement involves a macroscopic change of some sort, and such changes
must obey the second law of thermodynamics, so entropy increases. Further-
more, we can observe this entropy increase as a permanent (i.e., irreversible)
mark made by the measurement.

But when a quantum is measured, the quantum and its detector obey the time
evolution equation as they entangle to form the measurement state, so it seems
that entropy doesn’t increase. How can we resolve this conundrum?

A variation on the Stern-Gerlach experiment demonstrates the connection be-
tween quantum measurements and the second law.I’ll focus only on the features
of this experiment relevant to the irreversibility of measurements.Here’s the
experiment.
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“plus” states
detected here
without the screen, all atoms
detected here are in a state that
isidentical to the initial state

all entering atoms
are prepared
identically

silver atom

“ magnet upward
an “inhomogeneous
magnetic field”
exits between “minus” states_y -
the two magnets detected here horizontal

optional detection screen,
viewed edge-on

A horizontal stream of silver atoms passes between a pair of magnets (see fig-
ure). The entering atoms, at the left, have all been prepared previously in
identical states that I’ll call the "zero state". There’s no need for us to concern
ourselves with the precise nature of this initial state. The magnets are shaped
to create a so-called "inhomogeneous magnetic field" in the space between the
magnets, as shown in the figure. This field separates the stream in such a way
that if a detection screen is placed "downstream" from the magnets as shown,
atoms make visible impacts on the screen at two different spots, one above and
the other below the original direction. Individual atoms impact randomly at
one or the other spot with a 50% probability - a striking example of quantum
indeterminacy - because the atoms were all prepared identically.

Examination of the two beams shows that atoms striking the upper spot are
no longer in the zero state but are in a different state called the "plus state",
whereas the atoms striking the lower spot are in a new state called the "minus
state".

So the magnet-plus-screen combination acts as a detector to determine which
atoms are in the plus state and which are in the minus state. This is entirely
analogous to a double-slit experiment with a which-slit detector putting quanta
into the "slit 1 state" or the "slit 2 state" before the quanta strike a viewing
screen.

There’s more.

If one removes the detection screen and instead installs some appropriately cho-
sen magnets (not shown in figure) at certain points along both paths, one can
bend each stream back onto its original horizontal path, as shown. On studying
the atoms in the converged stream, a perhaps surprising result emerges; none
of these atoms are in the plus state and none are in the minus state. Instead,
every one is in the zero state from which it started!
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We created a "do-nothing" box!

So this experiment, without the detection screen, is reversible. But with the
screen, the experiment is obviously irreversible because the atoms make an irre-
versible mark when they strike the screen. It follows that any irreversibility and
corresponding entropy increase in this experiment are entirely due to the impact
on the screen, because we have seen that, without the screen, the experiment is
reversible.

Thus the macroscopic detection makes all the difference, and it is here that we
must search for all the irreversible effects of measurement. Specifically, mere
entanglement, such as occurs when a which-slit detector operates in the double-
slit experiment, is not responsible for irreversibility. The detection at the screen
works as follows:

The detection screen interacts with each atom to form the entangled measure-
ment state:

atom is in the plus state, flash appears at the upper spot
entangled(superposed) with
atom is in the minus state, flash appears at the lower spot

This is the controversial Schrodinger’s cat state that we analyzed earlier (the
radioactive nucleus is now the silver atom, and the cat is now the screen), where
we argued that this state is only a superposition of correlations.

This experiment demonstrates that the macroscopic recording of a measurement
is no small detail. No measurement is complete until it makes a mark on the
macroscopic world, and making such a mark must, because of the second law,
involve an entropy increase, implying irreversibility.

As John Wheeler repeatedly stressed,

No elementary quantum phenomenon is a phenomenon until
it is ... brought to a close by an irreversible act of amplification

If the measurement is recorded by the audible click of a detector, for example,
the irreversible mark is a sound wave spreading out in all directions into the
air around the detector. This sound wave warms the air a little and eventually
disperses (vanishes, for all practical purposes) into a large volume of air. There
is no way nature is going to spontaneously gather up every last bit of this wave’s
dispersed energy (while necessarily cooling the air), reverse the entire dispersal
process, and use this energy to restore the detector and the air to their states
before the click.

In fact, the reversed process is prohibited by the second law because it would
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reduce the total entropy of the universe! We conclude that microscopic quantum
processes, including entanglement, remain reversible as long as they remain
microscopic, and that the irreversibility of measurements must be rooted in
the macroscopic recording process. The next section looks at a macroscopic
recording process that goes on all over the universe all the time.

10.8.2 How Environmental Decoherence Collapses Super-
positions

A pebble lies on a sunny beach, immersed in an environment that includes at-
mospheric molecules, photons from the sun, cosmic rays from stars, and even
photons from the Big Bang. During every second, many such quanta interact
with the pebble, reflecting or otherwise scattering off the pebble in every possi-
ble direction. The scattered photons must carry away data about the pebble’s
orientation, structure, and color, because otherwise the pebble could not be
seen. Such natural "measurement" processes occur all the time, regardless of
the presence or absence of humans to consciously observe the gathered data.

To study the quantum features of such a natural measurement, instead of a
pebble let’s consider an atmospheric atom that is in a highly nonclassical state
of being superposed at two or more macroscopically separated locations. We
know that such a superposition can be created in the laboratory, for instance
by passing the atom through a double-slit apparatus, but it could also occur
naturally, for example if the atom passes through an opening that is sufficiently
narrow to cause the atom to diffract widely. What happens when such an atom
interacts with quanta in the surrounding environment?

The superposed atom interacts with, say, an environmental photon in a manner
analogous to the way a superposed electron coming through double slits inter-
acts with a which-path detector:

If the interaction is significantly different at the atom’s two superposed locations,
a photon can "measure" the atom by entangling with it in a measurement-like
state. Such an entangling interaction is just like a which-path measurement as
discussed earlier! The scattered photon carries away which-path data about the
atom, just as a which-path detector carries away data about an electron coming
through the slits.

As discussed earlier(reduced density operator), this measurement collapses or
decoheres (removes, via a series of small environmental interactions, the inter-
ference pattern from) the superposed atom, converting its state from a super-
position of being at both locations to a local mixture of being either at the first
location or at the second.

In the natural environment, a single scattered photon is not likely to entirely
measure (entirely decohere) the atom, because environmental quanta are not
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specifically organized, the way a laboratory detector is organized, to measure
superpositions.

A which-path detector in a laboratory is carefully constructed to respond in
detectably different ways at different locations of the measured quantum, quite
unlike environmental quanta, which interact randomly in all kinds of ways. Al-
though a good which-path detector requires only one interaction to reliably
distinguish between - reliably decohere - the superposed states of the detected
quantum, a large number of environmental quanta must scatter from a typical
superposed atom to completely decohere it and turn it into a local mixture.

Careful analysis shows that decoherence of typical naturally occurring superpo-
sitions requires many environmental interactions. So decoherence by the envi-
ronment involves a series of partial measurements and partial collapses, each of
them instantaneous, nonlocal, and similar to the single-step measurement that
occurs at the slits in a double-slit experiment with a which-path detector.

It’s through this environmental decoherence process that everyday objects such
as pebbles and this slide lose their extended quantum field nature and behave
classically, with no obvious trace of superposition, interference, or nonlocality.
Small objects, of atomic dimensions, are less susceptible to environmental de-
coherence simply because fewer environmental quanta scatter from them as a
result of their smaller size, and because each scattering event can cause only a
tiny amount of decoherence because the entanglement involves nearly indistin-
guishable locations. Thus, a superposed photon from the Big Bang might travel
the universe for 13.8 billion years without decohering, while a grain of sand
on Earth, should it happen to show any signs of superposition, is decohered
environmentally and essentially instantly because of the myriad environmen-tal
interactions it experiences. Widely extended superpositions of small objects,
such as a fine dust grain superposed in two locations separated by a millimeter,
are also decohered nearly instantly because the branches of such a superposition
are so distinct that a single photon reflecting from one branch but not the other
can turn the entire superposition into a mixture.

In a similar way, a single detector at only one of two parallel slits is sufficient to
turn a quantum that’s initially in a superposition of coming through both slits
into a mixture that comes through either one or the other slit. For mesoscopic
objects such as dust grains, environmental decoherence turns superpositions
quickly into mixtures.

How quick?

This has been calculated theoretically and measured in a few experiments.

A fine dust grain is some 107° m across. If it’s in a superposition of being in two
places with its two superposed branches separated by this same distance so that
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the two branches are right next to each other, as though the grain had come
through two closely adjacent slits, it would be decohered entirely by normal
air on Earth in only 107! second. Even the best laboratory vacuum (which
still contains plenty of air molecules) would decohere it within 107! second -
a hundredth of a trillionth of a second. If this grain were in deep outer space,
cosmic background radiation from the Big Bang would decohere it in 1 second.

For a smaller object, such as a large molecule with a diameter of 1078 m, these
decoherence times are longer (still assuming it’s in a superposition with two
branches that are separated by the molecule’s diameter): 107 second if the
molecule is in normal air, 0.01 second if it’s in the best laboratory vacuum, but
much longer than the age of the universe if it’s in deep space.

The message is that sufficiently small superpositions can survive awhile, but
meso- or macroscopic superpositions are fragile and are decohered quickly by
tiny environmental interactions.

This is why the "quantum world" is usually identified with the microworld.

When typical quantum features become meso- or macroscopic, they generally
vanish quickly. So the quantum universe appears classical at the macroscopic
level because the enveloping quantum environment "monitors" every object con-
stantly, and macroscopic objects are especially susceptible to this decoherence
process. Nature is full of which-branch detectors! Note that humans aren’t re-
quired in any of this - no physicists, no laboratories. Nature has been collapsing
superpositions, and quanta have been losing their wavy field nature, at least
since the Big Bang.

The role of the environment as an ever-present which-path monitor that turns
mesoscopic and macroscopic superpositions into mixtures was first clearly rec-
ognized by Zurek during the early 1980s. The work of Zurek, his colleagues,
and others has, in large part, explained how the quantum world leads to the
classical world of our experience.

A wide variety of experiments have demonstrated environmental decoherence
and convinced physicists that decoherence really is the mechanism that con-
verts the quantum world into non-wavy tables and teapots. One beautiful ex-
ample is an experiment by the University of Vienna group under Zeilinger and
Arndt.They use the Talbot?Lau interferometer technique that demonstrated,
in 2002, interference in large molecules such as C70 and certain biological
molecules. The interference showed each of these large molecules to be in a
superposition of following more than one path on its journey through the in-
terferometer. Using the same technique in 2004, this group was able to demon-
strate convincingly the "environmental" decoherence of superpositions of C70
molecules.
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I put environmental in quotation marks because in this experiment the environ-
ment came from within the molecules themselves rather than from an external
environment. Individual C70 molecules passed through the interferometer, as in
the 2002 experiment. But there was a new twist; the experimenters heated the
molecules just before sending them through the interferometer. They expected
that, with sufficient heating, the molecules would themselves emit thermal ra-
diation in the form of visible and infrared "thermal photons", just as an electric
hot plate emits thermal radiation (you can feel its warmth at a distance, and it
might glow red) when heated. The radiation comes from the random thermal
motion of the many atoms and other quanta within the molecule. According to
decoherence theory, each of these radiated photons should act as a partial which-
path detector, collapsing the molecule’s superposition state partially by carrying
a certain amount of which-path data from the molecule into its surroundings. If
enough such data are transferred, this which-path measurement should decohere
the molecule, causing the interference pattern to dim or vanish - the signature of
a superposition evolving into a mixture.Their results demonstrated decoherence
in action. With the molecules only slightly heated, the emitted photons had low
energies and thus low frequencies and long wavelengths - too long to distinguish
between the possible paths, which for such a massive molecule are separated
by extremely small distances. But when the molecules were heated to a few
thousand kelvins, the emitted photons’ wavelengths became short enough to
distinguish between the possible paths, so the which-path data transmitted to
the surroundings was sufficient to partially decohere the superposed molecules,
causing the interference pattern to partially vanish. At sufficiently high temper-
atures, theory and experiment showed that a mere two or three emitted photons
sufficed to decohere each molecule. There was quantitative agreement between
the predictions and observations. The interference pattern began decohering
at just the predicted temperature, and the degree of visibility of the remaining
interference was just as predicted. The experiment revealed the step-by-step
action of decoherence as data leaked, photon by photon, into the environment.

It also demonstrated the extreme sensitivity of superpositions to decoherence.
Just a few high-temperature photons turn a massive superposed molecule into
an incoherent mixture. Superposed quanta are delicate.

10.8.3 Decoherence and the Measurement Problem

Decoherence provides a solution of the irreversibility problem for natural envi-
ronmental measurements.

Decoherence was first introduced during the early 1980s to explain how our
apparently classical surroundings arise from measurement-like interactions with
the environment.

12pt] The local state argument, presented earlier, shows that such measurements
turn superpositions into entangled nonlocal measurement states with definite
outcomes, resolving the problem of definite outcomes for environmental mea-
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surements.

But just as for laboratory measurements, we must ask if this also resolves the
irreversibility problem associated with natural measurements.The answer is yes.

Here’s why.

As we'’ve seen, when a small superposed dust grain is decohered by the surround-
ing environment, the object undergoes a series of small entanglement-caused
partial collapses. These environmental measurements are ?recorded? by the
many environmental photons and air molecules that interact with the grain and
then disperse widely. Data about the superposition state of the grain before it
decohered are now scattered randomly far and wide. Just as one cannot un-
scramble an egg, one cannot reversibly gather these pieces back together and
reconstruct the global state of the air plus the superposed grain.

This argument is especially compelling in the case of environmental decoher-
ence, because of the environment’s enormous size. This is an obvious example
of the second law in action; for all practical purposes, the process is irreversible
and entropy has increased.

Because there is famous opposition to introducing for-all-practical-purposes ar-
guments into physics, it needs to be noted that the second law itself is inherently
a for-all-practical-purposes principle. We know that a box full of gas could evolve
spontaneously into separate regions of hot gas and cold gas simply by chance,
with no external assistance. The chances of this are ridiculously small, but they
are not zero, and if we consider boxes containing smaller and smaller amounts
of gas, these odds increase. Such for-all-practical-purposes arguments that trace
back to the second law are entirely in keeping with the principles of physics.

Here’s a tale about that. Joe, deep in philosophical conversation with Schmo,
points out, "Entropy never decreases."

"Never?" asks Schmo.

!

"No, never," responds Joe.

"What? NEVER?" shouts Schmo.
Looking up, Joe shrugs. "Well, hardly ever."

So the local state resolution plus decoherence combine to resolve the measure-
ment problem entirely for the case of natural environmental measurements. The
environment measures a superposed object (molecule, dust grain, and so on)
when myriad environmental quanta convert the superposition into a measure-
ment state that now takes the form of a nonlocal entanglement between the
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object and a very dispersed state of the many environmental quanta.

The local state argument implies this measurement state represents a mixture
of definite properties, whereas the highly dispersed nature of the environmental
quanta guarantees the process is irreversible.

There has, for years, been a question about what is the exact relationship be-
tween decoherence and the solution of the measurement problem. Some accounts
appear to imply that decoherence alone resolves the measurement problem, but
this is not true. An especially clear proof of this appears in an article provoca-
tively titled "Why Decoherence Has Not Solved the Measurement Problem: A
Response to P. W. Anderson," by Stephen Adler. Anderson, a Nobel laureate,
claimed in 2001 that decoherence does solve the measurement problem. Adler
is convincingly correct; decoherence alone does not solve the problem of definite
outcomes, so it does not by itself solve the measurement problem.

Maximilian Schlosshauer, a quantum foundations expert who has written widely
about decoherence, also states that

decoherence cannot solve the problem of definite outcomes in quan-
tum measurement

The connection of decoherence to the measurement problem is that it resolves
the irreversibility problem in the case of natural environmental measurements,
and it shows how environmental interactions transform a superposed quantum
into the measurement state, but it does not solve the problem of definite out-
comes associated with this measurement state. The problem of definite out-
comes is, however, resolved by the local state analysis, as explained earlier.

So the local state solution combines with environmental decoherence
to solve the measurement problem for the case of environmental mea-
surements.

What about the case of laboratory measurements?

Here, the preceding discussion resolved the definite outcomes problem, but not
the irreversibility problem. Irreversibility poses slightly different problems in
the two cases, because lab measurements are sufficiently controlled that the
natural environment has little effect. In fact, much of an experimentalist’s ef-
forts go precisely into ensuring that random environmental interactions have no
significant effect on an experiment’s outcome.

Our discussion of the Stern-Gerlach experiment suggested that the answer lies
in the irreversible nature of the macroscopic detection process. This suggestion
resembles the resolution of the irreversibility problem for environmental mea-
surements:
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Environmental measurements are "recorded" by innumerable environmental
quanta whereas lab measurements are recorded by detection screens, electronic
clicks, or, perhaps, cats.

Let’s focus on a single impact made on a detection screen by one electron in a
double-slit experiment - one of the small spots.

How was it recorded?

This mark was initiated by a single electron, but to observe it macroscopically
the original impact had to be detected and then amplified sufficiently for hu-
mans to see it. This is the purpose of every laboratory detector of microscopic
events, and it’s why an ?irreversible act of amplification? (as Wheeler puts it)
is essential to quantum measurements.

In the 1989 experiment that produced the patterns of dots on a screen, each
electron was emitted in a single coherent state, the same state for each electron.
EM fields accelerated these electrons to high speeds, about 180,000 kilometers
per second, or 60% of light speed - much faster than the electron in a normal
hydrogen atom, which orbits at an average speed of "only" 2000 kilometers per
second. High energies were needed to make a detectable impact. Each elec-
tron went through a pair of parallel slits, then spread out into an interference
state that interacted indeterminately with the screen. The interaction entangled
the electron with the screen, decohering the electron and collapsing it instan-
taneously from its earlier superposition state over the entire screen to a locally
observed mixture. In other words, the electron collapsed randomly into one or
the other of many small atom-size regions in the screen. For the fluorescent
screen used in the experiment, this interaction created some 500 photons that
marked and amplified the location of the impact - already an irreversible process
because the photons are emitted randomly in all directions. In a process called
the photoelectric effect, each photon then struck a metal plate and dislodged
an electron from it, converting each of the 500 photons into a low-energy elec-
tron. These 500 low-energy electrons were then focused into a point image that
could be displayed on a TV monitor in much the same way that old (before flat
screens) TV tubes operated. Every step of this process - creation of 500 pho-
tons, conversion to photoelectrons, and amplification to create the final display
- creates entropy and is irreversible thermodynamically. It’s the second law of
thermodynamics in action.

This illustrates the general case:
Laboratory detection and amplification of a quantum event necessarily involves
irreversibility and entropy production. The laboratory detector, a macroscopic

device made of many microscopic quanta, plays the decohering role that the
environment plays in natural measurements.
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To summarize: The quantum measurement problem, in both its laboratory and
environmental senses, is resolved entirely by the local state solution of the prob-
lem of definite outcomes and by the irreversibility of the decoherence process.
You have passed through the looking glass and explored the land of the quan-
tum. I hope the journey has been meaningful and fun. For more than a century,
much has been made of the odd and supposedly paradoxical nature of the quan-
tum. This presumed quantum spookiness has led to an excess of attempted fixes
and interpretations. Many experts have even declared the theory to be not a
description of reality at all, but only a mathematical recipe that helps humans
predict the results of experiments.

As Niels Bohr put it,

There is no quantum world. There is only an abstract quantum
description.

According to this hypothesis, quantum theory doesn’t describe anything real at
all, so there’s no cause for concern about collapse of the quantum state and other
odd quantum behaviors. Such an easy resolution of the quantum quandaries
amounts to giving up on science’s project of understanding the realities of the
natural world. It’s an extraordinary claim, requiring extraordinary proof. But
there is no such proof, and there are no grounds for regarding quanta as any
less real than rocks. Indeed, rocks are made of quanta.

Although it has long been a conceit of humankind to imagine the universe to
be centered around us, there is no reason to think that reality comprises only
the kinds of things we experience in our own daily lives. The real world does
not fade from existence, nor does it become incomprehensible, at distances that
happen to be several powers of ten smaller than teapots. Atomic and subatomic
processes are just as real as teapots and, with the help of technology, accessible
to human experimentation and understanding.

From the viewpoint of the macroscopic and classical world that we are pleased to
call "normal", there is certainly oddness in wave-particle duality, indeterminacy,
quantum states, superposition, nonlocality, measurement, and quantum jumps.
But there are no logical contradictions here, no disagreements with experiment,
and nothing that should persuade us that quantum physics is about anything
other than the real world.

Quantum physics is either charmingly counterintuitive or maddeningly puzzling,
depending on your taste, but it is entirely self-consistent and experimentally
accurate. It’s time to accept it with all its charms and puzzles, and stop trying
to repair or reinterpret it. It’s time, in other words, to relax and admit the
world is not as we had thought.

Nature is far more creative than we could have conceived. Our most fundamental
theory is in better shape than its detractors suppose. Quantum physics is a
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remarkable treasure trove of far-reaching phenomena and ideas whose surface
we have probably only begun to scratch. It’s time to fully embrace these ideas,
incorporating them into our ways of thinking about the universe, about our
planet, and about ourselves. This is a process that will engage our minds and
stretch our imaginations far into the future, for quantum physics is, indeed, not
what anybody could have imagined.

10.9 Closing Story #1

Let us look at EPR again now that we understand what is happening in entan-
gled quantum systems.

Depending on basis used (language chosen) we have one of two states for a pair
of electrons:

1 1

\/§(|Tz>|iz)_|iz>”z)) or [¢) \/§(|Tm>|iw)_|ix>”$>) (10.64)

Let us once again consider the EPR reasoning to see whether it leads to the
conclusion of incompleteness of quantum mechanics. If Alice performs a mea-
surement on spin along the z direction and the outcome is spin up, the state
vector after measurement is updated to [1,)|{.).

[¥)

This just means that if Bob were to measure the z-component of spin, the spin
value would be DOWN according to Alice. This description of physical reality
is true only relative to Alice.

From Bob’s perspective, before he knows the Alice’s measurement result, he
still views the composite system in the original state, i.e., no quantum event
happened yet. In other words, Bob still predicts that future measurement spin
will find the UP state with 50% chance.

Since the spins of the two electrons are entangled, Alice’s spin is a measuring
apparatus for Bob’s spin.

Since Alice performed a spin measurement, she effectively reads the measuring
apparatus. Therefore, she is the intrinsic observer, and Bob is an external ob-
server. At this point, both observers are out of synchronization on the relational
information of the two particles, thus they give different predictions of Bob’s
particle spin value.

To verify the physical description Alice obtained for Bob’s spin value after mea-
suring the Alice particle spin value, Alice can travel to Bob’s location to perform
a measurement, or can send the measurement result to Bob and ask Bob to per-
form a measurement.
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Suppose Alice sends the measurement outcome to Bob. Bob updates state to
[12)]42), the same as state relative to Alice.

He now can confirm the physical reality that the Bob spin value is DOWN with
unit probability.

However, in this state, he cannot predict deterministically that Bob particle spin
value is would be in the z-direction, since ||.) is superposition of z-components.

Similarly, if Alice performs a measurement on the Alice particle spin along the
z-direction and the outcome is spin UP, then the Bob particle spin value is
deterministically DOWN/(a-direction) relative to Alice, but nothing happened
from Bob’s view.

If Alice sends the measurement result to Bob, Bob updates the state vector
accordingly to [t;)|lz). He now can confirm the physical reality that the Bob
particle spin value is the right state ||,).

However, in this state, he cannot predict deterministically that the Bob’s par-
ticle spin value would be in the z-direction, since ||,) is superposition of z-
components.

Since Alice cannot perform measurement on the Alice spin value along z and
x directions at the same time, Bob cannot confirm the Bob spin value has spin
values in both z and x directions simultaneously. The reality that the Bob spin

value simultaneously has definite values for S, and S, cannot be verified.

This is consistent with the Heisenberg Uncertainty Principle. There is no in-
completeness issue for quantum mechanics. Hence the original EPR argument.

However, there is still a puzzle here, namely, a non-causal correlation.

It appears Bob’s measurement outcome on the Bob spin value “depends” on
which direction Alice chooses to measure the Alice spin value.

Since Alice’s measurement does not impact the physical property of particle
Bob spin value, we can ask exactly what spin state is Bob spin value in before
Alice’s measurement?

To answer this subtle question, first note that it is Alice’s new knowledge of the
Bob spin value, not the physical reality of the Bob spin value, that depends on
the axis along which the measurement is performed.

One cannot assume there exists an absolute reality for Bob spin value.

To confirm the new found reality of the Bob spin value relative to Alice, Alice
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sends the measurement result to Bob who performs a subsequent measurement.
There is no faster-than-light action here.

Secondly, it is true that Bob’s measurement outcome correlates to the Alice’s
measurement result. But this is an informational correlation, not a causal rela-
tion.

This correlation is encoded in the entangled state of the composite system |¢).
Since the entanglement is preserved even when both particles are space-like sep-
arated, the correlation is preserved.

Such an entangled quantum state contains not only the classical correlation, but
also the coherence information of the composite system.

When Alice measures the Alice particle spin value, she effectively measures the
composite system, because she obtains information not only about the Alice
spin value, but also about the correlation between the Alice spin value and the
Bob spin value.

In addition, the measurement induces the decoherence of the composite system.

Before Alice performs the measurement, it is meaningless to speculate what spin
state the Bob particle spin is in.

When Alice measures the Alice spin value along the z direction and obtains
result of spin up, she knows that in this condition, the Bob spin value is in spin
down and later this is confirmed by Bob.

If instead, she measures the Alice spin value along the x direction and obtains
result of spin left, she knows that in this new condition, the Bob spin value is
in spin right and is later confirmed by Bob.

To better understand this non-causal relation, suppose we have many identical
copies of the entangled pairs described by [¢)).

Alice measures the Alice particle spin values sequentially along the z direction
and she does not send measurement results to Bob. Bob independently mea-
sures the Bob particle spin values along z direction as well.

Both of them observe their own measurement results for S, as randomly spin
up or spin down, but with fifty percent of chance for each. When later they
meet, compare measurement results.They find two sequences of S, values that

are exactly opposite.

They can even choose a random sequence of z or z directions but both follow
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exact sequence in their independent measurements. When later they meet and
compare measurement results, they still find their measured values are the op-
posite sequentially.

What does this all mean?
Special Relativity forces us to abandon the concept of absolute time.
Measurement of time is observer-dependent.

Similarly, in relativistic QM, the idea of an observer independent quantum state
must be abandoned.

Space-like separated observers, however, can reconcile the different descriptions
of the same quantum system through classical communication of information
obtained from local measurements.

10.10 Closing Story #2 - Some Provocative Thoughts
- A possible future direction.....

Quantum mechanics began with Heisenberg’s “Umdeutung(Reinterpretation)”
paper, i.e., his proposed “reinterpretation” of physical quantities at the funda-
mental level as non-commutative.

To say that the algebra of physical quantities is commutative is equivalent to
saying that the projection operators form a Boolean algebra (Boolean algebra
is the branch of algebra in which the values of the variables are the truth values
true and false, usually denoted 1 and 0 respectively).

They represent yes-no observables, or properties (for example, the property that
the energy of the system lies in a certain range of values), or propositions (the
proposition asserting that the value of the energy lies in this range), with the
two eigenvalues corresponding to the truth values, true and false.

Heisenberg’s insight amounts to the proposal that certain phenomena in our
Boolean macroworld that defy a classical physical explanation can be explained
probabilistically as a manifestation of collective behavior at a non-Boolean
micro-level.

The Boolean algebra of physical properties of classical mechanics is replaced
by a family of “intertwined” Boolean algebras, one for each set of commuting
observables.

The intertwinement precludes the possibility of embedding the whole collection
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into one inclusive Boolean algebra, so you can’t assign truth values consistently
to the propositions about observable values in all these Boolean algebras.

Putting it differently: there are Boolean algebras in the family of Boolean alge-
bras of a quantum system, notably the Boolean algebras for position and mo-
mentum, or for spin components in different directions, that don’t fit together
into a single Boolean algebra, unlike the corresponding family for a classical
system.

The intertwinement of commuting and noncommuting observables in Hilbert
space imposes objective pre-dynamic probabilistic constraints on correlations
between events.

The probabilistic constraints encoded in the geometry of Hilbert space provide
the framework for the physics of a genuinely indeterministic universe.

They characterize the way probabilities fit together in a world in which there
are nonlocal probabilistic correlations that violate Bell’s inequality.

Quantum probabilities don’t quantify incomplete knowledge about a state, but
reflect the irreducibly probabilistic relation between the non-Boolean microlevel
and the Boolean macrolevel.

This means that quantum mechanics is quite unlike any theory we have dealt
with before in the history of physics, and there is no reason, apart from tra-
dition, to assume that the theory can provide the sort of explanation we are
familiar with in a theory that is commutative or Boolean at the fundamental
level.

Quantum probabilities can’t be understood in the Boolean sense as quantifying
ignorance about the pre-measurement value of an observable, but give results
in terms of what you’ll find if you “measure”, which involves considering the
outcome, at the Boolean macrolevel, of manipulating a quantum system in a
certain way.

A quantum “measurement” is a bit of a misnomer and not really the same sort
of thing as a measurement of a physical quantity of a classical system.

It involves putting a microsystem, like a photon, in a situation, say a beamsplit-
ter or an analyzing filter, where the photon is forced to make an intrinsically
random transition recorded as one of two macroscopically distinct alternatives
in a device like a photon detector.

The registration of the measurement outcome at the Boolean macrolevel is cru-

cial, because it is only with respect to a suitable structure of alternative possi-
bilities that it makes sense to talk about an event as definitely occurring or not
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occurring, and this structure is a Boolean algebra.

From this perspective, Heisenberg’s theory provides a way of deriving probabil-
ities and probabilistic correlations with no causal explanation.

They are “uniquely given from the start” as a feature of the non-Boolean struc-
ture, related to the angles in Hilbert space, not measures over states as they are
in a classical or Boolean theory.

The really significant thing about a noncommutative mechanics is the novel pos-
sibility of correlated events that are intrinsically random, not merely apparently
random like coin tosses, where the probabilities of “heads” and “tails” represent
an averaging over differences among individual coin tosses that we don’t keep
track of for practical reasons.

This intrinsic randomness allows new sorts of nonlocal probabilistic correlations
for “entangled” quantum states of separated systems.

The view that Hilbert space is fundamentally a theory of probabilistic corre-
lations that are structurally different from correlations that arise in Boolean
theories is, in effect, an information-theoretic interpretation of quantum me-
chanics.

On this way of understanding quantum mechanics, as a non-classical theory of
information or a new way of generating probabilities and probabilistic corre-
lations between intrinsically random events, probabilities are defined with re-
spect to a single Boolean frame, the Boolean algebra generated by the “pointer-
readings” - the “ultimate measuring instruments”, which are “kept outside the
system subject to quantum mechanical treatment”

It’s not that unitarity is suppressed at a certain level of complexity, where non-
Booleanity becomes Booleanity and quantum becomes classical.

Rather, there is a macrolevel, which is Boolean, and there are actual events at
the macrolevel.

Any system, of any complexity, is fundamentally a quantum system and can be
treated as such, in principle, which is to say that a unitary dynamical analysis
can be applied to whatever level of precision you like.

The crucial assumption in this probabilistic interpretation of the theory is that
the outcome of a measurement is an intrinsically random event at the macrolevel,
something that actually happens, not described by the deterministic unitary dy-
namics, so outside the theory, or “irrational”.

Putting it differently, the “collapse”, as a conditionalization of the quantum
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state, is something you put in by hand after recording the actual outcome.
The physics doesn’t give it to you.

Special relativity, as a theory about the structure of space-time, provides an
explanation for length contraction and time dilation through the geometry of
Minkowski space-time, but that’s as far as it goes.

This explanation didn’t satisfy Lorentz, who wanted a dynamical explanation
in terms of forces acting on physical systems used as rods and clocks.

Quantum mechanics, as a theory about randomness and nonlocality, provides
an explanation for probabilistic constraints on events through the geometry of
Hilbert space, but that’s as far as it goes.

10.11 Last Thoughts

When a detector measures a superposed quantum, quantum physics predicts
that states actually observed are local (i.e., mixed or reduced) states of subsys-
tems, not the superposed global state that follows from Schrédinger’s equation.
The local states that are directly observed in a measurement must contain no
hint of the nonlocal correlations between the two subsystems, lest relativity’s
prohibition on instant signaling be violated.

Thus the local states describe what actually happens in both subsystems.

The global state predicts these local states, and also predicts the indirectly-
observable (by gathering global data at a later time) nonlocal correlations be-
tween these states.

Experiments confirm both the local and the global predictions, namely that
outcomes are definite but unpredictable, and correlations between these defi-
nite outcomes are as described by the entangled measurement state.

This resolves problem of definite outcomes of measurements.

Nonlocality experiments demonstrate the precise nature of superposition inher-
ent in the global measurement state:

This state is a superposition only of correlations between the detector and its
observed quantum, not a superposition of states of the detector or quantum. It
should be read as “first the quantum state is correlated with the first detector
state AND the second quantum state is correlated with the second detector
state”.
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The word AND indicates superposition. By this shifting of coherence from
states of subsystems to correlations between subsystems means that evolution
of global state can remain unitary, and global state can remain coherent, while
both subsystems collapse into incoherent mixtures of unpredictable but definite
outcomes. This is the way nature resolves problem of definite outcomes.

Analyses such as this are sometimes called “no-collapse” solutions of measure-
ment problem, but this is a misnomer. There is a physically real, instantaneous,
and observable collapse - a quantum jump - of observed local states, as verified
quite explicitly by Roch’s delayed-choice experiment.

The global state cannot collapse because it obeys unitary dynamics; it accord-
ingly entangles rather than collapses upon measurement. Observed phenomena
collapse, while the global state continues smoothly evolving as predicted by
Schrodinger’s equation.

The notion of “collapse of the quantum state” must be replaced by “collapse of
the local state, and unitary evolution of the global state”.

Both aspects, local and global, are correctly predicted by standard quantum
theory and verified by experiments.

If we add decoherence into the mix, then the problem of irreversibility is also
removed!

So let me repeat.....

There are no problems with standard quantum mechanics! We have
now finished our coverage of basic Quantum Mechasnics.

In the next(last) chapter we again discuss topics brought up earlier, such as
EPR and theBell Inequality in more detail and more mathematically, for com-
pleteness.

But before doing that I am going to insert Chapter 11 of Jauch’s book on Foun-
dations of Quantum Mechanics(1968) where he presents the local-state idea and
solves the measurement problem in his own way. I hope that, after you read
Jauch’s work you will agree that it is basically the same idea as I have presented
and thus confirms my ideas.
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Chapter 11

The EPR Argument and Bell Inequality

11.1 Hidden variables and Bell’s Inequalities-1st
Try

As we have seen, when a quantum system possesses more than one degree of
freedom, the associated Hilbert space is a tensor product of the spaces associ-
ated with each degree of freedom. This structure leads to specific properties
of quantum mechanics, whose paradozical nature has been discussed in earlier
chapters. In this section we will study an example of such a situation by con-
sidering entangled states for the spins of two particles.

The system under consideration is a hydrogen atom which is dissociated into
an electron and a proton. We consider the spin states of these two particles
when they have left the dissociation region and are located in spatially distinct

regions, e.g. a few meters from one another. They are then considered to be
free particles whose spin states do not evolve.

11.1.1 The Electron Spin

Consider a unit vector @y n the (z,z) plane given by w4 = cosd i, +sing i,
vyhere f:‘l’ and u, are unit vectors in the x and z directions. We note that
Sep =S¢ - Uy is the component of the electron spin in the g4 direction.

In the eigenbasis |e : +) of S, ., the matrix representing Se¢ is

(+|Se¢|+> (+\5‘e¢|—) _h( cosp sing
( (_|Se¢|+> <—‘Se¢|—> )_ 2( Sil’l¢ _COS(b ) (111)

which has eigenvalues +h/2 (true for any direction).
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The corresponding eigenvectors are
|e:+¢)):cos§|e:+)+sin§|e:—) (11.2)
|e:—¢)):—sin§|e:+)+cos§|e:—) (11.3)

If the electron is emitted in the state |e : +¢), the probability P, («) of finding
the electron in the state |e: +«) is given by

Pi(a) = |{e: +a]e: +g)’

2
= (cosg(e:+|+sing(e:—|) (Cos?\e:+)+sin?|e:—))
2 2 2 2
2 p—
= (COSgCOS?‘FSngSiH?)‘ = cos? $-a (11.4)
2 2 2 2 2
and similarly,
P(a)=|{e:-a]e:+g)’
2
= ‘(—Sing(e:+|+cosg(e:—|)(cos?|e:+)+sin?|e:—))
2 2 2 2
2 p—
= ‘(—singcos? +cosgsin?) = sin? $-a (11.5)
2 2 2 2

Using these results, the expectation value of S.o in the le: +¢) state is then

1= () () o

= g (0052 q§;2a — sin? (b_Ta) = gcos(cﬁ -a) (11.6)

11.1.2 Correlations Between the Two Spins

We assume that after the dissociation, the electron-proton system is in the
factorized spin state |e: +¢) ® [p: —¢). Now if |u1) € E and |ug) € E and |vy) € F
and [v2) € F', then |[u) ® [v) € G = E® I and if A and B act respectively in
E and F, then C'= A® B acts in G. Then one has (us| ® (va|C'lu1) ® [v1) =
(uz| Alur) (ve| B |vr).

We now determine the probability P;(«) of finding +h/2 when measuring the
component S, of the electron spin in this state.

The projector on the eigenstate le : +a), corresponding to the measured value,
is |e: +a) {e: +a| ® I, where I, is the identity operator on the proton states.
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Therefore,

Pi(a) = (p:~dl@ (e: +¢| (le: +a) (e: +al® [) |e: +¢) @ |p: ~¢)
(p:=¢ldplp: ~0) (e:+¢|e:+a)(e: +ae: +9)

:|<e:+a|e:+¢)|2:cos2¢_Ta (11.7)

and the state after the measurement is |e:+a) ® [p: —¢). The proton spin is
not affected, because the initial state is factorized (and all probability laws are
factorized).

For i4 = cos ¢t +sin ¢t and Ug = cos B, +sin B, we can calculate the expec-
tation values (as earlier)

(S’ea) = gcos(qﬁ— a) (S'pg) = —gcos(qﬁ— B) (11.8)

The correlation coefficient between the two spins E(«, 3) is defined by

Bloyf) = = i (11.9)
(82.)(s2.))
Now 2 2
St %fe W hpr (11.10)
and
(Sea ® Spﬁ) = <€ : +Oé|§e |6 : +a) (p . +ﬂ|‘§p |p . +5>
_ _%2c08(¢—a)cos(¢—ﬁ) A1)
Thus,
E(o,B) = _%2 cos(¢ — ) cos(¢ — ﬁ)h: %2 cos(¢p — a) cos(d — B) 0

4

This just reflects the fact that in a factorized state, the two spin variables are
independent.
Correlations in the Singlet State

Now assume that, after the dissociation, the two particles are in the singlet spin
state

ws):%<|e:+>®|p:—>—|e:—>®|p:+>> (11.12)
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If we measure the component S.q of the electron spin along the direction 4, =
cos atl, + sin ati,, we find the following results and corresponding probabilities:
there are two possible values

h . .
tg e projector |e:+a)(e:+a|® I,
h . 5
e projector |e:-a)(e:—-a|®I,
with probabilities

Py(a) = ([(e:+ale: ) + ez +ale:-)f) =

N~ DN =

2 2
P(a)=([fe:-ale:+) 4 [fe:-ale:-)) =
This result is a consequence of the rotational invariance of the singlet state.

Now suppose the result of this measurement is +h/2 and then later on, one
measures the component S,z of the proton spin along the direction @z = cos S, +
sin By,.

Since the electron spin is measured to be +£/2, the state after that measurement
is

(e:+a|vs)le: +a) =

V2

=>cos%|e:+a)®|p:—)—sin%|e:+a)®|p:+) (11.13)

((e:+ale:+)fe:+a)@[p: =) —(e:+ale:-)|e:+a)@|p: +))

The probabilities for the two possible results of measurement of the proton spin,
+h/2, are
B g

P, () =sin2% , P_(B):COSQ% (11.14)

What would have happened if we had measured the proton spin first?

If the proton had been measured first then we would have

1

P+(ﬂ):% ) P—(ﬁ):§ (11.15)

as we found for the electron when the electron was measured first.

The fact that the measurement on the electron affects the probabilities of the
results of a measurement on the proton, although the two particles are spatially
separated, is in contradiction to Einstein’s assertion or belief that the real states
of two spatially separated objects must be independent of one another. This is
the starting point of the EPR paradox. Quantum mechanics is not a local theory
as far as measurements are concerned.
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Note, however, that this non-locality does not allow the instantaneous trans-
mission of information, From a measurement of the proton spin, one can not
determine whether the electron spin has been previously measured. It is only
when, for a series of experiments, the results of the measurements on the electron
and the proton are later compared, that one can find this non-local character
of quantum mechanics.

We now recalculate the expectations values < e ) < p/g)ln the singlet state.

(0%
We get (using the same process as above) ( ) = ( ) This is so because

one does not worry about the other varlable

Finally, we can calculate the correlation coefficient in the singlet state. We have,
since the spins are correlated now, that

& & h? (. oa=p sa-B\_ R
(Sea ® Sps) = e (sm 5 T8 — )——ZCOS a-p) (11.16)
and therefore
h2
2 cos(a - B) +0
E(a, ) = — Cos(g b+ =—cos(a—f3) (11.17)
4

in the singlet state.

11.1.3 A Simple Hidden Variable Model

For Einstein and several other physicists, the solution to the paradoxr uncovered
above comes from the fact that the states of quantum mechanics, in particu-
lar the singlet state above, provide and incomplete description of reality. A
complete theory (for predicting spin measurements, in the present case) should
incorporate additional variables or parameters, whose knowledge would ren-
der measurements independent for two spatially separated objects. However,
present experiments cannot determine the values of these parameters, which
are therefore called hidden variables. The experimental result should then con-
sist of some averaging over these unknown parameters.

In the case of interest, a very simplified example of such a theory is the follow-
ing. We assume that, after each dissociation, the system is in a factorized state
le: +¢) ® |p: —¢), but that the direction ¢ varies from one event to another. In
this case ¢ is the hidden variable. We assume that all directions of ¢ are equally
probable, i.e., the probability density that the decay occurs with direction ¢ is
uniform and equal to 1/2.

Since we are ignorant of the value of ¢, the expectation value of an observable
A is now defined to be

21

<A>=%f(6:+¢|®<p:—¢|A|e:+¢>®|p:—¢) (11.18)
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Let us now use this new definition of the expectation value to investigate the
correlation coefficient. We have from earlier

(Sea ® Spa) = (Sea) (Sps)
/

((82.(22.) "

E(a,B) =

Using our earlier results we have

2
(8.a) = % f cos(gi)—a);l—f; -0 (11.19)
and similarly (Spg) =0. We also have
2 2
(Sea ® 5',,3) = _hZ / cos(¢ — a) cos(¢ — B)% = —% cos(a - ) (11.20)

Therefore, in this simple hidden variable model

E(a,B) :—%cos(a—ﬁ) (11.21)

In such a model, one finds a non-vanishing correlation coefficient, which is an
interesting observation. Even more interesting is that the correlation is smaller
than the prediction of quantum mechanics by a factor of 2.

The first precise experimental tests of hidden variable descriptions versus quan-
tum mechanics have been performed on correlated pairs of photons emitted in
an atomic cascade. Although, we are not dealing with spin—1/2 particles in this
case (see discussion later in this chapter), the physical content is basically the
same as in this case. As an example Figure 11.1 below presents the experimental
results of Aspect, et al,

Figure 11.1: Data from Aspect, etal

It gives the variation of E(«, ) as a function of the difference a — 3, which is
found experimentally to be the only relevant quantity, i.e., the results do not
depend in any way on « or 3 separately! The circles indicate the size of exper-
imental errors.

The experimental points agree with the predictions of quantum mechanics and

clearly disagree, therefore, with the predictions of this particular hidden vari-
ables theory.
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11.2 Bell’s Theorem and Experimental Results

As proved by Bell in 1965, the disagreement between the predictions of quantum
mechanics and those of hidden variable theories is actually very general when
one considers correlation measurements on entangled states.

We can, however, show that the correlation results for hidden variable theories
are constrained by what is known as Bell’s inequality, which is violated by quan-
tum mechanics.

Consider a hidden variable theory, whose results consists of two functions A(\, @y )
and B(\, 4g) giving respectively the results of the electron and proton spin mea-
surements. Each of these two functions takes only two values +h/2 and —h /2. Tt
depends on the value of the hidden variable A for the considered electron-proton
pair. The nature of the hidden variable need not be further specified for this
discussion. The result A of course depends on the axis i, chosen for the mea-
surement of the electron spin, but it does not depend on the axis @z. Similarly
B does not depend on .. This locality hypothesis is essential for the following
discussion.

Note that we assume here that the hidden variable theory reproduces the one
operator averages found for the singlet state:

(8.a) = fP(A)A(A,ﬁa)d)\:O (11.22)

(8,5) = fP(/\)B(/\,aﬂ)d/\ -0 (11.23)

If this was not the case, such a hidden variable theory should clearly be rejected
since it would not reproduce a well-established experimental result.

Let us now consider the quantity

A()‘vﬁa)B(A’ﬂﬁ) + A(/\v ﬁa)B()‘vﬁk) + A()‘a ﬁa)B(/\v'&lﬁ) - A(Aa ﬁ,a)B()‘v f"ﬁ)
(11.24)
for any set aa,ama;,%. We can rewrite this as

A i) (BOhiig) + BO i) + AL L) (BOL i) - B(Aig))  (11.25)

Now the two quantities B(A, i) and B(\, @j) can take on only two values +h/2.
Therefore, one has either

B(\iig) + B(\,a5) =+h , B(X\ah) - B(\dg) =0 (11.26)

or
B(\iig) + B(\@5) =0 , B(X\ah) - B(\dg) = +h (11.27)

Therefore, since |A(\, iq)| = |A(X, @, )| = h/2, we have the result
AN Ga) (B ig) + B\ i) + AN, G ) (B(X, ) - B(X, 4g)) = £h?/2 (11.28)

811



We then define the quantity S as
$=E(a,8) + E(a, 8') + E(a', ') - (o', B) (11.29)
and we get

A i) BOG ig) + A(A, 1) BO, i)
fP(A)dA[ +A(A,a;)1§(x,aﬂ)—A(A,a;)ﬁ(x,aﬁ)

2
= 1B, B) 4 B0, ) + (!, ) - B(al, 5)]

h2 h2
= f PO)dA =+

2 2
or |S| <2, which is Bell’s inequality.

Now let us consider a special case a — 8 = 8 —a =a’ — 3’ = w/4. The quantum
mechanical result for S is

S =—cos(a— ) —cos(a— ") = cos(a’ = ") + cos(a’ = B) (11.30)
Ifweset 1 =a-08,0,=8-«a, 03=a’ -, we can look for the extrema of
f(01,02,03) = cos(01 + 0 + 03) — cos By — cos s — cos O3 (11.31)

The extrema correspond to 61 = 3 = 03 and sinf; = sin36; whose solutions
between 0 and 7 are 6; =0, w/4, 37 /4, .

Defining the function g(6;) = -3 cos 6y + cos 36, we have
9(0) = =2, g(n/4) = -2v/2,, y(3n/4) =22, g(m) =2 (11.32)
The plot in Figure 11.2 below shows g(6):

g(0)

Figure 11.2: Bell Function
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The shaded areas correspond to results which cannot be explained by hidden
variable theories. This system therefore constitutes a test of the predictions of
quantum mechanics versus any local hidden variable theory.

11.3 The EPR(Einstein-Podolsky-Rosen) Argument-
Quick Overview

The nondeterministic character of quantum mechanics is very disturbing for
the classical physicist. Hence, there were repeated attempts to replace quantum
theory by a statistical theory.

According to these theories, there exist hidden variables whose values prescribe
the values of all observables for any particular object, except that the hidden
variables are unknown to the experimenter, thus yielding the probabilistic char-
acter of the theory. The probabilistic character of quantum mechanics would
then be quite analogous to that of classical statistical mechanics, where one can
imagine that the motion of all the particles is, in principle, known.

For example, let us consider a particle of spin = 1/2 in an eigenstate of S,
with eigenvalue h/2. According to quantum mechanics, the z—component is not
fixed. If one measures it for a very large number of such particles, one finds h/2
50% of the time and —-h/2 50% of the time. According to the idea of hidden
variables, for each particle, parameters unknown to us would determine whether
h/2 or —h/2 results. These hidden variables would prescribe +h/2 each 50% of
the time.

By means of a number of thought experiments, Einstein attempted to demon-
strate the incompleteness of the quantum mechanical description and to get
around the indeterminism and the uncertainty relation. Each of these argu-
ments was refuted, in turn, by Bohr.

An argument - sometimes referred to as a paradox - due to Einstein, Podolsky
and Rosen (EPR) , played a pivotal role in the discussion of indeterminism and
the existence of hidden variables; we consider the argument as reformulated by
David Bohm.

Let two spin = 1/2 particles in the singlet state
1
V2

be emitted from a source an then move apart in space. Even if the two particles
are separated by an arbitrarily large distance and can no longer communicate
with one another, one finds the following correlations in this state during a
measurement of the one particle spin states:

10,0) = —= (IN ) =) 1) (11.33)
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If one measures the z—component of the spin and finds
particle 1 spin up, particle 2 is spin down. If one
finds particle 1 spin down, particle 2 has spin up.

If, instead, one measures S,, then +h/2 for
particle 1 implies —h/2 for particle 2, etc.

This expresses the nonlocality of quantum theory.

The experiment on particle 1 influences the result of the experiment on particle
2, although they are widely separated. The nonlocality is a consequence of the
existence of correlated many-particle states such as the direct product

1114 (11.34)

and the fact that one can linear superimpose such states.

The nonlocality of quantum mechanics does not lead to contradictions with
relativity theory. Although a measurement of a spin component of particle 1
immediately reveals the value of that component for particle 2, no information
can be transmitted in this way. Since particle 1 takes values +h/2 each 50% of
the time, this remains true for particle 2, even after the measurement of particle
1. Only by a subsequent(slow) comparison of the results is it possible to verify
the correlation.

Einstein, Podolsky and Rosen gave the following argument in favor of hidden
parameters in conjunction with the EPR thought experiment.

By the measurement of S, or S, of particle 1, the values of S, or S, of particle 2
are known. Because of the separation of the particles, there was no influence on
particle 2, and therefore the values of S, S, etc, must have been fixed before the
experiment. Thus, there must be a more complete theory with hidden variables.

In the EPR argument, the predictions of the quantum states

1
75 (D= 11)11))

|0,0) = /2

are used, but the inherent nonlocality is denied.

In the remainder of our discussion, we will consider local hidden variables. These
would predetermine which value each of the components of S of particle 1 has
and likewise for particle 2. Each of the particles would carry this information
independently of the other.
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11.3.1 The Bell Inequality again

We now show again that such local hidden variables lead to predictions differ-
ent from those of quantum mechanics. We then compare the predictions with
experiment.

We consider a correlation experiment in which a particle of total spin = 0 decays
into two particles each with spin = 1/2. At a sufficiently large distance from the
source, a rotatable polarizer and a detector are set up for each particle as shown
below, so that the particles can be detected and we can investigate whether any
correlation in the spin orientations exists. The setup is shown in Figure 11.3
below.

Source

=
Py P2

Figure 11.3: Bell-EPR Experiment

Polarizer 1 with angular setting « only lets particle 1 through if its spin in the
direction 7, has the value +h/2 and polarizer 2 with angular setting 8 only
lets particle 2 through if its spin in the direction fig has the value +h/2. The
particles are counted by detectors 1 and 2. If they respond, then the spin is
positive, otherwise it is negative.

We consider the correlation between various angular settings of the polarization
experiment.

A measure of the correlation is N («; 3), defined as the relative number of exper-
iments resulting in particle 1 at angle « being positive and particle 2 at angle
B being positive.
Using the spin projection operator
1 Lo
P9:§(1+0-n9) (1135)
quantum mechanics gives
1 Lo 1 L.
N(a3 8) = (0,005 (14120 5 (1+ 32+125)[0,0)
1 1
=0, 0] 3 (1461 70) 5 (1-51-7ng)]0,0)
1
:Z(l_ﬁa.ﬁﬁ) (11.36)
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since (0,0/5110,0) = 0 in the singlet state. For coplanar detectors this reduces

to 1
N(a;ﬁ):§sin25;a

If hidden variables were really present, we could represent N(«;3) by the fol-
lowing sum

(11.37)

N(a;8) = N(ay; B) + N(o;v) (11.38)
Here, N(avy;f) is the relative number of particle pairs in which particle 1 has
positive spin at angles « and v and negative spin at 3, while N(«a;v3) is the
relative number of particle pairs in which particle 1 has negative spin at [gamma
instead. In theories with hidden variables, all of these quantities are assumed
to be known.

Now one has N(av;8) < N(v;8) since N(v;8) = N(avy; 8)+ N(v; Sa) and both
quantities on the right-hand side of the equation are nonnegative. Similarly,
N(a;yB) < N(a;7). Thus,

N(a;B8) < N(a;v) + N(v; 8) (11.39)

This is a simple version of the Bell inequality.

Remarks

1. In experiments one often works with the correlation defined by
P(a;8) = (0,0 (61 fa) (62 -725) [0,0) = 4N (s ) - 1 (11.40)

instead of N(«; ) itself. Using

N(a;ﬁ)z%sinQﬂ;a (11.41)
we get
P(a-8)=P(a;8) =—cos(a-f) (11.42)
and Bell’s inequality becomes
P(o; ) =1 < P(asy) + P(v; 8) (11.43)

2. The limit prescribed by the Bell inequality can be determined as follows.
In

N(a;8) < N(a;7) + N(7;8) (11.44)

we substitute for «, 3,7 the values 0,7, 7/2 respectively to obtain
N(0;7) < N(0;7/2) + N(7/2;7) (11.45)

In the singlet state,
1
N(0;7) = 3 N(0;7/2) = N(m/2;7) (11.46)
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so that

N(0;7/2) > (11.47)

NG

Other values can be obtained by different combinations of angles.

Finally, we contrast the consequences of the Bell inequality with quantum me-
chanics and compare with experiments.

To this end, we compute N(«;3), N(«a;v) and N(v;8) for the three angles
a=0° v=45° and § =90° using

1 —
N(a;8) = L2222 (11.48)
2 2
to get
%sinQ 45° < 25sin” 22.5° (11.49)
or
0.5<0.29 (11.50)

which is clearly not true! Therefore, quantum mechanics and hidden variables
are incompatible.

The comparison of quantum mechanics and the Bell inequality is shown in Fig-
ure 11.4 below, which gives the correlation P(0) = P(6;0) according to quantum
mechanics and the Bell inequality.

0
Po)
-0.28
et of Bel's
§ nequalty .
g 050 | fov
3
-0.75
|
L]
1.00

0 15° 30" 45" 60* 7S 20"

Angle between polarzess

Figure 11.4: Bell-EPR Experiment Theoretical Predictions
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The experimental demonstration of the violation of the Bell inequality by Lamehl-
Rachti for protons and Aspect for photons is shown in Figure 11.5 below which
gives the experimental results on the spin correlation of proton pairs

Pl

0 ‘ Exp

— QM

* Dell's bt

+0.29

050

0" 15 30" 45" S0 75" SO

Figure 11.5: Bell-EPR Experiment - Data

Clearly, quantum mechanics is correct. This means that any theory that has
the same probabilistic predictions as quantum mechanics must be nonlocal.

11.4 EPR and Bell - The Details

Let us first rethink some quantum mechanical ideas in a context needed for this
discussion. This review will hopefully reinforce the ideas you have learned so
far.

11.4.1 Single-Photon Interference

All good discussions on quantum mechanics present a long an interesting anal-
ysis of the double slit experiment. The crux of the discussion comes when the
light intensity is reduced sufficiently for photons to be considered as presenting
themselves at the entry slit one by one. For a long time this point was very con-
tentious, because correlations between two successive photons cannot be ruled
out a priori.

Since 1985, however, the situation has changed. An experiment was performed
by Grangier, Roger and Aspect. It was an interference experiment with only a
single photon. They used a light source devised for an EPR experiment which
guarantees that photons arrive at the entry slit singly.

The experiment is difficult to do in practice, but is very simple in principle and
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it provides an excellent experimental introduction to the concepts of quantum
mechanics.

The light source is a beam of calcium atoms, excited by two focused laser
beams having wavelengths A’ = 406 nm and A" = 581 nm respectively. Two-
photon excitation produces a state having the quantum number J = 0. When
it decays, this state emits two monochromatic photons having the wavelengths
A1 = 551.3nm and Ay = 422.7nm respectively, in a cascade of two electronic
transitions from the initial J = 0 level to the final J = 0 state, passing through
an intermediate J =1 state, as shown in Figure 11.6 below

excited state

— J=0
S 1
" Ay=551.3 nm
A" =581.0 nm
intermediate state
=1
b N J
A «406.0 nm

Ay =422.7 nm

é S

E é ground state
J=0

Figure 11.6: Calcium based light source - Energy Levels

The mean lifetime of the intermediate state is 4.7ns. To simplify the termi-
nology, we shall call the A\; = 551.3nm light green, and the Ay = 422.7nm light
violet.

Next we describe the experiment, exhibiting its three stages which reveal the
complications of the apparatus in progressively greater detail (Figures 11.7-11.9
below).

1. The first stage is a trivial check that the apparatus is working properly;
nevertheless it is already very instructive (Figure 11.7 below).
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551.3 nm 422.7 nm
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Figure 11.7: Single Photon Interference Experiment - Stage 1

Figure 11.7 shows interference with a single photon (first stage). In the
sketch, solid lines are optical paths and dashed lines are electrical connec-
tions.

On either side of the source S one positions two photomultiplier tubes
PMo and PM,. These are very sensitive, and can detect the arrival
of a single photon. Detection proceeds through photoelectric absorption,
followed by amplification which produces an electric signal proportional
to the energy of the incident photon. The associated electronic logic cir-
cuits can identify the photons absorbed by each detector: the channel
PMyp responds only to green light, and the channel PM 4 responds only
to violet light. The electronic gate is opened (for 9ns - this is twice the
mean lifetime and corresponds to an 85% probability that the photon has
been emitted) when green light is detected by PMo. If, while the gate
is open, violet light is emitted by the same atom towards(not all of the
violet photons go towards the source) PM 4, then PM,4 detects this pho-
ton, producing a signal that passes through the gate and is counted in
N 4. The counter N registers the number of green photons detected by
PMp. It turns out that Ny << Np. As the observation period becomes
very long(approximately 5 hours), the ratio Na/No tends to a limit that
is characteristic of the apparatus. It represents the probability of detect-
ing a violet photon in PM, during the 9ns following the detection of a
green photon by PMy.

The purpose of this arrangement is to use a green photon in order to open
a 9ns time window, in which to detect a violet photon emitted by the
same atom. As we shall see, there is only an extremely small probability
of detecting through the same window another violet photon emitted by
a different atom.

We will assume that a second observer is in the lab. This observer always
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feels compelled to present what he thinks are simple-minded truths using
ordinary words. We will called this second observer Albert. Albert, as we
shall see, has a tendency to use, one after another, the three phrases, I 0b-
serve, I conclude, and I envisage. Consulted about the above experiment,
Albert states, with much confidence,

I observe that the photomultiplier PM 4 detects violet light when the source
S is on, and that it ceases to detect anything when the source is off. I con-
clude that the violet light is emitted by S, and that it travelled from S to
PMy.

I observe that energy is transferred between the light and the photomulti-
plier PM 4 always in the same amount, which I will call a quantum.

I envisage the quanta as particles, emitted by the source, propagating freely
from S to PMy, and absorbed by the detector. I shall call this quanta pho-
tons.

Albert stops talking at this point.

. The second stage of the experiment introduces the concept of individual
photons in Figure 11.8 below which is interference with a single photon
(second stage).

PMy el P
o [T Ne
N o
§
green violet 2 N 3
551.3 nm 422.7 nm R [
PM,, - > 7 PMa ™8 ke N
S Sq 1 é
] &
'
|
'
| N
Y A
| T
i A
1 |
T T T P ——————— Lop N0

Figure 11.8: Single Photon Interference Experiment - Stage 2

Across the path of the violet light one places a half-silvered mirror LS,,
which splits the primary beam into two secondary beams(equal intensity),
one transmitted and detected by PM 4, the other reflected and detected
by PMp. Asin the first stage, the gate is opened for 9ns, by PMo. While
it is open, one registers detection by either PM 4 (counted as Ny4) or by
PMp (counted as Ng) or by both, which we call a coincidence (counted
as N¢). The experiment runs for 5 hours again and yields the following
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results:

(a) The counts N4 and Np are both of the order of 10°. By contrast,
N¢ is much smaller, being equal to 9.

(b) The sequence of counts from PM, is random in time, as is the se-
quence of counts from PMpg.

(¢) The very low value of N¢ shows that counts in PM4 and PMpg are
mutually exclusive (do not occur at same time).

The experimenters analyze the value of N¢ in depth; their reasoning can
be outlined as follows:

(a) Suppose two different atoms each emit a violet photon, one being
transmitted to PM 4 and the other reflected to PMp with both ar-
riving during the 9ns opening of the gate; then the circuitry records
a coincidence. In the regime under study, and for a run of 5 hours,
quantum theory predicts that the number of coincidences should be
N¢ =9. The fact that this number is so small means that, in practice,
any given single photon is either transmitted or reflected.

(b) If light is considered as a wave, split into two by LS, and condensed
into quanta on reaching PM 4 and PMp, then one would expect the
photon counts to be correlated in time, which would entail Ng > 9.
Classically speaking this would mean that we cannot have a trans-
mitted wave without a reflected wave.

(c) Experiment yields N¢ = 9; this quantum result differs from the clas-
sical value by 13 standard deviations; hence the discrepancy is very
firmly established, and allows us to assert that we are indeed dealing
with a source of individual photons.

Albert leaves such logical thinking to professionals. Once he notes that
N¢ is very small, he is quite prepared to treat it as if it were zero. He
therefore says I observe that light travels from the source to PMy or to
PMp, because detection ceases when the source is switched off.

I observe the counts Na and N correspond to a game of heads or tails,
in that the two possibilities are mutually exclusive, and that the counts are
random.

I observe that the optical paths 1 and 2 are distinguishable, because the
experiment allows me to ascertain, for each quantum, whether it has trav-
elled path 1 (detection by PMa) or path 2 (detection by PMp).

I envisage that, on arrival at the half-silvered mirror, each photon from

the source is directed at random either along path 1 or along path 2; and
I assert that it is the nature of photons to play heads or tails..
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Digression: The Mach-Zender Interferometer and Quantum In-
terference

(a) The next experiment uses a Mach-Zender interferometer so let us see
how it operates.

Background information: Consider a single photon incident on
a 50-50 beam splitter (that is, a partially transmitting, partially re-
flecting mirror, with equal coefficients). Whereas classical electro-
magnetic energy divides equally, the photon is indivisible. That is,
if a photon-counting detector is placed at each of the output ports
(see Figure 11.9 below), only one of them clicks. Which one clicks is
completely random (that is, we have no better guess for one over the
other).

K

T

Figure 11.9: 50-50 Beam Splitter

The input-output transformation of the waves incident on 50-50 beam
splitters and perfectly reflecting mirrors are shown in Figure 11.10
below.

YV

Yaou

§wl.out = —wl.in

e L
§w,_m

Figure 11.10: Input/output Transformations

We can easily show that with these rules, there is a 50-50 chance
of either of the detectors shown in the first figure above to click.
According to the rules given in the figure

1 1

wl,out = ﬁwzn ) ¢270ut = ﬁ

since nothing enters port #2.

Vin (11.51)

By our probability postulate the probability to find a photon at po-
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sition 1 or 2 is

Pl,out :_[ W)l,outidl’ = %f |7/)zn|zdx =
P2,out = f |w27out| dz = %f |wln| dx =

Note: As we see from the experimental discussion below, the photon
is found at one detector or the other, never both. The photon is
indivisible. This contrasts with classical waves where half of the
intensity goes one way and half the other; an antenna would also
receive energy. We interpret this as the mean value of a large number
of photons.

} = 50 - 50% chance

N[ ==

Now we set up a Mach-Zender interferometer(shown in Figure 11.11
below):

-
e

ml

Yhin Ny /
bl m2

Figure 11.11: Mach-Zehnder Interferometer

?The wave is split at beam-splitter bl, where it travels either path
bl-m1-b2(call it the green path) or the path b1-m2-b2 (call it the blue
path). Mirrors are then used to recombine the beams on a second
beam splitter, b2. Detectors D1 and D2 are placed at the two output
ports of b2.

Assuming the paths are perfectly balanced (that is equal length), we
can show that the probability for detector D1 to click is 100% - no
randomness!

To find the wavefunctions impinging on detectors D1 and D2 let us
apply the transformation rules sequentially.

(1) Beamsplitter #1
1 1

wl,out = ﬁ'lpzn y QpQ,out = ﬁwzn

(2) Propagation a distance L/2 along each path mean that the phase
of the wavefunction changes by e**2/2 so that the wavefunctions
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are

1
wl,at—mirr‘or = ﬁ €

1
; wZ,at—mir'r‘or = ﬁe

ikL/Qw_ ik:L/21/}_
m m

(3) Reflection off mirrors means wavefunctions become

1
¢1,afte7-—’mi,,«7.o,r = _ﬁe

1
7/}2,after—mirr0r = ﬁ €

LIy, (11.52)

ikL/Qwv
in

(4) Propagation a distance L/2 along each path mean that the phase
of the wavefunction changes by e**£/2 so that the wavefunctions
are )

L0

V2

L kr
e in , WU2at-b2 =

wl,at—bQ = ﬁ
(5) After beamsplitter #2

m

_ + _ .
Yout.1 = W1,at-b2 + V2,at-2 _ bl
V2
W1,at-b2 = V2,at-b2

'¢out,2 = \/5 =0

Therefore,

P1out = [ |1/)om71|2d17 = f |¢in|2dx =1

P2,out = f |wout,2|2dx =0

Thus, we have a 100% chance of detector D1 firing and a 0% chance
of detector D2 firing. There is no randomness.

Classical logical reasoning would predict a probability for D1 to click
given by

Ppy = P(transmission at bl|green path) P(green path)
+ P(reflection at b2|blue path) P(blue path)

Now we know that there is a 50-50 probability for the photon to take
the blue or green path which implies that

P(green) = P(blue) =1/2

Also with the particle incident at b2 along the green path there is
a 50% chance of transmission and similarly for reflection of the blue
path.
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Therefore,
P(transmission at b2|green) = P(reflection at b2|blue) = 1/2

and

Pp; =

N | —
| =
|~
DO |

2

so that classical reasoning implies a 50-50 chance of D1 firing, that
is, it is completely random!

The quantum case is different because the two paths which lead to
detector D1 interfere. For the two paths leading to D1 we have

1 _ikL 1 _ikL
ﬁel ZZ’erﬁel Yin

’(/)total = \/5
Ppy = f Wrotall da = Ppy =

=1

N | —
|~
N | =
N | —
N | —
DN | —

1
C—+
2

DN | =

where the last two terms are the so-called interference terms. Thus,
Pp1 = 1. The paths that lead to detector D2 destructively interfere
so that Pps = 0.

We now ask how would you set up the interferometer so that detector
D2 clicked with 100% probability? How about making them click at
random?

Leave the basic geometry the same, that is, do not change the direc-
tion of the beam splitters or the direction of the incident light.

We now want constructive interference for the paths leading to D2
and destructive interference for D1.

We can achieve this by changing the relative phase of the two paths
by moving the mirror so that the path lengths are not the same.

Suppose we move the mirror on the green path (at an angle of 45°) so
that the path lengths in the green path are both changed to L+ AL.
We then have

1 _ik(L+AL) 1 _ikL
—=e + —=ze
Vout1 = V2 V2 —
out,1 — - ¥in
V2
L ik(L+AL) _ L ikL
V2 V2 _
wout,Z - - wzn

V2
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and

Pp, = f d$|¢2,out|2 _ %f dz [t |eikL‘2 |6ikAL . 1‘2
_ l (eikAL " 1) (eikAL n 1)* _ i (eikAL n 1) (e—ikAL " 1)

1 . . 1 AL AL
_ *(2+€lkAL +e—zkAL) _ +COS(k) ) _ C082 (k )
4 2
Similarly we have
1 kD12 i 2
Ppy = f dx |1/J1,out|2 =1 [ da || le kL| le kAL _ 1
_ 1 1 (eikAL_l) (e—z‘kAL_l)

Z (eikAL _ 1) (eikAL _ 1)* _ i
1 1- COSQ(ICAL) ~ in? (kAL)

; (2 - hAL _ gmikALY _

Therefore, to achieve Ppy =0 and Pps = 1 we choose

EAL =mm (m odd) = AL:m% :m%

We can make the both random if

kAL EAL 1 kAL
cos? (—) = sin® (—) == — :pz (p odd)
2 2 2 2 4
T A
AL=p— =p=—
Por =71
Returning to our discussion.....

3. The third stage then consists of an interference experiment as shown in
Figure 11.12 below, which is the interference with a single photon (third
stage).

PM, |-»===== > Ng
2 4%y
R L7 2 PMB e
green violet 2 ‘&Sﬁ 1
5513 nm 422.7 nm s A\
PM,, - | N,
S 'L_S“

———— e ————
-

Figure 11.12: Mach-Zehnder Interferometer Inserted
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A so-called Mach-Zehnder interferometer is used, allowing one to obtain
two interference profiles. The beam of violet light from the source S
is split into two by the mirror LS,. After reflection from two different
mirrors, these secondary beams meet on a second half-silvered mirror LSg.
Here, each secondary beam is further split into two; thus one establishes
two interference regions, region (1’,2’) where one places PM 4, and region
(1",2") where one places PMp.

A very high precision piezoelectric system allows one of the mirrors to
be displaced so as to vary the path difference between the two arms of
the interferometer. In this way one can shift the pattern of interference
fringes by regular steps, without moving the detectors PM 4 and PMp;
the standard step corresponds to a change of A\/50 in the difference between
the two optical paths.

A sweep, taking 15 sec for each standard step, yields two interference plots
corresponding, respectively, to the paths (1’,2") and (1",2"); the fringes
have good contrast(difference in intensity between maxima and minima),
and their visibility

(NA,max_NA,min)/(NA,max +NA,min) (1153)

was measured as 98% as shown in Figure 11.13 below which gives the two
interference plots obtained with the Mach-Zehnder interferometer. Note
that the maximum counting rates in PM 4 correspond to minima in PMpg,
indicating a relative displacement of A\/2 between the two interference pat-
terns
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Figure 11.13: Interference Results

If we recall that we are reasoning in terms of photons, and that the photons
are being processed individually, then we must admit that the interference
does not stem from any interaction between successive photons, but that
each photon interferes with itself.

What would Albert have to say? He seems exasperated but is still polite.
His statements are brief:

I observe that the optical paths differ in length between LS, and LSg, and
are then coincident over (1°,2°) and over (1",2").

In PM 4 I observe a process that seems perfectly natural to me, namely
light + light — light
In PMp I observe a process that I find astounding, namely
light + light — darkness

Such superposition phenomena with light I shall call interference; con-
structive in PM 4 and destructive in PMp.

In the situation considered before, I envisaged light as consisting of par-
ticles called photons, which travelled either along path 1 or along path 2.
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In the present situation I want to know for each individual photon which
path it has travelled; to this end I should like to ask you to close off path
2, since this will ensure that the photons travel by path 1..

Clearly Albert is perturbed. He awaits the new experimental results with
some anxiety.

On closing either path, whether 1 or 2, one observes that all interference
phenomena disappear. For instance, instead of a very high count V4 and
a very low count Np, we now obtain essentially equal counts from PM 4
and PMp.

Albert is visibly displeased and now very wary. He then continues with
his analysis of the experiment:

I observe that in order to produce interference phenomena it is necessary
to have two optical paths of different lengths, both open.

Whenever a photon is detected, I note my inability to ascertain whether
the light has travelled by path 1 or by path 2, because I have no means for
distinguishing between the two cases.

If I were to suppose that photons travel only along 1, then this would imply
that path 2 is irrelevant, which is contrary to what I have observed. Simi-
larly, if I were to suppose that photons travel only along 2, then this would
imply that path 1 is irrelevant, which is also contrary to my observations.

If I envisage the source S as emitting particles, then I am forced to con-
clude that each individual photon travels simultaneously along both paths
1 and 2; but this result contradicts the results of the previous erperiment
(second stage), which compelled me to envisage that every photon chooses,
at random, either path 1 or path 2.

I conclude that the notion of particles is unsuited to explaining interfer-
ence phenomena.

I shall suppose instead that the source emits a wave; this wave splits into
two at LSy, and the two secondary waves travel one along path 1 and
the other along path 2. They produce interference by mutual superposition
on LSg constructively in (1°,2°) and destructively in (1",2"). At the far
end of (17,2°) or of (1",2") I envisage each of the waves condensing into
particles, which are then detected by the photomultipliers (essentially by
PM 4 since the contrast is 98% means only very few photons are detected
by PMp

It seems to me that I am beginning to understand the situation. I en-
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visage light as having two complementary forms: depending on the kind
of experiment that is being done, it can manifest itself either as a wave,
or as a particle, but never as both simultaneously and in the same place.
Thus, in the experiment where the path followed by the light cannot be
ascertained (third stage), light behaves first like a wave, producing inter-
ference phenomena; but it behaves like a particle when, afterwards, it is de-
tected through the photoelectric effect. I conclude that light behaves rather
strangely, but nevertheless I have the impression that its behavior can be
fully described once one has come to terms with the idea of wave-particle
duality..

Albert leaves the room slowly, hesitantly, even reluctantly. He might be
impressed by all the completeness of all that he has just described or
maybe he is worried that more needs to be said.

In fact, something does remain to be said, since the problem of causality
remains open. Let us look carefully at the experimental layouts in the
second and third stages: we see that they have LS, in common, and that
they differ only beyond some boundary (indicated by the dashed circle
downstream from LS,). We have stated that light behaves like a particle
or like a wave depending on whether or not one can ascertain the path
it takes through the apparatus; but in the two experiments under con-
sideration, the choice between the alternatives must be decided on LS,,
before the light has crossed the crucial boundary, that is, at a stage where
nothing can as yet distinguish between the two kinds of apparatus, since
they differ only beyond the point of decision. It is as if the light chose
whether to behave like a wave or like a particle before knowing whether
the apparatus it will pass through will elicit interference phenomena or
the photoelectric effect. Hence the question of causality is indeed opened
up with vengeance.

Albert comes back abruptly. He is disconcerted and wearily says:

Originally I supposed that light would behave like a wave or like a particle,
depending on the kind of experiment to which it was being subjected.

I observe that the choice must be made on the half-silvered mirror LSy,
before the light reaches that part of the apparatus where the choice is ac-
tually implemented; this would imply that the effect precedes the cause.

I know that both waves and particles obey the principle of causality, that
18, that cause precedes effect.

I conclude that light is neither wave nor particle; it behaves neither like
waves on the sea, nor like projectiles fired from a gun, nor like any other

kind of object that I am familiar with.
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I must ask you to forget everything I have said about this experiment,
which seems to me to be thoroughly mysterious.

Albert leaves, but quickly returns with a contented smile, and his final
statement is not without a touch of malice. I observe in all cases that the
photomultipliers register quanta when I switch on the light source.

I conclude that “something” has travelled from the source to the detector.
This "something” is a quantum object, and I shall continue to call it a
photon, even though I know that it is neither a wave nor a particle.

I observe that the photon gives rise to interference when one cannot as-
certain which path it follows; and that interference disappears when it is
possible to ascertain the path.

For each detector, I observe that the quanta it detects are randomly dis-
tributed in time.

If I repeat the experiment several times under identical conditions, then I
observe that the photon counts registered by each photomultiplier are re-
producible in a statistical sense. For example, suppose that in the first and
in the second experiments PMa registers Ny and N respectively; then
one can predict that N'{ has a probability of 0.68 of being in the interval
N} = (V)12

Thus, these counts enable me to determine experimentally, for any kind of
apparatus, the probability that a given detector will detect a quantum, and
it is precisely such probabilities that constitute the results of experiments.

I assert that the function of a physical theory is to predict the results of
experiments.

What I expect from theoretical physicists is a theory that will enable me
to predict, through calculation, the probability that a given detector will
detect a photon. This theory will have to take into account the random
behavior of the photon, and the absence or presence of interference phe-
nomena depending on whether the paths followed by the light can or cannot
be ascertained..

Albert leaves, wishing the physicists well in their future endeavors.

Physicist have indeed worked hard and the much desired theory has in-
deed come to light, namely, quantum mechanics, as we have seen in our
discussions. As we have seen, it applies perfectly not only to photons, but
equally well to electrons, protons, neutrons, etc; in fact, it applies to all
the particles of microscopic physics. For the last 75 years it has worked
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to the general satisfaction of physicists.

Meanwhile, it has produced two very interesting problems of a philosophical
nature.

1. Chance as encountered in quantum mechanics lies in the very nature of the
coupling between the quantum object and the experimental apparatus. No
longer is it chance as a matter of ignorance or incompetence: it is chance
quintessential and unavoidable.

2. Quantum objects behave quite differently from the familiar objects of
our everyday experience: whenever, for pedagogical reasons, one allows
an analogy with macroscopic models like waves or particles, one always
fails sooner or later, because the analogy is never more than partially
valid. Accordingly, the first duty of a physicist is to force her grey cells,
that is her concepts and her language, into unreserved compliance with
quantum mechanics (as we have been attempting to do); eventually this
will lead her to view the actual behavior of microsystems as perfectly
normal. As a teacher of physics, our duties are if anything more onerous
still, because we must convince the younger generations that quantum
mechanics is not a branch of mathematics, but an expression of our best
present understanding of physics on the smallest scale; and that, like all
physical theories, it is predictive.

In this context, let us review the basic formalism of quantum mechanics.

11.4.2 Basic Formalism

We will introduce the elements of quantum mechanics as axioms. Physicists
have devised a new mathematical tool. The transition amplitude from initial
to final state, and it is this amplitude that enables one to calculate the needed
probabilities.

1. For the experiment where the photon travels from the source S to the de-
tector PM 4 (see Figure 11.14(a) below), we write the transition amplitude
from S to PM, as

(photon arriving at PM 4 | photon leaving S)

which we symbolize simply as

(fili)  (f2]d)

In this case there are two probabilities:

(L) [l o)

The total probability is their sum:
a2 .
[(fu [+ I(f2 [ 4)]
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More generally, we would write

12 12
(VADIEDNIAR]
k
Figure 11.14 below shows three arrangements sufficient to determine the
transition amplitude: (a) a single optical path; (b) two paths,allowing us
to ascertain which path has actually been taken; (c) two paths, not allow-
ing us to ascertain which path has actually been taken.

<fli>
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- ~~ g
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s, <fli>,

Figure 11.14: Three Arrangements

2. If a photon is emitted by the source S can take either of two paths, but it
is impossible to ascertain which path it does take (Figure 11.14(c) above),
then there are again two transition amplitudes:

(photon arriving at PM 4 | photonleavingS), 1o path 1

(photonarrivingat PMp | photon leaving S), ;,,q path 2

which we symbolize simply as

(Flidy  (fliy

To allow for interference, we assert that in this case it is the amplitudes
that must be added; the total amplitude reads

(fli)=(fli)y + (i),
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The total probability is then:
) o2
(1) +(F 1)
More generally, we would write

total amplitude: (f |4) = Z (f i)y
%

2
total probability: [(f | ) =

> Af i

k

where the sums are over all possible paths.

3. If one wants to analyze the propagation of the light more closely, one
can take into account its passage through the half-silvered mirror LSy,
considering this as an intermediate state (Figure 11.14(b) above). The
total amplitude for path 1 is

(photon arriving at PM 4 | photon leaving S)
However, it results from two successive intermediate amplitudes:

(photon arriving at LS,, | photon leaving S)
{(photon arriving at PM 4 | photon leaving LS, )

Here we consider the total amplitude as the product of the successive
intermediate amplitudes; symbolically, labelling the intermediate state as
v, we have

(Flay=(flv){v]i)
Finally, consider a system of two mutually independent photons. If photon

1 undergoes a transition from a state i; to a state fi, and photon 2 from
a state io to a state fs, then

(fifa livia) = (f1]i1) (f2 | i2)

The four rules just given suffice to calculate the detection probability in any
possible experimental situation. They assume their present form as a result of
a long theoretical evolution; but they are best justified a posteriori, because
in 75 years they have never been found to be wrong. Accordingly, we may
consider them as the basic principles governing the observable behavior of all
microscopic objects, that is, objects whose action on each other are of order
(Planck’s constant). From these principles (they are equivalent to our earlier
postulates - just look different because we are using the amplitude instead of
the state vector as the fundamental mathematical object in the theory) one can
derive all the requisite formalism, that is, all of quantum mechanics.

Quantum mechanics as we have described it earlier and also above, works splen-
didly, like a well-oiled machine. It, and its basic principles, might therefore be
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expected to command the assent of every physicist; yet it has evoked, and on
occasion continues to evoke, reservations both explicit and implicit. For this
there are two reasons:

1. Quantum mechanics introduces unavoidable chance, meaning that its char-
acteristic randomness is inherent in the microscopic phenomena them-
selves.

2. It attributes to microscopic objects properties so unprecedented that we
cannot represent them through any macroscopic analogs or models.

Both features are revolutionary, and it is natural that they should have provoked
debate. On the opposite sides of this debate we find two great physicists, Neils
Bohr and Albert Einstein, and we will now discuss how the debate evolved from
its beginnings in 1927 to its conclusion in 1983 (that is 56 years!).

11.5 Inseparable Photons (the EPR Paradox) in-
cluding some history

Though ornithologists have known about inseparable parrots for a long time,
to physicists the existence of inseparable photons has been brought home only
during the last two decades, through a beautiful series of experiments by Alain
Aspect and his research group at Orsay Laboratory in Paris. The experiments
are exemplary, in virtue both of the difficulties they had to overcome and the re-
sults achieved, which are exceptionally clear-cut. In fact, the significance of the
experiments extends beyond the strict confines of physics, because they provide
the touchstone for settling a philosophical debate that has divided physicist for
75 years. The division dates back to the appearance of two mutually contradic-
tory interpretations of quantum mechanics at the Como conference in 1927. To
sketch the debate, we start with a brief summary of the philosophy of physics.

11.5.1 The Philosophical Stakes in the Debate

Our summary is best presented diagrammatically as shown in Figure 11.15 be-
low where we present the philosophical elements in a debate between physicists.

realism positivism

determinism chance

Figure 11.15: Philosophical Ideas
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1. For the physicist who is a realist, a physical theory reflects the behavior
of real objects, whose existence is not brought into question.

2. For the physicist who is a positivist, the purpose of a physical theory is to
describe the relations between measurable quantities. The theory does not
tell one whether anything characterized by these quantities really exists,
nor even whether the question makes sense.

3. For the physicist who is a determinist, exact knowledge of the initial con-
ditions and of the interactions allows the future to be predicted exactly.
Determinism is held to be a universal characteristic of natural phenom-
ena, even about those which we know, as yet, little or nothing. In this
framework, any recourse to chance merely reflects our own ignorance.

4. For the physicist who is a probabilist, chance is inherent in the very nature
of microscopic phenomena. To her, determinism is a consequence, on
the macroscopic level, if the laws of chance operating on the microscopic
level; it is appropriate to measurements of mean values of quantities whose
relative fluctuations are very weak.

From these four poles, realism, positivism, determinism, and chance, the physi-
cist chooses two, one on each axis. Though sometimes the choice is made in full
awareness of what it entails, most often it is made subconsciously. In our de-
scription of quantum mechanics, we might adopt without reservations, the point
of view of the elementary particle physicist. For a start, she believes firmly in
the existence of particles, since she spends her time in accelerating, deflecting,
focusing, and detecting them. Even though she has never seen or touched them,
to her their objective existence is not in any doubt. Next she observes that they
impinge on the detectors quite erratically, whence she has no doubts, either,
that their behavior is random. Accordingly, the elementary particle experimen-
talist has chosen realism and chance, most often without realizing that she has
made choices at all.

There are other philosophical options that can be adopted with eyes fully open:
realism and determinism are the choices of Albert Einstein; positivism and
chance are those of Neils Bohr. They are well acquainted and each thinks very
highly of the other: which is no bar to their views being incompatible, nor to
the two men representing opposite poles of the debate.

11.5.2 From Como to Brussels (1927-30)

On September 26,1927, in Como, Niels Bohr delivered a memorable lecture. His
stance is that of an enthusiastic champion of the new quantum mechanics. He
puts special weight on the inequalities proved by Heisenberg the year before:

AzAp, > %h . AtAE> %h (11.54)
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They imply that it is impossible to define exact initial conditions for a mi-
croscopic object, which automatically makes it impossible to construct, on the
microscopic scale, a deterministic theory patterned on classical mechanics. Only
a probabilistic theory is possible, and that theory is quantum mechanics.

Einstein disagrees with this point of view, and his opposition to Bohr’s the-
ses becomes public at the Brussels conference in 1930: he adopts the role of a
dissenter who knows precisely how to press home the most difficult questions.
Deeply shocked by the retreat from determinism, he tries to show via his thought
(gedanken) experiments he can contravene the Heisenberg inequalities.

At the cost of several sleepless nights devoted to analyzing the objections of
his adversary, Bohr refutes all of Einstein’s criticisms, and emerges from the
conference as the undoubted winner.

11.5.3 From Brussels to the EPR Paradox (1930-35)

Having lost the argument at Brussels, Einstein tries to define his objections
with ever greater precision. Believing as he does that position and momentum
exist emphobjectively and simultaneously, he considers quantum mechanics to
be incomplete and merely provisional. The points of view of the two antagonists
at this stage of the debate can be spelled out as follows.

For Einstein, a physical theory must be a deterministic and a complete repre-
sentation of the objective reality underlying the phenomena. It features known
variables that are observable, and others, unknown as yet, called hidden vari-
ables. Because of our provisional ignorance of the hidden variables, matter at
the microscopic level appears to us to behave arbitrarily, and we describe it
by means of a theory that is incomplete and probabilistic, namely by quantum
mechanics.

For Bohr, a physical theory makes sense only as a set of relations between
observable quantities. Quantum mechanics supplies a correct and complete de-
scription of the behavior of objects at the microscopic level, which means that
the theory itself is likewise complete. The observed behavior is probabilistic,
implying that chance is inherent in the nature of the phenomena.

Between chance as a matter of ignorance, as advocated by Einstein, and chance
unavoidable, as advocated by Bohr, the debate does not remain merely philo-
sophical. Quite naturally it returns to the plane of physics with the thought
experiment proposed by Einstein, Podolsky and Rosen in 1935, which in their
view proves that quantum mechanics is indeed incomplete. Their thought exper-
iment is published as a paper in the Physical Review, but it is so important that
it reverberates as far as the New York Times. Physicists call the proposal the
EPR paradox, after its proponents. It will take fifty years to untangle the ques-
tion, first in theory and then by experiment. We will not, of course, follow these
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fifty years blow by blow; instead, we confine attention to three decisive stages
reached respectively in 1952, 1964, and 1983. But we start with an illustration
that helps one see what the EPR paradox actually is.

11.5.4 Elementary Introduction to the EPR Paradox

Consider two playing cards, one red(diamond) and one black(spade) as shown
in Figure 11.16 below where we use two playing cards help us understand the

stakes in the EPR paradox.
\ v

p] D]

Lyons

Figure 11.16: EPR Setup

An experimenter in Lyons puts them into separate envelopes which she then
seals. She is thus provided with two envelopes looking exactly alike, and she
puts both into a container. She shakes the container so as the shuffle the pack,
and the system is ready for the experiment.

At 8:00 two travellers, one from Paris and one from Nice, come to the container
(in Lyons), take one envelope each, and then return to Paris and Nice, respec-
tively. At 14:00 they are back at their starting points; each opens her envelope,
looks at the card, and telephones to Lyons reporting the color. The experiment
is repeated every day for a year, and the observer in Lyons keeps a careful record
of the results. At the end of the year the record stands as follows:

1. The reports from Paris are red or black, and the sequence of these reports
is random. The situation is exactly the same as in a game of heads or
tails, and probability of each outcome is 1/2.

2. The reports from Nice are red or black, and the sequence of these reports
is random. Here too probability of each outcome is 1/2.

3. When Paris reports red, Nice reports black; when Paris reports black, Nice
reports red. One sees that there is perfect(anti) correlation between the
report from Paris and the report from Nice.
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Accordingly, the experiment we have described displays two features:

1. It is unpredictable and thereby random at the level of individual observa-
tions in Paris and Nice.

2. It is predictable, by virtue of the correlation, at the level where one observes
the Paris and the Nice results simultaneously.

Einstein and Bohr might have interpreted the correlation as follows.

According to Einstein

The future of the system is decided at 8:00 when the envelopes are chosen,
because he believes that the contents of the two envelopes differ. Suppose, for
instance, that Paris has (without knowing it) drawn a red card, and Nice the
black. The colors so chosen exist in reality, even though we do not know them.
The two cards are moved, separately, by the travellers between 8:00 and 14:00,
during which time they do not influence each other in any way. The results on
opening the envelopes read red in Paris and black in Nice. Since the choice at
8:00 was made blind, the opposite outcome is equally possible, but the results
at 14:00 are always correlated (either red/black or black/red). This correlation
at 14:00 is determined by the separation of the colors at 8:00, and we say the
theory proposed by Einstein is realist, deterministic, and separable(or local), by
virtue of a hidden variable, namely, the color.

According to Bohr

There is a crucial preliminary factor, inherent in the preparation of the system.
On shaking the container with the two envelopes, one loses information regard-
ing the colors. Afterwards, one only knows that each envelope contains either a
red card (probability 1/2) or a black card (probability 1/2). We will therefore
say that a given envelope is in a brown state, which is a superposition of a red
state and of a black state having equal probabilities. At 8:00 the two envelopes
are identical: both are in a brown state, and the future of the system is still
undecided. There is no solution until the envelopes are opened at 14:00, since it
is only the action of opening them that makes the colors observable. The result
is probabilistic. There is a probability 1/2 that in Paris the envelope will be
observed to go from the brown state to the red, while the envelope in Nice is
observed to go from the brown state to the black; there is the same probability
1/2 of observing the opposite. But the results of the observations on the two
envelopes are always correlated, which means that there is a mutual influence
between them, in particular at 14:00; in fact it is better to say that, jointly,
they constitute a single and non-separable system, even though one is in Paris
and the other is in Nice. Accordingly, the theory proposed by Bohr is positivist,
probabilistic(non-deterministic) and non-separable(non-local), interrelating as
it does the colors that are actually observed.

Einstein’s view appears to be common sense, while it must be admitted that
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Bohr’s is very startling; however, the point of this macroscopic example is, pre-
cisely, to stress how different the quantum view is from the classical.

Proceeding with impeccable logic but from different premises, both theories
predict the same experimental results. Can we decide between them? At the
level considered here it seems we cannot: for even if the envelopes were opened
prematurely while still in Lyons, one would merely obtain the same results at a
different time, and without affecting the validity of either interpretation. The
solution to the problem must be looked for at the atomic level, by studying the
true EPR set-up itself.

11.5.5 The EPR Paradox (1935-52)

Albert Einstein, Boris Podolsky, and Nathan Rosen meant to look for an experi-
ment that could measure, indirectly but simultaneously, two mutually exclusive
quantities like position and momentum. Such results would contravene the pre-
dictions of quantum mechanics, which allows the measurement of only one such
quantity at any one time; that is why the thought experiment is called the EPR
paradox.

In 1952, David Bohm showed that the paradox could be set up not only with con-
tinuously varying quantities like position and momentum, but also with discrete
quantities like spin. This was the first step towards any realistically conceiv-
able experiment. Meanwhile, objectives have evolved, and nowadays it is more
usual to talk of the EPR scenario, meaning some sensible experiment capable
of discriminating between quantum theory and hidden-variable theories. Such
a set-up is sketched in Figure 11.17 below where we present the simplest EPR
scenario.
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Figure 11.17: EPR Scenario

A particle with spin 0 decays, at S, into two particles of spin 1/2, which di-
verge from S in opposite directions. Two Stern-Gerlach type detectors A and B
measure the x—components of the spins. Two types of response are possible:

1. spin up at A, spin down at B, a result denoted by (+1,-1)

2. spin down at A, spin up at B, a result denoted by (-1,+1)
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Thus far everyone is agreed, but the interpretation is yet to come.

Einstein reasons that if pairs of particles produced at S elicit different responses
(+1,-1) and (-1,+1) from the detector system A,B, then the pairs must have
differed already at S, immediately after the decay.

It must be possible to represent this difference by a hidden variable A, which
has an objective meaning, and which governs the future of the system. After
the decay the two particles separate without influencing each other any further,
and eventually they trigger the detectors A and B.

Bohr reasons that all the pairs produced at S are identical. Each pair consti-
tutes a non-separable system right up to the time when the photons reach the
detectors A and B. At that time we observe the response of the detectors, which
is probabilistic, admitting two outcomes (+1,-1) and (-1,+1). To sum up,
Einstein restricts the operation of chance to the instant of decay (at S), whose
details we ignore, but which we believe creates pairs whose hidden variables A
are different.

By contrast, Bohr believes that chance operates at the instant of detection, and
that it is inherent in the very nature of the detection process: this chance is
unavoidable.

We are still in the realms of thought, and stay there up to 1964.

In 1964, the landscape changes: John Bell, a theorist at CERN, shows that it
is possible to distinguish between the two interpretations experimentally.

The test applies to the EPR scenario; it is refined by Clauser, Horne, Shimony,
and Holt, whence it is called the BCHSH inequality after its five originators.

11.5.6 The BCHSH Inequality (1964)

To set up an EPR scenario, one first needs a source that emits particle pairs.
Various experimental possibilities have been explored:

1. atoms emitting two photons in cascade
2. electron-positron annihilation emitting two high-energy photons
3. elastic proton-proton scattering

It is solution (1) that has eventually proved the most convenient; it has been
exploited by Alain Aspect at the Institute for Optics in Paris, in particular.

Next one needs detectors whose response can assume one of two values, repre-
sented conventionally by +1 and —1. Such a detector might be
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1. for spin 1/2 particles, a Stern-Gerlach apparatus responding to spin up or
spin down

2. for photons, a polarizer responding to parallel polarization or perpendicular
polarization

Our sketch of the EPR scenario can now be completed as in Figure 11.18 below
where we present the most general EPR scenario.

(A} 5

(a)

>
o -> B
> A,l 8 -
A > : 0 Ay
B 0
_’
S S B,

(b) ©

Figure 11.18: BCHSH Setup

Figure 11.18(a) views the apparatus perpendicularly to axis, slﬁlowingﬂthe two
detectors A and B, with their polarizing directions denoted as A and B.

Figure 11.18(b) views the apparatus along its axis, and shows that the analyzing
directions of the two detectors are not parallel, but inclined to each other at an
angle 6.

In Figure 11.18((c) we also a view along the axis of the apparatus, and shows the
actual settings chosen by Aquct: two orientations are allowed for each detector,
A7 or A, for one, and By or By for the other.
We adopt the following conventions:

(1) « = +1 is the response of detector A when oriented along A

(2) B = +1 is the response of detector B when oriented along B

Since each detector has two possible orientations, called 1 and 2, we shall denote
their responses as aj,ay and 1, B2 respectively. Now consider the quantity (7y)
defined by

(7) = (a181) + {1 f2) + (@2f1) — (a2 32) (11.55)
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where the symbol (...} denotes the mean value over very many measured events.
We call () the correlation function of the system.

The BCHSH inequality reads —2 < () < 2. Its authors have proved that it must
be satisfied if mechanics at the microscopic level constitutes a theory that is
realist, deterministic, and separable: or in other words if the theory contains a
hidden variable. A sketch of the a proof is shown below.

A Proof of Bell’s Inequality

A theory that is deterministic and separable

Suppose that the pair a,b emerging from S can be characterized by a hidden
variable A. The responses of the detectors A, B are a(A, \) and 3(B, \) respec-
tively as shown in Figure 11.19 below.

®

oa=+1 A B B=+1
> d : <
S
o - -1 B=-1

Figure 11.19: Bell Inequality Setup

The theory is deterministic and separable:

1. deterministic, because the results are determined by the hidden variables
plus the settings A and B

2. separable, because the response of A is independent of the response of B,
and vice versa

Since the value of A is unknown and different for each pair, the responses of A and
B seem random. Lacking information about A, we characterize it by choosing a
statistical distribution p(\), which then allows us to derive the distribution of
the responses (4, \) and B(B,\), which can be compared with experiment.

Bell’s inequalities have the great virtue that they apply to any hidden variable
theory, irrespective of the choice of p(A).

Theorem 1: Consider the four numbers a;, s and S, B2, each of which can
assume only the values 1 or —1. Then the combination

vy =opr+oafe+ axfi - axfs (11.56)

can assume only the values 2 and -2.
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To prove the theorem, one constructs a truth table for all 16 possibilities, which
shows that 2 and -2 are indeed the only possible values of ~.

ap |ag | B | B |y
1 1 1 1 2
1 1 1 -1 2
1 1 -1 1 |-2
1 1 -1 -1 ] -2
1 -1 1 1 2
1 -1 1 -1 2
1 -1 -1 1 | -2
1 -1 -1 -1 -2

1) -1 -1 1| 2
-1 -1 -1]-1] 2

Table 11.1: v Values

Theorem 2: Consider very many sets of four numbers a1, as and £, 82. The
mean value of v lies in the range [-2,2]. In other words,

-2<(y)<2 (11.57)

This is obvious, because every value of - lies in this range, and so therefore must
the mean. The endpoints are included in order to allow for limiting cases. Note
that both theorems are purely mathematical, neither involves any assumptions
about physics.

11.5.7 BCHSH Inequality(Bell’s inequality in real world)

Within the framework of a theory that is realist, deterministic, and separable,
we can describe the photon pair in detail. Realism leads us to believe that
polarization is an objective property of each member of the pair, independent
of any measurements that may be made later. Determinism leads us to believe
that the polarizations are uniquely determined by the decay cascade, and that
they are fully specified by the hidden variable A, which governs the correlation
of the polarizations in A and B. Finally, separability leads us to believe that the
measurements in A and B do not influence each other, which means in particular
that the response of detector A is independent of the orientation of detector B.

Now consider a pair of photons a, b, characterized by a hidden variable A\. The
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response of the apparatus in its four settings would be as follows:

a1 and f; in the orientation (/L,Bl)
ag and fs in the orientation (AQ,BQ)
o and B} in the orientation (A, B)

o and ] in the orientation (Ay, By)

Recall that the variables a and 8 can only take on the values 1 and -1. It is
impossible in practice to make four measurements on one and the same pair
of photons, because each photon is absorbed in the first measurement made
on it; that is why we have spoken conditionally, that is, of what results would
be(a COUNTERFACTUAL statement). But if we believe that the photon
correlations are governed by a theory that is realist, deterministic, and separable,
then we are entitled to assume that the responses, of type « or type 3, depend
on properties that the photons possess before the measurement, so that the
responses correspond to some objective reality. In such a framework we can
appeal to the principle of separability, which implies, for instance, that detector
A would give the same response to the orientations (A, B;) and (A;, Bs),
because the response of A is independent of the orientation of B.

Mathematically, this is expressed by the relation ay = of.
Similarly one finds as = o, 81 = 1, B2 = 55.

Thus, we have shown that, for a given pair of photons, all possible responses
of the apparatus in its four chosen settings can be specified by means of only
four two-valued variables aj,as and (1, 82. This reduction from eight to four
variables depends on the principle of separability. In this way, we are led to a
situation covered by Theorem 2, and therefore -2 < (y) < 2.

By making many measurements for each of the four settings we can determine
the four mean values (a1 61) , {(a182) , {(asB1) , (aeB2) and thus the mean value
of the correlation

(7) = (@1 B1) + (a1 82) + (21) — (a22)

According to quantum mechanics (which is positivist, probabilistic, and non-
separable), there are cases where the BCHSH inequality is violated. In par-
ticular, one can show that for photons in the configuration chosen by Aspect
quantum mechanics yields(we will derive this shortly)

() = 3cos26 — cos 66 (11.58)

This leads to values well outside the interval [-2,2]; for example to () = 2¢/2
when 6 = 22.5° and to () = -2v/2 when 6 = 67.5°.
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Proof: The laboratory reference frame Oxzyz serves to specify the orientations
of detectors and polarizers as shown in Figure 11.20 below:

YK -

\ 4

w0

| @4 >
Dpt /2> A

g

Xa >

Figure 11.20: Detector Orientations

Before any measurements have been made, the photon pair a, b forms a non-
separable entity, represented by the vector

9) = =5 (loa.25) + [ ) (11.59)

The act of measurement corresponds to passage to the ¢-basis. Hence, we
require the transition amplitudes from the two states |za,z5),|ya,ys) to the
four states

lpa,oB)lpa, o8 +7[2),lpa+7[2,0B),|lpa + 72,05 +7/2) (11.60)

In the y-basis we have

|®) = —=[cos(vB ~¥a)lpa,vB)

Sl

-sin(pp —@a)lpa,pp +7/2)
+sin(pp - a)loa+7/2,08)
+cos(pp —va)lpa+ 72,05 +7/2)] (11.61)

The square of each amplitude featured here represents the detection probability.
For example, the probability of simultaneously detecting photon a polarized at
the angle ¢4 and the photon b polarized at the angle ¢p is

(\;icos(gog—gaA)) Z%COSQ(@B—QDA) (11.62)

By convention, we write the responses of detector A to a photon in state |p4)
(respectively |4 +7/2)) as o = 1 and similarly with S for detector B.
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Let us analyze the four possible responses:

1. |pa,op) gives @ =1,8 =1 so aff = 1; the probability is

Py, = %cos“'(gaB—goA) (11.63)
2. lpa,pp +m[2) gives a = -1,3 =1 so af8 = —1; the probability is

P = S sin® (o~ 1) (11.64)
3. lpa+7/2,pp) gives a =1,8 = -1 so aff = —1; the probability is

P, = %sinQ(ch —©4) (11.65)
4. |pa+7/2,0p +7/2) gives a = -1, 3 = -1 so aff = 1; the probability is

P_= %COSQ(QDB—QDA) (11.66)

The mean value of («f) 45 follows immediately as
(aB)yp=Pis —Pio =P +P._=cos2(pp—pa) (11.67)

The settings chosen by Aspect are as shown in Figure 16.20 above. Correspond-
ing to it we have the four terms

For comparison with Bell’s inequality, we introduce the correlation function

(v) = {1B1) + {a1B2) + {a281) — (a2 fa2) = 3cos 26 — cos 60 (11.72)

Thus, the BCHSH test turns the EPR scenario into an arena for rational con-
frontation between the two interpretations; it remains only to progress from
thought experiments to experiments conducted in the laboratory.

11.5.8 The Beginnings of the Experiment at Orsay (1976)

Alain Aspect’s experiment studies the correlation between the polarizations
of the members of photon pairs emitted by calcium. The light source is a
beam of calcium atoms, excited by two focused laser beams having wavelengths
A" =406nm and A" = 581 nm respectively. Two-photon excitation produces
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Figure 11.21: Calcium based light source - Energy Levels

a state having the quantum number J = 0. When it decays, this state emits
two monochromatic photons having the wavelengths A\; = 551.3nm and Ay =
422.7nm respectively, in a cascade of two electronic transitions from the initial
J =0 level to the final J = 0 state, passing through an intermediate J = 1 state,
as shown in Figure 11.21 below which shows the excitation and decay of the
calcium atom.

The mean lifetime of the intermediate state is 4.7ns. To simplify the termi-
nology, we shall call the A\; = 551.3nm light green, and the Ay = 422.7nm light
violet.

The polarizer, which works like a Wollaston prism is shown in Figure 11.22 be-
low where we can see the two-valued response of a Wollaston prism.

ly>
polarized light
(oscillations horizontal)
—_—
unpolarized
light
x>
X |
polarized light
(oscillations vertical)
z
y

Figure 11.22: Wollason Prism - Polarizer

The Wollaston prism is made of quartz or of calcite. It splits an incident beam
of natural (unpolarized) light into two beams of equal intensity, polarized at 90°
to each other. If only a single unpolarized photon is incident, it emerges either
in the state |z), with probability 1/2, or in the state |y) , with probability 1/2.
Thus, the response of the system is two-valued.
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The photon is detected by the photomultiplier tubes (PM) downstream from
the prism. Every electric pulse from these detectors corresponds to the passage
of a photon, allowing the photons to be counted. The experimental layout is
sketched in Figure 11.23 below, which shows a sketch of the first Orsay experi-
ment.

o= +1 B = +1
% A B @
AN < o > /
A\ s /]
o=-1 B=-1
1 L]
coincidence

TN

Figure 11.23: First Orsay Experiment

71t uses a coincidence circuit which registers an event whenever two photons
are detected in cascade. In this way four separate counts are recorded simul-
taneously, over some given period of time. In the EPR scenario envisaged by
Bohm, where 6 = 0, the only possible responses are (+1,-1) or (-1,+1) In the
situation realized by Aspect, the angle 6 is non-zero, and four different responses
are possible.

1. N,, the number of coincidences corresponding to aw =1 and § = 1, that is,
toaf=1

2. N,_ the number of coincidences corresponding to o =1 and 8 = -1, that
is, to af = -1

3. N_, the number of coincidences corresponding to « = -1 and [ = 1, that
is, to af = -1

4. N__ the number of coincidences corresponding to a = -1 and 8 = -1, that
is, toaf =1

The resolving time of the coincidence circuit is 10ns, meaning that it reckons
two photons as coincident if the they are separated in time by no more than
10ns. The mean life of the intermediate state of the calcium atom is 4.7 ns.
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Therefore, after a lapse of 10ns, that is more than twice the mean lifetime,
almost all the atoms have decayed (actually 88%). In other words, the efficiency
of the coincidence counter is very high.

The experiment consists in counting, over some given time interval, the four
kinds of coincidence: N,,,N,_,N_, and N__. The total number of events is
N=N,+N,_+N_,+N__.

Accordingly, the different kinds of coincidence have probabilities

P,y = N,./N corresponding to af =1
P,_=N,_/N corresponding to aff = -1
P_, = N_,/N corresponding to o = -1
P__=N__/N corresponding to a8 = 1

and the measured average of af is

Ny -Noo —-N_, + N__

(af) - ~

(11.73)

Each set of four coincidence counts corresponds to one particular setting of

(4, B), and yields a mean value (a3). But in order to determine the correlation

function () used in the BCHSH inequality, we need four mean values (o).

Therefore, we choose, in succession four different settings as shown in Figure

16.18(c); four counting runs then yield the four mean values (a1 51) , (@182) , (@2f1) , {(a2f2)
which then determine the value of () via

(7) = (a1 B1) + (a1 B2) + (2 1) — (2 B2) (11.74)

The Results of the First Experiment at Orsay

The results of the first Orsay experiment are shown in Figure 11.24 below. The
angle € which specifies the setting of the polarizers is plotted horizontally, and
the mean value () vertically.

851



Figure 11.24: Results from First Orsay Experiment

From earlier, the correlation function predicted by quantum mechanics reads
(v) = 3cos26 — cos66 (11.75)

It is drawn as the solid curve on the graph(the curve has been corrected for
instrumental effects, which explains why its ends are not precisely at 2 and -2).
According to the BCHSH inequality

-2<(y)<2 (11.76)
so that hidden-variable theories exclude the cross-hatched regions of the plane,

which correspond to (y) > 2 or {(y) < -2.

The experimental results from 17 different values of 6 are indicated on the figure
by squares, where the vertical size of the square gives plus or minus one standard
deviation (a measure of the experimental error).

Clearly, there can be no doubt that the BCHSH inequality is violated; many of
the experimental points fall outside the interval [-2,2]. At the point where the
violation is maximal (6 = 22.5°), one finds

() =2.70 £0.015 (11.77)

which represents a departure of over 40 standard deviations from the extreme
value of 2. What is even more convincing is the precision with which the exper-
imental points lie on the curve predicted by quantum mechanics.

Quite evidently, for the EPR scenario one must conclude not only that hidden-
variable theories fail, but also that quantum mechanics is positively the right
theory for describing the observations.

The Relativistic Test

The EPR experiment just described shows that the measurements in A and B
are correlated. What is the origin of the correlations?
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According to quantum theory, before the measurement each particle pair consti-
tutes a single system extending from A to B, whose two parts are non-separable
and correlated. This interpretation corresponds to a violation of Bell’s inequal-
ity and agreement with experiment.

According to hidden-variables theories, the particle pair is characterized, at the
instant of decay, by its hidden variable , which determines the correlation be-
tween the polarizations measured in A and B. This interpretation satisfies Bell’s
inequality but disagrees with experiment.

Accordingly, the Orsay experiment supports the quantum interpretation (in
terms of the correlation between two parts A and B of a single system).

However, to clinch this conclusion, one must ensure that no influence is exerted
in the ordinary classical sense through some interaction propagated between the
two detectors A and B, that is, no influence which might take effect after the
decay at S, and which might be responsible for the correlation actually observed.

Let us therefore examine the Orsay apparatus in more detail as in Figure 11.25
below where we attempt to test Einsteinian non-separability.

6m

ety St

Figure 11.25: Orsay Experiment - Details

When the detectors at A and B record a coincidence, this means that both have
been triggered within a time interval of at most 10 ns, the resolving time of the
circuit. Could it happen that, within this interval, A sends to B a signal capable
of influencing the response of B? In the most favorable case, such a signal would
travel with the speed of light in vacuum, which according to relativity theory is
the upper limit on the propagation speed of information, and thereby of energy.
To cover the distance AB, which is 12m in the figure, such a signal would need
40ns. This is too long by at least 30 ns, and rules out any causal links between
A and B in the sense of classical physics. One says that the interval between A
and B is space-like.

One of the advantages of the Orsay experiment is that it uses a very strong
light-source, allowing sufficient distance between the detectors A and B while
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still preserving reasonable counting rates. By increasing the distance AB step
by step, Aspect could check that the correlation persists, even when the interval
between A and B becomes space-like. This is the check that guarantees that
the two-photon system is non-separable irrespective of the distance AB.

It has become the custom to speak of the principle of Einsteinian separability in
order to denote the absence of correlations between two events separated by a
space-like interval. This is the principle that the Orsay experiment invites us to
reconsider, even though our minds, used to the world at the macroscopic level,
find it difficult to conceive of two microscopic photons 12m apart as a single
indivisible object.

The Final Stage of the Experiment at Orsay (1983)

Though the results of the first Orsay experiment are unarguable and clear-cut,
the conclusion they invite is so startling that one should not be surprised at
the appearance of a last-ditch objection, which as it happens gave the exper-
imenters a great deal of trouble. In the preceding section we discussed the
possible role of interactions between A and B operating after the decay at S,
and duly eliminated the objection. But one can also ask whether correlations
might be introduced through an interaction operating before the decay. We
could imagine that the decay itself is preconditioned by the setting of detectors
A and B, such influences taking effect through the exchange of signals between
the detectors and the source. No such mechanism is known a priori, but we
do know that, if there is one, then Einsteinian non-separability would cease to
be a problem, because the mechanism could come into action long before the
decay, removing any reason for expecting a minimum 30 ns delay. Though such
a scenario is very unlikely, the objection is a serious one and must be taken into
account; to get around it, the experimenter must be able to choose the orienta-
tion of the detectors A and B at random after the decay has happened at S. In
more picturesque language, we would say that the two photons must leave the
source without knowing the orientations of the polarizers A and B. Briefly put,
this means that it must be possible to change the detector orientations during
the 20ns transits over SA and SB.

The solution adopted at Orsay employs periodic switching every 10ns. These
changes are governed by two independent oscillators, one for channel A and one
for channel B. The oscillators are stabilized, but however good the stabilization
it cannot eliminate small random drifts that are different in the two channels,
seeing that the oscillators are independent. This ensures that the changes of
orientation are random even though the oscillations are periodic, provided the
experiment lasts long enough (1 to 3 hours).

The key element of the second Orsay experiment is the optical switch shown in
Figure 11.26 below.
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Figure 11.26: Second Orsay Experiment - Optical Switch

In a water tank, a system of standing waves is produced by electro-acoustic
excitation at a frequency of 25 M H z(corresponds to 10ns between switchings).

The fluid keeps changing from a state of perfect rest to one of maximum agita-
tion and back again. In the state of rest, the light beam is simply transmitted,
In the state of maximum agitation, the fluid arranges itself into a structure of
parallel and equidistant plane layers, alternately stationary (nodal planes) or
agitated (antinodal planes). Thus, one sets up a lattice of net-like diffracting
planes; the diffracted intensity is maximum at the so-called Bragg angles, just as
in scattering from a crystal lattice. Here the light beam is deviated through 102
radians (the angles in the figure are exaggerated for effect). The two numerical
values, 25 M Hz and 102 radians, suffice to show the magnitude of the technical
achievement. With the acoustic power of 1 watt, the system functions as an
ideally efficient switch.

The second Orsay experiment (using optical switches) is sketched in Figure
11.27 below.

Ay B,
N N SN
-1 S -1
-1 -1

+1 A2 B, +1

Figure 11.27: Second Orsay Experiment using Optical Switches

In this set-up, the photons a and b leave S without knowing whether they will
go, the first to A; or As and the second to By or Bs.
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The second experiment is less precise than the first, because the light beams
must be very highly collimated in order to ensure efficient switching. Neverthe-
less, its results exhibit an unambiguous violation of Bell’s inequality, reaching
5 standard deviations at the peak; moreover the results are entirely compatible
with the predictions of quantum mechanics.

11.6 The Principle of Non-Separability

Experiment has spoken. Half a century after the Como conference, Bohr’s in-
terpretation once again beats Einstein’s, in a debate more subtle and also more
searching. There were two conflicting theories:

Einstein Bohr
hidden variables | quantum mechanics
realist positivist
deterministic probabilistic
separable non-separable

Table 11.2: Two Conflicting Theories

The violation of the BCHSH inequality argues for Bohr’s interpretation, all the
more so as the measured values of () are in close agreement with the predic-
tions of quantum mechanics.

It remains to ask oneself just why hidden-variable theories do fail. Of the three
basic assumptions adopted by such theories, namely realism, determinism, and
separability, at least one must be abandoned. In the last resort, it is separa-
bility that seems to be the most vulnerable assumption. Indeed, one observes
experimentally that the violation of the BCHSH inequality is independent of the
distance between the two detectors A and B, even when this distance is 12m
or more. There are still die-hard advocates of determinism, who try to explain
non-separability through non-local hidden variables. Such theories, awkward
and barely predictive, are typically ad hoc, and fit only a limited number of
phenomena. They are weakly placed to defend themselves against interpreta-
tions furnished by quantum mechanics, which have the virtues of simplicity,
elegance, efficiency, and generality, and which are invariably confirmed by ex-
periment.

The principle of Einsteinian separability asserts that there are no correlations
between two phenomena separated by a space-like interval. In other words, no
interaction can propagate faster than light in vacuum. In an EPR scenario
this principle must be abandoned, and replaced by a principle asserting non-
separability:
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n a quantum system evolving free of external
perturbations,and from well-defined initial
conditions, all parts of thesystem remain
correlated, even when the interval between

them is space-like

This assertion reflects the properties of the state vector of a quantum system.
For an EPR system, the state vector after the decay of the source reads

@) = % (|za,7B) +ya,yB)) (11.78)

This expression combines the elements A and B in a non-separable manner,
which is what explains the observed correlations. The truth is that all this
has been well known ever since the beginnings of quantum mechanics, with the
concept of the electron cloud as the most telling illustration. It is for instance
hard to imagine separability between the 92 electrons of a uranium atom. What
is new is that quantum mechanics, considered hitherto as a microscopic theory
applicable on the atomic scale, is now seen to apply to a two-particle system
macroscopically, on the scale of meters. The truly original achievement of As-
pect’s experiment is the demonstration of this fact.

Quantum objects have by no means exhausted their capacity to astonish us by
their difference from the properties of the macroscopic objects in our everyday
surroundings. In the preceding sections we saw that a photon can interfere with
itself and we have shown that two photons 12m apart constitute but a single
object. Thus, it becomes ever more difficult to picture a photon through analo-
gies with rifle bullets, surface waves in water, clouds in the sky, or with any
other object of our familiar universe. Such partial analogies fail under attempts
to make them more complete, and through their failure we discover new prop-
erties pertaining to quantum objects. The only fruitful procedure is to follow
the advice of Niels Bohr, namely, to bend one’s mind to the new quantum con-
cepts until they become habitual and thereby intuitive. Earlier generations of
physicists have had to face similar problems. They had to progress from Aristo-
tle’s mechanics to Newton’s, and then from Newton’s to Einstein’s. The same
effort is now required of us, at a time favorable in that, by mastering the EPR
paradox, quantum mechanics has passed a particularly severe test with flying
colors.

From this point of view, the principle of non-separability seems as important as
the principle of special relativity , and Aspect’s experiment plays the same role

now that the Michelson-Morley experiment played then.
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11.7 An Example and a Solution - Bell’s Theo-
rem with Photons

Two photons fly apart from one another, and are in oppositely oriented circularly
polarized states. One strikes a polaroid film with axis parallel to the unit vector
a, the other a polaroid with axis parallel to the unit vector b. Let P, (a, l;) be
the joint probability that both photons are transmitted through their respective
polaroids. Similarly, P__(a, ?)) is the probability that both photons are absorbed
by their respective polaroids, P,_(a, ZA)) is the probability that the photon at the
a polaroid is transmitted and the other is absorbed, and finally, P_+(d,l3) is
the probability that the photon at the a polaroid is absorbed and the other is
transmitted.

The classical realist assumption is that these probabilities can be separated:
P;(a,b) = f dX p(\) P; (@, \) P; (b, \) (11.79)

where i and j take on the values + and —, where \ signifies the so-called hidden

variables, and where p(\) is a weight function. This equation is called the

separable form.

The correlation coefficient is defined by
C(a,b) = Pyy(a,b) + P_(a,b) - P,_(a,b) — P_.(a,b) (11.80)

and so we can write

C(&,B):fdAp(A)C(&,A)C(B,A) (11.81)

where
C(a,\) = P, (a,\) - P(a,\) (11.82)
C(b,\) = P, (b,\) - P_(b,\) (11.83)

It is required that
(a) p(A)20
(b) [drp(N)=1
(c) -1<C(a,\) <1, -1<C(b,A) <1
The Bell coefficient
B=C(a,b)+C(a,b")+C(a',b)-C(a',b") (11.84)

combines four different combinations of the polaroid directions.
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(1) Show that the above classical realist assumptions imply that |B| < 2.
. N2
(2) Show that quantum mechanics predicts that C(a,b) =2 (a-b)" - 1.

(3) Show that the maximum value of the Bell coefficient is 2v/2, according to
quantum mechanics.

(4) Cast the quantum mechanical expression for C(a, b) into a separable form.
Which of the classical requirements, (a), (b), or (c¢) above is violated?

Solution

(1) With the separability assumption, we have (16.81)
C(a,b) = f A p(\)C(a, ) C (b, \)
It follows that the Bell coefficient can be written in the form
B =C(a,b)+C(a,b')+C(a',b) - C(a',b)
- f dAp(N)[C(a, \)(C (b, A) + C(0, )
+C(a', \)(C(b,\)-C (', \)] (11.85)
Since |C'(a,\)| <1, |C(a',\)| <1 and p(\) > 0, we have
IB| < [d)\p()\) (0@, N) + C(H, )|+ |[C(b, ) - (¥, 1)) (11.86)

Now suppose that for a given A, Cpr(A) is the maximum and Cp, () is the
minimum of C(b, ) and C(V',\), so that Cps(A) > Cp (). Then

Bl < [ dA() (101 + Cu(W]+ Car (V) = Cn(V)) (11.87)
There are two cases to consider.
For the case Cr () > 0, we have [Car(A) + Con(A)] = Car(A) + i (A) s0 that
1B < [ d3w(3) (Car(N) + C(A) + Car(A) = Cn(N)
9 f dAp(\)Car (V) < 2[ dAp(N) [Crr (V)] < 2/ dAp(N) =2
For the case Ciy () <0, we have [Car(A) + Crn(A)] = ~Car (A) = G (A) 50 that
Bl < [ dAo() (Car (V) = Cun(N) + Car (V) = Con (M)
- 2[ DAp(N)(~C(V)) < 2[ dAp(\) |[Cru (V)] < 2 f dAp()) =2
Thus, in all cases |B| < 2.
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(2) A photon, traveling in the y—direction, might have right- or left-handed
circular polarization. The corresponding quantum states are written |R) and
|L) respectively. These circular polarization states can be expressed as coherent
superpositions of linearly polarized states in the z and z directions:

1 1
RY=—(|z)+1|x , |LYy=—7=(z)-1l|x 11.88
|)\/§(|> |z)) |>\/§(|) |z)) (11.88)
Under a rotation of the coordinate axes by an angle f about the y direction,
|R) - ¢?|R) and |L) — e""|L) or equivalently

|2) ES cos) —sinf |2)
( |z) )_’( ) ):( sinf  cosf )( |z) ) (11.89)

If each photon is in a state of right-handed circular polarization, we write the
corresponding state vector as |R1)|R2). However, since the photons are moving
in opposite directions, one along the positive, and the other along the negative
y axis, it follows that the actual directions in which the electric fields rotate, in
time, in the vicinity of the two photons, are opposed to one another. The same
holds for the state |L1)|Ls), corresponding to each photon being in a state of
left-handed circular polarization.

The linear combination of these two states,
1
V2
corresponds to the more general situation in which the photons are in oppositely
oriented states of circular polarization, where the sense of this polarization is

not specified. We can write this entangled or Finstein-Podolsky-Rosen state in
the form

|EPR) = (IR1)|R2) +[L1) |L2)) (11.90)

1
|[EPR) = NG (I21) 22) = |21) 22)) (11.91)

which is a superposition of states of linear polarization.

Suppose now that a measurement of linear polarization is made on photon 1 in
the z direction, and of photon 2 in the 2z’ direction, that is, the z direction after
a rotation of the axes about the y axis. The probability amplitude associated
with this measurement on the EPR state is

'—Lzz—x:c 21) (cos@|zg) —sinf |z
(EPR|2122)—\/§(( 1 (22| = (1] (z2]) (|21) (cos 0 ]z2) 0]72)))

= i0059 (11.92)

V2

where we have used (z; | 1) = 0. The probability that photon 1 is found to have
linear polarization in the direction z, and photon 2 in the direction 2z’ is

A 1
P..(a,b) =|(EPR | 21 25)|" = 5050 (11.93)
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where we have assumed that @ is in the z direction and b is in the 2/ direction.

Suppose next that the linear polarization of the linear polarization of photon 1
were measured in the z direction, and that of photon 2 again in the z’ direction.
The probability amplitude is

(EPR|x12)) = % ((z1] (z2] = (1] (wal) (Jo1) (cos 0 |22) - sinf |x2)))

1
= ——sind 11.94
% (11.94)

If photon 1 has polarization in the x direction, then it will not be transmitted
by a polarizer in the z direction - it will be absorbed. Hence,

P_.(a,b) =|(EPR | 2125 = %SmQ 6 (11.95)
Similarly,

Po_(a,b) = (EPR | 21a))” = %sinQ 6 (11.96)

P (a,b) = (EPR| 2123)]" - %COSQ 0 (11.97)

The correlation coefficient is then
C(a,b) = P,.(a,b) + P-_(a,b) - Po_(a,b) - P_.(a,b)
= cos?f —sin? 0 = 2cos? § — 1 = cos 20 (11.98)

Since the unit vectors é and b are at an angle 0 with respect to one another, it

follows that a-b = cosf and therefore
C(a,b) =2cos?0-1=2(a-b)%>-1 (11.99)

(3) Suppose that the angle between the vectors @’ and a is x/2, between a and
b is y/2 and between b and b’ is z/2. Then the angle between &’ and b is

( +y +2)/2 and according to quantum mechanics, the Bell coefficient has the
form

B =cosx +cosy+cosz—cos(x+y+2) (11.100)

This function has extrema when

B
a—:—sinm+sin(:v+y+z):0
Ox

B
a—:—siny+sin(;v+y+z):0
Iy

B
a—:—sinz+sin(x+y+z):0
0z
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or

sinz =siny =sinz =sin(z + y + 2) (11.101)
This has the solution
x=y=zand 3xr=m-z—>zr=7n/4 (11.102)
For this extremum
m 3T 3 1
B=3cos— —cos— = ——+— =22 11.103
1 TR AR ( )

This is a maximum, since at this point

0°B  0°B  0°B 3
= = :—cosz+cos—ﬂ:—\/§<0

0x2  Oy? 022 4 4

(4) Let the vector @ be at an angle , with respect to some direction in the xz
plane, and let b be at an angle 6, with respect to the same direction. Then

C(a,b) = cos2(0, - 03)
= cos 260, cos 20, + sin 20, sin 20,

- f dAp(\)C(a, \)C (b, \) (11.104)
and with the assignments

p(N)=6(A+1)+6(A-1)
C(a,1)=cos26, , C(a,-1)=sin26,
C(b,1) =cos20, , C(b,~1)=sin26,

we then see that

p(A) =20
~1<C(a,)\), C(b,)\) < 1for = 1

but

fd)\p(A)=1+1=2

so that the normalization condition (b) is violated.

11.8 Non-Locality, EPR and Bell - a last time

As we discussed earlier, the second major problem confronting hidden variables
and possessed properties was first understood in the context of the EPR para-
dox and then reinforced by the Bell inequalities. Let us look back at these ideas
in light of the above discussions.
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The original EPR analysis was rather complex in a technical sense and most dis-
cussions now use a simpler version due to Bohm. He considered a particle whose
decay produces two spin—1/2 particles whose total spin angular momentum is
zero. These particles move away from each other in opposite directions, and the
components of their spins along various directions are subsequently measured
by two observers, N and L, say. The constraint on the total spin means that if
both observers agree to measure the spin along a certain direction 7 , and if N
measures +h/2, then L will necessarily get the result —h/2, and if N measures
—h/2, then L will necessarily get the result +h/2.

There are no surprises if such correlations are analyzed in the context of clas-
sical physics. If one particle emerges from the decay with its internal angular
momentum vector pointing along some particular direction, then because of
conservation of angular momentum, the second particle is guaranteed to emerge
with its spin vector pointing in the opposite direction. Thus, the 100% anti-
correlations found in the measurements made by the two observers are simply
the result of the fact that both particles possess actual, and (anti-)correlated,
values of internal angular momentum and this is true from the time they emerge
from the decay to the time the measurements are made. There are no paradoxes
here, and everything is in accord with the simple realist view of classical physics.

The situation in quantum theory is radically different. Suppose first that the
measurements are made along the z—axes of the two observers. The spin part
of the state of the two particles can be written in terms of the associated eigen-

vectors as ]

V2

where, for example, |1)|}) is the state in which particles 1 and 2 have spin +h/2
and —h/2 respectively. Thus

[¥) (N =18 11) (11.105)

Sty =+h/2[1) , S.[N) = -h/2|}) (11.106)

The pragmatic or instrumentalist interpretation of the entangled state |¢)) is
straightforward. If, in a series of repeated measurements by N, a selection is
made of the pairs of particles for which the measurement of particle gave spin-
up, then - with probability one - a series of measurements by L on her particle
in these pairs will yield spin-down. Similarly, if N finds spin-down then, with
probability one, L will find spin-up. This correlation can be explained by say-
ing that the measurements by N(computed with the operator S.el ) cause a
reduction of the state vector from |¢) to |1)|{) or |[{}|1) respectively according
to whether the spin-up or the spin-down result is selected. This new state is an
eigenstate of the operator I ® S, associated with the second particle, and with
an eigenvalue that is the opposite of the result obtained by N.

This description is acceptable within the confines of the pragmatic approach
to quantum theory, but difficulties arise if one tries to enforce a more realist
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interpretation of the above entangled state.

The obvious question is how the information about each observer’s individual
results gets to the other particle to guarantee that the result obtained by the
second observer will be the correct one.

One might be tempted to invoke the reasoning of classical physics and argue
that both particles possess the appropriate value all the time.

However, the only way in standard quantum theory of guaranteeing that a cer-
tain result will be obtained is if the state is an eigenvector of the observable
concerned. But the state [¢)) above is not of this type. In fact, it displays the
typical features of quantum entanglement - it is a superposition of states. Any
attempt to invoke a hidden variable resolution will have to cope with the impli-
cations of the Kochen-Specker theorem.

There is also a question of whether this picture is compatible with special rela-
tivity. If the measurements by the two observers are space-like separated (which
can be easily arranged) then which of them makes the first measurement and
hence, in the standard interpretation, causes the state-vector reduction is clearly
reference-frame dependent.

The problem is compounded by considering what happens if the observers decide
to measure, say, the x-component of the spins, rather than the z-components.
The state above can now be written in terms of S, eigenvectors as

1
=—(|<)|=)-|-) |« 11.107
[¥) \/5(| V=) =1=)<) ( )
where |—) and |«) correspond to eigenvalues +h/2 and ~h/2 respectively of the
operator .S;.

In one sense, this new entangled state is what might have been expected, and
confirms that there is the same type of 100% anti-correlation between S, mea-
surements as that found for the observable S,. Indeed, this argument can be
generalized to show that for any unit vector 7, the entangled state can be
rewritten as a sum of two anti-correlated terms containing eigenvectors of the
projection 7 - S of the spin operator along 7. Thus, if one adopts the classical
type argument, one is obliged to conclude that both particles possessed exact
values of spin along any axis from the moment they left the decay. This might
not be easy to reconcile with the uncertainty relations associated with the an-
gular momentum commutators.

EPR considered these issues, and concluded that the difficulties could be re-
solved in one of only two ways:

1. When N makes her measurement, the result communicates itself at once
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in some way to particle 2, and converts its state into the appropriate
eigenvector.

or

2. Quantum theory is incomplete and provides only a partial specification of
the actual state of the system.

In contemplating the first possibility it must be appreciated that the two par-
ticles may have moved a vast distance apart before the first measurement is
made and, therefore, any at once mode of communication would be in violent
contradiction with the spirit (if not the law) of special relativity. It is not
surprising that Einstein was not very keen on this alternative! An additional
objection involves the lack within quantum theory itself of any idea about how
this non-local effect is supposed to take place, so in this sense the theory would
be incomplete anyway.

EPR came to the conclusion that the theory is indeed incomplete, although they
left open the correct way in to complete it. One natural path is to suppose that
there exist hidden variables whose values are not accessible to measurement in
the normal way but which determine the actual values of what we normally
regard as observables - in the same way as do the microstates in classical sta-
tistical physics.

However, it is not a trivial matter to construct a hidden variable theory that
reproduces all of the empirical results of quantum mechanics (which are experi-
mentally correct!). In particular, such a theory would need to explain why it is
that certain observables are incompatible (those with non-vanishing commuta-
tor) in the sense that one cannot prepare a state of the system that violates the
predictions of the uncertainty relations. In addition, there is the need to come
to terms with the implications of the Kochen-Specker theorem.

Hidden variable theories capable of reproducing the results of conventional quan-
tum theory do in fact exist (Bohm for example) but they exhibit a non-locality
which is every bit as peculiar as that discussed above. One might think that this
is a deficiency of these particular theories and that others might exist without
this problem.

However, as we discussed earlier and will review here again, a very famous result
of John Bell shows that this is not possible, that is, any hidden-variable theory
that exactly replicates the results of quantum theory will necessarily possess
striking non-local features.

This result is of major importance in understanding and appreciating the con-
ceptual challenge posed by quantum theory.
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11.8.1 The Bell Inequalities

The non-locality property we are about to discuss is not just a feature of hidden
variables theories. It applies to any realist interpretation of quantum theory in
which it is deemed meaningful to say that an individual system possesses values
for its physical quantities in a way that is analogous to that in classical physics.

We will derive an inequality that is satisfied by certain correlation functions in
any such theory which is also local. We will then see that the predictions (which
are experimentally correct) of quantum theory violate this inequality.

The considerations of EPR were concerned with two observers who make mea-
surements along the same axis. Bell found his famous inequalities by asking
what happens if the observers measure the spin of the particles along different
axes. In particular, we consider a pair of unit vectors a and a’ for one observer
and another pair b and b’ for the other observer.

Now suppose a series of repeated measurements is made on a collection of sys-
tems whose quantum state is described by the entangled state vector |¢). For
example, we could look at a series of decays, each of which produces a pair of
particles with zero total spin angular momentum. The central realist assump-
tion we are testing is that each particle has a definite value at all times for any
direction of spin. We let a,, denote 2/h times the value of a - S possessed by
particle 1 in the n'" element of the collection. Thus a,, = +1 if - S = +h/2.

The key ingredient in the derivation of the Bell inequalities is the correlation be-
tween measurements made by the two observers along these different directions.
For directions a and b this is defined by

N—oo N
and similarly for the other directions. Note that if the results are always totally
correlated(spins always in the same direction) then C'(a,b) = +1, whereas if they

are totally anti-correlated(spins always in opposite directions) we get C(a,b) =
-1.

. N
C(a,b) := lim 1 > anby (11.108)
n=1

Now look at the quantity

Gn = apby +aybl, +alb, +a,bl, (11.109)
For any member n of the collection, each term in this sum will take on the value
+1 or =1 . Furthermore, the fourth term on the right hand side is equal to the
product of the first three (because (a,)? =1 = (b,)?). Then thinking about the
various possibilities shows that g, can take on only the values +2. Therefore,
the right hand side of the expression
— > apbp+— > apbl + =Y alb,-— > a b
N,; nbn Nﬂ; bl Nﬂ; nbn NnZ::l b,

1 N
anzagn =
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representing the average value of g, must be less than or equal to 2. Thus in
the limit as N — oo, we get

|C(a,b) + C(a,b) + C(a',b) - C(a', )| < 2 (11.110)
which is one of the famous Bell inequalities.

It is important to emphasize the only assumptions that have gone into proving
this inequality are:

1. For each particle it is meaningful to talk about the actual values of the
projection of the spin along any direction.

2. There is locality in the sense that the value of any physical quantity is not
changed by altering the position of a remote piece of measuring equipment.

This means that both occurrences of a,, in the expression for the average value
of g, have the same value, that is, they do not depend on the direction (13 or
v ) along which the other observer chooses to measure the spin of particle 2. In
particular, we are ruling out the type of context-dependent values that arose in

our discussion of the Kochen-Specker theorem.

We will now show that the predictions of quantum theory violate this inequality
over a range of directions for the spin measurements. The quantum mechanical
prediction for the correlation between the spin measurements along axes a or b
is

. 22 . P

where S(l) and 5'(2) are the spin operators for particles 1 and 2 respectively,
and the tensor product is as we defined earlier in this chapter. Since the total
angular momentum of the entangled vector |)) is zero, it is invariant under the
unitary operators which generate rotations of the coordinate systems.

This means that C(a,b) is a function of - b = cos,;, only and, hence, there is
no loss of generality in assuming that a points along the z—axis and that b lies
in the = — z plane. Then the expression for C'(a,b) becomes

C(a,b) = (¥| 012 ® (022 COS gty + 025 5I0 O4p) 1) (11.112)
It is then straightforward to show that
C(a,b) = —cos by (11.113)

Now we restrict our attention to the special case in which (1) the four vectors
a,a’,b,b" are coplanar and (2) @ or b are parallel and (3) 6, = 6, = @ say.
Then the Bell inequality will be satisfied provided that

|1+ 2cosp—cos2¢| <2 (11.114)

867



This is violated for all values of ¢ between 0° and 90°. This means that if the
predictions of quantum theory are experimentally valid in this region then any
idea of systems possessing individual values for observables must necessarily in-
volve an essential non-locality. This applies in particular to any hidden variable
theory that is completely consistent with the results of quantum theory. Thus,
the important questions are:

1. Are the Bell inequalities empirically violated?
2. If so, are such violations in accord with the predictions of quantum theory?

In many experiments over the last two decades, the overwhelming conclusion is
that the predictions of quantum theory are vindicated and so we are obliged
either to stick with a pragmatic approach or a strict instrumentalist interpreta-
tion or else to accept the existence of a strange non-locality that seems hard to
reconcile with our normal concepts of spatial separation between independent
entities.

11.9 Bayesian Probability in QM

We turn to Bayesian probability arguments to deal with a realist.

11.9.1 Using Bayesian Ideas in Analysis of Experiments

In actual experimental tests, there are no infinite ensembles for accurate mea-
surements of mean values. Experimental physicists perform a finite number of
tests and then they state their results accompanied by a confidence level.

The real problem of theory versus experimental analysis is of a different nature
however.

I am a theorist and I believe that quantum mechanics gives a reliable description
of nature. I have a friend, however, who is a local realist.

We only have a finite number of trials of a Bell inequality experiment at our
disposal.

How many tests are needed to make my realist friend feel uncomfortable?
The problem is not whether the validity of a Bell inequality can be salvaged
by invoking clever loopholes, as some realists try to trick us into, but whether

there can be any local realistic theory that reproduces the experimental results.

To simplify the discussion, I will assume that there are ideal detectors and that
the rate at which particles are produced by the apparatus is perfectly known.
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Experimental Results Change Beliefs

First, we consider a yes-no test.

Quantum mechanics(QM) predicts that the probability of the yes result is ¢
and an alternative local realistic(LR) theory predicts a probability r.

An experimental test is performed n times and yields m yes results.
What can we infer about the likelihood of the two theories?

The answer is given by Baye’s theorem

P(BIAAC) :P(A|B/\C)];Ei||g; (11.115)

Denote by p; = P(q|I) and p;. = P(r|I) the prior probabilities that we assign
to the validity of the two theories. These are subjective probabilities expressing
our personal beliefs.

For example, if my friend is willing to bet 100 to 1 (for example) that LR is
correct and QM is wrong, then

!

Pr _ 100 (11.116)
p !
q
The question is: how many experimental tests are needed to change my friend’s
opinion to
pll
- =0.01 (11.117)
p//
q
say, before he is driven to bankruptcy. This is a reversal (in belief) by a factor

of 10%.

In this case, P(r|[{m,n} AI) = p!’ is the new prior probability for my friend
after the experiments are finished and similarly we have P(g[{m,n}AI)=p/.

If we define
Be=P({mnflgnl) , Ey=P({mn}lgaT) (11.118)

which are just the probabilities of the experimentally found result (the actual
data - m successes in n trials) according to the two theories.

These follow from the binomial theorem

n! n!

Tm(l _ ,r)n—m , B, = 7(17”(1 - q)”_m (11.119)
m!(n—-m)!

T m!(n—-m)!
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It then follows from Baye’s theorem that
P({m,n}r nI)P(r|I) = P(r|{m,n} AI)P({m,n}|I) (11.120)
P({m,n}lgnI)P(q|I) = P(q{m,n} A I)P({m,n}|I) (11.121)
or that

P({m,n}lgn I)P(q|l)
P(ql{m,n} A T)

P({m,n}|r nI)P(r|I) _
P(rl{m,n} A T)

P({m,n}|I) =

P({m,n}[r A)P(r[I) p.E. P(@r[{mn}aI) p}
P({m,n}lgnI)P(qll) pLE, P(d{m,n}AI) p}]
We define the ratio

M_Eq_pz(q)m(iz)n_m (11.123)

(11.122)

P({m,n}ral) E,

r

as the confidence depressing factor for the hypothesis LR with respect to the
hypothesis QM.

11.9.2 Simple Example

Suppose that we flip coins and the yes-no question is: Did the coin come up
heads?

I, the theorist, will assume that the coin is unbiased and that therefore ¢ = 0.5
and m = n/2 (assuming that I am correct). We then have

e O R

Since we want 10*, we find

n 4
(?) Z10% > nlog D =4 —n = -2 ~16 (11.125)
3 3 0.22

So that it would take only 16 coin flips to reverse my untrusting friend’s belief.

Now let us return to the Bell inequality.

11.9.3 Simple Ideas

Let us consider a device that has three widely separated detectors each of which
has two switch settings as shown in Figure 11.28 above.

When a detector is triggered it flashes either red or green. The detectors are
far apart from the source, there are no connections between the detectors and
no connections between the source and the detectors other than those mediated
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Figure 11.28: Three Detector Experiment

by the group of three particles (as shown) that originate at the source and fly
away, one to each detector.

A run of the experiment consists of setting the switch on each detector to one of
its two positions (labeled 1 or 2), pressing a button at the source (to release a trio
of particles, one aimed at each detector), and recording the color subsequently
flashed at each detector.

There are eight possible switch settings:
111 112 121 122 211 212 221 222 (11.126)

We consider only the data acquired for four of the eight possible switch settings,
namely, those in which the number of detectors set to 1 is odd.

111 122 212 221 (11.127)

The other set
112 122 212 222 (11.128)

will lead to similar results (1 <> 2). As shown in Figure 16.28 we call the detec-
tors A, B, and C, and specify pertinent facts about them by listing three pieces
of information (switch settings or colors flashed) in that order.

If we run the experiment many times, then the observational results are the
following. If just one detector is set to 1 (and the others to 2), then an odd
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number of red lights always flash, that is, either all three detectors flash red or
there is one red flash and two green ones.

If all three detectors are set to 1, then an odd number of red lights is never
observed to flash - either two of the three flash red or all three flash green.

This is summarized by the table:

Settings | Result 1 | Result 2 | Result 3 | Result 4
111 GGG GRR RGR RRG

122 RGG GRG GGR RRR
212 RGG GRG GGR RRR
221 RGG GRG GGR RRR

Table 11.3: Results

All four outcomes are equally likely in each case(this particular detail is not
important).

We will discuss a real, physical system that exhibits this behavior later.

Let us set aside, for the moment, the 111 case and consider the 122, 212, and
221 cases in which just one detector is set to 1. Because an odd number of red
lights always flash in any of these three cases, whenever the switches are so set
we can predict with certainty what one of the three detectors will do in a run,
merely by noting what happens to the other two. For should the other two flash
the same color (RR or GG), then the third will have to flash red, but should
the other two flash different colors (RG or GR), then the third will have to flash
green.

Now we follow the path set out by EPR to draw an inference that will seem
inescapable. Along the way we will use the so-called EPR reality criterion.

Since there are no direct connections between the detectors, their behavior can
only be coordinated due to the fact that all three are triggered by particles that
came from a common source. This fact and this fact alone must contain the
explanation for why we can learn in advance what color will flash at a given
detector, say A, from measurements made far away at B and C. Information
telling the detector at A what color to flash in order to maintain the observed
consistency with the colors flashed at B and C must somehow be encoded in the
particle that triggers A. Since that particle could indeed have been coordinated
with the particles that triggered B and C when all three were back at their
common source, this explanation seems both inevitable and entirely reasonable.

We can apply this reasoning to any one of the three detectors (by moving it
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farther from the source so that before it flashes we have had the opportunity
to observe what colors flash at the other two). We conclude that in each run
of the experiment each particle must be carrying to its detector instructions on
what color to flash, and that an odd number of the particles must specify red.

Thus, for a given choice of the switch settings (say 122) the particles heading for
detectors A, B, and C must respectively be carrying instructions RRR, RGG,
GRG, or GGR, but never GRR, RGR, RRG, or GGG.

Which of the four allowed groups of instructions they collectively carry is re-
vealed only when the lights flash. All of the above reasoning applies equally
well, of course, to 212 and 221 runs.

In the absence of connections between the detectors and the source, a particle
has no information about how the switch of its detector will be set until it ar-
rives there. Since in each run any detector might turn out to be the one set to
1 or one of the ones set to 2, to preserve the perfect record of always having
an odd number of red flashes in 122, 212, and 221 runs, it would seem to be
essential for each particle to be carrying instructions for how its detector should
flash for either of the two possible switch settings it might find upon arrival.

The existence of instructions of this sort is the EPR reality criterion.

The instructions carried by each particle can be symbolized by a pair of letters

1- R R G or G
2-R G R G

would result in RRR if the switch settings were 122, GGR for 212, and GRG
for 221.

Since each of the three possible switch settings result in an odd number of red
flashes, this is indeed a legal set of instructions.

An example of an illegal set of instructions is

R R G
G R R

for this gives an even number of red flashes GRR for the switch setting 212,
which is never observed.

Since there are eight ways the lights can flash, namely,
RRR RRG RGG RGR GRR GRG GGR GGG (11.129)

the total number of possible instruction sets is 8 x 8 = 64.
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It is not hard to enumerate all the legal (odd number of red flashes) instruction
sets.

First note that three of the six positions in a legal instruction set corresponding
to any one of the three choices 122, 212, or 221 for the switch settings, must
contain an odd number of R’s, since that particular setting might be encountered
in any run, and since only odd numbers of red flashes are ever observed. Thus,
the only possible entries for the positions corresponding to the switch settings
122 are (leaving blank the entries not relevant to those three settings):

ABC ABC ABC ABC
1> R-- R-- G-- G--
2 -RR -GG -RG -GR

so that 122 gives RRR, RGG, GRG, or GGR independent of the other entries.

We can next count the way to fill in the blanks in these four forms so as to
produce the correct data for switch settings 221. Since each of the four already
specifies the color flashed at detector B for setting 2, namely, R G R G, to
ensure that any 221 run produces an odd number of red flashes there are only
two choices available for the other two (A and C) unspecified 221 entries for
each of the four forms: RR or GG if the specified entry is R and RG or GR if
the specified entry is G so that we have

ABC ABC ABC ABC
1- R-R R-G G-G G-R
2—- RRR RGG GRG GGR

ABC ABC ABC ABC
1- R-R R-R G-R G-G
2—- GRR GGG RRG RGR

This raises the number of possible forms to eight, each of which leaves only the
entry for setting 1 at the detector B unspecified. But that entry is now entirely
determined by the entries at settings 2 for detectors A and C (having to be R,
if the latter two entries are the same color and G, if they are different).

ABC ABC ABC ABC
1- RRR RGG GRG GGR
2—- RRR RGG GRG GGR
ABC ABC ABC ABC
1- RGR RRR GGR GRG
2—- RRR GGG RRG RGR

They are arranged in the same horizontal order as the forms in (1), with the
two possibilities for each form placed directly above one another. It is easy to
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check explicitly that each instruction set (2) does indeed give an odd number of
red flashes when a single detector is set to 1.

122 gives RRR RGG GRG GGR
RRR RGG GRG GCR

221 gives RRR RGG GRG GGR
GRG GGR RRR RGG

212 gives RRR RGG GRG GGR
GGR GRG RGG RRR

Clearly, (2) represents the eight legal sets.

Now, finally, we consider the fourth type of run, in which all three detectors are
set to 1, and an odd number of red flashes is never observed.

The above instruction sets must determine the outcomes of these runs as well.
For who is to prevent somebody from flipping the two switches set to 2 over to
1, just before the particles arrive?

An inspection of the upper rows in (2) reveals that every one of the eight allowed
instruction sets results in an odd number of red flashes when all three switches
are set to 1.

If the instruction sets existed, then 111 runs would always have to produce an
odd number of red flashes. But they never do.

Thus, a single 111 run suffices all by itself to give data inconsistent with the
otherwise compelling inference of instruction sets.

Here the instruction sets(realistic theory) require an odd number of red flashes
in every 111 run, but quantum mechanics(experiment) prohibits an odd number
of red flashes in every 111 run.

Something is wrong with the EPR idea of instruction sets or EPR reality.

The Quantum Mechanical Explanation

Here is how the device works. What emerges from the source are three spin—1/2
particles (a, b, and ¢) in a spin state whose structure is given below. The parti-
cles fly apart to the detectors in the horizontal plane. We define the z—direction
for each particle to be along the line of flight. The detectors contain Stern-
Gerlach magnets which measure the vertical () component of the spin when
the switch is set to 1 and the horizontal component (y) perpendicular to the line
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of flight when their switch is set to 2. They are set so that we get red flashes
for spin-up, and green flashes for spin-down.

Let us describe a spin state that produces the remarkable correlations (GHZ-
state) described earlier.

We measure angular momentum for each particle in units of 7 so that the spin
operators for each particle can be taken to be the Pauli matrices. Now consider
the three commuting Hermitian operators

0’;0’20’; , oot

y ag

v 05020; (11.130)
They commute because all pairs of the six spin operators out of which they are
constructed commute, except for those associated with the x and y components
of the spin of a single particle, which anticommute. This does not cause any
trouble, however, because converting the product in one order to the product
in then other order always involves and even number of such anticommuting
exchanges.

Being commuting and Hermitian, the three operators above can be provided
with simultaneous eigenvectors. Since the square of each operator is the iden-
tity, the eigenvalues of each can only be +1.

The actual spin state that produces the remarkable correlations (the Greenberger-
Horne-Zeilinger or GHZ-state) is described by

1
V2

where +1 specifies spin-up or spin-down along the appropriate z—axis.

IGHZ) = — (]1,1,1) - |-1,-1,-1)) (11.131)

For simplicity in the following argument, here we pick the state with all three
eigenvalues equal to +1, which preserves the symmetry among the particles. The
argument works for any such symmetric state and for any linear combination of
such states as in the above state.

Since the components of the spin vectors of different particles commute, we can
simultaneously measure the x component for one particle and the y components
for the other two. Because the spin state is an eigenvector of all three of the
operators

a b _c a b _c a b _c

0x0y0y 5 Oy 0,0, , 0,0,0;

with eigenvalue +1, the product of the results of each of the three single spin
measurements has to be +1, regardless of which particle we pick for the = spin
measurement. Since +1 flashes red and —1 flashes green, there must indeed be
an even number of green flashes and thus an odd number of red flashes.

What about the result of three x—spin measurements, declared earlier never to
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result in an odd number of red flashes? Translating this into spin language tells
us that the product of the three results must always be —1. The Hermitian
operator corresponding to that product is

oo (11.132)

so for the declaration to be correct, it must be that the eigenvector of the
first three operators with eigenvalue +1 is also an eigenvector of the last opera-
tor(above) with eigenvalue —1.

This is easily confirmed. Indeed, the last operator is just minus the product of
the other three operators

0%0l0¢ = —(0%00%) (0% C)(O'U Mo (11.133)

zYz¥ wyy ywy

Since we are in an eigenvector with eigenvalue +1 of each of the three operators
appearing on the right, we are indeed also in an eigenvector of c%c20¢ with
eigenvalue —1.

The consequence of the EPR reality criterion specified earlier, if translated into
quantum theoretic terminology, would also assert that the state was an eigen-
vector of the operator 2020, but with the wrong eigenvalue. In this sense, the

GHZ experiment provides the strongest possible contradiction between quan-
tum mechanics and the EPR reality criterion.

Alternatively, we can say it this way. We may measure, on each particle, either
o, or oy, without disturbing the other particles. The results of these measure-
ments will be called m; or my, respectively. From

0200 |111) = |111)

Ty Yy
ayaxay|111) [111)
olopos |111) =[111)

and

000t |111) = - |111)
we can predict with certainty that, if the three o, are measured, the results
satisfy

MazMpgMee = —1 (11134)

Therefore, each of the operators 0%, o2 and ¢¢ corresponds to an EPR element
of reality, because its value can be predicted with certainty by performing mea-
surements on the two other, distant particles.

However, it follows from

ololot|111) = [111)

YTy
opoboy|111) =[111)
opobot|111) =[111)
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that we can predict with certainty the value of ¢% by measuring U'g and oy
rather than o2 and 0. We then have

Mz MpyMey = +1 (11.135)
and likewise, by cyclic permutation,
MayMpgMey = +1 (11.136)

and
Mgy My Mg = +1 (11.137)

The product of the last four results gives

MazMbzMexMaz My My May Mz Mey May My Meg = —1 (11.138)
(Maz)? (M) (Mea ) (M) (Mey ) (May)? = =1 (11.139)

But,
(mjz)? =1 (11.140)

so that we get a contradiction.

There is a tacit assumption in the above argument, that mq, in mgaMmpeMer = —1

is the same as mqz in MagMpyMey = +1, in spite of the fact that these two ways

of obtaining m,, involve mutually exclusive experiments - measuring Ug and o
: b c

or measuring o, and oy.

This tacit assumption is of counterfactual nature, and cannot be experimentally
verified. It obviously adheres to the EPR reality criterion - but is simply wrong!

Saying it another way, the crucial minus sign in

olobol = —(UgO'ZU;)(UZUZUz)(U;O'ZU;
which is totally destructive of the possibility of these instruction sets, comes
from the fact that in working out the identity it is necessary to interchange the
anticommuting operators ¢’ and JZ in order to get rid of all the y components
(using (o)) = 1) and be left with a product of three x components. It is
only that one instance of uncompensated anticommutation that produces the
conclusion so devastating to the hypothesis of instruction sets.

This is extremely pleasing, for it is just the fact the z and y components of the
spin of a single particle do not commute, which leads the well-educated quantum
mechanician to reject from the start the inference instruction sets (which have
to specify the value of both of these non-commuting observables), making it
necessary for me to disguise what was going on earlier so that you would not
have dismissed this discussion as rubbish before reaching the interesting part.
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There is no other Bellian refutation of EPR in which the mathematical details
of the refutation so closely reflect the broad interpretive doctrines of quantum
theory that EPR tried to challenge. The entries in the instruction sets are
precisely the conjectured c-number values for all the o, and o] -values that
appear to be the only explanation for the remarkable correlations. In addition,
the logic of the red and green lights in the simple model precisely parallels the
algebraic behavior of the four operators used here except for that one devastating
anticommutation.

Let us return now to using Bayesian ideas to convince our realist friends about
the validity of quantum mechanics within the context of the Bell inequalities.

11.9.4 More about the Greenberger-Horne-Zeilinger(GHZ)
State

We consider the GHZ state for a three-particle system

1
—(]1,1,1) - |-1,-1,-1 11.141
7 (11,1,1) - ) ( )
where —1 and +1 denote any two orthogonal states of each of the three particle
subsystems.

IGHZ) =

We have three distant observers examine the three subsystems. The first ob-
server has the choice of two tests. The first test can give two different results
that we label a = +1, and likewise the other test yields a’ = +1. Symbols b, ¥, ¢
and ¢’ are similarly defined for the other two observers. Any possible values of
their results satisfy

a'be=ab'c=abc’ =-a't'd" = +1 (11.142)

Mermin has then shown that we have the inequality
-2<(a'be+ab'c+abc’ - a't'c') < +2 (11.143)

As we saw above quantum mechanics makes a very simple prediction for the
GHZ state: there are well chosen tests that give with certainty

a'be=ab'c=abc’ =-a't'c' = +1 (11.144)

It is important to remember that performing any such test can verify the value
1 for only one of these products (at a time) since each product corresponds to
a different experimental setup.

If, however, we take all these results together, they manifestly conflict with
a’be+ab’c+abd’ —a'b'c = +2.

Many physicists have erroneously, at this point, stated that a single experi-
ment is sufficient to invalidate local realism. This is sheer nonsense: a single
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experiment can only verify one occurrence of one of the terms in
a'be=ab'c=abc’ =-a't'c" = +1 (11.145)
What does our realist friend think?

He believes that, in each experimental run, each term in the above result has a
definite value even if that term is not actually measured in that run.

We ask him to propose a rule giving the average values of the products in
a'be+ab'c+abc’ - a't'c' = +2 (11.146)
Suppose that he assumes
(a’be) = {ab'c) = (abc’) = (-a'b'c’) = 0.5 (11.147)

This clearly attains the right hand side of (Mermin’s) inequality. This assump-
tion then leads to the prediction that if we measure a’bc we shall find the result
1 (that is, yes) in 75% of the cases and the opposite result in 25% and like wise
for the other tests. This simply corresponds to the averages proposed above.

In our earlier discussion about confidence depressing factors, this corresponds
to

qg=1andr=0.75 (11.148)

If we assume that quantum mechanics is correct, then m = n (that is what ¢ =1
means). Therefore, we have

(DT e

Therefore it would take

D:(é) 10t e — 1 ag (11.150)
3 log(1.33)

tests to undo the realist’s beliefs.

11.10 Problems

11.10.1 Bell Inequality with Stern-Gerlach

A pair of spin—1/2 particles is produced by a source. The spin state of each
particle can be measured using a Stern-Gerlach apparatus (see diagram below).
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Figure 11.29: EPR Stern-Gerlach Setup

Let 77 and 72 be the field directions(arrows in diagram) of the Stern-
Gerlach magnets. Consider the commuting observables

2 - 2 -
U(l):gﬁ,l'Sl 5 U(z)zgﬁQ'SQ

corresponding to the spin component of each particle along the direction
of the Stern-Gerlach apparatus associated with it. What are the possible
values resulting from measurement of these observables and what are the
corresponding eigenstates?

Consider the observable 0('?) = ¢() @ ¢(?) and write down its eigenvectors
and eigenvalues. Assume that the pair of particles is produced in the
singlet state

R
V2

What is the expectation value of ¢(12)?

0,0) = —= (182 +)V15.-) - 15.) P [5.4)?)

Make the assumption that the spin of a particle has a meaningful value
even when it is not being measured. Assume also that the only possible
results of the measurement of a spin component are +h/2. Then show that
the probability of finding the spins pointing in two given directions will be
proportional to the overlap of the hemispheres that these two directions
define. Quantify this criterion and calculate the expectation value of o(12).

Assume the spin variables depend on a hidden variable A\. The expectation
value of the spin observable 0(1?) is determined in terms of the normalized
distribution function f(\):

4
(012) = = [ )sOMSL M)
Prove Bell’s inequality

(2 (@) = {2 () <1+ (e (0 - )]

Consider Bell’s inequality for ¢’ = 2 and show that it is not true when
applied in the context of quantum mechanics.
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11.10.2 Bell’s Theorem with Photons

Two photons fly apart from one another, and are in oppositely oriented circularly
polarized states. One strikes a polaroid film with axis parallel to the unit vector
a, the other a polaroid with axis parallel to the unit vector b. Let P, (a, l;) be
the joint probability that both photons are transmitted through their respective
polaroids. Similarly, P__(a, l;) is the probability that both photons are absorbed
by their respective polaroids, P,_(a, I;) is the probability that the photon at the
a polaroid is transmitted and the other is absorbed, and finally, P,Jr(&,l;) is
the probability that the photon at the a polaroid is absorbed and the other is
transmitted.

The classical realist assumption is that these probabilities can be separated:
Py(a,5) = [ dAo(NPi(a ) Py(b,2)

where ¢ and j take on the values + and —, where A signifies the so-called hidden
variables, and where p(\) is a weight function. This equation is called the
separable form.

The correlation coefficient is defined by
C(a,b) = P,,(a,b) + P-_(a,b) - Po_(a,b) - P_(a,b)
and so we can write
Ca,b) = [ dap(N)C(@NC(b,N)
where
C(a,\) = Po(a,\) - P_(a,)) , C(b,A)=P.(b,\)—P_(b,)\)

It is required that

(a) p(A) 20

(b) Jdap(A) =1

(¢) -1<C(a,\) <1, -1<C(bA)<1
The Bell coefficient

B=C(a,b)+C(a,b)+C(@,b)-C(@,b)

combines four different combinations of the polaroid directions.

(1) Show that the above classical realist assumptions imply that |B| < 2
. A\ 2
(2) Show that quantum mechanics predicts that C(a,b) =2 (a-b)” -1

(3) Show that the maximum value of the Bell coefficient is 21/2 according to
quantum mechanics

(4) Cast the quantum mechanical expression for C(a, b) into a separable form.
Which of the classical requirements, (a), (b), or (c) above is violated?
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11.10.3 Bell’s Theorem with Neutrons

Suppose that two neutrons are created in a singlet state. They fly apart; the
spin of one particle is measured in the direction a, the other in the direction b.

(a) Calculate the relative frequencies of the coincidences R(up, up), R(up, down),
R(down,up) and R(down,down), as a function of 8, the angle between a
and b.

(b) Calculate the correlation coefficient

C(a,b) = R(up,up) — R(up,down) — R(down, up) + R(down, down)

(c) Given two possible directions, a and o', for one measurement, and two
possible directions, b and o', for the other, deduce the maximum possible
value of the Bell coefficient, defined by

B =C(a,b)+C(d,b)+C(d, V) - C(a,b')

(d) Show that this prediction of quantum mechanics is inconsistent with clas-
sical local realism.

11.10.4 Greenberger-Horne-Zeilinger State

The Greenberger-Horne-Zeilinger (GHZ) state of three identical spin—1/2 par-
ticles is defined by

1
IGHZ) = 7% (Iza+) [264) [ze+) = 12a=) [26=) [2c-))

where z,+ is the eigenvector of the z—component of the spin operator of par-
ticle a belonging to eigenvalue +h/2 (z—spin up), z,— is the eigenvector of the
z—component of the spin operator of particle a belonging to eigenvalue —h/2
(z—spin down), and similarly for b and ¢. Show that, if spin measurements are
made on the three particle in the z— or y—directions,

(a) the product of three spins in the x—direction is always —h3/8

(b) the product of two spins in the y—direction and one spin in the z—direction
is always +h3/8

(¢) Consider a prize game for a team of three players, A, B, and C. The players
are told that they will be separated from one another and that each will
be asked one of two questions, say X or Y, to which each must give one of
two allowed answers, namely, +1 or —1. Moreover, either

(a) all players will be asked the same question X
or

(b) one of the three players will be asked X and the other two Y
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After having been asked X or Y, no player may communicate with the
others until after all three players have given their answers, +1 or —1. To
win the game, the players must give answers such that, in case (a) the
product of the three answers is —1, whereas in case (b) the product of the
three answers is +1.

(a) Show that no classical strategy gives certainty of a win for the team

(b) Show that a quantum strategy, in which each player may take one of
the GHZ particles with her, exists for which a win is certain
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Chapter 12

Identical Particles

12.1 Theoretical ideas

We now apply these quantum mechanical methods we have developed to multi-
electron atoms.

We will create a model to handle these atoms that follows from the one-electron
case considered earlier. These systems are very complex and all the results that
we derive will be approximations.

If we consider an atom or system of N particles, the wave function

w(1,2,3,4, ...... 7N,t):w(Flsl,F2827f383,f484, ...... ,fNSN,t)
=(1,2,3,4,....., N, t| 1) (12.1)

where 7js; = (radius vector,spin) of the j' particle

describing the system will be a function of 3N spatial coordinates, time and
all of the particle spin variables. The 3N spatial coordinates form a multi-
dimensional configuration space.

The Hamiltonian of the system is given by
H=T+V (12.2)
where

N N h2 R .
T=3Ti=-%(-—V])and V = V(71,7 ..., Px, 1) (12.3)
j=1 i\ 2my

The time-dependent Schrodinger equation is

Hy(1,2,3,4,.....,N,t) = m%¢(1,2,3,4, ...... N, t) (12.4)

p(1,2,3,4, ... N, t) =¢*(1,2,3,4, ..., N,t)¥(1,2,3,4,.....,N,t)  (12.5)
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so that

p(1,2,3,4, ..., N,t)d>F1d>Fy.......d°F = probability of finding
particle 1 at 71 in d°7 , and particle 2 at 75 in d°7 ,

........... , and particle N at 7y in A7y all at time time ¢

We assume that the N-particle wave function is normalized.

The energy eigenstates or stationary states are solutions of

Hyp(1,2,3,4,....;N) = Ey(1,2,3,4,......N) (12.6)

0(1,2,3,4, o, Ny 1) = 0p(1,2,3,4, .., N)e 7 (12.7)
where F is the energy of the system.

When we consider an N—electron atom, the system really has N + 1 particles
(we must include the nucleus). However, the nucleus is so much more massive
than the electrons that we can make the approximation that it has infinite mass
and is fixed.

We put the nucleus of charge Ze at the origin and define

7; = position vector of the j™ electron

ik = |Fj — Tx| = separation between the j'" and k' electrons

The potential energy is

DY e— (12.8)

J
= Coulomb energy between nucleus and electrons

+ Coulomb energy between electrons

We will assume no spin-dependence or time dependence in the potential energy.
All electrons in the atom are considered to be identical or indistinguishable.
This means that there are no interactions that can, in any way, distinguish
them from each other.

Alternatively, we can say that, if we interchange the coordinates and spins of
two particles, then it is not possible to determine via any physical measurement
that any change was made in the system.

This says that all measurable quantities or the operators representing them must
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remain unchanged by the interchange of indistinguishable particles.

In particular, the Hamiltonian must remain unchanged, i.e., we must have
H(1,2,3,4,....5.k, .. N) = H(1,2,3,4, ...k, j, ... N) (12.9)

This property of H is called exchange symmetry. Operators that have this
property are symmetric functions of their indices 1,2,3,4,....., N and they are
called symmetric operators.

Now, every symmetry of a physical system must be represented by an operator
that commutes with H. In this case, we introduce the particle interchange or
permutation operator P;; such that

Pijp(1,2,3, ... iy gy N) = (1,2,3, yiy Gy eveens N| Pij 1)
=(1,2,3,........ by ey N 0) = 00(1,2,3, ... iy N

In words, we say

Pij@/}(l, 2,3, . iy Jy e ,N) gives the amplitude for
finding the j*" particle at 7; with spin s;
and i'" particle at 7; with spin s,

Now, the transformed Hamiltonian operator is given by

H'=Pj;HP;;' = H (by assumption) (12.10)
This implies that o o
P jH =HP;; - [H,P;]=0 (12.11)

as we expected. The same result holds for all symmetric operators.

Now, suppose that the state vector |1)) is an eigenvector of the symmetric, N-
particle H with energy E. We then have

Hy) = Ey) (12.12)
HPj[ip) = Pyl [¢p) = EP;;[3) (12.13)

which says that
P |4) is also an eigenvector of H with the same energy (12.14)

This holds for any pair (i,7). So H and [:’ij share a common eigenbasis as
expected. This phenomenon is called exchange degeneracy.

For simplicity, we assume that N = 2. We then have
H(1,2) and (1,2) (12.15)
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and o
[H,P2]=0 (12.16)

What are the simultaneous eigenfunctions? We have
Prag(1,2) = (2, 1)
Piyp(1,2) = Pap(2,1) = (1, 2)

which says that R .
PL=1 (12.17)

and that 1512 has eigenvalues +1. Now if
Hy(1,2) = By(1,2) (12.18)

then
Hy(2,1) = By(2,1) (12.19)

and these two state functions are degenerate. Then, we can write

¥s(1,2) =1(1,2) +9(2,1) > symmetric wave function
Ya(1,2) =9(1,2) —¢(2,1) > antisymmetric wave function

which are the simultaneous eigenfunctions with
Hyg=Eps  Hipa=Epy (12.20)
Piyths = +1hs  Pratha=—ta (12.21)

It is an experimental fact that the behavior of wave functions under pairwise
particle interchange depends only on the kind of particles involved, in particular
on their spin.

All known particles divide themselves in to two classes:
1. Bosons — particles with integer spin, s =0,1,2,3,4,......
2. Fermions — particles with half-integer spin, s = 1/2,3/2,5/2, ......
and
1. Fermions have antisymmetric wave functions under particle interchange
2. Bosons have symmetric wave functions under particle interchange

This relationship between spin and wave function symmetry cannot be proved
in non-relativistic quantum mechanics. It can, however, be proved if we add rel-
ativity and construct the relativistic waves equations for bosons and fermions.

As we shall see, this symmetry /antisymmetry connection of spin and wave func-
tions will generalize to more complex systems with more particles.
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Before proceeding to study real atoms with N electrons, let us see what we can
learn from a one-dimensional systems containing either two identical bosons or
two identical fermions.

The general Hamiltonian for a one-dimensional two-particle system is

H=H +H,+U(x, -x) (12.22)

. hZ 92 N
=————+V 12.23
YT 2m 042 (@1) ( )

. Rz 92 .
RN v 12.24
2= g V) (12.24)

where

U(x1 —x3) = the particle - particle interaction (12.25)

We will assume that U(a:l —x9) is small enough that we can apply perturbation
theory. We then use direct product states and write

H=Ho+U (12.26)
Hip(D (1) = EQ 9 (21) (12.27)
Hyp{0 (22) = B9 (22) (12.28)

ﬁ%(z?)m (351,%2) = ﬁolbr(z?)(fﬂl)lbg)(@)
= (Hy + Ho) {0 (21) 0D (22)
= (Eﬁfi) + Eﬁ?)wi?)(:vl)wi?(wz)
S B 5O (0 (12.29)

ning Yning

We will construct the unperturbed(zero order) eigenfunctions and energies from
these direct product states.

For the moment, we will also ignore spin.
The simple direct product states will not work for a description of the two
particle system since the eigenfunctions of Hy must be either symmetric or

antisymmetric under particle interchange.

The correct choice is ¥g or 14 where

Wi = % [0 (21)9 9 (22) + D (2) (D (21)] (12.30)
B0 = [0 (21)u (w2) - 0O (22) 0 (a1)] (12.31)

V2

0 0 0
Both of these states have energy E,(u)n? = Ef“) + Efm).
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12.2 Bosons with Spin = 0

We assume that s; = s3 = 0. This says that there are no new degrees of freedom
and hence no reason to change the wave functions.

Indistinguishable bosons of spin = 0 require a symmetric wave function and thus
we choose as the properly symmetrized zero-order wave functions

Y = f (57 (1) (w2) + ) ()2 (21)] (12.32)
The ground state corresponds to n; =ns =1 or
5 =@ (21)yl? (2) (12.33)

In perturbation theory, the first order energy is then
By = 2B + (¢{0°| 0 (21 - 2) [67°)
=25 (12.34)

+f]offmdx1dacgda:'1dm'2
(o] (o1 @) ot o) (o1 @] (917 @2)])
x U (= w2) (|08 @) [15° (@5)) (4 (@) (” (a

o)

Now

(v @] (o @] O ) [ @) ol )

=U(xy —22)0(x1 — 21)6(22 — 25) (12.35)
which implies that
Eyy =2E
[ Jantn o) o))
< Ul =) (1 @) (087 @2)]) [12%) (12.36)

or

En =26+ [ [ durdws |60 @0)| U - 22) [55 (2) (12.37)

For later use we define the general direct integral

oo 0o

Jning = ffdxldxz O () [ U (21 - 22) [0 (2)| (12.38)

—00 —00
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In this case, we have
Ey =29 1 gy, (12.39)

Now we look at the first excited state of this system. We assume that for
the zero-order states, the first excited state corresponds to ny =1 and ng = 2.
Therefore, the zero-order symmetric wave function for the first excited state is

9% = % [047 @) () + 6 (22) 08" (1) ] (12.40)

and the first order energy is
EBrs = B + B + ( §g>3\ U1 - z2) M?S) (12.41)
Using the same procedure as before we get
B =B+ B 1 g, + Ky (12.42)
where

Kogn = [ [ dordost @ (@)l @)U @1 = 2)0 D (22)6 (22) (12.43)

—00 —00

is called the exchange integral.

Now let us look at a possible physical meaning of these direct and exchange
integrals.

We define

|¢§£)(x1)|2 = p1 = probability density for particle 1 in state n (12.44)
and

|7,/1,(72)(x2)|2 = po = probability density for particle 2 in state ng (12.45)

Therefore, the direct integrand takes the form

p1p2U (712) (12.46)

To see what this means let )
U(’I“lg) = i (12.47)

T12

which corresponds to a repulsive Coulomb potential. The direct integral is then

/ / % dy das (12.48)

This represents the total energy of two classical charge distributions interacting
with the potential energy U(r12).
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The exchange integral, however, has no such classical counterpart. It is the
result of symmetrizing the wave function and therefore arises because of the
invariance of H with respect to particle interchange.

The energy level diagram to first order might look like Figure 12.1 below.

@, O _Y_l‘

1st Excited
State

Figure 12.1: Typical Boson Energy Level Diagram

The more interesting case is a two spin = 1/2 fermion system (since electrons
are spin = 1/2 fermions).

12.3 Spin = 1/2 Fermions

The particles now have internal degrees of freedom. The single particle state
vectors must now have both spatial and spin parts

|space) |spin) (12.49)

For example,
W) |+) (12.50)

presents a fermion in the 11)7(3) spatial state with spin up.
We write the corresponding wave function as
(1 | 9{0) [+), = 98 (z1) (1) (12.51)
and so on, where we define the labels a(j) = |+); and 8(j) =[-),.
We must choose the antisymmetric combination for the zero-order wave func-
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tions. We have 4 possible direct product states given n; and na, i.e.,

P1(1,2) = 0 (21) 9D (22)a(1)a(2) (12.52)
2(1,2) = ¥ (21)9L2 (22)a(1) B(2) (12.53)
3(1,2) = ¥ (21) (D (22) B(1)a(2) (12.54)
$4(1,2) = 0 (219D (22) B(1)B(2) (12.55)

These are not antisymmetric, however. A useful operator allows us to construct
antisymmetric states. Consider the operator

. 1 .
R= E(1—1312) (12.56)
Now for any function A(1,2) we have
R 1 . 1
RA(1,2) = E(l - P12)A(1,2) = NG [A(1,2) - A(2,1)] (12.57)

which is antisymmetric. The factor 1/\/(2) keeps the state normalized. We

now use R to construct four antisymmetric states from the four direct product
states (12.52).

O (w1,22) = %(1 ~ Py (1,2)
- f[ $O (20)80 (12)a(1)0(2) - 6O (21)6 ) (2)a(1)a(2)]  (12.58)

1 ~
(z1,22) = %(1 - P12)12(1,2)

ﬁ [0 (21)9D (22)a(1)8(2) = 1) (21)$) (w2)a(2)B(1)] - (12.59)

0
w£122+_

nlng +($17$2) = 7(1 - P12)¢3(1 2)

= ﬂ[ P80 (1) (22) B(1)(2) = 0D (1) (P (22)a(1)B(2)]  (12.60)
B0 (a1, 3) = %(1 ~ P)a(1,2)

:\/5[ Y ()0 (22)B(1)B(2) = ) (w1) e (22)8(1)(2)] - (12.61)

where the subscripts imply
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+ + means both spins up
+ - or - + means one spin up and one spin down
- - means both spins down

Each of these wave functions is antisymmetric and each is an eigenfunction of
H, (since H, does not contain any spin dependent terms) with the same energy.
This implies that, at this point, we have a 4-fold degenerate zero-order system
with energy E,(l?) + E,(Lg).

We could use these states as the zero-order wave function to start perturbation
theory. It would be like doing the spin-orbit calculation using the |£smgmy)
basis, rather than the [¢sjm;) basis where H,, is diagonal. It is always important
to choose zero-order wave functions, if it is not to difficult to do, that incorporate
as much of the symmetry of the system as possible. In other words, choose
zero-order wave functions that are simultaneous eigenstates of the maximal set
of commuting observables. This will hopefully produce a diagonal perturbation
matrix or at least so many zeros that it is easy to diagonalize the rest of the
matrix.

In this case, we not only have [H, ]3121: 0 which told us to choose antisymmetric
zero-order states, but we also have [H,52)]=0 and [H,5.] = 0 where

gop = 5’1701, + §2,0p = the total spin angular momentum
S’Z = 5’12 + S’gz = the z - component of the total spin angular momentum

Therefore we should choose antisymmetric state functions which are also eigen-
functions of Hy, 52, and S, as our zero-order states.

From our earlier work we know that the possible values of the total spin are
S =0,1 and the state vectors that are eigenstates of Sgp and S, are

1,1) = a(1)ex(2) = x11 (12.62)
11,0) = % (a(1)B(2) + a(2)B(1)) = x10 (12.63)
11,-1) = B(1)B(2) = x1,-1 (12.64)
0,0) = % (a(1)B(2) - a(2)B(1)) = x00 (12.65)

Notice that the x1,m=-+1,0 are symmetric under Plg and xqo is antisymmetric.

Therefore, we will maintain overall antisymmetry by writing the wave functions
as products of spatial wave function and spin functions such that the spatial
function is symmetric when combined with xoo and the spatial function is anti-
symmetric when combined with X1 m=x1,0-
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The symmetric spatial function is

Y = ﬁ[ PO (@) (22) + D (22)0 QD (21)] (12.66)

and the antisymmetric spatial function is

P (1) 80 () = 8D (22 (21)] (12.67)

ning \/‘[

The four zero-order wave functions, which are now eigenfunctions of Ps, Hy,
- .
S;p and S are then

¢(0)A _

P 0 = f [0 (1) (22) + ¥ (22)% 0 (21)] x00 (12.68)
O i = }[ O (1) (22) - O (22)D (1) ] Xum, s = £1,0

(12.69)

Notice that if we have identical spatial states, i.e., ny = no, the S = 1 states
vanish identically. This says that two fermions in an S = 1 spin state cannot be
in the same spatial state(the wavefunction vanishes). This is the first example
of a general principle we will discuss later called the Pauli Ezclusion Principle.

An alternative way to find these zero-order wave functions is to go back to first
principles and use CG coefficients. For example
0 0
wgl)ngsms = Z am5177”52 1/}7(L1)7’L2m3177L52 (1270)

Msq,Msqy
M) Mgy =M

where
Ay, ma, = (518215, M, | $1528M5) (12.71)
Now 11 11
<f Mg, Mg,y 7711> =0,, 10, 1 (12.72)
22 22 #103 Mez03
which implies that
0 0
wil)anl = ’Sll?flz++ (1273)
as written above.
Similarly, for s =1, mg = 0, the only nonzero CG coefficients are
111 111 1 11 11711
<777—7’771 >:—:<77—77 7710) (12.74)
222 2122 V2 22 22122
which implies that
PO 1o (0)
nin210 \/— n1n2+— \/— ninz—+
= —[ W (2) = (20 ()] xao (12.75)

%
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as written above. We now have the appropriate zero-order wave functions and
can apply perturbation theory to the two fermion system.

As with the two boson case, the zero-order ground state for two fermions cor-
responds to nj = ng = 1 with zero-order energy 2E§0). Since the S =1 or triplet
states have identically zero state functions in the case (since the spatial function
are antisymmetric), we have wﬁ?lms = 0. The unperturbed ground state must
then have S =0,5, =0 or it is 1/)?1)?00(1,2). This involves a singlet state with
mg = 0 only
1
Xoo = 5 (a(1)B(2) - B(1)a(2)) (12.76)

In this state, the particle spins are always opposite or antiparallel.

The ground state energy to first order is
0 0) |y 0
Ery = 2B +< 51,)00| Uz - z2) |¢§1?oo>
=289 4 Jy, (12.77)

which is the same energy as in the two boson system(we are assuming the same
Hamiltonian applies).

The spatial part of the wave function is the same also, namely,

PO 1) (2) (12.78)

We must use a symmetric spatial wave function here because the spin vector is
antisymmetric in the ground state of two fermions. The presence of the spin
internal degrees of freedom(and the Pauli principle) has a more dramatic effect
on the first excited state for two fermions.

We again assume that the first excited state corresponds to ny = 1,n9 = 2. This
gives the energy to first order as

U(z1 - 22) ‘zb(o) ) (12.79)

12,sms

E12 = E;O) + E;O) + ( (0)

12,smg

We can write the energy this way, i.e., we do not need to write a 4 x 4 matrix
(U) and diagonalize it because the (/) matrix is already diagonal in this basis
due the orthogonality of the spin functions and the fact that the perturbing
potential does not depend on spin. This first order energy is different for the
triplet and singlet states. If we do the integrals (they are the same as the boson
case) we get

Ep=E9+EY 1 Jy+ Ky (12.80)

where

+ — singlet s =0,ms=0

— — triplet s=1,ms=+1,0
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All the triplet states have the same energy because they have the same spatial
wave function and the perturbing potential does not depend on spin.

We thus get the energy level structure shown in Figure 12.2 below.

singlet S=0 1-fold

‘_
| SR,
£P, 50 JI_( _____
X _': _____ 12 . ..\‘ -K 12
1st Excited 4-fold + —
State triplet S=1 3-fold
(V)]
E, =E in) [ — s=0 sj.nglet
| ] 1-fold
¥ lfod . 1
Ground ™— - - - - - - -
State ,g @ +

Figure 12.2: Typical Fermion Energy Level Diagram

The energies now depend on the total spin S even though the Hamiltonian H
does not explicitly depend on spin. A very dramatic effect!!

This level splitting is not due to any additional terms added to the Hamiltonian
such as ﬁso or H Zeeman- This effect is strictly due to symmetry requirements.
The requirement of symmetry or antisymmetry forced on the spatial wave func-
tions by the symmetry or antisymmetry of the spin vectors causes this level
splitting. The entire effect is due to the invariance of the Hamiltonian under
pairwise particle interchange.

Physically, we can argue as follows:

1. symmetric spatial functions are large for z; ~ x5 , while antisymmetric
spatial functions are ~ 0 for xq ~ xo

2. U(zq — x2) is expected to be largest for z1 ~ x4

3. this implies that for S = 1 fermions (U) is relatively small while for S =0

fermions (U) is relatively large

4. two identical fermions with antiparallel spins have a large probability of
being close together — they attract each other

5. two identical fermions with parallel spins have zero probability of being
close together — they repel each other

This repulsion is spin dependent and not due to the Coulomb repulsion between
the electrons.
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The first order energy for the singlet state is larger than for the triplet states
because the repulsive interaction is enhanced in the singlet state. This overall
effect is called spin pairing and it is a purely quantum mechanical effect.

12.4 The N-Electron Atom

We now extend our discussion to a system with N electrons (fermions). We
write

H=Hy+H' (12.81)
where
. N R, -
Hy = 2; [- o vZ+ V(m)] (12.82)
~ N N A~
H' =" YU(# - 7)) (12.83)
i=17>1

The energy eigenstates for the N—electron atom are solutions of the time inde-
pendent Schrodinger equation

Hyp = Eyg (12.84)
where ¥g =¥gr(1,2,3,4,....... ,N) and 1= (71, s1) and so on.
The indistinguishability of the IV electrons implies that
[H,P;]=0 4,j=1,234,...;N;i+j (12.85)

where the Pij interchange all attributes of the electrons, i.e., both the spatial
and spin degrees of freedom.

The wave function must be antisymmetric under pairwise electron interchange
PjYp=—Yp  i,j=1,2,3/4,....N;i%j (12.86)

The general problem of N interacting electrons is very complex. At this stage we
only want to extract general properties that will also hold in real 3—dimensional
atomic systems. It turns out to be instructive to consider the case of non-
interacting electrons - the so-called independent particle model. In this model
we neglect the electron-electron interactions and look only at the zeroth order.

In particular, we consider N identical non-interacting particles in a potential
well V(7). The Hamiltonian for any particle in the well is

~2
: ko .
Ho(k) = 2’“7’; +V () (12.87)
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where

ﬁo(k)¢n(Fk) :En(bn(fk) n=0,1,2,3,4,......

(12.88)

Thus, any single particle sees the energy level structure as shown in Figure 12.3

below.

\___/

€5 % 7

&
el‘@; £yt
0

Figure 12.3: Single Particle Energy Level Structure

The N-particle Hamiltonian is then

H = Hy(1) + Ho(2) + Ho(3)....... + Hy(N)
with solutions given by

H¢(1,2,3,....;N) = E)(1,2,3,......,N)

where
¥(1,2,3,...... yIN) = o (1) dp(2)....... dn(N)

and

This solution implies that

particle 1 is in state a with energy e,

particle 2 is in state b with energy &

particle N is in state n with energy e,

(12.89)

(12.90)

(12.91)

(12.92)

Electrons have spin = 1/2. Thus, corresponding to any single particle energy

level, say a, there are two possible single particle states, namely,

¢a(1)a(1) and ¢4 (1)5(1)

(12.93)

From now on when we write ¢,(1), where the subscript a will be understood to

also include the spin information.

The simple product state solutions are not physically admissible solutions since
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they are not antisymmetric under particle interchange for any two particles.

All such states with particles interchanged pairwise have the same energy. In
fact, any permutation of the indices produces a state with the same energy. We
need to construct a completely antisymmetric linear combination of all of these
solutions.

If these were bosons we would have to construct a completely symmetric linear
combination of all these solutions.

If we define
p(1,2,3,4,...... ,N) = a permutation of the particles (12.94)

then, the completely symmetric state is easy to construct. It is

¥s5(1,2,3,000, N) = Y 10(1,2,3,4, ..., N) (12.95)
[

where the sum means a sum over all possible permutations or arrangements.
There are N! such permutations.

900



Examples

N=2->N!=2
¥s(1,2) = 1(1)92(2) + 01(2)2(1)
N=3->N!=6

¥s5(1,2,3) = $1(1)92(2)$3(3) + 01(2)P2(1)P3(3) + 1(3)P2(2)P3(1)
+¢1(1)p2(3)#3(2) + ¢1(3)P2(1)$3(2) + ¢1(2)P2(3)p3(1)

How do we construct a completely antisymmetric state? Let us define a general
permutation operator by (illustrate for N =5)

@134521/)(1’27374) 5) = 1/)(3a 174755 2)
@23451w(1a273a45 5) = w(2a3,4a57 1)

Any such permutation operator can be written as the product of the 2—particle
interchange operators F;;, i.e.,

1/1(2,3,1) :@2317/)(13273)
= ple(372» 1) = p1213131/1(172a3)

Thus, any permutation @ can be written in terms of an odd or even number of
pair interchanges or pair permutations and we call it an odd or even permutation
accordingly. All pair permutations are odd.

Therefore, for a completely antisymmetric state we must have

+ if 1 tati
B = { 14 if g is an even permutation (12.96)

—1p4 if p is an odd permutation

We therefore form a completely antisymmetric state as follows. We let

(_1)@ _ +1 1f(§w %s an even permuta?ion (12.97)
-1 if § is an odd permutation
and then
Examples
N=2-N!=2
Ya(1,2) = p1(1)2(2) - ¢1(2)92(1)
N=3-N!=6

¥4(1,2,3) = ¢1(1)$2(2)93(3) — $1(2)P2(1)$3(3) — ¢1(3)P2(2)P3(1)
= $1(1)92(3)#3(2) + 91(3)P2(1)P3(2) + $1(2)P2(3)¢3(1)

It is clear that if any two states are identical (put 2 = 3 above), then 14 is
identically = 0 as it should be for fermions.
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This implies that we can put at most 2 electrons in each energy level of the
potential well. The two electrons in the k" level would then have wave functions

ora and ¢ 3 (12.98)

i.e., they must have opposite spins. This says that N spin = 1/2 fermions must
occupy at least N /2 different states in the well.

This is very different than for bosons where all the N bosons can be in any
energy level.

Another way to write the completely antisymmetric wave function for fermions
is the so-called Slater determinant

¢a(1)  6a(2) . ¢a(N)
#(1)  ¢u(2) . o(N) (12.99)

ou()) 6u(2) . Gu(N)

The last thing we must do is to normalize these state vectors.

¥a(1,2,3,...,N) =

Walta)= % [ By Pry
x X (1P (D 905 (1) 07 ()] oD (1)---60 (V)]

Now if p # ', then [pda(1)....0,(N)] and [p'¢a(1)....0,(N)] are orthogonal
and the integration for that term is zero.

Therefore, we get

(alva)= ¥ fd?’ﬁ ....... By Y ooV on (NP (12.100)

51,527
But
> [ @ErlonG)P =1 (12.101)
Sk
so we finally get
(¥4 |1a) =) 1= number of possible permutations = N! (12.102)

®
and therefore, the properly normalized completely antisymmetric wave function
is
$a(1)  ¢a(2) . da(N)
1 .
¥a(1,2,3,..... ,N):W (1) #(2) %6 (N) (12.103)
1 da(1) 0a(2) . n(N)
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In a similar manner
(12.104)
where
Ny = the number of times the single particle state ¢y occurs
What is the difference between the ground state of N fermions and N bosons?

For N bosons, all N particles occupy the lowest level ¢y and the wavefunction
is

¥s(1,2,3,....; N) = ¢o(1)P0(2)do(3)......... do(N) (12.105)
with energy
EO = N€0 (12106)

This is true no matter how large N might be, even for macroscopic systems where
N ~10%3. As we shall see in later discussions, this is one of the physical require-
ments for phenomena like superconductivity, superfluidity and Bose-Einstein
condensation.

Such a state is not allowed for fermions however. We must have

N even N odd
2 in (]50 2 in ¢0
2 in ¢1 2 in d)l

This difference for systems with even or odd numbers of fermions will lead to
dramatic physical consequences later for some atomic systems.

The ground state energy for N fermions is
2(eg+e1 + o +5%) for N even
2(eg+e1 + o +s%)+s% for N odd

Either of these two energies is always greater than the N boson ground state
energy.

The extra energy is called the zero point energy and it arises from particle inter-
change invariance or it arises from the Pauli Fxclusion Principle which states

No two identical fermions in a physical system
can have the same set of quantum numbers

It is equivalent to the antisymmetry of the wave function requirement for fermions.
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12.5 The Helium Atom

We now consider the simplest multielectron atom, namely, helium, which has
two electrons. The Hamiltonian is

=2 2 =2 2 2
N N . N ° A ° Z
H=H(1)+H(2)+ _Plop _Z€7 Paop Z€ c

where

H(i) = hydrogen atom Hamiltonian with nuclear charge Ze (instead of e)
V = electrostatic repulsion between the electrons
We start by neglecting the electrostatic repulsion between the electrons. This

gives us a zero-order solution that we can use in perturbation theory. This is
equivalent to the independent particle model we just discussed.

Since H = H(1) + H(2) in this model, we can write
[¥0) = [n1lima) [nalamo) (12.108)
where

f[(l) [nilymy) = E,(IO) [n1€ymy) and ﬁ(2) [nalame) = Eflo) [nalams)

Hp)=(H(1)+ H(2))[Y) = (H(1) + H(2)) [n1fim1) [naloams)
=EQ 1) = (B + B9 [nglymy ) [nalams) = (B + BD) [1)

ning
and
Z%e?

EO - _
" 2a9n?

(Z = 2 for helium) (12.109)

We will be working out the numbers in this problem so that we can compare our
results to experiment. The zero order energies are shown in Table 12.1 below:

ny | ng | B, (Ry) | B, (eV)
1 1 -8 -108.8
1 2 -5 -68.0
1 3 -40/9 -64.4
1 . .

1 . -4 -54.5
2 2 -2 -27.2

Table 12.1: Zero Order Energies

where )

1 Ry(Rydberg) = 2%0 =13.6eV (12.110)

904



The ground state energy is
0 0

E,o=EY 28" - 8 Ry (12.111)
and the energy of the system when one electron has been ionized (no longer
bound) is

Eion=E"” + B = 4Ry (12.112)
Therefore, it requires the addition of 4 Ry to create singly ionized helium. Notice
that the (2,2) state has an energy greater than FE;,,, which implies that it is

not a bound state of the helium atom. All the states (1,n) are bound states.
The energy level spectrum looks as shown in Figure 12.4 below.

e e 72V

. two Y .~ ~

s e i —— continuum

R T SN PN -

(1,09) N +
(1,3) N -6.0 eV
(1,2) -136 eV
an 544 eV
(nl. n,_.)

Figure 12.4: Helium Energy level Spectrum

Since the particles are electrons we must antisymmetrize the wave functions.
We have two spin = 1/2 fermions. The spin functions are

1,(£1,0 tri
|s,ms):{| (21,0)) -~ symmetric (12.113)

|0, 0) — antisymmetric

The spatial part of the wave function must be of opposite symmetry to the spin
functions so that the product is antisymmetric. By convention we label the
states as follows:
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Parahelium

(symmetric space part) X00
(|100) |100)) |00)
1

7 [1100) |2¢m) + |26m) |100)] x00

and so on.
Orthohelium
(antisymmetric space part) X1m.
% [[100) [26m) = [26m) [100)] X1
and so on.

These are the zero-order wave functions. We now handle the

e? e?

|71 —7a| 712

term by perturbation theory.

The first order ground state energy correction is

2
AE = (100 {100 = [100) [100) (00 | 00)
T12

2 NP
:lefd‘gFld?’Fg'me(ﬁ)' |th100(72)|

T12

where

~ 1 Z\? _z
¢100(7“)-ﬁ(a*0) e o

Therefore,

(12.114)

(12.115)

(12.116)

1 (Z\ , [ ez [ _2zry 1
AE=—2(—) e2fdr1rfe o [drgrge T ffdQldQQ— (12.117)
Qo 0 0 T12

Even though this calculation does not give a very accurate result, it is still very

instructive to learn the tricks necessary to evaluate the integrals.

We first need to find a useful expression for 1/r12. We have

ria = [Fy = Ta| = \/(F1 = F2) - (F1 — T2)
T%Q =(’F1—’Fg)'(fl—fz):T%+T§—2f1-F2

2,2
=r]+7ry—2rirycosf3
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where
[ = angle between 71 and 7

Therefore,
1 1

- 2
"2 (rf+r2-2rirecos B)l/

(12.120)

(12.121)

In the subsequent development, we let the larger of 71,75 be called r. and the

smaller be called r.. We then have

1 1

r o\ 1/2
2 T>(1—2%COSB+(%))

:l+ L (2r<cosﬁ—(r<)2)— 5 (2Q0085—

Ts 8rs

3
15 T< (r< )2
2— - —= - ..
" 487 ( Ts cos rs

11 2 1
—=— 1+T—<cosﬂ+(r—<) (§cos25—7)+...
T2 TS rs rs 2 2

rs  2rs \ s Ts

or

> >

Therefore,

LS (5 by

2  Ts> \Zp\T>

1 [Po(cosﬁ) + EPl(Cosﬁ) + (T<)2 Py(cos ) + ]
r s r

(12.123)

(12.124)

(12.125)

Now, the addition theorem for spherical harmonics, which is proved at the end

of this chapter, gives

47
220 +1

Py(cos B) -

m=—A

Therefore, we finally have

A
> Vam(20)Y3,(Q2)

m=-X\

™2 T> Do

>

11 °°(r<)A dr
22 +1

Now, the factor

1
f 4 dQy—

T12

contains terms like

f f 41D Yam (21)Y5 (2s)

and
fdQYAm(Q)“fdQYAm(Q)Yoo(Q):5AO5mo
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A
> Vam(Q0)Y5,(Q2)

(12.126)

(12.127)

(12.128)

(12.129)

(12.130)



Therefore, the only term that contributes from the sum is A = m =0 and we get

1 1
f fdQldQQ— - (12.131)
T12 >

and therefore we have

1 VA 3 = _2Zrp _22ry ]
see (2 ¢t fui®L i
e ap 5

rs

or

1 VA 3 = _2Zry 2Zry ]
AE:—2(—) e2fdr1rfe T /drzrge ao2—
s () 3

1 7 3 = _2Zrp 2Zry ]
= (—) e? / dririe o [ drorae” a0 — (12.133)
e aop T2
0
which gives
5 Ze?
AE = S o = J1s,1s = J10,00 = 2.5 Ry = 34 eV (12.134)
ao

for Z = 2.
The ground state energy corrected to first order is then
En=EY +AE=-T48¢V = -55 Ry (12.135)
The experimental value is
(E11)expt = —78.975 eV = -5.807 Ry (12.136)

This first order result is amazingly good for this complex system!

Now we deal with the first excited state.

The first order energy shifts are once again given by standard perturbation
theory since the (V') matrix is diagonal in this basis due to the orthonormality

of the spin vectors and the fact that V is independent of spin.

We thus have

AE,; = 2/fd3T1d3T2|1/)100(1)?/1neo(2)il/on(?)wneo(l)I —  (12.137)

where s,¢ — singlet, triplet > 5 =0,1 - -, +. As shown before, we need only
calculate the m = 0 case because [L,p, V'] = 0 where

iop = ELOP + ngyop = total orbital angular momentum (12.138)
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which implies that the result is independent of m.

Therefore
AEZ’Z=62[fd3ﬁd3f2 100 (1) |¢n£0(2)\2é (12.139)
+e [ [ Tt 20D = T Ko
where

Jne = electrostatic repulsion between two charge distributions

[th100(1)[? and 1,60 (2)|° = the direct integral

and

K,y = the exchange integral which arises from

antisymmetrization of the wave function
with
+ = singlet and — = triplet
A convenient way of representing this result is as follows.

Sop = Sl,op + SQ,op

L I . 3
=251 0p S2,0p = Sy = St.op = S5.0p = B2 (S(S+1) - 5) (12.140)
1 .
= = = triplet
251,01) : S2,op = h? +§ T‘lp ¢ (12.141)
-3 singlet
and therefore )
AE = Juo - 7z (L 481 op * S2.0p) Kne (12.142)

The calculation results (in €V) are shown in Table 12.2 below and the energy
levels are shown in Figure 12.5 below. Not bad!!
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’ State H 1s2s 1s2p
nt 10,20 10,20 10,21 10,21
singlet triplet singlet triplet
0" order -68.0 -68.0 -68.0 -68.0
J 114 114 13.2 13.2
K 1.2 1.2 0.9 0.9
1% order -55.4 -57.8 -53.9 -55.7
Eeupt -58.4 -59.2 -57.8 -58.0
error 3.0=5.1% | 1.4=2.4% | 3.9=6.7% | 2.3=4.0%
Table 12.2: Calculation Results
Energy 1 1
&) . , singlet triplet
: L s
' , 2 Pa3% _ 9x
3416 — lstionizationenergy ' 1s2p 2x 3 - -JPO s
1s2s E;'
1s2 o .
680 — E I(S?'s _Pf‘l' 1s2s 4x | .3
- 16-fold ' 1 28glx 278,
: Isls -___--___-_!_ 3x
7862 — Elgiqemt — a
.'fl P18y Iz
1sls [ E
5 lfold ! '
ze1oth order Coulomb integral Exchange integral
inc luced included

Figure 12.5: Helium Energy Levels

For comparison, we will also calculate the ground state energy using the vari-
ational method. We neglect spin in this case. The simplest choice of a trial
function is the product of two hydrogen atom wave functions as in (12.143)
below, which would be an exact solution if the electron-electron repulsion was
neglected.

(12.143)

1 (2N _zn 1 (Z\P zn
_ | — e @0 —_ e 9o
ﬁ ( ag ) ﬁ ( ag )

Since we expect the true wave function to be approximately represented by the
above function, we change Z to « and thus obtain the best possible value for
Ey for this type of trial function.

Y(71,72) =
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We do the calculation as follows. We write

=2 2 =2 2 2
Plop Ze Daop Ze e

H=H;1)+Hy(2)+V =22 _"_ 2% _ =2~ |
2m 1 2m T2 12
:@_Oﬁ+%_o‘i2+ (a-2)e? N (a=2)e? +ﬁ
2m 1 2m T 1 i) 12
= Ho(1) + Ha(2) + (a-2)* (a=Z) e (12.144)
T1 2 T12
Now
H (D¢ioo(1) = E100(OZ)¢100(1) =« ¢100( ) (12.145)
H (2)1/’100(2) E100(0)¢100(2) =@ 1/%00( ) (12-146>
in Rydbergs. Therefore
Z
(@) = 20 + o (] @27 g (1)
(a- Z)e e?
(1/’100(2)| - |7//100(2)) +(Y(a)] E [v(a)) (12.147)
But
7 7
i1 =D (1) = 02 T2 i)
= (100| @ 1100) (12.148)
Therefore,

1 2
F(a) = -2a2 + 2¢%(a - Z) {100] = [100) + (100| (100] — [100)[100)  (12.149)
T T12

Using some earlier calculations we get

5
fla)=-202 +4a(a-Z) + 1% (12.150)
Minimizing
af )
—=0=-2a+27 - - 12.151
. a < ( )
or
5
a=7--= (12.152)
16
and
- 5 5 5 5
Evanatlonal: 7_-"Y=_9(7 -2 2:_2Z2 -7 -2(— 2 12.153
: [(Z-0)=-22- ) $2Z-2(0) (12.153)
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The first two terms are just the first order perturbation theory result. The third
term lowers the energy relative to perturbation theory.

For Z =2, we get

Egariational =-57 Ry =-T77.48 eV
ngperimental = _78975 eV

E(;l))erturbatwn theory =748 eV

Even with the simple trial function, we get a significantly better result using the
variational method. The reduction in the value of Z represents the effect of the
inner electron screening the outer electron so it see a smaller nuclear charge.

12.6 Multielectron Atoms

We now return to the case of N electrons (N >2). We have
Hijpo = Eqtpa (12.154)

where «a = all quantum numbers needed to specify the N-electron state and the
Hamiltonian H is

. X h? Ze?
H=Y|-—Vi-
i; [ 2m. T

N N 2
]+ Yy — (12.155)
i=1j>i T'ij
For the moment we are neglecting many small(weak) interactions (spin-orbit,
etc). We are also not including the electromagnetic field at this stage. We will
consider it later when we talk about time-dependent perturbation theory and
we will see that its presence leads to instability of atoms with respect to photon
absorption/emission.

The electrons are all indistinguishable, which says that
[H,P;]=0 i,j=1,2,3,...;N;i#] (12.156)

This implies, since electrons are fermions, that the wave functions must be
completely antisymmetric, i.e.,

Pijthe =~ 0,j=1,2,3,... N; i %] (12.157)

The full Hamiltonian is much too complex to solve exactly. We will approach
the solution as a series of increasingly better approximations and obtain a qual-
itative picture of the energy level structure of these complex atoms.

Since the difficulties arise from the e?/r;; terms that represent the electron-

electron repulsion, we start with a model where each electron moves indepen-
dently of all the other electrons (an independent particle model). In this model
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each electron will be described by a single-particle wavefunction called an or-
bital.

This leads us to write an approximate Hamiltonian in terms of the single particle

Hamiltonians )

X A R
Hy; = ——V7 = Vi(#:) (12.158)
2me,

where we assume that the potential energy of the i** electron ‘71(72) does not
depend on the coordinates of the other NV — 1 electrons. We then have the
approximate Hamiltonian for the entire system

SIS I .
A =Y Hy =Y [_ 5 —Vi- v;(f,-)] (12.159)

i=1 i=1 e

This Hamiltonian is separable, i.e., we can assume that the system wavefunction
is a product of single-particle wavefunctions or orbitals.

Vo = ey (1) e, (F2) ey (T3) ety (F) (12.160)

where the subscript €5 represents all applicable single particle quantum numbers
for the k' electron, that is,

er = (nilime,ms,) (12.161)
Each single particle wave function is a product of the form
1 = (spatial wave function)(spin vector) (12.162)

We will assume that the system wavefunction is a completely antisymmetric
combination of the product states v,,.

Each term in f[{;‘ has an eigenvalue equation of the form

h? N
[_ om V? - ‘/I(Tz):l ’lpni&’n’uimsi = Eniéimgimsiwniﬂimgi ms, (12163)

and there are NV such equations.

To solve these equations, we must know the potential energy functions V; (7). As
a first approximation within the orbital approximations, we ignore the electron-
electron repulsion so that the electrons only interact with the nucleus and we

have
Ze?

Vi(#) =V (rs) = - (12.164)

K3
In this approximation, all the other electrons do not matter at all and each
electron satisfies

h? _, Ze?
2m. ' T

] wnifimzi Ms,; (Fl) = Enifimgimsi wni‘eimli ms,; (7_;2) (12165)

913



This is a hydrogen atom with charge Ze. The single-particle wavefunctions are
given by

Vnemem. (F) = Roe(1) Yo, (0, 0)Xsm, = e (7) (12.166)
where -
meZ-e

E, ~———— =1,2,3,...... 12.167

k 2h2nk "tk ( )

The wave function corresponding to a set of orbitals (e1,¢e9,....... ,EN) is then

properly antisymmetrized by writing it as

P (1) Yy (1) o ey (1)

1 Ve, (2) . .
Vo= | B (12.168)
Ve (N) o ey (N)
where
Ey,=FE.,+E,+... +E., (12.169)

We certainly can write down an answer in this approximation but the result,
not surprisingly, is terrible. Any real electron is dramatically affected by the
others, even when there is only one other electron as we saw in helium.

We move on by making the next incrementally better approximation. This
involves the concept of screening.

12.6.1 Screening

Any electron, on the average, if it is far from the nucleus, does not feel all of
the nuclear charge Ze and hence has a weaker Coulomb attraction then we have
assumed. This is clear in the helium variational calculation where we found that
the best value of the charge variational parameter Z’ was

72 -7-2 (12.170)
16

This implies that, on the average, the distant electrons are shielded or screened
from the nucleus by the other electrons.

What is the simplest correction that we can make to take this effect into account
for multi-electron atoms and still leave us with solvable equations?

Suppose we write

2
Vi(r:) = _Ze, Ve () (12.171)
-

7

where fo f (r;) includes the screening effects of the other N — 1 electrons. An

important feature of this assumption is that fo T (r;) is independent of (,¢).
This says that the angular part of the wave function is still

Yiimy, (6,9) (12.172)
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The radial function, however, now satisfies a modified equation

1 d[,d (e 2m.
r2 dr; ¢ dr; 72 h?

(En, = Vi(r:)) | Rnye, (ri) = 0 (12.173)

This is called the central field approximation. We still have N difficult equations
to solve.

Hartree proposed the following solution using a successive approximations tech-
nique.

1. an initial potential function is guessed (a very educated guess)
2. this potential function is used to derive new wave functions
3. the new wave functions generate a new potential energy function

4. the procedure is continued until the final wave functions determine a self-
consistent potential, i.e., it stops changing as we iterate

The Hartree method is equivalent to a variational calculation, where the trial
function is taken to be a simple product of single-particle orbitals and the vari-
ation is performed by varying each orbital in an arbitrary way.

Using single-particle wave functions, however, we are still neglecting the corre-
lations between the electrons. Although the simple single-particle orbital prod-
uct functions ignore antisymmetry, some effect of the Pauli exclusion principle
(PEP) can be included in the calculations by choosing the single-particle quan-
tum numbers so they do not violate the PEP.

If we make the calculation more complicated, we can include antisymmetry by
using Slater determinant wave functions. This is called the Hartree-Fock the-
ory. Correlation effects arising from the 1/r;; terms can then be added using
perturbation theory. At the level of this text, we assume that this can be done
(see Bethe/Jackiw for details).

12.6.2 Shell Structure

The hydrogen atom solution exhibited a kind of shell structure. We found that
the energy levels were given by

Z2 2
E,--2°% (12.174)

2a9n?

and each level had a degeneracy equal to n? arising from the allowed ranges



We say that each n value defines a shell with energy E, and within each shell
we have subshells defined by ¢. Thus,

n=1- =0 - lssubshell

n=2->{=0,1—- 2s,2psubshells
n=3->/£=0,1,2 - 3s, 3p, 3dsubshells

We can generalize this idea to N electron atoms.

We assume that the atom consists of shells (n) and subshells (nf). Electrons
are placed into these shells so that we do not violate the PEP, that is, since the
electrons are fermions only two electrons can be in each energy level. We define
in this model

(r),,0 = radius of a shell

(r),, = radius of a subshell

and we have

E,¢ = E,u (degenerate) (12.175)

(this is not true in the central field approximation).

For n > 1, the s—orbital has a nonzero probability near the origin r = 0 (the
nucleus). This implies that it penetrates the n = 1 shell more than the corre-
sponding p—orbitals do. This implies that the s subshell electrons feel a stronger

nuclear charge then the p subshell electrons.

Therefore, we expect in this model that the energy levels will look like Figure
12.6 below.

Energy

p orbital

— 5 O1Dital

Figure 12.6: Expected Level Structure

which is the screening effect.

Complex screening arguments of this type lead to the Aufbau principle, which
tells us how electrons fill shells.
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We see how it works by figuring out the ground state of an N electron atom.
The ground state corresponds to that state where all the lowest energy levels
are filled with a maximum of two electrons per level. It is clear that this is the
state of lowest energy.

The single-particle Hamiltonian in the central field approximation commutes
with ¢;, and s;, which implies that the energy levels are independent of m,, and
ms,. Bach energy level is therefore characterized by the 2N quantum numbers

nil; i=1,2,3,....N (12.176)

We define the electronic configuration of an atomic state as the set of quan-
tum numbers (n;,¢;) for all the electrons in the atom. We use the symbolic
representation

shell — label = (n — label ) (€ — label)™mber of electrons (12.177)
ie.,

ground state of hydrogen =1s' = 1s
(a superscript 1 is always understood)
ground state of helium = 15>

ground state of lithium = 1s*2s

The electronic configuration of helium is an example of a closed or full shell.
The 1s subshell has the maximum number electrons as allowed by the PEP, i.e.,

1 1
nzl,Z:O,mg:O,5:§7mS:i§ (12.178)

The Aufbau principle says that we fill the shells so that we obey the PEP or in
the order
1s,2s,2p,3s,3p,3d, 48, ccevveeennnn.

with energy increasing from left to right.
The screening arguments of the type we just discussed imply that for a given n
(a given shell) the energy order is s,p,d, ..... and generally the energy of a shell

increases with n = the principal quantum number. The closed shells correspond
to

s — shell > maximum number of electrons = 2
=2(20+1)
p — shell > maximum number of electrons = 6

d — shell - maximum number of electrons = 10

and so on.
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Electrons in the shell beyond the last closed shell are called valence electrons.

Much of the form and shape of the periodic table is determined by the Aufbau
principle. For instance

number of valence electrons — chemical properties

The valence electrons are the ones that participate in bonding and chemical
reactions.

This implies that

carbon — 15%2s*2p?
and
silicon — 15225%2p%34%3p?
which each have two p valence electrons should have similar chemical properties,

which is the case.

As with all simple principles of this type, anomalies and breakdowns soon ap-
pear. For the Aufbau principle this occurs at the n = 3 shell.

In real atoms, when the 3d and 4s subshells are partially full, the 4s level fills
ups before the 3d level. This means that

potassium — 1525*2p?3s23p°4s
and not 15%25%2p°®35%3p°3d

The 4s state has a larger probability of being near r = 0 then the 3d state and
hence its energy is lower.

For neutral atoms, an experimental ordering scheme is

shell increasing energy —
1s

2s 2p
3s 3p 3d
4s 4p 4d 4f
5s 5p 5d
6s 6p

Il
S O s W N

n
n
n
n
n
n

At the level of this text we will not be doing any actual energy calculations.
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12.7 Angular Momentum Coupling

The N electrons each have spin and orbital angular momentum and thus have
associated magnetic moments.

For the full Hamiltonian H including the electron-electron repulsion terms we
have

[H,00p] 20 i=1,2,3,...;N (12.179)
However,
[H,Lo,] =0 (12.180)
where
—_ N -
Lop =Y i op = the total orbital angular momentum (12.181)

<.
Il
—_

Therefore, the individual ¢; are not conserved, but L is conserved.

Thus, the electron-electron repulsion or electrostatic terms in the Hamiltonian
couple the electron orbital angular momenta.

In addition, we must add in spin-orbit and other magnetic interactions (spin-
spin, etc).

The spin-orbit interaction leads to terms of the form /; - §; and thus couple a
partlcle s orbital and spin angular momentum leading to (j;,m;,) values, where
= (; +3; as we saw earlier in hydrogen.

In most light atoms, the magnetic interactions are usually weaker than the elec-
trostatic interactions, i.e., electrostatic ~ 1 eV and spin-orbit ~ 1074 = 107 eV/.

The angular momentum coupling in a light atom goes like:

1. the orbital angular momenta ’; couple to form a total orbital angular
momentum

i
Mz
?%x

(12.182)

2. the spin angular momenta §; couple to form a total spin angular momen-
tum

N
Sop =Y Siop (12.183)

These two couplings occur when we include the electrostatic interactions
in the Hamiltonian H.
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3. the weaker magnetic interactions then couple L and S to form the total
angular momentum of the atom

J=1L+S (12.184)

This coupling scheme or order where the electrostatic interactions dominate the
magnetic interactions is called LS or Russell-Saunders coupling.

In heavy atoms, the spin-orbit magnetic interactions dominate the electrostatic
interactions and we get an alternative coupling scheme:

1. each electron’s /; and 3; couple via the magnetic interactions to form
Ji =i+ 8

= the total angular momentum for the ‘" electron

2. the electrostatic interactions then couple the j; to form
— N —
Jop = Zji,op (12185)
i=1

This scheme is called jj-coupling.

We will now investigate the energy level structure in detail for these two different
schemes.

Our discussion of helium has shown that exchange symmetry, which requires
that the wave functions are completely antisymmetric, has dramatic observable
consequences. We saw a spin-spin correlation energy that is characterized by
the rule:

There is a tendency for electrons with parallel

spins to repel (avoid) each other. This fact,

together with the electrostatic repulsion between
electrons implies a strong exchange correlation

that cause the spins to tend to align with each other

12.7.1 LS Coupling

In this regime we have the observables and quantum numbers as shown in Table
12.3 below:
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’ Operator \ Quantum Number

2} :

& 5
op

L, My,
S, My

Table 12.3: LS Coupling Quantum Numbers

When we discussed the spin-orbit interaction in hydrogen we found

1. when we neglect Hy, we can use either |n,L,S, My, Mg) or |n, L, S, J, M)
as basis states

2. when we add in H,,, M;, and Mg are no longer conserved (not good quan-
tum numbers) and therefore we must use |n, L, S, J, M) as basis states

Now in the orbital approximation we have
ML = ngi 5 MS = sti (12186)

and R R
sza = hMLwa Szwa = thwoc

What are the possible L, .S values? We can use our addition of angular momen-
tum rules to find out.

Consider two p—electrons , i.e., an vp? configuration. We have
€1=£2=1—>L=0,1,2

1
s1=83=——->5=0,1

2
and
for a given L My =-L,........ , L
for a given S Mg=-S,........ ,S
and
MJ ZML+MS
J=|L-5],..... ,L+S

Therefore we get the possibilities shown in Table 12.4 below:
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NN R R oo
e E=l Nl Nl Nl | RO )

Table 12.4: Possible States

We will discuss the state notation shortly.

For a closed shell we must have L = S = 0 or we would violate the PEP. For
example,

2501 =0=0>L=0
1

51232:§—>S:00r1

However, there is only one way to choose the m quantum numbers without
violating the PEP which is shown in Table 12.5 below.

[me | me, | msy [ ms, ]

0o [ o0 [1/2]-1/2]

Table 12.5: s? m-values

We therefore have My, = Mg =0 (only possibility) which implies that
L=8=J=0-"'8, state (12.187)
For
Pl ol =ly=l3=0y=05="0=1
1
S1=82=83=54=85=56=7
Once again it turns out there is only one way to choose the values without vio-
lating the PEP. This is shown in Table 12.6 below.
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Myg | My | Mgy | Mgy | Mg, | Mgy | My
EXNE EX \ |

(1 [t JoJo[[-1]-1TJ]12]12]12]-12[]1/2]-1/2]

Table 12.6: pb m-values

We therefore have M, = Mg =0 (only possibility) which implies that
L=5=J=0-18, state (12.188)
This result is true for all closed shells.

In the presence of H,, the energy levels will depend on L, S and J but not on
My, Mg or My, which is why we label their atomic terms by

254, (12.189)

where
S,P,D,F, ... means L =0,1,2,3,..... (12.190)

The superscript 2S5 + 1 s the multiplicity of the level (singlet, doublet, triplet,
etc).

If we ignore H,, then we have (25 +1)(2L + 1) degeneracy for a given level.

Adding H,, splits the J states. Each term 2°*!L; remains 2.J + 1 degenerate
(the M values).

This degeneracy is removed by an external magnetic field which splits the 2.J+1
M levels(Zeeman effect).

How do we determine the ground state for a particular atom in this scheme?

First, we fill up as many closed shells as possible. The remaining (valence)
electrons determine the ground state configuration.

Let us consider carbon which has two equivalent (same subshell) 2p-electrons in
the unfilled shell. We have

2% >l =ly=1->L=0,10r2
1

31252=§—>S:00T1

We get Table 12.7 below by applying these rules:
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’ L \ S \ J \ Term \ Sublevels ‘
0o 0 s TSy
110 1 Tp TP
210 2 ™D D,
0]1 1 3 351
111]012] 3P 3Pois
2[111123] ®D 5Dy 23

Table 12.7: Possible States from LS Rules

Not all of these sublevels are allowed by the PEP however. To see this we must
look at the individual electron quantum numbers. Table 12.8 below shows those
My, , My, , Ms, , Mg, values allowed by the PEP (i.e., no two electrons have the
same set of quantum numbers).

Before proceeding to the table, in this case, we can use symmetry arguments
to determine the allowed levels. In the special case of only two electrons in an
unfilled shell, we can easily determine the symmetry of the spin vectors

S =0 - antisymmetric spin function
S =1— symmetric spin function
We also know the symmetry of the spatial state in general. The symmetry fol-
lows from the symmetry of the angular part of the 2—electron wave function.
Since we have a central field approximation, the angular part of the wave func-
tion is given by the Y7,as, spherical harmonics. The radial function is always
symmetric. The symmetry of the spherical harmonics is (~1)¥. Therefore,
L = odd — antisymmetric space function
L = even - symmetric space function
The product of the spin vector and the spatial function must always be anti-
symmetric. Therefore we have
S =0 always combines with even L
S =1 always combines with odd L
This method is only simple to carry out for 2—electron unfilled shells. In the
case of carbon we get the allowed states
L=2,5=0-5states = (2L+1)(25+1)
L=1,5=1-9 states
L=0,5=0-1 states

for a total of 15 allowed states. The individual quantum numbers table corre-
sponding to these 15 states is
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’ Entry H my = -1 \ my =0 \ my = +1 \ My, \ Mg ‘
1 t -2 0
2 t 0 0
3 t 2 0
4 ) ) -1 1
5 1 ! -1 0
6 ) 1 -1 0
7 ! ! -1 -1
8 1 1 0 1
9 1 ) 0 0
10 ) 1 0 0
11 } } 0 -1
12 ) ) 1 1
13 ) ) 1 0
14 1 1 1 0
15 ! ! 1 -1

Table 12.8: Individual Quantum Numbers

Any other combinations will violate the PEP. This table can be constructed just
using the PEP.

We now construct an implied terms table which tells us how many states exist
with a particular pair of (M, Mg) values. It is shown as Table 12.9 below.

[ Mu/Ms [[1]0]-1]
2 Jo]1]0
1 [1]2]1
0 [ 1]3]1
1 121
2 [[0[1]0

Table 12.9: Implied terms

We use this table to determine which atomic terms are allowed for carbon. The
steps are as follows:

1. Consider the largest possible values of L and S, L =2,5 =1 which corre-
spond to the D terms.

Now if a 3D atomic term existed , then we would necessarily have My, =
2,Mg =1 terms. However, there are no such terms, which implies that the

3D term is not allowed and thus the sublevels 3Dy, 3 Ds, 3 D5 are ruled out
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by the PEP.

. We now look at the next largest values, namely, L = 2,5 = 0 or the 'D
term. A L =2,5 =0 term requires M, = 2,Mg = 0 terms which do exist.
Therefore the 'D term and the sublevel Dy exist. This has J = 2 and
thus 2J +1 =5 M levels. This accounts for 5 of the 15 entries in the
table.

. We subtract these 5 states to get a second-implied terms table

[0]-1]

[ M/Ms ||
2
]
0
1
2

110]-1
0/0]0
1111
1121
1111
01(0]0

Table 12.10: Implied terms

. We now look at the next largest values, namely, L = 1,5 = 1 or the P
term. Since entries with My = -1,0,+1 and Mg = —1,0, +1 still exist in
the new table, the 3P term and the sublevels 3P,,3P;,3 P, are allowed.
These correspond to a total of (2L +1)(25+1) =5+3+1 =9 states.

. We subtract these 9 states to get the third-implied terms table

[0]-1]

| Mp/Ms ][ 1
2 0
1 0
0 0
0
0

—_

-1
-2

(ool Nl il Newl Nen) | New]
(en] Ben) Hen) Hew) Neaw)

Table 12.11: Implied terms

Only one state is left with M; = Mg = 0, which is a 1.9 atomic term.
Therefore the 1Sy sublevel is allowed.

This accounts for all the 15 entries in the table. No more states are allowed,
which means that the S and ' P atomic terms and their associated sublevels are
forbidden by the PEP. This result agrees with the allowed states we obtained
from symmetry arguments.

We always need to use the implied-terms tables in the general cases (more than

926



2 electrons in an unfilled shell) because the corresponding symmetry arguments
are very complex to apply.

Finally, for carbon we have the 1S, 3P and ' D allowed by the PEP.

This result is true for all atoms with 2 equivalent p—electrons outside closed
subshells.

To complete the picture, we must now determine how the allowed terms are
ordered in energy.

12.7.2 Hund’s Rules

Each sublevel in carbon 'Sy, ® Py, ®P1, ® Py and ' D; has a different energy when
H,, is included in H.

A set of rules exists for qualitatively ordering the levels. They are called Hund’s
rules.

Hund’s rules apply when we are ordering the energy levels and sublevels for
equivalent electrons in the ground state.

Rule 1 Terms in the ground state configuration with maximum multiplicity
25 +1 lie lowest in energy.

This follows from the fact that same spins (unpaired spins) repel and different
spins (paired spins) attract.

High multiplicity implies a greater number of electrons with parallel spin than
low multiplicity in multielectron atoms. Since parallel spin electrons avoid each
other, the e? [ri; effect decreases and the energy of high multiplicity states lies
below that of low multiplicity states.

Rule 2 Of several levels with the same multiplicity .S, the one with maximum
L lies lowest in energy

In some sense, the maximum L state implies that all electrons are orbiting in
the same direction. These electrons tend to remain separated from each other
and so have a lower energy than those orbiting in the opposite direction, which
get close to each other some of the time.

Rule 2 Of several sublevels with the same multiplicity S and same L

1. the sublevel with the minimum value of J lies lowest in energy if the shell
is less than half-filled. These are called regular multiplets

2. the sublevel with the maximum value of J lies lowest in energy if the shell
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is more than half-filled. These are called inverted multiplets

This results follows from ﬁs(, and the fact that —62/’[“ increases as r — oo.
Applying Hund’s rules to an np? configuration we get the energy level scheme

in Figure 12.7 below.

ls 'sg
S —~ — - - - - — 1-fold
:._ ------ —  5-fold
)
d 1p Ip,
o 2 a
:’: Lat A 5'f°ld "
3 .',._q?*-‘. = — 3-fOld 3Pl
G =] ‘.
i P T — 1-fold 3
L] > : P 0
np- i:.’
_
unperturbed electrostatic spin-orbit
level interac tion interac tion

Figure 12.7: np? Level Scheme

Hund’s rules are not perfect since they are based on the orbital approximation.

To determine an electronic configuration, we must specify how the electrons are
placed into subshells. It turns out there is a phenomenon called configuration
interaction or configuration mixing which forces the quantum mechanical state
to sometimes be a mixture of more than one configuration.

12.7.3 JJ-Coupling

In heavy atoms, the magnetic interactions which couple the l; and §; together
into the 7;, dominate over the electrostatic interactions which led to LS coupling.
The configurations are then better described by the so-called jj-coupling scheme.

Since s; = 1/2 for all electrons, we have for ¢; > 1

) 1
Ji=4; £ 5
mg, jl, ....... 7ji

The individual j; then couple together to give the total .J.

In a two-electron configuration the levels are labelled by J, j1, 72, My where

J=|j1—j2|, ....... ,j1+j2



Let us consider the Pb (lead) atom, which has np? valence electrons (built on
many closed shells). We have

ly=0y=1
.13 4 13
Ed ==, = an ==, =
J1 29 J2 29
The possible total J values are then
3 3
-®-=3,2,1,0
2 2
1
f®§:2,1
2 2
1 1
-®-=1,0
2 2
Not all of these states are allowed by the PEP. For example,
.. 3 3
J:’?))MJ:?)_)]I:j2:§7mj1:mj2:§
b=ty =1,mp1 =myp =1
1 1
§1=82==,Mg1 =Mgo ==
1=852=5 1 275

Both electrons need to have identical quantum numbers for this state to exist.
Thus, this state is not allowed. In a similar manner,

J=3 ) j1:j2:

N~ DN W

J=1 , ji1=j2=

can be shown to be forbidden by the PEP. Therefore we have

Ze=20
22
1 3
—®=-=21
22
1®1—0
292

Usually, the level with the lowest J for a given pair (ji, j2) has the lowest energy
(this is not a strict rule).

For medium weight atoms, neither LS nor jj coupling is valid.

There is a connection between the levels in the two schemes as illustrated by
the energy level diagram in Figure 12.8 below.
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C 81 Ge Sn Pb Pure
Pue jj-coupling
LS coupling

Figure 12.8: LS - jj Energy Level Connection

The connection between the two schemes is clear.

The spacing between J-levels in LS coupling is given as follows.
- 1
(Hso) = 5C[(J(J+ 1)-L(L+1)-8(S+1)] (12.191)
For the same L, S we have

Eyo-Ey - %C[(J+ (T +2) = J(T +1)]
=C(J+1) (12.192)

This says that the spacing between consecutive levels of a fine structure multi-
plet is proportional to the larger J value involved. This is the Lande interval
rule.

We end this discussion with an example of two electrons that are not equiva-
lent(in different shells). The discussion is more straightforward since we do not

have to worry about the PEP (all possibilities are allowed).

We consider two electrons in a 4p4d configuration. In the LS coupling scheme
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we have:

61:1,62:2—>L:1,2,3
1

51:52:§—>S:O,1

31 —>J=4,3,2
380~ J =3 -7 states
201 - J=3,2,1 - 16 states
2®0 — J =2 -5 states
11— J=2,1,0 -9 states
1®0— J=1- 3 states

or
J=4 i 1 level
J=3 in 3 levels
J=2 in 4 levels
J=1 in 3 levels
J=0 1w 1 level

Thus, we have 12 total levels. The LS coupling energy level diagram is shown
in Figure 12.9

J
p
- 1
50 T R 2
’;—9": - 1 D
singlets ———- 3
Ip
apad ; 3
:’ P L -4_ f
3 D - - E— )
S=1 ',' L —
. S will 2
A N : - N * 1
tiplets s 3k
N . , A— &
unperturbed S —
state " —
spin-spin residual ) .
conelation electiostatic spin-orbit

energy eneIgy eneIgy
A A%«

Ao
split split split
S-states L-states J-states

Figure 12.9: LS 4p4d Energy Levels
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In the jj-coupling scheme the energy leveldiagram is shown in Figure 12.10

J

A—

32,52 ':_ 3
—
? + — L
/  — 1
. 32,32 | — 3
; ¢ —
2 + EEE—— ]
4-p4d ::‘. ——
—‘\ .
“‘\‘ 12,52 Aa— 5
unperturbed G ——— o
level .
‘: 12,372 , —
—‘

— ]
spin-orbit electrostatic
eneIgy and

spin effects

Figure 12.10: jj 4p4d Energy Levels

Notice that the final J values are identical, but their arrangement in energy is

very different.

12.8 Spherical Harmonics Addition Theorem

In Chapter 9 we defined the properties of the spherical harmonics. We found

the following results.

12.8.1 Orbital Angular Momentum

Abstractly,
[i’i’i’j] = iheij Ly, and [ﬁgwﬁj] -0
L2,1tm) = h*£(€+ 1) [tm) and L |m) = hm |¢m)
[A/i = I:;E + Z[A/y
2

For a given value of £, m takes on the 2/ + 1 values

m=—l,—~L+1,~0+2,. ., -2.0-1,0

932



In ordinary 3—dimensional space, if we define
Yem (0, p) = (0 | ¢m) = spherical harmonic
then we have the defining equations for the Yy, (0, ) given by

(0| L2, tm) = L2, (0 | em) = L3, Yerm (8, )
= h2(L+1) (B | €m) = h20(L+ 1)y (0, ©)
(0] Ls|m) = Ls (0 | £m) = Ls Yo (0, )
=hm (0p | tm) = AmYem (6, )

The general result is

}/Zm(eﬂ 50) -

244! 47 (L-m)! (sinf)™ \dcosf

Some examples are:

1
Yoo =

Var

3 3 .
Yio=1\/-—cosl, Y] .1 =F\/ —e*“sind

47 ’ 8w

5 15 .

Yoo =1/ ——(3cos® 0~ 1), Yo 4 = F\/ — sin 6 cos fe*'¢

167 ’ 8

[ 15 ;
Y2,12 = @ Sin2 96i2up

Some Properties
Complex Conjugate

Y’Zﬁm(ga 90) = (_1)mYZm(0a SD)
Under the parity operation
r—-r or ro>r->nm-0,p—>p+m
which says that

eimtp N eimgaeimfr — (_1)meimtp

sinf - sin(w - 0) - sinf

cosf — cos(m —0) > —cosf

which imply that
n,m(ev 410) - (_1)£n,m(9a QO)
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Therefore,

if £ is even, then we have an even parity state

if £ is odd, then we have an odd parity state

Since they form a complete set, any function of (0, ¢) can be expanded in terms
of the Yy . (0, ) (the Y, ., (6, ¢) are a basis), i.e., we can write

F0,9) =3 femYem(9,9) (12.207)
l,m
where
27 T
Fom = f dip f sin0doYy. (0,0)f(8,0) (12.208)
0 0

and we have used the orthonormality relation

27 s
[ dip f Sin0dOYy,,  (0,0)Yem (0, 0) = SereGmrm (12.209)
0 0

The spherical harmonics also satisfy these relations:

Closure:
= ¢ 5(0-0)5(d— o'
; Zen;@(97¢)}/€m(9,7¢,): ( S?ﬂf ¢)56(M,,) (12.210)
/=0 m=—

i.e., the solid angle delta function is equal to zero unless the two vectors #(6, @) , #'(6’,¢")
coincide. It has the property

[ 18 = £ () (12.211)
for any function f(7) of the spatial direction specified by 8, .

Recursion:

LYo = [0+ 1) =m(m = 1)]"* Yo ar

=[x m)(+1£m)]" Yo man (12.212)
o JUstem)(1-m) ]
C%mm_[ (20+1)(2¢+3) ] Yerm
(L+m)(-m) "
+[(2g+1)(2g_1)] Yi-1.m (12.213)
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Figure 12.11: Angles Used in the Addition Theorem

12.8.2 The Addition Theorem

Consider two coordinate systems xyz and x’y’z’. The addition theorem is the
formula expressing the eigenfunction Py(cos@’) of the angular momentum L.
about the z’-axis in terms of the eigenfunctions Yz ,,, (6, ) of L.. . See Figure
12.11 below for orientations.

The angles a and 8 are the azimuth and the polar angles of the 2z’ axis in
the Cartesian xyz coordinate frame. They are also the first two Euler angles
specifying the orientation of the Cartesian coordinate system x'y’z’ with respect
to zyz. The third Euler angle v is left unspecified here and the z’ and y’ axes
are not shown. The projections of the 2z’ axis and the radius vector on the zy

plane are dashed lines.

As we can see the position vector 7 has angular coordinates 6, ¢ and 6, ¢’ in
the two coordinate systems.

The direction of the z’ axis in space is specified by its polar angle 8 and its
azimuth angle o with respect to the zyz system.
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Since Py is an eigenfunction of Lop, only spherical harmonics with the same
subscript £ can appear in the expansion.

An interchange of 8, ¢ and f3, « is equivalent to the transformation 6§ - —6" and
must leave the expansion unchanged because Py(cos’) is an even function of
6. This means that P;(cos#’) must be a function of ¢ — .
All of these requirements are satisfied only if we write
¢
Py(cos0) = > nYo-m(B,0)Yem(0,0) (12.214)

m=—t
We determine the coefficients ¢, using the conditions
L. Py(cost’) =0 (12.215)
We also use the identity (from rotation of a vector component)
L, = sin 3 cos al, + sin 3 sin ozﬁy + cos ﬂiz
= % sinBe L, + % sin Be’L_ + cos 8L, (12.216)
and invoke the linear independence of the spherical harmonics to obtain (after

some algebra)
Cmz1 = —Cm — Cm = (1) co (12.217)

so that we only need to determine cy. We specialize to 8 =0 or 6’ = 6 so that
we have the relations

2Z+1

Yim(0,0) =/ = 0o (12.218)

Yio (0, ¢) =

Pg(COS 0) (12.219)

‘We then have

4
Py(cosf) = Z cm Yo, -m (0,0) Y7 (0, 0) = Z cm\/ 2!::1 m0Ye,m (0, ¢)

\/£+1Yéo(9¢)—co “1\/“119”059) (12.220)

or 4
T

= 12.221
Y ( )

and we end up with the addition theorem

/ 4 £ *
Py(cosb") = Z cmYom (B, 0)Ye.m (6, 0) (12.222)
20+1 =, ’
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where 6" = angle between the directions (3,a) and (6, ¢).

If we combine the closure relation with the addition theorem we get the identity
Y (20 + 1) Py(7 - 7") = Amb (7, 7 (12.223)
£=0

Since we can write

- 5(T - 7‘,) PN
O(F =7") = ————=0(7,7) (12.224)
r
we then have the identity

7 = (’"‘ ") i%” () (12.225)

5(7 -

Another useful relation is

= > (20+1)i"jo(kr) Py(cos ) (12.226)
£=0
or, in general
R4Sy

12.9 Problems

12.9.1 Two Bosons in a Well

Two identical spin-zero bosons are placed in a 1-dimensional square potential
well with infinitely high walls, i.e., V' =0 for 0 < x < L, otherwise V = co. The
normalized single particle energy eigenstates are

up(x) = \/zsin (nmz/L)

(a) Find the wavefunctions and energies for the ground state and the first two
excited states of the system.

(b) Suppose that the two bosons interact with each other through the per-
turbing potential

H’(.’L‘l,.’L‘Q) = —L‘/()(S(aﬁl - .1'2)

Compute the first-order correction to the ground state energy of the sys-
tem.
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12.9.2 Two Fermions in a Well

Two identical spin—1/2 bosons are placed in a 1-dimensional square potential
well with infinitely high walls, i.e., V' =0 for 0 < x < L, otherwise V = co. The
normalized single particle energy eigenstates are

un(x) = %sin (nmz/L)

(a) What are the allowed values of the total spin angular momentum quantum
number, J 7 How many possible values are there fore the z—component
of the total angular momentum?

(b) If single-particle spin eigenstates are denoted by |t) = u and |}) = d, con-
struct the two-particle spin states that are either symmetric or antisym-
metric. How many states of each type are there?

(c¢) Show that the j =1, m =1 state must be symmetric. What is the symme-
try of the J =0 state?

(d) What is the ground-state energy of the two-particle system, and how does
it depend on the overall spin state?

12.9.3 Two spin-1/2 particles

The Hamiltonian for two spin—1/2 particles, one with mass m; and the other
with me, is given by

1 55
4 h?

_o
g=r, +Va(r)+(

2m1 sz

)vm)

where |F| = 7 — 79, |F| = r and

Vi (r) 0 forr<a Vi(r) 0 forr<b
al\T") = ; r)=
Vo forr>a b Vo forr>b

with b < a and V very large (assume Vj is infinite where appropriate) and
positive.

(a) Determine the normalized position-space energy eigenfunction for the ground
state. What is the spin state of the ground state? What is the degeneracy?

(b) What can you say about the energy and spin state of the first excited
state? Does your result depend on how much larger a is than b? Explain.
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12.9.4 Hydrogen Atom Calculations

We discuss here some useful tricks for evaluating the expectation values of cer-
tain operators in the eigenstates of the hydrogen atom.

(a) Suppose we want to determine (1/r),,,,.. We can interpret (\/r), ,,. as the
15t —order correction due to the perturbation \/r (same dependence on r
as the potential energy). Show that this problem can be solved exactly
by just replacing e? by e? — X everywhere in the original solution. So, the
exact energy is

m (62 - )\)2
2n2h2

the 1%!—order correction is the term linear in A, that is,

E(\) =-

me?\
W= 2R (M)
Therefore we get
me? 1
Wrhem = 2202 = 2ay
We note (for later use) that
EN)=EQO+ED 4+  =E\A=0)+) (@) +
dA / x-0

so that one way to extract E() from the exact answer is to calculate

dFE
Py umd
( dX )A:O

(b) Evaluate, in a manner similar to part (a), <f)2 /2u)n o, Dy considering the

Hamiltonian
o) 2 o)
. Z
g-P _2¢ P

(¢) Consider now ()\/r2>n om0 this case, an exact solution is possible since
the perturbation just modifies the centrifugal term as follows:

h20(0+1) X R +1)
- =~ 7
2mr? r2 2mr?
where £’ is a function of A. Now go back to the original hydrogen atom
solution and show that the dependence of E on ¢'()) is
mZ2et

E(f)=-—1""
() 2h2(k+ 0 +1)2

=E\)=EQ +E® 4
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Then show that

dE dE de’
/2 :E(l))\(f) :)\(—) —
( /T )nem dA A=0 dﬂ’ VAT dA =0

B A
Cn3a2(0+1/2)

or
1

(1/7%) o = a2+ 1)2)

Finally consider (/\/r3 )n o Since there is no such term in the hydrogen
Hamiltonian, we resort to different trick. Consider the radial momentum

operator
=—ih (2 + 1)
br or r
Show that in terms of this operator we may write the radial part of the
Hamiltonian
(L0
2m \r29r Or
as )
»
2m
Now show that
((H,pr])=0

in the energy eigenstates. Using this fact, and by explicitly evaluating the
commutator, show that

(/%) - Win (1)

and hence 5
Z
1/r® =
W) n3a30(0+1)(0+1/2)

12.9.5 Hund’s rule

Explain on the basis of Hund’s rules why the ground state of carbon is Py and
that of oxygen is 3 Ps.

12.9.6 Russell-Saunders Coupling in Multielectron Atoms

Consider a configuration of k equivalent p electrons outside a closed shell, which
we denote simply by p¥, i.e., carbon= p?, nitrogen= p® and oxygen= p*.

(a)

Use the implied-terms method to determine all the terms that can arise
from p®. Which of them will have the lowest energy?

(b) Repeat this calculation for p* and show that we get the same result as for

p2

940



12.9.7 Magnetic moments of proton and neutron

The magnetic dipole moment of the proton is

e
Voot 8
Hp = gp omy p
with a measured magnitude corresponding to a value for the gyromagnetic ratio

of

gp =2 x(2.792847337 + 0.000000029)

We have not studied the Dirac equation yet, but the prediction of the Dirac
equation for a point spin—-1/2 particle is g, = 2. We can understand the fact
that the proton gyromagnetic ratio is not two as being due its compositeness,
i.e., in a simple quark model, the proton is made up of three quarks, two ups
(u), and a down (d). The quarks are supposed to be point spin—1/2, hence,
their gyromagnetic ratios should be g, = g4 =2 (up to higher order corrections,
as in the case of the electron). Let us see if we can make sense out of the proton
magnetic moment.

The proton magnetic moment should be the sum of the magnetic moments of
its constituents, and any moments due to their orbital motion in the proton.
The proton is the ground state baryon, so we assume that the three quarks are
bound together (by the strong interaction) in a state with no orbital angular
momentum. The Pauli principle says that the two identical up quarks must
have an overall odd wave function under interchange of all quantum numbers.
We must apply this rule with some care since we will be including color as one
of these quantum numbers.

Let us look at some properties of color. It is the strong interaction analog
of electric charge in the electromagnetic interaction. However, instead of one
fundamental dimension in charge, there are three color directions, labeled as
red (r), blue (b), and green (g). Unitary transformations in this color space(up
to overall phases) are described by elements of the group SU(3), the group
of unimodular 3 x 3 matrices (electromagnetic charge corresponds to the group
U(1) whose elements are local phase changes). Just like combining spins, we
can combine these three colors according to a Clebsch-Gordon series, with the
result

3®3®3=100808®1

These are different rules than for the addition of spin case because that case
uses the rotation group instead. We do not need to understand all aspects of
the SU(3) group for this problem. The essential aspect here is that there is a
singlet in the decomposition, i.e., it is possible to combine three colors in a way
as to get a color singlet state or a state with no net color charge. These turn
out to be the states of physical interest for the observed baryons according to a
postulate of the quark model.
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(a)

(b)

The singlet state in the decomposition above must be antisymmetric under
the interchange of any two colors. Assuming this is the case, write down
the color portion of the proton wave function.

Now that you know the color wave function of the quarks in the proton,
write down the spin wave function. You must construct a total spin state
[1/2,1/2) total spin angular momentum state from three spin—1/2 states
where the two up quarks must be in a symmetric state.

Since the proton is uud and its partner the neutron (the are just two states
of the same particle) is ddu and m, ~ m,, we can make the simplifying
assumption that m, = mq. Given the measured value of g,, what does you
model give for m,? Remember that the up quark has electric charge 2/3
and the down quark has electric charge —1/3, in units of positron charge.

Finally, use your results to predict the gyromagnetic moment of the neu-
tron(neutron results follows from proton results by interchanging u and d
labels) and compare with observation.

12.9.8 Particles in a 3-D harmonic potential

A particle of mass m moves in a 3—dimensional harmonic oscillator well. The
Hamiltonian is

(a)

(b)

Find the energy and orbital angular momentum of the ground state and
the first three excited states.

If eight identical non-interacting (spin 1/2) particles are placed in such
a harmonic potential, find the ground state energy for the eight-particle
system.

Assume that these particles have a magnetic moment of magnitude u. If a
magnetic field B is applied, what is the approximate ground state energy
of the eight-particle system as a function of B (what is the effect of a closed
shell?). Determine the magnetization —9F/JB for the ground state as a
function of B. What is the susceptibility? Don’t do any integrals.

12.9.9 2 interacting particles

Consider two particles of masses m; # my interacting via the Hamiltonian

(a)
(b)

2 2
& D D 1 1 1 2
= ﬁ + ﬁ + imlw%? + imngxg + §K (z1 —2)

Find the exact solutions.

Sketch the spectrum in weak coupling limit K << uw? where p = reduced
mass.
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12.9.10 LS versus JJ coupling

Consider a multielectron atom whose electron configuration is

(a)

(b)

15225%2p53523p°3d*%4s%4p4d

To what element does this configuration belong? Is it the ground state or
an excited state? Explain.

Suppose that we apply the Russell-Saunders coupling scheme to this atom.
Draw and energy level diagram roughly to scale for the atom, beginning
with the single unperturbed configuration energy and taking into account
the various interactions one at a time in the correct order. Be sure to
label each level at each stage of your diagram with the appropriate term
designation, quantum numbers and so on.

Suppose instead we apply pure jj—coupling to the atom. Starting again
from the unperturbed n = 4 level, draw a second energy level diagram.
[HINT: Assume that for a given level (41, j2), the state with the lowest .J
lies lowest in energy]

12.9.11 In a harmonic potential

Two identical, noninteracting spin= 1/2 particles of mass m are in a one dimen-
sional harmonic oscillator potential for which the Hamiltonian is

(a)

2
- Dz, lmw%% + P2z 1muﬂmg
2m 2 2m 2
Determine the ground-state and first-excited state kets and the corre-
sponding energies when the two particles are in a total spin= 0 state. What
are the lowest energy states and the corresponding kets for the particles
if they are in a total spin= 1 state?

Suppose that the two particles interact with a potential energy of interac-
tion

Vo |z1-x2l<a

0 elsewhere

V(|zy - z2]) = {

Argue what the effect will be on the energies that you determined in (a),
that is, whether the energy of each state moves up, moves down, or remains
unchanged.

12.9.12 2 particles interacting via delta function

Two particles of mass m are placed in a rectangular box of sides a > b > ¢ in the
lowest energy state of the system compatible with the conditions below. The
particles interact with each other according to the potential V' = A§(F; — 7).
Using first order perturbation theory calculate the energy of the system under
the following conditions:
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(a) particles are not identical
(b) identical particles of spin=0

(c) identical particles of spin=1/2 with spins parallel

12.9.13 2 particles in a square well

Two identical nonrelativistic fermions of mass m, spin= 1/2 are in a 1-dimensional
square well of length L with V infinitely large outside the well. The fermions
are subject to a repulsive potential V(1 — x2), which may be treated as a
perturbation.

(a) Classify the three lowest-energy states in terms of the states of the indi-
vidual particles and state the spin of each.

(b) Calculate to first-order the energies of the second- and third- lowest states;
leave your result in the form of an integral. Neglect spin-dependent forces
throughout.

12.9.14 2 particles interacting via a harmonic potential

Two particles, each of mass M are bound in a 1-dimensional harmonic oscillator
potential

1
V = Zka?
2
and interact with each other through an attractive harmonic force Fyo = —-K (21—
x2). Assume that K is very small.

(a) What are the energies of the three lowest states of this system?

(b) If the particles are identical and spinless, which of the states of (a) are
allowed?

(c) If the particles are identical and have spin=1/2, which of the states of (a)
are allowed?

12.9.15 The Structure of helium

Consider a Helium atom in the 1s2p configuration. The total angular momen-
tum is L = 1 (a P-state). Due to the Fermi-Pauli symmetry this state splits
into singlet and triplet multiplets as shown below.

where the superscripts 1 and 3 represent the spin degeneracy for the singlet /triplet
respectively.

(a) Explain qualitatively why the triplet state has lower energy.
Now include spin-orbit coupling described by the Hamiltonian Hgo =
f(r)L-S, where L and S are the total orbital and spin angular momentum

respectively.
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1s2p

Figure 12.12: Fermi-Pauli Splittings

(b) Without the spin-orbit interaction, good quantum numbers for the angu-
lar momentum degrees of freedom are |LMpSMg). What are the good
quantum numbers with spin-orbit present?

(¢) The energy level diagram including spin-orbit corrections is sketched be-
low.

1s2p E—
Figure 12.13: Including Spin-Orbit

Label the states with appropriate quantum numbers. NOTE: Some of the
levels are degenerate; the sublevels are not shown.
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Chapter 13

Some Examples of Quantum Systems

13.1 Coherent and Squeezed States

We have derived relationships between the non-Hermitian operators @ and af

and the position and momentum operators

h

2mw

@) o peiy/ 2@ -0)

Working with the coherent states defined by
ala) = ala)

we found

where
|a2‘ =N = (Q|N0p o)

Let us now derive some important relations.

h
=1 % (o = a) = V2mhwlmag(a)
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h
(o] 2% ) = DT (a|(a*a* +aa* +a*a+aa)|a)
h
=5 (ol (@ +aa* +a*a+a? +1)|a)
mw
12
= {alZ]a)” + 5 (13.7)
(o] |a) = —hmTw (af (a*a" - aa* - a*a +aa) o)
h
= —7T;M (o (a*? —aa* -a*a+a?-1) |ex)
h
= (alpla)* + =5 (13.8)
Using these relations we have
(Ax)” = (| #°|o) - (a] &]a)” = -— (13.9)
2mw
. . hmw
(Ap)” = {al 5% ) ~ {al plo) = == (13.10)
Hence 5
AzAp = 3 (13.11)

which says that coherent states are minimum uncertainty states.

Now let us find the differential equation satisfied by (z|a) and determine its
solution. We have

2 h iV mwh
1 2mw . 1 2 d
_2(\/ h x—g mwh(_md))(m|a)
or
(@Jrii)(ﬂa): ﬂ(aﬂa) (13.12)
mw dx mw

which has the solution (check by substitution)

(xa)zCexp[—m+;(p)m] (13.13)

2
2h
= (C"exp —ﬂ;—: (x—\/mwa) (13.14)
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For a fixed oscillator mode, specified by a given value of mw, the coherent states
are the manifold of those minimum uncertainty states that have definite values
of Ax and Ap. If mw = 1, then the uncertainties in x and p are both equal to

Vif2

We can construct other minimum uncertainty states with a narrower Az, the
so-called squeezed states, for the same oscillator by defining a new set of raising
and lowering operators.

R ’ A ~ ; ~
hoy/ Y (:L+z p,) Y (i (:c i p,) (13.15)

2h mw 2h mw

where we introduce an arbitrarily chosen positive parameter w’. Now we have

A n mw’ i 1
b b+ = (_ Ay D A7 t )
[0,07] o\ [ ]+ — [, ]
:_%[@,p] :—%ihzl (13.16)
We also have
. mw’(A . P )

= xr+1

2h mw’
!

N h (a+a*)+ L hmw(*—&)

2h 2mw mw’ 2

(Vs )
(Ve Vi )
;(f—f) +(f f)

Q>

(13.17)
where
A A
Y IR R Y B A (13.18)
2 w w'’ 2 w w’
and therefore .
bt =Xa* +va (13.19)
since A and v are real. Algebra also shows that
A l4
)\z_yzzl w YWY _Y 9,92 (13.20)
4w W w W



We now invert the transformation. We have
MNo—vb* = A2a+ \at - et -vPa= (A -1v¥)a=a (13.21)

which then implies that R .
AT —vb=a" (13.22)

We define the eigenstates of the lowering operator b by
b|8) = 818) (13.23)

These new states are also minimum uncertainty states for x and p. We want to
calculate

(Ax)? = (%)~ (x)* , (Ap)°=(p*)-(p)’ (13.24)

:@:\/2zw(a+a*)
_‘/2:M((’\ V)b+ (A -v)b")
\/ (/\ v) (b+b%) (13.25)

Now we have

and

i = hmw (A + )b = (A+v)b)
= iy /M”T”(,\w) (b -b) (13.26)

These equations imply that earlier derivation we did is the same with different
multiplicative factors so that

(Az)? = i (A=) (13.27)
(Ap)? = hﬂ (A +v)? (13.28)
and therefore

(Am)z (AP)Q = %2 (A - V)2 A+ y)2 = hz ()\2 _ u2)2 _n

It turns out that the operators a and b are related by a unitary transformation,
ie.,

b=UaU* (13.29)
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where

U =exp [g (a*- a”)] (13.30)
and
et =A+v (13.31)
Proof:
Ual™ = exp [g (a2 - a+2)] aexp [—g (a2 - a*z)] = eBae? (13.32)

Using the identity derived earlier we have

Pae =ax [Ba]+ S [B[Ba]+ S [B[B[Ba]]]+ .. (133)
Now with
B= g (a*-a*?) (13.34)
we have
[B.a] = & ([a%a] - [a2a]) = -5 [a,a] = ca
[B,[8.0]] = S¢[a2 a*] =
[5.[5.[.4]]] - €%5°
and so on.
Therefore
A 2 53
UaU* :&+§a++—a+€&++ .......
. g ¢ ~ & &
=a 1+§+I+.... +a §+§+5+.... (13.35)
If we define
2 4 3¢5
)\:(14—3!4—14—....) ) u:(§+§!+§!+....) (13.36)
so that
ef=\+v (13.37)
we have
UaU* = Na+va* =b (13.38)
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Finally, we have

G|coherent) = a|coherent)

b|squeezed) = B|squeezed)

Ué |coherent) = al |coherent)

UalU* U |coherent) = aUU*U |coherent) = aU |coherent)
bU |coherent) = ol |coherent) = alU |coherent)

bU |coherent) = ol |coherent)

which says that U |coherent) = |squeezed). Thus, U transforms a coherent state
into a squeezed state.

13.2 Electron in a circular wire

We now consider a loop of thin wire in the shape of a circle of radius R as
in Figure 13.1 below. A constant magnetic field perpendicular to the plane
of the loop produces a magnetic flux passing through the loop. Imagine that
the wire contains only one electron which is free to move. This electron has a
wavefunction () which depends only on the angular coordinate . We neglect
all interactions between the electron spin and the magnetic field as well as all
magnetic fields produced by the electron itself.

Figure 13.1: Circular Wire Configuration

We first determine the energies and energy eigenfunctions for a nonrelativistic
electron of mass m moving on this ring. In particular we want to find out how
ground state energy of the electron depends on the value of the applied magnetic
field in this approximation.

We have
, B =constant (13.39)



In cylindrical coordinates (r, 6, z), we can choose

AT:AZ:O,AQ:%»ZI:%@ (13.40)

The Schrodinger equation for the electron is

i( ——A) V=B . e<0 (13.41)

2m
We then let o
, 15 [ Adi
P=ye 7 (13.42)

which should get rid of the effect of A (equivalent to a gauge transformation).
We have

C
ie [ A.dF ie [ A.dF .
=e™ f,LVQ/)H—V(eM! )w'—eAz/J
(3 C
ie [ A.d7 .
C AR G Ay - S Ay
(3 C C
7% [ Adr e [ Adr
= gy gy
(3
Similarly,
J\2 ie [ A.dF
(ﬁ—fA) WS S (13.43)
C

so that the Schrodinger equation becomes
1
—py = By (13.44)
2m

Since the electron is confined to a loop of radius R, we have

, ie [ AdF , ie [ AgRdo , e
Y=1p(0) =y (0)e © =y 7 = ! (f)ehe Ao RO (13.45)
Therefore we have
1 5, h?  d%y’ (9)
5 W(0) =~ = = Bv'(0) = (13.46)
which has the solution
W(8) = 60 p(0) = ek O EEY qg7)
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Now imposing single-valuedness, we have

W(0) = (0 +27) (13.48)
G(Cr+<BE2 )0 _ i(Cav=BE2)0 2mi(C1+ 2B ) (13.49)
which says that
Cy+ efh]f —n=0,+1,42 ... (13.50)
o 2 2 2\ 2
Ci=n- efh]z ~E, = 2;;]%2 (n— efh]i ) (13.51)

If we define ¢g = —hc/e = unit of flux, and remembering that the flux through
the loop is ¢ = TR%2B we have

~ h2 ¢ 2
En= o (n + %) (13.52)

which says that the dependence of F, on the external magnetic field B or flux
¢ is parabolic. A plot is shown in Figure 13.2 below.

Figure 13.2: E, versus B

Since n is an integer, the ground state energy E, is given by

h? eBR?\’
E = * -_ 1 .
9 29mR2 (n 2hc ) (13.53)
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where n* is the integer nearest to e BR?/2hc or near

2.9 (13.54)

¢o ch

Note that n* <0 since e < 0.

Now imagine that we start with the wire in its ground state in the presence of
a magnetic flux ¢. If the magnetic field is turned off determine the current in
the loop. Assume that R =2 cm and ¢ = 0.6 gauss — cm?.

Suppose that we start with a state E,, which is the ground state. n will remain
the same when the magnetic field is turned off. Therefore, ¥(6) = Ce™’ and
the electric current is

T eh * *
= omi (Y*VY - VYT (13.55)
mi
which follows from 5
Jr =P =0 13.56
VTSl (13.56)
We then get
- eh 2 neh
= (in) = ey = ——1p e 13.
J 2mi(m)Rw wéo = LY ey (13.57)
Now, if S = the cross-section area of the thin wire, the normalization constant
is
1
“YdldS = 27R|CPP S =1 - |C = ——== 13.58
[ wrvatas = 2xR|C| OF = 5= (13.58)
Then,
-~ ~ neh, 9 neh
I= current = fJ~dS: PRICP S = s (13.59)

where we have assumed that J is constant throughout the thin wire.

Since the electron is initially in the ground state, this implies that FE, is the
minimum energy and we have

n = greatest integer not greater than r_ % (13.60)
wo ch
or
greatest integer not greater than R (13.61)
%0

For a macroscopic system we have n > 1 and we can use

ep neh e2p
N — = ~ 13.62
" ch 2rmR2  4rmcR? ( )

For R=2cm and ¢ = 0.6 gauss — em? we have (using SI units)

~(1.6x1071)2(0.6 x 107*) x 10~*
© 4m2(2x1072)2(0.9 x 10730)

=1.1x 10" " amp (13.63)
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13.3 Spin-Orbit Coupling in Complex Atoms

Spin-orbit coupling is strictly an internal effect arising from the interaction
between the electron spin and the effective magnetic field due to the apparent
nuclear motion. In analogy with the one-electron atom, we can write for the
N —electron atom

Hy, = %fi(Fi)ii'gi (13.64)

where &;(7;) is defined in a manner similar to the one-electron case, assuming
an effective potential field can be defined for each electron.

For the case of weak spin-orbit, let us use both classical and quantum mechanical
arguments to determine the first-order correction to the energy.

Classical Argument:

Vector Model for Combining Angular Momentum: The L - S interaction causes
L and S to exert torques on each other via their magnetic moments. This means
that neither of these quantities are independently constants of the motion.

However, if Tegternar = 0, then J? is a constant of the motion, where J=L+S.

In this model, there exist two extreme orientations of these vectors for a single
electron as shown in Figure 13.3 below.

Figure 13.3: Extreme Orientations

and as shown in Figure 13.4 below the L and S vectors precess about the vector
J =L+S at the same angular velocity.
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Figure 13.4: Precessing Vectors

The quantum conditions now apply to J? and J, instead of L?, L, and S? and
S, separately. This means that we define the state |J, M) such that

J2|J, My) = J(J +1)h2|J, M) (13.65)
J.|J, My = Myh|J, M) (13.66)
where J =|L+S|,|L+S|-1,......,|L - S| and each J value has 2J +1 M values.

Now consider the interaction term of the form ¥ L; - S;. In this model
i

each L; precesses rapidly about L
each S; precesses rapidly about S

This means that on the average
Li=a;L , S;=8;S (13.67)

so that
M Li-Si=yL-S , v=Y B (13.68)

fISOZWE'S:%(j?—iQ—g?) (1369)
as we assumed.
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More formally (using the Wigner-Eckart theorem) we have

(LSJM|Hyo|LSIM) =

> C*(LSM}, ME)C(LSMpMg)
My, ,Ms, My, Mg
ML+MS:M£+Mé

x (LSM} MY| H,o |LSMp Ms)
> C*(LSM; M%)C(LSMp Mg)

My, ,Ms,Mj , Mg
ML+M5=ML+M:9

x (LSM M| Zfi(r)ii - S; [LSMp Ms)

> C*(LSM; M%5)C(LSMpMg)
ML,JMS,M’L,M’S
Mp+Ms=M7j+Mg

X Z&(T) (LMH Ei |LML> : <5M§| gi |SMS>
3 C*(LSM}, ML)C(LSMMg)
Mg, Ms, M} , Mg
ML+MS:M2+M’S

SHAAPIGETE

x (LSM} M%| L-S|LSM;yMsg) (13.70)

where the last step involves two uses of the Wigner-Eckart theorem. We then

have

(LSJM|H,,|LSJTM) =

so that effectively, H,, = ’)/Z/'

We also note that since

H,,=~L-S8 - E(LSJ)=A(LS) (‘](

> C*(LSM} ME)C(LSMyMg)
My, Mg, M} , M}
]\/IL+MS:M;‘+MIS

2 C* (LSMME)C(LS M Ms)

M, Ms, My, Mg
ML+M5=M£+M:S~

x (LSM} M§|~vL-S|LSMpMg)
(LSJM|~L-S|LSJM) (13.71)

n

J+1)-L(L+1)-5(S+1)
2

) (13.72)
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so that

E(L,S,J)—E(LS,J—l):A(LS)(J(J+1)_L(L+1)—S(S+1))

2
(J—l)(J)—L(L+1)—S(S+1))
2

— A(LS) (

_A(LS)
2

(JP+J-J%+J)=A(LS)J (13.73)

which is called the Lande interval rule.

13.4 Zeeman Effect in Complex Atoms

The electronic spin and orbital angular momenta in a complex atom give rise to
a magnetic moment that we can write, by analogy with the one-electron atom,
as

M = i(ii +25;) (13.74)

i=1

i - -

M=
>

I
Ju

(3

In an external magnetic field B = B,%, the total Hamiltonian becomes H =
Hy + Hg, + Hp, where the term containing B is

Hp=-M-B=-M.B, (13.75)

Let us now use classical precession arguments to derive an approximate operator
expression for M,. We will assume both a weak spin-orbit interaction and a weak
magnetic field interaction, but take the spin-orbit interaction to be dominant.
Remember, in the case of weak spin-orbit interaction and a weak magnetic field,
we can use the precession picture of the section 14.3. The same type of vector
diagrams can be used to deal with summations like

S Li-L and > 8;-8 (13.76)

By vector addition we have J = L+ S with both L and S precessing rapidly
about J. Also by vector addition we have

L = G_ € o &
M:ML+/LS:QLL+QSS:7(L+2S) (1377)
2mc
Clearly, fi is not parallel to J since
e
9s = — =291 (13.78)

mc
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In addition, zi is precessing rapidly about J. Therefore,

J__ui(f+2§)-j:_@(ﬁ+2§)~(ﬁ+§)

(13.79)

(13.80)

Hef fective = 1+ j = 3 ¥ . -
(L2 +25243L-8)  pup (12425°+ §(J2- 12— 5))
h J A 7
3J%-L?+ 82 2 2., @2
L BPLS) () Pl s
h 2J2 h 2.J2
or 2 2 2
i HB 7 Je-L*+S
ef fective = — 1+ —
Hef fect hJ( + 573 )

Now we use the Wigner-Eckert theorem.

13.4.1 Method #1: Plausibility Derivation
We have

H=-ji-B

and
e

i = (E+2§):L(j+§):Gj
2mc

2me
by the Wigner-Eckart theorem. Therefore,

GJJ=-C(jii§. )= LIS
2mc 2me  J-J
e J(J+ 1) + jf+§-2§—ii
2me J(J+1)
_ e [1+J(J+1)+S(S+1)—L(L+1)
2me 2J(J +1)

13.4.2 Method #2: Full Formal Derivation

The Zeeman effect Hamiltonian is given by

eB eB
Hzeeman = E Liz +2 E Siz = Lz + 2Sz
) 2me ( Z S ) 2me ( )

Therefore we need to evaluate the matrix element

(LSJTM| (L. +28.)|LSJM)

(13.81)

(13.82)

(13.83)

(13.84)

= (LSJM|.J,|LSJM) +(LSJM|S, |LSJM)

= Mh+(LSJ|S| LSJ)Y(JM]|.J.|TM)

= Mh(1+(LSJ|S|LSJ))
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Now

(LSJM|S - J|LSJM) = (LSJ|S| LSJ)(LSJM|J-J|LSJM)
=J(J+1)h*(LSJ||S| LSJ) (13.86)

or oL
(LSJM|S - J|LSJM)

L L =
(LSTS1 LS} = ==

(13.87)
But we have

(LSIM|S - J|LSIM) == (LSJM|(J*+S* - L?)|LSJTM)

1
2
h2
:?(J(J+1)+S(S+1)—L(L+1)) (13.88)
Putting it all together

J(J+1)+S(S+1)-L(L+1)

LSJT|S|LSJT)=
(LS. S| LSJ) 0T

(13.89)

so that

(LSIM| (L, +2S,)|LSIM) = Mh(1+(LSJ|S|LSJ))
J(J+1)+S(S+1)-L(L+1)
2J(J+1) )

=Mh (1 +
(13.90)

Therefore, the first-order correction to the energy level E(L,S,J) due to the
perturbation Hp is

_eB J(J+1)+S(S+1)-L(L+1)
(Hzeeman>_2th(1+ 2J(J+]_) )

= poMg(LSJ) (13.91)

where

+J(J+1)+S(S+1)—L(L+1)

9(LST) =1 2J(J +1)

(13.92)

is the so-called Lande g-factor.

13.5 Neutron Interferometry
In the late 1970s several neutron interference experiments which are of funda-
mental importance in quantum mechanics and which settled debates started in

1930s, were carried out by Overhauser and collaborators.

In this section we investigate the effects on a neutron interference pattern of the
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gravitational field.

We mentioned some aspects of this type of experiment in Chapter 16. Here we
go into more detail.

We consider an interferometer made of three parallel equally spaced crystalline
silicon strips as shown in Figure 13.5 below.

Figure 13.5: Experimental Setup

The incident neutron beam is assumed to be monochromatic. Cs and Cj3 are
neutron counters.

For a particular value of the angle of incidence 6, called the Bragg angle, a plane
wave
winc = ei(ﬁ.f_Et)/h (1393)

where E is the energy of the neutrons and P their momentum, is split by
the crystal into two outgoing waves which are symmetric with respect to the
direction perpendicular to the crystal, as shown in Figure 13.6 below.

inc \
P W ,

Figure 13.6: Splitting Waves
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The transmitted wave and the reflected wave have complex amplitudes which
can be written respectively as

a=cosy , [B=isiny x real (13.94)

so that

Yr = aePTEDR gy = gl TED R (13.95)

where |p| = [p'| since the neutrons scatter elastically on the nuclei of the crystal.
The transmission and reflection coefficients are

T=loff , R=|8 with T+R=1 (13.96)

In this interferometer setup the incident neutron beam is horizontal. It is split
by the interferometer into a set of beams, two of which recombine and interfere
at point D. The detectors C5 and C3 count the outgoing neutron fluxes. The
neutron beam velocity corresponds to a de Broglie wavelength A = 1.445 and
the neutron mass is M = 1.675 x 10727 kg.

For calculational simplicity we are using monochromatic plane waves to rep-
resent the neutron beams; they are, however, quasi-monochromatic with finite
extension in directions transverse to the beams.

13.5.1 Neutron Interferences

The measured neutron fluxes are proportional to the intensities of the waves that
reach the counters. We define the intensity of the incoming wave to be 1 (units
are arbitrary). For Cy the beams ABDC5 and ACDCj interfere. Omitting the
propagation factors, at Cy we have the amplitude

As =B+ 32 = B(a? + B?) (13.97)
Similarly, for ABDC5 and ACDCs3,
As = 208> (13.98)

The intensities at the two counters are then
Iy=R-4R*T |, I3=4R’T (13.99)
Suppose that we create a phase shift § of the wave propagating along AC, i.e.,

in C' the wave function is multiplied by e*.

The new amplitudes at the detectors are

Az =a?Be + 8% = B(a%e® + B2) , Az =aB}(1+e9) (13.100)
and the new intensities become
Iy =R-2R*T(1+cosd) , I3=2R*T(1+cosd) (13.101)

Note that Iy + I3 does not depend on the phase shift §. This is because of the
conservation of the total number of particles arriving at D.
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13.5.2 The Gravitational Effect

The phase difference 0 between the beams AC'D and ABD is created by rotating
the interferometer by an angle ¢ around the direction of the incident beam as
shown in Figure 13.7 (on the left)below.

Figure 13.7: Geometrical Considerations

Now let d be the distance between the silicon strips(we neglect their thickness
in this discussion). We also define L as the side of ABCD and H as its height
as shown in Figure 14.7 (on the right) above. We then have(simple geometry)

that

d
L=—— |, H=2dsinf f = Bragg angle (13.102)
cosf

Experimentally, the values of d and 6 are d = 3.6 cm and 0 = 22.1°.

For an angle ¢ we define the gravitational potential V to be V =0 along AC
and V =V, along BD.

Since there is no recoil energy of the silicon atoms to be taken into account, the
neutron total energy (kinetic + potential) is a constant of the motion in all of
the process. The energies are given by

2 - A 2
EAc=2piM= BD=%+M9HSH1¢ (13.103)
M?gH si
Ap gHsin¢ (13.104)
p
where Ap is the difference in the neutron momentum.
The velocity v/2gH is of order 0.5m/s and the neutron velocity is
v ~ 2700 m/s (13.105)

T M
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The change in the velocity Awv is therefore very small, i.e.,

Av = % ~2x104 m/s for ¢= g (13.106)
Now the gravitational potential varies in exactly the same way along AB and
CD. The neutron state in both cases is a plane wave with momentum p = h/\
just before A or C. The same Schrodinger equation is used to determine the wave
function at the end of the segments. This implies that the phases accumulated
along the two segments AB and CD are equal.

When comparing segments AC and BD, the previous reasoning does not apply,
since the initial state of the neutron is not the same for the two segments. The
initial state is e?*/" for AC and e!@~2P)2/" for BD. After traveling over a
distance L = AC - BD, the phase difference between the two paths is

_LAp  MZ*gA\d®
 h wh2

The variation with ¢ of the experimentally measured intensity I3 in the counter
(5 is shown schematically in Figure 13.8 below (the data does not display a
minimum exactly at ¢ = 0 because of calibration difficulties).

1) tan @ sin ¢ (13.107)

8000 T T T T T T T

7000 -1

6000 .

S000

4000 -

ntensity(arb_ units)

3000

2000 - 1

1 1 1 1 1 1 1 |
-50 -40 -30 -20 -10 0 10 20 30
PHI{degrees)

al
8

Figure 13.8: Variation of Intensity with ¢

From the previous result, we have

0o — 01 = Ag(sin ¢y — sin ¢1) (13.108)
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where

M?\d?
A= tan 0 (13.109)
mh?
Therefore,
d2 = 01

= 13.110
9 A(sin ¢g — sin ¢y ) ( )
In the actual data there are 9 oscillations, i.e., d3 — d; = 187 between 1 = -32°
and @ = +24°, which gives g = 9.8m/s?. This clearly shows that the neutron
interference effects are directly the result of the difference in the gravitational
potential along two arms of the interferometer.

13.6 The Penning Trap

A Penning trap allows one to confine electrons in a finite spatial region and
then allow the accurate measurement of various properties. It involves the
superposition of a uniform magnetic field B directed along the z—axis and a
quadrupole electric field which derives from an electrostatic potential of the
form

® = K(22% -2 —9?) (13.111)

where K is a positive constant.

An electron of charge —g(g > 0) and mass m is placed in such a device. We denote
its spin operator by S and its momentum operator by p. The Hamiltonian of
the electron in the above superposition of fields is

=t (5+qd®) V() +(1+a) L5 B (13.112)
2m m

V(7)) = ® = mwi (222 - 2% - %) /4 (13.113)

= electrostatic potential energy (13.114)

A(7) = B x /2 (13.115)

= vector potential (13.116)

The constant a ~ 1.16 x 1073 is the gyromagnetic anomaly of the electron mag-
netic moment.

13.6.1 Motion of an Electron in a Penning Trap

We set w, = ¢B/m, where B is the magnitude of the magnetic field, and we
assume that this cyclotron frequency w, is much larger than wy.

We note that - A(7) = A(F)-p=L-B/2=L.B/2 and A% = B2(2® + y?)/4. We
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then get

H=H.,+H, +H, (13.117)

N 21

i, =Lz Spw2s? (13.118)
2m 2
~2 n2

~ 1 1 ~

=P o Py 2022 4 %) + —w b (13.119)
2m  2m 2 2

H, = (1+a)w.S. (13.120)

with 02 = (w? - 2w2)/4 = Q = w./2 - w2/2w, and L is the orbital angular
momentum of the electron.

The eigenstates of H, are the eigenstates of S., |+) with energy eigenvalues
£(1+a)hwe/2 = thws , ws=(1+a)w./2 (13.121)
where we have used
S, |£) = +h/2|+) (13.122)
Since H. - uﬁt and I:IS act on different variables, they must commute. An eigen-
basis of H can be constructed using the eigenstates ¢(z), ¥(x,y) and |o) of

fIz, H, and H s, respectively. The corresponding eigenvalues are the sum of the
individual eigenvalues.

In order to calculate the motion along the z—axis, we introduce the creation and
annihilation operators

&z:%(a2+£ﬁz) ) aZ:%(aé—@@) ;= ymhuwo

S L U AU 1
(i2002) = 5 (02 (2214 £ 2021 - § (2521 = s [0
1( 7, . i
=5 (+E [-ih] - 3 [zh]) =1 (13.123)

Thus, we have the same mathematical system as the harmonic oscillator so that

H,=hwo(N.+1/2) , N.=ala. (13.124)
N.|IN.)=N.|N.) , N.=0,1,2,3,..... (13.125)
H.|N.)=En_|N.) , En.=hwo(N.+1/2) (13.126)

967



13.6.2 The Transverse Motion

We now investigate the x — y motion governed by the Hamiltonian H,. 1If we
define the right- and left-circular creation and annihilation operators

-5 (3G -0+ 5. -i0) (13.127)
41 = 5(6(§:+ig))+ Bh(pﬁzpy)) (13.128)
where (8 is a real constant, then we can show (in same way as above) that
lar,a7]=1=[aa7] , [ar&]=0=][ar,a7] (13.129)
Defining R R
N,=a'a, , N =aja (13.130)
we have
N 1 2L
_oada 20,2, .2 z
N, =a,a, = 1 (ﬂ (x +y*) + 52712 (P2 + - 5 ) (13.131)
A A A 1 2 2 2 2L
1=a]y = 1(6 (2% +y~) + 52h2 (p3+p5) - 5 ) (13.132)
and thus R
L, =2py—0ps = h(N, - N}) (13.133)
and
N+ Ny = & (52(:52 F1?) + — (PR + )) 1 (13.134)
2 [3%2 v
If we define 32 = mQ/h we then have
H, = hQ(N, + N, (13.135)
or X R R
Hy = ho' (N, +1/2) = hw (N} +1/2) (13.136)
where

1
wé ?+Q_§( +\/w2—2w(2)):wc (13.137)
2

wm:%—Q:i(wc—\/wg—2wg):2%)c<<wc (13.138)
Since this is just the difference of two oscillators we have the energy eigenvalues
Eem = hwl(Ne +1/2) = hwp (N, + 1/2) (13.139)

We also have from earlier

+(1+a)hw./2=+thws , ws=(1+a)w./2 (13.140)
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Thus, the energy eigenvalues of H are
E = hwo(N, +1/2) + hw! (N, + 1/2) = hwpm (Np, + 1/2) + ohw (13.141)
where N,, N, and N, are integers >0 and o = 1.

Note that the magnetron motion F,, corresponds to an inverted harmonic oscil-
lator, so that its spectrum has no mower bound in the harmonic approximation
used in the example. Consequently, when the system is coupled to a heat bath
and relaxes towards thermal equilibrium, it should cascade down the ladder
of levels of the magnetron motion, thus increasing the size of the orbit of the
trapped particle in the xy—plane. Fortunately, the characteristic time corre-
sponding to the decay of the system in this way is very long, and the electron
can be confined around the center of the trap for a long time.

13.6.3 Measurement of Electron Anomalous Magnetic Mo-
ment

The electric quadrupole field is such that hwg = 2.58 x 10~ eV. The magnetic
field is B = 5.87T. The system is placed in liquid helium at 4.2 K. We then
have (using gh/2m = 5.79 x 1072 V)

hw, = 6.8 x 10™%eV ~ hw!,

Ay, = 4.9 x 107 eV
In liquid helium, k7T = 3.5 x 10~ eV and the longitudinal and magnetron level
spacings are much smaller than the thermal fluctuations. Thus, a classical
description of these two motions is appropriate. In contrast, a few quanta of
oscillation are thermal excited for the cyclotron motion since kT < hw__c. Now,

the electron anomaly is a ~ 0.00116. Therefore we can draw the relative position
of the four energy levels

N,=0; N,,, =0; N.=0,1and o = £1 (13.142)

The level configuration is shown in Figure 13.9 below.

2hw_ +ahw /2 N.=1 o=1
| ae
=0 -
ho_+ ahw /2 N (=t
) Ne=1 o=-1
-ahw, /2 N.=0 o=-1

Figure 13.9: Energy Levels

969



The splitting AE between the level N, = 0,0 = +1 and the level N, =1,0 = -1
is proportional to the anomaly a. We have AE = ahw, = 5 x 1077 eV, where we
have neglected the difference between w, and w’, which is ~ 7.9 x 1071 eV. The
splitting corresponds to a frequency v = AE/h =191 M H 2.

13.7 Schrodinger’s Cat

We first just describe a simple version.

Suppose that a cat within a closed box would be killed by a |t} particle but not
by a |}) particle. Now consider the effect of the state |1)+ Ket|, which can easily
be produced by a properly oriented Stern-Gerlach device.

Suppose that a particle in the state |t) + Ket] hits the cat and that the state of
the (spin + cat) makes a transition to

|1} |[dead cat) + ||} [living cat) (13.143)

which is a pure state.
When is it decided whether the cat is alive or dead?
Just when the observer opens the cat’s box?

An objective statement independent of the conscious
mind of the observer would be impossible.

What is the consequence of including the observer herself in the quantum me-
chanical description?

According to the point of view presented, the cat(together with the mechanism
for killing the cat, which was not mentioned above) is linked to other macro-
scopic objects. These are influenced differently in the two final states so that
their respective wave functions do not overlap. For everything that follows, the
macroscopic consequences are not recorded; the trace is taken over them. The
final state of the cat is described by a mixture of states corresponding to a dead
cat and a living cat: the cat is either dead or living and not in a pure state

|dead cat) + |living cat) (13.144)

which would include both possibilities.
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13.7.1 Schrodinger’s Cat - a more detailed presentation

The superposition principle states that if |p,) and |¢p) are two possible states
of a quantum system, the quantum superposition

€
V2

is also an allowed state for this system. This principle is essential in explain-
ing quantum interference phenomena. However, when it is applied to large or
macroscopic objects, it leads to paradoxical situations where a system can be
in a superposition of states which is classical self-contradictory.

(lpa) + lon)) (13.145)

The most famous example is Schrodinger’s cat parador where the cat is in a
superposition of the dead and alive states. The purpose of this discussion is to
show that such superposition of macroscopic states are not detectable in prac-
tice. They are extremely fragile, and very weak coupling to the environment
suffices to destroy the quantum superposition of the two states |¢,) and |¢p).

The Quasi-Classical States of a Harmonic Oscillator

We consider the high energy excitations of a one-dimensional harmonic oscillator
or mass m and frequency w. The Hamiltonian is written

H=— + —mw?’i? (13.146)

We denote the eigenstates of H by {|n)} where the energy eigenvalues are given
by
HIn) = E, |n) = hw(n+1/2)|n) (13.147)

Preliminaries
We introduce the operators
X =\/mw/hi , P=p/\mhw (13.148)

and the annihilation and creation operators

a:%(f(ﬂ'ﬁ) : a*:%(f(—iﬁ) , N=a"a (13.149)

The commutator [&,p] = ik leads to the commutators [X, P] =i and [a,a*] = 1
and the relations

H=ho(N+1/2) , Nln)=nln) (13.150)
We also have the relations
. 0 . 0
P=—i— X=i— 13.151
"ox ‘op ( )



alny=+/nn-1) , a*ln)y=vn+1n+1) (13.152)
We can use these relations to derive the ground state wave function in the

position representation as follows:

- S X|(X+iP)p)

1 1 )

AL ﬁ(-zﬁ)a 0)

(X+ 6%)<X 10) =0 - (X | 0) = Ae /2 = 4 (X)

Yo(x) = Ae™mw"/2h (13.153)

0= (X]alo)

Similarly, we can derive its the ground state wave function in the momentum
representation as follows:

1

V2
1.0 )
:ﬁla?(P|O>+ﬁP

(P+a%)<P|0>:0»<P\0>:Ae‘P2/Z=¢o(P)

go(p) = Ae7?/2meh (13.154)

0=(P|alo) (P|(X +iP)|0)

(P10)

These two wave functions are related by the Fourier transform, that is,

(250(10) - e—p2/2mwh o ‘/\e—rnwx2/2he—ip;ﬂ/hdaj

—00

o< f Yo(x)e P/ My

The Quasi-Classical States

The eigenstates of the operator a are called quasi-classical states, for reasons
we will now discuss.

Since we are considering the question: what are the eigenstates of the lowering
operator a? We can write

ala) = o|ar) where o = |of €'? (13.155)

where |o) is the eigenvector of @ and « is the eigenvalue, which is not necessarily
real since a is not Hermitian.

Since the vectors |n) are eigenvectors of a Hermitian operator, they form a
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orthonormal complete set and can be used as an orthonormal basis for the

vector space. We can then write

a) = i by Im)
m=0

where
(k|a):zbmk‘|m Zb Okm = bi
m=0 m=0
Now
(n-1|ala)=a{n-1|a)=ab,—1
and using
a*n-1)=+/nn) - (n-1/a=n(n|
we have
(n-1lala)=vn{n|a)=/nb,
or o
bp = —=bp-
N
This says that
2
o o @
b = ﬁbo , b2 ﬁbl = ﬁbo
or
a’ﬂ
bn ﬁbo
We thus get the final result
[e<] am
@)=t > )
m=0 V1.

Let us now normalize this state (choose by). We have

(] @) =1 = bl mz@};)rf (ks | m)
s |a|
= bol’ ;O%Ff = lbol’ Z i
=|b0|2€|042

which says that

and thus

(13.156)

(13.157)

(13.158)

(13.159)

(13.160)

(13.161)

(13.162)

(13.163)

(13.164)

(13.165)

(13.166)

(13.167)



Now

(n | @) = probability amplitude that the system in the state

|a) will be found in the state |n)

We have

(n]a)=e 3l (13.168)

which then says that

—|af? 2n -N prn
2 e o™ N

probability amplitude that the system in the state

P,

|} will be found in the state |n)
where we have defined N =|a|?>. We note that
(ala*ala) = [o®|{a]a) =|a®|= N = (a] Nop ) (13.169)

or N = the average value or expectation value of the N,, operator in the state
|e). This type of probability distribution is called a Poisson distribution, i.e., the
state |a) has the number states or energy eigenstates distributed in a Poisson
manner.

Since the states |n) are energy eigenstates, we know their time dependence, i.e.,

In,t)=e Gt

n) (13.170)

Therefore, we have for the time dependence of the state |a)

) m ) m
|a,t) = 67%|0‘|2 Z @ |m,t) = 67%|O‘|2 Z o -4

—€
m=0 m! m=0 V m!

This simple operation clearly indicates the fundamental importance of the en-
ergy eigenstates when used as a basis set.

E

A m) (13.171)

If we are able to expand an arbitrary vector
representing some physical system in the energy

basis, then we immediately know the time dependence
of that state vector and hence we know the time
dependence of all the probabilities associated

with the state vector and the system.

Now let us try to understand the physics contained in the |«) state vector. In a
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given energy eigenstate the expectation value of the position operator is given

by
h P
(n,t[&[n,t) = (n.t[(a+a")n,t)
2mwyg

h £ .
=\ g (nle @ at e n)
mwo

h oAt
=\/2mw0<nl(a+a ) |n)
h
=\/2mwO (nl (Vi -1)+ Vit in+1)) -

i.e., it is equal to zero and is a constant.

On the other hand, in the state |a) we find

Zmebke e (m| (a+a")|k) (13.172)

(o, t| &, t) =

Now

(ml(a+a*) [k = (m] (VE[k=1) + VE+T]k+ 1))
= kb 1 + VE + 16y a1 (13.173)

Using this result we have

(E sy =Fi) )
(a,t| & o t) = \/ (Zbk bpVEel +Zbk+1bk\/k+1e b )
\/ ( bi_ bV ke 0t + Zbk+1bk\/k+1e’”°t)
k=0
\/ (Z by brs1 Ve 0 + Z bk+lbk¢mewot)

\/7 i *k k+1 \/E it i a*k+1ak ] ot
et N ————Vk+ 1™
mwo  \ 2o \/(k + 1)1k! =0 \/(k+1)k!

1
b y 2 ae—zwot +a*€zwot) (13.174)

>

[\)

3

&
S
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Now using « = |a]e’? we get

(v, t| & |, t) = \/7b22| |Z| Real(e“j’ oty

= 2xq || cos(wot — qb)(b% Z %)
k

=2xq|alcos(wot — ) , o= (13.175)

2mwyg

The expectation value in the state |a) behaves like that of a classical oscillator.

Before proceeding with the discussion, we will repeat the derivation using an
alternate but very powerful technique.

Using the Translation Operator

In general, a displaced state |\) is given in terms of the displacement operator
(in one dimension) by

IA) = e 77 |0) (13.176)

For the harmonic oscillator system

1 h
p=-\/ G -a") (13.177)
1 2
If we choose |0) to be the ground state of the oscillator, then we have for the
corresponding displaced ground-state

IA) = eV 5 (@707 o) (13.178)
By Glauber’s theorem
e(A+B) _ gABe3[AB] (13.179)
we have
VIR (@ -0\ _ EREN ~/FR AN 3 B [0t a]N
= VIR A A VB AN RN (13.180)
and thus
IA) = VB AT AV ER A =3 A ) (13.181)
Now

~VEEA ) (f+(— @Aa)%(— m“’Aa)2+ ..... )|0):|0)



using @|0) = 0. Similarly, using (a*)™|0) = v/n!|n) we have

VEEAA ) (f+( %Aeﬁ) +

s VBN (13.182)

or
e oo MA n
DR (j%) In) (13.183)
n=0 .
Thus,
[A) = Z by |n) (13.184)
n=0
where
e >NE N  nmw
by, = T 2C EAQ (13.185)
or

P, = probability of finding the system in the state |n)

—NNn
- (13.186)
n!

which is a Poisson distribution. Thus, we obtain the coherent states once again.

Let us now return to the original discussion. In the state |o) we have

ala) = ala) - {ala* = a” (af (13.187)
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so that

(E) = {al H|a) = hw (o] (N +1/2)) |a) = hw (|a* +1/2)) (13.188)

\/2:;} (a] 6+ |a) = \/ ~(a+a) (13.189)
\/ a| a-a)la) —Z\/ ( (13.190)

(A)? :i<a|(a+a*> o) - ()’

2mw
h N2 h 2
—m[(a+a) +1]—%(a+a)
LU N (13.191)
2mw 2mw
mhw
(Ap)* = === {al @-a")?|o) - (p)”
mhw . mhw
= [(a-an)? - 1] T (0 - )
mg“ ~ Ap= mThw (13.192)

Therefore, the Heisenberg inequality becomes an equality in this case
h
AzAp = B (13.193)

independent of the value of a.

We can find the wave functions corresponding to |a) using the earlier method.
We have in the position representation:

(¥]ala) = (X 0) = = (X| (£ +P) o
:%X(X|a)+%( %)(Xm) (13.194)
\/_(X+a)(X|a):a(X|a)
S (X |a) = AeKaVD 2 _ oy (x) (13.195)
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and in the momentum representation:

(P[(X +iP)|a)

ila) = L
(Plaja) = a(P|a)= 7
1

0

- 5ip(Pla)+ %P(p | o) (13.196)
\/_(P+a)(P|a):a(P|a)
S (P|a) = AleBrievD?2 _ 4 (D) (13.197)

Suppose that at time ¢ = 0, the oscillator is in a quasi-classical state [1(0)) = |ao)
with ag = pe*¥ where p is a real positive number. Then at a later time ¢

() = Jao,£) = e Haol” S ’}w )

n=0

— ¢ 3laof i ag e—zE”t|n>

n=0 VT n!
_ e—%|a0|26—iwt/ i ag e—mwt |n>

= T2 o (1)) (13.198)
where a(t) = ape ™ = pe~(wt=#)
Finally, we have
h 2 2k iwot * _iwot
(o, t| &, t) = bz ||(e°+ae°)
2mwg
h
ol - 0B 28 w5
2h
=xocos(wot — @) , xo=p\] —— (13.199)
mwo
and
(o, t| Pla, t) = —posin(wot — @) ,  po = pV2mhw (13.200)
In addition, we have (for p > 1)
A 1 A 1
S, 2Po (13.201)
To  2p po  2p

This says that the relative uncertainties in the position and momentum of the
oscillator are quite accurately defined at any time. Hence the name quasi-
classical state.

Let us look at some numbers. We consider a pendulum of length 1 meter and of
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mass 1 gram and assume that the state of this pendulum can be described by a
quasi-classical state. At time ¢ = 0 we assume that the pendulum is at (z(0)) =1
micron from its classical equilibrium position, with zero mean velocity.

An appropriate choice is (z(0)) = o, (p(0)) =0 — ¢ = 0. We also have

w=2my= \/g =3.1357" - a(0) = 3.9 x 10° (13.202)

The relative uncertainty in the position is

Am_l_ 1

—=—= =1.3x1071° (13.203)
xo  2p 2a(0)
We note that after 1/4 period of oscillation,
. 27
T = period = — (13.204)
w
- o (T/4) = a(0)e™T/* = a(0)e'™? = i (0) = -3.9i x 10° (13.205)

13.7.2 Construction of a Schrodinger-Cat State

Suppose that during the interval [0,7] we add to the harmonic potential, the
coupling (interaction)

W =hg(a*a)® = hgN? (13.206)
We will assume that g > w,wT <« 1. Under these conditions, we can make the

approximation that, during the interval [0,T], the Hamiltonian of the system
is simply W. Assume that at time ¢ = 0, the system is in a quasi-classical state

[9(0)) = le).

The eigenvectors of W are {|n)} with W |n) = hgn?|n). This implies that for
[¥(0)) = |a)

(1)) = e 21l i O i’ |y (13.207)
n=0 n!

Some special cases will be of interest later.

_ o3lal? § O ivmn? “Hlal ATy

|¢(T 27’(’/9) =€ 7«;) TL' |n € T;)\/m -

_ _ —%|a\2 = ain —imn? % > a n
(T =) = AP 52 Ot ) <l 32 S 1y ) = o)
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Q
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~
II
I
(S
£}

(T =

_Lia? o ot 1 ) "
— o3l Zﬁg[l‘“(l”)( 1)"]In)
n=0 .
| [ n 1 .
= 3 e [ 1) )
n=0 .
1

=— [e_”/4 o) + e/ |-a)] (13.208)

Now, suppose that « is pure imaginary, that is, a = ip. In this case, in the state
|}, the oscillator has a zero mean position and a positive velocity.

\/ (a+a) 0
:i\/%(a*—a) =V 2mhwp

Similarly, in the state |-«), the oscillator also has a zero mean position, but a
negative velocity.

If |a > 1, the states |a) and |-«) are macroscopically different. The state
(14.208) is a quantum superposition of such states. It therefore constitutes a
(harmless) version of Schrodinger’s cat, where we represent dead and alive cats
by simple vectors in Hilbert space.

13.7.3 Quantum Superposition Versus Statistical Mixture

We now consider the properties of the state (14.208) in a macroscopic situation
|| > 1. We will choose « = ip pure imaginary and we set pg = \/2mhwp.

The probability distributions for position and momentum are given by

Pr(X) o< e ™4 (X | a) + €™ (X | —a)|
o ‘e—ifr/éle—(X—ipﬁ)z/Z " eiTr/4e—(X+ip\/§)2/2‘2

o X" cos (\/_Xp——) (13.209)

. . 2
Pr(P) o< |e_”r/4 (P|a)+e™* (P —al)
o ‘e—iﬂ/4e—(P—p\/§)2/2 +ei7r/4e—(P+p\/§)2/2|2
n e (BmpV2D)? o (PrpV/2)? (13.210)

where in the last expression we have used the fact that, for p > 1, the two
Gaussians centered at pv/2 and —pv/2 have a negligible overlap.
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These probability distributions are plotted in Figure 13.10 below for « = 5i
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Figure 13.10: X Probability Distribution
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Figure 13.11: P Probability Distribution

Suppose that a physicist (Alice) prepares N independent systems all in the state
(13.208) and measures the momentum of each of these systems. Suppose the
measuring apparatus has a resolution dp such that:

Vmhw << 0p << po (13.211)

For N > 1, the results of these measurements is that Alice (plotting a his-
togram) will find two peaks, each of which contains roughly half of the events,
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centered respectively at pp and —pg (resembling Figure 13.11).

The state (13.208) represents the quantum superposition of two states which
are macroscopically different, and therefore leads to the paradoxical situations
mentioned earlier.

Another physicist (Bob) claims that the measurements done by Alice have not
been performed on N quantum systems in the state (14.208), but that Alice is
actually dealing with a nonparadoxical statistical mizture, that is, half of the N
systems are in the state |o) and the other half in the state |-«).

Assuming that this is true, the statistical mixture of Bob leads (after N mo-
mentum measurements) to the same momentum distribution as that measured
by Alice: the N/2 oscillators in the state |«) all lead to a mean momentum pg
and the N/2 oscillators in the state |-a) all lead to a mean momentum —pg.
Up to this point, there is therefore no difference and no paradoxical behavior
related to the quantum superposition (13.208).

In order to settle the matter, Alice now measures the position of each of the
N independent systems, all prepared in the state (14.208). Assuming that the
resolution dx of the measuring apparatus is such that

1 [h 11
6z << —\] — 56X << — = (13.212)
lof V- omw ol p

Alice has sufficient resolution to observe the oscillations of the function
cos? (\/ixp— %) (13.213)

in the distribution Pr(X). The shape of the distribution for  will therefore
reproduce the probability law for X as drawn in Figure 14.10 above, that is, a
modulation of period

[hﬂQ/(Qma2w)]1/2 (13.214)
with a Gaussian envelope.
We continue with the assumption that Bob is dealing with a statistical mixture.

If Bob performs a position measurement on the N/2 systems in the state |a),
he will find a Gaussian distribution corresponding to the probability law

Pr(X) o« [(X | a)[* o e (13.215)

He will find the same distribution for N/2 systems in the state |-«). The sum
of his results will be a Gaussian distribution, which is quite different(see Figure
14.11) from the result expected by Alice.

The position measurement should, in principle, allow one to discriminate be-
tween the quantum superposition and the statistical mixture.
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In our earlier discussion of numbers for a pendulum we found that a = 3.9 x 10°.
Therefore, the resolution dz which is necessary in order to tell the difference be-
tween a set of N systems in a quantum superposition (14.208), and a statistical
mixture consisting of N/2 systems in the state |a) and N/2 systems in the state
|-) is given by

1 h _96

0x << —\ [ — »5x107"m (13.216)

la| V mw

Clearly, it is impossible to attain such a resolution in practice!

13.7.4 The Fragility of a Quantum Superposition

In a realistic physical situation, one must take into account the coupling of the
oscillator with its environment, in order to estimate how long one can discrimi-
nate between the quantum superposition (13.208), that is, the Schrodinger cat
which is alive and dead, and a simple statistical mixture, that is, a set of cats
(systems), half of which are alive, the other half beginning dead; each cat being
either alive or dead.

If the oscillator is initially in the quasi-classical state |ag) and if the environ-
ment is in a state |£.(0)), the wave function of the total system is the product
of the individual wave functions, and the state vector of the total system can
be written as the (tensor) product of the state vectors of the two subsystems:

|©(0)) = |ao) Ixe(0)) (13.217)

The coupling is responsible for the damping of the oscillator’s amplitude.

At a later time ¢, the state vector of the total system becomes

|@()) = |ar) [xe () (13.218)

where a1 = a(t)e™t. The number a(t) corresponds to the quasi-classical state

one would find in the absence of damping (evaluated earlier as a(t) = age™“?)
and «y is a real positive number.
From earlier

B(t) = ho (Ja(t)* +1/2)) = hw (Jao[* 2" + 1/2)) (13.219)

The energy decreases with time. After a time much longer than 1/v, the os-
cillator is in its ground state. This dissipation model corresponds to a zero
temperature environment. The mean energy acquired by the environment is

E(0) - E(t) = hwlao|® (1 - ™) » 2hw|agl vt , 2yt<<1 (13.220)

For initial states of the Schrodinger cat type for the oscillator, the state vector
of the total system, at ¢t =0,
1

[©(0)) = 7 (7 lao) + €™ [~a0)) [xe (0)) (13.221)
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and, at a later time t,
1
V2
still with oy = a(t)e’”t. We assume that t is chosen such that «; is pure
Xé”(t)) and
environment that are a priori different (but not orthogonal).

(1)) (e an) @) + € an) X (1)) (13.222)

imaginary, |a1| > 1, and X£_>(t)) are two normalized states of the

The probability distribution of the oscillator’s position, measured independently
of the state of the environment, is then

Pr(z) = Ll o) + 2 [ ] -ou)

+ Real (i{z | a1)" (z | —a1) (XéJ’)(t) | Xg_)(t))) (13.223)
Let n = (X§+)(t) | Xg_)(t)>. We then have 0 <7 <1, n real.

This says that the probability distribution of the position keeps its Gaussian
envelope, but the contrast of the oscillations (cross term) is reduced by a factor

n.

The probability distribution for the momentum is given by

Pr(p) = 3l an)f+ 5 o] —an)? = nReal (i(p | -aa)” (pl 1) (13224)

Since the overlap of the two Gaussians (p|a;) and (p|—a1) is negligible for
|or| > 1, the crossed term, which is proportional to 7 does not contribute
significantly. We recover two peaks centered at +|ap|v2mhw. The distinction
between a quantum superposition and a statistical mixture can be made by
position measurements. The quantum superposition leads to a modulation of
spatial period

[hn?/(2ma?w)]"? (13.225)

with a Gaussian envelope, whereas only the Gaussian is observed for a statistical
mixture.

In order to see this modulation, the parameter n must not be too small, say
n > 1/10.

In a very simple model, the environment is represented by a second oscillator, of
the same mass and frequency as the first one. We will assume that this second
oscillator is initially in its ground state |£.(0)) = |0). If the coupling between
the two oscillators is quadratic, we can take for granted that

1. the states Xgi)(t)> =[£8)

X((ai)(t)> are quasi-classical:
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2. and that, for short times (vt < 1): |B]? = 2yt|ag|?
A simple calculation then gives
(8] -B) = e D w — o 1B o181 _ 218 (13.226)
- n!

From earlier considerations we must have
n={(8]-B)=e2" >1/10 > |8 <1 (13.227)
For times shorter than 1/+, the energy of the first oscillator is
E(t) = B(0) - 27t |a|” hw (13.228)
The energy of the second oscillator is
E'(t) = hw| (B +1/2) = hw/2 + 2yt |ao| hw (13.229)
The total energy is conserved: the energy transferred during the time ¢ is
AE(t) = 2yt || hw = hw [ (B(2))? (13.230)

In order to distinguish between a quantum superposition and a statistical mix-
ture, we must have AFE < hw. In other words, if a single energy quantum hw is
transferred, it becomes problematic to tell the difference.

If we return to the numerical example of the pendulum we have the following
results: with 1/2y = 1 year = 3 x 107s, the time it takes to reach |3| = 1 is
(27 |ao?) ™! ~ 2 x 107125

Conclusion

Even for a system as well protected from the environment as we have assumed
for the pendulum, the quantum superpositions of macroscopic states are unob-
servable. After a very short time, all measurements one can make on a system
initially prepared in such a state coincide with those made on a statistical mix-
ture. It is therefore not possible, at present, to observe the effects related to the
paradoxical character of a macroscopic quantum superposition. However, it is
quite possible to observe mesoscopic kittens, for systems which have a limited
number of degrees of freedom and are well isolated.

13.8 The Quantum Eraser

We now investigate a quantum process where the superposition of two probabil-
ity amplitudes leads to an interference phenomenon. The two amplitudes will
be associated with two quantum paths as in the double slit experiment. In the
investigation we will show that the interference disappears if an intermediate
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measurement gives information about which path has actually been followed.
Then we will show how the interference can actually reappear if the path infor-
mation is erased by a quantum device.

We consider a beam of neutrons, which are particles with charge zero and spin
1/2, propagating along the x—axis with velocity v. We will treat the motion of
the neutrons classically as uniform linear motion. Only the evolution of their
spin states will be treated quantum mechanically.

13.8.1 Magnetic Resonance

The eigenstates of the z component of the neutron spin are denoted |n:+). A
constant uniform magnetic field By = By, is applied along the z—axis. The
magnetic moment of the neutron is denoted by i = vnS’n where v, is the gyro-
magnetic ratio and S, is the spin operator of the neutron.

The magnetic energy levels of the neutron in the presence of the field By are
E, =Fy,hBy/2 = +hw /2 where wy = —v, By.

The neutrons cross a cavity of length L between times to and t1 = tg +ﬁL/v.
Inside the cavity, in addition to the constant field By, a rotating field B (¢)

is applied. The field B (t) lies in the (z,%) plane and has a constant angular
frequency w:

By (t) = By (coswtily, +sinwtil,) (13.231)

Let [1),(t)) = a4 |n : +)+a_|n : =) be the neutron spin state at time ¢ and consider
a neutron entering the cavity at time tq.

The Hamiltonian for the system is

H =i, (Bo+ Bl(t)) = Y0 Sy - (BO + By (1))
=, (BOS'Z + B3 (coswté’w + Sinth’y)) (13.232)

which gives in the |n: +) basis

2\ wie —Wo

A —twt
H:( wo W€ ) (13.233)

Therefore, the evolution equations are

A —twt
it =5 ( o 20 Yo )#a ()

:m% (1)) :mdo‘+( é )+md°“( ? ) (13.234)

dt dt
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or

d h h ;
ih 5; = §woa+ + Ewle_ma_ (13.235)
zh% = gwle“"tou, gwoa_ (13.236)
or
d 1 1 :
i c(l);; = Swoar + iwle’“"ta, (13.237)
doa_ 1 ;
i% = iwle“"toq - iwoa, (13.238)
Defining .
o (t) = B (t)eTwtt0)/2 (13.239)
we get
d - 4
i i* - w°2 Y, + %e-mw, (13.240)
dB. _ ,
i% it 2“0 B+ %emom (13.241)

which has constant coefficients.

We assume that near resonance, |w — wg| << wq, and that terms proportional to
w —wp may be neglected in these equations. The equations become

A wy —iwto
= —e 03 13.242
i =B (13.242)
d/B_ OJ]_ iwto
—=— 13.24
i 5 € B+ (13.243)
whose solution is
B.(t) = B.(ty) cos @ — iBx (fo)e™ ™ sin @ (13.244)
Defining
_ wl(tl —to) ’ _ w(t1 - to) : 5= w(t1 +t0) (13245)
2 2 2
we get
oy (t1) = e B, () = X [a+(t0) cos p —ia_(tg)e ! sin cp] (13.246)
a_(t) = eXB_(t1) = eX [a_(ty) cos  —ia (tg)e™ ™ sin p | (13.247)
a(ty) = [a+ (to)e ™ cos ¢ — ia_(tg)e ™ sin np] (13.248)
a_(ty) = [a_ (to)e™ cos ¢ — iy (tg)e™ sin gp] (13.249)
Oé+(t1) _ Oé+(t0)
(2469 vt 20 w0
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where

e Xcosp —ie™

Ulto,t1) = ( _iei e ) (13.251)

sinp  e"Xcosyp

is the time evolution matrix.

13.8.2 Ramsey Fringes

The neutrons are initially in the spin state |n:-). They successively cross
two identical cavities of the type described above. This is called a Ramsey
configuration and it is shown in Figure 13.12 below.

Za

P,

N
L

B, wt B, wt

A
\ |

Figure 13.12: Ramsey Configuration

The object A is a detecting atom described later. The same oscillating field
By (t), is applied in both cavities. The magnitude B; of this field is applied so as
to satisfy the condition ¢ = /4. The constant field By is applied throughout the
entire experimental setup. At the end of the setup, one measures the number of
outgoing neutrons which have flipped their spin and are in the final state |n : +).
This is done for several values of w near w = wy.

The initial state condition corresponds to
Ot+(t0) =0 s Oé_(to) =1 (13252)

At time t; the state is

oy (T1 e IX  _jemi0 et
( o:g;; ): \}5( il eix )( (1) ): \}5( ix ) (13.253)

1

or

[W(t)) = —= (~ie ™ [n: +) + eX|n: -)) (13.254)

S

2
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This says that

. 1 .
as(t) = ——=e™ o () = e (13.255)

V2

and the probability of finding it in the state |n: +) is

S

P, = (13.256)

1
2
The same neutron enters the second cavity at time t( =t; + 7T, with T' = D/v,

where D is the distance between the two cavities. Between the two cavities the
spin precesses freely about By.

We then have

! —iX a _je—10 g%
(@ )-(50 2)(26)-S( ) s

where T
K= “’% (13.258)

so that the spin state at t{, is
a (t, ) 1 _ie—iée—ion/Q
( ozi(tg) ) = 7 ( X giwoT (13.259)

Now let ¢/ be the time when the neutron leaves the second cavity with ] -t =
t1 —tg=D/v. Now ¢ = w(t] +t()/2 is given by

to=t1+T , t1=2t1—tg+T
5, = w(2t1 ) +T+t1 +T)/2 = W(3t1 + 2T—t0)/2
so that (for the second cavity)

et —id

X’ I I ’
U =U(th,t) = ( e e S ) (13.260)
—ie’ sinp e'X cosp
where
<p':<p:w1(t1—t0)/2 5 X,:X:wl(tl—to)/Q (13261)

so only the parameter § changes into .

Thus the probability amplitude for detecting the neutron in state + after the
second cavity is obtained by

1. Applying U’ to the vector

o (t/) 1 _ie—i5e—ion/2
( o ): ﬁ( T (13.262)
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2. calculating the scalar product of the result with the + state.

We have

a.(t)) = (_ie—iée—ix/Qe—ionﬂ _ Z-efi§’eix/2€ion/2) (13.263)

[N

Since
6+X=wt1 5 5,—X=%(3t1+2T—t0—t1+t0):w(t1+T)
we get
1 . .
()é+(t,1) _ ie—zw(tl-%—T)/Q (e—z(wg—w)T/Q i ez(wo—w)T/Q)

_ —w)T
_ it T2 o M (13.264)

Therefore, the probability that the neutron spin has flipped in the two-cavity
system is

5 (wo—w)T

2

With the approximation |w —wp| < w1, the probability for a spin flip in a single
cavity is independent of w and equal to 1/2. In contrast, the two-cavity result
exhibits strong modulation of the spin flip probability between 1 (w = wy) and
0 ((wo —w)T = 7). This modulation results from an interference process of the
two quantum paths corresponding to:

P, =a, ()] = cos (13.265)

1. a spin flip in 1% cavity and no flip in 2"¢ cavity
2. mno flip in 1%¢ cavity and spin flip in 2"? cavity

In practice, the velocities of the neutrons have some dispersion around the mean
value v. This results in a dispersion in the time 7" to get from one cavity to the
other. A typical experimental result giving the intensity of the outgoing beam
in the + state as a function of the frequency f = w/27 of the rotating field By is
shown in Figure 13.13 below.
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Figure 13.13: Experimental Results

Since cos? /2 = (1 + cos p)/2, the averaged probability distribution is

< 2 (w— wO)T> <%+lcos((w UJO)T)>

1 17
-5+3 f P(T) cos((w - wo)T)dT (13.266)
For
P(T) = —_ e (T-10)/27 (13.267)
2T
we get
—w)T\ 1 1
(cos2 (w;O)> =5+ 56*(“’*“’0)272/2 cos((w - wp)Tp) (13.268)

This form agrees with the observed variation with frequency in Figure 14.13
of the experimental signal. The central maximum which is located at w/27 =
748.8 kHz corresponds to w = wg . For that value a constructive interference
appears whatever the neutron velocity. The lateral maxima and minima are less
peaked, however, since the position of the lateral peak is velocity dependent.
The first two lateral maxima correspond to (w — wp)T = £27. Their amplitude
is reduced compared to the central peak by the exponential factor.

This experiment can be compared to a Young’s double slit interference experi-
ment with polychromatic light.

Suppose that we insert between the two cavities a device which can measure the
z component of the neutron spin (how this works will be discussed shortly). We
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define P, as the probability of detecting a neutron in the + state between the
two cavities and in the + state when it leaves the second cavity. The probability
P, is the product of two probabilities, namely, the probability of finding the
neutron in the state + when leaving the first cavity (p = 1/2) and, knowing that
it is in the + state of finding it in the + state when it leaves the second cavity
(p=1/2). This gives P., = 1/4. Similarly, P_, = 1/4. The sum P,, + P_, = 1/2
does not display any interference, since one has measured in which cavity the
neutron spin has flipped. This is very similar to the electron double slit inter-
ference experiment if one measures through which slit the electron passes.

13.8.3 Detection of the Neutron Spin State

In order to measure the spin of the neutron, one lets it interact during a time
7 with a spin 1/2 atom at rest. The atom’s spin operator is S,. Let |a: )
be the two eigenstates of the observable gaz. After the interaction between
the neutron and the atom, one measures the spin of the atom. Under certain
conditions (which we will derive shortly) one can deduce the spin state of the
neutron after the measurement.

Let |a: +x) be the eigenstates of Sy, and |a: +y) those of Say. We can then
write

la:+x) = %(|a:+z)i|a:—z)) (13.269)

la: ay) - % (la:+2) xila:-2)) (13.270)

and

|a:iy):%((1ii)|a:+x)+(l¢i)|a:—x)) (13.271)

We assume that the neutron-atom interaction does not affect the neutron’s
trajectory. We represent the interaction between the neutron and the atom by
a very simple model. This interaction is assumed to last a finite time 7 during
which the neutron-atom interaction Hamiltonian has the form

v-25.08, (13.272)

where A is a constant. We neglect the action of any external field, including By
during this time, i.e., we assume the atom-neutron interaction dominates for a
short period of time.

The operators Snz and Saw commute since they act on two different Hilbert
spaces. Therefore,

[SnzV]=0 (13.273)



The common eigenvectors of S,. and V and the corresponding eigenvalues are
n:+)®la:zx) S, =+h/2 V =2Ah/2 (13.274)
n:-)®la:+x) Sn.=-h/2 V=FAh/2 (13.275)

The operators S,. and V form a complete set of commuting operators as far as
the spin variables are concerned.

From now on we assume that A7 = w/2. Suppose that the initial state of the
system is
[W(0))=In:+)®la:+y) (13.276)

Expanding in terms of energy eigenstates, we get
[1(0)) =|n:+)®la:+y)
= %|n:+)((1+i)|a:+a:)+(1—i)|a;_x)) (13.277)
and
lb(t)) = % )@ ((1+i)|a:+a)e ™2 4 (1-i) |a: —z) e 41?)
so that
(7)) = % )@ ((L+i)|a:+a)e ™2+ (1-0)|a: —z) e 47/?)

which for AT = /2 gives

lb(7)) = % )@ ((1+i)|a:+a)e ™+ (1-i)|a: —z) ™)
1

:;|n:+)®((l+i)|a:+x)\}5(1—2')+(1—i)|a:—:v)2(1+i))

L In:+)® (Ja:+z)+|a:-z)) =|n:+)®|a: +) (13.278)

V2
Similarly, if [¢(0)) = |n: =) ® |a: —y) then [¢p(T)) =|n: =) ®|a: -).

Physically, this means that the neutron’s spin state does not change since it
is an eigenstate of V', while the atom’s spin precesses around the r—axis with
angular frequency A. At time 7 = 7/2A it lies along the z—axis.

We now suppose that the initial spin state is
[9(0)) = (o n: +) +a_fn: =) ®la: +y) (13.279)

After the neutron-atom interaction described above, one measures the z—component

Sz of the atom’s spin. The state after the interaction is(using linearity)

[W(1)) = asln:+)@la:+) +a-|n:-)la:-) (13.280)
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The measurement of the z-component of the atoms spin gives +h/2 with proba-
bility |a,|? and state |n: +) ®|a : +) after the measurement or —A/2 with proba-
bility |a_|?> and state |n: —) ® |a : —) after the measurement. In both cases, after
measuring the z—component of the atom’s spin, the neutron spin state is known
- it is the same as that of the measured atom. It is not necessary to let the
neutron interact with another measuring apparatus in order to know the value
of S,.

13.8.4 The Actual Quantum Eraser

We have seen above that if one measures the spin state of the atom between
the two cavities, the interference signal disappears. We now want to show that
it is possible to recover an interference if the information left by neutron on the
detecting atom is erased by an appropriate measurement.

A neutron, initially in the spin state —, is sent into the two-cavity system.
Immediately after the first cavity, there is a detecting atom of the type described
above, prepared in the spin state +y. By assumption, the spin state of the atom
evolves only during the time interval 7 when it interacts with the neutron.

The successive states for the neutron are:

[(t1)) = |after 1st cavity and before atom interaction)

1 . )
=— (e +)®la:+y) +eX|n:-) @a: +y))

V2

[tp(t1 + 7)) = |just after atom interaction)

—i—ie_ién:-i— a:++eixn!— a:—
—\/5( In:+)®la:+) n:-)®la:-))

[v(t,)) = |entering 2nd cavity)

- L (—ie” T/ s py @ la s +) + e OO T | Yy @a: )

V2
[(t])) = |after 2nd cavity)
_Z-e—i(6+wUT/2) (e—ix |n . +> _ 2-6_1'5’ |n . _>) ® |CL . +)

1
"2 ( £l 0TI (e [ 4) + € fn:—)) @ fa: -) )

The probability of finding the neutron in the state + at time ¢} (after the 2nd
cavity) is the sum of the probabilities for finding

1. the neutron in state + and the atom in state +, i.e., the square modulus
of the coefficient of |n: +) ®|a: +), which = 1/4 in this case)

2. the neutron in state + and the atom in state —, which = 1/4 in this case
also).
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We therefore get P, = 1/4+1/4 = 1/2 - there is no interference since the quantum
path leading in the end to a spin flip of the neutron can be determined from the
state of the atom.

At time ¢7, Bob measures the z—component of the neutron spin and Alice mea-
sures the y—component of the atom’s spin. Assume that both measurements
give +h/2.

We can write

() 1 —je i (6+woT/2) (e_ix s +) - je~9 [ —)) ® (la:+y)+la:-y))
VT o2 4 i) (—ie‘i‘sl In:+)+eX|n: —)) ® (Ja:+y) —la:-y))
The probability amplitude that Bob finds +h/2 along the z-axis while Alice
finds +A/2 along the y—axis is the coefficient of the term |n: +) ® |a: +y) in the
above state. Equivalently, the probability amplitude is found by projecting the
state onto |n: +) ® |a: +y) and squaring. We get

A ~ . . ’ 2
P (Sn: = +h/2, 80y = +h/2) = é|—¢e*l<5+><+w°T/2> — !0 *on/2>‘

1 —wo)T
~ cos? (w=wo)T

13.281
5 5 ( )

which clearly exhibits a modulation reflecting an interference phenomenon. Sim-
ilarly, one finds that
1 —wo)T
in2 (w—wo)

P (8n. = +h/2,Say = —h/2) = 5 sin® === (13.282)

which is also modulated.

Let us now discuss the following three statements:

1. When Alice performs a measurement on the atom, Bob sees at once an
interference appear in the signal he is measuring on the neutron.

2. Knowing the result obtained by Alice on each event, Bob can select a
subsample of his own events which displays an interference phenomenon.

3. The experiment corresponds to an interference between two quantum
paths for the neutron spin. By restoring the initial state of the atom,
the measurement done by Alice erases the information concerning which
quantum path is followed by the neutron spin and thus allows interference
to reappear.

Statement (1) is clearly wrong. As seen earlier, if atom A is present, Bob no
longer sees oscillations (in w — wq) of the probability for detecting the neutron
in the state +. This probability is equal to 1/2 whatever Alice does. Notice
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that if the statement were correct, this would imply instantaneous transmission
of information from Alice to Bob. By seeing interference reappear, Bob would
know immediately that Alice is performing an experiment, even though she may
be far away.

Statement (2) is correct. If Alice and Bob put together all their results, and if
they select the subsample of events for which Alice finds +h/2, then the number
of events for which Bob also finds +h/2 varies like

—wo)T
cos? % (13.283)
Thus, they recover interference for this subset of events. In the complementary

set where Alice found —A/2, the number of Bob’s results giving +#/2 varies like

- T
in2 (w—wo)

13.284
: (13.284)

s
This search for correlation between events occurring in different detectors is a
common procedure in particle physics for example.

Statement (3), although less precise but more picturesque than than statement
(2), is nevertheless acceptable. The

cos? % (13.285)
signal found earlier can be interpreted as the interference of the amplitudes
corresponding to two quantum paths for the neutron spin which is initially in
the state —; either its spin flips in the 1% cavity, or it flips in the 2"? cavity. If
there exists a possibility to determine which quantum path is followed by the
system, interference cannot appear. It is necessary to erase this information,
which is carried by the atom, in order to observe some interference. After Alice
has measured the atom’s spin along the y—axis, she has, in some sense restored
the initial state of the system, and this enables Bob to see some interference. It is
questionable to say that information has been erased - one may feel that, on the
contrary, extra information has been acquired. Notice that the statement does
not specify in which physical quantity the interference reappears. Notice also
that the order of the measurements made by Alice and Bob has no importance,
contrary to what this third statement seems to imply.
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Chapter 14

Relativistic Wave Equations

Electromagnetic Radiation in Matter

14.1 Spin 0 particles: Klein-Gordon Equation

A classical nonrelativistic free particle has an energy-momentum relation F =
p?/2m. Under a Galilean transformation to a new coordinate system traveling
with —9 with respect to the first system, we have

Fl=rF+ot , t'=t (14.1)
which gives
_, dr’ dr D
= =—+U=0U+7
dt’  dt
m' =m
B’ =p+mv
We then have 5 d
pr= P PR (14.2)
dat’ dt

which implies the invariance of the form E = p?/2m, i.e.,

=~ /2

B, 1
E,:fFl'd?,:ﬁfﬁ,‘dﬁ,:p
m 2m/
. 1 52
E:fF~dF=—fﬁ-d[5=p—
m 2m

=12 = )2
1
E,:;o ,:(pgimv):mﬁ.mimvz (14.3)
m m

Thus, the final Galilean transformation relations are

and

>/

1
E’=E+[5~T1+§mv2 . P =p+mb (14.4)
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which, as shown, leaves the quadratic form F = p2/2m invariant, i.e., if E =
72/2m, then E' = $52/2m’ and we derive the transformation rules for E and p
from that condition.

The non-relativistic Schrodinger equation for the free particle then follows from
the standard identifications

0 h
E - ih— p—> —
e 0 Py
P2
Hy=Ey , H=-—
2m
which gives
., Oy h? _,
h—=—-— 14.5
! ot 2mv v ( )

It is clear from the form of the Schrodinger equation for a free particle that the
equation cannot be invariant under Lorentz transformation (Lorentz covariant),
i.e., the time derivative is first order and the space derivatives are second order.

14.1.1 How to find correct form of relativistic wave equa-
tion?

Before proceeding let us recall some results from special relativity. Components
of spacetime four-vectors will be labeled by Greek indices and the components
of spatial three-vectors will be labeled by Latin indices and we will use Einstein
summation convention.

Starting from 2#(s) = (ct,#) = (2°, %), the contravariant 4-vector representation
of the worldline as a function of the proper time s, we first obtain the 4-velocity,
ie.,

) dzt(s)  dx*(s) dz° dz
o B N =
€ (S) - ds - %dl’o - dl‘o’ dZCO =7 (17U/C) (146)
where ) iz .
Z Z
YE Y 5 ’17:72070 (147)
/1 _ %; dt dx
The 4-momentum vector is then given by
P = mei(s) = ym (e, 8) = (Bfe,) (14.8)
where we have used the fact that
o FE
p-=—=7ymc , m= rest mass (14.9)
c

This says that the energy E and momentum p transform as the components of a
contravariant 4-vector and we know that the square of any 4-vector is invariant.
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The metric tensor defined by

1 0 0 0
0 -1 0 0

gw=0o o -1 o (14.10)
00 0 -1

allows the construction of the covariant components(using Einstein summation
convention)

E
= G = (? _p) (14.11)
We can then calculate the invariant square or the invariant scalar product of
the 4-momentum with itself as
o VM_E;Q_*?_ 2.2 14.12
Pub" = guep"V" = —5 — " =mc (14.12)
We therefore have the relativistic energy momentum relation

E= (52 +m2ch)? (14.13)

If we use this expression to construct a new wave equation by operator substi-
tution we would have

0 1/2
zha—lf = (—h2c2V2 + m2c4) / W (14.14)
Although the energy formula is now relativistically correct, the time and space
derivatives still do not appear symmetrically. In fact, a Taylor expansion of
the square root gives infinitely high-order derivatives leading to a very difficult
mathematical equation to deal with.

This fact, in itself, is not a valid reason for rejecting the equation.

There are, however, strong physical reasons for rejecting this equation. The
equation says that the momentum space amplitude

qp,;(t)=fd3re—"ﬁ"‘/h¢(f,t) (14.15)
obeys the equation
5(t
mawgt( ) _ (22 + m2c) % () (14.16)

If we Fourier transform both sides back to position space we get

OV

o [d?’r’K(F—F’)z/J(F’,t) (14.17)
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where

_ B (P 1/2
K(F-7")= [ (27rh)3 P (T=T)/h (p*c® +m?c*) (14.18)

This equation for (7, t) is nonlocal, which means that the value of the integral
at vecr depends on the value of ¥ at the other points vecr’. The function
K(7-7") is large as long as vecr’ is within a distance

h

R

= Compton wavelength (14.19)

from wvecr. As a consequence of the nonlocality, the rate of change in time of
at the spacetime point (#,¢) depends on the values of ¢ at points (7',t) outside
the light cone centered on (7,t).

If we construct a wave packet localized well within a Compton wavelength of
the origin, then the packet will be nonzero an arbitrarily short time later at
points as distant as the Compton wavelength.

Thus, this equation leads to violations of relativistic causality when used to
describe particles localized to within more than a Compton wavelength, which
is unacceptable.

Instead, we will start from an equation involving E?, i.e., we have
2 9\? L2 2 2 4 2 22 2 4
E“y = m@t zp:(pc +mc)1/):(—hcv +mc)w

5 [(mc)? 1 0%
(v _(?) )w'CZaZ‘t (14.20)

which looks like a classical wave equation with an extra term of the form

(mc)2 (14.21)

h
It is called the Klein-Gordon equation. In 4-vector notation it looks like
9,0+ [ zp 0 9,--2L (14.22)
" ’ o Qan '

The equation can be generalized in a relativistically invariant way to include the
coupling of charged particles to the electromagnetic field by the substitutions
(corresponding to minimal coupling we discussed earlier in Chapter 8)
0 0 h h -
ith— > ih— —e® | fV—>fV—§A (14.23)
ot ot i i c

to obtain

c% (ih% e (7, t))zw(m) - ((?v - Zfl(?, t))2 + m262) (i,1)  (14.24)
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The Klein-Gordon equation has several unusual features.

First, it is second-order in time (space and time derivatives are now the same
order). This means we need to specify twice as much initial information (the
function and its derivative) at one time to specify the relativistic solution as
compared to the nonrelativistic solution which only required specification of the
function at one time. .

This will mean that the equation has an extra degree of freedom. We will see
shortly that this extra degree of freedom corresponds to specifying the charge
of the particle and that the Klein-Gordon equation actually describes both a
particle and its antiparticle together. .

Second, since the equation is second order in time, the functions
o = PT-ED/R (14.25)
satisfy the free particle equation with either sign of F, i.e.,
B = (522 + m2ch)"? (14.26)

The Klein-Gordon equation has negative energy solutions for a free particle!
For these solutions when we increase the magnitude of the momentum p, then
the energy of the particle decreases! As we will see later, these negative energy
solutions are real and will correspond to antiparticles, while the positive energy
solutions will be particles.

In nonrelativistic Schrodinger theory we were able to interpret 1)*1 as a positive
probability density that was conserved in time (no sinks or sources of probability
in nonrelativistic Schrodinger theory). Let us see what happens in the case of
the Klein-Gordon equation.

For the Klein-Gordon equation

f Y pd’r (14.27)

changes in time and thus, we cannot interpret ¢*(#,¢)y(7,t) as being the prob-
ability of finding a particle at 7 at time ¢.

We can, however, construct a different conserved density as follows. We write
me\?
v (0,00 + (7) b=0 (14.28)

and

W (8Maﬂ 4 (”;LC)Z) Wt =0 (14.29)
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which give(subtracting)

¥* 0,0 — 0, 0" " =0 (14.30)
O (" 0M1p = p0"p*) =0 (14.31)
Expanding these expressions, we have the continuity equation
op -
— j= 14.32
T +V-9=0 (14.32)
where
R ih (,0Y 51#*)
- == - 14.
p(70) = oo (075 05 (14.33)
/> h‘ * *
31 = - (7YY = 9veT) (14.34)

We have inserted a multiplicative constant so that the current density vector
4(7,t) is identical to the nonrelativistic case. Because this density p(7,t) sat-
isfies a continuity equation, its integral over all space does not change in time.
Clearly, however, it is not necessarily positive. In particular, p < 0 for a negative
energy free particle eigenstate.

This means that we cannot interpret this new p(7) as being the particle (prob-
ability) density at 7 and we cannot interpret j(7*) as a particle current.

The interpretation that will eventually emerge is that for charged particles ep(7)
represents the charge density at 7, which can have either sign and ej(7) repre-
sents the electric current at 7.

14.1.2 Negative Energy States and Antiparticles

How do we interpret the Klein-Gordon equation and its solutions?

Consider a free particle at rest, i.e., p = 0. The wave function for the positive
energy solution is

G(F t) = emime (14.35)
where the energy of a particle at rest is £ = mc?. The density for this state is
p(7,t) = +1.

Now make a Lorentz transformation to a new frame moving with velocity —o
with respect to the particle at rest. The particle now appears to have a velocity
¥ in this new frame. It, therefore, has

momentum = p = ymo and energy = E = ymc? (14.36)

where 1
e —— (14.37)

N
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This result follows because
= Lorentz scalar

= —mc?t in the rest frame

=p-7#' -~ Et’ in the moving frame

Pu® "

(14.38)

The new wave function
w(FI’ tl) _ ei(ﬁ-?’—Et’)/h _ ei(p’-f’—Eﬁt')/h

is the result we expect for a particle of momentum p and energy Ep. If we

calculate the density p for this wave function we get
E-
p(i' ) = —% (14.39)
mc
and the current is
= p_pe
J(F )= = =—p(#',t') =p(F',t") (as expected) (14.40)
m Eﬁ
where L,
=L (14.41)

Ep
We see that p(7,t) transforms like Ej; or as the time component of a 4-vector,
which makes physical sense. Since a unit volume in the rest frame appears
(14.42)

smaller by a factor
/v =+1-v%/c?

when observed from the moving frame, a unit density in the rest frame will
appear as a density
1 Ej
-=—t (14.43)

v mc?

in a frame in which the particle is moving.

What about the negative energy solutions? For a particle at rest we have, in
(14.44)

this case,
¢(F7t) _ eimczt/h
2

where the energy of this particle at rest is £ = -mc

The density for this state is p(7,t) = —1.
It turns out that one way to interpret a state with a negative particle density

is to say that it is a state with a positive density of antiparticles.

We will make the interpretation that a particle at rest with energy E = —mc?
2. As we shall see,

is actually an antiparticle with positive energy E = mc”.
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this interpretation of negative energy states will lead to a consistent theoretical
picture that is confirmed experimentally.

In a Lorentz frame traveling with velocity —¢ with respect to the antiparticle,
the wave function is

w(F I’tl) _ e—i(ﬁ»?'—Et')/h _ eimc2t/h (1445)

where

momentum = p = ym and energy = E = ymc? (14.46)

In this new frame the particle has velocity ¥, momentum p and energy E;. The
wave function, however, describes a particle of energy —Ej5 and momentum —p.

The density in the moving frame is

E-
(1) =-—7% (14.47)
and the current is
5 = 2
JE 1) = Loty = B () (14.48)
m Eﬁ

Thus, an antiparticle moving with velocity ¢ has associated with it a current
moving in the opposite direction, i.e., a flow of antiparticles in one direction is
equivalent to a flow of particles in the opposite direction.

For a charged particle ep(7,t) is the charge density. It is positive for a free
particle with e > 0 and negative for a free antiparticle, which has opposite
charge to the particle.

The quantity ej(7,t) is the electric current of the state ¢. For a particle the
electric current is in the direction of the particle velocity. For the antiparticle
with e < 0, the electric current is opposite to the velocity.

This says that the interpretation of the negative energy solutions as antiparticles
is consistent with the interpretation of the density p as a charge density and j

as an electric current.

Is this interpretation consistent with the way charged particles interact with the
electromagnetic field?

The Klein-Gordon equation with an electromagnetic field present is given by

C% (m% e (7, t))zw(f,t) - ((’:v - 221(77, t))2 + m%Q)w(f,t) (14.49)

1006



Taking the complex conjugate we have

Ciz (ih% + e‘I)(F,t))2 (7, t) = ((:Lv + EA(F, t))2 + m202) P*(7,t)  (14.50)

These equations say that if 1 (7,t) is a solution to the Klein-Gordon equation
with a certain sign of the charge, then ¥*(7,t) is a solution of the Klein-Gordon
equation with the opposite sign of the charge and the same mass.

Thus, the relativistic theory of a spin zero particle predicts the existence of its
antiparticle with the opposite charge and same mass, i.e., the theory contains
solutions for both particles and antiparticles.

Relativistic invariance requires
the existence of antiparticles

The complex conjugate of a negative energy solution is a positive energy solu-
tion with the opposite sign of the charge. The operation of taking the complex
conjugate of the wave function will be called charge conjugation. Charge conju-
gation changes particles into antiparticles and vice versa. If we label quantities
calculated with the complex conjugate wave function by a subscript ¢ , we find

p(f,t) = _pC(ﬁt) ) .;(’F’t) = _jc(th) (14'51)

as expected.

The solutions are normalized by the requirement that the total associated charge
equals +1 unit, i.e.,

fd%p(f,t) -1 —fd?’rpc(F,t) (14.52)

This normalization is conserved in time and invariant under a Lorentz transfor-
mation.

14.2 Physics of the Klein-Gordon Equation

We first transform the Klein-Gordon equation into two equations, each first
order in time.

We define
PO(7,t) = (% + %@(F,t)) (7, 1) (1% - order equation #1) (14.53)

We then have
0

(& N %@@(F,t))w(ﬂﬂ - (% + %ecp(f, t))Qw(F,t) (14.54)
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Now using the Klein-Gordon equation we have

m2ct

h2

(% + Z:@(F,t))Qw(F,t) =c? ((v - ;;Zl(ﬁt)f - )w(m) (14.55)

so we get

(% + %ecI)(F,t))wO(f,t)

) 2 2 4
-2 ((V n ;jg(ﬁt)) _me )¢(F,t) (1“ - order equation #2)
c

h2
(14.56)

These two new first-order equations involve the two functions ¢°(#,t) and

Y(7,t).

Now define the linear combinations

1 ih 1 ih 0]
== — ==|Yp-— 14.57
o=y loeone] L ox=gle- s (14.57)
Substitution then gives the more symmetric equations
1 [h nE
(z’hg—e@)gb: — [—_v—EA] (¢ +x) +mc?o (14.58)
ot 2m L1 c
1 RL
(ihg—eq)) =—-— [EV— EA] (¢ +x) + mcx (14.59)
ot 2m L1 c

Now define a two-component wave function

U 1) = ( ;’ig: 3 ) (14.60)

and three 2 x 2 matrices

0 1 0 - 10
T1=(1 0) s TQZ(Z. OZ) s ’7'32(0 _1) (1461)

The two symmetric equations can then be combined into the single equation

2
ih% = [[ffv_eﬁ] (73+i7-2)+m0273+e<13:|\11 (14.62)
i c

This equation is completely equivalent to the original Klein-Gordon equation
where

2
begrx L W= (6-X) (14.63)

The internal degree of freedom represented by these two components is the
charge of the particle(one component represents the particle and the other the
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antiparticle).

Using the two component equation, we can write the density as
p(F,t) = 6] = [x|* = U rsW (14.64)

where U* = (¢*,x*). A very simple expression. The current density, however,
becomes less transparent

- h .
](’F,t) = sz [\I/+T3(7'3 + ZTQ)V\II - (V\IJ+)T3(7'3 + ZTQ)\I’]
A
- L\P+T3(T3+i72)\11 (1465)
mc

The normalization condition becomes
f Br W0 = £1 (14.66)
The scalar product between two such wave functions ¥ and |Psi’ is defined by
(0w = f Br U (7, 6)3 0 (7,1) (14.67)
Finally, the wave equation is of the form

ih— = HU 14.68
ih 5 ( )

where the Hamiltonian is

R h RE
H= [fv - EA] (13 +im2) + mc*rs + e® (14.69)
i ¢

Since (73 +i12)" = 73 — iT2, we find that H* + H, which seems to indicate that
H is not Hermitian. It is Hermitian, however, when we use the proper scalar
product definition of hermiticity, i.e.,

(Wl (A ")) = (v (f[w)] (14.70)

This relation requires that

raH 13 = H (14.71)

All required properties of Hermitian operators, i.e., real eigenvalues and so on,
follow from the scalar product definition so that is all that is actually required.

Under the charge conjugation operation

i: ;g } 5 U, = U* (14.72)
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which is the form of the charge conjugation operation in two-component lan-

guage.

We can now see the physical meaning of charge conjugation. Using

. (h_\" R _
p :(*.V) =—=V=-p
1 1

and 73 + iTo = real matrix, we find that
A~ € - 2
H*(e) = [—ﬁ - fA] (13 +i70) + mc*13 + @
c
We then have

e

Tlfl*(e)ﬁ:—[ ]2(T3+ZT2) mc?rs + e® = —H(—¢)

ﬁ

This means that, if U solves the equation

ih%—f = H(e)V
we have .
_iha;[; = H*(e)¥* = -1y H(-e)T, ¥
Multiplying by 71 we get
in¥e _ H(-e)",
ot

(14.73)

(14.74)

(14.75)

(14.76)

(14.77)

(14.78)

which is the two-component statement of the fact that ¥. solves the Klein-

Gordon equation with the opposite sign of the charge.

What can we say about the two-component solutions for free particles and

antiparticles?

The wave function of a free particle (positive energy solution) of momentum p

(normalized to 1) is given by

(F) ) m702 i(p-F-Ezt)/h

7#,3 (Tvt) - Ef) € P ?

where
E; =\/p*c® + m2ct
Using
8

0050 = (5 + LD ) u(n

and

o e IS Bl

(14.79)

(14.80)

(14.81)

(14.82)



we find (in two-component language)
(+) /= _a () i(pF-Ept)/h
(7 1) = et (14.83)

where the two-component vector \I/gr) is given by

2

(+) _ 1 me” + B

vy = 9 JEmc2 ( mCQ—EZj ) (14.84)
FMC P

In a similar manner, we can write for the negative energy solutions (free an-

tiparticles)
2
PO (7, 1) = | e BT B0/ (14.85)
Ep

\111(3‘)(?775) = \I/;{)e_i(ﬁ'f‘Eﬁt)/h (14.86)
-_ 1 me? - E; \ )
Yy 2\/Ezmc? ( mc*+ By |~ n¥; (14.87)

We note that in the nonrelativistic limit

2 \1/2 2
Ejs =+/p2c® + m2ct = mc? (1+ p22) ~ mc? (1 p) (14.88)
m2c

+
2m?2c?

2me?

me? + Ep » { 0 J2m (14.89)

so that o
+) _ 1 () _[ —v/4c
() ()
This shows that in the nonrelativistic limit

x is ~v?/c? times ¢ for a particle (14.91)

If we drop y, then ¢ satisfies the nonrelativistic Schrodinger equation with the
constant mec? included in the energy.

Similarly, dropping ¢ in the antiparticle solution shows that yx satisfies the
nonrelativistic Schrodinger equation for the opposite charge with the constant
mc? included in the energy.
The particle and antiparticle solutions are orthogonal in the sense that
(G P 71 o R A G B A CY)
Wy iUy =0=0, 130 (14.92)

which should be the case since they represent different energy eigenstates of the
same Hamiltonian.
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The free particle solutions form a complete set since any wave function ¥ can be
expanded as a linear combination of the free particle and antiparticle solutions.

We first write ¥ as a Fourier transform

3 o -
\IJ(F,t):f (Qié’)gew/h( fzz ) (14.93)

Since the two vectors \III(;) and \IJZ(;) are linearly independent, we can write
W(t) = ( fz ) = up ()W + 071w’ (14.94)

Good reasons for the choice of —p and * will appear shortly.

Substituting we get

= d3p P * -
\Il(r,t):f ety s T + 0750

& I
-/ (%;’)3 [ (WP i (1) W) P71 (14.95)

where a change of variables was made in the second term. From the form of this
result, uz(t) is the amplitude for a particle in the state ¥ to have momentum p
and positive charge and vz(t) is the amplitude for a particle in the state ¥ to
have momentum p and negative charge.

Using the orthonormality of \I/](;) we get

up(t) = f P e P (7 1) (14.96)
vi(t) = - f dPrul* P (7, ) (14.97)

The normalization integral for ¥ then becomes

J s (g - f?) = =1 (1498)

This says that there is no restriction on the magnitude of either uz or vz. Only
the integral of the difference(above) is fixed.

Physically, we can then say that one can have a state with an arbitrarily large
amplitude for finding a particle with a certain momentum, which is the first
indication that we are dealing with bosons or that spin zero particles must be
bosons.

1012



We can write some expectation values in this formalism, i.e.,

2

Hy = %(73 +i719)% + mc?rs = Kineticenergy (14.99)
m
= 3 = d3p 2 2
f U (F)r3Ho W (7)d’r = (27rh)3Eﬁ (|u13| +|vgl ) (14.100)
and
. h
p=—V = momentum (14.101)
i
= h - dgp N 2 2

14.3 Free Particles as Wave Packets

A wave packet formed from the positive energy solutions is given by

43 -
v = [ (27#7;)3 upel T E g () (14.103)

Let us assume that u; is peaked about p = p’. Then, using arguments similar to
our earlier discussions on stationary phase, the center of the wave packet moves
with a group velocity

p» /c2

5)pepr = o (14.104)

and similarly for a free wave packet made of the negative energy solutions for
antiparticles.

Can we construct a free particle wave packet perfectly localized at the origin?
It would have the form

U(7) =( ; )6(?) (14.105)
We then have

up= [ Al e P (i)
—iBF a L, a
:[d?’r\llz(;)Jre P /th( b )5(T):\I/1(3+)+Tg( b )

B 1 ch+EI; (1 0 a
_2 EﬁmCQ mCQ—E;,; 0 -1 b

_ Ez(a+b)+mc?(a-b)

2\/Ezmc?

(14.106)
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and similarly

; _ —\I/( Yo ( ‘ ) _ Ez(a+b) -mc*(a—-b) (14.107)

2\/Ezmc?

Looking at these results we can see that independent of the choice of a and
b, the wave packet will always have both particle and antiparticle components.
This means that it is impossible to construct a perfectly localized wave packet
from positive energy solutions alone.

Suppose that we take a general wave packet made up of positive energy solutions
and try to squeeze it(make it more localized) with real-world devices such as
collimators. To see what might happen we multiply the wave packet by the
position operator . We then have

43 -
F\I/(+)(F,t):f (2W§)3uﬁ(t)\llé+)7?emr/h

d3p h ipT
(2ﬂh)3uﬁ(t)qf§);vﬁe pr/h (14.108)

Integrating by parts we have

U ) = f (2n h)g(zhvpup(t))\l'“) errih

3
p 2o (P iR
+fWuﬁ(t)(mvp\Ifﬁ )e'? (14.109)
Using
® __P @
VU = 2E2\If (14.110)
we get
PO (7, 1) = 7, O (7 8) + 70 (7, 1) (14.111)
where
o &p . () iprih
R (r,t):f o h)‘g(mvﬁuﬁ(t))\pz5 e (14.112)

ihpc?
2
2E7%

= w7 g) - _ () gipii/h
F_UY (7 t) = (2 h)3 up(t) vy e'’? (14.113)
This says that multiplying a wave packet of positive energy states by the position

operator mixes in negative energy solutions, i.e.,

7, generates positive energy solutions while 7_ generates negative energy
solutions

or changes free particles in free antiparticles and vices versa
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The same result occurs for any function of the position operator.

Suppose that 7% (7) = 70 ™) (7), ie., it is an eigenstate of 7 with eigenvalue
To. This says that

ihV pug = Foup — ug = e P/l (14.114)
and the state
d3p
+ (= ip-(F—70) /R, (+)
v (7) = f e (14.115)

is an eigenstate of 7,.

This eigenstate is not normalizable. It is large over a region of space within
h/me (a Compton wavelength) of 7y or, in other words, the theory with positive
energy solutions cannot describe particles localized to a region smaller than a
Compton wavelength.

The presence of the 7_ part in the position operator says that putting a wave
packet made from positive energy solutions (a particle) through a potential
®(7) (which multiplies by functions of r) causes the creation of antiparticles
and because charge must be conserved, creates new particles also.

Thus, the relativistic spin-zero theory of the Klein-Gordon equation has built
into it the mechanism of particle-antiparticle production by external potentials.

An example of this phenomenon is Klein’s paradoz. Suppose we have a beam of
positively charged particles with momentum p hitting an electrostatic potential
barrier of height ep from the left as shown in Figure 14.1 below.

RN S,
x=0 X

Figure 14.1: Electrostatic Potential Barrier - Klein Paradox

The solution follows the same lines as the nonrelativistic problem. For x <0 we
have

Y(x) = a4 peT P Energy = B, (14.116)
This corresponds to incident and reflected waves. For x > 0, the Klein-Gordon

equation is

(B, - V)*(z) = -h’c

T u@) | Ve (14.117)
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The solution takes the form v (z) = de’*® where substitution gives
(B, -V)*=h?k* + m*c! (14.118)

We have the boundary conditions at = 0 (since potential only has a finite
discontinuity)

Y(z) , oy continuous (14.119)
ox
Note that 4° is given by
0/ 0 ie_ . .
V() = | =+ —®(F,t) | (7, t) (14.120)
ot h

is not continuous at x = 0.
We obtain

p-hk 2p

= d= 14.121
p+hka ’ p+hk‘a ( )

We consider three cases:

1. If E, > V +mc?, then the particle can pass the over the barrier and the
results are identical to the nonrelativistic case, i.e., part of the wave is
reflected and part is transmitted.

2. If we have a stronger potential such that E, + mc? >V > E, —mc?, then k
must be imaginary so that the wave function goes to zero as x - co. We
then have

A (B, - V)?
- he

and the wave is totally reflected at the barrier. The charge density on the
right (x > 0) is given by

k=ixk >k

(14.122)

E,-V

o |d|? e~2* (14.123)

p(x) =

For E, >V, there exists a positive, exponentially decaying charge density
to the right of the barrier. For E, <V, however, the density is negative
(remember it is a beam of positive particles). We reflect positively charged
particles from the barrier and find negative particles inside the barrier.

3. We make the potential even stronger so that V > F, + mc?. Nonrelativis-
tically it would be even more impossible for the particles to pass over the
barrier. In the relativistic case, however, k is real again, This says that
once again there is a particle current to the right of the barrier. The group
velocity of the waves for x > 0 is

0B,
Y= B(hk)

(14.124)
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Using (E, - V)? = h%c*k? + m2c* we get

)
(B, - V)a—kp = he’k — v,

hclk

__hek 14.125
E,-V ( )

Since E, -V < 0, we must have k < 0 (negative!) in order to have a
wave(packet) traveling from the barrier towards positive x.

This says that the reflection coefficient b/a is greater than one, i.e., more
wave is reflected than is incident! In addition, the charge density on the
right is
E,-V
p(z)==2—1|d*<0 (14.126)
2mc?

and the current on the right is negative.

One possible explanation is to say that the incident particle induces the
creation of particle-antiparticle pairs at the barrier. The created antiparti-
cles, having the opposite charge, find x > 0 a region of attractive potential
and thus travel towards the right, which explains the negative current on
the right. The created particles travel to the left and together with the
incident particles (wave) which are(is) totally reflected, they add up to an
outgoing current on the left that is larger than the incident current.

The total outgoing current on the left and right equals the incident current
since total charge must be conserved.

This pair creation solution does not violate conservation of energy. The
energy of a created particle on the left is F£,. The energy of a created
antiparticle on the right is VA2c2k2 + m2c¢t -V since the electrostatic po-
tential energy has the opposite sign for a particle of opposite charge.

Adding the two energies we get E, + Vh2c2k2 + m2ct -V =0, i.e., it takes
zero energy to create a particle-antiparticle pair. This happens because
the potential V' is so large that the energy of the antiparticle on the right
is not only less than mc? but is negative.

14.4 Bound State Problems

We now study the bound states of spin zero relativistic particles in a static
potential (7). For a positively charged particle with energy E the bound state
wave function is

(7, t) = e FHhay(7) (14.127)
and the charge density of the bound state particle is
.\ e|FE—-e®(¥ .
ep(r) = L2y e (14.128)
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This says that in regions where E > e®(7), which includes classically accessible
regions, the charge density is positive. But, in regions where F < e®(7), the
charge density is negative. The way to think about this is to say the particle in
the potential is a linear combination of free particle and free antiparticle states.

Because we are considering an electrostatic potential, the positively charged
parts will be found mainly in regions of smaller e®(#) while the negatively
charged parts will be found in regions of larger e®(7). A relativistic particle
seems to have an internal structure that can be polarized by and electric field.

Alternatively, we might say that the potential produces particle-antiparticle
pairs in the vacuum, The positively charged particles are attracted to regions
of smaller e®(7) while the negatively charged particles are attracted to regions
of larger e®(7). We say that the electric potential has polarized the vacuum.
This polarization modifies the effective potential felt by the bound particle.

This interaction cannot be taken into account in the present one-particle rela-
tivistic theory(requires quantum field theory).

We now turn to the problem of a spin zero particle bound in a Coulomb poten-
tial. An example is a 7~ bound to a nucleus. We have

2
cd(r) = -2 (14.129)
T

which leads to the Klein-Gordon equation

Ze? 2
(E + ) +h2?v2 —me? [ (7) = 0 (14.130)
r

Since this is a central potential, we can assume that the eigenstates have definite
values of total orbital angular momentum. We then have

[(Ez ) 2) N h2(1 6—27«— 0(0+1) - (Za)2) N 272 E]¢(T) =0 (14.131)

@ e r or? r2 roc
or
10> ((l+1)-(Za)? 2ZaFE (E?-m?c
-— - - =0 14.132
[ rore r? her h2¢? ¥ ( )
where )
= :L— = fine structure constant (14.133)
c

Now we define

y=Za , L('+1)=Ll+1)-~7
2E~ 4(m3c* - E%)

=0

>\ =
heo h2c? ’
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and we get ,
d 2\ (0" +1)

a2 o Ty [PV =0 (14.134)
which is identical to the radial equation for the nonrelativistic Coulomb problem
for the function u = py(p). The difference is that £’ is not necessarily an
integer (remember that it is an integer in the nonrelativistic problem), which
causes the orbits of the relativistic Coulomb (Kepler) problem to no longer be
closed, i.e., the orbits precess. This also means that the extra degeneracy of
the nonrelativistic problem which causes the energy to be independent of ¢ is
broken in the relativistic problem. We now solve this equation in the standard
way. For

p=>0  (p)—p"
p>oo  P(p) e

Therefore, we guess a solution of the form

’

+1
u=pip) = (5) e Pulp2) (14.135)

The solution method is identical to the nonrelativistic hydrogen atom. We get
a power series which must terminate (so that the solution is normalizable) when

A=N+¢'+1 , N=0,1,2,3,......

v 2
E:mc2(1+) - FE= (14.136)

A2 2
1+ a 5
[N+%+\ / (€+%)2—72:|

If we define the principal quantum number n = N + £+ 1 = integer, then we have

m62

I - (14.137)
1+ i .
[n—(€+%)+\/(€+%)2—ﬂ/2]
The principal quantum number has the possible values n = 1,2,3,...... For

a given n the possible values of the total orbital angular momentum are ¢ =
0,1,2,3,.....,n-1.

The degeneracy that was present in the nonrelativistic theory with respect to
orbital angular momentum /£ is clearly removed.

If we expand the energy in a power series in the fine structure constant « (or
~v) we get

By =me - Ryt —ry (-~ 3. oyt 14.1
ne = C" — yg_ y3 / 1_4 + (yV) (38>
n n +§ n
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The first term is the rest energy. The second term is the nonrelativistic Rydberg
formula. The third term is the relativistic correction due to using the relativistic
form of the kinetic energy, which as we saw earlier in Chapter 10 took the form

4

2 p
Hrel = _8m302 (14139)

It is this correction that removes the degeneracy in /, i.e.,
492 n-1
n3 2n-1

As we shall see later when we derive the Dirac equation, there are more correc-
tions to this formula due to the fact that the electron has spin = 1/2.

En,Z:O - En,f:n—l = Ry (14140)

14.4.1 Nonrelativistic Limit

The Klein-Gordon equation in the presence of an electromagnetic field is

612 (m% - e<1>(f,t))2 b(F,t) = ((:‘v - iix(m))Q + m202) (it (14.141)

and using

B(F 1) = ( ;‘ZE: g ) (14.142)

we have as earlier

(mg - eq>) 6= L [Qv - GA]Q b+me+ % [%v - ZAT X (14.143)

ot 2m L c
2
(ihg—efl))x:—L [EV—EZI] (¢ +x) —mc*x (14.144)
ot 2m L1 c

Remember that in the nonrelativistic limit the dominant term in the energy will
be mc? so that we expect the zeroth order equation for y to be

0
Zha—;( =mc?y (14.145)

which then implies in the next approximation that

1 h
x= [

2
e -
T —V—EA] ¢ (14.146)

i
and that ¢ satisfies the equation

(ma_eq>)¢:271n[?v—iﬁ]2¢+mc2¢— ! [f_LV—iAT(;S (14.147)

ot 8m3c? L4
The operator on the right-hand side is just the kinetic energy operator
h e \?
m2ct+c2(Sv-S4 (14.148)
i c

1020



expanded to second order in 1/mc?. This agrees with our earlier result that the
first relativistic correction for a spinless particle is entirely due to the relativistic
modification of the kinetic energy.

For a weak magnetic field B this becomes (to order (v/c)?) after much algebra

L0  hPv? h2v?
th— = - 1
ot 2m 2m2c?

2v2
]¢+(m02+eq>)¢—2§wé-i[1 + ;ZCQ](ﬁ (14.149)

where L is the orbital angular momentum of the particle. The term

h2V2 p2
[1+2m202 ~|l-55s (14.150)

represents the relativistic correction to the magnetic moment.

14.5 Relativistic Spin 1/2 Particles - The Dirac
Equation

14.5.1 Lorentz Transformation of Spin

The contravariant and covariant components of the position 4-vector in space-
time are:

1 0 0 0
0 -1 0 O
- — (") =
9=00u)=@")=l v o -1 o (14.151)
0 0 0 -1
The metric tensor relates covariant and contravariant components by
Ty =g’ , 2t =gz, (14.152)
We also have
10 00
01 00
TR = S By
9 =9""9 =0, 5 ()= o o 1 o (14.153)
0 0 01

Under the action of a Lorentz transformation along the z-axis with velocity
v = fc, a 4-vector (any type) since it is a first-rank tensor, transforms as

V'E = ALVY (14.154)
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where

vy 0 0 -By
0 10 0 1 v

wy _ — = —

AH=l o o1 o St 0 P ()
-6y 0 0 v

This corresponds to the standard transformation relations for the position and
momentum 4-vectors

Ct,:’V(Ct_ﬁz) o=z, Y=y ZI:"Y(Z_ﬂct)
E E , , , E

il ;—sz s DPp=DPx , DPy=DPy , D=7 pz—ﬁ;

Spin is an angular momentum corresponding to internal degrees of freedom of
the system. This means, as we showed earlier, that spin must have the same
transformation properties as any other angular momentum.

Nonrelativistically, we think of angular momentum as a vector and, in fact,
under a simple spatial rotation it does transform as a vector (as we saw earlier).
Consider, however, the behavior of an orbital angular momentum

L=Fxp— L; = ijuipi (14.156)

under the action of a Lorentz transformation along the z-direction. We find
that

L, = x'p; —y'pl =xpy —yps = L, (14.157)

since the components of vectors orthogonal to the z—axis are unchanged. This
is clearly not the transformation property of a vector.

In fact, L is the product of two vectors and therefore should have the transfor-
mation properties of a second-rank tensor, i.e., as

Q"M = NLASQ™ (14.158)
Relativistic electrodynamics can be written in terms of a second-rank field tensor

0 €1 €9 3
—&1 0 B3 —B2
—&9 —Bg 0 Bl
—€3 B2 —Bl 0

(FmY = (14.159)

as Maxwell’s equations

OFH* A4
= 7JV
oxH c
oF*  QF"™ QF“¢

=0
Oz " ozt " oxv
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where the current density 4-vector is

JH = (cp, Iz, Iy, J2) (14.160)
and the Lorentz force law is
”w
w4, e (14.161)
dr m

The transformation rule then says that the fields transform according to the
relations

F'O =l = ALAGFOT = AQALFP = AQATF = AQF!
= AJF + AJF3! = yey — ByBy = y(e1 - ((B/c) x B)1)

or

et =~(e1 + ((8/c) x B)1) where § = vé, (14.162)
Similarly, we find
ey =7(ea+ ((B/c) x B)2) , eh=¢3
By =7(B1-((¥/c) x&)1) , By=7(B2-((v/c)xE)2) , Bi=DBs

We can summarize these results for an arbitrary (direction) Lorentz transfor-
mation applied to a second-rank tensor by

BI,\ =B e"l =¢|| || = component parallel to v
B, =v(B, - (¥/c) x¢)
gi = (gl + (v/c) x B) 1 = component perpendicular to ¥

Thus, a pure magnetic field in one frame is a mixture of magnetic and electric
fields in the new frame.

Now, under a spatial inversion transformation, we have
E-—-¢ , B-B
p—>-p=L->1L

)

Therefore, an angular momentum (including spin) has the same transformation
properties as the magnetic field.

Since spin,
1
§=56 (14.163)

must transform as an angular momentum, which transforms like a magnetic
field and the magnetic field is part of second-rank tensor with the electric field,
we must conclude that there exists another set of dynamical variables generated
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by the internal degrees of freedom of the particle that will be analogous to
the electric field. Do not think of the operator ¢ as the standard 2 x 2 Pauli
matrices; we shall see later that ¢ will need to be represented by 4 x 4 matrices
relativistically.

We define these new variables as i&/2 where the i/2 factor is chosen for later
convenience. We then have that S and i@/2 or ¢ and ia transform as B and ¢,
ie.,
a"‘ =0y , 0, =7(6.-(9/c)xid)
ia =iy, da’ =7 (id, + (U/c) x 7)
and they form a second-rank tensor o#” analogous to F*", i.e.,
0 iOél iOég iOég
—’iOél 0 03 —09
—iOéQ —03 0 01
—iag g2 —01 0

(o) = (14.164)

We must now investigate the dynamical properties of the new variables & and
also ask this question - where have these objects been hiding in all of previous
discussions?

Since spin is an angular momentum, we know its algebraic properties (commu-
tators). In addition, spin generates rotations of the internal degrees of freedom.
Spin commutes with spatial degrees of freedom like 7 and p and, thus, so does

a.
Since @ behaves like a vector under spatial rotations (it is like the electric field
vector), it must have the standard commutation relations with S
[a;,5;] = ieijpar = [a4,05] = 2ig; 00, (14.165)
Since ¢ is angular momentum, it satisfies the relations
00 = i€ik0k + 0ij (14.166)

which must be true in all Lorentz frames, i.e., since 02 = 1, we must have o{ = 1.
Let us now determine all the properties of a.

For a Lorentz transformation along the z—direction we have

o =7 (0g +ivay/c)
o! =~ (o, —ivag/c)
Y Y *
Squaring o’ we get
0-;2 =1= ’yz (O’i + Y,U(O'zay + O[yO'z)/C_ (v/c)2)0z§)

=2 (1 - (v/c)Q) ozz) +72 (v(ozay + ayoy)/c)
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Since this must be true for all v, the coefficient of v/c must vanish. Thus,

OgOy + Qyoy =0

We then have
1=9" (1= (v/e)*) ay)
Since
L=9*(1-(v/e)*) o)
we must also have
ozz =1
These results generalize to the following:

E] o0 = =0

) :j [0’1‘, Oéi] =0
Multiplying o, by o we get

0,0, =i0, =10, = 72 (0 +ivay[c) (o, — ivag/c)

10, = 72 (Uway + (v/c)Qayozx +i(v/c)(ayoy — oxax)

Multiplying o7, by o, we get

g 0’; = —ZO'; = —io’z = ’y2 (O'y - Z.’UCKI/C) (O’z + ivay/C)

@~

—io, = > (O'yOI + (/) azay +i(v/e) (o oy — ozwax)
Adding, we have

(oyos +0g0y) + (v/c)2(axozy +ay0,) =0

(apoy + ayay) =0 > (o +ja;) =0 i#j
Continuing, we find these other relations

Qg = =10, = =00y — 00 — O OG = 2084510,
or summarizing we have

{O[i70[j} = 2(5” s [Oéi,Oéj] = 2Z'E7ijakr

(i 05] = 2iggjpo. , {as,o54=0 , i#j

(14.167)

(14.168)
(14.169)

(14.170)

(14.171)
(14.172)

(14.173)

(14.174)
(14.175)

So « obeys exactly the same algebraic relations as ¢. How do we know that
« is not equal to o7 If we apply a parity transformation, we find that ¢ - &
since angular momentum is unchanged by spatial inversion, i.e., the space-space
components of a second-rank tensor do not change sign under parity. On the
other hand, the time-space components such as the electric field or i do change

sign, i.e., @ - —a. So they cannot be the same operator!
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Let 8 be the operator that corresponds to the parity transformation in spin
space. Now two successive inversions brings us back to the starting configura-
tion. Remember, however, that the spin representation of rotations is doubled
valued, i.e., a rotation by 27 produces a minus sign. We have a choice of letting
the square of the parity operation include a 27 rotation(about any axis) or not.
This means that we can have 3% = +1 or — 1.

In the first case, the eigenvalues of 5 are +1 and in the second case +i. We

choose 32 = +1 - 37! = B. The properties under parity become
Bl68=6—>pB6 =58 (14.176)
BlaB = -& - Ba =-afs (14.177)

We can now construct an explicit matrix representation for the operators &, 8

and ¢ similar to the two-dimensional Pauli matrix representation in the nonrel-

ativistic case.

Consider the determinant of the matrix for 5~ 'a;3. Using Bd = —&/ we have

det (B i B) = det(-57'Ba;) = det(~a;) = (~=1)" det (o) (14.178)

where N is the dimension of the matrix representation. However, using the
cyclic property of determinants, i.e.,

det ABC =det BCA =det CAB (14.179)
we get
det(B ', 8) = det(BB o) = det(a;) (14.180)
Putting these results together we get
(-1)N det(ay) = det(e;) » (-1)V =15 N =2,4,6,..... (14.181)

We have used the fact that det(q;) # 0, since a? = 1.
Now, N =2 is not possible as we show below.

All 2 x 2 matrices can be constructed from the set {I,6} and [3,6] = 0. This
means that § would have to commute with all 2 x 2 matrices. Since & would
then have to commute with 3, we would then violate the relation fa = —-ag.

This means N must be at least as large as 4. This says that a relativistic spin
1/2 particle would have 4 internal states (the nonrelativistic case has 2). This is
similar to the Klein-Gordon case and it will turn out here also that this doubling
signals the appearance of antiparticles.

An explicit representation(not unique) using the 2 x 2 matrices

(10 (01 (0 - (1 0
Mo 1) > T N1 0) 2l o0o) 0 BTlo a1
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where the the last three matrices are the standard Pauli matrices. It is given

by
a:(g S) , a:(?_ g) , 5:(é _OI) (14.182)

Note that the trace of each of these matrices is zero, which is a general property
of matrices that obey anticommutation relations.

We can make the following physical interpretations of the components of the
tensor o#”.

It follows from earlier discussions that the space-space components, i.e., the
spin operators o;, generate (in the spin degrees of freedom) a rotation of the
coordinate system.

This implies that the operators 6/, @', 8’ in a spatially rotated frame are given
by the operator relations

¢'=R,6R,, &'=R,aR;, B =R,BR, (14.183)
where
R, = ¢/ (14.184)
and
7 = unit vector in direction of axis of rotation

i = angle of rotation

We then assume that time-space components generate a rotation of the space
axes with the time axis, which is a Lorentz transformation and that the operators
in the new frame are given by

¢'=L,6L,", &' =L,aL,", p'=L,BL," (14.185)

where o o o
L, = e—z(za)w/Z _ eww/? N L;l _ e—a~w/2 (14186)

and

W = vector in direction of velocity of primed frame

with respect to unprimed frame and of magnitude

tanh(w) = v
c
Proof: First,
o = LoyL™! = 192 7wl = gwlemeel2g, = (14.187)
where we have used
[Ozi,O'j] = 2ig; 0 — [aH’UH] =0 (14.188)
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This agrees with our earlier result.

Second,

o,i _ Lo_lL—l _ ean/ZO_le—an/2 _ eauw/Qea”w/Qal _ ea“wo_L = O

where we have used
{aj,0;}=0 , i#j->{q,0.}=0
Now using & =w , @ @ =1 and (a-©)? =1 we get
e = coshw + & - wsinhw
This derivation is the analog of
570

e =cosf +i5-nsinf

Therefore,

Q@

o, =e*“o, =coshw([l+a-wtanhw]o, =v[1+a-@tanhw]o

where we have used

1

_ 1 2
1-tanh?w 1- (v/c)?

=7

cosh?w =
Using @ tanhw = ¥/c we then get
o, =v[l+a-@tanhw]o, =v[1+a-¥/c]o,

Finally, assuming 9 = vé, and using o;o; = i, 1 # J we get

S

(@-vfc)o, =i—xa

o

so that

’ U
o, = 0'J_+’LE><C¥

1

(14.189)

(14.190)

(14.191)

(14.192)

(14.193)

(14.194)

(14.195)

(14.196)

(14.197)

which agrees with our earlier result. Thus, ¢ transforms correctly. A similar
calculation shows that & transforms correctly also and, thus, our interpretation

is correct.

What about the operator 57 In a new Lorentz frame we get
B = LoBL," =™

since S anticommutes with &. We then get (as above)
B'=7[8-(v/c) Bd]
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where we have used & = —af. From the form of this transformation relation,
it looks like § transforms as the time-component of a 4-vector of which Ba is
the space part.

Some algebra shows that
o = LBa, L' = Bay (14.200)

since both 8 and «, anticommute with L and therefore S« commutes with L.
In addition, we can show that

B'af =~ [Bey - (v/e)B] (14.201)

Therefore, (3,8 d&) does transform like a 4-vector.

This 4-vector is called v* = (8, 8a). In our earlier notation the space part is

N Y
¥ =pa= ( s ) (14.202)
# is anti-Hermitian and 7° is Hermitian.
Some properties
(=1, (v)?=-1, i=123 (14.203)
{("*4"=0 , np#v (14.204)
which are summarized by the relation
(") =29 (14.205)
We also have )
o = 2 [y, 7"] (14.206)

2

In fact, any 4 x 4 matrix can be written as a unique linear combination of the
~#. The set of 16 matrices

I, 4", 0" 9", v5 , where v5 = 40y142~3 (14.207)

are linearly independent and complete. All are traceless except for the identity
matrix.

The new operator 5 commutes with the v*. This implies that it commutes with
a; = v%y" and is invariant under a Lorentz transformation. It is not a scalar,
however, since under parity

BysB = =5 (14.208)

This means that it is a pseudoscalar.
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Similarly, v5v* is a pseudovector (or azial vector), which is a 4-vector whose
space part does not change sign under parity and whose time component does.

We see that the set I , v* | o"” | y59" , 75 transforms as a scalar or zeroth-
rank tensor, a vector or first-rank tensor, a second-rank tensor, a pseudovector
or axial vector or a first-rank pseudotensor and a pseudoscalar or a zeroth-rank
pseudotensor.

This is a clear indication that they are linearly independent.

14.6 The Dirac Equation

The scalar product of two 4-vectors is a Lorentz invariant. We have identified
two 4-vectors, namely,

Y =(8,Ba) , p"=(E[cp) (14.209)
Their scalar product is
E
f— -pa-p (14.210)
c

Since it is an invariant, it has the same value in all frames. What is that value?
We can find out by looking at its square

(5?-5@-;3)2 =62(f)2+(5d-;5)2—ﬁ(55é+075)'ﬁf
- () + S -5 02 - (£) - 500’

:(5)2_2(1)%?:(?)2—& (14.211)

i
This says that

E EV?
B— - pBa-p= (—) -p?=x+mec (14.212)
c c
The sign depends on the sign we choose for 8. If we had interpreted 5% = 1 to
mean [ = -1 instead of +1, which is equivalent to choosing the parity operator
as —f, no physics would have changed. This means we are free to choose the
sign. We choose

E
Bi — ﬁd p’ = +mec (14213)
C

or
BE - Bea - p = me? (14.214)

This operator equation involves 4 x 4 matrices which implies that any physical
state vectors must be 4-component spinors.
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We make the standard operator correspondence

0
E —>ih— , p—ihv (14.215)
ot
and obtain a wave equation
9] h
z’hﬁa—f = Bed - =V + mcyp (14.216)
i
or multiplying by 5 we get
h
m%lf = [cd el v S ﬁch] 0 (14.217)
i

which is the Dirac equation for a relativistic spin 1/2 particle.

The form of the result says that the Hamiltonian of a relativistic spin 1/2 particle
is

H =ca-p+pmc? (14.218)
In the presence of an electromagnetic field we use minimal coupling to get
. 0 o o h € - 2 N
(zha - e@) (7, t) = [ca~ (fv - 7A) + fmc ]1/1(7”,15) (14.219)
i c

We note that the vector potential A (corresponding to spatial degrees of free-
dom) is directly coupled to & corresponding to internal degrees of freedom).

14.6.1 Nonrelativistic Limit

First, we separate time using

W(t) = pe B (14.220)
to get
(E—ed)t = [ca(ﬁ_v— 9A)+ﬁmc2]w (14.221)
1 C
We then write
0 :( 52 ) (14.222)

where ¥ 4 and g are still two-component functions and use the explicit Dirac
matrices to obtain

(E—e(I))( ig ):[( 2 ; )-(cﬁ—eﬁ)+( é _OI )ch]( ig ) (14.223)

This is equivalent to two coupled equations

-\

(cp-eA)pp +mc*pa=(E-e®)a (14.224)
~(cj)’—efl) Y -mc*p = (E-ed)yp (14.225)

il
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Letting E = E' + mc? the second equation of the pair becomes

1

= 7. (cp-ed 14.226
Vs E'—e®12me (c7-eA)da ( )
Inserting this result into the first equation of the pair we get
. 1 .
P 7 (cp-eA) 1}37,_&% (cp-eA)pa=(E" -e®@) s (14.227)

2mc?

These last two equations are exact and very useful substitutes for the Dirac
equation.

We now make some approximations relevant to the nonrelativistic case. We
assume that

E'<<me® |, ed<<me?

eigenvalues of § are of order mv << mc

This says that the components satisfy
v

Or that the 4-component wavefunction 1 has two large components 14 and two
small components 5.

If we ignore terms of order (v/c)? the equation for 14 becomes

1

s (7 (P - eA)) va +e@va = B (14.229)

Now, earlier we derived the identity

(F-a)(F-b)=a-b+i7-(axb) (14.230)
We then have
(7 (cp-ed))’ = (cp-ed)’ +i7- ((cp-eA) x (cp-eA)) (14.231)
Now
(7 (ch-ed))’ = (ch-ed)’ (14.232)
and

(ep- e;l) x (ep- e;l) = —ec(p x A+ A x ) = +iehe (V x A+ Ax V) (14.233)
Now
(Vx A+ Axv)ipy =% (9;A% - A%9;) 4
= ((9;AF)pa + AR (95000) - A*(95104))
= £, AFYha = (V x A)ipa = Buoa (14.234)
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Putting everything together we get

1 L. e - 2 e h, - ’
7( _,A) hag- ——7-B+edihpy = Flhy (14.235)
2m c mc 2
This the Pauli equation. The term involving the magnetic field has the form of
a magnetic dipole interaction energy

-£5.B (14.236)
mc
with a gyromagnetic ratio
2x £ s g=2 (14.237)
mc

The full time-dependent form of the nonrelativistic limit is given by

2
i(ﬁ,v—fﬁ) ¢A—i§?~é+(eq>+m02)¢m:ihawA (14.238)
2m \ i c mc 2 ot

14.6.2 Currents and Continuity Equations

Going back to the full equation

.0 = . (h e - 5 =
(zhE - e@) (7, t) = [coz- (fv - 7A) + fmec ]¢(r,t) (14.239)
i c

we take the Hermitian conjugate to get

L0 +(= h €3 +(= = 2 1+ (=
(—zha - e<I>) (P, t) = c(—f_v - 7A) Y(Ft) - a+ Pfme Pt (F,t)  (14.240)
i c

Note that the Hermitian conjugate operation reverses matrix order. Now multi-
ply the first equation by ¥* (#,¢) on the left and the second equation by (7, t)
on the right and subtracting we get the continuity-type equation

% £ (i) = 0 (14.241)

This says that the quantity ¥* is a positive conserved quantity that can be
interpreted as a probability density and then

j=vtedy (14.242)

is the corresponding probability current. The operator ca corresponds to the
velocity operator, which is the derivative of the Hamiltonian with respect to p.

What happens to the Dirac equation under a Lorentz transformation?

In one frame we have

oY

ihB— - = Bed- ﬁ,w +mc*y (14.243)
1

1033



and in a new frame we have

61/1(7‘ t')

o =p'ca’- v’z&(F’,t')+mc21/3(F’,t’) (14.244)

where (7', ') is the wave function in the new frame.

We already determined, however, that

ih/@’i_ "ear! év _lhﬁf—ﬁca E (14245)
ot’ )

since the scalar product of two 4-vectors is an invariant. This implies that
(7', t') = (7,t) = Lorentz scalar (14.246)

i.e., they both satisfy the same equation when #’,¢' and 7, ¢ are the same space-
time point.

It turns out, however, that a more convenient equation to use in the new frame
is one that still involves the old 3 and & matrices, i.e., 8’ and &’ are represented
by the same matrices as 8 and &. We can find this other equation as follows.
We have

31/}(87"t, ) =p'ca’- Vw(r )+ mc) (7, t)
ihLvﬁLglw = LyBcaL;!- Zv (T ) + mcp(Ft)
ihBLy! W(gt 1) _ pear;? fv'qﬁ(F’,t') +mc® Ly (7', t)
If we define A
O'(F ) = (R ) = LM (7, ) (14.247)
we have the equation
ihﬂL} g;,’t ). Bea - Ev’w’(?’,t’) +me*y (7', 1) (14.248)
(3

This form of the equation has the same matrices 8 and & in all frames with the
wave function in the new frame related to the wave function in the old frame
by the Lorentz transformation.

Alternatively, we can write the Dirac equation in covariant form. The Dirac
equation is

w2 [c&- E,v + ﬂch] 0 (14.249)
ot 1
which we can rewrite as
—ihB0y) — ihBa’dh + me = 0 (14.250)
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using the definition of the Dirac gamma matrices we have
(—Maﬂ + %) =0 (14.251)

which is clearly covariant.

14.6.3 Free Particle Solutions

We start off by constructing solutions for a particle at rest. In this case, we
have 4
(7, t) = e Ehy (14.252)

where u is a spinor independent of space and time. Substituting into the Dirac
equation we have

Fu = fmc*u (14.253)

The eigenvalues of 8 are +1. If u is an eigenstate of 8 with eigenvalue +1, then
E = +mc? and if u is an eigenstate of 3 with eigenvalue -1, then E = —mc?.
So we find negative energy solutions again and we will associate them with
particles and antiparticles as before. Their properties in the spin 1/2 case will

be different, however.

We choose to write four linearly independent solutions to the free particle Dirac
equation as:

(+) _

(+) _
Uy’ =

(=) _
y Uy =

=) _
y Uy =

y  Ugy” =

o O O
oo = O
o~ OO
_— o O O

where the upper index (+) denotes the eigenvalue of 3, the 0 denotes that the
particle is at rest p = 0, and the arrow denotes the value of the spin associated
physically with these states.

: (+) (-
The spinors ugy,” and g,

u(()? are eigenstates of o, with eigenvalue —1.

) are eigenstates of o, with eigenvalue +1 and u(()lr) and

We are saying here that while u(g) is the spinor of a negative energy particle
with spin up, we will associate it with a positive energy antiparticle with spin

down.

The states with 5 = +1 vary in time as eime*t/h and those with B8 = -1

vary in time as e*ime’t/h  The positive and negative states have opposite par-

ity (intrinsic).
We can now construct states for a particle with momentum p by starting with
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the particle at rest and applying a Lorentz transformation to take us to a frame
moving with velocity

2

U= _% where E, = +1/p%c? + m2ct (14.254)

p

We showed earlier that
W) = Ly (7 ) = €S9 (7 1) = e FRFme Iy () (14.955)

Now Ejt"'—p’- 7' is a Lorentz scalar (scalar product of two 4-vectors). In the
rest frame it is equal to mc?t. Therefore we can write

GFmEth _ i B [h (14.256)

Dropping the superfluous primes we then have

(7, t) = e*i(’;'F_E”t)/h’e_&":’/Quéfz (14.257)
as the wave function for nonzero momentum. The new spinors are given by
u](;g = e—aa/2u((),ig = [COSh g — & - vsinh %] u(()ig (14.258)
Using
= 92
5=-2% (14.259)
Ey
we get
| E, + mc? p
cosh 2 =/ =20 ,  Utanh o (14.260)
2 2mc? 2 E, +mc?
so that

) _ JEprme ) pd | 14.261
Y50 2mc2 E, +mc? 40,0 (14.261)

We then have (in the standard representation)

) ([ Eerme e L) 14.262
Yat 2mc? Ep+m02p @] o (14.262)

Now

0001 0 0 0 —i
N 00 10|, 00 i 0
Pra=bel g 1 0 0™ 0 - 0 0
1000 i 0 0 0

0 0 1 0 1

N 0 0 0 -1 + _| 0

P= 1 0 0 o0 » Yot T g

0 -1 0 0 0
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and we get

1
0
0
u®) [ Eptme A0
Pt 2mc2 0 0 0
. 0 0 0
TEme | Prf g [Py o | TP
| 1 ) 0 |
1
E 2 0
o/t cp: (14.263)
2mc2 E,+mc?
Ep+mc?
and similarly
0
1
¢ _ [ Eptme L 14.264
U5l 2mc? % (14.264)
_ CPz
E,+mc?
CPp=
?'p-*—mc?)
B E,+mc2 | cWativy)
U;L):,/pi’zc By rme (14.265)
) 2mce 1
0
pe—ipy)
Z 3 Ep+’7nc’2
() [ Eptme | e 14.266
uﬁ,T 2m62 pO ( . )
1

Remember that the arrow refers to the spin associated with the state in the
rest frame, which is minus the o, eigenvalue for the (-) spinors. We see that a
particle in a o, eigenstate in its rest frame appears to be in a o, eigenstate to
an observer moving with respect to the particle only if the observer is moving
along the z—direction, i.e., if p, = p, = 0 we have

1
+) | E, +mc? 0 E,+me? | cp, )
V= _ cpe = —_ + — 14.267
Ut Imc2 EprCQ 22 Uo,1 E, +mc? Yo,y ( )
0

which is a sum of a particle and an antiparticle where both have spin up!

The positive energy solutions ulg;)ei(ﬁ‘F_EPt)/ " correspond to particles with mo-

mentum P, energy F, and spin orientation o. The negative energy solutions
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ué;)e_i(ﬁ'F_EPt)/ R correspond to particles with momentum —p, energy -E, and
spin orientation —o which we will soon associate with antiparticles with momen-

tum P, energy F, and spin orientation o.

The nonzero momentum spinors are orthogonal but not normalized to one (as
is the case with the zero momentum spinors). Since L* # L™!, in general, the
Lorentz transformations are not represented by a unitary operator and hence the
lengths of vectors or normalizations change. In particular. The normalization
is given by

W@+, @ - B
up) ufy) = 8 (14.268)

Since & is Hermitian, we have L* = L.
Thus, if up = L™ ug, then (uz)* = (ug)"(L™)* = (uo)* L™ and whuys = ug (L) uo.

It is possible to define a normalization that is invariant under a Lorentz trans-
formation. Since 8 anticommutes with &, we can write
(L_1)+6 =L_1,8 aw/QB Be -G@[2 _ = BL (14.269)

Now, if the spinor u transforms as u’ = L™ u, then the spinor @ = u* 3 is given
in the new frame by

' =u"p =u B =ut (L) B=u' L7 B=uBL = aL (14.270)
This means that the product @;us of any two spinors is a Lorentz invariant, i.e.,
whuly = (L) (L ug) = Gyus (14.271)
In the rest frame
uSuS) = b , b=+ (14.272)
which says that the same relation is true for all momentum p
b)+ (b
;gmgg by Soer , b=+ (14.273)

; (=) . . . .
The spinors Uy obey the completeness relation that says that the 4 x4 identity

matrix can be written as the sum of the outer products of the four spinors, i.e.,

Zbu;f} al) =1 (14.274)

The spinors u( ) obey

(BE, —cBa- p)u(i) = ichu(f) (14.275)
and

(i)+(ﬁE —ca-pp) = +mciu (i)+ (14.276)
Multiplying the last equation on the right by 5 we have the equation satisfied
by 12](;)

’(i)(ﬁE - cfé - p) = +mcia ( ) (14.277)
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14.6.4 More About Currents

As we have seen, the solution of the Dirac equation ¥(7,t) has the following
behavior under a Lorentz transformation

(7, t) = (7, t") = LHp(7, ) (14.278)
The spinor 9 (#,t) = 1" (#,t) transforms like
Y7 8) = ' (7, 1) = [L7(F, 0] 8 = (7, 1) L (14.279)

This says that the product ¢ (#,¢)v(7,t) transforms like a Lorentz scalar.

Now the v transform as the components of a 4-vector, i.e., y* — Ly*L7L.
Therefore, the product

D000 = (7). 370 (14.250)

transforms like a 4-vector under a Lorentz transformation. It is the particle
4-current multiplied by 1/c. In the same manner,

o'1h - second -rank tensor
ysyHep — axial vector

y51) - pseudo - scalar

The positive density p(7,t) = ¥* (7,t)¢(7, ) and the current j(7,t) = ciy* (7, t)aa) (7, t)
satisfy the continuity equation
ap -

9 Lv.i-0 14.281
5tV ( )

which implies that the quantity

f (7, 1) dPr (14.282)
is a constant of the motion.

In this case, we can interpret p(7,t) as a probability density (same as in non-
relativistic case). Remember in the spin zero case this was not so since the
corresponding conserved density needed to be interpreted as a charge density
which could be positive and negative.

One important consequence in the spin zero case was that it is impossible for
a particle to make a transition from a state normalized to +1 to a state nor-
malized to —1 since the normalization remains constant in time. We associated
the negative energy states with particles and the negatively normalized states
with antiparticles. We then see that the impossibility of a transition between
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positive and negative energy states just corresponds to charge conservation.

In the spin—1/2 case, however, both positive and negative energy states have
positive normalization so that there is nothing in the theory (so far) that pre-
vents a particle in a positive energy state from making a transition to a negative
energy state radiating away several high energy photons in the process. A dif-
ficulty in the theory that we must return to later!

Let us say some more about the position and velocity operators in the Dirac
theory.

The position operator has strange features similar to those of the Klein-Gordon

theory. If we apply the position operator to a wave packet made up of positive
energy free particle states we get

ipT h ipT
r¢(+)(r)—r(2f @ h)gapou(+) i3 /h) Zf o h)3 gt }(;) vyeP T/

‘Zf (r h)s(hvpapa)u(” PN Z[(z h)sapa(mvp“(+))€m/h

where we have integrated by parts to get the last two terms. The first term
contains only positive energy components. The second term, however, contains
the factor zhvpu(, ), which generates both positive and negative components
(explicitly do the derivatives on the column vectors we derived earlier). If we
define, as before

T =T +70) (14.283)

then, as before, the even part 7(,) acting on the wave packet of positive energy
free particle states produces only positive energy free particle states and acting
on the wave packet of negative energy free particle states produces only negative
energy free particle states, while the odd part 7(_y turns positive positive energy
states to negative energy states and vice versa.

As in the Klein-Gordon case, both positive and negative energy free particle
solutions are needed to produce a localized wave packet.

Looking at the current expression j(7,t) = cy*(7,t)ay(7,t) we see that the
operator ca acts as a velocity operator. This interpretation also agrees with the
commutator relation

~ih[F, H| = ca (14.284)
which leads to the Heisenberg representation operator equation
JF
d—z = cé (14.285)

If, however, we consider the z—component of this velocity operator we get

(ca)? = 62a2 = ¢?. Thus the eigenvalues of each component of the velocity
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operator are +c¢, which says that a particle in an eigenstate of the velocity op-
erator travels at the speed of light!

This means that the velocity operator is not simply related to the momentum
operator relativistically. The eigenstates of any component of & are linear com-
binations of positive and negative energy free particle states and thus cannot be
realized in any physical situation! For any arbitrary state the expectation value
of c& has a magnitude between 0 and c.

14.6.5 Non-relativistic Limit

We now derive corrections to the Pauli equation. Earlier we had

7o (cp—eA)pp +mc*Pa = (E - ed) Yy (14.286)
7 (cp-eA)pa-me®yp = (E -ed)yp (14.287)
or
%-(@.v—E )w3+mcz/},4— (mg—e@)m (14.288)
i c ot
%-(@,v—fﬁ)m—mmpB = 7(m9—e<b)¢3 (14.289)
i c ot
The second equation of the above pair gives (an exact equation)
1 (h 1 0
wB = Ime (; - *A) T’lﬁA - W (’Lha - mc - e(I)) ’lpB (14290)

Now the 4 term is much larger than the ¥ term on the right. Thus, we get
the first correction by iterating once, i.e.

1 h
VB = ( V- *A) TPA
2me \ i
1

0 h e\ .

Substituting this expression into the first equation of the pair we get the first
relativistic correction term to the Pauli equation

: (év—f/i)~%(z’h9—mcz—e@)(zv—fﬁ)fm (14.292)
(3 1 C

4m2c3 c ot

which is ~ (v/c)? smaller than the kinetic energy term p?/2m.
The correction term can be rewritten as

e 2 o e
ich ((?v - EA) -%) (£-7)%a

4m?2¢3
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where

E=-Vo- 1% = electric field (14.293)
c

To lowest order in (v/c) we have

., 0 2 p2
th— —mc”—e®@ s =——14 (14.294)
ot 2m
Using this relation with the identity
(7-a)(7-b)=a-b+i7-(axDb) (14.295)
the correction becomes
4 .
P eh . . . ieh _
| gse + P (Exp)+ syt A (14.296)

The first term is the relativistic correction to the kinetic energy. The second
term is the spin-orbit coupling. The third term is new and is not even Hermi-
tian!

The reason for this non-Hermitian term is that we are only working to order
(v/c)?. Such a non-Hermitian term in the wave equation means that the nor-
malization integral

[ wivadis

can change in time. Now the full Dirac equation obeys the normalization con-
dition

f Propdir = f [Yhva +vppldir =1 (14.297)
To lowest order, however,
2
Up = 5——V - 7ha > Yptp =P~ (14.298)
2imc dm?c

Thus, the integral stays constant to order (v/c)?. It is the integral

2 2 + 2
f Va [1 " 477}172c2:|w’4d3r B / [[1 " 875262]1/)14] [[1 i STSQCQ]wA]dST

to order (v/c)?, that remains constant and equal to 1. This implies that the
correct nonrelativistic limit of the Dirac wave function (the limit whose normal-
ization remains constant in time) is

2

(7, t) = [1 + 877]13%2] a7 t) > / Yrpdir = 1 (14.299)
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The equation for this form of the wave function will not have any non-Hermitian
terms. A large amount of algebra gives the equation for ¥ (7,t) as

L, 0P 2 1 (4 € *)2 p4
h— = —|p--A) - 14.300
! ot [mc * 2m P c 8m3c2 v ( )
eh _ - eh . . . h2 9
_[2ch'B+74m2c2T.( xp)]z/z+[e<l>+ - (VZed)

This is the correct nonrelativistic limit of the Dirac equation. All terms are
Hermitian.

The terms on the right-hand side are

[rest energy + kinetic energy(to order (v/c)?)]
- [Pauli magnetic moment energy + spin-orbit energy|
+ [correction to the potential energy term]

Spin-Orbit Term - Letting A = 0 for simplicity we have

eh . . . eh .
WT . (5 Xp) =——7" (V@ Xp) (14301)

If we assume the potential is spherically symmetric, then

1d®
=——7

v (14.302)
rdr
and we get
eh eh dP e dd . -
P cExp) =D 2 (xp)=-—e D8] 14.303
Am2c2 | (Exp) Am2c2r dr | (7P 2m2c?r dr ( )

which is the spin-orbit energy. It correctly contains the Thomas precession
correction! We do not have to add any terms in an ad hoc manner!

Correction to the Potential - This is called the Darwin term. Now, from
Poisson’s equation we have

V2ed(7) = —~4meQ(7) , Q(F)= charge density producing ®(7)

For a Coulomb potential we get

2

8m2c2

7h

(VZed) = ; Ze25(7) (14.304)

2m?

This term tends to raise the energy of s-states since they do not vanish at the
origin.
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14.6.6 The Dirac Hydrogen Atom

We start with the equations

(ep-eA)pp +mcpa = (E-e®) s (14.305)
(cp-eA)pa - mc*vp = (E - ed)bp (14.306)

where we have substituted ¢ for 7. The potential function is e® = -Z e?/r and
we let A =0. Writing

Qi

Qi

wA=( u; ) : 1/)3:( s ) (14.307)

u Uqg
we get
—;C:E+Z;2—m62:m+%?—i%?+%?:0 (14.308)
_;C—E+Z:2_m62:u2+%f+i%§»_%f:o (14.309)
_;—E+Z7‘¥+mc2-u3+%f_iag;2+%?zo (14.310)
—ffc—E+Z;2+mCQ_U4+(?;+iaaq;1—%f=0 (14.311)

We now use another clever trick I learned from Professor Hans Bethe at Cornell
University to find a solution.

If we consider only large components, i.e., set the small components to zero,
then [E,ﬁ ], which is proportional to & x p, will be zero, since & connects the
small and large components. This means that 14 will be an eigenfunction of L.
In addition, it must contain one spin component with spin up and another with
spin down.

Of course, j and j, are constants of the motion. Hence, for j = £ + 1/2 we can
set

€+m+% e

uy = g(r) Tor+1 ¢

— MY’”*%Q 14.313
us =g\ 5 20 (@) (14.313)

where the unknown function g(r) will be the solution of some relativistic radial
equation.

%(Q) (14.312)

To get the small components we recall the equation

1

T i (cp—eA)va (14.314)

Vp =
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and note that the operator which gives the small component from the large
component has odd parity (p is odd, A =0 and everything else is even) and
commutes with j. Hence, 1) must belong to the same j value as 14 but must
have a different ¢.

Corresponding to j = £+ 1/2 the only other possible value of the orbital angular
momentum is ' = £+1. Therefore, we set (remembering the appropriate Clebsch-

Gordon coeflicients)
, -m+3 m-i
us = Zf(?") W}Q_‘_l (Q) (14315)
, €+m+
ug = =if (r)\/ W Yo 2 Q) (14.316)

where the unknown function f(r) will be the solution of some relativistic radial
equation. Inserting these solution guesses into the 4 coupled equations we find
that for j = £+ 1/2 the connection between f and g is given by

2
1[E+Ze+ ]f_dg I (14.317)
he r dr r

2
1[E+Ze—mc :|g——df—(€ 2)— (14.318)
he r

In an analogous way for j = £ - 1/2 we have

{-—m+ 1 m—l
uy = g(r)\/ YA — 2y, 2(q) (14.319)

s = (N = m+% “3 (0 (14.320)

:_Zf(r)\/€+m 2y % (14.321)
g =if(r)\/ %—_121@’? 2() (14.322)

and
2
e 28 e =% e 1) (14.323)
he T dr r
2
e 29 pelg--Y -t (14.324)
he r dr r

We now define

k:{;(hl) if j=0+1/2 (14.325)

it j=0+1/2
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ie.,

-1,-2,.... if j=£+1/2
e AR, (14.326)
1,2,. it j=0+1/2
We can then combine the 4 equations for f and g into 2 equations as
1 Ze? d
P E+7€+mc2 f_(ﬁ+(1+k)g):0 (14327)
he r dr r
1 Ze? dj
he r dr r
Setting
F=rf , G=ryg
N _mc®+E N _mc®-E
YT ke T he
VA 2
a=(ma)? | 4=25 | p=ar
hc
we get
(i+ﬁ)g_(ﬂ+l)pzo (14.329)
dp p a p
d k
(7_f)p_(%_l)gzo (14.330)
dp p a p

‘We now solve these coupled equations using the standard series method to obtain
the positive energy bound state solutions.

We substitute

F=¢(p)e? , F=x(p)e” (14.331)
and obtain
k
X’-X+7X—(ﬂ+1)¢:o (14.332)
P a p
k
¢/_¢_,¢_(%_1)X:0 (14.333)
p a p
We now substitute the series
¢=p" > amp™ Lao#0 , x=p° ) bpp™ L by#0 (14.334)
m=0 m=0

the requirement that f and g be finite everywhere turns out to be impossible
to satisfy. Instead, we require that the integrated probability density be finite,
ie.,

[}

[ [F@F +1G()]dp < o0 (14.335)
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This makes sure that s # —co. Substituting the series and equating coefficients
of the same power of p we get the recursion relations

(s+v+k)by — byt — yay — Lay_1 =0 (14.336)
e
(s+v—k)ay - ay_y + by — 2by_1 =0 (14.337)
e
For v =0 we get
(s+k)bo —vao=0=(s—k)ag +vbo (14.338)
These equations have a nontrivial solution if and only if
5= (k2 -~4H)1/2 (14.339)

First we look at the negative root. For small p the integrand for the integrated
probability density is ~ p>* and we must have 2s > -1 or (k?-=~4%)"2? > 1/2. The
minimum s occurs when k2 = 1. This corresponds to Z > 109. For k? > 1, no
value of Z will permit the negative root.

Restricting ourselves to Z < 109, we choose the positive root s = (k2 —~42)'/2,
For k=1, s<1, f and g diverge at the origin. The probability density integral
converges, however.

The recursion relations lead to function of the order e?” (the probability density
integral would diverge) unless the series terminate. Suppose the series terminate
for v =n',ie., ay41 = bpre1 =0. We then have from the recursion relations that

Qi = —aby , n'=0,1,2,.... (14.340)

We now multiply the first recursion relation by « and the second by «; and
subtract them to get

byla(s+v+k)-a1y] =a[ari(s+v-k)+ay] (14.341)
Inserting v = n’ and using aia, = —ab, we get
2F
2a(s+n') =v(a; —az) = h—’y (14.342)
c

Putting everything together we get

-1/2
2 2

-1/2
E =mc? [1 + 7] =me? |1+ i (14.343)

(s+n/)? (n+ VB —2)

Since |k| = j + 5 we get

-1/2

,n'=0,1,2.. j+3=1,23,..

(14.344)



where v = Ze?/he.

Before looking at the physics in this result let us investigate an alternative ap-
proach involving a second-order Dirac Equation. The first-order Dirac equation
is

5(m%—f1)¢(m)=o , ﬁ:ca(%v—gﬁ)wmche@ (14.345)

We now define the projection operator P as

ﬁ(ih% —ﬁ) +2mc?

2mc?

P-= (14.346)

and operate on the Dirac equation from the left. After some algebra we get

2

2
[1 (zhg - e@) - (EV - E;l) -m?c® + ch (

c? ot i c c

Q

B —id- 5)] Y=0 (14.347)

where we have used the relations

2 2
[a~(§v-fﬁ)] = (ﬁ,v-fﬁ) P (14.348)
1 C 1 C C
and 5 8
[f_v -4 - eq>] = —ihez (14.349)
i c ot

The new second-order equation is just the Klein-Gordon equation with an ad-
ditional term (5 -B—ia- 5), which represents the direct coupling of the electro-
magnetic fields to the magnetic(and electric) moments of the particle.

Every solution of the Dirac equation is a solution of this new second-order equa-
tion, but every solution of the second-order equation in not necessarily a solution
of the Dirac equation.

If, however, ¥ is a solution of the second-order equation, then ¢ = Pz/) is a
solution of the Dirac equation. We can see this as follows. The second-order
equation can be written as

Pj (m% - H) »(F,t) =B (m% - H) Pi(7,t) =0 (14.350)
or the second order equation is equivalent to
(mﬁ - H) (7, t) = (mﬁ - H) P(7,t) =0 (14.351)
ot ot T '

This says that P acts as a projection operator, which reduces solutions of the
second-order equation to solutions of the first-order Dirac equation.
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Let us now use the second-order equation to find the energy levels of the Dirac
hydrogen atom (Glauber, et al PR 109,1307(1958)). For a stationary state of
energy F in the Coulomb potential the second-order equation becomes

1 7e2\° (h_\? hZe?
L(e+2< —(<V) —m2e+ P2 =0 (14.352)
c? r i r2c
where «,. = & - 7. We now write
h \> A29* , I?
) =St 14.353
(2' ) 72 8r2r r2 ( )

and get the equation

T Ze? 2 Ze?
E?-m2c* 2EZe? h? 07 , L2_( c ) _Zh( c )O‘T’
e N — $=0 (14.354)

C

We now use a few tricks to change this equation, which is almost in the same
form as the Klein-Gordon equation for the Coulomb potential, into exactly the
same form.

We first define the operator
i N
K:,@(1+a-h) (14.355)

with these properties
[K.a-p]=0 , [K,a-7]=0 , [K,r?]=0 (14.356)

G (14.357)

H=cd- p+pBmec’ — — (14.358)
for the relativistic hydrogen atom.

This says that K is a constant of the motion and since it also commutes with the
total angular momentum we can label the common eigenstates or energy levels
of the hydrogen atom by the eigenvalues of K, J? and J,. K is a constant of the
motion for any spherically symmetric, spin-independent potential and physically
it measures the degree to which the spin and the orbital angular momentum of
the particle are aligned.
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Let us find the eigenvalues k of K. We note that

X L L L
K2: 1+ -— =1 g — 25 - —
( v h) +( h) 25k
L-L Lo . L
:1+(h2 +h2 -(LxL))+20-h
:1+(Lh'2L+h12& (ihL) +25.%

= 4= (14.359)

where we have used

Therefore, we have

. 1 )
k2:3(3+1)+1:(3+%)2 (14.360)
Now, since {K,’y5} =0 we find that, if k is an eigenvalue of K, ie.,
K |k) = k|k) (14.361)

then X A
Ks|k) = s K |k) = ks [k) (14.362)

which says that —k is also an eigenvalue of K. The eigenvalues are then
k=41, +2, £3 ....... (14.363)

since j = 1/2, 3/2, 5/2, ........ Note that zero is not an eigenvalue of K. In addi-

tion, an eigenstate of K with eigenvalue k is an eigenstate of J? with eigenvalue
Jj=k-1/2.

We now find the energy eigenvalues. Define the operator

R . Ze2
A=-BK - ih—eaT (14.364)
C
with the properties
PPN P Ze?\”
[A,K]=0 , [AJ]=0 |, A2=K2—(h) (14.365)
c



A little algebra then shows that

22 2
h2[\([\+1):i2—(ze) —m(ze)ar (14.366)
C

c

which is the operator in the last term of the second-order equation. We can
then write

E? -m?2ct 2EZé? 292 ZA(A+1
me | € iiQ h("')]w 0 (14.367)

c? rc? rZ Or?

This is exactly the same form as the Klein-Gordon equation except that
O +1) > AA+1) (14.368)

or a number has been replaced by an operator. Now if 1)(7) is an eigenstate of
A(A+1) then the operator A(A+1) in the equation is replaced by its eigenvalue
which we can write as ¢/(¢' +1). This says that the energy eigenvalues are given
by the same formula as in the spin zero case, i.e.,

2
F=—— n'=0+1+v

[z |

Since f\7 K , j? and J, all commute, we can construct solutions which are
eigenstates of K, J% and .J, as well as A.

v=0,1,2,..... (14.369)

A does not commute with H however. This means that the solutions we have
found for the second order equation cannot directly be eigenfunctions of H.
Instead, since

H(Py) = E(PY) (14.370)

Le., the energy eigenvalues from the second-order equation are also the eigen-
values of H, we can find eigenfunctions of H by using the projection operator

P. Since P and A do not commute, the eigenfunction of H , namely P?/J, will
generally be a linear combination of different A eigenfunctions.

To find the energy eigenvalues we need to know the eigenvalues of A. Consider
an eigenstate of A and K with eigenvalues k. We then have

A2Jk) = A2 k) = (f{? _ (th)Q)m) (k2- (Zhec ) )|k) (14.371)
A= (k2 - (th)2)l/2 (14.372)
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and the possible eigenvalues of A are +A. When A(A +1) acts on a (A ,K)
eigenstate it has the eigenvalue +A(+A+1) = ¢/(¢'+1). This leads to two possible
¢’ values for each eigenvalue of A:

A -A-1 for A=A\
e’:{ ’ o (14.373)

A A-1 for A=-\

For each eigenvalue of A, the two ¢ solutions add up to —1. The smaller of
the two solutions —lambda and -\ — 1 are eliminated because they are not
normalizable (behavior near the origin). This leave two cases to consider:

(1) A=Xx , =)
(2) A=-) , ('=X-1
The possible energy eigenvalues are given by

mc2

4 74
E:W s TL:€ +1+v s V:O,l,Q7 ..... (14374)
[1 + (hcn’) ]
or redefining some quantities
A . 1 . 1 2 Ze2 2
n'=n-lkl+X=n-j-2+\|(j+3) - v (14.375)
c
so that n takes on the values
n=|kl,|kl+1,kl+2, e forA = -\
n=lkl+1, kl+2,|k+3, e forA =\

the energy levels are then given by

-1/2

(%)
E=mc|1+ he - (14.376)

iV - ()]

The quantum number n is just the principal quantum number of the hydrogen
atom.

The energy level structure looks like Figure 20.2 below.
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ET n=|k|+1 n=kl+1

Figure 14.2: Dirac hydrogen energy level structure

where the left sequence corresponds to A = =\ and the right sequence to A = A.

Some Features

The energy levels for the spin 1/2 particle are the same as those found for the
spin 0 particle with ¢ — j.

The energy is real only if
1 2e (14.377)
IS e '

which corresponds to Z < 137 for j =1/2.

The Dirac theory leads to an accidental degeneracy in /£, i.e., states with the
same j but different ¢ have the same energy. This degeneracy is removed by the
Lamb shift, which is due to the interaction of the electron with its own field. As
we shall see later, for j = 1/2, the effect is one order of magnitude smaller then
the fine structure splitting. For j > 3/2, it is two orders of magnitude smaller.

An expansion in powers of Za, where
o2
a= = fine structure constant (14.378)
c
looks like
Z%a?®  (Za)*
2n2 2n3

E,;j=mc|1- ( ! —3) O((Za)6)] (14.379)

Jj+ % an
which agrees with the perturbation calculations we carried out earlier.

Some Details about the Energy Levels

The solutions of the Dirac equation are not A eigenstates but they are K eigen-
states and K is a constant of the motion (it commutes with the Hamiltonian).
The total orbital angular momentum L is not a constant of the motion and
neither is L2. We need to come up with some way to classify the energy levels
in the relativistic hydrogen atom using the eigenvalues k.
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To get a handle on how to proceed we look at the nonrelativistic limit where
A - -BK — —K for positive energy states (14.380)

We expect the solutions of the second order equation with one sign of A to
correspond to solutions of the first-order equation with the opposite sign of K.
This means that

n=kl,kl+1,|kl+2, e forA=-A->k>0
n=kl+1,|k+2, k+3, .. for A=A->k<0

It turns out to be convenient to still label the solutions by the £ value that they
would have in the nonrelativistic limit. To find this ¢ value we use

2 L . [L?
K2:1+E+U.E:6K+ﬁ
. L2
R(K-5)=25
In the nonrelativistic limit, 8 - 1 and we have
N L?
K(K—l):ﬁ >k(k-1)=4(£+1) (14.381)

so that ¢ becomes the total orbital angular momentum quantum number in the
nonrelativistic limit. Solving for ¢ in terms of k we get
k-1=4j-1/2 for k>0
- Si-12 for (14.382)

|k|=7+1/2 for k<0

Now K measures the alignment of the spin and the orbital angular momentum.
The above results say that for k > 0, they are essentially parallel and so j = £+1/2
and for k < 0 they are essentially antiparallel so j =£¢—1/2.

A detailed calculation of the wave functions shows that the upper two com-
ponents of the wave function (the large components) are eigenstates of total
orbital angular momentum with eigenvalue ¢, while the lower two components
(the small components) are eigenstates of total orbital angular momentum with
eigenvalue £+ 1 for k£ > 0 and with £ -1 for k£ <0.

The complete energy level scheme for the relativistic hydrogen atom for n =1,
2, and 3 looks like Figure 14.3 below.
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n=3 k=2 k=-2
- _P3(2 _D3|’2
k=1 k=-1
_S”2 _P”2
k=2
_P3f2
n=2{ k=1 k=-1
_8”2 _P”2
k=1
n=1{ 8“2

Figure 14.3: Energy level structure for relativistic hydrogen

The complete degeneracy of a given n in the nonrelativistic case is lifted by
relativistic effects. The degeneracy between states like 151/, 2P35, 3D5),
4F73, etc is now broken. The degeneracy still remains between states like 2.5 /5
and 2P, 5, 3512 and 3Py 3, 3P32 and 3D3), etc., levels.

All levels except 1512, 2P3/2, 3Ds)2, etc., are 2-fold degenerate because they are
the eigenstates of of K with opposite eigenvalues, i.e., 2Py > k =2, 2D3/5 —
k=-2.

Hyperfine Structure

The are two corrections that modify the energy level results from the Dirac
equation. The two-fold degeneracy is removed by the interaction of the electron
with vacuum fluctuations of the electromagnetic radiation field. This effect is
called the Lamb shift. In addition, there is also a hyperfine interaction which
splits every level into two, It is due to the interaction of the electron with the
magnetic moment of the proton. We consider hyperfine splitting first.

As an example we derive the hyperfine splitting of an s—state using nonrelativis-
tic first-order perturbation theory. The interaction of the electron spin with the
magnetic moment of the proton is given by

le[ 2
2mc

o =

G- B(7) = ppd - B(7) (14.383)

where B(7) is the magnetic field due to the magnetic moment of the proton.
This magnetic moment is given by
Y le[hgp . _ 1

M, = T Gp = igpup(?p (14.384)

where g, is the gyromagnetic ratio of the proton, m, is the proton mass and
hd,/2 is the spin of the proton. The magnetic field from this magnetic moment
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(assuming the proton is fixed at the origin) is given by the relations

- ~ 1
A(F)=-M, xV (7) = vector potential (14.385)
T
B(7) = vV x A() (14.386)
B(7) = =V x (6, x v)—g;”p (14.387)
r
This gives
~ . . 1
H' = ~gppippipo - (V x (G x V)ﬂ)
- . 1
= ~gphnip0  (Gp(V-V) = V(G V) o
Lo R R 1
= 9oty ((7-6,)(V-V) = (G- V)(G, V) o (14.388)

The first-order shift of the level is

(1) = ~gonniy [ @@ [(6 6,0 (7-9) (G- 9)@ D) 5
(14.389)
where the brackets (.....) denote the expectation value in the relative spin state
of the electron and proton and ¥(7) is the nonrelativistic wave function of the
level. If we only consider s—states, which are spherically symmetric, then

(5-9)(5, 9)) = 5 {5 5,)) 7 (14.390)

and we get

(ﬁ,>:_lgp.uBﬂpfd3T|1/)(F)|2((6~&p)>(V2i)

3 2r
47 Lo = i
- Sapnniny ((3-3,) [ drp)Poe)
47 Lo
= gy (5 ) [ (O)f (14.391)
where we have used )
V2= = —47m6(7) (14.392)
r
For the hydrogen atom s—state
2 1
[(0)" = ———3 (14.393)
m(nag)3
and we get
- 2( e m a?
H)=>|—|g9p——= (-5 14.394
( > 3(2a0)gpmp n3 ((o Jp)) (14.394)
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We then have

F=S8+1I= total spin (14.395)
For S=1,1=1, we have F = 0(singlet) , 1(triplet). But
F=S+I->F?*=582+1>+25-T (14.396)
o h2 h2
S-T="766,= 5 (F(F+1)-3/2) (14.397)

We then have for a relative triplet state ((6-5,)) = 1 and for a relative singlet
state ((6-,)) = —3. This says that the singlet state lies lower than the triplet.

The total splitting of the ground state is

2
A=) g, a2 (14.398)
3\ 2a9 my

between the triplet and singlet. The transition between these two levels gen-
erates radiation with a frequency of 1420 M Hz and a wavelength of 21.4cm.
This radiation is very important in astronomy. From its intensity, Doppler
broadening, and Doppler shift, one obtains information concerning the density,
temperature, and motion of interstellar and intergalactic hydrogen clouds.

The Lamb Shift

The coupling
Hie = -5 /d3rj(f) AR (14.399)
c

of the electron to the quantum mechanical radiation field causes a shift in the
energy levels of the hydrogen atom. Although not an exact calculation, we can
get some idea of the fundamental difficulties in quantum electrodynamics by
doing a nonrelativistic second-order perturbation calculation.

We consider an electron in the state [n) with energy ,. Because of the above
interaction (see last part of this chapter) the electron is able to spontaneously
emit a photon thereby going to some state |n'). This produces a second-order
shift in the energy given by

|(n/, BX| Hine [, 0)|”
Ent — ck

(14.400)

AE, ZZ

n’ kX En ~

where |n, 0) is the initial state with the electron in |n) with no photons present,
and |n k)\> is the intermediate state with an electron in |n’) and on photon of

momentum % and polarization A present. The energy of this intermediate state
is &, + Ck.
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From the quantum theory of electromagnetic radiation (see end of this chapter)
we have that

2mh2c? v,
G (| g - A" n) (14.401)

(', kX Hing I, 0) =

where 5,; is the k' Fourier component of the current 5(?) Therefore,

> || 5 - X5 )

Bk 27wh?e? X
AE, = f
(2mh)3  ck Z En —En —Ck

n

JaQ g (|G- X )]
A

2 2
ZTZ]; %k ; En —Ens —Ck (14.402)
In the dipole approximation, we can use
3,; - jo = % , p= electron momentum operator (14.403)
The angular integration over the polarizations is given by
J oStz X f = 0 [ ao Shnts A f = % L1051

where the factor 2/3 comes from the fact that there are only 2 independent
polarizations for each k value. This gives

2¢? !
AEn:Lf wiw Z' |p|”>| . w=ck (14.404)

3mhedm? J Een—En —

The first problem we encounter is that the w integral diverges!! This means that
the interaction with the radiation field produces an infinite shift downward in
the energy of the electron.

This result presented theoretical physics with a great difficulty for many years.
In the late 1940’s it was resolved due to the work of Feynman, Schwinger and
Tomonaga in producing new calculation rules within the context of quantum
electrodynamics and by Bethe and Weisskopf who actually carried out the cal-
culation using the new rules and got a finite number agreeing with experiment.

Let us try to understand some aspects of what happened.
If we do a similar calculation for a free electron, then one gets an infinite result

again. In the dipole approximation, we can evaluate the energy shift for a free
electron in a momentum state |p). We get

22 [ (alB1p)”
AE;= ——— f wd _— 14.405
P 3mhe3m? J wzq: Eq—Ep—W ( )



Since this is a free particle e, — €, = 0 and we have

[}

2¢” (51 51) 2>, [
AE;=——% f d - / d 14.406
P 3rhedm?2 J waw w 37rhc3m2p J w ( )

which is infinite. What Bethe and Weisskopf noticed was that this expression
is proportional to p?. In their development of quantum electrodynamics, Feyn-
man, Schwinger and Tomonaga had similar problems which they were able to
deal with be redefining the electron parameters that appeared in the theory
(like mass and charge). The process is called renormalization. In this process
all infinite expression are consistently incorporated into the mass or charge pa-
rameters and then these are defined to have the known experimental values.

In our case, we can interpret the infinite result as redefining the mass, i.e., as
representing a shift of the mass of the electron. In terms of the mathematics,
this means the following. If we say that m is the mass and p?/2my is the kinetic
energy of a free electron of momentum p neglecting the electromagnetic interac-
tions, then the energy including the effects of the electromagnetic interactions
is given by

2 1 2 2 1 2
L AE, - ——Lfdw r__r (14.407)
2my mgo 3mhcdm? J m 2

i.e., we have renormalized the electron mass. The so-called electromagnetic self-
energy of the electron can thus be interpreted as giving a shift of the mass of the
electron from its bare (no electromagnetic interactions) value mg to its observed
(measured in the laboratory where all interactions are present) value m.

We then argue that the reason the interacting electron has an infinite energy shift
is that it includes the infinite energy change that we already have counted once
when we use the observed mass m rather than the bare mass in the calculation
and, thus, we are double counting. In other words, we should really start out
with the Hamiltonian for the hydrogen atom in the presence of the radiation
field given by

~ p2 62 ~

H=—-—+Hy (14.408)

2mg T

Then using the corrected expression for m we get

2 2 2 x
AP e - 2e f
H=—-—+|Hpy+———— d 14.409
2m r ( * 7 3rhe3m?2 J w) ( )

This means that if we write the observed free particle mass in the kinetic energy
(which we always do) we should not count that part of Hi,, that produces the
infinite mass shift, i.e., we should regard

[}

H +2762de (14.410)
T 3 rhedm2 J ’
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as the effective interaction of an electron of renormalized mass m with the
radiation field. It is now finite to second-order of our calculation. Feynman, et
al, showed that this could be done to all orders of perturbation theory!!

We therefore modify our calculation by adding in the required term. We get

NS /""wdw(z |<n'|za|n>|2+|<n|ﬁ|n>|2) o

" 3mhcdm? ) S en—Ep —Ww w

Using completeness, we have

2
(n|p*In) =" (nlpln’) (n|pln) = 3" [(n|p|n)] (14.412)
so that
2¢2 s €t — €
AE = —=C S f dw—n " En 14.413
" 3mhcdm? ; [{lp i)l 2 wﬁn —En W ( )

The integral is still divergent but only logarithmically and, in fact, not at all
in more sophisticated relativistic calculations. We can imagine that the correct
calculation would yield a similar result but with a convergent integral. We can
simulate this result by integrating to some cutoff value (and not to infinity) say
at hw = mc?. We then get

2

262 mc

2
AE;L = 3rhePm2 Z |(nl|P|n>| (en —en)tn

(14.414)

Enr —En

where we have neglected quantities the size of &, — €, in comparison to mc?.

Bethe evaluated this result numerically and obtained AE], = +1040 megacycles
(the 2Py /5 level turns out to be shifted downward) and the observed value equals

+1057 megacycles, which is remarkable agreement!

Taking into account both the Lamb shift and the hyperfine splitting we have
the level scheme shown in Figure 14.4 below for n = 2:
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Figure 14.4: n =2 Energy level structure for relativistic hydrogen

Dirac Hole Theory

Finally, we tackle the problem of the negative energy states in the Dirac theory.

As we said earlier, there is no simple conservation law that prevents an electron
or any other spin 1/2 particle in a positive energy state from making a radiative
transition to a negative energy state. This means all atoms must be unstable!
An energy diagram is shown in Figure 14.5 below.

radated photon
allovned JJJJJJJJ -
energies v
' electon P
making
transition

Figure 14.5: n = 2 Energy level structure for relativistic hydrogen

The properties of the positive energy states show remarkable agreement with
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experiment. Can we simply ignore the negative energy states? The answer is no
because an arbitrary wave packet, as we saw earlier will always contain negative
energy components via interactions even if we start off only with positive energy
components.

Dirac proposed a clever way out of this dilemma : since spin 1/2 particles obey
the exclusion principle, all one needs to do to insure stability is to say that the
negative energy states are completely filled. Then a particle cannot make a tran-
sition from a positive to a negative energy state for this would put two particles
into the same (negative energy) state. The vacuum state in this picture consists
of an infinite sea of particles in negative energy states. The particle and charge
density at every point is infinite. This is not a problem for the physical theory
since Dirac contended that we only measure deviations from the vacuum. In the
absence of any potential, the charge density of the negative sea is uniform and
Dirac argued that this charge density can produce no forces, since by isotropy,
the forces have no special direction to point!

Now this theory has some very useful special property. Suppose that we remove
a negative energy electron from the vacuum. What is left behind is a hole in
the negative energy sea. Measured with respect to the vacuum, the hole would
appear to have positive charge and positive energy,i.e., since it is the absence of

negative charge and negative energy. Dirac interpreted it as a positron, which
is the electron antiparticle.

vacuum state excited state

N
N\

Figure 14.6: A hole appears

.- hde

Let me say that again..... an excited state of the vacuum arises as shown in the
figure. A negative energy electron is excited into a positive energy state, leaving
behind a hole with charge —(-e) = +e and the same mass as the electron, which
is the antiparticle. It looks like a positive charge since if we apply an electric
field the infinite sea of electron translates opposite to the field direction, which
is unobservable since the sea is infinite. However, the hole seems to be traveling
in the direction of the field like a positive charge!
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In this way, antiparticles appear in the Dirac theory as unoccupied negative
energy states, which is very different from the way they appear in the spin zero
theory.

This Dirac hole theory gives a simple description for pair production. Suppose
that a photon of energy > 2mc? traveling through the vacuum is absorbed by
a negative energy electron and the negative energy electron gets excited to a
positive energy state. What remains, as we have said, is a hole in the negative
energy sea, i.e., a positive energy positron and a positive energy electron. This
says that pair production is simply the excitation of a particle from a negative
to a positive energy state.

Since we could exchange the roles of positrons and electrons in the entire Dirac
theory, electrons would appear as holes in a positron sea. This forces us to
conclude that negative energy seas cannot have any physical reality. The hole
theory is simply a mathematical model that allows us to do the correct book-
keeping within the framework of a single-particle Dirac theory.

With a filled negative energy sea, the Dirac theory would become a many-
particle theory in which we are unable to take into account the interactions
between these particles. The Dirac theory gives valid results only when these
interactions can be neglected. For example, in the hydrogen atom, the mod-
ification of the Coulomb potential by vacuum polarization accounts for about
2.5% of the Lamb shift.

If we second-quantized the Dirac theory, we can treat both particles and an-
tiparticles on the same basis.

The full relativistic quantum field theory of the electrons and positrons and
their interactions with photons was carried out by Feynman, et al in a theory
which is beyond the scope of these volumes.

14.7 Electromagnetic Radiation and Matter

14.7.1 Interacting with the Classical Radiation Field

We assume classical EM radiation in the transverse gauge, where
o(Ft)=0 , V-A(7t)=0 (14.415)

The electric and magnetic fields are given in terms of the vector potential (in
this gauge) by

1A

S

B(7,t) = V x A(7,t) (14.416)



The electromagnetic energy is given by

2(= 2(=
E:fd3f€ (T’t)gB (7 ) (14.417)
Y

and the rate and direction of energy transport is given by the Poynting vector

B(7, 1) = ig(m) x B(7,1) (14.418)

The radiation field generated by a classical current j(ﬂt) is given by
1 0%\ - 4
2 i(7.1) = C L
(V 2 8t2) ("8 =- c AL (14.419)

where | means the transverse/divergence-free part.

We first consider the monochromatic plane wave solution of this equation. It

takes the form ~ o L
AR, 1) = ake® it 4 ik Pict (14.420)

where

w=ck

=2
A = polarization vector with |)\| =1

« = amplitude = constant

To insure that V- A(7,t) = 0 we require \-k = 0 which corresponds to transverse
polarizations only.

The energy per unit volume in the electromagnetic wave is

e2+B? 2
8 2mc?

[|a|2 -Re (aZAQeQiE'f*int)] (14.421)

The quantity Re(..) oscillates in time and averages to zero so that the average
energy density is

E w2 2
= @ 14.422
volume  2mwc? o] ( )
In a similar way the time average of the Poynting vector is
UJ2 2 2
— |a|" k (14.423)
27c

Any general wave solution is a linear superposition of these monochromatic wave
solutions.
- -e
A(7t) = Z Aps A—=—
OB vV
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where the sum is over all allowed k values and over the two orthogonal A polar-
izations for each k such that A-k =0 and we have assumed that the universe is
a very large box of volume V. The total energy in this wave solution is

w2 2
E= kz; 53 |4z5] (14.425)

How does this classical electromagnetic field interact with a quantum mechanical
particle?

In general (no transverse gauge at this point), the classical Hamiltonian is

- (ﬁ_i;;?(f’t)) +ed(7,t) + V(7,1) (14.426)

where V(7,t) represents all the other potentials seen by the particle.

We get to quantum mechanics via the standard substitutions
L L h
"=>Top 5 P =>Pop= zv (14.427)

Substituting, we get the Schrodinger equation for an electron in an electromag-
netic field

L OU(7,t) ~
th— =

[1 (év - efl(f,t))2 +ed(F,t) + V(7 0) [0(F, 1) (14.428)

2m \ 1 c

14.7.2 Relation to Gauge Invariance

In order to have the Schrodinger equation invariant under a gauge transforma-
tion, the wave function has to change by a phase factor,i.e.,

P (F,1) = e neX(TDe(7 1) (14.429)
where x(7,t) is the some scalar function.

This means that the solutions of the gauge-transformed Schrodinger equation
will still describe the same physical states.

The wave functions or state vectors differ by a phase factor that depends on
space and time and thus, the invariance is LOCAL rather than GLOBAL (a
phase factor independent of space and time).

It is then clear that it is NOT the canonical momentum p — —ihV (whose
expectation value is NOT gauge invariant), but the genuine kinetic momentum

p- LA 1) (14.430)
C



(whose expectation value IS gauge invariant), that represents a measurable
quantity.

In any physical system, if the momentum operator p appears, then it must
always be replaced by A )

V(7 1) = e me XDy (7 1) (14.431)
if we turn on an electromagnetic fields. This is the only way to guarantee gauge

invariance in quantum mechanics.

Quantum mechanics + electromagnetism requires minimal coupling for gauge
invariance to be valid.

14.7.3 Interactions
We now write R R R
H= HO + Hint (14432)
where
9

Ho= 2 v vt (14.433)
2m
is the Hamiltonian in the absence of electromagnetic fields and

Hin = 5 (5 A(F.1) + A1) - 7) +

C A ) +ep(Fit)  (14.434)
2mc?

is the operator giving the interaction between matter and radiation.

One must treat the term - A(7,t) + A(7,t) - p with care since [2;,p;] = ihdy;. In
general, we can show that

p-A(F,t) - A(F,t) -5 = —ih (V- A(7,1)) (14.435)
which says that
p-A(F,t) = A(7,t) - p only when V- A =0 (14.436)
or when we are operating in the transverse gauge.

For multi-electron atoms we have

—( i AGD) szj $(Fit) +V (14.437)

i=1

N
=3
and

R N
Hnt = Z{_
=1

2:10 (B - A(Fi 1) + A(Fi,t) - i) + 2(7;,t) + €¢(7’iat)}

(14.438)
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We now define a particle number density
p(7) = Z o(7—174) (14.439)
and a current density
- 1 pi pi
i(F) = fZ(p—(S(F—Fi)+6(F—Fi)p—) (14.440)
25 \m m

where we constructed a symmetric combination of the terms so that the operator
would be Hermitian.

These quantities imply that
S ep(fint) =Y f B ed (7 - 7;)o(7,t) = f Brep(F)p(7,t)  (14.441)

where ¢(7,t) # operator (all operators are in p(7)) and
f d37p(7) = N = total number of particles (14.442)

Finally, we have

'N {—i(}--A(Fi,t)+fl(ﬁ,t)~ﬁi)} = —Efdgﬁ(F)-Zl(F,t) (14.443)

5= S 4 (14.444)
m mc

when an electromagnetic field is present, the true current operator is

J(7) = §(7) - i]l(?’, t)p(7) = (paramagnetic + diamagnetic) currents
me
(14.445)
and therefore,

2

€ P A ) + eo(F,0p(F) | (14.446)

o 32| €7/ A
Hlnt—/dTI: C](T) A(T7t)+2m

14.7.4 Induced Absorption and Emission

We will now use the transverse gauge, which says that the ¢(7,¢) term is zero.
We also assume that the radiation fields are small compared to the fields inside
the atom, i.e., |A| << €?/ag, which implies that we can neglect the A2 term

compared to the j - A term. Therefore, we have
i ==5 [ 7)) A1) (14.447)
c
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For A as a linear superposition of monochromatic plane waves we then have

Hine = —Z f dSP(; > (f;é(?—ﬂ) +5(7’—ﬂ-)i§))

7

N Bi ik —iw * Y% Pi =ik +iw

[ A A T

20V %3 q +Azx e’ "”‘“’Jt%+A]i;3\)\*e_’k'”+’“t%

e . - L.

- Apsj o de @4 A% G Nreit (14.448)

C\/VEZ;\:[ kX -k EXE ]

where

- 1 Di _ikr, —ifwﬁi) [ 3 ik
LS (P ik P C [y 14.449
Jomy o (Bt et ) - [ gt (14.449)

?

As we saw in the discussion of time-dependent perturbation theory for a har-
monic perturbation, the e ™? term implies an absorption of radiation process
and the ¢! term implies and emission of radiation process. Following the same
steps as that case, we have for the absorption transition rate

2T

62 2 - - 2
= ?5(% -0~ hw)ﬁ |Azx[” [(nl 7z - A0}

(14.450)

To find the total rate of transition we must sum over % and A (2 polarizations
for each k) to get

s 2w e? 2 - e 2
Tg%, = —— > 6(en —c0 - hw) = |Azx| [(nl_; - A10)] (14.451)
hV 3 c
Now we can write ) )
1 k=dkdS) dwd$)
—Z»f - :/w “e (14.452)
V< (27) (27c)
so that
abs _ 2me* w? O LA< L il S 10)
Lon = h2e2 273 /d Zj\:| EX |<n|31%>‘|0>‘ (14.453)
where . e
w=-"""% (from the § — function) (14.454)

If the incident light beam subtends a solid angle df2 and it is polarized with
polarization vector A , then the total rate of energy transport in the beam is
the time average of the Poynting vector which is given by

1 w? 2 w? 2
7 2 Ml - a0 J e Al (14.455)
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Now

I(w) = dQ(2 i |Ak>\|
= intensity of the incident beam per unit frequency (14.456)
In a similar way
ind emis 47T 6 %
Tog™ = 2 1(w) [(nl jg - A o) (14.457)
Since
{nl gz - A7[0) = (nlj_z - Al0)" (14.458)
we have ‘ ‘
pabs - pind emis (14.459)

(this is the origin of the Einstein A and B coefficients).

In the absorption process, the absorption of one photon of energy hw = g, — &g
causes an upward transition. The electron gains energy and the electromagnetic
field loses energy. Induced emission is just the opposite.

Now a photon of frequency w and energy hw and therefore, the total energy in
the incident beam is
E= Z hwNz5 (14.460)
EX
where N5 = the number of photons in the (12,5\) mode in the beam. But we
already have

(14.461)

EZ |12X

which says that

2
Nix (14.462)

and thus

472e?

wV

Fabs _ Fmd emais
0-n

5(en—c0-hw)|(nlj ¢ - AO) Nes  (14.463)

=
>4

14.7.5 Quantized Radiation Field and Spontaneous Emis-
sion

Up to this point we have been treating the electromagnetic field classically as a
wave. We have mentioned the idea of photons, but have not created any formal
quantum mechanical structure to describe them, i.e., we have been considering
what happens to the atom and ignoring what is happening to the EM field
during these processes.
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To bring out the structure of the theory in terms of photons, we must now
describe these processes in terms of state vectors, such that, in the absorption
process the atom makes a transition from |0) — |n) while the electromagnetic
field makes a transition from an initial state to a state with one less photon (it
has been absorbed).

All of our development so far has involved what is physically called an incoherent
beam of light.

We related |AE5\ and Ny so that knowledge of the N;; clearly does not imply
any information about the relative phases of the A;y which is the meaning of
the term incoherent.

An incoherent beam, therefore, is completely specified by the photon numbers,
i.e., the N;x. It is in this sense that we can write the initial state(normalized)
of the electromagnetic field as

IVz 50 N5 r oereees Nigs oo ) (14.464)
where, as before, the N5 = the number of photons in the mode (7@, 5\)

Any two of these states are orthogonal if they differ in the number of photons
in any mode.

The final state of the electromagnetic field after photon absorption of a photon
in the mode (k,\) is

INi 5 Nissgr oo Nig = 1y oo ) (14.465)

We assume that there exists some H’mt that causes both transitions (atom and
electromagnetic field) as it couples the electromagnetic field to matter. We
define

initial state =[0)|Nj 5, Ni 5o Nigo coeres ) (14.466)
final state = [n) [Ny 5, N 5,0 N = 1o ) (14.467)
so that
Einitiat = €0 + ., hck'Np 5, (14.468)
BV
Efinal =€&np+ Z hck/N};,;\, — hck (14469)
BV

The transition rate between the two states is given by Fermi’s golden rule as

2 .
320 — 20— hw) |( fimal] Hin linitial)|’ (14.470)
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This must be the same as our earlier result (20.463) which implies that we must
have

2
\( final| Hip linitial)|” = ‘;; 1Az [l 7i - MO

€2 27rhc

i N 2
=z, Neallig-Al0)] (14.471)

This implies that as yet undetermined operator H;,, must have the following
properties:

1. it must include a part j_;ﬁ - X that acts on the atom

2. it must have a part that decreases the number of photons in the (k,X)
mode by 1

3. it must be Hermitian

One way of doing this is to write

Hine = —7= 2, (Fgr - AALE 4 G- A ALY (14.472)
k: X’

where A%p) reduces the number of photons in the (/%,5\) mode by 1. It is a

photon in mode (Tc,j\) annihilation operator.

The second term is required to make .FAImt Hermitian. Using this model we then
have

(final| Hypy |initial)
(n Nkl/\l NE23\27 ""N%S\ -1 -~~-|Hint |0;NE15\1’N%23\27 ""’NESU >

= - (nlj_; - XJo)
c
(op)
x (Nfﬂj\l’N%:\z"""NE |A 4 ’NE15\1 NE25\2 NES\’ )
(14.473)
For agreement with the earlier result we must have
(op)
(Vi Nigsgs oo Nis = 1| A ING 50 Ny oo N o)
2mhc?

= ” Nes (14.474)

This matrix element of Al(;xp ) corresponds to the A5 term in the classical field
picture.
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The matrix element implies that

(op) *
(N,;l;\l,N,;2;\2,...,N,~c;\ |A P |N,~€1;\1,N,~€2X2,...,N,«CX,...)
(op)
=(J\f,»ﬂl,]\f,ém,. ., |A p+|N,51;\1,N,52;\2,...,N,a—1,...)
2mwhc?
_ . Nix (14.475)

which says that A( P)* is an operator that increases the number of photons in

the (K, X) mode by 1. It is a photon in mode (k,\) creation operator. We thus
have

Ice
1 |NE15\1’N1;25\2 Nfcf\?)
2mhc?
VN IV Ny Nis = 1) (14.476)
(op)+
AT NG 30 Nigsa s o Nio o)
2mhc?
VN NG5 Vi Nis + 1 ) (14.477)

This behavior is identical (aside from the \/27hc? /w factor) to that of the @ and
a* operators in the harmonic oscillator problem.

This model gives a quantum mechanical picture of the electromagnetic radiation
field as an infinite number of harmonic oscillators - one per mode and the quanta

associated with these oscillators are photons.

If we define a Hermitian electromagnetic field operator as

ke —ikef
An () =3 [Ag;pu@ +ALPRE ] (14.478)
EX

we have

Flmt=fd3f[—ij(f).21<0p)(f)+ ~p(7) (AP (7)) ] (14.479)

In the interaction representation A(°P)(7,t) has the time dependence
AP (7, t) = e Hemt f(oP) () Hem? (14.480)
where H em = Hamiltonian for free radiation. We then have

3= 2 (op)+ 4(op) L
f &7 (22 + B?) %hck(Am AL +§) (14.481)
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The operator algebra similarity to the @ and a* problem then allows us to write

2
(0p) plop)+] _ 2mhe” o (or) 7lom) ] _
[Am LAl ] = TG bis [Am ,AI.M,] =0 (14.482)
and
1 (op)+) Vi
[N Neasar oo Nigo o) = sy (A57") 7 [N 5, Ny, 00, )
o R R R (14.483)
and H = Hy + H,,,, + H;,,; where Hy = Hamiltonian for the electrons.
We then have
e%ﬁemtAg;\P)e—%ﬁemt | ..... R NI;:\’ ...... >
eh H"‘mtA’g}\p)eii(Ner%)t | ..... NES\ ...... >
Ze%Hemte_i(N’:’;\*—%)t\/N%x ..... 7N]*€;\— 1,...... )
= ei(N"cx_l+%)t€_i(N’:7\+%)t\/NTCX ..... y Nk/\ - 1, ...... )
= e AP N, ) (14.484)
o ¥é (op) .~ A i (op)
e flemt AP = Hlemt — gmickt 000 (14.485)
and similarly o o
eiH”"tA%p)Jre_iHmt = e"”’“tA%p)+ (14.486)
Putting this all together we have
+(0p) ( p)aeilgf—iwt (op)+ % omikTriwt
AYPI(F 1) = AP N s AP 14.487

By construction, we have forced the quantum mechanical description
of absorption of the electromagnetic field in terms of the photon to be
identical to the description in terms of the classical electromagnetic
field for the induced absorption process.

We now apply the formalism to the emission process. This corresponds to the
transition between the states

initial state =[0) [Ny 5 s Vg 5,5 ores Nigs oeeees ) (14.488)
final state = |n) [Ny 5. Ni,x,s oo Vg + 1y oo ) (14.489)
so that
Einitiat = €0+ ., hek' Ny 5, (14.490)
kN7
Efinat =n+ Y, hck' Ny 5, + hek (14.491)
Y
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The transition rate is

2%5(8”—60—}16](}”(0; ........ N%x-f- 1, ..... |I:Iint

where

= (01 - A" ) /Nis +1 (14.493)

We no longer have any features that are unknown and hence ad-
justable. Forcing agreement with induced absorption makes the re-
sults for the emission process a prediction!

We get

2.2
emsis _ dm“e

= N * 2 abs
i = Wd(sn — g0 — hek) [(0] jz - A [n)| (Ngx +1) # T2 (14.494)

—n;kX

which disagrees with the classical field result but agrees with experi-
ment.

The Np5 part corresponds to the classical result.
The +1 part is a purely quantum mechanical effect.

This term implies that there is an emission process that can take place even if
there is no external field present.

This process is called spontaneous emission. A clear victory for the quantum
approach.

14.8 Problems

14.8.1 Dirac Spinors
The Dirac spinors are (with E = \/p2 + m?)

p‘f‘m Vs _p"‘m

o= S (5) o= (D)

where p = v"p,, ps(s = £1/2) are orthonormalized 2-spinors and similarly for
Xs. Prove(using @ = u™Y, etc):

(a) u(p.s)u(p.s') = -v(p, s)v(p,s’) = 2mdss
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(b) v(p,s)u(p,s’) =0
(c) a(p,5)7°u(p,s’) = 2Edss
(d) Xsulp.s)ulp,s) =p+m
) Lsv(p-s)v(p,s)=p-m
(£) a(p, s)v*u(p’,s') = 2Edss = 5-(p, s) [(p + p')* +io™ (p=p') ] u(p’, s')
(The Gordon Identity)

14.8.2 Lorentz Transformations

In a Lorentz transformation =’ = Az the Dirac wave function transforms as
P'(x") = S(A)Y(x), where S(A) is a 4 x 4 matrix.

(a) Show that the Dirac equation is invariant in form, i.e., (W“(% -m)y'(2') =
0, provided
STHANMS(A) = Ay

(b) For an infinitesimal transformation A¥, = g, + dw",, where dw,, = —dw,,.
The spin dependence of S(A) is given by I —io,, w"” [4. Show that o, =
[V, Ynu] satisfies the equation in part (a). For finite transformations we
then have S(A) = e~i@me"" /4,

14.8.3 Dirac Equation in 1+ 1 Dimensions

Consider the Dirac equation in 1+ 1 Dimensions (i.e., one space and one time
dimension):

0 0
AT A _
(z*y 8x0+27 5l m)z/J(x) 0

(a) Find a 2 x 2 matrix representation of 4° and v which satisfies {y*,7"} =
2g"” and has correct hermiticity. What is the physical reason that ¢ can
have only two components in 1+ 1 dimensions?

(b) Find the representation of v5 = 7%, v5v* and o** = %z [v*,7"]. Are they
independent? Define a minimal set of matrices which form a complete
basis.

(c) Find the plane wave solutions v, (7) = u(p')e™® and vy_(z) = v(p')e?®

in 1+ 1 dimensions, normalized to @u = —vv = 2m (where % = u*4°).

14.8.4 Trace Identities

Prove the following trace identities for Dirac matrices using only their property
{v*,7"} = g"¥ (i.e., do not use a specific matrix representation)

(a) Tr(v*) =0
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(b) Tr(y"") = 49"
(c) Tr(y"9¥~*) =0
(d) Tr(yy"yPy7) = 49" g7 - 4917 9”7 + 49"7 g"*

(e) Tr(vs) =0 where 75 = iy"y1y2~3

14.8.5 Right- and Left-Handed Dirac Particles
The right (R) and left (L) -handed Dirac particles are defined by the projections

Vr(e) = 5L+ bu(e) = 5 (=)0 ()
In the case of a massless particle (m=0):

(a) Show that the Dirac equation (i@ — eA)1 = 0 does not couple ¥g(z) to
¥ (z), i.e., they satisfy independent equations. Specifically, show that in
the chiral representation of the Dirac matrices

O_O—I _00’
T\l o) 0 7Tl 0

)

i.e., that the lower(upper) two components of ¥g (1) vanish.

we have

(b) For the free Dirac equation (A* = 0) show that ¢r and ¢, are eigenstates of
the helicity operator %o’- p with positive and negative helicity, respectively,
for plane wave states with p® > 0.

14.8.6 Gyromagnetic Ratio for the Electron

(a) Reduce the Dirac equation (i@ — ed — m)y = 0 by multiplying it with
(i@ — e +m)1 =0 to the form

[(16 —eA)? - ga’“’FW - m2] $=0

where o = 3 [y#,4"] and the field strength F),, = 0,A, - 0, A,.

(b) Show that the dependence in the magnetic field B = V x A in the spin-
dependent term o F,, is of the form —(ge/2m)33 - B when the kinetic
energy is normalized to —V2/2m (X = 757"y is the spin matrix). Deter-
mine the value of the gyromagnetic ration g for the electron.
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14.8.7 Dirac —» Schrodinger

Reduce tyhe Dirac equation (i@ — e4 — m)vy = 0 for the Hydrogen atom (A° =
—-Zel4nr , A =0) to the standard Schrodinger equation

2
ig\ll(t, boldsymbolzx) = v +eA% | U(t, boldsymbolzx)
ot 2m

in the non-relativistic limit, where |p|, A° << m. HINT: You may start from
the reduced form of the Dirac equation in Problem 20.6(a). Extract the leading
time dependence by writing (x) = ¥(t,x)e ™.
14.8.8 Positive and Negative Energy Solutions
Positive energy solutions of the Dirac equation correspond to the 4-vector cur-
rent J* = 2p* = 2(E,p), F > 0. Show that the negative energy solutions
correspond to the current J" = -2(E, p) = -2(|E|,-p) = -2p*, E <0.
14.8.9 Helicity Operator
(1) Show that the helicity operator commutes with the Hamiltonian:
[ p,H]=0

(2) Show explicitly that the solutions to the Dirac equation are eigenvectors

of the helicity operator: B
[ p| T =20

14.8.10 Non-Relativisitic Limit

v (i)

to be a solution of the Dirac equation where w4 and up are two-component
spinors. Show that in the non-relativistic limit ug ~ 8 = v/c.

Consider

14.8.11 Gyromagnetic Ratio

Show that in the non-relativisitc limit the motion of a spin 1/2 fermion of charge
e in the presence of an electromagnetic field A* = (A%, A) is described by
j—eA)? e -
7(}7 ) - —G-B+eA’|x=Ey
2m 2m

where B is the magnetic field, 0% are the Pauli matrices and E = p —m. Identify
the g-factor of the fermion and show that the Dirac equation predicts the correct
gyromagnetic ratio for the fermion. To write down the Dirac equation in the
presence of an electromagnetic field substitute: p* — p# —eA*.
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14.8.12 Properties of 5
Show that:

(a) U5W is a pseudoscalar.

(b) WrsyH W is an axial vector.

14.8.13 Lorentz and Parity Properties

Comment on the Lorentz and parity properties of the quantities:
(a) UysyHOWy, ¥
(b)
¢)
)
)

K

Y5 WUy U

=l

\IJ\T/’)/5\I/

K

(
(d
(e) Uy Uy, O

Y5y W5y, U

14.8.14 A Commutator

Explicitly evaluate the commutator of the Dirac Hamiltonian with the orbital
angular momentum operator L for a free particle.

14.8.15 Solutions of the Klein-Gordon equation

Let ¢(7,t) be a solution of the free Klein-Gordon equation. Let us write

O(F,1) = (7, e
Under what conditions will (7, t) be a solution of the non-relativistic Schrodinger
equation? Interpret your condition physically when ¢ is given by a plane-wave
solution.
14.8.16 Matrix Representation of Dirac Matrices

The Dirac matrices must satisfy the anti-commutator relationships:
{Oéi,Oéj} = 26@‘ R {Oéi,ﬂ} =0 with ﬁ2 =1

(1) Show that the «;, 8 are Hermitian, traceless matrices with eigenvalues +1
and even dimensionality.

(2) Show that, as long as the mass term mis not zero and the matrix § is
needed, there is no 2 x 2 set of matrices that satisfy all the above rela-
tionships. Hence the Dirtac matrices must be of dimension 4 or higher.
First show that the set of matrices {I,5} can be used to express any 2 x 2
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matrix, i.e., the coefficients cg, ¢; always exist such that any 2 x 2 matrix
can be written as:
A B
(C D) =CoI+C¢Ui

Having shown this, you can pick an intelligent choice for the «; in terms
of the Pauli matrices, for example a; = o; which automatically obeys
{ai, o} =26;5, and express 3 in terms of {I,6} using the relation above.
Show then that there is no 2 x 2 8 matrix that satisfies {a;, 8} = 0.

14.8.17 Weyl Representation

(1)

Show that the Weyl matrices:

SERRR

satisfy all the Dirac conditions of Problem 20.16. Hence, they form just
another representation of the Dirac matrices, the Weyl representation,
which is different than the standard Pauli-Dirac representation.

Show that the Dirac matrices in the Weyl representation are
. (0 & o (0 I
T\ of 7T 71 oo
: : o 1.2.3_(—1 0O
Show that in the Weyl representation 5 = iy vy v*v° =

0 I

Solve the Dirac equation [@-p+ Sm]¥ = EV in the particle rest frame
using the Weyl representation.

Compute the result of the chirality operators

L£7s
2

when they are acting on the Dirac solutions in the Weyl representation.

14.8.18 Total Angular Momentum

Use the Dirac Hamiltonian in the standard Pauli-Dirac representation

H=a-p+pm

to compute [H, L] and [H,3] and show that they are zero. Use the results to
show that:

[H,L+3%/2]=0
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where the components of the angular momentum operator are given by:

L; = €1 2Pk

and the components of the spin operator are given by:

- ot 0
Zi_(O Ui)

Recall that the Pauli matrices satisfy 0’07 = 67 + ic* g,
14.8.19 Dirac Free Particle
The Dirac equation for a free particle is
0
ih# = (caxpg; + CoyPy + COLD, + ﬁch) [¥)

Find all solutions and discuss their meaning. Using the identity

(6-A)(3-B)=A-B+i5-(AxB)

will be useful.
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